
Analyzing Aspects in Production
Plans for Software Product Lines

Paul Noordhuizen

July 2006

Analyzing Aspects in Production
Plans for Software Product Lines

Master of Science Thesis

Paul Noordhuizen

Enschede, July 2006

Graduation committee
prof. dr. ir. Mehmet Akşit
dr. ir. Bedir Tekinerdog̃an (first supervisor)
dr. ir. Klaas van den Berg

Chair
Software Engineering

Departement
Electrical Engineering, Mathematics and Computer Science

University
University of Twente

Copyright 2005, 2006. All rights reserved.

Abstract

Software product line engineering aims to reduce the costs of manufacturing software
products by exploiting the commonalities of a product family and managing the
variabilities. Production plans define the process for producing software products
from the available assets. However, it appears that product line engineering has not
yet focused on crosscutting concerns in production plans.

We think that for coping with these crosscutting concerns aspects can be applied, as
aspects are already used throughout the software development cycle to modularize
crosscutting concerns and to provide composition mechanisms with other concerns.

Firstly, we analyze the problems with crosscutting concerns for production plans on
two levels: the component level, that is crosscutting in the asset library from which
products are built through the production plan, and the production plan level, that
is scattering of variable features in the production plan itself. We identify these
problems in a case study of a concrete product line and propose solutions for both
levels.

On the component level, our approach is to modularize crosscutting concerns in
separate, reusable aspect components and to provide configuration of the aspects
to select the right variation of each aspect for the specific product that is to be
produced. These configured aspects are then composed with the other selected
assets through a separate pointcut specification to avoid context-specific references
in the aspect implementation. This process is defined for the production plans.

On the production plan level, our approach is to modularize the variable features in
the production plans by using XML-based feature models in the product line and
the functional query language XQuery to select features by their type (common or
variable) and/or name in stead of by their place in the feature hierarchy.

Our solutions on both levels are illustrated and demonstrated with the case as a
running example.

Secondly, we explore the impact of aspect-orientation on the product line process.
Product line engineering is moving more and more from production of software
products by hand to automated generation of applications from the product line
through some sort of specification. This goal obviously has implications for the
structure and contents of production plans. However, the steps in a generative
product line process – and thus in generative production plans – are unclear. We
have analyzed the product line process for the popular generative technologies XML-
Based Feature Modeling and Pure::Variants and investigated the impact of aspect-
orientation on the generative production plans.

v

Contents

Abstract v

Foreword xvi

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 2

1.3 Approach . 2

1.4 Thesis Overview . 3

2 Background 5

2.1 Introduction . 5

2.2 Software Product Line Engineering 5

2.2.1 Introduction . 5

2.2.2 Commonality and Variability 6

2.2.3 Product Line Activities . 7

2.2.4 Two Life-Cycle Model . 9

2.3 Aspect-Oriented Software Development 14

2.3.1 Introduction . 14

2.3.2 Separation of Concerns . 14

2.3.3 Crosscutting Concerns . 15

2.4 Summary . 17

3 Case Study: Arcade Game Maker Product Line 19

3.1 Introduction . 19

3.2 Case Overview . 19

3.3 Product Line Assets Overview . 22

3.3.1 Business Case . 23

3.3.2 Scope . 23

3.3.3 Concept of Operations . 23

3.3.4 Requirements . 23

vii

Contents

3.3.5 Architecture . 23

3.3.6 Production Plans . 24

3.3.7 Test Plans . 24

3.3.8 User Manual . 24

3.3.9 Code Assets . 25

3.4 Software Life-Cycle Phases . 26

3.4.1 Domain Analysis . 26

3.4.2 Requirements Analysis . 27

3.4.3 Architecture Design . 28

3.4.4 System Design . 29

3.4.5 Component/Generator Development 35

3.4.6 System Development . 36

3.5 Production Plans In-Depth . 37

3.5.1 Product Line Scope . 38

3.5.2 Assets for Product Production 38

3.5.3 Production Process . 39

3.5.4 Management of the Production Process 40

3.5.5 Product-Specific Production Plans 40

3.6 Summary . 41

4 Impact of Crosscutting Concerns 43

4.1 Introduction . 43

4.2 Background . 43

4.2.1 AspectJ . 44

4.2.2 CaesarJ . 45

4.2.3 Composition Filters . 46

4.3 Analysis . 48

4.3.1 Crosscutting Concern Replay Actions 48

4.3.2 Implementing Replay Actions feature 48

4.3.3 Problems with ’Traditional’ Implementation 51

4.3.4 Crosscutting Concerns for Production Plans 52

4.3.5 Case Example of Crosscutting on Production Plan Level . . . 54

4.3.6 Replay Actions feature as Aspect 55

4.4 Summary . 56

Analyzing Aspects in Production Plans for Software Product Lines viii

Contents

5 Modularizing Crosscutting Concerns for Production Plans 58

5.1 Introduction . 58

5.2 Background . 58

5.2.1 Component Based Software Engineering 58

5.2.2 Aspect Configuration . 62

5.3 Analysis . 64

5.3.1 Classification of Product Lines 64

5.3.2 Approach to Identified Problems 67

5.4 Application of Solutions to Case . 70

5.4.1 Component Level . 70

5.4.2 Production Plan Level . 71

5.5 Summary . 72

6 Applying Generative Production Plans 74

6.1 Introduction . 74

6.2 Background . 74

6.2.1 Automation of Production Plans 74

6.2.2 Generative Software Development 75

6.3 Analysis . 76

6.3.1 Generative Production Plans 76

6.3.2 XML-Based Feature Modeling Process 77

6.3.3 Pure::Variants Process . 82

6.3.4 Comparison of Both Approaches 87

6.3.5 Aspect-Oriented Product Line Process 88

6.4 Application to Case . 90

6.4.1 Feature, Family, and Variant Models 91

6.4.2 XML Representation of Models 92

6.4.3 Aspect-Orientation in Pure::Variants 95

6.5 Summary . 98

7 Conclusions 101

7.1 Research Questions and Answers . 101

7.1.1 Crosscutting on the Component Level 101

7.1.2 Crosscutting on the Production Plan Level 102

7.1.3 Application of Aspects to Identified Problems 102

7.1.4 Generative Production Plans 103

7.2 Recommendations and Future Work 103

Bibliography 106

Analyzing Aspects in Production Plans for Software Product Lines ix

Contents

A Concern Modeling 110

A.1 Introduction . 110

A.2 Hyperspaces . 110

A.3 Cosmos . 111

A.4 Extended Hyperspace Model . 113

A.5 CoCompose . 114

A.6 Concern Manipulation Environment 116

A.7 Summary . 116

B Class Diagrams for AGM Case 118

B.1 GameDefinitions package . 119

B.2 GameBoard package . 120

B.3 BricklesDefinitions package . 121

B.4 Brickles package . 122

B.5 PongDefinitions package . 123

B.6 Pong package . 124

B.7 BowlingDefinitions package . 125

B.8 Bowling package . 126

C Production Plan for AGM Case 127

D Management Information from Brickles Production Plan 148

E Example Use Case from AGM Requirements 152

F Glossary 156

F.1 AOSD . 156

F.2 SPLE . 157

Analyzing Aspects in Production Plans for Software Product Lines x

List of Figures

2.1 Examples of a variation point and its variants [15] 6

2.2 Core Asset Development activity [41] 7

2.3 Product Development activity [41] 9

2.4 Two Life-Cycle Model [57] . 10

2.5 Structure of the Product Builder Pattern [12] 12

2.6 Example Feature Diagram [18] . 13

2.7 Example dependency and crosscutting matrix [7] 16

3.1 The Brickles Playing Field [35] . 20

3.2 The Pong Playing Field [35] . 21

3.3 The Bowling Playing Field [35] . 22

3.4 AGM Feature Model, part I [35] . 27

3.5 AGM Feature Model, part II [35] . 27

3.6 AGM Feature Model, part III [35] 27

3.7 AGM Common Architecture . 29

3.8 Brickles Architecture . 31

3.9 Pong Architecture . 33

3.10 Bowling Architecture . 34

3.11 Overview of Code Packages [35] . 35

4.1 Example of superimposed concern in Compose* 47

4.2 Part of AGM Feature Model [35] . 54

4.3 Replay Actions Aspect . 56

5.1 An example XML specification of an account interface [27] 60

5.2 Parameterized < adapt > to Provide Variations in Cache Aspect [33] 63

5.3 ’Traditional’ Product Lines . 65

5.4 Non-AO Assets, AO Production Plan 66

5.5 AO Assets, Non-AO Production Plan 66

5.6 AO Assets, AO Production Plan . 67

5.7 Pseudo code for an Aspect-Oriented Production Plan 69

xi

List of Figures

5.8 XQuery for Selection of Common Features 69

5.9 XQuery for Selection of Variable Features by Name 69

6.1 Elements of a Generative Domain Model [16] 75

6.2 Product Line Process for XML-Based Feature modeling 78

6.3 Pure::Variants Component Model [47] 82

6.4 Product Line Process for Pure::Variants 83

6.5 Pure::Variants Product Line Process 89

6.6 Feature model in Pure::Variants . 91

6.7 Family model in Pure::Variants . 92

6.8 Variant model in Pure::Variants . 92

6.9 Partial Feature Model in XML format 93

6.10 Partial Family Model in XML format 94

6.11 Feature Model with Crosscutting Feature ReplayActions 95

6.12 Family Model with Crosscutting Feature ReplayActions 96

6.13 XML Representation of ReplayActions feature in Feature Model . . 96

6.14 XML Representation of ReplayActions feature in Family Model . . . 97

6.15 XML Representation of ReplayActionsImpl Aspect in Family Model 98

A.1 Outline of Cosmos Concern Model Elements [51] 113

A.2 An Observer Composite Solution Pattern [55] 115

B.1 Class Diagram for the GameDefinitions package 119

B.2 Class Diagram for the GameBoard package 120

B.3 Class Diagram for the BricklesDefinitions package 121

B.4 Class Diagram for the Brickles package 122

B.5 Class Diagram for the PongDefinitions package 123

B.6 Class Diagram for the Pong package 124

B.7 Class Diagram for the BowlingDefinitions package 125

B.8 Class Diagram for the Bowling package 126

Analyzing Aspects in Production Plans for Software Product Lines xii

List of Tables

4.1 Similarities and differences in game state elements 51

5.1 Aspect-Orientation in Product Lines 64

6.1 Feature Restrictions in Pure::Variants 84

6.2 Restrictions on Family Elements in Pure::Variants 84

6.3 Comparison of Technologies . 88

xiii

List of Abbreviations

AGM Arcade Game Maker

AO Aspect-Oriented

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

ATAM Architecture Tradeoff Analysis Method

BOM Bill of Materials

CBSE Component-Based Software Development

CCM Corba Component Model

CONOPS Concept of Operations

COTS Commercial Off-The-Shelf

DCOM Distributed Component Object Model

EJB Enterprise JavaBeans

FODA Feature-Oriented Domain Analysis

MVC Model-View-Controller

RUP Rational Unified Process

SPLE Software Product Line Engineering

UML Universal Modeling Language

xiv

Foreword

This Master of Science thesis is the final report of my Computer Science studies at
the University of Twente. It is the result of 12 months of work in which I have been
supported by many people. I now have the opportunity to express my gratitude to
all of them.

First of all, I would like to thank my supervisors Bedir Tekinerdog̃an and Klaas van
den Berg for their guidance, support, and patience. The dedication with which you
have supported and encouraged me in all those meetings has motivated me to reach
the result as lays before you today.

I also wish to thank the third member of the graduation committee, Mehmet Akşit,
for his feedback and reserving time in a busy schedule to attend my final presenta-
tion.

Thanks go out to all of my friends who have supported me during this period. You
gave me the opportunity to clear my head once in a while to keep me going. Special
thanks go out to my girlfriend for her patience and encouragement.

Last, but not least I would like to thank my sister and parents who have been there
for me during all these years and motivated me to finish my studies.

xvi

Chapter 1

Introduction

1.1 Context

The software engineering industry is becoming more and more demanding. It re-
quires software of high quality to be developed in shorter periods of time against
less cost. Achieving these goals using traditional development methods becomes an
impossible task, as has been proved over and over again by software projects which
exceed their time schedule and budget. Also, with technology persistently advancing
and information technology demands constantly changing, the only certain factor
in such an environment is that change will occur. It is therefore important to take
these changes into consideration when developing software systems.

Focus needs to be shifted from developing single software products to product lines
(also known as product families). A product line is a collection of software products
sharing a common set of features that address the specific need of a defined domain.
Product lines are created to effortlessly accommodate changes and to speed up
the software production process. Product line engineering helps designing reusable
components and a common architecture for a product line.

Reuse is a concept well-known to software engineers developing software families.
Reuse-driven development is not only used by product line engineering, but also
other development approaches such as generative programming and aspect-oriented
software development. These approaches reuse various software engineering arte-
facts, from software architectures to code, for the development of software families.
Reuse is achieved firstly, by determining the commonality and variability of the
software products to be developed and secondly, by reusing those parts found to be
common for all products. Feature modeling is used to specify the commonality and
variability of a software family.

Product line engineering aims to reduce the costs of manufacturing of software
products by exploiting these common properties and by managing the variabilities.
Two key processes in product line engineering are domain engineering and appli-
cation engineering. In domain engineering the scope of the product line is defined
and the required components are implemented in reusable libraries. In application
engineering these components are composed together in products using a so-called
production plan.

1

1.2 Problem Statement

1.2 Problem Statement

Obviously, the main goal of domain engineering is to capture the concerns in single
components so that these can be made reusable. However, It appears that product
line engineering has not yet focused on so-called crosscutting concerns for production
plans, that is, concerns which cannot be easily localized in individual components
and that tend to be scattered over multiple components. The lack of techniques for
coping with crosscutting concerns for production plans in a product line engineering
approach will reduce the reusability that was initially aimed for. Aspect-Oriented
Software Development (AOSD) is an approach for coping with crosscutting concerns
by providing explicit abstractions called aspects and composition mechanisms for
composing the aspects with the components. Unfortunately, aspects have not yet
been applied for production plans.

This thesis investigates two types of crosscutting concerns with respect to the pro-
duction plans: crosscutting concerns on the component level, that is in the library
of components from which end-products are composed through the production plan,
and aspects in the production plan itself which aim to tackle scattering of variable
features in the plan.

We study these issues through the following research questions:

1. Which problems arise with crosscutting concerns on the component level
in a product line context?

2. Which problems arise with crosscutting concerns on the production plan
level in a product line context?

3. How can aspects be applied to production plans to cope with these crosscut-
ting issues?

4. Introducing aspect-orientation for production plans also affects the product
line process. Product line engineering is moving more and more from pro-
duction of software products by hand to automated generation of products
from the product line through some sort of product specification. However,
the steps in a generative product line process are unclear. This leads to
three questions:

� Which technologies are available for automation of production plans?

� What are the product line processes for these technologies?

� How do aspects on the component level and production plan level affect
the product line process?

1.3 Approach

To answer these research questions we first investigate a number of key concepts of
software product line engineering and aspect-oriented software development. Then
we introduce a case study of a concrete product line to illustrate which activities
and assets are involved in product line engineering and specifically how products
are produced through the production plans.

The case study is then used to investigate the impact of crosscutting concerns in
a product line context and which problems arise on both the component level and
production plan level.

Analyzing Aspects in Production Plans for Software Product Lines 2

1.4 Thesis Overview

We then work out our approach to these issues on both levels by applying aspects to
modularize the crosscutting concerns and we introduce configuration and composi-
tion techniques from AOSD to work with aspects as separate, reusable components
in a product line context.

We finish this thesis with our approach to applying so-called generative production
plans, which are production plans that produce software products in an automated
way. The structure and contents of such production plans and the according product
line process are investigated for two popular generative approaches.

1.4 Thesis Overview

A brief introduction to software product line engineering and aspect-oriented soft-
ware development is given in chapter 2.

Chapter 3 presents a case study of the Arcade Game Maker product line to give
the reader more feeling for the product line approach and the activities involved.
This case is used as a running example in the report to illustrate abstract issues
with concrete examples from the case.

In chapter 4 we study the impact of crosscutting concerns in the case and explore
and problems that arise due to these concerns on both the component level and
production plan level.

Chapter 5 proposes a classification of product lines, based on the possible com-
binations of aspect-orientation in the asset library and the production plans and
aspects are applied to the identified problems. We also introduce configuration
and composition techniques from AOSD to work with aspects as separate, reusable
components in a product line context.

Generative production plans and the generative product line process are explored
in chapter 6 with two generative technologies and an analysis of their processes.
The impact of aspect-orientation for the product line process is then investigated.

Chapter 7 concludes this report by summarizing the answers found for our research
questions, by making recommendations, and discussing ideas for future research.

Analyzing Aspects in Production Plans for Software Product Lines 3

Chapter 2

Background

2.1 Introduction

This chapter gives a brief introduction into the field of software product line engi-
neering and aspect-oriented software development. Key concepts as commonality
and variability, the two life-cycle model, separation of concerns, and crosscutting
concerns are introduced. We also discuss the main product line activities of core
asset development and product development.

2.2 Software Product Line Engineering

2.2.1 Introduction

A software product line is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way [14].

Software product line engineering is targeted at organizations concerned by the
lack of predictable delivery and long-term return on their software investments.
Product lines are becoming an important approach to reducing the costs and the
time to market of complex software products. Some advantages of a product line of
software systems when built from a common set of shared assets are an increase in
profits, cost savings, system reliability, customer satisfaction, as well as a decrease
in staffing requirements and time-to-market. Organizations using product lines for
the development of software systems have a great competitive advantage.

In order to develop highly reusable core assets, product line engineering must have
the ability to exploit commonality and manage variability among products in a
certain domain. Systematic management of planned variations across a product
line and exploiting commonalities is essential for successful software product line
engineering. The commonality being exploited allows reuse of a number of shared
assets, such as architectures, reusable components, schedules, budgets, test cases,
performance modeling, training and documentation [14][41]. When developing a
new product in a product line, composition and generation are encouraged rather
than programming as in the traditional way. By reusing parts of previous systems
to build new systems, their reliability is considerably increased.

5

2.2 Software Product Line Engineering

Figure 2.1: Examples of a variation point and its variants [15]

In this section we first further investigate the notion of commonality and variability.
We then give an overview of the two main activities that take place in product line
engineering: core asset development and product development. Then we introduce
the two life-cycle model which shows the relations between domain engineering and
application engineering.

2.2.2 Commonality and Variability

Let us now discuss two major concepts in software engineering in general and prod-
uct line engineering: commonality and variability. Much research is available on the
topics of commonality and variability analysis and management [15][28][31][37][54].

Considering a software product family, commonality represents the functionality
uniformly occurring across all products in the family, whereas variability represents
those characteristics only occurring in some, but not all of the products. For exam-
ple, an attribute having the same value in all products is seen as commonality and
when having different values for at least two of the products, as variability. Another
example – moving away from product families – is looking at a set of figures, circles,
triangles and squares. Each one of these figures is two-dimensional and has an area.
Thus both of these features, ’two-dimensional’ and ’has an area’ are commonalities.
Some of these shapes are differentiated by the number of sides they have and the
formula of their area, thus ’number of sides’ and ’formula of area’ are variabilities.

At this stage the notion of a variation point is introduced. A variation point is
any point in a product at which variation may occur. A variation point locates
a variability and its bindings by describing several variants. Every variant is one
way to realize that variability and bind it in a concrete way. The variation point
itself locates the insertion point for the variants and determines the characteristics
of the variability. An example of a variation point could be a sorting algorithm.
The variants of this variation point would be bubble sort, quick sort or insert sort.
Another example of a variation point in the case of an order process could be
payment information. Its variants would be billing data, delivery data and credit
card data. Figure 2.1 illustrates these examples.

Commonality and variability can also be expressed in terms of features, as we will
get into in section 2.2.4. Features abstract from requirements which is important in
product line engineering, because by combining a number of products in a family, the
size and complexity of the requirements also increases, which severely hinders the
detection of commonalities and variabilities in the family. Traceability is provided
by mapping features in the problem space to implementation of the features in the
solution space.

Analyzing Aspects in Production Plans for Software Product Lines 6

2.2 Software Product Line Engineering

Figure 2.2: Core Asset Development activity [41]

Analyzing the commonality and variability of a domain provides a systematic way
of thinking about and identifying the product family to be created and helps to
analyze the economics of creating a family. Understanding the commonality and
variability of software products allows functions, objects, and aspects – as we will
see later on in this report – to be derived in a reusable form. Determining the
commonality and variability of a product line is not always as straightforward as it
seems. There are many different facets of any product family that need to be con-
sidered before distinguishing between its common and variable features. Once these
features have been identified, representing them in a way useful to the developer is
another problem not easily solved.

2.2.3 Product Line Activities

The Software Engineering Institute at Carnegie Mellon University has developed a
framework for product line practice, which aids organizations with the activities of
developing a product line [14]. It identifies and describes 29 practice areas, which
are divided into software engineering practice areas, technical management practice
areas and organizational management practice areas.

Product line practice consists of three main activities. They are the development
of the core assets, the development of the products using the core assets, and the
management of both these processes. The first two activities are described below.

Core Asset Development

The goal of this activity is to create product production capability. Figure 2.2
illustrates the core asset development activity along with its outputs and necessary
inputs.

This activity is iterative and by the diagram it is evident that the inputs and outputs
of this activity affect each other.

Analyzing Aspects in Production Plans for Software Product Lines 7

2.2 Software Product Line Engineering

Three of the outputs of the core asset development activity are the product line
scope, the core assets and the production plan. They are necessary for developing
products from the product line.

The product line scope describes the products that will be included in the product
line in terms of the commonalities and variabilities amongst the products. These
might include, for example, features, their operations, their quality attributes such
as performance and the platforms on which they run. The success of the product
line depends on the careful definition of the scope. The scope may not be too large,
or too small, and it must target the right products. For the product line to be kept
current, the scope should evolve as market conditions change, as the organization’s
plans change, or as new opportunities arise.

The core assets are the basic building blocks of the product line. They include an
architecture shared by the products in the product line and software components
developed for systematic reuse. The software architecture plays an important role
in that it must satisfy the general needs of the product line, as well as the individual
products by explicitly admitting a set of variation points. Requirements specifica-
tions, domain models and commercial off-the-shelf (COTS) components are also
classified as core assets. A core asset should always be associated with an attached
process. The attached processes are step-by-step descriptions of how the core as-
sets will be used in the development of the products in the product line. They are
themselves core assets that are included in the production plan.

The production plan describes how products will be developed using the core assets.
It is essentially a set of attached processes from each of the core assets. Every
product in the product line has specific variations predefined by variation points.
The production plan describes how these variation points can be accommodated.
It also describes how the core assets are linked and how they are utilized effectively
and within the product line constraints.

The three outputs of the core asset development activity are necessary for the
product development activity, which in turn produces the products of the product
line that fulfill a specific customer or market need.

Product Development

Increasing the productivity of product development is the main drive of product
line engineering. The product development activity is responsible for assembling
each product. It depends on the three outputs described above, as well as the
requirements for each individual product. Figure 2.3 illustrates these relationships.

Analyzing Aspects in Production Plans for Software Product Lines 8

2.2 Software Product Line Engineering

Figure 2.3: Product Development activity [41]

The requirements for a particular product are essentially the product features and
are necessary for producing a specific product. The product line scope determines
whether a certain product can be included in the product line or not. The core
asset base is needed to build the products. The production plan describes how the
core assets should be used in order to build a product.

From a simplified point of view, the product development activity consists of receiv-
ing requirements for a product that is in the product line scope, and then following
the production plan so that the core assets can be correctly used to develop the
product. The process is however not always that simple, as we will see later on in
this report.

2.2.4 Two Life-Cycle Model

The product line activities can be grouped in two categories: domain engineering,
and application engineering. Figure 2.4 shows the process and products of the
overall domain engineering activity, and shows the relationships and interfaces of
domain engineering to the application engineering process. This has come to be
known as the two life-cycle model [9][15][57].

We start in this section with a discussion of the domain engineering processes.

There are different meanings assigned to the term domain in different disciplines
and communities. In this report we use the definition adopted from Czarnecki &
Eisenecker [15]:

Domain: An area of knowledge:

� Scoped to maximize the satisfaction of the requirements of its stake-
holders.

� Includes a set of concepts and terminology understood by practi-
tioners in that area.

� Includes the knowledge of how to build software systems (or parts
of software systems) in that area.

Analyzing Aspects in Production Plans for Software Product Lines 9

2.2 Software Product Line Engineering

Figure 2.4: Two Life-Cycle Model [57]

Domain engineering then is the activity of collecting, organizing, and storing past
experience in building systems or parts of systems in a particular domain in the
form of reusable assets (i.e., reusable work products), as well as providing an ad-
equate means for reusing these assets (i.e., retrieval, qualification, dissemination,
adaptation, and so on) when building new systems [15].

Domain engineering consists of Domain analysis, Domain design, and Domain im-
plementation. The results of domain engineering are reused during application
engineering, that is, the process of producing concrete systems using the reusable
assets developed during domain engineering.

Domain analysis

The purpose of domain analysis is to [15]:

� Select and define the domain of focus

� Collect the relevant domain information and integrate it into a coherent do-
main model

The sources of domain information include existing systems in the domain, domain
experts, system handbooks, textbooks, prototypes, experiments, already known
requirements on future systems, current or potential customers, standards, market
studies, technology forecasts, and so on.

It is important to note that domain analysis does not only involve recording the
existing domain knowledge. The systematic organization of the existing knowledge
enables and encourages to actually extend it in creative ways [15].

A domain model is an explicit representation of the common and variable properties
of the systems in a domain, the semantics of the properties and domain concepts,
and the dependencies between the variable properties. In general, a domain model
consists of the following components [15]:

� Domain definition: Defines the scope of a domain and characterizes its con-
tents by giving examples of existing systems in the domain, counterexamples,
and generic rules of inclusion and exclusion.

� Domain lexicon: Defines the domain vocabulary.

Analyzing Aspects in Production Plans for Software Product Lines 10

2.2 Software Product Line Engineering

� Concept models: Describe the concepts in a domain in some appropriate mod-
eling formalism and informal text.

� Feature models: Define a set of reusable and configurable requirements for
specifying the systems in a domain. A feature model prescribes which fea-
ture combinations are meaningful, which of them are preferred under which
conditions and why. See section 2.2.4 for more information.

Domain design

The purpose of domain design is to develop an architecture for the family of systems
in the domain and to devise a production plan.

Buschmann et al. give a definition of a software architecture [10]:

A software architecture is a description of the subsystems and compo-
nents of a software system and the relationships between them. Subsys-
tems and components are typically specified in different views to show
the relevant functional and nonfunctional properties of a software sys-
tem. The software architecture of a system is an artifact. It is a result
of the software development activity.

The elements in a software architecture and their connection patterns are designed
to satisfy the requirements on the system (or systems) to be built. When developing
a software architecture, one has to consider not only functional requirements, but
also requirements for quality properties, such as performance, robustness, failure
tolerance, throughput, adaptability, extendibility, reusability, and so on [15].

Domain implementation

Domain design is followed by domain implementation, which involves implement-
ing the architecture, the components, and the production plan using appropriate
technologies.

The product-building process is described in the production plan using the process
definition style used for other processes in the organization. The Product Builder
Pattern described by Clements specifies a set of product line practice areas that are
used in building a product in a product line organization [14]. Each practice is a
body of work or a collection of activities that an organization must master to carry
out the essential work of a product line. Figure 2.5 shows the practice areas used
in the pattern and the interactions between them.

For a specific product line, the practice areas necessary to build a product depend
on how well the organization has institutionalized the product line practices, the
maturity of the market, and the degree of product development automation.

Feature Modeling

As discussed earlier, feature models define a set of reusable and configurable require-
ments for specifying the systems in a domain. A feature model prescribes which
feature combinations are meaningful, which of them are preferred under which con-
ditions and why.

Generally, a feature is ”a property of a domain concept, which is relevant to some
domain stakeholder and is used to discriminate between concept instances” [15].

Analyzing Aspects in Production Plans for Software Product Lines 11

2.2 Software Product Line Engineering

Figure 2.5: Structure of the Product Builder Pattern [12]

Reusable software contains inherently more variability than concrete applications
and feature modeling is the key technique for identifying and capturing variability
[15]. It is therefore important to have a better understanding of this technique and
its benefits for the software product line approach.

A feature model consists of a feature diagram and some additional information,
such as short semantic descriptions of each feature, rationales for each feature,
stakeholders and (potential) customers interested in each feature, examples of sys-
tems with a given feature, default dependency rules, availability sites (i.e., where,
when, and to whom a feature is available), binding sites (i.e., dynamic or static
binding), open/closed attributes (i.e., whether new subfeatures are expected), and
priorities (i.e., how important a feature is) [15].

Feature Diagrams
The most common representation of feature models is through FODA-style feature
diagrams [15][28]. Feature-Oriented Domain Analysis (FODA) is a domain analysis
method developed at the Software Engineering Institute (SEI) and is known for the
introduction of feature models and feature modeling. A feature diagram consists of
a set of nodes, a set of directed edges, and a set of edge decorations. The nodes and
the edges form a tree. The edge decorations are drawn as arcs connecting subsets or
all of the edges originating from the same node. The root of a feature diagram is a
concept and the remaining nodes in a feature diagram represent features. Consider
figure 2.6 for an example feature diagram of a control system which can contain
one or more sensors, one or more actuators and one processor. A sensor can be a
position sensor or a speed sensor and can optionally contain a self test. An actuator
is a position actuator and can optionally contain a self test. The processor has a
certain internal memory size.

The parent node of a feature node is either the concept node or another feature
node. As one can see in the example feature diagram there are different types of
features: mandatory, alternative, optional, and or-features [15]:

� A mandatory feature is included in the description of a concept instance if
and only if its parent is included in the description of the instance.

Analyzing Aspects in Production Plans for Software Product Lines 12

2.2 Software Product Line Engineering

Figure 2.6: Example Feature Diagram [18]

� An optional feature may be included in the description of a concept instance
if and only if its parent is included in the description.

� If the parent of a set of alternative features is included in the description of a
concept instance, then exactly one feature from this set of alternative features
is included in the description; otherwise none are included.

� If the parent of a set of or-features is included in the description of a concept
instance, then any nonempty subset from the set of or-features is included in
the description; otherwise, none are included.

Feature diagrams allow us to represent concepts in a way that makes the commonal-
ities and variabilities among their instances explicit. For identification of common-
alities there are two important notions: common features and common subfeatures.
A feature is a common feature of a concept if it is a mandatory feature and either a
direct feature of the concept or there is a path of mandatory features connecting the
feature and the concept. A subfeature is a common subfeature of a feature, which
is present in all instances of a concept that also have the feature. Thus, all direct
mandatory subfeatures of the feature are common subfeatures. Also, a subfeature
is common if it is mandatory and there is a path of mandatory features connecting
the subfeature and the feature [15].

Variability in feature diagrams is expressed using optional, alternative, optional
alternative, and or-features; these features are called variable features. The nodes
to which variable features are attached are referred to as the earlier-mentioned
variation points [15].

Application Engineering

Application Engineering is the process of building systems based on the results of
Domain Engineering (see figure 2.4).

During the requirements analysis for a new concrete application, one can take ad-
vantage of the existing domain model and describe customer needs using the features
(i.e., reusable requirements) from the domain model. This process can be supported
by appropriate application ordering tools. New customer requirements not found in
the domain model require custom development. The new requirements should also
be fed back to domain engineering to refine and extend the reusable assets. In the

Analyzing Aspects in Production Plans for Software Product Lines 13

2.3 Aspect-Oriented Software Development

software product line approach one then either manually assemble the application
from the existing reusable components and the custom-developed components or
use generators to produce it automatically [15]. We investigate generative software
development in section 6.2.2 and apply this approach to product line engineering in
chapter 6.

2.3 Aspect-Oriented Software Development

2.3.1 Introduction

Aspect-oriented software development (AOSD) is a set of emerging technologies that
seeks new modularizations of software systems. AOSD allows multiple concerns
to be separately expressed but nevertheless be automatically unified into working
systems [20].

An important principle in software engineering is separation of concerns, that is to
decompose a system into separate concerns as a mechanisms for improving flex-
ibility and comprehensibility and thus making software systems easier to write,
understand, reuse, and modify.

Related to this principe is the problem of crosscutting concerns. Crosscutting is usu-
ally described in terms of scattering and tangling, e.g. crosscutting is the scattering
and tangling of concerns arising due to poor support for their modularization.

Aspect-oriented programming (AOP) was introduced to tackle these crosscutting
concerns on the code level by using an aspect as a module for a crosscutting concern.
When this approach to programming started to gain interest in the community, the
concepts in AOP stabilized and the notion of early aspects came into the picture to
support aspect-orientation in earlier phases of the lifecycle.

In this section we investigate the need for aspect-oriented software development by
discussing separation of concerns and crosscutting concerns. The reader is referred
to sections 4.2 and 5.2.2 for more background information on the important concepts
in aspect-oriented programming and how aspects can be configured when used in a
product line context.

2.3.2 Separation of Concerns

The AOSD research area has its own terminology and themes. Looking at the
definition of aspect-oriented software development one can see that modularization
and unification of sofware systems are the main topics of interest. Connected to
these topics is the notion of separation of concerns.

We define a concern as an interest, which pertains to the systems’s development, its
operation or any other matters that are critical or otherwise important to one or
more stakeholders [6].

Separation of concerns then is defined as an in depth study and realization of con-
cerns in isolation for the sake of their own consistency [6]. The concerns identified
during this process are usually described in concern models. The reader is referred
to appendix A for an overview of concern modeling approaches.

Separation of concerns is a long-established principle in software engineering and
is described in many publications [20][25][44]. The general principle of separation
of concerns is to decompose a system into separate concerns as a mechanisms for

Analyzing Aspects in Production Plans for Software Product Lines 14

2.3 Aspect-Oriented Software Development

improving flexibility and comprehensibility and thus making software systems easier
to write, understand, reuse, and modify.

At the conceptual level, the separation of concerns needs to address two issues:

1. Provide a clear definition and conceptual identification of each concern that
distinguishes it from the others.

2. Ensure that the individual concepts are primitive in the sense that they are
not compositions of several concepts.

At the implementation level, the separation of concerns needs to provide an adequate
organization that isolates the concerns. The goal at this level is to separate the
blocks of code which address the different concerns, and provide for a loose coupling
of them.

Applying separation of concerns at both the conceptual and the implementation
level has a number of benefits [25]:

� Separating concerns results in a higher level of abstraction since one can reason
about individual concerns in isolation.

� Separated concerns are easier to understand since their code is not cluttered
with the code for other concerns.

� A separation of concerns results in a weak coupling of the concerns and so
satisfies the demand for increased flexibility and reusability of single concerns.

Separation of concerns has received widespread attention in modern programming
languages, with constructs such as modules, packages, classes, and interfaces, which
support properties such as abstraction, encapsulation, and information hiding [51].
Also software architecture and design use separation of concerns, with techniques
such as composition filters [1] and design patterns [21].

2.3.3 Crosscutting Concerns

Related to the principle of separation of concerns is the problem of crosscutting
concerns. Crosscutting is usually described in terms of scattering and tangling, e.g.
crosscutting is the scattering and tangling of concerns arising due to poor support
for their modularization.

However, the distinction between these three concepts is vague, sometimes leading
to ambigious statements and confusion. Van den Berg & Conejero describe a con-
ceptual framework with precise definitions of scattering, tangling and crosscutting
[7]. Their proposition is a crosscutting pattern where the three concepts are de-
fined in terms of a source with respect to a target, and elements in the source are
related to elements in the target. The terms crosscutting, tangling and scattering
are defined as special cases of these mappings.

Based on this pattern, scattering can be defined as when, in a mapping between
source and target, a source element is related to multiple target elements [7], and
tangling as when, in a mapping between source and target, a target element is related
to multiple source elements [7]. This means that two source elements are tangled if
these elements are mapped onto the same target element.

Crosscutting is a specific combination of scattering and tangling when, in a mapping
between source and target, a source element is scattered over target elements and

Analyzing Aspects in Production Plans for Software Product Lines 15

2.3 Aspect-Oriented Software Development

Figure 2.7: Example dependency and crosscutting matrix [7]

where in at least one of these target elements, some other source elements are tangled
[7]. This means that a source element s1 crosscuts source element s2 if s1 is scattered
over target elements, and in at least one of these target elements, s1 is tangled with
source element s2. Following from these definitions, tangling and scattering are
necessary but not sufficient conditions for crosscutting.

To facilitate identification of crosscutting during the development cycle Van den
Berg & Conejero propose a representation of crosscutting in matrices: a dependency
matrix, a crosscutting matrix, and optionally a scattering and a tangling matrix.
A dependence matrix (source x target) represents the dependency relation between
source elements and target elements (inter-level relationship). A cell with 1 denotes
that the source element is mapped to to the target element. Scattering and tangling
can be easily visualised in this matrix: see figure 2.7 for an example. A matrix cell
involved in both tangling and scattering is called a crosscutpoint. If there are one
or more crosscutpoints then crosscutting occurs.

A crosscutting matrix (source x source) represents the crosscutting relation between
source elements, for a given source to target mapping (represented in a dependency
matrix). This is also visualised in figure 2.7. A crosscutting relation isn’t necessarily
symmetric: it is possible that source element s1 crosscuts source element s2, while
not vice versa because s2 is not scattered.

Based on a dependency matrix one can define some auxiliary matrices: the scatter-
ing matrix (source x target) with just scattering, and the tangling matrix (target x
source) which just tangling. Then the crosscutting product matrix (source x source)
can be obtained by the matrix multiplication of the scattering matrix and the tan-
gling matrix. The crosscutting product matrix represents the frequency of crosscut-
ting relations between source elements, for a given source to target mapping. These
extra matrices can be calculated automatically by using the dependency matrix [7].

From the attained crosscutting model, it is in some cases possible to avoid tangling,
scattering and crosscutting by choosing another decomposition of source and target.
The possibilities are determined by the expressive power of the languages in which
the source and target are expressed. In case where limitations in the expressive
power of the languages are the cause of tangling, scattering and/or crosscutting
Van den Berg & Conejero use the terms intrinsic tangling, intrinsic scattering, and

Analyzing Aspects in Production Plans for Software Product Lines 16

2.4 Summary

intrinsic crosscutting [7].

The extension of a language with new constructs and new composition operators –
such as aspects or composition filters – may change the (de)composition of source
and target.

2.4 Summary

In this chapter we gave a short introduction into important concepts of software
product line engineering and aspect-oriented software development.

We have defined what a software product line is, what the goals of product line
engineering are, and how commonality and variability analysis is an essential part
of product line engineering. We have also discussed the main product line activities
of core asset development and product development and how these two activities
are related.

The two life-cycle model has been introduced with the key product line processes
of domain engineering and application engineering and the different steps in these
processes.

Separation of concerns was discussed as an important principle in software engineer-
ing. Related to separation of concerns is the notion of crosscutting concerns. How
crosscutting occurs in terms of scattering and tangling has been explored. AOSD
was introduced as a set of emerging technologies to cope with these crosscutting
concerns and support their modularization.

Analyzing Aspects in Production Plans for Software Product Lines 17

Chapter 3

Case Study: Arcade Game
Maker Product Line

3.1 Introduction

Much literature is available on software product line engineering and the related
research areas, as we have summarized in the background chapter. However, most
studies discuss software product lines in an abstract way, while the application of
the product line engineering approach is at least as interesting. This is why we
present a case study of a concrete product line here to give the reader more feeling
for the product line approach and the activities and assets involved.

The case study is based on the Arcade Game Maker Product Line which is a ped-
agogical product line introduced by John D. McGregor of Clemson University and
the Software Engineering Institute (SEI) [35]. The case is used as a running ex-
ample in this report to illustrate abstract issues with concrete examples from the
case.

We first give an overview of the context and the assets in this example product line.
Then we discuss the assets for the different software life-cycle phases in more detail.
After this we focus on the production plans in the case.

3.2 Case Overview

The Arcade Game Maker (AGM) product line is a case of the fictitious company
AGM that develops arcade games for desktop pc’s and wireless devices (mobile
phone, PDA, etc.). The company strategy is to initially develop three arcade games,
named Brickles, Pong and Bowling and to offer these products in three stages:

� Stage 1: Distribute the products as freeware games for the desktop to market
the company brand.

� Stage 2: Sell the games for wireless devices (mobile phone, PDA, etc.).

� Stage 3: Sell the games as convention giveaways and incorporate a company’s
message in the games.

19

3.2 Case Overview

The goal of the Brickles game is to break all the bricks in the playing field (see figure
3.1). The player has three pucks to use to break all of the bricks in the brickpile.
Every time a puck hits the floor it is removed from play. If the player manages to
break all the bricks, the player wins. If the player runs out of pucks while playing,
the player loses. The player can also control the speed of the puck by moving a
slider to the left (slower) or right (faster).

Figure 3.1: The Brickles Playing Field [35]

The Pong game is well-known to most readers: its concept is a simplified kind of
tennis (see figure 3.2). The AGM version of the game is single player, where the
objective is to keep the puck in play as long as possible. The player keeps the puck
in play by moving the mouse which controls the paddles on either end of the playing
field. The puck is absorbed by the left and right border of the playing field. The
player controls both paddles but only one at a time. As the mouse moves across
the center line, the paddle on the same side of the center line begins responding to
mouse movement.

Analyzing Aspects in Production Plans for Software Product Lines 20

3.2 Case Overview

Figure 3.2: The Pong Playing Field [35]

The Bowling game rules are conform the real-life bowling rules, specifically:

1. The player attempts to knock down as many pins as possible in the given
number of tries (frames).

2. Knocking down all the pins on the first try in a frame is termed a strike.

3. Knocking down all the pins on the two tries in a frame is termed a spare.

4. The score for a frame is the total number of pins knocked down by the two
throws.

5. The score for a frame in which a spare is made is 10 plus the number of pins
knocked down by the first ball of the next frame.

6. The score for a frame in which a strike is made is 10 plus the number of pins
knocked down by the next two balls.

7. In the 10th frame, if a strike or spare is achieved, a third ball is thrown and
the number of pins is added to the score for that frame.

The Bowling interface is depicted in figure 3.3.

Analyzing Aspects in Production Plans for Software Product Lines 21

3.3 Product Line Assets Overview

Figure 3.3: The Bowling Playing Field [35]

Depending on the success of these games AGM will extend the product portfolio
later on.

AGM has just recently started to use the product line approach to software devel-
opment as a way to achieve the strategic objectives:

� Market Position: AGM wants to be the market leader. The market is
sensitive to how rapidly new technologies are introduced into products and
the scope of the feature set. Therefore, AGM has decided to become an ’early
adopter’ of software product lines.

� Time to Market: With the product line approach AGM will be able to
produce products at an increasingly rapid rate. Many game ideas have a very
short life span, so AGM must be quick to develop and deploy a game.

� Productivity: To remain competitive, AGM must reduce the cost of building
the games. Software makes up roughly 90 percent of the content of current
products, so the productivity increase of the product line approach can be
substantial.

� Mass Customization: AGM sees an opportunity in the area of convention
giveaway products. They would like to be able to add a company’s logo
and other advertising marks to a game and sell it to that company as a
marketing handout at conventions. The product line approach can support
such variability.

3.3 Product Line Assets Overview

The AGM product line contains a number of assets. Each asset is now discussed
briefly in the context of the case.

Analyzing Aspects in Production Plans for Software Product Lines 22

3.3 Product Line Assets Overview

3.3.1 Business Case

The purpose of a business case is to analyze options for achieving the company’s
product production goals and to justify whatever approach is selected for achieving
those objectives.

For the product line approach different strategies can be applied, categorized as
totally proactive (the assets are built before the products), totally reactive (the assets
are built as the products are built), or incremental (the product line is divided into
sets of products and the assets of a set are built before any products are).

AGM chose the incremental approach, because of the staged release of the game
products.

3.3.2 Scope

The scope document defines the boundaries of the product line and the design
and implementation decisions that have been made to address the full scope of the
product line but with no concern for any characteristics outside the product line.

The AGM product line scope roughly is arcade games where each game is a one-
player game in which the player controls, to some degree, the moving objects and
the objective is to score points by hitting stationary obstacles. The games range
from low obstacle count to high.

3.3.3 Concept of Operations

The Concept of Operations (CONOPS) document is used to capture how the orga-
nization will make decisions and how they will manage the production of products
in the product line.

AGM divided the product line organization into one permanent core asset team,
responsible for domain engineering, and a varying number of temporary product
teams, responsible for application engineering. As technical considerations, AGM
has decided to use the Unified Modeling Language (UML 2.0) for the architecture
and other design assets, Java for the code assets, and the Rational Unified Process
(RUP) as the development process.

3.3.4 Requirements

The purpose of the requirements is to provide the specifications for the products
that will be built as part of the product line.

In the AGM product line, the requirements consist of a use case model, a do-
main model, a commonality and variability analysis, a feature model, and (non-
functional) quality attributes.

3.3.5 Architecture

The architecture should attain the qualities prescribed by the requirements. For
AGM this means games that operate sufficiently fast to be pleasing and realistic so
that the action of the game appears realistic to the player.

The architecture provides detailed models of the architectural structures for the
game products. Typically, the architecture is represented as multiple views which

Analyzing Aspects in Production Plans for Software Product Lines 23

3.3 Product Line Assets Overview

combined form the complete architecture. AGM uses the System Deployment View
and Module Decomposition View. As architectural pattern a variant of the Model-
View-Controller (MVC) pattern is used.

The resulting architecture has been evaluated using the Architecture Tradeoff Anal-
ysis Method (ATAM).

Further discussion of the architecture can be found in section 3.4.3.

3.3.6 Production Plans

A production plan describes the production strategy and provides the means of
coordinating the processes attached to each of the core assets. The plan provides
an overview of the core assets that are available for product building and how
products are built from these assets.

The AGM product line has a generic production plan, and a product-specific pro-
duction plan for each game, which is attained from the generic production plan by
following the attached process.

AGM’s production strategy is domain-based design and manual construction and
specialization of core assets to form a product. As stated earlier, the core assets are
built incrementally. In the early increments more emphasis is laid on identification
of candidates for core assets for the later increments.

The production plan also provides management information about scheduling of the
product production, the production resources needed (personnel and tools), the Bill
of Materials (BOM) which specifies the cost per component needed for the product
production, product-specific details such as the rules of the game to produce, and
software metrics, i.e. ”Unique Lines of Code”.

See section 3.5 for an in-depth discussion of the production plans.

3.3.7 Test Plans

The AGM product line has a system test plan to describe how the product teams
should test a new product and a unit test plan which specifies how core components
are tested using automated unit tests. These unit tests include generation of dif-
ferent input values following from the tested component and checking whether the
output of the component is conform specification.

The test plan is specialized for each specific game product to only incorporate the
components which are used for the product. The results of the tests are documented
in a test report, which is input to the asset/product developers for solving bugs.

3.3.8 User Manual

For each game a user manual is provided in the AGM product line. The manual
has a fixed layout and is specialized for the product by documenting the specific
rules of the game and the expected output of the game.

Also a general installation guide is provided in the manual.

Analyzing Aspects in Production Plans for Software Product Lines 24

3.3 Product Line Assets Overview

3.3.9 Code Assets

Last but not least, the AGM product line includes the code assets for the three
products: Brickles, Pong, and Bowling. The games have actually been implemented
and can be downloaded from [35].

See section 3.4.5 for an in-depth discussion of the code assets.

Analyzing Aspects in Production Plans for Software Product Lines 25

3.4 Software Life-Cycle Phases

3.4 Software Life-Cycle Phases

This section describes each life-cycle phase from the earlier discussed two life-cycle
model relevant to the case and how each phase is filled in by the AGM product line.
See also section 2.2.4 for the background information.

3.4.1 Domain Analysis

We now focus on the products of this phase in the AGM case: a use case model, a
domain model, a commonality and variability analysis, a feature model, and (non-
functional) quality attributes.

Use Case Model

The requirements document in the case enumerates 13 use cases divided into general
and product-specific cases [35]:

� AGM001: Play the Game

� AGM002: Exit the Game

� AGM003: Change Case: Save the Game

� AGM004: Change Case: Save Score

� AGM005: Change Case: Check Previous Best Score

� AGM006: Play Brickles

� AGM007: Play Pong

� AGM008: Play Bowling

� AGM009: Initialization

� AGM010: Animation Loop

� AGM011: Install Game

� AGM012: Uninstall Game

� AGM013: Set the Speed of Play

Cases 3, 4, and 5 are so-called change cases which describe functionality that has
not been implemented yet, but needs to be taken into account. Cases 6 till 8 are
clearly product-specific use cases.

The use cases have been worked out in the case. An example use case is included
in appendix E.

Analyzing Aspects in Production Plans for Software Product Lines 26

3.4 Software Life-Cycle Phases

Feature Model

The case contains a FODA-style feature diagram. The diagram is split up in three
parts as can be seen in figures 3.4, 3.5, and 3.6. The hierarchy of features beneath
the action and services feature is shown in the second and third diagram respectively.

Figure 3.4: AGM Feature Model, part I [35]

Figure 3.5: AGM Feature Model, part II [35]

Figure 3.6: AGM Feature Model, part III [35]

3.4.2 Requirements Analysis

The customer requirements are limited in the AGM case to which of the three
available products the customer wants to buy/use. The production plan however
does foresee in the addition of products to the product line. When a product is
added to the product line later on the commonalities and variations with the three
existing products need to be analyzed for the identification of existing features that
must change for the new game.

For more information on this process the reader is referred to section 3.5.

Analyzing Aspects in Production Plans for Software Product Lines 27

3.4 Software Life-Cycle Phases

3.4.3 Architecture Design

The AGM case contains multiple architectures: a common architecture for the
product line and product-specific architectures with the distinct architectural com-
ponents for each game. This section explores these architectures and their relations.

Architectural Considerations

AGM has examined a number of factors for the architectures which have also been
documented for the product line [35]. The underlying development paradigm is
object-oriented and therefore the architecture has both horizontal and vertical di-
mensions. The vertical dimension corresponds to the specialization relation; the
AGM architectures have several inheritance hierarchies as we will see later on. The
horizontal dimension corresponds to the association relation which is used for the
main structure of each product. Messages follow the association relations and,
optionally, exceptions flow back over those links.

In the case a modified version of the Model-View-Controller architecture is used
which allows for separation of the state of the system from the logic that presents
some of that state to the user. The controller provides input to the system. The
input is routed either to the view or the model as appropriate. For example, in the
desktop versions of the AGM games, the keyboard and mouse serve as controllers.

The views present information to the system user in a variety of forms [35]:

In Brickles, the graphical interface of the game has several fixed items
on the screen and two movable ones, the puck and the paddle. The
mouse controller allows the user to move the paddle while the system
determines the movement of the puck. The view has the responsibility
to ask the Model for the data it needs to build its presentation. Each
view maintains a copy of the game state that is needed for its particular
requirements and it contains the graphical data to place the game data
on the screen.

A downside of the MVC architecture is that much messaging occurs at every update
and that the state is replicated among all views and the model. This can be con-
flicting with the AGM strategy to be able to run the games on minimal hardware
with good performance. Additionally, the need to be able to add extra views to an
existing game has a low priority. For these reasons AGM has adopted a variant of
the MVC architecture in which the state of the game and the state of the views
are blended in various components. The knowledge of the graphics elements is dis-
tributed across the system’s entities. Each object knows how to participate in the
game and how to draw itself on the screen. The container for all the game elements
maintains overall control and sequences the updating of the screen.

Another consideration for the game performance is the distinction between moving
and non-moving game items, which can greatly reduce the number of items that
need to be checked and updated every time step. The AGM team has decided to
use a combination of generalization/specialization and parameterization approaches
in the game design. As the reader will see shortly, the graphical game items – and
their classification as stationary or movable – are defined by specializing existing
abstract definitions. Parameterization is used for the instantiation of the container
of game components to, among others, pass an event handler.

Analyzing Aspects in Production Plans for Software Product Lines 28

3.4 Software Life-Cycle Phases

Common Architecture

The common architecture is product-line-wide and is generic enough to model the
basic structure of the game products. In the AGM case, the architecture is discussed
from different angles with several views [35] as is common in architecture design.
We focus on the chosen module decomposition and the generalization/specialization
relations.

Figure 3.7 shows the architectural components for the common architecture.

Figure 3.7: AGM Common Architecture

A game product consists of a GameBoard which is the earlier-mentioned container of
all the other components. Each game in the AGM Product Line consists of so-called
sprites which are the graphical building blocks of the game. Examples of sprites are
the puck in each game and the paddle in the Brickles and the Pong game. Sprites
come in two types: stationary and movable. A brick in the Brickles game is an
example of a stationary sprite, the earlier mentioned puck is a movable sprite.

Each game contains a Scoreboard, for administration of the highscores for the
players, and a SpeedControl for setting the frequency of ticks in the game. Fur-
thermore, each game needs to handle input from the player, such as mouse and
keyboard actions, by means of the EventHandlerDefinitions.

3.4.4 System Design

Brickles Architecture

As stated earlier, each product line product has its specific architecture based on
the common architecture. We start off with the product-specific architecture for
the Brickles game. The role of of the production plan in the translation from the
common architecture to the product-specific architecture is discussed in section 3.5.

Figure 3.8 shows the product-specific architecture for Brickles. The dark colored
items are the architectural components from the common architecture, the lighter
colored items are the specialized components for the Brickles game.

The diagram clearly shows that the main variations for a concrete game are in the
sprites area: for Brickles, the different graphical elements are either a specialization

Analyzing Aspects in Production Plans for Software Product Lines 29

3.4 Software Life-Cycle Phases

of the StationarySprite component or of the MovableSprite component. The
only other variation is the event handling specific to the Brickles game represented
by the BricklesEventDefinitions component.

The ScoreBoard is not specialized for Brickles (and Pong); the score is maintained
as a string within the ScoreBoard component and consequently allows different
games to have different formats for their scores and even to have a different number
of scores. For example, Brickles has a single score, Pong has two scores simultane-
ously, while Bowling must display scores for all 10 frames. Each game is responsible
for converting their score to a string. For Brickles, this is handled by the Puck com-
ponent. Whenever a puck collides with a brick and as a result the brick is deleted
from the gameboard, the Puck raises the score and sends a message with the up-
dated score string to the ScoreBoard component which then repaints itself. The
more complex scoring rules in Bowling should also be reflected in the scoreboard.
As we will see shortly the Bowling game specializes the ScoreBoard component for
this purpose.

The SpeedControl component is general enough to be used in all games, because it
only controls the frequency with which it sends ticks to the GameBoard component
for an update of the game display.

Analyzing Aspects in Production Plans for Software Product Lines 30

3.4 Software Life-Cycle Phases

Figure 3.8: Brickles Architecture

Analyzing Aspects in Production Plans for Software Product Lines 31

3.4 Software Life-Cycle Phases

Pong Architecture

As can be seen in figure 3.9 the Pong architecture is very similar to the Brickles
architecture with that difference that the brick and brickpile sprites have disap-
peared and the DividingLine, LeftPaddle, and RightPaddle components have
been added.

Moreover, the PongEventDefinitions component specializes the event handling
for the Pong game.

The different game sprites are further discussed in section 3.4.5.

Bowling Architecture

The architecture for the Bowling game is depicted in figure 3.10. The sprites spe-
cific to the game are again displayed in the diagram and the event handling is
the responsibility of the BowlingEventDefinitions component. There are two in-
teresting points in the Bowling architecture, namely the fact that the bowlingball
sprite is a specialization of the puck from the other games, and the specialization
of the ScoreBoard component for the more complex Bowling rules, as discussed
earlier.

The BowlingBall component looks similar to the puck in the other games, but has
a more complex movement algorithm and therefore is a specialization of the Puck
component from Brickles and Pong.

Analyzing Aspects in Production Plans for Software Product Lines 32

3.4 Software Life-Cycle Phases

Figure 3.9: Pong Architecture

Analyzing Aspects in Production Plans for Software Product Lines 33

3.4 Software Life-Cycle Phases

Figure 3.10: Bowling Architecture

Analyzing Aspects in Production Plans for Software Product Lines 34

3.4 Software Life-Cycle Phases

3.4.5 Component/Generator Development

After the discussion of the architectures for the AGM case, we now proceed with
the code assets for the three games that are divided into a number of packages of
which the relations can be seen in figure 3.11.

Figure 3.11: Overview of Code Packages [35]

The class diagram for each of these packages has been worked out in the appendix;
see chapter B. As one can see, the architectural components are mapped to classes
in the implementation.

The main packages are GameDefinitions and GameBoard which respectively pro-
vide functionality for the main game building blocks (like Sprite) and the envi-
ronment in which the games operate (the Board). The rules are defined per game
by extending the GameDefinitions and GameBoard package with for example the
BricklesDefinitions package which provides functionality specific to the Brickles
game. Each game further has a main class which couples the components to form
the end-program, for example the BricklesGame class in the Brickles package.

GameDefinitions package

We now discuss the GameDefinitions package in detail. For an overview of this
package the reader is referred to the class diagram in section B.1 in the appendix.

As described earlier in the architectures, each game in the AGM Product Line
consists of sprites of two types: stationary and movable. Stationary as well as
movable sprites can be composed to form collections of sprites, for example the

Analyzing Aspects in Production Plans for Software Product Lines 35

3.4 Software Life-Cycle Phases

brickpile in the Brickles game. Moving sprites involves direction and speed and the
combination of the two is termed velocity in the AGM case.

The purpose of the ContainerEmptyException class is not clear at the time of
writing. The class is however mentioned shortly in the code documentation and it
therefore appears in the class diagram. Its purpose might be to throw an exception
when a composition of sprites is empty, for example when all the bricks in a brickpile
have been broken.

GameBoard package

An overview of the GameBoard package is depicted in figure B.2 in the appendix.

The Board manages the stationary and movable sprites in the playing field, moves
the game pieces (for example, the puck) per tick in the game, and detects collisions
of game pieces (for example, the puck with a brick). When a collision is detected a
CollisionException is thrown to provide the necessary behavior.

The package also provides the ScoreBoard and the EventHandlerDefinitions
which is implemented in the different games.

3.4.6 System Development

BricklesDefinitions package

This package provides the functionality for the Brickles game by specifying the
sprites in the game, namely Brick, BrickPile, Puck, PuckSupply, and Paddle.
The brickpile and pucksupply are compositions of respectively brick and puck
sprites. The boundaries of the playing field are defined in terms of Wall, specif-
ically LeftWall and RightWall, Ceiling, and Floor (see also figure B.3 in the
appendix).

The event handling for the Brickles game is done by the BricklesEventDefinitions
class, which implements the EventHandlerDefinitions interface from the GameBoard
package.

Three types of exceptions are defined, namely OutOfBricksException when the
player has broken all bricks in the playing field (and therefore wins the game),
OutOfPucksException when the player has no more pucks left (and therefore loses
the game), and PuckDeletedException when a puck is absorbed by a boundary of
the playing field, that is if this behavior is activated for the specific boundary (wall,
floor or ceiling).

Brickles package

As stated earlier, each game has a main class which ties together all the differ-
ent components needed to form the actual game. For Brickles this class is the
BricklesGame class. When starting Brickles all necessary classes are initialized
and stored internally in private attributes. The BricklesGame class further pro-
vides methods for the different interface parts and event handling.

Analyzing Aspects in Production Plans for Software Product Lines 36

3.5 Production Plans In-Depth

PongDefinitions package

The PongDefinitions package is very straightforward. For the Pong game the
BricklesDefinitions are reused and only a specialization of the Brickles paddle
is defined with the PongPaddle class.

The event handling implementation for Pong is provided by the PongEventHandlerDefinitions
class.

Pong package

The main class for the Pong game is Pong as can be seen in figure B.6. In the
same way as the earlier mentioned BricklesGame class it combines the components
needed for the game.

This package also includes classes DividingLine and Paddle for the according game
concepts. However, one would expect these in the PongDefinitions package.

BowlingDefinitions package

In the same way as the BricklesDefinitions package, this package provides the
functionality for the Bowling game by specifying the sprites in the game, namely
BowlingBall (that is the puck), Edge, EndOfAlley, Gutter, Lane, BowlingPin,
and RackOfPins which is a collection of BowlingPin sprites.

The event handling for the Bowling game is done by the BowlingEventHandlerDefinitions
class, which implements the EventHandlerDefinitions interface from the GameBoard
package.

Two types of exceptions are defined, namely an EndOfAlleyException when the
bowling ball reaches the end of the alley and possibly pins are knocked down, and
an EndOfGameException when the 10 frames have been played and the game ends.

For the Bowling game the default score board from the GameBoard package is ex-
tended by the more complex BowlingScoreBoard which implements the scoring
rules as discussed earlier.

Bowling package

This package provides the main class Bowling for the game. The different com-
ponents are again initialized and stored in private attributes. To implement the
bowling rules also some state information is stored in the class, with for example
the workingOnSpare attribute.

3.5 Production Plans In-Depth

After the treatment of the code assets we now discuss the information the production
plans in the AGM Product Line offer to facilitate the product developers in the
process of building end-products through the composition of code assets.

As discussed earlier, the AGM case consists of four production plans: (1) a generic
production plan that describes the available core assets, the production process, and
how the production plan can be tailored to the product-specific production plan,
and (2) this product-specific production plan for each of the three games currently
in the product line.

Analyzing Aspects in Production Plans for Software Product Lines 37

3.5 Production Plans In-Depth

The following sections treat the contents of production plans and how these are filled
in by this case. To get an impression of a concrete production plan, the relevant
pages of the generic production plan are included in appendix C.

3.5.1 Product Line Scope

When the product developers want to build a product it is important to know if the
product fits in the product line and it therefore is possible to build the game from
the available assets. Implicit to the product line approach is that only a limited
number of variations are possible, so there is a limit to the range of products that
can be produced.

The AGM production plan states that the product line is intended for a series of
arcade games ranging from low obstacle count to high with a range of interaction
effects, with similar content as the current games (Brickles, Pong, and Bowling),
and availability for different platforms (i.e. PC and handheld devices). These limits
are still rather vague and it is therefore left to the product developers in dialogue
with the core asset developers to assess if a product is allowed in the product line.

The production plan does specify two possible variations for the different games:

� Variation in behavior when a movable sprite collides with a stationary sprite.
The movable sprite is then absorbed by the stationary sprite and deleted from
the game (for example, in Brickles when the puck collides with the floor), or
it is reflected by the stationary sprite according to the law of physics.

� Variation in event handling for each game by the means of implementing
the keyboard and/or mouse events specific to the game.

Furthermore, the product line products should have certain qualities [35]:

The products must be enjoyable to play in order to be a success.
This requires both a colorful display and realistic action.

� Any new game elements should add to the quality of the display.
It should be colorful and representative of the item it represents.

� The action of the game must proceed sufficiently fast to demand
the player’s attention. When constructing a game, if the number
of elements slows the game, alternatives must be investigated.

� The action of the game must look like what the player expects. The
motion and reactions of movable elements must be realistic. As
elements are added to the game, their actions and their boundaries
must be correctly set through parameters so that collisions appear
real.

3.5.2 Assets for Product Production

To produce a product, the product developer should have an overview of the avail-
able core assets in the product line. These assets are divided into analysis, design,
and implementation assets. The AGM production plan enumerates the domain
analysis model, the feature model, and the use case model as analysis-level assets.
For more information on these assets the product developer is referred to the re-
quirements document, which is also available in the AGM product line. On the

Analyzing Aspects in Production Plans for Software Product Lines 38

3.5 Production Plans In-Depth

design-level, the case contains a description of the software architecture which has
already been discussed earlier.

On the implementation-level the production plan mentions the code assets (i.e. the
C# components which provide the implementation of the architecture components,
and the test cases which are divided into unit tests (in the DotUnit testing frame-
work) for individual classes, integration tests for the combination of classes which
form a component, and system tests where a set of use cases is tested for the game
as a whole. The test cases are documented in a test plan per product.

3.5.3 Production Process

A production plan should also describe the production process to come to the end-
products. In the AGM product line the production process for a new product
consists of five steps:

1. Product definition and identification: AGM has identified three prod-
ucts, which are single games (i.e. Brickles, Pong, and Bowling), to be imple-
mented. For each product the rules of the game are defined.

2. Incremental analysis: when a product is added to the product line later on
the commonalities and variations with the three existing products need to be
analyzed for the identification of existing features that must change for the
new game.

3. Product design: because of the high skill level of the product developers
the design of a new game is described rather limited as [35]:

(a) Plan how to provide those features from existing components.

(b) Plan how to provide the remaining features from new assets.

(c) Design the new implementation of the EventHandlerDefinitions interface.

As explored earlier in the common and product-specific architectures, the
architecture for the new product is based on the common architecture with
specializations of the stationary and movable sprites specific to the game, and
the above mentioned implementation of the event handling in the game.

4. Code building: when writing code for the new game the following steps
should be taken into account [35]:

(a) Start new ClassLibrary in a Visual Studio Project using {game name}
Definitions as its name Use this for new classes other than the game
definition itself.

(b) Start new Windows Application in a Visual Studio Project using the
name of the game.

(c) Copy the Form1.cs file from a previous product line project.

(d) Change the namespace name to the new game.

(e) Configure the new gameboard.

(f) Copy data.txt from a previous games working directory. This is the
resource file for the game.

(g) Edit data.txt to reflect the new game.

(h) Compile the resource file.

Analyzing Aspects in Production Plans for Software Product Lines 39

3.5 Production Plans In-Depth

(i) Copy the compiled resource file to the Debug directory.

5. Product testing: each core asset is tested as it is created or revised using a
DotUnit test class per code asset. The initial generic game test set is revised
for each new game. In addition a game specific test set is created. The system
tests are maintained as text documents and are applied by hand.

3.5.4 Management of the Production Process

As discussed earlier, the production plan provides management information about
scheduling of the product production, the production resources needed (personnel
and tools), the Bill of Materials (BOM) which specifies the cost per component
needed for the product production, product-specific details such as the rules of the
game to produce, and software metrics, i.e. ”Unique Lines of Code”.

As can be seen on page 12 of the production plan in appendix C the schedule
specifies the tasks for product production per process step, who is responsible for a
task, and what is the time estimate on the realization of the task.

The AGM production plan states that the primary resources – next to personnel –
needed for product production are the Visual Studio .Net environment and an UML
modeling tool. The generic BOM consists of four components: the product-specific
Game component, the generic GameBoard, the required Sprites for the game, and
implementation of the EventHandlerDefinitions interface. These components are
all developed in-house. The rules of the game, which are the most unique parts of
the product, are distributed across the Sprites, the EventHandlerDefinitions, and
the Game component.

The production plan defines two metrics for the product production process: the
number of new lines of code and the number of unique lines of code. The first
metric describes the number of lines of new code that has to be written for the new
product. The second metric describes the percentage of the product that is code
not used in any other product.

3.5.5 Product-Specific Production Plans

The information in the production plan is, in general, very generic and applies to
all products built using the current asset base. Some sections of the plan need to be
modified for a specific product, specifically the schedule and the bill of materials. In
the AGM case, following from the initial manual product production approach, the
schedule defines which personnel are needed and when. A copy of the management
information provided in the Brickles production plan is included in appendix D.

The case only provides a product-specific production plan for the Brickles game. In
this plan the schedule has been taken directly from the generic production plan with
no alteration, because the schedule is generic enough to be applied to all products
currently in the product line. The bill of materials has been worked out for the
Brickles game as can be seen on page 13 of appendix D. It shows which code assets
are needed for the realization of the game, what the source is of the code assets (in
this case all in-house), and the cost of per code asset in terms of lines of new code.

Testing of the code assets specific to the Brickles game is described in the Brickles
test plan which is also available in the case [35].

Analyzing Aspects in Production Plans for Software Product Lines 40

3.6 Summary

3.6 Summary

The Arcade Game Maker case illustrates what a concrete product line looks like and
how product line engineering aims at reusing different types of software artefacts as
assets.

We have investigated the phases in a product line process and how these phases are
related. Each phase has been made concrete for the AGM product line.

We finished the case study with a discussion of the different elements of a typical
production plan and how products are produced through this plan. Again, the
different elements have been illustrated with the production plans from the case
and their contents.

Analyzing Aspects in Production Plans for Software Product Lines 41

Chapter 4

Impact of Crosscutting
Concerns

4.1 Introduction

Now that we have an overview of a concrete product line we investigate the im-
pact of crosscutting concerns in this chapter. Before we are going to work with a
concrete crosscutting concern we first discuss the main concepts of aspect-oriented
programming in the background section.

We then introduce the crosscutting concern Replay Actions to the case and analyze
its functionality, how we could implement it in the ’traditional’ object-oriented
manner, and which concrete problems occur. Then we abstract from these issues
and identify problems with crosscutting concerns for the product line context on
both the component level and production plan level.

We finish this chapter with an aspect-oriented implementation of the Replay Actions
feature. In the next chapter we explore modularization of crosscutting concerns on
both the component level and production plan level.

4.2 Background

Aspect-oriented programming (AOP) modularizes crosscutting concerns on the code
level with the concept of an aspect , that is a unit for modularizing an otherwise
crosscutting concern [6]. After modularizing the (crosscutting) concerns using AOP
the languages should also support a mechanism to compose the concerns. We define
composition as the integration of multiple modular artefacts into a coherent whole
[6]. Composition of aspects is sometimes referred to as weaving . Van den Berg et
al. have created a glossary of common AOSD concepts [6]. Appendix F contains a
list of important concepts and terms.

Aspect-oriented programming revolves around three important elements: a join
point model , a way of identifying join points, and a way of affecting implementation
at join points [30]. In this report we define a join point as a point of interest in
some artefact in the software lifecycle through which two or more concerns may be
composed [6]. The join point model in an AOP language defines the kinds of join
points available and how they are accessed and used.

43

4.2 Background

Identification of a join point is generally related to the concept of a pointcut ; this
is a predicate that matches join points. More precisely, a pointcut is a relationship
from ”join point” to boolean, where the domain of the relationship is all possible
join points.

4.2.1 AspectJ

AspectJ is the de-facto standard for aspect-oriented programming, which is an ex-
tension of the popular programming language Java. In AspectJ pointcut designa-
tors identify particular join points by filtering out a subset of all the join points
in the program flow. The following examples are adopted from [30]. The pointcut
designator:

call(void Point.setX(int)) ||

call(void Point.setY(int))

identifies any call to either the setX or setY methods defined by Point. Syntacti-
cally, this code consists of two call pointcut designators composed with ’or ’. The
syntax of call is based on that of Java method signatures. Programmers can de-
fine named pointcut designators, and pointcut designators can identify join points
from many different classes. The following code defines a pointcut named move that
designates any method call that moves figure elements:

pointcut move():

call(void FigureElement.moveBy(int, int)) ||

call(void Point.setX(int) ||

call(void Point.setY(int) ||

call(void Line.setP1(Point) ||

call(void Line.setP2(Point);

The previous pointcut designators are based on explicit enumeration of a set of
method signatures; this is called name-based crosscutting. AspectJ also allows
specification of methods rather than their exact name. This is called property-
based crosscutting. The simplest of these involve using wild cards in certain fields
of the method signature. Others use control flow or other properties to identify join
points. Consider:

call(void Figure.make*(..))

call(public * Display.*(..))

cflowbelow(move())

The first designates any call to methods defined on Figure, for which the name
begins with ’make’ and which take any number of parameters. The second identifies
any call to a public method defined on Display. The third uses the cflowbelow
primitive pointcut designator and idenitifies all join point that occur during the
execution of methods that move figure elements.

In AspectJ, advice declarations are used to define additional code that runs at join
points. Before advice runs at the moment a join point is reached, or in other words
just before the method begins running. After advice runs at the moment control
returns through the join point, or just after the method has run (and before control
is returned to the caller). Around advice runs when the join point is reached, and
has explicit control over whether the method itself is allowed to run at all. This fater
advice adds some code to any join point matched by the move pointcut designator.

Analyzing Aspects in Production Plans for Software Product Lines 44

4.2 Background

after(): move() {

<code to be added>

}

This concludes our short discussion of the AspectJ language concepts. When writ-
ten as an aspect the structure of a crosscutting concern is explicit and easy to
reason about. Aspects are also modular, making it possible to develop plug-and-
play implementations of crosscutting functionality. This is an interesting property
of aspects for use in software product line engineering as we will see later on in this
report.

4.2.2 CaesarJ

CaesarJ [2] is an aspect-oriented language with a strong support for reusability. It
combines the aspect-oriented constructs, pointcut and advice, with advanced object-
oriented modularization mechanisms. From an aspect-oriented point of view, this
combination of features is targeted at making large-scale aspects reusable – one can
say, it enables aspect components. From a component-oriented view, on the other
hand, CaesarJ is addressing the problem of integrating independent components into
an application without modifying the component to be integrated or the application.
Aspect-oriented component models are further discussed in section 5.2.1.

CaesarJ has been developed to solve several structural problems found in AspectJ.
These are discussed in [36]. The well-known observer design pattern is used here to
clarify the explanation. The AspectJ implementation of all ’Gang of Four ’ design
patterns can be found in [23].

CaesarJ expresses an aspect as a set of collaborating abstractions. The core of an
aspect in CaesarJ is its collaboration interface that defines the interaction between
the aspect implementation and the aspect binding to application specific classes
and functions. Furthermore, CaesarJ provides runtime aspect deployment on an
application.

For example, the collaboration interface for the observer protocol is:

public collaboration interface ObserverProtocol {

public interface Subject {

public provided void addObserver(Observer o);

public provided void removeObserver(Observer o);

public provided void changed();

public expected String getState();

}

public interface Observer {

public expected void notify(Subject s);

}

}

In the collaboration interface for the observer protocol two interfaces are defined.
These interfaces define the layout of the entire protocol which consists of subjects
and observers. The provided methods are part of the aspect implementation and
the expected methods are part of the aspect binding.

The aspect implementation of the observer protocol looks like this:

Analyzing Aspects in Production Plans for Software Product Lines 45

4.2 Background

public class ObserverProtocolImpl provides ObserverProtocol {

public class Subject {

private List observers = new LinkedList();

public void addObserver(Observer o) { observers.add(o); }

public void removeObserver(Observer o) { observers.remove(o); }

public void changed() { ... Notify all Observers ... }

}

public class Observer {}

}

As one can see, the provided methods from the collaboration interface are imple-
mented here.

The aspect binding gives the implementation that is application specific to the usage
of the aspect:

public class ColorObserver binds ObserverProtocol {

public class LineSubject binds Subject wraps Line {

public String getState() {

return "Line colored "+wrappee.getColor();

}

}

public class ScreenObserver binds Observer wraps Screen { ... }

after(Line l): (call(void Line.setColor(Color)) && target(l)) {

LineSubject(l).changed();

}

}

There is one subject LineSubject and one observer ScreenObserver. It is possible
to bind more subjects and observers to the observer protocol in a single binding.

Finally, aspects need to be deployed on the application in question. This is done as
follows:

public class CO extends

ObserverProtocol(ObserverProtocolImpl,ColorObserver) {}

public class Test {

private deployed static final CO co = new CO();

...

}

Here the aspect implementation ObserverProtocolImpl and aspect binding
ColorObserver are combined and deployed on the application.

Concluding this short discussion, CaesarJ’s main goal is to improve aspect reusabil-
ity by strictly separating the crosscutting feature that an aspect implements and
the binding of the aspect to a concrete application context. This solves the problem
of hard-coded references in an aspect to the context in which it is deployed.

4.2.3 Composition Filters

The composition filters model is an extension of the conventional object-oriented
model through the addition of object composition filters [1][8]. Filters are first class

Analyzing Aspects in Production Plans for Software Product Lines 46

4.2 Background

objects and thus are instances of filter classes. The purpose of filters is to manage
and affect message sends and receives. In particular, a filter specifies conditions for
message acceptance or rejection, and determines the appropriate resulting action.
Filters are programmable on a per class basis. The system makes sure that a
message is processed by the filters before the corresponding method is executed:
once a message is received, it has to pass through a set of input filters, and before
a message is sent, it has to pass through a set of output filters.

Separation of concerns is achieved by defining a filter class for each concern. Each
filter class is responsible for handling all aspects of its associated concern. The filter
mechanism gives programmers a chance to trap both message receives and sends,
and to perform certain actions before the code of the method is actually executed.
The resulting code is thus nicely separated into the special purpose concern (in the
filter) and basic concern (in the method).

In order to add crosscuttting concerns to one or more objects, the composition filters
model provides the superimposition mechanism. Superimposition is expressed by a
superimposition specification, which specifies how the concerns crosscut each other.

Compose* is an implementation of the composition filters model. Figure 4.1 shows
an example tracing concern which is superimposed on two classes on which the
feature needs to be applied.

1 concern Tracing {

2

3 filtermodule tracingModule {

4 externals

5 log : Log;

6 inputfilters

7 logIn : Meta = (isEnabled => [*.*] log.traceMessage);

8 outputfilters

9 logOut : Meta = (isEnabled => [*.*] log.traceMessage);

10 };

11

12 superimposition {

13 selectors

14 withTracing = { C | i sClassWithNameInList (C, [Pacman , Ghost]) };

15 filtermodules

16 withTracing <- tracingModule;

17 };

18

19 implementation begin in Java;

20

21 public class Log {

22

23 public void traceMessage (Message m) {

24 // tracing functionality here

25 // ..

26 // continue evaluating this message

27 m.fire();

28 }

29 }

30 end;

31

32 };

Figure 4.1: Example of superimposed concern in Compose*

This example shows a concern that specifies a filtermodule tracingModule that
filters every incoming and outgoing message, reifies it and passes it to an external

Analyzing Aspects in Production Plans for Software Product Lines 47

4.3 Analysis

of type Log, which will log the incoming or outgoing message (the logging part itself
is unspecified here).

The superimposition clause specifies on which instances of classes this filtermodule
is superimposed. In this case, the filtermodule tracingModule is superimposed on
all instances of classes Pacman and Ghost.

Summarizing, the composition filters approach is a different way to think about
join points, pointcuts, and deploying aspectual behavior on an application. The
underlying aspect-oriented concepts however are similar.

4.3 Analysis

4.3.1 Crosscutting Concern Replay Actions

As we have seen earlier, the AGM product line consists of three games: Brickles,
Pong and Bowling. Now let’s say we want to introduce the optional feature Replay
Actions for the games, that is the state of the game is saved regularly during the
game and the player can rollback the state of the game by a certain amount of
time to replay his actions from that point. Such a feature is strongly related to the
well-known crosscutting issue of Persistence.

The player can use the Replay Actions feature by clicking a button in the game
interface when he has made an insensible move and wants to correct his last actions.
We leave in the middle if this feature makes the games more fun or not.

The feature requires that the game state is saved regularly. The game state for the
games basically consists of:

� Current position of every relevant sprite in the game

� Current velocity of relevant movable sprites

� Current game score

� Current game speed

We will discuss the relevant data per game in a moment.

The game player can rollback the game a few actions at any moment, so we decide
to save the game state at every collision of the puck with the paddle, for Brickles
and Pong, or at the start of every new frame for the Bowling game.

When the player uses the replay feature the game state is emptied and the player
isn’t able to use the feature again directly; the replay button is therefore deactivated.
After a few actions we have collected new game states and the replay button is then
reactivated.

4.3.2 Implementing Replay Actions feature

The implementation of the Replay Actions feature consists of the following steps:

1. Collect the current game state when a collision of the puck with the paddle
occurs, or a new bowling frame begins.

Analyzing Aspects in Production Plans for Software Product Lines 48

4.3 Analysis

2. Write the current game state to a database; the database contains the last n
saved game states, where n is configurable for the feature when producing the
game-product.

3. Delete the oldest game state from the database table, if the database contains
n+1 game states; the collection of game states in the database is a sliding
window.

4. When the player presses the Replay button, the first game state in the database
is looked up and loaded into the game. The Replay button is then deactivated
and the database table is emptied.

5. After n saved game states have passed the Replay button is reactivated.

We now focus on collecting the game state per game. See also section 3.4.5 and
appendix B for more information on the class structure in the AGM case.

Brickles

For the Brickles game we want to save the following data to be able to restore the
game state:

� The visible property for each stationary sprite Brick in the BrickPile. If
the puck collides with a brick in the brickpile, the brick’s visible property is
set to false and hence the brick is ’deleted’ from the game board.

� The return value of the numleft method of the BrickPile object which is
the number of bricks left in the brickpile. If the numleft value reaches 0 an
OutofBricksException is thrown and the player wins the game.

� The properties MyLocation.X and MyLocation.Y for the position of the mov-
able sprites Puck and Paddle.

� The return values of MyVelocity.speedX() and MyVelocity.speedY() for
the speed of the puck and the paddle.

� The return value of MyVelocity.getDirection().getDirection() for the
direction of the puck and the paddle.

� The return value of ps.numberLeft() for the number of pucks left in the puck
supply. The number of pucks left is the score in the Brickles game.

� The return value of b.getSpeed() for the game speed.

Pong

The game state for the Pong game is collected as follows:

� The properties MyLocation.X and MyLocation.Y for the position of the mov-
able sprites Puck and Paddle.

� The return values of MyVelocity.speedX() and MyVelocity.speedY() for
the speed of the puck and MyVelocity.SpeedY() for the two paddles.

� The return value of MyVelocity.getDirection().getDirection() for the
direction of the active paddle.

Analyzing Aspects in Production Plans for Software Product Lines 49

4.3 Analysis

� The return value of ps.numberLeft() for the number of pucks left in the puck
supply.

� The property whoseTurn through which the game keeps track of which of the
two paddles is active.

� The properties scoreTrue and scoreFalse which hold the scores for the left
and right player respectively.

� The return value of b.getSpeed() for the game speed.

Bowling

For the Bowling game we want to save the following data to be able to restore the
game state:

� The visible property for each stationary sprite BowlingPin in the RackOfPins
stationary sprite. If the bowling ball collides with a bowling pin in the rack,
the pin’s visible property is set to false and hence the pin is ’deleted’ from the
game board.

� The return value of the numleft method of the RackOfPins object which
contains the number of pins left in the rack.

� The properties MyLocation.X and MyLocation.Y for the position of the mov-
able sprite BowlingBall.

� The return values of MyVelocity.speedX() and MyVelocity.speedY() for
the speed of the bowling ball.

� The return value of MyVelocity.getDirection().getDirection() for the
direction of the bowling ball.

� The score array which holds the score per frame.

� The frame property for the current frame number.

� The game speed cannot be controlled in the Bowling game and therefore
doesn’t need to be saved.

� The properties workingOnSpare and workingOnStrike for keeping track whether
a spare or strike was thrown in the previous frame. In the next frame the first
ball score or first and second ball score are then added to the previous frame
score in case of a spare or strike respectively.

A comparison of the game state elements among the three games is depicted in
table 4.1.

Game state element Brickles Pong Bowling

visible X X
numLeft() X X
ps.numberLeft() X
MyLocation.X & MyLocation.Y X X X
MyVelocity.speedX() & MyVelocity.speedY() X X X
MyVelocity.getDirection().getDirection() X X X

Analyzing Aspects in Production Plans for Software Product Lines 50

4.3 Analysis

b.getSpeed() X X
whoseTurn X
scoreTrue & scoreFalse X
score X
frame X
workingOnSpare & workingOnStrike X

Table 4.1: Similarities and differences in game state elements

As you can see, some game state elements are shared among games and some are
specific to a game.

If we now look when we are going to collect and save the game state this differs
per game. As discussed earlier the game state is saved when the puck collides with
the paddle, or when a new bowling frame starts. The methods that are called when
these events occur are:

For Brickles: Paddle.collideWith()
For Pong: Paddle.collideWith() or PongPaddle.collideWith()
For Bowling: Bowling.newFrame()

To incorporate the Replay Actions feature in the product line games we can add
the methods saveGameState() and loadGameState() to the main class of each
game, and call the saveGameState() method from within the above mentioned
methods. The loadGameState() method needs to be connected to a button in the
game interface and sets a number of properties and calls various set-methods to
restore the game state which is loaded from the database.

When a new game is introduced to the AGM product line and the Replay Actions
feature needs to be implemented for the game, the developer can follow a number
of steps:

� Specify the new game state elements.

� Adapt the saveGameState() and loadGameState() methods for the new
game and add these to the main game class.

� Identify when the game state needs to saved or loaded and call saveGameState()
and loadGameState() from the appropriate methods.

4.3.3 Problems with ’Traditional’ Implementation

Now that we have an idea of the ’traditional’ way of implementing the Replay
Actions feature, we see that a number of problems occur:

� The saveGameState() method call is tangled with the code that handles
collisions or starts a new frame in case of Bowling. This makes the code less
readable for the programmer.

� For Pong the saveGameState() method call is scattered among the collision
handling methods for both paddles. Because we work in a product line context
and the Replay Actions feature is optional, the saveGameState() method call

Analyzing Aspects in Production Plans for Software Product Lines 51

4.3 Analysis

needs to be deleted from or added to each collision handling method by the
product developer each time a game product is built. This creates extra work
for the product developer and is error-prone, because – especially when a
concern is scattered over many other concerns – the addition or deletion of all
method calls is easily forgotten.

� The game state elements vary per game product. This means that the
saveGameState() and loadGameState() methods needs to be created for
each game and thus multiple versions of the Replay Actions implementation
need to be saved, that is one version per game. This leads to redundancy in
the Replay Actions implementation and thus more difficult evolution, because
when the Replay Actions feature needs to be modified all versions of the fea-
ture need to be changed. This again leads to extra work for the developers
and is error-prone, because one version is easily overlooked in the evolution
process.

Summarizing, these problems are caused by the fact that the Replay Actions feature
is a crosscutting concern and that the functionality of the feature varies per game,
namely which elements are needed in the game state.

Our intuition for dealing with crosscutting concerns is to modularize these in as-
pects. In the next section we generalize the problems with crosscutting concerns
and focus on the product line context. Then we investigate the aspect-oriented
implementation of the Replay Actions feature in section 4.3.6.

4.3.4 Crosscutting Concerns for Production Plans

Now that we have investigated the problems with crosscutting concerns on the
component level for the concrete case of the Replay Actions feature, we abstract
from these issues in this section and focus on the product line context. We also
discuss which problems occur with crosscutting concerns on the production plan
level.

In our discussion we will use the term crosscutting feature. This is a crosscutting
concern that represents a reusable, configurable requirement in the context of do-
main engineering (see section 2.2.4). Recall that a software product line contains a
predefined set of features which is implemented by the code assets in the product
line.

Component Level

Modularization
On the component level, crosscutting concerns are mapped to multiple code assets /
components which jointly provide the desired behavior. These components contain
hard-coded references to each other, i.e. to do a method call or set a property. This
strong coupling of components reduces reusability, because when a component is
used in a different context (read: a different product) it still depends on the other
components to provide the concern, while the other components may not be suitable
for the different context.

Hard-coded references among components also reduce ease of evolution, because
when the functionality of a crosscutting concern is changed, all components imple-
menting the concern potentially need to be modified to cope with the changes.

Our intuition for dealing with crosscutting concerns on the component level is to
implement crosscutting concerns as aspects in the asset library. An aspect then is

Analyzing Aspects in Production Plans for Software Product Lines 52

4.3 Analysis

a separate asset in the product line and is selected for use in an application when
this product should contain the crosscutting concern that the aspect implements.

Configuration
Each code asset has an attached process that describes how the asset should be used
when developing a product line product (see section 2.2.3). Therefore the attached
process for aspects needs to be considered. As any feature a crosscutting feature
can have a number of variations, i.e. alternative subfeatures. These variations are
implemented in the aspectual asset along with the common behavior.

Recall that when feature selections have been made for a product all variability has
been removed, because for each variation point only a single variation is selected.
This implicates that the selected variation for a crosscutting feature should be
reflected by the aspect to which it is mapped.

An aspect which contains variability should therefore be configured for the specific
context – the selected variations – in which it is used.

Composition
Another issue is the composition of aspects with other code assets. Because we work
in a product line context the features selected for a product can differ strongly and
consequently the selection of assets from the library. Aspects do not implement
crosscutting behavior on their own: the aspect needs to be bound to the relevant
assets to deploy the crosscutting feature.

As we know aspectual behaviour is bound to the specific context through a pointcut
specification, which matches the relevant join points. In the product line approach
these join points can differ per product. As a result, the pointcut specification needs
to be defined for each aspect for the product line product. This is again the task of
the product developer.

A different problem is when aspects depend on each other to provide a certain
behavior. For example, every time someone wants to print a document the person
needs to be granted access to the printer by providing the right credentials and the
printer should then be locked during the print job. When the print job is finished
the printer is unlocked and a new job can be accepted. When the access control
and locking feature are both implemented as an aspect, these aspects should work
together to provide the right behavior, i.e. the locking aspect cannot execute its
behavior when the access control aspect has not run yet.

These dependencies among aspects need to be dealt with. Related to these de-
pendencies is the concept of a shared join point, which is a join point one which
two or more aspects are deployed. This leads to a number of other composition
issues, which go beyond the scope of this report. For more information the reader
is referred to [40].

Production Plan Level

The product line has a predefined set of features of which each product has a subset
of these features. When talking about features we need to make a distinction
between common features and variable features. Common features are mandatory
features that all products have, variable features are optional, alternative or or-
features that are selected for some products, but are not included in other products.
This means that the commonality in the product line is represented by the common
features and the variability is represented by the variable features.

Furthermore, a feature can contain a number of subfeatures which in turn can be
mandatory, or, optional or alternative. An example of such a feature hierarchy in
the AGM case is discussed in the next section.

Analyzing Aspects in Production Plans for Software Product Lines 53

4.3 Analysis

The production plan specifies the production process which abstractly consists of
the following steps:

1. Select all common features for the product and for each feature select the
direct and indirect sub-features, if applicable.

2. Select the variable features for the product and for each selected feature select
the direct and indirect sub-features, if applicable.

3. Compose the selected features to form the end-product.

This process is also illustrated in the next section.

This means that the product developer needs to ’configure’ each selected feature
by choosing the relevant direct and indirect sub-features for the product. The
production process is worked out in more detail in the production plan. The above
mentioned steps implicate that the variability in the product line, that is the variable
(sub-)features, is scattered throughout the production plan. The variable features
are specified in the context of their parent- and sub-features and the variability in
the product line is therefore not modularized.

The scattering of variable features can become a problem when working with large
product lines with hundreds or even thousands of features. It then becomes hard
to keep track of the variability in the product line. Modularizing the variability
in the production plan can tackle this problem. In section 5.3.2 we discuss how
aspect-orientation can help in the production plan.

4.3.5 Case Example of Crosscutting on Production Plan Level

We now show a concrete case example of crosscutting on the production plan level.
As we have seen, a feature can contain a number of subfeatures which in turn
can be mandatory, or, optional or alternative. In the AGM case a mandatory
feature is collision handling which takes care of the behavior when in the game
the puck collides with another object. This feature has the sub-features absorb
or reflect which are alternative. So each game has the collision handling feature,
but the product developer needs to choose between the absorb and reflect features.
Subfeatures can in their turn have subfeatures, which leads to a hierarchy of features.

Let us look at a part of the feature model for the AGM case as depicted in figure
4.2.

Figure 4.2: Part of AGM Feature Model [35]

Analyzing Aspects in Production Plans for Software Product Lines 54

4.3 Analysis

A part of the concrete production process steps for the developer to follow would
be:

1. Select the common feature action

2. (a) Select the common feature movement

i. Select one variable feature from the alternative features straight-line
movement and functional algorithm movement

(b) Select the common feature collision

i. Select one variable feature from the alternative features elastic col-
lision and absorbing collision

It is clear from this example that the variable features (for movement and collision)
are scattered among the production process steps. This can become a problem when
working with large product lines with hundreds or even thousands of features. It
then becomes hard to keep track of the variability in the product line. Modularizing
the variability in the production plan can tackle this problem.

The Arcade Game Maker product line is an example of a ’traditional’ product
line. The games are built from C# classes and the variability in the production
plan is scattered, because for example the variations in collision handling and game
rules are not grouped in the production process. The AGM product line both
has features that map to one code asset and features which are implemented by
multiple assets working together to provide the desired behavior. For example,
the scoreboard feature is implemented by the single class ScoreBoard, while the
earlier mentioned collision handling feature is scattered amongst the classes Board
(for collision checking) and all Sprite classes which realize the behavior when a
collision has been detected.

The fact that the crosscutting feature collision handling is not modularized causes
reduced evolution and reusability, which contradicts the goals of product line en-
gineering. For example, introduction of a third variation for the collision handling
feature affects all the classes involved in the implementation of this feature, which
makes the evolution rather time-consuming.

4.3.6 Replay Actions feature as Aspect

As we have seen in section 4.3.2 better separation of concerns is needed for the
crosscutting concern Replay Actions. With our background knowledge on aspect-
oriented programming we now try to modularize the Replay Actions feature as an
aspect. The pseudo code for the aspect is listed in figure 4.3. We use AspectJ
syntax, because most readers will already be familiar with this, although the code
assets in the AGM case are written in C#.

1 public aspect ReplayActions {

2

3 pointcut saveGameState():

4 call(void Paddle.collideWith()) ||

5 call(void PongPaddle.collideWith());

6

7 before(): saveGameState() {

8 // Game state collection and save code here

9 ...

10 }

11

Analyzing Aspects in Production Plans for Software Product Lines 55

4.4 Summary

12 pointcut loadGameState(ActionEvent e):

13 call(void ActionListener.actionPerformed(ActionEvent));

14

15 after(): loadGameState(e) {

16 if (((JButton) e.getSource()).getText() == "Replay Actions") {

17 // Game state restore code here

18 ...

19 }

20 }

21 }

Figure 4.3: Replay Actions Aspect

Line 1 defines the aspect ReplayActions which specifies the pointcut saveGameState()
in lines 3 - 6 for the join points for the Pong game at which we want to add behav-
ior. Line 8 - 11 is the before advice which adds the game state collection and save
code at the join points, before the code of the method is executed. Lines 13 and
14 describe the pointcut loadGameState() to monitor the Replay Actions button.
Line 16 - 21 specifies the after advice for the loadGameState pointcut, which checks
whether it is the Replay Actions button that is clicked and adds the behavior for
retrieving the game state from the database and restoring it in the game.

With this approach we see that the scattering and tangling problems don’t occur
any more, because the implementation is now cleanly modularized and the concerns
on which the Replay Actions feature is deployed are oblivious of the crosscutting
concern. This is an important property of aspect-orientation. The variation problem
is still present, because the advices for the saveGameState and loadGameState
pointcuts differ per game and thus multiple versions of the aspect are still needed.

4.4 Summary

We started this chapter with an introduction to the main concepts of aspect-oriented
programming and how the AOP languages AspectJ, CaesarJ and Compose* have
implemented these concepts.

We then introduced the crosscutting concern Replay Actions to the case, worked out
the implementation of the crosscutting concern in the traditional object-oriented
manner. We identified three concrete problems on the component level for this
implementation: scattering of the Replay Actions concern over multiple concerns,
tangling of the Replay Actions concern with other concerns, and that a specific
implementation of the concern is needed for each game because the game state
elements vary per game product.

After this discussion we identified the more general problems with crosscutting con-
cerns that occur on both the component level and the production plan level in the
product line context. On the component level these problems are modularization
of a crosscutting concern, configuration of aspects for specific variations, and com-
position of aspects with other code assets without context-specific information in
the aspect implementation. On the production plan level we have seen that vari-
able features are scattered throughout the production plans and these need to be
modularized. This problem is illustrated with a case example.

We finished this chapter with a modularization of the Replay Actions concern in an
aspect-oriented implementation. The problem with variation of game state elements
was still present in this implementation. In the next chapter we investigate solutions
to the identified problems with crosscutting concerns in the product line context.

Analyzing Aspects in Production Plans for Software Product Lines 56

Chapter 5

Modularizing Crosscutting
Concerns for Production
Plans

5.1 Introduction

As we stated earlier in our problem statement, the goal of this report is to investigate
problems that arise in product line production plans when dealing with crosscutting
concerns and to apply aspects for modularization of these concerns. This chapter
is our approach to the problems with crosscutting concerns on both the component
level and production plan level as we have identified in the previous chapter.

We start with additional background information on component based engineering,
aspect-oriented component models, and aspect configuration. We will use this back-
ground knowledge later on in this chapter in the discussion of applying aspects to
the product line context.

To get more understanding about incorporating aspect-orientation in product lines
we then investigate different combinations of aspect-orientation in the production
plans and asset library.

After this discussion we explore solutions to the identified problems on both levels
and then apply these solutions to our case study.

5.2 Background

5.2.1 Component Based Software Engineering

Strongly related to software product line engineering is the research area of Com-
ponent Based Software Development (CBSE). This topic studies the specification
of components in so-called repositories and the composition of components to form
the required application.

As discussed earlier in the product line section, product line products are composed
from the core assets and the product developer should somehow know which features
and interfaces assets/components provide and how these components interact with
each other. When we look at the goals of component based software engineering –

58

5.2 Background

that is high quality and low cost software design and development through software
reuse – more parallels can be drawn.

To understand more about the production of product line end-products from pre-
defined, plug&play components we investigate the specification and composition
of these components in more detail in this section. We also study a number of
aspect-oriented component models.

Component Specification

Component specification aims to provide a basis for the development, management,
and use of components. The specification of a component generally consists of four
parts, all regarding the interface that the component provides [22][56]:

� an interface signature that comprises properties, operations and events. The
properties are the externally visible structural elements of the component and
are commonly used for customization and configuration of the component
at the time of use. The operations capture the service/functionality that the
component provides and are the means with which the outside world interacts
with the component. Through its operations a component can be controlled
proactively by the system; the alternative is reactive control through events
that are generated by components from time to time, which other components
in the system may choose to respond to.

� interface constraints that limit the properties and operations of a compo-
nent interface, in addition to the constraints imposed by their associated types.
Constraints are of one of two types: regarding individual elements (for exam-
ple, range constraints on properties) or concerning the relationships among
elements (for example, constraining operation invocation on the occurrence of
a specific operation invocation before it).

� interface packaging and configuration to relate the component to a con-
text of use, that is a use scenario, which defines the interaction between the
component and related components and states which interface configuration is
required for this use. A component may play different roles in a given context,
and the component can be used in different types of contexts. The interaction
between the component and other components can differ depending on the
components and their related perspectives (for example, during interaction
with a particular type of component, only certain properties are visible and
operations available). These perspective/role-oriented interaction protocols
are defined in packaging configurations for the component interface.

� quality attributes address the non-functional properties of the component,
such as security, perfomance and reliability. Because components are often
blackboxes to the product developer, these qualities are important to get an
idea of the qualities of the resulting product. How these quality attributes
should be characterized and how the impact on the enclosing system can be
analyzed is beyond the scope of this report.

A component specification is described in some formalism, commonly called a Com-
ponent Definition Language (for example, OMG IDL [42]). The specification is often
an XML formatted document. See figure 5.1 for an example interface specification.

1 <IDL>

2 <comment> Account Example </comment>

Analyzing Aspects in Production Plans for Software Product Lines 59

5.2 Background

3 <module name="Online_Account">

4 <exception name="OverDraft">

5 <member name="message" type="STRING"/>

6 </exception>

7

8 <interface name="SavingsAccount">

9 <inheritance ancestor="Account"/>

10 <attribute mode="readonly" name="balance" type="Money"/>

11 <signature mode="twoway" rtype="void" name="deposit" >

12 <argument mode="in" name="amount" type="Money"/>

13 </signature>

14 <signature mode="twoway" rtype="boolean" name="withdraw" >

15 <argument mode="in" name="amount" type="Money"/>

16 <raises>

17 <exception name="OverDraft" />

18 </raises>

19 </signature>

20 </interface>

21 </module>

22 </IDL>

Figure 5.1: An example XML specification of an account interface [27]

This example defines the interface for a SavingsAccount component, which is a
subcomponent of the component Account. Two signatures for the component are
defined for depositing and withdrawal of money to/from the account. In the case of
withdrawal an exception can be thrown when not enough money is present on the
account.

Component Composition

To (re)use a component in a system – that is in composition with other components
– it often needs to be made suitable for the given context. Letting a component fit
in its environment falls in the following three categories [56]:

� Component Customization: letting the component users choose from a
fixed set of options that are already pre-packaged inside the software compo-
nent.

� Component Adaptation: the component users adapt a software compo-
nent by altering existing functionality. This implicates that the user needs
to understand the complex behavior and functionality of its classes, so any
change in either of them will not break the structure of the system specified by
the component designer. However, most components are blackbox, so – with-
out understanding of the inner workings of the component – the modification
options are limited to the visible properties and operations.

� Component Generation: the component users generate a software com-
ponent by accepting a configuration description and assemble the concrete
components according to this description.

Aspect-Oriented Component Models

Different component models exist today for offering an architecture for the specifi-
cation and composition of components. Well-known commercial component models

Analyzing Aspects in Production Plans for Software Product Lines 60

5.2 Background

are the Corba Component Model (CCM) [42], Enterprise JavaBeans (EJB) [49] and
the Distributed Component Object Model (DCOM) [38].

Recent work has been done on the combination of CBSE and AOSD to cope with the
appearance of crosscutting when describing the necessary dependencies among com-
ponents and the implementation of these dependencies using ’glue code’ [13][45][52].
As discussed earlier, AOSD can resolve the crosscutting issue.

How Crosscutting Arises

We now first look a little bit deeper into how crosscutting arises in ’conventional’
component models which causes reduced reusability and adaptability of compo-
nents.

To build an application from plug&play components the product developer needs the
earlier-mentioned interface signature and constraints to understand which interfaces
each component provides and requires. Furthermore, the developer chooses one of
the packaged roles for each component and configures the packaged properties for
the context in which the component is deployed.

This seems a very elegant way to build an application. A downside however is
that when a component A declares that it uses the services offered by a component
B through its required interface, that declaration affects the implementation of A,
because direct calls to B methods appear in the code and they are hard-coded.
Consequently, changes in business rules involve updating both the specification and
implementation of software components. In addition, specification changes affect
the packaging and configuration of the components.

This means that component systems are not easily adaptable to new requirements,
because the introductions of new requirements involve changes in the entire com-
ponent specification (signature, constraints, packaging/configuration, and quality
attributes) [13].

In the following sections we describe two approaches for aspect-oriented component
models.

Aspect Component Based Software Engineering
Clemente & Hernández propose what they call Aspect Component Based Soft-
ware Engineering to provide better flexibility, adaptability, and reusability for
component-based applications [13].

They propose a different way to specify component dependencies avoiding the cross-
cutting at the implementation phase of a component. They classify component
dependencies as intrinsic and non-intrinsic [13]:

� A dependency is non-intrinsic when its use depends on the framework or the
context in which a component is to be used. That is, if we delete the depen-
dency from the component description, the component maintains its initial
functionality without those facilities that the deleted dependency provides.

� A dependency is intrinsic when its description and use is vital for the compo-
nent itself. In other words, if this dependency is deleted then the component
loses its meaning.

During component implementation only the interfaces it provides and its intrinsic
dependencies should be implemented. This means that each component only im-
plements the basic business rules and therefore crosscutting is not being introduced
in the component implementation.

Analyzing Aspects in Production Plans for Software Product Lines 61

5.2 Background

When the component is packaged its non-intrinsic dependencies are specified in
an XML-structured file and implemented using aspects. When composing the end-
system from the components, the component interfaces and the intrinsic and non-
intrinsic dependencies are used to form the final product.

JasCo
Suvée et al. also studied the combination of aspect-orientation and component
based software engineering (CBSE) and they introduce a novel aspect-oriented im-
plementation language and an aspect-oriented component model based on enterprise
java beans (EJB), both called JasCo [52].

They identify several problems with the integration of AOSD with CBSE [52]:

� The deployment of an aspect within a software-system is static in that the as-
pect looses its identity when it is weaved into the application code. This makes
it difficult to extract an aspect from a composition and replace it afterwards
with a different aspect.

� Aspects are often described with a specific context in mind, which makes it
hard to reuse aspects.

� Communication between the components in an application is specific to the
employed component model. JavaBeans makes use of the event-model and
current AOSD technologies are not suited to deal with this kind of interaction.

They therefore introduce the JasCo language on top of Java with two new concepts:
aspect beans and connectors. Aspect beans are used for describing some functionality
that would normally crosscut several components from which the system is com-
posed. An aspect bean normally holds one or more hook-definitions as a combined
join-point/advice from AspectJ and a hook is used to specify when the execution
of a component should be ’cut’ and what extra behavior should be executed there.

Connectors are used to deploy aspects within an application and contains one or
more hook-initializations, zero or more behavior method executions, and any num-
ber of regular Java constructs. A hook-initialization is identical to a Java class
instantiation and takes one or more method signatures as input to convert ab-
stract parameters from the hook-definition to concrete parameters. Connectors can
also control how multiple aspects are deployed: simultaneous or sequentially, which
means that the precedence of aspects is defined in the connector. For advanced
aspect combinations JasCo offers so-called combination strategies.

The JasCo component model implements the ’aspect-enabled’ EJB component
model in which ’normal’ beans can still operate by converting them to JasCo com-
ponents. Aspects are deployed at run-time by the platform by using a connector
registry and providing the ability to dynamically load and unload connectors. This
improves reusability and adaptability of the components and component composi-
tion, because no recompiling is needed after adding or removing aspects, as opposed
to static weaving at compile-time.

5.2.2 Aspect Configuration

As we will see in the next chapter we would like to view aspects as separate com-
ponents in a software product line. Like with components, as we have just inves-
tigated, variability and configurability should be supported for aspects to offer the
functionality specific to a product line product. For example, when we want to use
the crosscutting feature caching in our product and caching is implemented by an

Analyzing Aspects in Production Plans for Software Product Lines 62

5.2 Background

aspect, the functionality may vary in the size of the cache, the percentage of the
cache to delete when the cache is full, the type of messages being cached (strings,
documens, etc.), and so on. The aspect in question needs to be configured for the
specific variation.

A technique for dealing with the configuration of aspects is called framed aspects
[33][34]. Traditional approaches mainly focus on the classic categories of evolu-
tion namely, corrective (fixing of bugs), adaptive (adding a new feature), perfective
(improving performance), and preventive (preventing problems before they occur).
While this categorization is useful in showing the type of evolution to be performed,
it does not demonstrate how the change affects the software architecture itself. In
order to suppport this it can be more useful to think of crosscutting and non-
crosscutting evolution.

Figure 5.2: Parameterized < adapt > to Provide Variations in Cache Aspect [33]

A software product line can be subject to a variety of changes over its lifetime
ranging fom addition, retraction, restructuring and replacement of a feature to
introduction of a new product or an entirely new product line (in instances where
variability becomes too large).

Frame technology is essentially a language independent textual pre-processor that
creates software modules by using code templates and a specification from the de-
veloper. Examples of typical commands in frames are <set> (sets a variable),
<select> (selects an option), <adapt> (refines a module with new functionality),
and <while> (creates a loop around repeating code). While the framing solution
helps to clearly identify a concern on the code-level, it is not a particularly elegant
solution, bcause the code gets cluttered with tags which can make code difficult to
read, understand and therefore evolve.

Aspect-oriented programming addresses problems of crosscutting concerns and code

Analyzing Aspects in Production Plans for Software Product Lines 63

5.3 Analysis

tangling, but no parameterization support is available. This issue can be partly
solved by using abstract aspects and concrete aspects derived from these for the
particular variants required by a particular product. However, this solution can
lead to inheritance anomalies [39] in deeper inheritance structures and also requires
that the developer or maintainer possesses an understanding of the operations en-
capsulated by the abstract aspect.

The framed aspects approach states that, while both techniques have their strenghts
and weaknesses, a hybrid of the two approaches can provide essentially all the com-
bined benefits thus increasing configurability, modularity, reusability, evolvability,
and longevity of product line assets. The method is based on using aspects to en-
capsulate otherwise tangled features in the product line and use frames to provide
parameterization and reconfiguration support for the feature aspects. The bal-
ance of aspect-oriented programming and frames reduces the template code clutter
induced by frames alone and at the same time give the ability to create meta vari-
ables and options which can be bound to a specification from the developer when
the frame processor is executed.

Let us now look at a frame for our crosscutting cache feature. The cache aspect in
figure 5.2 contains code that is common to all variant forms of the generic cache. In
the first two lines of the CacheAspect frame two configuration variables are declared
for the cache size and the percentage of the cache to delete when the cache is full.

To enhance reusability and flexibility the framed aspect approach is used to pa-
rameterize the cache aspect with variants for the type of content which is cached
and the scheme for deleting items in a full cache based on their size, date or access.
These variations are specified by an <adapt> frame.

The specification frame as can be seen at the top of the figure specifies the configu-
ration values and variation points for the aspect. All the frames together are then
parsed and merged to result in the final aspect without any variation left in it. The
configured aspect is then ready to be used in a product line product.

Loughran et al. have developed a methodology which allows a feature diagram
using FODA (see also section 2.2.4 and [28]) for a given reusable aspect component
to be created and mapped directly to framed aspects [34].

5.3 Analysis

5.3.1 Classification of Product Lines

Aspect-orientation can be incorporated in product line engineering in different ways:
in the collection of assets in the product line (the asset library) for modularization
of otherwise crosscutting concerns on the code level, and/or in the production plan
to tackle scattering of variable features in the production plan itself. This leads to
four different types of product lines, which are each briefly discussed in this section.
Table 5.1 illustrates the different types.

Asset Library Production Plan
Not AO Not AO
Not AO AO

AO Not AO
AO AO

Table 5.1: Aspect-Orientation in Product Lines

Analyzing Aspects in Production Plans for Software Product Lines 64

5.3 Analysis

After classification of the product lines, we investigate AOSD techniques for solving
crosscutting on both the implementation and production plan level in the next
section. In this report we assume aspect-orientation in the production plans as well
as the asset library, because we would like to modularize crosscutting on both levels.

Non-AO Assets, Non-AO Production Plan

In our exploration of the different types of product lines we start off with the
’traditional’ product line, that is aspect-orientation is not used in the asset library
nor in the production plan. This type of product line is depicted in figure 5.3.

Figure 5.3: ’Traditional’ Product Lines

As discussed earlier, during the production process specified in the production plans
(one generic plan and the product-specific plans) the common features and a number
of variable features are selected for the product. Features map to code assets in the
product line library. This mapping can be 1-to-1, a feature is then implemented by
1 asset, or crosscutting where a feature is implemented by multiple assets.

Non-AO Assets, AO Production Plan

Figure 5.4 illustrates a product line where the production plans are aspect-oriented
and the asset library consists of standard object-oriented code.

Analyzing Aspects in Production Plans for Software Product Lines 65

5.3 Analysis

Figure 5.4: Non-AO Assets, AO Production Plan

The common and variable features are now grouped in the production plans and
the production process within. Scattering and tangling however still occur in the
asset ilbrary, when a feature maps to multiple assets and/or multiple features are
implemented by a single asset.

AO Assets, non-AO Production Plan

In this case the asset library uses AOSD techniques to modularize crosscutting
concerns as aspects in the library. The production plan is not aspect-oriented here.
See figure 5.5 for a schematic overview.

Figure 5.5: AO Assets, Non-AO Production Plan

Now crosscutting features cleanly map to single assets, namely aspects. These
aspects are composed with the other code assets to form the end-product.

Analyzing Aspects in Production Plans for Software Product Lines 66

5.3 Analysis

AO Assets, AO Production Plan

When both the asset library and the production plans use aspect-orientation the
situation is as in figure 5.6.

Figure 5.6: AO Assets, AO Production Plan

One can see that the variability is modularized in the production plan. ’Regular’
as well as crosscutting features are implemented by single components in the asset
library.

5.3.2 Approach to Identified Problems

We now propose solutions to the problems with crosscutting concerns in the prod-
uct line context as we have identified in the previous chapter. Again we make a
distinction between the component level, that is the asset library from which prod-
ucts are built using the production plans, and the production plan level, that is the
production plans themselves and the features they contain.

These solutions are each explored with a concrete case example in the next section.

Component Level

Modularization
As we have discussed earlier in sections 2.3 and 5.2.2 aspects modularize otherwise
crosscutting concerns. Any AOP language offers concepts to express a crosscutting
concern as a single module. We have seen in the previous chapter how the cross-
cutting concern Replay Actions was modularized with the AOP language AspectJ.

Configuration
In this chapter we earlier explored the framed aspects approach to aspect configu-
ration. When using this approach the product developer creates (or generates) a
specification frame that selects the right variations for the aspect in question. The
specification frame and the aspectual asset are then input to the frame processor
which produces the configured aspect.

We apply the framed aspects approach to our case study in section 5.4.

Analyzing Aspects in Production Plans for Software Product Lines 67

5.3 Analysis

Composition
We have seen that in a product line context it is important to separate the aspect
implementation from its context, that is its binding with other code assets. When
we use the earlier-discussed JasCo language aspect beans are used to modularize a
crosscutting concern and define hooks as abstract pointcuts. Connectors are then
used to define a pointcut specification which makes the hooks concrete for the given
context.

In this approach combination strategies can be defined for the correct handling of
dependent aspectual behavior.

The reader is again referred to section 5.4 for a concrete example of this solution.

Production Plan Level

As we previously investigated, scattering of variable features in the production plan
is a problem for the product developer to keep track of the variations possible for
the products and make valid feature selections accordingly.

We want to modularize this variability in the production plan in some way by
making feature selections not based on the hierarchy of features, but on the type of
features, that is common or variable. Common features are available in all products
and therefore can be selected automatically during the feature selection process.
The product developer should only consider the specific variations for a product.

To modularize variable features in the production plan we propose an approach
based on research on traceability of concerns [5]. As we have seen in the previous
chapter, feature models are often represented as XML-documents which specify the
hierarchy and type of features as illustrated in feature diagrams. With the feature
type we mean here mandatory, or, alternative, or optional. Whether a feature is
common or variable can be extracted from the hierarchy of features.

When we store the XML documents for feature models in an XML database with
support for the functional query language XQuery, like eXist [19], we have a pow-
erful mechanism to extract the information we need from the feature models. Es-
sentially, we want a production plan like the pseudo code listed in figure 5.7.

1 aspect ProductComposition {

2 selectCommonFeatures();

3

4 pointcut selectVariableFeatures() { // selection by enumeration of features

5 select x;

6 select y;

7 select z;

8 }

9

10 pointcut selectVariableFeaturesByName() { // wildcard selection of features

11 select Pong*;

12 }

13

14 advice: selectVariableFeatures() {

15 // configuration

16 x.setProperty(property, value);

17 x.setProperty(property, value);

18

19 y.setProperty(property, value);

20

21 // create product

22 compose();

23 }

24 }

Analyzing Aspects in Production Plans for Software Product Lines 68

5.3 Analysis

Figure 5.7: Pseudo code for an Aspect-Oriented Production Plan

Here we define an aspect for the production process in which the common features
for the product are selected, the variable features are selected (by enumeration or
by name), the features are configured, and the product is composed.

We can develop xqueries to implement the function and pointcuts in the pseudo code
above. In the next chapter we explore generative technologies which use XML-based
feature models. In the following examples we assume the feature model from the
so-called Pure::Variants approach. However, the xqueries can be modified to work
with any other XML-based feature model.

To begin with the selection of common features, the according xquery is listed in
figure 5.8.

1 declare namespace cm="http://www.pure-systems.com/consul/model";

2 declare namespace ps="http://www.pure-systems.com/";

3 declare namespace f="http://my-own/xquery/";

4

5 declare function f:selectCommonFeatures(){

6 let $mandatoryFeatureIDs := //cm:relation[@cm:type="ps:mandatory"]/cm:target

7

8 for $target in $mandatoryFeatureIDs

9 let $featureID := fn:substring(data($target),3)

10 let $feature := //cm:element[@cm:id=$featureID]

11 return $feature//cm:vname/data(cm:mimedesc)

12 };

13

14 f:selectCommonFeatures()

Figure 5.8: XQuery for Selection of Common Features

To select the common features we select all features from the feature model that
have a mandatory relation with its parent feature and – in this example – we output
for each mandatory feature its name.

A second example xquery is shown in figure 5.9.

1 declare namespace cm="http://www.pure-systems.com/consul/model";

2 declare namespace ps="http://www.pure-systems.com/";

3 declare namespace f="http://my-own/xquery/";

4

5 declare function f:selectVariableFeature($name){

6 let $feature := //cm:element[@cm:name=$name and @cm:type="ps:feature"]

7 let $featureID := data($feature/@cm:id)

8 let $featureRelation := //cm:relation[@cm:type="ps:alternative" or

9 @cm:type="ps:optional" or @cm:type="ps:or"]/data(cm:target)=concat(’./’,

10 $featureID)

11

12 return $featureRelation

13 };

14

15 f:selectVariableFeature("AbsorbingCollision")

Figure 5.9: XQuery for Selection of Variable Features by Name

With the xquery function selectVariableFeature we select a variable feature by
its name, i.e. AbsorbingCollision. The example query checks whether the feature

Analyzing Aspects in Production Plans for Software Product Lines 69

5.4 Application of Solutions to Case

exists in the model and indeed is variable. If the check is positive the function
returns true or else false.

As we will see in the next chapter, the product developer can be supported by
tools to simplify the production process. We may not want to require from the
product developer to be proficient in XQuery. Therefore, we propose that support
for modularization of variability in the production plan is incorporated in tooling.
This means that feature selections can be made not only by traversing the hierarchy
of features, but the product developer can also select variable features by providing
an enumeration of feature names or select features by using wildcards. A graphical
user interface should be added to the tooling to offer this functionality.

5.4 Application of Solutions to Case

Now that we have explored solutions to our previously identified problems with
crosscutting concerns, we apply these topics to the AGM product line.

5.4.1 Component Level

Modularization

On the component level, we can modularize crosscutting features with aspects as
we have earlier investigated with the Replay Actions feature in section 4.3.6.

Configuration

When using the Replay Actions feature in an AGM product the product developer
might want to configure the maximum number of game states that are saved before
the oldest game state is deleted. When applying the framed aspects approach we
could define a configuration variable for the aspect as follows:

1 public aspect ReplayActions {

2 int maxGameStates = <@MaxGameStates>;

3

4 // ... code

5

6 if (numberOfGameStates == maxGameStates) {

7 deleteOldestGameState();

8 }

9

10 // ... code

11 }

Here we define an aspect variable maxGameStates which gets the value of the frame
variable MaxGameStates. The aspect variable is used to check whether the number
of saved game states has reached the maximum number of game states. If this is
the case the oldest game state is deleted.

The product developer can now configure the Replay Actions aspect with a speci-
fication frame, for example:

1 <MaxGameStates = "10">

Here we configure the Replay Actions aspect to keep track of a maximum of 10
game states.

Analyzing Aspects in Production Plans for Software Product Lines 70

5.4 Application of Solutions to Case

Composition

We have seen that in a product line context it is important to separate the aspect
implementation from its context, that is its binding with other code assets. When
we use the earlier-discussed JasCo language, we could define an aspect bean for the
Replay Actions feature as follows:

1 class ReplayActions {

2

3 hook GameStateSave {

4 GameStateSave(method(..args)) {

5 execute(method);

6 }

7

8 before() {

9 // Game state collection and save code here

10 ...

11 }

12

13 hook GameStateRestore {

14 GameStateRestore(method(..args)) {

15 execute(method);

16 }

17

18 after() {

19 // Game state restore code here

20 ...

21 }

22 }

23 }

Here we define two hooks for saving and restoring the game state.

Deployment of the Replay Actions aspect bean on the Brickles game can then be
done with the following connectors:

1 connector BricklesGameStateSave {

2 ReplayActions.GameStateSave gss =

3 new ReplayActions.GameStateSave(

4 * Paddle.collideWith(*));

5

6 gss.before();

7 }

8

9 connector BricklesGameStateRestore {

10 ReplayActions.GameStateRestore gsr =

11 new ReplayActions.GameStateRestore(

12 * Handler.ReplayActionsClick(*));

13

14 gsr.after();

15 }

16

Here we deploy the save and restore hooks at the selected join points.

5.4.2 Production Plan Level

On the production plan level, we can modularize variability in the plan by using
XML-based feature models and XQuery to extract features from the model.

For example, the code for the production of the Brickles game would be:

Analyzing Aspects in Production Plans for Software Product Lines 71

5.5 Summary

1 // selection of common features

2 common = selectCommonFeatures();

3

4 // selection of specific variations

5 movement = selectVariableFeature("StraightLineMovement");

6 collision = selectVariableFeature("AbsorbingCollision");

7 replay = selectVariableFeature("ReplayActions");

8

9 // configuration of selected assets (i.e. use specification frame)

10 // ... code

11

12 // composition of assets to form end-product (i.e. use connectors)

13 // ... code

Here the previously defined xquery functions selectCommonFeatures and
selectVariableFeature are used to extract the XML representation of the selected
variations from the model. We select the specific variations for the Brickles game
for the features movement and collision handling.

As we will see in the next chapter, next to the features their mapping to code assets
is modeled as well. This means that when we select features we indirectly also select
the right code assets. These assets can then be configured and composed together
to produce the game product.

In the next chapter we also discuss the earlier-mentioned tool support for making
feature selections and transforming these to a concrete product.

5.5 Summary

In this chapter we started with additional background on component based software
engineering and aspect configuration. We then explored different combinations of
aspect-oriented and non-aspect-oriented production plans and asset libraries to get a
better understanding of aspect-orientation in product lines. In this report we assume
aspect-orientation in the production plans as well as the asset library, because we
would like to modularize crosscutting on both levels.

We then applied aspects to cope with the problems with crosscutting concerns on
both the component level and production plan level as we have identified in the
previous chapter. On the component level we use aspect-oriented programming to
modularize the implementation of crosscutting concerns. We have introduced the
concept of framed aspects to configure aspects for a specific product and we have
illustrated composition of aspects with other assets for a specific context with the
aspect-oriented JasCo language.

On the production plan level, we have proposed XML-based feature models in
combination with the functional query language XQuery to modularize scattering
of variable features in the production plans.

We have applied the proposed solutions to our case study. We have used the earlier-
introduced Replay Actions feature to illustrate how aspect configuration and com-
position can be dealt with. We finished the application to the case with a discussion
of an aspect-oriented production plan for the Brickles game.

Analyzing Aspects in Production Plans for Software Product Lines 72

Chapter 6

Applying Generative
Production Plans

6.1 Introduction

Now that we have investigated problems with crosscutting concerns for production
plans and our approach to modularizing these using aspects, we discuss the impact
of aspect-orientation for the product line process. We introduce the concept of
generative production plans in this chapter: production plans that to some degree
support automation of the production process. Product line engineering is moving
more and more from production of software products by hand to automated gener-
ation of applications from the product line through some sort of specification. This
goal obviously has implications for the structure and contents of production plans.
However, the steps in a generative product line process are unclear.

We first discuss more background information on different levels of automation of
production plans and the ideas behind generative software development.

Then we study the requirements for generative production plans and two generative
technologies that can provide automation of the production process. We work out
the product line process for each of these technologies. These results are used at
the end of this chapter to assess the impact of incorporating aspect-orientation in
the product line process.

6.2 Background

6.2.1 Automation of Production Plans

Before we go deeper into the production plans, we distinguish between three types
of production plans based on the level of automation of the production process:

� manual

� semi-automatic

� automatic

74

6.2 Background

A manual production plan provides the guidelines to the product developer to in-
stantiate products from the product family, but offers no automation of the produc-
tion process. The developer builds the product by hand from the available assets.

When using a semi-automatic production plan, the product developer needs to
select the feature set for the product and then the production plan automatically
selects the right assets, but the developer still needs – to some degree – configure
and compose the end-product from these assets.

In a fully automatic production process the product developer only needs to select
the features for the product and the production plan then automatically selects,
configures and composes the assets to form the end-product. Some product lines
have a fixed set of family products with specific features per product. In this case
the product developer only needs to select the product to be generated.

6.2.2 Generative Software Development

Generative software development [15] is about automating the creation of software
products, such as components and applications. It combines domain engineering
with appropriate technologies for implementing the elementary components of a
product family and for their automatic assembly. This requires modeling prod-
uct families, ordering products, providing implementation components to assemble
the products from, specifying the mapping from product specifications to concrete
assemblies of implementation components, and implementing this mapping using
generators.

The first step towards achieving this is generative domain modeling, which enables
automatic generation of a system in a family based on its specification. A generative
domain model consists of a problem space, a solution space and the configuration
knowledge mapping between them. This is shown schematically in figure 6.1.

Figure 6.1: Elements of a Generative Domain Model [16]

The problem space consists of the application oriented concepts and features that
are necessary for the development of an application. There are different kinds of
features: concrete features, crosscutting features and abstract features [15].

A concrete feature is directly mapped to a component, which can possibly be a pa-
rameterized component. An example would be implementing sorting by a sorting
component. A crosscutting feature is mapped to an aspect as we have investigated
in the previous chapter. An abstract feature, for example a performance require-
ment, does not have any specific mapping. It is implemented by an appropriate
combination of components and aspects.

Analyzing Aspects in Production Plans for Software Product Lines 75

6.3 Analysis

The configuration knowledge specifies certain combinations of features that may
not be allowed, as well as, if some features are not specified, their default settings
and dependencies that need to be assumed. It also specifies the construction and
optimization rules.

The solution space consists of the implementation components with all their likely
combinations. The implementation components are designed so that they can be
combined in as many ways as possible, while maximizing reuse, and minimizing code
duplication. Section 5.2.1 gave an overview of the research area of component-based
software engineering.

The development and implementation of a generative domain model for a family of
systems is one of the essential objectives of generative software development. The
main development steps of generative software development are:

� Domain scoping

� Feature modeling and concept modeling

� Designing a common architecture and identifying the implementation compo-
nents

� Specifying a domain-specific notation for the ordering of systems

� Implementing the implementation components

� Implementing the domain-specific notations

� Implementing the configuration knowledge using generators.

These steps need to be done iteratively and incrementally during the analysis, design
and implementation phases. Clearly, looking at the generative software development
process, many parallels can be drawn with the domain engineering and application
engineering activities from the two life-cycle model (see section 2.2.4).

6.3 Analysis

6.3.1 Generative Production Plans

We now explore the requirements for a generative production plan for generation
of products through some sort of specification, as far as the product line context
allows this (maturity of the product market, stability of product line scope, etc.).
What we want for the production plan is:

� A formalism to express a product family specification for the common and
variable features in the product line and the hierarchy of features.

� Feature constraint checking: specification of valid combinations of features
and a mechanism to check this.

� A formalism to express a product specification: feature selection and config-
uration.

� Tool support to create a product specification from the family specification
and perform constraint checking.

Analyzing Aspects in Production Plans for Software Product Lines 76

6.3 Analysis

� Transformation of product specification to asset selection and configuration.

� Composition of selected assets to yield the product.

We now explore two technologies for generative product line engineering and work
out the process for both approaches. Then the two technologies are compared and
one of them is selected for further investigation.

6.3.2 XML-Based Feature Modeling Process

An interesting, generative approach is XML-Based Feature modeling [11] which
introduces the concepts of a family model and an application model that are both
feature models and describe the software assets behind a product family and the
features selected for an application respectively. The feature models are expressed
in an XML-based format and this gives handles for constraint checking (check that
only valid combinations of features are possible) and tool support (a standard XML
environment with XML schema and XSL support suffices).

We have worked out the UML activity diagram for the entire product line process
for this approach is depicted in figure 6.2.

The diagram is divided into the domain engineering and application engineering
activities. Every relevant element in the diagram is numbered and now step-wise
discussed.

Domain Engineering

1 Family Meta-Model

The XML-Based Feature Modeling approach defines a so-called family meta-model
which is an XML Schema that specifies which elements and attributes can be used
in the family model which in turn is a feature model.

2 Family Meta-Model (as Input)

The family meta-model is an input for the definition of the family model by a do-
main engineer. See also numbers 3 and 4 .

3 Definition of Family Model

The domain engineer defines the family model for a specific product line. This fea-
ture diagram contains all features available in the product line with their relations.
This results in a hierarchy of features, where each feature is of the type mandatory,
or, alternative, or optional.

The domain engineer can use a standard XML tool to create the XML specification
of the family model.

4 Validation of Family Model

The family meta-model validates any family model created for a product line through
a standard XML tool with support for XML Schema and therefore offers an envi-
ronment for the domain to create a valid family model.

Analyzing Aspects in Production Plans for Software Product Lines 77

6.3 Analysis

Figure 6.2: Product Line Process for XML-Based Feature modeling

Analyzing Aspects in Production Plans for Software Product Lines 78

6.3 Analysis

5 Family Model

The first deliverable in the domain engineering process in then a validated family
model with the specification of all product line features.

6 Family Model (as Input)

In the next step, the family model is used as an input for the definition and execu-
tion of an XSL Stylesheet. The reader is referred to 7 and 8 .

7 Definition of XSL Stylesheets

The family model describes the features available in the product line. This model
however doesn’t contain information about the mapping of these features to code
assets and constraints on features. This means that information needs to be added
by the domain engineer in dialogue with the product developer by translating the
family model to – what we will see in a moment – the application meta-model.

Cechticky et al. found it to be better to also have an application meta-model in
stead of using only the family meta-model, because this allows for fine-tuning of the
application model for the specific family. This degree of fine-tuning follows from the
case studies done in the approach where the number of elements in the application
meta-model is between one and two orders of magnitude larger than the number of
elements in the family meta-model.

8 9 XSL Stylesheets

The XSL stylesheets thus add information to each feature specification. The XSL
transformation defines how the original model should be converted to the new
model.

10 XSL Stylesheet (as Input)

The XSL stylesheet is input to an XSLT engine that parses the stylesheet and exe-
cutes it on the original model which is the second input as we will see in a moment.
Most standard XML tools offer functionality for executing XSL transformations.

11 Family Model (as Input)

The second input for the transformation process is the family model itself.

12 13 Generation of Application Meta-Model

The Application Meta-Model is generated in this step by executing the XSL stylesheet
on the family model.

14 Application Meta-Model

The application meta-model is an XML schema which defines the structure for the
application models.

15 Application Meta-Model (as Input)

The application meta-model validates any application model created in the product
line. The validation again can be done by a standard XML tool.

Analyzing Aspects in Production Plans for Software Product Lines 79

6.3 Analysis

Application Engineering

16 Production Plan

The production plan describes the features available in the product line and their
interrelations. These interrelations obviously follow from the hierarchy of manda-
tory, or, alternative, and optional features, but can also be extra constraints that
do not result from the feature hierarchy. For example, ’feature A depends on the
presence of feature B’ or ’feature A excludes feature B’. Different types of so-called
composition constraints can be specified in this approach on both the family model
and application model level.

The production plan also plays a vital role in the transformation process from spec-
ification to application which we will discuss later on.

17 Production Plan (as Input)

The information from the production plan is important for the product developer
to make a valid selection of features for the product.

18 19 Select Features

When the product developer wants to produce an application from the product
line (s)he needs to select the features for the product or – if the product line only
produces specific products with a predefined feature set – the product which needs
to be created.

As we have just discussed, these feature selections need to be correct, i.e. all
mandatory features are selected, exactly 1 feature is selected from multiple alter-
native features, the feature constraints are satisfied, etc.

20 Feature Selections

The feature selections need to be saved in some format: as a list of features in
natural language, or as a partial family model in which only the selected features
are specified.

21 Feature Selections (as Input)

The feature selections are used in the process of creating an application model.

22 23 Creation of Application Model

When the product developer wants to create the application model for the product
to be produced, (s)he takes the feature selections and translates these to an applica-
tion model. This translation depends on the format of the feature selections. If the
feature selections are specified in natural language, the developer needs to specify
each selected feature as an XML fragment for the application model. If the feature
selections are expressed as a partial family model the developer can use a variant
of the earlier defined XSL stylesheets to generate the application model.

In both cases the application model is validated by the application meta-model
(XML Schema).

24 25 Application Model (as Input)

The resulting application model is syntactically valid, but can still violate certain
constraints. Therefore the application model is input to a constraint checking XSL

Analyzing Aspects in Production Plans for Software Product Lines 80

6.3 Analysis

stylesheet.

26 27 28 Constraint Checking

The application model is checked with the constraints specified in the application
meta-model. This might be done through an XSL stylesheet that defines the con-
straints that need to be checked and how these checks should be outputted. The
XSL stylesheet is then executed, evaluates the application model and outputs for
each constraint whether the constraint is satisfied or not.

29 Constraint Errors

In case of constraint errors the output is redirected to the Select Features process
with which the product developer can correct the unsatisfied constraints by modify-
ing the feature selections. This cycle continues until the application model is valid
and satisfies all composition constraints.

30 31 32 Checked Application Model

If all composition constraints are fulfilled the application model is ready to be trans-
formed to a concrete application. The XML specification of the application model
is input to the transformation process.

33 34 Production Plan (as Input)

The transformation process in this approach is not clear at the time of writing,
because the so-called generative environment to actually create end-products is ’fu-
ture work’. Therefore the role of the production plan in the transformation is also
unclear. However, as we will see in the second approach, the production plan will
extend a standard transformation process to compose the actual application (or
application skeleton).

35 36 Component Library Specification (as Input)

The code assets available in the product line are usually stored in a component
library (see also section 5.2.1). Among other things, the interfaces of the components
and the way in which they can work together to provide functionality are specified
for the library.

This specification is input to the transformation process in that the code assets
referred to by the application model can be selected, configured and composed to
form the end-product.

37 38 Transformation from Specification to Application (Skeleton)

Again, the transformation process for this approach is not yet worked out at this
moment. Based on our knowledge from the second approach which we will discuss
in the next section, we can assume that there is a standard transformation process
which can be extended by the product developer through the production plan.

39 Application (Skeleton)

The result of the entire product line process is the application or application skele-
ton. In the latter case, the product line creates a framework of the product which
the product developer needs to configure and modify by hand to finish the product.

Analyzing Aspects in Production Plans for Software Product Lines 81

6.3 Analysis

We now continue with a discussion of a second approach (Pure::Variants) and look
at the process which it proposes. Then we compare both approaches with each
other.

6.3.3 Pure::Variants Process

A similar approach for product specification and production is Pure::Variants [46]:
an Eclipse plug-in for creating feature models and family models, and to trans-
form these to concrete applications. Feature relations can be used to define valid
selections of combinations of features for a domain.

Family models describe how products in the product line will be assembled or gen-
erated from code and other artefacts. Each family model is made up of components,
parts and source elements. Components are organized into a hierarchy that can be
of any depth. Each component is further decomposed into parts that in turn are
built from source elements, as can be seen in figure 6.3.

Figure 6.3: Pure::Variants Component Model [47]

The Pure::Variants tool can be used to automatically generate individual products.
The product line process for Pure::Variants is depicted in figure 6.4. We again step-
wise discuss the elements in the diagram.

Domain Engineering

1 Feature Meta-Model

The Pure::Variants approach offers a meta-model for feature models, which again
is an XML Schema.

2 Feature Meta-Model (as Input)

The domain engineer normally uses the Eclipse tool to create the feature model for a
specific product line / domain. The resulting feature diagram is then automatically
validated against the meta-model. Optionally, one could also define or modify the
feature model by hand and then validate the model through a standard XML tool.

Analyzing Aspects in Production Plans for Software Product Lines 82

6.3 Analysis

Figure 6.4: Product Line Process for Pure::Variants

Analyzing Aspects in Production Plans for Software Product Lines 83

6.3 Analysis

3 4 Definition of Feature Model

The domain engineer defines the hierarchy of features in the feature model in the
Eclipse environment through a graphical user interface (GUI). See section 6.4 for a
more in-depth discussion of the Pure::Variants Eclipse tool.

5 Feature Model

The feature model for the product line contains all features and relations between
features. These feature selections obviously result from the hierarchy of features
(for example, alternative subfeatures for a feature), but Pure::Variants also offers
so-called feature restrictions for specification of more complex relations between
features. A restriction rule may contain arbitrary pvProlog statements (a dialect of
Prolog). Table 6.1 shows some examples of the specification of feature restrictions.

Restriction pvProlog statement
feature A requires feature B requiresFeature(’B’)
feature A excludes feature B conflictsFeature(’B’)
feature A requires feature B or C requiresFeature(’B’,’C’)

Table 6.1: Feature Restrictions in Pure::Variants

Also logical operators such as and, or, and not can be used to define more com-
plex restrictions. The Pure::Variants approach also provides pvProlog statements
to restrict features in a more low-level way by for example checking attribute values.

6 7 Family Meta-Model

As with the feature model the family model is also validated by an XML Schema:
the family meta-model. This meta-model describes the elements and attributes al-
lowed in the family model to specify the code assets in the product line.

8 9 Definition of Family Model

The Eclipse plugin for Pure::Variants also provides a user interface for defining the
family model. This interface is also discussed further in section 6.4.

10 Family Model

Relations between features (problem space) and components, parts, and source el-
ements (solution space) are defined in the family model which also specifies the
instantiation of the component model for the product family with a hierarchy of
the code assets available in the product line and the mapping of features to imple-
mentation. As with features relations and restrictions these can also be specified
for family elements. Some examples of these restrictions are given in table 6.2.

Restriction pvProlog statement
Class A implements Feature B hasFeature(’B’)
Component A requires Component B requiresComponent(’B’)
Class A provides function B hasPart(’B’)

Table 6.2: Restrictions on Family Elements in Pure::Variants

Analyzing Aspects in Production Plans for Software Product Lines 84

6.3 Analysis

Application Engineering

The task of the domain engineer is now finished and the product developer takes
over by defining a so-called variant model which we will discuss in a moment. The
feature and family model resulting from the domain engineering activity are used
for this variant model.

11 Production Plan

The Pure::Variants offers extended tool support for specification of the feature, fam-
ily, and variant models as we will see in the next section. Functionality for creating
feature selections for a to be produced product and checking whether these selec-
tions are valid is available in the tool. Therefore the role of the production plan in
the selection of features is limited to documentation of the available features and
their relations.

12 Production Plan (as Input)

The production plan is thus used as a reference for the product developer when
selecting a feature set for an application.

13 14 Select Features

The product developer defines a product by its feature set. (S)he needs to select
all mandatory features in the product line some variable features depending on the
feature type (or, alternative, or optional). The feature selections are made using
the Pure::Variants tool (again see section 6.4).

15 16 Feature Selections

When the product developer thinks that the feature set is complete and correct for
the product, the feature selections are input for defining the variant model.

17 18 Definition of Variant Model

The variant model is generated by the Eclipse tool using the family model, feature
model, and feature selections. For each selected feature model the according part of
the family and feature model are selected and placed into the variant model. After
evaluation of all selected features the variant model has been populated with both
a partial family model and feature model.

19 Variant Model

The variant model is represented in XML format, while working with the model
is done through the GUI. This representation opens the road to powerful checking
and querying mechanisms (such as XML Schema, XPath, XQuery, etc.) which are
used by the Eclipse tool.

20 Variant Model (as Input)

When the product developer has made a variant model using the tool the model
needs to be checked for validity and whether all restrictions placed on features and
family elements are fulfilled.

21 Model Checking

Analyzing Aspects in Production Plans for Software Product Lines 85

6.3 Analysis

The checks performed on a variant model are threefold:

1. The variant model is compared against the feature model to check whether
all mandatory features are selected and the variable features are selected cor-
rectly, for example exactly one alternative from multiple alternative subfea-
tures is selected. The tool can automatically resolve some conflicts by for
example selecting all mandatory features if the product developer has forgot-
ten to activate one or more for the product.

2. For each feature in the variant model the restrictions (if applicable) are exam-
ined. If a restriction isn’t met the tool gives back an error for this restriction
in the Problem View in Eclipse.

3. Also for each family element in the variant model the restrictions are investi-
gated. Again, when a restriction conflicts with the current feature selection,
the tool returns an error for the specific restriction.

22 23 Model Checking Output

The model checking done by the tool delivers feedback to the product developer for
correcting the feature selection, if necessary.

24 Errors in the Model

When at least one error has occurred while checking the model, the product devel-
oper needs to revise his feature selections. This revision cycle continues until the
variant model for the application is valid.

25 Correct Model

When no errors are found during the model checking, the model is valid and the
production process can continue.

26 27 Checked Variant Model

Now that the variant model is finished it acts as input to the transformation to a
concrete application (skeleton).

28 Production Plan

This variant model is an abstract (XML) description of the solution in terms of
components (or modules). This description is used to control a transformation
process that in turn generates the source code and other artefacts of the finished
product variant. Pure::Variants provides a standard transformation process, but
in most cases the product developer will customize and extend the transformation
process for the specific product line.

This is where the production plan comes into action. The production plan defines
the transformation process for the product line as an XSLT script with Pure::Variants
XSLT extension functions, which transforms the nodes of the variant model to a
format the component library understands for selection of components.

29 Production Plan (as Input)

Analyzing Aspects in Production Plans for Software Product Lines 86

6.3 Analysis

In the Pure::Variants tool the XSLT script defined by the Production Plan is se-
lected for the transformation process.

30 31 Component Library specification

As we have seen earlier, the family model specifies the components, parts, and
source elements in the product line. However, this family model’s structure is
conform the XML Schema defined specifically for Pure::Variants, while component
libraries generally have their own specification format e.g. OMG IDL (see also
section 5.2.1). To prevent the product line developers from doing double work it
is possible to translate the component library specification to a family model using
e.g. XSLT.

The component library specification is input to the transformation process for se-
lection of the right components from the asset library.

32 33 Transformation from specification to application

When generating a product, a component (with its parts and source elements) is
only included in the resulting product configuration when its parent is included and
when any further restrictions on the components are fulfilled e.g. the selection of
specific features, or limits on attribute values associated with features.

The standard transformation process assumes that the family elements map to files
or file parts in the filesystem. When transforming the specification to a product the
relevant files are selected and copied to the folder in which the application resides.

For our custom transformation process the XSLT script defined by the production
plan is executed on the variant model to result in a formalism (e.g. XML) that
the asset library understands to fetch the right components. The transformation
process then copies the retrieved assets to the application folder and configures the
assets as specified in the variant model.

34 Application (Skeleton)

In the ideal situation the transformation process generates a complete and working
application. More realistically, an application skeleton is generated in which all the
right assets are available, but some configuration by hand is still needed to finish
the product. This is then the task of the product developer.

6.3.4 Comparison of Both Approaches

If we compare the product line process for both approaches (figures 6.2 and 6.4),
similarities as well as differences can be seen. Both approaches model the features,
assets and applications in XML-based models and use these models in a transfor-
mation process to come to an end-product. Both approaches have a mechanism to
express constraints on (combinations of) features and assets, but the Pure::Variants
approach offers more powerful expression of constraints through Prolog-like state-
ments.

The approaches differ in the level of tool support and the state of the transfor-
mation process: the XML-based Feature Modeling approach uses standard XML
tools, while Pure::Variants has developed a more complete tool set in the Eclipse
environment; the transformation process is ’future work’ in the first approach, while

Analyzing Aspects in Production Plans for Software Product Lines 87

6.3 Analysis

Pure::Variants already offers a working standard transformation process which can
be customized and extended by the product developer.

The similarities and differences between both approaches are summarized in table
6.3.

Technology requirements for product production XBFM P::V
Formalism to express product line features + +
Feature constraints and checking + ++
Formalism to express a product specification + ++
Tool support + ++
Transformation from specification to asset selection - +
Composition of selected assets to yield the product - +

Table 6.3: Comparison of Technologies

In this report, we prefer Pure::Variants above the XML-based Feature modeling
approach, because Pure::Variants has all the requirements listed in the table above,
while the second approach is more focused on the modeling of features and does not
yet offer a transformation process from feature specification to implementation. In
the next section we go deeper into the workings of the Pure::Variants approach.

6.3.5 Aspect-Oriented Product Line Process

Aspect-orientation in software product line engineering affects the product line pro-
cess from specification to application. In this section we investigate the impact of
aspect-orientation by example of the Pure::Variants product line process and discuss
the issues involved.

Each process step on which aspect-orientation has impact is now discussed. The
Pure::Variants product line process is again depicted in figure 6.5.

Family Meta-Model

Aspects are implementations of crosscutting features and thus need to be specified
in the family model. This means that the family meta-model needs to be extended
to incorporate aspects. The Pure::Variants family meta-model already contains the
part type ps:aspect, but there is no support for aspect configuration nor specification
of pointcuts for the composition with other assets.

We propose the addition of configuration variables and hooks to the family model
(and thus the family meta-model) for specification of how an aspect can be fitted
in a specific product context.

A configuration variable should be specified as an element of an aspect and denotes
a variation for the aspect in question. A configuration variable has a name, a
data type (integer, string, enumeration, etc.) and optionally value constraints. For
example, In case of an enumeration type the value constraints specify the set of
values from which the product developer can choose.

A hook should also be specified as an element of an aspect and is an abstract point-
cut as we have seen in the JasCo approach (see section 5.2.1). A hook has a name
and an advice type, that is before, after or replace. During product production each
relevant hook needs to adapted to the product context by specifying a connector
per hook, again as we have seen previously in the JasCo language.

Analyzing Aspects in Production Plans for Software Product Lines 88

6.3 Analysis

Figure 6.5: Pure::Variants Product Line Process

Analyzing Aspects in Production Plans for Software Product Lines 89

6.4 Application to Case

Define Family Model

While defining the family model the domain engineer specifies the regular family
assets as well as the aspects available in the product line. For each aspect the
configuration variables and hooks need to be defined.

The resulting family model contains all family assets and the mapping of regular as
well as crosscutting features to their implementation.

Production Plan

The production plan provides information to the product developer to make a valid
feature selection and specifies how the specification should be transformed to the
application (skeleton).

Selection of features can be done by traversing the hierarchy of features or – as we
have proposed in the previous chapter – or by selecting variable features by their
name. Wildcards should be allowed in name-based selections to select multiple
features at once. The tool needs to offer an interface for this alternative method
of feature selection with for example an inline search box in which the product
developer can type a (part of a) feature name and all matches in the feature model
are shown in a drop down box.

Secondly, the transformation of aspects needs to be defined in the production plan
by using the configuration variables and hooks for each aspect. We propose a
transformation process in which for each aspect a specification frame is provided by
the product developer in which all configuration values are specified and this frame
in combination with the aspect is input to the frame processor which returns the
configured aspect as the result.

Then for each aspect hook a connector is defined by the product developer to bind
the aspect to the other selected assets for the product. The configured aspect in
combination with the connectors provides the selected behavior at the selected join
points.

Component Library specification

The component library should also support aspectual components as separate assets.
The library needs to store the framed aspects with their configuration variables and
the hooks for each aspect.

Transform specification to application

In the transformation process aspects specified in the variant model are selected
from the component library. For each aspect, the aspect implementation, specifica-
tion frame, and connectors are used as result in the correct binding process.

6.4 Application to Case

To get a better impression of the Pure::Variants approach we discuss the Eclipse
tools and their underlying models with the AGM case as example.

Analyzing Aspects in Production Plans for Software Product Lines 90

6.4 Application to Case

Figure 6.6: Feature model in Pure::Variants
Product line process steps 3 to 5 (see figure 6.4)

6.4.1 Feature, Family, and Variant Models

The Pure::Variants Eclipse plugin offers feature modeling functionality for con-
structing a hierarchy of mandatory, or-, alternative and optional features. We have
used the feature models from the AGM case as an example. See figure 6.6 for a
screenshot of this feature model.

The tree shows the hierarchy of features and also the feature types. For example,
the mandatory feature Collision has two alternative sub-features Elastic collision
and Absorbing collision as we have seen earlier.

With the tool one can also create a family model with the components, parts and
source elements which are available in the product line. Based on the earlier dis-
cussed basic AGM architecture (see section 3.4.3) we have created a partial family
model as illustrated by figure 6.7.

Although the AGM case does not provide components, but only game product in-
stantiated from the product line, we worked out a component structure for illustra-
tive purposes. The solution space for the product family can be concretely modeled
e.g. the EventHandlerDefinitions component implements three features from the
feature model (play, pause, and save) and contains the class EventHandler which
in turn is implemented in the file EventHandlerImpl.

Each product instantiated from the product family has its own feature subset.
These feature selections are made in a so-called variant model per product. Figure
6.8 shows how a variant model can be populated in the Pure::Variants tool.

Analyzing Aspects in Production Plans for Software Product Lines 91

6.4 Application to Case

Figure 6.7: Family model in Pure::Variants
Product line process steps 9 to 11 (see figure 6.4)

Figure 6.8: Variant model in Pure::Variants
Product line process steps 15 to 27 (see figure 6.4)

Obviously all common features for the product need to be selected. The variation
in our AGM feature model is represented by the Collision and Movement features
which both have alternative sub-features. The product developer needs to select
from the alternatives before continuing with the product generation. The tool also
checks whether the feature selections are valid, by checking for example that only
one alternative is selected from a number of features.

6.4.2 XML Representation of Models

All models in Pure::Variants are saved as XML documents. For example, a part of
the XML representation of the feature model for the AGM case is depicted in figure
6.9.

1 [...]

2 <cm:element cm:class="ps:feature" cm:id="ibICJxoLra_7C0UdB" cm:name="Movement"

3 cm:type="ps:feature">

Analyzing Aspects in Production Plans for Software Product Lines 92

6.4 Application to Case

4 <cm:relations cm:class="ps:children" cm:id="i9meSQMQDByDZGf3P">

5 <cm:relation cm:id="iBkt-d0j2CpKHjmEL" cm:type="ps:alternative">

6 <cm:target cm:id="ic1I3kg2QMVUGMoPK">./i1-5lexW2y9EocQf0</cm:target>

7 <cm:target cm:id="iGph5VwGYu108nE4M">./iX8Jd3-eUdW1SNv2P</cm:target>

8 </cm:relation>

9 </cm:relations>

10 [...]

11 <cm:relations cm:class="ps:parents" cm:id="iLk1oehR4UxIbFtGV">

12 <cm:relation cm:id="iMfBPD5RPn7L4f_pa" cm:type="ps:parent">

13 <cm:target cm:id="iNh7YsUhrrOXDCjph">./ixQqg30CRz0y1n5Z_</cm:target>

14 </cm:relation>

15 </cm:relations>

16 [...]

17 </cm:element>

18 <cm:element cm:class="ps:feature" cm:id="ijs2MdS-XLAyTYtWC" cm:name="Collision"

19 cm:type="ps:feature">

20 <cm:relations cm:class="ps:children" cm:id="ixHfE8DiUibfv0123">

21 <cm:relation cm:id="ibjaLZr4cJdtv9wuJ" cm:type="ps:alternative">

22 <cm:target cm:id="iCFvTJQyFmRbBtqzN">./iUy1Z_XGtBfBdvNwK</cm:target>

23 <cm:target cm:id="i0eQ5cUpiU1_Qrn03">./irMXpLQ0GapOaLj2J</cm:target>

24 </cm:relation>

25 </cm:relations>

26 [...]

27 </cm:element>

28 <cm:element cm:class="ps:feature" cm:id="i1-5lexW2y9EocQf0"

29 cm:name="StraightLineMovement" cm:type="ps:feature">

30 [...]

31 <cm:relations cm:class="ps:parents" cm:id="iYkrT6InTVYBnn8qV">

32 <cm:relation cm:id="i8vhrICRxPO2u1SVi" cm:type="ps:parent">

33 <cm:target cm:id="iC7vpWS4M0gUQ2sSM">./ibICJxoLra_7C0UdB</cm:target>

34 </cm:relation>

35 </cm:relations>

36 [...]

37 </cm:element>

38 [...]

Figure 6.9: Partial Feature Model in XML format

Each feature as an unique id with which it is identified in child- and parent-relations.
The XML code is now step-wise explained:

� Lines 1 - 3: the feature Movement is defined.

� Lines 4 - 9: the relation of the Movement feature with two alternative sub-
features (children) of Movement is listed and the sub-features are pointed to
by the cm:target tags.

� Lines 11 - 15: The parent of Movement is pointed to (in this case Action).

� Lines 18 - 27: The Collision feature is defined in the same way as Movement.

� Lines 28 - 37: The sub-feature StraightLineMovement is defined. Observe
that the attribute cm:id at line 28 is used previously on line 6 as the content
of the cm:target element.

The family model XML representation is similar to that of the feature model. A
partial family model for the AGM case is listed in figure 6.10.

1 [...]

2 <cm:elements>

3 [...]

Analyzing Aspects in Production Plans for Software Product Lines 93

6.4 Application to Case

4 <cm:element cm:class="ps:component" cm:id="i1qcBTPpmqBRnN2Z7"

5 cm:name="EventHandlerDefinitions" cm:type="ps:component">

6 <cm:relations cm:class="ps:children" cm:id="i_Cma-wEaukTgMXea">

7 <cm:relation cm:id="iJkyNL-IPX45Olt94">

8 <cm:target cm:id="iVH3hSoZXUXCQFuyg">./irNZmuR9iSkpXNayr</cm:target>

9 <cm:target cm:id="i14I-XAFFTigi7ZNp">./ivmMGl79r9Cfwlabe</cm:target>

10 <cm:target cm:id="iv9hwD26QC4hu-XJs">./iWxd1HtL56kSWEJUz</cm:target>

11 <cm:target cm:id="iO5TDWyfsvYnh1UoR">./iWLTXpvf1vwMhdm10</cm:target>

12 </cm:relation>

13 </cm:relations>

14 <cm:relations cm:class="ps:parents" cm:id="iYyYE9nqn0mi2ZQGL">

15 <cm:relation cm:id="ibQKI8RXduE82eLIM" cm:type="ps:parent">

16 <cm:target cm:id="ib5JuUeOZ6AYe_B7t">./i0tv4v-LnoQBeqQu7</cm:target>

17 </cm:relation>

18 </cm:relations>

19 [...]

20 </cm:element>

21 <cm:element cm:class="ps:part" cm:id="irNZmuR9iSkpXNayr" cm:name="PlayEvent"

22 cm:type="ps:feature">

23 <cm:relations cm:class="ps:parents" cm:id="iCKOjVRUKLjyrLi0M">

24 <cm:relation cm:id="iLPvjcdeIzDKr43Gw" cm:type="ps:parent">

25 <cm:target cm:id="iHvi3Sp2eZz7fILEG">./i1qcBTPpmqBRnN2Z7</cm:target>

26 </cm:relation>

27 </cm:relations>

28 <cm:properties cm:id="iC_L8bRrW9sYlXHhz">

29 <cm:property cm:fixed="true" cm:id="ihkn1IEDWh8swNXCw" cm:name="fid"

30 cm:type="ps:feature">

31 <cm:constant cm:default="true" cm:id="iDWEGOs9bfsaOGiRB"

32 cm:type="ps:feature">iU8E5RhoUqWaFinnd/ip0O-wpFvPqKRtkMF</cm:constant>

33 </cm:property>

34 [...]

35 </cm:properties>

36 </cm:element>

37 [...]

38 <cm:element cm:class="ps:part" cm:id="iWLTXpvf1vwMhdm10"

39 cm:name="EventHandler" cm:type="ps:class">

40 <cm:relations cm:class="ps:children" cm:id="ijHPChfYRqM3G2RXv">

41 <cm:relation cm:id="iITM9c72OLmsyod3e">

42 <cm:target cm:id="ik1XRNbLOVQmcxo8r">./ibs5HLvML2_NJ1gDu</cm:target>

43 </cm:relation>

44 </cm:relations>

45 <cm:relations cm:class="ps:parents" cm:id="i1HU_0XvcUzoijTVn">

46 <cm:relation cm:id="i8mmYggyBgBJJ8LNe" cm:type="ps:parent">

47 <cm:target cm:id="iRl4yQJ1ykplt_gwL">./i1qcBTPpmqBRnN2Z7</cm:target>

48 </cm:relation>

49 </cm:relations>

50 [...]

51 </cm:element>

52 <cm:element cm:class="ps:source" cm:id="ibs5HLvML2_NJ1gDu"

53 cm:name="EventHandlerImpl" cm:type="ps:file">

54 <cm:relations cm:class="ps:parents" cm:id="iGVsi8GREM1iJ2yDy">

55 <cm:relation cm:id="iJnvMZxylmfP8k1gI" cm:type="ps:parent">

56 <cm:target cm:id="iX7mIHm3bVnVywXok">./iWLTXpvf1vwMhdm10</cm:target>

57 </cm:relation>

58 </cm:relations>

59 [...]

60 </cm:element>

61 </cm:elements>

62 [...]

Figure 6.10: Partial Family Model in XML format

As one can see the family model addresses relations between elements in the same
way as the feature model by referring to unique id’s. We again shortly walk through
the code:

Analyzing Aspects in Production Plans for Software Product Lines 94

6.4 Application to Case

� Lines 4 - 20: the component EventHandlerDefinitions is specified with its
four child relations: 3 features and 1 class as we have seen in figure 6.7 and 1
parent relation (the GameBoard component).

� Lines 21 - 36: the part PlayEvent is listed which is a feature mapping as
defined by cm:type="ps:feature" on line 22. The feature to which is mapped
is specified on lines 28 - 33. The other 2 features mapping are specified in the
same way in the complete XML file.

� Lines 38 - 51: the part EventHandler is listed which is a class as contained
in the component.

� Lines 52 - 60: finally, the source element EventHandlerImpl is specified which
is a concrete file with the implementation of the EventHandler class.

The variant model combines both the feature model and family model in one XML
file, where only the selected features and the associated components, parts and
source elements are extracted from the original models.

6.4.3 Aspect-Orientation in Pure::Variants

Let us now look at how crosscutting features are modeled in Pure::Variants and how
these are represented in the XML specification for the feature model and family
model. Then we investigate how the implementation of this feature as an aspect
can be modeled in the tool.

We previously introduced an aspect in our case study with the crosscutting feature
Replay Actions (see chapter4). Figure 6.11 shows the added feature ReplayActions
in the feature model. As one can see, the feature is part of the services feature.

Figure 6.11: Feature Model with Crosscutting Feature ReplayActions

We have also added mappings of the ReplayActions feature to the family model,
as shown in figure 6.12. The feature is mapped on multiple components, namely
EventHandlerDefinitions for handling the button click by the user through the
game interface, MovableSprite for saving the game state of all movable elements
in the game with each collision of a movable sprite with a stationary sprite, and
SpeedControl to save the speed setting in the game state.

Analyzing Aspects in Production Plans for Software Product Lines 95

6.4 Application to Case

Figure 6.12: Family Model with Crosscutting Feature ReplayActions

This means that the ReplayActions feature is scattered over multiple components
for implementation of the feature and that the feature is tangled with multiple other
features in the case of the EventHandlerDefinitions component.

As you can see in the model, all mapped ReplayActions features are implemented
by the ReplayActionsImpl aspect part type. The functionality is however limited,
because for example pointcut definition and aspect configuration is not possible in
the current version (2.0). Pure-Systems, the company behind Pure::Variants, does
offer an AspectC++ plugin for Visual Studio and these aspects could be mapped to
in the transformation process. Support for other aspect-oriented languages is not
available at the time of writing.

XML Representation of Crosscutting Feature
The XML representation of the ReplayActions feature in the feature model is
depicted in figure 6.13.

1 <cm:element cm:class="ps:feature" cm:id="iSvar_w2sH5nAGFyZ"

2 cm:name="ReplayActions" cm:type="ps:feature">

3 <cm:relations cm:class="ps:parents" cm:id="iug2DMhW-zLKFtLiD">

4 <cm:relation cm:id="ioQLtnxl_5aWM1RYQ" cm:type="ps:parent">

5 <cm:target cm:id="iGVdrIOU0f5SgBqxB">./iKIBAeesCZsSC94WA</cm:target>

6 </cm:relation>

7 </cm:relations>

8 <cm:properties cm:id="i-3_Bl4yxhVFLQFhx">

9 [..]

10 </cm:properties>

11 </cm:element>

Figure 6.13: XML Representation of ReplayActions feature in Feature Model

As one can see, the specification of this feature is similar to the other features
discussed earlier.

The family model is more interesting. The XML representation for the mapped
feature in the family model is shown in figure 6.14.

Analyzing Aspects in Production Plans for Software Product Lines 96

6.4 Application to Case

1 [..]

2 <cm:element cm:class="ps:part" cm:id="ip490phz4epBV8XpB"

3 cm:name="ReplayActions" cm:type="ps:feature">

4 <cm:relations cm:class="ps:parents" cm:id="itiHuPfBkjBb5KuAj">

5 <cm:relation cm:id="iGf0LW57ANa4D1gdb" cm:type="ps:parent">

6 <cm:target cm:id="iHieJZnCSk-atHaUM">./i1qcBTPpmqBRnN2Z7</cm:target>

7 </cm:relation>

8 </cm:relations>

9 <cm:properties cm:id="iykmK0aHe79oxpZzy">

10 <cm:property cm:fixed="true" cm:id="ickfttGrCML8vk4Lt" cm:name="fid"

11 cm:type="ps:feature">

12 <cm:constant cm:default="true" cm:id="i4jgOzIA14zen_o1B"

13 cm:type="ps:feature">iU8E5RhoUqWaFinnd/iSvar_w2sH5nAGFyZ</cm:constant>

14 </cm:property>

15 [..]

16 </cm:properties>

17 </cm:element>

18

19 <cm:element cm:class="ps:part" cm:id="i21kyXgn4GkZJJwjF"

20 cm:name="ReplayActions2" cm:type="ps:feature">

21 <cm:relations cm:class="ps:parents" cm:id="isKvk15CFvzYXC31L">

22 <cm:relation cm:id="iK6mwBoroEHEsQ6yT" cm:type="ps:parent">

23 <cm:target cm:id="iUDFBzA2So0OI3TEv">./iSOCma0AF_NWKWZAT</cm:target>

24 </cm:relation>

25 </cm:relations>

26 <cm:vname>

27 <cm:mimedesc cm:encoding="utf-8" cm:mimetype="text/plain">ReplayActions</

28 cm:mimedesc>

29 </cm:vname>

30 <cm:properties cm:id="ifbsh22wfRAjKOKS0">

31 <cm:property cm:fixed="true" cm:id="ivfLgZrnYDPptZa1m" cm:name="fid"

32 cm:type="ps:feature">

33 <cm:constant cm:default="true" cm:id="i4qIeJQNSMIgslbT6"

34 cm:type="ps:feature">iU8E5RhoUqWaFinnd/iSvar_w2sH5nAGFyZ</cm:constant>

35 </cm:property>

36 [..]

37 </cm:properties>

38 </cm:element>

39

40 <cm:element cm:class="ps:part" cm:id="i7N5DnNjkDiqtR2Fj"

41 cm:name="ReplayActions3" cm:type="ps:feature">

42 <cm:relations cm:class="ps:parents" cm:id="iU4HP08ITcssG3EwI">

43 <cm:relation cm:id="iiILZ8eLV8pXpgiBM" cm:type="ps:parent">

44 <cm:target cm:id="i-mLLdmJSsTPIm2GP">./iNFlMqbS3RxqHKBBs</cm:target>

45 </cm:relation>

46 </cm:relations>

47 <cm:vname>

48 <cm:mimedesc cm:encoding="utf-8" cm:mimetype="text/plain">ReplayActions</

49 cm:mimedesc>

50 </cm:vname>

51 <cm:properties cm:id="iRUBzQJRBvLCAk7Y1">

52 <cm:property cm:fixed="true" cm:id="i6IF2UyJ4yk3rOlvf" cm:name="fid"

53 cm:type="ps:feature">

54 <cm:constant cm:default="true" cm:id="ixhz4UccyZ_QdoAVE"

55 cm:type="ps:feature">iU8E5RhoUqWaFinnd/iSvar_w2sH5nAGFyZ</cm:constant>

56 </cm:property>

57 [..]

58 </cm:properties>

59 </cm:element>

60 [..]

Figure 6.14: XML Representation of ReplayActions feature in Family Model

Each cm:element in the XML code is a mapping of the ReplayActions feature to a

Analyzing Aspects in Production Plans for Software Product Lines 97

6.5 Summary

component, which is again targeted with the id of the component. Each cm:element
contains a cm:property node to make the actual mapping to the feature in the
feature model through its id.

The XML representation for one of the ReplayActionsImpl aspects is depicted in
figure 6.15.

1 [..]

2 <cm:element cm:class="ps:part" cm:id="iFePtotAE802o-S9r"

3 cm:name="ReplayActionsImpl" cm:type="ps:aspect">

4 <cm:relations cm:class="ps:parents" cm:id="ikVAyXNcqd2IGPoQR">

5 <cm:relation cm:id="iMm05uQPvMJQe3wtH" cm:type="ps:parent">

6 <cm:target cm:id="iFurYTokNqu1bAc22">./i7N5DnNjkDiqtR2Fj</cm:target>

7 </cm:relation>

8 </cm:relations>

9 [..]

10 <cm:vname>

11 <cm:mimedesc cm:encoding="utf-8" cm:mimetype="text/

12 plain">ReplayActionsImpl</cm:mimedesc>

13 </cm:vname>

14 </cm:element>

15 [..]

Figure 6.15: XML Representation of ReplayActionsImpl Aspect in Family Model

The aspect targets the feature it belongs to in the same way as other relations, as
we have seen earlier.

6.5 Summary

After the identification of the problems with crosscutting concerns for production
plans and the solutions we propose on both the component level and production
plan level, we in this chapter investigated the impact of aspect-orientation on the
product line process. We studied this through the concept of generative production
plans.

We started this chapter with background information on the different levels of au-
tomation of production plans and the main concepts of generative software devel-
opment.

We then analyzed what generative production plans are, what the requirements are
for generation of applications and which technologies are available for automation
of production plans.

We have worked out the product line process for the two popular generative tech-
nologies XML-Based Feature Modeling and Pure::Variants and compared both ap-
proaches and their tool support against the defined requirements. We prefer the
Pure::Variants approach in this report, because it satisfies all requirements, while
the XML-Based Feature Modeling approach does not yet provide a transformation
process from specification to application (skeleton).

Then the impact of aspect-orientation for the product line process was assessed and
we have proposed how the domain and application engineers can work with aspect-
orientation in generative production plans, based on our solutions for crosscutting
concerns from the previous chapter. Affected are the family model, production plan,
component library and the transformation process from production specification to
application.

Analyzing Aspects in Production Plans for Software Product Lines 98

6.5 Summary

We finished our discussion with an application of the selected Pure::Variants tool
to the AGM product line.

Analyzing Aspects in Production Plans for Software Product Lines 99

Chapter 7

Conclusions

As we have defined in our problem statement, the goal of this thesis was to investi-
gate problems with crosscutting concerns for production plans in software product
lines and how these crosscutting concerns can be modularized with aspects.

We have identified the problems with crosscutting concerns on two levels: on the
component level, that is in the library of components from which end-products are
composed through the production plan, and on the production plan level, that is in
the production plan itself with scattering of variable features in the plans (chapter
4).

Aspects have been applied to the identified problems to cope with the crosscutting
concerns in the product line context (chapter 5).

We have also studied the impact of aspect-orientation for the product line process
with the generative approach to product line engineering which is becoming an
important topic for producing software products through an automated process with
a generative production plan. We have specifically analyzed the product line process
for the two generative technologies XML-Based Feature Modeling and Pure::variants
and the impact of aspect-orientation on the product line process (chapter 6).

In this report a case study of the Arcade Game Maker product line was introduced
and used as a running example throughout the report (chapters 3 and 4).

7.1 Research Questions and Answers

We now discuss the results for each research question from the problem statement.

7.1.1 Crosscutting on the Component Level

On the component level, the problems with crosscutting concerns are threefold:
the crosscutting concerns need to be modularized as aspects, the aspects should be
configured for their specific variations, and the aspects need to be composed with
other assets without context-specific information in the aspect implementation.

See section 4.3.4 for the discussion of crosscutting concerns on the component level.

101

7.1 Research Questions and Answers

7.1.2 Crosscutting on the Production Plan Level

A product line has a predefined set of features of which each product has a subset of
these features. The product developer uses the production plan to make a correct
selection of the common and variable features for the to be produced product and
needs to configure each selected variable feature by choosing the relevant direct and
indirect sub-features for the product. This means that the variability in the product
line, that is the variable (sub-)features, is scattered throughout the production plan.
The variable features are specified in the context of their parent- and sub-features
and the variability in the product line is therefore not modularized.

Especially in large product lines with thousands of features it can be hard for the
product developer to keep track of these variations possible for the products. See
section 4.3.4 for a more in-depth discussion of crosscutting on the production plan
level.

7.1.3 Application of Aspects to Identified Problems

Component Level

We deal with crosscutting concerns on the component level by implementing cross-
cutting concerns as aspects in the asset library. An aspect then is a separate asset
in the product line and is selected for use in an application when the product should
contain the crosscutting feature that the aspect implements.

An aspect which contains variability needs to be configured for the specific context
the selected variations in which it is used. We have analyzed the framed aspects
approach to aspect configuration. When using this approach the product developer
creates (or generates) a specification frame that selects the right variations for the
aspect in question. The specification frame and the aspectual asset are then input
to the frame processor which produces the configured aspect.

A third issue is the composition of aspects with other code assets. Because we work
in a product line context the features selected for a product can differ strongly and
consequently the selection of assets from the library. Aspects do not implement
crosscutting behavior on their own: the aspect needs to be bound to the rele-
vant assets to deploy the crosscutting feature. We haved used the aspect-oriented
language JasCo to separate the aspect implementation and binding to a specific
context.

The reader is referred to section 5.3.2 for the analysis.

Production Plan Level

To modularize the variability in the production plan we work with XML-based
feature models and have proposed application of XQuery for extraction of features
from the model and modularize variable features. This gives handles to the product
developer to get better insight in the variability in the product line and to make
correct feature selections for a specific product.

We also propose that modularization of variability is supported by tooling, which
means that feature selections can be made not only by traversing the hierarchy of
features, but the product developer can also select variable features by providing
an enumeration of feature names or select features by using wildcards. A graphical
user interface should be added to the tooling to offer this functionality.

See section 5.3.2 for the analysis.

Analyzing Aspects in Production Plans for Software Product Lines 102

7.2 Recommendations and Future Work

7.1.4 Generative Production Plans

To investigate the impact of aspect-orientation on the product line process we have
studied what we call generative production plans: production plans that to some
degree support automation of the production process. We discussed the require-
ments for generative production plans and the two popular generative technologies
XML-Based Feature Modeling and Pure::Variants that can provide automation of
the production process (see section 6.3.1).

We have worked out the product line process for both approaches and compared
these against our requirements (see sections 6.3.2, 6.3.3 and 6.3.4). We prefer the
Pure::Variants approach, because it satisfies all requirements, while the XML-Based
Feature Modeling approach lacks support for the transformation process from prod-
uct specification to application (skeleton).

The impact of incorporating aspect-orientation in the product line process was then
explored for the Pure::Variants approach. We propose changes in the family model
to specify aspects as separate assets in combination with configuration variables
and hooks for aspect configuration and deployment respectively (see section 6.3.5)
as we have investigated in our discussion of the application of aspects.

7.2 Recommendations and Future Work

Software product line engineering aims to reduce the costs of manufacturing software
products by exploiting the commonalities of a product family and managing the
variabilities. However, it appears that product line engineering has not yet focused
on crosscutting concerns in production plans.

We think that for coping with these crosscutting concerns aspects can be applied, as
aspects are already used throughout the software development cycle to modularize
crosscutting concerns and to provide composition mechanisms with other concerns.

Our approach provides solutions for the identified problems with crosscutting con-
cerns on both the component level and production plan level. On the component
level, we modularize crosscutting concerns with constructs from aspect-oriented pro-
gramming. Configuration of aspects for specific variations is achieved with framed
aspects and a specification frame to select the right variation for each aspect. Com-
position of aspects with other selected assets can be handled with the concept of
connectors from the JasCo language which completely separate the aspect imple-
mentation from its binding to specific context.

On the production plan level, our approach is to modularize the variability in the
production plans by using XML-based feature models in the product line and the
functional query language XQuery to select features by their type (common or
variable) and/or name in stead of by their place in the feature hierarchy.

We have incorporated the proposed solutions in the product line process to illustrate
the impact of aspect-orientation on the process. Affected are the family model,
production plan, component library and the transformation process from production
specification to application.

In this report we have proposed a number of additions for the Pure::Variants tool to
incorporate aspects as separate product line assets, to support aspect configuration
and composition of these aspects with other code assets, and to make named-based
feature selections possible. We recommend to incorporate and graphically support
these additions in the Pure::Variants tool.

Analyzing Aspects in Production Plans for Software Product Lines 103

7.2 Recommendations and Future Work

Future work lies in the transformation process from application specification to a
concrete application or application skeleton. The transformation process in the
Pure::Variants approach can be modified and extended, but this is only possible
in the commercial versions of the tool. Specifically the transformation of aspects
would be interesting to investigate.

Analyzing Aspects in Production Plans for Software Product Lines 104

Bibliography

[1] Akşit, M. et al., Abstracting object-interactions using composition-filters, In R.
Guerraoui et al., Editors, Object-based Distributed Processing, Springer, Verlag,
1993

[2] Aracic, Ivica, Vaidas Gasiunas, Mira Mezini, Klaus Ostermann, An Overview of
CaesarJ, Darmstadt University of Technology, Germany, 2005

[3] Araújo, J. et al., Early Aspects: The Current Landscape, Technical Note,
CMU/SEI-2004-TN-xxx, CMU-SEI, Pittsburg, 2005

[4] Arrango, G., Domain Analysis Methods, In Software Reusability, Schäfer,
Prieto-Diaz, D. and Matsumoto, M. (Eds.), Ellis Horwoord, New York, pp.
17-49, 1994

[5] Bakker, J., Traceability of Concerns, Msc. Thesis, TRESE research group, Uni-
versity of Twente, 2005

[6] Berg, van den, K.G. et al., AOSD Ontology 1.0 – Public Ontology of Aspect-
Orientation, Report, IST-2-004349-NOE, AOSD-Europe, 2005

[7] Berg, van den, K.G. & Conejero, J.M., Disentangling Crosscutting in AOSD: A
Conceptual Framework, European Interactive Workshop on Aspects in Software,
Brussel, 2005

[8] Bergmans, L. et al., Aspect Composition using Composition Filters, In Akşit, M.,
Editor, Software Architectures and Component Technology, Kluwer Academic
Publishers, Dordrecht, 2002

[9] Brune, K. et al., C4 Software Techology Reference Guide – A Prototype, Hand-
book, CMU/SEI-97-HB-001, CMU-SEI, Pittsburg, 1997

[10] Buschmann, F. et al., Pattern-Oriented Software Architecture. A System of
Patterns, John Wiley & Sons Ltd., Chichester, UK, 1996

[11] Cechticky, V. et al., XML-Based Feature Modelling, Int. Conf. on Software
Reuse, Madrid, Spain, pp. 101-114, LNCS 3107

[12] Chastek, G. & McGregor, J., Guidelines for Developing a Product Line Pro-
duction Plan, Technical Report, CMU/SEI-2002-TR-006, CMU-SEI, Pittsburg,
2002

[13] Clemente, Pedro J. & Hernández, Juan, Aspect Component Based Software
Engineering, 2nd AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), 2003

[14] Clements, P. & Northrop, L., Software Product Lines: Practices and Patterns,
Boston, Addison-Wesley, 2002

106

Bibliography

[15] Czarnecki, K. & Eisenecker, U., Generative Programming Methodes, Tools and
Applications, Addison-Wesley, 2000

[16] K. Czarnecki. Overview of Generative Software Development, In J.-P. Bantre et
al. (Eds.): Unconventional Programming Paradigms (UPP) 2004, Mont Saint-
Michel, France, LNCS 3566, pp. 313328, 2005

[17] Elrad, T. et al., Aspect-Oriented Programming, Comm. of the ACM, v. 44, n.
10, pp 29 – 32, 2001

[18] Feature-Based Framework Modeling, http://control.ee.ethz.ch/˜ceg/fbfm/doc/Overview.html,
ETH-Zürich, August 2005

[19] Open Source Native XML Database, http://www.exist-db.org, June 2006

[20] Filman, R.E. et al., Aspect-Oriented Software Development, Boston, Addison-
Wesley, 2005

[21] Gamma, E. et al., Design Patterns – Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995

[22] Han, J., An Approach to Software Component Specification, Proc. 21st Inter-
national Conference on Sotware Engineering, Los Angeles, 1999

[23] Hannemann, J. and Kiczales, G., Design Pattern Implementation in Java and
AspectJ, Proceedings of the 17th Annual ACM conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 161-
173, November 2002

[24] Harrison, W. et al., Concern Modeling in the Concern Manipulation Environ-
ment, Workshop on Modeling and Analysis of Concerns in Software, 2005

[25] Hürsch, W. & Lopes C., Separation of Concerns, Technical Report, College of
Computer Science, Northeastern University, 1995

[26] Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York,
1990

[27] Jacobsen A. & Krämer, B., Modeling Interface Definition Language Extensions,
In Proc. Technology of Object-Oriented Languages and Systems - TOOLS Pa-
cific, Sydney, pp 241 – 252, 2000

[28] Kang, K. et al., Feature-Oriented Domain Analysis (FODA) Feasibility Study,
Technical Report, CMU/SEI-90-TR-21, CMU-SEI, Pittsburg, 1990

[29] Kiczales, G. et al., An Overview of AspectJ, In Proceedings of ECOOP 2001,
LNCS 2072, Springer-Verlag, Berlin, 2001

[30] Kiczales, G. et al., Getting Started with AspectJ, Comm. of the ACM, v. 44, n.
10, pp 59 – 65, 2001

[31] Krueger, P., Variation Management for Software Product Lines, in: Proc. of
Second Software Product Line Conference, 2002

[32] Lohmann, D. & Ebert, J., A Generalization of the Hyperspace Approach Us-
ing Meta-Models, In Proceedings of the 2003 AOSD Early Aspects Workshop,
Boston, 2003

Analyzing Aspects in Production Plans for Software Product Lines 107

Bibliography

[33] Loughran, N. et al., Supporting Product Line Evolution with Framed Aspects,
3th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), 2004

[34] Loughran, N. et al., Framed Aspects: Supporting Variability and Configurability
for AOP, 8th International Conference on Software Reuse (ICSR), 2004

[35] McGregor, John D., Arcade Game Maker Product Line,
http://www.cs.clemson.edu/˜johnmc/productLines/example/frontPage.htm,
Clemson University, October 2005

[36] Mezini, Mira and Ostermann, Klaus. Conquering Aspects with Caesar, In (M.
Aksit ed.) Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD), March 17-21, 2003, Boston, USA. ACM Press,
pp. 90-100.

[37] Mezini, Mira & Ostermann, Klaus, Variability Management with Feature-
Oriented Programming and Aspects, in Proceedings SIGSOFT 2004, Newport
Beach, CA, USA, 2004

[38] COM: Component Object Model Technologies, http :
//www.microsoft.com/com/default.mspx, February 2006

[39] Mikhajlov, L. and Sekerinski, E., A Study of The Fragile Base Class Problem,
in Proceedings ECOOP ’98, Lecture Notes in Computer Science, 1445, Springer-
Verlag, pp. 355 – 382, 1998

[40] Nagy, István, Bergmans, Lodewijk, Akşit, Mehmet, Composing Aspects at
Shared Join Points, in Proceedings International Conference NetObjectDays
2005, Erfurt, Germany, 2005

[41] Northrop, L., SEI’s Software Product Line Tenets, IEEE Software 19(4), pp.
32-40, 2002

[42] Object Management Group (OMG), CORBA 3.0 specification, http :
//www.omg.org/technology/documents/formal/corba2.htm, November 2005

[43] Ossher, H., Tarr, P., Multi-Dimensional Separation of Concerns in Hyperspace,
Research Report RC21452(96717)16APR99, IBM Research Division, Almaden,
1999

[44] Parnas, D.L., On the Criteria to be used in Decomposing Systems into Modules,
Commun. ACM, v. 15, n. 12, 1972

[45] Pinto, Mónica, Fuentes, Lidia, Troya, Jose Maŕıa, DAOP-ADL: An Architec-
ture Description Language for Dynamic Component and Aspect-Based Develop-
ment, in Proc. 2nd International Conference on Generative Programming and
Component Engineering (GPCE), Erfurt, Germany, 2003

[46] pure::variants, variant management, http : //www.pure −
systems.com/V ariantManagement.49.0.html, May 2006

[47] pure::variants Eclipse Plug-in User’s Guide, Version 1.1 for pure::variants 2.0,
http : //www.pure− systems.com/Documentation.93.0.html, 2005

[48] Salinas, P., Adding Systematic Crosscutting and Superimposition to Composi-
tion Filters, EMOOSE Msc. thesis, Vrije Universiteit Brussel, Brussel, 2002

[49] Enterprise JavaBeans Technology, http : //java.sun.com/products/ejb/,
February 2006

Analyzing Aspects in Production Plans for Software Product Lines 108

Bibliography

[50] Sutton, S., Rouvellou, I., Modeling of Software Concerns in Cosmos, In Pro-
ceedings of the 1st International Conference on Aspect-Oriented Software De-
velopment (AOSD), Enschede, The Netherlands, 2002

[51] Sutton, S., Rouvellou, I., Concern Modeling for Aspect-Oriented Software De-
velopment, in Aspect-Oriented Software Development, R. Filman, et al., Editors,
Addison-Wesley, 2004

[52] Suvée, Davy, Vanderperren, Wim, Jonckers, Viviane, JasCo: an Aspect-
Oriented approach tailored for Component Based Software Engineering, 2nd
International Conference on Aspect-Oriented Software Development (AOSD),
Boston, USA, 2003

[53] Tarr, P. et al. N Degrees of Separation: Multi-Dimensional Separation of Con-
cerns, 21st Int. Conf. on Software Engineering, ACM, New York, 1999, pp. 107
– 119

[54] Trigaux, J. & Heymans, P., Modelling variability requirements in Software
Product Lines: a comparative survey, EPH3310300R0462/215315, FUNDP –
Equipe LIEL, Namur, 2003

[55] Wagelaar, D., A Concept-Based Approach for Early Aspect Modelling, Vrije
Universiteit Brussel, Brussel, 2003

[56] Wang, B. et al., A Generative and Component based Approach to Reuse in
Database applications, Net.Objectdays, Erfurt, Germany, 2003

[57] Weiss, R.J., Reuse in the Software Development Process, Universität Tübingen,
Tübingen, 2003

Analyzing Aspects in Production Plans for Software Product Lines 109

Appendix A

Concern Modeling

A.1 Introduction

Separation of Concerns is an important principle in software engineering for decom-
position and structuring of separate concerns in software (see also section 2.3.2).
Several modeling approaches for ’regular’ concerns as well as crosscutting concerns
have been developed, of which a number of approaches are discussed here: Hyper-
spaces, Cosmos, Extended Hyperspace Model, CoCompose, and the Concern Manip-
ulation Environment.

A.2 Hyperspaces

Tarr et al. [53] state that the primary goals of software engineering are to improve
software quality, to reduce the costs of software production, and to facilitate main-
tenance and evolution. To reach these goals reduced software complexity, improved
comprehensibility, promotion of reusability and facilitation of evolution are needed.

Reduced complexity and improved comprehensibility require decomposition mech-
anisms to divide software into meaningful and manageable pieces. They also re-
quire composition mechanisms to put pieces together usefully. Reuse requires the
development of large-scale reusable components, low coupling, and powerful, non-
invasive adaptation and customization capabilities. Ease of evolution depends on
low coupling and also requires traceability across the software lifecycle, mechanisms
for minimizing the impact of changes, and substitutability. The IEEE Standard
Computer Dictionary defines traceability as ”the degree to which a relationship can
be established between two or more products of the development process, especially
products having a predecessor-successor or master-subordinate relationship to one
another” [26].

Tarr et al. identify a number of problems that complicate software engineering [53]:

� Software comprehensibility tends to degrade over time.

� Many common maintenance and evolution activities result in high-impact,
invasive modifications.

� Artifacts are of limited reusability, or are reusable only with difficulty.

110

A.3 Cosmos

� Traceability across the various software artifacts is limited, which further com-
plicates evolution.

According to Tarr et al., these problems are in large part due to limitations and un-
fulfilled requirements related to separation of concerns due to which not all concerns
of importance in software systems are separated. Existing formalisms for separation
of concerns provide only small, restricted sets of decomposition and composition
mechanisms, and these typically support only a single, ”dominant” dimension of
separation at a time. This is called the ”tyranny of the dominant decomposition”.

Tarr et al. state that to overcome these problems support is needed for multi-
dimensional separation of concerns. They propose a model of decomposition and
composition and introduce the concept of hyperslices. A hyperslice is a ”set of
conventional modules, written in any formalism”[53]. Hyperslices are intended to
encapsulate concerns in dimensions other than the dominant one. The modules
within it contain all, and only, those units that pertain to, or address, a given con-
cern. Hyperslices can overlap, in that a given unit may occur, possibly in different
forms, in multiple hyperslices. A system is written as a collection of hyperslices,
thereby separating all the concerns of importance in that system, along as many
dimensions as are needed.

After the decomposition of a software system in a number of hyperslices, these
need to be composed. This is where the concept of a hypermodule comes into the
picture. A hypermodule is a ”set of hyperslices, together with a composition rule that
specifies how the hyperslices must be composed to form a single, new hyperslice that
synthesizes and integrates their units” [53]. Because of this composition property, a
hypermodule is appropriate wherever a hyperslice may be used. Hypermodules can
thus be nested and thereby promote abstraction and encapsulation. Composition is
based on commonality of concepts across units: different units describing the same
concept are composed into a single unit describing that concept more fully. This
process involves three steps: matching units in different hyperslices that describe
the same concept, reconciliation of differences in these descriptions, and integration
of the units to produce a unified whole. It is the task of the composition rule in the
hypermodule to specify the details of composition.

A composition rule is a combination of a concise, general rule, and detailed, specific
rules that specify exceptions to the general rule or handle cases that it cannot
handle. Generally, units of different hyperslices are matched by name. Detailed
rules take care of more complex matchings. Composition rules can be defined at
the hypermodule level, or per hyperslice to allow each hyperslice itself to specify
how it is to be composed. However, putting the composition rule at a higher level
allows more flexible overlap en enhanced reuse [53].

To use the hyperspaces model, one must instantiate it for particular artifact devel-
opment formalisms. Instantation entails determining which notational constructs
map to units and modules, deciding how to represent hyperslices, and providing
support for composition of hyperslices. Tackling the issues involved in this process
is the job of the software engineers, based on the specific context of the software
system to be developed.

A.3 Cosmos

Although progress has been made on ”advanced separation of concerns” (ASOC),
such as multi-dimensional separation of concerns [53] and aspect-oriented program-

Analyzing Aspects in Production Plans for Software Product Lines 111

A.3 Cosmos

ming [17], Sutton & Rouvellou identify a number of problems in current concern
modeling approaches [50][51]:

� Current ASOC tools provide only limited support for explicit concern model-
ing.

� Representations of concerns tend to be tied to particular tools or artifacts.

� Concern modeling usually occurs just in the context of a particular type of
development activity, such as coding and design, and not in the entiere life
cycle.

Sutton & Rouvellou state that concern modeling should play a central role through-
out the development life cycle and propose Cosmos, a general-purpose concern-space
modeling schema. The goals of Cosmos are [50][51]:

� Support the representation of arbitrary concerns.

� Support the representation of composite concerns.

� Support the representation of arbitrary relationships among concerns.

� Support the association of concerns to arbitrary software units, work products,
or system elements.

� Be language independent; that is,

– Not depend on any particular programming language or other develop-
ment formalism.

– Accommodate different development formalisms appropiate to different
stages of the life cycle.

– Be able to capture information that is not necessarily reflected in partic-
ular development formalisms.

� Be methodology independent.

� Be applicable across the software life cyle.

� Support a variety of types of software engineering tasks (as appropriate to the
development methods in which it is used).

Cosmos models software concern spaces in terms of concerns, relationships and
predicates. See figure A.1 for an outline of the elements in the Cosmos concern
model. Note that items in normal font are part of the core schema and items in
italic font are representative schema extensions used in particular concern models.

Cosmos divides concerns into two main categories, logical and physical. Logical
concerns represent conceptual concerns; physical concerns deal with ”real world
concerns, such as work products, software units, hardware units, and services.

Logical concerns are further categorized as classifications, classes, instances, prop-
erties, and topics. Classifications are for modeling systems of classes and allow
for multiple classifications of concerns. Classes are for categorization of concerns.
Instances represent particular concerns. Properties are characteristics, such as per-
formance, configurability, etc. Topics are groups of concerns of generally different
types, typically related to a theme of user interest.

Analyzing Aspects in Production Plans for Software Product Lines 112

A.4 Extended Hyperspace Model

Figure A.1: Outline of Cosmos Concern Model Elements [51]

Physical concerns comprise instances, collections, and attributes. Physical instances
represent particular system elements. Collections represent groups of physical in-
stances. Attributes are the specific properties of instances or collections.

Relationships are divided into four categories: categorical, interpretive, physical,
and mapping. Categorical relationships reflect fundamental semantics of the con-
cern categories, for example generalization. Interpretive relationships relate logical
concerns according to user-assigned semantics, for example contribution, which in-
dicates that one concern contributes in some way to another concern. Physical
relationships associate physical concerns. Mapping relationships represent (non-
categorical) associations between logical and physical concerns. These are important
– along with interpretive relationships – for purposes such as dependency analysis,
impact assessment, and change propagation.

Predicates represent integrity conditions over various relationships and can be clas-
sified accordingly.

When modeling a software system with Cosmos crosscutting concerns (see section
2.3.3) can be identified by looking at recurring themes under various kinds of con-
cern. Such crosscutting concerns represent other dimensions by which the concern
space can be organized and topics are one way to represent them [50][51].

A.4 Extended Hyperspace Model

During software development, different concerns have to be taken into account in
the different life cycle stages of the development process. These different concerns
can be understood as different views to the system, or as Tarr et al. call them, di-
mensions of a concern space [53]. Concerns are usually described is some formalism.

Analyzing Aspects in Production Plans for Software Product Lines 113

A.5 CoCompose

Lohmann & Ebert call these formalisms artifact languages [32]. They state that
there is a strong relationship between views/dimensions and artifact languages, and
that for succesful multi-dimensional seperation of concerns (MDSoC) over the whole
software development cycle, one therefore needs a model that supports on-demand
integration of artifacts and artifact languages. They find that current attempts for
MDSoC and AOSD mainly focus on single languages and mainly on the implemen-
tation phase.

Lohmann & Ebert propose the Extended Hyperspace Model as an approach to MD-
SoC by language integration using meta-models and the original Hyperspaces idea
[53]. An ideal artifact language describes just one kind (dimension) of concerns.
Each artifact language, like the UML family of languages and its sublanguages,
consists of a set of syntactical constructs that can be used to build concrete ar-
tifacts. Lohmann & Ebert call these syntactical constructs unit types and state
that syntax and semantics of an artifact language itself have to be defined in some
formalism: meta-modeling. Each syntactical concept (unit type) of the language is
represented by a meta-class in the meta-model, and each relationship between them
is represented by a meta-association.

In the (Extended) Hyperspace model, units and concerns are organized in a concern
space. A concern space ”consists of a set of dimensions, a set of concerns and a set
of units. Each concern is placed in exactly one dimension. Each unit is mapped to
zero or more concerns, namely the concerns it addresses” [32]. The aim of a concern
space is to integrate units and concerns of a software system in such a way, that
concerns can be easily identified and separated, that relationships between different
concerns become clear and that a software system can be built out of selected
concerns [43]. Integration of artifact languages corresponds to integration of the
underlying meta-models. The key benefit of integration is the extra knowledge it
provides about inter-dimensional connections and dependencies that is not available
from the original artifacts.

To get additional views on a the concern space, Lohmann & Ebert introduce the
notion of primary and secondary concerns. Primary concerns are artifact-based
concerns, ie. a class in a class-diagram, and their dimensions are called primary
dimensions, ie. a <Classes> dimension. Concerns and dimensions which are not
(yet) represented by their own artifacts and artifact languages, ie. special concerns
stemming from the application domain or ”on-demand” dimensions for additional
user- or task-oriented views, are called secondary concerns on their secondary di-
mensions. Being nog based on artifact languages, secondary dimensions are not
meta-modeled. However, the units from the primary dimensions can be mapped to
the secondary concerns to which they relate. In this manner, secondary dimensions
provide on-demand and alternative separation of concerns along arbitrary dimen-
sions [32].

A.5 CoCompose

Aspects or crosscutting concerns (see section 2.3.3) are expressed in many different
ways by current aspect-oriented languages. A few examples are the join point
mechanism used by AspectJ [29], the hyperspaces mechanism [53] (see section A.2),
and the composition filters mechanism [8] (see section 4.2.3). One specific aspect-
oriented mechanism may be more efficient to use than another depending on the
application context.

According to Wagelaar this diversity in representing aspects contributes to several
problems when trying to model aspects in an early stage of the software lifecycle,

Analyzing Aspects in Production Plans for Software Product Lines 114

A.5 CoCompose

Figure A.2: An Observer Composite Solution Pattern [55]

for example [55]:

� In current object-oriented software modeling approaches, the implementation
semantics (e.g. method, class, aspect) of each software element must be deter-
mined when introducing the element, even though it may be hard to choose
the exact semantics at that moment.

� If there are gaps in the process of automated code generation from sofware
models, these may require manual transformations between software lifecycle
stages. If, in addition, the software structures in different lifecycle stages
differ, one local update in one stage may require numerous updates in the
other. The original update is not well traceable in the other stage either.
For example, Cosmos (see section A.3) does not commit to implementation
constructs initially, but still, the transformation of software models described
using such early stage approaches must be done manually.

Wagelaar proposes CoCompose as a software modeling approach that supports as-
pects or crosscutting concerns [55]. The CoCompose modeling language introduces
concepts as a central modeling element to overcome the problem of early com-
mitment to implementation constructs. Composites are introduced as a reusable
abstraction of design concepts, such as inheritance, superimposition, or a specific
design pattern. Instances can be used to connect the concepts into a coherent model.

Concepts can be mapped to implementation constructs such as aspects, classes,
instances, parameters, attributes, methods or pointcut designators. Concepts can
contain embedded implementations in order to avoid making each detail of the
software system explicit as a concept. These implementations are expressed in an
implementation language to which the developer wants to map. Concept implemen-
tations can have constraints to describe the extent of their applicability.

Composites can contain composite roles and published concepts in their interface.
Composite roles describe the role a concept plays in the relationship defined by
the composite. Published concepts represent concepts exported by the composite.
The definition of a composite can contain embedded descriptions of the structure
of the design concept represented by the composite. This structure, called solution
pattern, again consists of concepts and composites. See figure A.2 for an example
solution pattern in the CoCompose language.

Analyzing Aspects in Production Plans for Software Product Lines 115

A.6 Concern Manipulation Environment

Each composite’s definition can also contain implementation generators, which can
implement the composite in a specific implementation language. By being able to
define several solution patterns and implementation generators for one composite,
the composite isn’t tied down to a single implementation. It represents a high-level
element that can be implemented in several ways [55].

In order to close gaps in automated code generation, an automated process has
been developed for translating CoCompose models into specific implementation
languages. This process is based on Design Algebra [48] and consists of three steps
[55]:

� Flattening the model : eliminating composites through the application of their
solution patterns. Since each composite can have several solution patterns,
this will result in a set of models.

� Determining the implementation form (e.g. class, method) of each concept.
The possible forms for implementing a concept are determined by (1) the
form contraints of implementation generators and (2) the available embedded
implementations of that concept and (3) the form constraints on the chosen
embedded implementations for other concepts.

� Generating the code for the transformed model. First, a skeleton implementa-
tion is generated, based on the chosen implementation forms of all concepts.
Any embedded implementations of the concepts are inserted. Then, the im-
plementation generators for each composite are applied.

Wagelaar has created a prototype CoCompose tool for visual modeling, automated
translation into an implementation language (currently Java or ConcernJ), and
managing a repository of composites for reuse [55].

A.6 Concern Manipulation Environment

The Concern Manipulation Environment (CME) is an AOSD environment in which
software is organized and manipulated in terms of concerns. CME is a tool-based
approach to multi-dimensional concern modeling across the software life cycle and
supports the identification, definition, encapsulation, extraction, and composition
of concerns [24].

A.7 Summary

In this chapter we have studied a number of popular concern modeling approaches.
The Hyperspaces approach states that support is needed for multi-dimensional sep-
aration of concerns to overcome the problem of a single, ’dominant’ dimension of
separation at a time. The approach proposes a model of decomposition and com-
position and introduces the concept of hyperslices as a set of conventional modules,
written in any formalism. Hyperslices are intended to encapsulate concerns in di-
mensions other that the dominant one.

A second approach is Cosmos which is a general-purpose concern modeling schema
and models concerns, different types of relationships between concerns, and predi-
cates which represent integrity conditions over various relationships.

We have also discussed the Extended Hyperspace Model that introduces the concept
of a concern space that consists of a set of dimensions, a set of concerns and a set

Analyzing Aspects in Production Plans for Software Product Lines 116

A.7 Summary

of units. Each concern is placed in exactly one dimension. Each unit is mapped
to zero or more concerns, namely the concerns it addresses. In this way concerns
and units are integrated and software systems can be built out of selected concerns
through this mapping.

The CoCompose approach focuses on modeling crosscutting concerns next to the
’regular’ concerns. Also mappings can be made from concerns (called concepts) to
their implementation (called solution patterns).

We finished this chapter with the Concern Manipulation Environment which is an
Eclipse plugin for modeling concerns.

Analyzing Aspects in Production Plans for Software Product Lines 117

Appendix B

Class Diagrams for AGM
Case

For better understanding of the structure of the code assets in the AGM Product
Line Case, this chapter shows the class diagrams of all the relevant packages and
the classes within. These class diagrams have been generated from the actual C#
code for the games using Borland Together Architect. Thanks go out to John D.
McGregor – the creator of the AGM Case – for providing the code assets.

118

B.1 GameDefinitions package

B.1 GameDefinitions package

Figure B.1: Class Diagram for the GameDefinitions package

Analyzing Aspects in Production Plans for Software Product Lines 119

B.2 GameBoard package

B.2 GameBoard package

Figure B.2: Class Diagram for the GameBoard package

Analyzing Aspects in Production Plans for Software Product Lines 120

B.3 BricklesDefinitions package

B.3 BricklesDefinitions package

Figure B.3: Class Diagram for the BricklesDefinitions package

Analyzing Aspects in Production Plans for Software Product Lines 121

B.4 Brickles package

B.4 Brickles package

Figure B.4: Class Diagram for the Brickles package

Analyzing Aspects in Production Plans for Software Product Lines 122

B.5 PongDefinitions package

B.5 PongDefinitions package

Figure B.5: Class Diagram for the PongDefinitions package

Analyzing Aspects in Production Plans for Software Product Lines 123

B.6 Pong package

B.6 Pong package

Figure B.6: Class Diagram for the Pong package

Analyzing Aspects in Production Plans for Software Product Lines 124

B.7 BowlingDefinitions package

B.7 BowlingDefinitions package

Figure B.7: Class Diagram for the BowlingDefinitions package

Analyzing Aspects in Production Plans for Software Product Lines 125

B.8 Bowling package

B.8 Bowling package

Figure B.8: Class Diagram for the Bowling package

Analyzing Aspects in Production Plans for Software Product Lines 126

Appendix C

Production Plan for AGM
Case

This appendix includes a copy of the relevant information in the generic production
plan from the AGM Product Line [35]. The document is discussed in the Case
Study in chapter 3.

127

Arcade Game Maker
Production Plan

John D. McGregor

August 2003

Analyzing Aspects in Production Plans for Software Product Lines 128

 i

Table of Contents

Abstract... iv

1 Overview.. 1
1.1 Identification.. 1
1.2 Document Map ... 1
1.3 Using this document ... 1
1.4 Concepts... 2
1.5 Readership ... 2

2 Strategic view of product development.. 3
2.1 Assumptions ... 3
2.2 Qualities.. 3

2.2.1 Product qualities ... 3
2.2.2 Production process qualities ... 4

2.3 Products possible from available assets... 4
2.4 Production strategy... 4

3 Overview of available core assets... 5
3.1 Naming conventions ... 5
3.2 Analysis-level assets .. 5
3.3 High-level design assets... 5
3.4 Source code.. 5
3.5 Test cases... 6

3.5.1 Unit tests ... 6
3.5.2 Integration tests .. 6
3.5.3 System tests ... 6

3.6 Basic inputs and dependencies .. 7
3.6.1 Inputs .. 7
3.6.2 Dependencies ... 7

3.7 Variations .. 7
3.7.1 Absorbing vs reflecting.. 7
3.7.2 Event Handling.. 7

4 Detailed production process ... 8

Analyzing Aspects in Production Plans for Software Product Lines 129

ii

4.1 Outline .. 8
4.2 The process.. 8

4.2.1 Product identification, definition and analysis 8
4.2.2 Design new game... 8
4.2.3 Build Code .. 9
4.2.4 Test the New Game.. 9

5 Tailoring production plan to product-specific production plan11

6 Management information... 12
6.1 Schedule .. 12
6.2 Production Resources .. 13
6.3 Bill of materials (BOM) ... 13
6.4 Product-specific details... 14
6.5 Metrics.. 14

6.5.1 New lines of code ... 14
6.5.2 Unique lines of code ... 14

7 Attached Processes ... 15
7.1 Constructing the Production Plan... 15
7.2 Changing the Production Plan.. 16

8 References and Further Reading .. 18

Analyzing Aspects in Production Plans for Software Product Lines 130

 1

1 Overview

1.1 Identification
The Arcade Game Maker Product Line organization will produce a series of arcade games
ranging from low obstacle count to high with a range of interaction effects. More detailed
information can be found in the Arcade Game Maker scope document. This document
describes how a product is produced in the AGM product line.

1.2 Document Map
The Arcade Game Maker Product Line is described in a series of documents. These
documents are related to each other as shown in Figure 1. This map shows the order in which
the documents should be read for the first time. Once the reader is familiar with the
documents, the reader can go directly to the information needed.

This is the production plan. Product Line organizations use this document to capture how the
product teams will build a new product. This document follows the outline provided in
[Chastek 02].

1.3 Using this document
This document is a template for product-specific production plans. Chapter 6 is the site of the
major items that must be modified to make this the production plan for a specific product.

Analyzing Aspects in Production Plans for Software Product Lines 131

2

Figure 1- Document Map

1.4 Concepts
See the Glossary document for definitions of basic concepts.

1.5 Readership
This document is intended to provide some level of information to all of the stakeholders in
the Arcade Game Maker framework but is primarily intended for product development teams.
The production plan describes for a manager the resources that are needed to produce a
product. Technical members of the organization can use the production plan as the detailed
process for producing a product.

Analyzing Aspects in Production Plans for Software Product Lines 132

 3

2 Strategic view of product development

2.1 Assumptions
• The company has an existing pool of software developers who are highly technical.

They have fielded products on a variety of hardware platforms and are accustomed to
being involved down to the driver level of the software.

• The product line contains games that are similar in content but that differ in platform.
Differences in platform translate into differences in graphics implementation, which
is a major feature of these products.

2.2 Qualities
We will briefly discuss two types of properties: product qualities and production process
qualities.

2.2.1 Product qualities
The products must be enjoyable to play in order to be a success. This requires both a colorful
display and realistic action.

• Any new game elements should add to the quality of the display. It should be colorful
and representative of the item it represents.

• The action of the game must proceed sufficiently fast to demand the player’s
attention. When constructing a game, if the number of elements slows the game,
alternatives must be investigated.

• The action of the game must look like what the player expects. The motion and
reactions of movable elements must be realistic. As elements are added to the game,
their actions and their boundaries must be correctly set through parameters so that
collisions appear real.

Analyzing Aspects in Production Plans for Software Product Lines 133

4

2.2.2 Production process qualities
The production process in the AGM product line is largely manual. The personnel are very
technical so the process allows for hands-on manipulation of the product. To provide these
technical personnel with a tool that automates the production process to a high degree would
have been a waste of their talent, frustrating for them, and a poor use of the resources needed
to produce the automation.

2.3 Products possible from available assets
The products that are possible from the available assets only include games like those
constructed so far. Using the incremental approach the asset base is only developed to the
extent needed to construct the current set of products. As additional increments are
completed, the variety of games that are possible will greatly increase.

2.4 Production strategy
The production strategy for the AGM product line includes a domain-based design approach
and a manual construction approach. The analysis of requirements and development of the
architecture will be based on domain information. Each new product will be built by having
software developers manually specialize assets where necessary, gather other domain-based,
core assets that are needed and then build an executable by running a compiler and linker.

The core assets are being built incrementally. The product teams for the earlier products will
have fewer assets to choose from than will the teams on later products. For earlier product
teams, one responsibility will be to identify candidates for core assets in the later increments.
The freeware development will provide many opportunities for this.

The formal statement of the strategy1 is:

We will position ourselves as the leading provider of rapidly customized, high-performance,
low cost games by producing products that are easily modified, have better performance than
our competitors, are sufficiently low cost to deter potential entrants from entering the market,
and require sufficiently few resources to allow their use on any embedded computer. We will
produce the initial products using a traditional iterative, incremental development process
using a standard programming language, IDE, and available libraries. We will create
domain-based assets, including a product line architecture and software components, for the
initial products in a manner that will support a migration to automatic generation of the
second and third increment products.

1 See memo 04-01 for the complete rationale for this production strategy

Analyzing Aspects in Production Plans for Software Product Lines 134

 5

3 Overview of available core assets

The available core assets include analysis, design, and implementation assets.

3.1 Naming conventions
Names that end in “Interface” are interface definitions.

Names that start with “test” are DotUnit test case suites.

3.2 Analysis-level assets
The requirements document includes several useful assets.

• The domain analysis model organizes the concepts in the main domain, games, and
provides the attributes of each concept as well as the relationships among them.
Developers who are new to the domain should study this asset to understand the
background for the product on which they are working.

• The feature model shows the features of products in the product line.

• The use case model provides a superset of requirements for products. Select the
appropriate use cases for your product.

3.3 High-level design assets
The main high-level design asset is the software architecture. The architecture is described in
detail in the two-volume architecture description.

3.4 Source code
Each of the interfaces in the existing architecture has been implemented. The C# components
are named according to the names given in the architecture documentation.

Analyzing Aspects in Production Plans for Software Product Lines 135

6

3.5 Test cases
Test cases may be reused in building a product when the tests cover functionality or features
that are included in the new product. This section describes existing test cases.

Test cases are not available for all assets yet. Here we describe the current status of test
assets.

3.5.1 Unit tests
Individual unit tests are constructed using the DotNet testing framework. The source code
is in the form of classes. These tests are available from the Unit Test icon on the
Document Roadmap.

Unit test classes are currently available for:

• Velocity/Speed/Direction cluster
•

3.5.2 Integration tests
Integration of units that result in a component is tested at the API level. Integration of
units that result in GUI level is tested using the same procedure as the system test.

The current integration tests that are available are:

3.5.3 System tests
System tests are currently administered by hand. Each system test is a scenario that is
derived from a specific use case. When a use case is used on more than one product, the
related test cases can also be used on that new product. These test cases are documented
in the test plan for a product.

Test plans are currently available for:

• Brickles
•

Analyzing Aspects in Production Plans for Software Product Lines 136

 7

3.6 Basic inputs and dependencies

3.6.1 Inputs
• The main inputs to each game are mouse and keyboard events.

• When the change case for saving a game is implemented, an additional set of inputs
will be the data saved to the file.

3.6.2 Dependencies
• The game products are heavily dependent upon the graphics library of the

programming language.

• When the change case for saving a game is implemented, the game products will be
dependent on the operating system.

3.7 Variations

3.7.1 Absorbing vs reflecting
The stationary game elements participate in the game by providing behavior during a
collision. There are two major behaviors available in the core assets at the moment. A
stationary element may reflect the movable element according to the laws of physics or the
element may absorb the movable element and cause it to be deleted from the game. A
parameter on each element determines which of these behaviors is performed.

3.7.2 Event Handling
The event handling routines vary from one game to another. An implementation of the
EventHandlerDefinitions interface is provided as a parameter to the GameBoard component.
Each of the mouse and keyboard events are handled in a way defined in this implementation.

Analyzing Aspects in Production Plans for Software Product Lines 137

8

4 Detailed production process

This step-by-step process was developed as the AGM developers built the Brickles and Pong
freeware games. It will be used by future product teams.

4.1 Outline
The process for producing a new product has five major steps:

• Product definition and identification

• Incremental analysis

• Design product

• Build product

• Test product

4.2 The process

4.2.1 Product identification, definition and analysis
1. The products were identified as part of the product line planning process. Since each

product is a single game, identifying the game to be implemented identifies the product.

2. The definition of the game consists of defining the rules of the game. There are several
versions of most of these games so the product team must first decide on a set of rules to
implement.

3. Analyze features for the new game that are variations from previous games; Identify
existing features that must change for this game

4.2.2 Design new game
1. Plan how to provide those features from existing components

2. Plan how to provide the remaining features from new assets

Analyzing Aspects in Production Plans for Software Product Lines 138

 9

3. Design the new implementation of the EventHandlerDefinitions interface.

4.2.3 Build Code
1. Start new ClassLibrary in a Visual Studio Project using {game name}Definitons as its

name – Use this for new classes other than the game definition itself

2. Start new Windows Application in a Visual Studio Project using the name of the game.

3. Copy the Form1.cs file from a previous product line project

4. Change the namespace name to the new game

5. Configure the new gameboard

6. Copy data.txt from a previous game’s working directory. This is the resource file for the
game.

7. Edit data.txt to reflect the new game

8. Compile the resource file

9. Copy the compiled resource file to the Debug directory

4.2.4 Test the New Game
1. Each core asset is tested, either by inspection or execution, as it is created or revised.

When the asset is revised, the previous testing materials are revised and reapplied to the
new version of the asset.

For a code asset, the unit test asset is coded as a DotUnit test class.

2. The initial generic game test set is revised for each new game. In addition a game
specific test set is created.

Analyzing Aspects in Production Plans for Software Product Lines 139

10

 Generic game test
suite, version 1.0

Brickles Pong Bowling

Generic game test
suite, version 1.0

Brickles specific
test suite, version
1.0

Generic game test
suite, version 1.3

Pong specific test
suite, version 1.0

Generic game test
suite, version 1.7

Bowling specific
test suite, version
1.0

is applied to is applied to is applied to

is derived from

Figure 2 - Test cases related to products

3. The system test cases are maintained as text documents and are applied by hand.

Analyzing Aspects in Production Plans for Software Product Lines 140

 11

5 Tailoring production plan to product-
specific production plan

The production plan is, in general, very generic. The information in the plan applies to all
products built using the current asset base. There are, however, some sections of the plan that
must be modified for a specific product. Here we are giving a guide to product teams using
this plan on how to modify it for their specific product.

The two most important and obvious sections that must be modified are the schedule and the
bill of materials. Since we are using a manual product production approach the schedule
defines which personnel are needed and when. The bill of materials will provide a useful
means of tracking the use of core assets.

Analyzing Aspects in Production Plans for Software Product Lines 141

12

6 Management information

6.1 Schedule
In the product specific production plan this section contains the detailed schedule based on
the process defined in section 4. Here we provide a template schedule. In the product-specific
production plan this template is completed. The personnel assignments are made to specific
people and the time estimates are changed based on any special circumstances for the
product.

Table 1 – Schedule template

Process step Product specific Who When

Product Identification Product planning Done

Product Definition analyst ≅ .5 day

Product Analysis Analyze the rules of the new game analyst ≅ .5 day

Identify new elements needed by
game

designer ≅ 2 hours

Identify changes to existing elements designer ≅ .5 day

Create product-specific
implementation of the Game interface

designer ≅ .25 day

Product Design

Create product-specific
implementation of
EventHandlerDefinitions

designer ≅ .25 day

Create new .Net projects for libraries
and application

developer ≅ .5 hour Product Build

Create new make file Automated/developer ≅ .5 hour

Create unit tests for new elements developer ≅ .5 day

Modify existing unit tests for existing
elements

developer ≅ .5 day

Execute unit tests developer ≅ .5 day

Modify/extend product test suite tester ≅ 1 day

Product Test

Execute product tests tester ≅ .5 day

Analyzing Aspects in Production Plans for Software Product Lines 142

 13

6.2 Production Resources
The primary resources needed for product production are the Visual Studio .Net environment
and the UML modeling tool being used by the organization.

During the analysis and design steps in the product production process the UML model is
extended to include any new elements that must be defined.

The .Net environment is used to create any new components that are required. The
environment is then used to build an executable.

6.3 Bill of materials (BOM)
Here we provide a template BOM. For each product-specific production plan fill in the
template with exactly what will be used.

This game requires the following list of code assets:

Component Source Cost

product-specific Game
component

In-house

the generic GameBoard In-house

required Sprites (add specifics
here)

In-house

Implementation of
EventHandlerDefinitions
interface

In-house

These are all in-house developed components so the BOM has a total cost of zero.

Analyzing Aspects in Production Plans for Software Product Lines 143

14

6.4 Product-specific details
The rules of the game, which are the most unique parts of the product, are distributed across
the Sprites, the EventHandlerDefinitions, and the Game component. Most of the rules
enforced by Sprites are common across most, if not all, of the games. The
EventHandlerDefinitions component is developed specifically for a game as is the Game
component.

The single most important product-specific detail is the animation loop in the Game class.
This defines the sequence of events that occur in the Game.

6.5 Metrics
Two metrics will be important to the product production process: number of new lines of
code and the number of unique lines of code.

6.5.1 New lines of code
This metric will describe the number of lines of new code that has to be written for this
product. This code may or may not be used in another product later. A higher value for this
metric indicates more effort required to produce the product and impacts cost and schedule.

6.5.2 Unique lines of code
This metric will describe the percentage of a product that is code not used in any other
product. This metric will change over time as code assumed to be unique gets reused or as
code assumed to be reusable is not reused after some time or product horizon. A higher value
of this metric indicates less similarity between products and indicates a longer pay back time.

Analyzing Aspects in Production Plans for Software Product Lines 144

 15

7 Attached Processes2

7.1 Constructing the Production Plan
[Chastek 02] describes how to build a production plan. We will not repeat that information
here. However, in Figure 3 we show a very high-level version of the process in [Chastek 02].

 C o n c e iv e a p r o d u c t
p r o d u c t io n s t r a t e g y t h a t
h e lp s a c h ie v e t h e
o b je c t iv e s o f t h e p r o d u c t
lin e .

C o n s t r u c t a p r o d u c t io n
p la n t h a t e m b o d ie s t h e
p r o d u c t io n s t r a t e g y

P r o d u c e p r o d u c t s u s in g
t h e p la n . C o lle c t d a t a a s
t h e p r o d u c t s a r e c r e a t e d .

A p p ly t h e p r o c e s s in t h e
n e x t s e c t io n t o r e v is e t h e
p r o d u c t io n p la n b a s e d
o n t h e d a t a .

Figure 3 - High-level planning process

2 This section is the “attached process” described in [Clements 02]. For the product line production

plan, this process defines how the production plan is built initially. The process focuses mainly on
modifying the production plan of the product line.

Analyzing Aspects in Production Plans for Software Product Lines 145

16

7.2 Changing the Production Plan
The production plan is reviewed as experience grows and as the asset base is revised. Data is
collected at the delivery of each product. The AGM product line organization will review the
generic production plan at the end of each increment using the data collected. The review is
scheduled after the revision of the core asset base is completed for the next increment. The
member of the core asset team that owns the plan initiates the review.

The review is intended to identify any inconsistencies between the newly revised set of assets
and the production plan. Prior to the review, the architecture documentation and any
information in the plan about the assets should be updated to reflect the new asset base.

Analyzing Aspects in Production Plans for Software Product Lines 146

 17

Increment review/
analysis of next
products

Production plan
review

Consistent with
core assets?

Modify the plan to
reflect changes in core
assets

no

Accept plan

yes

Collect data after each
product is produced

Figure 4 – Process to change the production plan

Analyzing Aspects in Production Plans for Software Product Lines 147

Appendix D

Management Information
from Brickles Production
Plan

This appendix includes a copy of the management information provided in the Brick-
les production plan from the AGM Product Line [35]. The document is discussed
in the Case Study in chapter 3.

148

12

6 Management information

6.1 Schedule
In the product specific production plan this section contains the detailed schedule based on
the process defined in section 4. Here we provide time estimates for most tasks. In the
product-specific production plan this template is completed. The personnel assignments are
made to specific people and the time estimates are changed based on any special
circumstances for the product.

Table 1 – Time Estimates for producing the Brickles product

Process step Product specific Who When

Product Identification Product planning Done

Product Definition analyst ? .5 day

Product Analysis Analyze the rules of the new game analyst ? .5 day

Identify new elements needed by
game

designer ? 2 hours

Identify changes to existing elements designer ? .5 day

Create product-specific
implementation of the Game interface

designer ? .25 day

Product Design

Create product-specific
implementation of
EventHandlerDefinitions

designer ? .25 day

Create new .Net projects for libraries
and application

developer ? .5 hour Product Build

Create new make file Automated/developer ? .5 hour

Create unit tests for new elements developer ? .5 day

Modify existing unit tests for existing
elements

developer ? .5 day

Execute unit tests developer ? .5 day

Modify/extend product test suite tester ? 1 day

Product Test

Execute product tests tester ? .5 day

Analyzing Aspects in Production Plans for Software Product Lines 149

 13

6.2 Production Resources
The primary resources needed for product production are the Visual Studio .Net environment
and the UML modeling tool being used by the organization.

During the analysis and design steps in the product production process the UML model is
extended to include any new elements that must be defined.

The Brickles requirements document includes only those use cases that relate to the Brickles
game.

The .Net environment is used to create any new components that are required. The
environment is then used to build an executable.

A .Net solution has been created for the Brickles game.

6.3 Bill of materials (BOM)
Here we provide a template BOM. For each product-specific production plan fill in the
template with exactly what will be used.

This game requires the following list of code assets:

Component Source Cost

product-specific Game component In-house 30 lines of new code1

the generic GameBoard In-house 40 lines of new code1

required Sprites In-house 20 lines of new code1

 MovableSprite 15 lines of new code1

 StationarySprite 0 lines of new code1

 Puck 5 lines of new code1

 Paddle 5 lines of new code1

 Brick 5 lines of new code1

 Left Wall 5 lines of new code1

 Right Wall 5 lines of new code1

 Floor 5 lines of new code1

 Ceiling 5 lines of new code1

 BrickPile 25 lines of new code1

Implementation of
EventHandlerDefinitions interface

In-house 5 lines of new code1

 BricklesEventHandlerDefinitions 15 lines of new code1

1 Since this is an example, only relative costs are given instead of actual costs.

Analyzing Aspects in Production Plans for Software Product Lines 150

14

The costs of assets are documented at the product for which they are first used. The
profitability of the product is computed differently and amortizes the costs of assets across all
of the products that use the asset.

6.4 Product-specific details
The rules of the game, which are the most unique parts of the product, are distributed across
the Sprites, the EventHandlerDefinitions, and the Game component. Most of the rules
enforced by Sprites are common across most, if not all, of the games. The
EventHandlerDefinitions component is developed specifically for a game as is the Game
component.

The single most important product-specific detail is the animation loop in the Game class.
This defines the sequence of events that occur in the Game.

For Brickles the Game class includes catchers for the exceptions that signal the two different
endings to the game.

6.5 Metrics
Two metrics will be important to the product production process: number of new lines of
code and the number of unique lines of code.

6.5.1 New lines of code
This metric will describe the number of lines of new code that has to be written for this
product. This code may or may not be used in another product later. A higher value for this
metric indicates more effort required to produce the product and impacts cost and schedule.

Since Brickles is the first product in the product line technically all the lines of code are new.

6.5.2 Unique lines of code
This metric will describe the percentage of a product that is code not used in any other
product. This metric will change over time as code assumed to be unique gets reused or as
code assumed to be reusable is not reused after some time or product horizon. A higher value
of this metric indicates less similarity between products and indicates a longer pay back time.

The Game module and the event handling definitions, 45 lines of code, are unique to this
product.

Analyzing Aspects in Production Plans for Software Product Lines 151

Appendix E

Example Use Case from
AGM Requirements

This appendix includes a copy of an example use case provided in the the Require-
ments document from the AGM Product Line [35]. The document is discussed in
the Case Study in chapter 3.

152

 15

Appendix A – Use Cases

Play the Game

Use Case ID: AGM001

Use Case Level: abstract

 Scenario

Actor: GamePlayer or GameInstaller

Pre-Conditions: AGM011 has completed successfully

Detailed Description

Trigger: Actor selects game executable and initiates execution

Actor System responds by

Selects PLAY from the menu Initializes the game and displays
the gameboard

Left mouse click (or equivalent) to
begin play

Starting game action

Uses left mouse button (or
equivalent) or keyboard to enter
commands

Responds to the command in the
expected manner

Responds to Won/Lost/Tied dialog
with left mouse click (or equivalent)

Returns the gameboard to its
initialized, ready to play state

Analyzing Aspects in Production Plans for Software Product Lines 153

Post-conditions: Actor has Won/Lost/Tied and the game is ready to play again

Alternative Courses of Action:

Actor System responds by

At any time the actor may select
EXIT from the menu

See use case AGM002

Extensions:

Actor System responds by

See use case AGM006

See use case AGM007

See use case AGM008

Exceptions:

Actor System responds by

Concurrent Uses:

Related Use Cases: Exit the game

External Supporting Information

Requirement Originator: domain analyst

Analyzing Aspects in Production Plans for Software Product Lines 154

 17

Rationale For Requirement: This is the main purpose of the product

Additional Relevant Requirements:

Decision Support

Frequency: on demand

Criticality: high

Risk: low

Modification History

Use Case Recorder: John D. McGregor

Initiation Date: Friday, June 13, 2003, at 8:11 AM

Last Modified: Wednesday, June 2, 2004, at 9:25 AM by Systems Staff

Exit the Game

Use Case ID: AGM002

Use Case Level: System End-to-End

 Scenario

Actor: GamePlayer or GameInstaller

Analyzing Aspects in Production Plans for Software Product Lines 155

Appendix F

Glossary

The research areas of software product line engineering and aspect-oriented soft-
ware development have their own lingo and terminology. This glossary provides
definitions of the main concepts and terms used in this document, for which there
is general agreement.

F.1 AOSD

Within the European network of excellence AOSD-Europe an ontology has been
created for AOSD terminology to enable effective communication and integration
of activities within the network. The definitions in this glossary are taken from [6].

Advice An advice is an aspect element, which augments or constrains other con-
cerns at join points matched by an pointcut expression [6].

AOSD Aspect-Oriented Software Development (AOSD) is a set of emerging tech-
nologies that seeks new modularisations of software systems. AOSD allows multiple
concerns to be separately expressed but nevertheless be automatically unified into
working systems. [20].

Aspect An aspect is a unit for modularizing an otherwise crosscutting concern [6].

Composition Composition is the integration of multiple modular artefacts into a
coherent whole [6].

Concerns A concern is an interest, which pertains to the systems’s development,
its operation or any other matters that are critical or otherwise important to one
or more stakeholders [6].

Crosscutting Crosscutting is the scattering and/or tangling of concerns arising
from the inability of the selected decomposition to modularize them effectively [6].

Crosscutting Concern A crosscutting concern is a concern, which cannot be mod-
ularly represented within the selected decomposition. Consequently, the elements

156

F.2 SPLE

of crosscutting concerns are scattered and tangled within elements of other concerns
[6].

Decomposition Decomposition is the breaking down of a larger problem into a set
of smaller problems which may be tackled individually [6].

Early Aspects Early Aspects are crosscutting concerns that are identified in the
early life cycle phases of a software system’s development. These phases include
the requirements analysis, domain analysis and architecture design phases. Early
aspects cannot be localised and tend to be scattered over multiple early life cycle
artifacts or artifact elements (such as sections in a requirements document, or mod-
ules in an architectural design) [3].

Join Point A join point is a point of interest in some artefact in the software
lifecycle through which two or more concerns may be composed [6].

Join Point Model A join point model defines the kinds of join points available
and how they are accessed and used [6].

Pointcut A pointcut is a predicate that matches join points. More precisely, a
pointcut is a relationship from JoinPoint -¿ boolean, where the domain of the rela-
tionship is all possible join points [6].

Scattering Scattering is the occurrence of elements that belong to one concern in
modules encapsulating other concerns [6].

Separation of Concerns Separation of Concerns is an in depth study and real-
ization of concerns in isolation for the sake of their own consistency (adapted from
”On the Role of Scientific Thought” by Dijkstra, EWD 447) [6].

Tangling Tangling is the occurrence of multiple concerns mixed together in one
module [6].

Tyranny of Dominant Decomposition The Tyranny of Dominant Decompo-
sition refers to restrictions (or tyranny) imposed by the selected decomposition
technique (i.e. the dominant decomposition) on software engineer’s ability to mod-
ularly represent particular concerns [6].

Weaving Weaving : Historically this term is used to refer to composition of aspects
with other concerns in the system. See composition. [6].

F.2 SPLE

Concept Model A concept model describes the concepts in a domain in some ap-
propriate modeling formalism and informal text [15].

Analyzing Aspects in Production Plans for Software Product Lines 157

F.2 SPLE

Core Assets Core assets often include, but are not limited to, the architecture,
reusable software components, domain models, requirements statements, documen-
tation and specifications, performance models, schedules, budgets, test plans, test
cases, work plans, and process descriptions. The architecture is key among the
collection of core assets [14][41].

Development Development is a generic term used to describe how core assets (and
products) come to fruition. Software enters an organization in one of three ways:
the organization builds it (from scratch or by mining legacy software), purchases
it (largely unchanged, off the shelf), or commissions it (contracts with someone
else to develop it especially for them). So the term development might actually in-
volve building, acquiring, purchasing, retrofitting earlier work, or any combination
of these options [41].

Domain Domain: An area of knowledge scoped to maximize the satisfaction of
the requirements of its stakeholders, includes a set of concepts and terminology un-
derstood by practitioners in that area, and includes the knowledge of how to build
software systems (or parts of software systems) in that area [15].

Domain Analysis Domain analysis can be defined as the process of identifying,
capturing and organising domain knowledge about the problem domain with the
purpose of making it reusable when creating new systems. The result of domain
analysis is a domain model which can be reused to implement various applications
[4].

Domain Definition The domain definition defines the scope of a domain and
characterizes its contents by giving examples of existing systems in the domain,
counterexamples, and generic rules of inclusion and exclusion [15].

Domain Engineering Domain engineering is the activity of collecting, organizing,
and storing past experience in building systems or parts of systems in a particu-
lar domain in the form of reusable assets (i.e., reusable work products), as well as
providing an adequate means for reusing these assets (i.e., retrieval, qualification,
dissemination, adaptation, and so on) when building new systems [15].

Domain Lexicon A domain lexicon defines the domain vocabulary [15].

Domain Model A domain model is an explicit representation of the common and
variable properties of the systems in a domain, the semantics of the properties and
domain concepts, and the dependencies between the variable properties. In general,
a domain model consists of a domain definition, domain lexicon, concepts models
and feature models [15].

Domain Scoping Domain scoping identifies the domains of interest, the stake-
holders, and their goals, and defines the scope of the domain [15].

Feature A feature is a property of a domain concept, which is relevant to some
domain stakeholder and is used to discriminate between concept instance. In the
context of domain engineering, features represent reusable, configurable require-
ments [15].

Analyzing Aspects in Production Plans for Software Product Lines 158

F.2 SPLE

Feature Model A feature model defines a set of reusable and configurable require-
ments for specifying the systems in a domain. A feature model prescribes which
feature combinations are meaningful, which of them are preferred under which con-
ditions and why [15].

Software Architecture A software architecture is a description of the subsystems
and components of a software system and the relationships between them. Subsys-
tems and components are typically specified in different views to show the relevant
functional and nonfunctional properties of a software system. The software architec-
ture of a system is an artifact. It is a result of the software development activity [10].

Software Product Line A software product line is a set of software-intensive sys-
tems sharing a common, managed set of features that satisfy the specific needs of
a particular market segment or mission and that are developed from a common set
of core assets in a prescribed way [15].

Analyzing Aspects in Production Plans for Software Product Lines 159

	Abstract
	Foreword
	Introduction
	Context
	Problem Statement
	Approach
	Thesis Overview

	Background
	Introduction
	Software Product Line Engineering
	Introduction
	Commonality and Variability
	Product Line Activities
	Two Life-Cycle Model

	Aspect-Oriented Software Development
	Introduction
	Separation of Concerns
	Crosscutting Concerns

	Summary

	Case Study: Arcade Game Maker Product Line
	Introduction
	Case Overview
	Product Line Assets Overview
	Business Case
	Scope
	Concept of Operations
	Requirements
	Architecture
	Production Plans
	Test Plans
	User Manual
	Code Assets

	Software Life-Cycle Phases
	Domain Analysis
	Requirements Analysis
	Architecture Design
	System Design
	Component/Generator Development
	System Development

	Production Plans In-Depth
	Product Line Scope
	Assets for Product Production
	Production Process
	Management of the Production Process
	Product-Specific Production Plans

	Summary

	Impact of Crosscutting Concerns
	Introduction
	Background
	AspectJ
	CaesarJ
	Composition Filters

	Analysis
	Crosscutting Concern Replay Actions
	Implementing Replay Actions feature
	Problems with 'Traditional' Implementation
	Crosscutting Concerns for Production Plans
	Case Example of Crosscutting on Production Plan Level
	Replay Actions feature as Aspect

	Summary

	Modularizing Crosscutting Concerns for Production Plans
	Introduction
	Background
	Component Based Software Engineering
	Aspect Configuration

	Analysis
	Classification of Product Lines
	Approach to Identified Problems

	Application of Solutions to Case
	Component Level
	Production Plan Level

	Summary

	Applying Generative Production Plans
	Introduction
	Background
	Automation of Production Plans
	Generative Software Development

	Analysis
	Generative Production Plans
	XML-Based Feature Modeling Process
	Pure::Variants Process
	Comparison of Both Approaches
	Aspect-Oriented Product Line Process

	Application to Case
	Feature, Family, and Variant Models
	XML Representation of Models
	Aspect-Orientation in Pure::Variants

	Summary

	Conclusions
	Research Questions and Answers
	Crosscutting on the Component Level
	Crosscutting on the Production Plan Level
	Application of Aspects to Identified Problems
	Generative Production Plans

	Recommendations and Future Work

	Bibliography
	Concern Modeling
	Introduction
	Hyperspaces
	Cosmos
	Extended Hyperspace Model
	CoCompose
	Concern Manipulation Environment
	Summary

	Class Diagrams for AGM Case
	GameDefinitions package
	GameBoard package
	BricklesDefinitions package
	Brickles package
	PongDefinitions package
	Pong package
	BowlingDefinitions package
	Bowling package

	Production Plan for AGM Case
	Management Information from Brickles Production Plan
	Example Use Case from AGM Requirements
	Glossary
	AOSD
	SPLE

