

Analysis of Crosscutting Concerns

in

QVT-based Model Transformations

H.Q. Nguyen

July 2006

Master of Science Thesis

Analysis of Crosscutting Concerns

in

QVT-based Model Transformations

by

H.Q. Nguyen

July 2006

Enschede

Graduation Committee: dr. ir. K.G. van den Berg

 dr. ir. B. Tekinerdogan

 prof. dr. ir. M. Aksit

Chair: Software Engineering

Department: Electrical Engineering, Mathematics and Computer Science

University: University of Twente

v

Abstract

The Model Driven Architecture (MDA) framework aims at the idea of separating the

specification of a system from the details of the way that system uses the capabilities of its

platform. It intends to reach this goal by defining models and transformations between models

which are both based on metamodels. To provide a language for model transformations, a

Query, Views and Transformations (QVT) specification has been proposed as a combination

from several submissions in response to the QVT Request for Proposal by the Object

Management Group (OMG).

Separation of concerns is a basic principle in software engineering. The principle states

that a given problem involves different kinds of concerns, which should be identified and

modularized to cope with complexity and to achieve quality factors such as robustness,

adaptability, maintainability and reusability. However, crosscutting concerns like security,

persistence and distribution cause difficulties to the achievement of this principle. Aspect-

Oriented Software Development (AOSD) emerges to address this problem in order to improve

modularity and maintainability of systems, and is dealing with the problem of crosscutting

concerns. AOSD provides systematic techniques for the identification, modularization,

representation and composition of crosscutting concerns.

Despite its importance, the problem of crosscutting concerns has not been extensively

considered in MDA. The consequence is that it is not known what problems crosscutting

concerns cause to QVT model transformations, and how QVT model transformations can be

used to deal with the problem of crosscutting concerns. To analyze this problem, we make a

detailed review of the concepts related to QVT model transformations and crosscutting

concerns. We then choose a formal definition of crosscutting which is based on dependency

graphs between elements of a source and a target.

Traceability in model transformations could be used to derive this kind of dependency

graphs. We propose a method to derive dependency graphs for transformation rules at both

metamodel and model levels. This method is based on the specification of the rules written in

the Relations and Core languages of the QVT specification and the related tracing model. It

also distinguishes two different types of mappings in these dependency graphs: direct and

indirect mappings. These dependency graphs help to identify problems that crosscutting

concerns cause to model transformations. Some of the problems relate to properties of model

transformations, such as transformation rule interaction and execution order of transformation

rules. Others are general problems, such as the complexity and change impact on model

transformations.

It is also concluded that these dependency graphs could be used to identify crosscutting

concerns. However, there is a tendency that every element crosscuts other elements as the

dependency graphs become very large and complex in a real-life model transformation. It is

recommended that these dependency graphs should be further processed in order to identify

crosscutting concerns more effectively. Some directions are to take into account the number

of mappings between and the degree of granularity of the source and target elements.

vii

Acknowledgements

This Master of Science thesis could not be completed without the contribution and support

of many people. I would like to thank all of them.

First of all, I would like to thank my supervisors, Klaas van den Berg and Bedir

Tekinerdogan, for their guidance and support. Their knowledge and dedication are the

foundation of this thesis.

A special thanks to Jan Schut, Belinda Jaarsma-Knol and Brenda Benders. They give me

all kinds of support before and during the time I attend this master program.

I wish to thank all of my friends in the small Vietnamese community in Enschede. They

help me to overcome all the difficulties and enjoy with me for all the happiness.

Finally, I would like to thank my wife Huong and my little daughter Ha Linh for their

patience and encouragement.

ix

Table of Contents

TABLE OF FIGURES XI

TABLE OF TABLES XIII

LIST OF ABBREVIATIONS XV

1 INTRODUCTION 17

1.1 Context 17

1.2 Problem and Approach 17

1.3 Contribution of the Thesis 18

1.4 Organization of the Thesis 19

2 QVT MODEL TRANSFORMATIONS 21

2.1 Model Driven Engineering 21
2.1.1 Model Driven Architecture 21
2.1.2 Model Driven Engineering 22
2.1.3 Query, Views and Transformations 22

2.2 Classification of the QVT Language 23
2.2.1 Main Features of Model Transformations 24
2.2.2 Transformation Rules 24
2.2.3 Rule Application Scoping 25
2.2.4 Relationship between source and target models 25
2.2.5 Rule Application Strategy 25
2.2.6 Rule Scheduling 26
2.2.7 Rule Organization 26
2.2.8 Traceability 27
2.2.9 Directionality 27

2.3 Requirements Compliance of the QVT Language 27
2.3.1 Mandatory Requirements 27
2.3.2 Optional Requirements 28

2.4 Description of the QVT Language 29
2.4.1 Overview of the QVT Language 29
2.4.2 The Relations Language 31
2.4.3 The Core Language 34

2.5 Summary 37

3 CROSSCUTTING CONCERNS IN AOSD 39

3.1 Problem of Crosscutting Concerns 39

3.2 Aspect-Oriented Programming 40

3.3 Definitions of Crosscutting and Related Concepts 41
3.3.1 Modeling Crosscutting in Aspect-Oriented Mechanisms 42
3.3.2 Disentangling Crosscutting in AOSD 43

3.4 Summary 45

4 CASE: CONCURRENT FILE VERSIONING SYSTEM 47

4.1 Simple Concurrent File Versioning System 47
4.1.1 Basic functionalities 48
4.1.2 Branching and tagging 48
4.1.3 Security and Persistence 49

x

4.2 Models and Model Transformations 50
4.2.1 Approach 50
4.2.2 Platform Independent Model 53
4.2.3 Relational PSM 55
4.2.4 Java PSM 58

4.3 Tools Support 58

4.4 Summary 60

5 CROSSCUTTING IN MODEL TRANSFORMATIONS 61

5.1 Decomposition Analysis 61
5.1.1 Concerns 61
5.1.2 Requirements and use cases 61
5.1.3 Design (the PIM model) 62
5.1.4 Relational PSM model 63
5.1.5 Java PSM model 63

5.2 Dependency analysis 64
5.2.1 Transformation rules 64
5.2.2 Dependency graphs at metamodel level 66
5.2.3 Dependency graphs at model level 68

5.3 Crosscutting Concerns Analysis 70

5.4 Definition of Direct and Indirect Mappings 71

5.5 Summary 73

6 CONCLUSION 75

6.1 Summary 75

6.2 Discussion 76

6.3 Recommendations and Future Work 77

REFERENCES 79

APPENDICES 81

A. UML to Relational Transformation Rules 83

B. UML to Java Transformation Rules 87

C. Dependency graphs for UML To Java Transformation Rules 91

xi

Table of Figures

Figure 1: Topics in MDA and AOSD covered in this thesis 18
Figure 2: The MDA Transformation Pattern [17] 22
Figure 3: The use of metamodels in a transformation definition [12] 23
Figure 4: Top-level features of model transformations [7] 24
Figure 5: Features of transformation rules [7] 24
Figure 6: Features of rule application scoping [7] 25
Figure 7: Features of relationship between source and target models [7] 25
Figure 8: Features of rule application strategy [7] 25
Figure 9: Features of rule scheduling [7] 26
Figure 10: Features of rule organization [7] 26
Figure 11: Features of traceability [7] 27
Figure 12: Features of directionality [7] 27
Figure 13: Relationship between QVT metamodels [23] 29
Figure 14: Dependencies between Packages defined in the QVT specification [23] 30
Figure 15: Class to Table in graphical syntax [23] 33
Figure 16: Area-pattern representation of the ClassToTable mapping 34
Figure 17: Dependencies between patterns [23] 36
Figure 18: Mapping Concerns C1..Cn to Modules M1..Mn [30] 39
Figure 19: Concern C3 crosscuts modules M2, M3, M4 and M5 [30] 40
Figure 20: Crosscutting, Tangling and Joinpoints [30] 40
Figure 21: Modular crosscutting [13] 43
Figure 22: Concept Diagram of Crosscutting Pattern (without Mapping Concepts) [3] 43
Figure 23: Concept Diagram of Crosscutting Pattern (with Mapping Concepts) [3] 44
Figure 24: Dependency and crosscutting matrices with tangling, scattering and crosscutting [3] 45
Figure 25: Basic versioning system use case diagram [9] 48
Figure 26: Extended versioning system use case diagram [9] 49
Figure 27: Transformation process 50
Figure 28: Simple UML metamodel [23] 51
Figure 29: The SimpleUML metamodel extended with interaction features [25] 51
Figure 30: Simple RDBMS metamodel [23] 51
Figure 31: The metamodel (class contents) of the UML Profile for Java [20] 52
Figure 32: The metamodel (polymorphism) of the UML Profile for Java [20] 52
Figure 33: Simple versioning system class diagram [9] 53
Figure 34: Security class diagram 54
Figure 35: Security realization 54
Figure 36: Branching sequence diagram 55
Figure 37: CFVS Relational PSM Model 57
Figure 38: Java classes 59
Figure 39: Dependency graph of UClassToJClass at metamodel level 66
Figure 40: Dependency graph of MessageToImports at metamodel level (initial derivation) 66
Figure 41: Allocation of variables of the rule MessageToImports 67
Figure 42: Dependency graph of MessageToImports at metamodel level (accepted derivation) 68
Figure 43: Dependency graph of UClassToJClass at model level 68
Figure 44: Dependency graph for the rule MessageToImports 69
Figure 45: Combination of two dependency graphs 69
Figure 46: Allocation of variables of a transformation rule to areas and patterns 71
Figure 47: The derived dependency graph of the transformation rule 72
Figure 48: Dependency graph (metamodel) for UClassToJClass 91
Figure 49: Dependency graph (model) for UClassToJClass 91
Figure 50: Dependency graph (metamodel) for AttributeToField 92
Figure 51: Dependency graph (model) for AttributeToField 92
Figure 52: Dependency graph (metamodel) for OperationToMethod 93
Figure 53: Dependency graph (model) for OperationToMethod 93
Figure 54: Dependency graph (metamodel) for MessageToImports 94
Figure 55: Dependency graph (model) for MessageToImports 94

xiii

Table of Tables

Table 1: UML-to-Relational transformation definition in Relations (partly) [23] 31
Table 2: UML to Relational transformation definition in Core (partly) [23] 35
Table 3: Several kinds of joinpoints [1][8] 41
Table 4: Several kinds of filters in Composition Filters [5] 41
Table 5: Examples of elements of the weaver model [13] 42
Table 6: Some transformation rules from UML Model to Relational Schema 56
Table 7: Mapping requirements to concerns 62
Table 8: Mapping of the design elements (PIM) to concerns 63
Table 9: Mapping Relational PSM elements to concerns 63
Table 10: Mapping of the Java PSM elements to concerns 64
Table 11: UClassToJClass transformation rule and its QVT tracing class 65
Table 12: MessageToImports transformation rule and its QVT tracing class 65
Table 13: Dependency matrix for the combined dependency graph 70
Table 14: Transformation Definition from UML Model to Relational Schema 85
Table 15: Transformation Definition from UML Model to Java 90
Table 16: Dependency matrix (metamodel) for UClassToJClass 91
Table 17: Dependency matrix (model) for UClassToJClass 91
Table 18: Dependency matrix (metamodel) for AttributeToField 92
Table 19: Dependency matrix (model) for AttributeToField 92
Table 20: Dependency matrix (metamodel) for OperationToMethod 93
Table 21: Dependency matrix (model) for OperationToMethod 93
Table 22: Dependency matrix (metamodel) for MessageToImports 94
Table 23: Dependency matrix (model) for MessageToImports 94

xv

List of Abbreviations

AO Aspect Orientation

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

CFVS Concurrent File Versioning System

COSMOS COncern-Space MOdeling Schema

CWM Common Warehouse Metamodel

EJB Enterprise Java Bean

EMOF Essential Meta-Object Facility

GROOVE GRaphs for Object-Oriented VErification

LHS/RHS Left-Hand Side/Right-Hand Side

MDA Model Driven Architecture

MDE Model Driven Engineering

MOF Meta-Object Facility

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

QVT Query, Views and Transformations

RDBMS Relational Database Management System

RFP Request for Proposal

SCM Software Configuration Management

SQL Structured Query Language

TRESE Twente Research and Education on Software Engineering

UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

Analysis of Crosscutting Concerns in QVT-based Model Transformations

17

1 Introduction

1.1 Context
The Model-Driven Architecture (MDA) is a set of standards proposed by the Object

Management Group (OMG) for software development based on models and model

transformations. MDA helps to separate the specification of a system from the details of the

way that system uses the capabilities of its platform. [17]

MDA provides an approach, and enables tools for:

� Specifying a system independent of the platform that supports it

� Specifying the platforms

� Choosing a particular platform for the system, and

� Transforming the system specification to the chosen platform.

The goals of MDA and its model transformations are portability, interoperability and

reusability through architectural separation of concerns. [17]

In MDA, models are the primary artifacts. Abstract models are transformed to more

concrete models and eventually to platform specific models from which executable models

can be generated. Automatic transformations play a key role. OMG issued a Request for

Proposal (RFP) for MOF 2.0 Query, Views and Transformations (QVT) to address the

technology part of the OMG MOF 2.0 in manipulation of MOF (Meta-Object Facility)

models.

Another principle in software engineering is the separation of concerns. A concern is

commonly considered as a matter of interest in a software application. Many different kinds

of concerns are relevant to different stakeholders at different stages in a software lifecycle [2].

The principle states that a given problem involves different kinds of concerns, which should

be identified and modularized to cope with complexity and to achieve quality factors such as

robustness, adaptability, maintainability and reusability [8][30]. However, there are concerns

such as security, persistence and distribution that do not fit naturally into a single program

module, or even several closely related program modules. This type of behavior is termed

crosscutting because it cuts across the dominant decomposition of responsibility of a given

programming model [8][30]. These concerns are called crosscutting concerns.

Aspect-Oriented Programming (AOP) is a new programming paradigm to provide

strategy for dealing with the problem of crosscutting concerns at the programming level by

providing new language constructs. AOP is further developed into Aspect-Oriented Software

Development (AOSD). AOSD generalizes AOP to other phases of software development. The

idea is to implement individual concerns and then combine these implementations to form the

final system.[8]

There have been proposals to apply AOSD in the MDA framework in order to cope with

the problem of crosscutting concerns. Some solutions propose a general framework for

aspect-oriented modeling, such as the Concern-Space Modeling Schema (COSMOS) by

Sutton and Rouvellou [8][26], while others recommend specific elements to include in the

UML standard, such as the approach for generic aspect-oriented design with Theme/UML by

Clarke and Walker [8], or expressing aspects using UML behavioral and structural diagrams

by Elrad et al. [8].

1.2 Problem and Approach
Despite these proposals, the problem of crosscutting concerns has not been extensively

considered in MDA. The consequence is that it is not known whether the QVT model

transformations, a key element of MDA, are able to effectively deal with existing and future

AOSD techniques which have been proposed to be applied in the MDA framework.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

18

In order to analyze the problem of crosscutting concerns in QVT model transformations,

this study aims at answering the following questions:

� How can crosscutting concerns be identified in QVT model transformations?

� What are the problems of crosscutting concerns in the definition and execution of

QVT model transformations?

The approach of this research is to use traceability to analyze the relationship between

crosscutting concerns and model transformations (See Figure 1). Traceability is a fundamental

property of model transformations and implementation of traceability is one of the

requirements of the OMG’s RFP. Trace dependencies can also be used to identify crosscutting

concerns as discussed in subsequent chapters.

Figure 1: Topics in MDA and AOSD covered in this thesis

A case study is used to illustrate the related concepts and to provide needed facts for the

analysis. In this study, the example of a Concurrent File Versioning System from the Master

thesis of Henninger [9] is reused. The design model and transformation rules to transform this

design model to the implementation models are defined. Trace information from this

transformation is used to derive the dependency graphs at metamodel and model levels. These

dependency graphs are the basis for analyzing crosscutting concerns on model

transformations in this case study.

1.3 Contribution of the Thesis
This thesis makes several contributions.

� The study provides a thorough analysis of the QVT language, especially its

declarative languages Relations and Core. This language has just been proposed and it

is still on the way to become standardized. Thus a detailed explanation through an

actual case study is very helpful to understand the concepts used by the language and

to evaluate its effectiveness to deal with model transformations.

� The study uses traceability as a common property to analyze of the relation between

crosscutting concerns and QVT model transformations. This analysis is helpful in

identifying crosscutting concerns in the development of a software application. It is

also used to identify several fundamental characteristics of QVT model

transformations such as transformation rule interaction and execution order of

transformation rules.

� The study extends and proposes a framework to derive dependency graphs from

transformation rules and the tracing information. These dependency graphs are

derived as mappings between source and target elements in a transformation at both

metamodel and model levels. The mappings could be direct and indirect. Formal

definitions of dependency graphs for transformation rules and direct and indirect

mappings are provided.

Model-Driven Architecture

Models and Metamodels

QVT Model Transformations

Aspects

Aspect-Oriented Software

Development

Traceability

Crosscutting Concerns

Analysis of Crosscutting Concerns in QVT-based Model Transformations

19

1.4 Organization of the Thesis
The remaining of this thesis is organized as follows:

� Chapter 2 introduces Model Driven Engineering and model transformations. In this

chapter, overview of Model Driven Engineering and Model Driven Architecture is

presented, followed by a detailed explanation of the QVT transformation language

which is proposed by the QVT Merge Group in response to the Request for Proposal

for MOF 2.0 QVT by the OMG.

� Chapter 3 provides definitions for various concepts of scattering, tangling and

crosscutting. These definitions are the basis for analyzing the impact of crosscutting

concerns on QVT-based model transformations.

� Chapter 4 presents the case study – the Concurrent File Versioning System. This

case study is reused from the Master thesis of Henninger. The UML design model

and some transformation rules to transform this model to Relational and Java

implementation models are defined. An overview of the tools for this transformation

is also provided.

� Chapter 5 analyzes the crosscutting concerns in the case study and how they impact

the model transformation. The analysis uses the dependency graphs derived from the

definition of the transformation rules (at metamodel level) and from the tracing

information of the transformation execution (at model level)

� Chapter 6 finally provides the conclusions of this analysis and discusses the results

and the future study.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

20

Analysis of Crosscutting Concerns in QVT-based Model Transformations

21

2 QVT Model Transformations
This chapter describes a Query, Views and Transformations (QVT) language for model

transformations. Section 2.1 briefly introduces the Model Driven Architecture (MDA) as

adopted by the Object Management Group (OMG) and the evolution of the QVT language.

Section 2.2 compares the QVT language with Czarnecki’s classification of model

transformation approaches [7] and Section 2.3 evaluates how the language complies with the

requirements of the OMG’s Request for Proposal [22]. Finally, Section 2.4 gives an

explanation of the language based on examples of transformation rules written in two of its

sub-languages.

2.1 Model Driven Engineering

2.1.1 Model Driven Architecture

The Model Driven Architecture (MDA) is a software development framework adopted by

the Object Management Group (OMG). The goal of MDA is to solve several problems that

are common in software development processes [9][11][12][17]:

� Portability: whenever new technologies emerge, companies are forced to port their

software systems to a new environment. The constant changes in technologies may

create a problem with portability which may require significant efforts.

� Productivity: current software development practices have the problem of

productivity due to the fact that we have to spend too much effort on low-level design

and coding. The maintenance and understanding of code is difficult for large software

systems.

� Interoperability: software systems usually consist of multiple components which are

built upon different technologies. Therefore, these components need to interoperate

with each other.

There are two principles in MDA to cope with these problems. The first principle is to use

modeling and models to develop software systems. The second principle is the separation of a

system from the details of how the system is implemented via concrete technologies.

MDA classifies models into two classes based on their levels of abstraction, namely

Platform Independent Models (PIM) and Platform Specific Models (PSM), which rely on the

concept of platform. The MDA Guide [17] defines these classes and concept as follows:

� Platform Independent Model: is a view of a system from a platform independent

viewpoint.

� Platform Specific Model: is a view of a system from a platform specific viewpoint.

� Platform: a platform is a set of subsystems and technologies that provide a coherent

set of functionality through interfaces and specified usage patterns, which any

application supported by that platform can use without concern for the details of how

the functionality provided by the platform is implemented.

The development of a system based on the MDA approach starts from building a PIM of

that system. The PIM is then transformed to one or more PSM’s which use constructs

provided by the chosen platforms. The PSM’s are finally transformed to code.

The basic operation that is applied to models in this approach is the model transformation.

The model transformation is the process of converting one model to another model of the

same system. MDA aims at automating model transformations as much as possible by tools

based on transformation specifications. Figure 2 shows the MDA transformation process as

defined in the MDA Guide. In the typical case, the source and target models are the PIM and

PSM, respectively, while the details of the chosen platform and parameters to the

transformation are represented by the additional information.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

22

Figure 2: The MDA Transformation Pattern [17]

2.1.2 Model Driven Engineering

MDA lacks the notion of software development process. Model Driven Engineering

(MDE) is the enhancement of MDA in this direction. Kurtev [12] discusses MDE on the basis

of MDA by adding the notion of software development process and a modeling space for

organizing models. There are also requirements for tools needed to perform operations on

models in MDE.

The modeling space in MDE has multiple dimensions. The first dimension is the level of

model abstraction, or degree of Abstractness and Concreteness. This dimension is also

defined in MDA based on the classification of models into PIM and PSM, in which PIM is

more abstract than PSM.

The second dimension comes from the distinction of models based on the subject areas

they belong to. Different stakeholders of the software system may have different views

focusing on a subset of features of that system. These views are reflected in different models.

These subject areas correspond to concerns as defined in the Aspect-Oriented Software

Development, such as security, persistence, and distribution.

The third dimension is concerned with organizational issues such as versioning and

authorship over models.

It is also mentioned in [12] about the vision of MDE where MDA is just one possible

instance of MDE implemented on a set of technologies proposed by OMG (MOF, UML,

XMI, etc.). The concepts of model, metamodel and transformations are available in other

technologies as well.

2.1.3 Query, Views and Transformations

The OMG’s MDA is a software development approach which uses models as the primary

artifacts. Abstract models are usually transformed to more concrete models and eventually to

platform specific models from which executable artifacts are generated (code and

configuration files).

In general, model transformations are the operations written in a transformation language

to convert a source model to a target model. The transformation may use metamodels to

define the instantiation of elements in the target model from elements in the source model.

The MDA transformation pattern in Figure 2 could be extended with the use of metamodels

as shown in Figure 3 below.

There are several significant benefits of model transformations. One of these benefits is

reusability. During the development of a software product using the MDA approach, the

software is modeled as models at different levels of abstraction. If there are changes to a

model, these changes are propagated to other models. This process is usually repeated in a

specific algorithm which may be implemented in a transformation language as transformation

rules to be reused in the development of that software product as well as other ones.

Model transformations also provide the automation for many manual activities. This

would help to increase the productivity and decrease the possibility of errors in software

Source

Model

Target

Model

Transformation

Additional

Information input input

 output

Analysis of Crosscutting Concerns in QVT-based Model Transformations

23

development. For instance, the PIM model may be initially simple and abstracted out of

unnecessary details. The designers may later apply design patterns to create more complicated

PSM model for a specific platform. Transformation rules thus can be pre-implemented and

attached to individual design patterns so that these platform specific models are generated

automatically.

Figure 3: The use of metamodels in a transformation definition [12]

Because of these benefits, automatic transformations in MDA play a key role. It is

important that transformations can be developed as efficiently as possible. In 2002, OMG

issued a Request for Proposal (RFP) for MOF 2.0 Query, Views and Transformations (QVT)

to address the technology part of the OMG MOF 2.0 in manipulation of MOF models [22].

In this RFP, three fundamental technology parts are mentioned, namely queries, views and

transformations. These terms are defined as follows:

� Query: a query is an expression that is evaluated over a model. The result of a query

is one or more instances of types defined in the source model, or defined by the query

language.

� View: a view is a model that is completely derived from another model. A view

cannot be modified separately from the model from which it is derived. The

metamodel of the view is not necessary to be the same as the metamodel of the source

model. A query is a restricted kind of view. Views are generated via transformations.

� Transformation: a transformation generates a target model from a source model.

Transformations may lead to dependent or independent models. A transformation

may be top-down in which case the target model is not modified after generation.

Transformations may be one-way (unidirectional) or two-way (bidirectional).

In response to the RFP, 8 proposals were submitted to OMG in October 2002. Gardner et

al. [15] evaluated these proposals and found that many submissions were incomplete and so

unclearly formulated. During the year 2003 and 2004, these submissions were revised and

converged. As of January 2005, two submissions remained under consideration. Finally, in

March 2005, these two submissions were merged again to provide the joint 3
rd

 revised

submission by the QVT Merge Group.

As the only remaining submission, the proposal by the QVT Merge Group, with further

refinement, will be considered to be the specification for the QVT language. In this

assignment, this proposal will be used as the QVT language for the problem under

consideration. The remaining sections discuss how this QVT language meets the requirements

provided in the RFP and various concepts used by the language.

2.2 Classification of the QVT Language
Czarnecki et al. [7] proposes a feature model to compare different model transformation

approaches and offers a survey and categorization of a number of existing approaches which

are published in papers and submitted in response to the OMG’s QVT RFP [22]. The feature

diagrams are presented in the following subsections.

Transformation

Language

Transformation

Definition

Target

Metamodel

Target

Model

Source

Metamodel

Source

Model
Transformation

Execution

written in

uses uses

 instanceOf instanceOf

Analysis of Crosscutting Concerns in QVT-based Model Transformations

24

2.2.1 Main Features of Model Transformations

The main feature diagram of model transformations is shown in Figure 4. Model

transformations have optional (marked with white bullets) and mandatory (marked with solid

bullets) features, each of which is elaborated in the following subsections.

Figure 4: Top-level features of model transformations [7]

2.2.2 Transformation Rules

Figure 5: Features of transformation rules [7]

Figure 5 presents features of transformation rules. In this QVT language, the concept of

source and target models (or LHS/RHS) is generalized to multi-directional transformations in

which multiple models can be specified. All features of variables, patterns and logic can be

used to represent these models.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

25

There is a syntactic separation between models involved in the transformation. For the

Relations and Core languages, multi-directionality (which is stronger than bi-directionality)

can be achieved by specifying any model in transformation rules as the target model, whereas

the remaining are the sources. Rule parameterization can also be defined during

transformation definition and execution.

2.2.3 Rule Application Scoping

Figure 6: Features of rule application scoping [7]

Rule application scoping allows restricting the parts of a model that participates in the

transformation for performance reasons. This feature is not present in this QVT specification.

2.2.4 Relationship between source and target models

Figure 7: Features of relationship between source and target models [7]

In this QVT specification, the target model may be empty, but it has to exist (Existing

Update). Elements in the target model may be created, deleted or modified in order to make

the relation hold (Update). The target model may also be the same as the source model; i.e.

in-place update, however, additional evaluation steps may be needed.

2.2.5 Rule Application Strategy

Figure 8: Features of rule application strategy [7]

This feature classifies transformation approaches by the order with which a specific rule is

applied to multiple matches found in the source models. However, it has not been found in the

submission document which application strategy the specification uses.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

26

2.2.6 Rule Scheduling

Figure 9: Features of rule scheduling [7]

Multiple transformation rules can be specified to transform source models to target

models. The Rule Scheduling feature classifies the order in which individual rules are applied.

In this specification, there are two types of rules: top-level and others. For example, the

Relations language uses the keyword top to mark the top level relations. The top-level rules

are executed directly by the transformation engine, other rules are invoked indirectly from the

top-level rules, such as in the where and when clauses. However, it is not clarified which

order the top-level rules are executed.

2.2.7 Rule Organization

Figure 10: Features of rule organization [7]

According to the submission document, transformation rules are organized in modules.

The submission also states that it supports reuse mechanism through the use of MOF

polymorphism; however, no examples have been found for this. Logical composition is also

used to compose multiple transformation rules. Finally, the rules are organized independently

from the source and target models.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

27

2.2.8 Traceability

Figure 11: Features of traceability [7]

Trace classes and their instances are implicitly generated in the Relations language and

Operational Mappings to maintain the traceability between model elements in a

transformation execution. However, they have to be created explicitly in the Core language.

The location of these instances is not described clearly in the document; however, it can be

inferred that these instances are stored separately from the source and target models and are

maintained by the transformation engine.

2.2.9 Directionality

Figure 12: Features of directionality [7]

Multi-directionality is supported in the declarative languages Relations and Core. Multiple

candidate models can be specified in a multi-directional transformation rule and any one of

them can be nominated as the target model in a transformation execution. However, the

imperative Operation Mappings language requires a separate rule for each direction of the

transformation (complementary pairs).

2.3 Requirements Compliance of the QVT Language
The Request for Proposal for the QVT language [22] provides general and specific

requirements; specific requirements in turns are divided into mandatory and optional

requirements. This section extracts specific requirements of the RFP and, based on the

submission document, discusses the resolution of this QVT language to these requirements.

2.3.1 Mandatory Requirements

1. Proposals shall define a language for querying models. The query language shall

facilitate ad-hoc queries for selection and filtering of model elements, as well as for the

selection of model elements that are the source of a transformation.

This submission uses OCL 2.0 as its query language. The QVT models also introduce

some subtypes of OCL metamodel elements. No explicit support for ad-hoc queries is

provided in this submission.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

28

2. Proposals shall define a language for transformation definitions. Transformation

definitions shall describe relationships between a source MOF metamodel S, and a target

MOF metamodel T, which can be used to generate a target model instance conforming to T

from a source model instance conforming to S. The source and target metamodels may be the

same metamodel.

In the Relations and Core languages, multi-directional transformation definitions can be

specified. These languages allow the nomination of a model at runtime which defines the

direction the transformation will execute in. The Operational Mappings specifications always

have a direction defined in terms of a target model.

3. The abstract syntax for transformation, view and query definition languages shall be

defined as MOF (version 2.0) metamodels.

All packages in this QVT language are defined using EMOF, a subset of MOF 2.0, and

extend the MOF 2.0 and OCL 2.0 specifications.

4. The transformation definition language shall be capable of expressing all information

required to generate a target model from a source model automatically.

By using the Relations, Core and Operational Mappings languages, transformation

definitions are capable of expressing all information required to generate a target model from

a source model automatically. An optional feature to define some parts of the transformation

is to use Operation black-box implementations; however, the portability of transformation

will be not guaranteed.

5. The transformation definition language shall enable the creation of a view of a

metamodel.

This specification does not support views.

6. The transformation definition language shall be declarative in order to support

transformation execution with the following characteristic:

� Incremental changes in a source model may be transformed into changes in a target

model immediately.

This mode of execution is supported by the Relations and Core languages. The imperative

approach is also supported by the Operational Mappings

7. All mechanisms specified in Proposals shall operate on model instances of metamodels

defined using MOF version 2.0.

The specification supports this requirement.

2.3.2 Optional Requirements

1. Proposals may support transformation definitions that can be executed in two

directions. There are two possible approaches:

� Transformations are defined symmetrically, in contrast to transformations that are

defined from source to target.

� Two transformation definitions are defined where one is the inverse of the other.

Both approaches are supported in this specification. The Relations and Core languages

support the former, while the Operational Mappings supports the latter.

2. Proposals may support traceability of transformation executions made between source

and target model elements.

Trace classes are implicitly created in the Relations language to trace executions of

Relations and Operational Mappings transformations. In the Core language, trace classes are

explicitly created and matched by transformations.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

29

3. Proposals may support mechanisms for reusing and extending generic transformation

definitions. For example: Proposals may support generic definitions of transformations

between general metaclasses that are automatically valid for all specialized metaclasses. This

may include the overriding of the transformations defined on base metaclasses. Another

solution could be support for transformation templates or patterns.

This specification supports this kind of specialization, as transformations are defined

using MOF polymorphism.

4. Proposals may support transactional transformation definitions in which parts of a

transformation definition are identified as suitable for commit or rollback during execution.

This specification does not deal with transactions.

5. Proposals may support the use of additional data, not contained in the source model, as

input to the transformation definition, in order to generate a target model. In addition

proposals may allow for the definition of default values for this data.

MOF Tags may be included for name/value pairs during transformation definition. For

data required to execute a transformation, it is allowable to define properties which must be

given appropriately typed values at runtime.

6. Proposals may support the execution of transformation definitions where the target

model is the same as the source model; i.e. allow transformation definitions to define updates

to existing models. For example a transformation definition may describe how to calculate

values for derived model elements.

In this specification, a transformation is considered in-place when its source and target

directions are bound to the same model at runtime. Some guidance is given in the

specification for this kind of transformation.

2.4 Description of the QVT Language
This section describes the QVT specification by first introducing the overview of the

language and then explaining the main concepts used in its declarative sub-languages

Relations and Core which will be used in the case study.

2.4.1 Overview of the QVT Language

The QVT is a hybrid of declarative/imperative approach, with the declarative part being

split into two-level architecture.[23]

Figure 13: Relationship between QVT metamodels [23]

Two-level Declarative Architecture
The user-friendly Relations metamodel and language allows a declarative specification of

transformation rules as relationships between MOF models. It supports complex object

pattern matching expressions to locate and create and/or update elements of the models

involved in a transformation. The transformation rules written in the Relations language

implicitly create trace classes and their instances to record the mappings between source and

target elements occurred during a transformation execution.

The Core metamodel and language supports pattern matching over a flat set of variables

by evaluating conditions over those variables against a set of models. Besides, trace classes

Analysis of Crosscutting Concerns in QVT-based Model Transformations

30

and their instances must be explicitly defined and created, and are not deduced from the

transformation definition, as with the Relations language. The Core language is as powerful

as the Relations language, and because of its relative simplicity, its semantics can be defined

more simply, although the transformation is described more verbosely.

The semantics of a Relations model is defined by a transformation to a trace model and a

Core model with equivalent semantics. Thus Relations and Core models are considered as two

models with the same semantics at different levels of abstraction.

Another view of the relationship between the Relations and Core languages is the analogy

to the Java architecture, where the Core language is like the Java Byte Code and the Relations

language plays the role of the Java language. The transformation from Relations to Core is

like the specification of a Java compiler [23].

Imperative Implementations
The imperative part has two mechanisms to invoke the imperative implementations of

transformations from Relations or Core: one standard language, Operational Mappings, and a

non-standard Black-box MOF Operation Implementations. Each relation defines a class

which will be instantiated to trace between model elements being transformed and it has a

one-to-one mapping to an Operation signature that the Operational Mappings or Black-box

implements.

The Operational Mappings language is specified in a standard way to provide imperative

implementations. It populates the same trace models as the Relations language. It provides

OCL extension with side effects which allow a more procedural style, and a concrete syntax

that looks familiar to imperative programmers.

For Black-box implementations, MOF Operations may be derived from Relations to

“plug-in” any implementation of a MOF Operation with the same signature. This allows more

flexibility to transformations. However, it is also dangerous. The transformation is less

portable and the implementation has access to object references in models and may do

arbitrary things to those objects.

Package dependencies

Figure 14: Dependencies between Packages defined in the QVT specification [23]

The specification defines three main packages, one for each language: QVTCore,

QVTRelation and QVTMappingOperations. All packages depend on the QVTBase

package which defines a common structure for transformations. Besides, the QVTRelation

package uses Template Pattern Expressions defined in the QVTTemplateExp package.

QVTMappingOperations extends the QVTRelation because it uses the same

Analysis of Crosscutting Concerns in QVT-based Model Transformations

31

framework for traces defined in that package. Finally, All QVT packages depend on the

Expressions package from OCL 2.0, and on EMOF. Figure 14 presents these packages and

dependencies between them.

Because the Relations and Core languages have the same semantics at different levels of

abstraction, and the Operational Mappings and Black-box Implementations are just to provide

the imperative implementation based on the Relations framework, the next subsections will

introduce the Relations and Core languages in order to explain the concepts used in the

specification for this QVT language. The case study in the following chapters will use the

Relations and Core languages to investigate the problem under consideration.

2.4.2 The Relations Language

The example of a transformation from a UML model to a Relational model which is used

to create database schemas is usually used to demonstrate the concepts and capabilities of

QVT languages. This transformation is as follows: each package in the UML model

corresponds to a schema in the Relational model, and all persistent classes and their attributes

belonging to each package are used to create tables and their columns in the corresponding

schema. Finally, foreign keys in the Relational model are created based on associations

between classes in the UML model. Table 1 shows part of this transformation written in the

Relations language and is used to explain the related concepts.

transformation umlRdbms(uml uses SimpleUML, rdbms uses SimpleRDBMS) {

key Table (schema, name);

key Column (name, owner);

key Key (name, owner);

top relation ClassToTable {

 cn, prefix: String;

 checkonly domain uml c:Class {

 namespace = p:Package {},

 kind = ’persistent’,

 name = cn

 };

 enforce domain rdbms t:Table {

 schema = s:Schema {},

 name = cn,

 column = cl:Column {name = cn + ‘_tid’, type = ‘NUMBER’} ,

 key = k:Key {name = cn + ‘_pk’, column = cl}

 };

 when {

 PackageToSchema(p,s);

 }

 where {

 prefix = ‘’;

 AttributeToColumn(c, t, prefix);

 }

}

...

Table 1: UML-to-Relational transformation definition in Relations (partly) [23]

Transformations and typed models
A transformation consists of a set of relations (or transformation rules) that must hold

between elements of a set of candidate models. These models are named and the types of

elements they can contain are restricted to those defined in the packages or metamodels these

models refer to. As the example shows, the transformation umlRdbms is defined as a set of

relations, such as ClassToTable, PackageToSchema and AttributeToColumn,

between elements from uml and rdbms models which are instances of SimpleUML and

SimpleRDBMS metamodels.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

32

At execution time, the direction of this transformation is identified by specifying one of

the models, i.e. either uml or rdbms, as the target. The transformation execution is

performed by making the relations hold by modifying only the target model. Some relations

only check whether a relationship holds between candidate models and the transformation

execution would either confirm this or report errors when it does not.

Relations and domains

A relation, or a transformation rule, consists of two or more domains and a pair of

constraints known as the guard clause (or when clause) and the where clause. Each domain

includes a candidate model, its type, and a set of patterns which can be viewed as a graph of

object nodes, their properties and association links between them. An alternative view of

pattern is a set of variables and a set of constraints that model elements bound to these

variables must satisfy in order to be qualified as a valid binding. The domain pattern can be

considered as a template for objects and their properties that must be located, modified or

created in order to satisfy the relation.

The relation ClassToTable in the example defines two domains for uml and rdbms

candidate models of types SimpleUML and SimpleRDBMS, respectively. The domain for

uml contains a pattern used to locate and bind elements from the uml model to its variables

c, p and cn. The meaning of this simple pattern is to locate all classes (bound to c) in the

uml model belonging to a given package (bound to p) and having its kind property to be a

literal value ‘persistent’; i.e. classes to be transformed to tables.

Check and enforce
A relation domain may be marked as either checked or enforced. A checked domain,

when specified as the target in a transformation execution, is only checked to see whether

there is at least a valid match in the model which satisfies the relationship with any match in

the source models. For an enforced domain, when being specified as the target model in a

transformation execution, if the relation does not hold, its elements are modified, created or

deleted in order to satisfy the relationship.

In the above example, when the enforced rdbms model declared in the ClassToTable

relation is specified as the target, if there is no table in the rdbms model corresponding to a

matched class in the uml model, a table is created to make the relationship hold. On the other

hand, when the transformation is executed in the checked uml model direction, the

transformation execution for the relation ClassToTable only checks whether there is a

corresponding class in the uml model for each table in the rdbms model.

When and where clauses
A relation is constrained by two predicates. The when clause ensures that the relation is

only checked or enforced when the clause’s predicate is evaluated to true. When the when

clause does not hold, the relation is ignored; thus the clause is also called the guard clause.

The where clause specifies the condition that must be satisfied by all model elements

participating in a relationship; it is usually used as a way to extend the relation to other

relations defined elsewhere.

The when clause in the example ensures that the relation is not maintained for all matched

classes in the uml model and all matched tables in the rdbms model, but only for classes and

tables in a pair of corresponding package and schema via the relation PackageToSchema.

In other words, the when clause with the relation PackageToSchema constrains the

binding of elements to variables of the domain patterns.

When a valid binding of elements (classes and tables in a pair of corresponding package

and schema) to variables is found, the relation is checked or enforced further by the relation

AttributeToColumn in the where clause which ensures that the relationship between the

class’s attributes and the table’s columns also holds.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

33

Pattern matching
The patterns associated with a domain are known as object template expressions. A

template expression match results in a binding of elements from the typed model to variables

declared in the domain. A template expression match may be performed in the context that

some of its variables have been bound to model elements (from the evaluation of the guard

clause or other template expressions). In this case, the template expression match only finds

bindings for the free variables of the domain.

In the example, for the domain associated with the uml model, the pattern binds all

declared variables c, p and cn, starting from the root variable c of type Class. However,

because the guard clause has been evaluated, the variable p has been bound to some

Package element of the uml model. The pattern then finds all Class elements satisfying

the constraints that its property kind having a literal value of ‘persistent’ and it

belongs to the namespace by the Package element p. A comparison between a property and

a free variable like name=cn would bind the variable to the property name of the bound

class c; the binding of this variable will be used in another domain or in the evaluation of the

where clause.

The matching continues with nested template expression. In the example, an empty nested

template expression namespace=p:Package{} is provided, but any other template

expression may be given here to constrain the binding of elements to variables. Arbitrary deep

nesting of template expressions is permitted, and matching and variable binding proceeds

recursively until there is a set of value tuples corresponding to the variables of the domain and

its template expressions.

Key and object creation
The Relations language allows determining whether a new object should be created in the

target model by defining keys for different types of elements. A key determines uniquely the

object in the model. For example, Table in a SimpleRDBMS model has a key based on

identifying properties schema and name. The object template expression in the domain of

the rdbms model uses properties appearing in this key, and thus the key is used to locate the

table in the rdbms model; a new table is only created when a matching table does not exist.

Graphical syntax
The specification also proposes a graphical syntax to define transformation rules using

graph. Figure 15 shows the corresponding graphical definition of the transformation relation

ClassToTable in the above example. Please refer to the specification for detailed

introduction of graphical notation elements [23].

Figure 15: Class to Table in graphical syntax [23]

c:Class

<<domain>>

name=cn

t:Table

<<domain>>

name=cn

ClassToTable

 PackageToSchema(p,s);

 Prefix=’’;

 AttributeToColumn(c,t,prefix);

where

u1:UML r1:RDBMS

when

s:Schema
cl:Column

name=cn+’_tid’

type=’NUMBER’

C E
c.kind=’persistent’

p:Package

Analysis of Crosscutting Concerns in QVT-based Model Transformations

34

2.4.3 The Core Language

As introduced, the Core language of the QVT specification is used to define the

transformation rules at a different level of abstraction which is simpler, but more verbose. The

main difference is that trace classes are not derived implicitly from the relations as in the

Relations language, but are created explicitly as other classes. Table 2 shows the Core

transformation definition corresponding to the Relations example in Table 1, while Figure 16

presents the area-pattern representation of one of the transformation rules of this

transformation definition. This section provides the explanation of the basic concepts used in

the Core language using this example.

Figure 16: Area-pattern representation of the ClassToTable mapping

Transformations and directions

A transformation is defined in a package and has multiple directions which define the

candidate models of the transformation. Each direction may import one or more packages

which define the allowable types of elements of the transformed models. At execution time,

one of the directions are specified as the target, while the others are the sources.

The example defines the umlRdbms transformation in a module and the transformation

includes two directions named uml and rdbms which import SimpleUML and

SimpleRDBMS packages, respectively.

Mappings, domains and areas
Mappings are similar to relations in the Relations language and are part of the

transformation. Each mapping has zero or more domains; each domain is associated with one

direction of the transformation, thus it represents the candidate model involved in the

transformation. A domain may be marked as checked or enforced (which also means checked)

or nothing at all. The example shows two domains having a same name with their directions

uml and rdbms; the former is checked, while the latter is enforced.

Mappings are divided into areas. The classToTable mapping has three areas; one

area for each domain (represented by the same name of the domain; i.e. uml and rdbms) and

one middle area (represented by the where clause). Each area in turns consists of two

patterns: the guard pattern (the part in the parenthesis before the curly braces; e.g. ‘p:

Package’ in the uml area) and the bottom pattern (the part inside the curly braces). See

below for explanation of patterns, and guard and bottom patterns. Figure 16 shows the

division of this mapping.

p:Package

Area for

Domain uml Middle Area
Area for

Domain rdbms

Guard

patterns

Bottom

patterns

c:Class

c.kind=’persistent’

s:Schema

t:Table

t.schema:=s

p2s:TPackageToSchema

p2s.p=Package

p2s.s=Schema

c2t:TClassToTable

cn:String

prefix:String

c2t.p:=p, c2t.c:=c,

c2t.s:=s, c2t.t:=t,

cn:=c.name,

t.name:=cn

Notes: Normal font : variables
 Bold font : realized variables

 Italic font (= operator) : constraints

 Italic font (:= operator) : derivations

Analysis of Crosscutting Concerns in QVT-based Model Transformations

35

module UmlRdbmsTransformation imports SimpleUML, SimpleRDBMS {

 transformation umlRdbms {

 uml imports SimpleUML;

 rdbms imports SimpleRDBMS;

 }

 class TClassToTable {

 p: Package;

 c: Class;

 s: Schema;

 t: Table;

 cl: Column;

 k: Key;

 }

 map classToTable in umlRdbms {

 check uml (p: Package) {

 c: Class |

 c.kind = ’persistent’;

 }

 check enforce rdbms (s: Schema) {

 realize t: Table |

 t.schema := s;

 }

 where (p2s: TPackageToSchema | p2s.p=p; p2s.s=s) {

 realize c2t: TClassToTable, cn: String, prefix: String |

 c2t.p := p; c2t.c := c;

 c2t.s := s; c2t.t := t;

 prefix := ’’;

 cn := c.name;

 t.name := cn;

 }

 map {

 check enforce rdbms () {

 realize cl: Column |

 t.column := cl;

 }

 where () {

 c2t.cl := cl;

 cl.name := cn + ’_tid’;

 }

 map () {

 where () {

 cl.type := ’NUMBER’;

 }

 }

 }

 map {

 check enforce rdbms () {

 realize k: Key |

 k.column := cl;

 t.key := k;

 }

 where () {

 c2t.k := k;

 k.name := cn + ’_pk’;

 }

 }

 }

}

Table 2: UML to Relational transformation definition in Core (partly) [23]

Analysis of Crosscutting Concerns in QVT-based Model Transformations

36

Patterns
A pattern is a set of variables and constraints or derivations. In the example in Figure 16,

the guard pattern (the upper one) of the uml domain contains a single variable p of type

Package, while the bottom pattern (the lower) consists of another variable c of type Class

and a constraint that its kind property should have value ‘persistent’. The types

Package and Class must be defined or imported from the SimpleUML package that is

imported by the uml direction of the uml domain. The package of the transformation defines

or imports (implicitly from the QVT language) the types of variables of the middle patterns,

such as the defined tracing class TClassToTable, or the primitive type String.

During execution, variables of a domain area are bound to elements of the corresponding

model associated with that domain, while values of variables of the middle area are calculated

based on domain variables. For example, variable c of the uml domain is bound to classes in

the uml model, while variable cn of the middle is assigned with the name property of the

class bound to variable c.

Variables may be realized; i.e. their values are created when there is no existing value

satisfying the relationship. This is usually the case with variables of an enforced domain, such

as the variable t of type Table of the rdbms domain, or a special variable of bottom pattern

of the middle area representing the tracing instance of the mapping, like the variable c2t of

type TClassToTable (see Figure 16).

Patterns also contain constraints or derivations. Constraints are checked to see whether a

value is a valid binding for a variable, while derivations are enforced, i.e. values are created

and bound to variables if no valid value exists. Thus derivations only appear in the bottom

pattern of an enforced domain and they are only effective when the model of that domain is

the target of the execution of that transformation. When it is used as a source, its derivations

are changed to constraints. The operator symbols of constraints and derivations are ‘=’ and

‘:=’, respectively. See Figure 16 for an example.

Figure 17: Dependencies between patterns [23]

Patterns may depend on each other; i.e. they use variables of other patterns. For example,

in Figure 16, the bottom pattern of the middle area uses variable c of the bottom pattern of

the domain area uml. Some common rules of dependency are shown in Figure 17. A middle

pattern depends on all domain patterns at the same level (either guard or bottom). The bottom

pattern depends on the guard pattern of the same area (either domain or middle area). Finally,

when a direction A uses another direction B, then each pattern of the domain dA which has

direction A depends on the domain dB which has direction B at the same level (either guard

or bottom).

Bindings

A binding is a unique set of values for all variables of a pattern. A valid binding is a

binding in which all variables are bound to a value other than undefined, and all

constraints are evaluated to true. A partial binding is a binding where one or more variables

are bound to a value other than undefined or one or more constraints evaluate to true, no

constraints evaluate to false (thus, either true or undefined). Finally, an invalid

binding has at least one constraint which evaluates to false.

Domain
uml

Middle

Domain
rdbms

Guard

patterns

Bottom

patterns

Analysis of Crosscutting Concerns in QVT-based Model Transformations

37

Bindings may also depend on each other. If a pattern C depends on patterns S1…Sn, then

a valid binding of C needs one valid binding for each S1…Sn. A valid combination of valid

bindings VSB of a set of dependent patterns SP is a set of valid bindings in which each

pattern of SP has one unique valid binding from VSB, and each valid binding of VSB uses

other valid bindings of VSB according to the dependencies between patterns of SP.

Guard and bottom patterns

With the definition of binding, the difference between guard and bottom patterns can be

clarified. The matching of all bottom patterns takes place in the context of a valid

combination of valid bindings of all guard patterns. The validity of the combination is defined

by the dependencies between the guard patterns.

Note that the guard patterns do not define any constraint or derivation on the transformed

models. They only define the context in which the constraints and derivations in the bottom

patterns are evaluated or calculated. Thus the guard patterns narrow the choice of values in

models for just one mapping, but not for the model as a whole.

For example, the guard patterns in the example limit the derivation of a RDBMS table

from a UML class in a context that (1) the variable p of type Package (defined in the guard

pattern of the domain uml) is bound to some package of the uml model, and (2) the variable

s of type Schema (defined in the guard pattern of the domain rdbms) is bound to some

schema of the rdbms model, and (3) these package and schema elements appears in one

instance of the class TPackageToSchema (defined in the middle guard pattern); i.e. the

schema was derived from the package in a previous mapping execution.

Mapping composition
Mapping composition allows defining mappings that are only “active” in a context given

by another mapping. The child mapping is executed in the context of a valid binding of the

bottom-middle pattern of the parent mapping. This mechanism is shown in the example where

a column is derived in a child mapping in the context of a valid binding of the

TClassToTable c2t variable of the bottom-middle pattern of the parent mapping. This is

necessary to avoid the problem of unwanted creation or deletion of elements in the target

model by first checking and deriving the table, then checking and driving the column which is

not an identifying property of the table.

Tracing
The QVT languages in this QVT specification use trace classes for keeping traces

between source and target elements which are mapped in a transformation. However, in the

Relations language, these trace classes are not explicitly specified and used. A relation

directly specifies the relationship between source and target domain elements. On the other

hand, in the Core language, a trace class is specified explicitly for each transformation

mapping. The example shows the specification of the trace class TClassToTable

corresponding to the mapping ClassToTable.

The QVT specification also proposes transformation rules to transform a transformation

definition in the Relations language to the corresponding one in the Core language, in which

there is a rule to define the a trace class for each relation. The rule is described as follows:

“Corresponding to each relation there exists a trace class in core. The trace class

contains a property corresponding to each object node in the pattern of each domain of the

relation.” [23]

2.5 Summary
This chapter presented the basic concepts in the Model Driven Architecture. MDA is a

software development approach which bases on models and model transformations. The main

concepts of the approach are models, metamodels and transformations. The Model Driven

Engineering is the generalized approach of MDA. It is considered that MDA is an instance of

MDE implemented on a set of technologies proposed by the Object Management Group.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

38

In MDA, models are the primary artifacts, and model transformations play a key role.

Model transformations in MDA are based on metamodels. They specify the mapping between

source and target elements whose types are defined in the source and target metamodels.

Upon execution, these mappings are used to derive elements in the target model from

corresponding elements in the source models.

The QVT language proposed by the QVT Merge Group is the convergence of various

QVT submissions in response to the Request for Proposal for MOF 2.0 QVT by OMG. This

QVT language is considered to be standardized in the near future, and it will be used in the

case study of this research.

The QVT language is a hybrid of declarative/imperative approach, with the declarative

part being split into two sub-languages: Relations and Core. Both languages allow a

declarative specification of transformation rules as relationships between MOF models.

However, trace classes and their instances which are used to record the mapping between

source and target elements occurred during a transformation execution must be explicitly

defined and created in the Core language, whereas they are deduced implicitly from the

transformation definition in the Relations language.

Finally, the Core language is considered to be more formal and could be used as a

reference of implementation for the Relations language. The explicit division of a

transformation rule written in the Core language into areas and patterns is the base for

identifying the mapping between types of elements of models involved in that rule. It also

differentiates the roles of these elements in that mapping. This information will be used to

derive dependency graphs of transformation rules at metamodel level in the case study.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

39

3 Crosscutting Concerns in AOSD
This chapter discusses crosscutting concerns and related concepts in Aspect-Oriented

Software Development (AOSD). The problem of crosscutting concerns is introduced in

Section 3.1. Section 3.2 introduces Aspect-Oriented Programming (AOP) as a new

programming paradigm to cope with crosscutting concerns at the programming level. The

related concepts such as scattering, tangling and crosscutting are then discussed by providing

several frameworks for defining these concepts in Section 3.3. Finally, Section 3.4 gives the

rationale for selecting a particular framework to use in this research and summarizes the

chapter.

3.1 Problem of Crosscutting Concerns
Separation of concerns is a key principle in software engineering [8][30]. The principle

states that a given problem involves different kinds of concerns, which should be identified

and modularized to cope with complexity and to achieve quality factors such as robustness,

adaptability, maintainability and reusability.

According to [30], a concern is “a canonical solution abstraction that is relevant for a

given problem”. This definition implies that the solution for the given problem should meet

two quality properties. Firstly, the solution should be relevant; i.e. it is required to meet the

goals and constraints of the problem, and as such is valid for the context of the problem.

Secondly, the solution should include necessary and sufficient abstractions to provide a

relevant solution. Furthermore, it should not include irrelevant and/or redundant abstractions.

In other words, the solution should be generic and succinct, that is, canonical.

The decomposition of a problem into multiple concerns may occur in many different

ways. A concern may occur in a composition, but may not in another composition because it

is not relevant to the stakeholders. Furthermore, the result also depends on the used view and

methodology. For example, an object-oriented methodology may model concerns as classes

and objects which are derived from requirements, whereas these concerns are represented as

procedures in a procedural language.

The separation of concerns principle states that each concern of the given problem should

be mapped to one module in the system. In other words, the problem should be decomposed

into modules such that each module has one concern. By this way, the concerns are localized

and then can be easier to be understood, extended, adapted, reused, etc. This process is

illustrated in Figure 18. In this figure, the problem is decomposed into concerns C1 to Cn and

each of these concerns is implemented in a separate module M. A module is a modular unit in

the given design language (class, function, procedure, etc.)

Figure 18: Mapping Concerns C1..Cn to Modules M1..Mn [30]

Unfortunately, there are concerns that cannot be implemented in a single module, such as

security and logging. These concerns are said to crosscut the boundaries of the implementing

modules. Even concerns which are well separated at the design level become crosscutting at

the programming level. A crosscutting concern is a serious problem because it makes the

program harder to understand, reuse, extend or adapt, as it spreads over many places. Finding

where a crosscutting concern occurs is one problem, while adapting the concern appropriately

is another problem. Figure 19 illustrates the problem of crosscutting concerns. In this figure,

the concern C3 is mapped to multiple modules M2, M3, M4 and M5. The problem is even

Analysis of Crosscutting Concerns in QVT-based Model Transformations

40

worse when there are multiple crosscutting concerns. Because of these crosscutting concerns,

several modules may include more than one concern. These concerns are said to be tangled in

the corresponding module. For example, the concerns C2 and C3 are tangled in the module

M2, even though the C2 is not a crosscutting concern.

Figure 19: Concern C3 crosscuts modules M2, M3, M4 and M5 [30]

[30] presents the crosscutting and tangling problem in another way. In Figure 20, the

modules form the vertical axis, while the concerns locate over the horizontal axis. Each circle

in the figure represents a place where a concern crosscuts a module. These are called

joinpoints. By looking at this figure, we can easily identify which concerns are crosscutting

which modules, and which modules become tangling.

Figure 20: Crosscutting, Tangling and Joinpoints [30]

In order to solve the problem of crosscutting concerns, the Aspect-Oriented Software

Development (AOSD) approach needs to be applied. In the remaining sections, we discuss

Aspect-Oriented Programming as an AOSD approach at the programming level and present

several frameworks for defining the related concepts.

3.2 Aspect-Oriented Programming
Several aspect-oriented programming languages have recently emerged to solve the

crosscutting concern problem at the programming level. Some of them are AspectJ,

Composition Filters, and HyperJ. AspectJ [1][8] is a general purpose extension to Java that

introduces new language constructs to represent and compose aspects. HyperJ [10] supports

multi-dimensional separation of concerns for Java and operates on standard Java class files

and produces new class files for execution. In Composition Filters [5][8][28], aspects are

represented through the so-called composition filters that are declaratively specified and

integrated in the corresponding programming language. In this section, we introduce the

general concepts used in these AOP languages.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

41

Aspects
In these AOP languages, crosscutting concerns are identified and implemented in a

separate module which is called an aspect. In these aspects, the extension to other modules of

the system, including the location and behavior, is defined. These extensions are later woven

to the extended modules through an aspect weaving process.

Joinpoints

A joinpoint is a well-defined point in the program flow where the extension defined by an

aspect needs to be applied. A pointcut picks out certain joinpoints and values at those points.

Some kinds of joinpoints are given in Table 3 below.

Kind of joinpoint Description

Method call When a method is executed

Method execution When the body of a method is actually executed

Exception handler execution When an exception is thrown

Field access When a non-constant field is referenced or set

Table 3: Several kinds of joinpoints [1][8]

Advice
Advice is used to define the behavior at the crosscutting points, or joinpoints. Advice

brings together a pointcut (to pick out joinpoints) and a body of code (to be executed at each

joinpoint). In AspectJ, an advice can be specified to run before, after or around a joinpoint.

Before-advice runs as a joinpoint is reached, before the program proceeds with the joinpoint.

After-advice on a particular joinpoint runs after the program proceeds with that joinpoint.

Around-advice on a joinpoint runs as the joinpoint is reached and has explicit control over

whether the program proceeds with the joinpoint or not.

Composition Filters controls the execution of an advice through a set of filter

specifications. A filter has a certain type and some of them are listed in Table 4 below. A

filter can be guarded by a condition and has an associated set of pointcuts.

Filter type Accept action Reject action

Dispatch Dispatch the message to the target

of the message

Continue to the next filter, or raise an

exception if there is no next filter.

Error Continue to the next filter, or raise

an exception if there is no next filter

Raise an exception

Wait Continue to the next filter, or raise

an exception if there is no next filter

The message is placed in a queue as

long as the evaluation of the filter

results in a rejection

Meta The reified message is sent as a

parameter of another message to an

object. The receiving object can

observe and manipulate the

message, then reactivate the

execution

Continue to the next filter, or raise an

exception if there is no next filter

Table 4: Several kinds of filters in Composition Filters [5]

3.3 Definitions of Crosscutting and Related Concepts
As discussed in the previous sections, several aspect-oriented programming languages and

tools have emerged to solve the problem of separation of concerns. Specifically, these

languages introduce new elements to enhance the expressiveness in order to cope with

scattering, tangling and crosscutting issues. However, these languages do not provide precise

definitions for the concepts of scattering, tangling and crosscutting. They all provides

necessary elements to declare aspects, joinpoints and advices as introduced in the previous

section, but they use different terminology and their definitions are different.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

42

This variation raises a need to have a formal framework to understand and compare how

these aspect-oriented languages support the modular crosscutting. Furthermore, when the

aspect-oriented technique is brought to other phases of the software development process such

as designing, requirements engineering, there is a need to have a consensus definition for

these related concepts. Several researches have recently proposed frameworks in which

formal definitions for the concepts of scattering, tangling and crosscutting are given [3][13].

This section introduces some of the frameworks proposed by these researches and discusses

how these frameworks can be applied to the MDA framework and QVT model

transformations.

3.3.1 Modeling Crosscutting in Aspect-Oriented Mechanisms

In aspect-oriented languages, the problem of separation of concerns is solved by allowing

the developers to declare crosscutting concerns in separate modules and a set of joinpoints

where these modules crosscut each other. At compilation time and/or runtime, a weaving

process takes these modules and weaves them into a single combined module/computation.

Masuhara and Kiczales captured the core semantics of the aspect-oriented mechanism by

modeling this weaving process [13]. Each weaver – the term for the corresponding AO

mechanism – is modeled by an 11-tuple :

 <X, Xjp, A, AID, AEFF, AMOD, B, BID, BEFF, BMOD, META>

In this tuple:

� A and B are the languages of the input programs, while X is the result domain of the

weaving process which may either be a computation or a third language.

� Xjp is the join points in X, whereas AID and BID are the means, in the languages A and

B, of identifying elements of Xjp.

� AEFF and BEFF are the means, in the languages A and B, of effecting semantics at the

identified join points. AMOD and BMOD are units of modularity in A and B.

� META is the optional meta-language for parameterizing the weaving process.

Table 5 provides examples for elements of this weaver model in the AspectJ language.

 AspectJ

X The program execution

Xjp Method calls, method execution, field accesses, etc. in the program execution

where an advice is weaved.

A Declarations of classes, methods, fields of the Java language

AID Method, field signatures

AEFF Execution of the method body, access the field

AMOD Class, package

B Declarations of advices (AspectJ extension to the Java language)

BID Pointcuts

BEFF Execution of the advice body

BMOD Advice

META None

Table 5: Examples of elements of the weaver model [13]

The weaving process is defined by a procedure with the following signature:

 A × B × META → X

One of the critical properties of this model is that the join points are considered to be in

the combined result, but not in the input programs. The model also describes A, B and X as

distinct entities and describes the weaving process as the combination of semantics of the

input programs of A and B at the join points in X. This perception is different from other

models which consist of only two elements (A and B) and consider a program in B to be

weaved with a program in A at join points in A.

Before defining how two modules of the input programs in A and B crosscut each other,

the authors defined the projection of a module, let’s say a module mA from the input program

Analysis of Crosscutting Concerns in QVT-based Model Transformations

43

pA in A, onto X as the set of join points identified by the elements AID within mA. For

example, in AspectJ, the projection of an advice declaration is the set of join points matched

by the pointcut of that advice declaration.

Finally, the authors defined the concept of crosscutting: “For a pair of modules mA and mB

(from pA and pB), mA is said to crosscut mB with respect to X if and only if their projections

onto X intersect, and neither of the projections is a subset of the other”. Figure 21 illustrates

this definition. In this figure, the dashed boxes in A and B represents the modules mA and mB,

respectively. The dots in these boxes are the identification of join points AID and BID in these

modules. The lines between these dots and the corresponding ones in X show the projection

of the modules onto X. These projections intersect and neither of them is a subset of the other,

so the modules in A and B crosscut each other.

Figure 21: Modular crosscutting [13]

This framework has successfully captured the mechanisms of AO programming languages

and visualized how the modules from the input programs crosscut each other with respect to

the combined computation/program. However, the framework seems focus too much on the

programming level. The paper provides discussion and examples on several AO programming

languages but not on the general context of software development. Finally, the framework

does not define other concepts like scattering and tangling which are important properties of

crosscutting.

3.3.2 Disentangling Crosscutting in AOSD

Berg and Conejero [3] fill in this gap by providing another conceptual framework in

which the concepts of scattering, tangling and crosscutting are defined explicitly. The

description of crosscutting in this conceptual framework is similar to some descriptions in the

framework proposed by Masuhara and Kiczales [13].

In this framework, scattering, tangling and crosscutting are defined in terms of “one

thing” with respect to “another thing”: there are two domains, or two levels, or two phrases,

or two layers which relate to each other in some way. Examples for these two things are two

domains in mathematical sense in which there is a mapping from one domain into another

domain, or two phases in the software development cycle, or two levels in the Model Driven

Architecture. They are represented by the terms source and target.

The relationship between the source and the target is represented by the Crosscutting

Pattern shown in Figure 22. In the Crosscutting Pattern, elements in the source are related to

elements in the target. This relationship is symmetric. The terms scattering, tangling and

crosscutting are defined as special cases of this relationship. This is explained by extending

the Crosscutting Pattern with the Mapping concepts, as shown in Figure 23.

Figure 22: Concept Diagram of Crosscutting Pattern (without Mapping Concepts) [3]

Analysis of Crosscutting Concerns in QVT-based Model Transformations

44

Figure 23: Concept Diagram of Crosscutting Pattern (with Mapping Concepts) [3]

In Figure 23, SourceToTargetMapping is the relation between the source elements

and the target elements. The multiplicity of the relation can be 1:1 or 1:many. Scattering is

defined as follows: “Scattering occurs when, in a mapping between source and target, a

source element is related to multiple target elements.” In this case, the source element is said

to be scattered over target elements.

The reverse of the above mapping is TargetToSourceMapping which is the relation

between the target elements and the source elements. Similarly, the multiplicity can be 1:1 or

1:many, and tangling is defined as follows: “Tangling occurs when, in a mapping between

target and source, a target element is related to multiple source elements.” Another way of

statement is: two source elements are tangled if they are mapped onto the same target

element.

A specific combination of scattering and tangling results in crosscutting which is defined

as follows: “Crosscutting occurs when, in a mapping between source and target, a source

element is scattered over target elements and where in at least one of these target elements,

some other source elements are tangled.”

In this crosscutting, a source element s1 is said to crosscut another source element s2 if s1

is scattered over target elements and s1 is tangled with s2 over at least one of these target

elements. However, the source element s2 is not required to be scattered. That means this

definition is not symmetric and less restrictive than the crosscutting definition of Musuhara

and Kiczales [13].

The authors also provide a technique to determine scattering, tangling and crosscutting

based on dependency matrix and crosscutting matrix. A dependency matrix (source x target)

represents the dependency relation between source elements and target elements. The source

elements are in the rows and the target elements are in the columns. A cell of 1 denotes the

relation between the corresponding source and target elements. Scattering and tangling are

easily visualized in this matrix, as shown on the example in Figure 24.

A new auxiliary concept is defined for the crosscutpoint in the dependency matrix: it is

any cell which involves in both scattering and tangling. It is said that there is crosscutting if

one or more crosscutpoints exist in the dependency matrix.

A crosscutting matrix (source x source) represents the crosscutting relation between

source elements, for a given source to target mapping (represented in a dependency matrix). A

cell of value 1 denotes that the source element in the row crosscuts the source element in the

column. A technique is also provided to derive the crosscutting matrix from the given

dependency matrix.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

45

 S: scattered source element T: tangled target element

 NS: non-scattered source element NT: non-tangled target element

Figure 24: Dependency and crosscutting matrices with tangling, scattering and

crosscutting [3]

Finally, the authors define the terms intrinsic scattering, intrinsic tangling and intrinsic

crosscutting as the case when scattering, tangling and crosscutting are caused by the

limitations in the expressive power of the languages used to describe the source and target.

3.4 Summary
This chapter introduced the problem of crosscutting concerns in which concerns, defined

as canonical solution abstractions that are relevant for a given problem, cannot be

implemented in a single module, such as security and logging. These crosscutting concerns

make the program harder to understand, reuse, extend or adapt, as they spread over many

places.

Aspect-Oriented Software Development provides techniques to cope with the problem of

crosscutting concerns at various phases of the software lifecycle. Aspect-Orient Programming

is the corresponding technology at the programming level. There are several AOP

programming languages such as AspectJ, Composition Filters and HyperJ; they introduce new

language constructs to represent and compose aspects – a kind of modules to implement

crosscutting concerns.

The final section of the chapter presented two frameworks for defining the concepts of

scattering, tangling and crosscutting. At the first glance, these two frameworks seem to

propose inconsistent and conflict definitions. However, a closer look at them shows that they

use the same approach to define crosscutting in terms of “one thing” with respect to “another

thing”.

In Berg and Conejero’s framework, a source is mapped to a target by a set of relations

between source and target elements, as shown in Figure 22 and Figure 23. Masuhara and

Kiczales propose the same mapping approach, but with a slight difference that the source is

split into two input programs, as shown in Figure 21. Both frameworks then define

crosscutting as a specific situation of this mapping.

However, Berg and Conejero’s framework has several advances over Masuhara and

Kizales’. First, the latter focuses too much on the programming level, while the former

discusses the problem in the general context of software development. It uses the term source

and target to represent arbitrary things, such as two domains, two levels, two phases or two

layers which relate to each other in some way. In MDA, they could be two models related by

model transformations.

Next, the latter only proposes a pattern of mapping between input programs and the result

computation/program, but does not specify explicitly how to identify the relations between

them, and only crosscutting could be determined. The former extends the pattern with

Analysis of Crosscutting Concerns in QVT-based Model Transformations

46

relations between source and target elements, and provides a specific technique to determine

scattering, tangling and crosscutting based on dependency graphs, dependency matrices and

crosscutting matrices.

The definition of concepts of scattering, tangling and crosscutting of Berg and Conejero

seems also conflict with the general description of the problem of crosscutting concerns in

Section 3.1. However, they again have the same approach, but use a different terminology. In

Figure 20, if we consider the concerns C1,..., Cn as elements of the source and M1,..., Mn as

elements of the target, then this figure looks similar to the dependency matrix in Figure 24. In

those figures, the term ‘tangling’ has the same meaning, while the term ‘crosscutting’ in the

former has the same meaning as the term ‘scattering’ in the latter. Hence the later could be

used as the formal definition for the former with a notice of this terminology difference.

Because of these reasons, the framework proposed by Berg and Conejero could be used

broadly in software development. It is also very well appropriate to this research with the

application of MDA and QVT model transformations. In MDA, the software application is

modeled as models at various abstract levels. QVT model transformations are used to

transform source models to target models. These transformations are actually a mapping

between elements in the source and target models. A QVT transformation language like the

one proposed by the QVT Merge Group as discussed in Section 2.3 specifies explicitly the

traceability of this mapping. This traceability directly forms the dependency matrix and the

crosscutting matrix based on which the different cases of scattering, tangling and crosscutting

are easily identified.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

47

4 Case: Concurrent File Versioning System
This chapter presents a case study extracted from the Master thesis of Henninger [9]. The

case study is the development of a file versioning system which is based on “Concurrent

Versions Systems (CVS)” with simplification. It will be used for our discussion about the

impact of crosscutting concerns on QVT model transformations and is introduced in Section

4.1. Definition of transformations from the PIM model to the PSM models using the QVT

language introduced in the previous section is then presented in Section 4.2. Secion 4.3

discusses tools support and Section 4.4 summarizes the chapter.

4.1 Simple Concurrent File Versioning System
A versioning system allows the user to keep multiple versions of data ordered by a

timestamp. A user may get an existing version of data from the system, modify that data and

save it back to the system as a new version without discarding the previous version of that

data. Each version may either be a complete copy of the modified data or a log of changes to

the previous version of data. [9]

A versioning system can be classified into several categories depending on the type and

the storage mechanism of the maintained data. The data may be either system data or user

data. Examples of system data are in database systems in which users concurrently access

multiple copies of the same piece of data called snapshots; this maintenance is transparent to

the user.

On the other hand, the user may want to maintain multiple versions of the user data. For

user data maintenance, the data may be stored as records in a database system or as files and

directories in a file system. A database system allows the user to keep multiple records for the

same piece of data; one record for each version. Versions in this type of system are usually

complete copies of user data. [9]

In file versioning systems, user data is stored as files and organized in a directory

hierarchy. Each file has multiple copies and each copy is tagged with a version number and a

timestamp. The case study in this assignment will only consider this kind of versioning

systems.

Maintaining versions of a file can be implemented using one of the following options: [9]

� Store the complete content of a file for each version. This option is the fastest to

retrieve any version of a file, but it consumes the most space and is inefficient to

show the differences between two versions of a file. The next two options take less

space and are straightforward to compare the contents of any two versions.

� Store the changes in a forward order. The system only keeps the complete content of

the first version of a file. Each subsequent version is stored as a log of changes with

respect to the previous version. This option takes the most time to retrieve the newest

version of the file because the system has to apply changes to the complete content of

the first version. It is simple for the system to remove the last version of the file by

discarding the corresponding log of changes, whereas it has to calculate and store the

complete content of the second version when the first version is removed.

� Store the changes in a backward order. This option is similar to the second option,

but the complete content of the last version of a file and a log of changes for

preceding versions are stored instead. Retrieving the newest version is as fast as the

first option, but it takes more time for the preceding versions. Removing the oldest

version of the file is simple, while removing the newest version requires the system to

calculate and store the complete content of the second newest version of the file.

Deleting an intermediate version of a file is as complex as the second option.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

48

4.1.1 Basic functionalities

A fundamental file versioning system consists of the following basic functionalities:

check-in, check-out, commit, update, remove and difference. Figure 25

presents the use case diagram containing basic functionalities of a versioning system.

The commit functionality allows the user to create a new version a file in the system

with the local copy in the user workspace, while the update functionality does the opposite:

to update the local copy in the user workspace with the content of a specific version of the file

in the system. Both use cases require a conflict management; i.e. when the local copy of the

file in the user workspace and the current version of the file in the system are modified

simultaneously.

The check-in and check-out functionalities, besides similar operations as commit

and update, manage the locking mechanism. The check-out functionality locks the file

before retrieving the content, whereas the check-in functionality creates a new version of

the file in the system and releases the lock on that file. The locking mechanism is necessary

for concurrent access to a file in the system by multiple users.

Commit

Check-in

Update

Difference

Remove

Check-out

User

Add

Figure 25: Basic versioning system use case diagram [9]

The remove functionality deletes the specified version of a file from the system. As

noted above, the system may need to calculate the complete content of the first or last version

of the file in the case of the second and third options, respectively. The difference

functionality shows the differences between two versions of a file.

4.1.2 Branching and tagging

The case study becomes more interesting when the versioning system is extended for

software configuration management (SCM). Essential for SCM is the tracking and

maintaining the integrity of multiple files. Some features needed for this requirement are

branching and tagging.

A software product usually consists of multiple files (documents, source codes, etc.); each

file in turns has multiple versions which are all managed by a versioning system. A version of

a software product is then a set of files; each of which has a specific version number.

Tagging is the ability of the versioning system to mark a specific version of each of these

files to belong to a specific version of the software product.

Branching is related to the following definitions:

� The main trunk is the main development line of the software product.

� A branch is a parallel version of the main trunk or another branch.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

49

During the software product development, a separated version may be branched from the

main version of the software product. This is usually necessary to do bug fixes or to test a

new feature of the software product without affecting the main trunk. This is also the case of

software product line engineering in which multiple lines of a software product are

maintained. The branch may be later merged with the main trunk or another branch and

conflict management is needed as with the use cases update and check-in.

With a versioning system, branching is the ability to branch a set of tagged files off the

main trunk or another branch. A branch can only be conducted after the set of files has been

tagged. Merging is the ability to merge a branch back to the original branch from which it

was originated. Figure 26 shows the use case diagrams for these extended functionalities.

Branch

Tag

Merge

User

Figure 26: Extended versioning system use case diagram [9]

4.1.3 Security and Persistence

The CFVS system is concurrently used by multiple users with different permissions. This

means that it has to implement the security functions to manage the permissions of each user.

The two most fundamental security functions that are implemented by this system are

authentication and authorization. Authentication is the requirement that the user must be

authenticated before using the system. Each user has a username and a password which are

entered at the beginning of his or her working session with the system. The system checks

whether the username exists and the password matches.

Authorization is the ability of the system to check whether a user is allowed to do some

action on a particular object. The CFVS has multiple kinds of objects such as product, branch,

directory and file, each object is associated with allowable actions; the rights to do these

actions are assigned to individual users by the administrator. For example, a particular

product would have permissions like reading its contents, branching its branches or checking

out its files. For the purpose of simplicity, this CFVS system only manages the permissions

on product and branch objects; other kinds of objects like directories and files have their

permission assignment inherited from their parent product and branch.

Data of the CFVS system also needs to be stored on a storage media. This requirement is

fulfilled by implementing the persistence functions like retrieving data from and saving data

to the storage media. In this case study, a relational database is used to store basic information

of objects of the system, while a file system is used to store the actual contents of files.

These security and persistence requirements are some of the most important quality

requirements which are implemented by almost all software applications. They are usually

considered as crosscutting concerns according the current AOP languages. Subsequent

sections will provide the realization of these concerns and the basic functions of the CFVS

system at two MDA levels namely PIM and PSM. Transformation definitions written in the

proposed QVT language will be provided to show how these concerns at the PIM model

crosscut each other with respect to the PSM models according to the formal definitions of

crosscutting defined in Section 3.3.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

50

4.2 Models and Model Transformations

4.2.1 Approach

As discussed, QVT model transformations use metamodels to define mapping between

elements of the source and target models. Figure 3 shows this transformation pattern and it is

extended as the process for this case study in Figure 27. Following are the main steps of the

case study:

� Build the PIM model of the CFVS application which is modeled in the UML

metamodel.

� Define two transformations to Relational and Java PSM models. The transformation

definitions are written in the Relations and Core languages.

� Execute the transformation definitions over the PIM model to derive the Relational

and Java models, respectively.

These steps are represented as gray boxes in Figure 27. Boxes in this figure also show

references to corresponding sections, figures and tables in this thesis.

Figure 27: Transformation process

There are several issues in this process. The first issue is about metamodels. When

transforming from the PIM model specified in the UML language to the PSM Relational

model, metamodels for the UML and Relational models are needed. The ideal candidates are

the UML metamodel specified the OMG’s UML specification [25] and the Relational

metamodel specified in the OMG’s CWM specification [16]. However, these metamodels are

superfluous and too complicated for most usual applications. In this case study, subsets of

these metamodels are used: SimpleUML and SimpleRDBMS. These metamodels may not

have been standardized, but are still able to illustrate the operational characteristic of the QVT

language in discussion. The class diagrams for the SimpleUML and SimpleRDBMS

metamodels are shown in Figure 28 and Figure 29, and in Figure 30, respectively.

For the Java model, the UML profile for Java specified in the OMG’s Metamodel and

UML Profile for Java and EJB [20] is used. This is shown in Figure 31 and Figure 32. The

profile concept is a specialization mechanism defined as part of UML. A profile includes

definition of a set of stereotypes, a set of related constraints and a set of tagged values. Thus a

profile defines a specialized metamodel, which is a subset of the UML metamodel. In other

words, a profile defines a language by reusing the UML metamodel [11].

Relations, Core

Languages

Sec 2.4

UML-Rel

Trans Def

Sec 4.2.3,

Table 14

RDBMS

Metamodel

Figure 30

CFVS Rel

Model

Sec 4.2.3,

Figure 37

UML

Metamodel

Figure 28,

Figure 29

CFVS PIM

Model

Sec 4.2.2,

Figure 33,

Figure 34,

Figure 35,

Figure 36

Trans Exec

written in

uses uses

 instanceOf instanceOf

UML-Java

Trans Def

Sec 4.2.4,

Table 15

Trans Exec

Java

Metamodel

Figure 31,

Figure 32

CFVS Java

Model

Sec 4.2.4,

Figure 38

 instanceOf

uses uses

Analysis of Crosscutting Concerns in QVT-based Model Transformations

51

Figure 28: Simple UML metamodel [23]

Figure 29: The SimpleUML metamodel extended with interaction features [25]

Figure 30: Simple RDBMS metamodel [23]

Message MessageEnd

sendEvent

receiveEvent

Lifeline covered Class type

Analysis of Crosscutting Concerns in QVT-based Model Transformations

52

Figure 31: The metamodel (class contents) of the UML Profile for Java [20]

Figure 32: The metamodel (polymorphism) of the UML Profile for Java [20]

The second issue relates to the package information. In the UML model, classes are

grouped in hierarchical packages. When transforming, these packages are usually mapped to

schemas of the Relational model, or packages of Java classes. However, in the PIM model,

packages may be logical grouping of classes based on, for example, different concerns or

functionalities of the system. On the other hand, in the Relational model, all tables may be

grouped into a single schema, as usually the case for non-distributed database applications.

The same thing happens in the Java model; packages are physical grouping of Java classes

which may be slightly different from logical grouping in the PIM model. The solution to this

issue depends on the individual applications. One may try to keep consistent package

information between different models, while the other may use a tag name (or a custom

property) of classes for this purpose. In this case study, for the purpose of simplicity, the

package information is not used during transformation between various models.

The third issue is that the transformation is not always from one source model to one

target model, but it may be one-to-many, many-to-one or many-to-many. For example, when

the layer architecture style is applied, it is usually the case that a single PIM model is

designed and then transformed to multiple PSM models and eventually to multiple software

components; a bridge component is also generated for communication between these

components [11]. This pattern also applies to the case study in which a Relational PSM and a

Java PSM model and a communication bridge in-between them are generated from a single

PIM model.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

53

4.2.2 Platform Independent Model

The diagrams presented in Figure 33, Figure 34, Figure 35 and Figure 36 are part of the

platform independent model of the case study. It models necessary elements for constructing a

simple file versioning system but does not set any restriction on a specific platform on which

the system will be constructed.

Basing on the functionalities described in Section 4.1, a simple model for the versioning

system can be generated. Figure 33 presents the class diagram for this simple versioning

system. The class Product is needed for maintaining multiple software products in the

versioning system. Each software product corresponds to a Product instance which is

composed by multiple instances of Branch.

The initial Branch of a Product is the main trunk of the software product. It has a

name and a number and it may create another branch via the operation branch() or be

merged with another branch via the operation merge().

Each branch consists of multiple files which are organized into a hierarchy of directories;

these are represented by the classes Directory and File. All the basic functionalities are

implemented as operations of the class File. They may also be implemented as Branch’s

and Directory’s operations which are eventually delegated to File’s operations. For the

sake of simplicity, this enhance is ignored in this case study.

A File instance holds the content of a file (either the first or the last version) and

contains multiple versions which are represented by the class Version. Each version is

stored with a timestamp and the difference with respect to the adjacent version (either the

preceding or the following one, respectively).

The class Tag is used for tagging a set of files of a specific version. A tagged product

version may contain one or more versions of files; one version for each file. A version of a

file may also belong to multiple tagged product versions.

Figure 33: Simple versioning system class diagram [9]

Analysis of Crosscutting Concerns in QVT-based Model Transformations

54

Figure 34 presents the class diagram for implementing the security concern. All security

functionalities are implemented in the Security class as operations namely

authenticate and authorize. At the beginning of the working session, the user is

authenticated by the operation authenticate. The successful result of this method is a

Security object associated with the corresponding User object. These objects are

maintained by the application for other authorization operations during the working session.

A special interface namely SecuredObject is also needed to be implemented by classes

whose objects are protected by authorization mechanism.

Figure 34: Security class diagram

Figure 35 shows that objects of Product and Branches classes are protected by the

authorization mechanism. Each instance of these classes has permissions to be assigned

explicitly to individual users. These classes also need to implement the SecuredObject

interface.

Figure 35: Security realization

The above class diagrams model the static structure of the system. The dynamic behavior

of the system is modeled via diagrams like sequence diagrams, activity diagrams. Figure 36 is

an example of the sequence diagram for the branch operation of the Branch class.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

55

Figure 36: Branching sequence diagram

4.2.3 Relational PSM

Transformations from UML models to Relational models are typical examples that are

usually introduced in QVT transformation languages. The specification of the QVT language

in [23] also presents this example. Because of this, this subsection only describes the

necessary steps to transform the PIM model of the CFVS to the corresponding PSM

Relational model. A modification of the transformation definition in [23] then is provided.

Following is the necessary steps for the transformation; each step may be attached with a

corresponding transformation rule given in the appendix:

1. For each persistent class in the UML model: (ClassToTable)

a. Create a table with the same name in the Relational model.

b. Create an ID column in the table.

c. Create the primary key of the table using the ID column.

d. For each primitive attribute of the class (PrimitiveAttributeToColumn):

i. Create a field in the table with the same name. The type of the column

corresponds to the primitive type of the attribute.

e. For each complex attribute of the class, do the same steps 1d, 1e, 1f with the

corresponding class type of the complex attribute (ComplexAttributeToColumn).

f. Do the same steps 1d, 1e, 1f with the super class of the current class

(SuperAttributeToColumn).

2. For each association between two persistent classes (source and destination) in the

UML model (AssocToFKey):

a. Identify the corresponding source and destination tables in the Relational model.

b. Create a column in the source table for referring to the ID column of the

destination table.

c. Create a foreign key of the source table. The columns of this foreign key include

only the column created in step 2b. The foreign key refers to the primary key of

the destination table.

The transformation definition uses simplified metamodels of UML and Relational

presented in Figure 28, Figure 29 and Figure 30. Table 6 below shows some of the

transformation rules of this transformation definition, while Table 14 in the appendix presents

the complete definition.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

56

transformation umlRdbms(uml uses SimpleUML, rdbms uses SimpleRDBMS) {

key Table (name);

key Column (name, owner);

key Key (name, owner);

top relation ClassToTable {

 cn, prefix: String;

 checkonly domain uml c:Class {

 kind=’persistent’, name=cn

 };

 enforce domain rdbms t:Table {

 name = cn,

 column = cl:Column {name = cn + ‘_tid’, type = ‘NUMBER’} ,

 key = k:Key {name = cn + ‘_pk’, column = cl}

 };

 where {

 prefix = ‘’; AttributeToColumn(c, t, prefix);

 }

}

relation AttributeToColumn {

 checkonly domain uml c:Class {};

 enforce domain rdbms t:Table {};

 primitive domain prefix:String;

 where {

 PrimitiveAttributeToColumn(c, t, prefix);

 ComplexAttributeToColumn(c, t, prefix);

 SuperAttributeToColumn(c, t, prefix);

 }

}

...

top relation AssocToFKey {

 checkonly domain uml as:Association {

 name=asn,

 source=sc:Class {kind=’persistent’, name=scn},

 destination=dc:Class {kind=’persistent’, name=dcn}

 };

 enforce domain rdbms fk:ForeignKey {

 name=fkn,

 owner=srcTbl,

 column=fc:Column {name=fcn, type=’NUMBER’, owner=srcTbl},

 refersTo=k:Key {name= dcn + ‘_pk’, owner = dstTbl}

 };

 when {

 ClassToTable(sc,srcTbl);

 ClassToTable(dc,dstTbl);

 }

 where {

 fkn = scn + ‘_’ + an + ‘_’ + dcn; fcn = fkn + ‘_tid’;

 }

}

function PrimitiveTypeToSqlType(primitiveType:String):String {

 if (primitiveType = ‘INTEGER’)

 then ‘NUMBER’

 else if (primitiveType = ‘BOOLEAN’)

 then ‘BOOLEAN’

 else ‘VARCHAR’

 endif;

 endif;

}

}

Table 6: Some transformation rules from UML Model to Relational Schema

Analysis of Crosscutting Concerns in QVT-based Model Transformations

57

As shown in Table 6, a transformation definition is declared by the keyword

transformation, followed by a name and a list of model parameters with their

metamodels.

A transformation definition consists of a set of transformation rules, each one is declared

by a relation clause. However, not all relations will be executed by the engine when a

transformation instantiated from this transformation definition, but only those which are

declared with the keyword top. Non-top level relations will be invoked by top level relations

and other relations. There are two top level relations in this example, namely ClassToTable

and AssocToFKey.

The purpose of a relation is to keep the relationship between elements of the models

participating in the relation hold. The participating models are declared by the domain

clauses. For example, the relation ClassToTable is to keep the relationship between a

Class in the UML model and a Table in the Relational Schema. Which domains are the

sources and which one is the target will be specified during execution of the transformation. A

domain may be specified as either checkonly or enforce. A relation execution with a

checkonly domain as the target will only check the relationship and return an error if the

relation does not hold. On the other hand, if an enforce domain is the target, the target domain

may be modified in order to keep the relation hold; i.e. elements are created, deleted, or have

their attributes be updated.

In order to search for instances of a participating domain in a model, keys may be

specified using the key clauses. For example, instances of type Table will be identified

uniquely by its attribute name, while instances of type Column need a combination of two of

its attributes as the key, namely name and owner; i.e. the owning table.

Product

columns

id:INTEGER NOT NULL(PK)
name:VARCHAR(null) NOT NULL

constraints

PK_Product

Branch

columns

id:INTEGER NOT NULL(PK)
name:VARCHAR(null) NOT NULL

constraints

PK_Branch

Directory

columns

id:INTEGER NOT NULL(PK)
name:VARCHAR(null) NOT NULL

constraints

PK_Directory

File

columns

id:INTEGER NOT NULL(PK)
name:VARCHAR(null) NOT NULL
content:VARCHAR(null) NULL

constraints

PK_File

Version

columns

id:INTEGER NOT NULL(PK)
number:INTEGER NOT NULL
timestamp:TIMESTAMP(null) NOT NULL
difference:VARCHAR(null) NULL

constraints

PK_Version

Tag

columns

name:VARCHAR(null) NULL
id:unknown NOT NULL(PK)

constraints

PK_Tag

Tag_Version

User

columns

username:VARCHAR(null) NOT NULL(PK)
password:VARCHAR(null) NULL

constraints

PK_User

Permission

columns

objectid:INTEGER NOT NULL(PK)
objecttype:INTEGER NOT NULL(PK)
action:INTEGER NOT NULL(PK)

constraints

PK_Permission

fk4

fk3

fk2

fk6fk7

fk1 P

fk5
P

fk8

Figure 37: CFVS Relational PSM Model

Analysis of Crosscutting Concerns in QVT-based Model Transformations

58

A relation may be attached with a when and a where clause. The relation is only executed

if its when clause holds and it is evaluated to true if the relationship between participating

elements is kept and the where clause is true. For example, the relation AssocToFKey is

only executed if the two classes in the association have been participated in a relation

ClassToTable; i.e. the when clause, and the relation is true if both the main relationship and

the where clause hold.

Besides keys and relations, a transformation definition may contain functions declared by

function clauses. Functions are invoked inside the relations in order to evaluate a value

from the input values. This example has a function PrimitiveTypeToSqlType which

returns a String value representing the SQL type corresponding to the input UML type.

Figure 37 shows the entity relationship diagram of the Relational PSM model generated

from the transformation discussed above.

4.2.4 Java PSM

Following are the steps to transform the UML model to the Java model:

1. For each package in the UML model, create the corresponding Java package in the

Java model. The name of the Java package is defined by a tag value named

JavaPackage of the UML package element (UPackageToJPackage).

2. For each class in the UML model (UClassToJClass):

a. Create a Java class with the same name in the Java model in the corresponding

Java package.

b. For each attribute in the UML class (AttributeToField):

i. Create a private field in the Java class. The field name has the form
m_<AttribName>

ii. Create the corresponding set/get methods.

a. Create methods in the Java class corresponding to the operations in the UML class

(OperationToMethod).

3. Create the extends relation between Java classes in the Java model for each

generalization relation in the UML model (GeneralizationToExtends).

4. Create corresponding fields and methods for Java classes in the Java model for each

association relation in the UML model (AssociationToField1,

AssociationToField2).

5. For each message in the sequence diagram from an instance of an UML class to

another instance of another UML class, create an imports relation (if not existed)

between two corresponding Java classes in the Java model (MessageToImports).

In order to implement this model transformation, metamodels of the source and target

models are needed. A simple UML metamodel is presented in Figure 28 and Figure 29.

Figure 31 shows the class contents of the UML Profile for Java, while Figure 32 shows the

polymorphism and import relationship between Java classes [20].

The full transformation definition to transform UML models to Java models is provided in

Table 15 in the Appendix B. The result of the transformation is partly shown in Figure 38.

4.3 Tools Support
The case study in this thesis makes intensive use of the Borland Together Architect 2006

for Eclipse for modeling its models [6]. The tool helps to model the requirements model, the

PIM model in the UML modeling language, and two PSM models for Relational and Java

implementation.

The definition and execution of transformations are the major work in this case study and

should be supported by a tool as well. However, this QVT language is so new that no tool has

been ready to support it completely. Thus this work was done manually in this research.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

59

Figure 38: Java classes

The Borland Together tool allows writing transformation definitions in the imperative

Operational Mappings language. We used this tool to write several transformation rules.

However, due to some limitations, this work is merely for illustrative purpose. Firstly, the

imperative Operational Mapping language is only an extension to the declarative languages to

support imperative programming, thus it does not illustrate well the concepts of the QVT

specification. Furthermore, the tracing model is incompletely implemented by the tool.

Tracing classes and their instances are automatically deduced for transformation rules and

transformation execution. However, only two fields or columns are allowed for each tracing

class. This is unusable even for the simplest transformation. Finally, the thesis uses simplified

versions of UML and RDBMS metamodels for analysis, namely SimpleUML and

SimpleRDBMS, respectively. However, all models were developed in full versions of UML

and RDBMS in the Borland Together. As such, the transformation definitions become very

Analysis of Crosscutting Concerns in QVT-based Model Transformations

60

complex due to the complexity of these metamodels, and thus we cannot define complete

transformations of the case study with a limited time and effort.

There is another tool named ModelMorf developed by Tata Consultancy Services (TCS)

[27]. The tool was claimed to fully support the QVT language. Unfortunately, we were unable

to download the evaluation version of the tool, and thus we cannot use it for our case study.

The implementation of a transformation engine could be achieved by using graph

transformations. Metamodels and models could be translated to type graphs and graphs which

can be understood by the GROOVE tool [29]. Then transformation rules could be defined in

the GROOVE tool to transform graphs to graphs. This kind of work is also available in the

Master thesis of Nederpel [14]. However, this approach is not applied in this thesis project.

It is expected that several tools are ready in very near future to support the QVT language,

and this research could be continued with respect to fully automatic transformations between

models of the case study.

4.4 Summary
This chapter presented the case study developed in this research. The case study is a

simplified Concurrent File Versioning System with basic functionalities such as checking in,

checking out, tagging, branching and merging. Security and persistence requirements are also

included. These are considered crosscutting concerns and will be used for analysis in the next

chapter.

A process to implement the case study is extended from the MDA transformation pattern.

It includes three main steps: building the PIM model, defining transformations to Relational

and Java PSM models, and finally executing these transformations to derive these PSM

models.

A discussion of the used tools was also provided. All models could be created with the

Borland Together tool. However, it is unsatisfactory that the transformation work could not be

done by the tool and has to be implemented manually. It is expected that this work will be

completed in a further study with available tools in the near future.

The next chapter will use the developed transformation definitions to analyze the relation

between crosscutting concerns in the case study, i.e. security and persistence, and the model

transformations

Analysis of Crosscutting Concerns in QVT-based Model Transformations

61

5 Crosscutting in Model Transformations
This chapter analyzes the problem of crosscutting concerns in model transformations

based on the case study introduced in the previous chapter. The goals of the analysis is to

understand the problems that crosscutting concerns cause to model transformations and the

ability of model transformations to help identify crosscutting concerns in a model.

Section 5.1 provides a decomposition analysis with respect to identifying concerns of the

case study and types of elements in each phase of the development lifecycle. Section 5.2 uses

the transformation definitions and the tracing information to derive dependency graphs at

metamodel and model levels. These dependency graphs are helpful to identify several

fundamental properties of the transformation with respect to crosscutting. Next, Section 5.3

discusses the problems that the crosscutting concerns in the case study cause to the model

transformation. Finally, direct and indirect mappings of the derived dependency graphs are

defined in Section 5.4, and summary is given in Section 5.5.

5.1 Decomposition Analysis
A software product is developed through multiple phases, each phase has a different level

of abstraction and an earlier phase involves models at a more abstract level. At each level,

there are usually many possible ways of decomposition which may have a different affect on

the quality of the final product, such as usability, performance, reliability, and on the

problems of software development process itself, such as the problem of crosscutting that is

being analyzed in this thesis.

In order to have a base point for analyzing the problem of crosscutting in the development

of the case study, this section provides a preliminary analysis of the elements at different

levels, namely requirements, use cases, design and implementation (both Java and Relational

database). One of the possible ways of decomposition is selected for each level of abstraction

to show which elements exist in the corresponding models and how they are related to

corresponding concerns.

5.1.1 Concerns

The general concern of this case study is to develop a Concurrent File Versioning System.

This concern is decomposed into a basic concern namely Repository and other extended

concerns like Security, Persistence, and Transaction and so on. In the scope of this simple

case study, following concerns are involved:

� Repository: this concern involves maintaining the repository for software artifacts

during development. It is a basic concern representing the functionality of the CFVS

product

� Security: this concern deals with management of users using this CFVS system and

the rights each user may have to access different repository objects in the system. It is

an extended concern and is considered to be a quality concern of the CFVS product.

� Persistence: this concern is about how the repository objects are stored in and

retrieved from a storage media.

At the concern level, these concerns exist independently and do not depend on each other.

In other words, these concerns are almost separated from each other.

5.1.2 Requirements and use cases

In this case study, requirements and use cases are considered to be at the same level of

abstraction. Requirements are more text descriptive, while use cases are the corresponding

elements specified in the UML modeling language.

Most of the requirements and use cases belonging to the Repository concern are described

in sections 4.1.1 and 4.1.2, and modeled as use case diagrams shown in Figure 25 and Figure

26. Section 4.1.3 describes two of the most important requirements for the Security concern,

namely authentication and authorization. Authentication is the requirement that a user must be

Analysis of Crosscutting Concerns in QVT-based Model Transformations

62

checked by a username and password pair before using the system, while authorization is the

checking of whether a user is allowed to do an action on a particular object in the repository,

for example, checking out a file.

Requirements Concerns

Req1: The system shall be able to maintain (i.e. add and remove) objects of

different types of the CFVS application, such as products, branches,

directories, files.

Repository

Req2: The system shall be able to check out and check in a file Repository

Req3: The system shall be able to update and commit a file Repository

Req4: The system shall be able to show the difference between two versions

of a file

Repository

Req5: The system shall be able to create a new branch from an existing

branch

Repository

Req6: The system shall be able to merge two branches Repository

Req7: The system shall be able to authenticate a user before allowing her to

use the application

Security

Req8: The system shall be able to authorize a user for appropriate permissions

to manipulate particular objects in the application

Security

Req9: The system shall be able to store data of the CFVS application

persistently in a storage media

Persistence

Table 7: Mapping requirements to concerns

As identified, there are three concerns: Repository, Security and Persistence. The analysis

of individual requirements shows that each requirement involves in only one of these

concerns, as shown in Table 7. Thus, concerns at this level of abstraction are almost

independent, or they are separated from each other.

5.1.3 Design (the PIM model)

As described in Section 4.2.2 and shown in the class diagrams in Figure 33, Figure 34 and

Figure 35, elements of the design model of the case study include classes, their attributes and

associations between them. These classes are grouped into two packages corresponding to the

two concerns Repository and Security. Besides, the model uses tag elements which are

considered as custom properties of other elements.

The model also starts modeling the behavior of the system by creating sequence diagrams

for each significant method; usually the ones that realize directly the requirements, such as the

methods branch, merge of the class Branch, or the methods checkin, checkout of

the class File. There are several types of UML elements which are used in these sequence

diagrams, such as Message, Lifeline. These are also considered to be elements of interest in

this phase.

The Repository package includes classes Product, Branch, Directory, File,

Version, and Tag which are kinds of objects in the CFVS system. These classes are related

with each other mostly in an aggregation relation, as shown in Figure 33. Each class has its

attributes and operations to implement various requirements of the Repository concern. For

example, the Branch class has operations branch and merge for branching and merging

requirements, while the File class has operations for other requirements like checking in,

checking out and so on.

The most important class of the Security package is Security whose operations

implement the requirements of the Security concern: authenticate and authorize.

Other classes include User and Permission which represent user information and their

rights to access repository objects. Finally, an interface SecuredObject is needed for any

repository classes which need to be secured by the Security concern.

The elements of these two packages become strongly interdependent with each other. This

is reflected in implementation relations between repository classes and the

Analysis of Crosscutting Concerns in QVT-based Model Transformations

63

SecuredObject interface as shown in the class diagram in Figure 35. The interaction

between these two packages is also shown in the sequence diagrams of individual operations

of repository classes in which messages are sent to a Security object; Figure 36 is an example

of such a sequence diagram.

UML elements Concerns

Repository package

Repository classes: Product, Branch, Directory, File, Version, Tag

Attributes and operations of Repository classes

Associations between Repository classes

Repository

Security package

Security classes: SecuredObject, Security, User, Permission

Attributes and operations of Security classes

Associations between Security classes

Security

Implementation relations from Repository classes to Security classes

Call messages from Repository classes to Security classes

Repository,

Security

Persistent Tags of Repository classes Repository,

Persistence

Persistent Tags of Security classes Security,

Persistence

Table 8: Mapping of the design elements (PIM) to concerns

The third concern copes with the issue of storing and retrieving data for instances of

different classes in a storage media – the Persistence concern. However, there are no separate

classes for this concern. Instead, the concern is scattered in classes of other concerns by

creating a special tag to mark persistent classes: all classes which have the custom property

kind with value persistent will be persistent in the final CFVS system. In other words,

elements of this concern are custom properties which are scattered in classes from other

concerns. Table 8 shows different types of elements in the design model and how they are

related to the three concerns.

5.1.4 Relational PSM model

As described, all classes marked as persistent in the PIM model are transformed to tables

in the Relational PSM model. The tables in the Relational PSM model are persistent

representatives of the classes in the PIM model. They are not divided into separate schemas

for Repository and Security, but created in a single schema. The tables belonging to the

Repository concern also include kinds of repository objects of the CFVS system, whereas the

Security tables include only User and Permission. The table Permission represents the many-

to-many relation between User and repository tables. Figure 37 in Section 4.2.3 shows this

relation.

Relational elements Concern

Tables: Product, Branch, Directory, File, Version, Tag Repository, Persistence

Tables: User, Permission Security, Persistence

Table 9: Mapping Relational PSM elements to concerns

5.1.5 Java PSM model

The Java PSM model is similar to the PIM model in that classes are divided into separate

packages corresponding to the Repository and Security concerns. The Implementation

relations in the PIM model become implements property, while the Dependency

associations become imports property in the corresponding Java classes of the Java PSM

model. In other words, the dependency of the Repository classes on the Security classes is

embedded in the Repository classes as their properties, but not as separate elements. Figure 38

in Section 4.2.4 shows this relation.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

64

Java elements Concerns

Repository package

Repository classes: Product, Branch, Directory, File, Version, Tag

Fields and methods of Repository classes

Repository

Security package

Security classes: SecurecObject, Security, User, Permission

Fields and methods of Security classes

Security

DBConnection class and its fields and methods Persistence

retrieveBy... and save methods of Security classes Security,

Persistence

retrieveBy... and save methods of Repository classes Repository,

Persistence

Table 10: Mapping of the Java PSM elements to concerns

The behavior of the Persistence concern becomes apparent in the Java PSM model by a

separate class named DBConnection for handling database connection and by several

operations in persistent classes namely retrieveBy... for retrieving data from database

and save for storing modified data to database. However, the implementation of the

Persistent concern is still embedded in classes of the other concerns. Table 10 shows elements

of the Java PSM model and the mapping to corresponding concerns.

5.2 Dependency analysis
A transformation definition usually consists of multiple transformation rules with the

issues of rule interaction and rule execution order. Rule interaction occurs when one rule

needs to use the effects of another rule, such as creation, update or deletion of model

elements; the most common case is to access a model element created by another rule. Rule

ordering is the identification of the execution order among the rules in a transformation.

These issues form some of the fundamental requirements for a transformation language [12].

Besides, there is a dependency between elements of source and target models with respect

to the transformation between them. When there are changes to source elements, the changes

are propagated to target elements by re-executing the transformation definition. It is required

that the change propagation is performed incrementally, meaning that only transformation

rules which are involved with the changed source elements need to be re-executed. This

mechanism is implemented by maintaining the tracing information of the transformation

execution [12][22][23].

This section proposes a method for deriving the dependency graphs at both metamodel

and model levels based on the transformation definition and the tracing information of the

transformation execution. Two transformation rules are selected. The definition of these rules

written in the QVT language is presented and analyzed to see how elements in the source and

target models are related to each other. Based on that information, individual dependency

graphs are created and then combined. These dependency graphs will be used to draw

conclusions with respect to rule interaction and rule execution order.

5.2.1 Transformation rules

Transformation rule 1: UClassToJClass

The goal of this transformation rule is to keep the relation between each class in the UML

model with a unique Java class in the Java model. The tracing model for this transformation

definition includes a QVT class for this rule which has two members of the types Class

(imported from the UML metamodel) and JavaClass (imported from the Java metamodel).

The definitions of the transformation rule and the tracing class are both provided in Table 11.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

65

 top relation UClassToJClass {

 ucn: String;

 checkonly domain uml uc:Class {name=ucn};

 enforce domain java jc:JavaClass {name=ucn};

 where {

 AttributeToField (uc, jc);

 OperationToMethod (uc, jc);

 }

 }

 class TUClassToJClass {

 uc: Class;

 jc: JavaClass;

 }

Table 11: UClassToJClass transformation rule and its QVT tracing class

When executed with the Java model as the target model, the rule locates all classes in the

UML model and, for each class, determines whether there exists a Java class with the same

name in the Java model; if none exists, then the Java class is created. An instance of the

tracing class is also created in the transformation engine for this pair of UML and Java

classes.

Transformation rule 2: MessageToImports

 top Relation MessageToImports {

 checkonly domain uml msg:Message {

 sendEvent = sendMsgEnd:MessageEnd {

 covered = sendLife:Lifeline {

 type = sendClass:Class {}

 }

 },

 receiveEvent = recvMsgEnd:MessageEnd {

 covered = recvLife:Lifeline {

 type = recvClass:Class {}

 }

 }

 };

 enforce domain java importingJClass:JavaClass {

 importsClass = importedJClass:JavaClass {}

 };

 when {

 UmlClassToJavaClass(sendClass, importingJClass);

 UmlClassToJavaClass(recvClass, importedJClass);

 }

 }

 class TMessageToImports {

 msg: Message;

 sendMsgEnd: MessageEnd;

 recvMsgEnd: MessageEnd;

 sendLife: Lifeline;

 recvLife: Lifeline;

 sendClass: Class;

 recvClass:Class;

 importingJClass: JavaClass;

 importedJClass: JavaClass;

 }

Table 12: MessageToImports transformation rule and its QVT tracing class

Analysis of Crosscutting Concerns in QVT-based Model Transformations

66

The purpose of the transformation rule MessageToImports is to transform call

messages modeled in interaction diagrams, such as the sequence diagram shown in Figure 36,

of the UML model to corresponding elements in the Java model. The ideal transformation is

to create appropriate statements in the Java method corresponding to the UML operation that

is described by the interaction diagram. However, due to the limited modeling capability of

the Java metamodel used in this case study, the transformation rule only creates the imports

relation between two Java classes corresponding to the UML classes participating in the call

message.

The tracing class for this transformation rule is shown in Table 12. It includes members

for the Message element, the UML Class elements participating in the Message element, and

the corresponding JavaClass elements.

5.2.2 Dependency graphs at metamodel level

It is straightforward to derive the dependency graph between source and target elements at

the metamodel level for the first rule as shown in Figure 39. In this figure, the upper eclipse

represents the source metamodel, while the lower one represents the target metamodel. Each

box in these eclipses represents an element of a specific type as defined in the metamodel that

the rule refers to. A line between a source element and a target element represents the relation

between them as derived from the definition of the rule.

Figure 39: Dependency graph of UClassToJClass at metamodel level

There are several options for deriving the dependency graph for the second rule. One

possible option is to let every source elements be mapped to every target elements involved in

the rule. The result may be described by Figure 40 below.

Figure 40: Dependency graph of MessageToImports at metamodel level (initial derivation)

However, this mapping derivation does not reflect the fact that when there are changes to

the source elements, only the importingJClass, but not the importedJClass, needs

to be changed with respect to this transformation rule. Thus the mappings from the source

elements to the importedJClass in Figure 40 are not appropriate and should be ignored.

In order to solve this issue, the allocation of variables of the rule written in the Core

language could be used. As discussed in Section 2.4.3, the QVT language specification

provides a set of rules to translate automatically a transformation rule written in the Relations

language to another one written in the Core language which groups variables of the rule into

different areas and patterns. Figure 41 shows the allocation of variables for the second rule. It

is observed from this allocation that only the target element importingClass depends on

uc: Class

jc: JavaClass

Source

Metamodel

Target

Metamodel

sendClass:

Class

msg:

Message

recvClass:

Class

importingJClass:

JavaClass

importedJClass:

JavaClass

sendMsgEnd:

MessageEnd

recvMsgEnd:

MessageEnd

sendLife:

Lifeline

recvLife:

Lifeline

Source

Metamodel

Target

Metamodel

Analysis of Crosscutting Concerns in QVT-based Model Transformations

67

the source elements msg, sendMsgEnd, recvMsgEnd, sendLife, recvLife,

sendClass and recvClass.

Figure 41: Allocation of variables of the rule MessageToImports

In addition, there is a difference among the mapping relations from source elements to

target elements in terms of change effect. With respect to this rule, any change to msg,

sendMsgEnd, recvMsgEnd, sendLife or recvLife will cause immediate

changes to importingJClass, or the change is direct. On the other hand, when there is a

change with either sendClass or recvClass, this change is possibly propagated to

sendLife, recvLife, sendMsgEnd, recvMsgEnd and msg, and consequently

to the target element importingClass; this kind of change is considered indirect. Because

of this fact, mapping relations between source and target elements are classified into two

types as described below, and their formal definitions are presented in Section 5.4.

� Direct mapping: a direct mapping of a transformation rule is a mapping between a

source element and a target element in which any change to the source element would

make direct changes to the target element with respect to this rule.

� Indirect mapping: an indirect mapping is a mapping between a source element and a

target element in which a change to the source element would make changes to other

source elements of the same rule and subsequently make changes to the target

element.

Note that this classification into direct and indirect mappings is applied to mapping

relations at both metamodel and model levels. At metamodel level, the mappings are between

elements of the source and target metamodels in the definition of the transformation rule. At

model level, the mappings are between source and target elements which participate in an

application of that transformation rule; i.e. they appear in an instance of the tracing class

corresponding to that transformation rule.

At metamodel level, the determination of whether a mapping is direct or indirect is also

based on the Core pattern box as shown in Figure 41. The mappings from the source elements

in the bottom pattern of the source area to the target elements in the bottom pattern of the

target area are direct, while the mappings from the source elements in the guard pattern of the

source area are indirect.

Based on the definition of mapping types and the method to determine the type of a

mapping, dependency graph at the metamodel level of the rule MessageToImports could be

derived as shown in Figure 42.

Figure 39 and Figure 42 show the dependency graphs at the metamodel level for the two

transformation rules introduced in the previous section. Each dependency graph should

contain direct mapping relations which represent the effects of the rule, whereas it may

contain zero or more indirect relations. Each indirect relation between source and target

metamodel elements means that the rule interacts with another rule which contains the same

type of source element. For example, the graph dependency for the rule MessageToImports

contains several direct mappings between a set of UML elements and a Java JavaClass

element; these direct relations mean that the existence of a set of {Message, MessageEnd,

MessageEnd, Lifeline, Lifeline} elements in the source model will have an immediate effect

on a JavaClass element in the target model. The graph also contains indirect mappings

between UML Class elements and a Java JavaClass element, thus the execution of the rule

sendClass: Class

recvClass: Class
 importedJClass: JavaClass

importingJClass: JavaClass

msg: Message

sendMsgEnd: MessageEnd

 recvMsgEnd: MessageEnd

sendLife: Lifeline

recvLife: Lifeline

 importingJClass: JavaClass

Source

area

Middle

area

Target

area

Guard

patterns

Bottom

patterns

Analysis of Crosscutting Concerns in QVT-based Model Transformations

68

would access some elements created by the execution of another rule (UClassToJClass in this

case) on the same Class elements.

Figure 42: Dependency graph of MessageToImports at metamodel level (accepted

derivation)

These dependency graphs are also useful as a hint for identifying transformation rule

conflicts. Transformation rules conflict with each other when two different source metamodel

elements have a same type of effect on a single target metamodel element. In the above

example, both UML metamodel elements Class and Message have a direct mapping with Java

metamodel element JavaClass, but they create different types of effect - one creates the

JavaClass element, while the other updates one of its attributes which is not involved in the

first rule. However, if for example there is a transformation rule which transforms association

elements in the UML model to imports relation in the Java model, this rule would conflict

with the MessageToImports rule, as both rules update (i.e. setting or clearing values of) the

importsClass attribute of JavaClass elements in the Java model. In this case, a desired

effect of one rule may create undesired effect for the other rule for any order of execution, so

the rules should be redesigned appropriately.

In summary, the dependency graph at the metamodel level is a good facility for

identifying rule interaction and rule execution ordering. Based on these dependency graphs,

the transformation rules in a transformation definition could be assessed conveniently and the

rules could be redesigned appropriately.

5.2.3 Dependency graphs at model level

With the specification of the classes in the UML PIM model shown in Figure 33 and

Figure 34, the dependency graph for the first rule could be generated as shown in Figure 43.

One or more numbers are attached to each mapping relation to mark the rule number and the

number of the tracing data record representing a specific application of this rule; this number

is called the rule application number.

Figure 43: Dependency graph of UClassToJClass at model level

Product Branch Security ...

Product Branch Security ...

PIM

Model

Java PSM

Model

 1.1 1.2 1.3

...

...

sendClass:

Class

msg:

Message

recvClass:

Class

importingJClass:

JavaClass

importedJClass:

JavaClass

sendMsgEnd:

MessageEnd

recvMsgEnd:

MessageEnd

sendLife:

Lifeline

recvLife:

Lifeline

Source

Metamodel

Target

Metamodel

Analysis of Crosscutting Concerns in QVT-based Model Transformations

69

In the UML PIM model described in Section 4.2.2, several UML operations are modeled

as sequence diagrams in which several Message elements are created to show the usage of the

Security classes by the Repository classes. Figure 36 is such a sequence diagram. Based on

the mapping derivation method above, the transformation execution of the rule

MessageToImports generates the dependency graph as shown in Figure 44.

Figure 44: Dependency graph for the rule MessageToImports

These individual dependency graphs help to identify when a specific application of a rule

needs to be re-applied (or re-execution of the rule on a specific set of source and target

elements). For example, assume that there is a single change to the source element “P.add

P-S Msg”, the rule application 2.1 needs to be re-executed. However, when the source

element Product changes, besides the re-execution of the rule application 1.1, the rule

application 2.1 is re-executed only when this change also makes changes to the source

element “P.add P-S Msg”.

When there are multiple changes to the source model, multiple rule applications need to

be re-executed. In this case, the combined dependency graph should be used to identify the

order of re-execution of these rule applications. Figure 45 is the combination of the two

dependency graphs introduced above and Table 13 shows the corresponding dependency

matrix for a clearer view of direct and indirect mappings between source and target elements.

Figure 45: Combination of two dependency graphs

When the source element “P.add P-S Msg” is modified, the rule application 2.1 needs

to be re-executed. However, this rule application interacts with other rule applications because

it contains indirect relations from source elements Product and Security. If the source

element Security is changed as well, then the rule application 1.5 needs to be re-executed

first. In general, it is possible to order the execution of rule applications based on this

Product Branch
P.add

P-S Msg

B.branch

B-S Msg

B.merge

B-S Msg Security

Product Branch Security

PIM

Model

Java PSM

Model

 2.1 2.1 2.2 & 2.3 2.2 2.1 2.3 2.2 & 2.3

Note: Some elements are omitted for clearer view

P.add

P-S Msg

B.branch

B-S Msg

B.merge

B-S Msg Security

Product Branch Security

PIM

Model

Java PSM

Model

Product Branch

Indrect mapping relation

Direct mapping relation

Note: Some elements and mappings are omitted for clearer view

 2.1 1.1 2.1 2.2 & 2.3 2.1 2.3 1.3

1.*: Mapping relation from UClassToJClass

2.*: Mapping relation from MessageToImports

 1.2 2.2

2.2 & 2.3

Analysis of Crosscutting Concerns in QVT-based Model Transformations

70

combined dependency graph as follows: any of the rule applications in the group (1.1, 1.2,

1.3) should be executed before any of the rule applications in the group (2.1, 2.2, 2.3); rule

applications in the same group can be executed in any order.

Target

Source

Product Branch Security

Product 1.1 direct

2.1 indirect

– –

P.add P-S Msg 2.1 direct – –

Branch

–

1.2 direct

2.2 indirect

2.3 indirect

–

B.branch B-S Msg – 2.2 direct –

B.merge B-S Msg – 2.3 direct –

Security 2.1 indirect 2.2 indirect

2.3 indirect

1.3 direct

Table 13: Dependency matrix for the combined dependency graph

In conclusion, the specification of transformation rules and the tracing information of the

execution of these rules could be used to generate the individual and combined dependency

graphs. These dependency graphs are helpful in identifying which rule applications need to be

re-executed in which order when there are changes to the source model; this is a key issue to

implement the incremental model compilation of a transformation language.

5.3 Crosscutting Concerns Analysis
Crosscutting concerns are known to cause several problems to various artifacts of the

software development. In this section, the transformation of the case study is analyzed to see

how it is affected by the identified crosscutting concerns.

Crosscutting is not an inherit property of concerns, but it depends on the context of the

software development, such as the environment in which these concerns are realized or the

dominant decomposition of the problem. For example, the persistence concern would not be

crosscutting in the EJB environment in which necessary services are provided to realize this

concern transparently to other concerns, but it becomes crosscutting in a standalone Java

application. In the context of this case study to develop a client-server Java application,

Persistence and Security are the crosscutting concerns.

These concerns are involved in transformation rules. The previous section presents two

transformation rules UClassToJClass and MessageToImports. The first rule

transforms a UML class to Java class; the class may realize one of the identified concerns, as

shown in the decomposition analysis of Section 5.1. The derived dependency graphs at both

metamodel and model levels for this rule contain no indirect mappings. Thus the rule does not

interact with any other rule, and the rule can be executed without consideration of the order.

The situation is more complex for the second rule. The rule transforms message calls in

the UML model to corresponding Imports property of Java classes. As presented in Section

5.1, the UML design model contains Message elements at which a method belonging to the

Repository concern calls the authorization method belonging to the Security concern.

According to the definition of crosscutting in Section 3.3 and as presented with the combined

dependency graph in Figure 45, it is considered that the Security class crosscuts these

Message elements. As a consequence, the dependency graphs for the rule

MessageToImports becomes more complex. It contains several indirect mappings with

the meaning that the rule interacts with some other rule (in this case, the other rule is

UClassToJClass). At the execution time, a specific application of the rule should be

executed after the application of the rule UClassToJClass for the involved UML classes

(either sendClass or recvClass, or both) if these classes are changed.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

71

Besides the problems with these specific properties, crosscutting concerns also cause

general problems, such as complexity and change impact, to model transformations.

However, these concerns cause different degrees of severity in different ways.

In the design model, the Security concern is realized by a separate package and a set of

interaction diagrams to show how the concern interacts with other concerns. Apparently, the

model becomes much more complex, as these interactions are scattered to almost everywhere;

each method of Repository classes sends a message to the Security class to check for

execution permission. In this case, the Security concern causes high impact of change to the

design model. Whenever the Security requirements change, besides modification to elements

of the Security package, elements in the Repository package may need to be modified

as well. For example, a new requirement for logging user activities would require changes to

all sequence diagrams of methods of Repository classes where interaction with the

Security class occurs.

However, the concern causes lower impact of change to the transformation rules. For

example, the rule MessageToImpacts would not consider much with the new requirement

of logging user activities; it is only needed to re-execute the rule to transform the newly added

Message elements for these logging activities.

On the other hand, the Persistence concern does not cause much problem to the design

model. Each class that is involved with persistence is marked by a custom property, thus

model does not become complex because of this concern. Any change to the elements of the

Persistence concern would not create any impact on the rest of the model.

However, the place where the Persistence concern causes more problems is the

transformation definition. The case study contains several transformation rules in which all

classes marked with persistent custom property are transformed to Java classes with necessary

methods for retrieving data from and saving data to storage media. Apparently, these rules

become much more complex as they use not only information from source and target

metamodels, but also information on how to realize the Persistence concern. The situation is

worse when this information is represented in a textual form but not modeled in a graphical

model as in MDA development framework. This consequently leads to the difficulty in

reusing the rules in other applications involved with the Persistence concern. The changes in

the Persistence concern also cause these rules modified instead of only re-executing them, and

have an impact on other dependent rules.

In summary, crosscutting concerns are the cause of several problems to QVT model

transformations. Some are related to specific properties of model transformations, namely

transformation rule interaction and execution order of transformation rules. Others are general

problems, such as high complexity and change impact.

5.4 Definition of Direct and Indirect Mappings
This section provides the definitions of direct and indirect mappings of a dependency

graph as introduced in Section 5.2 based on the definition of transformation rules written in

the Core language of the QVT specification.

A transformation rule defines a relation that should be maintained between source and

target models. It consists of a set of variables and constraints or derivations which are divided

into areas and patterns as shown in Figure 46 below:

Figure 46: Allocation of variables of a transformation rule to areas and patterns

s1,...,sn

m1,...,mk

t1,...,tm

s’1,...,s’n

m’1,...,m’j

t’1,...,t’i

Source

Area

Middle

Area

Target

Area

Guard

Pattern

Bottom

Pattern

Analysis of Crosscutting Concerns in QVT-based Model Transformations

72

s1,...,sn are guard pattern variables to be matched to elements of the source model.

t1,...,tm are guard pattern variables to be matched to elements of the target model.

m1,...,mk are the guard pattern variables of the middle area of the transformation.

s’1,...,s’n are bottom pattern variables to be matched to elements of the source model.

t’1,...,t’i are the bottom pattern variables to be matched to elements of the target

model.

m’1,...,m’j are the bottom pattern variables of the middle area of the transformation.

There are several notes in this figure:

� Each pattern, besides its variables, also contains constraints or derivations.

Constraints are checked to ensure that a matching of the pattern’s variables to the

corresponding model elements is valid. Derivations are enforced; i.e. the pattern’s

variables are realized by creating and/or updating elements in the corresponding

model to make the matching become valid.

� The binding of elements to guard pattern variables s1,...,sn, t1,...,tm and

m1,...,mk is not executed by the transformation engine, but is provided by the

invoking transformation rule. This binding is provided as the context for the matching

of elements to the bottom pattern variables; i.e. these variables are used in the

constraints and derivations of the bottom patterns.

� The binding of elements to bottom pattern variables is executed by the transformation

engine to ensure that there exists at least one matching to target bottom pattern

variables t’1,...,t’i for each matching to source and middle bottom pattern

variables s’1,...,s’n and m’1,...,m’j.

See Figure 16 for a concrete example of the allocation of variables to areas and patterns.

The transformation rule is then defined by a procedure with the following signature:

 Rule: (s1,...,sn, s’1,...,s’n) → (t’1,...,t’i)

This signature means that a tuple of elements (t’1,...,t’i) is derived in the target

model from a tuple of elements (s1,...,sn, s’1,...,s’n) in the source models. The

variables (t1,...,tm) of the guard pattern of the target area are not in the signature because

they are not derived with respect to this rule. They are actually derived by other

transformation rules which this rule interacts with. The variables (m1,...,mk) and

(m’1,...,m’j) in the middle area are also not in the signature because they do not belong to

any model, but local to the transformation definition.

Figure 47: The derived dependency graph of the transformation rule

In addition, the variables of the guard pattern (s1,...,sn) and the variables

(s’1,...,s’n) of the bottom pattern of the source area have different roles with respect to

the change impact on the variables (t’1,...,t’i) of the bottom pattern of the target area.

Any change to (s’1,...,s’n) would cause this rule to be re-executed immediately, while a

change to (s1,...,sn) does not have a direct impact on (t’1,...,t’i), but that change is

s’1 s’l ... s1 sn ...

t’1 t’i ...

Source model

Target model

Analysis of Crosscutting Concerns in QVT-based Model Transformations

73

possibly propagated to (s’1,...,s’n) (because of coupling relations in the source models)

and consequently to (t’1,...,t’i) (because of this rule).

Based on this information, the dependency graph for the transformation rule could be

derived as shown in Figure 47. The dependency graph includes direct (represented by solid

lines) and indirect (represented by dashed lines) mappings between source and target

elements. These direct and indirect mappings are defined as follows:

� A direct mapping is defined as the mapping from each variable of the bottom pattern

of the source model (s’1,...,s’n) to each variable of the bottom pattern of the

target model (t’1,...,t’i).

� An indirect mapping is defined as the mapping from each variable of the guard

pattern of the source model (s1,...,sn) to each variable of the bottom pattern of the

target model (t’1,...,t’i).

5.5 Summary
This chapter made a detailed analysis of the impact of crosscutting concerns on QVT

model transformations based on the case study. The first part introduced concerns and types

of elements existing in each phase of the development of the CFVS system. Two concerns

which are considered as crosscutting are identified: security and persistence.

The second section chose two transformation rules from the UML to Java transformation

definition. Dependency graphs for these transformation rules are derived at both metamodel

and model levels. The derivation is based on the specification of the rule in the Core language

(for metamodel level) and the tracing information (for model level). These dependency graphs

are used to identify several properties of model transformations.

The next section discussed the problem that the crosscutting concerns security and

persistence cause to the model transformation of the case study. Some problems are related to

specific properties of the transformation, namely transformation rule interaction and

execution order of transformation rules. Others are general problems, such as high complexity

and change impact.

The final section provided a definition of direct and indirect mappings of the dependency

graphs according to the derivation method proposed in this study. The definition is based on

the allocation of variables to areas and patterns of transformation rules written in the Core

language.

The major observations with this analysis are that crosscutting concerns cause as much

problem to model transformations as to other artifacts of the software development. However,

model transformations provide a method to identify crosscutting concerns by deriving

dependency graphs based on traceability. Another observation is also drawn from the case

study is that model transformations based on this QVT language could be well applicable to

models in which a MOF-compliant AO modeling technique is applied. The final chapter will

provide conclusions and discussions based on this analysis and these observations.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

74

Analysis of Crosscutting Concerns in QVT-based Model Transformations

75

6 Conclusion
This chapter summarizes the main results of this thesis. Section 6.1 gives a summary of

the content of the thesis before conclusions and discussions of the research are provided in

Section 6.2. The final Section 6.3 provides several recommendations and directions for

further research based on this study.

6.1 Summary
Chapter 2 provided a general introduction to the Model Driven Architecture framework

and an explanation of the proposed QVT language for model transformations. The language

includes several sub-languages. The sub-languages Relations and Core are two declarative

languages with the same semantics at different levels of abstraction and the imperative

language Operational Mappings provides a method of extension to these declarative

languages with imperative operations.

Relations is a user-friendly metamodel and language which supports complex object

pattern matching and object template creation. Traces between elements involved in a

transformation are generated implicitly. The Core metamodel and language is defined using

the minimal extensions to EMOF and OCL. Trace classes are defined explicitly as MOF

models, and trace instances are created or deleted in the same way as creation and deletion of

any other objects. Finally, the chapter discussed in detail the concepts used in the Relations

and Core languages by concrete examples.

Chapter 3 provided an introduction to the Aspect Oriented Software Development

methodology and several frameworks to define the concepts of scattering, tangling and

crosscutting within AOSD. In a framework proposed by Masuhara and Kiczales, the core

semantics of the aspect-oriented mechanism was captured by modeling the weaving process.

The authors then defined the concept of crosscutting: for a pair of modules mA and mB (from

pA and pB), mA is said to crosscut mB with respect to X if and only if their projections onto X

intersect, and neither of the projections is a subset of the other.

Berg and Conejero enhanced this framework by providing another conceptual framework

in which the concepts of scattering, tangling and crosscutting are defined explicitly in terms

of a source with respect to a target. The relationship between the source and the target was

represented by a Crosscutting Pattern in which elements in the source were mapped to

elements in the target. Based on this crosscutting pattern, concepts of scattering, tangling and

crosscutting could be defined explicitly as different situations of the mapping relations. This

framework was chosen to use in this study as (1) it provided explicit definitions for scattering,

tangling and crosscutting, and (2) it used the traceability between a source and a target; this is

a basic property of QVT-based model transformations.

Chapter 4 presented the case study: a Concurrent File Versioning System. A CFVS

system allows the user to keep multiple versions of files ordered by a timestamp. The user

may get an existing version of a file from the system, modify that file and save it back to the

system as a new version without discarding the previous version of that file. Files are

organized in a directory hierarchy. The chapter introduced requirements of the CFVS system.

The functional requirements include basic functionalities such as checking in files, checking

out files, committing a file or updating a file, and extended functionalities. Quality

requirements include security like authentication and authorization, and persistence.

In this case study, we built the PIM model, or the design model, by the UML modeling

language. Transformation rules written in the Relations language were then defined. The aim

of this transformation definition is to transform the PIM model to automatically generate a

Relational and a Java PSM model. However, due to the unavailability of such a

transformation execution engine, the transformation execution could only be done manually.

Despite of this limitation, the chapter still provided a complete QVT transformation which

would be used as the basis for the analysis in the next chapter.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

76

Chapter 5 analyzed different aspects of the transformation in the case study with respect

to crosscutting concerns. The chapter included a decomposition analysis, a dependency

analysis and a discussion of problems that crosscutting concerns cause to the case study.

In the decomposition analysis, we provided a preliminary analysis of the elements at

different phases of the development of the case study, namely requirements, use cases, design

and implementation. One of the possible ways of decomposition was selected for each level

of abstraction to show which elements existed in the corresponding models and how they

were related to corresponding concerns.

The dependency analysis presented an approach to derive the dependency graphs at the

metamodel and model levels, and how these dependency graphs were used to identify various

properties of the transformation. The dependency graph for each transformation rule at the

metamodel level contains direct mappings which represent the effects of the rule, whereas it

may contain zero or more indirect mappings. Each indirect mapping between source and

target metamodel elements means that the rule interacts with another rule which contains the

same type of source element.

The dependency graph at the model level is derived based on the tracing information of

the execution of the transformation rules. These dependency graphs are helpful in identifying

which rule applications need to be re-executed in which order when there are changes to the

source model; this is a key issue to implement the incremental model compilation of a

transformation language.

Finally, the chapter provided a discussion on the problems that crosscutting concerns

caused to the different elements of the case study. The security concern caused more

problems to the design model, while the persistence concern had a severer impact on the

transformation definition to transform this design model to the implementation models.

6.2 Discussion
In this thesis, we aim at analyzing the impact of crosscutting concerns on model

transformations based on the QVT transformation language. Following are our conclusions in

this study:

Traceability of QVT model transformations can be used to identify crosscutting

concerns.
Chapter 3 introduces the definition of concepts of scattering, tangling and crosscutting in

terms of “one thing” with respect to “another thing”. This definition is represented by a

mapping relationship, or a dependency graph, between elements of the source and the target

models in a model transformation based on this QVT language.

A dependency graph for an individual transformation rule could be derived at the

metamodel level based on the definition of the rule itself, while another dependency graph is

derived at the model level based on the tracing information of the execution of that rule.

Dependency graphs for the whole transformation are derived by combining these individual

dependency graphs at both metamodel and model levels, respectively. Section 5.2 presents the

method for this derivation.

Based on the decomposition analysis in Section 5.1, these dependency graphs are studied

to identify the crosscutting behavior between source elements with respect to the target

elements. However, there is a tendency that every element crosscuts other elements as the

dependency graphs become very large and complex in a real-life transformation. Thus these

dependency graphs should be pre-processed before they could be used for identifying

crosscutting effectively. One possible method could be to distinguish between direct and

indirect mappings between source and target elements and then to consider only the direct

ones, as discussed in Section 5.2.

In conclusion, the transformation rules and corresponding tracing information can be used

to derive dependency graphs in order to identify the crosscutting behavior; however, these

dependency graphs should be further processed before they become really useable in a real-

life application. Section 6.3 provides several recommendations for this processing.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

77

Crosscutting concerns causes several problems on QVT model transformations; these

include:

(a) General problems, such as complexity and change impact
Section 5.3 shows that crosscutting concerns cause problems of complexity and change

impact to model transformations; i.e. transformation rules involved with a crosscutting

concern is more complex than the others and when that crosscutting concern changes, they

may be changed as well.

The severity of the problem depends on how the concern is realized. If the concern is

realized explicitly at the source model level, then the transformation definition does not need

to consider much about the concern; as a result, the complexity and change impact is low.

However, some designers may decide to model the concern implicitly at the source model

level by a little piece of information, such as the tag to mark persistent classes presented in the

case study of chapter 4, and write a complex transformation definition to realize this concern,

the change impact of this concern on the transformation becomes higher.

(a) Specific problems to properties of model transformations, namely transformation

rule interaction and execution order of transformation rule
Section 5.2 and Section 5.3 also show that crosscutting concerns cause some problems on

model transformations with respect to their properties: transformation rule interaction and

execution order of transformation rules. Rule interaction occurs when one rule needs to use

the effects of another rule, and rule ordering is the identification of the execution order among

the rules in a transformation.

When a crosscutting concern is realized by a transformation rule, the dependency graph

for the rule becomes more complex and involves more indirect mappings. The problem

becomes much worse when individual dependency graphs are combined to create the

dependency graph for the whole transformation. This means that the transformation rules of

the transformation are more interdependent with each other.

When the transformation rules are highly interdependent, the determination of the

execution order of transformation rules becomes more difficult and less efficient. This

determination is necessary to have a high performance of transformation execution and it is a

requirement for implementing incremental compilation of target models.

In conclusion, crosscutting concerns cause problems of change impact, higher

interdependent transformation rules and more difficult to determine the execution order of

transformation rules. These problems make model transformations more complex, less robust,

less reusable and less adaptive.

6.3 Recommendations and Future Work
Following are our recommendations based on the result of this research:

Traceability extension

Traceability in QVT model transformations is used to implement incremental compilation

of target models, as described in OMG’s Request for Proposal. However, this property should

be studied and extended to deal with the problem of crosscutting concerns. One possible

extension is to follow the approach of the Core language in which variables of a

transformation rule are allocated to guard and bottom patterns. By that approach, the role of

each element involved in a transformation rule application can be identified immediately; i.e.

whether a source element has a direct or indirect effect on target elements, or whether a target

element is a derived one or an existing one which is derived by another rule application.

There are several benefits to this extension. Firstly, the rule interaction and rule execution

order properties are reflected in the tracing information. Thus the individual and combined

dependency graphs with the distinction of direct and indirect mappings at both metamodel

and model levels can be derived immediately without considering the definition of

transformation rules written in the Core language. This benefit leads to the second one that the

derivation process of dependency graphs does not depend on the specific specification of the

Analysis of Crosscutting Concerns in QVT-based Model Transformations

78

Core language; this means that transformation rules can be written in any QVT languages

with the requirement that the traceability of transformations is maintained as proposed.

Finally, this extension gives a significant benefit of performance on deriving and processing

depedency graphs which are usually very large and complex in real-life model

transformations.

Further processing of dependency graphs

The derived dependency graphs in the study are used to identify the crosscutting behavior.

However, as discussed, the effectiveness is still not very high. More research should be

provided to further process these dependency graphs with respect to identify crosscutting

concerns more effectively.

One reason of this ineffectiveness is that dependency graphs in a real-life model

transformation are usually very large and complex, and they lead to the tendency that every

element crosscuts other elements. Thus a possible processing is to reduce the complexity of

dependency graphs. There are two directions which can be applied concurrently:

� Reducing the number of elements: elements can be considered at different degrees of

granularity. For example, in a UML model, we can have a very fined degree of

granularity of attributes and methods, or a coarser degree of classes, or a very coarse

degree of packages. Elements at a coarser degree of granulairty contain elements at

finer degrees, such as packages contain classes which in turns contain attributes and

methods. Apparently, there are very few elements at a very coarse degree of

granularity as compared with a very fined degree of granularity. In addition, it is

observed that dealing with the problem of crosscutting concerns is more appropriate

for elements at a coarser degree of granularity. Thus we can reduce the complexity of

dependency graphs by keeping only the elements at a coarser degree of granularity

and aggregating the mappings based on the containment property of elements.

� Reducing the number of mappings: a pair of a source and a target element may

participate in multiple transformation rule definition and execution. It is observed that

this particular pair usually involves in a few direct mappings (ideally only a single

one as a target element should be derived only once from a particular source element)

and in more indirect mappings (as multiple rules depend on this rule). The higher

number of direct/indirect mappings of this pair means the rule is more complex and

there are more rules depend on this rule; that means the mapping relation between

these source and target elements is more important with respect of dealing with the

problem of crosscutting concerns. Thus we can reduce the complexity of dependency

graphs by counting the number of direct/indirect mappings and keeping only those

pairs of source and target elements which have the number of direct/indirect

mappings larger than a threshold.

The study proposed to derive the dependency graphs from the definition of the

transformation rules and the tracing information of the execution of these rules. However, no

explicit method was provided for this derivation. A further research could be done in order to

provide a concrete algorithm to build these dependency graphs from transformation rules

written in either the Relations or the Core language, and from the tracing data. The study also

lacked of support of tools for transformation execution and tracing data maintenance. Future

work should enhance the study in this direction.

Another issue with the dependency graphs in this study is that the crosscutting behavior is

reflected not very clearly due to the fact that dependency graphs in a real-life application are

usually very large and complex. The study also proposed a technique to pre-process the

dependency graphs by distinguishing between direct and indirect mapping relations. Further

work could be done in order to provide other techniques to fine tune the tracing model and

dependency graphs so that crosscutting concerns could be identified more effectively. The

above recommendations are some examples of these techniques.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

79

References
[1] AspectJ Team (2004). AspectJ Programming Guide. Retrieved on June 2006 from

http://www.eclipse.org/aspectj

[2] Bakker, J. (2005) Traceability of Concerns. MSc Thesis, University of Twente, April

2005

[3] Berg, K.G. van den and Conejero, J. (2005). Disentangling crosscutting in AOSD: a

conceptual framework, in Second Edition of European Interactive Workshop on

Aspects in Software, Brussels, Belgium

[4] Berg, K.G. van den, Tekinerdogan, B. and Nguyen, H. (2006). Analysis of

Crosscutting in Model Transformations, in 2
nd

 ECMDA Traceability Workshop,

Bilbao, Spain, 2006

[5] Bergmans, L. (1994). Composing Concurrent Objects, PhD Thesis, University of

Twente, June 1994

[6] Borland (2006). Together Architect 2006 for Eclipse Software. Retrieved on March,

2006 from http://www.borland.com/downloads/download_together.html

[7] Czarnecki, K. and Helsen, S. (2003). Classification of Model Transformation

Approaches, in Proceedings of the 2nd OOPSLA Workshop on Generative

Techniques in the Context of the Model Driven Architecture, USA, 2003

[8] Filman, R. E., Elrad, T., Clarke, S. and Aksit, M. (2004). Aspect-Oriented Software

Development, Addison Wesley Professional, 2004

[9] Henninger, F. (2004). Analysis of Crosscutting in MDA, MSc Thesis, University of

Twente, November 2004

[10] IBM Alphaworks (2006). HyperJ Website. Retrieved on June 2006 from

http://www.alphaworks.ibm.com/tech/hyperj

[11] Kleppe, A., Warmer, J. and Bast, W. (2003). MDA Explained: The Model Driven

Architecture™: Practice and Promise, Addison Wesley, 2003

[12] Kurtev, I. (2005). Adaptability of Model Transformation, PhD Thesis, University of

Twente, 2005

[13] Masuhara, H. and Kiczales, G. (2003). Modeling Crosscutting in Aspect-Oriented

Mechanisms, in ECOOP 2003, Darmstadt, Germany, 2003

[14] Nederpel, R. (2005). A QVT Model Transformation Language Represented by Graph

Production Systems, MSc Thesis, University of Twente, September 2005

[15] OMG (2003). A review of OMG MOF 2.0 Query / Views / Transformations

Submissions and Recommendations towards the final Standard, OMG document

ad/2003-08-02

[16] OMG (2003). Common Warehouse Metamodel™ (CWM™) Specification, v1.1,

OMG document formal/2003-03-02

[17] OMG (2003). MDA Guide, version 1.0.1, OMG document omg/2003-06-01

[18] OMG (2002). Meta Object Facility Specification, version 1.4, OMG document

formal/2002-04-03

[19] OMG (2003). Meta Object Facility (MOF) 2.0 Core Proposal, OMG document

ad/2003-04-07

[20] OMG (2004). Metamodel and UML Profile for Java and EJB, version 1.0, OMG

document formal/2004-02-02

[21] OMG (2006), Model Driven Architecture website. Retrieved on February 2006 from

http://www.omg.org/mda

[22] OMG (2002). Request for Proposal: MOF 2.0 Query / Views / Transformations RFP,

OMG document ad/2002-04-10

[23] OMG (2005). Revised Submission for MOF 2.0 Query/Views/Transformations RFP,

QVT-Merge Group, version 2.0, OMG document ad/2005-03-02

[24] OMG (2004). UML Profile for Patterns, version 1.0, OMG document formal/2004-

02-04

Analysis of Crosscutting Concerns in QVT-based Model Transformations

80

[25] OMG (2005). Unified Modeling Language: Superstructure, version 2.0, OMG

document formal/05-07-04

[26] Sutton Jr, S. M. and Rouvellou, I. (2002). Modeling of Software Concerns in Cosmos.

In Proceedings of the 1st International Conference on Aspect-Oriented Software

Development, pages 127--133. ACM Press, 2002

[27] TCS (2006). ModelMorf: a model transformer. Retrieved on June 2006 from

http://www.tcs-trddc.com/modelmorf/index.htm

[28] TRESE (2006). Composition Filters Implementation Project. Retrieved on June 2006

from http://composestar.sf.net/

[29] TRESE (2006). GRaphs for Object-Oriented VErification (GROOVE). Retrieved on

February 2006 from http://www.cs.utwente.nl/~groove

[30] TRESE (2006). The Aspect-Oriented Software Architecture Design Portal of TRESE.

Retrieved on February 2006 from http://trese.cs.utwente.nl/taosad

[31] Witkop, S. (2005). DRAFT MDA User’s Requirements for QVT Transformation,

Version 0.23. Retrieved on February 2006 from http://www.omg.org/docs/mda-

user/05-02-04.rtf

Analysis of Crosscutting Concerns in QVT-based Model Transformations

81

Appendices
The appendices chapter provides complete result produced during the development of the

case study. The result includes:

� The transformation definition from the PIM model to the Relational PSM model.

� The transformation definition from the PIM model to the Java PSM model.

� Dependency graphs and dependency matrices for the UML-to-Java transformation

definition.

Analysis of Crosscutting Concerns in QVT-based Model Transformations

82

Analysis of Crosscutting Concerns in QVT-based Model Transformations

83

A. UML to Relational Transformation Rules
This transformation defines transformation rules between a SimpleUML model and a

SimpleRDBMS model. It contains the following relations and functions:

� ClassToTable: a top-level relation to maintain relationships between each class in

the SimpleUML model with a table in the SimpleRDBMS model.

� ComplexAttributeToColumn: a top-level relation. When a persistent class in

the SimpleUML model has an attribute whose type is another persistent class, this

attribute is transformed to a foreign key relation between two corresponding tables in

the SimpleRDBMS model.

� AssocToFKey: a top-level relation to maintain relationships between each

association relation between two persistent classes in the SimpleUML model with a

foreign key relation between two corresponding tables in the SimpleRDBMS model.

� AttributeToColumn: a relation to maintain relationships between each attribute

in the SimpleUML model with a column in the SimpleRDBMS model. This relation

is divided into 2 cases by invoking two relations

PrimitiveAttributeToColumn and SuperAttributeToColumn

� PrimitiveAttributeToColumn: a relation to maintain relationships between

each attribute of a persistent class in the SimpleUML model with a column in the

SimpleRDBMS model.

� SuperAttributeToColumn: a relation to maintain relationships between each

attribute of all super classes of a persistent class in the SimpleUML model with a

column in the SimpleRDBMS model.

� PrimitiveTypeToSqlType: a function to convert UML primitive types to SQL

types.

transformation umlRdbms(uml uses SimpleUML, rdbms uses SimpleRDBMS) {

key Table (name, schema);

key Column (name, owner);

key Key (name, owner);

key ForeignKey (name, owner);

top relation ClassToTable {

 cn: String;

 checkonly domain uml c:Class {

 kind=’persistent’,

 name=cn

 };

 enforce domain rdbms t:Table {

 schema = s:Schema {name=’CFVS_PSM_RELATIONAL’},

 name = cn,

 column = cl:Column {name = ‘id’, type = ‘NUMBER’} ,

 key = k:Key {name = cn + ‘_pk’, column = cl}

 };

 where {

 AttributeToColumn(c, t);

 }

}

relation AttributeToColumn {

 checkonly domain uml c:Class {};

 enforce domain rdbms t:Table {};

 where {

 PrimitiveAttributeToColumn(c, t);

 SuperAttributeToColumn(c, t);

 }

}

Analysis of Crosscutting Concerns in QVT-based Model Transformations

84

relation PrimitiveAttributeToColumn {

 an, pn, sqltype: String;

 checkonly domain uml c:Class {

 attribute=a:Attribute {

 name=an,

 type=p:PrimitiveDataType {name=pn},

 multiplicity=multi

 }

 };

 enforce domain rdbms t:Table {

 column=cl:Column {name=an, type=sqltype }

 };

 where {

 sqltype = PrimitiveTypeToSqlType(pn, multi);

 }

}

relation SuperAttributesToColumn {

 checkonly domain uml c:Class {general=sc:Class{}};

 enforce domain rdbms t:Table {};

 where {

 AttributeToColumn(sc, t);

 }

}

top relation ComplexAttributeToColumn {

 an, fkn, scn, dcn: String;

 checkonly domain uml c:Class {

 name=scn,

 kind=’persistent’,

 attribute=a:Attribute {

 name=an,

 type=tc:Class {kind=’persistent’, name=dcn}

 }

 };

 enforce domain rdbms fkey:ForeignKey {

 name=fkn,

 owner=srcTbl,

 column=fc:Column {name=an, type=’NUMBER’, owner=srcTbl},

 refersTo=k:Key {name=dcn+’_pk’, owner=dstTbl}

 };

 when {

 ClassToTable(c,srcTbl);

 ClassToTable(tc,dstTbl);

 }

 where {

 fkn=scn + ‘_’ + an + ‘_’ + dcn;

 }

}

top relation AssocToFKey {

 checkonly domain uml as:Association {

 name=asn,

 source=sc:Class {kind=’persistent’, name=scn},

 destination=dc:Class {kind=’persistent’, name=dcn}

 };

 enforce domain rdbms fk:ForeignKey {

 name=fkn,

 owner=srcTbl,

 column=fc:Column {name=fcn, type=’NUMBER’, owner=srcTbl},

Analysis of Crosscutting Concerns in QVT-based Model Transformations

85

 refersTo=k:Key {name= dcn + ‘_pk’, owner = dstTbl}

 };

 when {

 ClassToTable(sc,srcTbl);

 ClassToTable(dc,dstTbl);

 }

 where {

 fkn = scn + ‘_’ + asn + ‘_’ + dcn;

 fcn = fkn + ‘_id’;

 }

}

function PrimitiveTypeToSqlType(primitiveType:String,

 multi:String):String {

 if (multi <> ‘1’)

 then ‘BINARY’

 else if (primitiveType = ‘INTEGER’)

 then ‘NUMBER’

 else if (primitiveType = ‘BOOLEAN’)

 then ‘BOOLEAN’

 else ‘VARCHAR’

 endif;

 endif;

 endif;

}

}

Table 14: Transformation Definition from UML Model to Relational Schema

Analysis of Crosscutting Concerns in QVT-based Model Transformations

86

Analysis of Crosscutting Concerns in QVT-based Model Transformations

87

B. UML to Java Transformation Rules
This transformation defines transformation rules between a SimpleUML model and a Java

model. It contains the following relations and functions:

� UInterfaceToJInterface: a top-level relation to maintain relationships

between each interface in the SimpleUML model with a Java interface in the

SimpleRDBMS model.

� UClassToJClass: a top-level relation to maintain relationships between each class

in the SimpleUML model with a Java class in the Java model.

� AttributeToField: a relation to maintain relationships between each attribute of

a class in the SimpleUML model with a field and a pair of set/get methods of the

corresponding Java class in the Java model.

� OperationToMethod: a relation to maintain relationships between each operation

of a class in the SimpleUML model with a method of the corresponding Java class in

the Java model.

� UParameterToJParameter: a relation to maintain relationships between each

parameter of a method in the SimpleUML model with a Java parameter of the

corresponding method in the Java model.

� AssociationToField1, AssociationToField2: top-level relations to

transform association relations between two classes in the SimpleUML model to

fields and set/get methods in the corresponding Java classes in the Java model.

� ImplementationToImplements: a top-level relation. When a class in the

SimpleUML model has an implementation relation with another class, the

implements property of the Java class corresponding to the former UML class

should include the Java class corresponding to the latter UML class.

� GeneralizationToExtends: a top-level relation. When a class in the

SimpleUML model has a generalization relation with another class, the extends

property of the Java class corresponding to the former UML class should be set to the

Java class corresponding to the latter UML class.

� MessageToImports: a top-level relation to maintain relationships between each

message calls of sequence diagrams in the SimpleUML model with the imports

property of the corresponding Java class in the Java model.

transformation Uml2Java (uml uses SimpleUML, java uses JavaMetamodel)

{

 key JavaClass (name);

 key Field (name, owner);

 key Method (name, owner);

 key JavaParameter (name, owner);

 top relation UInterfaceToJInterface {

 uin: String;

 checkonly domain uml ui:Class {

 stereotype=”<<interface>>”

 };

 enforce domain java ji:JavaClass {

 stereotype=”<<interface>>”

 };

 when {

 UClassToJClass(ui, ji);

 }

 }

 top relation UClassToJClass {

 ucn: String;

 checkonly domain uml uc:Class {name=ucn};

Analysis of Crosscutting Concerns in QVT-based Model Transformations

88

 enforce domain java jc:JavaClass {name=ucn};

 where {

 AttributeToField (uc, jc);

 OperationToMethod (uc, jc);

 }

 }

 relation AttributeToField {

 an, umltype, javatype: String

 checkonly domain uml uc:Class {

 attribute=a:Attribute {

 name=an,

 type=ut:Classifier{name=umltype}

 }

 };

 enforce domain java jc:JavaClass {

 fields=f:Field {name=’m_’+an, type=javatype},

 methods=get:Method {

 name=’get’+an,

 returnParameter=jp1:JavaParameter {type=javatype}

 },

 methods=set:Method {

 name=’set’+an,

 returnParameter=jp2:JavaParameter {type=’void’},

 inputParameters=jp3:JavaParameter {

 name=an, type=javatype

 }

 }

 };

 where {

 javatype=UTypeToJType(umltype);

 }

 }

 relation OperationToMethod {

 opn, umltype, javatype: String;

 checkonly domain uml uc:Class {

 operation = op:Operation {

 name = opn,

 returnType = ut:Classifier {name=umltype}

 }

 };

 enforce domain java jc:JavaClass {

 methods = mt:Method {

 name=opn,

 returnParameter = jp:JavaParameter {type = javatype}

 }

 };

 where {

 javatype = UTypeToJType(umltype);

 UParameterToJParameter(op, mt);

 }

 }

 relation UParameterToJParameter {

 upn, umltype, javatype: String;

 checkonly domain uml op:Operation {

 parameter = up:Parameter {

 name = upn,

 direction != ’return’,

 type = ut:Classifier {name = umltype}

Analysis of Crosscutting Concerns in QVT-based Model Transformations

89

 }

 };

 enforce domain java mt:Method {

 inputParameters = jp:JavaParameter {

 name = upn,

 type = javatype

 }

 };

 where {

 javatype = UTypeToJType(umltype);

 }

 }

 top relation AssociationToField1 {

 srcUcn, srcRole, srcMult, ascType: String;

 checkonly domain uml asc:Association {

 destination = dstUc:Class {},

 source = srcUc:Class {name = srcUcn},

 sourceRole = srcRole,

 sourceNavigability != ’NOT_NAVIGABLE’,

 sourceMultiplicity = srcMult

 };

 enforce domain java jc:JavaClass {

 fields = f:Field {name = ’m_’ + srcRole, type = ascType},

 methods = get:Method {

 name = ’get’ + srcRole,

 returnParameter = jp1:JavaParameter {type = ascType}

 },

 methods = set:Method {

 name = ’set’ + srcRole,

 returnParameter = jp2:JavaParameter {type = ’void’}

 inputParameters = jp3:JavaParameter {

 name = srcRole, type = ascType

 }

 }

 };

 when {

 UmlClassToJavaClass(destUc, jc);

 }

 where {

 ascType = GetAscType(srcUcn, srcMult);

 }

 }

 top Relation AssociationToField2 {

 dstUcn, dstRole, dstMult, ascType: String;

 checkonly domain uml asc:Association {

 source = srcUc:Class {},

 destination = dstUc:Class {name = dstUcn},

 destinationRole = dstRole,

 destinationNavigability != ’NOT_NAVIGABLE’,

 destinationMultiplicity = dstMult

 };

 enforce domain java jc:JavaClass {

 fields = f:Field {name = ’m_’ + dstRole, type = ascType},

 methods = get:Method {

 name = ’get’ + dstRole,

 returnParameter = jp1:JavaParameter {type = ascType}

 },

 methods = set:Method {

 name = ’set’ + dstRole,

Analysis of Crosscutting Concerns in QVT-based Model Transformations

90

 returnParameter = jp2:JavaParameter {type = ’void’},

 inputParameters = jp3:JavaParameter {

 name = dstRole,

 type = ascType

 }

 }

 };

 when {

 UmlClassToJavaClass(srcUc, jc);

 }

 where {

 ascType = GetAscType(dstUcn, dstMult);

 }

 }

 top Relation ImplementationToImplements {

 cliUcn, supUin: String;

 checkonly domain uml imp:Implementation {

 clientNamedElement = cliUc:Class {name=cliUcn},

 supplierNamedElement = supUi:Interface {name=supUin}

 };

 enforce domain java jc:JavaClass {

 name = cliUcn,

 implements = ji:JavaInterface {name=supUin}

 };

 when {

 UmlClassToJavaClass

 }

 }

 top Relation GeneralizationToExtends {

 cliUcn, supUcn: String

 checkonly domain uml gen:Generalization {

 clientNamedElement = cliUc:Class {name=cliUcn},

 supplierNamedElement = supUc:Class {name=supUcn}

 };

 enforce domain java jc1:JavaClass {

 name=cliUcn,

 extends = jc2:JavaClass {name=supUcn}

 };

 }

 top Relation MessageToImports {

 checkonly domain uml msg:Message {

 sendEvent = sendClass:Class {},

 receiveEvent = recvClass:Class {}

 };

 enforce domain java sendJClass:JavaClass {

 importsClass = recvJClass:JavaClass {}

 };

 when {

 UmlClassToJavaClass(sendClass, sendJClass);

 UmlClassToJavaClass(recvClass, recvJClass);

 }

 }

}

Table 15: Transformation Definition from UML Model to Java

Analysis of Crosscutting Concerns in QVT-based Model Transformations

91

C. Dependency graphs for UML To Java Transformation Rules
This appendix presents the dependency graphs and dependency matrices which are

derived for each transformation rule of the UML-To-Java transformation.

Dependency graphs at both metamodel and model levels are derived. The dependency

graph at the metamodel level shows the mapping between types of elements in a

transformation rule. The dependency graph at the model level shows the mapping between

elements of the SimpleUML and Java model due to the execution of this rule; i.e. it shows

presents instances of the tracing class corresponding to this rule.

There are dependency matrices at metamodel and model levels as well. In the dependency

matrix at the metamodel level, the header column lists the types of elements of the source

model and the header row lists the types of elements of the target model. In the dependency

matrix at the model level, the header column lists the elements of the source model and the

header row lists the elements of the target model. For both types of dependency matrices, an

inner cell with a value 1 indicates a mapping between the corresponding source and target

(types of) elements. A light gray row represents a scattering case, a light gray column

represents a tangling case, and dark gray cell (an intersect of a light gray row and a light gray

column) represents a crosscutting point.

Rule: UClassToJClass
This transformation rule transforms UML classes to Java classes. The dependency graph

at the metamodel level shown in Figure 48 contains only a single direct mapping between a

Class and a JavaClass element.

Figure 48: Dependency graph (metamodel) for UClassToJClass

target

source

JavaClass

UMLClass 1

Table 16: Dependency matrix (metamodel) for UClassToJClass

The dependency graph at the model level shown in Figure 49 contains direct mappings

Product-Product, Branch-Branch, Security-Security, etc.

Figure 49: Dependency graph (model) for UClassToJClass

target

source

Product Branch SecuredObject Security

Product 1

Branch 1

SecuredObject 1

Security 1

Table 17: Dependency matrix (model) for UClassToJClass

Class

JavaClass

UML metamodel

Java metamodel

Product Branch SO Security

Product Branch SO Security

PIM model

Java PSM

Analysis of Crosscutting Concerns in QVT-based Model Transformations

92

Rule: AttributeToField
Note: More precisely, the dependency data here is for the rule

AttributeToField_UClassToJClass rule which is derived from the rule AttributeToField when

it is invoked from the rule UClassToJClass. The indirect mapping shown in the dependency

graph and its elements are passed in by the rule UClassToJClass.

Apparently, this rule is not good because it contains the crosscutting relation. This

crosscutting relation is more obvious in the dependency graph at the model level. Ideally, the

source metamodel element Classifier should be transformed to corresponding target

metamodel elements in a separate rule.

Figure 50: Dependency graph (metamodel) for AttributeToField

target

source

JavaClass Field Method JavaParameter

Class 1
Attribute 1 1 1 1
Classifier 1 1 1 1

Table 18: Dependency matrix (metamodel) for AttributeToField

Figure 51: Dependency graph (model) for AttributeToField

target

source

Product Product.

m_name

Product.

getName

P.getName

return

Param

Product.

setName

P.setName

in Param

P.setName

return

Param

Product 1
P.name 1 1 1 1 1 1 1
String 1 1 1 1 1 1 1

Table 19: Dependency matrix (model) for AttributeToField

Class Attribute Classifier UML Metamodel

Java Metamodel JavaClass Field Method JavaParameter

Product P.name

Product P.m_name P.getName P.setName

PIM model

Java PSM model

P.getName

return

Param

P.setName

in

Param

P.setName

return

Param

String

Analysis of Crosscutting Concerns in QVT-based Model Transformations

93

Rule: OperationToMethod
This rule has the same problem as the rule AttributeToField in which its dependency

graph contains crosscutting relations. Thus the rule should also be rewritten to eliminate this

relation.

Figure 52: Dependency graph (metamodel) for OperationToMethod

target

source

JavaClass Method JavaParameter

Class 1
Operation 1 1 1
Classifier 1 1 1

Table 20: Dependency matrix (metamodel) for OperationToMethod

Figure 53: Dependency graph (model) for OperationToMethod

target

source

Branch B.branch B.branch

return

Param

Security S.authenticate S.authenticate

return Param

Branch 1 1 1
B.branch 1 1 1
Security 1
S.authenticate 1 1 1
Boolean 1 1 1

Table 21: Dependency matrix (model) for OperationToMethod

Class Operation Classifier UML Metamodel

Java Metamodel JavaClass Method JavaParameter

B.branch S.authen

Branch B.branch

PIM model

Java PSM

model Security S.authen

Security Boolean

B.branch

return

Param

S.authen

return

Param

Branch

Analysis of Crosscutting Concerns in QVT-based Model Transformations

94

Rule: MessageToImports
The dependency graphs for this rule at both metamodel and model levels, combined with

the dependency graphs for the rule UClassToJClass in Figure 48 and Figure 49, show that the

Security class crosscuts other elements of the PIM model, such as Product, Branch

and message calls from Product to Security in the add method of the Product class.

Figure 54: Dependency graph (metamodel) for MessageToImports

target

source

JavaClass

Class 1
Message 1

Table 22: Dependency matrix (metamodel) for MessageToImports

Figure 55: Dependency graph (model) for MessageToImports

target

source

Product Branch Security

Product 1 0 0
P.add P-S Msg 1 0 0
Branch 0 1 0
B.branch B-S Msg 0 1 0
B.merge B-S Msg 0 1 0
Security 1 1 0

Table 23: Dependency matrix (model) for MessageToImports

Abbreviation:

P.add P-S Msg: the Message element from a Product object to a Security object in the

sequence diagram for the operation Product.add

B.branch B-S Msg: the Message element from a Branch object to a Security object in

the sequence diagram for the operation Branch.branch

B.merge B-S Msg: The Message element from a Branch object to a Security object in

the sequence diagram for the operation Branch.merge

sendClass:

Class

msg:

Message

recvClass:

Class

importingJClass:

JavaClass

importedJClass:

JavaClass

sendMsgEnd:

MessageEnd

recvMsgEnd:

MessageEnd

sendLife:

Lifeline

recvLife:

Lifeline

Source

Metamodel

Target

Metamodel

Product Branch
P.add

P-S Msg

B.branch

B-S Msg

B.merge

B-S Msg Security

Product Branch Security

PIM

Model

Java PSM

Model

 2.1 2.1 2.2 & 2.3 2.2 2.1 2.3 2.2 & 2.3

Note: Some elements are omitted for clearer view

