
Evaluating Rapide Using the FRODO

Service Discovery Protocol

M.D. Speelziek

June 27, 2006

University of Twente

Faculty: Department of Electrical Engineering,
Mathematics and Computer Science

Area: Distributed and Embedded Systems

Graduation Committee

Ir. J. Scholten
Ir. P.G. Jansen
V. Sundramoorthy

Evaluating Rapide Using the FRODO

Service Discovery Protocol

Summary

The future will see the advent of home automation systems: all kinds of
home appliances will be connected to a network that enables them to com-
municate with each other. In such a home automation system a mechanism
is needed that integrates the individual devices into a single system. Service
Discovery protocols provide this mechanism, but the existing protocols are
not well suited for use in a home automation environment. Therefore a new
Service Discovery protocol has been developed within the At Home Any-
where project: FRODO. This thesis presents the development of a model of
FRODO. For this model an Executable Architectural Description Language,
named Rapide will be used, only Rapide is not widely used and therefore
little is known about the strengths and weaknesses of this language. That is
why modelling FRODO will serve two purposes: creating a simulation envi-
ronment that will be used to validate the protocol specification of FRODO,
and evaluating Rapide. The created simulation environment will be used to
simulate a number of scenarios that compare the characteristics of FRODO
to those of current Service Discovery protocols.

1

Samenvatting

In de toekomst zal er steeds vaker gebruik gemaakt worden van Home Au-
tomation systemen: allerlei verschillende apparaten in huis worden met
elkaar verbonden in een netwerk, zodat ze met elkaar kunnen communiceren.
In zo’n netwerk is een mechanisme nodig om de apparaten met elkaar laten
samenwerken. Service Discovery protocollen bieden zo’n mechanisme. De
huidige Service Discovery protocollen zijn echter ontwikkeld om ingezet te
worden in een kantooromgeving. Daarom is binnen het At Home Anywhere
project een nieuw Service Discovery protocol ontwikkeld, speciaal bedoelt
voor gebruik in Home Automation systemen: FRODO. Dit verslag beschri-
jft de ontwikkeling van een model van FRODO. Er wordt daarbij gebruik
gemaakt van Rapide, een Executable Architectural Description Language.
Rapide is echter een weinig gebruikte taal en er is daarom ook maar weinig
bekend over zijn sterke en zwakke punten. Het modeleren van FRODO
zal daarom gebruikt worden voor twee doeleinden: het creeren van een
simulatie-omgeving waarmee de specificatie van FRODO gevalideerd zal
worden, en het evalueren van Rapide. Verder zal de simulatie-omgeving
gebruikt worden om een aantal scenario’s te simuleren, om zo de karakter-
istieken van FRODO te vergelijken met bestaande Service Discovery proto-
collen.

2

Contents

Summary 1

Samenvatting 2

1 Introduction 5

1.1 Motivation . 5

1.2 Problem Statement . 6

2 Service Discovery 7

2.1 Generic Terminology . 7

2.2 Service Discovery Architectures 9

2.3 Service Discovery Concepts 9

3 Introduction to Rapide 11

3.1 Rapide Language . 11

3.2 Rapide Toolset . 13

4 Rapide Models of Jini and UPnP 16

4.1 Section Zero: Utility Functions 16

4.2 Section One: Global Types and Specifications 16

4.3 Section Two: Service Interface Definitions 17

4.4 Section Three and Four: Service Discovery Subcomponents . 17

4.5 Section Five: Cache Sub-Components 18

4.6 Section Six and Seven: SU, SM and SCM Nodes 18

4.7 Section Eight: Network Definitions 18

3

CONTENTS 4

4.8 Section Nine: Architecture . 19

4.9 Conclusion . 20

5 Introduction to FRODO 21

5.1 Device Classes . 21

5.2 Design . 22

5.3 Modeling FRODO . 24

6 Rapide Model of FRODO 25

6.1 Model Overview . 26

6.2 Random Values . 26

6.3 Data Collection . 28

6.4 Conclusions . 29

7 Simulation Setup 30

7.1 Scenarios . 30

7.2 Metrics . 31

7.3 Simulation Procedure . 32

8 Simulation Results 36

8.1 Reproducibility . 36

8.2 Results . 38

9 Conclusions and Future Work 41

9.1 Conclusions . 41

9.2 Future Work . 42

Bibliography 43

Abreviations 45

A Installing Rapide 46

B Protocol Specification 49

Chapter 1

Introduction

1.1 Motivation

These days, TVs, Hi-Fi equipment, micro-waves, and washing machines all
contain embedded computers. In the near future this list may be extended
to include refrigerators, light switches, temperature sensors and many other
devices. The idea is to connect all these devices to a single network, so
that they can be controlled from any anywhere in the house, or even from
anywhere in the world by using an Internet connection. The At Home Any-
where (@HA) research project [AHA03] tries to create such an environment.
One of the goals of the project is to develop a real-time network protocol
that supports the different classes of traffic the appliances generate: enter-
tainment, control and information.

But a home automation system needs more than just a way for devices to
communicate with each other. A mechanism is needed that enables one
device on a network to discover the services provided by other devices on
the same network. A Service Discovery Protocol (SDP) provides such a
mechanism.

Several Service Discovery Protocols have already been developed, but none
of these have been developed for use in a home automation environment:
they don’t allow the participation of resource-lean devices, like light switches
or temperature sensors, or they need the assistance of an administrator to
set up the system. Therefore a new SDP has been designed as part of the
@Home Anywhere project. This new protocol is called FRODO and it has
been optimized for use in home automation.

But, when creating a new network protocol you need a way to validate
the design. One way of doing this, is to create an executable model that
can be used to simulate different scenarios. At the National Institute of

5

1.2 Problem Statement 6

Standards and Technology (NIST) models have been created of the existing
service discovery protocols Jini and Universal Plug and Play (UPnP). The
experiments [DME02a, DME02b] conducted on these models were used to
compare the performance of Jini and UPnP. A similar model of FRODO can
be used to validate the protocol specification. It will also make it possible
to compare the performance of the protocol to that of existing protocols.

To model Jini and UPnP, NIST has used the language and toolset developed
as part of the Stanford Rapide project [RAP98]. Rapide is an event-based
executable architecture definition language that has been developed to model
distributed time-sensitive system, which a network protocol basically is.

The problem with the Rapide language and toolset is that they are not
widely used, and therefore little is known about its strengths and weaknesses.
In order to find these strengths and weaknesses, you need more than the
examples in the supplied documentation and tutorials: you need to use it
on a non-trivial problem. Creating a model of FRODO would be such a
problem.

This thesis will focus on creating a model of the FRODO service discovery
protocol. This model will be used to repeat the experiments that NIST
has conducted on their models of Jini and UPnP. The purpose of these
experiments is twofold: (1) it will prove the correctness of the model and
(2) it will reveal the properties and performance of FRODO. The conducted
experiments will be discussed in chapters 7 and 8, while the model will
be presented in chapter 6. Chapters 2 to 5 contain a summary of some
important concepts used in service discovery protocols, an introduction to
Rapide, a discussion of the models made by NIST and an introduction of
FRODO respectively. Finally, the conclusions can be found in chapter 9.

1.2 Problem Statement

Create a model of the FRODO service discovery protocol using the Rapide
language and toolset. Use this model to (1) Validate the design of FRODO
and (2) Evaluate the use of Rapide as a modeling and simulation tool for
network protocols.

Chapter 2

Service Discovery

This chapter will give an introduction to the terminology and concepts used
in Service Discovery Protocols. NIST describes a Service Discovery Protocol
as follows:

Discovery protocols enable software components to find each
other on a network and to determine if discovered components
match their requirements. Further, discovery protocols include
techniques to detect changes in component availability, and to
maintain, within some time bounds, a consistent view of compo-
nents in a network [DM01].

A number of existing protocols have been designed to meet these require-
ments: Jini [JINI03], UPnP [UPNP00], SLP [RFC2608], Salutation [SAL99],
Bluetooth SDP [BLUE99].

2.1 Generic Terminology

The existing SDPs use their own names for the used components and con-
cepts, although most of the components and concepts are common to all
service discovery protocols. To help in comparing the protocols, NIST has
developed a consistent terminology for the components of a SDP [DM01].
This terminology will also be used in this thesis.

Service Provider (SP) A software or hardware component providing some
kind of service (e.g. a printer).

Service Description (SD) A record describing the identity, type and at-
tributes of a Service Provider (e.g. the printer on floor three, that is
capable of printing in color on A3 sized paper).

7

2.1 Generic Terminology 8

Service Cache Manager

Service User
Service Manager

(3) Service Search

(4) Search Response

(1) Service Registration

(2) Registration Acknowledgement

(5) Control

(6) Control Response

Figure 2.1: Relations between components.

Service Manager (SM) A component that a database of Service Descrip-
tions. Most implementations will use one SM per device. That SM
will contain SDs of all SPs located on the same device (e.g. for a
printer it would probably contain one SD, but for a multifunction de-
vice it would contain SDs for the print, the scan, the copy and the fax
functionality).

Service User (SU) A component that will use the protocol to search for
a Service Provider.

Service Cache Manager (SCM) A component that maintains a central
database of Service Descriptions of all Service Providers on a network.
This component is not used in all service discovery protocols.

Figure 2.1 shows how the different components are related. After coming
online, the SM will register its SDs with the SCM. When the SU needs to
use a service, it sends a service search to the SCM. The SCM will respond
to this search with the matching SDs. After that, the SU can communicate
directly with a SM to control the SP.

A mapping between these generic names and the names used in the Jini and
UPnP protocols can be found in table 2.1.

2.2 Service Discovery Architectures 9

Generic Name Jini UPnP
Service Provider Service Device or Service
Service Description Service Item Device Description or

Service Description
Service Manager Service or Root Device

Device Proxy
Service User Client Control Point
Service Cache Manager Lookup Service not applicable

Table 2.1: Mapping to generic terminology.

2.2 Service Discovery Architectures

Most SDPs use one of two underlying architectures: two-party and three-
party [DME02a].

A two-party architecture consists of two major components: SMs and SUs.
When a SU wants to use a service it has to broadcast a message over the
network with the required service attributes. Each SM that maintains a SD
that matches the search specifications will respond to the search. A SM
can also periodically announce the presence of its services. An example of
a protocol using this architecture is UPnP.

A three-party architecture uses an additional component: the SCM. Instead
of broadcasting a service search to all SMs, a SU will contact a SCM with its
search request. The SCM will return the matching SDs from its database.

An advantage for a protocol using the three-party architecture: it requires
fewer broadcasts than a similar protocol using the two-party architecture,
because it does not need broadcast messages for each search. The disad-
vantage of the three-party architecture is that it introduces a single point of
failure: the SCM. Most protocols using a SCM will therefore provide a fall-
back mechanism to use when no SCM is available. An example of a protocol
using the three-party architecture is Jini.

2.3 Service Discovery Concepts

A number of mechanisms commonly used in SDPs are polling, notification
and leasing. Polling and notification are both used to propagate updated
SDs to interested SUs and SCMs. The definition of polling and notification
used by NIST:

In polling, a SU periodically queries the SCM or the SMs to

2.3 Service Discovery Concepts 10

obtain an up to date SD of a SP that was previously discovered.
[DME02a]

In notification, immediately after an update occurs, a SM
sends events that announce a SD has changed. [DME02a]

A definition of leasing is given by the following:

Leasing is a well-known design tool in building resilient dis-
tributed software. The parties in a lease relationship, as in real
life, are the grantor of the lease (the lessor) and the holder of
the lease (the lessee). In general, the lessor makes some resource
available for a specified amount of time, and the lessee uses the
resource to some advantage during this time. The duration can
be determined in a number of ways and a lease may be renewed
if this is agreeable to both parties. [GOL02]

One use of leasing in SDPs is to keep a consistent view of the available SPs
in the network, by limiting the lifetime of cached SDs in SUs and SCMS.

Chapter 3

Introduction to Rapide

Rapide is a language for defining and executing models of system architec-
tures.

It has been used to model the Jini and Universal Plug and Play service
discovery protocols by the National Institute of Standards and Technology
(see chapter 4). And it will be used to model FRODO, a new service protocol
(see chapter 6). The models will be used to compare the performance of the
new service discovery protocol to that of the existing protocols.

This chapter will give and overview of the Rapide language (section 3.1 and
the provided tools (section 3.2). More information can be found on the
project website [RAP98].

3.1 Rapide Language

Rapide is structured as a set of languages called the Rapide language frame-
work. This framework consists of the following languages:

• Types Language.

• Pattern Language.

• Executable Module Language.

• Architecture Language.

• Constraint Language.

Together these languages can be used define models of system architectures.
How to use these languages will be demonstrated by an example [RAP97].

11

3.1 Rapide Language 12

This example uses the Types, Pattern, Executable Module and Architecture
languages to model a producer/consumer architecture:

type Producer is interface action out Emit(n : Integer); end Producer;

type Consumer is interface action in Source(n : Integer); end Consumer;

module ProducerModule(min, max : Integer) return Producer is

function Compute(n : Integer) return Integer is

begin

return n + 1;

end function Compute;

initial

Emit(min);

parallel

when (?x in Integer) Emit(?x) where ?x < max do

Emit(Compute(?x));

end when;

end module ProducerModule;

module ConsumerModule() return Consumer is

function Use(n : Integer) is

begin

null;

end function Compute;

parallel

when (?y in Integer) Source(?y) do

Use(?y);

end when;

end module ConsumerModule;

architecture ProdCons() is

Prod : Producer is ProducerModule(1, 4);

Cons : Consumer is ConsumerModule();

connect

(?n in Integer)

Prod.Emit(?n) ||> Cons.Source(?n);

end architecture ProdCons;

This simple example shows an architecture ProdCons that consists of two
components: a Producer object and a Consumer object (called Prod and
Cons respectively). The interfaces Producer and Consumer define a pro-
ducer as being able to generate an Emit event and a consumer as being
able to observe Source events. The module ProducerModule implements the
interface Producer and simply generates Emit events up to some maximum.
The module ConsumerModule implements the interface Producer and just
observes Source events.

In the connect part of the architecture the Emit events of the producer is
connected to the Source events of the consumer. Whenever the connection
is triggered by an Emit event, it executes by generating a Source event with
the same integer argument.

3.2 Rapide Toolset 13

Source(1)

Source(2)

Source(3)

Source(4)

Emit(1)

Emit(2)

Emit(3)

Emit(4)

Figure 3.1: Poset generated by example.

When this architecture is executed, the poset (partially ordered event set)
in figure 3.1 is generated. The poset contains the set of events (the ellipses
in the figure) that occurred during the execution together with the causal
relationships (the arrows in the figure) between events. For the example this
means that the Emit events are causally related because they are generated
in sequence by the module ProducerModule. The Source events are causally
related to the Emit event with the same argument because of the connection
defined in the architecture.

3.2 Rapide Toolset

Besides the Rapide language, the Rapide project also provides a number of
tools. These tools are divided into two groups: the command line tools to
translate models written in the Rapide language to an executable format
and the graphical tools that can be used to analyze the data that result
from running the generated executables.

3.2.1 Command line tools

The most important tool from the Rapide toolset is the compiler that trans-
lates Rapide source files into executables. This compiler is executed from

3.2 Rapide Toolset 14

the command line and has a syntax similar to that of a C compiler. For
example, to compile the example from the previous section, the following
commands have to be executed. First the compilation environment has to
be created:

$ r.mklib

This creates a hidden directory containing a number files used by the com-
piler. After the environment has been set up the Rapide model can be
compiled with the following command (assuming the file which contains the
model source code is called example.rpd):

$ rpdc -M ProdCons -o example example.rpd

If the source file is free of errors, then this will generate the executable file
example, otherwise the compilation process will abort with a description of
the error. The generated executable can be run with the following command:

$.\example

This will generate the file example.log containing the poset data.

3.2.2 Graphical tools

The Rapide toolset contains a number of tools that can be used to analyze
the poset data generated by executing a Rapide model:

Pov The poset viewer: a tool for graphically browsing the posets generated
by Rapide executables. Figure 3.1 was generated using this tool.

Raptor This tool provides a way to visualize the flow of events by using the
poset data and a graphical representation of the modeled architecture
to create an animation. It is only useful for small architectures, and
it does not provide many options to customize the animation.

Raparch A tool for editing Rapide architectures graphically. It is used to
draw the graphical representation of an architecture for use with the
Raptor animation tool.

The Raptor and Raparch tools seem far from finished and are therefore not
usable: they are very unstable and have an awkward user interface. The
poset viewer can be useful, but when a model generates a lot of events, then
it becomes difficult to distinguish between them.

3.2 Rapide Toolset 15

3.2.3 Toolset installation

Installing Rapide on a GNU/Linux system proved to be more difficult than
expected. The reason for this is the fact that the Rapide toolset is provided
as a package containing binaries using the a.out object file format. This
package was created in 1997 and contains the tools as pre-compiled binaries
and some of the libraries required by the tools, also in binary format. Some
other libraries required by the tools must be provided by the host system.
Since the creation of the Rapide package, GNU/Linux systems have mi-
grated to a different binary file format. For a long time it has been possible
to use the old binary file format on migrated systems, but more and more
modern Linux distributions are now dropping support for the old format.

After an unsuccesful attempt to install the Rapide toolset on a Debian 3.1
system, the toolset was installed on another computer running an old version
of the Redhat GNU/Linux distribution (version 6.2). Installation instruc-
tions for the toolset on this distribution can be found in appendix A. On
the Redhat 6.2 system all the provided tools are working.

It should be possible to use a virtual machine to run the Rapide tools instead
of dedicating a whole computer to it, as long as an older distribution is used
as the guest operating system.

Chapter 4

Rapide Models of Jini and
UPnP

Using the Rapide language the National Institute of Standards and Tech-
nology (NIST) has modeled the Jini and Universal Plug and Play service
discovery protocols [DM02a, DM02b]. These models will be used as a basis
for the model of FRODO and to compare the performance of FRODO to
that of existing service discovery protocols.

Each of the models is contained in a single large Rapide source file (> 10000
lines of code), containing ten sections of code. This chapter will give an
overview of the Rapide models of Jini and UPnP by describing the contents
of each section and showing how the components defined in the different
sections combine to form the actual model. Because the two models use a
similar structure and file layout, the description given in this chapter applies
to both models, although the examples given are from the Jini model.

4.1 Section Zero: Utility Functions

The first section of the source files contains the definition of some global
utility functions used throughout the rest of the source. The most important
of these functions is ConsoleWrite. This function is used to write messages
to the standard console output.

4.2 Section One: Global Types and Specifications

This section contains model specific global types, variables and functions:
for example the functions to compute processing delays, and the variables

16

4.3 Section Two: Service Interface Definitions 17

containing node and network link states.

4.3 Section Two: Service Interface Definitions

Section two contains service interface definitions. These represent the mes-
sages that can be sent by the service discovery protocol. The messages are
grouped by function. The following example shows the definition of one of
the service interface definitions from the Jini model:

TYPE TCP_2_STEP_SEQUENCE IS INTERFACE

ACTION

OUT

Connect_Request (SourceID: IP_Address;

SCM_ID: SCM_Service_ID;

PV : ProtocolVersion);

IN

API_Response (ServiceProxy: JavaObject;

SourceID: IP_Address;

SCM_ID: SCM_Service_ID);

END;

This defines the interface TCP 2 STEP SEQUENCE, which contains outgo-
ing action Connect Request and the incoming action API Response. These
messages are part of Jini’s lazy discovery.

4.4 Section Three and Four: Service Discovery
Subcomponents

Sections three and four of the source files contain the definitions of the
subcomponents that implement the protocol behavior concerning the actual
discovery of services. For Jini this means the aggressive, lazy and directed
modes of discovery. These subcomponents are defined as interfaces, but
these interfaces also contain the behavior by using a Rapide feature that
allows you to include a behavior definition in an interface definition. The
following example shows the behavior of Jini when it receives a connection
request:

(?SourceID: IP_Address; ?HostName: SCM_Service_ID; ?PV: ProtocolVersion)

LZ_CONN_RESP.Connect_Request (?SourceID, ?HostName, ?PV)

||>

IF $(NodeUp[$MyServiceID])

THEN

IF $Responding THEN

LZ_CONN_RESP.API_Response("Java object",

?SourceID,

4.5 Section Five: Cache Sub-Components 18

$MyServiceID)

in SimpDel ($MyServiceID, 0);

END IF;

END IF;;

The first two lines define a pattern that matches a received ConnectRequest
event. The other lines use the Rapide Executable sub-language to define the
correct response to the request. Most events will follow a similar pattern.

4.5 Section Five: Cache Sub-Components

Section five contains the interface definition of the caches used in the pro-
tocol. Jini, for example, uses a cache of Service Descriptions on the Service
Managers, a cache of registered Service Descriptions on the Service Cache
Managers and a cache containing information about active notification re-
quests on the Service Users.

The cache interfaces also contains the protocol behavior concerning the
maintenance of the caches. Like in sections three and four, this uses the
feature of Rapide to define interface behavior within the interface definition
itself.

Because of the code for the manipulation of the cache structures, the event
handlers in this section are a bit larger than those in sections three and four,
but their structure is basically the same. Due to the size it would take, an
example will not be given here.

4.6 Section Six and Seven: SU, SM and SCM
Nodes

Sections six and seven contain the definitions of the SU, SM and SCM inter-
faces and modules. These connect the sub-components defined in sections
three, four and five, to define a SU node, a SM node and a SCM node.

Section six also contains the Node interface. This interface defines a kind of
super-interface of the SU, SM and SCM interfaces.

4.7 Section Eight: Network Definitions

Section eight contains the modules that define the network behavior. The
behavior is split into a module for unicast messages and a number of modules
for different kinds of multicast messages. A message sent over the network

4.8 Section Nine: Architecture 19

Architecture (section 9)

Node (section 6)

SU (section 6 & 7) SCM (Section 6&7)

SCM Cache (section

5)

Multicast Distributor (section 8) Unicaster (section 8)

SM (section 6 & 7)

Subcomponents

 (sections 3, 4, 5)
SCM Cache (section

5)

Subcomponents

 (sections 3, 4, 5)
SCM Cache (section

5)

Subcomponents

 (sections 3, 4, 5)

Figure 4.1: Structure of Jini and UPnP models.

can be a TCP message: using a reliable, connection oriented service, with
a variable delay, or a UDP message: using an unreliable datagram service,
delivered with a fixed delay. The network modules also implement random
message loss and link failures.

4.8 Section Nine: Architecture

Section nine contains the architecture, which connects the different parts of
the model. Figure 4.1 shows how the parts are connected, together with the
section that contains the definition of the part.

The architecture connects a configurable number of the SU, SM and SCM
nodes defined in section seven, to the network modules defined in section
eight. Each type of node (SU, SM, or SCM) is composed of some of the
components from sections three, four and five.

Not shown in the figure are the modules that are used to set up and control
the different scenarios simulated using the model. These modules are also
defined in section nine.

4.9 Conclusion 20

4.9 Conclusion

Examining the models of Jini and UPnP has provided the knowledge to use
them as a basis for a similar model of FRODO. This model of FRODO will
be presented in chapter 6.

Chapter 5

Introduction to FRODO

This chapter introduces the FRODO service discovery protocol. FRODO
is the service discovery protocol for the At Home Anywhere project. For a
more detailed overview of the protocol see [SUN03] (this paper still uses the
old name SDP@HA).

The new service discovery protocol addresses the following issues that are
lacking in existing protocols [SUN03]:

Participation of resource lean devices Current technologies are suited
only for powerful and expensive devices. The protocol for the @HA
network should be able to support small and cheap devices.

Delegation of work load In order to support resource lean devices, work-
load has to be delegated to more powerful devices.

Robust architecture Because in a home environment a system adminis-
trator is not available, the protocol should require little to no manual
configuration, and it should be able to recover from network errors
automatically.

5.1 Device Classes

FRODO divides supported devices into the following three classes [SUN03]:

3C (3+ cent) device Very simple devices with custom hardware only ca-
pable of providing the basic Service Manager functions.

3D (3+ dollar) device Medium complex devices, controlled by a micro-
controller containing a few kilobytes of memory. Capable of supporting
Service User and Service Manager functions.

21

5.2 Design 22

300D (300+ dollar) device Complex devices controlled by an embedded
computer containing a powerful processor (> 200 MHz) and at least 1
megabyte of memory.

5.2 Design

In this section a quick overview of FRODO will be given. Some of the unique
features of the protocol will be highlighted. For a complete description of
the protocol see [SUN05] and the specification flowcharts in appendix B.

5.2.1 Central Election

FRODO uses a client/server architecture with one Service Cache Manager.
This SCM is called the Central and it is dynamically assigned. Using a
SCM reduces the amount of expensive broadcast messages a 3D device has
to process, because a service search can be directed to the SCM, instead of
requiring a broadcast.

All 300D devices will participate in a process is called leader election. The
most capable device (in terms of processing power and memory size) will
be the winner of this election and it will become Central. The new Central
will appoint the runner-up as its Backup. When, for any reason, the Cen-
tral become unreachable, the Backup will take its place and appoint a new
Backup. If the Backup is unable to take over from an unreachable Central,
then a new election is started.

In the absence of any 300D devices on a network, or if a Central is not
elected yet, the protocol falls back to a peer-to-peer search mode.

The leader election process makes it unnecessary to have an administrator
configure one or more devices as SCM. It also makes the protocol robust,
because it removes the SCM as a single point of failure.

5.2.2 Device and Service Registration

After a Central has been elected, it will broadcast a message telling all
devices that there is a new Central. All SM devices will respond to this
broadcast by registering their Service Descriptions.

5.2.3 Service Search and Subscription

When a Service User requires a particular service it sends a service search
request to the SCM, containing the required service type and attributes. The

5.2 Design 23

Service Manager

Service User

Service User

(1) Subscribe

(3) Notify

(4) Notify

(2) Subscribe

Figure 5.1: 2-way subscription.

SCM will respond with a list of suitable Service Providers and their Service
Managers. The SU can communicate directly with the returned SMs.

If a SU whishes to use a Service Provider for a longer period of time, then it
can take a subscription. When subscribed to a Service Provider, the Service
User will receive a notification when the Service Description changes. To
accommodate resource lean devices, FRODO provides two flavors of sub-
scription:

2-way subscription The SM keeps a list of subscribers and sends noti-
fications when a Service Description changes. Figure 5.1 shows an
example, where two SUs subscribe to the same SM.

3-way subscription Used when a SM is not capable of storing or maintain-
ing the list of subscriptions, or when it is unable to send notifications
to every subscriber. In this case these tasks are delegated to the SCM.
Figure 5.2 shows the same example as 5.1, but this time using 3-way
subscription.

5.3 Modeling FRODO 24

Service Cache ManagerService User

Service User

(1) Subscribe

(5) Notify

(4) Notify (2) Subscribe

Service Manager

(3) Notify

Figure 5.2: 3-way subscription.

5.3 Modeling FRODO

To evaluate the Rapide language and tools the FRODO protocol has been
modeled using this language. The resulting model will also be used to val-
idate the behavior of FRODO and to compare its performance to existing
protocols.

The next few chapters will describe this model and the simulations that have
been conducted on it.

Chapter 6

Rapide Model of FRODO

Using the Rapide language and toolset a model of the FRODO service dis-
covery protocol has been created. The model is based on similar model
made by the National Institute of Standards and Technology of the Jini and
Universal Plug and Play service discovery protocols.

The model will help in understanding how FRODO behaves under different
circumstances and it will be used to compare the performance of FRODO
to that of the other service discovery protocols. The model will also serve
as a basis for a prototype implementation, actually and modeling a network
will reveal the strengths and weaknesses of Rapide in this application.

Because of the limited time available, only a subset of the protocol has been
modeled. The parts of the protocol not modeled are the Central Election,
the Central Backup and Peer-to-Peer Search. These parts are not needed for
the correct operation of the parts of the protocol that have been modeled:
Central Discovery, Service Registration, Service Search and Subscription.
The missing parts can be added to the model later on. The modeled parts
will also allow a first comparison between FRODO and the existing service
discovery protocols Jini and UPnP.

At the time the model was created the protocol specification of FRODO still
was a work in progress. This caused some extra work, because parts of the
protocol changed after they had already been modeled, making it necessary
to model them again. But the modeling process also revealed a number
of flaws in the protocol and the protocol specification document and these
could immediately be fixed.

The rest of this chapter will give an overview of the structure of the Rapide
model of FRODO and highlight some of the changes in the simulation frame-
work made by NIST.

25

6.1 Model Overview 26

6.1 Model Overview

FRODO has been modeled using the models of Jini and UPnP as a basis:
it uses the same global structure as the NIST models. It also reuses a lot of
the utility functions and the section layout.

The sections used in the FRODO model:

Section 0 Utility functions.

Section 1 Global model-specific types, functions and variables.

Section 2 Service interface definitions.

Section 3 Service Manager behavior (the SM Registration interface).

Section 4 Service User behavior (the SU Search interface).

Section 5 Service Cache Manager behavior (the SCM Cache interface).

Section 6 Node interface definitions.

Section 7 Node module definitions.

Section 8 Network module definitions.

Section 9 Architecture definition.

Figure 6.1 shows a diagram of the main structural elements of the model
and the way they fit together. It shows two types of nodes: a SU node
and a SM node. These nodes implement the behavior of both 3D and 300D
devices. A parameter is used to select the correct behavior.

6.2 Random Values

One of the changes made for the model of FRODO, is the way the Random
function works. The Random function is an important utility function used
by the Rapide models of Jini, UPnP and FRODO. It is used at the start of
the simulation to determine the times at which important simulation events
take place. Later in the simulation it is used to determine message loss,
network delays and processing delays. The models made by NIST use the
following function to calculate random numbers:

FUNCTION Random (Low, High : INTEGER) RETURN INTEGER IS

Number : INTEGER;

BEGIN

IF High <= 10000

6.2 Random Values 27

Architecture (section 9)

Node (section 6)

SU (section 6 & 7) SM (Section 6&7)

SU Search (section 4)

SCM Cache (section 5)

SM Registration (section 3)

SCM Cache (section 5)

Multicast Distributor (section 8) Unicaster (section 8)

Figure 6.1: Model of FRODO.

THEN

RETURN (Low + (ABS (Number) MOD (High - Low + 1)));

ELSIF High <= 100000

THEN

.

.

.

END IF;

END;

This function will return a random value N in the range Low <= N <=
High. The code snippet only shows the case where High <= 10000, but
the other cases are similar to this case.

The Random function uses the uninitialized variable Number as its source
of entropy. Each time the function is called it uses the value of Number that
happens to be at the memory location occupied by Number. This value is
different on each call to Random, because the same memory location is also
used by other functions and will be overwritten when they are called. This
seems to work, because it will indeed produce a different value each time
the function Random is called.

However, a few trail simulation runs of FRODO showed exactly the same
results for each run. It turned out that the first few calls to the Random
function produced the same sequence of values in each run, and these values

6.3 Data Collection 28

were used to determine the simulation scenario. The NIST models did not
show this behavior.

The reason for this difference in behavior can be found in the fact that the
NIST models use a number of events to set up the simulation run, while the
model of FRODO performs the setup procedure in one event. Because the
events used in the setup are unrelated, Rapide processes them in a random
order. This introduces some variation in sequence of statements executed
prior to the calls to the Random function and this in turn brings variation to
the sequence of generated values. It does not seem a good idea to rely only
on this as a source of randomness, so the Random function in the FRODO
model has been changed to the following:

RANDOM_POOL_SIZE: VAR INTEGER := 1000;

RandomPool : ARRAY[INTEGER] OF REF (INTEGER) IS

(1..$RANDOM_POOL_SIZE,

DEFAULT IS REF_TO (INTEGER, 0));

RandomIndex: VAR INTEGER := 1;

FUNCTION Random (Low: INTEGER; High: INTEGER) RETURN INTEGER IS

Number: VAR INTEGER;

BEGIN

Number := $(RandomPool[$RandomIndex]);

RandomIndex := $RandomIndex + 1;

RETURN (Low + (ABS ($Number) MOD (High - Low + 1)));

END;

This function returns a value from the array RandomPool, using each value
only once. RandomPool will be filled at the start of the simulation run with
values read from the file randompool. Before each simulation run this file
should be filled with values from a reliable source of entropy (on a UNIX
system, this can be /dev/urandom).

With this new Random function the FRODO simulations did work as ex-
pected.

6.3 Data Collection

Another difference between the FRODO model and the NIST models is the
way that simulation data is collected and processed.

The NIST models contain the module CONSITENCY that collects data
during the simulation and stores it in variables. After the actual simulation
run, the module processes the gathered data and writes the calculated results
to the standard output. The processing phase of a simulation run takes a
lot of time: up to half the simulation run time.

6.4 Conclusions 29

The model of FRODO simplifies the data processing by performing the nec-
essary calculations in a separate program not written in Rapide. The Rapide
model writes the relevant data to the standard output during the simulation
run, together with all the debugging information. All information written
to the standard output is written to a text file. After the simulation run, an
AWK-script filters this text file and extracts the information needed to cal-
culate the simulation results. The run time of this AWK-script is less than
a second and the calculations are less complex than the CONSISTENCY
module in the NIST models.

6.4 Conclusions

Working with the Rapide language to create a model of the FRODO service
discovery protocol has served to give a much better understanding of the
strengths and weaknesses of the language than studying existing models and
tutorials can provide. This leads to the conclusion that the Rapide language
is well suited to create models of network protocols. The focus on the parallel
processing of events matches the nature op network protocols and the timing
model of the language makes it easy to model the delays and timeouts needed
in a network protocol. However, the executable sublanguage of Rapide is
not as powerful as the rest of the language and its execution is slow. This is
not a big problem for the modeling of the actual network protocol, because
it does not contain a lot of executable code. It has, however, been the main
reason to reorganize the data processing in the model of FRODO to remove
it from the Rapide code.

The next two chapters will present the performance evaluation of FRODO
made using the model described in this chapter.

Chapter 7

Simulation Setup

Using the model of FRODO presented in the previous chapter two scenarios
have been simulated. The purpose of these simulations is to compare the
performance of the Rapide model of FRODO against other service discovery
protocols.

The protocols that will be used in the comparison are Jini and Universal Plug
and Play. Performance data for these protocols is available from [DME02a].
This data is obtained from simulations using the models on which the model
of FRODO is based: this makes it easy to follow the same scenario and to
compare the results.

7.1 Scenarios

For the simulations of FRODO the scenarios from [DME02a] are used: these
scenarios are used to measure the performance of the service discovery pro-
tocols in an environment with network interface failures.

The simulation scenarios will use a network of one Service Manager, one
Service Cache Manager and five Service Users for each of the simulated
protocols (except UPnP which does not use a SCM). The SM will register
its service with the SCM and each SU will search for the registered service.

A simulation run, which is depicted in figure 7.1, lasts from T = T0 to
T = D. The period between T = T0 and T = Q is used to get the system in
a consistent state by performing the following tasks (if appropriate for the
protocol): SCM election, SCM discovery, Service registration and Service
search. During this period no communication failures occur.

In the remaining time each node will experience an interface failure where
either the incoming packets, outgoing packets, or both incoming and outgo-

30

7.2 Metrics 31

T = T0 T = Q T = 1
2D T = D

� -

setup
period � -

period with
service description change

� -period with communication failures

Figure 7.1: Simulation Scenario Timeline

ing packets are lost. The failure will last for F×D, where F is the fraction of
the total run time that a node will experience a communication failure. This
fraction is the same for each node. The start time of the interface failure of
node n (TFn) is a random value in the range Q <= TFn < D − F ×D.

At TC the SM will change its service registration. With TC a random value
in the range Q <= TC < 1

2D. After this the service change will have to be
propagated to each SU, either through notifications sent to the SUs by the
SCM, or through polling of the SCM by the SUs.

7.2 Metrics

To compare the model of FRODO with the models of Jini and UPnP the
following metrics defined by NIST are used [DME02a]:

Update Responsiveness (R) Let D be a deadline by which some infor-
mation should be propagated to each SU u. Let TC be the creation
time of the information, where TC < D. Let TUu be the time that
the information is propagated to SU u, where u = 1 to U , and U is
the total number of SUs in the simulation. Define change-propagation
latency (L) for SU u as:

Lu =
TUu − TC

max(D,TUu)− TC
(7.1)

This is effectively the proportion of available time used to propagate
the change to SU u. Then define R for SU u as: Ru = 1 − Lu. Ru is
the proportion of available time remaining after propagating a change
to SU u.

A higher value for this metric means that the protocol will respond
faster to changes in a Service Description.

7.3 Simulation Procedure 32

Update Effectiveness Measures the probability that a change will propa-
gate successfully. Let Ru,i be the update responsiveness Ru for simula-
tion run i, where i = 1 to N , and N is the total number of simulation
runs under identical conditions for a particular experiment.

Effectiveness = 1− P (F) (7.2)

where

P (F) =
1

U ×N

U∑
u=1

N∑
i=1

(1|Ru,i = 0 ∧ 0|Ru,i 6= 0) (7.3)

A higher value for this metric means that the protocol is better at
recovering from network failures.

Update Efficiency Is defined as the ratio of M to the actual number of
messages observed, where M is the minimum number of messages
needed to propagate a change to all SUs. In this case M (M = 7)
occurs when using notification with Jini. Let Si be the total number
of messages sent while attempting to propagate a change to all SUs in
run i. Then define E as:

Efficiency =
1
N

N∑
i=1

M

Si
(7.4)

A higher value for this metric means that the protocol needs less net-
work traffic to achieve its goal.

7.3 Simulation Procedure

For both scenarios a number of experiments are conducted. An experiment
consists of a number of simulation runs for each interface failure rate (F).
The interface failure rate is varied from 0 to 75% in 5% increments. All
other conditions will be the same throughout the entire experiment.

The protocol, network and simulation parameters used in the experiments
are listed in table 7.1.

An experiment is started with a run script. This script takes care of exe-
cuting the required number of simulation runs for each of the failure rates.
After each simulation run the trace log that is produced is processed by an
AWK script to extract the data needed to calculate the metrics.

To verify the simulation procedure and the parameters, an experiment has
been conducted on the Rapide model of Jini to try to reproduce the results
obtained by NIST [DME02a]. Figures 7.2, 7.3 and 7.4 show the results of this

7.3 Simulation Procedure 33

Parameter Value
Polling interval 180s

Registration interval 1800s

Subscription interval 1800s

UDP transmission delay 10µs constant
TCP transmission delay 10− 100µs uniform
Processing delay for cache items 100µs

Processing delay for non-cache items 10µs

Table 7.1: Simulation parameters.

experiment: graphs of the median update responsiveness, update effective-
ness and update efficiency plotted against the interface failure rate for both
the polling scenario and the notification scenario. The reproduced graphs
are similar to the graphs published by NIST. This leads to the conclusion
that the simulation procedure and the used parameters are correct.

The results of the same experiments conducted on the model of FRODO are
presented in the next chapter. m

7.3 Simulation Procedure 34

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

Interface Failure Rate (%)

Published Notification
Published Polling
Reproduced Notification
Reproduced Polling

Figure 7.2: Median Update Responsiveness Jini

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

U
pd

at
e

E
ffe

ct
iv

en
es

s

Interface Failure Rate (%)

Published Notification
Published Polling
Reproduced Notification
Reproduced Polling

Figure 7.3: Update Effectiveness Jini

7.3 Simulation Procedure 35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

U
pd

at
e

E
ffi

ci
en

cy

Interface Failure Rate (%)

Published Notification
Published Polling
Reproduced Notification
Reproduced Polling

Figure 7.4: Update Efficiency of Jini

Chapter 8

Simulation Results

In this chapter the results of the experiments conducted on the Rapide
model of FRODO are presented. In section 8.2 these results will be com-
pared against the results of similar experiments conducted by the National
Institute of Standards and Technology on the Rapide models of Jini and
Universal Plug and Play.

8.1 Reproducibility

The experiments from NIST use 30 runs for each of the interface failure rates
in the calculation of the metrics discussed in the previous chapter (update
responsiveness, efficiency and effectiveness). Figure 8.1 shows a graph of
the median update responsiveness of FRODO calculated from the results
obtained from three separate experiments. Each of the experiments is con-
ducted under the same conditions and uses 30 runs, just like the experiments
from NIST.

Because the conditions in each of the three experiments were the same, one
would expect to the results to be the same as well. But figure 8.1 clearly
shows that this is not the case. Figure 8.2 shows what happens if the number
of runs is increased to 300. The curves in this graph are much closer together,
showing that the reproducibility is much better.

Because of this all further experiments on FRODO use 300 runs instead of
the 30 used by NIST.

36

8.1 Reproducibility 37

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

Interface Failure Rate (%)

FRODO Polling
’’
’’

Figure 8.1: Reproducibility of results with 30 runs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

Interface Failure Rate (%)

FRODO Polling
’’
’’

Figure 8.2: Reproducibility of results with 300 runs.

8.2 Results 38

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

Interface Failure Rate (%)

UPnP Notification
UPnP Polling
Jini Notification
Jini Polling
Frodo Notification
Frodo Polling

Figure 8.3: Median Update Responsiveness.

8.2 Results

Figures 8.3, 8.4 and 8.5 show the results from simulating the scenarios dis-
cussed in the previous chapter using the Rapide model of FRODO. These
results are compared with the results obtained from simulating the same
scenarios using the Rapide models of Jini and UPnP as published by NIST.

The figures show that the experiments on FRODO using the polling scenario
yield similar results to those on Jini. This is as expected: both these proto-
cols use a client/server architecture, unlike UPnP, which uses a peer to peer
architecture. And in these experiments both protocols use one dedicated
SCM. The saw-tooth behavior for FRODO is much less prominent than for
Jini and UPnP. This is caused by the fact that the graphs for FRODO are
the result of combining 300 simulation runs, while the graphs created by
NIST use only 30 runs.

The results for the experiments using the notification scenario show some-
thing different: the performance of FRODO is much worse than the perfor-
mance of the other protocols. Above an interface failure of 30%, the update
responsiveness drops of to a value close to zero. The update effectiveness
confirms that it is a value close to zero and not zero itself: from the def-
initions of the median update responsiveness and the update effectiveness
follows that the value of the update effectiveness is less than 0.5 for an
update responsiveness of 0, and the update effectiveness stays above 0.7.

8.2 Results 39

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70

U
pd

at
e

E
ffe

ct
iv

en
es

s

Interface Failure Rate (%)

UPnP Notification
UPnP Polling
Jini Notification
Jini Polling
Frodo Notification
Frodo Polling

Figure 8.4: Update Effectiveness.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

U
pd

at
e

E
ffi

ci
en

cy

Interface Failure Rate (%)

UPnP Notification
UPnP Polling
Jini Notification
Jini Polling
Frodo Notification
Frodo Polling

Figure 8.5: Update Efficiency.

8.2 Results 40

Analysis of the trace logs of the simulation runs reveals the cause of the
sudden drop in responsiveness: when using notification the SM will send a
message to the SCM on changing its service description. If the SM does
not receive an acknowledgement to this message, it will be resend only once,
but because the interface failure will probably not have been cleared, this
message will also be lost. This means that the SCM will not receive the
service description change until the SM renews its service lease. Because of
the timings used in the protocol and simulation, this renew happens just
before the simulation deadline, which explains why the responsiveness is
very close to zero.

The evaluation of the simulation results leads to the following conclusions:
the conducted experiments show that the Rapide model is valid and that the
simulation enviroment is equivalent to that used by NIST. The simulations
also gave an insight in the behavior of FRODO and helped to enhance the
protocol specification by uncovering some of the weaknesses it contained.

Chapter 9

Conclusions and Future
Work

9.1 Conclusions

The conclusions of the work done in this thesis can be summarized by the
following:

• The Rapide language is well suited for creating models of network pro-
tocols. The focus on the parallel processing of events matches the
nature op network protocols and the timing model of the language
makes it easy to model the delays and timeouts needed in a network
protocol. However, the executable sublanguage of Rapide is not as
powerful, and long and complicated calculations can best be done in
a separate program written in another language. Also, the Rapide
toolset is difficult to install on a modern computer.

• The modeling of FRODO has created a flexible simulation framework.
It allows the user to conduct a large number of different experiments
without the need to make changes to the source code. The framework
can also be extended to include parts of the protocol that have been
left unmodeled in this version.

• Modeling and simulating FRODO has proved an efficient way to val-
idate the design of FRODO. Flaws in the protocol specification were
found both during the modeling and during the simulation sessions.
Most of these could immediately be corrected, because the specifica-
tion was still a work in progress.

41

9.2 Future Work 42

9.2 Future Work

The following ideas for future work are proposed:

• Find an easy way to install Rapide on a modern GNU/Linux system.
Maybe even create a new binary distribution from the source code.

• Model unmodeled parts of the protocol. Add Central Election, Central
Backup, Peer-to-Peer Search and Remote Control to the model. Some
of this work has already been done [GLI05].

• Perform more expermiments. Many more scenarios can be simulated
to gather more information on FRODO’s characteristics.

• Create a prototype implementation of FRODO. The model of FRODO
can be used as a basis for a prototype implementation.

• Evaluate other parts of the Rapide language. Rapide contains a con-
straint language not discussed in this thesis that could be usefull.

Bibliography

[AHA03] The At Home Anywhere Research Project.
http://wwwes.cs.utwente.nl/aha, last modified: July 2003

[BLUE99] Specification of the Bluetooth System, Core, Volume 1, Version
1.1 Bluetooth SIG, Inc., February 2001

[DM01] C. Dabrowski and K. Mills. Analyzing Properties and Behav-
ior of Service Discovery Protocols Using an Architecture-based
Approach. In Working Conference on Complex and Dynamic
Systems Architectures, Brisbane, Australia, December 2001.

[DM02a] C. Dabrowski and K. Mills. Rapide Specification for Discovery
Architecture: Jini 3-Party. Last update: March 2002, Contact
Authors.

[DM02b] C. Dabrowski and K. Mills. Rapide Specification for Discovery
Architecture: Universal Plug and Play 2-Party. Last update:
March 2002, Contact Authors.

[DME02a] C. Dabrowski, K. Mills, and J. Elder. Understanding Consis-
tency Maintenance in Service Discovery Architectures During
Communications Failures. In Third International Workshop on
Software Performance, Rome, Italy, July 2002.

[DME02b] C. Dabrowski, K. Mills, and J. Elder. Understanding Consis-
tency Maintenance in Service Discovery Architectures in Re-
sponse to Message Loss. In Fourth Annual Workshop on Active
Middleware Services, Edinburgh, Scotland, July 2002.

[GLI05] G.J. van de Glind. Implementation and Analysis of FRODO in
Rapide. University of Twente, March 2005

[GOL02] Golden G. Richard III Service and Device Discovery, Protocols
and Programming. McGraw Hill, 2002.

[JINI03] Jini Architecture Specification. Sun Microsystems, June 2003.

43

BIBLIOGRAPHY 44

[RAP97] Rapide Design Team. Guide to the Rapide 1.0 Language Refer-
ence Manuals. Stanford University, July 1997.
http://pavg.stanford.edu/rapide/lrms/overview.ps

[RAP98] The Stanford Rapide Project.
http://pavg.stanford.edu/rapide, last modified: July 1998

[RFC2608] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Lo-
cation Protocol, Version 2, RFC2165 Internet Engineering Task
Force, June 1999.
http://www.ietf.org/rfc/rfc2608.txt

[SAL99] Salutation Architecture Specification (Part 1), Version 2.1. Salu-
tation Consortion, 1999.

[SUN03] V. Sundramoorthy, J. Scholten, P. G. Jansen, and P. H. Har-
tel. Service Discovery at Home. In 4th International Conference
on Information, Communications & Signal Processing and 4th
IEEE Pacific-Rim Conference on Multimedia (ICICS/PCM),
Singapore, volume III, December 2003

[SUN05] V. Sundramoorthy. An Analytical Approach Towards Design-
ing a Service Discovery Protocol: Introducing FRODO, Draft
Version. University of Twente, March 2005

[UPNP00] Universal Plug and Play Device Architecture, Version 1.0. Mi-
crosoft Corporation, June 2000.

Abbreviations

NIST National Institute of Standards and Technology

SCM Service Cache Manager

SD Service Description

SDP Service Discovery Protocol

SLP Service Location Protocol

SM Service Manager

SP Service Provider

SU Service User

TCP Transmission Control Protocol

UDP User Datagram Protocol

UPnP Universal Plug and Play

45

Appendix A

Installing Rapide

Because the GNU/Linux versions of the Rapide tools have been compiled
as an a.out binary, it is impossible to install it on a modern distribution. It
is possible to install it using an older distribution (possibly using a virtual
machine). The following procedure can be followed to install the tools on a
freshly installed Redhat 6.2 system:

1. Download the following Rapide install files from
ftp://pavg.stanford.edu/pub/Rapide-1.0/toolset/:

rapide.LINUX.build72.tar.gz
debug/pov2.LINUX.tar.gz
debug/raparch.0.9.6.Linux.tar.gz
debug/povwish.LINUX.build72.1.tar.gz

2. Unpack the Rapide distribution:

cd /usr
tar -xvzf <path to files>/rapide.LINUX.build72.tar.gz
cd /usr/rapide
tar -xvzf <path to files>/pov2.LINUX.tar.gz
tar -xvzf <path to files>/raparch.0.9.6.Linuxcd /.tar.gz
cd /usr/rapide/lib/povwish
tar -xvzf <path to files>/povwish.LINUX.build72.1.tar.gz

3. Add the following directory to /etc/ld.so.conf:

/usr/rapide/lib/gcc-lib/i586-unknown-linux/i2.6.3

4. Update ld.so.cache by running:

46

47

ldconfig

5. Create a symbolic link to types.h (Rapide can’t find the one already
on the system):

cd /usr/rapide/lib/gcc-lib/i586-unknown-linux/i2.6.3/include
mkdir gnu
cd gnu
ln -s /usr/include/bits/types.h types.h

6. Add the following lines to the initialization file (for bash: ~/.bashrc)

export RAPIDEHOME=/usr/rapide
export PATH=$PATH:$RAPIDEHOME/bin:.
export MANPATH=$RAPIDEHOME/man:$MANPATH

7. Make sure that a.out binaries are supported. Add the following line to
/etc/rc.d/rc.modules on a Redhat 6.2 installation (/etc/rc.d/rc.modules
is an executable shell script):

modprobe binfmt_aout

8. Apply the following patch to the regression test makefile:

cd /usr/rapide/regress/tests
cat << EOF | patch
--- Makefile 1997-12-16 02:30:10.000000000 +0100
+++ Makefile 2004-09-20 16:49:12.000000000 +0200
@@ -23,12 +23,16 @@

all: latest_library latest_rpdc execs tests_passed

-latest_library: $(R.MANAGER) .rpdlib/PATH
+latest_library: $(R.MANAGER) clean_library .rpdlib/PATH
+ @touch latest_library
+
+.PHONY: clean_library
+
+clean_library:

@if [‘$(EXPR) length "$(DEBUG)"‘ != 0] ; then \
echo "Going to clean because new Rapide library manager"; \

fi
@$(MAKE) clean

- @touch latest_library

48

.rpdlib/PATH:
@if [‘$(EXPR) length "$(DEBUG)"‘ != 0] ; then \

EOF

9. Run the Rapide installation script:

installation_setup

10. Fix the file ownership and permissions:

cd /usr/rapide
chown -R root.root .
chmod -R go-w .

11. Done.

Appendix B

Protocol Specification

This chapter contains the protocol specification flowchart used for the model
of FRODO. This is not the final version of the flowchart and it should only
be used as guide to the Rapide model of FRODO presented in this thesis.

Figure B.1 shows the building blocks that are used in the flowchart. The
circle refers to a node or device in the network. It gives the type of node
that should implement the behavior. An arrow represents a transition from
one building block to another. Any text next to the arrow represents the
event that triggers the transition. If there is no event attached to an arrow,
the corresponding transition is triggered directly. A transition can go to
another page on in the flowchart: this is represented by the grey box. The
diamond symbol represents a decision and the box a process.

Figure B.1: Flowchart building blocks.

49

50

newDevice

Device Registration
1. SmallDeviceAnnounce

2. ServiceRegistrationRequest

3. ServiceRegistrationReply

4. ServiceRegistrationrenew

5. w = wait time for 3C/D devices to detect

Central

6. ManualCentralInit

7. UnsolicitedServiceRegistration

8. IAmCentral

9. Manual flag

10. Acknowledgement

11. REGISTER flag = notify devices to wait for

ServiceRegistrationRequest.

12. a = timeout to rx

ServiceRegistrationRequest

13. b = timeout to rx Acknowledgement

Broadcast

SmallDeviceAnnounce

Is it 3D?

Central

Discovery

Yes

Rx any

ServiceRegistrationRequest

from a Central?

Yes

No

Is it

ManualCentralInit

mode?

No

Yes No

Wait for w unit of time

Exponential backoff

algorithm

w = 2x(delay)

eg: 5min, 10min, 20min

reset every 5w

Want to search for

a service?

No

Yes
Peer2Peer

Search

Central

Stop

LeaderElection

Protocol

Broadcast

IAmCentral to

network x 2 with

Manual flag set

REGISTER flag set

300D

Rx any

ServiceRegistration

Request from

Central < a ?

Yes

Send

UnsolicitedService

Registration

No

Rx

Acknowledgement <

b?

Broadcast

LeaderElect

Request

No

ServiceReg

ServiceUpdateYes

Central

Discovery

Is REGISTER

flag set?

Cache Central's

address

Yes

Do

nothing

51

Broadcast MyResource -

memory size , processing

power, device orientation,

unique device id

Central Discovery
1. MyResource

2. ServiceRegistrationRequest

3. IAmCentral

4. p = wait time for other MyResource messages

5. IAmCentral message

6. REGISTER flag = notify devices to wait for

ServiceRegistrationRequest.

300D

DeviceReg

ServiceReg

Rx MyResource msg

from other 300Ds

< p expired?

Start counter for p

period of time

Yes

Central

No

Rx MyResource

msg from other

300Ds

LeaderElection

Protocol

Rx IAmCentral

msg

< p expired?

Is REGISTER

flag set?

Yes

Do

nothing

Rx

ServiceRegistration

Request

from a Central < p

expired?

Rx

LeaderElectRequest

Already Central? (not

ntw intialization)

Broadcast

IAmCentral to

network x 2

REGISTER Flag =

not set

Yes

No

52

Leader Election Protocol

300D

Function with

parameters:

f(e, p, m, u)

Is e(local) > e(remote) ?

Is p(local)>p(remote)?

Is p(local) =

p(remote)?

Is m(local)>m(remote)?

No

Yes

Has a descending

RankList array been

created?

No

Yes

No

1. e = 0 (wired + wireless device)

 e = 1 (wired device)

2. p = processing power(MHz)

3. m = memory size (MB)

4. u = unique device id

5. RankList

6. q = max wait time for Central candidate to

listen for more MyResource messages

7. RandomNumberRequest

8. RandomNumberReply

9. MyResource

10. c=wait period for other Central

announcement

11. MAXCentralElectTime - max time for the

central Election process o take place

Create a descending

RankList array of x

levels

Wait for q timeout

for anymore

MyResource

messages

Rx anymore

MyResource in before q

period expires?

Broadcast

IAmCentral to

network x 2

Purge RankList

Drop any

MyResource

message

DeviceReg

No

Central

Yes

Is m(local) = m(remote)?

No

Yes

Yes

No

m(local) <

m(remote)

Is e(local) = e(remote) ?

No

Yes

No

Yes

Is u(local)>u(remote)?

Yes

No

u(local) <

u(remote)

p(local) <

p(remote)

Yes

Wait for c period

(checkout other

Central

announcement)

MAXCentralElectTime

reached?

Yes

No

Reset q

53

Central

candidate

Rx IAmCentral from

>=1 Central candidate

Send

CentralNegotiation

message (e, p, m, u)

Central

candidate

Rx CentralNegotiation

message (e, p, m, r)

LeaderElection

Protocol

Is it Central?

Send IAmCentral to

competing Central

candidates

Yes

Rx IAmCentral from a

Central<

MAXCentralNego?

Central Negotiation

Send

UnsolicitedService

RegistrationReply

No

Rx

Acknowledgement <

b?

No

Central

No

ServiceUpdateYes

Broadcast

IAmCentral to

network x 2

REGISTER flag set

1. IAmCentral

2. CentralNegotiation

3. NotCentral

4. ServiceRegistrationRequest

5. UnsolicitedServiceRegistrationReply

6. Acknowledgement

7. LeaderElectRequest

8. MyResource

9. p = wait time for other MyResource

messages

10. c=wait period for other Central

announcement

11. Manual flag

12. MAXCentralNego

13. a = timeout to rx

ServiceRegistrationRequest

14. b = timeout to rx Acknowledgement

15. REGISTER flag = notify devices to wait

for ServiceRegistrationRequest.

Send

NotCentral

Wait for c period

Rx other

IAmCentral

messages?

No

Yes Is Manual flag

set?

No

Yes

Start

MAXCentralNego

counter

Rx

NotCentral from

all candidates?

Yes

No

Rx any

ServiceRegistrationRequest

from Central < a ?

Yes

No

DeviceReg

Yes

54

Central

CENTRAL

NetworkUpdate

LeaderElection

Protocol

ServiceReg

Search

Remote

Control

3-way-

Subscription

CentralDiscovery

ServiceUpdate

CentralNegotiation

1. UnsolicitedServiceRehistrationReply

2. Acknowledgement

2-way-

Subscription
CentralBackup

Assign

55

CENTRAL

Send
ServiceRegistrationRequest

(maxServiceRegExpiryTime)

Add to ServiceLookUp

Address

DeviceType

ServiceType

AttributeList

UniqueServiceID

 ServiceRegExpiryTime

Provide Unique ServiceID for all the services.

ServiceID = DevId.ServiceType(Id).ServiceId

ServiceUpdate

ServiceRegistration

Send
ServiceLookUp
to CentralBackup

CentralBackup

Central

1. ServiceRegistrationRequest

2. ServiceRegistrationReply

3. ServiceLookUp

4. ServiceID = DevId.ServiceTypeId.ServiceId

(ServiceId - Running number)

5. maxServiceRegExpiryTime

6. counter = ServiceRegExpiryTime + buffer time

7. counterT = lease renewal time

8. ServiceRegExpiryTimeNotification - Central

selects a time and notifies 300D

9. UnsolicitedServiceRegistration

10. t=max time assumed for message

propagation from Central to device

3D/300D

Rx

ServiceRegistrationRequest

Send

ServiceRegistrationReply

Address

DeviceType

ServiceType

AttributeList

 ServiceRegExpiryTime

DeviceReg

Start counter for

service

counterT

Any

services to

offer?

300D? No

Send

ServiceRegistration

Reply

Address

DeviceType -NULL

Yes

No

Yes

RemoteControl

ServiceRegExpiryTime <
maxServiceRegExpiryTime

Start counter

for every

service

Send

ServiceRegExpiry

TimeNotification

Rx

UnsolicitedService

RegistrationReply

Send

Acknowledgement

Add Central’s

services in

ServiceLookUp

No

Rx

ServiceRegistration

Reply ?

Yes

No

Rx

ServiceRegExpiry

TimeNotification

Adjust counterT =

ServiceRegExpiry

Time - t value

56

Rx ServiceRegRenew <

counter ?

CENTRAL

No

Reset counter

ServiceUpdate

Cancel entry from

ServiceLookUp

CentralBackup

Send ServiceLookUpUpdate

(set field to indicate 300D)

ServiceReg

1. ServiceLookUp

2. ServiceRegExpiryTime

3. DeviceList

4. ServiceLookUp

5. DeviceListUpdate

6. ServiceLookUpUpdate

7. ServiceRegRenew

8. counter = ServiceRegExpiryTime +

buffer time

9. t=max assumed time for

ServiceRegistrationReply to reach Central

10. counterT = counter + t

11. UnsolicitedServiceRegistration

12. Acknowledgement

13. LeaderElectRequest

PollSmallDevice
Is child a

300D?

Yes

No

Cancel entry from

RankList

Send ServiceRegRenew before

each service’s counterT

Remote

Control

Search

300D

New service

definition?

No

Send

UnsolicitedService

Registration

Yes

Rx

Acknowledgement ?

No

Yes

Broadcast

LeaderElect

Request

Resend

Rx

Acknowledgement ?

No

Central

Discovery

Yes

Yes

ServiceReg

Rx ServiceRegRenew

from deleted device ?

57

Send

CentralBackupAssign

to device below

Central in RankList

 CentralBackup

CENTRAL

CentralBackupAssignment

1. CentralBackupAssign

2. RankList

3. ServiceLookUp

Central

Discovery

Send
ServiceLookUp
to Backup

Rx

CentralBackupAssign

Backup

PollBackup

Send
RankList
to Backup

Is there

CentralSubscription

Table created?

Send

CentralSubscription

Table

Yes

No

58

CentralBackup 1. ServiceLookUp

2. ServiceLookUpCopy

3. ServiceLookUpUpdate

4. CentralBackupCancel

5. RankList

6. RankListUpdate

7. RankListCopy

8. CentralSubscriptionTable

9. CentralSubscriptionTableCopy

10. SubscriptionUpdate

CentralBackup

CentralBackup

Assign

Rx ServiceLookUp

Create a

ServiceLookUpCopy

PollCentral

Rx RankList

Create a

RankListCopy

Rx

ServiceLookUp

Update ?

Rx

RankListUpdate ?

Update RankListCopy

(new device)

Update

ServiceLookUpCopy

No
No

Yes

Rx

CentralBackupCancel

from Central

Off CentralBackup

mode

Rx CentralBackupCancel ?

Yes

newCentral

Assign

No

Yes

Device

deleted?

300D field set?

Yes

No

Delete from

RankListCopy

Yes

No

Rx

CentralSubscriptionT

able

Create

CentralSubscriptionT

ableCopy

Rx

SubscriptionUpdate

?

No

Update

CentralSubscriptionTable

Copy

Yes

59

Central

Send Hello to

CentralBackup

Wait for x minutes

Rx HelloCentral from

CentralBackup?

Yes

Wait for z minutes

PollBackup 1. Hello

2. HelloCentral

3. ServiceLookUp

4. RankList

3. z = duration for Central to send

 Hello msg periodically

4. x = duration to wait for

 HelloCentral reply from

 CentralBackup

5. y = time for CentralBackup

 initialize

Wait for y minutes

PollCentral

Rx HelloCentral

Resend Hello to

CentralBackup

Wait for x minutes

Rx HelloCentral from

CentralBackup?

CentralBackup

Assign

No

Remove

CentralBackup

address from

RankList

Remove

CentralBackup

from

ServiceLookUp

CentralBackup

Assignment

60

Rx Hello msg from

Central

Wait for z ms

Did it rx Hello msg

from Central?

Resend

HelloCentral msg

to Central

Did it rx Hello msg

from Central?

Wait for z ms

Yes

CentralTakeover

No

No

Central

Backup

CentralBackup

Reply HelloCentral

Yes

Poll Central

1. Hello

2. HelloCentral

3. z = duration for Central to send

 Hello msg periodically

61

Send

HelloSmallDevice

to 3C/3D

Did it rx HiCentral

msg

Resend

HelloSmallDevice

msg to affected 3D

Did it rx HiCentral

msg ?

Wait for x ms

Yes

No

No

ServiceReg

Central

Send ServiceLookUpUpdate CentralBackup
Cancel entry from

ServiceLookUp

PollSmallDevices

1. HelloSmallDevice

2. HiCentral - contains lease period, v

3. v = duration for Central to send

HelloSmallDevice msg periodically (lease)

4. t=max assumed time for HelloSmallDevice to

reach device

5. x = duration to wait for HiCentral message to

be received

 x = 2t

6. ServiceLookUp

7. ServiceLookUpUpdate

Wait for x ms

Wait for v unit of

time

Yes

62

 CentralTakeover

 CentralBackup -> Central

CentralBackup

PollCentral

Broadcast IAmCentral

message throughout

network

REGISTER Flag = not

set

1. IAmCentral

2. ServiceLookUp

3. ServiceLookUpCopy

4. SubscriptionRenew

5.CentralSubscriptionTable

6. RankListCopy

7. RankList

8. REGISTER flag = notify

devices to wait for

ServiceRegistrationRequest.

9. CentralSubscriptionTable

Central

ServivceLookUp

Copy ->

ServiceLookUp

ChildDevices

Rx IAmCentral

message

Replace Central

address with new

address
Remove Central

from

ServiceLookUp

CentralBackupAssign

NetworkUpdate Search

Remote

Control

RankListCopy ->

RankList

Remove Central

from RankList

CentralSubscription

Table

Copy ->

CentralSubscription

Table

Remove Central from

CentralSubscription

Table

63

300D/

Active3D

Create ServiceSearch msg:

source Address
 ServiceType/ServiceID
 AttributesList - inc serv location
MAXMatch

Central

Rx ServiceSearch

Check

ServiceLookUp

for ServiceType &

AttributeList

Match found?

Is service seeker

Central?

No

No

Yes

Send

ServiceSearch to

Central

Search

1. ServiceSearch

2. ServiceLookUp

3. ServiceReply

4. ServiceNotFound

5. s = search period

timeout

6. MAXMatch = number of

max matches for search

Yes

Wait for s time

Yes

Yes

Rx ServiceReply ?
Rx

ServiceNotFound?

Search:

ServiceFound

Search:

ServiceNotFound

No

1x

No

Broadcast

LeaderElect

Request

Central

Discovery

else

else

64

RemoteControl

Central

Is service seeker the

Central?

Choose best match for

number of attrs,

reliabliltity, nearest

Location

(User GUI)

Display matches/best

match

Send ServiceReply

target Address

 ServiceType/ServiceID

 AttributesList - inc serv location

AvailableServiceRegExpiryTime

300D/

Active3D

Yes

No

Service Found

1. ServiceReply

2. AvailableServiceRegExpiryTimeSearch

Is there

MAXmatch =

1?

Display list of

matches/best match

Choose best match for

number of attrs,

reliabliltity, nearest

Location

(User GUI)

Choose best

matched service

Choose best

matched services till

max match limit

Yes

Choose ALL matched

services

Cache service provider's

AvailableServiceRegExpiry

Time period

Is MAXmatch =

ALL?
No

YesNo

65

Service Not Found 1. ServiceNotFound

2. NotificationTable

3. ServiceReply

Send

ServiceNotFound

300D/

Active3D

Display

“Service Not Found”

message

Drop Action

Central

Is service seeker the

Central?
No

Yes

Search

Display

“Service Not Found”

message

Drop Action

Write to

NotificationTable

Rx

ServiceRegistration

Reply from a new

service?

Check

NotificationTable

Is request

listed?

Do nothing
Send

ServiceReply

No
Yes

Search:

ServiceFound

300D/

Active3D

66

Rx

ServiceReply?

RemoteControl

Choose best

service

Yes

Broadcast ServiceSearch

msg:

source MAC Address
 ServiceType
 AttributesList
- inc serv location

 TargetLocation

Control device

Peer2Peer Search

DeviceReg

1. ServiceSearch

2. ServiceReply

No - max 3

Cache

targetService data

67

Send DoAction to

TargetService

-actionName

-argumentName

ControlDevice

Action

Successful?

Display “Action

Successful” Display “Action

Failed”

NoYes

Cache

targetService data

targetService > x

times requested?

Subscription

Drop Action

Remote Control
1. DoAction

2. ActionResponse

3. x = max number of time a service

repeatedly used before going into

subscription

4. a = wait period for Action

Response

5. SubscriptionList

Yes

Search:

ServiceFound

Yes

Send ActionFail to

Central

PollServiceProvider

Wait for a period

Rx ActionResponse

from TargetService?

RemoteResponse

No

1x

No
Send ActionFail to

Central

Delete cached

targetService data

targetService in

SubscriptionList

(vendor provided)

No

Yes

No

68

Remote Response

TargetService

Perform action

Rx DoAction

ControlDevice

Send

ActionResponse

RemoteControl

1. DoAction

2. ActionResponse

RemoteControl

69

Remote

Control

targetService is 3D?

ControlDevice

Yes

3-WaySubscription 2-WaySubscription

Subscription

Can 3D support

SubscriptionTable

req?

Yes

No

Yes

1. SubscriptionTable

70

Subscriber

(300D)

Send

SubscriptionRequest

to targetService

2-WaySubscription

ServiceProvider

(300D)

Write in

SubscriptionTable

Rx

SubscriptionCancel

Delete entry in

SubscriptionTable

Yes

Send

SubscriptionCancel

Rx ServiceUpdate

(EM)

Send

SubscribeRenew

msg every w unit

of time

Did it rx

SubscribeRenew

every w unit of time

from Subscriber?

Reset timer field

in Subscription

Table

No

Yes

1. SubscriptionRequest

2. SubscriptionAck - new lease

3. ServiceUpdate

4. SubscriptionCancel

5. SubscriptionTable

6. SubscriberTable

7. SubscribeRenew

8. w=lease renew period

9. d = wait time for SubscriptionRequest

Stop Subscription

Request

Limit for

Subscription

exceeded?

No

Yes

Send

SubscriptionAck

Rx

Subscription

Ack ?

Write in

SubscriberTable

Send

ServiceUpdate

(EM)

Limit for

Subscription

exceeded?
Ignore

Subscription

Request

Wait for d period

Drop

SubscriptionRequest
No

Search

Cancel

Subscription?

Yes

No

Changes in

services

RemoteControl

Remote

Response

Rx

SubscribeRenew

from deleted

Subscribe

Send Resubscribe

2-

WaySubscrip

tion

71

Central

Send Hello to

target device

Wait for x

unit of time

Rx HelloCentral from

device?

Yes

Rx HelloCentral

Remove address

from RankList

Remove from

ServiceLookUp

CentralBackup

Send ServiceLookUpUpdate

(set field to indicate 300D)

No

Poll ServiceProvider

1. SubscriptionFail

2. Hello

3. x = duration to wait for

HelloCentral reply

4. RankList

5. ServiceLookUp

6. ServiceLookUpUpdate

7. ActionFail

2-WaySubscriptionRemoteControl

Is it 300D ?

Yes

PollSmall

Devices
No

Rx ActionFail

ServiceReg

Maintain same

ServiceID for this

device’s old

services

3-WaySubscription

72

300D/Active3D

(subscriber)

Send

SubscriptionRequest

to Central

Rx

SubscriptionAck

Rx ServiceUpdate

(EM)

Central

Rx

SubscriptionRequest

Send

ServiceUpdate

(EM)

1. SubscriptionRequest

2. SubscriptionAck

3. ServiceUpdate

4. ActionRequest

5. ActionResponse

6. DoAction

7. SubscriptionCancel

8. CentralSubscriptionTable

9. SubscriberTable

10. SubscribeRenew

11. w=lease expiry time

12. ActionFail

Note: EM = Event Message

Send

SubscriptionAck

Write in

CentralSubscription

Table

Did it rx

SubscribeRenew

every w unit of time

from Subscriber?

Reset timer field

in Subscription

Table

Yes

No

Write in

SubscriberTable

Remote

Control

3-WaySubscription

PollSmall

Devices

Remote

Control
Send

SubscribeRenew

msg every w

minutes

Send

SubscriptionCancel

Cancel

Subscription?

Yes

No

Rx

SubscriptionCancel

Delete entry in

CentralSubscription

Table

Rx

SubscribeRenew

from deleted

Subscribe

Send Resubscribe

300D/Active3D

(subscriber)

3-WaySubscription

Send

CentralSubscription

Table

 CentralBackup

73

Network Update

Keep track of new

SmallDeviceAnnounce

messages

Central

Any new

device?

Yes

Central

Keep track of new

MyResource

messages

ServiceUpdate

Any new

device?

New300D

Device

Yes

Send
ServiceRegistration

Request

Rx
ServiceRegistration

Reply

Send ServiceLookUpUpdate

Update ServiceLookUp

No

CentralBackup

1. MyResource

2. SmallDeviceAnnounce

3. IAmCentral

4. ServiceRegistrationRequest

5. ServiceRegistrationReply

6. ServiceLookUp

7. ServiceLookUpUpdate

Keep track of

IAmCentral

No

Any new

device?

No

newCentral

Assign

Yes

74

Central

New 300D Device 1. MyResource

2. RankList

3. ManualCentralInit

4. e, p

5. x =20% = arbitary value

- depends on simulation

result

6. RankListUpdate

Network

Update

Rx new

MyResource msg

Is e(remote) > e(local)?

Is p(remote)>p(local)?
Yes

Rearrange

RankList

p(remote) > x%

p(local)?

Yes

newCentral

Assign

Yes

Send

RankListUpdate to

CentralBackup

CentralBackup

CentralBackup

p(remote) <=

p(Backup)?

CentralBackup

Assign

Send

CentralBackupCancel

Is e(remote) = e(local)? No

no

Is e(remote) >

e(Backup)?

Yes
YesNo

Is e(remote) =

e(Backup)?

Yes

No

e(remote) < e(local)

No

Yes

No

Rearrange

RankList
Rearrange

RankList

ServiceReg

No
p(remote) >

 p(Backup)

e(remote) < e(local)
p(remote) <=

 p(local)

75

Central

Send

newCentralAssign

msg

Send

ServiceLookUp

New Central Assign

Send

CentralBackup

Cancel to

CentralBackup

1. newCentralAssign

2. ServiceLookUp

4. SubscriptionTable

5. CentralBackupCancel

6. IAmBackup

7. ServcieLookUpCopy

8. RankList

New300D

Device

ServiceLookUp ->

ServiceLookUpCopy

newCentral

Send

Central

SubscriptionTable

CentralBackup

CentralBackup

Send IAmBackup

Send RankList

76

New 300D

Device

Rx

newCentralAssign

msg

New Central

Central

Network

Update

Poll

Backup

1. newCentralAssign

2. ServiceLookUp

3. CentralSubscriptionTable

4. IAmCentral

5. RankList

NewCentral

Assign

Rx ServiceLookUp

Add its own

services into

ServiceLookUp

Search
Remote

Control

Broadcast

IAmCentral

REGISTER Flag =

not set

Rx IAmCentral

message

Replace Central

address with new

address

ChildDevice

Rx

Central

SubscriptionTable

Rx RankList

3-way Subscription

