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Abstract

Functional programming languages are not directly suitable to program I/O. In
this thesis different models of I/O in functional languages are discussed with
their advantages and disadvantages. Comparing these advantages and disad-
vantages results in the observation that the stream I/O-model is - at least from
an educational point of view - the most appropriate model, because it does not
create any new constructs to the language and the I/O-model is easy to under-
stand. One problem in the stream I/O model is that event types in the form of
algebraic types in the language are fixed.

In this thesis I will show that it is possible to add a new type construction
that can combine algebraic data types in untagged unions. The benefit of these
unions is, that from the perspective of the programmer the union behaves as
if it were defined as the list of all constructors of both types. Now the union
can be used as a normal algebraic type. In order to add this union construct
to a functional programming language, new typing rules must be introduced.
Obviously subtyping is closely related to unions, since values of the constituents
of a union are also values of the (composite) union. therefore subtyping rules
must be added to the type system. It will be shown that using these type rules
the intuitive notion of unions being commutative, associative and idempotent
are preserved.

To implement this union construct in a functional language, the language must
be extended to handle union types. Therefore two rewriting schemes are given
in this thesis. A näıve implementation for the language Amanda and a more
extensive one using some features that are particular to Haskell.

Lastly the use of unions in the stream I/O model is shown with two examples,
one using the näıve rewriting scheme and one using the more extensive rewriting
scheme. In particular is shown that events can be defined separately in libraries
and can the events from this libraries can be combined in a union to use them
in a program.
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1

Introduction

In computing, a lot of work is being done to create computers that can interact
with humans in a fluent way. Operating systems, for instance, are programs that
react on input given by the programmer. It is obvious that the mere existence
of most programs is based on run-time interaction with its users. This users
can be human, but can also be other programs. When programs behave in an
autistic way, i.e. there is no interaction with the ”outside” world whatsoever,
the program most likely is not very useful.

From a software engineering perspective programming is not only about having
all necessary constructions in the language to create programs that have all
necessary functionality, but also about how easy is it to create, extend and
maintain programs. The focus in this thesis therefore is not to create new
functionality in the language, but to increase the extendability of programs in
the language by means of libraries.

Input and output is difficult to achieve in lazy functional programming lan-
guages, due to referential transparency and the unknown evaluation order. In
this thesis I will compare different models to handle input and output in lazy
functional programming languages. Not only the abstract model, but also an
implementation in a functional programming language is discussed.

Focus will be on one of these models, the stream I/O model. One of the problems
with this approach is that it is not possible to extend the event types, modeled
by an algebraic type. Therefore a new construction will be added to the language
which allows the combination of algebraic types in a union. This union can be
used to create libraries of events that can be developed independently of each
other.

In the next chapters two rewriting schemes are given to rewrite a language with
unions to a language without unions. These rewriting schemes are a systematic
way of rewriting the language which can be automated easily. An example pre-
processor that implements these rewriting rules is implemented and shows how
these rewriting rules can be implemented.

1



CHAPTER 1. INTRODUCTION

In the example that is given it is shown that the use of unions in stream based
I/O make it possible to create more abstract events that can be used just like
any other event. The programming effort to extend the event types is reduced
to a minimum as will be shown.

Models to handle I/O in functional languages, along with their implementa-
tions will be discussed in Chapter 2. To extend the use of the stream I/O
model in Chapter 3 a new construction will be introduced to extend a func-
tional programming language. Chapter 4 describes a way to implement this in
a functional language. An example of the use of this construction in combina-
tion with the stream I/O model is given in Chapter 6. In Chapter 5 another way
to implement this construction in a functional programming language. Lastly
future research will be discussed in Chapter 7. An actual implementation in the
language Amanda is given in Appendix D.

2



2

Input/Output in Functional
Languages

2.1 Programming Languages in General

There are several paradigms on which programming languages are founded, the
two most important paradigms are the imperative and declarative programming
paradigm. The difference between imperative and declarative languages is the
way they address a problem. Imperative languages focus on how a problem
must be solved, whereas declarative languages focus on what the solution is
like. SQL is a declarative language for instance, because queries are not given
in terms of how to find data, but instead give criteria for the desired data. An
outline of the classification of programming languages is given in Figure 2.1.
Most programming languages fit nicely into this categorization, however there
are some exotic languages, that try to combine the best of both worlds and
therefore do not fit in one box. Examples of such languages are Curry (Hanus,
Kuchen, & Moreno-Navarro, 1995), which is a hybrid language of the functional
and logic paradigm; OCaml (Leroy, 2004), which combines functional, logic and
object oriented features; and Oz (Müller, Müller, & Roy, 1995), which uses
multiple paradigms: functional, logic, imperative, OO and others. Yet, in this
thesis I will focus on non-hybrid functional programming languages.

2.2 Functional Programming Languages

Functional programming languages (FPLs) are less known than imperative or
object-oriented languages, therefore I will discuss some features that are par-
ticular to FPLs and do not have an equivalent in the better known imperative
programming languages. One feature of FPLs is that functions in general do
not have side-effects. The evaluation of a function can not have any other ef-
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CHAPTER 2. INPUT/OUTPUT IN FUNCTIONAL LANGUAGES

Figure 2.1: (Not extensive) Overview of Programming Languages

fect than to compute its result. This eliminates a major source of bugs and
makes the evaluation order in this respect irrelevant (Hughes, 1989). Therefore,
proofs about the correctness of programs are easier. On the other hand, this
creates some problems also, as will be discussed below. Furthermore the use of
functions as first-class citizens and the use of lazy evaluation enhances the appli-
cations of functional programming languages. Several functional programming
language are lazy, i.e. expressions are only evaluated when the result is needed.
This evaluation strategy is based on the call-by-name evaluation strategy, which
substitutes function arguments directly into the function body. Call-by-name
is used almost only in theory, because arguments are re-evaluated each time
they are used. The programming languages I will address in this chapter all use
a memoized form of the call-by-name evaluation strategy, named call-by-need.
This means that functions are evaluated once instead of multiple times, when
possible. Not all functional programming languages behave in a lazy way, there
are languages that behave in a strict way, i.e. expressions are evaluated when
they are found (eager). Examples of the latter are the functional programming
languages ML and Erlang.

Most Code examples throughout this thesis are written in Amanda. Yet in some
cases, when language specific examples are given, this will be in Haskell(98) or
occasionally Clean.

Another important feature of functional programming languages is that func-
tions can be passed as first class citizens to other functions. In Code 2.1 this
is shown, the function double is passed as a first class citizen, as an argument,
to the function map. The function map will evaluate the function double for
each element of the list.

4



CHAPTER 2. INPUT/OUTPUT IN FUNCTIONAL LANGUAGES

doubleList : : [num] −> [num]
doubleList xs = map double xs

double : : num−> num
double = (∗2)

Code 2.1: Function passed as a first class-citizen

Furthermore the lazy evaluation of functions makes it possible to define an
infinite list of 2’s as shown in Code 2.2. This function can be used in other
functions because the function creating this list is only evaluated to create the
part of the list that is necessary to compute the result of the function fortytwo.
This function therefore evaluates to 42 instead of evaluating the function twos
ad infinitum.

twos : : [num]
twos = 2:twos

fortytwo : : num
fortytwo = sum (take 21 twos)

Code 2.2: Lazy evaluation

With the absence of assignments, it is not possible to have a mutable global
variable. This can create problems in some cases. An example of functional-
ity that can not be created very elegantly in a functional language is when a
program needs to create a unique identifier. To do this the current value of
the unique identifier needs to be stored. In functional programming languages
it is not possible to store the value in a variable that can be updated during
the execution. Therefore the value must be passed to all functions or needs to
be stored in a file. Yet this creates a lot of passing of arguments to and from
functions that do not need this argument, or it creates a lot of overhead by
accessing files. This can be relieved somewhat by wrapping these values in a
state that can be passed between functions, but still the state must be passed.

Referential transparency, the ability to substitute equals for equals, is closely
related to the fact that functions can not have side effects. Equals can only be
substituted when no other (side) effects occur during evaluation.

I highlighted briefly some features of functional programming languages. As is
already known all paradigms have elegant parts and have parts that are less
desirable. The choice of a programming language is therefore greatly influenced
by personal preference.

Input and output (I/O) is one part that is difficult to achieve in a (pure) func-
tional programming language. Yet, the ultimate purpose of running a program
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CHAPTER 2. INPUT/OUTPUT IN FUNCTIONAL LANGUAGES

is invariably to cause some side effect: a changed file, some new pixels on the
screen, a message sent or something else. A program that has no observable
effect whatsoever (no input, no output) would not be very useful.

There are two closely related features in pure lazy FPL that do not cooper-
ate well with I/O, (a) the unknown evaluation order and (b) referential trans-
parency. Because the evaluation order is not known beforehand and is something
the programmer should not be bothered with, it is not trivial to use functions
that have side effects. These side effects usually need to occur in a certain or-
der, therefore the programmer needs to know or should be able to control the
evaluation order.

2.2.1 Evaluation Order

As discussed above the evaluation order of functions does not influence the result
of functions in non-strict pure FPLs provided that the functions terminate. Yet
in some cases the evaluation order needs to be known, especially when handling
I/O. Consider for instance the functions foo and bar in Code 2.3 (which has
some functions that are not referentially transparent). The types of the file
accessing functions can be seen in Code 2.4.

foo : : [char ]
foo = (fread ”temp. txt”) ++ bar

bar : : [char ]
bar = ”b” , i f fwrite ”temp. txt” ”b”

= error ”Problem writing to f i l e ” , otherwise
Code 2.3: Evaluation order influencing results

| | path contents
fread : : [char ] −> [char ]
| | path contents isSucceeded?
fwrite : : [char ] −> [char ] −> bool

Code 2.4: File accessing functions

Assume that the content of the file temp.txt in Code 2.3 is ’’ a ’’ . When foo is
evaluated before bar the result of function foo will be ’’ ab ’’ . Otherwise when
bar is evaluated first the value will be ’’ bb ’’ , provided that the writing to the
file succeeds. This illustrates both that the evaluation order is relevant and that
referentially opaque functions can be dangerous.

In Amanda there are some constructs which allow the user to influence the
evaluation order, like strict and seq. Although useful, these functions pollute

6



CHAPTER 2. INPUT/OUTPUT IN FUNCTIONAL LANGUAGES

the functional program with control flow behaviour undermining the above-
mentioned great benefit of lazy FPLs.

An even more intuitive example of problems with lazy languages and side ef-
fecting functions can be illustrated when using the function xs in Code 2.5. In
this function different side-effecting functions are ”stored” in a list. In a lazy
programming language it is not known when these characters are written to
the screen. When the only use of xs in a lazy language is in the execution of
length xs the characters will not be written at all, because the values of the list
are not needed to determine the length of the list. The characters will be written
to the screen however, when the list is used as done in Code 2.6. Provided that
the type of printChar is printChar :: char −> bool and the function and is
defined as the logical conjunction between all elements in a list. It is even more
difficult to predict what will be printed, because and itself is implemented in a
lazy way, i.e. it will not continue when a value False is found.

xs = [printChar ’a ’ , printChar ’b ’ ]
Code 2.5: Side effecting functions in a list

print = and xs

Code 2.6: Evaluated side effecting functions

2.2.2 Referential Transparency

In FPLs functions are said to be referentially transparent. This means that an
expression will evaluate to the same value every time. Another common expla-
nation for referential transparency is that a function is referentially transparent
when equals can be replaced by equals. In Code 2.7 the two functions (f and
g) give the same result in any case.

f : : num−> num
f x = (xˆ2) + (xˆ2)

g : : num−> num
g x = y + y

where
y = xˆ2

Code 2.7: Referentially transparent functions

This shows that the function ˆ is referentially transparent, i.e. 4ˆ2 is always
equal to 16. This sounds very straightforward, but this is not always the case.
Code 2.8 shows that y is not always equivalent to random. The only values

7
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function g can have are ∀x∈R ∃i∈{1 . . . 5}
(
g(x) = 2i2

)
whereas f can have

values of ∀x∈R ∃i∈{1 . . . 5} ∃j∈{1 . . . 5}
(
f(x) = i2 + j2

)
and these are clearly

not equivalent.

f : : num−> num
f x = (randomˆ2) + (randomˆ2)

g : : num−> num
g x = y + y

where
y = randomˆ2

| | in this case random returns an integer
| | value between 1 and 5
random : : num

Code 2.8: Referentially opaque functions

2.3 What is Input and Output

In computing, Input/Output, commonly abbreviated I/O, is the collection of
information sent from or to a functional unit, i.e. a device or program, etcetera.
Input and output are dual concepts. That is, input for one functional unit
is output of another functional unit. A mouse is an output device from the
perspective of a human, but an input device from the perspective of a computer
(program). Likewise a modem can be seen either as an input device or an output
device, depending on the way it is used.

I will focus on input and output that occurs during the execution time. Input
occurring before execution, and the resulting output given when the program
terminates can be considered I/O, yet it is handled by the programming envi-
ronment in most cases and therefore no part of the I/O I would like to consider
in this thesis.

In order to create some overview about the types of I/O that are possible Perry
categorized I/O in (Perry, 1991) in the following types:

• Terminal I/O
is I/O considering the input read from the keyboard and written to the
screen. Graphical information and other input devices like a mouse can
be seen as an extension to simple terminal I/O. Crucial with this kind of
I/O is relative ordering between input and output. E.g. user input must
be read after the request for it has been displayed on the screen.

8
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• Device I/O
handles all I/O to communication devices, like file-systems, tapes, CD’s
etc. The requirements are similar to terminal I/O, however synchroniza-
tion is less (but not un-)important.

• Process creation
covers the ability for a process to start separate processes, not necessarily
processes in the programming language environment itself. But may also
be processes that are instantiated from within the programming environ-
ment, but are not part of the programming language.

• Inter process communication
handles the communication between different processes. Once being es-
tablished it can be handled just as device I/O.

• Signal handling
is I/O considering signals like <ctrl>-C (DOS) and SIGKILL (POSIX),
which are sent to or from the program and must be handled to create a
robust program.

• Environment interaction
is I/O aimed at the communication between the programming language
and the operating system. The programming language should be able to
obtain information from and provide information to the operating system.
An example is obtaining the current date and time.

2.4 Current Approaches to I/O in Functional
Languages

In this Section I will describe several solutions to handle input and output in
functional programming languages. I show how these solutions cope with the
unknown evaluation order and the referential transparency. For each solution I
will give its advantages and disadvantages. Then I will show how these solutions
are implemented in a functional language and lastly draw a conclusion from the
advantages and disadvantages of the I/O solutions.

2.4.1 Side-effecting I/O

The most simple solution for handling I/O is to ignore the problems occurring
from the use of input and output when defining the programming language. This
can be done by just adding constructs to the language that are not referentially
transparent, thereby shifting the problem from the programming language to

9
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the programmer. The programmer has to ensure the correctness of his program
when using referentially opaque functions. languages that offer this solution
mostly have some (limited) way to control the evaluation order of the program,
to be able to ensure correctness. An example of side-effecting I/O can be seen
in Code 2.4.

Advantages

The advantage of side-effecting I/O from the perspective of the programming
language and to a lesser extent also to the programmer is its simplicity. In the
programming language it is easy to add functions or constructs because it is not
necessary to reason about the evaluation order and referential transparency.
When a programmer knows exactly what he is doing, side-effecting I/O can
be simpler because the programmer does not have to reason about additional
constructs defining the evaluation order, like monads, streams, etc.

Disadvantages

There are two problems using side-effecting I/O (Peyton Jones & Wadler, 1993),
equational reasoning (the substitution of equals for equals) is not possible when
using side-effecting functions. Therefore the prove that functional programs
that use side-effecting I/O becomes far more difficult. Therefore the programmer
needs to know the evaluation order and must verify that the program as a whole
functions as required.

2.4.2 Continuation Passing Style

The Continuation Passing Style (CPS) model, which is a direct predecessor of
monads (Wadler, 1997), (see Section 2.4.5), uses a set of transactions to model
flow of control. In this style a function is not just defined to return a value,
but is given another argument, the continuation argument, which is meant to
receive the result of the computation. The continuation passing style is a style
that can be used for all functions, for instance the function fac can be defined
in a ”normal” style and in a continuation passing style using λ-abstraction, as
done in Code 2.9 and Code 2.10 respectively.

The flow of control is explicitly modeled which solves the problem of the eval-
uation order. Now input and output can be modeled using an algebraic type
named CPS in Code 2.11.

10
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fac 0 = 1
fac n = n ∗ (fac (n−1))

show (fac 6)
Code 2.9: Normal Function

fac 0 k = k 1
fac n k = fac (n−1) (res −> k (n∗res))

fac 6 show
Code 2.10: Continuation Function

CPS ::= Done
| Input ( [char ] −> CPS)
| Output [char ] CPS

Code 2.11: Continuation Passing Style (CPS) functions

The internal language’s evaluation mechanism need not be changed, however
when a root function (main) has type main :: CPS, the algebraic constructors
can be interpreted or executed in the following way (Gordon, 1994):

Input k Read characters v from the keyboard and execute k v.
Output v q Output characters v to the printer, and then execute q.
Done Terminate.

The implementation of these constructors closely resembles the monadic style.
In the Section about monads a more extensive notion of the use of this kind of
operators will be given.

An example function using this I/O model can be seen in Code 2.12, where a
line is read from the terminal and the line is printed two times to the screen
again. The variable x is the value that is read from the terminal, is passed to
double and is printed by the Output constructor afterwards.

printDouble : : CPS
printDouble = Input (x −> Output (double x) Done)

double : : [char ] −> [char ]
double x = x ++ ”\n” ++ x

Code 2.12: Continuation Passing Style Function

Another example, the same as given in Code 2.5, is given in a continuation
passing style in Code 2.13.

11
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xs = [x−> Output ”a” x , x−>Output ”b” x ]

main : : [cps −> cps ] −> [char ]
main xs = print (foldl1 ( . ) xs Done)

Code 2.13: Evaluating I/O functions in a list

Advantages

The advantage of the continuation passing style is that it directly supports
error jumps and other changes in the flow of control (Wadler, 1997). A function
might notice that a division by 0 would occur and return an appropriate error
message instead of continuing the flow of control. The flow of control can be
altered because of the way the functions are constructed. Therefore the flow of
control can be specified in a natural way, Whereas in side effecting I/O extra
special functions need to be specified in the language that support change in
control flow.

Disadvantages

Just like in the stream model (Section 2.4.4) all algebraic constructors used to
address I/O must be pre-defined in the language. Extending these algebraic
types is not trivial and must be done inside the programming language. Fur-
thermore, this way of programming I/O enforces the need of an extra argument
in the function, cluttering the program code. Also the functions can become
more complex, as is illustrated in the function fac in Code 2.9.

2.4.3 Uniqueness Typing

The I/O model using uniqueness typing is called the systems model. The sys-
tems model uses a series of transformations on an initial state, that captures
the state of the operating system. This state is passed through the functions,
thereby specifying the evaluation order (Hudak & Sundaresh, 1989). To ensure
a single flow of control the state must not be copied, i.e. the state is unique.
This is done using uniqueness (linear) typing. The overall structure of these
functions is shown in Code 2.14.

program : :
(input , initial_environment) −> (output , new_environment)

Code 2.14: General outline of a I/O function using Uniqueness typing

12
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The functional programming language Clean (see Section 2.5.1) can be seen as
an implementation of this I/O-style. A small example of a function adhering
to this style is fappendLine. The type of this function is given in Code 2.151.
This function can be used as done in Code 2.16.

fappendLine : : String ∗File −> ∗File
Code 2.15: System-style file appending function

appendFile : : ∗File −> ∗File
appendFile f = fappendLine ”test” f

Code 2.16: Function evaluation fappendLine

The uniqueness typing is indicated here by the ∗, which indicates that the value
of this type can not be copied. Adherence to this constraint is enforced by the
type system. Suppose a function f has a unique argument denoted by a ∗ in
the type definition of f. It is guaranteed that f has private (unique) access to
this particular argument (Barendsen & Smetsers, 1993).

The line ’’ test’’ will be written in file f. The result of the function is a new
file with the line added. If file f could be used again in the same scope, this file
would not contain ’’ test’’, because of referential transparency, i.e. the value
of f is not altered by the function fappendline. Note that the fact that files
can be used as variables creates the need for uniqueness typing to ensure file-
variables are not used multiple times. The File-argument in this example can
be seen as the system being explicitly passed through the functions.

Some research has been done to rewrite the Clean system-approach to a monadic
approach, for more information on this subject see (Jones, 1995).

Advantages

An advantages of this uniqueness typing approach is that when you are able
to split the system (or world) into subsystems, it is possible to use different
subsystems in parallel when they do not interact. For instance, when the state
of the screen can be separated from the state of the file system, these two can be
handled in parallel, or at least in arbitrary order, instead of fixing the evaluation
order by the whole system (Wadler, 1997). Furthermore the uniqueness typing
system can also be used to facilitate destructive updates (Smetsers, Barendsen,
Eekelen, & Plasmeijer, 1993).

1The Clean syntax is used here. In Clean no arrows are used between the arguments, only
between the arguments and the result
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Disadvantages

The type system of the functional language must be extended to handle unique-
ness types. This extension is not trivial. Furthermore, the use of an explicit
system is inclined to result in functions with extra arguments that need to be
passed around. For instance, in the fappendline the file must be given to and
retrieved from the function. In a function reading information from a file, the
result of the function, the updated file (a different file pointer) and the text
read, needs to be combined in a tuple. According to (Perry, 1991) uniqueness
typing can only handle terminal and device I/O easily.

2.4.4 Streams

Landin introduced streams in 1965 and they are used in several FPLs since. In
these stream-based languages predefined identifiers are bound to I/O channels.
For instance, kb would be bound to the stream of all characters read from the
keyboard. In what is called Landin Stream I/O a functional program maps a
possibly infinite list of input events to a list of output events. The lazy evaluation
ensures that output may be interleaved with input (Noble & Runciman, 1994).

A very simple example of a program using streams is Code 2.17. Provided that
the stream of characters of the keyboard is bound to the identifier kb and the
list of output events implicitly is bound to the screen, the program takes a list
of characters and writes the characters in uppercase to the screen.

main : : [char ]
main = map upper kb

Code 2.17: A simple stream program

The streams solution can be divided into two kinds. The simple character
streams, which send and receive lists of characters, and the token-streams, which
can be a single input and a single output list in which different values are
distinguished by an algebraic constructor.

Advantages

The advantages of streams are both practical and theoretical. (Wadler, 1997)
states that streams are useful as a theoretical tool to use as a denotational
semantics for, for instance, the monad model. (Thompson, 1992) states that
streams are useful because they create explicit notations for all values on input
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and output. There is no need for a construct to ensure referential transparency
in combination with I/O, like the monadic IO or the system-like state.

Disadvantages

Much has been written about all kinds of streams like Landin, lazy, synchronous
streams. In most papers where streams are compared to monads, several disad-
vantages of streams surface. (Hudak & Sundaresh, 1989) describes that streams
are not completely general since typically the I/O-devices are pre-determined in
the language. Furthermore they state that the possibility of error is generally
not accounted for.

A tricky possibility with lazy synchronized streams is the extraction of the wrong
element out of the list, which results in a deadlock (Peyton Jones & Wadler,
1993). An example of a function which could block because multiple input events
need to be evaluated before output can be generated is shown in Code 2.19. The
grossly simplified types Request and Response are shown in Code 2.18, as can
be seen in this simplification the evaluation of I/O requests will always succeed.
Therefore, when the request PutC is evaluated with a character, the character
will be written on the terminal and the corresponding response will be OK. In
the same way the request GetC corresponds with the response OKCh with the
character read from the keyboard. If the number of elements dropped had been
1 instead of 2, the pattern matching would result in an error, because the head
of the response list will be OK instead of OKCh. When the number of dropped
elements would be 3, the function could result in a deadlock, because the value
of the third element of the list is not yet evaluated, and never will be, because
the corresponding request will never occur.

Request ::= PutC Char
| GetC

Response ::= Ok
| OkCh Char

Code 2.18: The type of Requests and Responses

Perry states that with streams it is hard to handle signals.

2.4.5 Monads

The monad model offers a possibility to define the order in which functions
are evaluated, thereby solving the problem of the fixed evaluation order of I/O

15



CHAPTER 2. INPUT/OUTPUT IN FUNCTIONAL LANGUAGES

echo : : [Response ] −> [Request ]
echo resps = GetC :

i f a == EOF
then [ ]
else PutC a :
echo (drop 2 resps)

where
OKCh a = resps ! ! 0

Code 2.19: Blocking event

actions. Monad types are types that have two functions: return and >>=.
The types of these functions are given in Code 2.20, where a and b are type
variables representing an arbitrary type and m represents the monad type.

return : : a −> m a
>>= : : m a −> (a −> m b) −> m b

Code 2.20: Monad functions

Intuitively, return creates (wraps) the value in a monad, whereas >>= (pro-
nounced ’bind’) sequences functions using monads.

These functions that are defined on a monad must obey certain properties to
define a real monad. These properties are defined in Code 2.21.

x : : a
f : : a −> m b
g : : a −> m b
n : : m a

(return x) >>= f == f x
(n >>= f) >>= g == n >>= (\x −> f x >>= g)
n >>= return == n

Code 2.21: Monad properties

An example of a monad that is easy to understand is the Maybe monad. The
implementation of the Maybe monad can be seen in Code 2.22.

The use of monads can be shown by an example using the Maybe monad. This
Maybe monad can be used to create functions which result is either a value or
nothing. Consider the following case, taken from (Newbern, 2004), representing
sheep that are cloned, i.e. they may have a father. This can be modeled using
the Maybe monad with the type as defined in Code 2.23.
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Maybe a = Nothing
| Just a

(>>=) : : Maybe a −> (a −> Maybe b) −> Maybe b
(Just a) >>= f = f a
Nothing >>= _ = Nothing

return : : a −> m a
return n = Just n

Code 2.22: Maybe monad

type Sheep = . . .

father : : Sheep −> Maybe Sheep
father = . . .

Code 2.23: Functionality using Maybe

The function >>= can be used to compose functions out of other functions.
The grandfather (of the fathers side) can be composed with the function father,
as done in Code 2.24. Intuitively the bind function reverses the function and
argument, x >>= father can be read as: if x is a sheep evaluate father x
otherwise the function will evaluate to Nothing.

grandfather : : Sheep −> Maybe Sheep
grandfather s = (Just s) >>= father >>= father

Code 2.24: Grandfather function

Monads are more thoroughly explained in (Wadler, 1990), which is based on
the work of (Moggi, 1989).

Advantages

By using monads we have the intuitive sequential nature of imperative In-
put/Output which can be used in the same way as imperative programming,
without losing referential transparency and the extensive type system of func-
tional languages (Russell, 1997). The use of syntactic sugar, like the do-notation
in Haskell (2.5.3), can create a very low-level imperative construct, which can
be used by functional programmers without having to reason about monads.
The notation hides a lot of lambda-abstractions and bind functions, therefore
making the code much more readable. Because of the implicit passing of the
IO-monad the construction is very composable. The program structure between
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monads and the continuation passing style is almost identical, monads though,
tend to be slightly more abstract. All functionality using CPS can be modeled
using monads (Wadler, 1997, page 20). Comparing monads and CPS shows that
monads are more abstract and can therefore be used in more areas.

Disadvantages

The downside of I/O using monads is the need for a monad that can not be
unwrapped. So, when using monadic I/O there is no way to get rid of the I/O
monad. Furthermore, it is not as intuitive as one would like it to be. A pre-
requisite to good software design is a thorough understanding of the structures
and glues of the implementation language. Monads are an interesting addition to
both of these sets, and therefore a design implication is that the designer needs
to be aware of the potential benefits of using monads (Russell, 1997). Yet the
understanding of monads is not trivial. The extensive amount of tutorials and
questions on the Internet strengthen this thought. Another disadvantage is that
monads tend to be an all-or-nothing solution (Wadler, 1997). The transition
from no interaction at all to a single form of interaction is not very smooth.
Parts of the program need to be rewritten. In general monads are not easily
composable, although the use of monad transformers lighten this somewhat.

2.5 Current Implementations of I/O Models

2.5.1 Clean

Clean is a lazy, pure, higher order functional programming language with ex-
plicit graph rewriting semantics (Plasmeijer & Eekelen, 2001). The way Clean
handles I/O is quite different from other approaches and is therefore interesting
to examine. In Clean the environment (a uniqueness type world) is explicitly
passed as an argument to all I/O-functions.

In Clean there is a way to overcome the problem of not knowing in which
order functions are evaluated. This is done by the use of explicit environment
passing (Achten, Groningen, & Plasmeijer, 1993). Explicit environment passing
means the environment is accompanied as an argument in the function and will
be part of the result. Clean is an example of the system approach as described
in Section 2.4.3. The function freadline in Code 2.25 can be used as done in
Code 2.26.

freadline takes a file (fileA) as its argument and gives a String (text) and an
updated file (fileB) as result. The difference between fileA and fileB is the
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freadline : : ∗File −> (String,∗File)
Code 2.25: freadline-function

(text ,fileB) = freadline fileA

Code 2.26: freadline use

position of the pointer in the file. This updated file (fileB) can subsequently be
used in the rest of the program, thereby ensuring that this function is evaluated
before the rest of the program, which uses this file, is executed.

A problem when using the world record is, for instance, the function save that
saves a score in a file as shown in Code 2.27. The pSt is a record containing
information about the system, like current open files, and program specific in-
formation added by the programmer. The local state ls contains the current
score, io contains information about the I/O, like screen and files.

save : : ∗(PSt StoreTp) −> ∗PSt StoreTp
save pSt = saveToFile ls .score pSt

where
{ls=ls ,io=io} = pSt

Code 2.27: Uniqueness typing - incorrect

However, the code in Code 2.27 is not correct, because type PSt is a uniqueness
type and can not be used twice on the right hand side, because this may result
in a copy of PSt.

The formal definition of a uniqueness type is more complicated. According
to (Achten et al., 1993) in the graph rewriting of a program a node n in graph
G is unique with respect to node m in G, if n is only reachable from the root
of G via m and there exists exactly one path from m to n. A property of a
unique node is the fact that it has a reference count - the number of incoming
paths - (in-grade) of one. A reference count of one is however not sufficient
for uniqueness, the whole path from m to n must have reference count one, as
shown in Figure 2.2.

A uniqueness type adds an extra constraint to the use of variables of this function
to ensure that variables with unique types will be used only once on the right
hand side of the function, thereby ensuring that no duplication of this unique
variable occurs.

Although pSt is not used and updated, it is still not possible to pass it as an
argument. A workaround is creating the record again as done in Code 2.28.
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Figure 2.2: Uniqueness typing Graph

save : : ∗(PSt StoreTp) −> ∗PSt StoreTp
save pSt = saveToFile ls .score {ls=ls ,io=io}

where
{ls=ls ,io=io} = pSt

Code 2.28: Uniqueness typing - correct

In this way no identifier with a unique type is used more than once on the right
side of a function.

Graphical elements in Clean are based on abstract devices. An abstract device
is a representation of the actual object. Each graphical element must implement
functions from the abstract device. Portability to different operating systems is
easier this way than when all functions need to be implemented. Furthermore
it is easier to extend the graphical user interface toolbox with new objects by
implementing these functions for a user defined graphical object.

The authors of a case study in which Clean is used to create a spreadsheet
application came to the following conclusion about the modifiability of I/O in
Clean with respect to imperative languages:

The advantage of Clean I/O is its relatively direct way of interfacing
to system calls. In particular for the relatively I/O intensive parts
like scrolling (in the sheet or in the editor), this was important in or-
der to achieve a proper efficiency of interaction. It is our impression
that using Clean I/O it is easier to modify and read I/O programs
than using an imperative language.

(Hoon, Rutten, & Eekelen, 1995)

In Clean the I/O solution has some influence on the rest of the program. When
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a variable is used which has to be unique, then the way a function can be
constructed is limited. This is due to the constraint that the variable can be
used one time (in the RHS) only.

2.5.2 Amanda

Amanda is a functional language written by Dick Bruin, based on the functional
programming language Miranda, which uses the stream I/O model.

The Graphical User Interface (GUI) of Amanda can be addressed by the stream
identifier graphicsout. Argument to this function is a list of graphics, which are
written to the screen. The input events in Amanda are given by a 0-ary function,
eventsin which is a (possibly infinite) list of input events. The problems with
I/O are ’solved’ in two ways: The interaction with input and output devices is
done using streams, and file handling is done using functions with side effects.

The way user input can be handled in Amanda is by an event loop. From this
loop all functions not handling I/O can be called, separating the GUI-handling
from the other functionality. In Code 2.29 the function main redirects all events
eventsin to the doEvents-function, which results in a list of output events that
are written to the screen by the graphicsout-function.

main : : [graphics ]
main = graphicsout (doEvents emptyState eventsin)

Code 2.29: Binding streams to event-loop

This doEvents function is shown in Code 2.30: it forwards the list to the
doEvent-function that just handles one event (see Code 2.31 for an example).
This improves the readability of the functions because in this case the recursive
clause can be given once instead of multiple times.

doEvents : : state −> [inputEvent ] −> [graphics ]
doEvents s (e :es) = g ++ doEvents newS es

where
(newS ,g) = doEvent s e

Code 2.30: Function handling List of Events

The state which is given to each function as a parameter can be seen as the
memory of the program. In this state all persistent information about the state
of the program is stored.

File handling in Amanda is done in a very simple way. The function fread
and fwrite respectively read and write to a file. These functions address the
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doEvent : : state −> inputevent −> (state , [graphics ] )
doEvent s (KeyIn ’\e ’ )

= (s , [GraphQuit ] )
doEvent s (MouseDown (x ,y))

= (addCircle s (x ,y) , [GraphEllipse 0 (x ,y) 0.4])
doEvent s _

= (s , [ ] )
Code 2.31: Function handling Single Event

content of the file, in contrast to the Clean approach where the files are handled
themselves. The file handling is done in a referentially opaque way. As said
in Chapter 2.3 this is not a good way to deal with I/O. It is just shifting the
problem from a language level to the programmer.

GUI in Amanda is done by a function that takes a list of graphics as an argu-
ment. This list of graphics is processed outside the scope of the programmer
and shown on the screen. User input, like the keyboard input is handled by the
input events. There are different (fixed) kinds of input events.

The way graphics in Amanda are handled can not be extended. There is a
function graphicsout, but there is no way to extend the type of the events
that are given to this function. On the other hand it should be possible to
create a new function which writes output to other devices, or other output to
the screen.

The input events are members of an algebraic type, and there is no means to
extend this type with your own members. It is not possible to extend the events
with a HeatSensorIn event for instance.

Amanda is a language with limited behaviour with respect to I/O. Only a limited
set of I/O operations are supported. It is clear that the programming language
is not used in an industrial setting and several peculiarities are not solved.
Examples are: some I/O functions running out of memory after a long time of
doing nothing; the IDE can not handle directories and file names with spaces; it
is not possible to send events over a network. This is one of the reasons the new
functional programming language TINA is being developed at the University
of Twente (Papegaaij, 2005) and (Hove, 2005, to appear). However, the way
user events are handled by an event loop is fairly easy to implement and acts
as expected.

The event loop ties all functions together and therefore tends to get less readable.
It is easy to separate non-I/O functionality from the user interface functionality,
by delegating events to separate functions.
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Amanda is not fully referentially transparent and should therefore be used with
care. From a language perspective, there is no means to ensure that unexpected
behaviour will never take place when using these referentially opaque functions.

Amanda is capable of handling input given by the keyboard and mouse and
write information to the screen in a fairly easy way. Furthermore it is possible to
access files, although at the cost of not being referentially transparent anymore.
From the list of different types of I/O given in Chapter 2.3 Amanda can only
handle the first two.

2.5.3 Haskell

Due to syntactic sugar the monads are not very visible in Haskell. Consider for
instance the following function onSave in Code 2.32 for storing a score in a file.
The score is retrieved from the store using getScore.

onSave : : StoreTp −> IO ()
onSave store = do

s <− getScore store
saveToFile s
return ()

Code 2.32: Do Construction

The do-notation hides the monads in the function. The monad is only visible
in the result of the function. A more explicit monadic representation of this
function is with the use of λ-abstractions in Code 2.33. It is clear how monads
are used to create an order in this function. Also the fact that every function
gives a result (which is not used in some cases) is more clear than in Code 2.32

onSave : : StoreTp −> IO ()
onSave store = getScore store >>= (\s −>

saveToFile s >>= (\_ −>
return () )))

Code 2.33: Monad Construction

A benefit of monads is the purely functional style. A program can be written
almost like an imperative program but still be purely functional. Also the
possibility to create a function which is applicable to several monads is useful.

Less positive is that functions must be rewritten, in order to be applicable for
monads. Also a programmer must ensure that the evaluation order will not be
over restricted by the monads.
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I think the monadic approach is quite a strong paradigm which can be used
in multiple domains, however it does not feel intuitive. Monadic functions are
different because their results are monadic values and can not be composed with
non monadic functions directly. When you create a program that handles no
input, it is not necessary to create functions which can handle monadic values.
However, when you reconsider and in the end do need some user input, then at
least a part of the program has to be rewritten.

When functions are changed to handle monadic values this means they have
to be rewritten. In order to prevent that all functions have to be rewritten to
handle (one-way) monadic values, sometimes the function can be written in the
way that is shown in Code 2.34. The function doSomething, which has type
doSomething :: String −> a, can be written without the burden of the IO
monad, because the function is evaluated ’inside’ the I/O monad. This solution
is only possible when the I/O-value is read at the ’top-level’ of the program.
When the I/O-value is read half way, this construction to work around monads
is not possible.

main : : IO a
main = do

value <− readIOValue
return (doSomething value)

Code 2.34: No I/O-monad

Monads are a powerful yet rather hard to understand concept. It is hard to keep
track of when the value was wrapped into a monad or is a non monadic value.
The syntactic sugar in Haskell with the do-notation is quite easy, however it
encapsulates the exact behaviour and makes it therefore harder to understand
fully.

Monads are referentially transparent. Although a ’wrapper’ is created when
reading from a file, it seems that values can be compared. Reading from a file
can result in IO ”a”, IO ”b” and therefore differ. Yet, it is not possible to
compare these IO-values directly. The IO monad ensures that the evaluation
of a function can not be wrongly unified with another evaluation of the same
function. It is wrong to say that IO values can not be compared at all, as is
shown in Code 2.35 in which two values of the IO monad are compared and is
shown whether the values are equal. A common way to look at an (IO a) value
is that it denotes a computation, that may perform I/O when executed by the
environment and then results in a value of type a (Gordon & Hammond, 1995).

Simple terminal I/O is possible in the core of Haskell, for extensive I/O there are
several packages to show windows etc. Haskell has a foreign function interface
(FFI) (Finne et al., 2003) to interact with the operating system and thereby
with other languages. In concurrent Haskell (Peyton Jones, Gordon, & Finne,
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compareIOValues : : Eq a => IO a −> IO a −> IO ()
compareIOValues x y = do

a <− x
b <− y
putStrLn (show (a==b))
return ()

Code 2.35: Function comparing to I/O values

1996) it is possible to create processes and communicate between processes.

2.6 Conclusion

Monads are a powerful construction and are most certain useful in functional
programming languages, like the Maybe monad. Yet the one-way IO-monad
is not as intuitive as desired. The IO-monad can not be removed, therefore in
some cases the program will be cluttered with the IO-monad, which alters the
type definition of the function and the way functions can be composed. When
comparing monads to, for instance, streams another disadvantage of monads
comes to light: the monad itself. In the streams model there is no construct
necessary to wrap values in, like the IO-monad.

Uniqueness typing is very straightforward, although quite verbose, because the
state of the system must be passed through all functions that perform I/O.
Uniqueness typing is not only useful to handle I/O, it is also possible to use
uniqueness typing to implement destructive updates. The uniqueness typing
ensures that destructive updates are possible because values can not be copied.

Streams are a simple, intuitive approach that can be used to create elegant
code without cluttering the complete program with I/O-constructs. Much of
the disadvantages of streams given above are directed at the more error-prone
synchronous streams. The view of the programs written in the stream model
tend to be more event based. Arguably GUIs are more event based than se-
quential, therefore streams seem to be a better solution to implement GUIs.
Furthermore I have the feeling that the learning curve of monads is less steep
than the one of streams, indicating that streams can have a more educational
purpose.
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3

Extending Algebraic Types
with Unions

In the previous chapter is shown that one disadvantage of the stream I/O model
is that the algebraic types used to model the events can not be extended. In
this chapter I will propose a new construction that is aimed at this problem.
This new construction, the union of algebraic types can be used to model events
and extend them. First I will give a short introduction about algebraic types in
general. Then an intuitive notion of the union type is given, along with some of
its possible uses. This is followed by the typing rules that are needed to create
a syntactic notion of the union type. These typing rules are used to prove some
properties for unions, commutativity, associativity and idempotence. In the last
section is described how functions defined on unions should behave and can be
used.

3.1 Algebraic Types

An algebraic type is a type which consists of one or more constructors with
or without arguments. These constructors allow discrimination between those
arguments. A simple example of an algebraic type is given in Code 3.1

vehicle ::= Car brand
| Motorcycle brand cc
| Bike

brand == [char ]
cc ==num

Code 3.1: An example algebraic type

In some cases the discriminating constructor is the value, like in Bike. Examples
of terms of this type are given in Code 3.2.
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vehicle1 = Bike
vehicle2 = Motorcycle ”Yamaha” 750

Code 3.2: A term of type Vehicle

The equivalent of an algebraic type in set theory is the disjoint union - a set
whose elements consist of a tag (equivalent to a constructor) and values in this
set (equivalent to the constructor arguments).

3.2 Union Types

In stream I/O algebraic constructors are used to distinguish between events as
is described in the stream approach (Section 2.4.4) and its implementation in
the Amanda language (Section 2.5.2).

A problem with the use of algebraic types in the stream I/O model is that they
can not be extended. Libraries can not be constructed in which new events
(based on low level events) are added to the language, because the event types
are fixed. Therefore I will add a new construction to a functional programming
language which creates the possibility to merge algebraic types. Consider the
algebraic types A and B from Code 3.3. When the union of the algebraic types
A and B, denoted as A ∪̃ B1 is formed the programmer should be able to
address A ∪̃ B as if it were defined like type C in Code 3.4.

A ::= C1
| C2

B ::= C3
| C4
Code 3.3: Algebraic types

C ::= C1
| C2
| C3
| C4

Code 3.4: Algebraic types merged: C

behaves like A ∪̃ B

The union, only defined on algebraic types, is the concatenation of two algebraic
types without a discriminating tag to distinguish between values of these types.
Types can only be concatenated in a union when the types do not conflict. Type
σ and τ conflict when:

∃(C t ∈ σ) . ∃(C t′ ∈ τ) . t 6= t′

Where C is the name of the constructors and t and t′ are the arguments of
1When the union operator is used in program text, the union operator ∪̃ will be displayed

as <U>
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constructor C. Informally, types conflict when there is a constructor in both
types that do not have the same arguments.

The semantic definition of a union type is:

Definition 3.1.

σ ∪̃ τ is undefined , if σ and τ conflict ∨
σ is undefined ∨
τ is undefined

x : (σ ∪̃ τ) , if x : σ ∨ x : τ

Informally, the union over algebraic types is defined as a normal union, when
the constructors of type σ and type τ do not conflict. Otherwise the union over
algebraic types is not defined. This implies that the ∨ in the second clause is the
normal inclusive or. This also implies that the algebraic union is idempotent,
i.e. it is desired that A ∪̃ A is equivalent to A. Here equivalence of types,
denoted as σ :=: τ , is interpreted as follows:

σ :=: τ iff x : σ ⇔ x : τ

It seems not very useful to allow algebraic unions over types that are equivalent.
The union, A ∪̃ A is equivalent to A and does not create more expressive
power in the language. Yet the following union, in which also constructors that
have the same name and arguments are used in a union, can be quite useful:
(A ∪̃ B) ∪̃ (A ∪̃ C). When A is the type specifying core events and B and C are
types defined in libraries specifying extensions to this type A then it could occur
that in the application these types are needed in a union. One could argue that
this should not occur, that the libraries only need their own types. In practice
however, this example is likely to occur. It is desirable that the result type of
the union of these types, (A ∪̃ B) ∪̃ (A ∪̃ C), is equivalent to A ∪̃ B ∪̃ C. This
boils down to the question whether A ∪̃ A is equivalent to A. This simplification
is possible using the commutative and associative notion of unions, which will
be given in Section 3.5.

3.3 Why Union Types

In the stream I/O model, algebraic unions can be used to combine libraries of
event types to use these together as if they were all core events. The use of
union types creates the possibility to add layers of new event types to facilitate
the programmer to create programs in a more abstract way, because low-level
constructs can be hidden from the programmer. In Chapter 6 new events are
introduced to convey the notion of moving blocks. The IP-addresses and port
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numbers necessary to send information over the network are conveniently con-
cealed inside the functions handling move-events.

Figure 3.1: A layered event model

In the example given in Chapter 6 Send is a core event and Move is a custom
event. Only core events can be given to and received from the outside world,
because the compiler only knows how to handle events that are specified in
the compiler. This layered model is illustrated in Figure 3.1. It should be
possible to add drivers to the compiler to add new core events, for instance to
get information about a sensor. To do this the source of the compiler needs
to be extended to know what to do with these new events. In Figure 3.1 the
ring representing the core events will be expanded in that case. In the language
itself events can be added by making an abstraction over core events. In the
example an abstraction is made over the Send and Received event by the Move
and Moved event respectively. These abstractions can be made using libraries
to group these events.

Not only in the stream I/O model but also in other cases it is useful to have union
types. In the master’s thesis (Tinnemeier, 2006, to appear) an agent language is
implemented in a functional language. In this implementation, actions (steps in
a plan of the agent, like If, Repeat) and propositions (facts about the world, like
On x y, Clear y) can be interleaved. In a plan, propositions as well as actions
can occur, yet they are obviously not the same. This problem can be solved
by adding extra constructors to include propositions in actions by making them
a specific kind of action, but this will create more verbose code, with extra
(unnecesary) constructors.

Also in the Tinadic parsing method developed by (Kuper, 2006) the use of union
types can be very useful as will be seen. Tinadic parsing is based on the no-
tion that specification of a syntax should be defined in a way that most closely
resembles the EBNF notation. This Extended Backus Naur Form (EBNF) is
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a notation describing context-free grammars. Most languages are already de-
scribed in EBNF, therefore it is easy when a parser can be defined in a format
closely related to this notation. In the Tinadic parsing method constructions
in the EBNF syntax, like optionality (?) and multiplicity (*,+) are part of an
algebraic type along with all non-terminals in the grammar. In Code 3.5 this
can be seen. A part of the algebraic type to parse the Amanda language is
shown. The first part of the algebraic type, the constructors Token until Rep1,
are constructions from the EBNF syntax, the rest of the algebraic type are the
non-terminals of the grammar. Now the grammar can be defined as a function
in terms of the algebraic type, a part of the syntax of the Amanda language
is shown in Code 3.6. The unary operator <?> is a prefix notation equivalent
to the postfix EBNF notation (?). It shows that a simple right hand side of a
function is an expression possibly followed by where clauses. A specification is
either an identifier typed with a type or a type form consisting of a type name
and type variables and a type. For a complete EBNF description of the Amanda
language see Appendix E.

alphabet ::= Token [char ]
| Check ( [char]−>bool)
| Alt [alphabet ] [alphabet ]
| Try [alphabet ] [alphabet ]
| Opt [alphabet ]
| Rep0 [alphabet ]
| Rep1 [alphabet ]

| | Non−terminals
| Argtype
| Case
| Exp
| Fdef
| . . .

Code 3.5: A part of the algebraic type of the Grammar

grammar : : alphabet −> [ [alphabet ] ]
grammar

= . . .
| Simple_rhs −> [ [Exp , <?> [Whdefs ] ] ]
| Spec −> [ [Identifier , Token ” : : ” , Type ]

, [Tform , Token ” : : ” , Type ]
]

| . . .
Code 3.6: The grammar of the language

For every grammar, the EBNF constructions need to be defined again. When
one EBNF construction is missing from the algebraic type, the parsing will not
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work. From a software engineering point of view the copy-paste of all EBNF
constructors each time is very bad practice with respect to code reuse and
maintenance. When these constructs can be defined once and used many times,
this would be highly recommended. The use of union types could alleviate this
problem by defining alphabet in the way specified in Code 3.7.

alphabet ::= (ebnf alphabet) <U> nonTerminals

ebnf ∗ ::= Token [char ]
| Check ( [char]−>bool)
| Alt [∗ ] [∗ ]
| Try [∗ ] [∗ ]
| Opt [∗ ]
| Rep0 [∗ ]
| Rep1 [∗ ]
| List0 [∗ ] ∗
| List1 [∗ ] ∗

nonTerminals ::= Argtype
| Case
| Exp
| Fdef
| . . .

Code 3.7: The algebraic Union of the Grammar

3.4 Subtyping

When algebraic data types can be extended by adding constructors a notion of
subtyping is created. The subtyping relation that is created when unions are
introduced is a bit counter intuitive. With another form of subtyping, namely
record extension, extra information (new fields that may contain extra data)
are added to the data type. When a union type is introduced by combining two
types it seems that extra information (new values) are added. However, this is
not true. This can be seen easily when focusing on a single value. When x is of
algebraic type A it is clear that x has one of the constructors of A. Yet, when
x is of type A ∪̃ B then x can have constructors of type A or type B. Thus, A
is more specific, i.e. a subtype, of A ∪̃ B.

Subtyping relaxes the requirement that functions take arguments of a given
type, by allowing arguments of any subtype of that type to be given (Cardelli,
1988). The intuitive notion of a subtyping relation is when for two types σ and
τ :
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σ <: τ , iff ∀e.(e : σ)→ (e : τ)

Note that:
σ :=: τ , iff σ <: τ ∧ τ <: σ

This has some consequences on the type checking of functions, for instance the
function showT is defined on a type σ, but should also work on arguments of
type τ when τ is a subtype of σ. This is called contravariance in the argument
of the function. Note that the subtyping rule is switched; σ <: τ ⇒ (τ → α) <:
(σ → α). In the result type of a function the subtyping rule is not switched,
therefore it is called covariant in the result. This rule is not trivial, therefore
I will try to illustrate it with an example. Obviously, Int <: Float thus for all
e : Int also applies that e : Float. Function f : Float → α analogously has also
type Int→ α. Therefore Float→ α <: Int→ α(Cardelli, 1997).

3.4.1 Subtyping Rules

A type system is a system that validates the type of expressions with typing
judgements. All these possible type judgements for a type system with subtyp-
ing are:

Γ ` � Γ is a well-formed environment
Γ ` σ σ is a well-formed type in Γ
Γ ` σ <: τ σ is a subtype of τ in Γ
Γ ` e : σ e is a well-formed term of type σ in Γ

These judgements (Γ ` A), where A is an assertion, are grouped in typing rules.
These typing rules consist of a number of premise judgements above the line,
with a single conclusion judgement below the line. When all of the premises are
satisfied then the conclusion must hold; the number of premises may be zero.
This mechanic way of validating types can be implemented in a programming
language, whereas the informal notion mentioned in the previous sections can
not be implemented in a programming language directly.

Γ1 ` A1 . . .Γn−1 ` An−1

Γ ` An
(General form of a type rule)

With the notion of subtyping the typing rules must be extended to handle
subtyping in the type system. First three rules are introduced that define the
relation between equivalence between types and subtyping. Note that these rules
are the syntactic rules for the intuitive notion of subtyping and equivalence given
above.

Γ ` σ Γ ` τ Γ ` σ <: τ Γ ` τ <: σ

Γ ` σ :=: τ
(Eq I)
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Γ ` σ Γ ` τ Γ ` σ :=: τ

Γ ` σ <: τ
(Eq E1)

Γ ` σ Γ ` τ Γ ` σ :=: τ

Γ ` τ <: σ
(Eq E2)

Now a number of rules are introduced that define the subtyping relation on
types. These rules are taken from (Cardelli, 1997). The first rules Sub Refl
and Sub Trans induce a partial order between types. The typing rule Val Subs
describes that when a value has a specific type, it also has a more general type.
The rules Sub Arrow, Sub Tuple, Sub Record and Sub List are needed to define
subtyping on constructs in the language, like lists and tuples. Note that there is
another way of subtyping for records. The Sub Record rule can also be defined
to indicate record a is a subtype of record b if a has at least all the labels of type
b, i.e. {x ::char, y ::bool} is a subtype of {x ::char}. This kind of subtyping is
not part of the union types discussed here. Extensible records (Leijen, 2005) is
one paper handling this kind of subtyping.

Γ ` σ

Γ ` σ <: σ
(Sub Refl)

Γ ` σ <: τ Γ ` τ <: υ

Γ ` σ <: υ
(Sub Trans)

Γ ` x : σ σ <: τ

Γ ` x : τ
(Val Subs)

Γ ` σ′ <: σ Γ ` τ <: τ ′

Γ ` (σ → τ) <: (σ′ → τ ′)
(Sub Arrow)

Γ ` σ′ <: σ Γ ` τ ′ <: τ

Γ ` (σ′ × τ ′) <: (σ × τ)
(Sub Tuple)

Γ ` ∀i ∈ {1, . . . , n}.σi <: τi

Γ ` {l1 : σ1, . . . , ln : σn} <: {l1 : τ1, . . . , ln : τn}
(Sub Record)

Γ ` σ <: τ

Γ ` [σ] <: [τ ]
(Sub List)

3.4.2 Type Checking

The addition of union types to a functional programming language introduces
several new rules on top of the normal rules for a functional programming lan-
guage as been given in (Cardelli, 1997). First of all rules must be introduced to
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create a well-formed union type, under the assumption that the types σ and τ
do not conflict.

Γ ` σ Γ ` τ

Γ ` σ ∪̃ τ
(Type Union)

The typing rules to subtyping with respect to unions are shown below. The rule
Val Union G̃ introduces a union type when the two functions are composed
in parallel. The second Val Union F̃ introduces a union in a function when
applied to a parallel function composition that gives one type as a result. The
rules Sub I1, Sub I2 and Sub I3 create a new assertion about subtypes with
respect to union types.

Γ ` f : υ → σ Γ ` g : υ → τ Γ ` σ ∪̃ τ

Γ ` f G̃ g : υ → (σ ∪̃ τ)
(Val Union G̃)

Γ ` f : σ → υ Γ ` g : τ → υ Γ ` σ ∪̃ τ

Γ ` f F̃ g : (σ ∪̃ τ)→ υ
(Val Union F̃ )

Γ ` σ Γ ` τ Γ ` σ ∪̃ τ

Γ ` σ <: σ ∪̃ τ
(Sub I1)

Γ ` σ Γ ` τ Γ ` σ ∪̃ τ

Γ ` τ <: σ ∪̃ τ
(Sub I2)

Γ ` σ ∪̃ τ Γ ` τ Γ ` σ Γ ` υ Γ ` σ <: υ Γ ` τ <: υ

Γ ` σ ∪̃ τ <: υ
(Sub I3)

The question now is whether these rules fulfill the desired properties of subtyping
in the case of union types, i.e:

Γ ` x : (σ ∪̃ τ) ⇔ Γ ` x : σ ∨ Γ ` x : τ

⇐ Suppose Γ ` e : σ. Since Γ ` σ <: (σ ∪̃ τ) by rule Sub I1 it follows by Val
Subs that Γ ` e : (σ ∪̃ τ). For τ the proof is analogous.

⇒ On a metalevel we can prove that the only way to construct an expression
e : σ ∪̃ τ is with the combination of the rules Val Subs and either Sub I1
or Sub I2. Therefore e : σ or e : τ .

Therefore it is save to add the rule:

Γ ` x : σ ∪̃ τ

Γ ` x : σ or Γ ` x : τ
( ∪̃ Elimination)

But this rule is not constructive and therefore not suitable in a type sys-
tem. On the other hand there is no proof that can be constructed within
the system.
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3.5 Union Properties

Union types should have some properties that are intuitively clear. These prop-
erties are shown in Property 3.1, 3.2 and 3.3.

A union must comply to the intuitive notion that a union is commutative and
associative. That means for all expressions e, if e : A ∪̃ B then e also has type
B ∪̃ A. I.e. A ∪̃ B is structurally equivalent ( :=: ) to B ∪̃ A. Also when an
expression e has type A ∪̃ (B ∪̃ C) then e also has type (A ∪̃ B) ∪̃ C. Because
it is possible to have unions of types with the same constructor ∪̃ should also
be idempotent. Note that these properties are met only when the union is well
defined.

Property 3.1. A ∪̃ A :=: A (Idempotence)
For all expressions e, if e : A ∪̃ A then e : A, this is possible because union types
may consist of types which contain the same constructor.

Proof. A ∪̃ A :=: A is correct when A ∪̃ A <: A ∧A <: A ∪̃ A.

• A <: A ∪̃ A Follows trivial from the rules Sub I1 and Sub I2.

• A ∪̃ A <: A With the use of rule Sub I3

Γ ` A ∪̃ A Γ ` A <: A Γ ` A <: A

Γ ` A ∪̃ A <: A

Property 3.2. A ∪̃ B :=: B ∪̃ A (Commutativity)
For all expressions e, if e : A ∪̃ B then e : B ∪̃ A.

Proof. A ∪̃ B :=: B ∪̃ A is correct when A ∪̃ B <: B ∪̃ A ∧B ∪̃ A <: A ∪̃ B.

• A ∪̃ B <: B ∪̃ A

Γ ` A,B,A ∪̃ B,B ∪̃ A Γ ` A <: B ∪̃ A Γ ` B <: B ∪̃ A

Γ ` A ∪̃ B <: B ∪̃ A

where Γ ` A,B is the shorthand notation of Γ ` A Γ ` B

• B ∪̃ A <: A ∪̃ B is analogous.
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Property 3.3. A ∪̃
(
B ∪̃ C

)
:=:

(
A ∪̃ B

)
∪̃ C (Associativity)

For all expressions e, if e : A ∪̃ (B ∪̃ C) then e : (A ∪̃ B) ∪̃ C.

Proof. A ∪̃ (B ∪̃ C) :=: (A ∪̃ B) ∪̃ C is correct when A ∪̃ (B ∪̃ C) <:
(A ∪̃ B) ∪̃ C ∧ (A ∪̃ B) ∪̃ C <: A ∪̃ (B ∪̃ C)

• A ∪̃ (B ∪̃ C) <: (A ∪̃ B) ∪̃ C is shown in Figure 3.2. Provided that all
types are correct, and do not conflict.

• (A ∪̃ B) ∪̃ C <: A ∪̃ (B ∪̃ C) can be constructed in the same way and
will not be shown.

Figure 3.2: Proof of associativity

3.6 Union Types and Functions

Parallel function composition, the combination of functions using union types,
is an important part of the use of algebraic unions. When unions are defined
and several functions are defined on all constituents of the union, it should be
possible to use these functions over the parallel composition as well.

showT1 : : t1 −> [char ]
showT1 C1 = ”C1”
showT1 C2 = ”C2”

showT2 : : t2 −> [char ]
showT2 C3 = ”C3”
showT2 C4 = ”C4”

Code 3.8: Show Functions

Suppose t1 and t2 are defined like in Code 3.9. Furthermore suppose that
showT1 and showT2 are defined like in Code 3.8. Now suppose t = t1 ∪̃ t2, then
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one would like to be able to combine showT1 and showT2 into a function showT
that works on the full type t. To do this I will introduce a new operator F̃ 2

such that showT can be defined as: showT = showT1 F̃ showT2.

t1 ::= C1 | C2
t2 ::= C3 | C4

Code 3.9: Algebraic types

The type of the function operator F̃ and G̃ 3 are:

F̃ : (A→ C)→ (B → C)→ (A ∪̃ B)→ C

G̃ : (A→ B)→ (A→ C)→ A→ (B ∪̃ C)

where the function operators F̃ and G̃ are defined as:

(f F̃ g) x = f x , if x :: A
= g x , otherwise

(f G̃ g) x = f x , if x ∈ dom(f)
= g x , otherwise

Note that from the definition of G̃ is clear that when the domains of the functions
overlap the function named first in the composition has precedence over the
second function. In Code 3.10 the use of the operator G̃ is shown. The operator
G̃ uses partial functions to create a function that is the parallel composition of
two functions of the constituents of the union. A partial function is a function
that is only defined on a part of its domain. For instance when readT1 is defined
as a total function as is done in Code 3.11 it is not useful to use this function
in a parallel composition, because readT will never result in a value of type t2,
which most likely is unwanted behaviour.

Note that the following operator +̃ can be constructed using F̃ .

+̃ : (A→ C)→ (B → D)→ (A ∪̃ B)→ (C ∪̃ D)

Suppose h = f +̃ g where f : A→ C and g : B → D. Because of the subtyping
rules given in Section 3.4 the type of f is also f : A → C ∪̃ D and the type of
g is also g : B → C ∪̃ D, thus h = f F̃ g.

It should be noted that the
2When this operator is used in program text, the union operator F̃ will be displayed as

<F>
3likewise G̃ will be displayed as <G> in program text
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readT1 : : [char ] −> t1
readT1 ”C1” = C1
readT1 ”C2” = C2

readT2 : : [char ] −> t2
readT2 ”C3” = C3
readT2 ”C4” = C4

readT : : [char ] −> t
readT = readT1 <G> readT2

Code 3.10: Composing functions with <G>

readT1 : : [char ] −> t1
readT1 ”C1” = C1
readT1 _ = C2

Code 3.11: Incorrect function

3.7 Equivalence

There are two major kinds of type systems, the structural type system and
the nominative type system. Nominative typing means that two variables have
an equivalent type only if they appear either in the same declaration or in
declarations that use same type name. Java, C and C++ are examples of such
languages. On the other hand, in the structural type system, used by Haskell
and Amanda for instance, two terms are considered to have compatible types
when the structure of the types is identical. In Code 3.12 the values x and y
are of the same type, whereas x and y in Code 3.13 are not.

a == (num, [char ] )
b == (num, [char ] )

x : : a
x = (42 ,”Hello”)

y : : b
y = (42 ,”Hello”)

Code 3.12: Structural Typing

Note that structural equivalence corresponds to the definition of equivalence for
unions as given in Section 3.2.
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public class A {
int i = 0;
String s = ”” ;

public A(int i , String s) { this .i = i ; this .s = s ; }
}

public class B {
int i = 0;
String s = ”” ;

public B(int i , String s) { this .i = i ; this .s = s ; }
}

A x = new A(42 ,”Hello” ) ;
B y = new B(42 ,”Hello” ) ;

Code 3.13: Nominative Typing in Java
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4

Näıve Implementation of
Unions

4.1 Introduction

In order to be able to use streams in a more general way, it must be possible
to extend the event types in the application. This can be done with the aid of
untagged algebraic unions. In this chapter, I will give a rewriting mechanism
to rewrite functions and algebraic types to a format that is executable in a
functional programming language environment.

In short this rewriting scheme, and the one in the next chapter, rewrite a lan-
guage with unions to a language without these unions. Such that every expres-
sion in the language with unions has a type, that can be converted to a type in
the language without unions.

In this chapter the language Amanda with unions will be rewritten to core
Amanda.

4.2 Outline

A preprocessor has been written to convert the parse-tree obtained using the
Tinadic Amanda parser, described in Chapter D. The parse tree is processed
in the following way:

1. All union types are rewritten to an algebraic type with extra constructors
(4.3).

2. All functions that define a parallel function composition with a union as
an argument are converted to a ’normal’ function that forwards the union
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argument to the appropriate function. (4.4).

3. All functions that define a parallel function composition with a union as
result type are converted to a ’normal’ function by merging the function-
ality of the functions. There is a distinction between functions that are
distinct on the patterns, and those that are distinct on the guards (4.5).

4. All functions that use an argument or give a result which is a union type
must be wrapped by adding constructors (4.6).

The rewriting rules are depicted in the following way. The term to be rewritten
is denoted: Rx[[·]] and is shown above the first black line. Between two lines
the rewritten term is shown. The enumeration below shows the assumptions
made about the rewriting term. The x denotes what kind of rewriting rule is
currently being processed. During the transformation the rule may shift (parts)
of the expression that must be rewritten to a rule with another name. The
overall rule which rewrites the whole program is RA. This rule rewrites all
expressions in the source file. This notation resembles the one used in (Peyton
Jones, 1987) and (Oosterhof, 2005). The rewriting rules to evaluate a program
without algebraic unions are not shown here. The result of this preprocessing
step will be a source code file that can be compiled and evaluated in a functional
language.

4.3 The Algebraic Union

Rewriting of an algebraic union is quite simple. It can be done as depicted in
Figure 4.1. Thus a union type is rewritten to a normal algebraic type. Note that
the use of extra constructors does not solve commutativity and associativity of
union types. This must be solved using conversion functions and should be
addressed when implementing this in a core functional language. Note that this
rewriting rule is not addressed recursively. This is because every union must be
defined. The union T = A ∪̃ (B ∪̃ C) can only be defined as: T = A ∪̃ D where
D = B ∪̃ C.

4.4 Functions with a Union as argument

When the type of one of the arguments of the function is a union type the
function must be rewritten like in Figure 4.2. The result of the rewriting rule is
in Code 4.1. It is clear that the created function after complete rewriting will
only delegate its argument to the appropriate function according to its inner
value.
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RA[[t = a <U> b]]
t ::= Nr_t_0 a
| Nr_t_1 b
• The extra constructor Nr_t_i is based on the type of the union (t) and

a number (i).

• Nr_t_i is a new unique constructor.

• Add the tuple (t,y,Nr_t_i) to the replacement list. Where y is the
type of the constituent of the union, in this case a or b.

Figure 4.1: Rewriting rule for union introduction

RA[[f = g <F> h]]
f (Nr_t_0 x) = RP [[g x]]
f (Nr_t_1 x) = RP [[h x]]

• Where x is a unique identifier

• the type of f is t −> a where a is an arbitrary type.

Figure 4.2: Rewriting rule for parallel function composition

f : : t −> a
f (Nr_t_0 x) = g x
f (Nr_t_1 x) = h x

Code 4.1: Function after complete rewriting when the result type is no union
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4.5 Functions with a Union as result type

When the result type of the parallel composed function is a union type, the
function to be created needs to have all the clauses of the functions that are
being composed. There are two cases, either the argument is distinguished by
a pattern (Section 4.5.1) or by a guard (Section 4.5.2).

4.5.1 Pattern Functions

When the functions to be merged differ on the way patterns are matched in
the clauses, the functions can be merged by just enumerating the clauses of
the functions in the new function, as can be seen in Figure 4.3 and Code 4.2
and 4.3. When there is an overlap in patterns between the first and the second
function, the first function has precedence over the second function. Note that
the language that implements this rewriting rules should be able to enumerate
clauses that overlap.

f : : char −> t
f = g <F> h

g ’a ’ = C1
g ’b ’ = C2

h ’c ’ = C3
h ’d ’ = C4

Code 4.2: Pattern function

f : : char −> t
f ’a ’ = C1
f ’b ’ = C2
f ’c ’ = C3
f ’d ’ = C4

Code 4.3: Rewritten pattern function

4.5.2 Guard Functions

When the function clauses are distinguished by guards then the new function is
defined by all clauses of the existing functions. Note that the identifiers in the
functions need not be the same and need to be unified in the where clause. The
rewriting rule is defined in Figure 4.4 an example is shown in Code 4.4 and 4.5.

4.5.3 Normal Functions

All functions that use unions must be rewritten because the internal representa-
tion of the union is different from the internal representation of elements of the
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RA[[f = g <G> h]]
f x1 = Nr_t_0( g1 )

...
f xn = Nr_t_0( gn )
f y1 = Nr_t_1( h1 )

...
f yk = Nr_t_1( hk )

• g is defined in the following way:
g x1 = g1

...
g xn = gn

• h is defined in the following way:
h y1 = h1

...
h yk = hk

• The type of f is c −> t. Where c is not a union type and t is a ∪̃ b.

• x1, . . . , xn and y1, . . . , yn are patterns

• The precedence of function g over function h is defined implicitly by
naming the clauses of g before the clauses of h.

Figure 4.3: Rewriting rule for pattern functions

unionelement, i.e. constructors are added to elements of the union to distinguish
between the elements. In Figure 4.5 and Figure 4.6 this rules are shown. The
rules forward the pattern rewriting and expression rewriting to the RP -rule.

4.6 Patterns

When an expression is supposed to have a union type, but instead has a type
that is an element of a union, a constructor must be added to this expression.
The rewriting rule can be seen in Figure 4.7 and Figure 4.8. Note that the rule
is defined recursively, because unions might be nested.
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RA[[f = g <G> h ]]
f x =Nr_t_0( RP [[g1]]) , if b1

...
=Nr_t_0( RP [[gn]]) , if bn

=Nr_t_1( RP [[h1]]) , if v1

...
=Nr_t_1( RP [[hk]]) , if vk

where
fs
gs
hs

• g is defined in the following way:
g x = g1 , if b1

...
= gn , if bn

where
gs

• h is defined in the following way:
h y = h1 , if v1

...
= hn , if vk

where
hs

• gs and hs are possibly empty.

• fs is y = x when the identifier y does not have the same name as x.
Otherwise fs is empty.

• If g and h contain the same variables, these must be renamed to unique
variables (in function g and h).

• The precedence of function g over function h is defined implicitly by
naming the clauses of g before the clauses of h.

Figure 4.4: Rewriting rule for case functions

RA[[f x1 . . . xn = e]]
f RP [[x1]]. . . RP [[xn]]= RP [[e]]

Figure 4.5: Function rewriting rule

46
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f : : char −> t
f = g <F> h

g x = C1 , i f p = ’a ’
= C2 , i f p = ’b ’

where
p = x

h y = C3 , i f q = ’c ’
= C4 , i f q = ’d ’

where
q = y

Code 4.4: Case function

f : : char −> t
f x = C1 , i f p = ’a ’

= C2 , i f p = ’b ’
= C3 , i f q = ’c ’
= C4 , i f q = ’d ’
where

y = x
p = x
q = y

Code 4.5: Rewritten case function

RP [[f x1 . . . xn]]
f RP [[x1]]. . . RP [[xn]]

Figure 4.6: Function application rewriting rule

RP [[e]]
C RP [[e1]]. . . RP [[en]]
• e should have union type t

• e has type a

• C is the constructor out of the list Replacements where the tuple is
(t,a,C).

Figure 4.7: Rewriting rule to add constructors

RP [[e]]
C RP [[e1]]. . . RP [[en]]
• e has type a

• There is no b for which a = b in the list Replacements where the tuple
is (t,b,C).

Figure 4.8: Rewriting rule for constructors that are not part of a union

f : : t −> [char ]
f C1 = ”C1”
f C2 = ”C2”
f C3 = ”C3”
f C4 = ”C4”

Code 4.6: Expression

f : : t −> [char ]
f (Nr_t_0 (C1)) = ”C1”
f (Nr_t_0 (C2)) = ”C2”
f (Nr_t_1 (C3)) = ”C3”
f (Nr_t_1 (C4)) = ”C4”

Code 4.7: Expression with constructor
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4.7 Preprocessor

The rewriting rules are implemented using a preprocessor in Amanda. This pre-
processing program rewrites the source code with unions to a file in which unions
are replaced, as shown in the rewring rules in this chapter. A full description of
the preprocessor is shown in Appendix D.

The preprocessor converts a program which may contain unions along the lines
of the rewriting rules given in this chapter to a file that contains no unions.
In Chapter 6 it is shown how the program contains unions behaves. The pre-
processing step and the compilation make it possible to execute this program
without having to rewrite the program. This shows that it is possible to add
unions to the language.

A large downside of the preprocessor in Amanda is that the union is not com-
mutative. The use of a type t which is defined as a ∪̃ b is different of the use
of b ∪̃ a when used in functions that are composed. Worst still, functions that
are defined on a ∪̃ b are not defined on b ∪̃ a. Furthermore although a function
with overlapping domains can be defined according to the rules, Amanda might
give an error when functions are merged that have overlapping patterns.

48



5

Extensive Implementation
of Unions

5.1 Type Classes

The rewriting scheme in the previous chapter is implemented in a simple way.
This, however, creates some problems that can not be solved immediately, like
the fact that unions are not commutative. In this chapter I will show that
with some features particular to Haskell it is possible to create unions that
are commutative, associative and idempotent. Furthermore I will show that in
most cases the implementation of type classes on constituents of unions can be
implemented on unions in a default, mechanic way.

In this section and the next two sections I will describe some features that are
part of the Glasgow Haskell Compiler. After that I will show that these features
can be used to implement unions in Haskell, more specific in the Glasgow Haskell
Compiler (GHC).

There are two kinds of polymorphism present in Haskell, parametric polymor-
phism and ad hoc polymorphism (Hudak & Fasel, 1992), better known as over-
loading. Parametric polymorphism is the kind of polymorphism that occurs for
instance with the function length. This function returns the length of a list,
regardless of the type of the elements in the list. The type of length is therefore
[a] −> Int. Examples of ad hoc polymorphism are

• The literals 1, 2, etc. that are used to represent both fixed and arbitrary
precision integers.

• Numeric operators such as + that are often defined to work on many
different kind of numbers.

• The equality operator that is defined on many (but not all) types.
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Note that these overloadeded behaviours differ for each type, whereas in para-
metric polymorphism the type truly does not matter. In Haskell type classes
are used to structure this overloading. For instance by the type class Eq which
is defined as shown in Code 5.1. Note the default implementation of /= in terms
of ==.

class Eq a where
(==) : : a −> a −> Bool
(/=) : : a −> a −> Bool
x /= y = not (x == y)

Code 5.1: The type class Eq

Now instances for these type class can be implemented. For instance the imple-
mentation to define equality over the Bool-type is shown in Code 5.2.

instance Eq Bool where
(==) True True = True
(==) False False = True
(==) _ _ = False

Code 5.2: Implementation of Eq Bool

It is not only possible to implement type classes on base types, it is also possible
to implement type classes on more complex types. Consider the implementation
of Eq, as shown in Code 5.3 on the algebraic type Tree.

instance (Eq a) => Eq (Tree a) where
(==) (Leaf x) (Leaf y) = x == y
(==) (Node a1 a2) (Node b1 b2) = (a1 == b1) && (a2 == b2)
(==) _ _ = False

Code 5.3: Implementation of Eq Tree

From now on it is possible to use the function == from the type class Eq
on a value of the polymorphic type Tree a provided that the type class Eq is
implemented on a, denoted by =>.

A simplified possible definition of the Ord type class is shown in Code 5.4.
The Ord type class specifies functions that create an order between values.
As can be seen instances of this type class must also implement the type class
Eq, with functions == (equal) and /= (not equal), besides the functions >,
<, <= and >=. Note that only the function <= needs to be defined on types
implementing this type class, in which case the default implementations shown
here are used for the other functions in Ord. Arguments and results of functions
can be restricted to types that implement type classes. Compare the Haskell
type definition of quicksort in Code 5.5 (the top one) with the Amanda type
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definition (the bottom one). The Haskell type definition restricts the types that
can be sorted using quicksort to types that implement the Ord type class. In
the Amanda representation no extra constraints can be added to the type of a
function, therefore it is possible to sort a list of functions in Amanda, although
no specification of the order of functions is given in Amanda. Worse still, in
Amanda the equality operation on functions is not referentially transparent. The
expression (ˆ2) = (ˆ3) might result randomly in true or false, which obviously
is incorrect.

class (Eq a) => Ord a where
(<=) : : a −> a −> Bool

(<) : : a −> a −> Bool
(<) x y = (x <= y) && (x /= y)
(>) : : a −> a −> Bool
(>) x y = not (x <= y)
(>=) : : a −> a −> Bool
(>=) x y = not (x <= y) | | (x == y)

Code 5.4: Simplification of the Ord type class

qsort : : Ord a => [a ] −> [a ]

qsort : : [∗ ] −> [∗ ]
Code 5.5: Function type restricted by type classes

The type classes restrict the use of the sort function to types that have a mean-
ingful implementation of the ordinality functions. This means, because the
type class Ord is not implemented on functions, that it is not possible to sort
functions.

To help the programmer, some type classes can be derived, using the keyword
deriving. For a lot of types that are introduced by the programmer the im-
plementation for certain type classes are very straightforward. For instance,
the default implementation of the Eq type class for an algebraic data type is
obviously that two algebraic constructors are equivalent when the constructor
name is the same and all arguments of the constructor are equivalent. When
the programmer needs to implement this for every type, this will become very
awkward. Therefore the language alleviates the programmer from implement-
ing this every time again by the deriving construct. Type classes that can be
derived are for instance the Show, Eq, Read and Typeable type class. The
Eq type class for the type Bool could be derived, when it was not already im-
plemented, as done in Code 5.6 although it could also be defined as done above
in Code 5.2.
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data Bool = True
| False

deriving(Eq)
Code 5.6: The type Bool deriving Eq

5.2 Generics

In GHC a module can be used that enables casting of types. The theoretical
background of this generic approach is described in (Lämmel & Peyton Jones,
2003). According to Lämmel & Peyton Jones when a function is written to
traverse over a mutually recursive data structure this creates a lot of boilerplate
code. To give a notion of what boilerplate code is, consider the following example
taken from (Lämmel & Peyton Jones, 2003). Suppose you have to write a func-
tion that increases the salary of every person in an organization and persons are
stored in a mutually recursive data structure which represents the organization.
The code of the function that increases the salary will be dominated by code
that traverses the data structure, the boilerplate code, whereas the increasing
of the salary will be handled probably in one or two lines of code. In (Lämmel
& Peyton Jones, 2003) a technique is introduced to write this boilerplate code
once and use it in every function that traverses the data structure.

The implementation of the technique to specify the boilerplate code in one place
needs a generic cast function. This function cast can be used to cast a value
of a certain type to another type. Because it is not sure whether the value can
be cast to this other type, the result of the cast function will be a value of the
Maybe monad. The definition of the cast function is shown in Code 5.7. The
function get is used to get the type representation of the result of the function.
As can be seen the function cast depends on the type class Typeable. This
means the cast function is only defined on types that implement the Typeable
type class. This type class consist of a function typeOf, that evaluates a value to
a representation of its data type. The Typeable type class creates a way to use
the type of the function and act according to the type. This type representation
is stored in string format and is used in the cast function to create a type
safe cast function, based on the unsafe cast function that is already part of the
Haskell language. In Code 5.8 a number of expressions given to the interactive
GHCi are shown to illustrate the use of cast. The lines starting with > are the
expressions given to the GHCi whereas the other lines are the results. It might
seem that this cast function has not much use, because it boils down to the
identity function with another type, yet in the Section 5.4 I will show that this
cast function can be used to implement unions.

52



CHAPTER 5. EXTENSIVE IMPLEMENTATION OF UNIONS

cast : : (Typeable a , Typeable b) => a −> Maybe b
cast x = r

where
r = i f (typeOf x) == (typeOf(get r))

then Just (unsafeCoerce x)
else Nothing

get : : Maybe a −> a
get x = undefined

Code 5.7: Generic cast Function

> (cast ’a ’ ) : : Maybe Char
Just ’a ’
> (cast ’a ’ ) : : Maybe Bool
Nothing
> (cast [True,False ,True] ) : : Maybe [Bool]
Just [True,False ,True]

Code 5.8: Use of the cast Function

5.3 Pattern Guards

Patterns play an important role in functional programming languages to dis-
tinguish the clauses of function definitions. Combined with guards, patterns
determine the appropriate function clause based on the value of the argument.
They also create very readable and extensible code, in Code 5.9 it is easy to
extend the function with another clause that handles a new constructor; Green,
Blue, White, etc, without having to alter existing code.

toString : : color −> [char ]
toString (Yellow ) = ”Yellow”
toString (Black ) = ”Black”
toString (Red ) = ”Red”
toString (RGB r g b) = ”#” ++ (itoa r) ++ (itoa g) ++ (itoa b)

Code 5.9: Pattern Function

The internal representation of unions ( ∪̃ ) with extra constructors as shown
in Chapter 4 lead to problems using patterns. The ’normal’ algebraic patterns,
like given in Code 5.9 RGB r g b can not be used with the implementation of
unions with extra algebraic constructors. It might be the case that the pattern
belonging to the internal representation of the union is L(RGB r g b). Where L
is an internal constructor to distinguish between the components of the union.
The programmer does not know, and does not want to know this internal rep-
resentation and can therefore not use the ’normal’ algebraic patterns.
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To alleviate this problem pattern guards (Erwig & Peyton Jones, 2000) will be
used. The idea of Erwig & Peyton Jones is to extend guards in a way that
guards are able to match patterns and bind variables. The expression on the
right hand side of the pattern guard, i.e. on the right hand side of the <− is
evaluated and matched against the pattern on the left. If the match fails, the
next clause is tried. Note that there is a difference in what way patterns and
guards are handled in Amanda and Haskell. In Appendix F this and some other
differences between Amanda and Haskell are addressed.

−− key −> [( key , value )] −> Maybe value
lookup : : Eq a => a −> [ (a , b) ] −> Maybe b

myAdd : : [ (Int ,Int ) ] −> Int −> Int −> (Maybe Int)
myAdd env x y

| Just a <− lookup x env
, Just b <− lookup y env

= Just (a + b)
| otherwise

= Nothing
Code 5.10: Use of a Pattern Guard

In Code 5.10 the use of pattern guards is shown. The function lookup is a
standard function in the Prelude of Haskell. When the given list contains
the key (a), then the result of lookup will be the value belonging to this key,
otherwise the result will be Nothing. The result of the lookup of the keys x
and y are matched against Just a and Just b respectively. When the lookup
of the values of x and y do not result in Nothing the result values are bound
to a and b. This implies that the expressiveness of guards is extended with the
possibility of variable binding and pattern matching. In GHC pattern guards are
implemented when using extensions of the compiler. This can be done using the
directive −fglasgow−exts. The other part of (Erwig & Peyton Jones, 2000)
about transformational patterns, which could be used also to implement unions
instead of pattern guards, is not (yet) implemented in the GHC-compiler.

5.4 Implementing Unions using Pattern Guards
and Generics

A basic algebraic type is a type that defines algebraic constructors directly, the
algebraic type Tree in Code 5.11 is an example of a basic algebraic type. A
union type is a type that is a type that is a composition of two types in a union.
An algebraic type therefore is more basic when it contains less unions.
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The combination of pattern guards, type classes and generics can hide the in-
ternal representation of unions. With generics and pattern guards the values of
the most basic types can be retreived from an arbitrary complex union.

data Tree = Node Tree Tree
| Leaf Int

Code 5.11: A basic Algebraic Type

Now, values of a union can be addressed in the same way as values of non-union
algebraic data types. Thus the programmer does not have to know about the
internal representation of unions. To be able to do this a number of rewriting
steps must be taken, as presented in the next sections.

The general idea is to define a new type class, named Algebraic that must be
implemented for each algebraic type. This type class consists of functions to
convert the algebraic type to a basic algebraic type, and vice versa, to convert
an algebraic type to a union type.

In Figure 5.1 the function that traverses the union down to the most specific
(basic) type, named downCast, is depicted. Conversely, there is a function
upCast that is used to create a union type from a basic type. In other words,
the traversal down gives a more specific type, i.e. the type of the value is
restricted to a part of the union, whereas traversal up gives a more general
type, i.e. the type of the whole union.

Figure 5.1: Algebraic union

5.4.1 Algebraic Type

Each algebraic data type is a member of the type class Algebraic. This type
class consists of three functions:
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• upCast converts a value of a more basic type to a union type.

• downCast converts a value of a union type to a more basic type.

• eq compares two values that are instance of type class Algebraic with
each other, to determine whether the values are the same.

The definition and default implementation of type class Algebraic is depicted
in Code 5.12.

class (Eq a ,Typeable a) => Algebraic a where

{− Cast the value of this type to a more general type . −}
upCast : : (Algebraic b) => b −> Maybe a
upCast = cast

{− Cast the value of this type to a more specific type . −}
downCast : : (Algebraic b) => a −> Maybe b
downCast = cast

{− A custom equality function , compares two Algebraic values .−}
eq : : (Algebraic b) => a −> b −> Bool
x ‘eq ‘ y = Just x == (downCast y : : Maybe a)

Code 5.12: Type class Algebraic

To ensure that the cast function can be used, the algebraic type must imple-
ment the Typeable type class. Every algebraic type needs to be an instance
of the Algebraic type class, therefore a rewriting rule is needed that imple-
ments the Algebraic type class for an algebraic type. This rule is given in
Figure 5.2. Besides the implementation of the Algebraic type class functions
are also needed that, based on values of the Algebraic type class, may give the
arguments of the constructor as result. When the correct constructor is given
to this function the result will be the arguments of the function, otherwise the
result will be Nothing. This rule is shown in Figure 5.3. These functions
are needed to replace the algebraic patterns, the rule to rewrite the algebraic
patterns to patterns that use these functions is depicted in Figure 5.10.
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R[[data T = C1 c1 | . . . |Cn cn]]
data T = C1 c1 | . . . |Cn cn

instance Algebraic T

Rf ([[C1 c1]], T )
...

Rf ([[Cn cn]], T )
• ci is the sequence of all arguments of constructor Ci. This sequence

can be empty.

Figure 5.2: Rewriting rule for Algebraic Data Types

Rf ([[C t1 . . . tn]], T )
fromC :: (Algebraic a) =>a −> Maybe (t1, . . . , tn)
fromC x
| Just (C t1 . . . tn) <− downCast x :: Maybe T )

= Just (t1, . . . , tn)
| otherwise

= Nothing
• When the number of arguments of constructor C is 0, the result type

will be ”Maybe ()”.

• fromC is a unique identifier.

Figure 5.3: Creation of functions to extract arguments from a constructor

5.4.2 Union

To be able to create unions of algebraic types a new Union type is created. The
full implementation of this union type is shown in Section A and part of its
implementation is shown in Code 5.13.

data Union a b = L a
| R b

Code 5.13: The Union Definition

The union type must implement the Algebraic type class, to be able to use
the union in functions just like other algebraic types. The implementation of
the Algebraic type class is shown in Code 5.15.

The function unionIdentify is a function that creates an Either type out of
a union and is shown in Code 5.14. Note that this funtion is not commutative.
I.e. the function unionIdentify will give a different result for A ‘Union‘ B and
B ‘Union‘ A. A union can be seen as a specific kind of the Either type. It is
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not possible to use the Either type to implement the union because some type
classes are already defined on Either, which must be defined in another way
for a union. Also the internal representation must be concealed, which is not
possible for the Either type.

unionIdentify : : a ‘Union ‘ b −> Either a b
unionIdentify (L x) = Left x
unionIdentify (R x) = Right x

Code 5.14: The function unionIdentify

instance (Algebraic l ,Algebraic r)=>Algebraic (l ‘Union ‘ r) where
upCast x
| Just z <− cast x : : Maybe (l ‘Union ‘ r) = Just z
| Just z <− upCast x : : Maybe l = Just (L z)
| Just z <− upCast x : : Maybe r = Just (R z)
| otherwise = Nothing

downCast = (either downCast downCast) . unionIdentify

eq x y = either eq eq (unionIdentify x) y

Code 5.15: The implementation of the Union Type

The upCast and downCast are now implemented also on all union types. In this
way they can be used like a non-union algebraic type.

Now a new union can be declared as in Code 5.16.

type T = A ‘Union ‘ B
deriving(Eq,Typeable)

Code 5.16: Declaration of a union

The union implements the type classes Show, Typeable, Algebraic and Eq.

When a function expects a union type as an argument, for instance a function
f with type (T ‘Union‘ S) −> String, it is not possible to apply f on a value
of the more basic algebraic type T. This is behaviour that should be possible
though. Obviously when a function works on T ‘Union‘ S it should also work
for values of type T. The algebraic constructor given as argument, however, is
not the same as what is expected in the function. Suppose the algebraic type
T is defined as C Int. Now the internal representation of a value of T in type
T ‘Union‘ S is L (C Int) according to the definition of the Union. Obviously
the type of these values are not the same. Therefore it is not possible to give
C Int as an argument to f. A possible way to solve this is by using the fact
that in Haskell an algebraic constructor merely is a function that creates an
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algebraic value. The constructor C therefore is a function with type Int −> T.
This constructor-function can be altered to a function that creates a value of an
arbitrary type that implements the type class Algebraic as shown in Code 5.17.
To distinguish between the standard Haskell algebraic constructor function and
the new constructor function, the new function is shown in lowercase. The new
constructor function creates a value of the type class Algebraic. The function
that uses a value that is constructed using this constructor function will fix the
type of the constructor to a specific type. When c is used to give an argument
to function f the constructor function c will return a value of type T ‘Union‘ S,
i.e. L(C Int). This is because the function upCast function casts the value to a
value of type T ‘Union‘ S.

data T = C Int

c : : (Algebraic a) => Int −> a
c x = (fromJust.upCast) (C x)

Code 5.17: Algebraic Constructor Function

One could argue that type classes on unions can be implemented using rewriting
rules. A rewriting rule to create an instance of a type class for a union type
is depicted in Figure 5.4. The instance for this type class for unions can be
implemented in a straightforward way. A construction can be added to the
language that shifts the implementation of the type class to the language level
instead of bothering the programmer with a default implementation, just like
the deriving construct. This construct is necessary, instead of implementing the
classes by default, because in some cases it can be useful for a programmer to
implement the type class in a non-default way. The difference with the deriving
construct that is already part of the Haskell language, is that the deriving
construct is used to implement a type class given a certain type, whereas in
the derivation proposed above, the union must implement a given type class.
One way to enable this derivation is by creating a new construction (derive)
that can implement type classes for the union in a default way, this is shown in
Code 5.18.

class A a where
. . .
derive(Union)

Code 5.18: Deriving Type Classes for Union Type

A rule that can implement the type class for a union in a default way is shown
in the next rules. The rule given in Figure 5.4 creates the instance for the union
and distributes the rewriting of functions to the Ri-rule, given in Figure 5.5,
which creates the functions of the type class over the union type.

The Ri rule creates the function of the type class based on the function type.
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RA[[class A a where
f1 :: T1

...
fn :: Tn ]]

class A a where
f1 :: T1

...
fn :: Tn

instance (A l, A r) => A (l ‘Union‘ r) where
Ri([[f1 :: T1]], a)

...
Ri([[fn :: Tn]], a)

Figure 5.4: The type class rewritten

When the arguments consist of unions, i.e. one of the arguments has type a,
new guards are introduced, as shown in Figure 5.6. This rewriting rule uses a
new notation:

e C guard+
x ← e′

This notation means that when rewriting an expression, the result of the rewrit-
ing rule will be the expression e with the expression e′ added to the guard x.
When x is not specified e′ is added to the guard to which expression e belongs.

Ri([[f :: T1 −> . . . −> Tn]], a)
f Rp([[x1]], T1, a) . . . Rp([[xn]], Tn, a)

| guardl = Rr([[f y1 . . . yn]], Tn, a)
| guardr = Rr([[f y1 . . . yn]], Tn, a)
• guardl and guardr are filled by the Rr-rule

• y1, . . . , yn are unique identifiers corresponding to x1, . . . , xn, which are
created in the RP -rule.

Figure 5.5: The functions in the type class rewriten

The rule to rewrite a pattern that has the type of the type class is shown in
Figure 5.6.

Patterns that need not be rewritten are a single variable. The name of the vari-
able is replaced to create a more simple rewriting scheme. In the rule depicted
in Figure 5.6 the name of the variable needs to be changed, so it is convenient
to do this in Figure 5.7 also.

60



CHAPTER 5. EXTENSIVE IMPLEMENTATION OF UNIONS

RP ([[xi]], a, a)
yi C guard+

l ← Just yi <− downCast xi :: Maybe l
C guard+

r ← Just yi <− downCast xi :: Maybe r
• yi is a unique variable.

Figure 5.6: Rewriting the patterns of the type class

RP ([[xi]], a, b)
yi

• xi is a variable.

• yi is a new unique variable.

• a 6= b.

Figure 5.7: Rewriting patterns that do not have the type of the type class

Note that it is not possible to create a function this way that has other patterns
than standard variables, like lists or tuples. The functions given in Code 5.19 can
therefore not be created, because the rewriting rules are not given here. However
lists and tuples are algebraic constructions, therefore it is easy to implement the
typeclass algebraic on these types.

f : : [a ] −> String
g : : (String ,a) −> Int

Code 5.19: Patterns that can not be handled

The right hand side of functions also needs to be rewritten when the result of
the function is Maybe a and the type class is instantiated over a. This is shown
in Figure 5.8. The function is evaluated with all arguments being elements of
either the left or the right side of the union. When the evaluated function yields
a value when evaluating the function with only values that are in the internal
representation part of the L constructor, the result of the whole function will
be this value. Otherwise the function is evaluated with values from the internal
R constructor. To ensure that the result of the function is a value a clause is
added, as shown in Figure 5.8.

When the result of the function is not Maybe a then the function need not be
rewritten as much as in Figure 5.8. The function is evaluated for the arguments
given. These arguments will either be values of the left type of the union, or
values of the right type of the union, this is forced by the guards. The evaluation
of the function therefore is passed to the implementation of the type class on
the left or right type of the union (Figure 5.9).
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Rr([[f y1 . . . yn]], Maybe a, a)
upCast z C guard+ ← Just z <− f y1 . . . yn

• z is a new unique variable

Figure 5.8: Type class rewritten with union as result type

Rr([[f y1 . . . yn]], a, b)
f y1 . . . yn

• a 6= b.

Figure 5.9: Type class rewritten with union as result type

5.4.3 Functions

The mere need for unions is that two distinct types are merged because they
share functionality or behaviour. When both types implement a certain type
class and therefore functionality, the union must implement the same type class
to have this functionality also.

When the arguments of the functions are elements of the union type, it is fairly
simple to implement the type class on the union level, for instance the Show
type class when implemented for both types can be easily implemented for an
arbitrary union as well in Code 5.20

instance (Show a , Show b) => Show (Union a b) where
show = (either show show) . unionIdentify

Code 5.20: Show

On the other hand when the result of a function is a union and the domains of the
functions overlap it is harder to merge these functions. An example of a function
that has a union as result type and has overlapping domains, is the function
read in the type class Read. The function read has type: String −> a. The
compiler can not determine, based on the string value, which function must be
used. It might be the case that when trying the function implementation of
the left type of the union results in an error, whereas the implementation of
the right type would result in a correct value, or vice versa. Code 5.21 shows
one way to merge functions that have a union as a result and have overlapping
domains, by giving results wrapped in the Maybe monad.

When it is possible to handle exceptions in Haskell without the IO monad
using try and catch the Maybe type is not necessary anymore. In Haskell it is
possible to throw exceptions in all functions, yet they can only be handled with
the use of the IO monad (Peyton Jones, 2005). The IO monad enforces that an
error thrown is evaluated, which boils down to the lazy evaluation of Haskell.
The IO monad, however, is the very thing we want to get rid of. However it
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class MRead a where
mread : : String −> Maybe a

instance (Mread l ,Mread r) => Mread (l ‘Union ‘ r) where
mread s
| Just y <− (mread s : : Maybe l) = upCast y
| Just y <− (mread s : : Maybe r) = upCast y
| otherwise = Nothing

Code 5.21: Maybe Read

seems that exceptions created in the Haskell compiler can be catched in the
calling function. When exceptions can be handled without the IO monad the
function can be implemented as done in Code 5.22.

instance (Read l ,Read r) => Read (Union l r) where
read x = fromJust . upCast (

try (read x : : l)
catch (read x : : r)

)
Code 5.22: Function using Exception handling

The instantiation of type classes as shown in Code 5.21 can result in differ-
ent behaviour for commuting unions that should be equivalent. The instance
declaration given in Figure 5.4 for functions that result in a union may re-
sult in different behaviour when the union is defined with the union arguments
switched, due to the overlapping domains. In Code 5.23 an implementation of
the type class MRead is given that overlaps on the domain, when mread is used
on the union of T1 and T2.

It is clear that the evaluation of the function mread on union T1 ‘Union‘ T2 will
result in Just A, Just B or Just C. Whereas the union T2 ‘Union‘ T1 will result
in Just D, Just E or Just F. Therefore when introducing functions that result
in a union, care must be taken with the domains of the functions.

There are several possibilities to handle these overlapping domains, suppose you
have the type class MRead and a value x which will result in Just <value> for
the implementation of this type class for type A and for the implementation
of the type class for type B. There are different solutions to prevent incorrect
behaviour of these functions. These solutions can be divided in compile time,
the first two, and run time solutions, the other three.

1. Ignore the problem, but give a warning on compile time to the programmer
that there can be overlapping function definitions.
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data T1 = A | B | C deriving(Eq,Typeable)
instance Algebraic T1

data T2 = D | E | F deriving(Eq,Typeable)
instance Algebraic T2

instance MRead T1 where
mread ”A” = Just A
mread ”B” = Just B
mread _ = Just C

instance MyRead T2 where
mread ”D” = Just D
mread ”E” = Just E
mread _ = Just F

Code 5.23: Type Classes with overlapping domains

2. Try to examine whether there are overlapping instances. There are three
cases; (a) it can be deduced from the patterns and guards, from now on
called the (selection) criteria, that when there are no overlapping selection
criteria, no error or warning is given, and there is no problem with the
parallel composition of these functions. (b) it can be concluded from the
selection criteria that the criteria overlap, then an error must be given,
because the union is not commutative anymore. (c) it is not possible to
conclude whether selection criteria overlap - because guards can be arbi-
trary complex - then a warning must be given that overlapping patterns
and guards might occur.

3. Just take the result of the first function that gives a value on runtime.
This implies that the function on the union may give different results for
A ‘Union‘ B and B ‘Union‘ A.

4. Give a runtime error message when both functions on the union will result
in a value.

5. Give a runtime error message when both functions on the union will result
in a different value.

The first two solutions can only be implemented in a compiler and are therefore
part of future research. The third is implemented in the rewriting rule of Fig-
ure 5.4. The fourth and fifth can be implemented rather easily, by altering the
code that is generated when a type class is instantiated. The code for the fourth
and fifth possibility to handle overlapping instances are respectively shown in
Code 5.24 and 5.25.
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instance (MRead l ,MRead r) => MRead (Union l r) where
mread e
| Just x <− a , Just y <− b

= error (”Overlapping instances for ” ++ show e)
| Just x <− a

= upCast x
| Just x <− b

= upCast x
| otherwise

= Nothing
where

a = mread e : : Maybe l
b = mread e : : Maybe r

Code 5.24: Give a runtime error on overlapping instances

instance (MRead l ,MRead r) => MRead (Union l r) where
mread e
| Just x <− a , Just y <− b , not (x ‘eq ‘ y)

= error (”Overlapping instances for ” ++ show e)
| Just x <− a

= upCast x
| Just x <− b

= upCast x
| otherwise

= Nothing
where

a = mread e : : Maybe l
b = mread e : : Maybe r

Code 5.25: Give a runtime error on overlapping instances with different values

5.4.4 Parallel Function Composition using Operators

Besides functions on type classes also other functions might be composed in par-
allel. This parallel function composition can be done using the same operators
as described in Chapter 4.

The operators F̃ and +̃ can be defined easily, as shown in Code 5.26. The
operator F̃ should have a synonym union to resemble the same notion as the
Either type with the corresponding function either, which is evaluated with
two functions and an Either value. The first will be used when the value is
Left x the second when the value is Right x. The union function can be used
in the same way now.
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<F> : : (Algebraic a , Algebraic b)
=> (a−>c) −> (b−>c) −> (a ‘Union ‘ b) −> c

<F> f g x = (either f g) (unionIdentify x)

union = <F>

<+> : : (Algebraic a , Algebraic b ,Algebraic c ,Algebraic d)
=> (a−>c) −> (b−>d) −> (a ‘Union ‘ b) −> (c ‘Union ‘ d)

<+> f g x = (<F>) (fromJust.upCast .f) (fromJust.upCast .g) x

Code 5.26: Parallel Function Composition Operators

The function eq as defined in Code 5.15 can be rewritten in a more simple way
as done in Code 5.27

eq x y = (union eq eq x) y

Code 5.27: The equality operator rewritten

The implementation of the operator G̃ depends on the choice, listed above, of
how functions need to be composed in parallel. One implementation of G̃ ,
which corresponds to the third solution given, is shown in Code 5.28.

<G> : : (Algebraic b ,Algebraic c)
=> (a−>Maybe b) −> (a−>Maybe c) −> a −> Maybe (b ‘Union ‘ c)

<G> f g x | Just y <− f x = upCast y
| Just y <− g x = upCast y
| otherwise = Nothing
Code 5.28: Parallel Function Composition Operator <G>

5.4.5 Algebraic Patterns

The use of pattern guards, although elegant, is quite verbose. It is possible to
add syntactic sugar to the language, to be able to show it as a construct that
is already known to the programmer. The normal representation of algebraic
patterns can be rewritten in an automatic way to a pattern guard form. The
rewriting rule to rewrite algebraic patterns is shown in Figure 5.11, which is
used by the rule depicted in Figure 5.10. In Code 5.29 a function with patterns
using algebraic constructors is shown. In Code 5.30 this function is rewritten
to a function that uses pattern guards. Note that the rule processes recursively
through the algebraic patterns, because algebraic patterns might be nested.
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RA[[fx1 . . . xn = e]]
f RAP [[x1]]. . . RAP [[xn]]= e

Figure 5.10: Algebraic Patterns

RAP [[C c1 . . . cn]]
x C guard+ ← Just ( RAP [[c1]], . . . ,RAP [[cn]])<−fromC x
• x is a unique variable.

Figure 5.11: Algebraic Patterns rewritten

RAP [[(x :xs)]]
(RAP [[x]] :RAP [[xs]])

Figure 5.12: List Pattern rewritten

RAP [[x]]
x
• x is an identifier, or a constant.

Figure 5.13: Pattern rewritten

doEvent : : InEvent −> String
doEvent (Moved from to ) = from ++ ” −> ” ++ to
doEvent (Recieved ip p cont) = ”Received ” ++ cont

Code 5.29: Algebraic Function

doEvent : : InEvent −> String
doEvent x
| Just (from ,to) <− fromMoved x
= from ++ ”−>” ++ to
| Just (ip ,p ,cont) <− fromRecieved x
= ”Received ” ++ cont

Code 5.30: Algebraic Function rewritten
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Rewriting composite patterns, i.e. list, record or tuple patterns can be rewritten
in a straightforward way. For instance the list pattern can be rewritten as done
in Figure 5.12. The implementation of the rules to handle tuples and records
are not shown here, but they are also very straightforward. When a pattern
need not be rewritten, the rule shown in Figure 5.13 applies.

5.5 Unnamed Unions

With this implementation of a union it is possible to use unnamed unions, i.e.
unions that are defined in place in functions. The type definition of the doEvent
function which is defined in the module Section C.3 can also be given without
defining the unions first. Both type definitions are shown in Code 5.31 and 5.32.

type InEvent = MoveInEvent ‘Union ‘ CoreInEvent
type OutEvent = MoveOutEvent ‘Union ‘ CoreOutEvent

doEvent : : State −> InEvent −> (State , [OutEvent ] )
Code 5.31: Type definition with named unions

doEvent : : State −>
(MoveInEvent ‘Union ‘ CoreInEvent) −>

(State , [MoveOutEvent ‘Union ‘ CoreOutEvent ] )
Code 5.32: Type definition with unnamed unions

5.6 Equality of Unions

According to our intuitive notion of unions, unions should be commutative as
described in Section 3.7, i.e. A ‘Union‘ B should be equivalent to B ‘Union‘ A.
In most cases this is true for the implementation given.

The function doEvent is defined on type InEvent. The definition of InEvent is
shown in Section C.3 and in Code 5.31. The function doEvent will evaluate to
the same result, indifferent of the order of the union declaration. Yet, in Haskell
cannot be unified by the type checker, therefore it is not possible when a type
definition is given to evaluate the function with arguments of the commuting
union (Code 5.33). When the type definition is removed, however, the function
will evaluate and the result will be the same, because the type checker does not
have to unify the types. The same goes for arguments that are not a union
value. The expression: doEvent state (Received ”””” ””) will result in the
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correct result (state ,[]) when no type definition is given, but will result in a
type error when it is evaluated with the type definition given in Code 5.31.

type InEvent2 = CoreInEvent ‘Union ‘ MoveInEvent

Code 5.33: The union that should commute with InEvent
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6

Example

6.1 Outline of the Example

I have made an example in which the use of (simulated) stream-I/O and alge-
braic unions are illustrated. The simple example is about a robot and an agent
that operates in a blocks world. This blocks world consists of 5 blocks named
”A” until ”E”. These blocks can be placed on top of each other and on the
”Floor”. A configuration of the blocks world can be seen in Figure 6.1.

Figure 6.1: A configuration of the blocksworld

The responsibility of the robot is to move blocks from one place to another,
when it receives requests from the outside world and gives as result whether the
block is moved. The agent is a program that can give this requests to the robot.
The flow of events between the programs is illustrated in Figure 6.2.

Figure 6.2: The flow of events

The agent program has to make the request to the robot that a block must
be moved. It would be nice when the programmer is able to create a new
algebraic constructor that is an abstract representation of a move request. One
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algebraic constructor that models the event to send a request to the robot, and
one modeling the event occurring when the robot has performed the move.

6.1.1 Union

In the application, the agent must be able to handle the core events - events
like DrawCircle, ButtonClick and KeyIn - and the added move events in the
same way. This is done by creating a union between the core events and the
move events.

6.1.2 Function Implementations

When the program uses this events two functions must be implemented for
both core events and move events. The types that form type inevent must
implement a function that may convert an incoming event to another event.
Also a function must be implemented to transform an outgoing event to a core
event.

6.1.3 Event Loop

The event loop is used to specify the behaviour that must occur when handling
events that are coming in. The use of unions enables the mixing of core events
and move events.

6.2 Example with Algebraic Types

The code used to implement the example using algebraic types with the rewrit-
ing rules of Chapter 5 is shown in Appendix B. The union that is needed to
merge the different types of events is shown in this code and can also be seen
in Code 6.1.

For this types a function must be defined that converts a string to a core event
or a move event. This function composition is shown in Code 6.2 along with the
implementations of the functions that are being functionally composed. The
other way round the function composition to handle both core output events
and the move output event is shown in 6.3. This function converts a union to a
list of graphics.
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inevent ::= coreIn <U> moveIn

outevent ::= coreOut <U> moveOut

Code 6.1: The definition of the Event Union types

string2inevent : : string −> inevent
string2inevent = string2moveIn <F> string2coreIn

string2moveIn : : string −> moveIn
string2moveIn s

= Moved (getFrom s) (getTo s)
, i f getFrom s ˜= None /\ getTo s ˜= None

string2coreIn : : [char ] −> coreIn
string2coreIn s

= Ack (getvalue ”Event” s) (getvalue ”Port” s)
, i f (getvalue ”Event” s) = ”Subscribe”

= . . .
= MessageIn (getvalue ”Address” s)

(getvalue ”Port” s)
(getvalue ”Contents” s)

, i f (getvalue ”Id” s) = ”Receive”

Code 6.2: Function composition for input events

handleOutevent : : outevent −> [graphics ]
handleOutevent = handleCoreOut <F> handleMoveOut

handleMoveOut : : moveOut −> [graphics ]
handleMoveOut (Move f t)

= handleCoreOut (Send ”localhost” ”4001” msg)
where
msg = from ++ to
from = ”<From>” ++ bl2str f ++ ”</From>”
to = ”<To>” ++ bl2str t ++ ”</To>”

handleCoreOut : : coreOut −> [graphics ]
handleCoreOut (PromptOut x y)

= [GraphPrompt x y ]
handleCoreOut (Send tar port cont)

= sendCoreOutToJava (Send tar port cont )
. . .
handleCoreOut NoOutput

= [ ]
Code 6.3: Function composition for output events
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The event loop can be used to handle both the move events and core events, as
can be seen in Code 6.4. This function creates an output event when a certain
event occurs Move and receives an input event Moved from the robot when a
block is moved. This event is shown to the user with a prompt. In this case the
prompt in Figure 6.3 is shown to the user when block ”A” is moved on top of
block ”B”.

Figure 6.3: A prompt shown when a block is moved

It is not possible to send messages over the network in Amanda, this is simu-
lated by a Java-program and some text-files. The actual implementation of this
network communication simulation is not relevant to the implementation that
is given here. Therefore it will not be discussed further.

6.3 Example with Type Classes

In Appendix C an implementation of the example of this Chapter is given.
Because the Haskell language does not have the stream I/O model the I/O model
is simulated using some functions that have the same types as the functions
used in the Amanda stream model. The functions eventsin and eventsout
are functions that respectively give a list of input events and get a list of output
events as an argument. The ”system” can not handle stream I/O in the sense
that it interacts with the environment. It rather is a static simulation of how
events are handled.

The union of events can be implemented rather easily by creating a type syn-
onym as shown in Code 6.5. As described in Section 5.5 these unions need not
be declared, but can also be used using unnamed unions. Yet the declaration
of these synonyms make the type definition of functions simpler.

These event types can be used to handle the events coming in and going out
respectively. In order to create events that are most suited to the user a type
class is implemented to convert a CoreInEvent to a specific inevent and a type
class to convert a specific outevent to a CoreOutEvent. These classes are shown
in Code 6.6

These type classes are implemented for the core and move events. For instance
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doE : : storeTp −> inevent −> (storeTp , [outevent ] )
doE s (ButtonClick w 20 i) = (s ,bye)
doE s (MessageIn _ _ t) = (s , [ (PromptOut ”received” t) ] )
doE s (Keyin ’\e ’ ) = (s ,bye)
doE s (Error _ t) = (s , [ (PromptOut ”Error” t) ] )
doE s (ButtonClick w 13 i) = (s , [ (Move from to) ] )

where
from = radio2blockFrom i
to = radio2blockTo i

doE s (Moved f t) = (s , [PromptOut ”moved” msg ] )
where
msg = ((bl2str f) ++

” −> ” ++
(bl2str t))

doE s _ = (s , [NoOutput ] )
Code 6.4: The event loop to handle all input events

type InEvent = MoveInEvent ‘Union ‘ CoreInEvent
type OutEvent = MoveOutEvent ‘Union ‘ CoreOutEvent

Code 6.5: Union definition

class (Algebraic a) => InEventClass a where
fromCoreInEvent : : CoreInEvent −> Maybe a

class (Algebraic a) => OutEventClass a where
toCoreOutEvent : : a −> CoreOutEvent

Code 6.6: The event type classes

instance OutEventClass MoveOutEvent where
toCoreOutEvent (Move a b)

= Send ”localhost” ”4000” (”MOVE ” ++ a ++ ” ” ++ b)
Code 6.7: The implementation of the OutEventClass for MoveOutEvent
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the MoveOutEvent algebraic type implements the OutEventClass as shown in
Code 6.7.

Note that the way the implementation of the InEventClass type class is not
commutative with respect to unions by default. The idea of this type class is
to convert an event to the most specific type possible. Only when no specific
type can be found, the events of CoreInEvent must be returned. It is obvious
that the implementation of InEventClass for the type CoreInEvent will result
in a value always. Therefore a union between CoreInEvent and some other
type, is not commutative. That is, the result of the function fromCoreInEvent
on the type CoreInEvent ‘Union‘ MoveInEvent will result in a different event
than the same function on the type MoveInEvent ‘Union‘ CoreInEvent. Still,
it is possible to reimplement the type class for a union with a CoreInEvent
to enforce commutativity. This overriding of implementations of type classes
is not possible in the standard Haskell compiler, yet with the flag −fallow
−overlapping −instances, this is possible.

The implementations of the type class InEventClass, the default and the more
specific ones are shown in Code 6.8. Note that the commutativity between
MoveInEvent ‘Union‘ CoreInEvent and MoveInEvent ‘Union‘ CoreInEvent is
preserved now.

In the event loop MoveEvents and CoreEvents can be addressed in the same
way. This is shown in Code 6.9. With the rewriting rules as been given in
Chapter 5 the algebraic patterns are rewritten to a form with pattern guards
that is shown in the Appendix C.3.

6.4 Conclusion

The conclusion of this small example is that unions can be used to add custom
events to the language with very little programming effort. To add new events
to the language in both approaches some actions must be taken.

• Introduce new event types, i.e. algebraic constructors.

• Make a union of the custom event types and the core event types

• Implement functions that convert the custom events to standard events -
either by type classes or parallel composition of functions - in order to be
handled by the language.
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instance (InEventClass l , InEventClass r)
=> InEventClass (Union l r) where

fromCoreInEvent e
| Just x <− fromCoreInEvent e : : Maybe l = upCast x
| Just x <− fromCoreInEvent e : : Maybe r = upCast x
| otherwise = Nothing

instance (InEventClass a)
=> InEventClass (a ‘Union ‘ CoreInEvent) where

fromCoreInEvent e
| Just x <− fromCoreInEvent e : : Maybe a = upCast x
| Just x <− fromCoreInEvent e : : Maybe CoreInEvent = upCast x
| otherwise = Nothing

instance (InEventClass a)
=> InEventClass (CoreInEvent ‘Union ‘ a) where

fromCoreInEvent e
| Just x <− fromCoreInEvent e : : Maybe a = upCast x
| Just x <− fromCoreInEvent e : : Maybe CoreInEvent = upCast x
| otherwise = Nothing

Code 6.8: Implementation of type classes to preserve commutativity

doEvent : : (InEventClass a ,OutEventClass b)
=> State −> a −> (State , [b ] )

doEvent s (Moved from to)
= (s ++ ”\n” ++ from ++ ”−>” ++ to , [ ] )

doEvent s (Received ip p cont)
= (s ++ ”\n” ++ cont , [ ] )

Code 6.9: Using the events in the event loop
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Related and Future Work

7.1 Related Work

Union types as introduced in this thesis are studied in type theory to some
extent (Pierce, 1991; Barbanera, Dezani-Ciancaglini, & Liguoro, 1995). Yet
this papers are mostly focused on the type theoretical background and almost
no effort is taken to show an implementation of union types in languages.

In (Löh & Hinze, 2006) a proposal is made that is related to the use of union
types I proposed. Löh & Hinze present open data types and open functions.
This means functions and data types can be declared open when they might be
extended in the future. One large benefit of open data types and functions over
unions are that no type extension has to be made to the (Haskell) language.
Furthermore, the proposal that is made about best fit pattern matching can also
be used to implement parallel function compositions with overlapping function
domains. This best fit pattern matching, opposite to the normal Haskell pattern
matching, does not try to find the first pattern that matches the value found,
but orders the function clauses with the most specific pattern first and the most
generic pattern last. For instance the pattern C x y, where C is a constructor will
be placed above the pattern _ because it is more specific, but below C x 5. Using
this best fit pattern matching the clauses of the parallel composed functions with
overlapping domains can prove to be useful.

Now I will show that the proposal that is made in the paper of Löh & Hinze
can also be modeled using unions and type classes. To do this, I will use the
same example as Löh & Hinze use in their paper. This example is about a very
simple language of expressions based on algebraic data types.

First we define a type for the expression language, which at first only consists
of expressions denoting numbers. For the functions that are implemented on
the expressions a type class is introduced, Code 7.1 shows this. Also a function
that shows how the expression will be evaluated is shown.
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type Expr = Number

data Number = N Int
deriving(Eq,Typeable)

class Expression a where
eval : : a −> Int
toString : : a −> String

instance Expression Number where
eval (N x) = x
toString (N x) = show x

expression : : Expr −> String
expression x

= (toString x) ++ ” wil l evaluate to ” ++ ((show .eval) x)
Code 7.1: Expression consisting of numbers

Now the expression language is extended with a new expression, the + operator.
The code that is altered and extended is shown in Code 7.2. Note that the
function expression need not be changed.

type Expr = Number ‘Union ‘ Plus

data Plus = Plus Expr Expr

instance Expression Plus where
eval (Plus x y) = (eval x) + (eval y)
toString (Plus x y)
= ”(” ++ (toString x) ++ ” + ” ++ (toString y) ++ ”)”

Code 7.2: Extend Expression language with +

The use of type classes using Unions forces the added constructor Plus to im-
plement the type class Expression whereas Löh & Hinze open data type and
functions will give a runtime error because a pattern is missing that handles the
Plus constructor.

Furthermore constructors that are added to the open data type can not be used
separately, whereas every type that is used to create a union can also be used
separately.

A large disadvantage of open data types and open functions is that the type
signature of the function is mandatory (Löh & Hinze, 2006, p.2). This implies
that type inference is not possible for open functions.
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7.2 Future Work

I introduced a new construction to be added to functional programming lan-
guages. During the implementation an increasing number of areas occurred in
which union types might be useful, I highlighted a few of them. Yet in the
future research needs to be done to explore areas in which union types can be
used.

Just like in logic the dual of disjunction is conjunction, the dual of a union type
is the intersection type. In type theory research has been done to study this
notion of union and intersection types (Pierce, 1991; Barbanera et al., 1995). It
would be nice to see whether this intersection types can be useful in functional
languages and whether several distributive laws emerging from their duality,
like distributivity can be proved for implementations in functional languages.

Also some research need to be done to add this construction to the core language.
The implementation I used showed that the construction can be implemented
in a functional language. However the functionality should be part of the core
language, which eliminates labour-intensive pre processing and creates more
readable error messages and type information.

The merging of functions of a union might give some problems with overlapping
patterns and guards as described in Section 5.6. Further research must be
done to find an algorithm that approximates whether clauses overlap. This
approximation can then be used to implement the merging of functions with a
union type as result value. Also research need to be done to discover what the
best solution (5.4.3) is to handle overlapping patterns.

Furthermore in practice should be evaluated which parts of extensible stream
I/O are sufficient and what parts can be automated. For instance the union of
event types can be automated when the libraries are imported. So maybe this
is something the programmer should not worry about. Also the use in practice
can produce more real-world examples.
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A

Algebraic Type Class and
Union Type

{−# OPTIONS−fglasgow−exts #−}
{− Use to be able to use pattern guards −}

{− Overall class that defines the type class that must be implemented
5 by ∗every∗ algebraic type .−}

module Algebraic
(module Data .Generics
,Union
,Algebraic ( . . )

10 ,unionIdentify
,fromJust
,union
,(<&>)
,(<∗>)

15 ,(<+>)
)

where

{− To be able to use the class typeable and to use the cast function
20 −}

import Data .Generics
import Maybe

{− Union type , to store either the l e f t or the right value −}
25 data Union a b = L a

| R b

deriving(Eq,Typeable)

{− Return an Either type that corresponds to the union type , this
30 makes i t possible to hide the internal constructors . Note that this

function is not commutative −}
unionIdentify : : a ‘Union ‘ b −> Either a b

unionIdentify (L x) = Left x

unionIdentify (R x) = Right x
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35

{− The type class for each algebraic type , note that instances of this
class must also implement Eq and Typeable −}
class (Eq a ,Typeable a) => Algebraic a where

40 {− Cast the value of this type to a more general type . The default
implementation is to cast the value to i t s own type −}
upCast : : (Algebraic b) => b −> Maybe a

upCast = cast

45 {− Cast the value of this type to a more specific type . The
default implementation is to cast the value to i t s own type −}
downCast : : (Algebraic b) => a −> Maybe b

downCast = cast

50 {− A custom equality function , this function compares two values
that are the most specific . The default implementation assumes
that the value of the implementation of this class (the l e f t
value) is the most specific value and compares this value with a
value of the other function when this is casted to the same type

55 −}
eq : : (Algebraic b) => a −> b −> Bool
x ‘eq ‘ y = Just x == (downCast y : : Maybe a)

{− The union is also part of the Algebraic class , implemented in the
60 following way. Therefore ∗every∗ union is also part of the Algebraic

typeclass −}
instance (Algebraic l , Algebraic r) => Algebraic (l ‘Union ‘ r) where

upCast x | Just z <− cast x : : Maybe (l ‘Union ‘ r) = Just z

| Just z <− upCast x : : Maybe l = Just (L z)
65 | Just z <− upCast x : : Maybe r = Just (R z)

| otherwise = Nothing

downCast = union downCast downCast

70 eq x y = (union eq eq x) y

{− The Union is part of the Show type class , when both parts are −}
instance (Show l , Algebraic l , Show r , Algebraic r)

=> Show (Union l r) where
75 show = union show show

{− Equivalent to <&>, which is the Haskell representation of <F> −}
union : : (Algebraic a , Algebraic b)

=> (a−>c) −> (b−>c) −> ((a ‘Union ‘ b) −> c)
80 union f g x = (either f g) (unionIdentify x)

{− Equivalent to union, which is the Haskell representation of <F> −}
(<&>) : : (Algebraic a , Algebraic b)

=> (a−>c) −> (b−>c) −> ((a ‘Union ‘ b) −> c)
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85 (<&>) = union

{− The function <+> −}
(<+>) : : (Algebraic a , Algebraic b ,Algebraic c ,Algebraic d)

=> (a−>c) −> (b−>d) −> (a ‘Union ‘ b) −> (c ‘Union ‘ d)
90 f <+> g = union (fromJust.upCast .f) (fromJust.upCast .g)

{− One Haskell representation of <G> −}
(<∗>) : : (Algebraic b ,Algebraic c)

=> (a−>Maybe b) −> (a−>Maybe c) −> a −> Maybe (b ‘Union ‘ c)
95 (<∗>) f g x | Just y <− f x = upCast y

| Just y <− g x = upCast y

| otherwise = Nothing

Code A.1: Algebraic Type Class and Union Type
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B

Example code using
Algebraic Types

#import ”TinaSim/TinaSim.ama”
#import ”TinaSim/TinaEventTypes.ama”

3 #import ”windows.ama”
#import ”xml.ama”
#import ”moveL.ama”

| | Union of in−event types
8 inevent ::= coreIn <U> moveIn

| | Union of out−event types
outevent ::= coreOut <U> moveOut

13 | | Move events
| | Receive which block is moved to where
moveIn ::= Moved block block

| | Request a move of a block
18 moveOut ::= Move block block

| | convert a xml message in the block to be moved
| | arg1 : the xml−message
| | result : the block to be moved

23 getFrom : : string −> block

getFrom = str2bl . (getvalue ”From” ) .getCont

| | convert a xml−message in the block to where must
| | be moved

28 | | arg1 : the xml−message
| | result : the block to where must be moved
getTo : : string −> block

getTo = str2bl . (getvalue ”To” ) .getCont

33 | | convert a string to a move event
| | arg1 : the xml−message
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| | result : the event occurred
string2moveIn : : string −> moveIn

string2moveIn s

38 = Moved (getFrom s) (getTo s)
, i f getFrom s ˜= None /\ getTo s ˜= None

| | Handle the move event
| | arg1 : the event to be handled

43 | | result : the graphics that are the result of
| | handled events
handleMoveOut : : moveOut −> [graphics ]
handleMoveOut (Move f t)

= handleCoreOut (Send ”localhost” ”4001” msg)
48 where

msg = from ++ to

from = ”<From>” ++ bl2str f ++ ”</From>”
to = ”<To>” ++ bl2str t ++ ”</To>”

53 | | Parallel composition of functions , f i r s t try to
| | convert the string to a move event , and then to
| | a normal event
| | arg1 : the xml−message representing the event
| | result : the inevent

58 string2inevent : : string −> inevent

string2inevent = string2moveIn <F> string2coreIn

| | Parallel composition of functions , f i r s t handle
| | the core events and then the move events

63 handleOutevent : : outevent −> [graphics ]
handleOutevent = handleCoreOut <F> handleMoveOut

| | Store , keeping track of the number of moves
storeTp ::= {moves : : num}

68

| | some in i t ia l events , to start the program
initEv : : [outevent ]
initEv

73 = [Subscribe ”localhost” ”4000”
,Graphics ”operator” 0 (windowCreate operator)
,ShowWindow ”operator” True
,Graphics ”main” 0 [GraphVisible False ]
]

78

| | The whole program, moving the events to the
| | doEs−function
main : : bool
main = tinaEventsout

83 (initEv ++
(doEs {moves=0} tinaEventsin)
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)

| | Distibute to single event
88 doEs : : storeTp −> [inevent ] −> [outevent ]

doEs s (Noinput :es) = doEs s es

doEs s (e :es) = out ++ (doEs newS es)
where
(newS ,out) = doE s e

93

| | single event ca l l
doE : : storeTp −> inevent −> (storeTp , [outevent ] )
doE s (ButtonClick w 20 i)

98 = (s ,bye)
doE s (MessageIn _ _ t)

= (s , [ (PromptOut ”received” t ) ] )
doE s (Keyin ’\e ’ )

= (s ,bye)
103 doE s (Error _ t)

= (s , [ (PromptOut ”Error” t ) ] )
doE s (ButtonClick w 13 i)

= (s , [ (Move from to ) ] )
where

108 from = radio2blockFrom i

to = radio2blockTo i

doE s (Moved f t)
= (s , [PromptOut ”moved” msg ] )

where
113 msg = ((bl2str f) ++

” −> ” ++
(bl2str t))

doE s _

= (s , [NoOutput ] )
118

| | convert the value of a radio−button to a block
| | that must be moved
radio2blockFrom : : [ (ident , [char ] ) ] −> block

radio2blockFrom = radio2block 30
123

| | convert the value of a radio−button to a block
| | where must be moved to
radio2blockTo : : [ (ident , [char ] ) ] −> block

radio2blockTo = radio2block 40
128

| | convert the value of a radio−button to a block
radio2block : : num−> [ (ident , [char ] ) ] −> block

radio2block n xs

= (str2bl .toL .decode.(64+).((−n)+).hd) ys

133 , i f ys ˜= [ ]
= Floor , otherwise
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where
ys = [x | (x ,y)<−xs ; y=”Y” ; x>n ; x<n+10]
toL x = [x ]

138

| | events to be send when the program is quit
bye : : [outevent ]
bye = [Unsubscribe ”localhost” ”4000”

,Graphics ”operator” 0 [GraphQuit ]
143 ]

| | the GUI of the program
operator : : windowTp

148 operator = Window ”operator”
( [ Label 99 ”Move” ] ++

group1 ++
[ Label 99 ”to” ] ++
group2 ++

153 [ Button 13 ”OK”
, Button 20 ”Stop”
]

)
| | the group of radiobuttons of the from−blocks

158 group1 : : [windowItem ]
group1 = [RadioButton 31 ”A”

,RadioButton 32 ”B”
,RadioButton 33 ”C”
,RadioButton 34 ”D”

163 ,RadioButton 35 ”E” ]

| | the group of radiobuttons of the to−blocks
group2 : : [windowItem ]
group2 = [RadioButton 41 ”A”

168 ,RadioButton 42 ”B”
,RadioButton 43 ”C”
,RadioButton 44 ”D”
,RadioButton 45 ”E”
,RadioButton 46 ”Floor” ]

Code B.1: Source code of the Example using Algebraic Types
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C

Example Code using Type
Classes

C.1 CoreEvents

{−# OPTIONS−fglasgow−exts #−}
2 {−# OPTIONS−fallow−overlapping−instances #−}

module CoreEvents

(InEventClass ( . . )
,OutEventClass ( . . )
,CoreInEvent ( . . )

7 ,CoreOutEvent ( . . )
,fromReceived
,fromFileReq
,fromSend
,fromFileIn

12 )
where
{− Module to specify a l l core Events −}

import Algebraic
17 import HelpEvents

{− INEVENT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−}

{− CoreInEvent declaration −}
data CoreInEvent = Received String String String

22 | FileIn String String
deriving(Show,Eq,Typeable)

{− InEventClass Class declaration −}
class (Algebraic a) => InEventClass a where

27 fromCoreInEvent : : CoreInEvent −> Maybe a

{− CoreInEvent is part of the Algebraic Type Class −}
instance Algebraic CoreInEvent
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32 {− CoreInEvent is part of the InEventClass Type Class −}
instance InEventClass CoreInEvent where

fromCoreInEvent = Just

{− Each Union for which elements are part of the InEventClass Type
37 Class is also part of the InEventClass Type Class −}

instance (InEventClass l , InEventClass r)
=> InEventClass (Union l r) where

fromCoreInEvent e

| Just x <− fromCoreInEvent e : : Maybe l = upCast x

42 | Just x <− fromCoreInEvent e : : Maybe r = upCast x

| otherwise = Nothing

{− VERY important implementations of the InEventClass , when a union of
a type with CoreInEvent is unioned then the behaviour must be the same

47 for ”a ‘Union‘ CoreInEvent” and ”CoreInEvent ‘Union‘ a” −}
instance (InEventClass a)

=> InEventClass (a ‘Union ‘ CoreInEvent) where
fromCoreInEvent e

| Just x <− fromCoreInEvent e : : Maybe a = upCast x

52 | Just x <− fromCoreInEvent e : : Maybe CoreInEvent = upCast x

| otherwise = Nothing

instance (InEventClass a)
=> InEventClass (CoreInEvent ‘Union ‘ a) where

57 fromCoreInEvent e

| Just x <− fromCoreInEvent e : : Maybe a = upCast x

| Just x <− fromCoreInEvent e : : Maybe CoreInEvent = upCast x

| otherwise = Nothing

62 {− Implementation to get the arguments from the constructors −}
{− Received String String String −}
fromReceived : : (Algebraic a) => a −> Maybe (String ,String ,String)
fromReceived z

| Just (Received w x y) <− (downCast z : : Maybe CoreInEvent)
67 = Just (w ,x ,y)

| otherwise = Nothing

{− FileIn String String −}
fromFileIn : : (Algebraic a) => a −> Maybe (String ,String)

72 fromFileIn z

| Just (FileIn x y) <− (downCast z : : Maybe CoreInEvent)
= Just (x ,y)

| otherwise
= Nothing

77

{− FUNCTIONS CoreInEvent −}

{− Handle the core in events , create events from the strings −}
handleCoreInEvents : : [String ] −> [CoreInEvent ]
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82 handleCoreInEvents es = map handleCoreInEvent es

{− Handle the core in events , create a CoreInEvent from a string −}
handleCoreInEvent : : String −> CoreInEvent

handleCoreInEvent s

87 | length es == 4 && es ! ! 0 == ”RECIEVED”
= Received (es ! ! 1 ) (es ! ! 2 ) (es ! ! 3 )

| length es == 3 && es ! ! 0 == ”FILEIN”
= FileIn (es ! ! 1 ) (es ! ! 2 )

where
92 es = splitString s

{− OUTEVENT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−}

{− CoreOutEvent declaration −}
97 data CoreOutEvent = Send String String String

| FileReq String
deriving(Show,Eq,Typeable)

{− OutEvent Class declaration −}
102 class (Algebraic a ,Show a) => OutEventClass a where

toCoreOutEvent : : a −> CoreOutEvent

{− CoreOutEvent is part of the Algebraic Type Class −}
instance Algebraic CoreOutEvent

107

{− CoreOutEvent is part of the OutEventClass Type Class −}
instance OutEventClass CoreOutEvent where

toCoreOutEvent = id

112 {− Each Union for which elements are part of the OutEventClass Type
Class is also part of the OutEventClass Type Class −}
instance (OutEventClass a , OutEventClass b)

=> OutEventClass (a ‘Union ‘ b) where
toCoreOutEvent

117 = union toCoreOutEvent toCoreOutEvent

{− Implementation to get the arguments from the constructors −}
{− Send String String String −}
fromSend : : (Algebraic a) => a −> Maybe (String ,String ,String)

122 fromSend z

| Just (Send w x y) <− (downCast z : : Maybe CoreOutEvent)
= Just (w ,x ,y)

| otherwise
= Nothing

127

{− FileReq String −}
fromFileReq : : (Algebraic a) => a −> Maybe String
fromFileReq z

| Just (FileReq x) <− (downCast z : : Maybe CoreOutEvent)
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132 = Just x

| otherwise
= Nothing

{− FUNCTIONS CoreOutEvent −}
137

{− Handle the core out events , Do something in the outside world −}
handleCoreOutEvents : : [CoreOutEvent]−> [String ]
handleCoreOutEvents es = map handleCoreOutEvent es

142 {− Handle the core out events , create a string based on the
constructor −}
handleCoreOutEvent (Send ip port cont)

= ”SEND ” ++ ip ++ ” ” ++ port ++ ” ” ++ cont

handleCoreOutEvent (FileReq path)
147 = ”FILEREQUEST ” ++ path

Code C.1: CoreEvents

C.2 MoveEvents

{−# OPTIONS−fglasgow−exts #−}
module MoveEvents

3 (MoveInEvent ( . . )
,MoveOutEvent ( . . )
,fromMoved
,fromMove
)

8 where
{− Module to specify a l l Move Events −}

import Algebraic
import HelpEvents

13 import CoreEvents

{− MoveInEvent declaration −}
data MoveInEvent = Moved String String

deriving(Show,Eq,Typeable)
18

{− MoveOutEvent declaration −}
data MoveOutEvent = Move String String

deriving(Show,Eq,Typeable)

23 {− Implementation to get the arguments from the constructors −}
{− Moved String String −}
fromMoved : : (Algebraic a) => a −> Maybe (String ,String)
fromMoved z

| Just (Moved x y) <− (downCast z : : Maybe MoveInEvent)
28 = Just (x ,y)
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| otherwise
= Nothing

{− Move String String −}
33 fromMove : : (Algebraic a) => a −> Maybe (String ,String)

fromMove z

| Just (Move x y) <− (downCast z : : Maybe MoveOutEvent)
= Just (x ,y)

| otherwise
38 = Nothing

{− Default implementation of Algebraic for MoveInEvent−}
instance Algebraic MoveInEvent

43 {− Default implementation of Algebraic for MoveOutEvent−}
instance Algebraic MoveOutEvent

{− Implementation of InEventClass for MoveInEvent −}
instance InEventClass MoveInEvent where

48 fromCoreInEvent (Received ip p cont)
| (length es) == 3 && es ! ! 0 == ”MOVED”

= Just (Moved (es ! ! 1 ) (es ! ! 2 ) )
| otherwise

= Nothing
53 where

es = splitString cont

{− Implementation of OutEventClass for MoveOutEvent −}
instance OutEventClass MoveOutEvent where

58 toCoreOutEvent (Move a b)
= Send ”localhost” ”4000” (”MOVE ” ++ a ++ ” ” ++ b)

Code C.2: MoveEvents

C.3 Program

1 {−# OPTIONS−fglasgow−exts #−}
module Program where

import CoreEvents

import MoveEvents

6 import Algebraic
import MySystem

import Debug .Trace

−− Store the state in a string
11 type State = String

−− Union Events
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type InEvent = MoveInEvent ‘Union ‘ CoreInEvent

type OutEvent = MoveOutEvent ‘Union ‘ CoreOutEvent

16

{− The in i t ia l state is an empty string −}
initState = ””

−− Model the stream I/O
21 main : : String

main

= eventsout

(doEvents initState (eventsin : : [InEvent ] ) : : [OutEvent ] )

26 −− Handle a l l events
doEvents : : (InEventClass a ,OutEventClass b)

=> State −> [a ] −> [b ]
doEvents s [ ] = trace s [ ]
doEvents s (e :es) = os ++ (doEvents ns es)

31 where
(ns ,os) = doEvent s e

−− Handle a single event
doEvent : : (InEventClass a ,OutEventClass b)

36 => State −> a −> (State , [ b ] )
doEvent s x

| Just (from ,to) <− fromMoved x

= (s ++ ”\n” ++ from ++ ”−>” ++ to , [ ] )
| Just (ip ,p ,cont) <− fromReceived x

41 = (s ++ ”\n” ++ cont , [ ] )

Code C.3: Program

C.4 System modelling Stream I/O

module MySystem where

import CoreEvents

4 import Algebraic

{− Function modeling incoming events −}
eventsin : : (InEventClass a) => [a ]
eventsin = map (fromJust.fromCoreInEvent)

9 [Received ”127.0.0.1” ”4000” ”MOVEDA B”
,Received ”localhost” ”4000” ”Dit i s een bericht”
]

{− Function modeling outgoing events −}
14 eventsout : : (OutEventClass a) => [a ] −> String

eventsout es = show es

Code C.4: System modelling Stream I/O
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Preprocessor

D.1 Outline of the Preprocessor

To be able to use algebraic unions, I created a simple preprocessor for Amanda
which is able to parse an extended version of Amanda, with algebraic unions, to
the normal Amanda syntax, in which algebraic unions are converted to normal
algebraic types. This is done in an ad hoc manner, to show that it is possible
to use unions in a functional language.

in Figure D.1 the general outline of this parser is shown. Dedentation tokens are
added to the textual representation of the input-file as described in Section D.3.
Then the string is lexed by the Lexer. After the list of tokens is transformed in
a parse tree, with the use of the EBNF-grammar, the parse tree is processed to
a new parse tree. In this transformation the added constructs are transformed
to constructs that are part of the core language. In the end the parse tree is
converted back to a textual representation that can be handled by the Amanda-
compiler.

D.2 Main

The overall program that links all parts of the program together. There are two
functions that can be used to parse an input file.

• eval
Show the parsed function in a graphical window represented as a tree
before it is transformed by the process-part.

• convert
Converts a file given as an argument from the directory in to the di-
rectory out. For instance convert ’’board’’ converts in/board.ama to
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Figure D.1: The outline of the parser

out/board.ama.

D.3 Dedent

Adds dedentation tokens to the expression that must be parsed. Dedentation
tokens are needed because Amanda, in fact almost all functional programming
languages use the off-side rule to define scoping rules. The off-side rule is defined
by Landin:

Any non-whitespace token to the left of the first such token on the
previous line taken to be the start of a new declaration.

(Landin, 1966)
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The token mentioned in the case of Amanda is the ”=”. Because during the
parsing whitespace does not matter and it will be removed a token must be
added to tell the parser the current definition is ended. This is done in the
dedent-function.

Functional programming languages depend on this off-side rule, but the EBNF
notation is not suited to specify this off-side rule. Therefore, before the program
to be preprocessed is lexed a very simple process adds dedentation tokens to the
program. Note that this is done in a very simple, ad hoc way.

• ded
Adds dedent tokens to the string given, based on the offset rule of Amanda.

During the dedentation adding process a list of indices of current indentations
is used. At the moment that a new line is processed, the following cases can be
distinguished:

1. The first token on the line is right of the last indentation and the line does
not contain ’=’. Do not add an dedentation token and continue with the
next line and the same list of indices.

2. The first token on the line is at the right of the last indentation token and
the line contains ’=’. Do not add a dedentation token and add the inden-
tation specified by the ’=’ to the front of the indentation list. Continue
with the next line with this new list.

3. The first token on the line is left or at the same place of the last ”=”-
token, add a dedentation token and continue with the line and the rest of
the indices.

1 f x = y
2 where
3 y = z
4 z = 8
5

6 g a = 9
Code D.1: Function with dedentation tokens

The dedentation tokens will be added in the following way. Between parenthe-
ses the applied case is denoted, corresponding to the cases given above. The
indentation list at the start of the application of the case is denoted between
the line number and the case.
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Line 1 [] (Case 2) Add an indentation index (4) to the list of indices.

Line 2 [4] (Case 1) Proceed

Line 3 [4] (Case 2) Add an indentation index (9) to the list of indices.

Line 4 [9,4] (Case 3) Add a dedentation token and continue with the same line
and the rest of the indices

• [4] (Case 2) Add an indentation index (9) to the list of indices

Line 5 [9,4] Proceed

Line 6 [9,4] (Case 3) Add a dedentation token and continue with the same line
and the rest of the indices

• [4] (Case 3) Add a dedentation token and continue with the same
line and the rest of the indices
• [] (Case 2) Add the indentation index to the list of indices.

Note that this implementation of the dedent tokens is not completely correct,
for instance the expression shown in Code D.2 will add a dedentation token
before ,6=7], because the ”=” that is found on the line above. It is not possible
during the lexing phase to determine that this token, between the 5s is a boolean
equality operator in stead of a function definition operator.

list : : [bool ]
list = [4=4

,5=5
,6=7]

Code D.2: Example of incorrect adding of dedentation tokens

D.4 Simple Lexer

The lexer splits the program, which is a large string in a list of strings (tokens).
This is done in the following (ad hoc) way:

1. Split the string at all given tokens. Of course the ’ ’-characters but also
’.’ and ’*’-characters. E.g. ”x.y” will be split into the list [”x”,”.”,”y”].
Although it is tempting to only tokenize a string when a space (’ ’) occurs,
this is not correct. The result of this will be that the expression x∗5 will
be seen as the identifier x*5 in stead of the expression x ∗ 5. The EBNF-
grammar should provide that the tokens ”34”, ”.” and ”6” are the real
number ”34.6”.
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2. The downside of this tokenizing is that tokens that belong together are
also split. like .. , ::= and ++ for instance. These tokens need to be
merged to a single token again. This is done by examining the whole
token list again to find a sequence of tokens that should be a single token.

3. Remove all comments. For each tuple with a begin-comment token and
an end-comment token all tokens are removed which occur between these
tokens. In Amanda these tuples are: (” ||”,”\n”) and ”/∗”,”∗/”.

4. Remove all tokens that are not necessary anymore, like spaces and new-
lines. These are already replaced by dedentation-tokens in the dedent
process.

D.5 Parser

The actual parser of the tokens is specified in parser.ama. The parser uses
the language definition given in grammar.ama to parse the tokens into a parse
tree. The parse tree is an algebraic type, with nodes and leafs. The leafs are the
terminals of the EBNF-notation, whereas the nodes are the non terminals of the
language. Each node has a list of children, according to the language definition.
Each node also has an argument which is the type of the algebraic type specifying
the language. This way the type of the node can be distinguished. The simplified
parse tree of the expression ”x + y” can be seen in Code D.3

tree = ParseNode Exp
[ ParseNode Exp [ ParseLeaf ”x” ]
, ParseNode Infix [ ParseLeaf ”+” ]
, ParseNode Exp [ ParseLeaf ”y” ]
]

Code D.3: A simple parse tree

D.6 Grammar

In grammar.ama the algebraic type is specified in the way that is given in Sec-
tion 3.2. Furthermore all the EBNF-notations as specified in Appendix E are
denoted, as well as the way these algebraic constructors need to be printed when
the parse tree is shown in a graphical window.
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D.7 Process

The process part of the preprocessing, as shown in Figure D.1 converts a parse
tree with the union-constructions to a parse tree that does not have these con-
structs. In Figure D.2 parts of the program that form the process-part together
are shown. These parts are:

Figure D.2: The outline of the processing

• Information
Information is a function that traverses the parse tree and gets information
about:

– Union declarations
All union declarations are stored along with their elements

– Function declarations
All new function declarations containing <F> .

– Replacements
All types part of a union are stored along with their wrapping con-
structors.
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• procADT
The union type is rewritten as described in Chapter 4, the constructors
are of the form Nr_A_0 where A is the type and 0 is the index.

• procFunc
All functions that have a union type as an argument are constructed.
Provided that the function is written in a curried way, without arguments.

• procFunc2
All functions that have a union as a result type are written. No check
is done on the patterns on the left hand side of the function. When
functions overlap Amanda will give an error. When two functions are
being composed that have different variable names at the left hand side of
a function, the variables are made equal in the where clause. Consider the
functions j and k given in Code D.4 that are being composed in function
l. The generated function l is given in Code D.5

j : : [char ] −> a
j x = A , i f x = ”A”

= B , i f x = ”B”

k : : [char ] −> b
k y = C , i f y = ”C”

= D , i f y = ”D”

Code D.4: Functions with different variables

l x = (Nr_t_0 (A)) , i f x = ”A”
= (Nr_t_0 (B)) , i f x = ”B”
= (Nr_t_1 (C)) , i f y = ”C”
= (Nr_t_1 (D)) , i f y = ”D”

where
y = x

Code D.5: Merging of functions with different variables

• procWrap
When the result of a function is a constructor that must be wrapped to
belong to a union type this is done in the ProcWrap function.
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D.8 Postproc

The post-function in the postproc-file post-processes the printed string. This
is done to generate code that is better readable. Code that is generated need not
be read when generated in a proper way. Yet it is always better to create code
that is readable when generated. Therefore all #R#-strings, that are added
by the printing function are again processed and the ”=” is printed directly
below the previous ”=”. These #R# tokens are added by the printing function
after each case. A case is a function clause with a guard, as can be seen in
Appendix E. Function f is printed in the string as shown in Code D.6. The
way the function is printed after the post-processing step is shown in Code D.7.

f x = x , i f x > 0 #R# = 0, otherwise
Code D.6: Reindentation

f x = x , i f x > 0
= 0 , otherwise

Code D.7: Reindentation

D.9 Printer

The way the parse tree must be printed is specified in the file printer. For
most algebraic constructors is specified how the functions must be printed. The
algebraic constructors that are not specified are just printed in a default way.
Two print functions are added to make live easier:

• cprint
Prints the list of parse trees and concatenates them.

• mprint
Prints the list of parse trees and prints a string between all elements.

D.10 Limitations of the Parser

The parser is created in an ad hoc way and some parts are not implemented in
an extensible way. The limitations of the preprocessor are:
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D.10.1 Parallel function compositions

Functions that are composed in a parallel function composition can not deal with
variable with the same name in clauses that are being merged. For instance the
functions f and g can not be merged. This should be possible by renaming the
variables, yet in the implementation this is not implemented.

D.10.2 Memory

The preprocessor in some cases is to powerful for the programming language
Amanda. This shows sometimes when a file is processed that Amanda will
give the error message: ”ERROR: out of memory”. Maybe that with using the
strict function the use of the memory could be downsized, yet I did not look
into that.

D.10.3 Type Definitions

For each function a type definition is needed to check whether this function
should have wrapping constructors. This could be enlightened a bit by assuming
that when no type is given the function need not be processed. Yet this is not
assumed by the preprocessor.

However Amanda gives an error message when some patterns overlap. Same
constant patterns can be declared in different clauses, variables can not be
declared in subsequent clauses.
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Amanda Grammar

Alt ::= Exp If
Argtype ::= Typename

| ”(” Typename (Argtype)+ ”)”
| Typevar
| ListType
| RecordType
| TupleType
| ArgtypeB

ArgtypeB ::= ”(” Type ”)”
Case ::= Alt Dedent ”=” Cases

CaseLast ::= Lastalt (Whdefs)?

Cases ::= Case
| CaseLast

ConstantChar ::= ”´” All ”´”
ConstantString ::= ”´´”<< text >> ”´´”

Construct ::= IDENTIFIER (Argtype)∗

| ”(” Construct ”)” (Argtype)∗

Constructs ::= Construct (”|” Construct)∗

Decl ::= Def
| Tdef
| Spec

111



APPENDIX E. AMANDA GRAMMAR

Dedentation ::= (”;”)∗ (Dedent)∗

Dedent ::= ”#D#”
| ”;”

Def ::= Fnform ”=” Rhs
| Pat ”=” Rhs
| Fnform ”=” Fdef

Dollar ::= ”$”
Dontcare ::= ” ”

Dot ::= ”.”
Exp ::= E1

| Prefix1
| Infix

E1 ::= Float
| E2 (Infix E1)?

E2 ::= (Simple)+

| Prefix E1
Fdef ::= Exp (”<F>” Exp)+

Float ::= Nat Dot Nat
Fnform ::= Identifier (Formal)∗

| ”(” Fnform ”)” (Formal)∗

Formal ::= Identifier
| IDENTIFIER (Formal)∗

| Literal
| Dontcare
| TuplePat
| ListPat
| FormalB
| RecordPat

FormalB ::= ”(” Formal ”)”
Generator ::= Pat ”<-” Exp
Identifier ::= Lower (Ident)∗

IDENTIFIER ::= Upper (Ident)∗

If ::= ”,” ”if” Exp
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Infix ::= ’++’ | ’–’ | ’:’ | ’ ’ | ’>’ | ’>=’ | ’=’ | ’˜=’
| ’<=’ | ’<’ | ’+’ | ’*’ | ’ !’ | ’div’ | ’mod’
| ’.’ | ’/’ | ’ˆ’ | ’-’ | ’\/’ | ’/\’]

| Dollar Identifier
LambdaExp ::= Pat ”->” Exp

Lastalt ::= Exp If
| Exp Otherwise

Libdir ::= ”#” ”import” ConstantString
ListCompre ::= ”[” Exp ”|” Qualifier (”;” Qualifier)∗ ”]”

ListExp ::= ListExps
| ListCompre
| ListRange

ListExps ::= ”[” (Exp (”,” Exp)∗ )? ”]”
ListPat ::= ListPatFull

| ListPatCons
ListPatCons ::= ”(” Pat (”:” Pat)+ ”)”
ListPatFull ::= ”[” (Pat (”,” Pat)∗ )? ”]”
ListRange ::= ”[” Exp ”..” (Exp)? ”]”
ListType ::= ”[” Type ”]”

Literal ::= Numeral
| ConstantChar
| ConstantString

Nat ::= (Digit)+

Numeral ::= Nat
| Float

Otherwise ::= ”,” ”otherwise”
Pat ::= ListPat

| TuplePat
| RecordPat
| ”(” Pat ”)”
| Formal

Prefix ::= Prefix1
| ”-”

Prefix1 ::= ”#”
| ”˜”
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Qualifier ::= Exp
| Generator

RecordExp ::= RecordPat
| RecordUpdate

RecordPat ::= ”{” (RecordVarUpd) (”,” RecordVarUpd)∗ ”}”
RecordSpec ::= Identifier ”::” Type

| Tform ”::” Type
RecordType ::= ”{” (RecordSpec) (”,” RecordSpec)∗ ”}”

RecordUpdate ::= Identifier ”&” RecordPat
| Identifier ”&” Exp

RecordVarUpd ::= Identifier ”=” Exp
Rhs ::= Simple rhs

| Cases
Script ::= (Libdir | Decl)∗

Simple ::= Identifier
| Literal
| LambdaExp
| SimpleB
| ListExp
| TupleExp
| RecordExp
| IDENTIFIER

SimpleB ::= ”(” Infix E1 ”)”
| ”(” E1 Infix ”)”
| ”(” (Exp)+ ”)”

Simple rhs ::= Exp (Whdefs)?

Spec ::= Identifier ”::” Type
| Tform ”::” Type

Tdecl ::= Tform ”::=” Tdecls
| Tform ”==” Union

Tdecls ::= Constructs
| RecordType

Tdef ::= Tsynonym
| Tdecl

Tform ::= Typename (Typevar)∗

114



APPENDIX E. AMANDA GRAMMAR

Tsynonym ::= Tform ”==” Type
TupleExp ::= ”(” Exp (”,” Exp)∗ ”)”
TuplePat ::= ”(” Pat (”,” Pat)+ ”)”

TupleType ::= ”(” Type (”,” Type)+ ”)”
Type ::= Argtype (”->” Argtype)∗

Typename ::= Identifier
Typevar ::= (”∗”)+

Union ::= Tform (”<U>” Tform)+

Whdefs ::= ”where” (Def Dedent)∗ Dedent

Lower ::= ’a’ | .. | ’z’
Upper ::= ’A’ | .. | ’Z’
Digit ::= ’0’ | .. | ’9’
Ident ::= Lower

| Upper
| Digit
| ’ ’
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Differences between
Amanda and Haskell

In this Appendix I will address some important differences between Amanda
and Haskell. Throughout this thesis I used both languages, because I created
a rewriting scheme for both languages and I addressed both models of I/O
handling.

I will show the differences by some examples. First the use of guards is different,
in Amanda the guards are written most right, with ”, if” or ”, otherwise”.
Whereas in Haskell guards are written before the = sign, using |. Also note the
difference between the equality operator = and ==:

fac n
= 1 , i f n = 0
= n∗fac (n−1), otherwise
Code F.1: Amanda faculty function

fac n
| n == 0 = 1
| otherwise = n ∗ fac (n−1)
Code F.2: Haskell faculty function

In Amanda types are written with a lowercase letter, whereas in Haskell types
are written with an uppercase letter. The types denoted in haskell with a lower
case letter are type variables. Amanda uses the sequence of * to denote type
variables.

tree ∗
::= Node (tree ∗) (tree ∗)
| Leaf ∗
Code F.3: Amanda Types

data Tree a
= Node (Tree a) (Tree a)
| Leaf a

Code F.4: Haskell Types

λ-abstractions in both languages are almost identical. However, Haskell uses a
\ to specify that the current function is a λ-abstraction.
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f = x −> y −> x + y

Code F.5: Amanda Lambda

f = \x −> \y −> x + y

Code F.6: Haskell Lambda

There is a difference in the way Haskell and Amanda handle patterns and guards.
The evaluation of foo (Just 4) in Amanda using Code F.7 will result in a run-
time error whereas the same expression in Haskell (Code F.8) will evaluate to
False. This is caused by the way a clause is selected. A function clause in
Amanda is chosen when the pattern matches, then the guards are evaluated,
whereas in Haskell the pattern and guard must match both to evaluate the
expression.

foo : : maybe num−> bool
foo (Just x) = True , i f x = 0
foo _ = False
Code F.7: Amanda Patterns/Guards

foo : : Maybe Int −> Bool
foo (Just x) | x == 0 = True
foo _ = False
Code F.8: Haskell Patterns/Guards

In Haskell the type to represent integer values is Int and the type to represent
floating point numbers is Float and Double. In Amanda only one type is
available for numbers, the type num. In Amanda there are two functions to
divide numbers. One that returns the integer value of the division / and one
that returns the floating point number of the division //.

Furthermore there are some features that are available in Haskell that are
not available in Amanda. A list of features in Haskell that are not present
in Amanda, without attempting to be exhaustive, are: modules, type classes,
generics, ffi (foreign function interface(Finne et al., 2003)) etc.

Algebraic constructors are considered functions in Haskell, whereas in Amanda
constructors are just algebraic constructors. The following function foo in
Code F.9 is valid in Haskell, but can not be expressed in this way in Amanda.
In this function the constructor Just is used as a function with type String
−> Maybe String.

foo : : Int −> Maybe String
foo = Just . show

Code F.9: The constructor used as a function
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