

Enhancing the performance and
testability of the MI20 robot soccer

system

Paul de Groot

A Master's thesis in computer science.

Twente University

Human Media Interaction

Date: 28 August 2006

Graduation committee:

Dr. Mannes Poel

Dr. Albert Schoute

Prof. dr. ir. Anton Nijholt

Ir. Thijs Verschoor

Computers use what mathematicians call the binary
system, in which there are only two numbers, 0 and 1. In
some ways, this is a disadvantage for computers.

For example, they are incapable of doing this cheer:

 “Two, four, six, eight! Who do we appreciate?”

Instead, computers have to cheer thusly:

 “One, zero! Who's our hero?”

This cheer is not nearly as effective, which is why,
although computers are getting really good at chess, they
still suck at football.

-- Dave Barry in Cyberspace, by Dave Barry

A bst ract

or four years Twente University is a competitor in the FIRA robot
soccer league. With a software system completely written from scratch,

the team called MI20 has been competing and even producing some
notable results.

F
However, factors such as the constant change of developers and the clear-
cut nature of Master's assignments have resulted in the organic growth of
the system, giving problems with manageability and introducing bugs. Also,
students reported having difficulties with testing the system, due to the
time-consuming nature and low reproducibility of such tests.

In this thesis, the efforts in redesigning and re-engineering the MI20 robot
soccer system are described. Existing code has been scrutinized and
adapted if necessary. The redesign has been done to ensure extensibility,
usability and to make the system easier to grasp.

To further accommodate the manageability of the system, a set of tools was
(re)introduced to facilitate the development process. The source code
management system Subversion is now used, documentation is
automatically generated and a bug tracker ensures that defects found are
not neglected. A newly written tool called Builder tackles problems with
Makefiles, whilst keeping every developer free in their choice of a
development environment.

Testing the system has now become much easier due to built-in facilities for
gathering and visualizing measurement data, which can be exported for
further processing in Excel, Matlab or numerous other programs. Games
played can be recorded, so that a means of using reproducible input for
testing is provided and games can be reviewed to judge our strategy.

Finally, a simulator has been developed so that preliminary tests can be
performed without having to set up the complete game. Also, simulation
allows more control than a real-life game situation. The simulation has a
realistic physics and collision model and can detect violations of game
rules. Added benefit is that this simulator can be used for machine learning,
allowing new strategies to be developed.

 5

With this new design development on the MI20 system should be easier
and less error-prone, hopefully making the team from Twente once again a
force to be reckoned with.

6

Sa menvatti ng

e Universiteit Twente neemt nu vier jaar deel aan de FIRA
robotvoetbalcompetitie. Met compleet zelfgeschreven software strijdt

het team MI20 mee en boekte daarbij zelfs enkele goede resultaten.
D
Echter, door het constante verloop van ontwikkelaars en de sterke
afbakeningen van de afstudeeropdrachten is de groei van het systeem
organisch van aard geweest. Dat blijkt nu problemen te geven met het
onderhoud van het systeem en is de oorzaak van bugs. Ook ondervinden
studenten problemen met het testen van het systeem, doordat tests vaak
tijdsintensief en slecht reproduceerbaar zijn.

In dit verslag worden het herontwerpen en herontwikkelen van het MI20
robotvoetbalsysteem beschreven. Bestaande code is kritisch bekeken en
waar nodig aangepast. Het nieuwe ontwerp legt de nadruk op
uitbreidbaarheid, gebruiksvriendelijkheid en streeft ernaar dat nieuwe
studenten sneller bekend raken met het systeem.

Om de hanteerbaarheid van het systeem nog verder te vergroten, zijn
enkele tools (opnieuw) geïntroduceerd in het ontwikkelproces. Zo wordt
voor het beheren van de broncode nu Subversion gebruikt, wordt
automatisch documentatie van de code gegenereerd en wordt met een bug
tracker gezorgd dat gevonden fouten niet genegeerd worden. Een nieuw
geschreven programma, Builder genaamd, vormt een oplossing voor de
problemen met Makefiles, zonder dat ontwikkelaars een bepaalde
ontwikkelomgeving opgedrongen wordt.

Testen van het systeem is makkelijker geworden door de implementatie van
functionaliteit om meetgegevens te verzamelen en te visualiseren. Deze
data kan ook worden geëxporteerd zodat verwerken in Excel, Matlab of
andere programma's mogelijk is. Wedstrijden kunnen worden opgeslagen,
zodat deze als reproduceerbare invoer voor testen kunnen dienen, of om de
gevoerde strategie te beoordelen.

Tenslotte is een simulator ontwikkeld zodat tests kunnen worden
uitgevoerd zonder dat het gehele speelveld hoeft te worden opgezet. Ook
biedt de simulator meer controle dan een spelsituatie in realiteit. De

 7

simulator heeft een realistisch natuurkundig en botsings-model en is in
staat om de navolging van de spelregels te controleren. Bovendien kan de
simulator worden gebruikt voor machine learning, zodat nieuwe strategieën
kunnen worden ontwikkeld.

Met dit nieuwe ontwerp moet de verdere ontwikkeling van het MI20
robotvoetbalsysteem makkelijker en minder vatbaar voor fouten worden,
zodat het team uit Twente weer een tegenstander wordt om rekening mee te
houden.

8

Table of Contents

 1. Introduction...13

1.1.What is robot soccer?...13

1.2.Problem statement...14

1.3.Assignment...15

1.4.Thesis outline...15

 2. The MI20 application framework.................................17

2.1.Towards version 2.0...17

2.2.Modularity...18

2.3.Model-view-controller architecture pattern......................................20

2.4.Module descriptions..21

2.4.1.Vision..21

2.4.2.State estimator..22

2.4.3.Strategy..23

2.4.4.Motion...25

2.4.5.RFComm...26

2.4.6.Joystick control...27

2.5.User interface..28

2.6.Inter-module communication..29

2.6.1.Sender-receiver threads (v1.0)..29

2.6.2.Events (v2.0)..31

2.6.3.Networking..35

2.7.From enhanced C to actual C++...36

2.7.1.Object orientated features...36

2.7.2.STL containers...36

2.7.3.The const keyword...37

2.7.4.Exceptions...37

 9

2.7.5.C++ for Java and C-programmers..37

2.8.Other changes...39

2.8.1.Settings..39

2.8.2.Assertions..40

2.8.3.Memory leak detection...40

2.9.Platform independence..40

2.10.Conclusions..41

 3. Development process...43

3.1.Source code management...43

3.1.1.Subversion..44

3.1.2.Branching...44

3.1.3.Vendor drops...45

3.2.Documentation...46

3.3.Bug tracker..47

3.4.Builder...48

3.5.Coding style...50

3.6.Conclusions...50

 4. Test environment...51

4.1.Graphing system data..51

4.2.Statistical tools..52

4.3.Game recording...54

4.4.Conclusions...55

 5. Simulation...57

5.1.Physical model...57

5.1.1.Air resistance..57

5.1.2.Rolling resistance and sliding friction..59

5.1.3.Collision model..61

5.1.4.Robot motor model..63

5.1.5.Measurement noise..65

5.2.Implementation..66

5.3.Conclusions...67

 6. Conclusions ..69

6.1.Conclusions...69

6.2.Recommendations..69

6.2.1.Further work..69

6.2.2.Best practises..70

 Bibliography..71

10

 A. Network packet format..73

 B. Game recording file format..75

 C. Simulation constants...79

 11

1.Introduction

CHAPTER

1 Introduction

n astonishing 1.2 billion people (being 17% of the world's population)
watched Italy beat France during the FIFA World Cup football in

2006[1]. In comparison, a few dozen people watched the ruling world
champion Socrates renew its world title in robot soccer.

A
Nonetheless, robot soccer forms an academic challenge for numerous
teams in Europe and around the world, combining research areas like
computer vision, artificial intelligence and control theory.

One of the teams that competes in this sport is the MI20 robot soccer team
from Twente University. This thesis describes the work done on a new
software architecture within this team.

1.1. What is robot soccer?
In June 1993 a group of Japanese researchers started the first robotic
soccer league. Within a month, research groups from all over the world
reacted enthusiastically on this initiative, signalling the start of a thriving
competition. Its founders set an objective for the academic world: “Design a
team of soccer-playing robots, that can beat the human World Cup finalists
in 20501.” [2]

In 1995, another robot soccer association, the Federation of International
Robotsoccer Association (FIRA), was established in Korea. This association
too has grown to become a world-wide organization, and includes the MI20
team from Enschede.[3]

The two federations each hold competitions in various leagues, ranging
from matches with one meter high, fully autonomous robots with
pneumatic shooting mechanisms to robotic dogs and tiny robots of only 5.5
centimetres in height.

1 This then would have to be the winners of the World Cup in 2048, since the
championship is held every 4 years, since 1930. Therefore, academics will have 2 years
to tune their strategy to their competitors.

1. Introduction 13

The MI20 team competes in the MiroSot league, playing with robots that
cannot be larger than 7.5 x 7.5 x 7.5 cm. A team consists of 5, 7 or 11 players
depending on the type of match. The pitch on a game of five against five
measures 220 by 180 centimetres, for a 7x7 game the pitch is 280 x 220
centimetres.

Robots wear colour patches: pieces of cardboard with distinct colours so
that the computer can identify the robots in the image easily. Regulations
prescribe that the ball has to be an orange golf ball. Each team observes
robots and ball using a camera placed above the field, sending its images to
a computer.

This computer processes the images, makes strategical decisions about the
robot's actions, and sends new commands to the robots using a radio
frequency transmitter.

A game consists of two halves of 5 minutes of actual playing time each.
During play no human intervention may take place, other than starting and
stopping the game.[4]

One of the first appearances of MI20 at a championship yielded quite good
results: the team finished 4th at the European championship in Ljubljana.
Sadly, at the World Championship of that year the third place in the group
was all that could be reached (due to problems with the transmitters and
two teams of the group later reached placed 2 and 3 in the
tournament).[5][6]

1.2. Problem statement
In October 2005, it became clear that during more than three years of
development of the MI20 robot soccer system, it had not only been
extended with many useful features, but at the same time had become
unmanageable.

In the course of the years, the code size has increased to 28,000 physical
lines of code2 (1.3 megabytes). Unfortunately, the organic characteristic of
the growth introduced several subtle and not-so subtle bugs, resulting in an
unacceptable high processing load and inexplicable errors. Consequently, it

2 A physical line of code is a non-empty, non-comment line.

14 1. Introduction

Figure 1.1. - Typical set up of a robot soccer game.

became difficult to play a game of robot soccer, especially outside the
standard situation of our lab.

One possible cause of the organic growth that hurt the manageability of the
system so much, might be that students got increasingly slack about the
development process. Although at first a source code management system
was used, later every student worked in his own copy of the code. In many
cases, documentation of the code was lacking.

Additionally, students reported having difficulty pin-pointing the source of
the shortcomings observed. The system processed a wealth of information,
but lacked a straightforward manner of viewing this information. Testing
was done sparsely and with great difficulties because of the bad
reproducibility of test cases.

These problems were the reason to write out an assignment, making sure
the MI20 robot soccer system becomes once again a stable test bed for
academic assignments and MI20 becomes a worthy adversary for other
robot soccer teams.

1.3. Assignment
The purpose of this assignment is to make a complete revision of the system
to solve the performance problems and restore a proper working
environment for software development and testing.

The assignment consists of the following sub-goals:

1. A complete rewrite of the code starting from scratch, while gradually
checking and optimizing code from the old system and incorporating it
into the new. The modularity of the original system must be kept in
tact, but to lower the multi-threading processing overhead, modules
have to be merged into a single program instead of separate
executables.

2. Introduce tools with respect to version control, software design,
debugging, documentation, etc. to improve the software development
process.

3. Provide facilities for testing, visualization and gathering data, inspired
by the so-called Supervisory Control And Data Acquisition (SCADA)
systems. Data logging must enable post-processing by Excel, Matlab or
other applications.

4. Enable the integration of a simulation environment to ease the
development process that allows for reproducible testing and playing
games faster than real time.

1.4. Thesis outline
This thesis will describe the work done to fulfil the assignment above. First,

1. Introduction 15

in chapter 2 the software architecture of version 2.0 of the MI20 robot
soccer system will be presented.

In chapter 3 a description will be given of the tools and changes that were
introduced to improve the software development process.

Then, in chapter 4, the data visualization features that have been added to
the robot soccer system will be presented.

Furthermore, a simulation environment has been developed that enables
students to test and create strategies more easily using machine learning.
This simulator will be elaborated on in chapter 5.

Finally, chapter 6 contains conclusions about the work done and
recommendations for further work and research.

16 1. Introduction

2.The MI20 application framework

CHAPTER

2 The MI20 application framework

n October 2006, the MI20 robot soccer system had seen such
uncontrolled growth that it had become difficult to play a game of robot

soccer at all. To remedy this, the system was rewritten and audited.
I
In this chapter, the redesign done and the rationale behind some of the
decisions made is explained. Basic topics in this chapter are the several
modules into which the system is divided, the inter-module communication
and several other changes that were made to increase the system's
maintainability.

2.1. Towards version 2.0
When the project started in 2002, the road to a working robot soccer
system was still unpaved. Designing a system like this is a demanding task,
because it touches upon a large number of research fields and it can be
quite overwhelming to incorporate all these pieces into a well-working
system. Nevertheless, the three first master students (Werner Dierssen,
Remco Seesink and Niek Kooij) were successful, and a first version of the
system was created.

During the years after that, many Master students worked on the program,
adding new strategies and adapting existing algorithms. In September
2005, the system consisted of 1.3 megabytes of code, and had
approximately 28,000 physical lines of code. Unfortunately, the system had
grown organically, so that the code became somewhat messy. This made it
more and more difficult to ensure the correct working of the program and
to keep track of the big picture. Also, hard-coded values made it impossible
to run the program on anything different than the current development
machines.

In October 2005, the decision was made to do a complete rewrite of the
code. A new program was started from scratch, gradually checking and
optimizing all code from the old system and incorporating it into the new.

2. The MI20 application framework 17

A rewrite like that can be compared to rebuilding a decrepit building. It is
torn down and the foundations are inspected and – where necessary –
patched up. Then you go through the building blocks that remained after
tearing down the building and you build up the house; keeping the building
blocks that are reusable and creating new ones where the old ones faltered.
The decision to start completely from scratch was made to ensure that
really every old piece of the system was reviewed and checked before
placing it in the new version.

During this rewrite, the modularity of the original system was kept in tact,
but the modules were merged into a single program instead of separate
executables. Some of these modules still work just as they did in the first
version of the system. In other cases, the software architecture within the
module was changed radically. The current layout of the system is
explained in detail in paragraph 2.4.

Inter-module communication was changed to make use of an event-based
communication system, which reduced the needs for multi-threading and
instead transformed the system into a cooperative multitasking system. The
architecture and the benefits of such a system are elaborated on in
paragraph 2.6.

In January 2006, main development was shifted from the old code base to
the new version 2.0. Since then development was done on the new version,
that now has reached version 2.2. The code now contains 46,000 physical
lines of code and is more than 2 megabytes large.

The increase in lines of code has multiple reasons. First of all, during the
past year development of the system has continued and now contains
features like auto-positioning3, an expanded user interface and data
visualization (see chapter 4).

Another reason is the adoption of a code style in which the braces ({ and })
that start and end a block of code are placed on a line by themselves. This
hardly increases the byte count of the code, but creates a surge in the
amount of physical lines of code.

2.2. Modularity
The MI20 system has always been designed with modularity in mind. This
means that several parts of the system were identified that have a fairly self-
contained function. The working of such a module can be regarded as a
black-box: other modules do not and need not care about the inner
workings of the module. All they require from the module is that it adheres
to the rules that were set for inputs and outputs.

This modularity has a couple of advantages. First of all, it reduces the
impact that changes in the code may cause. Because the functionality of a
module is constrained to itself, when a change is made to a module, it can
only affect the output of the module. Only the modules that use that
information can be affected by a change of the module.[7]

3 Robots can be moved to predefined positions in response to a game situation without
human intervention.

18 2. The MI20 application framework

Also, the interfaces between the modules form good starting points to track
errors. If the inputs of a module are correct, but the corresponding outputs
are not, the error must be located within that module, reducing the amount
of code that needs to be searched.

Finally, keeping modularity in the code makes it easier to perform
regression and unit testing.

The following modules are currently identified in the MI20 system:

● Vision – Captures images from the camera, performs colour
segmentation and tries to identify the robots and the ball. A
snapshot will never contain anything time-related, like velocity or
acceleration.

● State estimator – The state estimator uses the snapshots from the
vision module to get the best possible estimation of the world state.
This entails the filtering of noise from the measurements, and
identifying the robots using a tracking algorithm by combining this
measurement with previous measurements.

● Strategy – The strategy module decides what the actions of the
robots should be by looking at the current world state. Different
decision systems can be used by the strategy module to create
different behaviour.

● Motion – The motion module bridges the gap between the higher
level commands from the strategy module (e.g. “drive to
(1800, 500)” or “shoot the ball in the goal”) and robot commands. It
uses these commands to generate linear and angular velocities every
frame. It also contains a feedback controller to ensure the robot is
driving the correct path.

● RFComm – The RFComm module is responsible for taking the
desired speeds determined by the Motion module, and send the
corresponding commands to the robots.

● Joystick – A joystick can be attached to the system and used to
control the robots manually. This is useful for demonstrations or for
quick testing.

In the original implementation of the system, all of the modules were
separate executables. Starting the system was then done using a batch
script, which started all of the separate executables. This situation was
hardly ideal, since it not only made debugging harder, it also made sure
inter-module communication was hardly trivial (see 2.6 Inter-module
communication).

In version 2.0, this was changed so that the system has just one executable,
in which modules can be chosen to be or not to be started.

2. The MI20 application framework 19

This structure can be seen in figure 2.1. The class Robosoccer creates a so-
called execution environment by setting the common needs for all modules:
inter-module communication, the user interface, etc. etc. This category also
includes the classes for reading and writing configuration files. Then, all
modules selected by the user to run, are created and started. Creation of
these modules is done using the Factory software design pattern[8], which
hides the implementation of the modules from the Robosoccer class. That
class has no knowledge whatsoever about the modules other than the fact
that they have an init()- and deinit()-method, to be called at the start
and end of the program.

Starting the program is now much easier, and attaching a debugger to this
single executable is much more convenient than before. Modules can be
stopped and restarted at run-time, adding a convenient way of resetting a
module.

2.3. Model-view-controller architecture pattern
The whole MI20-system can be regarded as using the Model-View-
Controller architectural pattern[9]. In such an application, the data model,
user interface and control logic are separated into distinct components.
This way, the impact of changes to one component is limited.

The user interface or view of the MI20 system is just that: the GUI module.
It takes the world state of the data model and shows it to the user.

Commands, given by the user via the user interface, are delegated to the
controller of the system: the combination of the Strategy and Motion
modules. These modules take the input of the user and the current state in
the data model to determine the way in which the system (and thus the
robots) should be controlled.

Then there are three possible data models for the MI20 system. The most
common is the combination of Vision, State Estimator and RFComm. The
current state of the world in represented on an actual playing field and is

20 2. The MI20 application framework

Figure 2.1. - The top level structure of the MI20 system version 2.0. The main
class 'Robosoccer' creates a user interface, and any of the modules the user
wishes to use.

Robosoccer UserInterface

Module

0..N

1

State
estimator Strategy Motion RFCommVision Joystick

Module
Factory

recorded by the camera. The state estimator enhances this data to create a
usable data model.

The fact that RFComm is listed here as part of the data model might be a bit
counter-intuitive. However, part of the functionality of the data model is to
respond to instructions from the controller to change state. This implies
that the Controller specifies what should be changed, and the data model
knows how to change that.[10]

When using this definition, Motion specifies the changes that should be
made to the data model (i.e. what velocities the robots should have) and
RFComm knows how to change that (by sending commands to the robots).

Another possible data model is the simulator. The simulator receives the
commands of the Controller (again Strategy and Motion), simulates a time
step and notifies the View and the Controller of the new update.

A third form of data model stems from the fact that games can now be
recorded to a file. When playing back the data in the file, the current world
state found in that file forms a third possible data model.

2.4. Module descriptions
In this section, for each module will be explained what the module does and
what other modules it communicates with. Also, for each of the modules a
class diagram will be presented that shows the class hierarchy for that
particular module. In some cases, this class hierarchy differs greatly from
that in version 1.0. In other cases, the same set-up is used in both systems.

2.4.1. Vision
The responsibilities of the vision module are twofold: getting images from
the camera and processing these images to detect the location of the robots
and the ball.

The Camera class
uses the Factory
software pattern [8]
to create the
appropriate camera
class for the system.
A loop – run in a
separate thread –
waits for new camera
images to become
available, and feeds
these to the
Segmentator.

The Segmentator
analyses the image by
breaking it up into

2. The MI20 application framework 21

Figure 2.2. - Class diagram of the Vision module.

Vision

Camera

Segmentator

CameraFirewire

CameraUSB

LensDistortion

Projection

CMVision

ColorPatch

regions of a certain colour. To be contained in a region, the colour values of
that pixel should fall into a colour cube in the YUV-colour space. The user
specifies a series of these intervals, e.g. the colour of the ball or the
opponent's team colour. The actual processing of the images is done by the
CMVision-class, which was released under a GPL-license[11] by Carnegie
Mellon University.

Using these regions, the Segmentator determines the (possible) locations of
the robots and the ball. These locations are converted from image
coordinates to world coordinates, using a projection matrix and the lens
distortion. Then, these locations are placed into a data structure called a
Snapshot.

Although, for example, it is assumed there is only one ball on the field, all
regions that look like the ball are included into the Snapshot. The state
estimator module then can use historical information to determine which of
the regions is the most likely candidate to be the actual ball.

During the course of this assignment, the colour patches of the robots were
changed from having 2 colours and being identical for each robot, to
patches containing 3 colours, allowing us to identify each separate robot by
its patch. This detection is facilitated by the ColorPatch-class.

Currently, we are using a Sony Firewire camera. Connecting to and
retrieving images from this camera is done through two libraries called
libdc1394 and libraw1394. These libraries have been used in the MI20
robot soccer system since the beginning of the project, but during this code
renovation the libdc1394-library was upgraded to version 2.0. Although at
the time of writing this library is still in beta testing, the much better
camera detection and other functionalities made interfacing with the
camera much easier than using version 1.0 of the library.

2.4.2. State estimator
The state estimator uses the data
from the Vision module to create the
best estimation of the situation on
the field.

Vision handles each frame as a
separate image, completely
unrelated to the previous frame. The
state estimator, however, uses
historical information to determine
the world state. This history is important, for example, when Vision has
detected multiple candidates for the ball. The state estimator then uses the
previous ball locations to select the region that is most likely the actual ball.
Also, if the camera has not detected a robot or the ball (due to noise,
obstructed view or shadows from the referee or audience), the state
estimator can use the state history to make a prediction about the current
location of that robot or ball.

22 2. The MI20 application framework

Figure 2.3. - Class diagram of the state
estimator.

ControlSignal
HistoryStateEstimator

KalmanFilter

N

1

The ControlSignalHistory-class buffers the commands that are sent to the
robots. This is needed to make a more accurate prediction of the future
world state. The MI20 system uses predictions of the world state fairly
often. These can be long-term predictions (e.g. predict the location of the
ball in 2 seconds), but the control signal history is of the utmost importance
when making a short-term prediction (±100 ms).

This prediction is made every frame to compensate for a delay that exists
between sending a command to a robot and receiving the measurement of
the robot executing that command. If, during this delay, Motion would only
react on the measurements it receives, it would assume the commands just
sent were not executed. This would lead to unstable robot movement.
Consequently, Motion uses a short-term prediction equal to the estimated
command delay. The control signal history buffers these signals, and the
prediction takes into account the delay. Effectively, Motion now determines
its commands based on a future world state. This makes sense, since – due
to that delay – the system is incapable of influencing the game situation
between now and the time of that short-term prediction.

To reduce the effects of Gaussian noise, originating from noise in the
camera images, the state estimator maintains an Extended Kalman Filter
for each team robot.

2.4.3. Strategy
The strategy module is responsible for assigning each robot an action to
perform. These actions are higher-order strategy decisions, such as
blocking an opponent or trying to score a goal.

The actual decision making is a fairly difficult matter. Several Master
students have tried different techniques in letting the computer decide the
best action for any given world state, and several others will try to do so in
the future. In the current framework, all these students will write their own
type of DecisionSystem. At each update of the world data, the strategy

2. The MI20 application framework 23

Figure 2.4. - Class diagram of the strategy module.

StrategyActionSetAction

Shoot
Action

Move
Action

Catch
Action

Auto
Positioning

GameRules

Player
Features

Game
Features

Decision
System

FSM
DecisionSystem

SingleNeuron
Strategy

Scripted
Strategy

module will consult the currently chosen decision system to select the
action the robots should currently perform.

The decision systems can make use of some standard utilities that are
available to them. An example is the calculation of game and player
features, which are values between 0 and 1, that form an abstraction of the
current situation for a certain player or the whole game.[12]

After the decision system has decided what the robots should do, the
Strategy module may override or adapt some of the actions. This should
hardly ever occur, but may be needed to avoid collisions or to prevent game
situations that are not allowed4.

The decision system is only consulted in normal game play situations.
When a special game situation has occurred (e.g. a goal kick), the Strategy
module uses its auto-positioning functionality to let the robots drive to the
correct positions.

The actions that the robots should perform are all grouped into an
ActionSet. This set contains all the actions the robots are currently
performing, including flags if the action is already finished. The ActionSet is
shared between Strategy and Motion, by using the Singleton pattern. The
Singleton pattern ensures that only one instance of a class ever exists within
the application. This way, whenever Strategy or Motion request to access
the ActionSet, they will always retrieve a reference to the single ActionSet
within the application [8].

Changes to the ActionSet are made using the inter-module communication
system. This makes sure that in case of a distributed system where Motion
and Strategy are running on different machines, the ActionSet will always
be updated correctly.

The class Action is an abstract base class and the actual events are
subclasses of Action. This is done so that actions can contain parameters.
For example, a move action contains the destination and the target
orientation. Actions can also contain optional parameters. For instance, a
move action can also contain a maximum speed. However, in most cases
the exact top speed is irrelevant and Motion will revert to the default value:
drive as fast as possible.

2.4.4. Motion
The Motion module takes the actions from the higher-order strategy and
translates these actions into movement commands for the individual
robots. Two types of motion are currently implemented: planned and
reactive motion.

Planned motion is used for actions like shooting the ball to the goal. When
the strategy decision is made to shoot the ball, the trajectory that the robot
should drive is calculated completely. This trajectory is stored, and at every
camera frame the robot velocities for the current part of the trajectory are

4 These features have not yet been implemented.

24 2. The MI20 application framework

sent to the RFComm module. A so-called feedback controller uses the world
state to check if the robot has deviated too much from its planned trajectory
and will try to correct this error.[13]

Reactive motion determines the new robot velocities anew at every frame,
and has no plan of the path that will be driven upfront. This makes it
possible to react on moving obstacles (like opponent robots), or to perform
actions such as blocking opponents.

Whatever the type of action the robot should perform and the type of
motion used, the result is always a linear and an angular velocity. These two
velocities are sent to an instance of RobotMotion, a class that keeps track of
the current velocities per robot. When the velocities requested by the
Motion module differ too much from the current speeds of the robot,
RobotMotion takes care of gradually increasing the speeds instead of
sending the command directly to the robot. This is done for two reasons.

First, it is physically impossible for the robot to accelerate to the issued
speed instantaneously. We can therefore be sure that in reality the robot
will never reach the speed we send within the next frame. However, we use
this command in our prediction of the world state. This prediction would be
seriously hampered if we would use these velocities unaltered.

Second, the processor on the robot itself controls the wheels of the robot
independently of each other. This means that, when instructing to turn
while accelerating, each of the wheels independently will try to accelerate as
fast as they can. This will result in a robot driving a straight line until it has
reached its target linear velocity, only then to start turning. This is visible in
the bottom graph of figure 2.6

This behaviour is circumvented by using the linear (v) and angular velocity
(ω) to calculate left and right wheel speeds, like this:

v l=v−
ℓ⋅

2
and vr=v

ℓ⋅

2

2. The MI20 application framework 25

Figure 2.5. - Class diagram of the motion module. Two types of motion exist:
reactive motion and planned motion. The planned motion part of the module,
created by Maarten Buth, is placed in a separate directory and is indicated by the
yellow rectangle on the right side of the diagram.

Motion

RobotMotion

N N

Reactive
Control Trajectory

Turn
Trajectory

BSpline
Trajectory

Controller

Motion
Planning

BSplineBSpline
Builder

Interception

MotionPlanning

26 2. The MI20 application framework

Figure 2.6. - Comparison between the paths driven by a robot with and without
the RobotMotion class. An initially halted robot receives the command to drive with
a linear velocity of 1400 mm/s and an angular velocity of -2.9 rad/s. In the bottom
graph the robot drives forward until the right wheel reaches its target speed. In the
top graph, RobotMotion makes sure that both wheel speeds are increased
proportionally, giving a smoother path.

90

140

190

240

290

340

390

440

490

540

590

90 140 190 240 290

x (mm)

y
(m

m
)

90

140

190

240

290

340

390

440

490

540

590

90 140 190 240 290

x (mm)

y
(m

m
)

In this formula, ℓ is the wheel base of the robot, which in case of the Austro-
bots, is 68 mm. From this, it is possible to see if one of the wheels would
have to accelerate more than the maximum acceleration that is allowed. If
so, the speeds of both wheels is reduced proportionally. This way, the
curvature of the path the robot will drive is the same as the curvature in the
command. The effect of this adaptation can be seen in the top graph of
figure 2.6.

2.4.5. RFComm
The RFComm module is responsible for sending the commands issued by
the Motion module to the actual robots.

Version 1.0 of the MI20 system only handled communication with the
robots that were bought in Dortmund. However, when those robots started
to slowly break down, new robots had to be bought. The first replacement
robots were two MiaBots, robots from Merlin Systems Ltd. in England that
use Bluetooth for radio communication. These robots performed
adequately, but did not fulfil all of our requirements, so that in March 2006
a team of five robots were acquired from the university of Vienna.

Because of these different types of robots it became desirable to be able to
use more than one type of robot at once during a game.

To be able to use multiple types of robots, the RFComm module has been
set up as shown in figure 2.7. (In this figure, for simplicity, classes for only
two types of robots are shown).

Each of the types of robots has their own class that inherits from
CommunicationSystem. That latter class specifies an interface with all
commands that any communication system should be able to handle.

For each of the robots, a communication handle is created at start-up by the
appropriate communication system. This handle contains a reference to the
communication system that handles this robot's communication and any
information that the system would need to identify the robot (e.g. an ID or
a Bluetooth address).

2. The MI20 application framework 27

Figure 2.7. - Class diagram of the RFComm module.

RFComm
Communication

System

Communication
Handle

AustroBot
Communication

Bluetooth

AustroHandle
Bluetooth

Handle

N1

1

M

RFComm listens for events from Motion containing commands that need to
be sent to the robots. The handle for this robot is then used to delegate the
command to the correct communication system. That system will then send
the command to the correct robot, using the connection information
contained in the handle.

This means commands can now be sent to robots of any type, and that
these commands are sent transparently to whichever robot desired.

2.4.6. Joystick control
A fairly small module is the joystick control module. It tries to find up to 4
joysticks connected to the system that can be used to control robots on the
field. This has proven to be quite popular with children that attend
demonstrations, and for students during a coffee break.

Thirty times per second, the module polls the position of the joysticks,
calculates the speeds to drive and injects the appropriate events in the event
queue5.

2.5. User interface
Revision of the MI20 robot soccer system has not been limited to the
modules: the user interface has also been reworked. The first user interface
for the system was built using a library called Gtk+, which is present on
nearly every Linux system and available for Windows as well. This was later
changed by Erik Schepers to a GUI based on a library called wxWidgets,

5 Events are the new method of inter-module communication, see paragraph 2.6.2 below.

28 2. The MI20 application framework

Figure 2.8. - The interface of the new MI20 system, showing the main GUI
(background), field calibration (left), preferences dialog (right) and colour
calibration dialog (lower).

which had the advantage of a native look-and-feel across any
platform.[14][15]

When designing the user interface of version 2.0 the decision was made to
revert to the Gtk+-library. The main reason to do this was the existence of
the Glade application, that offers a point-and-click interface to create and
adapt interfaces. Using Glade, creating the new interface required little
programming, and extending the interface requires little or no knowledge
of Gtk+. Glade automatically generates the code needed for the interface
created. The user only needs to write the code that ties the interface to the
program itself (i.e. what method should be called when a certain button is
pressed).

Main idea of the user interface redesign was that the main window should
be simple and contain only the elements that are required during normal
game play. Any other options should be conveniently stashed away in a
menu bar at the top of the application. Also, most settings should be
possible to change from within the application, i.e. without using a text
editor to change the settings file.

The main canvas that shows the current world state to the user is drawn
using OpenGL just as in the previous versions of the system. An addition,
however, is the option the user has to use not a 2-dimensional, but a
3-dimensional view of the game. The actual use for this feature may be
limited, but it sure makes simulation games look much more life-like.

2. The MI20 application framework 29

Figure 2.9. - The new version of the MI20 system even has the possibility for a
3-dimensional view on the field.

2.6. Inter-module communication
Although the idea of modularity is that communication between modules
should remain limited, a module is of course totally useless when it has no
input or output. Therefore, it is necessary to have some means of
communication between modules.

Because of the different approaches in architecture of version 1.0 and 2.0 of
the MI20-system, the approach for inter-module communication is quite
different as well.

2.6.1. Sender-receiver threads (v1.0)
Inter-module communication in version 1.0 was implemented by using
TCP/IP sockets. This made it possible to run a module of the system
anywhere on the network, and still have the system run just as it would on a
single computer.

For each piece of information a module wanted to receive from another
module, it would create a receiver thread. That thread would wait for other
modules to send the data, place this data in a shared global variable and
then notify the module that new data had arrived. On the other side, the
module wanting to send data would create a sender thread. The sender
thread would wait indefinitely until new data came available, take this data
from the global shared variable and send it over the network to the
receiving module.

Since these communication channels were dedicated (i.e. only one type of
information was sent over each channel) the type of data sent could be
determined from the channel it came in over, so that no overhead penalty is
incurred and data transfer was as efficient as possible.

The advantage of using the data as it appears in memory has a drawback:
all communicating modules should be run on a comparable platform.
Compilers are allowed to rearrange the members of structs and classes so

30 2. The MI20 application framework

Figure 2.10. - Inter-module communication in version 1.0 of the MI20 robot soccer
system. The first module thread performs its work, places its data on a common
location and signals the sender thread. This thread takes the data and sends it to a
receiver via TCP/IP. This thread places the data in a globally shared variable and
signals the second module which processes the data.

T
C

P
/

I
P

Calculate
data

Store in
global var

Signal
sender

Wait for
data

Get from
global var

Send
data

Wait for
data

Store in
global var

Signal
module

Wait for
data

Wait for
data

Process
data

Get from
global var

Module thread 1 Module thread 2Receiver threadSender thread

that they benefit the most from memory alignment. If this rearrangement is
different from the one in another module, data corruption and probably
crashes will be the result. However, since we always used the GNU
Compiler Collection on 32-bit 80x86 systems, this has never been a
problem.

Another disadvantage is that this method relies fairly heavily on the use of
multi-threading. Although communication between modules should be
limited, there is still a substantial number of data types that will be
transmitted. And because this method relies on the fact that data can be
identified by the communication channel through which it was received, a
simple game set-up already contains quite some channels. As can be seen
from table 2.1, a simple game of robot soccer with 5 players, will need 72
communication channels, and a total of 165 threads.

The MI20 system has a fairly sequential manner of operation: a camera
image is analysed, this data is used to estimate the current world state, a
strategy decision is made, and velocities are sent to the robot. Then the
system idles until another frame is received from the camera.

Since all modules are so dependant on each other, no module can run
before another has finished. The threads in the system therefore have a
limited task: wait for data, handle the data, and wake up the next thread
that receives the new data. So, although the program has multiple threads,
concurrency is minimal, since often only 1 thread is runnable at each time.

Even if more threads in the system are runnable, a thread will either run
until its task is complete, or until it is pre-empted. However, the default
pre-emption interval of the Linux kernel is 10 ms6.[16][17] Currently the
time spent to do all calculations is about 6 ms7, making it likely that any
task in the system will be completed within one time slice. So, even if
multiple threads are ready to run, it is unlikely that interleaved execution
will ever occur.

The only difference between a threaded approach and execution in a single
thread is that, when multiple threads are in a runnable state, the order of
execution of the two threads is non-deterministic. When using a single

6 Although some of the current desktop systems come with a kernel running with a 2.5 ms
pre-emption interval to improve latency.

7 On a Pentium 4, running at 3.2 Ghz.

2. The MI20 application framework 31

players # threads # sockets #channels

5 165 144 72

7 213 188 94

11 309 276 138

N 45+24N 34+22N 17+11N

Table 2.1 - Number of threads, sockets and communication
channels in use by the MI20 robot soccer system v1.0 as of
September 2005.

thread, a programmer has to prescribe which task will run first, creating a
deterministic execution order. However, the fact that two threads might be
runnable at the same time implies that their execution order is not an issue:
the two parts of code must be able to run independently. Whichever order a
programmer would prescribe, the code will run fine.

Now that we know that in practice there is no concurrency whatsoever in
the MI20 system, it seems there is no need to use threading. Another
argument for the removal of threading is that it would reduce the use of
mutexes and condition variables, which are heavily used by the sender and
receiver threads. So much even, that on a AMD Athlon 2200+, the CPU time
spent on locking amounted to 7% when running at 30 frames per second.

Luckily, the decision to combine the seperate executables of version 1.0 into
one single executable enables us to use another method of inter-module
communication.

2.6.2. Events (v2.0)
The inter-module communication in version 2.0 of the MI20 robot soccer
system is done using an event system.

One of the key design considerations for the new version of the system was
to keep modularity high. In many communication systems, including the
one used by the old version of the systems, modules are sending data to
another module they know of. However, the fact that sending modules need
to know about the other modules in the system does not combine well with
the concept of modularization. To satisfy this goal, modules should only
have contact with one ominous entity for communication.

In the new version of the system, communication is done by sending events
to a system-wide event queue. Examples of events that typically occur in the
system are8:

● A new snapshot arrived

● Robot 3 should try to shoot the ball

● Robot 2 should move to position (1300, 500) on the field

● The referee has given a free kick

Modules that are interested in a certain event can register with the event
manager. A module sends to the event manager the type of event it is
interested in and a function pointer to the method that should be called
every time this type of event was received.

A large number of subclasses exist of the abstract base class Event, so that
events can contain data that further specifies the event. For example, a
VelocitiesEvent commands a robot to drive at a specified speed. This type
of event contains the ID of the robot, the linear velocity and the angular

8 A more complete list of events can be found in appendix A.

32 2. The MI20 application framework

velocity to drive.

When a module wants
to send an event, it
creates an instance of
the correct event
subclass and sends it to
the event manager.
Meanwhile, on a
separate event handling
thread, the event
manager continuously
walks through the
event queue. It looks up
the listeners that have
registered themselves
for this type of event
and then - sequentially
- dispatches the event to those listeners.

It should be noted that the sending module does not specify the module it
wants to send the events to. Any module can register to listen to a type of
event, and the sending module does not know who will receive the event.
The reverse is true as well: a module that receives an event does not know
from which module it originates.

Because the sending module needs only to communicate with the event
manager, it has no need for knowledge about the receiving module. In code,
this means none of the headers of the other modules needs to be included,
thereby decreasing compile times and guaranteeing modularity.

This feature is quite handy for debugging purposes, since an extra listener
can be registered to see which events are being sent. For that, there is no
need to change the sending module.

To dispatch events to the correct event listener, the event manager needs to
determine the type of the event that it is processing. One approach would

be to create an
enumeration of all
event types in the
system and add to
each event the
identifier that
belongs to the type
of event.

A large drawback
to this approach is
that the header
containing this
enumeration
would be included

2. The MI20 application framework 33

Figure 2.12. - The event manager maintains an event queue.
Modules send an event to the event manager which places it
in the queue. Meanwhile, a separate event thread
continuously takes events from the queue and dispatches
them to the registered listeners.

Event Manager

Event queue

Sender

Event listener

Event listener

Event listener

Event threadModule thread

Figure 2.11. - Class diagram of the classes necessary for
handling events.

i
Event

i
Event

i
Event

IEventManager

EventManager

Event EventType

NewSnapshot
Event

Velocities
Event

RobotWakeUp
Event

GameState
Event

etc. etc.

EventListener1 N

by nearly every source file. A change in the header would trigger a
recompile of the whole system for anyone who is working on it. This is not
desirable and can be circumvented by having each event contain a reference
to a static EventType-instance. That instance is constructed using a simple
name for the event (e.g. 'new_worlddata').

To speed up comparisons9, this name is then hashed and stored. The hash
algorithm can be found in listing 2.1. The definitions of these event types
can now be placed in a source file, so that the addition or modification of
events would only require recompilation of the event definitions and the
users of this specific event.[18]

Since all communication is now centralized at a single part of the system ―
the event manager ― we can now track the communication within the
system better. An example of this is the watchdog thread that is currently
implemented in the system. This thread wakes up twice a second and
checks if the event that is currently handled is not the same as the one
during the previous cycle. If that would be the case, the event listener would
have been running for more than 500ms and is probably hanging. This
would indicate a bug in the code of an event listener. Since the event
manager can report the function pointer of the currently executing event
listener, the offending code can be found quite quickly.

Also, we can keep statistics about the handling of the events. As every
listener is called, the time that the listener took to process the event is
tracked. At runtime, a list can be printed showing the number of calls, the
minimal, maximal and average processing time, including the standard

9 This has another use than just a speed increase. See paragraph 2.6.3 Networking below.

34 2. The MI20 application framework

 1 unsigned int EventType::getHash(const char * const name)
 2 {
 3 const unsigned long BASE = 65521L; // Largest prime < 65536
 4 const unsigned long NMAX = 5550; // Max. number of chars that
 5 // would not overflow hash
 6 unsigned long s1 = 0;
 7 unsigned long s2 = 0;
 8 const char * p = name;
 9
10 for(size_t len = strlen(name); len > 0;)
11 {
12 unsigned long k = (len < NMAX ? (unsigned long)len : NMAX);
13 len -= k;
14 while(k > 0)
15 {
16 s1 += tolower(*p);
17 s2 += s1;
18 p++;
19 k--;
20 }
21 s1 %= BASE;
22 s2 %= BASE;
23 }
24 return (0 | (s2 << 16) | s1);
25 }

Listing 2.1: Hashing algorithm that calculates a hash for an event name.

deviation. This information can be used to spot bottlenecks in the program,
by finding event listeners where the large processing time is not justified by
the work done.

2.6.3. Networking
The original design of the MI20 robot soccer system was a school book
example of a distributed system. A module could run anywhere on a
network, either in the lab or anywhere else on the world. Communication
via those modules took place through the network, even if all modules were
running on the same machine.

With the new system, modules on the same system no longer communicate
with each other using sockets, but with the event system explained above.
This makes the MI20 no longer a distributed program per se. In other
words, the standard means of communication shifted from inter-process
communication to inter-module communication.

However, the centralized nature of the event queue design makes it not very
difficult to reimplement networking. All network communication can now
be limited to one communication channel, and needs only one extra thread:
the receiving network thread.

Using a peer-to-peer architecture, several instances of the program can
connect which each other. Connecting to another system could be done by
specifying one other system. The receiving program instance will check if
the modules running at the connecting system are no duplicated and, in
that case, will accept the connection. The receiving system will then send all
other known peers to the connecting system, allowing it to connect to these
instances of the program as well.

2. The MI20 application framework 35

Figure 2.13. - A list showing the registered event listeners, the number of times they
were called, and statistics about the number of ms processing the event took.

When an event listener registers itself with the event manager of that
program instance, it should also notify any other instances of the system
that someone there is interested in that type of event. The networking
module on the other end will then register as an event listener for that type
of event at the local event manager. When that type of event is sent from
that program, the networking module will be called and will send the event
over the network. The other side will receive the event and inject it
transparently into the event queue. There, the actual listener will receive
the event, having no idea the event was actually generated on another
machine. This way, effectively, one distributed event queue has been
created.

When sending an event over the network, a network packet is created. This
packet begins with the hash that identifies the type of event (as described
on page 34). After the hash, all data contained in the event is sent. To do
this, all data should be converted to a single stream of bytes; a process
called serialization. To make this possible, each subclass of Event must
implement a method called serialize that converts the data into a stream
of bytes.10 Code has been written to make this as easy as possible, as can be
seen in an example implementation, shown in listing 2.2:

 1 int m_blueScore;
 2 int m_yellowScore;
 3
 4 void serialize(StringOutputStream &out) const
 5 {
 6 out << m_blueScore << m_yellowScore;
 7 }

Listing 2.2: Serialization of the data of an event.

When the network packet is received by the program at the other end of the
network, the event needs to be reconstructed. First, the hash at the
beginning of the packet is read. To be able to construct the right type of
packet from this hash, at the start of the program a map is created that
maps a hash to the corresponding event type.

To make deserialization possible, subclasses of Event must also implement
a constructor that can use a data stream to initialize its data members. The
code for such a constructor looks quite similar to that of the serialization as
seen in listing 2.2. When the event was successfully constructed, it is placed
in the local event queue, just as if the sender of the event was a local
module.

2.7. From enhanced C to actual C++
Although the programming language that was used to develop the MI20
system has been C++ from the start, many of the features of this language

10 Also, several data types like WorldData and Snapshot contain such serialization
methods. These are used by the serialization code of the events (when events contain
such data), but also for writing data to file like in the game recording files (see paragraph
4.3 and appendix B).

36 2. The MI20 application framework

were not used. Only one C++-feature was actually used quite extensively,
namely the separation of functionality using classes. The rest of the code,
however, could very well have been simple C. Throughout the rewrite of the
MI20-system, more of the useful C++-features have been used.

2.7.1. Object-orientated features
As seen in paragraphs 2.2 and 2.4, the design of the MI20 system is object-
oriented in nature. To make the source code tightly reflect this design, the
C++-support for inheritance and comparable features are widely used.

Quite some classes in the system, like Action and Module, are abstract base
classes: classes that cannot be instantiated, but do define the structure of
their subclasses.

2.7.2. STL containers
In a system like the MI20 robot soccer system, the use of data structures is
a necessity. Structures like arrays or linked lists have all kinds of uses, in all
kinds of programs. The designers of the C++-language recognized this and
added the most frequently used data structures and algorithms in what they
called the Standard Template Library (STL). This set of functions and data
types is implemented as a set of headers. These headers contain so-called
template definitions, another C++-feature, making it possible to create
linked-list implementations that can contain any data type. For any type the
user specifies, the compiler will generate the code that will implement a
data structure, using the user's type.

This means custom-made implementations that previously existed in the
system (e.g. skill queues) have been abandoned and replaced by STL-
containers.

Also, the old implementation used quite some arrays where the number of
elements was not clear upfront. In those cases often fixed-sized arrays were
used, with an upper bound chosen high enough that it would be highly
improbable (read: still possible) that the array would be too small. These
occurrences have been replaced by the use of std::vector, a dynamic array
that adapts to the number of elements in it.

2.7.3. The const keyword
For efficiency reasons it is recommended that when an object is a
parameter to a method, that a pointer or reference is passed. However, the
called method is then able to change the passed object. Quite often a
method needs an object because it uses the data, opposed to altering the
data. Moreover, to limit the possibility of error we want to guarantee that
the method will not alter the data indeed.

Luckily, C++ allows us to do that. By adding the const-keyword in the
method specification, we tell the compiler that the parameter is not to be
altered. Doing so anyway will result in a compiler failure.

To be able to discern if a method call will alter the object or not, the const-

2. The MI20 application framework 37

keyword can also be used with methods. When the declaration of a method
is followed by const, the programmer promises that a call to this method
will not alter the object. Again, doing so will generate a compiler error.

Finally, just as parameters can contain const, return types can be const as
well. This is useful when a reference to part of a data structure is returned.

2.7.4. Exceptions
To prevent the need for checking return values of methods, exceptions were
introduced to indicate an error. When an error occurs, one of a collection of
exceptions is thrown, including a human-readable error message. This
error message can then be shown to the user.

Exceptions that are thrown but not caught, are propagated all the way up to
the starting function of the program. There, a catch-all exception handler is
included, so the the user will see a descriptive error message, instead of
experiencing a weird crash because a programmer did not check a return
value.

2.7.5. C++ for Java and C-programmers
Some of the mistakes that were found in the original code are very common
errors. Quite a few are simple to make and their presence is
understandable. Moreover, one source for these errors might remain a
concern, even in this new version.

Currently, the programming languages taught in our computer science
curriculum are Java and C. A fair amount of students start their Master's
assignment being mainly proficient in those two languages. Although C++
is very similar to those languages, it has some subtle differences which can
be quite misleading. Consider the code in listing 2.4.

Most programmers that know C and Java will spot no apparent errors.
Nevertheless, there are some caveats present in these few lines of code.

The first problem arises in line 5, where a WorldData-instance is passed as a
parameter to the method. In Java, when passing objects to a method, under
the hood a reference to the object is passed to the method and not the
object itself. In C++ this line of code will pass by value. This means that line
13 will have no effect whatsoever, since data will be deleted as soon as the
end of the method is reached. Second, to follow pass-by-value semantics,
the WorldData-instance has to be copied. Especially in cases where the

38 2. The MI20 application framework

1 class WorldData {
2 void calculateSomething(WorldObject const &object);
3 void setZeroVelocity(WorldObject &object);
4 WorldObject const &getBall() const;
5 };
6
7 WorldData wd;
8 WorldData const &wd2;
9
10 wd.setZeroVelocity(wd2.getBall()); // ERROR, getBall() is const
11 wd.calculateSomething(wd2.getBall()); // OK
12 wd2.calculateSomething(wd.getBall()); // ERROR, wd2 is const

Listing 2.3: Some examples of the const keyword.

objects are big, this can have a surprisingly large influence on performance.
The solution to these problems is to explicitly pass a reference to the
instance.

A fairly common construction in C is the one in line 11. A pointer to an
instance of RobotWheels is retrieved from the WorldData. However, we can't
determine if the pointer retrieved is a valid pointer. The implementer of
getRobotWheels() might have decided that NULL will be returned in certain
cases. In that case, the dereferencing of the pointer in line 12 will lead to a
segmentation fault – a crash.

To enforce the condition that getRobotWheels() should always return a
valid pointer, we can let the method return a reference. A reference is
guaranteed to point to a valid object, making a segmentation fault
impossible11.

Finally, the construction of the CollisionDetector in line 7 is somewhat
problematic. Java-programmers will constantly use the new-keyword to
construct an object. When the method ends, the Java garbage collector will
automatically delete the object again, since it is then unused. In C++ this is
not (by default) the case. Here, the object is allocated in line 7, but is never
destructed, effectively creating a memory leak. When this method is called
very often (i.e. every frame or even more), it is likely that the computer will
run out of memory and the program will crash. To prevent this, one might
call the delete operator on the object at the end of the method to clean-up
the object, but it is both simpler and faster to allocate the object on the
stack, as is done in listing 2.5.

11 Strictly speaking, making a reference to an invalid object is possible, but you need to
construct such a reference knowingly.

2. The MI20 application framework 39

 1 /**
 2 * Checks for collisions in the current WorldData and changes
 3 * the WorldData to reflect this collision.
 4 */
 5 void Simulator::detectCollision(WorldData data)
 6 {
 7 CollisionDetector *detector = new CollisionDetector();
 8 detector->setWorldData(data);
 9 if(detector->collisionDetected())
10 {
11 RobotWheels *wheels = data.getRobotWheels();
12 wheels->spin();
13 data.addCollisionPoint(detector->getPoint());
14 }
15 }

Listing 2.4: Small piece of source code that will probably look
correct programmers that are proficient in C and Java, but not in
C++.

2.8. Other changes
A few other changes have been made to the code base to help the
extensibility and manageability of the program.

2.8.1. Settings
A system like the MI20 robot soccer system contains all kinds of settings,
like the values of the colour calibration and team settings. In v1.0 of the
system, these settings were kept in a configuration file that was read at
start-up. These settings were to be changed directly in the configuration file
and not while the program was running.

To enhance the usability of the system, many of the options that previously
could be changed in the settings file, can now be changed within the user
interface of the system. A configuration file does still exist, but it is now
read and written by the system and is not meant to be changed by humans
any more.

Many of the settings are also changeable at run-time. A Singleton instance
[8] called Settings keeps track of all the settings and their default values. It
does so by means of a map, where a human-readable setting name (e.g.
'ui.renderer3d.shadow') is coupled to an actual setting. Modules are
encouraged to store the pointer to the setting and use this pointer when the
value of the setting is needed. This way, whenever the user changes the
setting using the user interface, the new value for this setting is instantly
used by the implementation.

2.8.2. Assertions
All throughout the program, assertions are made about the state of certain
variables etc. For example, a robot ID can only be a positive number. By
explicitly checking these assertions, the cause of a problem can be spotted
even before it would normally cause trouble.

However, the processing power that would be needed to constantly perform
these checks could be quite large. As a golden mean, one can (and should)

40 2. The MI20 application framework

 1 /**
 2 * Checks for collisions in the current WorldData and changes
 3 * the WorldData to reflect this collision.
 4 */
 5 void Simulator::detectCollision(WorldData &data)
 6 {
 7 CollisionDetector detector;
 8 detector.setWorldData(data);
 9 if(detector.collisionDetected())
10 {
11 RobotWheels &wheels = data.getRobotWheels();
12 wheels.spin();
13 data.addCollisionPoint(detector.getPoint());
14 }
15 }

Listing 2.5: The same piece of code in listing 2.4, but now adapted to cope
with the pitfalls of C++.

use the assert-macro. In debug modes this check is enforced, and when it
fails the source file and the line of code is reported to the programmer. In
release mode these checks will not be compiled into the application.

Another form of assertion is the compile time assertion. This is a
precondition just as the normal assertion, but can already be checked by the
compiler and therefore has no performance cost. Examples of these
assertions can be seen in listing 2.6.

2.8.3. Memory leak detection
C++, unlike languages as C# and Java, does not use garbage collection by
default. This means that any memory that is claimed by the application
must also be explicitly returned to the operating system. Sadly, making the
call to free memory is extremely easy to forget. Especially when the claim
for memory happened in a tight loop, this memory leak will cause the
operating system to eventually run out of memory, and the application will
most likely crash.

To prevent this scenario, code was added to the system that keeps track of
the memory allocations and deallocations. It does this by overriding the
global new and delete operators, replacing them with functions that record
the allocation of memory, but also the source file and line in which the
allocation was done. At the exit of the application, a check is done if all
claimed memory has also been released. If not, the offending line of code is
reported to the user.

This only happens in the debug builds of the program, so that in releases
the inevitable overhead of this method disappears.

2.9. Platform independence
In October 2005, the MI20 robot soccer system had become so dependant
on the build environment in our lab, that it would only run correctly on
Debian Linux systems, running a 2.4 kernel.

During the reorganization of the code, care was taken in writing code that
would compile and run on a multitude of systems. It is possible to run the
current system on both Linux and Windows (again). However, some
features like the code for acquiring images from the camera, and
communicating with the Bluetooth MiaBots has not yet been written for
Windows. Running the system in combination with the simulator works
fine.

The code has been checked to compile with the following compilers:

● GCC 3.2.2 for Linux (no warnings)

● GCC 4.0.2-8 for Linux (no warnings)

● GCC 4.1.1 for Linux (3 harmless warnings)

2. The MI20 application framework 41

1 assert(robotID >= 0);
2 assert(vector.length() > 0);
3 COMPILE_TIME_ASSERT(sizeof(int) == 4)

Listing 2.6: Examples of the two types of assertions that can be specified.

● GCC 3.4.4 on Windows XP (no warnings)

● Microsoft Visual C++ 2005 (no errors, much warnings)

Although is has not been attempted, it is believed that the code will also run
without problems on 64-bit systems.

However, in the serialization and deserialization code, currently little-
endianness is assumed. This means that this code should be adapted before
it would run without problems on a big-endian machine, like a Mac.

2.10. Conclusions
It is safe to say that the move from version 1.0 to 2.0 encompassed a lot of
changes. Although the modularity of the system was kept in tact, the
modules were all combined in one executable. The main program now has
the task to create an execution environment in which any amount of the
modules can run independently.

Also the modules themselves were scrutinized and, where needed,
redesigned. Some of the modules have only undergone a little polishing and
were kept largely as before. Others were completely reworked, most
noticeably the Strategy and RFComm modules. Also the user interface was
rebuilt using the Glade interface designer.

Because of the little concurrency in the operation of our robot soccer
system, the introduction of the event system gave us a communication
scheme that, in effect, is very similar to the old system using threads and
sockets. However, there are a few extra benefits:

● There is no need for synchronization in many of the modules
themselves anymore. This eliminates the possibility of the obscure
bugs that can result from a programmer forgetting to lock a specific
mutex variable. Also, the overhead from locking and unlocking
mutexes has been largely removed from the system.

● The centralized nature of the event system makes it easier to
implement networking, recreating the distributed system we had
before. Network communication can then take place over a single
connection, instead of the multitude of network connections in the
old system.

● Because of this centralization, we can also keep track of the
processing power certain parts of the system take up. If one part of
the system needs an excessive amount of CPU-time, this can be
spotted and dealt with.

The fact that the event system is a cooperative multi-tasking system, other
processes depend on the fact that each listener should return the control of
the program within a small amount of time. If a listener misbehaves and
does not yield control for several seconds, other listeners suffer a big
latency hit and there is no authoritative system that steps in and corrects

42 2. The MI20 application framework

this behaviour12.

One could, however, actually regard this as an advantage, because long
response times often result from errors in the event listener. Although this
error might long go undetected in a multi-threaded environment, in a
cooperative multitasking system these errors will be spotted immediately.

Furthermore, during the rewrite of the system much more use was made of
all the features that the C++-language has to offer. Although this is
advantageous in most aspects, it should be noted that little C++ is currently
taught to students in the current curriculum. Although, students may
experience difficulties in grasping C++-constructs at first, it also might
make them more aware of the differences between C and C++.

All in all, the system now runs smoothly, using only 20% of the CPU on a
Pentium 4, at 3.2 Ghz. Furthermore, the two Master students that have
used both version 1.0 and version 2.0 found the revised system easier to
extend and to grasp.

12 Although the system's watchdog will signal an uncooperative event listener and reports
the listener's name to the user.

2. The MI20 application framework 43

3.Development process

CHAPTER

3 Development process

uality of code is not only influenced by a programmer's proficiency, but
also by the development process as a whole. Although the original

developers of the MI20 system used the source code management system
CVS (Concurrent Versioning System), three years later students worked in
their own separate copy of the system and hardly shared their changes.

Q

Also, as the magnitude of the code had grown, it became impossible to
oversee all of it. Without tools like browsable documentation this can
become quite a problem.

Finally, the source code over the years became riddled with comments that
indicated problems that should be fixed when somebody had the time.
However, quite often nobody had that time, or judged the problem was too
far from the scope of his Master's assignment. To keep track of those issues
found, a bug tracker was introduced.

3.1. Source code management
In a project where multiple people are working on the same code, it is
important to use a source code management system to store the code base.
Source code management systems make sure two people (or more) can
work on the same source file, ensuring that none of the changes will be
overwritten. Another important benefit is that old versions of the code
remain available, making it possible to retrieve an old version if changes
turn out not to be beneficial after all.

Previously, CVS was used for source code management. After three years of
programming, however, CVS was hardly used any more. Master students
starting on the project created a copy of the source code from one of the
other students and started programming. Then, when they finished, they
uploaded the copy with their changes in a new directory on the CVS-server.
Therefore, many copies of the system were around and nobody could really

3. Development process 45

tell what code was in which version.

When starting on version 2.0 it was possible to start with a clean slate and
use source code management correctly again. Also, a switch was made from
CVS to Subversion.

3.1.1. Subversion
Subversion is sometimes described as: “CVS done right”. It offers all
features that are present in CVS, and adds some extra. Most notably of
those extra features is the ability to move files and directories, whilst
retaining the change history.

Also, changes are not tracked on a per-file basis, but Subversion uses a
concept called revisions. Every time a developer commits the changes to
Subversion, all changes are packed into one revision.[19][20]

How often changes should be committed depends on the task at hand.
When writing a new feature, commits should happen about once a day.
When hunting bugs that number is likely to be about 10 times more. A few
things to keep in mind when deciding if changes should be committed:

● Changes should never hinder other peoples' work. This means that
the code should at least compile cleanly. It also means that new
features that are not finished and tested should never be started
automatically.

● Committing changes is also necessary when you start working on
something totally different, so that the changes you commit are
related. If a bug was fixed in the StateEstimator, commit that fix,
and only then proceed to make a change in Motion.
The reason for this is simple. Suppose those changes above are
made in version 2.3. However, version 2.2 is considered stable and
is used for matches and demonstrations. The, now fixed, bug in the
StateEstimator is present in version 2.2 as well. When the fix is self-
contained in a single revision, Subversion can be instructed to apply
these changes to version 2.2 as well, thereby fixing the bug there
too.

● Work should be commit at least once a day. This way, your hard
day's work is included in the backup that is made of the repository.
Secondly, it prevents that the code bases of students grow too much
apart. It is much harder to merge changes if there is three months
worth of changes in them, than when it is just the work of one day.

Now, the first and the last suggestion might be in conflict with each other. A
change might be that extensive that it cannot be completed within a day. In
that case, it is advisable to make a so-called branch. How branching works
is explained in the next paragraph.

3.1.2. Branching
A feature that was already available in CVS, but was not used by the

46 3. Development process

MI20-team, is branching. When branching the source code, the current
code base is split up in two parts.

This, for example, was used prior to the European Championship 2006 in
Vienna and the World Championship in Dortmund. A week before
departure, a branch was made. In one of these branches – called the release
branch – no changes were made other than bug fixes. Addition of new
features and elaborate changes were made to the main line of development,
called the trunk. This made sure that none of the possible side effects of
changes made in the last week endangered the stability of the application in
Vienna.

Branching is also useful when making big interface breaking changes to the
system. By creating a private branch, a developer can change the system in
any way he likes. When he or she commits the code to Subversion, the
changes will only be made to the private branch and none of the other
students will be hindered if the code does not compile or work correctly yet.

3.1.3. Vendor drops
Not all of the software that is part of the MI20 system is written by students
on the project. Some of the libraries used, like the Bluetooth interface or the
dynamics library used for the simulator, are open source libraries that were
made available through the Internet.

To use the libraries exactly like we would like to, there were some changes
made to them, for example to change the way the library behaves when
errors are encountered. The LGPL- and BSD-licenses under which the code
was released allows us to make those changes.[21][22]

However, these libraries are under active development, meaning they will
change over time, fixing bugs and adding new features. If we would simply
update our source tree with the new library code, our changes would be
lost.

To remedy this problem, Subversion supports vendor drops. This means
that the library code is put under version control in a separate directory,

3. Development process 47

Figure 3.1 - Branching ensures that development can continue even when preparing
for a championship. Stability of the branched version is ensured, and developers
have no need to stop making radical changes.

Trunk (main line of development)

2.0 beta 2.0 2.0.1

2.1 beta

2.2 beta

2.1

and then copied to our system (Subversion performs a cheap copy here,
only copying the references not the files themselves). We can change the
library code that lives within our copy. When an update of the library is
released, we place this new copy in the directory of the vendor drop.
Because the original library code still exists there, Subversion can
determine the changes made by the library maintainers and apply only
these changes to our copy, effectively merging our changes and those made
by the library maintainers.

3.2. Documentation
Currently, most of the MI20 code has been documented using the Javadoc
method. Every documented method is prefixed by a block comment,
explaining the use of the method and the input and output variables.

A tool called Doxygen is used to automatically generate HTML-pages from
these comments, providing developers with a browsable reference manual
for the system. Doxygen even has the ability to include LATEX in its
documentation, so that method descriptions can contain the formulas used
in the implementation. Figure 3.2 shows the HTML-documentation that is
generated from the comment block in listing 3.1.

48 3. Development process

Figure 3.2. - The documentation generated from the code in the previous listing.

 1 /**
 2 * Calculates the length of the hypothenusa of a triangle from
 3 * the length of the two other sides. For this, Pythagoras’
 4 * theorem is used, which is:
 5 * \f[c = \sqrt{ a^2 + b^2 } \f]
 6 *
 7 * @param a The length of the bottom side of the triangle.
 8 * @param b The length of the right side of the triangle.
 9 * @return The length of the hypothenusa.
10 *
11 * @throws TriangleException if either a or b is negative.
12 *
13 * \todo Use the GPU for a more efficient calculation.
14 */

Listing 3.1: Example of the Javadoc documentation above a method.

Doxygen can use the same comments to generate documentation in RTF,
LATEX, hyperlinked PDF, XML, Unix man page format and CHM13.[23]
This documentation, however, tends to become quite large and these
off-line formats are a lot less convenient than the browsable HTML-
documentation. As an example, the reference manual in LATEX created
from the code in August 2006 encompassed a whopping 1117 pages.

3.3. Bug tracker
Previous students all concluded their theses with a chapter called
Conclusions and recommendations. Because all of these writers had 9 or
more months of experience with the system, these recommendations often
contained very valuable advice.

However, often – despite the usefulness – this advice was not followed.
Many of the recommended tasks were not large enough to justify a whole
Master's assignment. Also, if a task was not directly related to another
students' assignment, they were not eager to take on this extra task. As a
result, these recommendations never got a follow-up and were forgotten.

Also, the comments in version 1.0 of the system showed that quite some
defects were actually detected, but never fixed. This is understandable,
since these bugs are often found during other work. Immediately fixing the
bug would distract from that task, making development chaotic.
Furthermore, the developer that found the bug might not have full
knowledge about that part of the code. Bugs were therefore marked by a

13 Compressed HTML, commonly used for help files for Windows programs.

3. Development process 49

Figure 3.3. - Bug tracker Mantis can be used to keep track of bugs that were found,
but are yet to be fixed. By keeping track of defects this way, it it less easy to refrain
from fixing them.

comment (something like: “Fix me!”), but time-constraints often ensured
these bugs were forgotten as well.

In March 2006, a so-called bug tracker was introduced. The web
application Mantis (an open source project started by a student at Twente
University), enables us to keep a handy overview of the tasks that should be
performed. It can also store additional information about the tasks and who
is currently executing that task.[24]

Students that encounter a bug that they do not wish to fix right away, or do
not know how to fix, are encouraged to enter the bug in Mantis. This way, a
database of known defects exists, so that a bug will always be tracked.

Of course, keeping track of bugs is useless when they are never fixed. It is
therefore advisable to pick a time of the week in which the bugs in Mantis
will be fixed. When taking an afternoon to fix tracked bugs on a regular
basis, not only will the software become more stable, it can also be a
welcome distraction from one's Master's assignment.

3.4. Builder
Version 1.0 of the system was mainly developed on Linux systems.
Therefore, compiling and linking the whole system was done using the
standard way on Unix-like systems: with Makefiles. Unfortunately, when
dependencies within the systems change, make does not automatically
detect this.

Large programs are often split up in multiple source files. The types and
functions defined in these source files are contained in header files. These
header files get included by every source files that makes use of the types
and functions. When a header changes, any source file that includes this
header file should be recompiled. This is needed because changes, e.g. a
change in the size of a data type, can result in different assembly code in the
functions. When these source files are not recompiled, weird behaviour and
crashes may be the result.

Well-maintained Makefiles contain a list of the dependencies of each source
file. For each file, the file upon which it depends are stated. On execution of
make, if any of the dependant files has been changed, the source file will be
recompiled.

Sadly, it is easy to forget to adapt the Makefile when you include another
header in a source file. Therefore, it was possible that – upon recompilation
– strange, inexplicable errors occurred. Students quite often just removed
all temporary files and recompiled the whole system, to see that their
problems had miraculously disappeared.

To tackle this problem, a tool called Builder was created by the author.
Upon every compilation, Builder quickly scans the source files for lines
beginning with '#include', identifying a dependency on another header.
This annihilates the need to specify dependencies manually, or at least to
manually instruct a tool to update the dependencies. Other tools (like gcc
with the -M flag) actually parse the source files, making them perfectly

50 3. Development process

accurate, but also much slower than Builder. In most cases, results from
Builder are equally accurate and when this is not the case, source files can
easily be adapted to make Builder give the correct result.

Another small, but handy feature is that Builder shows the progress of the
compilation. This is nice, since compilation of the complete MI20 system
can take up to five minutes depending on the CPU.

Builder also has three modes of compiling the program. These modes differ
in the level of optimization performed. These modes are:

● Release − In release mode the program is compiled to run as
efficiently as possible. The optimizer tries to use the CPU’s registers
for most operations, simplifies calculations, removes unreachable
code etc. etc. Testing code such as assertion checking and memory
leak detection will not be compiled in.

● Debug − In debug mode, the developer gets as much help from the
system as possible. Functions are compiled as-is, so not optimized
or inlined. At every function call the memory stack is checked for
corruption and function names and symbols are included in the
executable, so that you can use a debugger like gdb to debug your
program. Also, Builder defines the DEBUG preprocessor variable,
making sure that memory leak detection and assertion are compiled
in. As a result of all these extras, the executable will be huge and
most likely will run three to four times slower.

● OptDebug − Optimized debug mode is a combination of the two
modes explained above. The DEBUG preprocessor variable is
defined, so assertions and memory leak detection are used.
However, the executable is optimized, running at nearly full speed,
and symbols are removed from the program. This is the mode which
is recommended to use during main development. Compile your
program in optimized debug mode and test it by running. If you
encounter a problem for which you need the help of the debugger,
like a segmentation fault or a failed assertion, recompile the
program in debug mode and feed that executable to gdb.

3. Development process 51

Figure 3.4. - The Gtk+ interface of the Builder program.

3.5. Coding style
Throughout the redesign of the system an attempt has been made to
maintain a consistent coding style all throughout the application. Coding
style is a matter of taste and somewhat personal. It is impossible to identify
a correct coding style, only the one you like best. However, working with
code that has a style that is somewhat different from your own preference is
always easier than working on code with so many different style that you
can never get used to one style.

The coding style that is used for the majority of the MI20 system follows
chapter 7, 9 and 10 of the Java code conventions[25]. Names of variables
should have a capitalized first letter for each internal word (i.e. aLongName),
class names begin with a capital and names should preferably be spelled
out completely (so segmentationValue and not segVal) . To easily
distinguish between member variables and local variables, member
variables are prefixed with m_. No Hungarian notation is used14.

A method should be either so small that the comment above the method
can explain the working of the entire method, or the method should contain
inner comments. Comments should be written so that another developer
(or you, later) can see in a glance what the method does. Also, describe
rationales in comments: why is, say, a hyperbolic tangent function used?

The most controversial coding style decision that anyone can make is
always the placement of braces. In the case of the MI20 system, the
decision has been made to put each brace at a line of it's own, because this
makes a screen full of code look less cluttered and more readable early in
the morning or late at night. This change is also a large contributor to the
increase in lines of source code between version 1.0 and version 2.0 of the
source code.

3.6. Conclusions
The most significant change made in the software development process was
the reinstatement of a source code management system. With the change
from CVS to Subversion, it became possible to use several useful features.
Features like branching are now used (although they were available in
CVS), thereby increasing the confidence in the code that is used in at
championships..

Most of the code is now documented using the Javadoc-style, which should
be familiar to any student that works on the system. This documentation
can then be automatically read by the tool Doxygen, which will generate
HTML-documentation from it. This makes the use of the documentation
convenient, since it has become searchable and hyper-linked.

14 Hungarian notation describes a convention introduced by a Hungarian engineer at
Microsoft, Simonyi Károly. In this convention a variable name is prefix by either its
function (Apps Hungarian) or its data type (Systems Hungarian). For example, many
Windows APIs contain identifiers like szName, showing that the variable is a string that
is zero-terminated.[26][27]

52 3. Development process

A bug tracker was introduced, that keeps track of defects that were found
(or suspected) in the code. It is not always possible or desirable that a bug is
fixed as soon as it is detected. Also, the developer that finds the bug may
have little knowledge of the part of the system that contains the bug. Using
a bug tracker, these bugs can be fixed later, but will not be forgotten. It also
might be a good tool for supervisors to get an idea of the state of the code.

A tool called Builder was introduced to help compilation and linking of the
code. Builder automatically determines dependencies in the source files,
making it easier in use than the standard make, but still retaining the
freedom to use whichever development environment the programmer
desires.

3. Development process 53

4.Test environment

CHAPTER

4 Test environment

hen working on an academic assignment it is often of utmost
importance to perform tests to confirm that the adaptations made

are in fact beneficial. Therefore, it is very useful to have a convenient way of
gathering system data.

W
The usual way of gathering data from the system was to include debug
messages in the code where the required information was available. Then,
this data could be captured and used for processing in Excel, Matlab or
other applications.

To limit this practice, functionality was added to the system to gather and
visualize data, inspired on the so-called Supervisory Control and Data
Acquisition systems (SCADAs), used to monitor machinery.[28] Data can be
visualized on screen or output to a comma-separated file to enable
processing in other applications.

4.1. Graphing system data
Two Master students were observed as they were performing test to support
the conclusions of their theses. These observation inspired the creation of a
test environment, for which the following user requirements were
determined:

● The user should have convenient access to the measurement data
contained in the system state.

● A basic visualisation of the data gathered should be possible, to get a
quick overview of the behaviour of certain variables within the
system. It should be possible to create simple graphs that are
suitable for inclusion in a thesis without further processing.

● System running speed should not be impaired by the inclusion of
the test environment. Only when tests are actually used, is a
performance hit acceptable.

4. Test environment 55

● It should be possible to export data from the MI20 system in a
format that is readable by external applications, such as Matlab,
Microsoft Excel or OpenOffice Calc.

Using these requirements, a new option has been developed in the MI20
system that allows the user to create graphs of certain data, such as robot
orientation or ball velocity. The data used for the graphs is gathered as soon
as the graph dialog opens and graphs are updated real-time. The user can
stop measurements by clicking a button, allowing him/her to study the
graph, take a screen shot or export the data.

The type of graph determines what is measured. The following graph types
can be used in the system:

● X-position (in mm)

● Y-position (in mm)

● Linear velocity (in mm/s)

● Angular velocity (in rad/s)

● Orientation (in rad)

● Predicted linear velocity (in mm/s)

● Predicted angular velocity (in rad/s)

● Linear control signal (in mm/s)

● Angular control signal (in rad/s)

The target of the graph
determines which object
is tracked. Possible
targets currently are
robots 1 to 5 and the ball.
Opponent robots cannot
be a target for the graph,
since there is no data for
the control signals.

Data can be exported to a
CSV-file, which can be
read by Excel, Matlab and
several other programs.
CSV literally means
Comma Separated Values,
but is also the name Excel
gives to files that contain
values that are delimited
by tabs. The CSV-files
contain a header, describing the type of measurements that are in the file
and then lines containing the time and value of the measurement. It is
possible to create a CSV-file that contains the measurements of a single
graph, or a large file that contains the measurements of all possible graph
types and targets.

56 4. Test environment

Figure 4.1. - Screenshot of the new graph dialog.

4.2. Statistical tools
During the gathering of data, some statistical values are calculated on the
fly. To do so, we keep track of the measurement count, the sum and the
squared sum. Whenever a new measurement becomes available, these
values are updated:

sn=sn−1val and sq
n
=sq

n−1
val 2

Also, a check is performed if
the new value exceeds the
previous maximum or is
smaller than the previous
minimum.

Then, at any time, the average
and standard deviation of the
measured values can be
calculated, as follows[29]:

avgn=
sn

n
and n= 1

n−1
⋅ sqn−

sn
2

n
Furthermore, a statistical tool was developed to help set the correct values
for the Kalman filter that filters the measurements in the state estimator of
the system. The Kalman filter models the measurement noise as a
multivariate Gaussian distribution with a certain covariance matrix.[30]
This covariance matrix can be determined by placing a (non-moving) robot
on the field and start the measurements. The system can then determine
the covariance matrix. The sample period can be as long as the user wishes,
but as with all statistics, the accuracy of the measured covariance is better
with a large number of samples. After a measurement, the user can stop the
data gathering, clear the data and start a new measurement.

The observation state in the MI20 system is a column vector of 3 variables:

4. Test environment 57

Figure 4.2. - The statistics dialog shows some
basic statistics about the current graphs.

Figure 4.3. - The dialog showing the
measured noise covariance.

z= [
x
y
]

being the x-position, y-position and orientation of the robot. Therefore, the
covariance matrix is a 3x3 matrix. The maximum likelihood covariance
matrix is defined as:

=
1
n
∑
i=1

n

X i− X X i− X
T

where n is the number of samples, and X is the average value of the state
variables. The matrix calculated is a biased estimation, since its expectation
is:

E =
n−1
n

This fact gives us a simple adaptation to find the formula for an unbiased
sample ML-covariance matrix:

=
1
n−1
∑
i=1

n

 X i− X X i− X
T

For each frame, the values of the observation state are measured. For each
of the samples we can calculate the following matrix:

i= [
x− X 2 x− X y−Y x− X −

 y−Y x− X y−Y 2 y−Y −

−x− X − y−Y −
2]

and at any time find the covariance matrix for use in the Kalman filter with:

=
1
n−1
∑
i=1

n

 i

4.3. Game recording
When trying to improve our system, it is probably very useful to analyse
previous games. To make this possible, the MI20 system contains an option
to record a game.

These recordings can be very useful during testing of the system. Recorded
snapshots can be used during the development and testing of systems that
are influenced by noisy measurements. An example of this might be the
adaptation of the Kalman filtering. By using recordings, the data that is
used as an input remains predictable and reproducible.

Game recordings could also be used for analysing the effectiveness of our
strategy. Reviewing what happened during the games played at
championships might offer insight in possible improvements that can be
made.

Finally, game recordings might just be used to view a memorable game
again.

58 4. Test environment

A first attempt at including game recording in the MI20 system was made
just before the European Championship in Vienna, for the reasons listed
above. The recording was implemented in the Vision module, that stored
each snapshot as it became available. Using a command line option, the
Vision module could be instructed not to get images from the camera, but
read the file containing the snapshots.

Later, a second version was implemented. This format is quite a bit more
flexible. The user can choose to record world data, snapshots and the
commands that were sent to the robots. It is also possible to add comments
to the recording, such as the time and place of the match and the teams
involved.

The implementation of game recording again showed the advantages of
using the event system for inter-module communication. When the user
starts recording a game, event listeners are registered according to the
selected options regarding what should be stored in the recording (i.e.
world data, snapshots or robot commands). Whenever the corresponding
events flow through the system, the game recording code will also receive
this event and can write it to disk.

Similarly, when reading data from the recording file, snapshots and world
data can be fed into the event queue transparently. The listening modules
have no idea this data was recorded and did not originate from the Vision
or StateEstimator module respectively.

Reading the more flexible game recording format has not yet been
implemented into the system. However, the deserialization of the data types
used has already been written, because of the use in the networking code.
Therefore, it should not be difficult to implement this. A specification of the
file format can be found in appendix B.

4.4. Conclusions
To accommodate testing, it is now possible to graph much of the data that is
handled by the MI20 system. Data can be exported to CSV-files, making it
possible to use this data in Microsoft Excel, OpenOffice, Matlab or
numerous other programs.

Tools for determining minimum, average, maximum and standard
deviation for all these data types have been included, as well as the
possibility to determine a covariance matrix for use in the Kalman filter.

Also, functionality has been included to record games played, inserting
measurements into the system as if those were done at that particular
moment. This makes it possible to reproduce tests, and compare results
accurately. An added advantage is the possibility to review games played at
championships, to find flaws in our strategy.

When the test environment will be actually used by Master students, it is
likely that this students will find the need for additional features. Therefore

4. Test environment 59

it is likely that this environment should be expanded, according to those
new user requirements.

One possible addition might be the option to specify an expression that will
be used to create a new graph type. For example, if a student has devised an
algorithm to minimize the distance between a robot and the ball, an
expression like '(ball.location – robot1.location).length' would show a
graph of this distance. The student could then quickly check if the
algorithm works satisfactory.

60 4. Test environment

5.Simulation

CHAPTER

5 Simulation

evelopment of the robot soccer system will be an ongoing process.
Algorithms will be changed and new decision systems will be

implemented. When developing, testing newly written code is – of course –
crucial. The easiest way of checking correctness is simply running the
system. Unfortunately, even this can be quite time-intensive: robots have to
be placed on the field, cameras and lighting need to calibrated, and so on.
This problem can be overcome by performing the preliminary tests in a
simulated environment.

D

Another important advantage of using a simulator for testing is the
possibility to create a reproducible situation. This would make it possible
that, when an error is spotted, the experiment can be repeated to check that
the mistake has indeed been corrected.

Simulation can also make it easier to determine the cause of an error. For
example, it might be possible that an error only occurs when the
measurements contain noise. This can be determined by switching on and
off the noise in the snapshots that are fed into the system; something that
would have never been possible without simulation.

Finally, the simulator can be used to play games faster than real time, so
that using machine learning (e.g. neural networks or genetic algorithms)
becomes feasible.

5.1. Physical model
To model a robot soccer game, quite some physics are needed to provide a
realistic model of the world. The current MI20 simulator contains realistic
friction, collision detection and a model of the robot motors.

5.1.1. Air resistance
In cars, the major component of the friction that is experienced is air
resistance. The air resistance can be determined with the following

5. Simulation 61

formula:

F air=
1
2
⋅⋅cd⋅A⋅v

2

where ρ is the density of the fluid or gas the object travels through (for air
this is 1.29 kg/m3), A is the area of the object that is perpendicular to the
movement direction and v is the velocity of the object.

The drag coefficient (cd) is a factor that describes how aerodynamic an
object is. For a box, which the front of the robot essentially is, 1.95 is a good
approximation [31].

When we calculate this value for an Austro-bot travelling at 3 m/s – which
is practically the maximum speed reached on a 7x7 field, we get:

F air=
1
2
⋅⋅cd⋅A⋅v

2
=
1
2
⋅1.29⋅1.95⋅7.5⋅10−2⋅4.8⋅10−2 ⋅3.002=4.1⋅10−2 N

Although air resistance at the maximum speeds is not completely
negligible, it is largely outweighed by static and dynamic friction.
Currently, the simulator neglects air resistance for a robot travelling below
100 mm/s. Above that speed, air resistance is added to the robot.

5.1.2. Rolling resistance and sliding friction
Rolling resistance is the friction that occurs when an object rolls over the
ground. It is caused by the deformation of the wheels under the pressure of
the weight of the vehicle. The force acts in a direct opposite direction to the
rolling direction and its magnitude is a factor of the normal force of the
object. In formula:

F rr=rr⋅N=rr⋅m⋅g

62 5. Simulation

Figure 5.1. - Air resistance of an Austro-bot. It is clear from the graph that
air resistance is only a minor factor in the friction model. Only at high
speeds this force becomes slightly significant.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

v (m/s)

Fa
ir

(N
)

The factor μrr is a unit-less factor that determines the amount of friction, m
is the mass of the robot and g is the gravitational acceleration.

It should be noted that the friction that can be calculated with this formula
is the maximum rolling resistance. If the force that is responsible for the
rolling motion of the robot is less than the maximum rolling resistance,
then the actual rolling resistance will be equal to the applied force, resulting
in zero movement.

A comparable force is sliding friction, which is the force that acts on a robot
when it is pushed laterally, or when its wheels are locked. The formula for
sliding friction is the same as that for rolling resistance, only the factor μ is
different.[32]

In the simulator, it is
assumed that the wheels of
a robot can always roll
freely. Therefore the
frictional forces that act on
the robot can be split into
two parts. In figure 5.2 we
see a robot that is moving
along the velocity vector v.
Although the engine force
of the robot can only be
exerted in the direction of
the robot's orientation
(this is called a non-
holonomic constraint), the
actual velocity of the robot
may have been influenced
by collisions or skidding.

The velocity is split up in
two components: one in
the direction of the robot
(denoted vx in the figure) and a lateral component (vy in figure 5.2). These
velocities are found using two dot products:

∣v x∣=[
cos
sin]⋅v and ∣v y∣=[

−sin
cos]⋅v

The velocity component vx is subject to rolling resistance, while vy is used
for the sliding friction.

As said, the friction is limited to the force that would completely halt the
motion in that direction. Therefore, it becomes necessary to calculate that
force. This can be done by using Newton's Second Law:

v=a⋅ t=
F
m
⋅ t⇔F max=

v⋅m
 t

In this formula Δt represents the time step of the simulation, which is

5. Simulation 63

Figure 5.2. - The robot's velocity vector is split up
in a vector that points in the robot's orientation
and a vector that moves the robot sideways.

Vx

Vy

V

θ

currently set at 1 millisecond.

The forces calculated above dampen the linear velocity of the robot. A
similar effect occurs for the angular velocity. This friction delivers a torque,
which can informally be seen as rotational force.

Just as with the linear velocities we can also calculate the torque that would
be necessary to reduce all angular velocity to 0:

=⋅ t=

I zz
⋅ t⇔max=

⋅I zz
 t

Here, τ is the torque, ω stands for the angular velocity, α is the angular
acceleration resulting from the friction torque and Izz is the component of
the inertia tensor that describes the preservation of rotation around the
z-axis. This inertia equals [33]:
1
12
⋅m⋅ sx

2
s y

2

where sx and sy are the lengths of the sides along the x- and y-axis.

To determine the values to use for μrr and similar constants, a series of
experiments was set up.

The simplest experiment was determining the frictional constant of the ball.
To determine this constant, the ball was rolled over the field a number of
times while its location was recorded by the camera. From this data, the
deceleration was determined and the constant could be calculated using
Newton's Second Law:

F rr=m⋅a⇔

rr
⋅m⋅g=m⋅a⇔

rr=a/ g
A series of measurements was done, resulting in:

 rr
=4.731⋅10−3

±1.51⋅10−4

To determine the friction torque, a similar experiment was done. The robot
was given a large rotational velocity by hand and the camera registered the
angular deceleration. This yielded:

=1.606⋅10−2
±8.52⋅10−4 Nm

The friction coefficients
for the robots were
determined with another
experiment. A robot was
placed on a slope, as can
be seen in figure 5.3. The
angle of the slope was
then gradually increased
until the robot started to

64 5. Simulation

Figure 5.3. - The linear friction coefficients were
measure by placing the robot on a slope and
measuring the angle at which it started to move.

Fnx

Fny=Ff

φ

move. At first, the friction will stop the robot from moving. In that case, the
frictional force is equal to the component of the normal force that pushes
the robot down the slope (Fny in the figure). As the angle of the slope
increases, so will this normal force. Once it is larger than the maximal
frictional force, the robot will start to move. At that point the angle of the
slope was measured, and the friction coefficient could be calculated with
the following derivation:

F ny=F fr ⇔ m⋅g⋅sin=⋅m⋅g ⇔ =sin

The value for the sliding friction found was:

sliding

=4.81⋅10−1

A similar experiment was done to determine the rolling resistance. The
difference was that now the robot was given a small velocity. The camera
above the robot soccer field was used to see if the robot would retain that
speed. In that case the normal force cancels out the rolling resistance and
μrr can be determined. It should be noted that various factors make it hard
to measure exactly if the robot's velocity has really remained constant. The
value found for μrr therefore can only be considered an estimate:

rr =1.71⋅10−2

5.1.3. Collision model
One of the most important features of simulation is collision detection and
collision handling. The whole game of robot soccer can be seen as the
deliberate engaging or avoiding of collisions. After all, the robots' only way
of scoring a goal is to collide with the ball in such a manner that the ball will
roll into the goal.

A first iteration of the MI20 simulator modelled the robot as a simple box.
However, it was observed that – although collisions with the back and the
sides of the robot appeared quite realistically – when the ball was hit on the
front, it bounced away too much. The actual robot is formed at the front in
such a manner that it is able to keep the ball near, so it can dribble the ball.
This feature is used often in shooting the ball, and increases the chance of a
goal considerably.

When using the simulation for machine learning purposes it might be
important that the chances of a successful attack resemble reality quite
closely.

5. Simulation 65

Figure 5.4. - Model of the Austro-bot in wireframe version and with solid
rendering and texturing

Therefore, it was considered that the behaviour observed using a box as
collision geometry was not desirable, so a more accurate model of the robot
was created in a program called Blender. Blender is a 3D-modelling
application that is available under a GPL-license, for both Windows and
Linux.[34][11] The constructed model was exported in an easily parseable
file format called ASCII Scene Export (ASE), and using a small self-written
program converted to a format that could be easily used by OpenGL (the
API used for rendering) and ODE (a dynamics library, see paragraph 5.2).

The model shown in figure 5.4 is currently used in the rendering of the 3D-
view of the user interface, but using it for collision detection gave some
problems. As can be seen from the figure, the model is hollow; a space that
in the real robots contains the motors and battery pack. Because the
detection of collisions happens only on discrete time steps, it was very well
possible that the ball was outside the robot at one time step, but was in the
hollow space the next time step. No collision would then be detected, and
the ball would become confined in the hollow space.

One solution to this problem, of course, is to use smaller time steps. A large
disadvantage for this is that the computation time required for the
simulation will increase linearly with the decrement of the time step.
Therefore, the choice was made to adapt the model of the robot, so that it
does not contain this hollow space. See figure 5.5. Using this model results
were much better15.

In every time step of the simulation, it should be tested if a collision
occurred. There are four types of collisions that should be detected by the
simulation[35]:

● A collision of a robot with the wall

● A collision of a robot with the ball

● A collision of a robot with another robot

● A collision of the ball with the wall

Even when we do not consider collisions with the walls, the amount of tests

15 Simulation, however, is quite a bit slower than with the box model. Therefore, the
accurate collisions are currently switched off until optimizations have been realized.

66 5. Simulation

Figure 5.5. - Adaptation of the robot model to accommodate for problems that were
encountered when using a more realistic model in collision detection. This model
does not contain hollow shapes, still following the actual front of the robot quite
closely.

is quite large. A simple 5x5 game contains 11 objects that need pairwise
testing to see if they intersect. In a naïve implementation, this would result
in 66 collision tests in every time step (of which there are 33 per frame,
giving 2178 tests per frame). In a 7x7 game, that number would increase
even to 120 x 33 =3960 tests.

To reduce the amount of collision tests, two optimizations have been made.
First of all, when testing for a collision with a robot, a first quick collision
test is done by representing the robot as a box. If there is no collision with
this proxy collision mesh, there is no need to check for collisions with the
more accurate model.

Secondly, the field has been divided using a quad tree. The quad tree is a
space partitioning, where the root node is a rectangular area that contains
the entire field and contains four evenly-sized children that each contain a
quarter of the root node's area. This partitioning into smaller areas is
stopped when the tree has a depth of 4. An object will be listed in the
smallest cell than can completely contain the object.

The advantage of this way of organizing the collision objects, is that when
checking for possibly colliding objects, it is possible to quickly discard all
objects that are nowhere near the object that is tested.

Consider the 7x7 game that is depicted in figure 5.6. When determining if
the ball is colliding with another object, a naïve collision detection
algorithm would perform collision tests with 14 objects, excluding the walls.
The quad tree implementation, however, can quickly determine that there
is no object in the same cell as the ball, so that no collision can possibly
have occurred.

5. Simulation 67

Figure 5.6. - Quad tree decomposition of a 7x7 robot soccer game. The collision
detection mechanism can determine from the quad tree that there are no potential
candidates for colliding with the ball.

5.1.4. Robot motor model
When the simulator receives a robot command, two different courses of
action can be taken, depending on a user setting.

If the user chose for an unrealistic motor modelling, the robots will
immediately have the speeds sent to the simulator. This can be very useful
for open-loop motion testing.

A more realistic model can also be chosen. In this model, each wheel is
controlled separately, just as is done in the Austro-bots. The velocities in
the command are first converted to left and right wheel speeds. (The
formula to do this can be found on page 25). For each motor, these speeds
are set as the target speed.

Then, every time step (of 1 ms) a discrete PID-controller tries to minimize
the error between the current wheel speed and the target wheel speed
(errk), as is done on the Austro-bots[36]:

out k=out k−1err k⋅ − err k−1⋅ err k−2⋅

where α, β and γ are tuning parameters that are functions of the normal
gains found in a PID-controller. The tuning of these parameters was done
by the designers of the Austro-bots, which yielded: α = 4512, β = 4192 and
γ = 512.

The output signal is clamped between -256 and 256, since this is the range
of the encoder used, the Faulhaber IE2-512[37].

Now that the control signal for the motor has been determined, we need to
find the resulting new wheel speed. Our robots are using DC-motors to
move. These motors use a magnetic field to rotate a coil connected to the
drive shaft. As with all electric devices the voltage through the coil (V) can
be determined using Ohm's law:

V=I⋅R
where I is the current through the coil, and R the resistance. However, in a
DC-motor the magnetic flux of the magnetic field generates an induction
current. The voltage generated by this induction is called back-electric
motor force (back-EMF), so the previous formula becomes[38]:

V=I⋅RV ind

The induction current is proportionate to the rotation speed (ω) of the coil.
Besides, the current flowing through the coil is proportionate to the amount
of torque (rotational force, τ) delivered by the motor. The formula therefore
can be written as:

V=
k
⋅Rke⋅

The values kτ and ke are constants that are characteristics of the specific
motor used. It can also be proven that under normal circumstances kτ and
ke are equal. Substituting these values for k and rewriting the formula so

68 5. Simulation

that it provides the engine torque, gives:

=
V⋅k

R
−

k2
⋅

R
The values for k and R are known. Those used in the simulation can be
found in appendix C. The right part in the formula is the cost in torque of
the induction current. The motor can be controlled using the voltage on the
coil. This can vary from -6 to 6 V.

At each simulation step the current rotation speed of the engine coil is
calculated, using the current wheel velocity16:

engine=
vwheel⋅N

r wheel

In this formula, N is the ratio of the gears that connect the motor with the
wheel. On the Austro-bots, this ratio is 25:3 [39]. rwheel is the radius of the
wheel. Then the output signal from the PID-controller (outPID) is taken and
used to calculate the engine torque that is delivered by our motor:

engine=

1
256

outPID⋅V⋅k

R
−

k2
⋅engine

R

This torque is exerted on the ground via the wheel, resulting in a driving
force, calculated with:

F=
engine⋅N⋅

r wheel

The factor (η) here is the motor efficiency. This force can then be used to
determine the new wheel velocity, using Newton's Second Law. Since the
robot contains two motors, the mass of the robot should be halved:

vk=vk−1
F

1
2
m

5.1.5. Measurement noise
To test the ability of the system to cope with noisy measurements, it is
possible to add noise to the snapshots that might be generated by the
simulator. As seen in paragraph 4.2, the measurement noise is modelled as
a multivariate Gaussian distribution. So, for each measurement we need a
noise vector X:

X~N 30,

where Σ is the covariance matrix of the noise distribution.

16 This velocity can originate from movement of the robot, but also from collisions of other
robots.

5. Simulation 69

To find a random vector X that comes from the normal distribution above,
the unique lower triangular matrix L needs to be found that satisfies:

L LT=

This matrix L is known as the Cholesky decomposition (or the matrix
square root) of Σ. The values of the elements of this matrix can be found
with [40]:

l ii= sii−∑k=1
i−1

l ik
2 and

l ji=
s ji−∑k=1

i−1

l jk l ik

l ii
The most convenient way of calculating the elements of this matrix is by
starting at the upper left corner of the matrix, and calculating the values
column by column. This is known as the Cholesky-Crout algorithm.

A noise vector can now be created by multiplying the matrix L by a vector of
independent Gaussian distributed values. These values are obtained by
using a Mersenne Twister pseudo-random number generator[41]. This type
of generator gives uniformly distributed values, which can be transformed
to Gaussian distributed values using the Box-Muller transform[42].

Let r1, φ1, r2 and φ2 be four random values between 0 and 1 from the
random number generator, we can now calculate a noise vector with the
correct multivariate Gaussian distribution with:

X=L⋅[
cos 21⋅−2⋅ln r1
sin 21⋅−2⋅ln r1
cos 22⋅−2⋅ln r2

]
This noise vector can then be added to the observation state to get the
measurement that is placed in the snapshot.

To make sure the reproducibility of the simulator results is left intact, the
Mersenne Twister random number generator is seeded with a value that is
specified in the simulator configuration. Therefore, when the user does not
change this seed, there will be no differences in the noise added between
two runs of the simulator.

5.2. Implementation
The simulator is currently implemented as a server and the MI20 program
functions as a client. This client-server architecture makes it simple to let
two teams play against each other: one simulator can then listen for two
MI20 applications, each determining the actions for one team.

Communication between the two programs makes use of the networking
code as described in paragraph 2.6.3. A SimulatorHandler within the client
program transmits events over the network that are important for the
simulator (like robot commands). The simulator, in turn, generates events
that are placed in the event queue when they are received by the simulator
handler.

The state of the world is contained in a PhysicalModel class. This class is

70 5. Simulation

responsible for the simulations described in paragraph 5.1 and makes heavy
use of a library called Open Dynamics Engine (ODE). ODE is an open-
source physics library, targeted at rigid body simulation and collision
handling [43]. Using this has saved a lot of time that could now be spent on
the actual simulation, instead of spending time on integration methods and
collision algorithms.

Every frame, the Referee-class looks at the world state and decides if the
game rules require intervention. These events might be a scored goal, a
stalemate (the ball is not touched for more than 10 seconds), or one of the
possible fouls. Some violations of the game rules are very difficult to detect
(e.g. a collision should influence the game significantly to be a foul), so
these are not recognized. When a foul could be detected, the client should
be asked to supply the targets of its auto-positioning system and the game
recommences.

5.3. Conclusions
The new simulator that has been added to the MI20 system makes testing a
lot easier. It is no longer necessary to set up the field just to test newly
written code.

A physical model has been developed for simulation that takes into account
air resistance, static and dynamic friction, collisions between all objects and
the inner workings of the robot motors. It is even possible to simulate the
noise that is experienced when using the camera to observe the world state.

Since the model used for simulating the game situation is deterministic,
games played with the simulator are reproducible.

The fact that games can now be simulated, makes it possible to use machine
learning to develop new game strategies.

To really make machine learning feasible, though, some small
enhancements to the simulator are recommended. Although the simulator's
Referee-class checks for violations of the game rules, it does not yet stop
the game and communicate these violations to the clients. The framework
to this is available17, only the specific implementation has yet to be created.

It is important to note that testing using the simulator should never replace
testing in real-life situations. Although the model of the simulation gives
quite realistic results, it still remains a model, i.e. a simplified version of
reality. It would be a pity to do all tests in the simulator, only to discover at
a championship that performance is not that good.

17 When a goal is scored, this fact is currently sent to the clients. In a same manner all other
communication can be handled.

5. Simulation 71

6.Conclusions

CHAPTER

6 Conclusions

he previous chapters described in detail the changes made to the
software and development process of the MI20 robot soccer system.

In this chapter, the balance sheet of these advancements will be drawn up,
and some recommendations about further work will be given.

T

6.1. Conclusions
With all the development done in the past few months, it is believed that a
large step has been taken to make the MI20 system more manageable.

Development should be easier now. A more clear-cut design and the
documentation (in the form of both this thesis and documentation
generated automatically from the source code) should make it less
overwhelming to start working with the system, which is, mark you, a larger
program than most students will have ever worked on. It is believed that
students can now get an overview of the entire system more easily, so that
they can better assess the impact of their changes.

Debugging has become more convenient as well. The unwieldiness of a
system with multiple executables led to caveman debugging18, which is
quite time-intensive. Now, using tools like gdb is much more convenient
and rewarding.

An end has also been made to the messy way of gathering test data. Often,
students would just place log messages throughout the code, outputting the
data they needed and redirecting this output to a text file. Now, all data is
available and can be exported to CSV, or graphed directly.

All in all development of the MI20 system should now be possible in a more
rapid manner, delivering better tested and more stable code, and hopefully
resulting in more victories.

18 Caveman debugging is debugging by placing log messages throughout the code in which
a bug is suspected. Then, by running the program and noting the log messages, the
location of a defect or crash can be found. However, multiple runs of the software are
typically needed to find the error.

6. Conclusions 73

6.2. Recommendations
Working eleven months on this project, led to some ideas about the
direction further development in the project could take. These
recommendations are split in two parts. Paragraph 6.2.1 contains
recommendations about further work that can be done on the system. In
paragraph 6.2.2 recommendations are given on how the development
process might be improved.

6.2.1. Further work
Most of the designs described in this thesis have actually been implemented
in the MI20 system. Unfortunately, there are still some features left
unimplemented. Also, other features not yet designed will be mentioned in
this paragraph, that might be good ideas.

When combining the individual executables of version 1.0 of the system
into one monolithic program, the distributed nature of the system
disappeared. Currently, this does not seem a problem, since current
computers have sufficient processing power to run the entire robot soccer
system on just one PC. However, there might be a need to implement
networking soon.

The advantage of our current camera is that it is using Firewire, and that
this device can be daisy-chained. This means that the data of the camera
can be made available to other computers, simply by connecting the
systems: they all share the same bus.

A new camera has been bought that communicates with the host computer
using USB. Daisy-chaining is not possible with a USB camera, so that only
one machine in the lab would have access to the camera images. A solution
to this problem might be to have a sole Vision module running on the
system that the camera is connected with. Other MI20 systems on other
system could then connect with the Vision module, to receive the snapshots
from there.

The games that are currently recorded using the second – more flexible –
game recording format cannot yet be read by the system. The files from the
first attempt to record games, containing only snapshots, can still be read
though. Including this functionality in the system should not be hard, since
all data types that are used in the format already contain methods for
deserialization.

During the design of the new version of the MI20 system, emphasis was
placed on manageability and testing. Tools have been added to make the
system more manageable, and to make acceptance testing easier.

Another good way of guaranteeing that the code works as intended, is the
use of unit testing. With unit testing a small piece of software is tested using
simple test cases.

74 6. Conclusions

After checking code with unit tests, these tests should not be removed.
Quite the contrary, they should be run on a regular basis, guaranteeing that
changes made to the system have not broken existing code (this is called
regression testing).

Currently a small unit testing framework is included in the source code of
the system, but little tests have been written using this framework. It might
be beneficial to include unit and regression testing more solidly in the
development process.

The user requirements of the data acquisition and visualisation features
were based on the few observations made of the two Master students that
graduated while this redesign was done. It is very well possible that the
actual use of these facilities will bring to light the need for extra options and
features.

It is very likely that many more decision systems will be added over the
years. When the amount of different decision systems grows, it might be
beneficial to compile these into dynamic linked libraries (i.e. DLL-files or
the Linux-equivalent, so-files). Then, the main executable of the system
remains small and the system can scan the working directory for possible
strategy libraries. The clear-cut boundary between the decision system and
the rest of the system should make implementing this scheme not too
difficult.

6.2.2. Process recommendations
Currently, only Master students are working on the robot soccer project.
These students work on the project for a relatively short time19, taking their
built-up knowledge with them after graduation. This means that the people
working on the system will always, on average, have little experience with
it.

To increase the continuity within the project, it might be beneficial to
include somebody in the team with hands-on experience, but with a more
long-term commitment, for example a student assistant. This person could
then support Master students with the practical side of their assignments.
He20 could also ensure that the use of development tools like Subversion
will not come to a dead end again. He could keep track of the changes made
to the system by the students, and detect possible problems. This way, he
would function somewhat like a project leader. Furthermore, this team
member could be responsible for fixing the defects found in the software, so
that the students can focus completely on their assignments.

Other robot soccer teams around the world tackle the continuity problem
by creating PhD-positions within the team. In that case continuity is
maintained for at least three years. Besides, a PhD could perfectly

19 Especially when students from the Bachelor-Master track will work on the project, since
their Final Project is only 30 credits, representing 21 weeks. Students from previous
generations had a project length of 30 weeks.

20 Or she, of course.

6. Conclusions 75

(co)supervise the Master students on the project.

Of course, problem with the above solutions is the fact that they cost
money. Solving that problem is left conveniently out of the scope of this
thesis.

Furthermore, the project might benefit from setting more long-term goals.
By keeping an overview of the current bottlenecks and shortcomings of the
system, more long-term planning can be done and a road map can be
established. Currently, students are kept relatively free in deciding the type
of assignment they want to do. Having a long-term plan should lead to
more concrete assignments, solving the current issues with the system, and
progressing the software development in a more focussed manner.

76 6. Conclusions

Bibliog raphy

[1] World cup final peaks at 4 million viewers at CTV,
http://www.channelcanada.com/Article1453.html

[2] RoboCup official site, http://robocup.org/

[3] About FIRA - Overview, http://fira.net/about/overview.html

[4] FIRA MiroSot Middle league rules,
http://fira.net/soccer/mirosot/MiroSot.pdf

[5] FIRA European Championship 2003 - Results,
http://robotsoccer.fe.uni-lj.si/Results.htm

[6] FIRA World Cup 2003 - Results,
http://www.ihrt.tuwien.ac.at/FIRAWM03/english/results/miro5/res_
miro5_C.html

[7] Pressman, R.S., Software engineering: a practioner's approach, 1997,
McGraw-Hill, New York, ISBN 0-07-709411-5

[8] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design patterns:
Elements of reusable object-oriented software, 1994, Addison-Wesley,
, ISBN 0-201-63361-2

[9] Lethbridge, T.C. & Laganière, R., Object-oriented software
engineering, 2001, McGraw-Hill, Maidenhead, ISBN 0-07-709761-0

[10] Model View Controller - Microsoft,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnpatterns/html/DesMVC.asp

[11] The GNU General Public License (GPL),
http://opensource.org/licenses/gpl-license.php

[12] Seesink, R.A., Artifical intelligence in a multi agent robot soccer
domain, Master's thesis, Twente University, 2003

[13] Buth, M.D., Ball-handling motion control for soccer playing mini-
robots, Master's thesis, Twente University, 2006

[14] Schepers, E.M., Improving the vision of a robot soccer team, Master's
thesis, Twente University, 2004

[15] About wxWidgets, http://wxwidgets.org/about/

[16] Understanding the Linux kernel: process scheduling,
http://www.oreilly.com/catalog/linuxkernel/chapter/ch10.html

77

[17] Cornes, P., The Linux A-Z, 1997, Prentice Hall, Hemel Hempstead,
ISBN 0-13-234709-1

[18] McShaffry, M., Game coding complete, second edition, 2005,
Paraglyph Press, Scottsdale, AZ, ISBN 1-932111-91-3

[19] Version control with Subversion, http://svnbook.red-
bean.com/nightly/en/svn-book.pdf

[20] Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M., Version control
with Subversion, 2004, O'Reilly Media, Cambridge, MA, ISBN 0-596-
00448-6

[21] The GNU Lesser General Public License,
http://www.opensource.org/licenses/lgpl-license.php

[22] The BSD license, http://www.opensource.org/licenses/bsd-license.php

[23] Doxygen features,
http://www.stack.nl/~dimitri/doxygen/features.html

[24] About Mantis, http://mantisbt.org/about.php

[25] Code convetions for the Java programming language,
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

[26] Hungarian notation - Wikipedia,
http://en.wikipedia.org/wiki/Hungarian_notation

[27] Hungarian notation,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnvs600/html/hunganotat.asp

[28] SCADA - Wikipedia, http://en.wikipedia.org/wiki/SCADA

[29] Meijer, T.M.J., Syllabus 'Kansrekening en statistiek voor INF',
Master's thesis, Twente University, 1999

[30] Kalman filter - Wikipedia, http://en.wikipedia.org/wiki/Kalman_filter

[31] Gillespie, T.D., Fundamentals of vehicle dynamics, 1992, Society of
Automotive Engineers, Inc., Warrendale, PA, ISBN 1-56091-199-9

[32] Feynman, R.P., Leighton, R.B., Sands, M.L., The Feynman lectures on
Physics, 1963, Addison-Wesley, Reading, MA, ISBN 0-201-02010-6

[33] List of moments of inertia - Wikipedia,
http://en.wikipedia.org/wiki/List_of_moments_of_inertia

[34] Blender.org, http://blender.org/cms/Home.2.0.html

[35] Grond, S., State estimation of colliding objects in a robot soccer
environment, Master's thesis, Twente University, 2005

[36] This formula was sent to us by the manufacturer of the Austro-bots.
The exact formula sent contains a division by 8192, because the
measured velocities have a range from -32767 to 32768 as opposed to
the -4.0 to 4.0 in m/s.

[37] Faulhaber IE2-512 data sheet, http://www.faulhaber-
group.com/uploadpk/d_IE2512_DFF.pdf

[38] Motors for mobile robots - A gentle and quick introduction,
http://courses.csail.mit.edu/6.141/spring2006/pub/lectures/Actuation
-Lecture.pdf

[39] Roby-Speed technische Details,
http://www.roboterfussball.at/robygo/tech-deu.html

[40] Multivariate normal distribution - Wikipedia,

78

http://en.wikipedia.org/wiki/Multivariate_normal_distribution

[41] Matsumoto, M., Nishimura, T., Mersenne Twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator ,1998, ACM Trans. on Modeling and Computer Simulation,
8, No.1, January, p. 3-30

[42] Box-Muller transform - Wikipedia, http://en.wikipedia.org/wiki/Box-
Muller_transform

[43] Open Dynamics Engine, http://www.ode.org

[44] Technische details Faulhaber 2224 006 SR DC-Kleinstmotor,
http://www.faulhaber-group.com/uploadpk/d_2224SR_DFF.pdf

79

A. Network packet format

APPENDIX

A Network packet format

his appendix describes the format of the networking packets that are
currently used in the communication between simulator and robot

soccer system, but could also be used in a distributed set up of the system.
T
A packet always has the following format:

Field Size Description

Signature 1 byte Always 0x20. Can be used to check if this is indeed
the beginning of a network packet.

Version 1 byte The version number of the protocol. Currently
0x01.

Checksum 1 byte Checksum of all bytes following this, using a CRC-8

checksum with polynomial x8
x 2

x1
x 0 .

Type 1 byte The type of packet this is. The following packet
types are defined:

0x01 Hello
0x02 Connection refused
0x03 Connection accepted
0x10 Register event.
0x11 Unregister event
0x20 Event
0x30 Setting changed

Currently the only type 0x20 is used. A real
implementation of networking might change this.

Data length 2 bytes The number of bytes of data following this header.

A. Network packet format 81

As shown in the table, currently only the event packet (0x20) is used for
network communication. The payload of this packet has the following
format:

Field Size Description

Event type ID 4 bytes The hash code of the event type (see paragraph
2.6.2).

Data - Serialized data of the event. This part of the
packet is not more and not less than the bytes
stream generated by event.serialize().

The event type ID can be used to create the right type of event from the
network packet. The EventManager maintains a list that matches ID's to
event types. This list is set up during the start up of the program. The
currently used event type ID's are:

0x20e20519 NewSnapshotEvent
0x2662056b NewWorldDataEvent
0x0fab037c ShutdownEvent
0x17390437 VelocitiesEvent
0x0ed8035c IdentifyEvent
0x259d0561 IdentifyDoneEvent
0x16d00429 SetActionEvent
0x26f5058f VisionWindowEvent
0x40d2071e VisionWindowClosedEvent
0x398806aa VisionWindowClickedEvent
0x25540548 ColorChangedEvent
0x207904f5 ColorReloadEvent
0x120f03a7 CalibrateEvent
0x24ba0550 CalibrateResultEvent
0x3dfd06df GameStateChangedEvent
0x314a0639 PossibleCollisionEvent
0x25f7056f NewPlanLinesEvent
0x31330627 ActionFinishedEvent
0x24f20543 ActionChangeEvent
0x0b7502e7 IdSwapEvent
0x20cd0513 ModuleStartedEvent
0x1be4049e RobotSleepEvent
0x20f50512 RobotWakeupEvent
0x0667022a ErrorEvent
0x1f6f04d1 ClippingChangedEvent
0x1b0b047e ClippingReloadEvent
0x0bc902e8 SetPIDEvent
0x0b8d02e8 PIDSetEvent
0x201904e1 SimScoreChangedEvent

82 A. Network packet format

B. Game recording file format

APPENDIX

B Game recording file format

n this appendix the file format that is used for the second version of the
game recordings is described. The format is set up so that it can be

expanded while retaining backward and forward compatibility.
I
Each recording file begins with a 15-byte header file with the following
format:

Field Size Description

Signature 4 bytes Always 'MI20'. In hexadecimal format:
4D 49 32 30

File version 1 byte Version of the recording file format. Currently
0x03.

Field size 1 byte The size of the field. Can be one of:

0x05 A 5x5 field (220 x 180 cm)
0x07 A 7x7 field (280 x 220 cm)
0x11 A 11x11 field (400 x 280 cm)

Team colour 1 byte The team colour on the system that recorded this
file.

0x01 Blue
0x02 Yellow

Start time 4 bytes The number of seconds since 1 January 1970,
0:00:00 UTC. This can be found using the
time()-function

File length 4 bytes Floating point number, representing the number
of seconds of data in this recording.

B. Game recording file format 83

After this header follow chunks of data. A data chunk always has the
following format:

Field Size Description

Chunk type 1 byte The type of chunk. The following chunk types are
used:

W (0x57) World data
S (0x53) Snapshot
C (0x43) Comment
G (0x47) Game state change
V (0x56) Robot commands

Chunk length 2 bytes Number of bytes of the chunk data. If the chunk
type is not recognized, this value can be used to
skip the data and proceed to the next chunk.

Chunk data n bytes The data of the chunk.

More chunks can be added to the format without breaking compatibility
with old recording files. These augmented files can even be read by older
version of the program, since it knows the length of the chunk and can
simply skip it.

The chunk data for a Comment (C) chunk is as follows:

Field Size Description

Comment
type

1 byte The type of comment. The following comment
types are used:

B (0x42) Blue team name
Y (0x59) Yellow team name
D (0x44) Game description

Length 2 bytes Number of bytes of the comment.

Comment n bytes The comment itself. (No zero-termination used)

The robot command chunk (V) has the following format for the chunk data:

Field Size Description

Time stamp 4 bytes

(float)

The time stamp (number of seconds since program
start) when these commands were generated.

Robot ID 1 byte The ID of the robot this command is for

Linear speed 4 bytes The linear velocity of the robot command in mm/s.

Angular
speed

4 bytes

(float)

The angular velocity of the robot command in
rad/s. Negative velocity is clockwise movement.

84 B. Game recording file format

The game state chunk (G) has the following format:

Field Size Description

Time stamp 4 bytes

(float)

The time stamp (number of seconds since program
start) when the game state was changed.

Game state 4 bytes The game state as serialized by the method
GameState::operator<<.

The game state format is:

Field Size Description

Running 1 byte True (0x01) if the game is running, false (0x00)
otherwise.

Situation 1 byte The current game situation:

0x00 Normal play
0x01 Kick off
0x02 Free kick
0x03 Goal kick
0x04 Penalty kick
0x05 Free ball

Playing
direction

1 byte The direction were are playing in:

0x00 Left to right
0x01 Right to left

Location 1 byte The location of a game situation. Can be:

0x00 We are the attacking team

(In free ball situations, we attack at the
position with the lowest Y-coordinate)

0x01 We are the defending team

(In free ball situations, we defend at the
position with the lowest Y-coordinate)

0x02 Free ball: attack at highest Y-position
0x03 Free ball: defend at highest Y-position

The data of the world data chunks (W) and the snapshot chunks (S) are the
exact data as the serialization methods WorldData::operator<< and
Snapshot::operator<< returned. The world data format is found in the
following table:

Field Size Description

Time stamp 4 bytes Time stamp of the world data. Is the number of
seconds since program start, as float.

B. Game recording file format 85

Field Size Description

robots 1 byte The number of robots per team.

Ball state 29
bytes

The state of the ball. See next table for the format
of world objects.

Team robots N * 29
bytes

The state of the team robots, in order. See the next
table.

Opponent
robots

N * 29
bytes

The state of the opponent robots, in order. See the
next table.

World data objects are stored as:

Field Size Description

On field 1 byte Boolean describing if an object was on the field
(0x01) or not (0x00).

Location X 4 bytes The X-coordinate of the object's location, as float.

Location Y 4 bytes The Y-coordinate of the object's location, as float.

Orientation 4 bytes The orientation of the object, as float. Value lies
between π and -π.

Velocity X 4 bytes The X-component of the object's velocity vector, as
float.

Velocity Y 4 bytes The Y-component of the object's velocity vector, as
float.

Angular
velocity

4 bytes The angular velocity of the object in rad/s.

Acceleration 4 bytes The acceleration of the object in mm/s, as float.

Snapshots are stored using the following format:

Field Size Description

Time stamp 4 bytes Time stamp of the snapshot. Is the number of
seconds since program start, as float.

balls 1 byte The number of balls in the snapshot.

Ball location N * 16
bytes

The location of the possible balls. Stored as two
consecutive doubles, representing the X- and Y-
location respectively.

team

robots

1 byte The number of team robots in the snapshot.

Team robots N * 25
bytes

The team robots in the snapshot. See the next
table.

opponent 1 byte The number of opponent robots in the snapshot.

86 B. Game recording file format

Field Size Description

robots

Opponent
robots

N * 25
bytes

The opponent robots in the snapshot. See the next
table.

The robots in the snapshots are stored using the following format:

Field Size Description

Location X 8 bytes The X-coordinate of the robot location, as double.

Location Y 8 bytes The Y-coordinate of the robot location, as double.

Orientation 8 bytes The orientation of the robot, as double. Value lies
between π and -π.

Robot ID 1 byte The ID of the robot that was detected if the
multiple-colour patches were used. A value of
0xFF means the identify could not be determined.

B. Game recording file format 87

C. Simulation constants

APPENDIX

C Simulation constants

his appendix lists some of the constants that were used in the physics
simulation, including the motor model. Source of most of these values

are either the manufacturer of the hardware [39][44].
T

Robot properties
Length (sx) 75 mm
Width (sy) 75 mm
Height (sz) 48 mm
Mass (m) 608.7 g
Wheel base (ℓ) 68 mm
Wheel radius (rwheel) 22.5 mm

Motor constants
Electrical voltage (V) 6 V
Electrical resistance (R) 1.94 Ω
Stall torque (τS) 21.2 mNm
Minimal torque (τF) 0.2 mNm
EMF constant (ke) 0.725 mV/rpm
Torque constant (kτ) 6.92 mNm/A
Motor effeciency (η) 82 %
Gear ratio (N) 25: 3

Ball properties
Ball radius (rball) 21.35 mm
Ball mass (mball) 45.9 g

Friction coefficients
Ball rolling resistance (μrr,ball) 4.731· 10-3

Robot rolling resistance (μrr,robot) 1.71· 10-2

Robot sliding friction (μsliding) 4.808· 10-1

Robot friction torque (τf) 16.06 mNm

C. Simulation constants 89

	1.Introduction
	1.1.What is robot soccer?
	1.2.Problem statement
	1.3.Assignment
	1.4.Thesis outline

	2.The MI20 application framework
	2.1.Towards version 2.0
	2.2.Modularity
	2.3.Model-view-controller architecture pattern
	2.4.Module descriptions
	2.4.1.Vision
	2.4.2.State estimator
	2.4.3.Strategy
	2.4.4.Motion
	2.4.5.RFComm
	2.4.6.Joystick control

	2.5.User interface
	2.6.Inter-module communication
	2.6.1.Sender-receiver threads (v1.0)
	2.6.2.Events (v2.0)
	2.6.3.Networking

	2.7.From enhanced C to actual C++
	2.7.1.Object-orientated features
	2.7.2.STL containers
	2.7.3.The const keyword
	2.7.4.Exceptions
	2.7.5.C++ for Java and C-programmers

	2.8.Other changes
	2.8.1.Settings
	2.8.2.Assertions
	2.8.3.Memory leak detection

	2.9.Platform independence
	2.10.Conclusions

	3.Development process
	3.1.Source code management
	3.1.1.Subversion
	3.1.2.Branching
	3.1.3.Vendor drops

	3.2.Documentation
	3.3.Bug tracker
	3.4.Builder
	3.5.Coding style
	3.6.Conclusions

	4.Test environment
	4.1.Graphing system data
	4.2.Statistical tools
	4.3.Game recording
	4.4.Conclusions

	5.Simulation
	5.1.Physical model
	5.1.1.Air resistance
	5.1.2.Rolling resistance and sliding friction
	5.1.3.Collision model
	5.1.4.Robot motor model
	5.1.5.Measurement noise

	5.2.Implementation
	5.3.Conclusions

	6.Conclusions
	6.1.Conclusions
	6.2.Recommendations
	6.2.1.Further work
	6.2.2.Process recommendations

	A.Network packet format
	B.Game recording file format
	C.Simulation constants

