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Preface

Programming paradigms and compiler techniques have been one of my specific inter-
ests for quite a while now, so when Gerard Smit offered me this assignment, it imme-
diately felt like it was going to be a lot of fun. “Back then” I was a big fan of++ and
was very enthusiastic about the opportunity to study it closer and try and design new
models of compilation for it. I say “back then,” because these past few months of re-
search have brought surprise after surprise with respect to the behavior of the language.
Not all of them nice.

However, the process of researching itselfwasvery enjoyable. Very much so, be-
cause of the feisty arguments with Michèl Rosien—in which I was always much too
formal—and sparring at the whiteboard with Jan Kuper—where I was never formal
enough. I thank them both for these many hours very well spent. Gerard Smit offered
me this assignment and for that alone I am grateful, but more so, he stayed calm when
I stressed out about deadlines and such. Thijs Krol gave me a real eye-opener halfway
into my research, when he completely scattered and rearranged my semantic under-
standing of, which eventually helped me a lot. After all, is his work and the
thought that I completely understood all levels of abstraction after reading a concise
summarizing paper left me sadly mistaken. Working with the people in my committee
was all in all a highly enjoyable and educational experience.

Outside of the committee there are too many people I would like to thank to do that
here, so I will simply say I am grateful for all the love I receive daily from friends and
family. However, two people have helped in such exceptional ways that theydo need
to be mentioned explicitly. Erik Hagreis has put a lot of the time he did not have into
the design of the cover of this thesis. The result is something to be seen. Likewise,
Mark Westmijze has sacrificed a lot of his time to create a presentable demo for me. I
must say, his demo has turned out to be quite stunning.

I hope this thesis is useful and reading it will be enjoyable. Writing it certainly has
been.

Philip Hölzenspies
April 2005
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1
Introduction

The S Input Language () was designed to enable transformational design in
 implementations of electronics. It gives a graphical view of the control- and
data flow through the entire design, because it is itself a Control- and Data Flow Graph
(CDFG), or actually a hypergraph. To allow a designer to get a clear overview, it allows
for hierarchical abstractions that hide complexity, but still guarantee correctness.

The assignment for this thesis was to extend with types and operations that
would allow the mapping of a greater subset of(++) to it. This need arose from the
observation that designs are often implemented first as a runnable specification. For
this purpose++ is used quite often. Moreover, applications in software sometimes
need reimplementation in hardware, because they fail to meet (increased) performance
criteria. Both of these cases call for an automated translation, because the manual
methods often used are error prone and time consuming.

The ‘++’ is parenthesized, because objects and other equally complex extensions
++ introduces over are not (yet) included in the supported subset. However, mix-
ture of statements and declarations is, which will be shown to have quite significant
implications for the modeling extensions required. Moreover, would there turn out to
be conflicts between [8] and ++ [5] then the++ standard was chosen to be the
modeling goal.

There have already been some attempts at extending, but they have not yet been
completely successful. Considering that these attempts provided the most important
basis for this thesis. A concise description of these extension attempts was drawn up
as an internal report by Thijs Krol and Bert-Steffen Visser. Since this report is not
available outside of the Embedded Systems group of the University of Twente and the
work presented here relies so heavily on it, it has been included as an appendix (see
appendix A).

Because of the limited time available for this assignment, a subset of the uncovered
language features was chosen. Therefor, the extensions presented here are restricted to
pointers and jumps. These two language features were deemed ‘most missed’ and also
occur in many (if not most) other imperative languages.

The structure of this thesis is as follows: As it turned out the terms used in the

1



2 Introduction Ch. 1

context of varied from one conversation to the next, chapter 2 describes the total
process of translation and transformation and provides definitions of the terms used in
the following chapters. Next, the key findings from experimentation and review of the
standard with respect to pointers (chapter 3) and jumps (chapter 4) are presented and re-
sulting design choices explained. Chapter 5 gives the complete formal definition of the
extension to the model. Because of limitations found with respect to transformability
of , chapter 6 describes an implementable optimization using annotation. Finally,
chapter 7 gives a roundup of the results and recommendations for future work.



2
The Process

This chapter deals with the process of translation. The conventional way of compiling
++ is described briefly in section 2.1. Avery brief and informal introduction to
is given section 2.2 (a much more extensive explanation can be found in appendix A).
Transformational design is introduced next (2.3) and the consequences for compilation
are discussed. Section 2.4 shows how these consequences have been incorporated in
the work process used when working with. Finally, the process of transforming
and the nature of transformations is laid out in section 2.5.

2.1 Compiling ++ directly

Commonly, programs are said to have definitions at compile- and run-time. The pro-
grammer/designer must be familiar with these concepts in order to deliver proper work.
The vast majority of compilers work in some sort of continuous mode and allow for
very little (if any) interaction. They are programs themselves that take program code as
input, process it and deliver their output. This output can be machine executable code
for whatever platform, byte-code for some sort of evaluator or some sort of file used by
machines to produce hardware.

Of course, every such output requires its own compiler, because many of these dif-
ferent types of output require highly specialized processing (if any level of optimization
is desired). There are many compiler suites (e.g. the GNU Compiler Collection) that
group different front- and backends and unify the intermediate data structures and pro-
cessors. However, all these compilers traditionally work in a batch oriented fashion.
Any unrecoverable error (i.e. by the compiler itself) will result in a termination of the
compilation process and incomplete output, or none at all.

Real errors should only occur on erroneous input, but failed optimization attempts
just result in the original (unoptimized) code they were fed. These optimizations are
commonly algorithm based (as opposed to artificially intelligence based) meaning that
many are either NP-complete or will not recognize all optimizable structures.

All compilation parameters and hints a designer can give with respect to these opti-

3



4 The Process Ch. 2

mizations have to be chosen offline, i.e. before feeding the program to the compiler. It
is always possible to change the hints and parameter values and to recompile a program
when the original values result in an unsatisfactory compilation.

2.2 S

S stands for S Input Language and was designed by Thijs Krol et al as an in-
termediate format for High Level Synthesis. It needed to have the expressive power
and interpretation ease to be applicable to Transformational Design (see section 2.3).
S is based on the notion of hypergraphs. In a hypergraph, a hyperedge connects one
set of nodes to another—as opposed to a single node to another—defining (in the case
of ) a relation between all the nodes it connects. Actually, nodes are points in the
hypergraph that receive avaluationand the hyperedges define relations between these
valuations of nodes. For brevity, hyperedges and -graphs are often referred to as edges
and graphs, since ‘normal’ graphs are never relevant to this text.

As a rather simple example, consider the graph depicted in figure 2.1a. Nodes,
drawn as small circles1, are connected by hyperedges. Hyperedges are drawn as boxes
with arrows to and from nodes. The nodes with arrows to a hyperedge are referred
to as the hyperedge’sinput nodesand the nodes pointed to by the arrows from a hy-
peredge are considered itsoutput nodes. Furthermore, note that the hyperedges are
labeled withtwo labels. The one on the outside (g in the example) is the name of this
specific hyperedge and the one in the box (G in the example) is the name of the hyper-
edge’s definition. A definition can be given in terms of either another graph, in which
case the hyperedge is referred to ascomplex, or a primitive function, in which case
the hyperedge is consideredprimitive. Primitive hyperedges can be considered to be
defining themselves. As a convention, primitive hyperedges are often drawn as (large)
circles or ellipses. Nodes are also labeled with their names, but note that both node
and edge names are only a way to reference a specific node or edge, i.e. a name is not
intrinsically part of the node or edge it refers to.

The hyperedge (often simply referred to as ‘edge’) in the example is complex and,
as such, there must be a definition in terms of another graph for this edge. It is de-
picted in figure 2.1b. The graph’s name is shown similar to how names of edges are
depicted. It turns outG is a graph that has two primitive edges (‘+’ and a ‘×’). Possible
definitions for these edges are:

+ : V(i1) + V(i2) = V(o1)

× : V(i1) · V(i2) = V(o1)

Wherein refers to thenth input node andom to themth output node. TheV function
maps nodes to their values and as such these definitions (and the edges that reference
them in the graph) define relations on valuations of nodes. Note that these operations
happen to be commutative and thus explicit naming of the in- and output nodes is not
very relevant. When it is, a graph is usually shown withonly the primitive edge and
its in- and output nodes, naming the nodes. When it is unclear to what input a node
is connected, the arrow connecting it may be labeled with the name of the input. The
same holds for outputs. Note that the scope of these names is limited to the edge that

1In  only filled circles are used for nodes, but will introduce a state space as ‘special’ data, so to
differentiate between the two, nodes representing state will be drawn unfilled.



Sec. 2.3 Transformational Design 5

(a) Graph with
a single complex
edge

(b) Defining graph forG

Figure 2.1: S example graphs

requires them, i.e. the fact that the output ofgraph G is namedn5 does not conflict
with the fact that theedge ggives its output to noden4

2.
A more formal and thorough description of is available in appendix A.

2.3 Transformational Design

The idea that all designer supplied compiler directives are given before actual com-
pilation takes place means the designer must be very aware of the capabilities of the
compiler and must be familiar with the compilation process. It is possible the designer
misses a lot of characteristics of a given program, simply because sometimes relations
seem highly complex, when they are not. Moreover, parts of a program might seem
very expensive (in terms of execution time) prior to optimization, but might be reduced
to something very cheap. This is usually discovered during profiling, but it seems de-
sirable to have such information before producing the final output to avoid the need for
recompilations.

Moreover, in the context of hardware/software co-design the strict division between
compile-time and run-time forces early choices with respect to the separation of hard-
and software. By introducing a new and interactive phase in the process of compilation,
transform-time, many of these choices can be made at a later stage when more infor-
mation is available. S was developed as an intermediate representation—initially for
high level synthesis [4,9,10]—for operation during transform-time. It gives a graphical
representation of the program being compiled and should thus provide a more intuitive
perspective on the functionality of the program to the designer. Another strength of

is that it can be mapped to a wide variety of different target languages or other outputs.
This means that e.g. the choice which parts of a program to implement in hardware
can be postponed to a point where it is known what partsreally are computationally
intensive.

2Actually, all names are prefixed by their instantiating environment, so then5 of the definition is called
g.n5 in the more global scope shown in figure 2.1a.



6 The Process Ch. 2

This transform-time—which is essential in transformational design—can be seen
as explicit and interactive compilation. A source language is compiled to the represen-
tation used (). Next, transformations that are proven to leave the external behavior
unchanged are performed as per the instructions of the designer [4]. After the designer
performs all the transformations he or she deems required, the complete-graph can
be output to a certain output format, or parts can be selected one by one and be out-
putted much the same way.

S can be translated to a multitude of output languages. As said before, it was
primarily intended for high level synthesis and was thus designed to translate from and
to languages such as VHDL. It can be argued that is itself a functional program-
ming language and thustranslations to and from other functional languagesare very
intuitive.

A relatively new application for transformational design involves translating run-
nable specifications directly to implementations. It is common practice to first de-
liver such a runnable specification to a client to test the interpretation of the design
requirements and specifications. Currently, this is often done manually, which is time-
consuming and error-prone, so automatic ways of translation are desirable. The basic
use case of this application involves translating++ programs to, e.g. VHDL. A close
inspection of shows that it has insufficient notion of ‘state’ to really be able to trans-
late imperative languages to it. With the extensions described in this thesis () it is
now possible to map from and to imperative languages.

Considering the above, it seems worth exploring whether it is possible to adapt
 in such a way that itwill facilitate translation to and from other languages. In the
most optimistic view, it may even be possible to use as auniversal translator. The
extensions to in  will be restricted to the imperative languages.

2.4 Compiling ++ through 

S stands for ‘S Input Language () with C(++)-extensions’ and it adds an
extended notion ofstateto . This notion of state will be treated extensively in the
following chapters, but a brief introduction is useful here. The state is modeled simply
as a very specific type of data, with its own primitives. These primitives basically read
and write data3 from and to addresses in thestatespace. The statespace is the collection
of all possible states, but the term statespace is also used loosely to indicate all states
occurring in the program. In++ every statement potentially (and presumably) alters
the state implying that (at least initially) the flow through the program is indicated by
the changes in the statespace.

For the ‘correctness by construction’ criterion4 [4, 10] to be applicable, the initial
input of the transform-time interaction must be correct. This means the translation
from ++ to  must be guaranteed to be correct. To obtain a verifiable translation,
the rules of translation should relate as closely as possible to the++ grammar [8].
By using template instantiation with a separate template for every grammar rule, the
correctness becomes testable on a per-rule basis.

3Since evaluation does not have to be completed for data to be data, they actually read and write sub-
graphs.

4Correctness by construction states that given correct input, any sequence of proven transformations (i.e.
transformations that are proven to leave the external behavior unchanged) will render correct output, i.e.
having the same behavior.
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(a) Template for theaddi-
tive-expressiongrammar
rule

(b) Template for the
multiplicative-expression
grammar rule

Figure 2.2: Examples of common templates

(a) Addition template (b) Subtraction tem-
plate

Figure 2.3: Template for the second and third clause of theadditive-expressiongram-
mar rule

As an example of this mechanism consider the following segment of the++ gram-
mar [5, 5.7/1]:

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

The complete template for the grammar rule for an additive expression is depicted
in figure 2.2a. In the simplest case, an additive expression is just a multiplicative ex-
pression. If this is the case, the inputs of the additive expression template can just be
connected to the inputs of the multiplicative expression template (fig. 2.2b). The $n
notation is taken from bison’s [2] denotation of the semantic value of thenth symbol
of the relevant clause; the first rule only has one symbol, so $1 denotes the result of
parsing the multiplicative expression.

If an additive operator (+ or -) is found, either the second or the third rule should
be chosen depending on the operator. A template can be formulated for both of these
rules (fig. 2.3). There is now a one-to-one correspondence between the set of templates
given here and theadditive-expressiongrammar rule.
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Having said that graphs can simply be seen as functional programs (2.3) and
that transformations preserve external behavior5, transformations are in essence offline
evaluation. The problem is, of course, that the complete evaluation can rarely occur at
transform-time6, so not all run-time information is available yet. Leaving the unknown
as is, it still often is possible to transform the known parts of the program. Transforma-
tions should thus abstract away from the unknown.

An observation is required with respect to what is and what is not unknown. Any
program is in itself incomplete if part of itsfunctionalityis unknown, so whatis allowed
to be unknown is restricted to (input)variables. These are modeled either as inputs into
the graph, or as unknown constant edges7 [10]. In the first case, no special implica-
tions arise, but in the second case it is possible to abstract away from this oblivion by
quantifying over all possible (and contextually legal) constant edges.

The following concepts are hereby introduced:

• Let N be a set of nodes. Anordered hyperedge eon N consists of a (possibly
empty) setι of input nodes, and a (non-empty) seto of output nodes, i.e.:

e = 〈ι,o〉.

Both ι ando are supposed to be ordered. For brevity, the termedgewill be used
instead of ordered hyperedge.E will commonly be used to denote a set of edges.

If the setι is empty, e is called aconstant edge.

• A template tconsists of a set of nodesN and a set of hyper edgesE onN.

t = 〈N,E〉

An alternative term for template ishyper graph.

A set of templates is indicated byT.

• Let L be a set of labels. Alabeling function fis a function of typeE→ L, i.e. f
assigns labels to hyper edges. The functionf may be partial, i.e. not all edges in
a template need to be labeled.

Labeled, non-constant edges are often referred to as (-)operators.

• A labeled graph Cis a 3-tuple

C = 〈N,E, f 〉

where〈N,E〉 is a template, andf a (possibly partial) labeling function ofE.

The template〈N,E〉 will be called theunderlying templateof the labeled graph
C.

• Let t = 〈N,E〉 be a template, andf , f ′ two labeling functions ofE. Let ε ⊆ E be
a set of edges oft such that bothf andf ′ are total onε.

Two labeled graphs〈N,E, f 〉 and〈N,E, f ′〉 areε-equivalent(or ε-isomorphic) if
f andf ′ assign the same labels to all edges inε. More formally:

〈N,E, f 〉 �ε 〈N,E, f
′〉 ⇔ f � ε = f ′ � ε

where� restricts the functionsf , f ′ to the setε.
5It is still possible for a designer to make changes to a program in this phase and thus to apply behavior

altering transformations, but this is anexplicit design choiceand should not occur automatically
6As a matter of fact, only if the entire program is constant can it be fully evaluated offline.
7Constant edges have zero inputs and all outputs are given constant values.
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Figure 2.4: Transformational design process

• A graph classis the set of all labeled graphs with the same underlying tem-
plate, that areε-isomorphic for a given setε. A graph class will be denoted by
〈N,E, f , ε〉, wheref is a representative of the set of allε-isomorphic labeling
functions onE.

Often, we will simply speak ofclassinstead of graph class.

• A labeled graphG in a graph class〈N,E, f , ε〉 is aninstanceof that class, if the
labeling functionfG of G is total onE and injective onδ = E \ ε. Remember that
fG � ε = f � ε.

The graph instanceG will be denoted as〈N,E, f , δ〉. Note, that the difference in
notation between a graph class and a graph instance only consists of the symbols
ε andδ. In the following text these different symbols (and accented variants like
δ′) will be used to indicate whether a class or an instance is being discussed.

In practical terms, the quantification over (constant) edges mentioned above comes
down to quantification over all labelings the edge can have. The vast majority of labels
is known after compilation, because many elements in a program are in one way or an-
other constant (operators, functions, hard coded values, etc). In terms of the definitions
given above: a class’ set of edges with fixed labelingsε will include the majority of the
class’ complete set of edgesE.

Templates are instantiated during compilation of the source language. The result is
a set of (named) graph classes, i.e. the namespace. The labelings of all edgesnot in ε
require run-time input, so they will not be available at transform-time. By choosing a
uniquerandom value for these unknown labels, it is possible to calculate relationships
at transform-time without having to predict their actual run-time values. The chosen



10 The Process Ch. 2

〈N,E, f , δ, η〉 // Label // 〈N,E, f ′, δ′〉

Figure 2.5: Arbitrary labeling function block

values are simply placeholders and do not have any semantic value for the final run-time
program, but at least they are guaranteed to be chosen from the graph class. Basically,
during transformationany labeling functionf ′ may be used as long as it preserves the
ε-isomorphism with therepresentativelabeling function in the namespaceanda track
record is kept to indicate what edges have been labeled randomly (δ).

These random labels are retracted by abstraction to deliver a graph class that can be
instantiated at run-time to get the ‘real’ labelings.Runninga program is now reduced
to choosinga specific instance of the graph class. Hence when run, a graph is chosen
from the class with labeling functiong and of course inputs—if required—are given by
means of a valuation functionV of the input nodes. The entire process—from source
to execution—is depicted in figure 2.4.

2.5 Transformations

In the diagram in figure 2.4 the complete intelligence of transformation is split up
into three categories: structural, operational and hierarchical. These transformation
categories and the transformations required8 for the guarantee of consistency will be
explained briefly in this section to gain some sort of intuition of the transformation
process.

2.5.1 Labeling

The labeling function block (fig. 2.5) appoints trivial, but unique labels to unlabeled
edges. It takes as an argument what is loosely called a ‘generic graph instance’, because
it is less defined than a graph instance, but more defined than a graph class. It is actually
a graph instance with some edges that have not been dummy labeled yet. This means it
has an extra set of edgesη ⊆ E that still require labeling. Thus all significantly labeled
edges inE areE \ (δ ∪ η).

Labeling does not change the structure of the graph itself, i.e.〈N,E〉 is unchanged,
but it chooses a new labeling function in such a way that all chosen and fixed labelings
from the previous labeling remain and new labelings are chosen for the edges inη.
Hence

f � (E \ η) = f ′ � (E \ η)

δ′ = δ ∪ η

Note that this means that all edges inδ retain the labeling assigned to them byf under
f ′. The labeling should guarantee thatf ′ � δ′ is absolutely injective.

2.5.2 Abstraction

The labels introduced at transform-time have been used to observe equality, but have
no run-time significance. Before running a program, the assumptions made for offline

8Label and Abstract.
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〈N,E, f , δ〉

��
Abstract

��
〈N,E, f , ε〉

Figure 2.6: Abstraction function block

(a) Pattern to match (b) Result of transfor-
mation

Figure 2.7: Example of pattern-based transformations

evaluation should thus be retracted, i.e. the dummy labels assigned to those edges that
were not significantly labeled in the graph class should be ‘removed’. This happens by
abstraction from the instance resulting from transformation to a class.

Note that abstraction—as depicted in fig. 2.6—may very well leave the labeling
function intact, because in the definition of a graph class,f is a representativelabel-
ing function for theε-equivalence. Retracting the dummy labeling comes down to
reversing the indication from which edges are labeled randomly (δ) to which edges are
labeled significantly (ε):

ε = E \ δ

2.5.3 Structural transformations: pattern replacement

The category of structural transformations concerns mostly pattern replacements, i.e.
the replacement of parts of a graph, based on thestructureof those parts. Patterns
can be defined to describe replaceable structures in a graph. Consider as an example
the case that a valuev is assigned to variablex in the state and directly after, the
same variable is read (asw), than this may be described as a pattern (fig. 2.7a) that
can replaced with the behavioral equivalent which still write in the state, but that just
copies the value fromv to w directly (fig. 2.7b).

This kind of replacement can be generalized for a sizable number of patterns. S

actually has a few patterns predefined, but any and all pattern replacements should
follow directly from the definition of the model’s operators. This does not constitute
operational transformation (2.5.4), because the input values themselves are not consid-
ered for the transformation.
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〈N,E, f , δ〉 // ReplacePattern // 〈N′,E′, f ′, δ′〉

Figure 2.8: Structural transformation function block

〈N,E, f , δ, η〉 // Propagate // 〈N,E′, f ′, δ′〉

Figure 2.9: Operational transformation function block

Equality between input valuesis of course relevant (from the example above, the
address inputs were compared to see they both receivedx), but in the graph context,
equality follows from coming from the same input node. Two inputs can very well
be equal when coming from different nodes, but if so, further transformations will—in
most cases—unify these different nodes.

Looking at the structural transformation function block (fig. 2.8) a few assertions
can be made: both nodes and edges may be destroyed or introduced, so there is no
general constraint that can be given on the relations betweenN andN′ and betweenE
andE′. Whatcanbe stated is that any edges that remain in the output have unchanged
labelings, i.e.

f � (E∩ E′) = f ′ � (E∩ E′)

which implies that

δ′ ⊆ δ

2.5.4 Operational transformations: propagation

Referential transparency is the property of operators and functions in general that guar-
antees that constant arguments imply constant results. All operations in are refer-
entially transparent, since the complete state can be an argument of an operation. This
observation makes available transformations that take into account knowledge of the
definition of operators. When an instance contains operators with exclusively constant
inputs, it can be replaced by a set of constant edges; one for each of its outputs.

The function block for this type of transformations is shown in figure 2.9. The
same assertion as made for structural transformations holds with respect to the labeling
functions, so

f � (E∩ E′) = f ′ � (E∩ E′)

Another important assertion that holds for this category (since it only involves replacing
operations with constants for their outputs) is that there will be no introduction of new
nodes, hence

N′ ⊆ N

2.5.5 Hierarchical transformations: expansion

Actually the hierarchical transformations are twofold: expansionand hiding, but hiding
is not very relevant in automated transformations: When the designer is trying to get
a cleaner picture of the state the—partially transformed—program is in, hiding can
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〈Nc,Ec, fc, ε〉

��
〈Ni ,Ei , fi , δ〉 // Expand // 〈N′,E′, f ′, δ, η〉

Figure 2.10: Hierarchical transformation function block

be a very useful tool, but the automated transformer will only look at relatively small
localities and has little to gain from hiding. The semantics of both types of hierarchical
transformations are described very clearly in [10, section 2.2], especially the renaming
of nodes and edges to unique new names with the exception of in- and output nodes.
Only expansion will be treated, but hiding should follow intuitively from the process
description given here and the semantics.

Without a complete definition, a homomorphism [1, section 1.4.1]φ is used to re-
name nodes (φ0 : N → N′) and edges (φ1 : E → E′) conforming to the semantical
definition of expansion9. With this homomorphism, consider the function block de-
picted in figure 2.10. The arguments of the expansion function are the graph instance
in which an expansion is necessary and the graph class that defines the edge that is to
be expanded. The function results in a generic graph instance (as described in 2.5.1).

Given the definition of arelational image

f �S� = {f (s) | s ∈ S}

the following assertions hold (wheree is the edge being expanded):

N′ = Ni ∪ φ0�Nc�

E′ = (Ei \ e) ∪ φ1�Ec�

f ′ = fi ∪ (λ〈d, r〉.〈φ1(d), r〉)�fc�

η = φ1�Ec \ ε�

In other words:

• The resulting set of nodes is the set of nodes from the instance expanded with
the appropriately renamed nodes from the class being expanded (instantiated).

• The resulting set of edges is the set of edges from the instance expanded with the
appropriately renamed edges from the class being expanded.

• The resulting labeling function is the labeling function from the instance ex-
panded with the labeling function from the class, where the latter’s domain is
renamed according to the renaming of nodes.

• The set of edges that require (dummy) labeling after this transformation is the
set of appropriately renamed edges from the classnot significantly labeled.

9Hence,ϕ1 renames all edges in the graph being expanded such that all their names are unique. Nodes
are renamed byϕ0 in such a way that all input and output nodes are given the names of the nodes to which
they are connected. ‘Internal’ nodes are given unique names.
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Summary

Transformational design is based on ‘correctness by con-
struction’, which can only be accomplished by provable
translations from the source language to the first instance that
will be transformed. To accomplish this, the translation from
++ to  is based on template instantiation with a one-to-
one correspondence of templates and grammar rules.

A new phase—transform-time—in the process is neces-
sary to accommodate transformational design in which the
designer interacts with a transformation tool to decide what
transformations are to be performed.

The program representation of—a hypergraph—is in
fact a functional program. Transformations can therefor be
considered offline evaluation of said functional program.

Since some information might not be available prior to
run-time, dummy values are inserted that are known to be
unique so that relations between nodes can be observed with-
out having the actual values themselves.



3
Pointers

In this chapter, some problems arising from the use of pointers are described and solu-
tions to deal with these problems are proposed (3.1 through 3.3). These solutions will
be shown to introduce new problems themselves and thus the chapter progressively de-
scribes (by iterative solving and examining the solution) the way to the final solution
presented in chapter 5. The final section (3.4) a sizable example is given to illustrate
the findings of this chapter.

3.1 Problem: Equality and loss of origin

Modeling pointers implicitly by their symbolic name, like any other variable, hides the
context of the pointer in the implicit context. When pointers are offset from their base
position, the expression itself is required (in its entirety) to determine the referenced
location in memory. This means that widespread interdependence requires propaga-
tion of a potentially large subgraph through the graph to bring these interdependencies
closer together, which becomes very hard when trying to transform it over a possibly
infinite recursion.

Consider the example graph shown in figure 3.1 in which it is already determined
that the state space does not change inX. For a very complex graphX, the relation
between pointerb and addressd can not be seen on a local scale, thus, to determine
interdependence between pointersa andb, the transformation tool needs to track the
full evaluation path of both pointers and see if these paths intertwine somewhere. There
should be some way to propagate theconstant of the dependence, no matter what the
offset evaluates to or depends on, i.e. to partially propagate the eventual value ofb.

Even a transformation that should be relatively simple becomes rather complex
when using symbolic names as models for pointers. Propagating constants that are
added to a pointer along the way turns tricky when the constants are not grouped, but
added directly to the pointer. Figure 3.2a shows two constants being added to a pointer
a. In order to perform constant propagation, the transformation of exchanging 3 and
a is required first so as to obtain an edge exclusively connected to constant inputs, to

15
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Figure 3.1: Dependence between pointersa andb, hard to decide

propagate said edge to a constant (fig. 3.2b).
Another problem arising from symbolic representation of pointers is theloss of

origin. When memory is allocated dynamically, it is not bound to a constant name, but
rather its location is assigned to a pointer. Code snippet 3.1 illustrates the problem. The
declaration ofa also leads to its allocation and provides a fixed name for the memory
reserved at that instance. Pointerj is assigned the address of an otherwise unnamed
piece of memory. Wheni is incremented, the memory it points to still has its point
of origin modeled bya, but whenj is incremented, there is no means to point to the
beginning of the original array.

Code snippet 3.1Loss of origin

int a[4],
*i = a,
*j = new int[4];

...X...
i++;
...Y...
j++;

The problem here is that it is now impossible to use the model for bounds and
leak checking1. It is probably possible to check the bounds ofi, as it is formulated in
relation toa, which is fixed (fig. 3.3a). However, to resolve how many timesj could be
decremented after its incrementation (fig. 3.3b), the entire evaluation hidden away in
X andY must be evaluated, which can—needless to say—become very complex.

1This might not necessarily be required of the model, but if the ability to perform these checks is available
at little or no extra cost, it is worth examining.
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(a) Unfortunate ordering (b) Optimized result

Figure 3.2: Constant propagation in pointer arithmetic

(a) Bound pointer (b) Afloat in “mid-memory”

Figure 3.3: Memory in terms of the pointers to it

3.1.1 Solution

Pointers require a representation within the model to allow for constant propagation,
but it is important to note that this propagation only occurs through a limited arithmetic.
Basically, pointers can be assigned, added to or subtracted from. Furthermore, observe
that any variable name is in effect a pointer to the actual variable, albeit that it is
dereferenced at compile-time.

Concretely, two requirements have to be met:

• Origin reference: Any address must carry in its representation a reference to the
beginning of the block of memory it points into. The representation should not
limit the model to specific architectures, so the relation to physical addresses
should be abstracted away from.

• Constant propagation: Pointer arithmetic should be propagable as much as pos-
sible, meaning that at least every operation with constant arguments should be
propagable to a new constant.

These requirements are met by modeling pointers as tuples of a reference to the
allocation of the memory pointed into and an offset in terms of the smallest addressable
entity2. This gives memory allocations an autonomous identity that does not vary with
transactions on named variables. In the example of code snippet 3.1, using this new

2On most stack machines, this would be byte-level, but when transforming to synthesis, this could very
well be bit-level.
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(a)a remains fixed, but no longer boundsi (b) No longer unbound

Figure 3.4: Memory in terms of autonomous identities

model simply reformulates the boundaries ofa andi and gives a proper formulation of
j (fig. 3.4).

By changing the modeling of a pointer, the model for the state space changes as
well, because the symbolic names are no longer connected to locations in memory.
Hence, there must be some sort of symbol table, which has locality and should thus be
modeled in the state space. Informally, this leads to the following definitions:

address = (allocation index, offset)
state space = ({(symbol, address)}︸                          ︷︷                          ︸

symbol table

, {(address, data)}︸                       ︷︷                       ︸
heap

)

3.1.2 Observations

These new “systematic addresses” are globally unique and can not be overwritten. As a
direct consequence they are scope independent (as is the case with ‘real life’ memory).
The symbol table as specified above would only be capable of modeling scoping if it
was treated as anorderedset, where the first occurrence of a symbol is the symbol in
the ‘current’ scope [3].

3.1.3 Consequences

With the new definition for the state space, pointer arithmetic allows for constant propa-
gation explicitly by observing that there can not be any arithmetic function that projects
one pointer onto another if they are not related to the same allocation (i.e. point into
the same block of memory). Formally:

∀(x,p), (y,q) : address | x , y •
@f : (address" address) • f (x,p) = (y,q)

The expression depicted in fig. 3.2a can now be easily propagated, because

a + 5 + 3 = (aalloc, aoffset) + 5 + 3
= (aalloc, aoffset + 5) + 3
= (aalloc, aoffset + 8)

Subtraction can intuitively be defined similarly (with the restraint that the offset
remains positive). Subtractions of two pointers should subtract their offsets, but only
when both pointers point into the same block of memory (otherwise the semantic value
of the expression is void).

a - 5 = (aalloc, aoffset - 5) iff aoffset >= 5
a - b = aoffset - boffset iff aalloc == balloc && aoffset >= boffset



Sec. 3.1 Problem: Equality and loss of origin 19

Multiplication and division on pointers arenotdefined in++, so—observing arith-
metic is limited to addition and subtraction—the assumption that arithmetic can be
performed directly on the offset is valid. Consider snippet 3.2 as an illustration of in-
valid arithmetic on++-pointers, because of possible rounding errors and overflow in
multiplication and division.

Code snippet 3.2Undefined behavior in pointer arithmetic

int a, *p = &a;
a = (int) p;
a *= 2;
a /= 2;
p = (int *) a; //is a==&a? probably not!
a = *p;

3.1.4 Calibrated pointer arithmetic

In order to truly model++’s real+ operation, some form of typing is required. Ob-
serve the code equivalence depicted in snippet 3.3. For 32-bit architectures thesizeof-
function applied to an integer (or the keywordint) would return 4, so adding this to
a pointer shifts it for the width of one integer value. The incrementation of theint-
pointer implicitly calls3 asizeof(int) and actually adds the result of this implicit call
to the address represented by the pointer, instead of just incrementing the address in an
untyped manner.

Code snippet 3.3Implicit sizing in pointer arithmetic

int a[10],
*p;

p = a;
p++;

 ≡


int a[10];
byte *p;
p = a;
p += sizeof(int);

Typing should be used to align the data, i.e. to ‘calibrate’ pointer arithmetic. How-
ever, now that there are types, it becomes unclear whether the offset should be formu-
lated in terms of the type of the pointer (I), or in terms of the smallest addressable entity
(II) of the architecture. In (I), the physical equivalent of(alloc id, offset) would
then still require alignment and thus comes down to

physical((alloc id,offset)) = valueof(alloc id) + offset ·
sizeof(typeof(alloc id))

and the addition and subtraction operators are defined as follows:

a + x = (aalloc, aoffset + x)
a - x = (aalloc, aoffset - x) iff aoffset == x
a - b = aoffset - boffset iff aalloc == balloc && aoffset >= boffset

This method also requires an observation with respect to pointer casts. When cast-
ing from type*a to *b the offset of the pointer has to be recalibrated, i.e.

3Albeit thatsizeof is a compile-time construct, so there is no call-overhead.
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cast(*a, *b, (alloc id, offset)) = (alloc id,
⌊
sizeof(a)·offset
sizeof(b)

⌋
)

For (II), the calibration is in the operations, which are slightly more complex:

a + x = (aalloc, aoffset + x · sizeof(typeof(a)))
a - x = (aalloc, aoffset - x · sizeof(typeof(a))) iff

aoffset >= x · sizeof(typeof(a))
a - b = (aoffset - boffset) · sizeof(typeof(a)) iff aalloc == balloc

Consequently, the physical equivalent of(alloc id, offset) and casting are now
a lot more transparent.

physical((alloc id,offset)) = valueof(alloc id) + offset
cast(*a, *b, (alloc id, offset)) = (alloc id, offset)

Code snippet 3.4Differently typed pointers into the same block of memory

int i = 0,
*p = &i;

char *q = (char *) p;
...p...q...

The most significant difference between these two methods becomes apparent when
considering the constraints these models impose on the model of the heap c.q. the
operations on it. When an array is a chain of cells, where these cells have the width
required to store a single array element, the (I) method is by far the most intuitive, but
when pointers are cast, the arrangement of the memory they point to should change as
well. This leads to problems when something like snippet 3.4 occurs. Here bothp and
q (andi, obviously) are used to address the same block of memory, but have different
types. Alternatively, the operations on the heap could transform these type-dependant
offsets to type-independent addresses andthenperform their original function.

Code snippet 3.5Out-of-phase pointers to the same block of memory

int i[10],
*p = i;

char *q = (char *) p;
q++;
p = (int *) q;

Besides the esthetic problems these solutions pose, (I) simply fails to model ‘out-
of-phase’ pointers. Code snippet 3.5 illustrates the problem. Afterq is assigned the
address stored inp, it is used to transposep by the width of achar, but still pointing to
segments of the width ofints. Note thati still points to the original location andq can
shift to any part of the memory block. This situation can not be described by (I), hence
(II) will be used to model pointers.

3.2 Problem: symbol table and scoping

As has been established in the last section, typing is a necessity. What remains uncer-
tain, however, is how to store type information in the symbol table in the state space.
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(a) Lookup (b) SymStore (c) SymFetch

Figure 3.5: Symbol table capable operations

The model given earlier works for a single scope, but becomes unpredictable when a
nested scope overwrites a symbol.

3.2.1 Solution

Because symbol table and heap are now disconnected, though, it is possible to imple-
ment a scoping model in the symbol table and leave the heap as is.

state space = ({(symbol, [(type, address)]︸                       ︷︷                       ︸
scoping

)}

︸                                            ︷︷                                            ︸
symbol table

, {(address, data)}︸                       ︷︷                       ︸
heap

)

This is sufficient to model scope by observing that the topmost entry of the list of
type/address-pairs models the definition in the ‘current’ scope [3]. Pointer casts from
*a to *b are now transformations on the state space, albeit very simple transformations
because the type-independent heap needs no transformations:

ssin = ({...,(x,[(a, ...),...]),...},{...})
⇓

ssout = ({...,(x,[(b, ...),...]),...},{...})

3.2.2 Consequences

A very significant consequence (ignored earlier) that can no longer be avoided is the
explicit need for primitive graph operations to perform state space transactions. Espe-
cially when dereferencing pointers, which requires an initial to obtain the address
followed by a to obtain the data stored at said address. This implies that these
’s have different input types (symbolic name for the first and address for the sec-
ond), which is not possible. Therefor, the definition of a lookup operation having an
input for a symbolic name (sn) is required (fig. 3.5a).

In order to prevent an explosion of complexity of the graph (and of the transforma-
tions thereon), the definition of pseudo-primitive operations (SymStore andSymFetch ,
figs 3.5b and 3.5c) provides some containment. However, the and opera-
tions change (fig. 3.6) in their external typing (there is no sensible definition of a

on an address as opposed to on a symbol), and thus correspond only to theSymStore
andSymFetch operations in their external typing.
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(a) Alternative (b) Alternative

Figure 3.6: Scoping operations adapted to comply with the symbol table model

As an illustration of just how much complexity increases, consider the translation
of Codesniplet 3.6 into the graph depicted in figure 3.7.

Code snippet 3.6Simple example of added complexity when using @

int a = 0,
*p = &a;

*p++;

3.2.3 Observations

Besides the added complexity of the graph itself, the transformations suffer from added
complexity as well. The level of locality is decreased because of the distinction be-
tween the symbolic and the concrete representation of variables. In order to establish
whether or not adjacentStore and  operations are related their inputs can no
longer be compared directly. The @-operation that results in the address given to the
input of theStore needs to be in the locality being considered to be able to determine
(in)dependence.

Furthermore, it is worth noting that the @-operation is a compile-time ‘opera-
tion’ and does not correspond to any run-time action or state change. Explicit @-
operations never simplify or expand the capabilities of the transformations, because
of their compile-time application (as opposed to the run-time relevance of transfor-
mation). Even more so, symbols themselves are inherently compile-time and have no
meaningful representation at run-time (aside from debugging, of course). Therefor, if
the graph is to model run-time behavior, it shouldonly include symbolic names as an
assistance for recognition by the designer, not as a semantic element.

Scoping was already implicitly modeled in the graph by the occurrence of the-
 and operations. Having said that symbols do not exist at run-time, but only
actual addresses are used, there isno need to model scoping in the state space. Besides
the fact that transformations simply do not require this information to be explicitly
available in the state space—because of their operation on edges in the graph—the fi-
nal mapping of graphs to whatever target does not require any such explicit modeling
either.

The only part of the state space that does actually have a representation in real life
at run-time is the heap. Because the heap only uses actual addresses and not symbolic
names, it is scope independent. This is in accordance with reality, where scoping does
not exist at run-time either.
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Figure 3.7: High complexity due to the added @-operation

Actually, if the model is tocleanlyrepresent run-time behavior, the symbol table
has no place at all in the state space.

3.3 Problem: No home for types

When the symbol table is removed from the state space, types can no longer be related
to the symbols that where defined in terms of them. To allow for (castable) pointer
arithmetic, however, the types are essential, because there has to be some way to know
what specific operations have to be performed. Without types the offset problem men-
tioned earlier reoccurs. Hence, typing should be included elsewhere.
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3.3.1 Solution

Types are, essentially, only required when alignment in the heap is relevant and thus
they are only necessary when dealing with pointers, not when dealing with data itself,
because data—in the graph—carries its type implicitly in its width. Pointers should
thus carry a type and, since pointers are themselves data and thus carry their own type
as any other data, the type carried should be that of what is pointed to.

This implies that any fully qualified address carries the type of what it addresses.
This might seem counter-intuitive, but in fact, normally the runtime fetches are also
‘width aware’.

3.4 Pointer-model in action

To give an overview of the changes to the model discussed in this chapter, this section
will give a more sizable example. Consider code snippet 3.7, which contains some very
precarious pointer tricks. For this example, it is assumed that the smallest addressable
data unit for the target architecture is a byte. The translation of the code is shown in
figure 3.8a.

Code snippet 3.7Typed arithmetic on pointers

{
int a[2] = {1, 255}, *p = a, c = 255;
(*p++)++;
*(((char *) p) + 2) += (char) c;
...X...

}

Step 1

The very first in the block corresponding to line 2 of the code can be transformed
over theStore and of c and can than be deleted, because it now immediately
follows aStore on the same address. When deleting a like this, its output should
be connected to the data input of the correspondingStore. Looking at said input it
should be observed that the(int *) cast of the original array pointera is a constant
operation on a constant input and can thus be propagated. Since integers have a width of
four bytes, the type field of the pointer after the cast should be 4, making the complete
pointer〈1,0,4〉.

One of the edges taking the resulting pointer as input is the pointer incrementation.
This operator ‘increments’ the pointer, not by simply adding 1 as is the case with
integers and other incrementable types, but by the type argument, i.e.

〈1,0+ 1 · 4,4〉 = 〈1,4,4〉

These transformations result in the graph shown in figure 3.8b.

Step 2

In the updated situation, the connected to the(int *) cast ofa (propagated in the
previous step), can be transformed upwards, past theStore and of c and past the
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(a) Translation of snippet 3.7. (b) After step 1.

Figure 3.8: Initial graph and the graph after first transformations
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Store and of p, because even though an address with allocation id 1 isstored on
p, p itself has allocation id 2 and thus the two operation are not interdependent. This
brings the operation being transformed immediately next to the corresponding
Store. Even though theStore of a (〈1,0,8〉) and the of (int *) a (〈1,0,4〉)
operate on different sizes, it is possible to replace the with a constant based on
the data input of theStore. The resulting constant 5 can also be propagated through the
connected increment operator.

Another  that can be transformed out of the graph is the one performed on
p, which is an immediate successor of aStore on the same address. It can thus be
replaced by a direct connection to the data input of theStore. This results in a nicely
propagable subgraph of exclusively constant edges. The cast to a character pointer
results in〈1,4,2〉 and the following addition of constant 2 results (fig. 3.9a) in

〈1,4+ 2 · 1,1〉 = 〈1,6,2〉

Step 3

The last remaining in the graph (ofc) can be transformed upwards, similar to the
ones before. This connects the constant 255 to the cast operator. This is a propagable
constant operation and can thus be replaced by a constant. Since data casts only affect
the width of the data, a subscript is added4 to indicate the width in bytes.

Because all operations have been transformed out of the graph at this point,
the secondStore of p can be transformed upward across the operations on(int *) a

andc (as neither have allocation id 2). After this transformation theStore is the imme-
diate successor of another store onp and thus overwrites the latter’s effects. The first
can thus be discarded, resulting in 3.9b.

Step 4

The remaining transformations are those that carry the two bottomStore operations
upward to their corresponding. They are both operations on allocation id 1,
which is that ofa. They can both be transformed without any difficulty to the initial
Store of a. Since alignment of arrays is fixed in++, the Store on 〈1,0,4〉 can be
propagated and combined with the initialStore, resulting in a single operation. The
secondStore being transformed upward cannot be unified, because no assumptions
have been made so far about the architecture with respect to endianess and thus the
alignment of characters in the space of an integer is unknown.

The final result is shown in figure 3.10. If at this point the designer can indicate the
target architecture is big-endian the doubleStore operation at the top of the graph can
be unified to a single store, storing{6,65535}. The translation back to++ of the graph
is shown in snippet 3.8 together with the result if the designer would indeed perform
the final transformation assuming big-endianness of the target architecture.

4Subscripting the width of a constant is an ad hoc choice made here and different implementations may
have different ways visualizing this
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(a) After step 2. (b) After step 3.

Figure 3.9: Intermediate transformation results
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Figure 3.10: Final result after transformations

Code snippet 3.8Typed arithmetic on pointers

{
int a[2] = {6, 255};
*(((char *) a) + 2) =

(char) 255;
int *p = a[1], c = 255;
...X...

}


be
⇒


{
int a[2] = {6, 65535},

*p = a[1], c = 255;
...X...

}
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Summary

Pointers should be transformable through pointer arithmetic,
but shouldnot cross the boundaries of the memory blocks
into which they point. To guarantee pointers can not traverse
into coincidentally neighboring blocks of memory, all allo-
cations are modeled as strictly unique, using an allocation
identifier that is guaranteed to have a one-to-one relationship
with the block of memory resulting from the allocation.

Under the uniqueness constraint, all transformations are
legal. They are modeled using transformations on the offset
from the beginning of the allocated block of memory. These
offsets are expressed in terms of the smallest addressable en-
tity of the architecture (or target language) andnot in terms
of elements of the associated type.

Types are relevant at run-time only for data alignment
and are thus only needed when having to extract data from
the heap. Therefor, addresses carry the type (width) of the
datapointed toand data has no need for explicit typing, since
it implicitly describes its type by having an unambiguous
width.

The final (formal) specification of pointers (addresses)
can be found in section 5.1.3.





4
Jumps

This chapter discusses the differences in jump scenarios (4.1) and all these different
scenarios are reduced to the generalized form. Next the machine behavior of jumps is
analyzed (4.2) and an attempt is made to identify the theoretical minimum of informa-
tion required to model jumps. Something needs to be said about scoping in the context
of jumps (4.3), before finally giving a general model for all classes of jumps (4.4).

4.1 Selected notes on types of jumps

Essentially jumping constructs can be categorized as ‘structural’ and ‘unconditional’.
A construct is considered structural, when it delimits the full block of code that the
jump crosses. Selection and iteration statements constitute the structural jump con-
structs in++. All these structural constructs are mapable to unconditional constructs
and—in particular—to the ‘most unconditional’ jump, i.e. thegoto. These categories
of jumps will be treated separately in the next few pages.

4.1.1 Selection statements

Selection statements redirect the flow of control through code block alternatives, i.e.
segments of code are either selected for execution or passed by. The selection state-
ments in++ are

if condition
statement

else

statement

and

switch (condition)
statement

31
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(a) Linear machine model (b) (Code)block model

Figure 4.1: Selection in the linear and block models

These statements have possible side effects in their conditions, so these should first
be allowed to alter the statespace before any block is executed.

It actually depends on the model chosen whether these selection statements consti-
tute jumps or not. In the linear machine model, they do (fig. 4.1a), but in a (code)block
model (i.e.) there really is a notion of selection (fig. 4.1b), hence the name.

Selection statements add a single level of scoping. Anything declared in thecon-
dition is in scope in the nestedstatement(s), but out of scope outside of the construct.
Implications of this observation will be treated in section 4.3.

It deserves mentioning thatswitch-statements usecase-labels only as jump targets.
These labels do not alter the flow of control in any way [5, 6.4.2] and the target is chosen
beforehand. This is why case labels have to be compile-time constants and can not alter
the statespace.

Code snippet 4.1Case label illustration

int i = 2;
switch(i)
{
case 1:
...A...
break;

default:
...B...
break;

case 2:
...C...

}

As an example, see code snippet 4.1. Only code blockC will be executed in this
example. The occurrence ofdefault before the appropriate case does not make a
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difference, because the target is chosen at the top. This means that the compiler would
have to gather information from the nested statement to find out what jump labels are
actually available, as opposed to the per-keyword translation that can be performed on
anif-statement. This is made even more complex by the fact that case labels are not
constrained to the current scope, they may well cause jumpsinto deeper scopes.

4.1.2 Iteration statements

The++-standard [5, 6.5/1] specifies three iteration statements1, viz.

while ( condition )
statement

do

statement
while ( expression) ;

for ( for-init-statement conditionopt ; expressionopt )

statement

Code snippet 4.2Invariant of afor-loop as awhile-loop

for (I C; E)
S

 ≡



{
I
while (C)
{
S
E;

}
}

The last two of these have very well known invariants in terms of the first (and vice
versa). Afor-loop can be rewritten to awhile-loop as shown in snippet 4.2 (note that
the bracesaresignificant for scoping). Snippet 4.3 shows the reverse mapping.

Code snippet 4.3Invariant of awhile-loop as afor-loop

while (C)
S

 ≡
 for (;C;)

S

Thewhile-statement (and thus any iteration statement) is simply a very special case
of recursion [15]. In++, however, there are some specifics with respect to scoping.
Iteration statements—like selection statements—add one level of scoping, but it is im-
portant to note that every iteration jumps to a pointbefore the entry of said scope. The
consequences of this will be discussed in section 4.3.

1Thefor-init-statementends with its own semicolon.
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4.1.3 Unconditional jumps

There are a few different types of unconditional jumps. They are

break;
continue;
return [ e x p r e s s i o n ];
goto identifier;

Thebreak-statement is used to jump out of iteration statements andswitch-statements
(there would be no use to use it to jump out ofif-statements, because it is usually
used within anif-statement inside an iteration orswitch-statement. Thecontinue-
statement can only occur inside iteration statements and it jumps to the ‘end of the
current iteration’.

Both of these statements can be rewritten togoto-statements, albeit that some label-
generation (and guaranteed uniqueness) is required. In a sense, one could say that
an iteration statement binds all free occurrences ofbreak- andcontinue-statements
(see [1], 6.2.2) and that these jump statements may not occur globally unbound.

Because of this binding requirement, it could be argued thatgoto-statements are
‘more unconditional,’ i.e. their application is also unconditional as opposed to that of
continues enbreaks. The only restriction on agoto is that it has to jump to a label
insidethe current function.

Only thereturn-statement is not strictly rewritable to agoto-statement, because
it explicitly exists the current function scope. However, modelwise a function can be
defined as having a__return_value__ variable by default of the same type as the return
type of the function itself. It would then ‘return’ (i.e. result in, evaluate to) whatever
value is stored in said variable whenever it comes to its end.

All these jumps are unified to theirgoto equivalents in the next section.

4.1.4 Unified jumping

As a matter of fact, all these different types of jumps are unifiable in a single jumping
model, using onlygotos and stripped downifs. Basically, the unified jumping model
is very closely related to stack machine models. In this modelifs are only allowed to
havegotos in their bodies and never have anelse. This closely models the notion of
‘jump if nonzero’ and its antonym when using the! (not) operator.

In the following loose translations conditionsC will be assumed to have a declara-
tion of typeT andC’ will be said condition without the declaration2, i.e.

C ≡ T c = C’

When conditions do not contain such a declaration, their translation can be the same,
only with omission of the explicit declarations given below.

A translation of the ‘normalif’ now looks like snippet 4.4. Theswitch-statement
is a bit more complex because the alternatives given in the case labels must be gathered
in a separate pass by the compiler first. The translation then follows as shown in snippet
4.5. When aswitch-statement does not have adefault-label in its nested statement,
goto default; is changed togoto brk; (or thedefault-label is inserted right before
thebrk-label. Any free occurrence ofbreak-statements inB0 throughBn are substituted
by goto brk;.

2It should be understood that multiple declarations are possible in the condition, but for brevity, a single
declaration is assumed here.
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Code snippet 4.4Translation of the ‘normalif’

if(C)
S1
else
S2

 ≡



{
T c = C’;
if(!c) goto else_part;
S1
goto end_if;

else_part:;
S2

end_if:;
}

Code snippet 4.5Translation of theswitch statement

switch(C)
{
B0

case X1:
B1

case X2:
B2
...

default:
Bn

}



≡



{
T c = C’
if (c == X1) goto case_X1;
if (c == X2) goto case_X2;
...
goto default;
B0

case_X1:;
B1

case_X2:;
B2
...

default:;
Bn

}
brk:;

Iteration statements can also be rewritten to the unified model. Firstly, thedo-while

statement translates directly (snip. 4.6). Similarly, thewhile statement can be trans-
lated (snip. 4.7). Since thefor is just an invariant of the while—as discussed before—
the translation shown in snippet 4.8 follows intuitively. In this last translation, the
nestedwhile should be translated according to thewhile translation shown before.

Similar to theswitch-statement translation, all free occurrences ofbreak are trans-
lated togoto brk; and likewise freecontinues are translated togoto continu;. It
goes without saying that these labels require some administration to keep them unique,
but for legibility they have been kept simple here.

Finally thereturn-statement should be translated to this unified jumping model.
The problem that arises, though, is thatgoto is defined to jump to a labelin the same
function. As mentioned earlier reformulating the call/return model solves this problem:
Say every function has—per default—a declaration of a variable with the same return
type as the function called, the contents of which is handed back to the caller after
the function finishes. For a given valuex of typeT thereturn-statement can now be
translated as shown in snippet 4.9.
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Code snippet 4.6Translation of thedo-while statement

do
S

while(C);

 ≡


begin_loop:;
{
S

continu:;
if(C) goto begin_loop;

}
brk:;

Code snippet 4.7Translation of thewhile statement

while(T c = C)
S

 ≡



begin_loop:;
{
T c = C’
if(!c) goto brk;
S

continu:;
goto begin_loop;

}
brk:;

4.2 Jumps in theory and practice

Modelwise jumps are the transferal of control to code at the point jumped to. This
point is a location ‘in the program’, i.e. the program code in memory. In the heydays
of flowcharts this translated simply to an arrow pointing to the element corresponding
to the instruction found at said code location. However, this ‘transferal of control’
requires a more fine grained exploration.

In real world architectures jumps correspond either to writing the memory address
into some form of current code register (or program counter), or a relative transfor-
mation is performed on such a register. If the state of a machine is taken to be the
collection of all values stored in its registers, then it is implied that jumping transforms
the machine state.

The question is, though, whether the ‘location in the code’ should be such anintrin-
sic part of the state, or whether the collection of all data and whether or not currently
jumping defines the intrinsic state of the machine and the location in the code is an

Code snippet 4.8Translation of thefor statement

for(I C; E)
S

 ≡



{
I
while(C)
{
S
E;

}
}
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Code snippet 4.9Translation of thereturn statement

T f(...)
{
...
return x;
...

}


≡



T f(...)
{
T __return_value__;
...
{
__return_value__ = x;
goto endfunction;

}
...

endfunction:;
}

extrinsic parameter. As a matter of fact, this view could be reformulated by stating
that the program and the set of primitives and definitions usedin the program, together
define the machine. When formulated as such, the data at a certain time defines the
state at that time. Time itself is expressed in terms of the location in the code.

If such is the case, modeling iterations and backward jumps as loops to “earlier”
points in the code would indicate revisiting past times, which is impossible. Hence,
backward jumps need to be modeled by forward jumpsinto a recursion. These for-
ward jumps have the same semantics as continuations [13]. Hence, every location
in the code (where recursion is expanded) is only ever visited once, thereby indeed
uniquely modeling timeandallowing for a complete deduction of the statespace up to
that location, by means of the location itself. A problem that remains in modeling++

this way is the declaration and destruction of variables. This will be discussed in the
next section.

4.3 Jumping scopes

C++ permits jumping into and out of scopes of variables. It is even possible to jump
from a scope to another (disjunctive) scope at the same hierarchic level. Programmers
are, for example, allowed to create programs that jump from the then-part to the else-
part of anif, although very few of their colleagues award bonus points for style when
they do this3.

4.3.1 Jumping into scopes

Whenever a variable is in scope, its existence is guaranteed, so when jumping over a
declaration, but into its scope, the variable should exist, i.e. the declaration should take
place. Since the++-standard specifies that jumping over adeclaration with initializer
of a variable is illegal, it could be argued that declaration is exclusively compile-time.
The set of operators that handles declaration and destruction of variables in a model
thus forms a different class than that of the run-time operators. Different classes can
be defined to have different behavior under the same circumstances, so it could well
be argued that the class in which the scoping operators are contained is defined to be

3Admittedly, some do [14]
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Code snippet 4.10Illegal jump across declarationwith initializer

...
goto X;
...
{
int i = 0;
...

X:i = 1;
...

}

independent of whether or not the current state indicates a jump being performed, while
other operators are defined under the condition a jump isnot being performed.

Code snippet 4.11Legal jump across declaration followed by assignment

...
goto X;
...
{
int i;
i = 0;
...

X:i = 1;
...

}

Consider as an example snippet 4.10. The++-standard specifies that this program
is ill-formed ( [5], 6.7/3), becausei is declaredwith an initializer. The program in
snippet 4.11 isnot ill-formed, becausei is declaredwithout an initializer. The fact
that in the second examplei is initialized in the assignment on the line right after the
declaration is not a problem. A programmer must simply accept and be aware of the
fact thati’s value is undefined at the point of entry when jumping toX. Therefor, a
piece of code such as shown in snippet 4.12 is well-formed, but unwise!

Code snippet 4.12Undefined behavior for variablei and thus forf

...
goto X;
...
{
int i;
...

X:f(i);
...

}
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4.3.2 Jumping out of scopes

The opposite of the above is true also. When jumping out of the scope of a variable
its existence ends. Consider snippet 4.13 where the jump toL causes the destruction of
variablei.

Code snippet 4.13Jumping out of the scope ofi, which is thus destroyed

...
{
int i;
...
goto L;
...

}
...
L:;
...;

This mechanism can be modeled, making the same observation made above with
respect to the model’s scoping operators. A variable’s scope ends when the (possibly
composite) statement ends, which usually comes down to the first closing brace not
bound in the same context as the variable. This seems rather obvious, but the beginning
of a variable’s scope might be slightly less obvious. Since discriminates between
declarations and statements, a variable’s scope always cover the complete statement
list. In ++ (and99 [6]) statements and declarations are mixed and thus the scope of
a variablehasto begin at its declaration.

The beginning of a variable’s scope is relevant when jumping backwards, because
in that case the variable needs to be destroyedbefore it is recreated by passing the
(re)declaration. In the case of Plain Old Data (POD [5, 3.9]) this behavior can be
trivially modeled, but in the case of object destruction the object’s destructor is called
as if not jumping at all!

Recall now the translations of the iterative statements in section 4.1.4. A con-
sequence of the rules around jumping scopes is that variables created in the nested
statements, oreven in the conditionsare destroyed and recreated upon each iteration.

4.4 Revised jumping model

Based on the observations in the sections above, a new way to model jumps should
be formulated. To get a structural perspective, all jumping scenarios are recapitulated
(4.4.1), which will result in a singular model for jumps (4.4.2). Lastly, the proof of
equivalence of these new templates with the older ones under the rules of transforma-
tion is given (4.4.5).

4.4.1 Recapitulating: jumping, scoping and recursion

All legal jump scenarios are shown in snippet 4.14. They can be divided in two groups
by their direction (forwards and backwards) and both of these groups can be subdivided
by their scoping span: common (staying in scope), into, ‘outof’ and over. Table 4.1
shows which jumps from the snippet are of which class.
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Code snippet 4.14All legal jump combinations

...
goto X;
...
A:
...
{
...
B:;
...
int i;
...
C:;
...
goto Y;
...
D:;
...

}
...
E:;
...
goto Z;
...

subclass Forward Backward
common X=A X=B Y=D Y=C Z=B Z=E

into X=C X=D Z=C Z=D

outof Y=E Y=A Y=B

over X=E Z=A

Table 4.1: Classification of jumps (see snippet 4.14)

Forward jumps impose little implications, they merely cancel the evaluations of
all following run-timeoperators up until the point indicated by the label jumped to.
By imposing on the jump model that allcompile-timeoperatorsare evaluated when
jumping, the creation and deletion of variables is guaranteed and thus jumping forward
into, out of and over scopes follows naturally.

Backward jumps are harder to model since cycles are not allowed in the graph.
Hence, backward jumps do not exist as such in the model and should be modeled as
forward jumps into a recursion of the scope. Recursionwithin the scope is important,
since the compile-time operators are evaluated and the scope can not be exited and
entered without loosing values assigned to the variables of said scope. This idea cov-
ers the common backwards jump intuitively, but it also covers the into and over cases,
because jumping backwards into a nested scope, means the jump is into a scope con-
tained in the current one. The same holds for jumping backwards over scopes, or rather,
a backwards jump over a scope is a forwards jump to a point before the beginning of
the scope (in the recursion) that it is said to jump over.

This leaves one unhandled case: the backward jump out of the current scope. Al-
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Figure 4.2: Control flow when jumping backwards out of the current scope

though, the scope jumped into4 has its own recursion construction and will thus provide
a means to come across the target label when jumping into it. Figure 4.2 shows a back-
wards outof jump fromA to B, where the solid line is the path of execution and the
dotted line the path of the label search (in the model, this too is ‘execution’, but ex-
cluding run-time operators). Therefor, the only real unmatched case is that of a jump
out of the top-level scope. Recall from sections 4.1.3 and 4.1.4 thatgotos are only
allowed from one point within a function to another and that a function always has
the implicit definition of__return_value__. Since the definition of this return value
variable is implicitly contained in the function definition itself, the top-level scope in
that function is always nested in the scope of the return value variable’s scope.

4.4.2 Scope-safe jumping

In order to be able to formulate a new model, a few operators will be introduced based
mainly on intuition here for brevity. Their formal definition can be found in chapter 5.

For the most basic modeling of jumps a ‘jump’ operator and an accompanying
‘land’ operator—both with the jump label as an argument—are required, but in order
to determine the complete functionality of these operators the remainder of the jumping
model must first be observed. As shown in section 4.4.1, recursion is required to facili-
tate backward jumping. First off, it is important to know how much of the program the
recursion should contain. Intuitively this is all the code in the scope, but there must be
stricter definition.

Assuming that every statement is part of some compound statement5, it is reason-
able to say that all statements between a declaration and the end of the compound
statement are in scope of said declaration. The statements after a declaration up to the
end of the compound are hereafter considered the declaration’s siblings.

Figure 4.3a shows a possible modeling of the ideas laid out above. Since recursion
should only occur when theSiblingsedge is exited with a jumping state, it should not
be an unconditional successor. Supposing there is some operator that can deduce from
the state whether or not a recursion is required, the recursive branch should either be
selected or ignored. If the jump performed inSiblingsis a backward common jump,
the corresponding land operator will be found inSiblings2, but it is possible that the
evaluation of the latter will result in the same sort of jump. When this occurs, this model
does not suffice, since there is no recursion afterSiblings2. As a matter of fact, what

4This must be on a higher level than the current, since the jump is outof.
5This assumption is perfectly sound, because at the top-level of a program there are only variable dec-

larations with global scope and function definitions. The function definitions have compound statements in
which all actual execution occurs.
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(a) First attempt at recursion (b) Real recursion

Figure 4.3: First two steps on the way to a jump model

is depicted here can not be considered true recursion, since the recursion mechanism is
not included in itself.

The model depicted in figure 4.3b remedies this. However, it falls short with respect
to forward outof jumps. Since theRecurse? operator only reads the state (and does not
alter it), the state that determines the necessity of recursion (at noden) is the state
passed intoR. In the case of a forward outof jump, the corresponding land operator
will not be found inR.Siblings6 and thus the state atR.n will be identical to the state
at n. At R.n the sameRecurse? operator will then evaluate to true and thus result in
infinite recursion.

To prevent infinite recursion the state at noden should be altered so that recursion is
performed at most once per jump per scope. This implies the recursion test should alter
the state to indicate recursion is no longer required. Figure 4.4a shows a new operator—
namedL-Search to indicate that it searches the local scope for the corresponding land
operation—that evaluates to both an indiction whether or not a recursion is required
anda state in which it is guaranteed that no (subsequent) recursion is requested. This
model still shows one deficit: backward outof jumps do not behave correctly. When
the target label is not in recursionR, the state atm will be equal to that atn, so when
control is handed back to the outer scope (not in the figure, past the) the state
is set to not recurse, so theL-Search of that outer scope evaluates to false and thus the
recursion in the outer scope is not selected.

Finally, figure 4.4b shows a model where this flaw is corrected. TheG-Search oper-
ation resets the state to requiring recursion when coming across anL-Search operation.
This model does cover all classes of jumps shown in table 4.1, the reader is encouraged
to check this.

Summarizing, the operationsL-Search and aG-Search suffice to make a jump

6TheSiblingsedgein R.
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(a) Locally correct attempt (b) Globally correct attempt

Figure 4.4: Last two steps on the way to a jump model

model scope-safe. What remains to be discussed is a more precise correspondence
between these operations and the jump and land alternatives. What is given so far is
that these are transactions on the statespace and that both the target-label and some
indication of whether or not recursion in the current scope is required. What has not
yet been discussed is what labels are in terms of the model.

4.4.3 Transformations on jumps and identity of labels

As shown in chapter 2, transformations can be seen as offline evaluation. Since the
whole purpose of is to create an easily optimizable structure from a program, the
operators chosen to model jumps should be optimizable. First of all, some correspon-
dence with the search operators from the last section is required. This implies that
there should be a way to indicate to the jump operator that the jump is either in the
local scope or out of it (or at least, whether or not to search in the local scope for a
label). Next, chosen operators should be transformable without altering the external
behavior of the program.

Consider the situation in figure 4.5, which will occur (after transformations) quite
commonly. IfL1 = L2, it means that the jump has reached its destination and should
thus end. The naive transformation would removeboththe jump and the land operators,
but if there is a jump operator corresponding to this land operator prior to this local
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Figure 4.5: Possible transformation problem

situation, the land operator is still required. Hence, the proper transformation only
removes the jump operation. As will become apparent in section 4.4.5 this will—in
real life examples—inevitably lead to situations whereL1 , L2, in which case neither
can be removed and their order can not be reversed. This seems to be fully consistent
with desired behavior, but because of the afformentioned transformation whenL1 = L2

it might very well occur that there is no longer a corresponding jump operation for the
land operation. When this happens, said land operation is a placeholder that has lost its
semantic value.

In this case there should be some way of telling that there is no such corresponding
jump operation, i.e. labels should also have a point of introduction before which they
are guaranteed not to be used and a point of destruction, after which the same guarantee
can be given. Basically, this means labels—like variables—have scopes. When looking
at what labelsare in the machine context, it turns out that they are addresses. Of course
this is because of the fact that code and data are both in memory, but it works just as
well to model what labels are, especially since any newly created address is guaranteed
to be unique. Beyond this point, labels will be modeled the same way as variables of a
zero-length type.

Labels will thus be introduced by a and destroyed by a. The problem
shown in figure 4.5 can now be solved by transforming the of L2 downward
over the jump operation shown here. When a is immediately followed by a land
operation with the same argument, said land operation can be deleted, because it is
guaranteed that there is no jump to it. This means the representation of labels in the
statespace is fixed. Representations for the recursion control and the indication of what
label is ‘active’ (if any) remain to be chosen.

Both these remaining parts of the state can be modeled by putting themin the
statespace. There should be some predetermined location to store the active label and
the recursion control. Since jumping only takes place within functions, it is reasonable
to haves ands for these at the beginning and end of every function. As
a convention, the addresses of these values will be calledL (for labels) and� (for
recursion control).

With these definitions, it is possible to define the jump and land operations. A jump
operation should have as its two arguments the label it jumps to and whether or not it
has to recurse in the local scope (since every evaluation should have an equivalent trans-
formation, it should be possible to transform a jump into a recursion where it should
no longer demand further recursion). However, since the recursion control argument is
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always constant, it seems more optimal from a transformation point of view to define
alternative operations for jumps (potentially) into the local scope and (guaranteed) out
of it. Furthermore, ‘jumping’ is a term from the machine context and does not corre-
spond well with the line of thinking in the model. Hence the operationsL-Skip (into)
andG-Skip (outof) will be defined, both taking a label as an argument. These names
correspond nicely withL-Search andG-Search . Landing now lost its correspondence
with jumping, so the alternatively named operator for it will beContinue, also taking
only a label as an argument.

4.4.4 Refinement—which operations are primitive?

There are two aggravating observations that can be made about the model thus far. First
of all, having different classes of operators (although definable) is not very esthetic and
can—at times—be very confusing. Second, if labels and recursion control are kept in
the statespace, the jump, land and search operators are simple (combinations of) reads
and writes on the statespace.

It should thus be possible to express jumps, landings and searches in terms of primi-
tive operations that read and write from and to the statespace. A complete model can be
formulated with just these primitives. The formal specification can be found in chapter
5, but an intuitive definition can already be given here. Assume the existence of the
following:

• R(s, a) that reads from states at addressa

• W(s, a, d) that writes datad to states at addressa

• if(c, t, e) that evaluates conditionc and results int if said condition is true
or e otherwise.

Using these informal functions, the non-primitive functions from before can be speci-
fied as

Skipping(s) = R(s, L) != L

Skip(s, l, recurse) = W(W(s, L, l), �, recurse)
Fetch(s, a) = R(s, a)

Store(s, a, d) = if(Skipping(s), s, W(s, a, d))
Continue(s, l) = if(R(s, L) == l, Skip(s, L, -), s)
L-Skip(s, l) = if(Skipping(s), s, Skip(s, l, true)
G-Skip(s, l) = if(Skipping(s), s, Skip(s, l, false)
L-Search(s) = 〈W(s, �, false), Skipping(s) && R(s, �))〉
G-Search(s) = W(s, �, true)

4.4.5 Proof by transformation

To prove that is compatible withboththe linear machine modelandthe (code)block
model, a translation of thef that intuitively relates to the first, will be transformed to
the second. Compare the code snippet 4.15 to its translation shown in figure 4.6a. The
graph shown is very similar to common machine code translations and thus reflects
the linear machine model. Since the block model is only relevant whennot jumping
into or out of the blocksC, S1 andS2, it seems reasonable to assume that operations
on labels can be transformed over them (the logic of this will become clear during
transformation).



46 Jumps Ch. 4

Code snippet 4.15A commonif statement

if (...C...)
{
...S1...
}
else
{
...S2...
}

Step 1

First of all,S1 can be transformed across the mux, placing a copy ofS1 in each branch.
This means the0 branch now has anL-Skip followed by a complex edge of classS1.
Having made the assumptionS1 does not operate on labels, there will not be aContinue
or any kind of skipping operation anywhere inS1. It is thus possible to transform it the
edge out of the graph by letting theL-Skip operation consume it.

The same process should be repeated with theL-Skip under the mux. Again, the
copy placed in the0 branch can be consumed by theL-Skip edge already in it, because
if there is a jumping state (i.e. there is an active label)beforethe upperL-Skip in the
branch, the active jump will consumebothL-Skip edges in the branch. If, on the other
hand there is no active jump when entering the branch, the upperL-Skip will set an
active label and thus the lowerL-Skip will be disabled still. These transformations
result in the graph shown in figure 4.6b.

Step 2

Next, theContinue below the mux is transformed upwards. Yet again, branch0 gives an
interesting situation. Now theL-Skip in it is the immediate predecessor of theContinue
transformed upwards before. Both operations take the same label as an argument and
thus theL-Skip can be transformed out.

The Continue in the 1 branch can not be transformed over theL-Skip above it,
because they take different labels as arguments. To transform it out, the on
theelse_part label needs to be transformed downward. It can be transformed overC
under the prevailing assumption thatC has no operations on labels (fig. 4.7a).

Step 3

The  can be carried into both branches. In the0 branch, it consumes theCon-
tinue. In the 1 branch, it can be transformed overS1 similar to the transformation
acrossC and finally over theL-Skip on theend_if label, because the argument of the
 is theelse_part label.

At this point it has become the direct predecessor of theContinue on theelse_part
label and can thus consume it (fig 4.7b).

Step 4

Similar to the transformations before, the of theelse_part label can be carried
downwards across the mux,S2 and theContinue on theend_if label. With the
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(a) Initial translation (b) After step 1

Figure 4.6: Proof-by-transformation 1
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(a) After step 2 (b) After step 3

Figure 4.7: Proof-by-transformation 2
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(a) After step 4 (b) After step 5

Figure 4.8: Proof-by-transformation 3

and—both onelse_part—in immediate succession, they cancel each other out
and can both be removed.

Step 5

Similarly to the previous steps,S2 is carried over the mux, consumed by theL-Skipin
the1 branch and kept in the0 branch.

Next theContinue is transformed over the mux, where it consumes theL-Skip in
the 1 branch. Now bothContinue operations can not be transformed any further, so
their corresponding is transformed down.

It is carried overC, into both branches and overS2 andS1 in the0 and1 branches
respectively. In both branches the can now consume the immediately successive
Continue (fig. 4.8b).
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Figure 4.9: Block model resulting from transformation

Step 6

This final step carries the operations in both branches across the mux, so that
a - operation pair is again found with identical arguments. They can be
transformed out resulting in the original block model (repeated in figure 4.9).

Summary

Because++ has a lot of behavior hidden away in its jumps,
 is explicitly designed to unhide said behavior. To do this,
all different kinds of jumps are unified to a single kind in the
unified jumping model, which is simply a rewriting scheme
in terms of++.

A lot of the hidden behavior of++ occurs when jump-
ing into or out of scopes. As graphs are strictly acyclic,
backwards jumps are modeled by forwards jumps into recur-
sions. These recursions are introduced by the introduction of
every new level of scope.

Labels jumped to are normal addresses in corre-
sponding to the imperative stack machine world.

It has become apparent that the entire model of jumps can
be expressed in the four primitive operations (, ,
 and) already available.



5
S, the model

This chapter attempts to describe the-model in a concise and complete manner.
First off, the primitive types available in the model are defined (5.1) using the formal
specification language Z [7, 12] extended with the toolkit shown in appendix B. Next,
the definition of primitive statespace operations are given (5.2), also using Z. Lastly a
few commonly used complex operations are described (5.3), which can be considered
the standard toolkit.

5.1 Primitives

5.1.1 Data

To maintain generality, the model assumes the existence of an elementary data type that
represents the smallest addressable entity in the target architecture. A type is required
to describe this unbreakable entity:

[D]

This definition enables the definition of a more global notion of data. Even though
 theoretically models infinite data sequences, sequences of data are defined asfinite
sequences here, to relate closer to the target architecture.

D == seqD

Provided there is a notion of a null-value inD, let

D0 : D

be said null-value. The equivalent null-sequence of data can now be defined as

D0 : D

∀ i : domD0 • D0(i) = D0

51
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allowing it to be as big as required. Possibly, constraints on the size ofD0 can be
given later, but from hereon, it will be considered to be ‘at least as big as the biggest
requirement.’

5.1.2 Types

For data alignment purposes, (course grain) typing is required. Since theonly purpose
of the typing system is alignment, the ‘width’ of data—in terms ofD—will suffice.
However, the width of indirections depends heavily on the target architectureand the
width of the reference says nothing about the width of the referenced data. Thus,
indirections need to be contained in the type

T ::= primitive�
� | reference�T�

There is also a generic dereferencing function to determine the referenced type. Fur-
thermore, the existence of a size function for the target architecture is assumed. This
function is typed as

∗ : T" T
# : T"


∀ t, t′ : T | t = reference t′ • ∗t = t′

Any instance ofD carries its type implicitly. Observe that

∀d : D • typeof(d) = primitive(#d)

5.1.3 Addresses

In general, addresses are offset table, but given two independent pointersi and j then
the variable pointed to byj is unreachable fromi by whatever offset, i.e.

@o : � • i + o = j

Therefor, the model for addresses should specify interdependence. All dependent ad-
dress should share a common denominator and from the imperative context this de-
nominator is the allocation. Let

[A]

be the unordered set of allocation identities. A complete address can now be modeled
as the triple of allocation identity, the offset thereof and the type of the data pointed to:

A == A × 
 × T

Offsetting any address can now be achieved by adding to the offset. Offsets can
also be reduced by subtraction, but the resulting offset must, of course, remain positive.
Regardless of the offset, addresses are related ([) when their allocation identities are
equal.

[ : A#A

+ , − : A × 
"A

∀a,a′ : A • a[ a′ ⇔ (π1 a = π1 a′)
∀ i : A; o,n : 
; t : T •

(i,o, t) + n = (i,o+ n, t) ∧
((i,o, t) − n = (i,o− n, t)⇔ o ≥ n)
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Finally, it is important to observe that there should exist a bijective mapping from
addresses to data (pointers are stored in memory). What that mapping looks like ex-
plicitly is not very important (and architecture-dependant), but assuming said mapping
the following relation can be defined:

≡ : A# D

which just states a certain address relates to a certain data, but abstracts away from the
mapping itself. Since said mapping is bijective, this abstraction is plausible.

5.1.4 (Data-)memory, model control and state

Imperative languages are based on a model of mixed memory (control- and data mem-
ory), but only models data memory as a type within the model. Control memory is
modeled as a mix of the instance of the model itself and the state at any given point in
said instance.

Data memory is the relation between allocation identities—notaddresses—andun-
typed data. This provides a very intuitive view on the independence of separately
allocated blocks of memory. Besides the type definition for memory, theallocation
uniqueness criteriumis also required to restrict the model to valid memory only.

M == A# D
∀m : M • ∀e,e′ : m | e, e′ • first e, first e′

As introduced in chapter 4, there is a default location for the active label. This
default location is itself an address:

L : A

As concluded in that same chapter, the statespace can be sufficiently modeled by
memory (a mapping from allocation identities to values). In terms of the schema for
state:

State
m : M

5.2 Primitive operations

Operations on data are heavily target-dependant and can not be assumed to have a
useful greatest common denominator. All operations do have the same external ap-
pearance; they are all (partial) functions from the values of their input nodes to the
values of their output nodes.

The (atomic) operations on the statespacedo have an architecture-independent na-
ture and can thus be defined here.

5.2.1 Scoping

Variable declarations correspond to allocations in memory. This is modeled directly
on statespace operations. Allocations (and deallocations) are always performed on
a base address (A), but to maintain some conformity as to the format of addresses,
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(a) Allocate (b) Free (c) Read (d) Write

Figure 5.1: Primitive operations

full addresses (A) are used, but required to have a zero offset. Allocation in++
corresponds to creation (fig. 5.1a) in.



∆State
a : D

∀a′ : A; o : 
; t : T | (a′,o, t) ≡ a •
o = 0 ∧ m′ \m= {(a′,#t� D0)}

Likewise, destruction in++ corresponds to deletion (fig. 5.1b) in.



∆State
a : D

∀a′ : A; o : 
; t : T | (a′,o, t) ≡ a •
o = 0 ∧ a′ ∈ domm∧
m′ = {a′}�m

5.2.2 Reading and writing

Reading data from the statespace is an operation that only results in the data read, i.e.
there is no transformed statespace as a result of a so called operation. This is
modeled explicitly, as one of the intentions of is to unhide side-effects that where
hidden in++. Visually this corresponds to there not being an outward state-arrow (fig.
5.1c).



ΞState
a,d : D

∀a′ : A; o : 
; t : T | (a′,o, t) ≡ a •
a′ ∈ domm∧ d = #t� (o� m(a′))

Writing does, of course, alter the statespace. The corresponding operation
(fig. 5.1d) results in data being written into memory.
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(a) Skipping? (b) Skip

Figure 5.2: Jump testing and activation



∆State
a,d : D

∀a′ : A; o : 
; t : T | (a′,o, t) ≡ a •
a′ ∈ domm∧ m′ = m⊕ {(a′,write(o,d,m(a′)))}

5.3 The toolkit

Because some particular arrangements of the primitive operations occur so frequently,
a default toolkit is defined.

5.3.1 Jumps

Jumping in++ is based on labels, which indicate where to jump to. Labels are rep-
resented by addresses, and the active label is stored at addressL. When there is no
active label, the address stored atL is L itself. Hence, an operator (Skipping? ) that
tests whether or not a jumps is being performed can be defined (fig. 5.2a, by testing
whether the currently active label isnot L.

Now theSkip operator can be defined, using theSkipping? operator, since it should
leave the state unaltered if there already is an active label. WhenSkipping? concludes
a jump is not being performed, theSkip operator should set the active label and the
scope recursion control fields. If a jumpis being performed, the state on the input is
copied to the output (fig. 5.2b).

The antonym ofSkip is Continue. Taking as its only argument the label that it
represents. If the label on its input is the active label, the jump should end and, thus,L
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(a) Continue (b) Store

Figure 5.3: Landing and jump-safe storage.

(a) L-Skip (b) G-Skip

Figure 5.4: Shorthands for jumping into and outof scopes

should be made to point to itself again. The definition ofContinue is shown in figure
5.3a.

5.3.2 Jump-safe storage

The primitive operation writes to memory independent of jumps. Now that the
jumping operations have been defined, a higher-level storage operation can be defined
that does not write to a statespace when a jump is being performed (i.e. when a label is
active). The resultingStore operation (5.3b) can be used without having to take further
safety precautions.

5.3.3 Searches

Since it is often known what the value of the scope recursion control field should be,
default jump operators should be defined to allow for easier transformation definitions
(removing the complexity of the extra input). These operators areL-Skip for jumps
that need to search in the local scope andG-Skip for jumps that are outof (see section
4.4). Both of these operations are shown in figure 5.4.
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(a) L-Search (b) G-Search

Figure 5.5: Search operations for scope recursion

The operators that guide the search for the active label (as described in section
4.4.2) areL-Search andG-Search . The how and why of scope recursion control has
been discussed extensively at their introduction, so without further ado, turn to figure
5.5 for their respective definitions.





6
Annotations for optimization

A sizeable number of transformations can be defined on the model as treated in chapter
5. However, the fact that any edge defined by a graph class in the namespace (and
not in the default toolkit) requires expansion if other edges are to be transformed over
it. Besides the intuitive setback in performance, this might actually result in the in-
ability to perform the desired transformation at transform-time, because it crosses a
parameterized recursion—which is thus potentially infinite.

This chapter introduces an optimization by means of annotation to compensate
for this shortcoming. The syntax of these annotations is introduced in section 6.1.
Section 6.2 shows how these annotations can be used in transformations, followed by
the inductive proof of correctness in section 6.3. Finally, section 6.4 shows how these
annotations can actually be deduced at compile-time.

6.1 Syntax and the elaboration rule

Annotations are a way to connect assertions to an edge or node. These assertions are
properties that follow from the graph itself and thus have no addedsemanticvalue.
There are differences between assertions that can be made about nodes and those about
edges. Assertions about edges will, for instance, often indicate (partial) relations on the
in- and output nodes or dependencies in terms of addresses when the edge transforms
the state, while node-assertions are more value related.

A strict condition for the use of annotations is that no one assertion on a node or
edge may contradict another on that same node or edge. The syntax of annotations
should allow adding extra information (syntactically) independent of the annotations
already made. Consider the notation in figure 6.1a. It shows one annotated edge, one
annotated node and two unannotated nodes. Combining both annotations, an extra
assertion can be logically deduced about the edge. This deduced assertion is added, by
simply adding a new annotation to the edge (fig. 6.1b).

The syntactic independence of these annotations allows for the independent con-
sideration of assertions in transformations (6.2). Any and all annotations are valid at

59



60 Annotations for optimization Ch. 6

(a) Annotated graph (b) Propagated annotation

Figure 6.1: Annotation enabling transformation

any given time and thus any one annotation can be used for a more informed pattern
match without having to check the other assertions made about an edge or node.

The argument above does assume a system that is guaranteed to retain its consis-
tency even when annotations are added. To provide such a guarantee, the elaboration
rule is required, which is defined as follows:

• A setA of annotations is consideredconsistentif it contains no contradictions.

• Elaborating on the properties of a node or edge is possible by adding annotations.
A consistent setA can only be extended with annotationψ if the resulting set
A∪ {ψ} is consistent.

The assertion made in the annotation should be a logic predicate. To actually real-
ize a means to transform state altering edges over potentially infinitely recursive edges,
a way is required to indicate an edge’s complete dependencies with respect to given
operations. Concretely this implies the requirement for a function that takes as argu-
ments a primitive statespace operation and an edge and returns all the addresses the
operation is performed on in said edge. This dependency function will be called∆ and
will be written without the edge argument in the annotations, because it is clear from
the annotation which edge is its argument. In section 6.4 it will be shown that it is not
actually required to give an implementable (i.e. generative) definition of∆, because all
relevant projections can be deduced from compilation.

Since addresses can themselves be stored in memory, an unlimited level of indirec-
tion is allowed. This means a notation is required to indicate (the level of) indirection.
In ∆-annotations addresses will be given an ‘order’ by a superscripted number, e.g.bn

is addressb in thenth order. The order of an address corresponds to the level of indi-
rection. If data is written to memory at addressa, it is a first-order address. If data is
written to memory at the address that is stored at addressa, it is the second-order ofa,
i.e. a2. Snippet 6.1 shows this principle in terms of++.

Code snippet 6.1Orders of addresses

... a ... // First-order address (a^1)

... *a ... // Second-order address (a^2)

... **a ... // Third-order address (a^3)

...

An example of the use of∆-annotation is given in figure 6.2. Any edge that operates
on the statespace can be annotated with the∆ function, i.e. primitive and complex edges
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Figure 6.2: Annotations with∆ dependencies

alike. In the example, a primitive edge is shown, that stores on some addressx the
value that graphX evaluates to. The annotations state that in the edge addressx is used
in a  operation and that the total set of addresses used in the,  and
 operations is empty. The complex edgeG performsat least one operation
on the addressesa andb2 ands from addresses1 b andc. No assertions are made
about∆() and∆(), which should not occur when compiling intelligently
(see section 6.4), but which is completely valid, model wise.

6.2 Annotation-aware transformations

Recall the problem shown in figure 6.3a. The solution was overcome (section 4.4.5) by
transforming the appropriate operation down to the local ‘deadlock’. Unfortu-
nately, this required transforming said across a splitting statespace (duplicating
the operation in both branches) and the accompanying mux, thus enlarging the cumu-
lative complexity of the transformations required. However, based on the exact same
idea—that before a label’s creation, no jump to said label is possible—annotations can
be used with the same results, but without adding complexity.

Through propagation of assertionsthroughthe graph, as opposed to transformation
of the graph, the transformation of the deadlocked locality can be made possible. Fig-
ure 6.3b shows the same situation, but with the added assertion that the active label
is certainly not the same as the argument of theContinue operation. In this case the
Continue can be dropped by the transformation, because whatever the state ats1, the
Continue will be given as an argument a state that has an active label, other than the
other input of the operation.

Assertion propagation is less complex, because it is not required to propagate over
all branches of the statespace. As observed above, directly after a operation, it
is legitimate to assert that the active label can not be the label just created.

The true power annotations add to transformations is twofold; it lies in the added
capability of evaluating across infinite recursion, on the one hand, and the weaker

1Although not guaranteed, in real world compilations—before any expansions—of++, when any oper-
ation is performed onxn there will always be a onxn−1. Note that this is an inductive closure, so there
will be s on allb1,b2, . . . ,bn−1
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(a) Repeated from fig. 4.5 (b) Added assertion

Figure 6.3: Annotation resolving transformation problem

(a) Potentially untrans-
formable situation

(b) Transformation after annotation

Figure 6.4: Annotation enabling transformation

transformation-definition requirement on the other.

Consider the situation shown in figure 6.4a. The depicted edgeG is infinitely recur-
sive, but assume for the example thatG has been annotated with a complete definition
of its∆ function. If the set of annotations ofG can now be elaborated with the assertion
that

@a : ∆() ∪ ∆() ∪ ∆() • a[ V(n1)

then it is safe to conclude that the may safely be transformed over edgeG. The
resulting graph segment is shown in figure 6.4b.

The example shown in figure 6.4 also illustrates the notion of generalized trans-
formation patterns. SinceG can be any valid edge, it may just as well be a primitive
edge. As long as the assertion used in the example can elaborate the annotations of
G the transformation is valid, because the assertion is in itself sufficient for the proof
of behavioral consistency of this graph before and after transformation. This means
transformations can be expressed in this generalized form, because constraints on the
transformations can be expressed in terms of assertions.
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6.3 Proof of correctness

The proof of the correctness of transformations with∆-annotations follows by inductive
expansion of complex edges. Suppose for edgeA and operationo that

∆(A,o) = X

for any giveno. For any subdivision ofA in edgesB andC, it must—per definition—
hold that

∆(B,o) ∪ ∆(C,o) = X

and thus

∆(B,o) ⊆ X ∧ ∆(C,o) ⊆ X

. Transformations requiring∆-annotations on a complex edge can likewise be split in
multiple transformations on subgraphsB andC, since for any transformation require-
ment that

x < ∆(A,o)

it can be propagated that

x < ∆(B,o) ∪ ∆(C,o)

It is important to note that this assumes properly formulated annotations in terms
of the in- and outputs. Thus if the assertiona > b about edgeA having inputa and
outputb holds, it may very well not be the case that this literal constraint is valid for
every edge in the defining graph class ofA. The correctness, however, follows from
observing that said assertion indicates a relation between whatevernodescorrespond
to a andb. If the assertion is sufficient for a transformation, it may thus be performed
without having to expandA. Naturally, transformations still require individual proof.

Having said this, the general proof for all annotations is as follows: for consistent
annotation-setN on edgeA it is guaranteed that for any subdivision in subgraphsB and
C of the expansion ofA, bothB andC may only be annotated by annotationm if it can
legally elaborate (see 6.1) onN.

6.4 Compiling with annotations

During compilation many useful annotations can already be inserted on nodes and
edges. The process of compilation with annotations can be compared to the con-
ventional use of attribute grammars in general and S-attributed grammars in partic-
ular [3, chapter 3]. When a template is instantiated, all operations in the template itself
are known, so their dependencies and the relations they define can be included in the
annotation of the edge that represents an instance of the class created by this template.
This statement implies a recursion, since a template mighty very well included place-
holder edges that are filled in by further template instantiation. When these complex
edges are filled in, they will have received annotations and from these the complete set
of annotations can be composed for the template at the current level.

This does, of course, require some form of cycle detection. This is only required for
the gathering of annotations from nested edges to top-level ones, since the instantiation
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of templates is based purely on the input to the compiler, so for a finite input there is a
finite instantiation cycle. Although complex, this is a field in which a lot of work has
already been done and for the greater part of possible-implementing compilers,
known algorithms should suffice.

There is a design choose left to be made with respect to the annotation of infinitely
recursive edges with nested creationand deletionof variables. It depends very much on
the requirements of the final compiler how to treat this issue. It can well be argued that
since a variable is created and deleted within the edge, it enforces no dependencies on
the exterior of that edge. If so, these variables do not require inclusion in the annotation.
On the other hand, when compilers are subject to cost-analysis and need to search
for optimizations, throwing this information overboard is a bit reckless. Should the
information be required a denotational method should be used to indicate the number
of these ‘hidden’ variables in terms of eventual execution depth. Like the notation of
higher-order addresses above, it is possible to use indexes to annotate these edges. As
an example

∆(A, ) = {a,b, c} ∪ {d1, . . . ,dn} ∪ {e, f }

indicates that the edge will a newd for everyone of then recursions, but only a
single instance ofa, b, c, eandf .

The complete∆-function can be generated from an edge by simply gathering all
dependencies on a per-operator basis. For a given graph classG with edgesn1 through
nk the simple rule that

∀o

(
∆(G,o) =

k⋃
i=1
∆(ni ,o)

)
The∆ is defined on graph classG here, which is not very formal, but it means to say
that this definition is the definition for the∆ function on anyedge gthat instantiates
graph classG.

Summary

Annotations add to the transformation capability of a graph
by allowing transformations over infinitely recursive graphs.
Their correctness follows from theelaboration rule. Besides
the added power they give with respect to infinitely recur-
sive graphs, they also allow for more lightweight transforma-
tions—by removing the necessity of expansion—over com-
plex edges in general.

Transformation rules can be expressed in a more general-
ized way by using annotations in their formulation and proof.



7
Conclusions and recommendations

This chapter summerizes the most important conclusions from this thesis (7.1) and
gives some recommendations for future work (7.2). For easy reference, all points have
been enumerated.

7.1 Conclusions

1. S is capable of modeling pointers in such a way that the transformations are
provably correct. Also, constant propagation—even for partially known (offset)
pointers—is possible. The latter statement is more relevant to the implementa-
tion, because mathematically the solution new solution is equivalent to the old.

2. With the new model of storage in the statespace casts of pointers are supported.
Casts of data in the graph itself has unchanged support (i.e. is supported).

3. S models all legal jumps in++ in a scope-safe way.

4. With the given extensions S is still applicable to transformational design, since
it still depends on provable transformations of a hypergraph.

5. By using annotations transformations become possible that would not be other-
wise. These transformations mainly involve edges with infinite recursion.

6. Intuitively, annotations make many transformations a lot cheaper in terms of
required computation (see 7.2.1/2).

7.2 Recommendations

7.2.1 Immediate followup

1. Obviously the remaining unmodeled language features should be looked into, to
eventually arrive at a model that completely supports++. Specifically:
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(a) Model the function call mechanism especially with respect to jumps, as
some function calls should still be performed when jumping over them,
e.g. destructor calls when jumping out of scope.

(b) Find out whether there is a fundamental difference between the hidden ex-
ecution of constructors and that of destructors and—if not—why the++

standard does not allow for the first [5, 6.7/3] anddoesallow for the sec-
ond [5, 6.6/2].

(c) Determine how much information is required at run-time for object-orien-
tation and whether the amount for a formal description thereof differs.

2. Gather empirical data to determine what transformations form bottlenecks (either
computationally or with respect the designer’s intuition) and see whether other
abstractions (using the same primitives—5.2) resolve these bottlenecks, also to
investigate the bold statement about annotations in the conclusions (7.1/6).

7.2.2 Down the line

1. Since the hypergraph is itself a functional program, it deserves consideration to
design mappings to and from the most common functional programming lan-
guages in the field. Also, to investigate whether’s extensions cover other
imperative/object-oriented languages. This recommendation is important, be-
cause it seems possible to employ as apan-paradigm translator.

2. Some work has already been done with respect to the design of both a graph de-
scription language and a way to express the transformations. The most important
conclusion drawn from the work so far is that a lot more work is required.

7.2.3 Implementation

1. A new tool should be developed that at least includes the extensions of, but
that would preferably allow for the addition of primitives and transformations
that may be formulated later.

2. Even proof is a matter of trust. Therefor, it would greatly improve the quality of
the development environment to provide a tool that checks the proofs of transfor-
mations (or that calculates the proof itself). The implementation of such a tool
is, of course, heavily dependant on the language used (7.2.2/2).
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Abstract. Due to the ever-increasing complexity of digital systems,
the verification of the various steps in the design flow is becoming
more and more a burden. Lengthy simulation runs do never guaran-
tee the correctness of a design. Moreover, formal verification tech-
niques are not yet generally applicable. This paper describes a part
of a design flow for high-throughput digital signal processing appli-
cations from an executable specification in terms of a Kahn model
of processes described in C to a signal flow graph description from
which the scheduling and resource allocation can start. This de-
sign flow is based on an alternative way for obtaining correctness-
by-construction. In this so-called ’Transformational design method’,
correctness is obtained by applying small local behavior-preserving
transformations, which have themselves already been proven correct,
to derive an implementation from an executable specification. Es-
sential to the transformational design method is the design represen-
tation and its formal semantics for proving the behavior-preserving
property of the transformations. The small local behavior-preserving
transformations and the possibility to switch between different time
models and different levels in the functional and data hierarchy makes
it easy to explore many design alternatives without losing the correct-
ness property. This will improve the quality of the design, the design
time and the controllability of the design process.

A.1 Introduction

The design of large digital (sub)systems is characterized by a specification phase and
a design phase. The latter can be divided in a high-level synthesis part and a low-level
synthesis part. In the design of high-throughput digital signal processing applications
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for video processing, mobile telephone, robot controllers, etc. hardware/software co-
design is governing [2]. In this application domain, during the specification phase, in
most cases a simulation model of the system is constructed allowing the verification by
means of simulation of the specification and algorithms against the idea, [6,8]. In prac-
tice, for performance reasons, these specifications are often written in C based on some
model of communicating modules [6]. Starting from such an executable specification,
the functionality expressed by the specification and its underlying model is mapped
on a target architecture. This target architecture might either be chosen beforehand
or may be the result of the high-level design process. During the high-level synthe-
sis process, tasks such as decomposition, refinement, dependency analysis, scheduling,
and resource allocation are performed. The result is a design description, in VHDL,
Verilog or some proprietary language that is rather close to the final design, though
it still needs to be optimized. The low-level synthesis process finalizes the design by
re-timing, logic optimization, placement and routing, etc.

Even in this domain of high-throughput digital signal processing applications, a
large variety of high-level design flows is used, varying from manual design for which
many tools are available to full silicon-compilation. All these design flows suffer from
design faults, either induced by ’the creativity of’ the designer or by the complexity and
immaturity of the design tools. Hence, all steps in the design flow have to be verified
by means of lengthy simulations in which the behavior before and after the design step
is compared. Only in few cases formal verification can be applied. The more complex
the systems to be designed are, the more severe the verification problem is.

This paper discusses research on an alternative design flow that is based on correct-
ness-by-construction and which relieves the simulation burden. In this so called ’trans-
formational design method’, the design flow consists of the application of a large num-
ber of simple pre-proven behavior-preserving transformations. The feasibility of such
a design flow has been shown [13, 14]. However, due to the immaturity and incom-
pleteness thus far, of the required design tools, it has never been applied to real large
designs.

High-level synthesis tools for high-throughput applications, such as the Phideo
tools [9], in general start from some kind of signal flow graph (SFG). For example,
the Phideo tools start from a SFG that expresses a number of execution units and the
multi-rate data flow between them and perform the high-level synthesis tasks such as
scheduling, resource allocation and the generation of the control unit. Till now, the
translation of the executable specification in terms of communicating processes de-
scribed in C, to the SFG and the derivation of the execution units is done manually.
The efficiency of the final design strongly depends on the design decisions taken dur-
ing this translation. Clearly this manual part of the design flow is extremely error
prone.

This paper focuses on a transformational design flow for high-throughput digital
signal processing applications, starting from an executable specification in terms of a
Kahn model [5] of communicating processes, described in C, and resulting in a syn-
chronous control data flow graph (CDFG). From this point on existing tools are avail-
able to complete the high-level synthesis process. The transformational design method
provides correctness-by-construction and gives full freedom to the designers’ creativ-
ity.

The idea of correctness-by-construction is not new at all. In fact any automated
design flow from executable specification to a description in terms of gates and registers
could be correct if all tools were correct and only correct manual interference was
possible. In practice, however, this is difficult to realize. Some tools cannot be trusted
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because they are immature or too complex. The design representations of different tools
often do not match and often the semantics of tools and representations are ambiguous.
Hence, lengthy simulations are needed to verify the various design steps.

Based on these observations an alternative approach is investigated [3, 13, 14] in
which the design flow is divided into small preproven behavior preserving transforma-
tions. These transformations can be initiated by the designer or be the result of some
optimization algorithm. The method could be compared with a theorem prover, the de-
signer decides on the algebraic and logical rules to be applied and the theorem prover
provides suggestions and checks for illegal steps.

Such a transformational design method must be based on a formal model in which
structure, behavior (including control) and time can be expressed. This model should
support a ’language’ for describing specification, design and transformations. In our
case, the model and the language should at least encompass both the specification level
in terms of a Kahn model with processes described in C and the implementation level
in terms of gates, adders, registers etc. Furthermore, the model must be compositional,
i.e. when a part of the design description is replaced by a different part with the same
external behavior, the external behavior of the total design remains unchanged.

In section 2 we will describe the language that supports the design flow, its expres-
siveness and the informal semantics. In section 3 we will deal with the two paradigms
for modeling time, i.e. the (clock)synchronous that relates to an implementation in reg-
isters and timeless functions such as gates and adders, and the asynchronous paradigm,
in which Kahn model and the C processes are described. In section 4 the semantical
model is described.

A.2 The Language

A.2.1 Hyper-graphs

Because both structure and behavior need to be expressed we have chosen for design
representation in the form of a Control Data Flow Graph, in which control and data are
modeled in the same way [7]. Usually, the nodes in a control data flow graph stand for
operations and the connections between the operations are represented by edges. Be-
cause the operations have ports (inputs and outputs) that should be distinguished, the
edges need to be annotated with the port identifiers of the operations that are modeled
by the nodes. In case of multiple undirected connections, without special precautions
this results in non-unique representations. Therefore we have chosen for hyper graph
model [4], which elegantly describes a signal flow graph and better fits to our semanti-
cal model.

A hyper graph consist of nodes which are connected by means of hyper edges that
have at least one extremity, see figure A.1-A, B and C. These extremities are annotated
with identifiers and thus can be distinguished. So a hyper edge is just an edge that
connects one, two or more nodes. Notice that in a normal graph the edges always have
two extremities identified by ’begin’ and ’end’.

The hyper edges in the graph symbolize operations and the nodes represent the
operands. We attribute a structural interpretation to the hyper graph. So the hyper
graph describes the way in which operators are connected. The nodes are to be con-
sidered as connection points. Therefore, we assume that the data values on which the
hyper edges operate, are ’bound’ to the nodes (connection points). A value bound to
a nodex is denoted byV(x). So x is a structural identifier, not to be mistaken with
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Figure A.1: A hyper-graph and its components.

the dummy variable representing a data value used in algebraic expressions. The hyper
edges (operations) are colored with an identifier, written inside the edge, which refers
to the operation it performs and are identified by a name written outside the node.

Hyper edges are represented in an intuitive way as is given in the figures A.1-A, B
and C. In figure A.1-E a complete graph M is represented that performs the function
V(c) = (V(a) + 1).V(b). The graph is built from three hyper edges. Each hyper
edge puts a restriction on the values bound to the nodes to which the hyper edge is
connected. The first hyper edge, the square, with one extremity saysV(q) = 1. The
hyper edge annotated with ’+S’ statesV(r) = V(a) + V(q) and the last one states
V(c) = V(b).V(r). The nodesq and r are internal nodes that cannot be influenced
from the outside. The nodesa, b and c are external nodes and define the external
behavior of the graph, i.e. the relation between the values bound to the external nodes,
viz. V(c) = (V(a) + 1).V(b). The internal behavior (or just behavior) of the graph
describes the relation between the values bound to all nodes of the graph and is thus
given by the relationsV(q) = 1, V(r) = V(a) + V(q) andV(c) = V(b).V(r). It
is important to notice that these are relations that do not induce an evaluation order.
So, in first instance the hyper graph makes no distinction between inputs and outputs.
However, in practice it is useful to distinguish between input and outputs by annotating
the extremities of the hyper edges with an arrow point, see for example figure A.2.

A graph represents external behavior in the form of a set of relations on the values
bound to the external nodes of the graph. The external behavior follows from the
behavior of the graph, which is given in the form of a set of relations on the values
bound to all nodes of the graph. These relations follow from the hyper edges. The
behavior of a hyper edge is again defined by the external behavior of its defining graph.

Graphs are either primitive or non-primitive. A primitive graph only consist of one
hyper edge of which the behavior is defined by the graph itself, figure A.1-D. Clearly,
the behavior of a primitive graph must be defined explicitly, for instance by a predicate
or a piece of program in some suitable programming language. For example, the prim-
itive graph representing a saturating addition on the unsigned integers{0 · · · 216 − 1} is
defined by figure A.1-D and the relation:

V(a),V(b),V(c) ∈ {0, · · · ,216 − 1}

V(c) =

{
V(a) +V(b) if V(a) +V(b) ≤ 216 − 1
216 − 1 if V(a) +V(b) > 216 − 1

. (A.1)

The language has a graphical representation instead of a lexical representation. A de-
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Figure A.2: Graphs with identical external behavior. Expansion and hiding

sign is ’written’ by means of a graphical user interface or is the result of a compilation
of an other representation such as C or VHDL. The design representation is stored in a
database. The ’syntax rules’ of a lexical representation are in this case a set of rules that
should be satisfied by the database content. Examples of such rules are: ’In a graph
an extremity of a hyper edge must always be connected to a node’. A formal model in
terms of sets and relations supports the database content.

A.2.2 Functional Hierarchy, Recursion and Repetition

From the preceding sections we learned that the basic operations, comparable with the
basic arithmetic operations in computer languages are represented by primitive graphs.
Any graph represents external behavior and so does the behavior of a hyper edge. With
these hyper edges new graphs can be constructed, again defining new hyper edges.
So a hyper edge is an instantiation of a graph. This implements both structural and
functional hierarchy.

Different graphs can have the same external behavior, such as the graphs J: and K:
in figure A.2. So it makes no difference which graph is used for defining the behavior
of the hyper edge that is defined by one of these graphs. The external behavior of
the graph in which the hyper edge is instantiated remains the same. This is the basic
principle for design transformations, i.e. changing the structure while preserving the
external behavior.

Clearly, a hyper edge may be replaced by its defining graph (expansion) and con-
versely a part of a graph may be replaced by a hyper edge (hiding). In the latter case,
a graph that defines the hyper edge should be added to the design. Figure A.2 shows
the expansion and hiding process. Notice that expansion and hiding are design trans-
formations too.

If a graph calls itself, directly or indirectly, this implements recursion. Recursion is
the only way to implement repetition in our transformational design language. Notice
that we are dealing with structural recursion, i.e. recursion is to be interpreted by
expanding the graph. Consequently, the expansion will result in a semi-infinite array
of hyper edges and nodes, see figure A.3.

In practice all repetitions are finite, otherwise we started from an incorrect specifi-
cation. So only a finite number of the instantiated hyper edges in the expanded graph
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Figure A.3: Expansion of a recursively defined graph.

Figure A.4: The representation of [y=1; for(i=0;i<n;i++) y=y*x;]

will contribute to the external behavior of the graph. The remaining edges can be re-
moved by means of dead code elimination. This will be illustrated in the next example
in which we will model a while loop.
Consider the following piece of C-code that implementsy = xn.

y=1; for(i=0;i<n;i++) y=y*x;

Figure A.4 shows the translation of this piece C-code to our design representation. The
code fragment has two input variablesx andn and one output variabley and is sym-
bolized by the graphC in which the hyper edgeF stands for the for-loop. The graph
F consists of an initializing parti = 0 and a repetition part given by the hyper edgeL.
The graphL implements the loop in a recursive way. It checks whethern < i and if so
then the result of the next iterations is sent to the outputy, otherwise the current value
of y′ is sent to the outputy. Notice that the translation from C to the control data flow
graph representation results in single-assignment-code. Recall that we are dealing with
structural recursion, so the behavior of the graph follows from expanding the graph.
When the expansion transformation is applied twice on the graph ’L:’ in figure A.4,
we obtain the graph shown in figure A.5. Ifn is a constant, for examplen = 2, we
can reduce the graph by means of the transformations ’constant propagation’ and ’dead
code elimination’. The result of the constant propagation is shown by the values in the
gray squares. After dead code elimination only the gray hyper edges remains, resulting
in the graph at the bottom of the figure.

A.2.3 Data hierarchy and data types

Besides the functional hierarchy described in the preceding section, we also need data
hierarchy in order to be able to model complex data structures. In ordinary program-
ming languages for this purpose arrays and structures are used. In our design language
we have one generic construct that allows us to model any form of data hierarchy. This
construct is based on the observation that arrays and structures can be mathematically
modeled by functions.

In our language we distinguish between two classes of data values: scalar types and
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Figure A.5: The two times expanded version of L (in figure A.4)

structured types. Scalar types are BooleansB = {0,1}, integersZ, bounded integers
Za,b = {x | a ≤ x ≤ b} and identifiers. The Booleans, bounded integers and identifiers
are finite sets. The term scalars refers to setScalarsthat is the union of the sets of
Booleans, integers, bounded integers and identifiers.
A function f is defined as a set of tuples〈a,b〉, in whicha is an element ofScalarsand
b is an element ofScalarsor b is a function that can only be constructed according to
this definition, and that satisfies

[ ∀a,b, c : (〈a,b〉 ∈ f ∧ 〈a, c〉 ∈ f ) =⇒ b = c ]. (A.2)

Examples of functions are{〈0,0〉, 〈1,3〉} and{〈0,0〉, 〈1, {〈0,0〉, 〈1,3〉}〉}.
The class of structures comprises all functions constructed according to the previous
definition.

In algebraic expressions the variables are dummy variables. Dummy variables are
usually denoted by an italic font and values by a normal font. So inx = a+ 10,x and
a are dummy variables written in italic and 10 is a value written in a normal font. In
the algebraic expressions in this paper the same convention is used. So if a value or
identifier refers to a particular object, it is written in normal font.

The domain dom(f ) and the image im(f ) of a functionf are defined by:

dom(f ) = {a | ∃b : 〈a,b〉 ∈ f } and im(f ) = {b | ∃a : 〈a,b〉 ∈ f }. (A.3)

So dom(f ) is always a subset ofScalarsand the image im(f ) is a subset of the union of
the scalars and the structures.

With this definition of functions, an array is modeled as a function on the bounded
integers, for example an array of length 3 containing the values 0, 3 and 5 is modeled
by {〈0,0〉, 〈1,3〉, 〈2,5〉} and a structure consisting of the family name and a list of the
children’s first names is modeled by:

{〈family-name,Smith〉, 〈children, {〈0, John〉, 〈1,Christine〉, 〈2,Basil〉}〉}

In order to build structures, four operations are available in our design language,
viz.: Write, Store and Fetch.
The Write and Fetch are primitive. The Store is non-primitive but for simplicity we
will treat it as a primitive graph. These graphs are defined as follows:
The Write states that the set containing the tuple〈V(ad),V(da)〉 is a subset of the
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value bound to ’struct’, provided its condition input is1, in whichV(ad) is the address
value bound ’ad’ andV(da) is the data value bound ’da’. If the value bound to ’cond’
is 0, it states that the empty set is a subset of value bound to ’struct’. The latter of
course is always true. Notice that two hyper edges Write with the same address values
and different data values and their ’struct’ extremities connected to the same node, is
incorrect and causes the entire design description to be incorrect.
The Write is represented by:

V(cond)= 1 =⇒ {〈V(ad),V(da)〉} ⊂ V(struc)
V(cond)= 0 =⇒ � ⊂ V(struct)
V(struct) is a function

The Store adds on ’struct out’ a tuple〈V(ad),V(da)〉, to the value bound to ’struct in’.
If the input ’struct-in’ already contains a tuple〈V(ad), x〉, for anyx, this tuple is first
removed. So the Store reflects the over-writing semantics of the store operation in an
ordinary sequential computer language.
The Store is represented by:

V(struct out)=
(V(struct out)d− {V(ad)}) ∪ {〈V(ad),V(da)〉}

In whichF d− A = {〈a,b〉 | 〈a,b〉 ∈ F ∧ a < A}

The Fetch reads the value bound to the address given by the value, bound to the address
input ’ad’, and delivers this value at the output ’da’. The Fetch is identical to the Write
with condition input1. The only difference is the order of evaluation expressed by the
arrow points.
The Fetch is elucidated below.

{〈V(ad),V(da)〉} ⊂ V(struc)

Besides the operations Write, Store and Fetch some other operations are defined for
example for modeling the scoping and the heap in C.

A.2.4 Translating C code to a Flow graph Model

We assume that all variables used in the C program are stored in a struct D. This struct
D represents the data space of the process. The statements and expressions in C suc-
cessively operate on this struct. So, if a variablea in C has the value 5 then〈a,5〉 ∈ D.
Variables local to some C function have their own struct. Variables have to be initial-
ized during declaration. So a declaration ’int a = 10;’ corresponds to a store of a
constant 10 on the address ’a’ in the struct D, figure A.6-A.
In a statement such as ’b = a+1’, only the variablesa andb are affected. First the
variablea has to be fetched from address ’a’ from the struct D, then a constant 1 has to
be added and finally the result has to be stored at address ’b’, figure A.6-B.
The basic idea behind the translation is that each statement in C results in a unique

graph. The hyper edges the graph follow from the statement or the substatements. For
example the if-statement

if (<expr>) <statement>
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Figure A.6: Some translations from C to a control data flow graph

is translated into a graph consisting of a multiplexer, one hyper edge that models the
expression, which might have side effects and thus might update the struct, and one
that models the statement. If the expression evaluates to true the output-struct of the
statement is chosen else the output-struct of the expression is chosen as the final result
of the if-statement.

A.3 Modeling Time

A specification in the form of a Kahn model [5] consists of a number of communicating
processes, each process is specified in sequential language and these processes commu-
nicate via channels. However, the final design can be fully (clock) synchronous, which
is easier to describe. For this reason, our design language is based on two different
paradigms, viz. the synchronous paradigm and the process paradigm. A transforma-
tion from the synchronous paradigm to the processes paradigm is always possible. The
transformation from the processes paradigm to the synchronous paradigm is possible
if the communicating processes satisfy the restrictions pointed out in section A.3.2.

A.3.1 The Synchronous Paradigm

The synchronous model is based on finite state machines at the register transfer level.
Our design language describes the system in terms of functions and unit delays (regis-
ters). The functions are timeless and the delay operation @ transfers the data from to
the next instance of time. The most general form is elucidated in figure A.7 together
with its unfolding in time. The functionF calculates each instance of time the output
valueb and the new statesnfrom the inputa and the old stateso. We assume time starts
at t = 0, hence the old state att = 0 has to be provided explicitly by means of an ad-
ditional initialization inputinit at the delay operation @. So the model is functionally
described by:

V(so)0 = init , V(so)t = V(sn)t−1 for t ∈ Z andt ≥ 1
(V(b)t,V(sn)t) = F(V(a)t,V(so)t) for t ∈ Z andt ≥ 0

(A.4)

The values at the internal and external nodes are described in terms of the values at a
time instancet, but in fact describe semi-infinite sequencesx0, x1, x2, . . . .
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Figure A.7: The synchronous model and its unfolded version

Figure A.8: The Kahn model translated into a control data flow graph.

A.3.2 The Process Paradigm

The process paradigm is inspired by the Kahn model in which a number of processes
communicate with each other and with the environment via channels. These channels
are FIFO buffers that connect the processes one to one. A process can always write
to a channel (non-blocking write) and if a process tries to read a value that is not yet
available it will wait (blocking read). We assume the Kahn model is deadlock free and
no starvation or flooding can occur. The verification of this, which is far from trivial, is
left to the system design process that precedes the specification. So a process delivers
a sequence of values to a channel and another process reads the successive values. The
relation between the sequences of values is determined by the processes.

In our design language, following the process paradigm, a process is modeled by
a hyper edge and a node to which a sequence is bound models a channel. A sequence
Ch is a semi-infinite array, i.e. a structCh with domain dom(Ch) = {i | i ∈ Z ∧ i ≥ 0}.
Writing to, and reading from the channel (sequence) is done by means of the Write and
Fetch operations, cf. section A.2.3.

The way in which the process paradigm is implemented in detail and the way in
which a specification in the form of a Kahn model with processes described in C, is
translated into our design language, is illustrated in the following example:
Consider a simple Kahn model with two processes P1 and P2, a channel that sends

data from P1 to P2, an input channel and an output channel, as is shown in figure A.8-
A. The processes are described in C. Each process is modeled by a hyper edge, see
figure A.8-B. The translation from C to the graph defining these hyper edges follows
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Figure A.9: The translation of the while loop and the read and write operations.

the method described in section A.2.4. The channels in the Kahn model are described
in C++. The channels are instantiations of a class with methods<buffer id>.write
and<buffer id>.read. Each instantiation of this class is translated to a sequence,
i.e. a semi-infinite array, together with an integer that points to the ’data value in
progress’, see figure A.8-B. The integers are initialized to 0.

The processes in C, in figure A.8-A, are modeled by infinite loops, for instance
’while(1) <statement>’. Before a process runs into the loop, it is initialized by
variable declaration and initialization. So the hyper edge P1 is defined by a graph
’P1 :’, figure A.8-C, consisting of two hyper edges, one that models the declarations and
initializations, ’declar/init’, and one that models the loop. All variables are modeled by
a struct bound to node Dd, cf. figure A.6-A. Clearly, all processes are equally structured
at this level of hierarchy.
The hyper edge ’loop’ is defined by a recursive graph, figure A.9-A, and consists of a

hyper edge ’statement’ that models the statements in the while-loop and a hyper edge
’loop’, which is defined by the graph itself. The channels are directly connected to both
the hyper edges ’statement’ and ’loop’, so these hyper edges can operate independently
on the channels. The integer that is associated with a channel, for example the integer
that is bound to the external node q1, is connected to the hyper edge ’statement’ where
it is updated according to the number of data values of the sequence that have been
read inside the hyper edge ’statement’. The resulting value of this integer is bound to
r1 in order to be used in the next instantiation of ’loop’. So integers associated with the
channels indicate the index of the value to be read or written next. The number of reads
and writes in each instantiation of ’statement’ may be data dependent, as is depicted in
figure A.9-B.

A.3.3 The Relation between the Synchronous Model and the Pro-
cess Model

Generally, the transformational design flow starts with a specification in terms of com-
municating processes, the process model, and ends with a design description in terms
of registers and functions, the synchronous model. So, somewhere in the transforma-
tional design flow we have to transform the process model to the synchronous model.
For this purpose the design description in terms of the process model will be trans-
formed such that all graphs ’statement’ contain exactly one unconditional ’fetch’ or
’write’ connected to each channel, see figure A.9-B. Such a graph corresponds to the
synchronous model depicted in figure A.7. The hyper edge ’declar/init’ in figure A.8-C
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Figure A.10: A NOR-gate implemented from two OR-gates and an AND-gate.

corresponds to ’init’ in figure A.7 and the hyper edge ’statement’ in figure A.9-A cor-
responds to the hyper edge ’F’ in figure A.7. The equivalence of both models follows
immediately from unfolding the recursion in figure A.9-A and the unfolded interpreta-
tion of the synchronous model shown in figure A.7.

A.4 The Semantical Model

The design flow we propose, is based on correctness-by-construction, meaning that the
external behavior expressed by the final design satisfies the external behavior expressed
by the specification. The entire flow from specification to final design is performed by
small behavior-preserving transformations. Clearly, a mathematical model should sup-
port such a transformational design system, to guarantee the correctness of the trans-
formations and to obtain an unambiguous interpretation of our design language. The
mathematical model that is used was originally developed for the description of re-
lational databases [1]. The definitions used in that theory have been generalized and
extended in order to cope with the structures described in section A.2.3. In the scope
of this paper, it is impossible to elaborate thoroughly on the semantical model, so we
will only give an overview of the approach.
Just like the language, the mathematical model should support both structure and be-
havior.

A.4.1 Structure.

A designDes consists of a number of graphsG, G ∈ Des. Each graphG is built
from a set of input nodes,Ninp,G, a set of output nodes,Nout,G, a set of internal nodes,
Nint,G and a set of hyper edgesEG. The hyper edges are related to their defining graphs
by a functiongG, with gG ∈ (EG → G). So gG(e) is the graph that definese. The
external nodes of its defining graph name the extremities of a hyper edge. The way in
which the extremities are connected to the nodes of the graph is described by a bijective
function h(e). This function, called the instantiation function, maps the nodes of the
graph connected to the hyper edges onto the external nodes of the defining graph of the
hyper edge. The example in figure A.10 illustrates this. It is defined by the sets:

Des= {nor :,not :,and :}
Ninp,nor: = {x, y} Nout,nor: = {z} Nint,nor: = {p,q}
Ninp,not: = {a} Nout,not: = {b} Nint,not: = �
Ninp,and:= {d,e} Nout,and:= {f} Nint,and:= �
Enor = {not1,not2,and1} Enot = {not} Eand= {and}

(A.5)
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the functionsgG that provide the defining graphs of the edges:

gG(not1)= not : gG(not2)= not : gG(and1)= and :
gG(not)= not : gG(and)= and :

(A.6)

and the instantiation functions:

h(not1)= {〈x,a〉, 〈p,b〉, } h(not)= {〈a,a〉, 〈b,b〉}
h(not2)= {〈y,a〉, 〈q,b〉, } h(and)= {〈d,d〉, 〈e,e〉 〈f, f〉}
h(and1)= {〈p,d〉, 〈q,e〉, 〈z, f〉}

(A.7)

These set and relations fully describe the structure of the design. For simplicity, all
identifiers are named globally.

A.4.2 Behavior

The values are bound to the nodes in the graph, i.e. to the structural identifiers. A set
of values bound to the nodes satisfying the behavior of the graph is called an obser-
vation. Hence, an observation is a function from the structural identifiers, the nodes
of the graph, to the data values. These data values can have different types. So, one
observation of the graph ’not:’ in figure A.10 is{〈a,0〉, 〈b,1〉}. The behavior of a graph
is defined as the set of all possible observations of the graph and is denoted byBeh(G).
So, the behavior of the graph ’not:’ is given by

Beh(not :)= {{〈a,0〉, 〈b,1〉}, {〈a,1〉, 〈b,0〉}} (A.8)

Such a set of functions all having the same domain is
called a Table. This name follows naturally from the rep-
resentation of such a set of functions.

Beh(not :)=
a b
0 1
1 0

The domain Dom(T) of a tableT is by definition the domain of the functions it contains.
In the preceding example Dom(Beh(not :))= {a,b}.

Instantiation of behavior:
In the graph ’nor:’, the observations on the nodes x and p have to agree with the ob-
servations of the graph ’not:’ because the graph ’not:’ prescribes the behavior of the
hyper edge ’not1’. The observations on the nodes x and p therefore must be an element
in Beh(not :) where a is substituted by x and b is substituted by p. Consequently, the
elements in the domain of the table are renamed.
The domain of a functionf can be renamed by the function compositionf ◦h in whichh
is a bijection mapping the new names on the old ones. Function composition is defined
by:

f ◦ h = {〈a, c〉 | ∃b : 〈a,b〉 ∈ h∧ 〈b, c〉 ∈ f } (A.9)

The domain of a table is renamed similarly by table-function compositionT◦◦h, in
which the functionh is a bijection. Likewise, table-function composition is function
composition of all functions in the table, i.e.:

T◦◦h = {t | ∃f : f ∈ T ∧ t = f ◦ h} (A.10)

So, the restriction put by hyper edge ’not1’ on the observations on the nodes ’x’ and
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’p’ is given by the tableBeh(not1) which follows from:

Beh(not1)= Beh(not :) ◦◦ {〈x,a〉, 〈p,b〉}

=
a b
0 1
1 0

◦◦ {〈x,a〉, 〈p,b〉}

=
x p
0 1
1 0

(A.11)

The behaviorBeh(not1) of the hyper edge ’not1’ is called the instantiation of the be-
haviorBeh(not :) of its defining graph ’not:’. The function that renames the domain of
the table in equation (A.11) is called the instantiation function. The functionh(not1)
given in (A.7) describes the mapping from the nodes to which the hyper edge is con-
nected to the external nodes of its defining graph. So, the behavior of a hyper edgeH
that is defined by a graphG is determined by:

Beh(H) = Beh(G) ◦◦ h(H) (A.12)

Deriving the behavior of a graph from its hyper edges:
Each of the hyper edges puts a restriction on the values that can be observed on the
nodes in the graph. Or stated differently, an observation on the graph satisfies the be-

havior of all its hyper edges. For example, the observationx p y q z
0 1 1 0 0

of the graph ’nor:’ satisfies the behavior of the hyper edges, because the observation
x p
0 1

, y q
1 0

and p q z
1 0 0

are elements in the behaviors of the hyper

edges ’not1’, ’not2’ and ’and1’ respectively.
Notice that these four observations are functions. Any pair of these functions is called
compatible because the function values of the elements in the intersection of their do-
mains are the same. So, two functionsf andg, in which f (x) andg(x) are scalars, are
compatible if:

∀x : x ∈ (dom(f ) ∩ dom(f )) =⇒ f (x) = g(x) (A.13)

In case the function valuesf (x) andg(x) are of the structured type, the definition of
compatibility has to be extended. The same holds for the definition of the natural join
./ below. These definitions are rather complex and beyond the scope of this paper.

The union of two functions, generally is not a function. However, the union of two
compatible functions is a function.
From the preceding we observe that an observation in the behavior of a graph must be
compatible with at least one observation in the behavior of each of the hyper edges in
that graph. And thus, the behavior of a graph follows from all compatible observations
of the hyper edges.
This leads to the following definition of the natural-join of two tablesT andU

T ./ U = {t ∪ u | t ∈ T ∧ u ∈ U ∧ t andu are compatible} (A.14)

For example the behavior of the graph ’nor’ is calculated by:

Beh(nor :)= Beh(not1) ./ Beh(not2) ./ Beh(and1) (A.15)
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or

x p
0 1
1 0

./
y q
0 1
1 0

./

p q z
0 0 0
0 1 0
1 0 0
1 1 1

=

x p y q z
0 1 0 1 1
0 1 1 0 0
1 0 0 1 0
1 0 1 0 0

(A.16)
From the preceding, we conclude that the behaviorBeh(G) of a graphG is the natural
join over the behavior of all hyper edges in the graph, while the behavior of the hyper
edges is determined by the external behavior of their defining graphs, cf. equation A.12
and A.15, so:

Beh(G) = ./
e ∈ EG

Beh(e) = ./
e ∈ EG

( Beh(gG(e)) ◦◦ h(e) ) (A.17)

We are now able to derive the behavior of a graph from the behavior of the defining
graphs of its hyper edges. One task that remains, is deriving the external behavior of
the graph. Restricting a functionf to a setA means removing all tuples〈a,b〉 from the
function of whicha is not an element ofA. This is denoted byf dA, so:

f dA = {〈a,b〉 | 〈a,b〉 ∈ f ∧ a ∈ A} (A.18)

The projectionTddA of a tableT to a setA is then defined by the restriction of all
functions inT, so:

TddA = {f | ∃g : g ∈ T ∧ f = gdA} (A.19)

Using this definition, the external behavior of a graph can be derived from the behavior
of a graph by projecting the behavior on the union of the input and output nodes, so:

Behext(G) = Beh(G)dd(Ninp,G ∪ Nout,G) (A.20)

The preceding definitions and formulas are sufficient to derive the behavior of any
graph from the primitive graphs and to derive the correctness of the transformations.
For example the correctness of the common subexpression transformation in figure A.2
can be proven as follows:
Let F be a function and let〈b, x〉 and〈r,V(r)〉 be tuples in an observation OJ of graph J:
and〈b, x〉, 〈p,V(p)〉 and〈q,V(q)〉 be tuples in an observation OK of graph K:. Because
F is a functionV(r) = V(p) = V(q) = F(x). From this the equivalence of the external
behavior is immediate. Notice that the transformation does not hold in case F is a
relation.

In most cases the graphs model functions. However, the calculus describes rela-
tions, because an observation only prescribes the allowed combinations of data values
that are bound to the nodes. This gives us the opportunity to describe non-determinism
in terms of output don’t-cares. Cycles in a graph are allowed but migth result in a
empty behavior as is the case in a graph with two hyperedges modelinga = b and
a = b+ 1.

A.5 Conclusions

We presented a ’correctness-by-construction’ design flow based on small local beha-
vior-preserving transformations. The design flow is built on a control data flow graph
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based design language that describes a design in terms of hyper graphs. The semantics
of the design representation are fully based on a set theoretic calculus and applies the
concept of the mathematical representation of tables.
The design language is sufficiently powerful for describing complex systems, though,
only for systems that are discrete in time and value.
The design flow starts from a specification in C++ in the form of a Kahn model of
communicating processes. The channels that model the communications are based on
a predetermined C++ class. However, in the process description object-oriented con-
cepts cannot be used. The principle of the translation of the specification in C++ to
our design representation is based on fixed templates; each language construct in C++

refers to a unique graph template. We have demonstrated the most important steps in
the translation process. Generally, the specification is mapped into a synchronous im-
plementation. For this purpose, the design language supports two models for dealing
with time. In the synchronous version, the design data values are described for a par-
ticular time instance, so time is implicit. A delay operation (register) is provided to
refer to data values from the previous time instance. In the process model version, time
is explicit and modeled by semi-infinite sequences. Transformations are provided to
switch between both models.
A design platform supporting the design flow described in this paper is under construc-
tion. This platform is built around a design database in which the design is stored and
which provides all primitive graphs and transformations. Furthermore, the design plat-
form contains a compiler for translating the Kahn model in C++ to the design language,
a graphic user interface for viewing and building graphs and tools for applying and
adding transformations.
In the past many relatively small design experiments based on transformational design
have been exercised, be it on a slightly different design language. These experiments
have shown the feasibility of transformational design [12–14] and its main advantages:
correctness-by-construction and therefore no lengthy simulation runs, freedom to ex-
ploit the designers creativity, short design times, flexibility in retargeting the design
flow from software implementation to hardware implementation and visa versa, ease
of handling complexity and a controllable design flow.
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B
Tiny Z Toolkit

B.1 Basic types

[CHAR]
B ::= 0 | 1

B.2 Sequence operations

[X]
� , � : 
 × seqX" seqX

∀n : 
; x, x′ : seqX | n ≤ #x •
n� x = x′ ⇔ (x′ prefix x ∧ #x′ = n) ∧
n� x = x′ ⇔ (x′ suffix x ∧ #x′ = #x− n)

[X]
write : 
 × seqX × seqX" seqX

∀offset: 
; segment, list : seqX | #list ≥ offset+ #segment•
write(offset, segment, list) = (offset� list)�

segment� (offset+ #segment� list)
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B.3 Projections

[X,Y,Z]
π1 : X × Y× Z" X
π2 : X × Y× Z" Y
π3 : X × Y× Z" Z

∀ x : X; y : Y; z : Z •
π1(x, y, z) = x ∧
π2(x, y, z) = y ∧
π3(x, y, z) = z
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