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Samenvatting

Probabilistisch model checking is een techniek voor de verificatie van pro-
babilistische systemen. De grootte van de toestandsruimte is een beper-
kende factor voor model checking. Om dit op te lossen, hebben we een
techniek toegepast genaamd bisimulatie-minimalisatie. Dit is een tech-
niek waarbij het model geminimaliseerd wordt voorafgaande aan model
checken. We hebben ook een techniek beschouwd waarbij het model gemini-
maliseerd wordt voor één specifieke formule. Het minimalisatie-algoritme is
gëımplementeerd in de model checker MRMC. Aan de hand van case studies
hebben we empirisch de effectiviteit van bisimulatie-minimalisatie voor pro-
babilistisch model checking bestudeerd. De modellen die we beschouwen zijn
Markov-ketens met discrete of continue tijd. Formules worden uitgedrukt in
de temporele logica PCTL of CSL. Uit onze experimenten is gebleken dat
bisimulatie-minimalisatie kan leiden tot grote reducties van de toestands-
ruimte. In een aantal gevallen is minimaliseren plus checken van het gemini-
maliseerde model sneller dan het originele model te checken. We concluderen
dat bisimulatie-minimalisatie een goede techniek is voor het reduceren van
de toestandsruimte.





Abstract

Probabilistic model checking is a technique for the verification of probabilis-
tic systems. The size of the state space is a limiting factor for model check-
ing. We used bisimulation minimisation to combat this problem. Bisimula-
tion minimisation is a technique where the model under consideration is first
minimised prior to the actual model checking. We also considered a tech-
nique where the model is minimised for a specific property, called formula-
dependent lumping. The minimisation algorithm has been implemented into
the model checker MRMC. Using case studies, we empirically studied the
effectiveness of bisimulation minimisation for probabilistic model checking.
The probabilistic models we consider are discrete-time Markov chains and
continuous-time Markov chains. Properties are expressed in the temporal
logic PCTL or CSL. Our experiments showed that bisimulation minimisation
can result into large state space reductions. Formula-dependent lumping
can lead to even larger state space reductions. For several cases, minimising
the original model plus checking the minimised model is faster than model
checking the original model. We conclude that bisimulation minimisation is
a good state space reduction technique.
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Chapter 1

Introduction

Model checking [9] is a technique for verifying software or hardware systems
in an automated way, such as real-time embedded or safety-critical systems.
Using a formal language, we can define a model which describes the system
requirements or the design of the system. A model checking tool verifies if
the model satisfies a formal specification, called a property or formula. This
specification is often expressed in a temporal logic, such as Computation
Tree Logic (CTL) [8]. In other words, model checking is a technique to
establish the correctness of the system.

Probabilistic model checking is a verification technique for probabilistic
systems. In these systems, there is a certain probability associated with
events. The probabilistic models we consider are discrete-time Markov
chains (DTMCs) and continuous-time Markov chains (CTMCs). Probabilis-
tic Computation Tree Logic (PCTL) [13] is a temporal logic that extends
CTL. It provides means to express properties which are interpreted over
DTMCs. Continuous Stochastic Logic (CSL) [5] is used to express prop-
erties on CTMCs. These logics allow formulating properties such as: the
probability a bad state is reached within 50 seconds is less than 10%.

For conventional as well as probabilistic model checking, the size of the state
space (i. e. the number of states of the model) is a limiting factor for model
checking. One way to combat this problem is to use state space reduction
techniques, such as multi-terminal binary decision diagrams (MTBDDs) [17],
symmetry reduction [23], or bisimulation minimisation. This thesis focuses
on bisimulation minimisation.

Bisimulation minimisation is a technique where the model under considera-
tion is first minimised prior to the actual model checking. For CTL model
checking, the cost of performing this reduction outweighs that of model
checking the original, non-minimised model [11]. In the probabilistic set-
ting this is unclear as the computations for bisimulation minimisation are
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as simple as for CTL model checking, whereas model checking is computa-
tionally more complex. In this thesis, we empirically study the effectiveness
of bisimulation minimisation for probabilistic model checking.

We implemented the bisimulation minimisation algorithm (i. e. the lumping
algorithm [10]) into the model checking tool Markov Reward Model Checker
(MRMC) [20]. This tool is currently being developed at the University of
Twente and at the RWTH Aachen University. We used several case studies
from the PRISM website [26]. In these case studies, a probabilistic model
of an algorithm or protocol is defined in the PRISM language. In our study,
we only used PRISM to build and export the models. Using MRMC, we
minimised this original model to compute a lumped model. We conducted
several experiments using these models.

In chapter 2 the theoretical background of DTMCs, CTMCs, PCTL, CSL
and bisimulation equivalence is introduced. Furthermore, the lumping algo-
rithm is presented. In chapter 3 the implementation of the lumping algo-
rithm into MRMC is explained. Chapter 4 describes experiments to check
the effectiveness of bisimulation minimisation for PCTL model checking. For
CSL model checking, experiments are described in chapter 6. This chapter
also compares bisimulation minimisation to symmetry reduction. Symmetry
reduction is a technique to reduce symmetric models prior to model checking.
Chapters 5 and 7 are devoted to techniques and experiments to minimise
the model for a specific PCTL or CSL formula, respectively. We call this
technique formula-dependent lumping, whereas bisimulation minimisation
in chapters 4 and 6 can be viewed as formula-independent lumping. Finally,
chapter 8 presents the conclusion and future work.



Chapter 2

Preliminaries

This chapter introduces the basic concepts and definitions for DTMCs and
CTMCs. Then the syntax, semantics and model checking algorithms of
PCTL and CSL are explained. Finally, bisimulation equivalence and the
lumping algorithm are presented. Definitions and notations in this chapter
are used in the remainder of this thesis.

2.1 Discrete-time Markov chains

A DTMC is considered as a Kripke structure with probabilistic transitions.
Every transition corresponds to one time unit.

Definition 1. A (labelled) discrete-time Markov chain (DTMC) is a triple

D = (S,P, L),

where

• S is a finite set of states,

• P is the transition probability matrix, P : S × S → [0, 1], such that
for all s in S:

∑

s′∈S

P(s, s′) = 1,

• L is a labelling function, L : S → 2AP , that labels any state s ∈ S with
those atomic propositions a ∈ AP that are valid in S.

The probability of going to state s′ from state s is P(s, s′). If P(s, s′) = 0,
there is no transition from s to s′. Whenever P(s, s′) > 0, state s′ is called
a successor of s and s is a predecessor of s′. A state s is called absorbing, if
P(s, s) = 1. Such a state has a self-loop and no other outgoing transitions.
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Definition 2. A path σ in a DTMC D is an infinite sequence

σ = s0 → s1 → · · · si → · · ·

of states with s0 as the first state such that P(si, si+1) > 0 for all i ≥ 0.
The (i + 1)-th state si of σ is denoted as σ[i], and the prefix of σ of length
n is denoted σ ↑n, i. e. σ ↑n = s0 → s1 → · · · → sn. Let PathD(s) denote
the set of paths in D that start in s.

Following measure theory a probability measure can be defined on the sets
of paths [13].

Definition 3. The probability measure Pr on the sets of paths in DTMC D
starting in s0 is defined as follows for n > 0:

Pr({σ ∈ PathD(s0) | σ↑n = s0 → s1 → · · · → sn}) = P(s0, s1)×· · ·×P(sn−1, sn)

and for n = 0: Pr({σ ∈ PathD(s0) | σ↑0 = s0}) = 1

2.2 Continuous-time Markov chains

In a DTMC each transition corresponds to one time unit. A CTMC has a
continuous time range. Each transition is equipped with an exponentially
distributed delay.

Definition 4. A (labelled) continuous-time Markov chain (CTMC) is a
triple

C = (S,R, L),

with S and L as before, and R : S × S → R≥0 as the rate matrix.

There is a transition from s to s′, if R(s, s′) > 0. A state s is called
absorbing, if R(s, s′) = 0 for all states s′. With probability 1 − e−λ·t the
transition s → s′ can be triggered within t time units. If R(s, s′) > 0 for
more than one state s′, a race exists between the outgoing transitions from
s. The probability to move from nonabsorbing state s to state s′ 6= s within
t time units is:

P(s, s′, t) =
R(s, s′)

E(s)
· (1 − e−E(s)·t),

where E(s) =
∑

s′∈S R(s, s′) denotes the exit rate at which any transition
from s is taken.

A path in a CTMC is similar to a path in a DTMC except that the amount
of time in each visited state is recorded.
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Definition 5. Let CTMC C = (S,R, L) be a CTMC. An infinite path σ in

C is a infinite sequence s0
t0→ s1

t1→ s2
t2→ · · · with si ∈ S and ti ∈ R>0 such

that R(si, si+1) > 0 for all i ≥ 0. A finite path is a sequence s0
t0→ s1

t1→

· · · sn−1
tn−1

→ sn such that sn is absorbing and R(si, si+1) > 0 for 0 ≤ i < n.
Let PathC(s) denote the set of (finite and infinite) paths in C that start in
s.

For infinite path σ and i ≥ 0, let σ[i] denote the (i + 1)-th state of σ and
δ(σ, i) = ti, the time spent in state si. For t ∈ R≥0 and i the smallest index
with t ≤

∑i
j=0 tj, the state of σ occupied at time t is denoted by σ@t = σ[i].

Let Pr denote the unique probability measure on sets of paths, for details
see [5].

The time-abstract probabilistic behaviour of CTMC C is described by its
embedded DTMC:

Definition 6. The embedded DTMC of CTMC C = (S,R, L) is given
by emb(C) = (S,P, L), where P(s, s′) = R(s, s′)/E(s) if E(s) > 0 and
P(s, s′) = 0 otherwise.

Uniformisation is the transformation of a CTMC into a DTMC:

Definition 7. For CTMC C = (S,R, L), the uniformised DTMC is defined
by unif(C) = (S,U, L), where U = I + Q/q with Q = R − diag(E). The
uniformisation rate q must be chosen such that q ≥ maxs{E(s)}.

E = diag(E) denotes the diagonal matrix with E(s, s) = E(s) and 0 other-
wise.

2.3 Probabilistic Computation Tree Logic

The Probabilistic Computation Tree Logic (PCTL) extends the temporal
logic CTL with discrete time and probabilities [13]. It consists of state
formulas, which are interpreted over states of a DTMC, and path formulas,
which are interpreted over paths in a DTMC.
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2.3.1 Syntax and semantics

Definition 8. The set of PCTL formulas is divided into path formulas and
state formulas. Their syntax is defined inductively as follows:

• true is a state formula,

• Each atomic proposition a ∈ AP is a state formula,

• If Φ and Ψ are state formulas, then so are ¬Φ and Φ ∧ Ψ,

• If Φ is a state formula, then X Φ is a path formula,

• If Φ and Ψ are state formulas and t ∈ N, then Φ U≤t Ψ and Φ U Ψ are
path formulas,

• If φ is a path formula and p a real number with 0 ≤ p ≤ 1 and let
E∈ {≤, <,>,≥} be a comparison operator, then PEp(φ) is a state
formula.

The operator X is the next operator, U≤t is the bounded until operator,
and U is the unbounded until operator. The next operator and the un-
bounded until operator have the same meaning as in CTL. The bounded
until operator Φ U≤t Ψ means that both Ψ will become true within t time
units and that Φ will be true from now on until Ψ becomes true. The for-
mula PEp(φ) expresses that the probability measure of paths satisfying φ
meets the bound E p. This operator replaces the usual path quantifiers ∃
and ∀ from CTL. Other Boolean operators (∨ and →) can be derived from
∧ and ¬ as usual.

Given a DTMC D = (S,P, L) the meaning of PCTL formulas is defined by
a satisfaction relation, denoted by |=D, with respect to a state s or a path
σ.

Definition 9. The satisfaction relation |=D for PCTL formulas on a DTMC
D = (S,P, L) is defined by:

s |=D true for all s ∈ S
s |=D a iff a ∈ L(s)
s |=D ¬Φ iff s 6|=D Φ
s |=D Φ ∧ Ψ iff s |=D Φ and s |=D Ψ
s |=D PEp(φ) iff Pr({σ ∈ PathD(s) | σ |=D φ}) E p
σ |=D X Φ iff σ[1] |=D Φ
σ |=D Φ U≤t Ψ iff ∃ i ≤ t.

(

σ[i] |=D Ψ ∧ (∀j . 0 ≤ j < i . σ[j] |=D Φ)
)

.
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2.3.2 Model checking

The model checking algorithm for checking PCTL property ψ on DTMC D =
(S,P, L) is based on the algorithm for model checking CTL [8]. It involves
the calculation of satisfaction sets Sat(ψ), where Sat(ψ) = {s ∈ S | s |= ψ}.
In order to calculate these sets, the syntax tree of ψ is constructed. This
syntax tree is traversed bottom-up while calculating the satisfaction sets of
the subformulas of ψ.

Algorithms for calculating the satisfaction sets of until formulas are de-
scribed below. Calculation of satisfaction sets of other subformulas is straight-
forward, for details see [13].

Bounded until operator

This algorithm calculates the satisfaction set for ψ = PEp(Φ U≤t Ψ) assum-
ing Sat(Φ) and Sat(Ψ) are given.

The set of states S is partitioned into three subsets Ss, Sf and Si:

Ss = {s ∈ S | s ∈ Sat(Ψ)}

Sf = {s ∈ S | s /∈ Sat(Φ) ∧ s /∈ Sat(Ψ)}

Si = {s ∈ S | s ∈ Sat(Φ) ∧ s /∈ Sat(Ψ)}

The probability measure πt(s) for the set of paths starting in s satisfying
Φ U≤t Ψ is defined in the following recursion [13]:

πt(s) =







0 if s ∈ Sf ∨ (t = 0 ∧ s ∈ Si)
1 if s ∈ Ss
∑

s′∈S P(s, s′) · πt−1(s
′) if t > 0

States in Ss and Sf are made absorbing. This can be done safely, because
once such a state has been reached the future behaviour is irrelevant for the
validity of ψ. To this end, the matrix P′ is constructed:

P′(s, s′) =







P(s, s′) if s ∈ Si

1 if s /∈ Si ∧ s = s′

0 otherwise

For t > 0, πt = P′ · πt−1. In total, this requires t matrix-vector multiplica-
tions.

This vector is used to construct the satisfaction set for ψ:

Sat(ψ) = {s ∈ S | πt(s) E p}
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Unbounded until operator

This algorithm calculates the satisfaction set for ψ = PEp(Φ U Ψ) assuming
Sat(Φ) and Sat(Ψ) are given.

The set Sf is extended to also include states from which no state in Ss is
reachable. Similarly, the set Ss is extended to also include states from which
all paths through Si eventually reach a state in Ss.

Us = Ss ∪ {s ∈ Si | all paths through Si starting in s reach a state in Ss}

Uf = Sf ∪ {s ∈ Si | there exists no path in Si from s to a state in Ss}

Ui = S \ (Us ∪ Uf )

These sets can be calculated using conventional graph analysis, i. e. backward
search. States in Us and Uf are made absorbing.

The following linear equation system defines the state probabilities for the
unbounded until operator [13]:

π∞(s) =







0 if s ∈ Uf

1 if s ∈ Us
∑

s∈S P(s, s′) · π∞(s′) otherwise

This linear equation system can be solved using iterative methods like the
Jacobi or the Gauss-Seidel method [30]. The iteration is generally continued
until the changes made by an iteration are below some ε:

πt(s) − πt−1(s) < ε for all states s ∈ S

Similarly to the bounded until operator, the satisfaction set for ψ is con-
structed:

Sat(ψ) = {s ∈ S | π∞(s) E p}

2.4 Continuous Stochastic Logic

The Continuous Stochastic Logic (CSL) provides means to specify logical
properties for CTMCs [5]. It extends PCTL with a steady state operator
and continuous time intervals on next and until operators. The steady state
operator refers to the probability of residing in a set of states in the long-run.
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2.4.1 Syntax and semantics

Definition 10. Let p and E be as before and I ⊆ R≥0 a non-empty interval.
The syntax of CSL is:

• true is a state formula,

• Each atomic proposition a ∈ AP is a state formula,

• If Φ and Ψ are state formulas, then so are ¬Φ and Φ ∧ Ψ,

• If Φ is a state formula, then so is SEp(Φ),

• If φ is a path formula, then PEp(φ) is a state formula,

• If Φ and Ψ are state formulas, then X I Φ and Φ U I Ψ are path formu-
las.

The state formula SEp(Φ) asserts that the steady state probability of being
in a state satisfying Φ meets the condition E p. The path formula X I Φ
asserts that a transition is made to a state satisfying Φ at some time instant
t ∈ I. The path formula Φ U I Ψ asserts that Ψ is satisfied at some time
instant t ∈ I and that at all preceding time instants Φ is satisfied. Path
formula Φ U [0,∞) Ψ is the unbounded until formula.

Similar to PCTL, the semantics of CSL is defined by a satisfaction relation.

Definition 11. The satisfaction relation |=C for CSL formulas on a CTMC
C = (S,R, L) is defined by:

s |=C true for all s ∈ S
s |=C a iff a ∈ L(s)
s |=C ¬Φ iff s 6|=C Φ
s |=C Φ ∧ Ψ iff s |=C Φ and s |=C Ψ
s |=C SEp(Φ) iff limt→∞ Pr({σ ∈ PathC(s) | σ@t |=C Φ}) E p
s |=C PEp(φ) iff Pr({σ ∈ PathC(s) | σ |=C φ}) E p
σ |=C X

I Φ iff σ[1] is defined and σ[1] |=C Φ and δ(σ, 0) ∈ I
σ |=C Φ UI Ψ iff ∃t ∈ I.

(

σ@t |=C Ψ ∧ (∀t′ ∈ [0, t).σ@t′ |=C Φ)
)

.

2.4.2 Model checking

CSL model checking [5, 21] is performed in the same way as for PCTL,
by recursively computing satisfaction sets. For the Boolean operators and
unbounded until this is exactly as for PCTL. The other operators will be
shortly discussed below. The probability measure for the sets of paths that
satisfy φ and start in s in CTMC C is denoted by ProbC(s, φ).



22 Chapter 2. Preliminaries

Next operator

The probability for each state s to satisfy X [t,t′] Φ is defined by:

ProbC(s,X [t,t′ ] Φ) =
(

e−E(s)·t − e−E(s)·t′
)

·
∑

s′|=CΦ

P(s, s′)

These probabilities can be computed by multiplying P with vector b, where
b(s) = e−E(s)·t − e−E(s)·t′ , if s ∈ Sat(Φ) and b(s) = 0 otherwise.

Steady state operator

To check whether s |=C SEp(Φ), first each bottom strongly connected com-
ponent (BSCC) of CTMC C is computed. A BSCC is a maximal subgraph
of C in which for every pair of vertices s and s′ there is a path from s to
s′ and a path from s′ to s and once entered it cannot be left anymore. For
each BSCC B containing a Φ state, the following linear equation system is
solved:

∑

s∈B
s6=s′

πB(s) · R(s, s′) = πB(s′) ·
∑

s∈B
s6=s′

R(s′, s) with
∑

s∈B

πB(s) = 1

Then, the probabilities to reach each BSCC B from a given state s are
computed. State s satisfies SEp(Φ) if:

∑

B

(

Pr{reach B from s} ·
∑

s′∈B∩Sat(Φ)

πB(s′)

)

E p

Time-bounded until operator

Let πC(s, t)(s′) denote the probability of being in state s′ at time t, under the
condition that the CTMC C is in state s at time 0. CTMC C[ψ] is defined by
the matrix obtained from C where states satisfying ψ are made absorbing.
For formulas of the form PEp(Φ U [t,t′] Ψ), two cases can be distinguished:
t = 0 and t > 0.

If t = 0, the probability measure is defined as:

ProbC(s,Φ U [0,t′] Ψ) =
∑

s′|=Ψ

πC[¬Φ∨Ψ](s, t′)(s′)

For t > 0:

ProbC(s,Φ U [t,t′] Ψ) =
∑

s′|=Φ

(

πC[¬Φ](s, t)(s′) ·
∑

s′′|=Ψ

πC[¬Φ∨Ψ](s′, t′ − t)(s′′)

)
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The probabilities πC(s, t)(s′) can be computed as follows:

πC(s, t) = πC(s, 0) ·
∞
∑

k=0

γ(k, q · t) · Uk (2.1)

where U is the probability matrix of the uniformised DTMC unif(C) and
γ(k, q · t) is the kth Poisson probability with parameter q · t.

To compute the transient probabilities numerically, the infinite summation
(2.1) is truncated. Given an accuracy ε, only the first Rε terms of the sum-
mation have to considered. Since the first group of Poisson probabilities are
typically very small, the first Lε terms can be neglected. Lε and Rε are called
the left and right truncation point, respectively, and can be computed using
the Fox-Glynn algorithm [12] as well as the Poisson probabilities. Numeri-
cally computing this summation requires Rε matrix-vector multiplications.
For t > 0, this is needed two times on different transformed CTMCs: first
C[¬Φ ∨ Ψ] then C[¬Φ].

2.5 Bisimulation equivalence

Lumping is a technique to aggregate the state space of a Markov chain
without affecting its performance and dependability measures. It is based
on the notion of ordinary lumpability [7]. A slight variant is bisimulation in
which it is required in addition that bisimilar states are equally labelled [6].

2.5.1 The discrete-time setting

Definition 12. Let D = (S,P, L) be a DTMC and R an equivalence relation
on S. R is a bisimulation on D if for (s, s′) ∈ R:

L(s) = L(s′) and q(s, C) = q(s′, C) for all C ∈ S/R,

where q(s, C) =
∑

s′∈C P(s, s′) = P(s, C). States s and s′ are bisimilar if
there exists a bisimulation R that contains (s, s′).

Let [s]R ∈ S/R denote the equivalence class of s under the bisimulation
relation R. For D = (S,P, L), the lumped DTMC D/R is defined by
D/R = (S/R,PR, LR) where PR([s]R, C) = q(s, C) and LR([s]r) = L(s).
States which belong to the same equivalence class have the same cumulative
probability of moving to any equivalence class: [s]R = [s′]R ⇒ PR([s]R, C) =
PR([s′]R, C).

In [3], it is shown that bisimulation is sound and complete with respect to
pCTL*. pCTL* is an extension of PCTL. Bisimulation is also sound and
complete with respect to PCTL [6]. This results in the following theorem:
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Theorem 1. Let R be a bisimulation on DTMC D and s be an arbitrary
state in D. Then for all PCTL formulas Φ:

s |=D Φ ⇐⇒ [s]R |=D/R Φ

Hence, bisimulation preserves all PCTL formulas. Intuitively, this means
every PCTL formula can be checked on the lumped DTMC D/R instead of
on the original DTMC D.

2.5.2 The continuous-time setting

Similar to DTMCs, a bisimulation relation can be defined for CTMCs. The
difference is that bisimilar states have the same cumulative rate instead of
cumulative probability.

Definition 13. Let C = (S,R, L) be a CTMC and R an equivalence relation
on S. R is a bisimulation on C if for (s, s′) ∈ R:

L(s) = L(s′) and q(s, C) = q(s′, C) for all C ∈ S/R,

where q(s, C) =
∑

s′∈C R(s, s′) = R(s, C). States s and s′ are bisimilar if
there exists a bisimulation R that contains (s, s′).

The notations and definitions for equivalence class and lumped CTMC are
similar to the discrete-time setting.

Bisimulation equivalence for CSL is shown in [5]:

Theorem 2. Let R be a bisimulation on CTMC C and s be an arbitrary
state in C. Then for all CSL formulas Φ:

s |=C Φ ⇐⇒ [s]R |=C/R Φ

Hence, also every CSL formula can be checked on the lumped CTMC C/R
instead of on the original CTMC C.

2.6 Lumping algorithm

In [10], an algorithm is presented for the optimal lumping of CTMCs, al-
though it can also be used for the optimal lumping of DTMCs. The al-
gorithm constructs the coarsest lumped Markov chain of a given Markov
chain. In this context, coarsest means having the fewest number of equiva-
lence classes. It is based on the partition refinement algorithm of Paige and
Tarjan for computing bisimilarity on labelled transition systems [24]. The
time complexity is O(m log n), where m is the number of transitions and n
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is the number of states in the Markov chain, and the space complexity is
O(m+ n).

The algorithm is based on the notion of splitting. Let P be a partition of S
consisting of blocks. Hence, a block is a set of states. Let [s]P denote the
block in partition P containing state s. A splitter for a block B ∈ P is a
block Sp ∈ P which satisfies:

∃si, sj ∈ B . q(si, Sp) 6= q(sj, Sp) (2.2)

In this case, B can be split into sub-blocks {B1, . . . , Bn} satisfying:

∀si, sj ∈ Bi . q(si, Sp) = q(sj, Sp)

∀si ∈ Bi, sj ∈ Bj . Bi 6= Bj . q(si, Sp) 6= q(sj, Sp)

Intuitively, a block is split into sub-blocks in which each state has the same
cumulative probability/rate to move to a state contained in the splitter.

Pseudocode of the lumping algorithm is given in Algorithm 1. It has as
parameters an initial partition P and a transition matrix Q. It returns the
transition matrix Q′ = QR of the lumped Markov chain. Furthermore, the
initial partition is refined to the coarsest lumping partition (i. e. the final
partition). In case of a DTMC D = (S,P, L), we have Q = P and in case of
a CTMC C = (S,R, L), we have Q = R. L plays the role of a list of ‘poten-
tial’ splitters. This list should not be confused with the labelling function.
Only blocks which can split some or more block according to condition (2.2)
are splitters. Initially, every block in the initial partition is considered a po-
tential splitter. In the while loop, procedure SPLIT splits each block B ∈ P
with respect to the potential splitter from L that satisfies condition (2.2).
It may also add new potential splitters to L. When L is empty, no more
blocks can be split and the transition matrix Q′ is constructed according to
the definition of the lumped Markov chain in section 2.5.

The pseudocode for procedure SPLIT is given in Algorithm 2. It has as
parameters a potential splitter Sp, the partition P and the list of potential
splitters L. Line 1 initialises L′ and L′′ to empty sets. L′ contains the set
of states which have a transition to a state in Sp. L′′ contains the set of
blocks which have been split with respect to splitter Sp. Each state si has a
variable si.sum which stores the value of q(si, Sp). If there is no transition
from si to Sp, we have si.sum = 0. Lines 2–4 initialise these values to zero
for each state which has a transition to Sp. Lines 5–8 compute these values
according to the definition in section 2.5 and store the states in L′.

Each block B has a binary search tree BT , which is called the sub-block tree.
Each node in BT contains the states s ∈ B which have the same value of
q(s, Sp). Lines 9–13 perform the actual splitting of blocks. The list L′′ is
also constructed. Each state si ∈ L′ is removed from its original block B
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and inserted into the corresponding node in the sub-block tree BT . States
which have no transition to a state in Sp will remain in B.

Lines 14–20 update the list of potential splitters L and the partition P . For
each block B in L′′ all sub-blocks of B are added to L except for the largest
sub-block. The largest sub-block can be neglected, because its power of
splitting other blocks is maintained by the remaining sub-blocks [1]. How-
ever, when the original block already was a potential splitter the largest
sub-block cannot be excluded. This strategy is also used in [1]. When no
states are remaining in the original block and there is only one sub-block
the original block has not been split. If the original block was a potential
splitter, the sub-block should also be added as a potential splitter. Line 20
adds the sub-blocks to the partition.

Splay trees

Any implementation of a binary search tree can be used as a sub-block
tree. To achieve a O(m log n) time complexity splay trees [29] are used. A
splay tree is a self-balancing binary search tree with the additional unusual
property that recently accessed elements are quick to access again. It per-
forms basic operations such as insertion, look-up and removal in O(log n)
amortised time. Amortised time is the average time of an operation in a
worst-case sequence of operations. All normal operations on a splay tree are
combined with one basic operation, called splaying. Splaying the tree for a
certain element rearranges the tree so that the element is placed at the root
of the tree. This is to be done by first performing a standard binary tree
search for the element in question and then use tree rotations in a specific
fashion to bring the element to the top.
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Algorithm 1 LUMP(P,Q)

1: L := blocks of P
2: while L 6= ∅ do
3: Sp := POP(L)
4: SPLIT(Sp, P, L)
5: n′ := number of blocks in P
6: allocate n′ × n′ matrix Q′

7: initialise Q′ to zero
8: for every block Bk of P do
9: si := arbitrary state in Bk

10: for every sj such that si → sj do
11: Bl := block of sj

12: Q′(Bk, Bl) := Q′(Bk, Bl) +Q(si, sj)
13: return Q′

Algorithm 2 SPLIT(Sp, P, L)

1: L′, L′′ := ∅
2: for every sj ∈ Sp do
3: for every si → sj do
4: si.sum := 0
5: for every sj ∈ Sp do
6: for every si → sj do
7: si.sum := si.sum+Q(si, sj)
8: L′ := L′ ∪ {si}
9: for each si ∈ L′ do

10: B := block of si

11: delete si from B
12: INSERT(BT , si)
13: L′′ := L′′ ∪ {B}
14: for every B ∈ L′′ do
15: if B /∈ L then
16: Bl := largest block of {B,B1, . . . , B|BT |}
17: L := L ∪ {B,B1, . . . , B|BT |} − {Bl}
18: else
19: L := L ∪ {B1, . . . , B|BT |}
20: P := P ∪ {B1, . . . , B|BT |}





Chapter 3

Implementation of the

lumping algorithm

This chapter describes the implementation of the algorithm for the optimal
lumping Markov chains into the Markov Reward Model Checker (MRMC).

3.1 The Markov Reward Model Checker

MRMC [20] is a tool for model checking discrete-time and continuous-time
Markov reward models. These models are DTMCs or CTMCs equipped with
rewards and can be verified using reward extensions of PCTL and CSL. In
this study, rewards are not of interest. MRMC also supports the verification
of DTMCs and CTMCs without rewards using PCTL and CSL.

The tool supports an easy input format facilitating its use as a backend
tool once the Markov chain has been generated. It is a command-line tool
written in C and expects at least two input files: a .tra file describing the
transition matrix and a .lab file indicating the state labelling with atomic
propositions.

The iterative methods supported by MRMC for solving linear equation sys-
tems are the Jacobi and the Gauss-Seidel method. For unbounded until
formulas (PCTL or CSL), only the Jacobi method is used. By default,
MRMC uses ε = 10−6 to determine convergence (see section 2.3.2).

The transition matrix is stored in a slight variant of Compressed Row/Column
representation. This sparse matrix representation only stores the non-zero
elements of the matrix. Each row in the matrix is stored as a structure which
contains a pointer to an array of integers, column indices, and a pointer to
an array of double values which are the matrix values. These matrix val-
ues are ordered by column index. The number of non-zero elements in a
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row is stored in variable ncols. In addition, each row has a pointer to an
array (backset) of row indices which have a transition to this row. This ar-
ray makes it possible to access the predecessors of a state easily. Self-loops
(i. e. the diagonal elements) are stored in a separate variable diag. The ex-
ample below shows a transition matrix A and its Compressed Row/Column
representation.

A =





0.5 0.5 0.0
0.25 0.0 0.75
0.0 0.0 1.0



 =































































ncols[0] = 1

cols[0] →
[

1
]

vals[0] →
[

0.5
]

backset→
[

1
]

diag = 0.5

ncols[1] = 2
cols[1] →

[

0 2
]

vals[1] →
[

0.25 0.75
]

backset→
[

0
]

diag = 0.0

ncols[2] = 0
cols[2] → NULL
vals[2] → NULL
backset→

[

1
]

diag = 1.0































































3.2 Implementing the lumping algorithm

A description of the lumping algorithm and pseudocode is given in section
2.6. This section uses the same terminology.

3.2.1 Data structures

We implemented a partition as a linked list of block structures. A block has
a doubly-linked list of state structures representing the states in that block
and it stores the number of states. A doubly-linked list makes insertion and
removal of states possible in constant time. MRMC uses bitsets to represent
a set of states. A bitset is an array of integers containing at least |S| bits.
If bit i is set to 1, state si is a member of the bitset. An integer consists of
4 · 8 = 32 bits, so the number of bytes required for a bitset is 4 · d|S|/32e.
Using bitsets to store the states in a block requires 4 · d|S|/32e bytes for each
block. When using a linked list of state structures, the number of bytes to
store these states is fixed, because there is exactly one state structure for each
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partition block block

state

index=0

state

index=2

state

index=1

s[0] s[1] s[2]

Figure 3.1: Example data structure

state. So, for large numbers of blocks using bitsets requires more memory.
Therefore, we used a linked list to store the states in a block.

Each block has two flags (bits) that show its membership in L and L′′. A
block also has a pointer to its sub-block tree. Each state structure has a
pointer to its block. The partition structure also has an array of pointers
to state structures. Element s[i] in this array points to the state structure
of state si. Because a state structure has a pointer to its block, this array
makes it easy to access the block of a state.

In figure 3.1 an example is given of a data structure of blocks and states in
a partition. A box denotes a structure and an arrow denotes a pointer to a
structure. The variables contained in the structures are not shown, except
the state index. For sake of readability, only the states contained in the first
block are shown.
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3.2.2 The initial partition

States in each equivalence class (block) under bisimulation agree on their
atomic propositions. Thus, states which have the same combination of
atomic propositions should be put into the same block in the initial par-
tition P :

∀si, sj ∈ B . L(si) = L(sj) for all B ∈ P

The number of different combinations of atomic propositions is 2|AP |. Ob-
viously, the initial partition cannot contain more than |S| blocks.

To determine in which block a state should be put, we used a binary search
tree with depth |AP |. For each state si, we start at the root of this tree.
If the first atomic proposition is valid in si, we move to the left subtree,
otherwise we move to the right subtree. This procedure is repeated for the
each atomic proposition until a leaf node is reached. This leaf node has a
pointer to a block in which si should be put. The tree can be constructed
while putting states in the initial partition. So, it is not necessary to build
the entire tree in advance. Nodes in the tree which are never accessed are
not constructed.

Figure 3.2 shows an example of such a tree. There are two atomic proposi-
tions a and b. The node b∧¬a does not exists. So, in this example no state
is labelled with b ∧ ¬a.

partition block block block

a ¬a

a ∧ b a ∧ ¬b ¬a ∧ ¬b

Figure 3.2: Example binary search tree used for creating the initial partition
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3.2.3 Procedure LUMP

Line 1 (see Algorithm 1 on page 27) of LUMP initialises L. This set is
implemented as a linked list. Every item in this list has a pointer to a
block. Line 5 counts the number of blocks in the final partition. In the
implementation every block is assigned a unique number which corresponds
to its row index in the lumped transition matrix. Line 9 chooses an arbitrary
state from a block. Our implementation simply takes the first state. Since
some model checking algorithms of MRMC require the matrix values to be
ordered by column index, each row (i. e. the arrays cols and vals) of the
lumped transition matrix is sorted after it has been filled completely. This
is done using an slightly adapted version of quicksort [1].

3.2.4 Procedure SPLIT

L′ of the SPLIT procedure stores the set of states that have a transition to
a state in Sp. It is implemented as a global integer array of size |S|. The
state indices j of states sj are stored in this array. A variable to maintain
the number of used elements is incremented every time an element is added
at line 8. Each state si is appended to L′ once, if the old value of q(si, Sp)
is zero.

The values of the cumulative function q are stored in a global array sum[ ].
Element sum[i] in this array stores q(si, Sp). Lines 2–4 initialises these
values to zero for states which have a transition to a state in S. This can
be replaced by setting q(si, Sp) to zero after state si has been inserted into
the sub-block tree on line 12. This is allowed because q(si, Sp) is not used
again after the insert into the tree. The array then only has to be initialised
to zero before the first call to SPLIT. This is much faster than iterating
through all predecessors.

Because MRMC uses a sparse matrix representation to store the transition
matrix line 7 cannot be implemented to take constant time. The row el-
ements are ordered by column so a binary search can be used to access
Q(si, sj). This takes O(log n) time, where n is the number of successor
states of si, i. e. the number of non-zero elements in row i.

The sub-block tree is implemented as a splay tree. Each tree node contains
a pointer to a block structure, which is a sub-block of the original block. A
tree node also contains a key equal to q(s, Sp), where s is a state contained
in that sub-block. Every time a state is deleted from its original block and
inserted into a sub-block, the number of states in the original block and the
sub-block is updated. For this state, also the pointer to its block is updated.
We used the splay tree implementation from Daniel Sleator’s website 1.

1http://www.link.cs.cmu.edu/splay/
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Lines 14–20 update the list of potential splitters. For each block B ∈ L′′

the sub-blocks are added to the list of potential splitters. If B is not (yet)
a potential splitter, the largest sub-block can be neglected. Each block has
a flag to show its membership in L, which makes it is easy to determine if
B is already a potential splitter.

At the end of each call to SPLIT each sub-block tree is destroyed and
the sub-blocks are added to the partition. Keeping the sub-blocks in the
tree can cause states in the same sub-block with different total outgoing
rates/probabilities to another block.



Chapter 4

Bisimulation minimisation

and PCTL model checking

4.1 Introduction

This chapter describes experiments to study the effectiveness of bisimulation
minimisation for PCTL model checking. We used several case studies from
the PRISM website [26]. In these case studies, a probabilistic model of an
algorithm or protocol is defined. The probabilistic model checker PRISM
[22] is then used to check whether certain PCTL properties hold.

In this study, we used PRISM to build and export a DTMC for these proba-
bilistic models. Using MRMC, we minimised this original model to compute
a lumped model. The implementation of the lumping algorithm is described
in the previous chapter. When creating the initial partition, only atomic
propositions contained in the PCTL property were considered. After lump-
ing, the labelling function was modified such that it corresponded to the
lumped DTMC. In our experiments, the time to check the property on the
original DTMC is compared to the time to lump and check the property on
the lumped DTMC.

For each case study a short description will follow. Then the PCTL prop-
erties are explained and finally the results are presented. These results
include:

• the number of states and transitions in the original DTMC represent-
ing the model;

• the number of blocks (i. e. states) in the lumped DTMC;

• lump equals the time (in milliseconds) to construct the initial partition
and lumping the DTMC;
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• MC equals the time (in milliseconds) to check the PCTL property;

• the reduction factor of the state space;

• the reduction factor of the runtime (i. e. checking the original DTMC
divided by lumping plus checking the lumped DTMC).

Also the time complexity of the lumping algorithm, O(m log n), where n is
the number of states and m is the number of transition in the DTMC, is
compared to the actual runtime.

All experiments were conducted on an Intel Pentium 4 2.66 GHz with 1 GB
RAM running Linux.

4.2 PCTL properties

To study the effectiveness of bisimulation minimisation for PCTL model
checking it is important which kind of properties to consider. Assuming
states are labelled with Φ and Ψ model checking ¬Φ, Φ ∧ Ψ, Φ ∨ Ψ and
X Φ is straightforward and not computationally expensive. This leaves the
bounded and unbounded until operators.

The algorithm for model checking bounded until operators is given in section
2.3.2. The state probabilities are calculated in t iterations. Hence, increasing
the bound t yields a longer computation time. Therefore, a realistic time
bound with respect to the case study under consideration should be chosen.
The worst-case time complexity of model checking a bounded until operator
is O(t · (m+ n)) [13].

Section 2.3.2 describes the algorithm for model checking unbounded until
operators. The worst-case time complexity is O(n3) [5]. Using a backward
search, the set of states is partitioned into three subsets subsets Us, Uf

and Ui. If Ui is empty, no linear equation system has to be solved because
the solution is already given. Ui is empty if for every state in Si either
no path reaches a state in Ss or all paths reach a state in Ss. For these
kind of properties, it is not likely that bisimulation minimisation takes less
time than model checking the original DTMC. Therefore, unbounded until
properties for which Ui = ∅ are not considered.

Compared to the time complexity of bisimulation minimisation (O(m log n)),
bounded and unbounded until properties are the most interesting properties
to consider.
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4.3 Case studies

4.3.1 Synchronous Leader Election Protocol

This case study is based on the synchronous leader election protocol in [19].
Given a synchronous ring of N processors, the protocol will elect a leader (a
uniquely designated processor) by sending messages around the ring. The
protocol proceeds in rounds and is parametrised by a constant K > 0. Each
round begins by all processors (independently) choosing a random number
(uniformly) from {1, . . . ,K} as an id. The processors then pass their selected
id to all other processors around the ring. If there is a unique id, then the
processor with the maximum unique id is elected as the leader, and otherwise
all processors begin a new round. The ring is synchronous: there is a global
clock and at every time slot a processor reads the message that was sent at
the previous time slot (if it exists), makes at most one state transition and
then may send at most one message. Each processor knows N .

Properties

The expected number of rounds L to elect a leader depends on N and K.
For both N = 4 and N = 5, we have L ≤ 3. The number of steps per round
is N + 1. This corresponds to selecting a random id (one step), and passing
it around through the entire ring. In our experiments, the probability of
electing a leader within three rounds has been calculated. This can be
expressed in PCTL by the path formula:

true U≤3·(N+1) elected

Since there is only one atomic proposition, the number of blocks in the
initial partition is two: a block for states which are labelled with elected
and a block for states which are not labelled.

Results

Tables 4.1 and 4.2 show statistics and results for different values of N and
K.

For a given N , the number of blocks in the final partition is independent of
K. Only one state is labelled with atomic proposition elected. This is also
the only absorbing state. Many paths starting in the initial state eventually
reach this absorbing state. No branching occurs on these paths: each state
on such a path has exactly one transition to another state and no transitions
to other states. The only branching occurs in the initial state. As K grows,
the number of paths reaching the absorbing state also grows. However, the
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N = 4 original DTMC lumped DTMC reduct. factor

K states transitions MC blocks lump MC states time

2 55 70 0.02 10 0.05 0.01 5.5 0.4
4 782 1037 0.4 10 0.5 0.01 78.2 0.8
6 3902 5197 1.8 10 2.1 0.01 390.2 0.9
8 12302 16397 7.0 10 9.0 0.01 1230.2 0.8

10 30014 40013 19 10 25 0.01 3001.4 0.8
12 62222 82957 41 10 52 0.01 6222.2 0.8
14 115262 153677 85 10 100 0.01 11526.2 0.8
16 196622 262157 165 10 175 0.01 19662.2 0.9

Table 4.1: Bisimulation minimisation results for 4 processors

N = 5 original DTMC lumped DTMC reduct. factor

K states transitions MC blocks lump MC states time

2 162 193 0.1 12 0.1 0.02 13.5 0.9
4 5122 6145 2.8 12 2.9 0.02 426.8 0.9
6 38882 46657 28 12 26 0.02 3240.2 1.1
8 163842 196609 140 12 115 0.02 13653.5 1.2

Table 4.2: Bisimulation minimisation results for 5 processors

length of these paths remains equal. Therefore, all states on these paths
at an equal distance from the absorbing state are bisimilar. This explains
the constant number of blocks for fixed N . Figure 4.1 shows an example of
this situation. States in a dashed box belong to the same equivalence class.
State s21 is labelled with elected.

In most cases, the time to construct the lumped DTMC exceeds the time
to model check the original DTMC. The initial state is the only state which
has more than one outgoing transition. Thus, only one row in the transition
matrix has more than one non-zero element. Since the transition matrix is
implemented as a sparse matrix, this results in a relatively low number of
multiplications in each iteration when calculating the bounded until prop-
erty. However, for N = 5 and K = 8, model checking the original DTMC
takes longer than lumping plus model checking the minimised DTMC. In
this case the number of states and transitions is less than for example N = 4
and K = 16, but the bound in the until property is higher, which results in
more iterations and therefore a longer computation time.

To compare the actual runtime of the lumping algorithm to its time com-
plexity, the value c has been calculated, where l = c m log n (l denotes
the lumping time). For most cases, this results in a nearly constant value of
c ≈ 40. From time complexity theory, we have cm log n ∈ O(m log n). Thus,
in this case, the actual runtime is strongly related to the time complexity.
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s0

s6 s3 s5 s4 s2 s7 s1 s8

s14 s16 s13 s15 s10
s12 s9 s11

s19
s20 s18 s17

s21

0.1250.1250.125 0.1250.1250.125 0.125 0.125

111 111 1 1

111 111 1 1

1

11

1

1

Figure 4.1: Example DTMC for N = 3 and K = 2

4.3.2 Randomised Self-stabilisation

A self-stabilising protocol for a network of processes is a protocol which,
when started from some possibly illegal start state, returns to a legal/stable
state without any outside intervention within some finite number of steps.

This case study considers Herman’s self stabilising algorithm [16]. The pro-
tocol operates synchronously and communication is unidirectional in the
ring. In this protocol, the number of processes N in the ring must be odd.
The stable states are those where there is exactly one process which possesses
a token.

Each process in the ring has a local Boolean variable xi, and there is a token
at position i if xi = x(i− 1). In a basic step of the protocol, if the current
values of xi and x(i−1) are equal, then it makes a (uniform) random choice
as to the next value of xi, and otherwise it sets it equal to the current value
of x(i− 1).

Properties

The expected time to reach a stable state is N 2/2 time units [16]. A stable
state is a state in which only one process possesses a token. The probability
of reaching a stable state within the expected time has been calculated.
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Expressed in PCTL by the path formula:

true U≤N2/2 stable

In the initial partition the number of states labelled stable is equal to N .

Results

Table 4.3 shows statistics and results for different number of processes N .

original DTMC lumped DTMC reduct. factor

N states transitions MC blocks lump MC states time

3 8 28 0.01 2 0.02 0.01 4.0 0.3
5 32 244 0.02 4 0.06 0.01 8.0 0.3
7 128 2188 0.2 9 0.5 0.01 14.2 0.4
9 512 19684 2.2 23 5.2 0.05 22.3 0.4

11 2048 177148 50.5 63 105 0.4 32.5 0.5
13 8192 1594324 613 190 1700 3.6 43.1 0.3
15 32768 14348908 7600 612 28000 77 53.5 0.3

Table 4.3: Bisimulation minimisation results for true U≤N2/2 stable

We observe that the state space reductions improve with an increase of N .
Model checking the original DTMC takes much less time than lumping the
DTMC. This can be explained by the fact that the number of transitions is
very high compared to the number of states. This makes computing the q
value in the lumping algorithm a time consuming procedure, because this
value cannot be accessed in constant time (see section 3.2.4).

Similar to the leader election case study, we calculated the value c, where
l = c m log n. For this case study, c is not constant. As N grows, c seems
to grow linearly. Hence, there is a close resemblance between the time
complexity and the actual runtime.

4.3.3 Crowds Protocol

The Crowds protocol was developed by Reiter and Rubin [27] to provide
users with a mechanism for anonymous Web browsing. The main idea be-
hind Crowds and similar approaches to anonymity is to hide each user’s
communications by routing them randomly within a group of similar users.
Even if a local eavesdropper or a corrupt group member observes a message
being sent by a particular user, it can never be sure whether the user is the
actual sender, or is simply routing another user’s message.
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It is assumed that corrupt routers are only capable of observing their lo-
cal networks. The adversary’s observations are thus limited to the appar-
ent source of the message. As the message travels down a (randomly con-
structed) routing path from its real sender to the destination, the adversary
observes it only if at least one of the corrupt members was selected among
the routers. The only information available to the adversary is the identity
of the crowd member immediately preceding the first corrupt member on
the path. It is also assumed that communication between any two crowd
members is encrypted by a pairwise symmetric key.

Crowds is designed to provide anonymity for message senders. Under a
specific condition on system parameters, Crowds provably guarantees the
following property for each routing path: The real sender appears no more
likely to be the originator of the message than to not be the originator.

Routing paths in Crowds are set up using the following protocol:

• The sender selects a crowd member at random (possibly itself), and
forwards the message to it, encrypted by the corresponding pairwise
key.

• The selected router flips a biased coin. With probability 1−pf , where
pf (forwarding probability) is a parameter of the system, it delivers
the message directly to the destination. With probability pf , it se-
lects a crowd member at random (possibly itself) as the next router
in the path, and forwards the message to it, re-encrypted with the
appropriate pairwise key. The next router then repeats this step.

The path from a particular source to a particular destination is set up only
once, when the first message is sent. The routers maintain a persistent id for
each constructed path, and all subsequent messages follow the established
path.

There is no bound on the maximum length of the routing path. For sim-
plicity, instead of modelling each corrupt crowd member separately, a single
adversary is modeled who is selected as a router with a fixed probability
equal to the sum of selection probabilities of all corrupt members.

Properties

Atomic proposition observei denotes the adversary observed crowd member
i more than once (i. e. at least twice). Crowd member 0 is the real sender.
The following PCTL properties are used to analyse anonymity protection
provided by Crowds in the multiple-paths case:
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• Eventually the adversary observed the real sender more than once:

true U observe0

• Eventually the adversary observed someone other than the real sender
more than once:

true U observe,

where observe ≡
∨N

i=1 observei.

Results

Tables 4.4 and 4.5 show statistics and results for both properties. N is
the actual number of honest crowd members and R is the total number of
protocol runs to analyse. For N = 5 the number of corrupt crowd members
is 1, for N = 10 the number is 2, for N = 15 the number is 3 and for N = 20
there are 4 corrupt crowd members.

original DTMC lumped DTMC reduct. factor

N R states transitions MC blocks lump MC states time

5 3 1198 2038 0.2 41 0.5 0.2 29.2 2.8
5 4 3515 6035 8.2 61 1.7 0.3 57.6 4.1
5 5 8653 14953 35.5 81 4.8 0.5 106.8 6.7
5 6 18817 32677 117 101 11.3 0.6 186.3 9.8

10 3 6563 15143 10.0 41 3.3 0.2 160.1 2.9
10 4 30070 70110 10.5 61 19.5 0.3 493.0 5.3
10 5 111294 261444 480 81 81 0.6 1374.0 5.9
10 6 352535 833015 1770 101 280 0.6 3490.0 6.3

15 3 19228 55948 42 41 16 0.2 469.0 2.6
15 4 119800 352260 355 61 120 0.3 1963.9 3.0
15 5 592060 1754860 2100 81 650 0.4 7309.4 3.2
15 6 2464168 7347928 12100 101 2900 0.6 24397.7 4.2

20 3 42318 148578 93 41 48 0.2 1032.1 1.9
20 4 333455 1183535 890 61 418 0.3 5466.5 2.1
20 5 2061951 7374951 7700 81 2700 0.5 25456.2 2.9

Table 4.4: Bisimulation minimisation results for true U observe0

Note that, for both properties, the state space reductions improve with an
increase of R and fixed N . Also, lumping plus model checking the lumped
DTMC is significantly faster than model checking the original DTMC. The
number of iterations to solve the equation systems for both properties varies
between 100 and 160, depending on the parameters N and R. This makes
solving such a system computationally quite expensive.
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original DTMC lumped DTMC reduct. factor

N R states transitions MC blocks lump MC states time

5 3 1198 2038 3.2 53 0.6 0.3 22.6 3.7
5 4 3515 6035 11 97 2.0 0.5 36.2 4.4
5 5 8653 14953 48 153 6.0 0.9 56.6 6.9
5 6 18817 32677 139 209 14 1.4 90.0 9.0

10 3 6563 15143 24 53 4.6 0.2 123.8 4.9
10 4 30070 70110 190 97 29 0.5 310.0 6.4
10 5 111294 261444 780 153 127 0.9 727.4 6.1
10 6 352535 833015 2640 221 400 1.4 1595.2 6.6

15 3 19228 55948 102 53 23 0.2 362.8 4.4
15 4 119800 352260 790 97 190 0.5 1235.1 4.1
15 5 592060 1754860 4670 153 1020 0.9 3869.7 4.6
15 6 2464168 7347928 20600 221 4180 1.5 11150.1 4.9

20 3 42318 148578 240 53 75 0.2 798.5 3.2
20 4 333455 1183535 2750 97 710 0.5 3437.7 3.9
20 5 2061951 7374951 18600 153 4550 0.9 13476.8 4.1

Table 4.5: Bisimulation minimisation results for true U observe

Similar to the leader election case study, the value c has been calculated,
where l = c m log n. For the first property, we have c ∈ [17, 25], and for the
second property c ∈ [24, 33]. Thus, the time complexity is closely related to
the actual runtime.

4.3.4 Randomised Mutual Exclusion

This case study is based on Pnueli and Zuck’s solution [25] to the well-
known mutual exclusion problem. Let P1 . . .PN be N processes that from
time to time need to execute a critical section in which at most one of
them is allowed. The processes can coordinate their activities by use of a
common resource. This solution guarantees at any time t there is at most
one process in its critical section phase. It also guarantees if a process tries,
then eventually it enters the critical section.

Properties

The state probabilities for P1 entering the critical section first have been
calculated. This can be expressed in PCTL by the path formula:

notEnter1 U enter1

Where enteri means Pi enters the critical section and notEnteri ≡
∧N

j 6=i ¬enterj .
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Combining several atomic propositions into one atomic proposition generally
yields a coarser final partition.

Results

Table 4.6 shows statistics and results for N processes.

original DTMC lumped DTMC reduct. factor

N states transitions MC blocks lump MC states time

3 2368 8272 3.0 1123 8.0 1.6 2.1 0.3
4 27600 123883 78 5224 192 19 5.3 0.4
5 308800 1680086 980 18501 2880 120 16.7 0.3
6 3377344 21514489 11700 - > 107 - - -

Table 4.6: Bisimulation minimisation results for notEnter1 U enter1

Lumping the DTMC takes significantly more time than model checking the
original DTMC. The number of transitions in the original DTMC is rela-
tively high, making lumping more computationally expensive. On the other
hand, the number of iterations to solve the linear equation system is quite
low. These numbers vary between 60 and 80, depending on the number of
processes.

For N = 6, lumping the DTMC was not completed within several hours. To
compare the time complexity to the actual runtime of the lumping algorithm,
more results have to be available.

4.4 Conclusion

The effectiveness of bisimulation minimisation for PCTL model checking
has been studied. The case studies on synchronous leader election and ran-
domised self-stabilisation have been used to check bounded until properties.
For some configurations of the synchronous leader election protocol, lump-
ing plus model checking the minimised DTMC takes less time than model
checking the original DTMC. This suggests there is a lower time bound
above which bisimulation minimisation is effective. However, it is hard to
predict this bound exactly for concrete cases. For all other configurations as
well as the randomised self-stabilisation protocol, model checking the orig-
inal DTMC takes less time than lumping and model checking the lumped
DTMC.

The case studies on randomised mutual exclusion and the Crowds proto-
col have been used to check unbounded until properties. Lumping plus
model checking the lumped DTMC is faster than model checking the orig-
inal DTMC for the Crowds protocol. For randomised mutual exclusion,
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this is not the case. Randomised mutual exclusion requires a relatively low
number of iterations to solve the linear equation system in comparison to
the Crowds protocol. This could explain the fact that bisimulation minimi-
sation is effective for the Crowds protocol, but not for randomised mutual
exclusion. It should be noted that MRMC implements the Jacobi method
to solve the linear equation system for PCTL unbounded until formulas.
This method generally converges slower than for example the Gauss-Seidel
method [30]. Using the Gauss-Seidel method could improve the runtime of
model checking unbounded until properties.

The time complexity of the lumping algorithm is O(m log n), where n is the
number of states and m is the number of transition in the DTMC. Except
for the mutual exclusion case study, this time complexity has been compared
to the actual runtime. For most cases, the actual runtime is closely related
to the time complexity.

The experiments have shown that in some cases bisimulation minimisation
is effective for PCTL properties with (at least) one until operator. For most
cases it was not effective. This does not imply that bisimulation minimi-
sation can play no role in PCTL model checking. It is possible to check
several properties on a lumped DTMC. To do this, the DTMC has to be
lumped by considering the atomic propositions contained in all properties
to be checked. These properties can then be checked on a (possibly) much
smaller DTMC and thus require less computation time.

Predicting in advance whether bisimulation minimisation is effective for
PCTL model checking is not easy. For a parametrised model (e. g. the
synchronous leader election protocol with N processors), a strategy could
be to consider small cases first. If bisimulation minimisation is effective for
these cases, it is likely to be effective for larger cases.

The experiments also showed that lumping can reduce the number of states
by several orders of magnitude. Huge reductions for DTMCs consisting
of several millions of states have been accomplished. Model checking the
lumped DTMC is much faster than model checking the original DTMC.
It can be concluded that bisimulation minimisation is a good state space
reduction technique for DTMCs.





Chapter 5

Formula-dependent lumping

for PCTL model checking

5.1 Introduction

This chapter considers formula-dependent lumping for PCTL until formulas,
which might lead to more important state space reductions. This can be
explained using the notion of F bisimulation [5]. Instead of labelling states
with atomic propositions, each state is labelled with formulas from a set F
that are valid in that state. So, the bisimulation relation in chapter 4 can
be viewed as an AP bisimulation, which is essentially formula-independent
lumping.

First, we present F bisimulation and bisimulation equivalence for PCTL.
Then, we describe which PCTL properties are checked and how we can
lump the DTMC for these properties. Finally, the case studies and results
are presented.

5.2 Bisimulation equivalence

In [5], F bisimulation and bisimulation equivalence is defined for CTMCs
and CSL. We define this for DTMCs and PCTL in a similar way.

Definition 14. Let D = (S,P, L) be a DTMC, F a set of PCTL formulas,
and R an equivalence relation on S. R is an F bisimulation on D if for
(s, s′) ∈ R:

LF (s) = LF (s′) and P(s, C) = P(s′, C) for all C ∈ S/R,

where LF (s) = {Φ ∈ F | s |= Φ}. States s and s′ are F bisimilar if there
exists an F bisimulation R that contains (s, s′).
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Definition 15. Let PCTLF denote the smallest set of PCTL formulas that
includes F and is closed under all PCTL operators.

Theorem 3. Let R be an F bisimulation on DTMC D = (S,P, L) and s
and s′ states in S. Then,

1. For all PCTLF formulas Φ, (s, s′) ∈ R⇒ s |=D Φ ↔ s′ |=D Φ.

2. For all PCTLF path formulas φ,

(s, s′) ∈ R⇒ Pr({σ ∈ PathD(s) | σ |=D φ}) = Pr({σ ∈ PathD(s′) | σ |=D φ}).

Proof. The proof is adapted from [3] and goes by induction on the length
of the formula, where formulas in F are of length 1. To avoid problems
with until formulas, we transform formulas of the form Φ U≤t Ψ such that
Φ ∩ Ψ = ∅. This can be done easily, as Φ U≤t Ψ ⇔ (Φ ∧ ¬Ψ) U≤t Ψ.

The only state formulas of length 1 are the formulas in F . By definition
of F bisimulation, the labels of bisimilar states agree. Therefore, for state
formulas of length 1 the theorem holds. For path formala of length 1, this
is trivial.

The induction hypothesis is: The theorem holds for all state formulas of
length at most k and for all path formulas of length at most k.

Let the induction hypothesis hold for formulas of length at most k. We start
with the proof for state formulas. Let Φ be a state formula of length k + 1.

• Φ = ¬Φ1 or Φ = Φ1∧Φ2, where Φ1 and Φ2 are state formulas: Follows
directly from the induction hypothesis.

• Φ = PEp(φ), where φ is a path formula. From the induction hypothe-
sis, we know that the probability measure of the set of states starting
in s which satisfy φ equals the probability measure of the set of states
starting in s′ which satisfy φ. Thus, s |=D PEp(φ) ↔ s′ |=D PEp(φ)

Now, we show the proof for path formulas. Let φ be a path formula of length
k + 1.

• φ = X Φ, where Φ is state formula. By definition,

Pr({σ ∈ PathD(s) | σ |= X Φ}) =
∑

s′|=DΦ

P(s, s′).

According to the induction hypothesis, bisimilar states agree on the
same state formulas. Since states in C ∈ S/R are bisimilar, we can
rewrite this as:

Pr({σ ∈ PathD(s) | σ |= X Φ}) =
∑

C|=D/RΦ

P(s, C)
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By definition of F bisimulation, bisimilar states s and s′ have the
same cumulative probability of moving to any other equivalence class:
∀C ∈ S/R P(s, C) = P(s′, C). Therefore, the probability measures
are equal:

Pr({σ ∈ PathD(s) | σ |=D X Φ}) = Pr({σ ∈ PathD(s′) | σ |=D X Φ})

• φ = Φ U≤t Ψ, where Φ and Ψ are state formulas. We define the set of
paths Bs

n starting in s that satisfy φ after exactly n steps as:

Bs
n = {σ ∈ PathD(s) | ∀ 0 ≤ i < n(σ[i] |=D Φ) ∧ σ[n] |=D Ψ}

Since the sets Bs
i are disjoint, the probability measure of paths starting

in s is now given by:

Pr({σ ∈ PathD(s) | σ |=D φ}) =

t
∑

i=0

Pr(Bs
i )

By induction on i it can be seen that ∀i Pr(Bs
i ) = Pr(Bs′

i ) [3]. From
this follows

∑t
i=0 Pr(Bs

i ) =
∑t

i=0 Pr(Bs′
i ). Thus:

Pr({σ ∈ PathD(s) | σ |=D φ}) = Pr({σ ∈ PathD(s′) | σ |=D φ})

• φ = Φ U Ψ, where Φ and Ψ are state formulas. This formula is equiv-
alent to Φ U≤∞ Ψ. Thus, the probability measure is given by:

Pr({σ ∈ PathD(s) | σ |=D φ}) =

∞
∑

i=0

Pr(Bs
n)

Note that the sum converges as Pr is a probability measure. Similar
to the bounded until case, we have

∑∞
i=0 Pr(Bs

i ) =
∑∞

i=0 Pr(Bs′
i ) [3].

Therefore, we can conclude:

Pr({σ ∈ PathD(s) | σ |=D φ}) = Pr({σ ∈ PathD(s′) | σ |=D φ})

We can conclude that the theorem holds for any PCTLF formula of length
k > 0.

Thus, we can check each PCTL formula Φ ∈ PCTLF on the lumped DTMC
D/R instead of on the original DTMC D, where R is a F bisimulation.
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5.3 PCTL properties

To check bounded until formulas φ = PEp(Φ U≤t Ψ), the set of states S is
partitioned into three subsets Ss, Sf and Si (see section 2.3.2):

Ss = {s ∈ S | s |= Ψ}

Sf = {s ∈ S | s |= ¬Φ ∧ ¬Ψ}

Si = {s ∈ S | s |= Φ ∧ ¬Ψ}

Formula φ can be checked using an F bisimulation with F = {Ψ,¬Φ ∧
¬Ψ,Φ ∧ ¬Ψ}. First, we have to show that φ ∈ PCTLF . It is easy to see
that ψ = PEp((Φ ∧¬Ψ) U≤t Ψ) ∈ PCTLF . Now, we show that φ⇔ ψ. It is
sufficient to show that both formulas agree on their subsets Ss, Sf and Si.
This is easy to see for Ss and Si. For formula ψ we have:

Sf = Sat(¬(Φ ∧ ¬Ψ) ∧ ¬Ψ)

= Sat((¬Φ ∨ Ψ) ∧ ¬Ψ)

= Sat((¬Φ ∧ ¬Ψ) ∨ (Ψ ∧ ¬Ψ))

= Sat(¬Φ ∧ ¬Ψ)

Therefore, both formulas agree on Ss, Sf and Si. Because φ ⇔ ψ, we can
also check φ using the F bisimulation mentioned above.

The initial partition corresponding to F = {Ψ,¬Φ ∧ ¬Ψ,Φ ∧ ¬Ψ} is P =
{Ss, Sf , Si}. It is possible to optimise by collapsing the states in Ss and
Sf into two single absorbing states ss and sf , respectively. Then, we can
lump with initial partition P ′ = {{ss}, {sf}, Si}. In general, lumping with
P ′ instead of P yields a coarser partition. To avoid the construction of
transition matrix P′′ in which states from Ss and Sf are collapsed into
absorbing states ss and sf , the lumping algorithm has been modified to be
able to omit blocks from partitioning. Blocks which are omitted cannot be
split, but will still be considered as potential splitters. To omit a block
B, lines 2–8 of the SPLIT procedure of the lumping algorithm have been
modified to skip states in B. In this case, blocks Ss and Sf are to be omitted
while lumping with P . This saves time and memory, because P′′ does not
need to be constructed explicitly.

In case of formula PEp(true U≤t Ψ), the set Sf is empty yielding initial
partition P = {Ss, S \ Ss}. This is essentially an AP bisimulation, which is
covered in chapter 4. A slight difference is that Ψ states can be collapsed
into a single absorbing state prior to lumping. We do not consider these
kinds of formulas here. Therefore, most case studies from chapter 4 cannot
be used.

The unbounded until formula PEp(Φ U Ψ) can also be checked using an
F bisimulation. Two initial partition are possible: P = {Ss, Sf , Si} and
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PU = {Us, Uf , Ui}. Sets Uf and Us are constructed by extending Sf and
Ss which implies Ui ⊆ Si (see section 2.3.2). Similar to formula-dependent
lumping for bounded until formulas, it is possible to optimise by collapsing
states in Us and Uf into two single absorbing states us and uf , respectively:
P ′

U = {{us}, {uf}, Ui}. Set Ui may contain significantly less states than
Si. Since Uf and Us can be omitted, less states have to be considered for
partitioning in case of P ′

U . Therefore, we will use P ′
U as initial partition.

States in Us satisfy P≥1(Φ U Ψ), states in Uf satisfy P≤0(Φ U Ψ) and states
in Ui satisfy P<1(Φ U Ψ)∧P>0(Φ U Ψ). So, we have an F bisimulation, where
F = {P≥1(Φ U Ψ),P≤0(Φ U Ψ),P<1(Φ U Ψ) ∧ P>0(Φ U Ψ)}. Similar to the
bounded until case, it can be seen that ∃ψ ∈ PCTLF . PEp(Φ U Ψ) ⇔ ψ:

ψ = PEp

(

(

P<1(Φ U Ψ) ∧ P>0(Φ U Ψ)
)

U P≥1(Φ U Ψ)
)

⇔ PEp

(

(

Φ ∧ ¬Ψ
)

U Ψ
)

⇔ PEp(Φ U Ψ)

It is easy to see that ψ ∈ PCTLF , so we can check PEp(Φ U Ψ) using the F
bisimulation.

A possible optimisation when checking bounded until formulas is to partition
the state space into subsets Ss, Uf and S \ (Ss ∪ Uf ). There exists no path
from a state in Uf to a state in Ss. Therefore, for any state s ∈ Uf we have
s |= P≤0(Φ U≤t Ψ). Thus, states in Uf can be made absorbing, which could
yield less computation time. We cannot use the Us instead of Ss, because
states in Us satisfy P≥1(Φ U Ψ) but not necessarily P≥1(Φ U≤t Ψ). This
approach can also be used when formula-dependent lumping for bounded
until formulas. Then we take as initial partition P = {Ss, Uf , S \ (Ss ∪Uf )}.
In the following, we check bounded until formulas for the workstation cluster
and cyclic server polling system case studies. These DTMCs are irreducible,
i. e. for every pair of states s and s′ there exists a path from s to s′ and a
path from s′ to s. Hence, for these case studies we have Uf = Sf . Therefore,
this approach is not used in this chapter.

5.4 Case studies

Like in chapter 4, several case studies have been used to study the effective-
ness of formula-dependent lumping for PCTL model checking. The differ-
ence is that the DTMC is not lumped a priori by only considering atomic
propositions, but lumping is integrated into the model checking procedures
of until operators. For each until operator contained in the property to
check, the DTMC is lumped using an initial partition mentioned above.
Therefore, instead of presenting the lumping time, the computation time
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of the adapted model checking procedure is presented (in milliseconds), de-
noted lump+MC.

5.4.1 Randomised Mutual Exclusion

See section 4.3.4 for a description of this case study and the PCTL formula.

Results

Tables 5.1 show the results of formula-dependent lumping for N processes.

original DTMC lumped DTMC reduct. factor

N states transitions MC blocks lump+MC states time

3 2368 8272 3.0 233 3.2 10.2 0.9
4 27600 123883 78 785 48 35.2 1.6
5 308800 1680086 980 2159 680 143.0 1.6
6 3377344 21514489 11700 554135 39800 6.1 0.3

Table 5.1: Results for notEnter1 U enter1

Comparing these results with table 4.6 shows the number of blocks is sig-
nificantly less in case of formula-dependent lumping. For N = 4 and
N = 5, formula-dependent lumping plus model checking the lumped DTMC
is also faster than model checking the original DTMC as well as formula-
independent lumping plus model checking the lumped DTMC. For N = 6,
formula-dependent lumping completed within a reasonable amount of time
in contrast to formula-independent lumping (see section 4.3.4).

5.4.2 Workstation Cluster

This case study considers a dependable cluster of workstations [15]. Two
sub-cluster are connected via a backbone connection. Each sub-cluster con-
sists of N workstations, connected in a star topology with a central switch
that provides the interface to the backbone. Each of the components of the
system (workstation, switch, backbone) can break down. There is a single
repair unit that takes care of repairing failed components. The model is
represented as a CTMC.

Properties

To check PCTL properties on the workstation cluster, the uniformised DTMC
of the CTMC is constructed. The time to construct this uniformised DTMC
is not considered in the results below. Atomic propositions minimum and
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premium are defined. Proposition minimum corresponds to the minimum
quality of service (QoS) provided: at least 3

4N workstations have to be op-
erational and these workstations have to be connected to each other via
operational switches. For premium quality of service at least N worksta-
tions have to be operational, with the same connectivity constraints. N
is the number of workstations in each sub-cluster, so the total number of
workstations is 2N .

The following PCTL path formulas are checked:

• Within k steps the QoS is turned from minimum to premium:

minimum U≤k premium

We take the bound to be k = q · t, where q is the uniformisation
rate. This value q · t is equal to the expected number of steps in the
uniformised DTMC corresponding to the state probabilities at time t,
where t is a time instant in the original CTMC. The uniformisation
rate is 51 and t = 10 is a reasonable amount of time in the CTMC of
the workstation cluster. So, we have k = 510.

• The QoS turns from minimum to premium:

minimum U premium

Results

Tables 5.2 and 5.3 show the results of formula-dependent lumping for N
workstations. The last column of table 5.2 shows the number of blocks
when using an AP bisimulation like we did in chapter 4. Obviously, for
the second property these numbers are the same, since we are lumping with
respect to the same atomic propositions.

original DTMC lumped DTMC reduct. factor F = AP

N states transitions MC blocks lump+MC states time blocks

2 276 1396 1.8 30 0.5 9.2 3.6 147
4 820 4436 4.6 52 1.1 15.8 4.2 425
8 2772 15604 17 239 5.7 11.6 3.0 1413

16 10132 58292 140 917 29 11.0 4.8 5117
32 38676 225076 603 3599 170 10.7 3.6 19437
64 151060 884276 2340 14267 960 10.6 2.4 75725

128 597012 3505204 9250 56819 5400 10.5 1.7 298893
256 2373652 13957172 38100 226787 36600 10.5 1.1 1187597

Table 5.2: Results for minimum U≤510 premium
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original DTMC lumped DTMC reduct. factor

N states transitions MC blocks lump+MC states time

2 276 1396 0.2 30 0.3 9.2 0.67
4 820 4436 0.5 52 0.7 15.8 0.71
8 2772 15604 2.1 239 3.3 11.6 0.64

16 10132 58292 20.5 917 21.0 11.0 0.98
32 38676 225076 114 3599 124 10.7 0.92
64 151060 884276 570 14267 750 10.6 0.76

128 597012 3505204 3850 56819 4870 10.5 0.79
256 2373652 13957172 33000 226787 37200 10.5 0.89

Table 5.3: Results for minimum U premium

Table 5.2 shows formula-dependent lumping yields a significantly smaller
DTMC than formula-independent lumping. Note that the reduction factor
of the state space is quite constant. Formula-dependent lumping plus model
checking the lumped DTMC for the first property is faster than checking
the original DTMC. For the second property, checking the original DTMC is
slightly faster. This can be explained by means of the number of iterations
to solve the linear equation system. As N increases, the number of iterations
also increases. This number is at most 325, for N = 256. Thus, the number
of iterations is significantly lower than k. Hence, the computation time of
the unbounded until property is less.

We observe that, for a given N , the number of blocks for both properties is
equal. So unfortunately, lumping with initial partition P ′

U = {{us}, {uf}, Ui}
does not lead to a coarser partition than lumping with initial partition
P ′ = {{ss}, {sf}, Si}.

5.4.3 Cyclic Server Polling System

This case study is based on a cyclic server polling system [18]. It consists
of one polling server which handles N stations. Each station has a buffer.
The polling server polls the stations in a cyclic manner. If a station has
a full buffer, the station is served by the server. After this, the buffer is
empty again and the server continues polling the stations. The model is
represented as a CTMC.

Properties

To check PCTL properties on the cyclic server polling system, the uni-
formised DTMC of the CTMC is constructed. The time to construct this
uniformised DTMC is not considered in the results below.
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The following PCTL path formulas are checked:

• Within k steps station 1 is served before all other stations:

notServe1 U≤t serve1

We take k = q · t, like in the previous case study. The uniformisation
rate is 202 and t = 5, so we have k = 1010.

• Station 1 is served before all other stations:

notServe1 U serve1

Atomic propositions notServei is defined as: notServei ≡
∧N

j 6=i ¬servej .

In the original case study, the authors check the formula ¬serve2 U serve1.
We find the formula notServe1 U serve1 more intuitive, since this expresses
whether station 1 is served first, instead of only earlier than station 2.

Results

Tables 5.4 and 5.5 show the results of formula-dependent lumping for N
stations.

original DTMC lumped DTMC reduct. factor

N states transitions MC blocks lump+MC states time

4 96 368 1.4 19 0.4 5.1 3.5
5 240 1040 4.2 26 0.7 9.2 6.0
6 576 2784 10 34 1.2 16.9 8.3
7 1344 7168 25 43 2.0 31.3 12.5
8 3072 17920 62 53 4.0 58.0 15.5
9 6912 43776 190 64 9.4 108.0 20.2

10 15360 104960 575 76 22 202.1 26.1
11 33792 247808 1310 89 51 379.7 25.7
12 73728 577536 3050 103 120 715.8 25.4
13 159744 1331200 7250 118 287 1353.8 25.3
14 344064 3039232 16900 134 730 2567.6 23.2
15 737280 6881280 39000 151 1590 4882.6 24.5

Table 5.4: Results for notServe1 U≤1010 serve1

Formula-independent lumping does not lead to any state space reductions.
Then, the number of blocks in the final partition equals the number of states
of the original DTMC. So, each block contains only one state. In contrast,
formula-dependent lumping does lead to significant reductions. Note that
the state space reductions improve with an increase of N .
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original DTMC lumped DTMC reduct. factor

N states transitions MC blocks lump+MC states time

4 96 368 2.1 12 0.9 8 2.3
5 240 1040 4.9 15 1.1 16 4.5
6 576 2784 11 18 1.4 32 7.9
7 1344 7168 24 21 2.1 64 11.4
8 3072 17920 52 24 2.9 128 17.9
9 6912 43776 180 27 5.7 256 31.6

10 15360 104960 610 30 11 512 55.5
11 33792 247808 1580 33 25 1024 63.2
12 73728 577536 3460 36 55 2048 62.9
13 159744 1331200 7300 39 119 4096 61.3
14 344064 3039232 15400 42 260 8192 59.2
15 737280 6881280 32100 45 580 16384 55.3

Table 5.5: Results for notServe1 U serve1

Also, the number of blocks in case of the second property is significantly
less compared to the first property. So, for this case study, lumping with
initial partition P ′

U = {{us}, {uf}, Ui} does lead to a significantly coarser
partition than lumping with initial partition P ′ = {{ss}, {sf}, Si}. Finally,
for both properties, formula-dependent lumping plus model checking the
lumped DTMC is faster than model checking the original DTMC.

5.5 Conclusion

The effectiveness of formula-dependent lumping for PCTL bounded and
unbounded until formulas has been studied. An advantage of formula-
dependent lumping is that some blocks in the initial partition can be omitted
yielding a shorter lumping time. A disadvantage is that the lumped DTMC
cannot be reused for model checking formulas in which the until formula
is not contained. The DTMC is lumped with respect to a specific until
formula. This is the main difference with formula-independent lumping.

Three case studies have been used: randomised mutual exclusion, a worksta-
tion cluster and a cyclic server polling system. It was shown that formula-
dependent lumping can lead to large state space reductions. As expected,
formula-dependent lumping can lead to a significantly smaller state space
than formula-independent lumping. For the cyclic server polling system,
formula-independent lumping does not lead to a state space reduction at
all, whereas formula-dependent lumping does.

For several cases, formula-dependent lumping plus model checking the lumped
DTMC takes significantly less time than model checking the original DTMC.



Chapter 6

Bisimulation minimisation

and CSL model checking

6.1 Introduction

This chapter considers bisimulation minimisation and CSL model checking.
Bisimulation minimisation may be even more effective for CSL than for
PCTL model checking. For very large models, it could be that the original
CTMC can be fully represented in memory, but that model checking cannot
be carried out because of excessive memory requirements (e. g. constructing
the uniformised DTMC). Lumping could require less memory than model
checking the original CTMC. In this case, model checking is possible on the
lumped CTMC.

Similar to chapter 4, we used several case studies from the PRISM website,
but now we are checking CSL properties on CTMC case studies. The im-
plementation of the LUMP procedure has been slightly modified to be able
to use a more efficient sparse matrix data structure. The lumping algorithm
has not been changed though, since it can be used for lumping DTMCs as
well as CTMCs. We present the results in the same manner as in chapter 4.

We also compare bisimulation minimisation to symmetry reduction using a
case study. This technique will be explained in section 6.3.

6.2 CSL properties

Any CSL formula that does not refer to time can be checked using PCTL
model checking techniques. However, in this chapter we are interested in
CSL model checking on CTMCs. Therefore, we do not consider unbounded
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until formulas in this chapter. Checking X I Φ formulas is straightforward
and requires only one matrix-vector multiplication.

For time-bounded until formulas of the form PEp(Φ U [t,t′] Ψ), two cases can
be distinguished: t = 0 and t > 0. For t > 0, transient analysis on different
uniformised Markov chains is needed twice, instead of once in case of t = 0.
The overall time complexity of model checking bounded until formulas is
O(m · q · t′), where m is the number of transitions in the CTMC and q is the
uniformisation rate. For model checking steady-state operators, the time
complexity is O(n3), where n is the number of states in the CTMC.

Bisimulation minimisation takes O(m log n) time. Compared to the time
complexity of model checking time-bounded until and steady-state proper-
ties, these properties are the most interesting to study the effectiveness of
bisimulation minimisation on CSL model checking. The U [t,t′] operator
with t > 0 is especially interesting, because it is more complex and time
consuming to check than the case where t = 0.

6.3 Symmetry reduction

In [23], an approach is presented for applying symmetry reduction to prob-
abilistic model checking in PRISM. Similar to bisimulation minimisation,
symmetry reduction allows verification to be performed on a reduced model
instead of the original model. The difference is that bisimulation minimisa-
tion can be applied to any model, whereas symmetry reduction can only be
applied to symmetric models. The peer-to-peer case study from [23] is used
to compare these techniques.

Symmetry reduction is a way of exploiting the presence of replication in a
model. It can be applied to models consisting of N symmetric components
of which any pair can be exchanged without any effect on the behaviour of
the system (i. e. the parallel composition of N identical components). The
global state s of the model consists of the local states si of theN components,
s = (s1, · · · , sN ). Each global state has a unique representative. States
having the same representative are equivalent and will be collapsed into one
single state. For instance, consider the case of four symmetric processes, each
with two local states A and B. The states (A,B,A,A) and (A,A,B,A) are
equivalent, since their representative is (A = 3, B = 1). The reduced model
is constructed from the symbolic representation (i. e. using MTBDDs) of
the original model. Provided that atomic propositions are preserved, model
checking can be done safely on the reduced model.
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6.4 Case studies

6.4.1 Workstation Cluster

See section 5.4.2 for a description of this case study and the atomic propo-
sitions used in the CSL properties.

Properties

The following CSL properties have been checked:

• In the long run, premium QoS will be delivered with a probability of
at least 0.7:

S>0.7(premium)

• The probability that QoS drops below minimum quality within 85 time
units is less than 0.1:

P<0.1(true U
≤85 ¬minimum)

• The probability of going from minimum QoS to premium QoS within
20 to 40 time units without violating the minimum QoS constraint
along the way is less than 0.99:

P<0.99(minimum U [20,40] premium)

Results

Table 6.1 shows model checking the lumped CTMC takes more time than
model checking the original CTMC.

original CTMC lumped CTMC reduct. factor

N states transitions MC blocks lump MC states time

2 276 1120 0.3 147 0.9 0.2 1.9 0.3
4 820 3616 1.0 425 2.8 21 1.9 0.04
8 2772 12832 3.6 1413 12 130 2.0 0.03

16 10132 48160 21 5117 64 770 2.0 0.03
32 38676 186400 114 19437 290 215 2.0 0.2
64 151060 733216 730 75725 1360 1670 2.0 0.2

128 597012 2908192 6500 298893 5900 14900 2.0 0.3
256 2373652 11583520 103000 1187597 25400 175000 2.0 0.5

Table 6.1: Bisimulation minimisation results for S>0.7(premium)
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Checking steady-state operators requires solving a linear equation system
for each BSCC (see section 2.4.2). In this case, there is a single BSCC
consisting of all states. MRMC uses the Gauss-Seidel method or the Jacobi
method to solve this linear equation system. When using the Jacobi method
to solve the linear equation system, it does not converge within 1.000.000
iterations. For this specific property, the Gauss-Seidel method converges
significantly slower for the lumped CTMC.

This can be explained by means of the subdominant eigenvalue λ2 of the
Gauss-Seidel iteration matrix. We can write QT = D − (L + U) with
Q = R − diag(E). D denotes the diagonal of QT and L and U denote
the lower and upper triangular half, respectively. Now, the Gauss-Seidel
iteration matrix is given by (D − L)−1U. The closer λ2 is to λ1 = 1, the
slower the convergence [14].

Using Maple, we were able to compute these eigenvalues for N ≤ 8. These
values are presented in table 6.2 as well as the number of Gauss-Seidel
iterations NoI. We see that λ2 is significantly closer to 1 in case of the
lumped CTMC. This could explain the slow convergence. Note that for
N = 2, the subdominant eigenvalue of the lumped CTMC is not that close
to 1. The difference in number of iterations is also less than for the other
cases.

Note that the time to check the lumped CTMC for N = 32 is less than the
time to check the lumped CTMC for N = 16. This is because the number of
iterations executed to solve the linear equation system is significantly larger
for N = 16.

original CTMC lumped CTMC

N NoI λ2 NoI λ2

2 9 0.0665 12 0.111
4 10 0.0954 818 0.987
8 11 0.156 1520 0.993

16 14 - 2182 -
32 21 - 101 -

Table 6.2: Subdominant eigenvalues and number of Gauss-Seidel iterations

We also observe that for N < 128, the lumping time alone exceeds the time
to check the original CTMC.

For the two time-bounded until properties, in almost all cases, lumping plus
model checking the lumped CTMC is faster than model checking the original
CTMC (see tables 6.3 and 6.4). The only exception is N = 256 in case of
the third property. Unfortunately, we could not check the case N = 512
because model checking the corresponding sparse matrix requires too much
memory.
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original CTMC lumped CTMC reduct. factor

N states transitions MC blocks lump MC states time

2 276 1120 18.0 147 0.9 9.2 1.9 1.8
4 820 3616 34.0 425 2.8 19.0 1.9 1.6
8 2772 12832 104 1413 12.5 56.0 2.0 1.5

16 10132 48160 1000 5117 69 220 2.0 3.5
32 38676 186400 4200 19437 324 2190 2.0 1.7
64 151060 733216 16400 75725 1460 9900 2.0 1.4

128 597012 2908192 68000 298893 6830 48300 2.0 1.2
256 2373652 11583520 279000 1187597 33200 227000 2.0 1.1

Table 6.3: Bisimulation minimisation results for
P<0.1(true U

≤85 ¬minimum)

original CTMC lumped CTMC reduct. factor

N states transitions MC blocks lump MC states time

2 276 1120 7.2 147 0.9 3.7 1.9 1.6
4 820 3616 14.7 425 2.8 7.7 1.9 1.4
8 2772 12832 49.0 1413 12.7 25.8 2.0 1.3

16 10132 48160 470 5117 69 100 2.0 2.8
32 38676 186400 2190 19437 328 1130 2.0 1.5
64 151060 733216 8550 75725 1480 5170 2.0 1.3

128 597012 2908192 35200 298893 6860 24700 2.0 1.1
256 2373652 11583520 144000 1187597 33400 116000 2.0 0.9

Table 6.4: Bisimulation minimisation results for
P<0.99(minimum U [20,40] premium)

Note that, although using three different sets of atomic propositions, the
number of blocks in the lumped CTMC is equal for all three properties.
Also, the state space reduction factor is quite constant as N increases.
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6.4.2 Cyclic Server Polling System

See section 5.4.3 for a description of this case study.

Properties

The following CSL properties have been checked:

• Station 1 will be polled within t time units with probability E p:

PEp(true U
≤t poll1)

• In the long run, station 1 is waiting for the server with probability
E p:

SEp(waiting1)

• In the long run, station 1 is idle with probability E p:

SEp(idle1)

• Station 1 is served before station 2 with probability E p:

PEp(¬serve2 U serve1)

• All stations will be full within [t, t′] time units with probability E p:

PEp(true U
[t,t′] full)

Results

Except for the last property, lumping the CTMC did not result in any
reductions. The number of blocks in the final partition equals the number
of states in the original CTMC. So, each block contains only one state. This
is also the case for the property in section 5.4.3.

Table 6.5 shows statistics and results for the last CSL property. We observe
that the number of blocks in the lumped CTMC is significantly less than the
number of states in the original CTMC. Lumping without considering the
state labelling (i. e. with initial partition P = {S}) results in the same num-
ber of blocks. Note that the state space reduction factor slightly increases
as N increases. Also, the lumping time plus the model checking time on
the lumped CTMC is significantly less than the time to check the original
CTMC.
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original CTMC lumped CTMC reduct. factor

N states transitions MC blocks lump MC states time

4 96 272 5.5 24 0.2 1.5 4 3.3
5 240 800 16.0 48 0.4 3.1 5 4.6
6 576 2208 41.0 96 1.1 6.5 6 5.4
7 1344 5824 99.0 192 3.2 14.5 7 5.6
8 3072 14848 250 384 10 32 8 6.0
9 6912 36864 820 768 42 62 9 7.9

10 15360 89600 2090 1536 135 128 10 7.9
11 33792 214016 4700 3072 396 280 11 7.0
12 73728 503808 10900 6144 1080 770 12 5.9
13 159744 1171456 26100 12288 2870 1910 13 5.5
14 344064 2695168 64500 24576 7660 5800 14 4.8
15 737280 6144000 148000 49152 19100 16400 15 4.2

Table 6.5: Bisimulation minimisation results for PEp(true U
[5,10] full)

6.4.3 Tandem Queueing Network

This case study is based on a CTMC model of a tandem queueing network
presented in [17]. The network consists of two sequentially composed queues,
both having the same capacity.

Properties

The following CSL properties are interesting to verify:

• The tandem network becomes fully occupied within t time units with
probability E p:

PEp(true U
≤t full)

• Queue i of the tandem network becomes fully occupied within t time
units with probability E p:

PEp(true U
≤t fulli)

• The probability of leaving a situation where the second queue is fully
occupied within t time units meets the bound E p:

PEp(full2 U≤t ¬full2)
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Results

Lumping the CTMC for the CSL properties mentioned above did not result
in a reduction of the CTMC. Even without considering the state labelling,
the number of blocks in the final partition equals the number of states of
the original CTMC. A possible explanation could be different exit rates. As
R(s, C) = P(s, C) ·E(s), the condition on the cumulative rates (see section
2.5) can be reformulated as:

P(s, C) = P(s′, C) for all C ∈ S/R and E(s) = E(s′)

Thus, bisimilar states must have the same exit rate. If all states would have
a different exit rate, then no pair of states can be bisimilar. However, this
is not the case for the CTMC of the tandem queueing network.

In the embedded DTMC of the CTMC the exit rates are not of concern,
because

∑

s′∈S P(s, s′) = 1 for all states s. So, lumping the embedded
DTMC only considers the cumulative probabilities. However, when lumping
the embedded DTMC for this case study, the number of blocks in the final
partition also equals the original number of states. This shows that different
exit rates are not the problem when lumping the CTMC of the tandem
queueing network.

6.4.4 Simple Peer-To-Peer Protocol

This case study describes a simple peer-to-peer (P2P) protocol based on
BitTorrent. The model contains a set of clients trying to download a file
that has been partitioned into K blocks. Initially, there is one client that has
already obtained all of the blocks and N additional clients with no blocks.
Each client can download a block from any of the others, but they can only
attempt four concurrent downloads for each block.

In [23], this case study is used to illustrate the performance of symmetry
reduction. To compare bisimulation minimisation and symmetry reduction,
we check the same CSL property.

Property

The probability that all clients have downloaded all blocks within 0.5 time-
units has been calculated. This is expressed by the CSL path formula:

true U≤0.5 done
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Results

We considered the cases 2 ≤ N ≤ 4, whereas in [23] they consider the cases
4 ≤ N ≤ 7. This is because for N > 4, the transition matrix becomes too
large for PRISM to export. We used the prototype extension of PRISM
with symmetry reduction to reduce the state space for these cases.

The last three columns of table 6.6 show the size of the symmetry-reduced
state space, the time to construct this reduced state space on our machine (in
milliseconds), and the time to check the reduced state space using MRMC.

original CTMC lumped CTMC symm. reduced CTMC

N states MC blocks lump MC states reduce MC

2 1024 5.6 56 1.4 0.3 528 12 2.9
3 32768 410 252 170 1.3 5984 100 59
4 1048576 22000 792 10200 1080 52360 360 820

Table 6.6: Bisimulation minimisation and symmetry reduction results

We observe that bisimulation minimisation results in larger state space re-
ductions than symmetry reduction. However, the time to construct the
symmetry-reduced state space is significantly less than lumping as N in-
creases. This is to be expected, since the lumping algorithm is far more
complex. The results also show lumping plus model checking the lumped
CTMC takes significantly less time than model checking the original CTMC.

6.5 Conclusion

To study the effectiveness of bisimulation minimisation on CSL model check-
ing, we considered several well-known case studies from literature: a work-
station cluster, a cyclic server polling system and a tandem queueing net-
work.

For the workstation cluster, we checked a steady state property and two
time-bounded until properties. For the polling system, we checked one time-
bounded until property. Model checking the steady state property on the
lumped CTMC takes more time than model checking the original CTMC.
The linear equation system corresponding to the steady state probabilities
on the lumped CTMC converges significantly slower. More details can be
found in section 6.4.1. For the time-bounded until properties, lumping plus
model checking the lumped CTMC takes less time in almost all cases.

For certain other properties for the polling system as well as the tandem
queueing network, bisimulation minimisation did not lead to a reduction of
the CTMC. These results show bisimulation minimisation is not always a
good state space reduction technique.
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To conclude, bisimulation minimisation can be effective for model checking
CSL, but it very much depends on the specific model and properties under
consideration. Like for DTMCs, it is also possible to construct a lumped
CTMC on which several properties can be checked by considering all atomic
propositions contained in these properties. Then, these properties can be
checked on a (possibly) much smaller CTMC.



Chapter 7

Formula-dependent lumping

for CSL model checking

7.1 Introduction

Similar to chapter 5, we can lump the CTMC for a specific CSL formula
using an F bisimulation. First, we present the definition of F bisimulation
and bisimulation equivalence for CSL presented in [5]. Then, we describe
which CSL properties are checked and how the CTMC is lumped for these
properties. Finally, we present the case studies and the results. The modified
lumping algorithm from chapter 5 was used to study the effectiveness of
formula-dependent lumping for CSL model checking.

7.2 Bisimulation equivalence

We recall the definitions of F bisimulation and CSLF formulas from [5].

Definition 16. Let C = (S,R, L) be a CTMC, F a set of CSL formulas,
and R an equivalence relation on S. R is an F bisimulation on C if for
(s, s′) ∈ R:

LF (s) = LF (s′) and R(s, C) = R(s′, C) for all C ∈ S/R,

where LF (s) = {Φ ∈ F | s |= Φ}. States s and s′ are F bisimilar if there
exists an F bisimulation R that contains (s, s′).

Definition 17. Let CSLF denote the smallest set of CSL formulas that
includes F and is closed under all CSL operators.

The following theorem allows us to check CSLF formulas on the lumped
CTMC C/R instead of on the original CTMC C, where R is an F bisimula-
tion.
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Theorem 4 ([5]). Let R be an F bisimulation on CTMC C = (S,R, L) and
s a state in S. Then,

1. For all CSLF formulas Φ, s |=C Φ ↔ [s]R |=C/R Φ.

2. For all CSLF path formulas φ, ProbC(s, φ) = ProbC/R([s]R, φ).

In particular, F bisimilar states satisfy the same CSLF formulas.

7.3 CSL properties

We only consider time-bounded until formulas. Unbounded until formulas
are not considered, because the model checking procedure is exactly as for
PCTL. In chapter 5, some PCTL unbounded until formulas are checked on
the uniformised DTMC of a CTMC. Since CSL unbounded until formulas
can be checked on the embedded DTMC as well as the uniformised DTMC,
formula-dependent lumping for these CSL unbounded until formulas will
lead to similar results. Formulas of the form true U I Ψ are also not consid-
ered.

For formulas of the form PEp(Φ U [t,t′] Ψ), we distinguish two cases: t = 0 and
t > 0. For the case t = 0, we need to identify Ψ states and (¬Φ∨Ψ) states.
By definition, the formula is satisfied in Ψ states and the (¬Φ∨Ψ) states can
be made absorbing (see section 2.4.2). As Sat(¬Φ∨Ψ) = Sat(Ψ)∪Sat(¬Φ∧
¬Ψ), we can use an F bisimulation with F = {Ψ,¬Φ∧¬Ψ,Φ∧¬Ψ}. Similar
to PCTL bounded until formulas, it is easy to see that PEp(Φ U [0,t′] Ψ) ⇔
PEp((Φ ∧ ¬Ψ) U [0,t′] Ψ) ∈ CSLF (see section 5.3). Thus, we can check this
formula using the F bisimulation mentioned above. Like in chapter 5, prior
to lumping we collapse Ψ states and (¬Φ∧¬Ψ) states into absorbing states
ss and sf , respectively. So, we will use P = {Sat(Φ ∧ ¬Ψ), {ss}, {sf}} as
initial partition.

This F bisimulation cannot be used without modification for the case t > 0.
As can be seen in section 2.4.2, the computation is performed on two different
(transformed) Markov chains. We need to identify all Φ states which is not
possible with this F bisimulation, because the (Φ∧Ψ) states are included in
the set of Ψ states. The probability measure of the set of (Φ ∧ Ψ) states is
needed in the first part of the computation (i. e. the second sum). Thus, we
distinguish (Φ ∧ Ψ) and (¬Φ ∧ Ψ) states. In both parts of the computation
¬Φ states can be made absorbing. We have Sat(¬Φ) = Sat(¬Φ ∧ Ψ) ∪
Sat(¬Φ∧¬Ψ). Let R be a {Φ∧¬Ψ,Φ∧Ψ,¬Φ∧Ψ,¬Φ∧¬Ψ} bisimulation.
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Then, can write this more formally:

ProbC(s,Φ U [t,t′] Ψ)

=
∑

s′�Φ

(

πC[¬Φ](s, s′, t) ·
∑

s′′�Ψ

πC[¬Φ∨Ψ](s′, s′′, t′ − t)

)

=
∑

[s′]R�Φ

(

πC[¬Φ]/R([s]R, [s
′]R, t) ·

∑

[s′′]R�Ψ

π(C[¬Φ]/R)[Ψ]([s′]R, [s
′′]R, t

′ − t)

)

We optimise by collapsing (¬Φ ∧ Ψ) states and (¬Φ ∧ ¬Ψ) states into
two absorbing states ss′ and sf , respectively. Thus, the initial partition
is P = {Sat(Φ∧¬Ψ), Sat(Φ∧Ψ), {ss′}, {sf}}. Only for the first part of the
computation, after lumping we make (Φ∧ Ψ) states absorbing additionally.

Similar to formula-dependent lumping for PCTL, we can optimise by dis-
regarding Φ states which never reach a Ψ state. Then, we make states
satisfying P≤0(Φ U Ψ) absorbing instead of (¬Φ ∧ ¬Ψ) states. This opti-
misation can lead to more absorbing states yielding less computation time.
However, the case studies we consider all have irreducible CTMCs. Hence,
for these CTMCs we have Sat(P≤0(Φ U Ψ)) = Sat(¬Φ ∧ ¬Ψ). So, we will
not use this optimisation.

7.4 Case studies

7.4.1 Workstation Cluster

See section 5.4.2 for a description of this case study and the atomic propo-
sitions used in the CSL properties.

Properties

The following CSL properties have been checked:

• The probability of going from minimum QoS to premium QoS within
40 time units without violating the minimum QoS constraint along the
way is less than 0.99:

P<0.99(minimum U≤40 premium)

• The probability of going from minimum QoS to premium QoS within
20 to 40 time units without violating the minimum QoS constraint
along the way is less than 0.99:

P<0.99(minimum U [20,40] premium)



70 Chapter 7. Formula-dependent lumping for CSL model checking

Results

The results from tables 7.1 and 7.2 show that formula-dependent lumping
plus model checking the lumped CTMC takes less time than model checking
the original CTMC. Note that the number of blocks is larger in case of the
second property.

original CTMC lumped CTMC reduct. factor

N states transitions MC blocks lump+MC states time

2 276 1120 5.5 37 2.2 7.5 2.3
4 820 3616 9.4 65 4.0 12.6 2.4
8 2772 12832 36.0 239 16.3 11.6 2.2

16 10132 48160 360 917 70.0 11.0 5.1
32 38676 186400 1860 3599 300 10.7 6.2
64 151060 733216 7200 14267 1810 10.6 4.0

128 597012 2908192 29700 56819 9300 10.5 3.2
256 2373652 11583520 121000 226787 45700 10.5 2.6

Table 7.1: Results for P<0.99(minimum U≤40 premium)

original CTMC lumped CTMC reduct. factor

N states transitions MC blocks lump+MC states time

2 276 1120 7.0 70 3.6 3.9 1.9
4 820 3616 14.5 131 7.0 6.3 2.1
8 2772 12832 49.0 386 24.0 7.2 2.0

16 10132 48160 480 1300 96.0 7.8 5.0
32 38676 186400 2200 4742 430 8.2 5.1
64 151060 733216 8500 18082 2550 8.4 3.3

128 597012 2908192 33700 70586 12800 8.5 2.6
256 2373652 11583520 143000 278890 60900 8.5 2.3

Table 7.2: Results for P<0.99(minimum U [20,40] premium)

Compared to the results in section 6.4.1, formula-dependent lumping leads
to greater state space reductions than formula-independent lumping. Also,
formula-dependent lumping for the second property is faster than formula-
independent lumping.
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7.4.2 Cyclic Server Polling System

See section 5.4.3 for a description of this case study and the atomic propo-
sitions used in the CSL properties.

Properties

The following CSL properties have been checked:

• Within 10 time units station 1 is served before all other stations:

notServe1 U≤10 serve1

• Within 5 to 10 time units station 1 is served before all other stations:

notServe1 U [5,10] serve1

Results

original CTMC lumped CTMC reduct. factor

N states transitions MC blocks lump+MC states time

4 96 272 3.7 35 2.0 2.7 1.9
5 240 800 10.0 56 3.7 4.3 2.7
6 576 2208 27.5 84 6.1 6.9 4.5
7 1344 5824 65.0 120 9.9 11.2 6.6
8 3072 14848 160 165 15.0 18.6 10.7
9 6912 36864 480 220 27.0 31.4 17.8

10 15360 89600 1410 286 50.0 53.7 28.2
11 33792 214016 3170 364 101 92.8 31.4
12 73728 503808 7350 455 213 162.0 34.5
13 159744 1171456 17100 560 485 285.3 35.3
14 344064 2695168 40270 680 1100 506.0 36.6
15 737280 6144000 94600 816 2590 903.5 36.5

Table 7.3: Results for notServe1 U≤10 serve1

Tables 7.3 and 7.4 show the results for both properties. Interesting to see
is that formula-dependent lumping leads to a significant reduction of the
state space, whereas formula-independent lumping does not lead to any
reductions. The number of blocks is larger in case of the second property.
Also, formula-dependent lumping plus model checking the lumped CTMC
takes significantly less time than model checking the original CTMC. Note
that both reduction factors increase as N increases.
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original CTMC lumped CTMC reduct. factor

N states transitions MC blocks lump+MC states time

4 96 272 3.9 45 3.4 2.1 1.1
5 240 800 11.0 76 5.0 3.2 2.2
6 576 2208 28.0 119 8.6 4.8 3.3
7 1344 5824 70.0 176 14.0 7.6 5.0
8 3072 14848 170 249 22.0 12.3 7.7
9 6912 36864 530 340 37.0 20.3 14.3

10 15360 89600 1540 451 66.0 34.1 23.3
11 33792 214016 3480 584 126 57.9 27.6
12 73728 503808 8130 741 251 99.5 32.4
13 159744 1171456 18800 924 528 172.9 35.6
14 344064 2695168 44500 1135 1170 303.1 38.0
15 737280 6144000 104000 1376 2720 535.8 38.2

Table 7.4: Results for notServe1 U [5,10] serve1

7.4.3 Tandem Queueing Network

See section 6.4.3 for a description of this case study and the atomic propo-
sitions used in the CSL properties.

Property

The probability of leaving a situation where the second queue is fully occu-
pied within 0.5 time units meets the bound E p:

PEp(full2 U≤0.5 ¬full2)

Results

original CTMC lumped CTMC reduct. factor

c states transitions MC blocks lump+MC states time

15 496 1619 0.5 32 0.4 15.5 1.3
31 2016 6819 1.7 64 1.0 31.5 1.7
63 8128 27971 8.0 128 3.3 63.5 2.4

127 32640 113283 110 256 12.8 127.5 8.6
255 130816 455939 570 512 44.5 255.5 12.8
511 523776 1829379 2700 1024 179 511.5 15.1

1023 2096128 7328771 13500 2048 680 1023.5 19.9

Table 7.5: Results for PEp(full2 U≤0.5 ¬full2)
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Similar to the cyclic server polling system case study, formula-dependent
lumping leads to a significant reduction of the state space, whereas formula-
independent lumping does not. We observe from table 7.5 that both reduc-
tion factors increase as c increases. Also, formula-dependent lumping plus
model checking the lumped CTMC is faster than than model checking the
original CTMC.

7.5 Conclusion

We have studied the effectiveness of formula-dependent lumping for CSL
time-bounded until formulas. Several case studies from chapter 6 concern-
ing bisimulation minimisation (i. e. formula-independent lumping) have been
used.

Our experiments showed that formula-dependent lumping can lead to greater
state space reductions than formula-independent lumping. In some cases
(cyclic server polling system and tandem queueing network), formula-indepen-
dent lumping does not lead to any reductions, whereas formula-dependent
lumping does reduce the state space significantly. Also, in our experiments,
formula-dependent lumping plus model checking the lumped CTMC takes
less time than model checking the original CTMC. We can conclude that
formula-dependent lumping can be an even better state space reduction
technique than formula-independent lumping.





Chapter 8

Conclusion

In this thesis, we studied the effectiveness of bisimulation minimisation for
probabilistic model checking. The algorithm we used for computing the min-
imised model is the optimal lumping algorithm from [10]. We implemented
this algorithm efficiently into the model checker MRMC. Using case stud-
ies from PRISM, we conducted several experiments. In these experiments,
we verified a PCTL or CSL property on the original, non-minimised model
as well as on the lumped model (i. e. the minimised model). For PCTL,
we considered bounded and unbounded until properties and for CSL, we
considered steady-state properties and time-bounded until properties.

Our experiments showed that bisimulation minimisation can significantly re-
duce DTMCs and CTMCs consisting of millions of states. For many DTMC
models, the state space has been reduced by several orders of magnitude.
However, for certain CTMC case studies, bisimulation minimisation did not
lead to a reduction of the CTMC. Also, in several cases, the time to lump
the model plus the time to verify the property on the lumped model is less
than the time to verify the original model.

To lump the model, only atomic propositions contained in the property
were considered. It is also possible to verify more than one property on the
lumped model. In order to do so, the model has to be lumped by considering
the atomic propositions contained in all properties to be verified. These
properties can then be verified on a (possibly) much smaller model.

We also compared bisimulation minimisation to symmetry reduction. Using
a CTMC case study, we showed that bisimulation minimisation can result
into larger state space reductions. As expected, symmetry reduction is sig-
nificantly faster than bisimulation minimisation since the lumping algorithm
is more complex.

Formula-dependent lumping is a minimisation technique where the model
is lumped for a specific PCTL or CSL property. Our experiments showed
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that formula-dependent lumping can lead to larger state space reductions.
In most cases, formula-dependent lumping plus verifying the property takes
less time than verifying the original model.

For several cases, bisimulation minimisation results in faster runtimes. It
should be noted that we only considered properties for which it is most
likely that using bisimulation minimisation is faster than verifying the orig-
inal model. For many properties, it is faster to verify the original model.
However, we are not only interested in the runtime of model checking. The
size of the state space is also of great importance. We showed that bisimu-
lation minimisation can significantly reduce the state space. Therefore, we
can conclude that bisimulation minimisation is a good state space reduction
technique.

Future work

Bisimulation minimisation can be easily extended to reward model checking
[4, 2]. The initial partition should be modified such that each state in an
equivalence class also has equal state reward. Bisimulation minimisation
may be even more effective for reward model checking because, in general,
model checking reward models is more complex and time consuming.

We only considered DTMCs and CTMCs. The model checker PRISM also
supports PCTL model checking on Markov Decision Processes (MDPs).
MDPs extend DTMCs by allowing both probabilistic and non-deterministic
behaviour. Bisimulation minimisation could also be an interesting technique
for minimising MDPs [28].

Lumping requires to fully store the original model. Reducing the size of state
space of the original model allows minimising larger models. MRMC uses a
sparse matrix representation. It stores for each state a list of successor states
and a list of predecessor states. The lumping algorithm only needs the list
of predecessor states. Only storing the predecessor states can substantially
reduce the size of the state space of the original model. Furthermore, we
can speed up the computation of the cumulative probabilities or rates by
associating the matrix values with the predecessors instead of the successors.
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