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Abstract 
This document describes an approach to reinforcement learning, called situational 

reinforcement learning (SRL). The main goal of the approach is to reduce the computational 
cost of learning behaviour in comparison to conventional reinforcement learning. One of the 
main goals of the research described in this document is to evaluate the implication of 
situational reinforcement learning on the computational cost of learning behaviour and on the 
optimality of the learned behaviour. The reduction in computational cost is mainly facilitated 
by decomposing the environment into smaller environments – called situations – and only 
learn behaviour – called a policy – for each situation. A global policy is then created by 
combining all learned situational policies. Each situation is based upon states that have an 
equal heuristic preference value. The learned behaviour of a situation will most likely direct 
the agent to a reachable, more favourable situation. The global policy that is created from 
combining the situational policies will therefore focus on continually reaching more 
favourable situations. The research not only evaluates the use of situational reinforcement 
learning as a stand-alone approach to artificial intelligence (AI) learning, but also applies the 
approach as an addition to conventional reinforcement learning. The method that uses SRL as 
a stand-alone approach will be referenced to as the Combined method and the method that 
uses it as an addition to conventional methods will be referenced to as the Enhanced method. 
Evaluation of the Combined method shows that the method achieves significant 
computational cost reductions. Unfortunately, this reduction does not come without a price 
and the evaluation shows that careful consideration of the heuristic function is required in 
order to reduce the optimality loss. The evaluation of the Enhanced method shows that on 
average, when using the modified policy iteration algorithm to learn policies, the 
computational cost of learning a global policy is greater than when the conventional method is 
solely used. I believe that the significant reduction in computational cost resulting from the 
use of SRL is a good incentive to perform further research on this approach. 
 
 
Dit document beschrijft een reinforcement learning (RL) methodiek, genaamd situational 

reinforcement learning (SRL). Het hoofddoel van de methodiek is het reduceren van de 
benodigde berekeningen om gedrag te leren t.o.v. conventioneel RL. Één van de hoofddoelen 
van het onderzoek omschreven in dit document is om de implicaties van SRL te evalueren op 
de benodigde berekeningen om gedrag te leren en op de optimaliteit van dit geleerde gedrag. 
De reductie in berekeningskosten wordt voornamelijk bereikt doordat de methode de 
omgeving opdeelt in kleinere omgevingen – situaties genaamd – en vervolgens alleen gedrag 
leert voor elke situatie. Gedrag voor de globale omgeving wordt dan gecreëerd door al het 
situationele gedrag te combineren. Elke situatie is opgebouwd rond toestanden met gelijke 
voorkeurswaarden. Het geleerde gedrag binnen een enkele situatie zal de agent waarschijnlijk 
naar bereikbare situaties leiden met een hogere voorkeurswaarde. Het gecreëerde globale 
gedrag zal daarom erop gericht zijn om continue situaties te bereiken met een hogere 
voorkeurswaarde. Het onderzoek richt zich niet alleen op de toepassing van SRL als een 
alleenstaande methode om gedrag te leren, maar onderzoekt ook of de methodiek als 
aanvulling kan dienen voor conventioneel RL. De methode die SRL gebruikt als alleenstaande 
toepassing om gedrag te leren zal de Combined methode genoemd worden en de methode die 
SRL als aanvulling gebruikt zal Enhanced heten. De evaluatie van de Combined methode 
toont dat de methode aanzienlijke reducties in berekeningskosten teweeg brengt. Helaas komt 
die reductie niet zonder prijs en de evaluatie toont ook dat de voorkeurswaarden zorgvuldig 
gekozen dienen te worden om een groot verlies in optimaliteit te voorkomen. De evaluatie van 
de Enhanced methode toont dat gemiddeld, als modified policy iteration wordt gebruikt als 
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leer algoritme, de berekeningskosten om globaal gedrag te leren hoger is dan het geval zou 
zijn als het algoritme op de gebruikelijke manier wordt toegepast. Ik vind dat de significante 
reductie in berekeningscomplexiteit een goede aanleiding is om verder onderzoek te 
verrichten naar SRL.     
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Introduction 
In the past few years the computer gaming industry has grown considerably. Along with that 
growth came an increased interest in game aspects that had been previously largely ignored. 
Traditionally most development focused on the graphical aspect of the game, but in recent 
years development of the artificial intelligence (AI) in games has seen a significant growth 
(Darryl, 2003). The few conditional rules and predefined events that controlled most AI 
behaviour in the past no longer seems to meet the needs of the players. Game AI can be 
considered a rich field of interesting problems with often large, well defined, partially 
observable game environments where multiple agents have conflicting or common goals and 
where actions have stochastic effects. Approaches to AI originally devised to solve problems 
in game AI can often be fruitfully applied to conventional problems, where game theory is an 
excellent example (Russel & Norvig, 2003, pp. 631-641; Morris, 1994). The developed 
method which is explained and evaluated in this document is also devised from a game 
perspective, but – as will be shown – is also applicable for conventional problems. 
 
Since game AI has seen increased interest, many different methods for creating or learning AI 
have been proposed. The AI in most games today still rely in some degree to a form of finite 

state machines (Gill, 1962), which often is a predefined structure that chooses actions based 
solely on the current state. Search algorithms such as A* (Russel & Norvig, 2003) are also 
widely used in games, especially for path-finding (Darryl, 2003). Although there are many 
forms of these two methods which differ in complexity, they are still basically methods where 
the resulting behaviour is predefined by the developer. Other methods focus more on learning, 
where behaviour is not predefined but learned through experience or reinforcement. 
Evolutionary algorithms (Bakkes, Spronck & Postma, 2004, 2005) are an example of such 
methods, where the result of choosing an action in a certain state is evaluated and the action 
for that state is reconsidered accordingly. The learning process is thus performed through the 
evaluation of experience. Another example of a learning approach is the neural network 
(Haykin, 1999). Given a training set – which is a set of inputs and corresponding desired 
outputs for the network – the neural network is ‘trained’ to generate the desired outputs based 
on the inputs. If an untrained input is than presented to the network, it is most likely that the 
network will output a signal that corresponds to the trained input that most closely resembles 
the given untrained input – a sort of pattern recognition. Through the training set, the neural 
network learns which outputs to generate based on inputs. The last example of a learning 
approach to AI – and the approach adopted by the developed method – is reinforcement 

learning (Sutton & Barto, 1998). In reinforcement learning a reward structure is present that 
assigns rewards based on for example states or actions. The desirability of behaviour is 
evaluated by the rewards accumulated by that behaviour. Reinforcement learning algorithms 
focus on learning behaviour that maximize rewards. The approach to reinforcement learning 
that is developed as part of the research and that is central to the assignment will be called 
situational reinforcement learning (SRL) for reasons that will be explained later on. 
 
Within reinforcement learning there are several ways to learn optimal behaviour. In the 
context of this document, only reinforcement learning algorithms that are applicable in 
Markov Decision Process (MDP) modelled environments or derivatives thereof will be 
considered (Russel & Norvig, 2003; Kaelbling, Littman & Cassandra, 1998; Aberdeen, 2003). 
One form of reinforcement learning is dynamic programming. According to Sutton & Barto 
(1998, chap. 4) “The term dynamic programming (DP) refers to a collection of algorithms that 
can be used to compute optimal policies given a perfect model of the environment as a 
Markov decision process”. Multiple dynamic programming algorithms can be used to learn 
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optimal behaviour for an agent, the most notable of which are value iteration and policy 

iteration (Mansour & Sing, 1999; Russel & Norvig, 2003; Kaelbling, 1996; Kaelbling et al., 
1998; Aberdeen 2003). Other forms of reinforcement learning are the Monte Carlo methods 
(Sutton & Barto, 1998). The difference between Monte Carlo and dynamic programming is 
that Monte Carlo methods do not require a perfect model of the environment, but use 
experience gained through interaction or simulation to generate a model of the environment. 
Temporal difference learning (Sutton & Barto, 1998) is a combination of Monte Carlo and 
dynamic programming and tries to get the best of both. Although the situational reinforcement 
learning method will only be explained in detail and empirically tested for a dynamic 
programming algorithm – more precisely a modified version of policy iteration – an 
explanation will be given on how the method will work for other dynamic programming 
algorithms and other reinforcement learning techniques.   
 
A problem with most dynamic programming algorithms, such as value- or policy iteration, is 
that finding the optimal policy – the behaviour that optimally achieves the agent’s goal – is a 
computationally costly operation. For complex environments – and most games fall under that 
category – finding the optimal policy becomes an intractable problem. The two most 
commonly used methods of decreasing this complexity are: 

• To use simpler computations that approximate the exact computations. This is for 
example done by the modified policy iteration (mPI) algorithm (Russel & Norvig, 
2003; Kaelbling, 1996; Kaelbling et al., 1998; Aberdeen, 2003). 

• To reduce the environment in which the learning process is performed. For example 
used by hierarchical reinforcement learning (Dietrich, 1999, 2000; Pineau, Gordon & 
Thun, 2003) and the envelop method (Russel & Tash, 1994; Gardiol & Kaelbling, 
2004). Situational reinforcement learning also alters the environment in which 
learning is performed and as such can be seen as an alternative to such methods..  

 
A problem with the use of an MDP modelled environment for games, is that games usually 
have multiple players with contradicting goals. Because the MDP environment only takes a 
single action set and reward function into consideration, behaviour of other agents must be 
modelled as being part of the environment. This considerably increases the difficulty of 
modelling complex behaviour of other agents. An extension of the MDP framework that tries 
to solve this problem is the Markov game framework (Littman, 1994). In a Markov game 
modelled environment, each agent has a corresponding action set and reward function which 
allows for the explicit modelling of multiple agents in the same environment. 
 
The first goal of the assignment is to develop the situational reinforcement learning method. 
SRL must be applicable in MDP and Markov game modelled environments, must be able to 
use any dynamic programming algorithm within such environments and be able to learn 
policies at a lower computational cost than would be the case if the dynamic programming 
algorithm was applied to the environment without using SRL. Situational reinforcement 
learning tries to achieve this goal by decomposing the environment into smaller environments 
– called situations – and only perform the learning process for each of these local 
environments. A policy that spans the global environment is then created by combining all the 
learned local policies. When considering the goal of SRL – which is to reduce the 
computational cost by performing the learning process on smaller environments – the method 
can be seen as an alternative to methods like hierarchical reinforcement learning or the 
envelope method.  
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Situational reinforcement learning is inspired by an analogy with how humans play games: 
Human players often do not have the capacity like computers to foresee a game entirely from 
beginning to end, but they are still able to rather effectively play complex games. If the player 
has not foreseen the end, how can he then be rather certain that his move or planned series of 
moves contribute to reaching a favourable end? Various reasons exists, experience among 
others, but the feature that SRL is trying to exploit is the human tendency to assign heuristic 
values to states that indicate preference; although the human player does not see the end, his 
heuristics tell him that taking a certain piece of the board or making a certain move 
contributes to a more favourable situation. By continually trying to reach more favourable 
situations in such a fashion, the human player can play complex games effectively by creating 
rather short-term plans. A human ability that is not incorporated into SRL is the ability to use 
experience to alter the heuristics. Within the method, the heuristic function is a static entity 
given by the developer and any desired changes to this function must be done by the 
developer. 
 
Quickly said, situational reinforcement learning performs the following operations: 

1. Decompose the environment into unique situations. A situation is a subset of the 
environment which is build around states with an equal preference value according to 
the heuristic function, called the inner states of the situation. Each situation is 
constructed by SRL in such a fashion that is allows for the previously described 
human approach to game playing: it contains the states with an equal preference value 
– the inner states – and states with a different preference value but  that are reachable 
through a single-transition from an inner states. These states are called the outer states 
of a situation and can be seen as goal states for that situation. 

2. Learn a policy for each situation. 
3. Combine the situation policies to create a policy that spans the original environment. 

Within this document, the terms local and global will be frequently used. If local elements are 
discussed, such as a local policy, this reflects on a situation. If global elements are discussed, 
such as the global environment, this reflects on the original environment. 
 
A second goal of the assignment is to put SRL into practice for a Markov game modelled 
environment where games of Capture the flag (CTF) can be played. A program that facilitates 
this goal is written as part of the assignment and appendix F explains this program in more 
detail. This game environment can then be used as a tool for the third and fourth goal of the 
assignment: The evaluation of SRL’s implication on policy optimality and computational 
cost. Although the implications of the method are only empirically evaluated for one 
environment in which one dynamic programming algorithm is used, the results gathered from 
this evaluation will be used to give indications for other environments and other learning 
algorithms.  
 
Besides an evaluation of using SRL on its own, a fifth goal is to evaluate the computational 
cost required for learning an optimal policy by using the resulting global policy of SRL as a 
starting policy for the modified policy iteration algorithm. This evaluation should give an 
indication whether SRL has a practical application as an addition to conventional 
reinforcement learning. 
 
Situational reinforcement learning will be explained in the upcoming chapter: how the reward 
function can be used as the heuristic function which allows for a decomposition of the 
environment into situations, how policies can be learned for these local environments and 
how these policies can be combined to form a global policy. The second chapter goes into 
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various possible applications for SRL: multiple environment modelling techniques and 
reinforcement learning method will be reviewed and some examples will be given of possible 
applications for the method. The chapter thereafter gives the method that uses the learned 
global policy of SRL as a starting policy for modified policy iteration on the global 
environment. The fourth chapter gives the evaluation method that will be used to evaluate the 
implications of using situational reinforcement learning. The fifth chapter gives the theoretical 
evaluation, based on method analysis and worst-case upper-bound complexity functions and 
the sixth chapter gives the empirical evaluation of the method in which SRL has been applied 
to the modelled CTF game environment. In the final chapters, conclusions will be drawn, a 
summary of this document will be given and points for future research will be mentioned. The 
various appendices give more detailed information on items of interest for the assignment. 
Within this document, the method that uses SRL as a stand-alone approach to learning 
behaviour will be referenced to as the Combined method. The method that uses the global 
policy of the Combined method as a starting policy for modified policy iteration on the global 
environment will be referenced to as the Enhanced method. 
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1 Situational reinforcement learning 
This chapter explains situational reinforcement learning. The first paragraph gives an 
introduction to the approach and the second paragraph gives an explanation on it’s 
applicability. In the paragraph thereafter, the method is given on how the environment can be 
decomposed into situations. After that, an elaboration is given on how local policies can be 
learned for each of these situations. The final paragraph explains how the local policies can be 
combined to form a global policy: a policy that spans the original state space. 

1.1 An introduction 

The inspiration for situational reinforcement learning came from an analogy with how 
humans play games. Two features that humans use when playing games are key to SRL: 

1. Human players are often able to assign heuristic values to states of the game that 
indicate their overall advantage or disadvantage against the opponent. This allows 
human players to identify situations, which are sets of states with an equal 
(dis)advantageous setting, and assign preference to these situations. By trying to reach 
more favourable situations, which are situations with a higher heuristic value, human 
players can be rather certain that they are trying to win the game even if they haven’t 
even considered the states that truly end the game. Let’s take chess for example: each 
piece on the board can be assigned a specific value and from the amount of pieces still 
on the board a value can then be derived for each possible state of the game. Often just 
by looking at this value, a player can identify his predicament in the game. 

2. Human players most often do not try to solve the entire game at once, but rather just 
try to improve their current situation. This allows human players to play complex 
games without creating a plan that spans from the beginning to the end. This human 
tendency can also be exemplified by chess: human players mostly focus their attention 
on trying to take an important piece of the opponent, instead of immediately thinking 
on how to manoeuvre the opponent into check-mate. 

If a player has a better heuristic function – which enables him to better assess the situations in 
the game – and is able to plan more situations ahead – enabling him to avoid traps – then this 
player will probably be the victor in most games. 
 
Conventional reinforcement learning uses a straightforward method: use no heuristic function 
but only assign rewards to end states and learn a policy for the entire environment at once. 
Although this approach results in the best possible policy, the problem is that learning an 
optimal policy in such a fashion for complex environments becomes intractable. To reduce 
the computational cost, SRL suggests the use of a more complex heuristic function that allows 
for situation identification. By decomposing the environment into situations and only learn 
optimal policies for these smaller environments, the computational cost of learning a global 
policy can be greatly reduced as will be shown in upcoming chapters. 
 
There is no generic method available that can tell whether a heuristic function is correct; most 
of the heuristic values used in popular games are the result of decades of experience and 
analysis. In chess for example, the heuristic values assigned to states is almost uniformly 
accepted. It is the burden of the developer to devise a heuristic function. 
 
The situational reinforcement learning approach performs – simplistically said – the following 
operations that will be explained in more detail in the upcoming paragraphs: 

• Use a heuristic function to identify situations. 
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• Learn optimal policies for each situation. 
• Combine the learned local policies to create a global policy. 

 
The Combined method – which is SRL as a stand-alone approach to learning behaviour and is 
called Combined because it combines local policies – has the following problems, which will 
be elaborated and evaluated in upcoming chapters: 

• The heuristic function greatly affects the optimality of the resulting policy, but what is 
a ‘good’ heuristic function? 

• The reduction in computational cost is the result of learning in smaller environments, 
but as a result the learned policies are only optimal in their smaller environments, 
making the combined global policy most likely sub-optimal. 

1.2 Method applicability 

The Combined method is developed to be applicable in MDP- and Markov game modelled 
environments. This paragraph will give a quick summary of the MDP- and Markov game 
frameworks, how the heuristic function can be used therein and how this defines the 
applicability of the method. Appendix A as well as several studies (Littman, 1994; Russel & 
Norvig, 2003; Kaelbling, 1996; Kaelbling et al., 1998; Aberdeen, 2003) can give additional 
insight into the MDP- and Markov game framework. 
 
A Markov Decision Process is a framework for modelling an environment and can be 
described by the tuple RTAS ,,, , where: 

• S is a finite set of states of the world. 
• A is a finite set of actions that can be performed by the agent. 
• ( )∏→× SAST :  is the transition function that specifies for an originating state and 

an action a probability distribution on resulting states. We write ( )sasT ′,,  for the 
probability that the agents reaches state s′ , given that the agent performs action a in 
state s. 

• R→× ASR : 1 is the reward function that specifies an immediate expected reward if 
an agent performs an action in a state. We write ( )asR ,  for the immediate expected 
reward gained by the agent if he performs action a in state s. 

Summarised, the states in S describe the world in which the agent lives. The action set 
describes the possible actions at the agent’s disposal. The transition function describes the 
dynamics of the world, meaning how the actions of the agent effect the world. The reward 
function describes the agent’s desires. The goal of most AI learning algorithms within an 
MDP environment is to find the optimal policy, where a policy, AS →:π , maps to each 
state in the world a single action. As such, a policy describes the behaviour of an agent. 
Littman (1994) describes an optimal policy in an MDP environment as “In an MDP, an 
optimal policy is one that maximizes the expected sum of discounted reward and is 
undominated, meaning that there is no state from which any other policy can achieve a better 
expected sum of discounted reward” (Littman, 1994, p. 2).  
 
A problem with the MDP framework for the modelling of game environments is that the 
framework only takes a single action set and reward function into consideration, meaning that 
the behaviour of other agents must be modelled as being part of the environment. This 

                                                 
1 Also R→SR :  and R→×× SASR :  can be used, but these create no significant differences according 
to several studies (Russel & Norvig, 2003; Kaelbling et al., 1998). 
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considerably increases the difficulty of modelling complex behaviour of the other agents, 
which is an important aspect for effective game playing. An extension of the MDP framework 
that  tries to solve this problem is the Markov game framework. In a Markov game modelled 
environment, each agent has a corresponding action set and reward function, allowing for the 
explicit modelling of multiple agents in the same environment. The Markov game framework 
differs from the MDP framework in the following manner: 

• A collection of action sets kAA ,,1 L  is given instead of a single actions set A. Each 

agent in the environment has a corresponding action set. 
• The transition function T now needs to incorporate for each transition an action for 

each agent: ( )∏→××× SAAST kL1: .  

• Instead of a single reward function R, each agent has an associated reward function: 
R→××× ki AASR L1: .  

The goal of most learning algorithms in a Markov game modelled environment does not differ 
from the goal in an MDP modelled environment: find the optimal policy. For Markov games, 
where performance depends critically on the choice of opponents, this goal is somewhat more 
complex to achieve. Let’s review this difficulty by looking at games with simultaneous turn-
taking. In such games, each player must choose an action at the same time, meaning that no 
player knows what the other players are going to do. Because the optimal action of a player 
depends on the (unknown) actions of all other players, it is impossible to be certain what the 
optimal action is. Littman (1994) described the solution for this as “In the game theory 
literature, the resolution to this dilemma is to eliminate the choice and evaluate each policy 
with respect to the opponent that makes it look the worst” (Littman, 1994, p. 2). Simplistically 
put, this means that the agent assumes that the opponent is clairvoyant and will always choose 
the action that is worst in response to the agent’s action. The agent thus evaluates each action 
for the worst possible outcome. This performance measure prefers conservative strategies that 
result in ties to more daring strategies that can results in great rewards against some opponents 
and low rewards to others. This is the essence of minimax: Behave so as to maximize your 
reward in the worst case (Littman, 1994).  
 
For the assignment, we will only consider a two player zero-sum1 Markov game with 
simultaneous turn-taking, unless stated otherwise, described by RTOAS ,,,, , where  

• A is the action set of the player called the agent and O is the action set of the player 
called the opponent. 

• The transition function becomes ( )∏→×× SOAST : , and we write ( )soasT ′,,,  for 

the probability of ending in state s’ if the agent takes action a and the opponent takes 
action o, both from state s. 

• Only one reward function can suffice that one agent then tries to maximize while the 
other tries to minimize it. For the two-player game this becomes R→×× OASR :  
and we write ),,( oasR  for the expected immediate reward if, from state s, the agent 
takes action a and the opponent takes action o. The agent tries to maximize the reward 
function and the opponent tries to minimize it. 

 
As was said in the previous paragraph, the heuristic function that is used by SRL must assign 
heuristic values to states that represent the preference of the state. The reward function, which 

                                                 
1 In a zero-sum game, the gain (or loss) of a player is exactly balanced by the losses (or gains) of the opposing 
player(s). It is so named because when you add up the total gains of the players and subtract the total losses then 
they will sum to zero. 
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is already present in MDP and Markov game environments, can be made to serve this goal. 
The reward function ( )oasR ,,  gives immediate expected rewards based on states and actions 
(Kaelbling et al., 1998). Because the heuristic function should only indicate preference based 
on states, not on actions, SRL assumes a decomposition of the reward function into an action 
reward function AR and a state reward function SR: 

• R→× OAAR : . We write ( )oaAR ,  for the reward if the agent performs action a 
and the opponent performs action o. 

• R→SSR : . We write ( )sSR  for the reward of being in state s. 
The SR function can then be used as the heuristic function that was required for the method. 
The assumed decomposition of the reward function R→×× OASR : , which must still give 
the immediate expected rewards based on states and actions, can become: 

• ( ) ( ) ( ) ( )∑ ′
′⋅′+=

s
sSRsoasToaARoasR ,,,,,,  

Although any arbitrarily complex function could be used since the MDP or Markov game 
modelled environments do not specify the exact implementation of the reward function. The 
above mentioned decomposed reward function can be used for a two player zero-sum Markov 
game, but similar reward functions can be used for MDP environments: 

• ( ) ( ) ( ) ( )∑ ′
′⋅′+=

s
sSRsasTaARasR ,,,  

or Markov games with more than two players, where each associated reward function must be 
decomposable into an action reward function and state reward function: 

• ( ) ( ) ( ) ( )∑ ′
′⋅′+=

s innini sSRsaaasTaaaARaaasR ,,,,,,,, 212121 LLL  

 
The applicability of situational reinforcement learning depends on the environment being 
modelled. If a decomposition of the reward function(s) into an action reward function and a 
state reward function is possible, then the environment can be decomposed into situations as 
is described in the next paragraph and the method is applicable. Games in general are often 
well suited for such a decomposition because: 

• Games are defined by strict rules. These rules allow for clear world dynamics, such as 
unambiguous probabilities for the stochastic effects of actions, and enables the 
modelling of most games as discrete1 environments. 

• Within games, the assignment of heuristic preference values to states comes almost 
naturally. For most games, expert players use their own heuristic values, possibly 
without consciously doing so. For games which have seen much analysis, numerical 
value assignment to states are almost uniformly accepted.   

For the assignment, we will consider a static2 discrete two player zero-sum game environment 
modelled after a game of CTF in which the players take simultaneous actions.  
 
As was said in the previous paragraph, the Combined method performs three operations, 
which will be elaborated on in the upcoming paragraphs: 

1) Decompose the global environment into local situations. 
2) Learn a policy for each situation. 
3) Combine the situation policies. 

The applicability of the method depends entirely on the first step. If such a decomposition is 
possible, which is the case if the reward function can be decomposed, then situations can be 
created. The second step of the method operation, the learning of policies, is independent 

                                                 
1 In a discrete environment, the state of the world can be represented by discrete values and a finite set of actions 
and states are present. 
2 In a static environment, the state of the world can only change through actions of the agent(s). 
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from SRL; Because each situation is created in such a way that it on itself is an MDP or 
Markov game environment, each learning algorithm for such environments can be used. The 
third step, the combining of situation policies, is developed upon situations. As long as 
policies from situations are being combined, this step can always be performed.  

1.3 Decomposition into situations 

This paragraph explains the method for decomposing an MDP-like environment into a unique 
set of situations. Only the two-player zero-sum Markov game environment described by 

RTOAS ,,,,  will be considered, but all MDP- and Markov game environments are 

decomposable in an analogous manner. 
 
Let Θ  be the set of situations. Each situation Θ∈θ  must be derivable from the entire 
Markov game environment RTOAS ,,,,  and must be a Markov game environment on its 

own, described by θθθθθ RTOAS ,,,, . Let’s look at what a situation should be able to 

achieve: The heuristic function should enable a player to identify situations, which are sets of 
states with an equal (dis)advantageous setting for the player, and by doing so allow the player 
to restrict his learning to find a way to a more favourable situation. This means that: 

• The state set θS  should consist of all states that have an equal value according to the 

heuristic function, henceforth called the inner states θSI , and all states that have a 

different value according to the heuristic value but that are reachable by a single 
transition from the inner states, henceforth called outer states θSO . The inner states 

are the identification of the situation and the outer states are the goal states that enable 
the learning process to find reachable situations. 

• The action sets θA  and θO  do not differ from the entire environment because the 

situations are a subset of the entire world and the available actions in the world do not 
change. Because the situation no longer consists of all states that were present in the 
global environment, the effect actions have do change but these dynamics of the world 
are described by the transition function. 

• The transition function θT  can be seen as having inner transitions and outer 

transitions. Inner transitions originate from inner states, and these transitions do not 
differ from the transitions if they were made in the entire environment. Outer 
transitions originate from outer states, and since these states can be seen as end states 
of a situations they will become absorbing states: states in which each action leads 
back to the state with a probability of 1.0. So outer transitions always have the same 
originating and resulting state and these states must be outer states of the game 
situation. 

• The reward function θR does not differ from the entire environment.   

 
Let’s formalize the above mentioned requirements: 

• Θ  is the finite set of situations. 
• θS  is a finite set of states of the situation θ . 

• θA  and θO   are the finite sets of actions that can respectively be performed by the 

agent and opponent in situationθ . 
• ( )∏→×× θθθθθ SOAST :  is the transition function for situation θ  that specifies for 

an originating situation state and an action a probability distribution on resulting 
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situation states. We write ( )soasT ′,,,θ  for the probability that the agents reaches state 

s′ , given that the agent performs action a in state s. 
• R→×× θθθθ OASR :  is the reward function for situation θ  that specifies an 

immediate expected reward if an agent and opponent perform an action in a state. We 
write ( )oasR ,,θ  for the immediate expected reward if the agent performs action a and 

the opponent performs action o in state s. 
• SS ∈•Θ∈∀ θθ : Each state set of a situation is a subset of the global state set. 

• θSI  is a finite set of inner states of the situation θ . 

• θSO  is a finite set of outer states of the situation θ . 

• θθθθ SOSIS ∪=•Θ∈∀ : Each state set of a situation is the union of inner states and 

outer states of that situation. 
• θθ SIsSs ∈•Θ∈∃∈∀ !, : For each state of the global environment a unique situation 

exists where the state is part of the inner states. 
• ( ) ( ) θθ SIsssSRsSRSss ∈′•Θ∈∃⇒′=•∈′∀ ,!, : If two states have an equal state 

reward, then there exists a unique situation where both states are part of the inner 
states. 

• ( ) ( )soasTsoasTSsOoAaSIs ′=′•∈′∀∈∀∈∀∈∀Θ∈∀ ,,,,,,,,,, θθθθθθ : The 

transition function for each situation equals the transition function for the global 
environment if the originating state of the transition is an inner state of the situation. 

• ( ) 0.1,,,,,, =•∈∀∈∀∈∀Θ∈∀ soasTOoAaSOs θθθθθ : The transition function for 

each situation specifies that each transition with an outer state as the originating state 
has the same outer state as the resulting state. 

• ( ) θθθθθθθθ SOsSIssoasTSsOoAaSIs ∈′⇒∉′∧>′•∈′∀∈∀∈∀∈∀Θ∈∀ 0,,,,,,, : 

If a transition in a situation is possible, where an inner state of that situation is the 
originating state and the resulting state is not an inner state of that situation, then that 
resulting state is an outer state of the situation. 

• OOAA =∧=•Θ∈∀ θθθ : For each situation, the action set of the agent and 

opponent are the action set of the agent and opponent in the global environment. 
• ( ) ( )oasRoasROoAaSs ,,,,,,, =•∈∀∈∀∈∀Θ∈∀ θθθθ : The reward function for 

each situation equals the reward function for the global environment. 
 
Simplistically said, the decomposition process first identifies the unique state rewards that are 
present in the environment and then performs the following operations for each state reward, 
where for each state reward we start from the global environment: 

1. Designate the states with the given state reward as being inner states. 
2. Remove all transitions that do not originate from inner states. 
3. Designate the reachable states which are not inner states as outer states. 
4. Remove all states that are not inner or outer states. 
5. Add new transitions for the outer states to make them absorbing states. 

 
Figure 1a depicts a simple MDP environment where states are depicted by circles and 
possible1 transitions are depicted by arrows. Figure 1b depicts this environment where the 
inner states of each situation is encircled by a dotted line. Figure 2 shows the results if the 

                                                 
1 A transition is considered possible if the probability of the transition is greater than 0. 
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above 5 step process is used for all situations, where the inner states of a situation are still 
encircled by a dotted line. 
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Figure 1a. example MDP environment with states, state rewards and transitions 

b. The inner states of each situation encircled by a dotted line. These are not yet situations. 
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Figure 2. The four situations derived from figure 1, where inner states are encircled. 

1.4 Learning local policies 

Now that the process of creating situations has been explained, we turn towards the process of 
learning policies for these situations. A local policy θπ  is the policy belonging to situation θ  

that maps a single action to every state of that situation: θθθπ AS →: . Because each situation 
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is an MDP or Markov game environment on it’s own, any policy learning algorithm suited for 
such environments can be used. The next chapter explains how situational reinforcement 
learning can be used in conjunction with different reinforcement learning algorithms.  
 
Because the situation is created in such a fashion that each inner state has an equal state 
reward and the outer states are goal states, the learned policy for a game situation will most 
likely direct the agent to outer states with high rewards, if an outer state exists that has a 
higher state reward than the inner states. This conforms to a goal of the method, where the 
learning process should only focus on reaching more favourable situations. More on this will 
be explained in the evaluation. 
 
The empirical evaluation of the Combined method will focus on the use of a single dynamic 
programming learning algorithm: modified policy iteration. The (modified) policy iteration 
algorithm is explained in detail in appendix B for MDP and Markov game environments, but 
a small introduction to the algorithm will be given here for an MDP environment. The 
modified policy iteration algorithms is – as it’s name suggests – a modified version of the 
policy iteration (PI) algorithm. The method used by the policy iteration algorithm is to start 
off with a random policy and continually improve this policy until the optimal policy has been 
found. Each iteration of the PI algorithm consists of two phases: policy evaluation and policy 
improvement. In the policy evaluation phase, the utility of each state is recalculated by using 
the current policy. In the policy improvement phase, these new utility values are used to 
improve the policy. Let iπ  be the policy after i iterations of PI, then the new utility of a state 

under policy iπ , ( )sU
iπ , is calculated in the policy evaluation phase by solving the following 

equation: 
(1) ( ) ( )( ) ( )( ) ( )∑ ′

′⋅′⋅+=
s ii sUsssTssRsU

ii ππ πγπ ,,,  

Using the new utility values, the policy can be improved by using a one-step greedy look-
ahead function with respect to utility: choose the action that has the highest expected utility 
gain: 

(2) ( ) ( ) ( ) ( )[ ]∑ ′+
′⋅′⋅+=

sa
i sUsasTasRs

iπγπ ,,,max1  

This process of policy evaluation and policy improvement is repeated until no change occurs 
to the policy, ii ππ =+1 . If this is the case, then the policy iteration algorithm guarantees the 

optimal policy is found (Kaelbling, 1996). 
 
A problem with the previously described policy iteration algorithm, is that the computational 
cost of solving the linear equations in the policy evaluation phase given by (1) is high. For 
that reason, modified policy iteration was created. The idea behind modified PI, is that it 
might not be required to calculate the utility of each state exactly in the policy evaluation 
phase, but that an approximation to this exact value might yield the same results. Modified 
policy iteration acquires this approximation by keeping the policy fixed for k successive 
executions of the policy evaluation phase, meaning that the policy evaluation can be given by: 

(3) ( ) ( )( ) ( )( ) ( )∑ ′
′⋅′⋅+←

−s ii

k

sUsssTssRsU
ii 1

,,, ππ πγπ  

Appendix B explains what (3) entails in more detail. It can be shown that if k reaches infinity, 
the calculated utility values of (3) equals the utility values if the PI algorithm was performed, 
as given by (1), meaning that the modified PI algorithm perfectly approximates the PI 
algorithm (Woodward, 2006). A problem is to find the k value that guarantees that level of 
approximation. If a k value is chosen to perfectly approximate the PI algorithm, then modified 
PI can make the same guarantees about optimality as PI. If on the other hand a k value is 
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chosen that does not perfectly approximate the PI algorithm, then it is possible that a sub-
optimal policy is found if the modified PI uses the same termination criteria as PI. Appendix 
E goes into this in more detail.  

1.5 Combining local policies 

The agent is now able to learn policies for each situation and the policies belonging to these 
situations can easily be combined to form a policy that spans the entire environment. The 
global policy π  is created by using for each state s, the action specified by local policy θπ  

for state s, where s is an inner state of situation θ : 
• ( ) ( )ssSIsSs θθ ππθ =⇒∈•Θ∈∀∈∀ ,  

Because each state is inner state of one and only one situation, the created global policy has 
an action specified for each state of the entire environment. By creating the global policy in 
this fashion, the global policy most likely directs the agents to increasingly favourable 
situations, as will be explained further in the upcoming evaluation chapters. 
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2 Various SRL applications 
In the previous chapter, the Combined method has been explained for a two player zero-sum 
Markov game and it is such an environment that is explained in appendix D and that will be 
used for the empirical evaluation explained in paragraph 3.2. This chapter will extend the 
method application to various other domains. In the first paragraph, the method application to 
different MDP-like environments will be elaborated. In the paragraph thereafter, something 
will be said about using dynamic programming algorithms. Using other reinforcement 
learning methods, such as Monte Carlo and Temporal Difference Learning, will be explained 
in the third paragraph. The final paragraph will give some examples on how the method can 
be applied to practical problems other than the empirically evaluated one described in 
appendix D. 

2.1 Environments 

In this paragraph a quick explanation will be given on how the method can also be applied to 
Markov game environments with more than two players and to partially observable MDPs 
(POMDPs). 
 
The difference between a two player zero-sum Markov game and a Markov game with more 
than two players is that in the latter case each agent must have a corresponding reward 
function ( )ni aasR ,,, 1 L . As was said in paragraph 1.2, the Combined method is applicable if 

each reward function is decomposable into an action reward and a state reward function 
( ) ( ) ( ) ( )∑ ′

′⋅′+=
s innini sSRsaaasTaaaARaaasR ,,,,,,,, 212121 LLL . When such a 

decomposition is possible it is also possible for any agent to decompose the environment into 
situations in the fashion described in paragraph 1.3. Depending on the various state reward 
functions, it is possible that the decomposition results in a different set of situations for each 
agent. Let iΘ  be the set of situations resulting from a decomposition using the state reward 

function iSR , then iΘ  should be used for learning a policy for agent ia . Because the resulting 

set of situations are all autonomous MDP-like environments, it is possible to learn policies for 
these situations in a Markov game manner. 
 
Now let’s look at POMDP environments. No detailed explanation will be given here on 
POMDP environments, but the papers from Kaelbling, Littman & Cassandra (1998) and 
Aberdeen (2003) can provide insight into the environment and solution methods for such an 
environment. The only difference between a MDP and POMDP environment is the fact that a 
POMDP environment is partially observable instead of fully observable. This means that in a 
POMDP environment, the agent is not certain about the state of the world, which increases the 
difficulty of learning optimal behaviour greatly. A POMDP modelled environment is 
described by the tuple ObsRTAS ,,,,, Ω 1, where according to Kaelbling (Kaelbling et al., 

1998, p. 8): 
• S, A, T and R describe a Markov decision process. 
• Ω  is a finite set of observations the agent can experience of its world. 
• ( )∏ Ω→× ASObs :  is the observation function, which gives, for each action and 

resulting state, a probability distribution over possible observations (we write 

                                                 
1 In most literature, the set of observations is given by O instead of Obs, but in order to avoid confusion with the 
opponent action set O used in the two player zero-sum Markov game we will use Obs here. 



 21 

( )oasObs ,,′  for the probability of making observation o given that the agent took 
action a and landed in state s’. 

Because a POMDP environment is only partially observable, the agent uses an internal belief 

state b that summarises its previous experience. A belief state is a probability distribution over 
states of the world. Because the agent does not know what the state of the world is in a 
partially observable environment, the agent assigns probability to states that represent the 
agent’s belief that he is in that state: this is called the belief state.  
 
In order to make the Combined method compatible with POMDP environment, the following 
is specified: 

• Each situation Θ∈θ is described by a tuple θθθθθθ ObsRTAS ,,,,, Ω . 

• θS , θA , θT  and θR  are derived from the entire environment in exactly the same 

manner as described in paragraph 1.3 for an MDP environment. 
• Ω=Ω•Θ∈∀ θθ : The observation set θΩ  of each environment does not differ from 

the complete observation set Ω . 
• The observation function for situation θ  becomes ( )∏ Ω→× θθθθ ASObs : . 

• ( ) ( )oasObsoasObsoAaSs ,,,,,,, ′=′•Ω∈∀∈∀∈′∀Θ∈∀ θθθθθ : The observation 

function for each situation equals the observation function for the entire environment 
for each state that is part of the situation. 

• A belief state θb  for situation θ  is a probability distribution over states in situation θ .  

By creating situations in this manner, all created situations are autonomous POMDP 
environments, just like it was in the MDP setting. Because all situations are POMDP 
environments, all learning methods for such environments can be used. Since a policy for an 
MDP environment is identical to a policy for a POMDP environment, the combination 
process described in paragraph 1.5 does not change. 

2.2 Dynamic programming algorithms 

Dynamic programming algorithms such as value iteration, policy iteration or modified policy 
iteration are all reinforcement learning algorithms that require a complete model of the 
environment in order to learn an optimal policy. Because the situations that are created as a 
result of using the Combined method are autonomous complete-model environments of their 
own, all dynamic programming algorithms can be used in conjunction with the Combined 
method.  

2.3 Other reinforcement learning methods 

Apart from the dynamic programming algorithms, which require a complete model of the 
environment in order to learn an optimal policy, several other reinforcement learning methods 
exist that do not require a complete model. Examples of such methods are the Monte Carlo 
methods, Temporal Difference Learning and Q-learning. Let’s consider how the Combined 
method can be applied if only an incomplete model of the environment is available. 
 
To apply the decomposition process of the Combined method in the manner described in 
paragraph 1.3, the method requires the following: 

• The state set must be available, so that it is known which states are available to divide 
into situations. 

• The action set must be available so that it is known which actions are available for the 
transitions. 
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• The reward function must be available so that is possible to define the inner states of 
each situation. 

• The transition function must be available so that it is possible to define the outer states 
of each situation. 

This means that, in order for the Combined method to be applied in the same manner 
described in chapter 1, the method requires a complete model of the environment. Because of 
this, the Combined method is in it’s current form inapplicable for reinforcement learning 
methods that use an incomplete model of the environment.  
 
Although it lies beyond the scope of the assignment to formally specify how the Combined 
method can be altered to become compatible with these incomplete-model methods, a short 
informal description of a possible way can be given. When speaking of an incomplete model 
of the environment, it is most often the transition function that is incomplete: the probability 
distribution on transitions is unknown. The other elements of the environment – the state set, 
action set and reward function for an MDP environment – are usually complete. If these other 
elements are known, it is still possible to define the amount of situations and the inner states 
of each situation. It would then still be possible to learn a policy for a situation by defining all 
states that are not inner states as outer states – which are as absorbing states. Although this 
would mean that the state set for each situation is still the global state set, with the only 
difference being the division into inner- and outer states, the computational cost of learning a 
policy for such a situation is still reduced in comparison to the global environment because for 
each situation behaviour is only learned for inner states – the outer states are absorbing states 
where every action has the same result – and most of the outer states will never be reached. In 
this fashion it is still possible to learn local policies by using any of the before-mentioned 
reinforcement learning algorithms.       

2.4 Example applications 

In this paragraph three examples will be given on how situational reinforcement learning 
could be applied. The first example is a brief summary of the CTF environment which is used 
for the empirical evaluation and fully specified in appendix D. The other examples are not 
fully specified and many elements are omitted for ease of understanding. These examples 
serve only to give insight into possible method applications. The second example illustrates 
how SRL could be used in a first-person shooter game and in the last example an explanation 
is given how SRL could be used for a conventional problem – meaning an environment that is 
not modelled after a game. 

2.4.1 Capture the flag 

The environment which is modelled after a game of CTF and specified in appendix D has the 
following features: 

• A fully-observable environment modelled as a Markov game. 
• Stochastic actions. 
• Two agents with contradicting goals. 
• A state set consisting of 136737 states. 
• An action set consisting of 8 actions. 
• Turn-based action handling with simultaneous actions. 

In the CTF environment, the goal of the players is to score a pre-defined amount of points 
before the opponent does so by taking the flag of the opposing team and returning that flag to 
a specific location. By using situational reinforcement learning and the reward structure 
mentioned in appendix D, the learning environment does no longer encompass the entire 
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environment – which has a large state set that results in high computational costs when 
learning behaviour – but is decomposed into 21 smaller and more tractable learning 
environments. The empirical evaluation that is explained in paragraph 4.2 uses this CTF 
environment as a practical application for SRL. The results given in chapter 6 show that SRL 
facilitated a significant reduction in computational cost in comparison to conventional 
reinforcement learning when learning behaviour for this CTF environment.  

2.4.2 A first-person shooter 

Let’s consider how situational reinforcement learning could be employed for a computer 
controlled entity that patrols and guards a specific area in a first-person shooter (FPS) games – 
a reasonable playground for artificial intelligence, and one far more complicated and realistic 
than the environment used for the empirical evaluation. The goal of the agent is to guard an 
area and prevent a human player from reaching the exit in that area. Figure 3 gives a top view 
of this area. 
 
This area is the agent’s world. The area contains some walls, a lower and higher ground, three 
entry points where the human player could enter the area and one exit that the human player 
needs to reach. This environment can be modelled as an MDP, Markov game or POMDP 
environment in a similar fashion as was done in appendix D for a two player zero-sum 
Markov game. Although it is far more difficult to model the environment illustrated in figure 
3 than it is to model the environment in appendix D, it can still be done (A first-person 
shooter environment will most likely require a far greater state set with time-indexed states 
and would require some form of real-time instead of turn-based action handling, which 
therefore lies beyond the scope of the assignment). Because it is possible to model the FPS 
environment of figure 3 as an MDP-like environment, it is also possible to use SRL to learn a 
policy for that environment in the manner described in chapter 1 and paragraph 2.1. 
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Figure 3. A top view of the example FPS world 

 
Let’s for example assume that the state reward distribution in the modelled environment of 
figure 3 corresponds with the following rules, where numeric preference values for the 
described circumstances are given in brackets: 

• The agent being alive is more preferable (+0) to the agent being dead (-2). 



 24 

• The human player being dead is more preferable (+2) to the human player being alive 
in the area (+0) which in turn is more preferable to the human player being alive at 
the exit (-2). 

• It is more preferable (+1) for the agent to occupy higher ground than the human 
player than it is to be an equal ground (+0), which in turn is preferable to being on 
lower ground (-1). 

• It is more preferable (+1) to be in a shooting position where the agent has partial 
cover from walls than it is to be in an uncovered shooting position (+0). 

By using such a reward structure, the agent is still able to learn seemingly ‘intelligent’ 
behaviour for his area – such as: reaching a covered shooting position if the probability of 
reaching the covered position alive is acceptable; directly attacking the human player from an 
uncovered position if it isn’t probable that a covered position can be reached alive; preferring 
high ground over low ground; avoid getting killed or letting the human player reach the exit – 
whilst avoiding a learning process on the entire environment. The learning of behaviour that 
seems intelligent to the human player at a (probable) lower computational cost than when 
using conventional methods was the main motivation for developing SRL. The agent 
behaviour can be enhanced to include team-play by modelling multiple agents with common 
goals in a Markov game manner or to include ‘unpredictable’ behaviour by using the 
stochastic policy described by Littman (Littman, 1994). 

2.4.3 The taxi domain 

In a paper where a method for hierarchical reinforcement learning is explained, an example 
environment is used to illustrate the method’s workings (Dietrich, 1999, p. 9). This so called 
“Taxi Domain” will be used to exemplify the use of SRL in a non-game environment. Figure 
4 depicts this taxi domain: a 5x5 grid world inhabited by a taxi agent with 4 distinct locations 
(R, G, B and Y). 
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Figure 4. The Taxi Domain 

 
There is a passenger at one of the four locations that wishes to be transported to another 
location. The taxi agent should move to the passenger, pick him up, drive him to the desired 
location and drop him off. The action set for the agent contains navigational actions, a pick-up 
action and a drop-off action. Based on this problem, the following very straight-forward way 
of distributing state rewards would be: 

• +0 for all states where the passenger is not in the car and not at the location1. 
• +1 for all states where the passenger is in the car. 
• +2 for all states where the passenger is not in the car and at the location he wished to 

be. 

                                                 
1 In the Taxi domain problem described by Dietrich (1999, p. 9) it was possible for the passenger to start at the 
location where he wished to be. We ignore that scenario in this example. 
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Using situational reinforcement learning with the abovementioned state rewards would result 
in a decomposition of the environment into three situations. Because the situation ordering of 
this problem is so unambiguous1, the resulting policy is most likely optimal. The taxi domain 
example shows that SRL is capable of reaching an optimal policy at reduced computational 
cost in comparison to conventionally using dynamic programming algorithms. 
 

                                                 
1 There is only one possible transition between the first and second situation: when a pick-up is performed with 
taxi and passenger at the same location. There is also only one transition between the second and third situation: 
when a put-down is performed when the taxi with passenger is at the desired location. 
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3 Enhancing the global policy 
Besides an evaluation of what the implications are on policy optimality and computational 
cost when using situational reinforcement learning as a stand-alone approach to learning 
behaviour, an alternative use for SRL will also be researched where SRL is used as an 
addition to conventional reinforcement learning. Because the method of learning local 
policies will most likely result in sub-optimal global policies, as will be discussed in 
upcoming chapters, the application of SRL as a starting point for learning a global optimal 
policy might be worthwhile. 
 
The method of learning this global optimal policy used as part of the assignment is very 
straightforward: take the result of the Combined method and use this as a starting point for 
conventional reinforcement learning. This method will be referenced to as the Enhanced 
method in the remainder of this document, because the policy is enhanced to become more 
optimal. 
 
What resulting information from the Combined method is required for the Enhanced method 
to resume learning depends on the reinforcement learning approach employed by the 
Enhanced method. If the Enhanced method uses for example value iteration or policy 
iteration, the Combined method’s resulting global policy alone is sufficient. The value- or 
policy iteration algorithm can then use this policy as a starting policy for learning. For the 
empirical evaluation discussed in later chapters, the Enhanced method will use the modified 
policy iteration algorithm. We will not explain the algorithm in detail here, appendix B gives 
a detailed elaborated on how (modified) policy iteration is used in MDP and Markov game 
environments, but the policy evaluation phase of each learning iteration is given by (3) as 
being: 
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As can be seen, the utility values that are being calculated by using the current policy 
i

Uπ  

requires the utility values that were calculated by using the previous policy 
1−i

Uπ . In order for 

the Enhanced method to resume learning by using the modified policy iteration algorithm, the 
global policy created by the Combined method alone is insufficient, since we also require the 
utility values that were used to learn that policy. This global utility set can be created by the 
Combined method in a similar fashion as the global policy was created: combine the local 
utility sets by taking from each situation the utility values for the inner states. The global 
utility set πU  is created by using for each state s, the utility value specified by local utility set 

θπU  for state s, where s is an inner state of situation θ : 

• ( ) ( )sUsUSIsSs
θππθθ =⇒∈•Θ∈∀∈∀ ,  

In the empirical evaluation, the modified policy iteration algorithm will use this created global 
utility set along with the created global policy to resume learning. The implications of using 
the Enhanced method will only be empirically evaluated for the modified policy iteration 
algorithm.  
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4 Evaluation method 
This chapter elaborates on how the evaluation of the Combined and Enhanced methods will 
be performed. Evaluation will focus on two items: 

1. The optimality of the methods resulting global policies. Because the goal of the 
Enhanced method was to learn an optimal policy, no policy optimality evaluation will 
be performed for that method. 

2. The computational cost of executing the methods. 
 
In the remainder of this document, the terms learning method and learning algorithm will be 
used frequently. In the context of this assignment, these terms entail the following: 

• A learning algorithm is an algorithmic, usually mathematical, approach to learning a 
policy. The parameters for the algorithm are set beforehand. Examples of learning 
algorithms are policy iteration, modified policy iteration and value iteration. 

• A learning method is a method that defined how a learning algorithm is used. It sets 
the parameters for the learning algorithm and employs the algorithm to learn policies. 
The Combined, Enhanced and hierarchical reinforcement learning methods are 
examples of learning methods and the evaluation will introduce the additional learning 
method Complete.     

 
The Combined and Enhanced methods do not specify which learning algorithm should be 
used to learn the local policies – and it has been shown that any dynamic programming 
algorithm can be used – but this algorithm does influence the computational cost of learning1 
the global policies. The evaluation will therefore use one policy learning algorithm 
continually, unless stated otherwise: the modified policy iteration algorithm explained in 
paragraph 1.4 and appendix B. The results gained from the evaluation will be used as an 
indication for other similar learning algorithms. 
 
The evaluation will occur theoretically and empirically in the fashion described in the 
upcoming paragraphs. 

4.1 Theoretical evaluation 

The theoretical policy optimality evaluation of the Combined method will occur by analysing 
the structure of the method. The evaluation will focus in particular on how the heuristic 
function, which defines the structure of the situations, affects policy optimality. 
 
The theoretical computational cost evaluation will be performed through a worst-case 
computational complexity analysis of required calculations when applying the Combined 
method to MDP- and Markov game environments. 
 
In the theoretic evaluation, a comparison will also be drawn between the Combined method 
and two methods that also reduce computational cost by learning on smaller environments: 
hierarchical reinforcement learning and the envelop method. Although this evaluation does 
not give insight into the optimality or computational implications of situational reinforcement 
learning, it does give insight into differences and similarities with other methods. 

                                                 
1 The global policy resulting from the Combined method is actually a created policy and not a learned policy. 
Only the local policies are learned, the global policy is created from these local policies. 
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4.2 Empirical evaluation 

The empirical evaluation is the main method of evaluation used as part of the assignment. The 
empirical evaluation will occur by applying the Combined and Enhanced methods to a 
modelled two player zero-sum Markov game environments in which games of capture the flag 
can be played. Appendix D gives a detailed explanation of the modelled CTF world. 
Computational cost evaluations will be performed by monitoring the process of policy 
learning and calculating a computational cost value which indicates the required amount of 
calculations. Policy optimality evaluations will be performed by letting the learned global 
policies of various methods play against each other in games of CTF. 
 
Further along this paragraph, the terms policy optimality and game performance will be used. 
Let’s explain the meaning these words have in the context of the assignment: 

• Each policy has a certain degree op optimality. The policy optimality defines how well 
the policy achieves it’s goal. The most common goal for policies is to maximize the 
expected reward through it’s actions. With this goal, each action of the optimal policy 
would yields the highest possible expected reward. In the context of the two player 
zero-sum CTF game, the optimal agent policy maximizes expected rewards and the 
optimal opponent policy minimizes expected rewards. 

• Game performance is a measurement on how a player fares in playing a game against 
another player. How game performance is measured as part of the assignment is 
explained further along this paragraph. 

 
For the evaluation of policy optimality we will not evaluate this optimality directly, but rather 
evaluate the game performance of the various learned policies. If the reward function 
represents the player’s desire to win the game, then a more optimal policy will most likely1 
win more games. Although game performance cannot be used as an exact measurement of 
policy optimality, it can give an indication. As part of the empirical evaluation, an indication 
on the policy optimality implication of the various methods will be given by monitoring the 
game performance of policies learned by these methods competing against each other in 
games of CTF.  

4.2.1 The learning methods 

The Combined and Enhanced methods that have been described in previous chapters will be 
referenced to as learning methods. For the empirical evaluation both methods will use the 
modified policy iteration algorithm – which is explained in paragraph 1.4 and appendix B – 
for learning policies. In order to evaluate the implications of these methods, the results of 
learning global policies with these methods must be compared to learning a global policy 
without such a method. This reference learning method uses the modified policy iteration in 
it’s most basic way: learn a policy for the global environment by using modified policy 
iteration and start from a random policy. This method will be referenced to as the Complete 
method, because it learns a policy for the complete environment2. 
 
Summarised, the empirical evaluation on the effect of the learning method will use the 
following three different learning method which differ in the following manner: 

                                                 
1 A more optimal policy does not necessarily win more game even if the reward function correctly represents the 
desire to win, because the element of chance plays a vital role in most games. This is also the case for the 
modelled CTF game.  
2 The Enhanced method also learns a policy for the entire environment, but it is called Enhanced nonetheless 
because of the fact that it enhances the Combined global policy. 
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1. The Complete method learns a global policy by using modified policy iteration 
algorithm on the global environment and starting from a random policy. This method 
can be considered as a conventional reinforcement learning approach. 

2. The Combined method learns local policies for the situations by using modified policy 
iteration on each situation. The modified policy iteration algorithms start with random 
policies. The learned local policies are then combined to form a global policy. 

3. The Enhanced method learns a global policy by using modified policy iteration on the 
global environment and starting from the global policy and utility set that were created 
by the Combined method. 

4.2.2 The heuristic function 

Besides an evaluation of the learning methods in general, an evaluation will also be performed 
on how the use of a heuristic function on itself affects policy optimality and computational 
cost of the learning method.  
 
The CTF world that is described in appendix D will be referenced to as the Standard 
environment, because the reward/heuristic function used therein was the first one devised and 
tested. But does that reward structure correctly represents the agent’s desire to win the game? 
In order to evaluate the effect of the reward- and heuristic function, multiple environments 
will be used in the empirical evaluation.  
 
In the most basic view a game can end in three ways: a tie, a win or a lose. The reward 
structure that resembles this basic view only assigns rewards to states that represents these 
endings. The use of such a reward structure is unambiguous and correct, and such reward 
structures are commonly used in game AI. The use of a more complex reward function could 
distract a playing agent from winning the game. Since the Combined method requires a more 
complex reward structure to be able to identify multiple situations, an evaluation will be 
performed on how the use of such a more complex  reward structure affects optimality and 
computational cost. For this evaluation, an environment will be used in which the reward 
structure only assigns non-zero rewards to states that end the game. This environment will be 
called the Simple environment, because it uses a simple reward function. 
 
Although the reward structure used in the Standard environment seems correct, since higher 
rewards are only assigned for states that represents ‘better’ situations for the player, the 
performance of the Combined method in this environment was unsatisfactory. Analysis of the 
resulting Combined global policies revealed an unforeseen problem. To evaluate how 
different reward/heuristic functions can affect the optimality and complexity of the Combined 
method, even if those reward structures do not assign illogical rewards, a third environment is 
modelled in which the observed problem with the Standard environment is avoided. This 
environment is called the Alternative environment, because it is an alternative to the Standard 
environment.  
 
Summarised, the empirical evaluation on the effects of the heuristic function will use the 
following three environments which differs in the following way: 

1. The Simple environment uses a reward function that only assigns non-zero rewards to 
states in which a player is victorious: +10 for agent win states and -10 for opponent 
win states. Because a decomposition of the Simple environment into situations would 
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only result in one situation where policies are actually learned1, the Combined and 
Enhanced learning methods are not applied to the Simple environment. 

2. The Standard environment uses the reward function that is specified in appendix D for 
the CTF world.  

3. The Alternative environment also uses the reward function specified in appendix D, 
with one difference: no rewards are assigned for the ‘Dead’ values of the AS and OS 
state variables (see appendix D for more details). 

4.2.3 The policy learning algorithm 

As part of the evaluation, all learning methods will use the modified policy iteration algorithm 
that is explained in paragraph 1.4 and appendix B. In order to evaluate the implication of the 
learning methods on computational cost and global policy optimality, the learning algorithms 
must be able to learn policies of an equal degree of optimality, preferably the optimal policy, 
no matter the environment in which is learned. More practically said, if the globally learned 
policies of the Complete and Enhanced methods are optimal then in order for a correct 
comparison to the Combined global policy, the locally learned policies of the Combined 
method should also be optimal. If we should use different optimality criteria for learned 
policies, then any difference in global policy optimality and corresponding computational cost 
could be the result of these different criteria and not the solely the result of using the 
Combined method. 
 
In order to assure an equal degree of policy optimality, the variables of the modified policy 
iteration algorithm will be set in such a manner that we may assume that the optimal policy 
has been learned. The modified policy iteration algorithm uses two variables that are not 
defined by the environment, but must be set by the developer: the discount factor γ  and the 
approximation variable k. Appendix E gives a detailed explanation of these variables and how 
they will be set as part of the assignment to assume an optimal policy. In appendix E, a new 
variable is also introduced: the termination value t. A quick explanation will now be given of 
these three variables and how they are set for each environment in the evaluation: 

• The discount factor γ  has a value between 0.0 and 1.0 and defines the weight of 
future rewards. Each discount factor creates a different optimal policy for the 
environment, so an optimal policy that is learned with a discount factor of 0.4 does not 
necessarily equal an optimal policy that is learned with a discount factor of 0.5. Higher 
discount factors means that, from the perspective of a single state, rewards of states 
that lie many transitions away have a greater influence. Because in games it is often 
better to think as far ahead as possible, a higher discount factor will in general result in 
policies that have a better game performance. As explained in appendix E, it is also 
true in generals that a higher discount factors requires more iterations to find the 
optimal policy, meaning that a higher discount factor results in higher computational 
costs if the environment is held constant. Because it can thus be said that in general the 
effect of a higher discount factor results in better game performance and higher 
computational costs, three discount factors will be used for the evaluation that should 
give an indication for all discount factors. The evaluation will therefore use a low 
discount factor of 0.1, a high discount factor of 0.9 and a discount factor in between of 
0.5. 

• The variable k of the modified policy iteration algorithm has a value of 1 or greater 
and defines how many times the policy remains fixed in the policy evaluation phase, 

                                                 
1 The other situations only contain end states of the game, meaning that all states are absorbing states. 
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as explained in paragraph 1.4 and appendix B. The evaluation phase of modified PI 
solves the following equation: 
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If the value of k is chosen high enough, the policy evaluation phase of the modified PI 
yields the same result as PI would have done. In a sense, it could thus be said that k 
defines the degree of approximation that mPI has on PI. If the value of k is chosen 
high enough to make a perfect approximation of PI, then the mPI algorithm can make 
the same guarantees of optimality as the PI algorithm. Unfortunately, there is no exact 
method available that defines this value for k based on an environment. Because the 
learning environments differ between the Combined method and the 
Complete/Enhanced methods, an equal value of k would be unfair. For the evaluation, 
the minimal value of 1 is chosen for k. 

• The termination value t, which is introduced in appendix E, defines the amount of 
unchanged policies in the policy improvement phase of policy iteration that are 
required for termination of the algorithm. In PI, this value is 1 and if the PI algorithm 
terminates after an unchanging policy in the policy improvement phase, the PI 
algorithm guarantees that the optimal policy is found (Kaelbling, 1996). If the 
previously discussed approximation value k in modified PI is chosen in such a fashion 
that leads to less then perfect approximations, it is possible that a sub-optimal policy is 
found if this same termination value of 1 is used for modified PI. By increasing the 
amount of required successive unchanging policies in the policy improvement phase, 
the modified PI algorithm can be enables to find the optimal policy, even if the k value 
is chosen too low. Just as with the k value, there is unfortunately no method available 
that defines a correct value of t. For the evaluation, the t values are chosen in such a 
fashion that we assume that the optimal policy is found, as is explained in appendix E. 

 
Summarized, all learning methods used in the evaluation utilize the modified policy iteration 
algorithm to learn policies. For the evaluation, three different discount factors will be used 

{ }9.0;5.0;1.0∈γ . The approximation value k will be set to 1 and for each learned policy the t 
value was set in such a manner that we may assume that the optimal policy was found. 

4.2.4 Evaluating general performance 

Although the learning methods are evaluated against each other and the global policies of the 
Complete and Enhanced methods are assumed optimal, it does not yet give an indication on 
how these policies perform in general. All learned policies are derived from a Markov game 
model of the CTF game, which uses minimax to learn policies: Behave so as to maximize 
your reward in the worst case (Littman, 1994).  For the modelled CTF game, which has 
simultaneous turn-taking, this means that each agent action is evaluated against the opponent 
action that makes the agent action looks the worst, [ ]L

oa
minmax , which can also be seen in the 

modified policy iteration equations of appendix B. This way of acquiring rewards favors 
conservative strategies that lead to ties over daring strategies that might lead to a losing 
situation. Although this is one possible approach of dealing with opponent choices, it is not 
necessarily the best approach. To evaluate how the learned policies perform in general, two 
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non-learning methods will also be implemented against which the learned policies must also 
play games of CTF: 

1. A random policy creating method, referenced to as the Random method. The Random 
method can be considered to be the worst possible CTF player if we assume that all 
players intend to win the game. 

2. The Human method, where human players must play games of CTF against policies 
learned by the various learning methods.  

4.2.5 Evaluating computational cost 

The computational cost of learning global policies when using the various learning methods 
will empirically be evaluated by monitoring the learning process of those methods. Appendix 
C explains in more detail how the complexity functions for MDP and Markov game 
environments are derived when using (modified) policy iteration. Unlike the theoretical 
evaluation of complexities, which performs a worst-case analysis for situational reinforcement 
learning independent of environment and policy learning algorithm by using the ‘order of’ 

( )LO  notation, the empirical evaluation uses computational cost functions C that give an 
indication on the amount of calculations required on average to learn policies specifically for 
the modelled CTF game world with the modified policy iteration algorithm. The cost values C 
do not provide an exact amount, but rather an approximation to the amount of required 
calculations. A quick summary of these value functions C, which are explained in more detail 
in appendix C, will be given here. 
 
The largest amount of calculations required for learning a policy for the global CTF game 
world – whichever of the previously mentioned learning methods are used – lie in the 
execution of the modified policy iteration algorithm. Although the Combined method also 
requires a decomposition of the environment into situations and a combination of local 
policies, the computational cost of these two operations are minute in comparison to the 
policy learning processes required for each situation1. Therefore the computational cost of 
executing these peripheral operations are ignored and only the computational cost of 
executing the modified policy iteration algorithm is considered. 
 
Within the modified policy iteration algorithm, the computational cost of learning a global 
policy depends on two factors: the amount of iterations required to learn the optimal policy 
and the computational cost of a single iteration. For the empirical evaluation of computational 
cost, we are interested in the average cost required to learn a global policy. The computational 
cost of learning a global policy for a certain environment is not constant because the amount 
of iterations required to learn a policy with (modified) policy iteration depends on the initial 
policy, and this policy is random for both the Complete and Combined methods. Therefore an 
average amount of required iterations, avgi , is used to calculate the cost values. This average 

amount of iterations will be derived from monitoring the learning process. The computational 
cost of a single iteration can be derived from the equations used in the policy evaluation and 
policy improvement phases of the modified policy iteration algorithm, which are explained in 

                                                 
1 For a computation time comparison on one test system: decomposition of the environment into situations 
required around 7 seconds, the combining of local policies a few microseconds and the learning of a single 
policy takes between 3 and 30 minutes. 



 33 

appendix B and are derivations of (1) and (2) mentioned in paragraph 1.4. These equations 
from appendix B are repeated here1: 
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For the policy improvement phase, which uses equation (4), a calculation must be performed 
for each state s. Each of these calculations must be performed k times and within each of these 
calculations all opponent actions o must be evaluated once. Within the equation, a summation 
must also be performed on all possibly resulting states when performing actions a and o. For 
the CTF world, there is a maximal amount of possibly resulting states of 8 when a player 
returns from the dead back into the game, but for almost all action-pairs there are but one or 
two possible resulting states. Because this amount is so small, we will for the CTF world 
ignore the fact that the summation takes multiple steps and view the entire calculation 
between brackets in (4) and (5) as a single calculation. The amount of calculations required to 
perform (4) in a single iteration can thus be described as being okn ⋅⋅ , where Sn = . In a 

similar fashion, the computational cost of (5) can be described as being oan ⋅⋅ . By also 
introducing the average amount of required iterations, an indication of the average amount of 
calculations required to learn an optimal policy for an environment can be given by2: 

(6) ( ) ( ) ( )noikaoanokniC avgavg ⋅⋅⋅+=⋅⋅+⋅⋅⋅=  

 
For the empirical evaluation of computational cost, we will not use the empirically found avgi  

directly, but rather a corrected amount avgî . This corrected amount avgî  is the found avgi  

decremented by the t value that was discussed in the previous paragraph and in appendix E. 

avgi  is decremented by the t value because we are interested in the amount of iterations 

required to learn an optimal policy, not in the amount of iterations required to be certain that 
we have acquired the optimal policy. Because the t values were chosen in such a manner that 

we may assume that the optimal policy has been found, the corrected amount of iterations avgî  

represents for each environment the average minimal amount of iterations required to learn 
the optimal policy. 
 
Because we are interested in the difference in average complexity values between the 
methods, all variables from (6) that remain the same between learning methods can be 
eliminated. By removing these variables a, o and k and also introducing the corrected amount 

avgî , (6) can be written as: 

(7) niC avg ⋅= ˆ  

These last two variables avgî  and n may not be removed, because they differ between learning 

methods. If (7) is applied to the three methods, the following equations for average 
computational cost are derived, and these are used as part of the empirical evaluation: 

(8) niC completeavgcomplete ⋅= ,
ˆ  

                                                 
1 These equations apply to the utility maximizing agent only. For a utility minimizing agent, the variables a and 
o must be switched in the equation, but for the CTF game world this makes no difference since the size of A and 
O are equal. 
2 There is a hidden correlation between the amount of iterations and the state set size. When starting from a 
random policy, it is most likely that more iterations are required for larger environments. 
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Within these three equations, the only true unknown is avgî  because the values of n and all θn  

are fixed by the CTF environment. Because the computational cost values are indicating 
values for comparison and not ‘order of’ ( )LO  notations as used in the theoretical evaluation 
of worst-case complexities, the constant values may not be removed. In words, they serve to 
indicate the cost of a single iteration of modified PI. A single iteration of modified PI has a 
greater cost in a larger environment, because the calculations must be performed for more 
states. 
 
A player in the modelled CTF game world is identified by a learning method, a learning 
environment and a discount factor. For each unique player, 20 agent policies and 20 opponent 
policies will be learned, resulting in 40 policies for each player. 

4.2.6 Evaluating policy optimality 

The empirical evaluation of policy optimality will occur by monitoring game performance of 
the learned policies and using performance values as an indication of optimality. In this 
evaluation, we will assume that more optimal policies win more games because the used 
reward structures represent the desire to win the game. Game performance will be measured 
by letting the learned policies of the various methods play games of CTF against each other 
and the non-learning methods and analysing the results. 
 
In each game, there are two players: an agent and an opponent. As is explained in appendix D, 
a game of CTF can end in three ways: 

1. At least one of the players scored the maximum amount of points. 
2. Both players choose to do nothing in two consecutive turns. 
3. A to be defined amount of time has expired. 

 
From these endings, the evaluation will identify five possible results of a single game: 

1. The agent wins by being the first player to score the second point. 
2. The opponent wins by being the first player to score the second point. 
3. The game is a tie if both players score their second point simultaneously. 
4. The game is a tie if a ‘Deadlock’ state is reached. Appendix D can be referenced for 

more details, but a ‘Deadlock’ state is reached if both players are alive and perform 
the DoNothing action for two consecutive turns. 

5. The game is invalid if a predefined amount of time has expired. These games are 
declared invalid because time isn’t explicitly modelled in the environment, and as such 
the policies haven’t learned that this is a possible ending of the game. Therefore it 
would be unfair to force a result from these states and as such these games are 
declared invalid. Games in which the time has expired are usually games where the 
agent and opponent have reached a repetitive pattern of movement, must like a 
‘Deadlock’ state that spans multiple states. Because the implementation of a pattern 
recogniser lies beyond the scope of the assignment, these games are considered invalid 
and will not be used in the evaluation of optimality. 

 
Game performance will be measured by a performance value 

21 , ppP  and it represents the 

results of games played between players p1 and p2. A player that uses a policy learning 
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method is identified by three variables: The learning method used (Complete, Combined or 
Enhanced), the environment in which is learned (Standard, Simple or Alternative), and the 
discount factor used (0.1, 0.5 or 0.9). A player that uses a non-learning method is identified by 
the used method (Random or Human). The performance value 

21 , ppP  represents the percentage 

of games more won by player p1 against player p2, and as such is a value between -100 and 
100. A performance value 

21 , ppP  will be calculated for each pair of competing players as given 

by: 

(11) 
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Where 
1pW  is the amount of games won by player p1, 

2pW  is the amount of games won by 

player p2 and T is the amount of games that ended in a tie. Optimality evaluation will occur by 
comparing these performance values. 
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5 Theoretical evaluation 
This chapter gives the theoretical evaluation of the Combined and Enhanced methods. The 
first paragraph gives an evaluation of the implication that the methods have on global policy 
optimality and the second paragraph gives an evaluation on the computational complexity for 
learning the global policies. The last paragraph will give a comparison between the Combined 
method and other methods from the literature that also reduce complexity by learning on 
smaller environments. 

5.1 Policy optimality 

The optimality of the learned local policies of the Combined method depends on the used 
learning algorithms. Since most learning algorithms have as a goal to learn an optimal policy, 
we will only consider these optimal policies. Because the local policies are only optimal for 
their respective situations, the global policy that is created from combining them no longer 
has to be – and most likely won’t be – optimal. What degree of optimality the global policy 
does have depends on the quality of the heuristic function and on the environment. 
 
Let’s take a look at the structure of situations: Each situations is organised in such a fashion 
that it consist of states that can be considered to be equally (dis)advantageous for the agent 
(inner states) and states that lie just outside the situation, but are inner states of another 
situation (outer states). Because all inner states have an equal state reward1, there is little room 
for utility improvement within the situation for the agent. The outer states on the other hand 
are absorbing states with a different state reward. If the state reward of such an outer state is 
greater than the state reward of an inner state, reaching this outer state (and thus another 
situation) would probably lead to higher reward gains. This is especially so since, from the 
perspective of the local learning process, the outer state is an absorbing state which the agent 
never leaves. Because of this, the resulting global policy can be seen as a policy that 
continually tries to reach situation with a higher state reward, a very human approach to game 
playing. A danger with this method is that the policy can fall into a trap by short-term 
rewards: a local policy only takes single-transition reachable states of other situations into 
consideration, it does not see the rewards beyond that state. How decisive this danger is for 
the global optimality depends on the environment. Let’s view each situation as a sub-goal of 
the environment; If the ordering of the sub-goals in the environment is unambiguous, and the 
difficulty of the environment is to find the optimal solution for each sub-goal, then the 
Combined method would probably provide a near-optimal global policy. If on the other hand 
there are a host of sub-goals and the difficulty of the environment is to find the optimal 
sequence of sub-goals, then the optimality of the resulting global policy is most likely 
disastrous. Chess is an example of a game in which situational reinforcement learning would 
most likely perform terrible, because in chess the taking of each piece can be seen as a sub-
goal and the difficulty is not to take a piece, but to take the right piece at the right time. 
Capture the flag would be an example of a game in which SRL will likely perform better,  
because an unambiguous ordering of sub-goals could be to first take the flag and then return 
the flag, and the difficulty there would be how to best realise the taking and returning of the 
flag. As part of the assignment, the policy optimality will be empirically tested for the 
modelled CTF Markov game described in appendix D. 

                                                 
1 In the Combined method, the state reward function is used as the heuristic function and all inner states of a 
situation have the same value according to the heuristic function. 



 37 

5.2 Computational complexity 

In this paragraph, worst-case complexity functions will be used for the theoretical evaluation 
of the computational complexity of the various learning methods. Appendix C gives detailed 
information about the upper bound worst-case complexity functions for the (modified) policy 
iteration algorithm in MDP- and two player zero-sum Markov game environments. All upper-
bound complexity functions given in this chapter are worst-case complexities. 

5.2.1 Standard policy iteration in an MDP environment 

According to Kaelbling (1996, p. 15) and as explained in appendix C, the upper bound 
complexity of a single iteration of the policy iteration algorithm in an MDP environment is 
given by: 

(12) ( )32 nnaO +⋅  
According to Mansour & Sing (1999, p. 2), the upper bound amount of iterations required to 
learn an optimal policy in an MDP environment when a greedy policy-iteration algorithm is 
used – and a greedy PI algorithm is used for the evaluation of SRL – can be given by: 

(13)  ( )nO  
The upper bound complexity of learning an optimal policy for an MDP environment by using 
standard policy iteration thus becomes, by combining (12) and (13): 

(14) ( )43 nnaO +⋅  
(14) gives the worst-case complexity for the Complete method, so (14) can be rewritten as 
being: 

(15) ( )43
nnaO

MDP

complete +⋅  

The upper bound complexity of the Combined method, is the sum of the complexities of 
learning policies for all situations, as given by: 

(16) ( )∑ Θ∈θ θ
MDPMDP

combined OO  

(17) ( )43
θθθ nnaO

MDP +⋅  

 
Now how does (16) compare to (15)? Let’s begin by stating that Θ is the set of situations and 

Θ=g is the total amount of situations. How both complexity functions relates to each other 

depends on the amount of situations and the amount of states within each situation. If the 
entire environment is one situation then 

( ) ( ) ( )4343 nnaOnnaOOO MDP

complete

MDP

combined

MDPMDP

combined +⋅=+⋅=∑ Θ∈ θθθ θ . Since the complexity of 

(17) is greatest for the situation with the most states (highest θn ), it is that situation that gives 

the greatest addition in (16). The most favourable case for (16), meaning the case with the 
lowest worst-case complexity, is where each situation has the least amount of states, meaning 
that all states in S are divided evenly among the situations in Θ . If this is the case – which is 
hardly ever – then the amount of states in each game situation is given by: 

(18) 
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n
nS == θθ  

Combining (18),(17) and (16) results in: 
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As can be seen, this upper bound complexity is almost a factor 3g  smaller than the upper 
bound case for the Complete case given by (15). Let’s make it a little simpler: For most 
games, the world contains a very large amount of states and a relative small set of available 
actions (in the modelled CTF world for example there are around 150000 states and 8 possible 
actions). With n being such a large number and na << , we can approximate (15) and (17) as 
being 

(20) ( ) ( )443 ˆ nOnnaO
MDP

complete

MDP

complete ≈+⋅  

(21) ( ) ( )443 ˆ
θθθθθ nOnnaO

MDPMDP ≈+⋅  

Using these complexities, (19) becomes: 
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So, in the upper-bound case with the most favourable division of states within the situations, 
the complexity is approximately reduced by a factor 3g . This means that, for the worst-case 
in an MDP environment, (15) and (16) relate to each other in the following way: 

(23) 
( ) ( ) ( )43
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In practical applications, the worst-case upper-bound case is almost never. How substantial 
this complexity reduction is for the modelled CTF world will be evaluated as part of the 
assignment. 

5.2.2 Modified policy iteration in an MDP environment 

Let perform the same steps as before for the modified policy iteration algorithm. The upper 
bound complexity of learning an optimal policy by using the modified policy iteration 
algorithm is, as explained in appendix C, given by: 

(24) ( )( ) ( )( )322 ~~
nkaOnanknO ⋅+=⋅+⋅⋅  

The complexities for learning an optimal policy for respectively the global environment and a 
situation can thus be given by: 
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nkaO

MDP

complete ⋅+  

(26) ( )( )3~
θθ nkaO

MDP ⋅+  

 
In the most favourable case for the Combined method, where the states are divided evenly 
among the situations, the complexity can be given by: 
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So, when using the modified policy iteration, the complexity functions for the Complete and 
Combined method relate to each other in the following manner:  
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5.2.3 Using the Markov game environment 

Although the modelling of an environment as a Markov game environment does increase the 
complexity of learning policies1, it does not effect the complexity reduction brought about by 
situational reinforcement learning. This is so because the reduction in complexity brought 
about by SRL is the result of the smaller state spaces; the method does not alter the use of the 
action sets. The Markov game environment uses multiple action sets, which increases the 
complexity of learning policies, but does not alter the use of the state set in policy learning. If 
we alter (12) to incorporate a second action set O, where Oo = , the complexity would 

become: 
(29) ( )32 nonoaO ⋅+⋅⋅  

If we performed all the previous steps for this complexity, the resulting optimal complexity 
reduction would still be 3g . This is also the case for even more action sets. 

5.2.4 Using other policy learning algorithms 

The reduction in complexity brought about by SRL is the result of using the smaller 
environments. The complexity reduction is directly linked to the weight of the state set size n 
in the complexity function of the used learning algorithms: the complexity reduction is greater 
if the state set size n has a greater influence in the complexity function of that learning 
algorithm. The reason that the complexity reduction is greater for the policy iteration 
algorithm than for the modified policy iteration algorithm, 23 gg > , is because the state set 
size n is of a higher order in the complexity function of the policy iteration algorithm, 

( ) ( )34
nOnO mPIPI > .   

5.2.5 The Enhanced method 

Because the methodology of the Enhanced method is to first perform the Combined method 
and then the Complete method – with the difference that the Combined global policy is used 
as a starting policy instead of a random policy – the upper bound complexity of performing 
the Enhanced method can be given by the addition of the upper bound complexities of both 
other methods: 

(30) ( ) ( )( )LL completecombinedenhanced OOO +  

So, in the upper bound view the Enhanced method it is only a more costly method of 
acquiring a global optimal policy. But is this also the case for the practical application of the 
method? A hypothesis that will be tested for the modelled CTF world is that learning a policy 
for the entire environment when starting from the combined policy will take less iterations to 
terminate then when policy iteration starts from a random policy. This hypothesis is based on 
the fact that policy iteration gradually improves a policy until the optimal policy is found, so 
if you start with a more optimal policy it seems logical that you require less iterations to reach 
the desired degree of optimality. An assumption that will be made, is that the global policy 
resulting from the Combined method is more optimal than a random policy. This assumption 
is based on the fact that the local policies are at least optimal in their own local environments. 
 
If the hypothesis holds, then the learning process for the entire environment when starting 
from the Combined policy would have a lower complexity than the learning process would 
                                                 
1 The complexity for learning a policy in a Markov game environment roughly increases by a factor that equals 
the product of the sizes of the action sets. If for example m action sets are used where each set has a size of o 
actions, the complexity for a single iteration of standard policy iteration in that Markov game would be 

( )312 nonoO mm ⋅+⋅ − , which is roughly is an increase in complexity of m
o .  
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have for the entire environment when starting from a random policy, if we don’t take the 
complexity of learning the local policies into consideration. Because we have already 
demonstrated in the previous paragraphs that learning a global policy by using the Combined 
method will most likely have a lower computational cost than learning a policy for the entire 
environment, the question becomes whether the combination of learning local policies and 
enhancing the resulting combined policy has a lower computational cost than policy iteration 
for the entire environment from a random policy? This question will be answered in the 
empirical evaluation in the modelled CTF world of computational costs. 

5.3 Comparison to similar methods 

In this paragraph, the Combined method will be compared to two methods that also try to 
reduce computational complexity by learning in smaller environments: The Envelope Method 
(Russel & Tash, 1994; Gardiol & Kaelbling, 2004) and Hierarchical Reinforcement Learning 
(Dietrich, 1999, 2000; Pineau et al., 2003). 

5.3.1 The Envelope Method 

The general idea of the Envelope method is that is learning an optimal policy for the global 
environment is not required for good performance. Instead, the global optimal policy can be 
approximated by only learning an optimal policy for the states that are likely to be reached. In 
the Envelope method, the MDP environment for which a policy is learned is called the 
envelope, and this envelope is a sub-MDP of the global environment. Besides the required 
elements of an MDP environment, the envelope method required an initial world state and a 
method to define what rewards are assigned to states that fall outside the envelope. 
 
An abstract view of the process of the envelope method is depicted in figure 5. 
 

Find initial plan
Transform plan to
Envelope-MDP

Compute policyExpand envelope

start

donenot done

Find initial plan
Transform plan to
Envelope-MDP

Compute policyExpand envelope

start

donenot done

 
Figure 5. Abstract view of the Envelope method 

 
The envelope method begins by finding an initial plan. In this classical planning problem, the 
method tries to find a series of actions that lead from initial state(s) to goal state(s). The initial 
states must be provided by the developer and the goal states can either be goal states of the 
environment or states that lie at a maximum planning depth from the initial state. 
 
When the initial plan has been constructed, this plan is transformed to the initial envelope 
MDP. First, the envelope is initialized with the initial word state; then, the next state in the 
envelop is found by applying the plan action to the previous state; when the state containing 
the goal condition is reached, the set of states is complete. Transitions that initiate in an 
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envelope state but do not land in an envelope state are redirected to a state called the out-of-

envelope or Out state (Gardiol & Kaelbling, 2004). 
 
With a new envelope constructed, a (new) policy for this envelope must be computed. This 
can be performed with any learning algorithm for the MDP environment, the only difference 
is that the rewards for states that lie outside the envelope must be assigned by a special reward 
function. This special reward function can for example assigns a penalty which equals an 
estimation of the cost of having to recover from falling out (such as having to re-plan back to 
the envelope) (Gardiol & Kaelbling, 2004). 
 
After a policy has been computed, the envelope must be expanded. This phase is also called 
deliberation. Gardiol & Kaelbling (2004) described this phase as “The deliberation involves 
sampling from the current policy to estimate which fringe-states – states one step outside of 
the envelope – are likely to be reached. (…). The (…) most likely fringe states are added to 
the envelope.” (Gardiol & Kaelbling, 2004, p. 6). When to stop deliberating depends on the 
criteria the developer uses; one example could be to stop deliberating when a maximum 
amount of fringe states have been added. With a new envelope created, a new policy is 
computed. This process of policy computation and envelope expansion is repeated until some 
termination criteria is met; for example when a fixed amount of deliberations have passed. 
 
The differences between the Envelope method and the Combined method are: 

• The Envelope method learns only one policy for a continually expanding envelope-
MDP. The Combined methods learns multiple policies for static situation-MDPs. 

• The Envelope method learns an optimal policy for states that are most likely to be 
reached, starting from an initial state, but ignores all other states for the policy. The 
Combined method learns optimal policies for situations, where situations are created 
based on heuristic state preference values. In the Combined method, no state is 
ignored. 

• The Envelope method requires much more alteration to the MDP framework than the 
Combined method. The Envelop method requires an initial state, an initial plan (which 
is a planning process, not reinforcement learning), a special reward function for out-
of-envelope penalties, a termination criteria when to stop a round of deliberation and a 
termination criteria when to stop the method itself. The Combined method only 
requires a decomposition of the reward function into a (heuristic) state reward function 
and an action reward function. 

 
Both methods result in global policies that approximate the global optimal policy. The 
optimality of the global Envelope policy depends for a large part on the initial plan, the 
optimality of the global Combined policy depends for a large part on the heuristic function. 
 
A possibly fruitful conjunction of both methods could be to use the envelope-expansion 
method on situations: Select a situation to be the initial envelope and expand the envelope 
with the most likely or preferable reachable situation until an end state of the game has been 
reached. This conjunction would allow the Combined method to learn further than a situation, 
reducing the danger of falling into traps, and would eliminate the need of initial plans, out-of-
envelope penalties and special deliberation- and method termination criteria that are required 
for the Envelope method.  
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5.3.2 Hierarchical Reinforcement Learning 

The general idea of Hierarchical Reinforcement Learning (HRL) is that the structure of an 
environment can be used to limit the amount of policies that need to be considered as well as 
enables the use of state abstraction. In HRL, the global MDP is decomposed into a hierarchy 
of smaller MDPs. The method is based on the assumption that the developer can identify 
useful sub-goals and defined subtasks that achieve these sub-goals (Dietrich, 1999). This 
discussion of HRL is based on the MAXQ Value Function Decomposition, but the discussed 
characteristics apply to all HRL methods.  
 
In order to employ hierarchical reinforcement learning, the developer must identify individual 
subtasks that he believes are important for solving the overall task. There are various methods 
that specify how subtasks should be constructed. Several of these are: 

• Define each subtask in terms of a fixed policy that is provided by the developer. 
• Define each subtask in terms of a non-deterministic finite-state controller. 
• Define each subtask in terms of a termination predicate and a local reward function. 

The MAXQ HRL method uses this definition. 
If we consider the third method for specifying subtasks then, for each subtask, the termination 
states for that subtask must be defined along with the actions or other subtasks that it employs 
to reach its goal and a local reward function. For each sub-task an optimal policy iπ  can then 

be learned. The hierarchical policy π , is a set containing a policy for each of the subtasks:  
{ }no πππ ,,L= . The execution of a hierarchical policy then consists of identifying the current 

subtask and perform the action specified in the corresponding subtask-policy for the current 
state. 
 
By dividing the environment into these hierarchical blocks, each subtask-policy only needs to 
consider actions that are relevant for performing it’s task, which eases the policy learning 
process. But a sub-task policy must be learned for each task, and each action of action set A 
must be employed by at least one sub-task or the action was unnecessary for the environment 
in the first place. The state space S does not change for each subtask, besides the fact that 
some states are considered termination states for the subtask. Because the amount of states in 
an environment has a greater influence in computational complexity than the amount of 
actions for most learning algorithms, as can be seen in appendix C, it is probable the learning 
a policy for each subtask involves more computations than learning a policy for the entire 
environment. Because of this, hierarchical reinforcement learning often makes use of state 
abstraction. With state abstraction, certain aspects of the state space that are irrelevant for 
solving the subtask are ignored. By doing this, the state space of each subtask is reduced to a 
subset of S, which reduces the computational complexity for learning a policy for that subtask 
even more. Dietrich (1999) states that “Perhaps the most important reason for introducing 
hierarchical reinforcement learning is to create opportunities for state abstraction” (Dietrich, 
1999, p. 27). 
 
The hierarchical policy that is the result of hierarchical reinforcement learning no longer has 
to be the global optimal policy. The optimality of the hierarchical policy critically depends on 
the hierarchical structure, since this structure defines which policies will be considered. 
Hierarchical reinforcement learning therefore tries to reach hierarchical optimality: A 
hierarchically optimal policy for MDP M is a policy that achieves the highest 
cumulative reward among all policies consistent with the given hierarchy (Dietrich, 1999). 
 
The differences between HRL and the Combined method are: 
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• The HRL uses a pre-defined hierarchical structure. Within the HRL method, the 
problem is described as a single task which is continually decomposed into more 
primitive sub-tasks, where each lower-level sub-tasks can be used to achieve the goal 
of a higher level sub-task. Each sub-task is thus a part of a higher level task and has a 
specific goal. In the Combined method each situation represents a unique part of the 
original environment and no situation is part of another. Each situation has the same 
goal: maximize rewards. The difference is that situations are autonomous 
environments in which the local learning processes are unaware of the other situations, 
where subtasks on the other hand employ other subtasks to solve specific problems. 

• The HRL views the world as a problem that must be solved. In order to solve the 
problem, the developer defines subtasks that solve partial-problems. In this fashion, 
the HRL requires from the developer a solution structure that enables the agent to 
solve the overall problem. The Combined method views the world as a living 
environment in which the agent should try to live as agreeable as possible. In order to 
determine what is agreeable, the developer defines state preference. In this fashion, the 
Combined method requires state preference values from the developer that enables the 
agent to identify the agreeability of situations. 

• The HRL method still learns a global policy. The hierarchical structure limits the 
amount of possible policies to learn, but the learning process essentially still 
encompasses the global environment. The Combined method only learns policies for 
the local environments, the global policy is created from these local policies. The 
learning process of the Combined method no longer encompasses the global 
environment.   

• The HRL requires different additional information to be provided by the developer. 
What information is required depends on the definition of a subtask. This information 
can consist of subtasks with termination states, local reward functions, subtask-
specific-actions or complete fixed policies. The Combined method requires a 
decomposition of the reward function into a (heuristic) state reward function and an 
action reward function. 

 
Both methods results in global policies that approximate the global optimal policy. The 
optimality of the hierarchical policy depends for a large part on the hierarchical structure, the 
optimality of the global Combined policy depends for a large part on the heuristic function. 
Both method also learn local policies for smaller MDPs, respectively called subtasks and 
situations.  
 
A fruitful conjunction of both methods is unlikely. It might be possible to use the local reward 
function of subtasks to define situations within that subtask, but this would only be useful for 
complex subtasks and these complex subtasks could best be solved in a HRL fashion by 
dividing the subtask into more subtasks or use state abstraction. The other way around, where 
HRL is used within the Combined method, is also most likely ineffective: Because the 
situations that are created by the Combined method are not explicitly given by the developer, 
it would be a dangerous if not impossible task to define a hierarchical structure for each 
situation. 
 
The action abstraction used by HRL for the subtasks might be a worthwhile addition to the 
Combined method. In specific situations, some actions are irrelevant and these could be 
removed from the situation. One example for the modelled CTF world would be to ignore the 
‘Score’ action for all situations where the agent does not have the flag. Such an abstraction 
would furthermore reduce the computational complexity of learning policies.   
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6 Empirical evaluation 
This chapter gives the results of the empirical evaluation performed as part of the assignment. 
The first paragraph handles the computational cost evaluation and the second paragraph gives 
the game performance evaluation that indicates policy optimality. The last paragraph gives a 
summarised comparison between the Complete and Combined method. The next chapter uses 
these results for conclusions and as a handle for discussions. 

6.1 Computational cost 

This paragraph gives the results of the empirical evaluation of computational costs as 
calculated in the fashion described in paragraph 3.2.5 and given by equations (8), (9) and (10). 
Each computational cost value is based on 40 policy learning processes that were performed 
in the CTF environment explained in appendix D. In the modelled CTF environment, 
situational reinforcement learning decomposed 1 learning problem into respectively 21 – the 
Standard environment – and 13 – the Alternative environment – smaller and more tractable 
learning problems. 
 
The following three tables give for one of the used discount factors the calculated 
computational cost values for all combinations of learning method and learning environment. 
For the Combined and Enhanced methods, not only the exact calculated values are given, but 
also how this value compares to the Complete method in percentages. For the Enhanced 
method, this is viewed in two ways: with and without the addition of the Combined 
computational cost. The value without the Combined complexity illustrates whether using the 
resulting global policy of the Combined method as a starting policy for modified PI requires 
less iterations, which was a hypothesis explained in paragraph 4.2.5. The value with the 
Combined complexity illustrated the actual cost required for learning the global policy and 
gives an indication whether using the Combined method as a starting point is computationally 
worthwhile. 
 
Because the Combined and Enhanced methods are inapplicable for the Simple environment, 
since the Combined method requires a more complex reward function to be able to create 
situations, the computational cost values for learning global policies in the Simple 
environment have only been calculated for the Complete method. 
 

All C values 710⋅  

Discount factor 0.9 Standard Alternative Simple 

Complete niC completeavgcomplete ⋅= ,
ˆ  

2,16 2,27 2,48 

( )∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ  

0,80 2,10  

Combined 
Percentage with respect to Complete 
in same environment 37,0% 92,6%  

niC enhancedavgenhanced ⋅= ,
ˆˆ  

2,00 2,03  

Percentage with respect to Complete 
in same environment 92,6% 89,4%  

( )niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ  

2,80 4,13  

Enhanced 
Percentage with respect to Complete 
in same environment 129,6% 182,0%  

Table 1 Computational cost values for all combinations of learning method and learning environment  

with discount factor 0.9 
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All C values 610⋅  

Discount factor 0.5 Standard Alternative Simple 

Complete niC completeavgcomplete ⋅= ,
ˆ  

3,74 4,17 6,16 

( )∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ  

2,10 3,68  

Combined 
Percentage with respect to Complete 
in same environment 56,1% 88,3%  

niC enhancedavgenhanced ⋅= ,
ˆˆ  

3,14 3,47  

Percentage with respect to Complete 
in same environment 84,0% 83,2%  

( )niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ  

5,24 7,16  

Enhanced 
Percentage with respect to Complete 
in same environment 140,1% 171,5%  

Table 2 Computational cost values for all combinations of learning method and learning environment  

with discount factor 0.5 

 

All C values 610⋅  

Discount factor 0.1 Standard Alternative Simple 

Complete niC completeavgcomplete ⋅= ,
ˆ  

1,78 3,42 3,56 

( )∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ  

1,19 1,15  

Combined 
Percentage with respect to Complete 
in same environment 67,2% 33,7%  

niC enhancedavgenhanced ⋅= ,
ˆˆ  

1,43 1,82  

Percentage with respect to Complete 
in same environment 80,5% 53,3%  

( )niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ  

2,63 2,97  

Enhanced 
Percentage with respect to Complete 
in same environment 147,7% 87%  

Table 3 Computational cost values for all combinations of learning method and learning environment  

with discount factor 0.1 

 
From tables 1, 2 and 3, the following observations can be made: 

• Using the Combined method results in significant computational cost reductions in 
comparison to the Complete method. The cost reduction is, averaged over the different 
discount factors,  46.57% and 28.47% for respectively the Standard and Alternative 
environment. When also averaging over the environment, using the Combined method  
results in an average cost reduction of 37.52%. 

• The effect that the discount factor has on the computational cost reduction brought 
about by the Combined method differs between the Standard and Alternative 
environments. Graph 1 illustrates this: for the Standard environment the reduction is 
greater for higher discount factors; for the Alternative environment the reduction is 
greater for lower discount factors. In the next chapter an explanation for this behaviour 
is given. 
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• The computational cost of using the Enhanced method without considering the 
additional cost of performing the Combined method is reduced in comparison to the 
Complete method. The reduction – which is brought about by starting from the learned 
Combined behaviour – is, averaged over the different discount factors, 14.3% and 
24.7% for respectively the Standard and Alternative environment. When also 
averaging over environment, using the Combined method’s learned information in 
itself results in an average cost reduction of 19.5%. 

• The total computational cost of using the Enhanced method – meaning that the 
additional cost of performing the Combined method is also considered – is increased 
in comparison to the Complete method. The increase is, averaged over the different 
discount factors, 39.10% and 46.83% for respectively the Standard and Alternative 
environment.  When also averaging over environment, using the Enhanced method 
results in an average cost increase of 42.97%. This shows that the cost reduction 
brought about by using the Combined method’s resulting information is on average 
not significant enough to overcome the additional cost of performing the Combined 
method. One case did exist where the cost of using the Enhanced method showed a 
reduction in comparison to the Complete method, but this was but one case among six.  

• Using a higher discount factor results in a higher computational cost. This is illustrated 
in graph 2 for the Standard environment. The same trend is observed for the 
Alternative and Simple environments. 

• Using a more complex reward structure results in lower computational costs. When 
considering the complexity of the reward structure – where a more complex reward 
function assigns more unique state rewards - the Standard environment has the most 
complex reward function and the Simple environment has the least complex reward 
function. This is illustrated in graph 3 for the Complete method and the same trend is 
observed for the Combined and Enhanced methods.  
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Graph 1. Cost reduction in percentages of using the Combined method in comparison to the Complete 

method. 
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Graph 3. Computational cost values for the Complete method. 

6.2 Policy optimality 

This paragraph gives the results on game performance that is used to indicate policy 
optimality. Each of the tables 4 to 11 gives for a certain discount factor and environment the 
game results of competing methods. Between all competing methods, the tables gives the 
percentage of games won and the percentage of games more won, along with the amount of 
valid1 games played. Game performance evaluation is explained in paragraph 4.2.6 and 
equation (11) is given there to calculate the percentage of games more won. Although 2400 
games were played between any two computer-controlled players in order to generate 
statistical significant results, this amount of games was impossible to achieve with human 
players. Because the amount of human test-subjects was limited, the performance values 
generates from these games give an indication of performance. In order to generate a more 
reliable indication, the human players only played games against policies learned with the 
discount factors of 0.1 and 0.9, not against policies learned with a discount factor of 0.5. By 
doing so, the games that were played could be played more often whilst it is likely that no 
relevant information was lost, since the results of policies learned with the 0.5 discount factor 
almost always lay in between the results of policies learned with the 0.1 and 0.9 discount 
factor.  
 
From the results in tables 4 through 12, the following overall observations can be made: 

• On overall it can be said that the Complete method outperformed the Combined 
method, in both head-to-head matches and in matches against non-learning methods.  

• When considering the Combined method, policies learned in the Alternative 
environment perform considerably than policies learned in the Standard environment. 
The Combined Alternative policies outperformed the Combined Standard policies in 
matches against all other methods. The Combined Alternative policies performed 
nearly as well as the Complete Alternative policies did against the Random method. 

• When analysing the influence of the discount factor on the Complete and Combined 
methods, the results show that performance of the Complete method decreases faster 
with lower discount factors than the Combined method. Because of this, the 
performance of the Combined method in comparison to the Complete method 
increases with lower discount factors. This can be demonstrated by the games played 
against human players: In Human versus Complete games, the Complete performance 
decreased significantly with lower discount factors. In Human versus Combined 
games, the discount factor did not influence performance all that much. 

                                                 
1 A game was considered invalid if a pre-defined amount of time had expired. Because time was not modelled 
into the game environment, these games were considered invalid rather than tied (see paragraph 3.2.6). 
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• When analysing the influence of the learning environment, or more specifically the 
use of more complex1 reward functions, on game performance, tables 10 through 12 
show that performance depends on both the complexity of the reward function and on 
the used discount factor. When high discount factor are used, more complex reward 
functions distract the player from winning, resulting in lesser performance. When low 
discount factors are used, more complex reward functions can, if they correctly 
represent the desire to win, give a handle for the learning process to converge too, 
resulting in better performance. This is discussed in more detail in the next chapter.  

 
The following more detailed observations about performance of the Complete and Combined 
learning methods in the Standard and Alternative learning environments can be made from 
tables 4 through 9: 

• For all learning environments, the Complete method outmatches the Combined 
method. For the Standard environment, the Complete methods wins between 68,04% 
and 78,25% more games. The Combined method performs considerably better in the 
Alternative environment, where the Complete method wins between 41,38% and 
61,04% more games. For all environments, a lower discount factor results in better 
performance of the Combined method against the Complete method. 

• For all environments, the Complete method wins almost in 100% of the games from 
the Random method. All games that are not won by Complete end in a tie. 

• In the Standard environment the Combined method never loses from the Random 
method, but only accomplishes to win between 34,63% and 39,63% games. In the 
Alternative environment, the Combined method performs nearly as well against the 
Random method as the Complete method did (almost 100% games won), the only 
difference being 4% more tied games.  

• Performance of the Complete method against human players (Human method) 
depended critically on the used discount factor. If a discount factor of 0.9 was used, 
the Complete method performed better than human players, if a discount factor of 0.1 
was used, the human players outmatched the Complete method. The results further 
show that Complete policies learned in the Alternative environment performed better 
against human players than Complete policies learned in the Standard environment. 

• The Combined method was outperformed by the human players in both environments, 
although Combined policies learned in the Alternative environment performed better. 
The discount factor did not affect the performance of the Combined policies against 
human players, unlike the Complete policies. 

 
The following observations about performance of the Complete method in the Simple 
environment can be made from tables 10 through 12: 

• Policies learned in the Simple environment perform better than policies learned in the 
Standard environment, where the Simple policies win between 9,75% and 36,75% 
more games. 

• Policies learned in the Simple environment do not necessarily perform better than 
policies learned in the Alternative environment. Although the Simple policies managed 
to win between 14,96% and 27,79% more games when high discount factors were 
used, the Alternative policies managed to win 5,25% more games when a discount 

                                                 
1 When a more complex reward function is discussed, this refers to a reward function that assigns more unique 
state rewards. It does not refer to the computational complexity that was used as part of the theoretical 
evaluation. 
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factor of 0.1 was used. Lower discount factors resulted in better performance for the 
Alternative policies. 

• Lower discount factors also resulted in decreased performance of the Complete Simple 
policies when playing against human players. When the highest discount factor of 0.9 
was used, the Complete policies managed to win 45% more games. When the lowest 
discount factor of 0.1 was used, the human players and the Complete Simple policies 
performed equally well. 

• Just as with the Complete policies learned in the Standard and Alternative 
environment, the policies learned in the Simple environment won almost 100% of the 
games against the Random player. 

 
The results of games played in the Standard environments: 

Discount factor 0.9 Complete Combined Random Human 

Standard Environment 
2400 

games 
2400 

games 
2400 

games 20 games 
Percentage of games 
won   85,29% 98,96% 45,00% 

Complete 
Percentage of games 
more won   78,75% 98,96% 5,00% 

Percentage of games 
won 6,54%   39,63% 15,00% 

Combined 
Percentage of games 
more won -78,75%   39,54% -45,00% 

Table 4. Game performance between methods in the Standard environment 

 with a discount factor of  0.9   

 
Discount factor 0.5 Complete Combined Random Human 

Standard Environment 
2400 

games 
2400 

games 
2400 

games 0 games 
Percentage of games 
won   80,00% 97,42%  

Complete 
Percentage of games 
more won   68,25% 97,42%  

Percentage of games 
won 11,75%   46,13%  

Combined 
Percentage of games 
more won -68,25%   46,08%  

Table 5. Game performance between methods in the Standard environment 

 with a discount factor of  0.5 

 

Discount factor 0.1 Complete Combined Random Human 

Standard Environment 
2400 

games 
2400 

games 
2400 

games 20 games 
Percentage of games 
won   80,75% 98,75% 20,00% 

Complete 
Percentage of games 
more won   68,04% 98,75% -50,00% 

Percentage of games 
won 12,71%   34,63% 25,00% 

Combined 
Percentage of games 
more won -68,04%   34,63% -45,00% 

Table 6. Game performance between methods in the Standard environment 

 with a discount factor of  0.1 
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The results of games played in the Alternative environment: 

Discount factor 0.9 Complete Combined Random Human 

Alternative Environment 
2400 

games 
2400 

games 
2400 

games 20 games 
Percentage of games 
won   78,04% 99,42% 65,00% 

Complete 
Percentage of games 
more won   61,04% 99,42% 35,00% 

Percentage of games 
won 17,00%   95,21% 30,00% 

Combined 
Percentage of games 
more won -61,04%   95,21% -30,00% 

Table 7. Game performance between methods in the Alternative environment 

 with a discount factor of  0.9 

 
Discount factor 0.5 Complete Combined Random Human 

Alternative Environment 
2400 

games 
2400 

games 
2400 

games 0 games 
Percentage of games 
won   74,25% 99,33%  

Complete 
Percentage of games 
more won   51,83% 99,33%  

Percentage of games 
won 22,42%   96,33%  

Combined 
Percentage of games 
more won -51,83%   96,33%  

Table 8. Game performance between methods in the Alternative environment 

 with a discount factor of  0.5 

 
Discount factor 0.1 Complete Combined Random Human 

Alternative Environment 
2400 

games 
2400 

games 
2400 

games 20 games 
Percentage of games 
won   68,66% 99,50% 20,00% 

Complete 
Percentage of games 
more won   41,38% 99,50% -35,00% 

Percentage of games 
won 27,28%   96,71% 20,00% 

Combined 
Percentage of games 
more won -41,38%   96,71% -35,00% 

Table 9. Game performance between methods in the Alternative environment 

 with a discount factor of  0.1 
 
The results of the games played in the Simple environment 

Discount factor 0.9 Standard Alternative Random Human 

vs. Simple environment 
2400 

games 
2400 

games 
2400 

games 20 games 
Percentage of games won 37,25% 51,13% 97,34% 55,00% 

Simple 
Percentage of games more 
won 9,75% 27,79% 97,34% 45,00% 

Table 10. Game performance between the Complete methods in the Simple environment and the 

Complete methods in the other environments as well as non-learning methods, 

 with a discount factor of  0.9 
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Discount factor 0.5 Standard Alternative Random Human 

vs. Simple Environment 
2400 

games 
2400 

games 
2400 

games 0 games 
Percentage of games won 63,42% 41,83% 98,50%  

Simple 
Percentage of games more 
won 36,75% 14,96% 98,50%  

Table 11. Game performance between the Complete methods in the Simple environment and the 

Complete methods in the other environments as well as non-learning methods, 

 with a discount factor of  0.5 

 

Discount factor 0.1 Standard Alternative Random Human 

vs. Simple Environment 
2400 
games 

2400 
games 

2400 
games 20 games 

Percentage of games won 59,83% 37,88% 99,65% 30,00% 

Simple 
Percentage of games more 
won 28,79% -5,25% 99,65% 0,00% 

Table 12. Game performance between the Complete methods in the Simple environment and the 

Complete methods in the other environments as well as non-learning methods, 

 with a discount factor of  0.1  

6.3 Comparing Combined to Complete 

Table 13 is a select summary of tables 1 through 9 and gives a comparison of computational 
cost and game performance between the Combined method and the Complete method for both 
environments and all discount factors. 
 

Standard environment Alternative environment 

Combined compared to 
Complete 

Combined compared to 
Complete 

Discount Factor 
Computational 

cost More games won 
Computational 

cost More games won 

0.9 -63,00% -78,75% -7,40% -61,04% 

0.5 -43,90% -68,25% -11,70% -51,83% 

0.1 -32,80% -68,04% -66,30% -41,38% 

Table 13. Summarised comparison of complexity and game performance 

between Combined and Complete 
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7 Conclusions & Discussions 
In this chapter conclusions are drawn and discussions are started based on the results of the 
evaluations described in the previous two chapters. The goals of the assignment – which were 
discussed in the introduction – can be summarised as being to: 

1. Develop the situational reinforcement learning approach. This approach must be  
applicable in MDP and Markov game modelled environments, be able to use any 
policy learning algorithm within such environments and be able to learn policies at a 
lower complexity cost than conventional reinforcement learning. 

2. Apply situational reinforcement learning to a game of CTF modelled as a Markov 
game environment. 

3. Evaluate the implications of SRL as a stand-alone approach – the Combined method – 
on policy optimality.  

4. Evaluate the implications of SRL as a stand-alone approach – the Combined method – 
on computational cost/complexity. 

5. Evaluate the implications of SRL as an addition to conventional reinforcement 
learning methods – the Enhanced method – on computational cost/complexity. 

 
As for the first goal, the situational reinforcement learning approach is applicable to all MDP 
and Markov game modelled environment if these environments allow for a decomposition of 
the reward function into a state reward function and an action reward function. It has also 
been shown that, with the same criterion of a decomposable reward function, the approach 
can be applied to POMDP environments. Situational reinforcement learning can be used in 
conjunction with all dynamic programming algorithms. In it’s current form, SRL cannot yet 
be used with reinforcement learning method that use incomplete models of the environment. 
Situational reinforcement learning can be seen as an approach that tries to reduce the 
computational cost of learning behaviour by performing the learning process on smaller 
environment. As such, the approach is an alternative to methods like hierarchical 
reinforcement learning and the envelope method. 
 
The second goal has been met for a two player zero-sum CTF game. This environment – 
which is described in appendix D – has been used as the empirical evaluation tool for the 
third, fourth and fifth goal. Small examples have also been given on how SRL could be used 
to learn behaviour in a first-person shooter game and in a non-game environment. The CTF 
environment showed how situational reinforcement learning reduced the environment – which 
contained 136737 reachable states – into 21 game situation. In so doing, situational 
reinforcement learning decomposed a single large learning problem into 21 smaller and more 
tractable learning problems.  
 
The last three goals were evaluated in a theoretical and empirical fashion. We will look at the 
evaluation results of using SRL as a stand-alone approach to learning first – the Combined 
method. The theoretical evaluation will be discussed prior to discussion of the empirical 
evaluation. The evaluation results of SRL as an addition to conventional reinforcement 
learning – the Enhanced method – will be discussed thereafter in the similar order. 
 
The theoretical evaluation showed that the reduction in computational complexity facilitated 
by the Combined method in comparison to a method that used the learning algorithm in it’s 
most basic way called the Complete method, is dependent on the learning algorithm used and 
the amount of situations created by the heuristic function. If g is the amount of created 
situations then the worst-case complexity of the Combined method, ( )LcombinedO , relates to the 
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worst-case complexity of the Complete method,  ( )LcompleteO , in the following manner for 

respectively the policy iteration algorithm and the modified policy iteration algorithm: 

• 
( )

( ) ( )LL
L

completecombined

complete
OO

g

O
≤≤

3
 

• 
( )

( ) ( )LL
L

completecombined

complete
OO

g

O
≤≤
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The reduction in computational complexity facilitated by the Combined method is determined 
by the influence of the state set size n in the complexity function of the learning algorithm 
used: If the state set size has a higher order in the complexity function, than the reduction 
brought about by the Combined method is also greater. The reduction when using standard 
policy iteration is therefore theoretically greater than when using modified policy iteration, 
because the state set size n is of the order ( )4nO  and ( )3nO  for the upper bound complexity 
functions of respectively policy iteration and modified policy iteration. 
 
The optimality of the global policy created by the Combined method is difficult to predict. 
The Combined method acquires a global policy by combining learned local policies. Because 
of this process, the created global policy is most likely not optimal, even if the learned local 
policies were. How optimal the created global policy is depends largely on the heuristic 
function. This dependency is created by two factors: 

1. The heuristic function, being the state reward function that assigns rewards to states, 
defines the preference of the states. If the heuristic function does not correctly 
represents the goals of the agent, which for games is to win, then the policy learned 
from this heuristic function will not perform it’s goal optimally. 

2. The heuristic function defines the situations that are created and one import aspect for 
global policy optimality is the ambiguity of the situation ordering. If the ordering of 
situations is unambiguous, meaning that the state rewards of the situations alone is a 
sufficient indicator for preference and situations with higher state rewards will most 
likely lead to situations with even higher state rewards, then the resulting global policy 
will be near-optimal. If on the other hand the ordering of situations is ambiguous, 
where situations with high state rewards can lead to situations with low state rewards 
(i.e. short-term reward traps), then the resulting global policy can be disastrous. 

 
Now let’s look at the results of the empirical evaluation of the Combined method. Using the 
Combined method in the modelled CTF world always resulted in a significant reduction of 
computational cost, with reductions between 7.4% and 66.3% and an average reduction of 
37.52%. Although the maximal-minimal cost reduction did not differ all that much between 
the two environments Standard and Alternative, there was a striking difference in the effect 
the discount factor had on cost reduction in both environments. In the Standard environment 
the reduction was greater for lower discount factors and in the Alternative environment the 
reduction was greater for higher discount factors. The explanation for this probably lies in the 
amount of (unique) state rewards distributed by the reward function and how this affects the 
relative influence of the discount factor on computational cost. In general – and as can be seen 
from the results – using higher discount factors result in higher computational cost, but how 
the discount factor and computational cost relate, depends on the environment. 
 
Let’s consider two environment on which we apply the Complete method. One environment 
will be referenced to as the Few environment and the reward function in this environment 
assigns few (unique) rewards. The reward function of the other environment assigns many 
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rewards and is referenced to as the Many environment. The assumption made is that the 
difference in computational cost between using a high and low discount factor is smaller in 
the Few environment than in Many environment. This assumption is based on the fact that 
when a low discount factor is used in the Many environment, the learning process can 
converge relatively quickly to the various different state rewards, resulting in a lower 
computational cost. If a high discount factor is used in a similar environment, the algorithm 
does not converge to local rewards but rather to rewards further away. In a Few environment, 
the difference in computational cost between using a low and high discount factor will be 
smaller, because there aren’t too many state rewards to converge too, resulting in more similar 
policies between low and high discount factors. Table 14 summarises this assumption. 
 
Now let’s consider the same Few and Many environments when we apply the Combined 
method. For this learning method, the assumption is that the difference in computational cost 
between low and high discount factors will be smaller when using the Many environment in 
comparison to the Few environment. This assumption is based on the fact that, in general, the 
computational cost difference between using low and high discount factors increases with the 
size of the environment. With a larger environment, influencing states can be farther away, 
resulting in a greater difference between high and low discount factors because high discount 
factors are influenced more by these far-away states. Because applying the Combined method 
to a Few environment results in less – but larger – situations than when the method is applied 
to a Many environment, the difference in computational cost between low and high discount 
factors will be greater for the Few environment. Table 15 summarises this assumption. 
 

Using the Complete 

method 

Low discount factor High discount factor 

Many environment Quick convergence because 
ample opportunity for local 

convergence. 

Slow convergence because 
high discount factor ignores 
local rewards and converge 

to global rewards. 
Few environment Slow convergence because 

few state rewards give little 
opportunity for local 

convergence.  

Slow convergence because 
high discount factor 

converges to global rewards. 

Table 14. Influence of discount factor and environment on learning convergence, and thus computational 

complexity, when using the Complete method. 

 
Using the Combined 

method 

Low discount factor High discount factor 

Many environment Quick convergence because 
of small situations. 

Quick convergence because 
of small situations. 

Few environment Quick convergence. 
Although the situation is 

large, the learning process 
can at least benefit from local 

convergence.  

Slow convergence because of 
large environment and no 

local convergence. 

Table 15. Influence of discount factor and environment on learning convergence, and thus computational 

complexity, when using the Combined method. 

 
Within the modelled CTF world, the Alternative environment with it’s 13 situations uses a 
less complex reward structure than the Standard environment with it’s 21 situations. If we 
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identify the Alternative environment as a Few environment and the Standard environment as a 
Many environment, then by using the above mentioned assumptions we can explain the 
difference in the implication of the discount factor between the two environments: In the 
Standard environment, the difference in computational cost between low and high discount 
factors when using the Complete method is relatively large whilst this difference is relatively 
small when the Combined method is used. Therefore when using the Complete method, the 
computational cost increases faster with higher discount factors than when the Combined 
method is used, resulting in greater reductions for the Combined method with higher discount 
factors. In the Alternative environment, the difference in computational cost between low and 
high discount factors is greater when the Combined method is used, resulting in lesser 
computational cost reduction when higher discount factors are used. For both methods, it still 
applies that higher discount factors means higher computational costs and that using the 
Combined method always yields a significant decrease in computational cost (averaged over 
discount factors and learning environment the average computational cost reduction is 
37,52%). 
 
When considering the optimality implications of using the Combined method, the empirical 
results show that the use of the Combined method always results in a significant optimality 
decrease. The game performance of the learned policies – which is used as an indication for 
policy optimality – shows that between 40% and 80% of games are more lost if the Combined 
method is used. As can be shown by the difference in performance of policies learned in the 
Standard and Alternative environments, the performance depends for a large part on the 
heuristic function. Analysis of the learned Combined policies in the Standard environment 
showed an unexpected problem that seriously hampered performance: In the Standard 
environment, killing the opponent resulted in an increase of state reward, which from the 
perspective of local learning processes meant a different situation. Because a dead opponent 
always returned to the game after two action, the situation also had to change after two action 
(to the situation where the opponent was alive once again) unless a situation change could be 
realised in less actions. In so doing, these situations where the opponent was dead became 
episodic situations: If the agent did not have the chance to realise another way of changing 
situations (such as picking up the flag or scoring a point) within two actions, the agent chose 
to do nothing for those two actions. This is not surprising since, from the perspective of the 
local learning process, always the same situation was reached, so why perform any action at 
all? The Alternative environment was devised as a solution to this problem, but the problem 
illustrates the danger of creating unwanted effects when using the Combined method. The 
developer should therefore carefully consider the heuristic function. One important issue for 
future research is to find a way, other than the Enhanced method, to extend the Combined 
method to overcome the short-sightedness that hampers it’s optimality. Multiple solutions 
could be used, which are explained in more detail in chapter 9. 
 
The empirical results further show that the Combined method always performs relatively 
better with lower discount factors. This can probably be explained through local policy 
convergence: When using the Combined method, the local learning process can only converge 
to inner-state rewards or single-transition reachable outer-state rewards; In either case, 
convergence will occur to relatively nearby states. When using a low discount factor with the 
Complete method, the policy learning algorithm will also converge to relatively nearby state-
rewards. For low discount factors, the Complete and Combined methods therefore mimic each 
other’s behaviour to some extend, resulting in policies that are more alike. When high 
discount factors are used, the Complete method can converge to rewards of states farther away 
but the Combined method is still limited to single-transition reachable outer-state rewards. 
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Because planning ahead is almost always favourable for games, the Complete method 
performs relatively better with higher discount factors than the Combined method. 
 
When analysing the influence of the learning environment, or more specifically the use of 
more complex1 reward functions on game performance, the results show that performance 
depends on both the complexity of the reward function and on the used discount factor. When 
a high discount factor is used, complex reward functions distract the agent from achieving it’s 
goal, resulting in lesser performance. When low discount factors are used, more complex 
reward functions can give a handle on states for the learning process to converge too, 
resulting in better performance. Let’s take for example a man in a room who wants to reach 
the exit-door to explain this. Let the discount factor represent the vision of the man, where 
higher discount factors means the man can see farther into the room. Let the reward function 
represent the amount of signposts that point to the exit-door in the room. If the man has a high 
discount factor and is able to see the door from his starting location, he does not need the 
signposts to reach the door and continually reading all the signposts distract him from running 
to the door, so he prefers a less complex reward function. If the man has a low discount factor 
and does not see the door from his starting location, the signposts can help him walk in the 
right direction so he prefers a more complex reward function.    
 
From a theoretical point of view, the reduction or increase in computational cost resulting 
from the use of the Enhanced method is difficult to predict. If the Enhanced method uses a 
policy improving policy learning algorithm, such as (modified) policy iteration, then the 
computational cost depends largely on the optimality of the Combined global policy.  
 
The empirical results show that in almost all cases, the computational cost of learning an 
optimal policy through the Enhanced method is higher than by simply using the Complete 
method. The empirical evaluation does show that it is possible to learn an optimal policy with 
a lower complexity cost by using the Enhanced method. The results show that the 
computational costs of performing the Enhanced method, without looking at the additional 
cost of performing the Combined method, is less than applying the Complete method. This 
indicates that the hypothesis from paragraph 4.2.5. that less iterations are required when 
starting from the Combined policy than when starting from a random policy is correct. This 
reduction in iterations increases when lower discount factors are used. This is probably also 
because of the previously mentioned local policy convergence: the Combined and Complete 
policies are more alike when lower discount are used. When the policies are more alike, it 
would require the Enhanced method less iterations to reach the same optimal policy found by 
the Complete method.  
 
Although using the resulting Combined policy as a starting policy reduces the amount of 
iterations required to learn the optimal policy, this reduction is unfortunately most often not 
significant enough to overcome the added computational cost of performing the Combined 
method. The most obvious reason for this is that the global policy resulting from the 
Combined method is not optimal enough and requires too much additional iterations. Another 
reason, one of which the implications have not been researched, might be the use of the 
modified policy iteration algorithm as a policy learning algorithm for the Enhanced method. 
In this policy learning algorithm, the policy evaluation phase uses learned utility values of 
previous iterations. Because of this, the Enhanced method did not only use the Combined 

                                                 
1 When speaking of reward function complexity, not the computational complexity is meant but rather the 
amount of unique state rewards that are assigned to states by the function. A more complex reward function thus 
assigns more unique state rewards, resulting in more situations if the Combined method is used.  
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method’s resulting global policy, but also the Combined method’s resulting global utility set, 
as explained in chapter 2. But this does introduce a possible problem, because the resulting 
utility values of a situation depends on the amount of iterations required for the local learning 
process of that situation. Let’s explain this problem with the example in figure 6: In this 
figure, three states, which actually represent situations, are depicted by circles and utility 
values are depicted below the situation name. Figure 6a. represents the initial world, before 
local learning is applied by the Combined method to the situations. Now, let’s assume that 
situation S1 required 1 iteration to learn the optimal policy and situation S3 required 6 
iterations, then figure 6b represents the utility values for each situation. If a global utility set is 
now created, it would appear that situations S3 is more favourable than situation S1, since it 
has a higher utility value, but this is only so because situation S3 required more iterations. 
Although this error will be corrected by the global learning of the Enhanced method, it may 
require additional iterations than would be the case if only the global policy was used in for 
example the policy iteration algorithm. Besides the fact that this problem is avoided when 
using this other learning algorithm, another reason why the Enhanced method will probably 
have a lower complexity cost when using another learning algorithm such as policy iteration 
or value iteration is because the state set size has a greater influence in the computational 
complexity of those algorithms, probably resulting in a greater computational cost reduction 
of the Combined method, as explained in paragraph 4.2.4.  
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Figure 6. Three states representing situations. 

a. Utility values before local learning 

b. Possible utility values after local learning.  

 
Summarised, the following conclusions can be drawn: 

• Situational reinforcement learning is applicable for any environment modelled as a 
(PO)MDP or Markov game environment that allows for a decomposition of the reward 
function. 

• SRL can be used in conjunction with any dynamic programming algorithm. SRL in 
it’s current form cannot be used in conjunction with reinforcement learning methods 
that use an incomplete model of the environment.  

• The SRL approach has been implemented and tested for a two player zero-sum 
Markov game environment modelled after a CTF game. 
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• The use of the Combined method results in a significant reduction of the 
computational cost, with an average reduction of 37.52%. This reduction depends 
largely on the heuristic function (more specifically the amount of situations), used 
discount factor and a combination of the two.  

• The use of the Combined method also results in a significant reduction of policy 
optimality, with an average percentage of 51.42% more games lost. This reduction 
depends largely on the nature of the environment and the heuristic function (more 
specifically how the situations are structured within this environment).  

• Whether the trade-off in computational cost and policy optimality is acceptable is a 
consideration for the developer. In my opinion, the optimality loss is too often too 
large for most practical applications of the Combined method, but the significant 
reduction in computational cost is a sufficient incentive to research possible 
enhancements to reduce the optimality loss.    

• The use of a more complex reward function reduces computational cost and policy 
optimality, although the reduction in policy optimality can be reduced or even 
nullified if the reward function is devised in such a way that correctly represents the 
desire to win (or achieve a goal). 

• Using the resulting Combined policy as a starting policy for modified policy iteration 
(the empirically tested Enhanced method) requires less iterations than a random policy 
would require. 

• Unfortunately, the reduction in iterations is often not significant enough to overcome 
the added computational cost of performing the Combined method, although it has 
been shown that it is possible to achieve equal optimality with lower computational 
cost. It is probable that the computational cost of the Enhanced method is lower when 
the policy iteration or value iteration learning algorithms are used.   
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8 Summary 
This document described an approach to policy learning, called situational reinforcement 
learning (SRL), based on a decomposition of the environment into so called situations by 
using heuristic preference values for states. Within the context of this document, the method 
that applies situational reinforcement learning as a stand-alone approach to learning was 
referenced to as the Combined method. The main goal of the Combined method was to enable 
policy learning at a lower computational cost than conventional reinforcement learning. This 
document described how SRL works, gave an implementation of the method for a game 
environment and described a theoretical and empirical evaluation of the method’s implication 
on computational complexity/cost and policy optimality. Besides the Combined method, an 
explanation, implementation and evaluation was also performed on a method that used the 
resulting Combined method policy to enhance it’s optimality. This method was referenced to 
as the Enhanced method, and was created to evaluate the use of SRL method as an addition to 
conventional reinforcement learning. 
 
Inspiration for situational reinforcement learning came from an analogy with a common 
human approach to playing games: Humans tend to restrict their planning from their current 
situation to reaching rather short-term more favourable situations instead of planning the 
entire game at once. Humans also often have, especially so for games, their own heuristics 
that tell them which situations are favourable in comparison to others. SRL copies this 
behaviour by decomposing the environment into situations with equal preference according to 
a heuristic function. The local learning processes than only focuses on reaching more 
favourable situations. For the application of SRL a decomposition of the reward function is 
required. It is most common for the reward function R in such environments to assign rewards 
to a combination of state(s) and action(s), ( )asR , . SRL requires that a decomposition is 

possible into a state reward function ( )sSR  and an action reward function ( )aAR , where the 

reward function R becomes a function of the others, such as ( ) ( ) ( )aARsSRasR +=, 1. The 
state reward function SR would then be the heuristic function on which the decomposition 
into situations is based. Each unique reward specified by the state reward function defines a 
new situation. Each situation, defined by a unique state reward which we call base reward 
here, can be created from the entire environment in the following fashion: 

1. Identify all states with a state reward that equals the base reward as inner states. 
2. Remove all transitions that do not originate from inner states. 
3. Identify the reachable states which are not inner states as outer states. 
4. Remove all states that are not inner or outer states. 
5. Add new transitions for the outer states to make them absorbing states. 

Each situation constructed in this fashion is an MDP-like environment on it’s own in which 
policies can be learned with conventional reinforcement learning algorithms. Because from a 
local learning perspective the only states with a different state reward are the outer states, the 
local learning process will most likely direct the agent these outer states, if they are more 
favourable then the inner states. A global policy is created by taking for each state the learned 
action from that state from the situation where that state is an inner state. By creating a global 

                                                 
1 This notation does not correspond with the definition of the reward function. The reward function should “give 
the expected immediate reward”, so a decomposition into SR and AR that corresponds in a better way to this 

definition would be ( ) ( ) ( ) ( )∑ ′
′⋅′+=

s
sSRsasTaARasR ,,, . Because an MDP or Markov game 

environment does not specify how the reward function should assign rewards, this decomposition is not 
mandatory.  
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policy in this fashion, the global policy will most likely direct the agent to continually 
improving situations: a rather human approach to game playing. 
 
Situational reinforcement learning is compatible with environments modelled as an MDP, 
Markov game or POMDP. The method can be used in conjunction with any dynamic 
programming algorithm, such as value iteration or (modified) policy iteration. The 
implications on computational cost/complexity and policy optimality when using the 
approach was evaluated for a Markov game environment where only modified policy iteration 
was used as a learning algorithm. In it’s current form, situational reinforcement learning 
cannot be used in conjunction with reinforcement learning methods that use incomplete 
models of the environments, such as temporal difference learning or Q-learning.  
 
Because the local policies learned by SRL are only optimal for their corresponding situations, 
the global policy that is created from combining them is most likely sub-optimal. The 
Enhanced method is an extension of the Combined method, that takes the resulting global 
policy from the Combined method and enhances this policy to become optimal by using 
conventional policy learning algorithms. In this fashion, SRL is used as an addition to 
conventional reinforcement learning and the question that needed answering was whether this 
results in lower computational costs for equal optimality in comparison to the conventional 
methods. 
 
The Combined and Enhanced methods were put into practice for a two player zero-sum 
Markov game modelled after the game Capture the flag. The created environment is explained 
in appendix D and the written program used for learning and playing in that environment is 
explained in appendix F. 
 
The evaluation of the Combined and Enhanced methods tried to give answers to the following 
questions: 

• What are the implications on computational complexity/cost and on policy optimality 
when using the Combined method? 

• What are the implications on computational complexity/cost and on policy optimality 
when using a more complex reward structure, which is a necessity for the Combined 
method? 

• What are the implications on computational complexity/cost when using the Enhanced 
method? This is considered with and without the addition of the computational cost of 
the Combined method. Without the addition indicates whether using a non-random 
starting policy results in lesser costs and with the addition indicates whether using the 
Enhanced method as a whole has potential. 

The evaluation was performed both theoretically and empirically, where most of the attention 
was given to the empirical evaluation. Although all dynamic programming algorithms for 
(PO)MDP or Markov game modelled environments could be used, the empirical evaluation 
continually used the modified policy iteration algorithm explained in appendices B and C and 
in several studies (Vrielink, 2005; Mansour & Singh, 1999; Russel & Norvig, 2003; 
Kaelbling, 1996; Kaelbling et al., 1998; Aberdeen, 2003). 
 
An evaluation on the computational complexity implications of the Combined method by 
using worst-case complexity functions showed that the reduction in computational complexity 
brought about by the Combined method depends on the learning algorithm used and the 
amount of situations created. The reduction is a factor of the amount of the situations and the 
value of this factor is defined by the weight of the state set size in the complexity function of 
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the used learning algorithm. If the amount of situations is given by g and the state set size by 
n, then for respectively the policy iteration and modified policy iteration algorithms the worst-
case complexity of Combined, ( )LcombinedO , relates to the standard upper-bound complexity of 

not using Combined, ( )LandardstO , in the following way: 

• 
( )

( ) ( )LL
L

andardstcombined

andardst
OO

g

O
≤≤

3
 

• 
( )

( ) ( )LL
L

andardstcombined

andardst
OO

g

O
≤≤

2
 

The possible worst-case reduction is greater when using standard PI than when using 
modified PI, because the state set size n of both methods are respectively of the order ( )4nO  

and ( )3nO . 
 
The empirical evaluation showed that the reduction in computational cost when using the 
Combined method in the modelled environment lay between 7.4% and 66.3%, depending on 
used reward function, discount factor and a combination of the two. Averaged over used 
reward functions and discount factors, the average empirical reduction in computational cost 
was 37,47%. 
 
The empirical evaluation on policy optimality was performed by using game performance as 
an indication to optimality. The empirical evaluation showed a danger of using the Combined 
method. Although the original environment described in appendix D, referenced to as the 
Standard environment, appeared correct in the sense that higher rewards were only given to 
states for which it was safe to say that they were more preferable, an unforeseen problem 
where an episodic situation was created devastated game performance. In direct competitions 
between Combined and Complete policies, where the Complete method can be described as 
being the conventional application of the policy learning algorithm, the Combined policies 
were outmatched in all cases. Between 40% and 80% of games were most lost, although 
performance drastically increased when the above mentioned problem was solved, referenced 
to as the Alternative environment. When only considering the Alternative environment, the 
Combined policies lost 51.4% more games averaged over discount factors. Against an 
opponent that plays random moves, the Alternative Combined policies performed nearly as 
well as the Complete policies. The evaluation showed that although lower discount factor 
resulted in lower game performance for all methods, the reduction in performance is greater 
for the Complete method than for the Combined method.  
 
The empirical evaluation also showed that although using a more complex reward structure, 
meaning a reward structure that assigns more unique rewards, can distract an agent from 
winning the game, it can also assist the agent in finding an optimal policy sooner, especially 
for lower discount factors. So although the use of a more complex reward function does have 
implications on computational cost and policy optimality, it may prove to be a worthwhile 
endeavour if the rewards are chosen carefully by the developer. 
 
The computational cost of using the Enhanced method was for all but one combination of 
environment and discount factor greater than the computational cost of using the Complete 
method. This indicates that although it is possible to reduce complexity cost for an equal level 
of optimality, it is most likely not the case if the Enhanced method is used in it’s current form 
that uses the modified policy iteration algorithm. Because of a possible problem when using 
the global utility set – which is a requirement for modified policy iteration to continue 
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learning – and because the reduction in computational cost brought about by the Combined 
method depends on the learning algorithm used, the Enhanced method may yet prove to be 
useful when other policy learning algorithms are used. This is then especially the case for 
policy learning algorithms where the computational complexity is largely dependant on state 
set size.  
 
The applicability of SRL covers a broad domain – any MDP-like environment and dynamic 
programming algorithm can be used – and in it’s current form the method could prove useful 
for problems with unambiguous situation-orderings, such as illustrated with the taxi domain in 
paragraph 2.4. In my opinion, the policy optimality loss created by the use of the Combined 
method is still too great for most practical application. I believe that the significant reduction 
in computational cost on the other hand is enough of an incentive to perform further research 
methods to reduce the optimality loss.  
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9 Further research 
Based on the research described in this document, further research of situational 
reinforcement learning can be divided into two categories: additional research on the 
implications of the approach as described in this document and research into enhancements of 
the approach. The first category aims to getter a deeper insight into the pro’s, con’s and 
potentials of SRL, where the second category tries to increase the performance of SRL. 
 
The following items are eligible for additional research into the implications of SRL: 

• Perform an evaluation where a guarantee can be given that the optimal policy has been 
learned instead of an assumption. 

• Perform an evaluation where the SRL is applied to other environments and not just to 
a CTF modelled Markov game environment. 

• Perform an evaluation on how SRL performs against similar learning methods, such as 
the described Envelope method or Hierarchical Reinforcement Learning. 

• Research what the implications are when the Enhanced method is used in conjunction 
with other policy learning algorithms than just modified policy iteration. 

• Research how SRL can be modified to be compatible with reinforcement learning 
methods that use an incomplete model of the environment. 

 
As for the enhancements to SRL, I believe that the following may prove worthwhile: 

• After having learned local policies for situations, make use of this learned local 
information, such as learned utility values, to benefit the learning process of 
neighbouring situations. A possibility that might be worthwhile to research is to use 
the learned utility values of inner states as the utility values for the learning process of 
neighbouring situations where those inner states are outer states. In such a fashion, the 
local learning processes remain local (in contradiction to the Enhanced method, where 
the learning scope became global) whilst still incorporating learned information of 
other parts of the global environment.  

• Make use of action abstraction within situations to ignore actions irrelevant for 
transitions within the situation. 

• Use an Envelope kind-of method, where the envelop which starts from a certain 
situation is continually expanded with most-likely reached situations. 

• Extend the local learning to a pre-defined ‘depth’ of situations. The Combined method 
described in this document would have a pre-defined depth of 1: consider only the 
current situation. A higher depth of for example 2 would expand the learning process 
to also incorporate single-transition neighbouring situations. 
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Appendix A: Frequently used terms 
This appendix contains an explanation of several frequently used terms in the document. 

Dynamic programming 

Dynamic programming is a form of reinforcement learning and stands for a collection of 
algorithms that are able to learn optimal behaviour if a complete model of the environment is 
given. Examples of dynamic programming algorithms are value iteration and (modified) 
policy iteration. 

Markov Decision Process 

A Markov Decision Process (MDP) and is a framework for modelling an environment. An 
MDP can be described by the tuple RTAS ,,, , where: 

• S is a finite set of states of the world. 
• A is a finite set of actions that can be performed by the agent. 
• ( )∏→× SAST :  is the transition function that specifies for an originating state and 

an action a probability distribution on resulting states. We write ( )sasT ′,,  for the 
probability that the agents reaches state s′ , given that the agent performs action a in 
state s. 

• R→× ASR : 1 is the reward function that specifies an immediate expected reward if 
an agent performs an action in a state. We write ( )asR ,  for the expected immediate 
reward the agent gains if he performs action a in state s. 

 
Within an MDP environment, behaviour of the agent is most often described by a policy π . 
The policy maps to each state of the environment a single action. Within MDP environments, 
the most common goal for agents is to maximize the amount of rewards gained during the 
lifetime of the agent. With this goal, most learning algorithms try to learn an optimal policy 
that maximizes expected rewards (Russel & Norvig, 2003; Kaelbling et al., 1998; Aberdeen, 
2003) elaborate on the MDP framework in more detail. Appendix B explains the process of 
(modified) policy iteration in an MDP framework and appendix C elaborates on complexity 
functions learning policies in an MDP modelled environment.  

Markov game 

A Markov game is an enhancement of the MDP framework to include multiple agents by 
explicitly modelling secondary agents. This allows for the modelling of complex behaviour of 
multiple agents in a single environment. Finding the optimal policy becomes somewhat more 
complicated than in the MDP setting because of the choice that opponents now have. Littman 
(1994) described this as “In the game theory literature, the solution to this dilemma is to 
eliminate the choice and evaluate each policy with respect to the opponent that makes it look 
the worst” (Littman, 1994, p. 2). This is the essence of minimax: Behave so as to maximize 
your reward in the worst case. 
  
We will only consider the two-player game of competing agents because this simplifies the 
method and it is all that is required for the proposed assignment. The Markov game 
frameworks can then be described by the tuple RTOAS ,,,, , where: 

                                                 
1 Also R→SR :  and R→×× SASR :  can be used, but these create no significant differences. 
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• Instead of a single set of actions A, a collection of action sets kAA ,,1 L  is given: an 

action set for each agent in the environment. Because a two-player game is considered, 
we will use action set A for the agent and action set O for the opponent.  

• The transition function T now needs to incorporate for a single transition an action for 
each agent: ( )∏→××× SAAST kL1: . For the two player game this consists of 

( )∏→×× SOAST :  and we write ( )soasT ′,,,  for the probability of ending in state 

s’ if the agent takes action a and the opponent takes action o, both from state s. 
• Instead of a single reward function R, each agent has an associated reward function: 

R→××× ki AASR L1: . For a two-player zero-sum game only one reward function 

can suffice that one agent then tries to maximize while the other tries to minimize it. 
For the two-player game this becomes R→×× OASR :  and we write ),,( oasR  for 
the expected immediate reward if, from state s, the agent takes action a and the 
opponent takes action o. 

 
Besides this, the Markov game framework also introduces the stochastic policy 

( )∏→ AS:π . Given a state, the stochastic policy yields a probability distribution over 

actions. In this assignment, we will not be using stochastic policies. 
 
Littman (1994) elaborates the Markov game framework into more detail. For an elaboration 
on policy iteration and complexity issues in a Markov game modelled world, respectively 
appendix B and C can be examined.  

Policy 

A policy π  is a mapping from each state to a single action: 
• AS →:π  for an agent policy. 
• OS →:π  for an opponent policy. 

( )sπ  is written to indicate the action that policy π  prescribes for state s. A policy must map a 
single action to each state in the environment. 

Reinforcement learning 

The name reinforcement learning is used for a collection of AI  learning methods that use a 
reward structure as a means to reinforce desired behaviour. Central to reinforcement learning 
algorithms are the rewards distributed to the agents inhabiting the modelled environment. 
Optimal behaviour when using reinforcement learning is behaviour that maximizes 
accumulated rewards. Examples of reinforcement learning methods are dynamic 
programming, temporal difference learning and Q-learning. 

State utility 

Although there are multiple ways to define what compromises the utility of a state, the 
worded explanation of state utility used in the context of this document would be “The 
immediate expected reward for being in a state plus the expected discounted utility of the next 
state, assuming that the agent chooses the optimal action”. Simply put, the state utility is the 
reward for a state and the discounted future rewards. For a utility maximizing agent in a 
Markov game environment, Littman (1994) gives the utility of a state by: 

( ) ( ) ( ) ( )[ ]∑ ′
′⋅′⋅+=

soa
sUsoasToasRsU ,,,,,minmax γ  (Littman, 1994, p. 3) 
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Appendix B: Policy Iteration 
This appendix elaborates on the (modified) policy iteration algorithm for MDP- and two 
player zero-sum Markov game environment. 

Policy iteration in an MDP environment 

As was said in appendix A, an MDP environment can be described by the tuple RTAS ,,, . 

In such environments, the utility of a state ( )sU  can be described by 

(B1) ( ) ( ) ( ) ( )[ ]∑ ′
′⋅′⋅+=

sa
sUsasTasRsU ,,,max γ  

The problem most learning algorithms for MDP environments try to solve, is how to find an 
optimal policy *π  for the environment given this definition of state utility and the 
environment. 
 
The idea behind the policy iteration algorithm, is to begin from a random policy and 
continually improve this policy until the optimal policy has been found. Each iteration of the 
PI algorithm consists of two phases: policy evaluation and policy improvement. In the policy 
evaluation phase, the utility of each state is recalculated by using the current policy. In the 
policy improvement phase, these new utility values are used to improve the policy. Let iπ  be 

the policy after i iterations of PI, then the utility of a state under policy iπ , ( )sU
iπ , is given 

by: 
(B2) ( ) ( )( ) ( )( ) ( )∑ ′

′⋅′⋅+=
s ii sUsssTssRsU

ii ππ πγπ ,,,  

Using these utility values, the policy can be improved by using a one-step greedy look-ahead 
function with respect to utility: choose the action that has the highest expected utility gain: 

(B3) ( ) ( ) ( ) ( )[ ]∑ ′+
′⋅′⋅+=

sa
i sUsasTasRs

iπγπ ,,,max1  

This process of policy evaluation and policy improvement is repeated until no change occurs 
to the policy, ii ππ =+1 . If this is the case, then the policy iteration algorithm guarantees the 

optimal policy is found (Kaelbling, 1996). 

Modified policy iteration 

A problem with the previously described policy iteration algorithm, is that the computational 
cost of solving the set linear equations that are created by (B2) is high. For that reason, 
modified policy iteration was created. The idea behind modified policy iteration, is that it 
might not be required to calculate the utility of each state exactly, but that an approximation to 
this exact value might yield the same results. Modified policy iteration acquires this 
approximation by keeping the policy fixed for k successive executions of the policy 
evaluation phase (B2), meaning that the utility of a state under policy iπ  is given by: 

(B4) ( ) ( )( ) ( )( ) ( )∑ ′
′⋅′⋅+←

−s ii

k

sUsssTssRsU
ii 1

,,, ππ πγπ  

In essence, the policy evaluation phase in the modified policy iteration algorithm consists of k 
iterations of policy evaluation, where in each iteration the previous calculated utility value is 
used to calculate a new utility value. (B4) can be rewritten as the following equations: 

(B5) ( ) ( ) 1≥= ksUsU
k

ii ππ  

(B6) ( ) ( )( ) ( )( ) ( ) kjsUsssTssRsU
s

j

ii

j

ii
≤≤′⋅′⋅+= ∑ ′

− 1,,, 1
ππ πγπ  

(B7) ( ) ( )( ) ( )( ) ( )∑ ′
′⋅′⋅+=

−s ii sUsssTssRsU
ii 1

,,,0
ππ πγπ  
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It can be shown, that if k reaches infinity, the perfect approximation is reached, meaning that 
the result of (B4) equals the result of (B2) for all states (Woodward, 2006). A problem is to 
find the minimal k value that guarantees that level of approximation. 

Modified policy iteration in a Markov game environment 

As was said in appendix A, a two-player zero-sum Markov game environment can be 
described by the tuple RTOAS ,,,, . We will only consider this variant of the Markov game, 

but variants with more action sets or rewards functions work in an analogous way. We will 
also not consider the use of stochastic policies meaning that only deterministic policies are 
used. For all equations it must be stated that the agent is trying to maximize utility and the 
opponent is trying to minimize utility. 
 
By integrating the new opponent action set O, the utility of a state in a Markov game 
environment – which for the MDP environment was given by (B1) – becomes respectively for 
the agent and opponent: 

(B8) ( ) ( ) ( ) ( )[ ]∑ ′
′⋅′⋅+=

soa
sUsoasToasRsU ,,,,,minmax γ  

(B9) ( ) ( ) ( ) ( )[ ]∑ ′
′⋅′⋅+=

sao
sUsoasToasRsU ,,,,,maxmin γ  

When using the policy iteration algorithm, the utility of a state under policy iπ  - which for 

the MDP environment was given by (B2) – respectively becomes for the agent and opponent: 
(B10) ( ) ( )( ) ( )( ) ( )[ ]∑ ′

′⋅′⋅+=
s ii

o
sUsossTossRsU

ii ππ πγπ ,,,,,min  

(B11) ( ) ( )( ) ( )( ) ( )[ ]∑ ′
′⋅′⋅+=

s ii
a

sUssasTsasRsU
ii ππ πγπ ,,,,,max  

and the policy improvement phase – (B3) for the MDP framework – is respectively achieved 
for the agent and opponent by: 

(B12) ( ) ( ) ( ) ( )[ ]∑ ′+
′⋅′⋅+=

soa
i sUsoasToasRs

iπγπ ,,,,,minmax1  

(B13) ( ) ( ) ( ) ( )[ ]∑ ′+
′⋅′⋅+=

sao
i sUsoasToasRs

iπγπ ,,,,,maxmin1  

 
Now, altering (B8) and (B9) to use the modified policy iteration algorithm respectively results 
in:  

(B14) ( ) ( )( ) ( )( ) ( )[ ]∑ ′
′⋅′⋅+←

−s ii
o

k

sUsossTossRsU
ii 1

,,,,,min ππ πγπ  

(B15) ( ) ( )( ) ( )( ) ( )[ ]∑ ′
′⋅′⋅+←

−s ii
a

k

sUssasTsasRsU
ii 1

,,,,,max ππ πγπ  

 
And it are (B12), (B13), (B14) and (B15) that will be used to learn policies in the modelled 
CTF game world. 
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Appendix C: Computational complexity and cost 
This appendix gives an elaboration on the computational complexity and cost functions that 
are used during the assignment. For the theoretical evaluation of the computational 
implications of using situational reinforcement learning we will use worst-case upper-bound 
computational complexity functions. For the empirical evaluation, we will use computational 
cost value functions that approximate the amount of required calculations. All used functions 
are meant to give an indication to the amount of arithmetic calculations that are required to 
learn a policy and the complexity functions only apply to policy iteration algorithms which 
use a greedy algorithm with respect to utility in the policy improvement phase. 

Worst-case upper-bound computational complexities 

The upper bound complexity of using a greedy policy iteration algorithm is the product of the 
upper bound of iterations required to learn a policy and the upper bound computational 
complexity of a single iteration. Although there is currently no exact upper bound known for 
the amount of iterations required, according to Mansour & Sing (1999) it is in practice 
difficult to construct an MDP in which greedy policy iteration takes more steps than the total 
amount of states n (Mansour & Sing, 1999, p. 2). Therefore we will use ( )nO  as the worst-
case upper-bound complexity for the amount of policies required to learn a policy. 
 
But what of the upper bound complexity of a single iteration? Each iteration of policy 
iteration consists of two phases: policy evaluation and policy improvement. In the policy 
evaluation phase, a new utility is calculated for each state, by solving the following equation 
for each state: 

(C1) ( ) ( )( ) ( )( ) ( )( )∑ ′
′⋅′⋅+=

s
sUsssTssRsU ππ πγπ ,,,  

This results in n linear equations, which by using standard linear algebra has an upper bound 
complexity of ( )3nO . 
   In the policy evaluation phase, a new action is calculated for each state by using a greedy 
one-step look-ahead function on utility to find the best action, as given by: 

(C2) ( ) ( ) ( ) ( )( )[ ]∑ ′
′⋅′⋅+=′

sa
sUsasTasRs πγπ ,,,max  

In (C2), the summation ∑ ′s
sums as many steps as the amount of possibly resulting states 

from taking action a in state s. In the worst case, the amount of possibly resulting states equals 
the total amount of states n; Because each action a must be evaluated a single time for each 
state, the upper bound complexity of the policy evaluation phase becomes ( )2naO ⋅ . 
   Add together the upper bound complexity of the policy evaluation phase and the policy 
improvement phase yields a total upper bound complexity for a single iterations of 

(C3) ( )32 nnaO +⋅  
, which is confirmed by Kaelbling (1996, p. 15).  
 
Although (C3) is the upper bound complexity of a single iteration of the policy iteration 
algorithm, the evaluated form of situational reinforcement learning uses the modified policy 
iteration algorithm. The only difference between policy iteration and modified policy iteration 
is that in the policy evaluation phase, no exact utility is calculated for each state but k 
successive approximating steps are taken for each state, where the policy remains fixed, as 
explained in appendix B and given by: 

(C4) ( ) ( )( ) ( )( ) ( )( )∑ ′
′⋅′⋅+←′

s

k

sUsssTssRsU ππ πγπ ,,,  
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Unlike (C1), this no longer results in n linear equations, but simply in n equations. The 
summation still takes at worst n steps and for each state the equation must be calculated k 
times, resulting in an upper bound of ( )2nkO ⋅ . Because the policy improvement phase does 
not change, the upper bound complexity of a single iteration of modified policy iteration 
becomes: 

(C5) ( ) ( )( )222 nkaOnankO ⋅+=⋅+⋅  
 
But this is still not where we want to be. Although (C5) applies for modified policy iteration 
in an MDP framework, it does not hold for a Markov game framework. The policy evaluation 
and policy improvement phases of modified policy iteration in a Markov game framework 
are, as explained in appendix B, given by: 

(C6) ( ) ( )( ) ( )( ) ( )( )[ ]∑ ′
′⋅′⋅+←′

so

k

sUsossTossRsU ππ πγπ ,,,,,min  

(C7) ( ) ( ) ( ) ( )( )[ ]∑ ′
′⋅′⋅+=′

soa
sUsoasToasRs πγπ ,,,,,minmax  

(C6) differs from (C4) only in the opponent action o; Because the calculation between 
brackets must be evaluated for each action o,  the resulting upper bound complexity for (C6) 
becomes ( )2nokO ⋅⋅ . (C7) differs in the same way from (C2) and the upper bound 

complexity there thus becomes ( )2noaO ⋅⋅ . The total upper bound complexity of a single 
iteration of modified policy iteration in a Markov game framework can thus be given by: 

(C8) ( ) ( ) ( )( )222 nokaOnoanokO ⋅⋅+=⋅⋅+⋅⋅  
 
By also taking the worst-case upper-bound amount of iterations into account, ( )nO , the worst-
case upper-bound complexity of learning an optimal policy using greedy modified policy 
iteration in a Markov game framework becomes: 

(C9) ( ) ( )( ) ( ) ( )( )32 nokaOnokanO ⋅⋅+=⋅⋅+⋅  

CTF computational cost 

Besides the theoretical worst-case upper-bound complexities of the various learning methods, 
an indication will also be given on the difference between the methods with respect to the 
average computational cost required to learn a policy explicitly for the modelled CTF world 
when using the modified policy iteration algorithm. This difference in cost will be calculated 
by comparing average computational cost values C. These values should give an indication on 
the average amount of calculations required to learn a policy. 
 
Just like with the previously described upper-bound complexity, but then averaged, the 
complexity value C = average amount of iterations * computational cost of a single iteration. 
The average amount of iterations is given by avgi  and is derived from empirically learning 

policies. The computational cost of a single iteration is derived from the modified policy 
iteration in a similar fashion as was done in (C8) for the upper bound case, but then without 
the worst-case assumption. This results in one difference with (C8): In the upper bound case, 
the summation in (C6) and (C7) requires at most n steps, the worst case. For the CTF world, 
this is never the so: at most there are 8 possibly resulting states (when a player returns from 
being dead into the game), but with the bulk of the state-action pairs there are but 1 or 2 
possibly resulting states. Because 8 << n, which lies around 150000, the amount of steps 
required by the summation is ignored by the computational cost value. The computational 
cost values that indicates the average amount of calculations required to learn an optimal 
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policy in the CTF world or a situation therein when using the modified policy iteration 
algorithm thus becomes: 

(C10) ( ) ( ) ( )
avgavg inokanoanokiC ⋅⋅⋅+=⋅⋅+⋅⋅⋅=  

 
For the evaluation of computational cost, we will not use the empirically found avgi  directly, 

but rather a corrected amount avgî . This corrected amount avgî  is the found avgi  decremented 

by the intuitive save t value that was used to assure that the optimal policy was found, as is 

explained in appendix E. The reason that avgî  is decremented by the t value, is because we are 

interested in the amount of iterations required to learn an optimal policy, not in the amount of 
iterations required to be certain that we have acquired the optimal policy. Because the t values 
were chosen in such a manner that we assume that the optimal policy has been found, the 

corrected amount of iterations avgî  represents for each environment the average minimal 

amount of iterations required to learn the optimal policy. By using the corrected average 
amount of iterations, it is not required to use the minimal save t value explained in appendix 
E, savet , for each environment but any savett ≥  value can be used without influencing the 

evaluation complexity function.  
 
Because we are interested in the difference in average computational cost between the 
methods, all variables from (C10) that remain the same between methods can be eliminated. 

By removing these variables a, o and k and also introducing the corrected amount avgî , (C10) 

can be written as: 

(C11) niC avg ⋅= ˆ  

These last two variables avgî  and n may not be removed, because they differ between 

methods. The average amount of iterations is dependant on several factors, two of which are 
the initial policy and the size of the environment. If the initial policy is more optimal, then it 
is likely that less iterations are required because the initial policy required less ‘improvement’. 
If the environment has a larger state set, it is likely that more iterations are required because 
policy improvement influencing state rewards may come from farther states and thus require 
more iterations to iterate through the environment. Because the Combined method uses 
environments with smaller state sets and the Enhanced method uses a (probable) more 

optimal starting policy, the variables n and avgî  may not be removed from (C10). 

 
If (C11) is applied to the three methods, the following equations for average complexity are 
derived, and these are used as part of the empirical evaluation: 

(C12) niC completeavgcomplete ⋅= ,
ˆ  

(C13) ( )∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ  

(C14) ( )niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ  

Within these three equations, the only true unknown is avgî  because the values of n and all θn  

are fixed by the CTF environment. Because the CTF average complexity values are indicating 
values for comparison and not ‘order of’ ( )LO  notations as used in the previously described 
upper bound complexities, these constants values may not be removed. In words, they serve to 
indicate the cost of a single iteration of modified PI. A single iteration of modified PI has a 
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greater cost in a larger environment, because the calculations must be performed for more 
states.    
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Appendix D: The CTF game world 
This appendix explains the various features that belong to the “Capture the flag” game. An 
overview of the world is given and the rules of the game will be explained. Also the variables 
that define the state of the world will be given as well as the available actions and some 
examples of possible transitions. The reward structure for the CTF world is elaborated on in 
the last paragraph.  

A world overview 

The CTF game that will be played contains two players that will compete against each other. 
The player will be referred to as the “Agent” and as the “Opponent”. The game environment 
contains the following elements: 

• 8 valid locations where each player can move to. Each location is determined by two 
coordinates ( )yx, , where ( )0,0  is the bottom left corner and ( )2,2  the top right corner. 

• 1 wall location that is inaccessible. 
• 1 of the 8 valid locations is called the “Agent Flag Starting Position”. 
• 1 of the 8 valid locations is called the “Opponent Flag Starting Position”. 
• 1 flag belonging to the agent, called “Agent Flag”. The location of the flag is given by 

the state variable “Agent Flag Location”. 
• 1 flag belonging to the opponent, called “Opponent Flag”. The location of the flag is 

given by state variable “Opponent Flag Location”. 
 
Figure D.1 shows the world from a top view with no players placed in it. 

OFL

OFSP

AFL

AFSP

OFSP: Opponent Flag Starting Position
AFSP: Agent Flag Starting Position.

OFL: Opponent Flag Location.
AFL: Agent Flag Location.

Valid location

Wall location

OFL

OFSP

AFL

AFSP

OFSP: Opponent Flag Starting Position
AFSP: Agent Flag Starting Position.

OFL: Opponent Flag Location.
AFL: Agent Flag Location.

Valid location

Wall location

 
Figure D. 1: The CTF world with no players 

 

Rules of the game 

The game has the following rules: 
• The players take simultaneous actions. It is impossible for one player to take an action 

and for the other player not to do so. A player may choose to do nothing, but doing 
nothing in such a fashion is seen as an action. Any inconsistencies that may arise from 
this will be handled explicitly in the rules of the game.  

• Each player can navigate the valid locations of the game world. An agent can move 
one space in any horizontal or vertical direction, if a valid location is in that direction. 
A player cannot move diagonally. It is allowed for multiple agents to occupy the same 
location. 
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• Each player can score a point by returning the flag of the opponent to the starting point 
of the agent’s own flag. If a point is scored, the opposing flag is returned to it’s 
starting location. The number of points scored in a game are recorded and define a 
way to end the game. 

• Each player can pickup a flag, if that flag is on the same location as the player and is 
not already carried by the player himself or the opposing player. If the own flag is 
picked up in such a fashion, the flag is transported back to the starting location of the 
player. If it concerns the opposing flag, the player now carries the flag and the flag 
will thus move along with the agent. 

o If both players try to pickup the same flag simultaneously, the player to which 
the flag belongs has precedence. 

o If both flags are on the same location, not being carried, and a player performs 
a pickup, then the flag belonging to that player is always picked up first. 

• Each player can attack the opposing player if the players are on the same location. If 
either player attacks, there must first be one of the following two possible outcomes: 
the agent or the opponent dies. One of the players must die. The probability of the 
agent dying depend on the following values: 

o The base chance of dying is 0.5. 
o If the agent/opponent holds the flag, the chance of dying is increased/decreased 

by 0.3. 
o If the agent/opponent performed the attack action, the change of dying is 

decreased/increased by 0.1. 
The chance that the opponent dies is 1 minus the chance the agent dies. For all actions, 
the attack has precedence. If for example, a player tries to attack, whilst the other 
player’s action was to move away from the attacking player (which would make an 
attack illegal), the attack takes precedence. Should a non-attacking player remain 
alive, the effect of the action taken by that player still occurs. 

• A player that has dies will be brought back into the game on a random location in the 
game after two actions of the player that is still alive, as will be explained further on 
with the state variables. 

• The game can end in three ways: 
o At least one of the players scored the maximum amount of points. 
o Both players choose to do nothing in two consecutive turns. 
o A to be defined amount of time has expired.  

State of the world 

The state of the world is defined by 9 state variables GSOPAPOSASOFLAFLOLAL ,,,,,,,,  

which are: 
• AL of “Agent Location”, which represents the location of the agent. Possible values 

are all valid locations. 
• OL of “Opponent Location”, which represents the location of the opponent. Has the 

same possible values as L. 
• AFL of “Agent Flag Location”, which represents the location of the “Agent Flag”. 

Possible values are all valid locations. 
• OFL of “Opponent Flag Location”, which represents the location of the “Opponent 

Flag”. Possible values are all valid locations. 
• AS of “Agent Status”, which represents the status of the agent. Possible values are 

‘Normal’, “Carrying Flag”,  ‘Dead2’ and ‘Dead1’. 
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• OS of “Opponent Status”, which represents the status of the opponent. Has the same 
possible values as AS. 

• AP of “Agent points”, which represent the amount of points scored by the agent. In the 
modelled CTF world, a maximum of 2 points can be scored by a player. 

• OP of “Opponent points”, which represent the amount of points scored by the 
opponent. Has the same possible values as AP.  

• GS of “Game Status”, which represent the status of the game. Possible values are 
‘Normal’, ‘Idle’, ‘Deadlock’. 

 
Modelling this world reveals a total of 1769472 unique states. When taking the actions, 
transitions and game rules into consideration, there is a total of 136737 reachable states. 

Available actions 

The action set of the agent A is the same as the action set for the opponent O. Each action set 
has 8 possible actions: 

• DoNothing: The player does nothing.  
• Up: The player moves one space up. This action is possible if there is a valid location 

north of the player.  
• Down: The player moves one space down. This action is possible if there is a valid 

location south of the agent. 
• Left: The player moves one space to the left. This action is possible if there is a valid 

location west of the player. 
• Right: The player moves one space to the right. This action is possible if there is a 

valid location east of the player. 
• PickUp: The player picks up a flag. A pickup is possible if the player and a flag are on 

the same location and the player is not already carrying the flag it wants to pick up. If 
the own flag is picked up, it is transported back to the player’s flag starting position. If 
the other player’s flag is picked up, the status of the player is set to “Carrying flag” 
and the opposing flag now moves along with the player. 

• Score: The player scores a point. A score is possible if the player is carrying the 
opposing flag and is at the player’s flag starting position. After a point has been 
scored, the opposing flag is immediately transported back to the opposing flag starting 
position. After a player has scored, the points of that player is increased by one. 

• Attack: The player attacks the other player. This action is possible if the agent and 
opponent are on the same locations. If an attack occurs one of the player must die 
(status changed to ‘Dead2’). 

Transitions 

The transitions and their corresponding probability that are specified by the transition function 
can be derived from the world states, available actions and the game rules. All actions create 
deterministic effects, except for the attack action and the returning of a dead player. 
Transitions that have not yet been described by the rules or action effects are: 

• Time is not explicitly modelled in the game, and the players are not aware of the time 
end condition. 

• All states where either of the other two end conditions are met, are absorbing states. 
• For the GS state variables, the following holds: 

o  If the GS variable has the ‘Normal’ value and both players are alive and both 
players choose to do nothing, the GS variables is set to ‘Idle’. 



 77 

o If the GS variable has the ‘Idle’ value and both players choose to do nothing, 
the GS variable is set to ‘Deadlock’ and the game ends in a tie. 

o In all other cases, the GS variable is set to ‘Normal’. 
 
Because there are an enormous amount of possible (probability >0) transitions, we will not 
give them all here, but give some example transitions of interesting situations. To keep the 
transitions simple, the following notations are used: 

• ? means that there are multiple possibilities, but that these possibilities are not really 
interesting for the example. 

• λ means “any action”. 
• As a reminder: ( )soasT ′,,,  was written for the probability of ending in state s’ if, 

from state s, the agent takes action a and the opponent takes action o. 
• A state was given by the tuple GSOPAPOSASOFLAFLOLAL ,,,,,,,, . 

 
A completely out written example where both players move, and the agent is carrying the 
flag: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
0.1

,,,,,0,1,2,1,1,0,0,1

,,

,,,,,,0,0,2,1,2,0,0,0
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














NormalZeroZeroNormallagCarrying F

DownRight

NormalZeroZeroNormallagCarrying F

T  

 
An example of an attack when no player is carrying the flag: 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )
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,,
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






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Some examples of flag pickups: 

( ) ( ) ( ) ( )( )
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An example of a score: 
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An example of successive transitions when the agent is dead: 
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Rewards 

Situational reinforcement learning assumes a decomposition of the reward function R into an 
action reward function AR and a state reward function SR, as was given by 

( ) ( ) ( ) ( )∑ ′
′⋅′+=

s
sSRsoasToaARoasR ,,,,,, . 

 
The action reward AR for the modelled CTF world is the sum of the reward of both actions 
and can be summarised as being: 

• The actions ‘DoNothing’, ‘Up’, ‘Down’, ‘Left’, ‘Right’ and ‘Attack’ if executed 
respectively by the agent and opponent have a reward of -0.05 and +0.05. 

• The actions ‘PickUp’ and ‘Score’ if executed respectively by the agent and opponent 
have a reward of -0.02 and +0.02. 

 
The state reward of a state in the CTF world depends on the values of the state variables. All 
states where the GS variable has the value ‘DeadLock’ have a state reward of 0, no matter the 
other variables. The state reward of all other states is the sum of the following rules: 

• The value “Carrying Flag” for AS or OS has a respective reward of +2 and -2. 
• The values ‘Dead2’ and ‘Dead1’ for AS or OS has a respective reward of -2 and +2. 
• The reward of AP and OP is respectively 10 times and -10 times the value of AP and 

OP (If for example AP is 1, it’s addition to the state reward is 10101 =⋅ ). 
 
Using this state reward structure, a total of 21 game situations with reachable states can be 
derived with the state rewards -22,-20,-18,-14,-12,-10,-8,-6,-4,-2,0,2,4,6,8,10,12,14,18,20,22. 
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Appendix E: Modified policy iteration variables 
This appendix elaborates on the variables used in the modified policy iteration algorithm and 
how these values will be set for the evaluation of SRL. In the modified policy iteration 
algorithm, there are two variables that are not defined by the environment, but that must be set 
by the developer: The discount factorγ  and the approximation variable k. First, the influence 
of both variables will be explained, after which the values are explained that will be used for 
evaluation. 

Approximation value k and termination value t 

The most common termination criteria for policy iteration, is to terminate if no change occurs 
in the policy during the policy improvement phase. The policy iteration algorithm can 
guarantee that the optimal policy is found if this termination criteria is reached (Kaelbling, 
1996). Modified policy iteration uses the approximation variable k to derive a certain degree 
of approximation to conventional policy iteration. If k is chosen high enough, a perfect 
approximation is realised. This means that the policy evaluation phase of PI and modified PI 
would yield the same utility values and that the modified PI algorithm can make the same 
guarantee of optimality as the PI algorithm (Woodward, 2006). Unfortunately, no exact 
method can be given to determine the minimal value of k required to reach that level of 
approximation. It is known that k grows linearly inγ  and that if k reaches infinity, the 
approximation becomes perfect (Woodward 2006). Should a value of k be chosen that leads to 
a less than perfect approximation, the PI algorithm could converge to a local1 optimum of 
utilities, resulting in a sub-optimal policy if the same termination criteria would be used. 
Figure E.1 and table E.1 depicts this for a simple environment where all actions have 
deterministic effects, all transitions are depicted by arrows, all rewards for reaching a state are 
written below the state name and where we are only interested in the action for state 2s . The 
obvious optimal policy for this environment is R=π& . If the initial policy is the sub-optimal 
policy Lo =π  and the minimal 1=k  is chosen, the first iteration reveals no policy change 

because the policy iteration algorithm for state s2 converges to the local ( )321 ,, sss  optimal 

utility value of 3 instead of the global ( )54321 ,,,, sssss optimal utility value of 10. If the 

conventional termination criteria would be used, the found policy would be sub-optimal. If a 
higher k value is chosen, for example 3, a better approximation is made and the optimal policy 
is found even if the termination criteria of one unchanging policy is used. 
 
By increasing the required amount of iterations where the policy improvement phase yields no 
change, henceforth called the termination value t,  PI is given the chance to escape local 
optimal policies if a value of k is chosen that gives a sub-optimal approximation. The example 
of figure E.1 and table E.1 also depict this: even if low value of k is chosen, if t is high enough 
the optimal policy can still be found. As with k, there is also no method available to determine 
a value of t that guarantees an optimal policy. 
 

                                                 
1 The word ‘local’ in the appendix does not refer to a situation, but rather refers to a sub-set of the global 
environment. 
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Figure E. 1 Simple example world with deterministic actions and no action rewards 
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Table E.1. Modified PI performed for 3 iterations with k=1 and k=3 on MDP of figure E.1 

Discount factor γ 

The discount factorγ , which has a value between 0.0 and 1.0, defines the weight of future 
rewards. Each discount factor creates a different optimal policy in the environment. In 
general, higher discount factors require more iterations of modified policy iteration to 
terminate because: 

1. In (modified) PI, the influence of the reward of a certain state into the utility of other 
states iterates further into the environment with each iteration. Because a higher 
discount factor means that the influence of future rewards is greater, the chance is also 
greater that such a future reward chances the policy. This means that it will generally 
take more iterations to find an unchanging policy with a higher discount factor. 

2. Because k grows linearly inγ  (Woodward, 2006), a higher discount factor with an 
equal value of k results in worse approximations, which in turn means that more 
iterations are required to find the optimal policy. 

3. The number of iterations required to reach the optimal value function is polynomial in 
the number of states and the magnitude of the largest reward if the discount factor is 
held constant. However, in the worst case the number of iterations grows polynomially 

in 
( )γ−1

1
, so the convergence rate slows considerably as the discount factor 

approaches 1 (Kaelbling, 1996).  
 
For the modelled CTF world, with 4=t  and 1=k , this is also demonstrated in figure E.2 for 
the Standard Complete and Simple Complete environments. 
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Figure E. 2. Required iterations for multiple discount factors with t=4 and k=1 

Choosing the variables 

A goal of the assignment is to evaluate the implications SRL on optimality and computational 
cost. In order to evaluate the implication of the Combined method on optimality by comparing 
the learned policies with learned policies of other methods through games of CTF, it must be 
made sure that the local policies learned by the Combined method have an equal degree of 
optimality as the global policies learned by the other methods. Should this not be the case, 
then any difference in optimality of the global policies between methods could also be the 
result of the initially learned local policies and not solely because of the methods. Choosing 
the same values of k for all methods would not be fair, because the value of k in order to 
obtain an equal degree of approximation is undoubtedly related to the size of the state set, and 
this size differs between the Combined method and other methods. Because there is no 
method available that, for a certain value of k and a certain environment, guarantees a certain 
degree of approximation, choosing a value of k for each environment is a problem. As was 
said previously, a higher value of t could still enable PI to find the optimal policy even if k is 
chosen to give a sub-optimal approximation. Finding a t value for each environment that 
enables the optimal policy to be found thus also ensures an equal degree of optimality. 
Unfortunately, there is also no method available that defines a t value that guarantees that the 
optimal policy can be found. 
 
Because we are unable to find a method that guarantees an equal degree of optimality of the 
learned policies within their environments, we will use a method that assumes that the 
methods have found the optimal policy. We will use the t value to determine this optimal 
policy, keeping the value of k to be the minimal 1. By empirically testing the environments 
for multiple high values of t and analysing the longevity of found local optimal policies 
(iterations where no change is found), intuitive save t values can be found. Figure E.3 depicts 
this for the Simple Complete environment: The longest local optimal policy found lasted for 6 
iterations and a t value of 1000 was used. When the algorithm terminated, there is one of two 
possibilities: 

1. The optimal policy has been found. 
2. A local optimal policy has been found that lasts for more than 1000 iterations. 

Although no guarantees can be given that the first possibility has become reality, it seems 
unlikely that the second possibility happened, because the longest found other local optimal 
policy lasted for 6 iterations, which is far smaller than the t value of 1000 that is used. For 
each environment, intuitive save t values will be found and used. In words, the assumption 
that will be made is “A policy learned with the intuitive save t value, savet , is optimal if the 
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longest found sequence of iterations without policy change, maxi , is no more than 5% of 

savet ”1. For the Simple Complete world of figure 6, where 6max =i , the learned policy would 

be considered optimal if the used t value was greater than or equal to 120. 
 

t=1000, k=1, γ=0.9, Simple Complete world, 
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Figure E. 3 Average amount of local policies found per longevity. 

 
Each discount factor creates a different optimal policy for the environment. Higher discount 
factors means that, from the perspective of a single state, rewards of states that lie farther 
away have a greater influence in the state utility. Because in games it is often better to think as 
far ahead as possible, a higher discount factor will in general result in policies that have a 
better game performance. As explained previously, it is also true in generals that a higher 
discount factors requires more iterations to find the optimal policy, meaning that a higher 
discount factor results in higher computational costs if the environment is held constant. 
Because it can thus be said that in general the effect of a higher discount factor results in 
better game performance and higher computational costs, three discount factors will be used 
for the evaluation that should give an indication for all discount factors. The evaluation will 
therefore use a low discount factor of 0.1, a high discount factor of 0.9 and a discount factor 
in between of 0.5. 

                                                 
1 5% is used because this value is often used in statistics as a border value for statistical significance  
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Appendix F: The developed program 
This appendix elaborates on the developed program. This appendix will not go into 
programming details – the source code of the program can be referenced for this – and will 
only elaborate on the features that the program provides. The goals of the program are: 

• To provide a practical application of situational reinforcement learning by modelling 
the game of CTF as described in appendix D. 

• To use the modelled environment as a platform for the empirical evaluation as 
described in paragraph 4.2. 

As such, the program provides the following features that will be explained in the upcoming 
paragraphs: 

• Enable policy learning with various discount factors (0.1, 0.5 and 0.9), environments 
(Standard, Alternative and Simple) and learning methods (Combined, Enhanced and 
Complete). 

• Compute average computational cost values for the learned policies as explained in 
paragraph 4.2.5.  

• Allow learned policies to compete in games of CTF against each other, random 
policies and human players. 

 
The program – which is written in the Java programming language – is present on a CD that is 
delivered along with this document. On this CD, the following items are present: 

• A markovgame(compiled).rar file that contains the compiled version of the 
developed program. 

• A markovgame(uncompiled).rar file that contains the uncompiled java source files 
of the developed program. 

• A markovgame directory that contains both the compiled and uncompiled java 
source files of the developed program. 

• A policies.rar file that contains the learned policies that were used in the empirical 
evaluation described in this document. 

• A markovgame.jar package file that contains a compiled version on the developed 
program. 

• A markovgame.bat file that can be used to start the program. The upcoming 
paragraph explain more on how to start the program. 

• A version of this document. 
 
In the upcoming paragraph an explanation is given on how the program can be started. How 
to access the various features of the program is explained in the paragraphs thereafter. The 
final paragraph elaborates on the files that are edited by the program.  

Starting the program 

The developed program has been written in the Java programming language. The Java 
runtime environment version 1.4.2 or higher is required in order to compile and start the 
program. In order for all features of the program to work, at least 256 MB of RAM memory 
must be available to the program. Besides this amount of internal memory, it might be prudent 
to have at least 500 MB of hard drive space available. 
 
Because the program performs file editing – as will be explained in the last paragraph – the 
program must be run in an environment where it is allowed to read and write files. The 
program can thus not be run from the CD on which it is delivered. The entire program is 
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written as a single Java package: the markovgame package. In order to start the program, one 
must first decide a working directory from which to run the program, let’s assume this 
working directory to be “C:\SRL\”. Besides the markovgame.bat file, either of the following 
must be copied into the working directory: 

1. The markovgame directory that is present on the CD. 
2. The markovgame directory that resides compressed in the 

markovgame(compiled).rar file on the CD. 
3. The markovgame.jar file that is present on the CD. 

After this is done, the markovgame.bat file can be edited accordingly your system. The file 
contains the following as default: 

• java -Xmx256m -cp . markovgame.CTF_MainEngine 

and this is sufficient if the java run-time environment is present in your system path and you 
copied either of the two directories. If the java run-time environment in not present in your 
system path, then the line must be edited accordingly. A possible alteration could be: 

• C:\Program Files\Java\bin\java.exe -Xmx256m -cp . markovgame.CTF_MainEngine 

If you did not copy either of the two directories, but rather the markovgame.jar file, then the 
class-path must be redirected to this file explicitly in the following manner: 

• java -Xmx256m -cp markovgame.jar markovgame.CTF_MainEngine 

 
The argument –Xmx256m is required in order for the java virtual machine to assign sufficient 
internal memory for all program features to work. The CTF_MainEngine class is the main 
class for the program and it can take two arguments. These arguments define the width and 
height of the frame used by the program. If you desire another dimension in pixels for your 
frame than the default dimension, you can alter it accordingly, for example in: 

• java -Xmx256m -cp . markovgame.CTF_MainEngine 1024 768 
 
After the markovgame.bat file is edited to your specific system, you can run it and the 
following screen should appear: 
 

 
Figure F. 1. The program starting screen. 

 
You have succeeded in starting the program. If at any time you wish to close the program, you 

can choose Exit from the menu bar or click on the  in the upper-right corner of the 
program frame. If you wish to use a program feature, you can select Display from the menu 
bar and choose the desired feature. Each feature will be explained in the following 
paragraphs. 

Learning policies 

In order to learn policies, you can select the Learning item from the Display menu in the 
menu bar – as displayed in figure F.2 – which will result in the displaying of figure F.3. 
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Figure F. 2. Selecting the learning feature. 

 

 
Figure F. 3. The learning feature screen. 

 
In this screen, you can input the learning parameters you desire. The following parameters 
must be given: 

• Environment: you must choose for which environment a policy must be 
learned. This can either be Standard, Alternative or Simple. 

• Method: you must choose which learning method is used to learn a policy. 
This can either by Complete, Combined or Enhanced. The Enhanced method 
can only be used if Combined policies with the same parameters have already 
been learned and written to file. 

• Discount factor: you must choose which discount factor to use in the learning 
process. A discount factor must be a value between 0.00 and 1.00. 

• Termination value: you must choose the t value – which is explained in 
appendix E. The termination value represents the amount of iterations of 
unchanging policies are required to terminate the learning process. If during 
the learning process a local optimum is found that more iterations than 5% of 
the termination value, then the learning process of the current policy is aborted. 
This is explained in appendix E as to enable the assumption that the optimal 
policy is found. The termination value must be a value of 1 or higher. 
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• Policy amount to learn: you must choose the amount of policies that must be 
learned. If all parameters are set and the learning has started, the progress bar 
at the right of the frame gives the percentage of policies for which learning is 
completed. 

• Maximizing utility: If maximizing utility is enabled then the learned policy is 
a policy for the agent. If it is disabled, the learned policy is for the opponent. In 
order for policies to be used in game playing, both agent and opponent policies 
must have been learned. 

• Reset output files: If this is enabled, then previously learned policies with the 
same parameters are overwritten with the newly learned policies. If it is 
disabled, the newly learned policies are written besides the existing ones. 

 
After all parameters are set, the Start Learning button can be pushed to initiate the learning 
process. The Output field will give program output. If the Pause learning or Stop learning 
buttons are pushed, the corresponding action will occur after the current learning process is 
completed. Depending on the learning parameters and your system, it might take several 
minutes to half an hour for a single learning process to complete. If the learning process is 
paused, it can be resumed again at a later stage. If the learning process is interrupted, for 
example by a program shutdown or by clicking Stop learning, then no policy is stored to file. 
If the process completes, then all policies for which the optimal assumption has been met – 
see appendix E – are written to file.     

Calculating computational cost 

In order to calculate computational costs, you can select the Complexity item from the Display 
menu in the menu bar in a similar fashion as figure F.2. This will result in the displaying of 
figure F.4. 
 

 
Figure F. 4. The computational cost feature screen. 

 
In this screen, you must input the parameters that define the policies for which you wish to 
calculate the computational cost. The calculation uses all policies that were learned with the 
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given parameters. In order to calculate the computational cost values, there must be at least 
one learned policy with the given parameters. In the General Output area, more detailed 
information is displayed of the last calculation. Each new calculation resets this output area. 
The Complexity Output area only displays the resulting computational cost values and does 
not reset when a new calculation is started, allow for easy comparison between multiple 
calculations.   

Playing games 

In order to play games, you can select the Playing item for the Display menu in the menu bar 
in a similar fashion as illustrated in figure F.2. This action will result in the displaying of 
figure F.5. 
  

 
Figure F. 5. The playing feature initial screen. 

 
In this screen you must select how you wish the game to be simulated and which players 
should compete. The following parameters must be set: 

• Simulation Method: three ways of simulating the game are present: Unsimulated 

Computer Play, Simulated Computer Play and Simulated Human Play. In the 
Unsimulated Computer Play, each played game is not displayed but instead the 
desired amount of games are played in one run and only the results of the games are 
given. Because it is impossible for a human player to play without the game being 
simulated, it must be two computer controlled players competing with this simulation 
method. In a simulated play, each game is played turn-by-turn, meaning that a game-
board is visible and each action is displayed upon this board. The difference between 
Computer Play and Human Play is that in the latter case one of the learning methods 
used must be Human. 

• Learning Method, Learning Environment and Learning discount factor: these 
parameters do not differ from the learning feature explained in the Learning policies 
paragraph. 
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• Amount of policies: you must select the amount of different policies you wish to use 
for the game play. The given amount define the minimal amount of policies that must 
have been learned with the given parameters as agent and opponent. This means that, 
when you input the amount of 20, 40 policies will be read from file: 20 agent and 20 
opponent policies. If insufficient policies are present, an error will be given. 

 
When all parameters are set, you can press the Start Simulation button. The Unsimulated 

Computer Play and Simulated Human Play simulation screens will be explained next. The 
Simulated Computer Play works in an analogous fashion as Simulated Human Play. 

Unsimulated Computer Play 

If you have chosen Unsimulated Computer Play, then a screen similar to the one displayed in 
figure F.6 should appear.  

 
Figure F. 6. Unsimulated Computer Play. 

 
Each panel on the screen has the following purpose: 

• Player 1 and Player 2: These panels display information about the competing players. 
• Results: This panel displays the results of played games. The Calculation Progress 

bar indicates the progress if games are being played. 
• Buttons: This panel is the input panel for the user. The Start- Pause- and Stop games 

buttons are self explanatory. The Play stop criteria can either be Unique Games or 
Minimal Valid. If Unique Games is chosen, then every policy of player 1 will play a 
single game against every policy of player 21, so each unique game – which is a 
unique combination of a player 1 and player 2 policy – is played exactly one time. If 
Minimal Valid is chosen, then the user must input a minimal amount of valid games 
that must be played and the two players will continue to compete against each other 

                                                 
1 Of course it is only possible to let agent policies play against opponent policies. 
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until the minimal amount has been reached1. The obvious difference between the two 
stop criteria is that in the latter case the user can input the minimal amount of desired 
valid games. 

• Output: This panel displays the output generated by the program. 

Simulated Human Play 

A screen similar to figure F.7 is displayed if Simulated Human Play is chosen. 
 

 
Figure F. 7. Simulated Human Play – game selecting screen. 

 
The frame displayed in figure F.7 is the game selecting screen where the user must input 
which policy will be used for the upcoming game. After a game is finished, this screen will 
re-appear. Let’s explain all the panels that are present in this screen: 

• Player 1 Behaviour and Player 2 Behaviour: These panels display information about 
the two players. 

• Game overview: This panel displays which side each player is playing on and it 
contains the button Hide/Show behaviour information. This button hides or shows the 
behavioural information of both players displayed in the previously two mentioned 
panels. This option was implemented in the game to shield the human players that 
helped as part of the empirical evaluation from information that could influence their 
zeal and effort. 

• Action Buttons: This panel contains all the possible actions that can be used by the 
human player. In the game selecting screen, these buttons are all disabled because no 
game is in progress. Once the game has started – as illustrated in figure F.8 – the 
buttons are enabled that represent actions that are possible for the human player. 

• Start new game: This panel contains the input fields required to start a new game. 
The panel is replaced by a game board if a game is started. The user can determine 

                                                 
1 In each new game, a new policy for player 1 and player 2 is used. If the given minimal valid amount is greater 
than the amount of possible unique games, then every policy of player 1 has played against every policy of 
player 2 at least once. 
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which player will play as agent and which policy will be used by the computer-
controlled player. The policy-selecting-slider is disabled for the human player, but if 
Simulated Computer Play was chosen then both sliders would be enabled. When the 
parameters are set, the user can click the Start new game button. 

• Game Status: This panel displays information relevant for the game in progress. 
• Results: The results of games that have been played are displayed in this panel. 
• Output: All relevant output generated by the game is displayed here. 

 
Once the game has been started, the following screen appears: 
 

 
Figure F. 8. Simulated Human Play - game in progress. 

 
As can be seen, the Start new game panel is replaced by a game board. The state of the game 
can be seen from this board and the Game Status panel. On the board, the agent is represented 
by a green figure, the agent flag by a green flag and the agent flag starting position by a green 
star. The red symbols correspond with the same elements for the opponent player. The game 
board is automatically replaced by the Start new game panel when the game ends.  

Program files 

The following files are edited by the program when it is running. Let’s assume that C:\SRL\ 
is the working directory: 

• Immediately after starting the program, a file C:\SRL\err.log is created. All error 
messages generated by the program are written into this file. If at any time the 
program reacts strangely and the generated output of the program is insufficient, then 
you can check this error file to see if anything went wrong. 

• If you have used the program to learn policies then those policies will be placed in the 
C:\SRL\policies\ directory. If you wish to use previously learned policies – for 
example by using the policies in the policies.rar file delivered on the CD – then those 
policies must be placed in this directory. Any policy is identifiable by learning 
environment, learning method, discount factor and whether it is maximizing or 
minimizing utility. As such, each policy is placed in the file that corresponds to 
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.\policies\<environment>\d<discount factor>\<max|min><method>.ctf, where 
<environment> is either Standard, Alternative or Simple, <discount factor> is either 
0.1, 0.5 or 0.9 and <method> is either Complete, Combined or Enhanced. A utility 
maximizing policy learned in the Alternative environment with a discount factor of 0.5 
by using the Complete method would thus be placed in the file 
.\policies\Alternative\d0.5\maxComplete.ctf. 

• Besides the global policies that are placed in the previously explained files, the 
Combined method also requires a division into situation state sets and local policies. 
The division into state sets for an environment is placed in the 
.\policies\<environment>\localStateSets.ctf file, for example 
.\policies\Standard\localStateSets.ctf. The situational policies are written to the 
.\policies\<environment>\d<discount factor>\local\<max|min>local(<base 
reward>).ctf, where <base reward> is the heuristic state reward upon which the 
situation is based.   


