

Situational Reinforcement Learning:

Learning and combining local policies by

using heuristic state preference values

S.B. Vrielink

Augustus 2006

In opdracht van:

Universiteit Twente

Opleiding:

Technische Informatica

Leerstoel:

Human Media Interaction

Beoordelingscommissie:

• Mannes Poel
• Anton Nijholt
• Zsofi Ruttkay

 2

Abstract
This document describes an approach to reinforcement learning, called situational

reinforcement learning (SRL). The main goal of the approach is to reduce the computational
cost of learning behaviour in comparison to conventional reinforcement learning. One of the
main goals of the research described in this document is to evaluate the implication of
situational reinforcement learning on the computational cost of learning behaviour and on the
optimality of the learned behaviour. The reduction in computational cost is mainly facilitated
by decomposing the environment into smaller environments – called situations – and only
learn behaviour – called a policy – for each situation. A global policy is then created by
combining all learned situational policies. Each situation is based upon states that have an
equal heuristic preference value. The learned behaviour of a situation will most likely direct
the agent to a reachable, more favourable situation. The global policy that is created from
combining the situational policies will therefore focus on continually reaching more
favourable situations. The research not only evaluates the use of situational reinforcement
learning as a stand-alone approach to artificial intelligence (AI) learning, but also applies the
approach as an addition to conventional reinforcement learning. The method that uses SRL as
a stand-alone approach will be referenced to as the Combined method and the method that
uses it as an addition to conventional methods will be referenced to as the Enhanced method.
Evaluation of the Combined method shows that the method achieves significant
computational cost reductions. Unfortunately, this reduction does not come without a price
and the evaluation shows that careful consideration of the heuristic function is required in
order to reduce the optimality loss. The evaluation of the Enhanced method shows that on
average, when using the modified policy iteration algorithm to learn policies, the
computational cost of learning a global policy is greater than when the conventional method is
solely used. I believe that the significant reduction in computational cost resulting from the
use of SRL is a good incentive to perform further research on this approach.

Dit document beschrijft een reinforcement learning (RL) methodiek, genaamd situational

reinforcement learning (SRL). Het hoofddoel van de methodiek is het reduceren van de
benodigde berekeningen om gedrag te leren t.o.v. conventioneel RL. Één van de hoofddoelen
van het onderzoek omschreven in dit document is om de implicaties van SRL te evalueren op
de benodigde berekeningen om gedrag te leren en op de optimaliteit van dit geleerde gedrag.
De reductie in berekeningskosten wordt voornamelijk bereikt doordat de methode de
omgeving opdeelt in kleinere omgevingen – situaties genaamd – en vervolgens alleen gedrag
leert voor elke situatie. Gedrag voor de globale omgeving wordt dan gecreëerd door al het
situationele gedrag te combineren. Elke situatie is opgebouwd rond toestanden met gelijke
voorkeurswaarden. Het geleerde gedrag binnen een enkele situatie zal de agent waarschijnlijk
naar bereikbare situaties leiden met een hogere voorkeurswaarde. Het gecreëerde globale
gedrag zal daarom erop gericht zijn om continue situaties te bereiken met een hogere
voorkeurswaarde. Het onderzoek richt zich niet alleen op de toepassing van SRL als een
alleenstaande methode om gedrag te leren, maar onderzoekt ook of de methodiek als
aanvulling kan dienen voor conventioneel RL. De methode die SRL gebruikt als alleenstaande
toepassing om gedrag te leren zal de Combined methode genoemd worden en de methode die
SRL als aanvulling gebruikt zal Enhanced heten. De evaluatie van de Combined methode
toont dat de methode aanzienlijke reducties in berekeningskosten teweeg brengt. Helaas komt
die reductie niet zonder prijs en de evaluatie toont ook dat de voorkeurswaarden zorgvuldig
gekozen dienen te worden om een groot verlies in optimaliteit te voorkomen. De evaluatie van
de Enhanced methode toont dat gemiddeld, als modified policy iteration wordt gebruikt als

 3

leer algoritme, de berekeningskosten om globaal gedrag te leren hoger is dan het geval zou
zijn als het algoritme op de gebruikelijke manier wordt toegepast. Ik vind dat de significante
reductie in berekeningscomplexiteit een goede aanleiding is om verder onderzoek te
verrichten naar SRL.

 4

Table of contents

Abstract .. 2
Table of contents .. 4
Preface .. 6
Introduction .. 7
1 Situational reinforcement learning ... 11

1.1 An introduction .. 11
1.2 Method applicability .. 12
1.3 Decomposition into situations.. 15
1.4 Learning local policies ... 17
1.5 Combining local policies.. 19

2 Various SRL applications... 20
2.1 Environments ... 20
2.2 Dynamic programming algorithms .. 21
2.3 Other reinforcement learning methods... 21
2.4 Example applications ... 22

2.4.1 Capture the flag .. 22
2.4.2 A first-person shooter... 23
2.4.3 The taxi domain.. 24

3 Enhancing the global policy... 26
4 Evaluation method.. 27

4.1 Theoretical evaluation .. 27
4.2 Empirical evaluation .. 28

4.2.1 The learning methods ... 28
4.2.2 The heuristic function... 29
4.2.3 The policy learning algorithm.. 30
4.2.4 Evaluating general performance... 31
4.2.5 Evaluating computational cost ... 32
4.2.6 Evaluating policy optimality .. 34

5 Theoretical evaluation .. 36
5.1 Policy optimality .. 36
5.2 Computational complexity ... 37

5.2.1 Standard policy iteration in an MDP environment... 37
5.2.2 Modified policy iteration in an MDP environment .. 38
5.2.3 Using the Markov game environment .. 39
5.2.4 Using other policy learning algorithms .. 39
5.2.5 The Enhanced method.. 39

5.3 Comparison to similar methods.. 40
5.3.1 The Envelope Method .. 40
5.3.2 Hierarchical Reinforcement Learning .. 42

6 Empirical evaluation .. 44
6.1 Computational cost... 44
6.2 Policy optimality .. 47
6.3 Comparing Combined to Complete.. 51

7 Conclusions & Discussions .. 52
8 Summary .. 59
9 Further research.. 63
10 Literature .. 64

 5

Appendix A: Frequently used terms... 66
Dynamic programming .. 66
Markov Decision Process... 66
Markov game.. 66
Policy.. 67
Reinforcement learning .. 67
State utility ... 67

Appendix B: Policy Iteration.. 68
Policy iteration in an MDP environment.. 68
Modified policy iteration.. 68
Modified policy iteration in a Markov game environment .. 69

Appendix C: Computational complexity and cost ... 70
Worst-case upper-bound computational complexities ... 70
CTF computational cost ... 71

Appendix D: The CTF game world.. 74
A world overview... 74
Rules of the game... 74
State of the world ... 75
Available actions .. 76
Transitions .. 76
Rewards .. 78

Appendix E: Modified policy iteration variables ... 79
Approximation value k and termination value t... 79
Discount factor γ .. 80
Choosing the variables ... 81

Appendix F: The developed program... 83
Starting the program... 83
Learning policies .. 84
Calculating computational cost .. 86
Playing games .. 87

Unsimulated Computer Play .. 88
Simulated Human Play... 89

Program files .. 90

 6

Preface
Now that the research is nearing its end, I first and foremost wish to thank my girlfriend for
taking the time to gain an understanding into my research field and providing me with
ongoing motivation and criticism. Although from her perspective, the research must have
been quite complicated and boring, she was never unwilling to help.

I also wish to thank Mannes Poel, my guidance teacher for the assignment, for continually
keeping the research problem manageable and providing me with useful criticism. My first
proposed research assignment did not only contain an entirely new approach to game AI, but
also included a three-dimensional real-time multiplayer first-person shooter game that
employed state-of-the-art graphics. Although the road from that daring plan to the actually
performed research was a long one, it was worthwhile and educational.

Finally I wish to thank all those that participated as human players in the method evaluation
for their endurance. Although the first few games were always entertaining, the relative
simplicity of the game with it’s teeth-grinding probabilities led to quick frustrations. I also
wish to thank them for the numerous, humorous, although always erroneous, hypothesis about
fixed probabilities and whatnot.

It is my hope that I get the opportunity to apply situational reinforcement learning, perhaps in
a somewhat modified fashion, to a commercial computer game that I helped develop. This
game will then, no doubt, be a commercial break-through… I hope.

Sander Vrielink

 7

Introduction
In the past few years the computer gaming industry has grown considerably. Along with that
growth came an increased interest in game aspects that had been previously largely ignored.
Traditionally most development focused on the graphical aspect of the game, but in recent
years development of the artificial intelligence (AI) in games has seen a significant growth
(Darryl, 2003). The few conditional rules and predefined events that controlled most AI
behaviour in the past no longer seems to meet the needs of the players. Game AI can be
considered a rich field of interesting problems with often large, well defined, partially
observable game environments where multiple agents have conflicting or common goals and
where actions have stochastic effects. Approaches to AI originally devised to solve problems
in game AI can often be fruitfully applied to conventional problems, where game theory is an
excellent example (Russel & Norvig, 2003, pp. 631-641; Morris, 1994). The developed
method which is explained and evaluated in this document is also devised from a game
perspective, but – as will be shown – is also applicable for conventional problems.

Since game AI has seen increased interest, many different methods for creating or learning AI
have been proposed. The AI in most games today still rely in some degree to a form of finite

state machines (Gill, 1962), which often is a predefined structure that chooses actions based
solely on the current state. Search algorithms such as A* (Russel & Norvig, 2003) are also
widely used in games, especially for path-finding (Darryl, 2003). Although there are many
forms of these two methods which differ in complexity, they are still basically methods where
the resulting behaviour is predefined by the developer. Other methods focus more on learning,
where behaviour is not predefined but learned through experience or reinforcement.
Evolutionary algorithms (Bakkes, Spronck & Postma, 2004, 2005) are an example of such
methods, where the result of choosing an action in a certain state is evaluated and the action
for that state is reconsidered accordingly. The learning process is thus performed through the
evaluation of experience. Another example of a learning approach is the neural network
(Haykin, 1999). Given a training set – which is a set of inputs and corresponding desired
outputs for the network – the neural network is ‘trained’ to generate the desired outputs based
on the inputs. If an untrained input is than presented to the network, it is most likely that the
network will output a signal that corresponds to the trained input that most closely resembles
the given untrained input – a sort of pattern recognition. Through the training set, the neural
network learns which outputs to generate based on inputs. The last example of a learning
approach to AI – and the approach adopted by the developed method – is reinforcement

learning (Sutton & Barto, 1998). In reinforcement learning a reward structure is present that
assigns rewards based on for example states or actions. The desirability of behaviour is
evaluated by the rewards accumulated by that behaviour. Reinforcement learning algorithms
focus on learning behaviour that maximize rewards. The approach to reinforcement learning
that is developed as part of the research and that is central to the assignment will be called
situational reinforcement learning (SRL) for reasons that will be explained later on.

Within reinforcement learning there are several ways to learn optimal behaviour. In the
context of this document, only reinforcement learning algorithms that are applicable in
Markov Decision Process (MDP) modelled environments or derivatives thereof will be
considered (Russel & Norvig, 2003; Kaelbling, Littman & Cassandra, 1998; Aberdeen, 2003).
One form of reinforcement learning is dynamic programming. According to Sutton & Barto
(1998, chap. 4) “The term dynamic programming (DP) refers to a collection of algorithms that
can be used to compute optimal policies given a perfect model of the environment as a
Markov decision process”. Multiple dynamic programming algorithms can be used to learn

 8

optimal behaviour for an agent, the most notable of which are value iteration and policy

iteration (Mansour & Sing, 1999; Russel & Norvig, 2003; Kaelbling, 1996; Kaelbling et al.,
1998; Aberdeen 2003). Other forms of reinforcement learning are the Monte Carlo methods
(Sutton & Barto, 1998). The difference between Monte Carlo and dynamic programming is
that Monte Carlo methods do not require a perfect model of the environment, but use
experience gained through interaction or simulation to generate a model of the environment.
Temporal difference learning (Sutton & Barto, 1998) is a combination of Monte Carlo and
dynamic programming and tries to get the best of both. Although the situational reinforcement
learning method will only be explained in detail and empirically tested for a dynamic
programming algorithm – more precisely a modified version of policy iteration – an
explanation will be given on how the method will work for other dynamic programming
algorithms and other reinforcement learning techniques.

A problem with most dynamic programming algorithms, such as value- or policy iteration, is
that finding the optimal policy – the behaviour that optimally achieves the agent’s goal – is a
computationally costly operation. For complex environments – and most games fall under that
category – finding the optimal policy becomes an intractable problem. The two most
commonly used methods of decreasing this complexity are:

• To use simpler computations that approximate the exact computations. This is for
example done by the modified policy iteration (mPI) algorithm (Russel & Norvig,
2003; Kaelbling, 1996; Kaelbling et al., 1998; Aberdeen, 2003).

• To reduce the environment in which the learning process is performed. For example
used by hierarchical reinforcement learning (Dietrich, 1999, 2000; Pineau, Gordon &
Thun, 2003) and the envelop method (Russel & Tash, 1994; Gardiol & Kaelbling,
2004). Situational reinforcement learning also alters the environment in which
learning is performed and as such can be seen as an alternative to such methods..

A problem with the use of an MDP modelled environment for games, is that games usually
have multiple players with contradicting goals. Because the MDP environment only takes a
single action set and reward function into consideration, behaviour of other agents must be
modelled as being part of the environment. This considerably increases the difficulty of
modelling complex behaviour of other agents. An extension of the MDP framework that tries
to solve this problem is the Markov game framework (Littman, 1994). In a Markov game
modelled environment, each agent has a corresponding action set and reward function which
allows for the explicit modelling of multiple agents in the same environment.

The first goal of the assignment is to develop the situational reinforcement learning method.
SRL must be applicable in MDP and Markov game modelled environments, must be able to
use any dynamic programming algorithm within such environments and be able to learn
policies at a lower computational cost than would be the case if the dynamic programming
algorithm was applied to the environment without using SRL. Situational reinforcement
learning tries to achieve this goal by decomposing the environment into smaller environments
– called situations – and only perform the learning process for each of these local
environments. A policy that spans the global environment is then created by combining all the
learned local policies. When considering the goal of SRL – which is to reduce the
computational cost by performing the learning process on smaller environments – the method
can be seen as an alternative to methods like hierarchical reinforcement learning or the
envelope method.

 9

Situational reinforcement learning is inspired by an analogy with how humans play games:
Human players often do not have the capacity like computers to foresee a game entirely from
beginning to end, but they are still able to rather effectively play complex games. If the player
has not foreseen the end, how can he then be rather certain that his move or planned series of
moves contribute to reaching a favourable end? Various reasons exists, experience among
others, but the feature that SRL is trying to exploit is the human tendency to assign heuristic
values to states that indicate preference; although the human player does not see the end, his
heuristics tell him that taking a certain piece of the board or making a certain move
contributes to a more favourable situation. By continually trying to reach more favourable
situations in such a fashion, the human player can play complex games effectively by creating
rather short-term plans. A human ability that is not incorporated into SRL is the ability to use
experience to alter the heuristics. Within the method, the heuristic function is a static entity
given by the developer and any desired changes to this function must be done by the
developer.

Quickly said, situational reinforcement learning performs the following operations:

1. Decompose the environment into unique situations. A situation is a subset of the
environment which is build around states with an equal preference value according to
the heuristic function, called the inner states of the situation. Each situation is
constructed by SRL in such a fashion that is allows for the previously described
human approach to game playing: it contains the states with an equal preference value
– the inner states – and states with a different preference value but that are reachable
through a single-transition from an inner states. These states are called the outer states
of a situation and can be seen as goal states for that situation.

2. Learn a policy for each situation.
3. Combine the situation policies to create a policy that spans the original environment.

Within this document, the terms local and global will be frequently used. If local elements are
discussed, such as a local policy, this reflects on a situation. If global elements are discussed,
such as the global environment, this reflects on the original environment.

A second goal of the assignment is to put SRL into practice for a Markov game modelled
environment where games of Capture the flag (CTF) can be played. A program that facilitates
this goal is written as part of the assignment and appendix F explains this program in more
detail. This game environment can then be used as a tool for the third and fourth goal of the
assignment: The evaluation of SRL’s implication on policy optimality and computational
cost. Although the implications of the method are only empirically evaluated for one
environment in which one dynamic programming algorithm is used, the results gathered from
this evaluation will be used to give indications for other environments and other learning
algorithms.

Besides an evaluation of using SRL on its own, a fifth goal is to evaluate the computational
cost required for learning an optimal policy by using the resulting global policy of SRL as a
starting policy for the modified policy iteration algorithm. This evaluation should give an
indication whether SRL has a practical application as an addition to conventional
reinforcement learning.

Situational reinforcement learning will be explained in the upcoming chapter: how the reward
function can be used as the heuristic function which allows for a decomposition of the
environment into situations, how policies can be learned for these local environments and
how these policies can be combined to form a global policy. The second chapter goes into

 10

various possible applications for SRL: multiple environment modelling techniques and
reinforcement learning method will be reviewed and some examples will be given of possible
applications for the method. The chapter thereafter gives the method that uses the learned
global policy of SRL as a starting policy for modified policy iteration on the global
environment. The fourth chapter gives the evaluation method that will be used to evaluate the
implications of using situational reinforcement learning. The fifth chapter gives the theoretical
evaluation, based on method analysis and worst-case upper-bound complexity functions and
the sixth chapter gives the empirical evaluation of the method in which SRL has been applied
to the modelled CTF game environment. In the final chapters, conclusions will be drawn, a
summary of this document will be given and points for future research will be mentioned. The
various appendices give more detailed information on items of interest for the assignment.
Within this document, the method that uses SRL as a stand-alone approach to learning
behaviour will be referenced to as the Combined method. The method that uses the global
policy of the Combined method as a starting policy for modified policy iteration on the global
environment will be referenced to as the Enhanced method.

 11

1 Situational reinforcement learning
This chapter explains situational reinforcement learning. The first paragraph gives an
introduction to the approach and the second paragraph gives an explanation on it’s
applicability. In the paragraph thereafter, the method is given on how the environment can be
decomposed into situations. After that, an elaboration is given on how local policies can be
learned for each of these situations. The final paragraph explains how the local policies can be
combined to form a global policy: a policy that spans the original state space.

1.1 An introduction

The inspiration for situational reinforcement learning came from an analogy with how
humans play games. Two features that humans use when playing games are key to SRL:

1. Human players are often able to assign heuristic values to states of the game that
indicate their overall advantage or disadvantage against the opponent. This allows
human players to identify situations, which are sets of states with an equal
(dis)advantageous setting, and assign preference to these situations. By trying to reach
more favourable situations, which are situations with a higher heuristic value, human
players can be rather certain that they are trying to win the game even if they haven’t
even considered the states that truly end the game. Let’s take chess for example: each
piece on the board can be assigned a specific value and from the amount of pieces still
on the board a value can then be derived for each possible state of the game. Often just
by looking at this value, a player can identify his predicament in the game.

2. Human players most often do not try to solve the entire game at once, but rather just
try to improve their current situation. This allows human players to play complex
games without creating a plan that spans from the beginning to the end. This human
tendency can also be exemplified by chess: human players mostly focus their attention
on trying to take an important piece of the opponent, instead of immediately thinking
on how to manoeuvre the opponent into check-mate.

If a player has a better heuristic function – which enables him to better assess the situations in
the game – and is able to plan more situations ahead – enabling him to avoid traps – then this
player will probably be the victor in most games.

Conventional reinforcement learning uses a straightforward method: use no heuristic function
but only assign rewards to end states and learn a policy for the entire environment at once.
Although this approach results in the best possible policy, the problem is that learning an
optimal policy in such a fashion for complex environments becomes intractable. To reduce
the computational cost, SRL suggests the use of a more complex heuristic function that allows
for situation identification. By decomposing the environment into situations and only learn
optimal policies for these smaller environments, the computational cost of learning a global
policy can be greatly reduced as will be shown in upcoming chapters.

There is no generic method available that can tell whether a heuristic function is correct; most
of the heuristic values used in popular games are the result of decades of experience and
analysis. In chess for example, the heuristic values assigned to states is almost uniformly
accepted. It is the burden of the developer to devise a heuristic function.

The situational reinforcement learning approach performs – simplistically said – the following
operations that will be explained in more detail in the upcoming paragraphs:

• Use a heuristic function to identify situations.

 12

• Learn optimal policies for each situation.
• Combine the learned local policies to create a global policy.

The Combined method – which is SRL as a stand-alone approach to learning behaviour and is
called Combined because it combines local policies – has the following problems, which will
be elaborated and evaluated in upcoming chapters:

• The heuristic function greatly affects the optimality of the resulting policy, but what is
a ‘good’ heuristic function?

• The reduction in computational cost is the result of learning in smaller environments,
but as a result the learned policies are only optimal in their smaller environments,
making the combined global policy most likely sub-optimal.

1.2 Method applicability

The Combined method is developed to be applicable in MDP- and Markov game modelled
environments. This paragraph will give a quick summary of the MDP- and Markov game
frameworks, how the heuristic function can be used therein and how this defines the
applicability of the method. Appendix A as well as several studies (Littman, 1994; Russel &
Norvig, 2003; Kaelbling, 1996; Kaelbling et al., 1998; Aberdeen, 2003) can give additional
insight into the MDP- and Markov game framework.

A Markov Decision Process is a framework for modelling an environment and can be
described by the tuple RTAS ,,, , where:

• S is a finite set of states of the world.
• A is a finite set of actions that can be performed by the agent.
• ()∏→× SAST : is the transition function that specifies for an originating state and

an action a probability distribution on resulting states. We write ()sasT ′,, for the
probability that the agents reaches state s′ , given that the agent performs action a in
state s.

• R→× ASR : 1 is the reward function that specifies an immediate expected reward if
an agent performs an action in a state. We write ()asR , for the immediate expected
reward gained by the agent if he performs action a in state s.

Summarised, the states in S describe the world in which the agent lives. The action set
describes the possible actions at the agent’s disposal. The transition function describes the
dynamics of the world, meaning how the actions of the agent effect the world. The reward
function describes the agent’s desires. The goal of most AI learning algorithms within an
MDP environment is to find the optimal policy, where a policy, AS →:π , maps to each
state in the world a single action. As such, a policy describes the behaviour of an agent.
Littman (1994) describes an optimal policy in an MDP environment as “In an MDP, an
optimal policy is one that maximizes the expected sum of discounted reward and is
undominated, meaning that there is no state from which any other policy can achieve a better
expected sum of discounted reward” (Littman, 1994, p. 2).

A problem with the MDP framework for the modelling of game environments is that the
framework only takes a single action set and reward function into consideration, meaning that
the behaviour of other agents must be modelled as being part of the environment. This

1 Also R→SR : and R→×× SASR : can be used, but these create no significant differences according
to several studies (Russel & Norvig, 2003; Kaelbling et al., 1998).

 13

considerably increases the difficulty of modelling complex behaviour of the other agents,
which is an important aspect for effective game playing. An extension of the MDP framework
that tries to solve this problem is the Markov game framework. In a Markov game modelled
environment, each agent has a corresponding action set and reward function, allowing for the
explicit modelling of multiple agents in the same environment. The Markov game framework
differs from the MDP framework in the following manner:

• A collection of action sets kAA ,,1 L is given instead of a single actions set A. Each

agent in the environment has a corresponding action set.
• The transition function T now needs to incorporate for each transition an action for

each agent: ()∏→××× SAAST kL1: .

• Instead of a single reward function R, each agent has an associated reward function:
R→××× ki AASR L1: .

The goal of most learning algorithms in a Markov game modelled environment does not differ
from the goal in an MDP modelled environment: find the optimal policy. For Markov games,
where performance depends critically on the choice of opponents, this goal is somewhat more
complex to achieve. Let’s review this difficulty by looking at games with simultaneous turn-
taking. In such games, each player must choose an action at the same time, meaning that no
player knows what the other players are going to do. Because the optimal action of a player
depends on the (unknown) actions of all other players, it is impossible to be certain what the
optimal action is. Littman (1994) described the solution for this as “In the game theory
literature, the resolution to this dilemma is to eliminate the choice and evaluate each policy
with respect to the opponent that makes it look the worst” (Littman, 1994, p. 2). Simplistically
put, this means that the agent assumes that the opponent is clairvoyant and will always choose
the action that is worst in response to the agent’s action. The agent thus evaluates each action
for the worst possible outcome. This performance measure prefers conservative strategies that
result in ties to more daring strategies that can results in great rewards against some opponents
and low rewards to others. This is the essence of minimax: Behave so as to maximize your
reward in the worst case (Littman, 1994).

For the assignment, we will only consider a two player zero-sum1 Markov game with
simultaneous turn-taking, unless stated otherwise, described by RTOAS ,,,, , where

• A is the action set of the player called the agent and O is the action set of the player
called the opponent.

• The transition function becomes ()∏→×× SOAST : , and we write ()soasT ′,,, for

the probability of ending in state s’ if the agent takes action a and the opponent takes
action o, both from state s.

• Only one reward function can suffice that one agent then tries to maximize while the
other tries to minimize it. For the two-player game this becomes R→×× OASR :
and we write),,(oasR for the expected immediate reward if, from state s, the agent
takes action a and the opponent takes action o. The agent tries to maximize the reward
function and the opponent tries to minimize it.

As was said in the previous paragraph, the heuristic function that is used by SRL must assign
heuristic values to states that represent the preference of the state. The reward function, which

1 In a zero-sum game, the gain (or loss) of a player is exactly balanced by the losses (or gains) of the opposing
player(s). It is so named because when you add up the total gains of the players and subtract the total losses then
they will sum to zero.

 14

is already present in MDP and Markov game environments, can be made to serve this goal.
The reward function ()oasR ,, gives immediate expected rewards based on states and actions
(Kaelbling et al., 1998). Because the heuristic function should only indicate preference based
on states, not on actions, SRL assumes a decomposition of the reward function into an action
reward function AR and a state reward function SR:

• R→× OAAR : . We write ()oaAR , for the reward if the agent performs action a
and the opponent performs action o.

• R→SSR : . We write ()sSR for the reward of being in state s.
The SR function can then be used as the heuristic function that was required for the method.
The assumed decomposition of the reward function R→×× OASR : , which must still give
the immediate expected rewards based on states and actions, can become:

• () () () ()∑ ′
′⋅′+=

s
sSRsoasToaARoasR ,,,,,,

Although any arbitrarily complex function could be used since the MDP or Markov game
modelled environments do not specify the exact implementation of the reward function. The
above mentioned decomposed reward function can be used for a two player zero-sum Markov
game, but similar reward functions can be used for MDP environments:

• () () () ()∑ ′
′⋅′+=

s
sSRsasTaARasR ,,,

or Markov games with more than two players, where each associated reward function must be
decomposable into an action reward function and state reward function:

• () () () ()∑ ′
′⋅′+=

s innini sSRsaaasTaaaARaaasR ,,,,,,,, 212121 LLL

The applicability of situational reinforcement learning depends on the environment being
modelled. If a decomposition of the reward function(s) into an action reward function and a
state reward function is possible, then the environment can be decomposed into situations as
is described in the next paragraph and the method is applicable. Games in general are often
well suited for such a decomposition because:

• Games are defined by strict rules. These rules allow for clear world dynamics, such as
unambiguous probabilities for the stochastic effects of actions, and enables the
modelling of most games as discrete1 environments.

• Within games, the assignment of heuristic preference values to states comes almost
naturally. For most games, expert players use their own heuristic values, possibly
without consciously doing so. For games which have seen much analysis, numerical
value assignment to states are almost uniformly accepted.

For the assignment, we will consider a static2 discrete two player zero-sum game environment
modelled after a game of CTF in which the players take simultaneous actions.

As was said in the previous paragraph, the Combined method performs three operations,
which will be elaborated on in the upcoming paragraphs:

1) Decompose the global environment into local situations.
2) Learn a policy for each situation.
3) Combine the situation policies.

The applicability of the method depends entirely on the first step. If such a decomposition is
possible, which is the case if the reward function can be decomposed, then situations can be
created. The second step of the method operation, the learning of policies, is independent

1 In a discrete environment, the state of the world can be represented by discrete values and a finite set of actions
and states are present.
2 In a static environment, the state of the world can only change through actions of the agent(s).

 15

from SRL; Because each situation is created in such a way that it on itself is an MDP or
Markov game environment, each learning algorithm for such environments can be used. The
third step, the combining of situation policies, is developed upon situations. As long as
policies from situations are being combined, this step can always be performed.

1.3 Decomposition into situations

This paragraph explains the method for decomposing an MDP-like environment into a unique
set of situations. Only the two-player zero-sum Markov game environment described by

RTOAS ,,,, will be considered, but all MDP- and Markov game environments are

decomposable in an analogous manner.

Let Θ be the set of situations. Each situation Θ∈θ must be derivable from the entire
Markov game environment RTOAS ,,,, and must be a Markov game environment on its

own, described by θθθθθ RTOAS ,,,, . Let’s look at what a situation should be able to

achieve: The heuristic function should enable a player to identify situations, which are sets of
states with an equal (dis)advantageous setting for the player, and by doing so allow the player
to restrict his learning to find a way to a more favourable situation. This means that:

• The state set θS should consist of all states that have an equal value according to the

heuristic function, henceforth called the inner states θSI , and all states that have a

different value according to the heuristic value but that are reachable by a single
transition from the inner states, henceforth called outer states θSO . The inner states

are the identification of the situation and the outer states are the goal states that enable
the learning process to find reachable situations.

• The action sets θA and θO do not differ from the entire environment because the

situations are a subset of the entire world and the available actions in the world do not
change. Because the situation no longer consists of all states that were present in the
global environment, the effect actions have do change but these dynamics of the world
are described by the transition function.

• The transition function θT can be seen as having inner transitions and outer

transitions. Inner transitions originate from inner states, and these transitions do not
differ from the transitions if they were made in the entire environment. Outer
transitions originate from outer states, and since these states can be seen as end states
of a situations they will become absorbing states: states in which each action leads
back to the state with a probability of 1.0. So outer transitions always have the same
originating and resulting state and these states must be outer states of the game
situation.

• The reward function θR does not differ from the entire environment.

Let’s formalize the above mentioned requirements:

• Θ is the finite set of situations.
• θS is a finite set of states of the situation θ .

• θA and θO are the finite sets of actions that can respectively be performed by the

agent and opponent in situationθ .
• ()∏→×× θθθθθ SOAST : is the transition function for situation θ that specifies for

an originating situation state and an action a probability distribution on resulting

 16

situation states. We write ()soasT ′,,,θ for the probability that the agents reaches state

s′ , given that the agent performs action a in state s.
• R→×× θθθθ OASR : is the reward function for situation θ that specifies an

immediate expected reward if an agent and opponent perform an action in a state. We
write ()oasR ,,θ for the immediate expected reward if the agent performs action a and

the opponent performs action o in state s.
• SS ∈•Θ∈∀ θθ : Each state set of a situation is a subset of the global state set.

• θSI is a finite set of inner states of the situation θ .

• θSO is a finite set of outer states of the situation θ .

• θθθθ SOSIS ∪=•Θ∈∀ : Each state set of a situation is the union of inner states and

outer states of that situation.
• θθ SIsSs ∈•Θ∈∃∈∀ !, : For each state of the global environment a unique situation

exists where the state is part of the inner states.
• () () θθ SIsssSRsSRSss ∈′•Θ∈∃⇒′=•∈′∀ ,!, : If two states have an equal state

reward, then there exists a unique situation where both states are part of the inner
states.

• () ()soasTsoasTSsOoAaSIs ′=′•∈′∀∈∀∈∀∈∀Θ∈∀ ,,,,,,,,,, θθθθθθ : The

transition function for each situation equals the transition function for the global
environment if the originating state of the transition is an inner state of the situation.

• () 0.1,,,,,, =•∈∀∈∀∈∀Θ∈∀ soasTOoAaSOs θθθθθ : The transition function for

each situation specifies that each transition with an outer state as the originating state
has the same outer state as the resulting state.

• () θθθθθθθθ SOsSIssoasTSsOoAaSIs ∈′⇒∉′∧>′•∈′∀∈∀∈∀∈∀Θ∈∀ 0,,,,,,, :

If a transition in a situation is possible, where an inner state of that situation is the
originating state and the resulting state is not an inner state of that situation, then that
resulting state is an outer state of the situation.

• OOAA =∧=•Θ∈∀ θθθ : For each situation, the action set of the agent and

opponent are the action set of the agent and opponent in the global environment.
• () ()oasRoasROoAaSs ,,,,,,, =•∈∀∈∀∈∀Θ∈∀ θθθθ : The reward function for

each situation equals the reward function for the global environment.

Simplistically said, the decomposition process first identifies the unique state rewards that are
present in the environment and then performs the following operations for each state reward,
where for each state reward we start from the global environment:

1. Designate the states with the given state reward as being inner states.
2. Remove all transitions that do not originate from inner states.
3. Designate the reachable states which are not inner states as outer states.
4. Remove all states that are not inner or outer states.
5. Add new transitions for the outer states to make them absorbing states.

Figure 1a depicts a simple MDP environment where states are depicted by circles and
possible1 transitions are depicted by arrows. Figure 1b depicts this environment where the
inner states of each situation is encircled by a dotted line. Figure 2 shows the results if the

1 A transition is considered possible if the probability of the transition is greater than 0.

 17

above 5 step process is used for all situations, where the inner states of a situation are still
encircled by a dotted line.

s3

1
s4

1

s6

1

s7

0

s5

3

s2

2
s1

2

a. b.

s3

1
s4

1

s6

1

s7

0

s5

3

s2

2
s1

2

s3

1
s4

1

s6

1

s7

0

s5

3

s2

2
s1

2

a. b.

s3

1
s4

1

s6

1

s7

0

s5

3

s2

2
s1

2

Figure 1a. example MDP environment with states, state rewards and transitions

b. The inner states of each situation encircled by a dotted line. These are not yet situations.

s3

1
s4

1

s6

1

s5

3

s2

2

s3

1

s2

2

s1

2

s7

0

s5

3

s2

2
s6

1

s7

0

s5

3

s3

1
s4

1

s6

1

s5

3

s2

2

s3

1

s2

2

s1

2

s7

0

s5

3

s2

2
s6

1

s7

0

s5

3

Figure 2. The four situations derived from figure 1, where inner states are encircled.

1.4 Learning local policies

Now that the process of creating situations has been explained, we turn towards the process of
learning policies for these situations. A local policy θπ is the policy belonging to situation θ

that maps a single action to every state of that situation: θθθπ AS →: . Because each situation

 18

is an MDP or Markov game environment on it’s own, any policy learning algorithm suited for
such environments can be used. The next chapter explains how situational reinforcement
learning can be used in conjunction with different reinforcement learning algorithms.

Because the situation is created in such a fashion that each inner state has an equal state
reward and the outer states are goal states, the learned policy for a game situation will most
likely direct the agent to outer states with high rewards, if an outer state exists that has a
higher state reward than the inner states. This conforms to a goal of the method, where the
learning process should only focus on reaching more favourable situations. More on this will
be explained in the evaluation.

The empirical evaluation of the Combined method will focus on the use of a single dynamic
programming learning algorithm: modified policy iteration. The (modified) policy iteration
algorithm is explained in detail in appendix B for MDP and Markov game environments, but
a small introduction to the algorithm will be given here for an MDP environment. The
modified policy iteration algorithms is – as it’s name suggests – a modified version of the
policy iteration (PI) algorithm. The method used by the policy iteration algorithm is to start
off with a random policy and continually improve this policy until the optimal policy has been
found. Each iteration of the PI algorithm consists of two phases: policy evaluation and policy
improvement. In the policy evaluation phase, the utility of each state is recalculated by using
the current policy. In the policy improvement phase, these new utility values are used to
improve the policy. Let iπ be the policy after i iterations of PI, then the new utility of a state

under policy iπ , ()sU
iπ , is calculated in the policy evaluation phase by solving the following

equation:
(1) () ()() ()() ()∑ ′

′⋅′⋅+=
s ii sUsssTssRsU

ii ππ πγπ ,,,

Using the new utility values, the policy can be improved by using a one-step greedy look-
ahead function with respect to utility: choose the action that has the highest expected utility
gain:

(2) () () () ()[]∑ ′+
′⋅′⋅+=

sa
i sUsasTasRs

iπγπ ,,,max1

This process of policy evaluation and policy improvement is repeated until no change occurs
to the policy, ii ππ =+1 . If this is the case, then the policy iteration algorithm guarantees the

optimal policy is found (Kaelbling, 1996).

A problem with the previously described policy iteration algorithm, is that the computational
cost of solving the linear equations in the policy evaluation phase given by (1) is high. For
that reason, modified policy iteration was created. The idea behind modified PI, is that it
might not be required to calculate the utility of each state exactly in the policy evaluation
phase, but that an approximation to this exact value might yield the same results. Modified
policy iteration acquires this approximation by keeping the policy fixed for k successive
executions of the policy evaluation phase, meaning that the policy evaluation can be given by:

(3) () ()() ()() ()∑ ′
′⋅′⋅+←

−s ii

k

sUsssTssRsU
ii 1

,,, ππ πγπ

Appendix B explains what (3) entails in more detail. It can be shown that if k reaches infinity,
the calculated utility values of (3) equals the utility values if the PI algorithm was performed,
as given by (1), meaning that the modified PI algorithm perfectly approximates the PI
algorithm (Woodward, 2006). A problem is to find the k value that guarantees that level of
approximation. If a k value is chosen to perfectly approximate the PI algorithm, then modified
PI can make the same guarantees about optimality as PI. If on the other hand a k value is

 19

chosen that does not perfectly approximate the PI algorithm, then it is possible that a sub-
optimal policy is found if the modified PI uses the same termination criteria as PI. Appendix
E goes into this in more detail.

1.5 Combining local policies

The agent is now able to learn policies for each situation and the policies belonging to these
situations can easily be combined to form a policy that spans the entire environment. The
global policy π is created by using for each state s, the action specified by local policy θπ

for state s, where s is an inner state of situation θ :
• () ()ssSIsSs θθ ππθ =⇒∈•Θ∈∀∈∀ ,

Because each state is inner state of one and only one situation, the created global policy has
an action specified for each state of the entire environment. By creating the global policy in
this fashion, the global policy most likely directs the agents to increasingly favourable
situations, as will be explained further in the upcoming evaluation chapters.

 20

2 Various SRL applications
In the previous chapter, the Combined method has been explained for a two player zero-sum
Markov game and it is such an environment that is explained in appendix D and that will be
used for the empirical evaluation explained in paragraph 3.2. This chapter will extend the
method application to various other domains. In the first paragraph, the method application to
different MDP-like environments will be elaborated. In the paragraph thereafter, something
will be said about using dynamic programming algorithms. Using other reinforcement
learning methods, such as Monte Carlo and Temporal Difference Learning, will be explained
in the third paragraph. The final paragraph will give some examples on how the method can
be applied to practical problems other than the empirically evaluated one described in
appendix D.

2.1 Environments

In this paragraph a quick explanation will be given on how the method can also be applied to
Markov game environments with more than two players and to partially observable MDPs
(POMDPs).

The difference between a two player zero-sum Markov game and a Markov game with more
than two players is that in the latter case each agent must have a corresponding reward
function ()ni aasR ,,, 1 L . As was said in paragraph 1.2, the Combined method is applicable if

each reward function is decomposable into an action reward and a state reward function
() () () ()∑ ′

′⋅′+=
s innini sSRsaaasTaaaARaaasR ,,,,,,,, 212121 LLL . When such a

decomposition is possible it is also possible for any agent to decompose the environment into
situations in the fashion described in paragraph 1.3. Depending on the various state reward
functions, it is possible that the decomposition results in a different set of situations for each
agent. Let iΘ be the set of situations resulting from a decomposition using the state reward

function iSR , then iΘ should be used for learning a policy for agent ia . Because the resulting

set of situations are all autonomous MDP-like environments, it is possible to learn policies for
these situations in a Markov game manner.

Now let’s look at POMDP environments. No detailed explanation will be given here on
POMDP environments, but the papers from Kaelbling, Littman & Cassandra (1998) and
Aberdeen (2003) can provide insight into the environment and solution methods for such an
environment. The only difference between a MDP and POMDP environment is the fact that a
POMDP environment is partially observable instead of fully observable. This means that in a
POMDP environment, the agent is not certain about the state of the world, which increases the
difficulty of learning optimal behaviour greatly. A POMDP modelled environment is
described by the tuple ObsRTAS ,,,,, Ω 1, where according to Kaelbling (Kaelbling et al.,

1998, p. 8):
• S, A, T and R describe a Markov decision process.
• Ω is a finite set of observations the agent can experience of its world.
• ()∏ Ω→× ASObs : is the observation function, which gives, for each action and

resulting state, a probability distribution over possible observations (we write

1 In most literature, the set of observations is given by O instead of Obs, but in order to avoid confusion with the
opponent action set O used in the two player zero-sum Markov game we will use Obs here.

 21

()oasObs ,,′ for the probability of making observation o given that the agent took
action a and landed in state s’.

Because a POMDP environment is only partially observable, the agent uses an internal belief

state b that summarises its previous experience. A belief state is a probability distribution over
states of the world. Because the agent does not know what the state of the world is in a
partially observable environment, the agent assigns probability to states that represent the
agent’s belief that he is in that state: this is called the belief state.

In order to make the Combined method compatible with POMDP environment, the following
is specified:

• Each situation Θ∈θ is described by a tuple θθθθθθ ObsRTAS ,,,,, Ω .

• θS , θA , θT and θR are derived from the entire environment in exactly the same

manner as described in paragraph 1.3 for an MDP environment.
• Ω=Ω•Θ∈∀ θθ : The observation set θΩ of each environment does not differ from

the complete observation set Ω .
• The observation function for situation θ becomes ()∏ Ω→× θθθθ ASObs : .

• () ()oasObsoasObsoAaSs ,,,,,,, ′=′•Ω∈∀∈∀∈′∀Θ∈∀ θθθθθ : The observation

function for each situation equals the observation function for the entire environment
for each state that is part of the situation.

• A belief state θb for situation θ is a probability distribution over states in situation θ .

By creating situations in this manner, all created situations are autonomous POMDP
environments, just like it was in the MDP setting. Because all situations are POMDP
environments, all learning methods for such environments can be used. Since a policy for an
MDP environment is identical to a policy for a POMDP environment, the combination
process described in paragraph 1.5 does not change.

2.2 Dynamic programming algorithms

Dynamic programming algorithms such as value iteration, policy iteration or modified policy
iteration are all reinforcement learning algorithms that require a complete model of the
environment in order to learn an optimal policy. Because the situations that are created as a
result of using the Combined method are autonomous complete-model environments of their
own, all dynamic programming algorithms can be used in conjunction with the Combined
method.

2.3 Other reinforcement learning methods

Apart from the dynamic programming algorithms, which require a complete model of the
environment in order to learn an optimal policy, several other reinforcement learning methods
exist that do not require a complete model. Examples of such methods are the Monte Carlo
methods, Temporal Difference Learning and Q-learning. Let’s consider how the Combined
method can be applied if only an incomplete model of the environment is available.

To apply the decomposition process of the Combined method in the manner described in
paragraph 1.3, the method requires the following:

• The state set must be available, so that it is known which states are available to divide
into situations.

• The action set must be available so that it is known which actions are available for the
transitions.

 22

• The reward function must be available so that is possible to define the inner states of
each situation.

• The transition function must be available so that it is possible to define the outer states
of each situation.

This means that, in order for the Combined method to be applied in the same manner
described in chapter 1, the method requires a complete model of the environment. Because of
this, the Combined method is in it’s current form inapplicable for reinforcement learning
methods that use an incomplete model of the environment.

Although it lies beyond the scope of the assignment to formally specify how the Combined
method can be altered to become compatible with these incomplete-model methods, a short
informal description of a possible way can be given. When speaking of an incomplete model
of the environment, it is most often the transition function that is incomplete: the probability
distribution on transitions is unknown. The other elements of the environment – the state set,
action set and reward function for an MDP environment – are usually complete. If these other
elements are known, it is still possible to define the amount of situations and the inner states
of each situation. It would then still be possible to learn a policy for a situation by defining all
states that are not inner states as outer states – which are as absorbing states. Although this
would mean that the state set for each situation is still the global state set, with the only
difference being the division into inner- and outer states, the computational cost of learning a
policy for such a situation is still reduced in comparison to the global environment because for
each situation behaviour is only learned for inner states – the outer states are absorbing states
where every action has the same result – and most of the outer states will never be reached. In
this fashion it is still possible to learn local policies by using any of the before-mentioned
reinforcement learning algorithms.

2.4 Example applications

In this paragraph three examples will be given on how situational reinforcement learning
could be applied. The first example is a brief summary of the CTF environment which is used
for the empirical evaluation and fully specified in appendix D. The other examples are not
fully specified and many elements are omitted for ease of understanding. These examples
serve only to give insight into possible method applications. The second example illustrates
how SRL could be used in a first-person shooter game and in the last example an explanation
is given how SRL could be used for a conventional problem – meaning an environment that is
not modelled after a game.

2.4.1 Capture the flag

The environment which is modelled after a game of CTF and specified in appendix D has the
following features:

• A fully-observable environment modelled as a Markov game.
• Stochastic actions.
• Two agents with contradicting goals.
• A state set consisting of 136737 states.
• An action set consisting of 8 actions.
• Turn-based action handling with simultaneous actions.

In the CTF environment, the goal of the players is to score a pre-defined amount of points
before the opponent does so by taking the flag of the opposing team and returning that flag to
a specific location. By using situational reinforcement learning and the reward structure
mentioned in appendix D, the learning environment does no longer encompass the entire

 23

environment – which has a large state set that results in high computational costs when
learning behaviour – but is decomposed into 21 smaller and more tractable learning
environments. The empirical evaluation that is explained in paragraph 4.2 uses this CTF
environment as a practical application for SRL. The results given in chapter 6 show that SRL
facilitated a significant reduction in computational cost in comparison to conventional
reinforcement learning when learning behaviour for this CTF environment.

2.4.2 A first-person shooter

Let’s consider how situational reinforcement learning could be employed for a computer
controlled entity that patrols and guards a specific area in a first-person shooter (FPS) games –
a reasonable playground for artificial intelligence, and one far more complicated and realistic
than the environment used for the empirical evaluation. The goal of the agent is to guard an
area and prevent a human player from reaching the exit in that area. Figure 3 gives a top view
of this area.

This area is the agent’s world. The area contains some walls, a lower and higher ground, three
entry points where the human player could enter the area and one exit that the human player
needs to reach. This environment can be modelled as an MDP, Markov game or POMDP
environment in a similar fashion as was done in appendix D for a two player zero-sum
Markov game. Although it is far more difficult to model the environment illustrated in figure
3 than it is to model the environment in appendix D, it can still be done (A first-person
shooter environment will most likely require a far greater state set with time-indexed states
and would require some form of real-time instead of turn-based action handling, which
therefore lies beyond the scope of the assignment). Because it is possible to model the FPS
environment of figure 3 as an MDP-like environment, it is also possible to use SRL to learn a
policy for that environment in the manner described in chapter 1 and paragraph 2.1.

EXIT

ENTRY

ENTRY

ENTRY

Low ground

Walkable space

High ground
walkable space

Wall space

EXIT

ENTRY

ENTRY

ENTRY

Low ground

Walkable space

High ground
walkable space

Wall space

Figure 3. A top view of the example FPS world

Let’s for example assume that the state reward distribution in the modelled environment of
figure 3 corresponds with the following rules, where numeric preference values for the
described circumstances are given in brackets:

• The agent being alive is more preferable (+0) to the agent being dead (-2).

 24

• The human player being dead is more preferable (+2) to the human player being alive
in the area (+0) which in turn is more preferable to the human player being alive at
the exit (-2).

• It is more preferable (+1) for the agent to occupy higher ground than the human
player than it is to be an equal ground (+0), which in turn is preferable to being on
lower ground (-1).

• It is more preferable (+1) to be in a shooting position where the agent has partial
cover from walls than it is to be in an uncovered shooting position (+0).

By using such a reward structure, the agent is still able to learn seemingly ‘intelligent’
behaviour for his area – such as: reaching a covered shooting position if the probability of
reaching the covered position alive is acceptable; directly attacking the human player from an
uncovered position if it isn’t probable that a covered position can be reached alive; preferring
high ground over low ground; avoid getting killed or letting the human player reach the exit –
whilst avoiding a learning process on the entire environment. The learning of behaviour that
seems intelligent to the human player at a (probable) lower computational cost than when
using conventional methods was the main motivation for developing SRL. The agent
behaviour can be enhanced to include team-play by modelling multiple agents with common
goals in a Markov game manner or to include ‘unpredictable’ behaviour by using the
stochastic policy described by Littman (Littman, 1994).

2.4.3 The taxi domain

In a paper where a method for hierarchical reinforcement learning is explained, an example
environment is used to illustrate the method’s workings (Dietrich, 1999, p. 9). This so called
“Taxi Domain” will be used to exemplify the use of SRL in a non-game environment. Figure
4 depicts this taxi domain: a 5x5 grid world inhabited by a taxi agent with 4 distinct locations
(R, G, B and Y).

R G

B Y

0 1 2 3 4

0

1

2

3

4 R G

B Y

0 1 2 3 4

0

1

2

3

4

Figure 4. The Taxi Domain

There is a passenger at one of the four locations that wishes to be transported to another
location. The taxi agent should move to the passenger, pick him up, drive him to the desired
location and drop him off. The action set for the agent contains navigational actions, a pick-up
action and a drop-off action. Based on this problem, the following very straight-forward way
of distributing state rewards would be:

• +0 for all states where the passenger is not in the car and not at the location1.
• +1 for all states where the passenger is in the car.
• +2 for all states where the passenger is not in the car and at the location he wished to

be.

1 In the Taxi domain problem described by Dietrich (1999, p. 9) it was possible for the passenger to start at the
location where he wished to be. We ignore that scenario in this example.

 25

Using situational reinforcement learning with the abovementioned state rewards would result
in a decomposition of the environment into three situations. Because the situation ordering of
this problem is so unambiguous1, the resulting policy is most likely optimal. The taxi domain
example shows that SRL is capable of reaching an optimal policy at reduced computational
cost in comparison to conventionally using dynamic programming algorithms.

1 There is only one possible transition between the first and second situation: when a pick-up is performed with
taxi and passenger at the same location. There is also only one transition between the second and third situation:
when a put-down is performed when the taxi with passenger is at the desired location.

 26

3 Enhancing the global policy
Besides an evaluation of what the implications are on policy optimality and computational
cost when using situational reinforcement learning as a stand-alone approach to learning
behaviour, an alternative use for SRL will also be researched where SRL is used as an
addition to conventional reinforcement learning. Because the method of learning local
policies will most likely result in sub-optimal global policies, as will be discussed in
upcoming chapters, the application of SRL as a starting point for learning a global optimal
policy might be worthwhile.

The method of learning this global optimal policy used as part of the assignment is very
straightforward: take the result of the Combined method and use this as a starting point for
conventional reinforcement learning. This method will be referenced to as the Enhanced
method in the remainder of this document, because the policy is enhanced to become more
optimal.

What resulting information from the Combined method is required for the Enhanced method
to resume learning depends on the reinforcement learning approach employed by the
Enhanced method. If the Enhanced method uses for example value iteration or policy
iteration, the Combined method’s resulting global policy alone is sufficient. The value- or
policy iteration algorithm can then use this policy as a starting policy for learning. For the
empirical evaluation discussed in later chapters, the Enhanced method will use the modified
policy iteration algorithm. We will not explain the algorithm in detail here, appendix B gives
a detailed elaborated on how (modified) policy iteration is used in MDP and Markov game
environments, but the policy evaluation phase of each learning iteration is given by (3) as
being:

 () ()() ()() ()∑ ′
′⋅′⋅+←

−s ii

k

sUsssTssRsU
ii 1

,,, ππ πγπ .

As can be seen, the utility values that are being calculated by using the current policy
i

Uπ

requires the utility values that were calculated by using the previous policy
1−i

Uπ . In order for

the Enhanced method to resume learning by using the modified policy iteration algorithm, the
global policy created by the Combined method alone is insufficient, since we also require the
utility values that were used to learn that policy. This global utility set can be created by the
Combined method in a similar fashion as the global policy was created: combine the local
utility sets by taking from each situation the utility values for the inner states. The global
utility set πU is created by using for each state s, the utility value specified by local utility set

θπU for state s, where s is an inner state of situation θ :

• () ()sUsUSIsSs
θππθθ =⇒∈•Θ∈∀∈∀ ,

In the empirical evaluation, the modified policy iteration algorithm will use this created global
utility set along with the created global policy to resume learning. The implications of using
the Enhanced method will only be empirically evaluated for the modified policy iteration
algorithm.

 27

4 Evaluation method
This chapter elaborates on how the evaluation of the Combined and Enhanced methods will
be performed. Evaluation will focus on two items:

1. The optimality of the methods resulting global policies. Because the goal of the
Enhanced method was to learn an optimal policy, no policy optimality evaluation will
be performed for that method.

2. The computational cost of executing the methods.

In the remainder of this document, the terms learning method and learning algorithm will be
used frequently. In the context of this assignment, these terms entail the following:

• A learning algorithm is an algorithmic, usually mathematical, approach to learning a
policy. The parameters for the algorithm are set beforehand. Examples of learning
algorithms are policy iteration, modified policy iteration and value iteration.

• A learning method is a method that defined how a learning algorithm is used. It sets
the parameters for the learning algorithm and employs the algorithm to learn policies.
The Combined, Enhanced and hierarchical reinforcement learning methods are
examples of learning methods and the evaluation will introduce the additional learning
method Complete.

The Combined and Enhanced methods do not specify which learning algorithm should be
used to learn the local policies – and it has been shown that any dynamic programming
algorithm can be used – but this algorithm does influence the computational cost of learning1
the global policies. The evaluation will therefore use one policy learning algorithm
continually, unless stated otherwise: the modified policy iteration algorithm explained in
paragraph 1.4 and appendix B. The results gained from the evaluation will be used as an
indication for other similar learning algorithms.

The evaluation will occur theoretically and empirically in the fashion described in the
upcoming paragraphs.

4.1 Theoretical evaluation

The theoretical policy optimality evaluation of the Combined method will occur by analysing
the structure of the method. The evaluation will focus in particular on how the heuristic
function, which defines the structure of the situations, affects policy optimality.

The theoretical computational cost evaluation will be performed through a worst-case
computational complexity analysis of required calculations when applying the Combined
method to MDP- and Markov game environments.

In the theoretic evaluation, a comparison will also be drawn between the Combined method
and two methods that also reduce computational cost by learning on smaller environments:
hierarchical reinforcement learning and the envelop method. Although this evaluation does
not give insight into the optimality or computational implications of situational reinforcement
learning, it does give insight into differences and similarities with other methods.

1 The global policy resulting from the Combined method is actually a created policy and not a learned policy.
Only the local policies are learned, the global policy is created from these local policies.

 28

4.2 Empirical evaluation

The empirical evaluation is the main method of evaluation used as part of the assignment. The
empirical evaluation will occur by applying the Combined and Enhanced methods to a
modelled two player zero-sum Markov game environments in which games of capture the flag
can be played. Appendix D gives a detailed explanation of the modelled CTF world.
Computational cost evaluations will be performed by monitoring the process of policy
learning and calculating a computational cost value which indicates the required amount of
calculations. Policy optimality evaluations will be performed by letting the learned global
policies of various methods play against each other in games of CTF.

Further along this paragraph, the terms policy optimality and game performance will be used.
Let’s explain the meaning these words have in the context of the assignment:

• Each policy has a certain degree op optimality. The policy optimality defines how well
the policy achieves it’s goal. The most common goal for policies is to maximize the
expected reward through it’s actions. With this goal, each action of the optimal policy
would yields the highest possible expected reward. In the context of the two player
zero-sum CTF game, the optimal agent policy maximizes expected rewards and the
optimal opponent policy minimizes expected rewards.

• Game performance is a measurement on how a player fares in playing a game against
another player. How game performance is measured as part of the assignment is
explained further along this paragraph.

For the evaluation of policy optimality we will not evaluate this optimality directly, but rather
evaluate the game performance of the various learned policies. If the reward function
represents the player’s desire to win the game, then a more optimal policy will most likely1
win more games. Although game performance cannot be used as an exact measurement of
policy optimality, it can give an indication. As part of the empirical evaluation, an indication
on the policy optimality implication of the various methods will be given by monitoring the
game performance of policies learned by these methods competing against each other in
games of CTF.

4.2.1 The learning methods

The Combined and Enhanced methods that have been described in previous chapters will be
referenced to as learning methods. For the empirical evaluation both methods will use the
modified policy iteration algorithm – which is explained in paragraph 1.4 and appendix B –
for learning policies. In order to evaluate the implications of these methods, the results of
learning global policies with these methods must be compared to learning a global policy
without such a method. This reference learning method uses the modified policy iteration in
it’s most basic way: learn a policy for the global environment by using modified policy
iteration and start from a random policy. This method will be referenced to as the Complete
method, because it learns a policy for the complete environment2.

Summarised, the empirical evaluation on the effect of the learning method will use the
following three different learning method which differ in the following manner:

1 A more optimal policy does not necessarily win more game even if the reward function correctly represents the
desire to win, because the element of chance plays a vital role in most games. This is also the case for the
modelled CTF game.
2 The Enhanced method also learns a policy for the entire environment, but it is called Enhanced nonetheless
because of the fact that it enhances the Combined global policy.

 29

1. The Complete method learns a global policy by using modified policy iteration
algorithm on the global environment and starting from a random policy. This method
can be considered as a conventional reinforcement learning approach.

2. The Combined method learns local policies for the situations by using modified policy
iteration on each situation. The modified policy iteration algorithms start with random
policies. The learned local policies are then combined to form a global policy.

3. The Enhanced method learns a global policy by using modified policy iteration on the
global environment and starting from the global policy and utility set that were created
by the Combined method.

4.2.2 The heuristic function

Besides an evaluation of the learning methods in general, an evaluation will also be performed
on how the use of a heuristic function on itself affects policy optimality and computational
cost of the learning method.

The CTF world that is described in appendix D will be referenced to as the Standard
environment, because the reward/heuristic function used therein was the first one devised and
tested. But does that reward structure correctly represents the agent’s desire to win the game?
In order to evaluate the effect of the reward- and heuristic function, multiple environments
will be used in the empirical evaluation.

In the most basic view a game can end in three ways: a tie, a win or a lose. The reward
structure that resembles this basic view only assigns rewards to states that represents these
endings. The use of such a reward structure is unambiguous and correct, and such reward
structures are commonly used in game AI. The use of a more complex reward function could
distract a playing agent from winning the game. Since the Combined method requires a more
complex reward structure to be able to identify multiple situations, an evaluation will be
performed on how the use of such a more complex reward structure affects optimality and
computational cost. For this evaluation, an environment will be used in which the reward
structure only assigns non-zero rewards to states that end the game. This environment will be
called the Simple environment, because it uses a simple reward function.

Although the reward structure used in the Standard environment seems correct, since higher
rewards are only assigned for states that represents ‘better’ situations for the player, the
performance of the Combined method in this environment was unsatisfactory. Analysis of the
resulting Combined global policies revealed an unforeseen problem. To evaluate how
different reward/heuristic functions can affect the optimality and complexity of the Combined
method, even if those reward structures do not assign illogical rewards, a third environment is
modelled in which the observed problem with the Standard environment is avoided. This
environment is called the Alternative environment, because it is an alternative to the Standard
environment.

Summarised, the empirical evaluation on the effects of the heuristic function will use the
following three environments which differs in the following way:

1. The Simple environment uses a reward function that only assigns non-zero rewards to
states in which a player is victorious: +10 for agent win states and -10 for opponent
win states. Because a decomposition of the Simple environment into situations would

 30

only result in one situation where policies are actually learned1, the Combined and
Enhanced learning methods are not applied to the Simple environment.

2. The Standard environment uses the reward function that is specified in appendix D for
the CTF world.

3. The Alternative environment also uses the reward function specified in appendix D,
with one difference: no rewards are assigned for the ‘Dead’ values of the AS and OS
state variables (see appendix D for more details).

4.2.3 The policy learning algorithm

As part of the evaluation, all learning methods will use the modified policy iteration algorithm
that is explained in paragraph 1.4 and appendix B. In order to evaluate the implication of the
learning methods on computational cost and global policy optimality, the learning algorithms
must be able to learn policies of an equal degree of optimality, preferably the optimal policy,
no matter the environment in which is learned. More practically said, if the globally learned
policies of the Complete and Enhanced methods are optimal then in order for a correct
comparison to the Combined global policy, the locally learned policies of the Combined
method should also be optimal. If we should use different optimality criteria for learned
policies, then any difference in global policy optimality and corresponding computational cost
could be the result of these different criteria and not the solely the result of using the
Combined method.

In order to assure an equal degree of policy optimality, the variables of the modified policy
iteration algorithm will be set in such a manner that we may assume that the optimal policy
has been learned. The modified policy iteration algorithm uses two variables that are not
defined by the environment, but must be set by the developer: the discount factor γ and the
approximation variable k. Appendix E gives a detailed explanation of these variables and how
they will be set as part of the assignment to assume an optimal policy. In appendix E, a new
variable is also introduced: the termination value t. A quick explanation will now be given of
these three variables and how they are set for each environment in the evaluation:

• The discount factor γ has a value between 0.0 and 1.0 and defines the weight of
future rewards. Each discount factor creates a different optimal policy for the
environment, so an optimal policy that is learned with a discount factor of 0.4 does not
necessarily equal an optimal policy that is learned with a discount factor of 0.5. Higher
discount factors means that, from the perspective of a single state, rewards of states
that lie many transitions away have a greater influence. Because in games it is often
better to think as far ahead as possible, a higher discount factor will in general result in
policies that have a better game performance. As explained in appendix E, it is also
true in generals that a higher discount factors requires more iterations to find the
optimal policy, meaning that a higher discount factor results in higher computational
costs if the environment is held constant. Because it can thus be said that in general the
effect of a higher discount factor results in better game performance and higher
computational costs, three discount factors will be used for the evaluation that should
give an indication for all discount factors. The evaluation will therefore use a low
discount factor of 0.1, a high discount factor of 0.9 and a discount factor in between of
0.5.

• The variable k of the modified policy iteration algorithm has a value of 1 or greater
and defines how many times the policy remains fixed in the policy evaluation phase,

1 The other situations only contain end states of the game, meaning that all states are absorbing states.

 31

as explained in paragraph 1.4 and appendix B. The evaluation phase of modified PI
solves the following equation:

() ()() ()() ()∑ ′
′⋅′⋅+←

−s ii

k

sUsssTssRsU
ii 1

,,, ππ πγπ

Which can be rewritten as the following equations:
() () 1≥= ksUsU

k

ii ππ

() ()() ()() () kjsUsssTssRsU
s

j

ii

j

ii
≤≤′⋅′⋅+= ∑ ′

− 1,,, 1
ππ πγπ

() ()() ()() ()∑ ′
′⋅′⋅+=

−s ii sUsssTssRsU
ii 1

,,,0
ππ πγπ

If the value of k is chosen high enough, the policy evaluation phase of the modified PI
yields the same result as PI would have done. In a sense, it could thus be said that k
defines the degree of approximation that mPI has on PI. If the value of k is chosen
high enough to make a perfect approximation of PI, then the mPI algorithm can make
the same guarantees of optimality as the PI algorithm. Unfortunately, there is no exact
method available that defines this value for k based on an environment. Because the
learning environments differ between the Combined method and the
Complete/Enhanced methods, an equal value of k would be unfair. For the evaluation,
the minimal value of 1 is chosen for k.

• The termination value t, which is introduced in appendix E, defines the amount of
unchanged policies in the policy improvement phase of policy iteration that are
required for termination of the algorithm. In PI, this value is 1 and if the PI algorithm
terminates after an unchanging policy in the policy improvement phase, the PI
algorithm guarantees that the optimal policy is found (Kaelbling, 1996). If the
previously discussed approximation value k in modified PI is chosen in such a fashion
that leads to less then perfect approximations, it is possible that a sub-optimal policy is
found if this same termination value of 1 is used for modified PI. By increasing the
amount of required successive unchanging policies in the policy improvement phase,
the modified PI algorithm can be enables to find the optimal policy, even if the k value
is chosen too low. Just as with the k value, there is unfortunately no method available
that defines a correct value of t. For the evaluation, the t values are chosen in such a
fashion that we assume that the optimal policy is found, as is explained in appendix E.

Summarized, all learning methods used in the evaluation utilize the modified policy iteration
algorithm to learn policies. For the evaluation, three different discount factors will be used

{ }9.0;5.0;1.0∈γ . The approximation value k will be set to 1 and for each learned policy the t
value was set in such a manner that we may assume that the optimal policy was found.

4.2.4 Evaluating general performance

Although the learning methods are evaluated against each other and the global policies of the
Complete and Enhanced methods are assumed optimal, it does not yet give an indication on
how these policies perform in general. All learned policies are derived from a Markov game
model of the CTF game, which uses minimax to learn policies: Behave so as to maximize
your reward in the worst case (Littman, 1994). For the modelled CTF game, which has
simultaneous turn-taking, this means that each agent action is evaluated against the opponent
action that makes the agent action looks the worst, []L

oa
minmax , which can also be seen in the

modified policy iteration equations of appendix B. This way of acquiring rewards favors
conservative strategies that lead to ties over daring strategies that might lead to a losing
situation. Although this is one possible approach of dealing with opponent choices, it is not
necessarily the best approach. To evaluate how the learned policies perform in general, two

 32

non-learning methods will also be implemented against which the learned policies must also
play games of CTF:

1. A random policy creating method, referenced to as the Random method. The Random
method can be considered to be the worst possible CTF player if we assume that all
players intend to win the game.

2. The Human method, where human players must play games of CTF against policies
learned by the various learning methods.

4.2.5 Evaluating computational cost

The computational cost of learning global policies when using the various learning methods
will empirically be evaluated by monitoring the learning process of those methods. Appendix
C explains in more detail how the complexity functions for MDP and Markov game
environments are derived when using (modified) policy iteration. Unlike the theoretical
evaluation of complexities, which performs a worst-case analysis for situational reinforcement
learning independent of environment and policy learning algorithm by using the ‘order of’

()LO notation, the empirical evaluation uses computational cost functions C that give an
indication on the amount of calculations required on average to learn policies specifically for
the modelled CTF game world with the modified policy iteration algorithm. The cost values C
do not provide an exact amount, but rather an approximation to the amount of required
calculations. A quick summary of these value functions C, which are explained in more detail
in appendix C, will be given here.

The largest amount of calculations required for learning a policy for the global CTF game
world – whichever of the previously mentioned learning methods are used – lie in the
execution of the modified policy iteration algorithm. Although the Combined method also
requires a decomposition of the environment into situations and a combination of local
policies, the computational cost of these two operations are minute in comparison to the
policy learning processes required for each situation1. Therefore the computational cost of
executing these peripheral operations are ignored and only the computational cost of
executing the modified policy iteration algorithm is considered.

Within the modified policy iteration algorithm, the computational cost of learning a global
policy depends on two factors: the amount of iterations required to learn the optimal policy
and the computational cost of a single iteration. For the empirical evaluation of computational
cost, we are interested in the average cost required to learn a global policy. The computational
cost of learning a global policy for a certain environment is not constant because the amount
of iterations required to learn a policy with (modified) policy iteration depends on the initial
policy, and this policy is random for both the Complete and Combined methods. Therefore an
average amount of required iterations, avgi , is used to calculate the cost values. This average

amount of iterations will be derived from monitoring the learning process. The computational
cost of a single iteration can be derived from the equations used in the policy evaluation and
policy improvement phases of the modified policy iteration algorithm, which are explained in

1 For a computation time comparison on one test system: decomposition of the environment into situations
required around 7 seconds, the combining of local policies a few microseconds and the learning of a single
policy takes between 3 and 30 minutes.

 33

appendix B and are derivations of (1) and (2) mentioned in paragraph 1.4. These equations
from appendix B are repeated here1:

(4) () ()() ()() ()[]∑ ′
′⋅′⋅+←

−s ii
o

k

sUsossTossRsU
ii 1

,,,,,min ππ πγπ

(5) () () () ()[]∑ ′+
′⋅′⋅+=

soa
i sUsoasToasRs

iπγπ ,,,,,minmax1

For the policy improvement phase, which uses equation (4), a calculation must be performed
for each state s. Each of these calculations must be performed k times and within each of these
calculations all opponent actions o must be evaluated once. Within the equation, a summation
must also be performed on all possibly resulting states when performing actions a and o. For
the CTF world, there is a maximal amount of possibly resulting states of 8 when a player
returns from the dead back into the game, but for almost all action-pairs there are but one or
two possible resulting states. Because this amount is so small, we will for the CTF world
ignore the fact that the summation takes multiple steps and view the entire calculation
between brackets in (4) and (5) as a single calculation. The amount of calculations required to
perform (4) in a single iteration can thus be described as being okn ⋅⋅ , where Sn = . In a

similar fashion, the computational cost of (5) can be described as being oan ⋅⋅ . By also
introducing the average amount of required iterations, an indication of the average amount of
calculations required to learn an optimal policy for an environment can be given by2:

(6) () () ()noikaoanokniC avgavg ⋅⋅⋅+=⋅⋅+⋅⋅⋅=

For the empirical evaluation of computational cost, we will not use the empirically found avgi

directly, but rather a corrected amount avgî . This corrected amount avgî is the found avgi

decremented by the t value that was discussed in the previous paragraph and in appendix E.

avgi is decremented by the t value because we are interested in the amount of iterations

required to learn an optimal policy, not in the amount of iterations required to be certain that
we have acquired the optimal policy. Because the t values were chosen in such a manner that

we may assume that the optimal policy has been found, the corrected amount of iterations avgî

represents for each environment the average minimal amount of iterations required to learn
the optimal policy.

Because we are interested in the difference in average complexity values between the
methods, all variables from (6) that remain the same between learning methods can be
eliminated. By removing these variables a, o and k and also introducing the corrected amount

avgî , (6) can be written as:

(7) niC avg ⋅= ˆ

These last two variables avgî and n may not be removed, because they differ between learning

methods. If (7) is applied to the three methods, the following equations for average
computational cost are derived, and these are used as part of the empirical evaluation:

(8) niC completeavgcomplete ⋅= ,
ˆ

1 These equations apply to the utility maximizing agent only. For a utility minimizing agent, the variables a and
o must be switched in the equation, but for the CTF game world this makes no difference since the size of A and
O are equal.
2 There is a hidden correlation between the amount of iterations and the state set size. When starting from a
random policy, it is most likely that more iterations are required for larger environments.

 34

(9) ()∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ

(10) ()niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ

Within these three equations, the only true unknown is avgî because the values of n and all θn

are fixed by the CTF environment. Because the computational cost values are indicating
values for comparison and not ‘order of’ ()LO notations as used in the theoretical evaluation
of worst-case complexities, the constant values may not be removed. In words, they serve to
indicate the cost of a single iteration of modified PI. A single iteration of modified PI has a
greater cost in a larger environment, because the calculations must be performed for more
states.

A player in the modelled CTF game world is identified by a learning method, a learning
environment and a discount factor. For each unique player, 20 agent policies and 20 opponent
policies will be learned, resulting in 40 policies for each player.

4.2.6 Evaluating policy optimality

The empirical evaluation of policy optimality will occur by monitoring game performance of
the learned policies and using performance values as an indication of optimality. In this
evaluation, we will assume that more optimal policies win more games because the used
reward structures represent the desire to win the game. Game performance will be measured
by letting the learned policies of the various methods play games of CTF against each other
and the non-learning methods and analysing the results.

In each game, there are two players: an agent and an opponent. As is explained in appendix D,
a game of CTF can end in three ways:

1. At least one of the players scored the maximum amount of points.
2. Both players choose to do nothing in two consecutive turns.
3. A to be defined amount of time has expired.

From these endings, the evaluation will identify five possible results of a single game:

1. The agent wins by being the first player to score the second point.
2. The opponent wins by being the first player to score the second point.
3. The game is a tie if both players score their second point simultaneously.
4. The game is a tie if a ‘Deadlock’ state is reached. Appendix D can be referenced for

more details, but a ‘Deadlock’ state is reached if both players are alive and perform
the DoNothing action for two consecutive turns.

5. The game is invalid if a predefined amount of time has expired. These games are
declared invalid because time isn’t explicitly modelled in the environment, and as such
the policies haven’t learned that this is a possible ending of the game. Therefore it
would be unfair to force a result from these states and as such these games are
declared invalid. Games in which the time has expired are usually games where the
agent and opponent have reached a repetitive pattern of movement, must like a
‘Deadlock’ state that spans multiple states. Because the implementation of a pattern
recogniser lies beyond the scope of the assignment, these games are considered invalid
and will not be used in the evaluation of optimality.

Game performance will be measured by a performance value

21 , ppP and it represents the

results of games played between players p1 and p2. A player that uses a policy learning

 35

method is identified by three variables: The learning method used (Complete, Combined or
Enhanced), the environment in which is learned (Standard, Simple or Alternative), and the
discount factor used (0.1, 0.5 or 0.9). A player that uses a non-learning method is identified by
the used method (Random or Human). The performance value

21 , ppP represents the percentage

of games more won by player p1 against player p2, and as such is a value between -100 and
100. A performance value

21 , ppP will be calculated for each pair of competing players as given

by:

(11)
TWWTotal

Total

WW
P

pp

pp

pp

++=

⋅
−

=

21

21

21
100,

Where
1pW is the amount of games won by player p1,

2pW is the amount of games won by

player p2 and T is the amount of games that ended in a tie. Optimality evaluation will occur by
comparing these performance values.

 36

5 Theoretical evaluation
This chapter gives the theoretical evaluation of the Combined and Enhanced methods. The
first paragraph gives an evaluation of the implication that the methods have on global policy
optimality and the second paragraph gives an evaluation on the computational complexity for
learning the global policies. The last paragraph will give a comparison between the Combined
method and other methods from the literature that also reduce complexity by learning on
smaller environments.

5.1 Policy optimality

The optimality of the learned local policies of the Combined method depends on the used
learning algorithms. Since most learning algorithms have as a goal to learn an optimal policy,
we will only consider these optimal policies. Because the local policies are only optimal for
their respective situations, the global policy that is created from combining them no longer
has to be – and most likely won’t be – optimal. What degree of optimality the global policy
does have depends on the quality of the heuristic function and on the environment.

Let’s take a look at the structure of situations: Each situations is organised in such a fashion
that it consist of states that can be considered to be equally (dis)advantageous for the agent
(inner states) and states that lie just outside the situation, but are inner states of another
situation (outer states). Because all inner states have an equal state reward1, there is little room
for utility improvement within the situation for the agent. The outer states on the other hand
are absorbing states with a different state reward. If the state reward of such an outer state is
greater than the state reward of an inner state, reaching this outer state (and thus another
situation) would probably lead to higher reward gains. This is especially so since, from the
perspective of the local learning process, the outer state is an absorbing state which the agent
never leaves. Because of this, the resulting global policy can be seen as a policy that
continually tries to reach situation with a higher state reward, a very human approach to game
playing. A danger with this method is that the policy can fall into a trap by short-term
rewards: a local policy only takes single-transition reachable states of other situations into
consideration, it does not see the rewards beyond that state. How decisive this danger is for
the global optimality depends on the environment. Let’s view each situation as a sub-goal of
the environment; If the ordering of the sub-goals in the environment is unambiguous, and the
difficulty of the environment is to find the optimal solution for each sub-goal, then the
Combined method would probably provide a near-optimal global policy. If on the other hand
there are a host of sub-goals and the difficulty of the environment is to find the optimal
sequence of sub-goals, then the optimality of the resulting global policy is most likely
disastrous. Chess is an example of a game in which situational reinforcement learning would
most likely perform terrible, because in chess the taking of each piece can be seen as a sub-
goal and the difficulty is not to take a piece, but to take the right piece at the right time.
Capture the flag would be an example of a game in which SRL will likely perform better,
because an unambiguous ordering of sub-goals could be to first take the flag and then return
the flag, and the difficulty there would be how to best realise the taking and returning of the
flag. As part of the assignment, the policy optimality will be empirically tested for the
modelled CTF Markov game described in appendix D.

1 In the Combined method, the state reward function is used as the heuristic function and all inner states of a
situation have the same value according to the heuristic function.

 37

5.2 Computational complexity

In this paragraph, worst-case complexity functions will be used for the theoretical evaluation
of the computational complexity of the various learning methods. Appendix C gives detailed
information about the upper bound worst-case complexity functions for the (modified) policy
iteration algorithm in MDP- and two player zero-sum Markov game environments. All upper-
bound complexity functions given in this chapter are worst-case complexities.

5.2.1 Standard policy iteration in an MDP environment

According to Kaelbling (1996, p. 15) and as explained in appendix C, the upper bound
complexity of a single iteration of the policy iteration algorithm in an MDP environment is
given by:

(12) ()32 nnaO +⋅
According to Mansour & Sing (1999, p. 2), the upper bound amount of iterations required to
learn an optimal policy in an MDP environment when a greedy policy-iteration algorithm is
used – and a greedy PI algorithm is used for the evaluation of SRL – can be given by:

(13) ()nO
The upper bound complexity of learning an optimal policy for an MDP environment by using
standard policy iteration thus becomes, by combining (12) and (13):

(14) ()43 nnaO +⋅
(14) gives the worst-case complexity for the Complete method, so (14) can be rewritten as
being:

(15) ()43
nnaO

MDP

complete +⋅

The upper bound complexity of the Combined method, is the sum of the complexities of
learning policies for all situations, as given by:

(16) ()∑ Θ∈θ θ
MDPMDP

combined OO

(17) ()43
θθθ nnaO

MDP +⋅

Now how does (16) compare to (15)? Let’s begin by stating that Θ is the set of situations and

Θ=g is the total amount of situations. How both complexity functions relates to each other

depends on the amount of situations and the amount of states within each situation. If the
entire environment is one situation then

() () ()4343 nnaOnnaOOO MDP

complete

MDP

combined

MDPMDP

combined +⋅=+⋅=∑ Θ∈ θθθ θ . Since the complexity of

(17) is greatest for the situation with the most states (highest θn), it is that situation that gives

the greatest addition in (16). The most favourable case for (16), meaning the case with the
lowest worst-case complexity, is where each situation has the least amount of states, meaning
that all states in S are divided evenly among the situations in Θ . If this is the case – which is
hardly ever – then the amount of states in each game situation is given by:

(18)
g

n
nS == θθ

Combining (18),(17) and (16) results in:

(19) 







+

⋅
=

































+







⋅⋅

3

4

2

3

4

4

3

3

g

n

g

na
O

g

n

g

n
agO

MDP

combined

MDP

combined
&&

 38

As can be seen, this upper bound complexity is almost a factor 3g smaller than the upper
bound case for the Complete case given by (15). Let’s make it a little simpler: For most
games, the world contains a very large amount of states and a relative small set of available
actions (in the modelled CTF world for example there are around 150000 states and 8 possible
actions). With n being such a large number and na << , we can approximate (15) and (17) as
being

(20) () ()443 ˆ nOnnaO
MDP

complete

MDP

complete ≈+⋅

(21) () ()443 ˆ
θθθθθ nOnnaO

MDPMDP ≈+⋅

Using these complexities, (19) becomes:

(22)
()














=








=








⋅

3

4

3

4

4

4 ˆ
ˆˆˆ

g

nO
O

g

n
O

g

n
gO

MDP

completeMDP

combined

MDP

combined

MDP

combined

&&&

So, in the upper-bound case with the most favourable division of states within the situations,
the complexity is approximately reduced by a factor 3g . This means that, for the worst-case
in an MDP environment, (15) and (16) relate to each other in the following way:

(23)
() () ()43

3

4ˆ
nnaOOO

g

nO
MDP

complete

MDPMDP

combined

MDP

complete
+⋅≤≤ ∑ Θ∈θ θ

In practical applications, the worst-case upper-bound case is almost never. How substantial
this complexity reduction is for the modelled CTF world will be evaluated as part of the
assignment.

5.2.2 Modified policy iteration in an MDP environment

Let perform the same steps as before for the modified policy iteration algorithm. The upper
bound complexity of learning an optimal policy by using the modified policy iteration
algorithm is, as explained in appendix C, given by:

(24) ()() ()()322 ~~
nkaOnanknO ⋅+=⋅+⋅⋅

The complexities for learning an optimal policy for respectively the global environment and a
situation can thus be given by:

(25) ()()3~
nkaO

MDP

complete ⋅+

(26) ()()3~
θθ nkaO

MDP ⋅+

In the most favourable case for the Combined method, where the states are divided evenly
among the situations, the complexity can be given by:

(27) () () ()()












 ⋅+
=







 ⋅+
=


















⋅+⋅

2

3

2

3

3

3
~

~~~

g

nkaO
O

g

nka
O

g

n
kagO

MDP

completeMDP

combined

MDP

combined

MDP

combined

&&&  

 
So, when using the modified policy iteration, the complexity functions for the Complete and 
Combined method relate to each other in the following manner:  

(28) 
( )( ) ( ) ( )( )3

2

3
~~~

~

nkaOOO
g

nkaO
MDP

complete

MDPMDP

combined

MDP

complete
⋅+≤≤

⋅+
∑ Θ∈θ θ

 39

5.2.3 Using the Markov game environment

Although the modelling of an environment as a Markov game environment does increase the
complexity of learning policies1, it does not effect the complexity reduction brought about by
situational reinforcement learning. This is so because the reduction in complexity brought
about by SRL is the result of the smaller state spaces; the method does not alter the use of the
action sets. The Markov game environment uses multiple action sets, which increases the
complexity of learning policies, but does not alter the use of the state set in policy learning. If
we alter (12) to incorporate a second action set O, where Oo = , the complexity would

become:
(29) ()32 nonoaO ⋅+⋅⋅

If we performed all the previous steps for this complexity, the resulting optimal complexity
reduction would still be 3g . This is also the case for even more action sets.

5.2.4 Using other policy learning algorithms

The reduction in complexity brought about by SRL is the result of using the smaller
environments. The complexity reduction is directly linked to the weight of the state set size n
in the complexity function of the used learning algorithms: the complexity reduction is greater
if the state set size n has a greater influence in the complexity function of that learning
algorithm. The reason that the complexity reduction is greater for the policy iteration
algorithm than for the modified policy iteration algorithm, 23 gg > , is because the state set
size n is of a higher order in the complexity function of the policy iteration algorithm,

() ()34
nOnO mPIPI > .

5.2.5 The Enhanced method

Because the methodology of the Enhanced method is to first perform the Combined method
and then the Complete method – with the difference that the Combined global policy is used
as a starting policy instead of a random policy – the upper bound complexity of performing
the Enhanced method can be given by the addition of the upper bound complexities of both
other methods:

(30) () ()()LL completecombinedenhanced OOO +

So, in the upper bound view the Enhanced method it is only a more costly method of
acquiring a global optimal policy. But is this also the case for the practical application of the
method? A hypothesis that will be tested for the modelled CTF world is that learning a policy
for the entire environment when starting from the combined policy will take less iterations to
terminate then when policy iteration starts from a random policy. This hypothesis is based on
the fact that policy iteration gradually improves a policy until the optimal policy is found, so
if you start with a more optimal policy it seems logical that you require less iterations to reach
the desired degree of optimality. An assumption that will be made, is that the global policy
resulting from the Combined method is more optimal than a random policy. This assumption
is based on the fact that the local policies are at least optimal in their own local environments.

If the hypothesis holds, then the learning process for the entire environment when starting
from the Combined policy would have a lower complexity than the learning process would

1 The complexity for learning a policy in a Markov game environment roughly increases by a factor that equals
the product of the sizes of the action sets. If for example m action sets are used where each set has a size of o
actions, the complexity for a single iteration of standard policy iteration in that Markov game would be

()312 nonoO mm ⋅+⋅ − , which is roughly is an increase in complexity of m
o .

 40

have for the entire environment when starting from a random policy, if we don’t take the
complexity of learning the local policies into consideration. Because we have already
demonstrated in the previous paragraphs that learning a global policy by using the Combined
method will most likely have a lower computational cost than learning a policy for the entire
environment, the question becomes whether the combination of learning local policies and
enhancing the resulting combined policy has a lower computational cost than policy iteration
for the entire environment from a random policy? This question will be answered in the
empirical evaluation in the modelled CTF world of computational costs.

5.3 Comparison to similar methods

In this paragraph, the Combined method will be compared to two methods that also try to
reduce computational complexity by learning in smaller environments: The Envelope Method
(Russel & Tash, 1994; Gardiol & Kaelbling, 2004) and Hierarchical Reinforcement Learning
(Dietrich, 1999, 2000; Pineau et al., 2003).

5.3.1 The Envelope Method

The general idea of the Envelope method is that is learning an optimal policy for the global
environment is not required for good performance. Instead, the global optimal policy can be
approximated by only learning an optimal policy for the states that are likely to be reached. In
the Envelope method, the MDP environment for which a policy is learned is called the
envelope, and this envelope is a sub-MDP of the global environment. Besides the required
elements of an MDP environment, the envelope method required an initial world state and a
method to define what rewards are assigned to states that fall outside the envelope.

An abstract view of the process of the envelope method is depicted in figure 5.

Find initial plan
Transform plan to
Envelope-MDP

Compute policyExpand envelope

start

donenot done

Find initial plan
Transform plan to
Envelope-MDP

Compute policyExpand envelope

start

donenot done

Figure 5. Abstract view of the Envelope method

The envelope method begins by finding an initial plan. In this classical planning problem, the
method tries to find a series of actions that lead from initial state(s) to goal state(s). The initial
states must be provided by the developer and the goal states can either be goal states of the
environment or states that lie at a maximum planning depth from the initial state.

When the initial plan has been constructed, this plan is transformed to the initial envelope
MDP. First, the envelope is initialized with the initial word state; then, the next state in the
envelop is found by applying the plan action to the previous state; when the state containing
the goal condition is reached, the set of states is complete. Transitions that initiate in an

 41

envelope state but do not land in an envelope state are redirected to a state called the out-of-

envelope or Out state (Gardiol & Kaelbling, 2004).

With a new envelope constructed, a (new) policy for this envelope must be computed. This
can be performed with any learning algorithm for the MDP environment, the only difference
is that the rewards for states that lie outside the envelope must be assigned by a special reward
function. This special reward function can for example assigns a penalty which equals an
estimation of the cost of having to recover from falling out (such as having to re-plan back to
the envelope) (Gardiol & Kaelbling, 2004).

After a policy has been computed, the envelope must be expanded. This phase is also called
deliberation. Gardiol & Kaelbling (2004) described this phase as “The deliberation involves
sampling from the current policy to estimate which fringe-states – states one step outside of
the envelope – are likely to be reached. (…). The (…) most likely fringe states are added to
the envelope.” (Gardiol & Kaelbling, 2004, p. 6). When to stop deliberating depends on the
criteria the developer uses; one example could be to stop deliberating when a maximum
amount of fringe states have been added. With a new envelope created, a new policy is
computed. This process of policy computation and envelope expansion is repeated until some
termination criteria is met; for example when a fixed amount of deliberations have passed.

The differences between the Envelope method and the Combined method are:

• The Envelope method learns only one policy for a continually expanding envelope-
MDP. The Combined methods learns multiple policies for static situation-MDPs.

• The Envelope method learns an optimal policy for states that are most likely to be
reached, starting from an initial state, but ignores all other states for the policy. The
Combined method learns optimal policies for situations, where situations are created
based on heuristic state preference values. In the Combined method, no state is
ignored.

• The Envelope method requires much more alteration to the MDP framework than the
Combined method. The Envelop method requires an initial state, an initial plan (which
is a planning process, not reinforcement learning), a special reward function for out-
of-envelope penalties, a termination criteria when to stop a round of deliberation and a
termination criteria when to stop the method itself. The Combined method only
requires a decomposition of the reward function into a (heuristic) state reward function
and an action reward function.

Both methods result in global policies that approximate the global optimal policy. The
optimality of the global Envelope policy depends for a large part on the initial plan, the
optimality of the global Combined policy depends for a large part on the heuristic function.

A possibly fruitful conjunction of both methods could be to use the envelope-expansion
method on situations: Select a situation to be the initial envelope and expand the envelope
with the most likely or preferable reachable situation until an end state of the game has been
reached. This conjunction would allow the Combined method to learn further than a situation,
reducing the danger of falling into traps, and would eliminate the need of initial plans, out-of-
envelope penalties and special deliberation- and method termination criteria that are required
for the Envelope method.

 42

5.3.2 Hierarchical Reinforcement Learning

The general idea of Hierarchical Reinforcement Learning (HRL) is that the structure of an
environment can be used to limit the amount of policies that need to be considered as well as
enables the use of state abstraction. In HRL, the global MDP is decomposed into a hierarchy
of smaller MDPs. The method is based on the assumption that the developer can identify
useful sub-goals and defined subtasks that achieve these sub-goals (Dietrich, 1999). This
discussion of HRL is based on the MAXQ Value Function Decomposition, but the discussed
characteristics apply to all HRL methods.

In order to employ hierarchical reinforcement learning, the developer must identify individual
subtasks that he believes are important for solving the overall task. There are various methods
that specify how subtasks should be constructed. Several of these are:

• Define each subtask in terms of a fixed policy that is provided by the developer.
• Define each subtask in terms of a non-deterministic finite-state controller.
• Define each subtask in terms of a termination predicate and a local reward function.

The MAXQ HRL method uses this definition.
If we consider the third method for specifying subtasks then, for each subtask, the termination
states for that subtask must be defined along with the actions or other subtasks that it employs
to reach its goal and a local reward function. For each sub-task an optimal policy iπ can then

be learned. The hierarchical policy π , is a set containing a policy for each of the subtasks:
{ }no πππ ,,L= . The execution of a hierarchical policy then consists of identifying the current

subtask and perform the action specified in the corresponding subtask-policy for the current
state.

By dividing the environment into these hierarchical blocks, each subtask-policy only needs to
consider actions that are relevant for performing it’s task, which eases the policy learning
process. But a sub-task policy must be learned for each task, and each action of action set A
must be employed by at least one sub-task or the action was unnecessary for the environment
in the first place. The state space S does not change for each subtask, besides the fact that
some states are considered termination states for the subtask. Because the amount of states in
an environment has a greater influence in computational complexity than the amount of
actions for most learning algorithms, as can be seen in appendix C, it is probable the learning
a policy for each subtask involves more computations than learning a policy for the entire
environment. Because of this, hierarchical reinforcement learning often makes use of state
abstraction. With state abstraction, certain aspects of the state space that are irrelevant for
solving the subtask are ignored. By doing this, the state space of each subtask is reduced to a
subset of S, which reduces the computational complexity for learning a policy for that subtask
even more. Dietrich (1999) states that “Perhaps the most important reason for introducing
hierarchical reinforcement learning is to create opportunities for state abstraction” (Dietrich,
1999, p. 27).

The hierarchical policy that is the result of hierarchical reinforcement learning no longer has
to be the global optimal policy. The optimality of the hierarchical policy critically depends on
the hierarchical structure, since this structure defines which policies will be considered.
Hierarchical reinforcement learning therefore tries to reach hierarchical optimality: A
hierarchically optimal policy for MDP M is a policy that achieves the highest
cumulative reward among all policies consistent with the given hierarchy (Dietrich, 1999).

The differences between HRL and the Combined method are:

 43

• The HRL uses a pre-defined hierarchical structure. Within the HRL method, the
problem is described as a single task which is continually decomposed into more
primitive sub-tasks, where each lower-level sub-tasks can be used to achieve the goal
of a higher level sub-task. Each sub-task is thus a part of a higher level task and has a
specific goal. In the Combined method each situation represents a unique part of the
original environment and no situation is part of another. Each situation has the same
goal: maximize rewards. The difference is that situations are autonomous
environments in which the local learning processes are unaware of the other situations,
where subtasks on the other hand employ other subtasks to solve specific problems.

• The HRL views the world as a problem that must be solved. In order to solve the
problem, the developer defines subtasks that solve partial-problems. In this fashion,
the HRL requires from the developer a solution structure that enables the agent to
solve the overall problem. The Combined method views the world as a living
environment in which the agent should try to live as agreeable as possible. In order to
determine what is agreeable, the developer defines state preference. In this fashion, the
Combined method requires state preference values from the developer that enables the
agent to identify the agreeability of situations.

• The HRL method still learns a global policy. The hierarchical structure limits the
amount of possible policies to learn, but the learning process essentially still
encompasses the global environment. The Combined method only learns policies for
the local environments, the global policy is created from these local policies. The
learning process of the Combined method no longer encompasses the global
environment.

• The HRL requires different additional information to be provided by the developer.
What information is required depends on the definition of a subtask. This information
can consist of subtasks with termination states, local reward functions, subtask-
specific-actions or complete fixed policies. The Combined method requires a
decomposition of the reward function into a (heuristic) state reward function and an
action reward function.

Both methods results in global policies that approximate the global optimal policy. The
optimality of the hierarchical policy depends for a large part on the hierarchical structure, the
optimality of the global Combined policy depends for a large part on the heuristic function.
Both method also learn local policies for smaller MDPs, respectively called subtasks and
situations.

A fruitful conjunction of both methods is unlikely. It might be possible to use the local reward
function of subtasks to define situations within that subtask, but this would only be useful for
complex subtasks and these complex subtasks could best be solved in a HRL fashion by
dividing the subtask into more subtasks or use state abstraction. The other way around, where
HRL is used within the Combined method, is also most likely ineffective: Because the
situations that are created by the Combined method are not explicitly given by the developer,
it would be a dangerous if not impossible task to define a hierarchical structure for each
situation.

The action abstraction used by HRL for the subtasks might be a worthwhile addition to the
Combined method. In specific situations, some actions are irrelevant and these could be
removed from the situation. One example for the modelled CTF world would be to ignore the
‘Score’ action for all situations where the agent does not have the flag. Such an abstraction
would furthermore reduce the computational complexity of learning policies.

 44

6 Empirical evaluation
This chapter gives the results of the empirical evaluation performed as part of the assignment.
The first paragraph handles the computational cost evaluation and the second paragraph gives
the game performance evaluation that indicates policy optimality. The last paragraph gives a
summarised comparison between the Complete and Combined method. The next chapter uses
these results for conclusions and as a handle for discussions.

6.1 Computational cost

This paragraph gives the results of the empirical evaluation of computational costs as
calculated in the fashion described in paragraph 3.2.5 and given by equations (8), (9) and (10).
Each computational cost value is based on 40 policy learning processes that were performed
in the CTF environment explained in appendix D. In the modelled CTF environment,
situational reinforcement learning decomposed 1 learning problem into respectively 21 – the
Standard environment – and 13 – the Alternative environment – smaller and more tractable
learning problems.

The following three tables give for one of the used discount factors the calculated
computational cost values for all combinations of learning method and learning environment.
For the Combined and Enhanced methods, not only the exact calculated values are given, but
also how this value compares to the Complete method in percentages. For the Enhanced
method, this is viewed in two ways: with and without the addition of the Combined
computational cost. The value without the Combined complexity illustrates whether using the
resulting global policy of the Combined method as a starting policy for modified PI requires
less iterations, which was a hypothesis explained in paragraph 4.2.5. The value with the
Combined complexity illustrated the actual cost required for learning the global policy and
gives an indication whether using the Combined method as a starting point is computationally
worthwhile.

Because the Combined and Enhanced methods are inapplicable for the Simple environment,
since the Combined method requires a more complex reward function to be able to create
situations, the computational cost values for learning global policies in the Simple
environment have only been calculated for the Complete method.

All C values 710⋅

Discount factor 0.9 Standard Alternative Simple

Complete niC completeavgcomplete ⋅= ,
ˆ

2,16 2,27 2,48

()∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ

0,80 2,10

Combined
Percentage with respect to Complete
in same environment 37,0% 92,6%

niC enhancedavgenhanced ⋅= ,
ˆˆ

2,00 2,03

Percentage with respect to Complete
in same environment 92,6% 89,4%

()niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ

2,80 4,13

Enhanced
Percentage with respect to Complete
in same environment 129,6% 182,0%

Table 1 Computational cost values for all combinations of learning method and learning environment

with discount factor 0.9

 45

All C values 610⋅

Discount factor 0.5 Standard Alternative Simple

Complete niC completeavgcomplete ⋅= ,
ˆ

3,74 4,17 6,16

()∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ

2,10 3,68

Combined
Percentage with respect to Complete
in same environment 56,1% 88,3%

niC enhancedavgenhanced ⋅= ,
ˆˆ

3,14 3,47

Percentage with respect to Complete
in same environment 84,0% 83,2%

()niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ

5,24 7,16

Enhanced
Percentage with respect to Complete
in same environment 140,1% 171,5%

Table 2 Computational cost values for all combinations of learning method and learning environment

with discount factor 0.5

All C values 610⋅

Discount factor 0.1 Standard Alternative Simple

Complete niC completeavgcomplete ⋅= ,
ˆ

1,78 3,42 3,56

()∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ

1,19 1,15

Combined
Percentage with respect to Complete
in same environment 67,2% 33,7%

niC enhancedavgenhanced ⋅= ,
ˆˆ

1,43 1,82

Percentage with respect to Complete
in same environment 80,5% 53,3%

()niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ

2,63 2,97

Enhanced
Percentage with respect to Complete
in same environment 147,7% 87%

Table 3 Computational cost values for all combinations of learning method and learning environment

with discount factor 0.1

From tables 1, 2 and 3, the following observations can be made:

• Using the Combined method results in significant computational cost reductions in
comparison to the Complete method. The cost reduction is, averaged over the different
discount factors, 46.57% and 28.47% for respectively the Standard and Alternative
environment. When also averaging over the environment, using the Combined method
results in an average cost reduction of 37.52%.

• The effect that the discount factor has on the computational cost reduction brought
about by the Combined method differs between the Standard and Alternative
environments. Graph 1 illustrates this: for the Standard environment the reduction is
greater for higher discount factors; for the Alternative environment the reduction is
greater for lower discount factors. In the next chapter an explanation for this behaviour
is given.

 46

• The computational cost of using the Enhanced method without considering the
additional cost of performing the Combined method is reduced in comparison to the
Complete method. The reduction – which is brought about by starting from the learned
Combined behaviour – is, averaged over the different discount factors, 14.3% and
24.7% for respectively the Standard and Alternative environment. When also
averaging over environment, using the Combined method’s learned information in
itself results in an average cost reduction of 19.5%.

• The total computational cost of using the Enhanced method – meaning that the
additional cost of performing the Combined method is also considered – is increased
in comparison to the Complete method. The increase is, averaged over the different
discount factors, 39.10% and 46.83% for respectively the Standard and Alternative
environment. When also averaging over environment, using the Enhanced method
results in an average cost increase of 42.97%. This shows that the cost reduction
brought about by using the Combined method’s resulting information is on average
not significant enough to overcome the additional cost of performing the Combined
method. One case did exist where the cost of using the Enhanced method showed a
reduction in comparison to the Complete method, but this was but one case among six.

• Using a higher discount factor results in a higher computational cost. This is illustrated
in graph 2 for the Standard environment. The same trend is observed for the
Alternative and Simple environments.

• Using a more complex reward structure results in lower computational costs. When
considering the complexity of the reward structure – where a more complex reward
function assigns more unique state rewards - the Standard environment has the most
complex reward function and the Simple environment has the least complex reward
function. This is illustrated in graph 3 for the Complete method and the same trend is
observed for the Combined and Enhanced methods.

0

10

20

30

40

50

60

70

0.1 0.5 0.9

Discount factor

C
o

s
t

re
d

u
c
ti

o
n

 i
n

p
e
rc

e
n

ta
g

e
s

Standard env.

Alternative

env.

Graph 1. Cost reduction in percentages of using the Combined method in comparison to the Complete

method.

0

5

10

15

20

25

30

0.1 0.5 0.9

Discount factor

C
o

s
t

v
a
lu

e
 (

+
E

6
)

Complete

Combined

Enhanced

Graph 2. Computational cost values in the Standard environment.

 47

0

5

10

15

20

25

30

Standard Alternative Simple

Environment

C
o

s
t

v
a
lu

e
 (

+
E

6
)

Discount 0.1

Discount 0.5

Discount 0.9

Graph 3. Computational cost values for the Complete method.

6.2 Policy optimality

This paragraph gives the results on game performance that is used to indicate policy
optimality. Each of the tables 4 to 11 gives for a certain discount factor and environment the
game results of competing methods. Between all competing methods, the tables gives the
percentage of games won and the percentage of games more won, along with the amount of
valid1 games played. Game performance evaluation is explained in paragraph 4.2.6 and
equation (11) is given there to calculate the percentage of games more won. Although 2400
games were played between any two computer-controlled players in order to generate
statistical significant results, this amount of games was impossible to achieve with human
players. Because the amount of human test-subjects was limited, the performance values
generates from these games give an indication of performance. In order to generate a more
reliable indication, the human players only played games against policies learned with the
discount factors of 0.1 and 0.9, not against policies learned with a discount factor of 0.5. By
doing so, the games that were played could be played more often whilst it is likely that no
relevant information was lost, since the results of policies learned with the 0.5 discount factor
almost always lay in between the results of policies learned with the 0.1 and 0.9 discount
factor.

From the results in tables 4 through 12, the following overall observations can be made:

• On overall it can be said that the Complete method outperformed the Combined
method, in both head-to-head matches and in matches against non-learning methods.

• When considering the Combined method, policies learned in the Alternative
environment perform considerably than policies learned in the Standard environment.
The Combined Alternative policies outperformed the Combined Standard policies in
matches against all other methods. The Combined Alternative policies performed
nearly as well as the Complete Alternative policies did against the Random method.

• When analysing the influence of the discount factor on the Complete and Combined
methods, the results show that performance of the Complete method decreases faster
with lower discount factors than the Combined method. Because of this, the
performance of the Combined method in comparison to the Complete method
increases with lower discount factors. This can be demonstrated by the games played
against human players: In Human versus Complete games, the Complete performance
decreased significantly with lower discount factors. In Human versus Combined
games, the discount factor did not influence performance all that much.

1 A game was considered invalid if a pre-defined amount of time had expired. Because time was not modelled
into the game environment, these games were considered invalid rather than tied (see paragraph 3.2.6).

 48

• When analysing the influence of the learning environment, or more specifically the
use of more complex1 reward functions, on game performance, tables 10 through 12
show that performance depends on both the complexity of the reward function and on
the used discount factor. When high discount factor are used, more complex reward
functions distract the player from winning, resulting in lesser performance. When low
discount factors are used, more complex reward functions can, if they correctly
represent the desire to win, give a handle for the learning process to converge too,
resulting in better performance. This is discussed in more detail in the next chapter.

The following more detailed observations about performance of the Complete and Combined
learning methods in the Standard and Alternative learning environments can be made from
tables 4 through 9:

• For all learning environments, the Complete method outmatches the Combined
method. For the Standard environment, the Complete methods wins between 68,04%
and 78,25% more games. The Combined method performs considerably better in the
Alternative environment, where the Complete method wins between 41,38% and
61,04% more games. For all environments, a lower discount factor results in better
performance of the Combined method against the Complete method.

• For all environments, the Complete method wins almost in 100% of the games from
the Random method. All games that are not won by Complete end in a tie.

• In the Standard environment the Combined method never loses from the Random
method, but only accomplishes to win between 34,63% and 39,63% games. In the
Alternative environment, the Combined method performs nearly as well against the
Random method as the Complete method did (almost 100% games won), the only
difference being 4% more tied games.

• Performance of the Complete method against human players (Human method)
depended critically on the used discount factor. If a discount factor of 0.9 was used,
the Complete method performed better than human players, if a discount factor of 0.1
was used, the human players outmatched the Complete method. The results further
show that Complete policies learned in the Alternative environment performed better
against human players than Complete policies learned in the Standard environment.

• The Combined method was outperformed by the human players in both environments,
although Combined policies learned in the Alternative environment performed better.
The discount factor did not affect the performance of the Combined policies against
human players, unlike the Complete policies.

The following observations about performance of the Complete method in the Simple
environment can be made from tables 10 through 12:

• Policies learned in the Simple environment perform better than policies learned in the
Standard environment, where the Simple policies win between 9,75% and 36,75%
more games.

• Policies learned in the Simple environment do not necessarily perform better than
policies learned in the Alternative environment. Although the Simple policies managed
to win between 14,96% and 27,79% more games when high discount factors were
used, the Alternative policies managed to win 5,25% more games when a discount

1 When a more complex reward function is discussed, this refers to a reward function that assigns more unique
state rewards. It does not refer to the computational complexity that was used as part of the theoretical
evaluation.

 49

factor of 0.1 was used. Lower discount factors resulted in better performance for the
Alternative policies.

• Lower discount factors also resulted in decreased performance of the Complete Simple
policies when playing against human players. When the highest discount factor of 0.9
was used, the Complete policies managed to win 45% more games. When the lowest
discount factor of 0.1 was used, the human players and the Complete Simple policies
performed equally well.

• Just as with the Complete policies learned in the Standard and Alternative
environment, the policies learned in the Simple environment won almost 100% of the
games against the Random player.

The results of games played in the Standard environments:

Discount factor 0.9 Complete Combined Random Human

Standard Environment
2400

games
2400

games
2400

games 20 games
Percentage of games
won 85,29% 98,96% 45,00%

Complete
Percentage of games
more won 78,75% 98,96% 5,00%

Percentage of games
won 6,54% 39,63% 15,00%

Combined
Percentage of games
more won -78,75% 39,54% -45,00%

Table 4. Game performance between methods in the Standard environment

 with a discount factor of 0.9

Discount factor 0.5 Complete Combined Random Human

Standard Environment
2400

games
2400

games
2400

games 0 games
Percentage of games
won 80,00% 97,42%

Complete
Percentage of games
more won 68,25% 97,42%

Percentage of games
won 11,75% 46,13%

Combined
Percentage of games
more won -68,25% 46,08%

Table 5. Game performance between methods in the Standard environment

 with a discount factor of 0.5

Discount factor 0.1 Complete Combined Random Human

Standard Environment
2400

games
2400

games
2400

games 20 games
Percentage of games
won 80,75% 98,75% 20,00%

Complete
Percentage of games
more won 68,04% 98,75% -50,00%

Percentage of games
won 12,71% 34,63% 25,00%

Combined
Percentage of games
more won -68,04% 34,63% -45,00%

Table 6. Game performance between methods in the Standard environment

 with a discount factor of 0.1

 50

The results of games played in the Alternative environment:

Discount factor 0.9 Complete Combined Random Human

Alternative Environment
2400

games
2400

games
2400

games 20 games
Percentage of games
won 78,04% 99,42% 65,00%

Complete
Percentage of games
more won 61,04% 99,42% 35,00%

Percentage of games
won 17,00% 95,21% 30,00%

Combined
Percentage of games
more won -61,04% 95,21% -30,00%

Table 7. Game performance between methods in the Alternative environment

 with a discount factor of 0.9

Discount factor 0.5 Complete Combined Random Human

Alternative Environment
2400

games
2400

games
2400

games 0 games
Percentage of games
won 74,25% 99,33%

Complete
Percentage of games
more won 51,83% 99,33%

Percentage of games
won 22,42% 96,33%

Combined
Percentage of games
more won -51,83% 96,33%

Table 8. Game performance between methods in the Alternative environment

 with a discount factor of 0.5

Discount factor 0.1 Complete Combined Random Human

Alternative Environment
2400

games
2400

games
2400

games 20 games
Percentage of games
won 68,66% 99,50% 20,00%

Complete
Percentage of games
more won 41,38% 99,50% -35,00%

Percentage of games
won 27,28% 96,71% 20,00%

Combined
Percentage of games
more won -41,38% 96,71% -35,00%

Table 9. Game performance between methods in the Alternative environment

 with a discount factor of 0.1

The results of the games played in the Simple environment

Discount factor 0.9 Standard Alternative Random Human

vs. Simple environment
2400

games
2400

games
2400

games 20 games
Percentage of games won 37,25% 51,13% 97,34% 55,00%

Simple
Percentage of games more
won 9,75% 27,79% 97,34% 45,00%

Table 10. Game performance between the Complete methods in the Simple environment and the

Complete methods in the other environments as well as non-learning methods,

 with a discount factor of 0.9

 51

Discount factor 0.5 Standard Alternative Random Human

vs. Simple Environment
2400

games
2400

games
2400

games 0 games
Percentage of games won 63,42% 41,83% 98,50%

Simple
Percentage of games more
won 36,75% 14,96% 98,50%

Table 11. Game performance between the Complete methods in the Simple environment and the

Complete methods in the other environments as well as non-learning methods,

 with a discount factor of 0.5

Discount factor 0.1 Standard Alternative Random Human

vs. Simple Environment
2400
games

2400
games

2400
games 20 games

Percentage of games won 59,83% 37,88% 99,65% 30,00%

Simple
Percentage of games more
won 28,79% -5,25% 99,65% 0,00%

Table 12. Game performance between the Complete methods in the Simple environment and the

Complete methods in the other environments as well as non-learning methods,

 with a discount factor of 0.1

6.3 Comparing Combined to Complete

Table 13 is a select summary of tables 1 through 9 and gives a comparison of computational
cost and game performance between the Combined method and the Complete method for both
environments and all discount factors.

Standard environment Alternative environment

Combined compared to
Complete

Combined compared to
Complete

Discount Factor
Computational

cost More games won
Computational

cost More games won

0.9 -63,00% -78,75% -7,40% -61,04%

0.5 -43,90% -68,25% -11,70% -51,83%

0.1 -32,80% -68,04% -66,30% -41,38%

Table 13. Summarised comparison of complexity and game performance

between Combined and Complete

 52

7 Conclusions & Discussions
In this chapter conclusions are drawn and discussions are started based on the results of the
evaluations described in the previous two chapters. The goals of the assignment – which were
discussed in the introduction – can be summarised as being to:

1. Develop the situational reinforcement learning approach. This approach must be
applicable in MDP and Markov game modelled environments, be able to use any
policy learning algorithm within such environments and be able to learn policies at a
lower complexity cost than conventional reinforcement learning.

2. Apply situational reinforcement learning to a game of CTF modelled as a Markov
game environment.

3. Evaluate the implications of SRL as a stand-alone approach – the Combined method –
on policy optimality.

4. Evaluate the implications of SRL as a stand-alone approach – the Combined method –
on computational cost/complexity.

5. Evaluate the implications of SRL as an addition to conventional reinforcement
learning methods – the Enhanced method – on computational cost/complexity.

As for the first goal, the situational reinforcement learning approach is applicable to all MDP
and Markov game modelled environment if these environments allow for a decomposition of
the reward function into a state reward function and an action reward function. It has also
been shown that, with the same criterion of a decomposable reward function, the approach
can be applied to POMDP environments. Situational reinforcement learning can be used in
conjunction with all dynamic programming algorithms. In it’s current form, SRL cannot yet
be used with reinforcement learning method that use incomplete models of the environment.
Situational reinforcement learning can be seen as an approach that tries to reduce the
computational cost of learning behaviour by performing the learning process on smaller
environment. As such, the approach is an alternative to methods like hierarchical
reinforcement learning and the envelope method.

The second goal has been met for a two player zero-sum CTF game. This environment –
which is described in appendix D – has been used as the empirical evaluation tool for the
third, fourth and fifth goal. Small examples have also been given on how SRL could be used
to learn behaviour in a first-person shooter game and in a non-game environment. The CTF
environment showed how situational reinforcement learning reduced the environment – which
contained 136737 reachable states – into 21 game situation. In so doing, situational
reinforcement learning decomposed a single large learning problem into 21 smaller and more
tractable learning problems.

The last three goals were evaluated in a theoretical and empirical fashion. We will look at the
evaluation results of using SRL as a stand-alone approach to learning first – the Combined
method. The theoretical evaluation will be discussed prior to discussion of the empirical
evaluation. The evaluation results of SRL as an addition to conventional reinforcement
learning – the Enhanced method – will be discussed thereafter in the similar order.

The theoretical evaluation showed that the reduction in computational complexity facilitated
by the Combined method in comparison to a method that used the learning algorithm in it’s
most basic way called the Complete method, is dependent on the learning algorithm used and
the amount of situations created by the heuristic function. If g is the amount of created
situations then the worst-case complexity of the Combined method, ()LcombinedO , relates to the

 53

worst-case complexity of the Complete method, ()LcompleteO , in the following manner for

respectively the policy iteration algorithm and the modified policy iteration algorithm:

•
()

() ()LL
L

completecombined

complete
OO

g

O
≤≤

3

•
()

() ()LL
L

completecombined

complete
OO

g

O
≤≤

2

The reduction in computational complexity facilitated by the Combined method is determined
by the influence of the state set size n in the complexity function of the learning algorithm
used: If the state set size has a higher order in the complexity function, than the reduction
brought about by the Combined method is also greater. The reduction when using standard
policy iteration is therefore theoretically greater than when using modified policy iteration,
because the state set size n is of the order ()4nO and ()3nO for the upper bound complexity
functions of respectively policy iteration and modified policy iteration.

The optimality of the global policy created by the Combined method is difficult to predict.
The Combined method acquires a global policy by combining learned local policies. Because
of this process, the created global policy is most likely not optimal, even if the learned local
policies were. How optimal the created global policy is depends largely on the heuristic
function. This dependency is created by two factors:

1. The heuristic function, being the state reward function that assigns rewards to states,
defines the preference of the states. If the heuristic function does not correctly
represents the goals of the agent, which for games is to win, then the policy learned
from this heuristic function will not perform it’s goal optimally.

2. The heuristic function defines the situations that are created and one import aspect for
global policy optimality is the ambiguity of the situation ordering. If the ordering of
situations is unambiguous, meaning that the state rewards of the situations alone is a
sufficient indicator for preference and situations with higher state rewards will most
likely lead to situations with even higher state rewards, then the resulting global policy
will be near-optimal. If on the other hand the ordering of situations is ambiguous,
where situations with high state rewards can lead to situations with low state rewards
(i.e. short-term reward traps), then the resulting global policy can be disastrous.

Now let’s look at the results of the empirical evaluation of the Combined method. Using the
Combined method in the modelled CTF world always resulted in a significant reduction of
computational cost, with reductions between 7.4% and 66.3% and an average reduction of
37.52%. Although the maximal-minimal cost reduction did not differ all that much between
the two environments Standard and Alternative, there was a striking difference in the effect
the discount factor had on cost reduction in both environments. In the Standard environment
the reduction was greater for lower discount factors and in the Alternative environment the
reduction was greater for higher discount factors. The explanation for this probably lies in the
amount of (unique) state rewards distributed by the reward function and how this affects the
relative influence of the discount factor on computational cost. In general – and as can be seen
from the results – using higher discount factors result in higher computational cost, but how
the discount factor and computational cost relate, depends on the environment.

Let’s consider two environment on which we apply the Complete method. One environment
will be referenced to as the Few environment and the reward function in this environment
assigns few (unique) rewards. The reward function of the other environment assigns many

 54

rewards and is referenced to as the Many environment. The assumption made is that the
difference in computational cost between using a high and low discount factor is smaller in
the Few environment than in Many environment. This assumption is based on the fact that
when a low discount factor is used in the Many environment, the learning process can
converge relatively quickly to the various different state rewards, resulting in a lower
computational cost. If a high discount factor is used in a similar environment, the algorithm
does not converge to local rewards but rather to rewards further away. In a Few environment,
the difference in computational cost between using a low and high discount factor will be
smaller, because there aren’t too many state rewards to converge too, resulting in more similar
policies between low and high discount factors. Table 14 summarises this assumption.

Now let’s consider the same Few and Many environments when we apply the Combined
method. For this learning method, the assumption is that the difference in computational cost
between low and high discount factors will be smaller when using the Many environment in
comparison to the Few environment. This assumption is based on the fact that, in general, the
computational cost difference between using low and high discount factors increases with the
size of the environment. With a larger environment, influencing states can be farther away,
resulting in a greater difference between high and low discount factors because high discount
factors are influenced more by these far-away states. Because applying the Combined method
to a Few environment results in less – but larger – situations than when the method is applied
to a Many environment, the difference in computational cost between low and high discount
factors will be greater for the Few environment. Table 15 summarises this assumption.

Using the Complete

method

Low discount factor High discount factor

Many environment Quick convergence because
ample opportunity for local

convergence.

Slow convergence because
high discount factor ignores
local rewards and converge

to global rewards.
Few environment Slow convergence because

few state rewards give little
opportunity for local

convergence.

Slow convergence because
high discount factor

converges to global rewards.

Table 14. Influence of discount factor and environment on learning convergence, and thus computational

complexity, when using the Complete method.

Using the Combined

method

Low discount factor High discount factor

Many environment Quick convergence because
of small situations.

Quick convergence because
of small situations.

Few environment Quick convergence.
Although the situation is

large, the learning process
can at least benefit from local

convergence.

Slow convergence because of
large environment and no

local convergence.

Table 15. Influence of discount factor and environment on learning convergence, and thus computational

complexity, when using the Combined method.

Within the modelled CTF world, the Alternative environment with it’s 13 situations uses a
less complex reward structure than the Standard environment with it’s 21 situations. If we

 55

identify the Alternative environment as a Few environment and the Standard environment as a
Many environment, then by using the above mentioned assumptions we can explain the
difference in the implication of the discount factor between the two environments: In the
Standard environment, the difference in computational cost between low and high discount
factors when using the Complete method is relatively large whilst this difference is relatively
small when the Combined method is used. Therefore when using the Complete method, the
computational cost increases faster with higher discount factors than when the Combined
method is used, resulting in greater reductions for the Combined method with higher discount
factors. In the Alternative environment, the difference in computational cost between low and
high discount factors is greater when the Combined method is used, resulting in lesser
computational cost reduction when higher discount factors are used. For both methods, it still
applies that higher discount factors means higher computational costs and that using the
Combined method always yields a significant decrease in computational cost (averaged over
discount factors and learning environment the average computational cost reduction is
37,52%).

When considering the optimality implications of using the Combined method, the empirical
results show that the use of the Combined method always results in a significant optimality
decrease. The game performance of the learned policies – which is used as an indication for
policy optimality – shows that between 40% and 80% of games are more lost if the Combined
method is used. As can be shown by the difference in performance of policies learned in the
Standard and Alternative environments, the performance depends for a large part on the
heuristic function. Analysis of the learned Combined policies in the Standard environment
showed an unexpected problem that seriously hampered performance: In the Standard
environment, killing the opponent resulted in an increase of state reward, which from the
perspective of local learning processes meant a different situation. Because a dead opponent
always returned to the game after two action, the situation also had to change after two action
(to the situation where the opponent was alive once again) unless a situation change could be
realised in less actions. In so doing, these situations where the opponent was dead became
episodic situations: If the agent did not have the chance to realise another way of changing
situations (such as picking up the flag or scoring a point) within two actions, the agent chose
to do nothing for those two actions. This is not surprising since, from the perspective of the
local learning process, always the same situation was reached, so why perform any action at
all? The Alternative environment was devised as a solution to this problem, but the problem
illustrates the danger of creating unwanted effects when using the Combined method. The
developer should therefore carefully consider the heuristic function. One important issue for
future research is to find a way, other than the Enhanced method, to extend the Combined
method to overcome the short-sightedness that hampers it’s optimality. Multiple solutions
could be used, which are explained in more detail in chapter 9.

The empirical results further show that the Combined method always performs relatively
better with lower discount factors. This can probably be explained through local policy
convergence: When using the Combined method, the local learning process can only converge
to inner-state rewards or single-transition reachable outer-state rewards; In either case,
convergence will occur to relatively nearby states. When using a low discount factor with the
Complete method, the policy learning algorithm will also converge to relatively nearby state-
rewards. For low discount factors, the Complete and Combined methods therefore mimic each
other’s behaviour to some extend, resulting in policies that are more alike. When high
discount factors are used, the Complete method can converge to rewards of states farther away
but the Combined method is still limited to single-transition reachable outer-state rewards.

 56

Because planning ahead is almost always favourable for games, the Complete method
performs relatively better with higher discount factors than the Combined method.

When analysing the influence of the learning environment, or more specifically the use of
more complex1 reward functions on game performance, the results show that performance
depends on both the complexity of the reward function and on the used discount factor. When
a high discount factor is used, complex reward functions distract the agent from achieving it’s
goal, resulting in lesser performance. When low discount factors are used, more complex
reward functions can give a handle on states for the learning process to converge too,
resulting in better performance. Let’s take for example a man in a room who wants to reach
the exit-door to explain this. Let the discount factor represent the vision of the man, where
higher discount factors means the man can see farther into the room. Let the reward function
represent the amount of signposts that point to the exit-door in the room. If the man has a high
discount factor and is able to see the door from his starting location, he does not need the
signposts to reach the door and continually reading all the signposts distract him from running
to the door, so he prefers a less complex reward function. If the man has a low discount factor
and does not see the door from his starting location, the signposts can help him walk in the
right direction so he prefers a more complex reward function.

From a theoretical point of view, the reduction or increase in computational cost resulting
from the use of the Enhanced method is difficult to predict. If the Enhanced method uses a
policy improving policy learning algorithm, such as (modified) policy iteration, then the
computational cost depends largely on the optimality of the Combined global policy.

The empirical results show that in almost all cases, the computational cost of learning an
optimal policy through the Enhanced method is higher than by simply using the Complete
method. The empirical evaluation does show that it is possible to learn an optimal policy with
a lower complexity cost by using the Enhanced method. The results show that the
computational costs of performing the Enhanced method, without looking at the additional
cost of performing the Combined method, is less than applying the Complete method. This
indicates that the hypothesis from paragraph 4.2.5. that less iterations are required when
starting from the Combined policy than when starting from a random policy is correct. This
reduction in iterations increases when lower discount factors are used. This is probably also
because of the previously mentioned local policy convergence: the Combined and Complete
policies are more alike when lower discount are used. When the policies are more alike, it
would require the Enhanced method less iterations to reach the same optimal policy found by
the Complete method.

Although using the resulting Combined policy as a starting policy reduces the amount of
iterations required to learn the optimal policy, this reduction is unfortunately most often not
significant enough to overcome the added computational cost of performing the Combined
method. The most obvious reason for this is that the global policy resulting from the
Combined method is not optimal enough and requires too much additional iterations. Another
reason, one of which the implications have not been researched, might be the use of the
modified policy iteration algorithm as a policy learning algorithm for the Enhanced method.
In this policy learning algorithm, the policy evaluation phase uses learned utility values of
previous iterations. Because of this, the Enhanced method did not only use the Combined

1 When speaking of reward function complexity, not the computational complexity is meant but rather the
amount of unique state rewards that are assigned to states by the function. A more complex reward function thus
assigns more unique state rewards, resulting in more situations if the Combined method is used.

 57

method’s resulting global policy, but also the Combined method’s resulting global utility set,
as explained in chapter 2. But this does introduce a possible problem, because the resulting
utility values of a situation depends on the amount of iterations required for the local learning
process of that situation. Let’s explain this problem with the example in figure 6: In this
figure, three states, which actually represent situations, are depicted by circles and utility
values are depicted below the situation name. Figure 6a. represents the initial world, before
local learning is applied by the Combined method to the situations. Now, let’s assume that
situation S1 required 1 iteration to learn the optimal policy and situation S3 required 6
iterations, then figure 6b represents the utility values for each situation. If a global utility set is
now created, it would appear that situations S3 is more favourable than situation S1, since it
has a higher utility value, but this is only so because situation S3 required more iterations.
Although this error will be corrected by the global learning of the Enhanced method, it may
require additional iterations than would be the case if only the global policy was used in for
example the policy iteration algorithm. Besides the fact that this problem is avoided when
using this other learning algorithm, another reason why the Enhanced method will probably
have a lower complexity cost when using another learning algorithm such as policy iteration
or value iteration is because the state set size has a greater influence in the computational
complexity of those algorithms, probably resulting in a greater computational cost reduction
of the Combined method, as explained in paragraph 4.2.4.

S1

2

S2

0

S3

1

L R

R(s) = [2 , 0 , 1]

Discount = 0.8

S1

3,60
S2

0

S3

3,95

L R

a.

b.

S1

2

S2

0

S3

1

L R
S1

2

S2

0

S3

1

L R

R(s) = [2 , 0 , 1]

Discount = 0.8

S1

3,60
S2

0

S3

3,95

L R

a.

b.

Figure 6. Three states representing situations.

a. Utility values before local learning

b. Possible utility values after local learning.

Summarised, the following conclusions can be drawn:

• Situational reinforcement learning is applicable for any environment modelled as a
(PO)MDP or Markov game environment that allows for a decomposition of the reward
function.

• SRL can be used in conjunction with any dynamic programming algorithm. SRL in
it’s current form cannot be used in conjunction with reinforcement learning methods
that use an incomplete model of the environment.

• The SRL approach has been implemented and tested for a two player zero-sum
Markov game environment modelled after a CTF game.

 58

• The use of the Combined method results in a significant reduction of the
computational cost, with an average reduction of 37.52%. This reduction depends
largely on the heuristic function (more specifically the amount of situations), used
discount factor and a combination of the two.

• The use of the Combined method also results in a significant reduction of policy
optimality, with an average percentage of 51.42% more games lost. This reduction
depends largely on the nature of the environment and the heuristic function (more
specifically how the situations are structured within this environment).

• Whether the trade-off in computational cost and policy optimality is acceptable is a
consideration for the developer. In my opinion, the optimality loss is too often too
large for most practical applications of the Combined method, but the significant
reduction in computational cost is a sufficient incentive to research possible
enhancements to reduce the optimality loss.

• The use of a more complex reward function reduces computational cost and policy
optimality, although the reduction in policy optimality can be reduced or even
nullified if the reward function is devised in such a way that correctly represents the
desire to win (or achieve a goal).

• Using the resulting Combined policy as a starting policy for modified policy iteration
(the empirically tested Enhanced method) requires less iterations than a random policy
would require.

• Unfortunately, the reduction in iterations is often not significant enough to overcome
the added computational cost of performing the Combined method, although it has
been shown that it is possible to achieve equal optimality with lower computational
cost. It is probable that the computational cost of the Enhanced method is lower when
the policy iteration or value iteration learning algorithms are used.

 59

8 Summary
This document described an approach to policy learning, called situational reinforcement
learning (SRL), based on a decomposition of the environment into so called situations by
using heuristic preference values for states. Within the context of this document, the method
that applies situational reinforcement learning as a stand-alone approach to learning was
referenced to as the Combined method. The main goal of the Combined method was to enable
policy learning at a lower computational cost than conventional reinforcement learning. This
document described how SRL works, gave an implementation of the method for a game
environment and described a theoretical and empirical evaluation of the method’s implication
on computational complexity/cost and policy optimality. Besides the Combined method, an
explanation, implementation and evaluation was also performed on a method that used the
resulting Combined method policy to enhance it’s optimality. This method was referenced to
as the Enhanced method, and was created to evaluate the use of SRL method as an addition to
conventional reinforcement learning.

Inspiration for situational reinforcement learning came from an analogy with a common
human approach to playing games: Humans tend to restrict their planning from their current
situation to reaching rather short-term more favourable situations instead of planning the
entire game at once. Humans also often have, especially so for games, their own heuristics
that tell them which situations are favourable in comparison to others. SRL copies this
behaviour by decomposing the environment into situations with equal preference according to
a heuristic function. The local learning processes than only focuses on reaching more
favourable situations. For the application of SRL a decomposition of the reward function is
required. It is most common for the reward function R in such environments to assign rewards
to a combination of state(s) and action(s), ()asR , . SRL requires that a decomposition is

possible into a state reward function ()sSR and an action reward function ()aAR , where the

reward function R becomes a function of the others, such as () () ()aARsSRasR +=, 1. The
state reward function SR would then be the heuristic function on which the decomposition
into situations is based. Each unique reward specified by the state reward function defines a
new situation. Each situation, defined by a unique state reward which we call base reward
here, can be created from the entire environment in the following fashion:

1. Identify all states with a state reward that equals the base reward as inner states.
2. Remove all transitions that do not originate from inner states.
3. Identify the reachable states which are not inner states as outer states.
4. Remove all states that are not inner or outer states.
5. Add new transitions for the outer states to make them absorbing states.

Each situation constructed in this fashion is an MDP-like environment on it’s own in which
policies can be learned with conventional reinforcement learning algorithms. Because from a
local learning perspective the only states with a different state reward are the outer states, the
local learning process will most likely direct the agent these outer states, if they are more
favourable then the inner states. A global policy is created by taking for each state the learned
action from that state from the situation where that state is an inner state. By creating a global

1 This notation does not correspond with the definition of the reward function. The reward function should “give
the expected immediate reward”, so a decomposition into SR and AR that corresponds in a better way to this

definition would be () () () ()∑ ′
′⋅′+=

s
sSRsasTaARasR ,,, . Because an MDP or Markov game

environment does not specify how the reward function should assign rewards, this decomposition is not
mandatory.

 60

policy in this fashion, the global policy will most likely direct the agent to continually
improving situations: a rather human approach to game playing.

Situational reinforcement learning is compatible with environments modelled as an MDP,
Markov game or POMDP. The method can be used in conjunction with any dynamic
programming algorithm, such as value iteration or (modified) policy iteration. The
implications on computational cost/complexity and policy optimality when using the
approach was evaluated for a Markov game environment where only modified policy iteration
was used as a learning algorithm. In it’s current form, situational reinforcement learning
cannot be used in conjunction with reinforcement learning methods that use incomplete
models of the environments, such as temporal difference learning or Q-learning.

Because the local policies learned by SRL are only optimal for their corresponding situations,
the global policy that is created from combining them is most likely sub-optimal. The
Enhanced method is an extension of the Combined method, that takes the resulting global
policy from the Combined method and enhances this policy to become optimal by using
conventional policy learning algorithms. In this fashion, SRL is used as an addition to
conventional reinforcement learning and the question that needed answering was whether this
results in lower computational costs for equal optimality in comparison to the conventional
methods.

The Combined and Enhanced methods were put into practice for a two player zero-sum
Markov game modelled after the game Capture the flag. The created environment is explained
in appendix D and the written program used for learning and playing in that environment is
explained in appendix F.

The evaluation of the Combined and Enhanced methods tried to give answers to the following
questions:

• What are the implications on computational complexity/cost and on policy optimality
when using the Combined method?

• What are the implications on computational complexity/cost and on policy optimality
when using a more complex reward structure, which is a necessity for the Combined
method?

• What are the implications on computational complexity/cost when using the Enhanced
method? This is considered with and without the addition of the computational cost of
the Combined method. Without the addition indicates whether using a non-random
starting policy results in lesser costs and with the addition indicates whether using the
Enhanced method as a whole has potential.

The evaluation was performed both theoretically and empirically, where most of the attention
was given to the empirical evaluation. Although all dynamic programming algorithms for
(PO)MDP or Markov game modelled environments could be used, the empirical evaluation
continually used the modified policy iteration algorithm explained in appendices B and C and
in several studies (Vrielink, 2005; Mansour & Singh, 1999; Russel & Norvig, 2003;
Kaelbling, 1996; Kaelbling et al., 1998; Aberdeen, 2003).

An evaluation on the computational complexity implications of the Combined method by
using worst-case complexity functions showed that the reduction in computational complexity
brought about by the Combined method depends on the learning algorithm used and the
amount of situations created. The reduction is a factor of the amount of the situations and the
value of this factor is defined by the weight of the state set size in the complexity function of

 61

the used learning algorithm. If the amount of situations is given by g and the state set size by
n, then for respectively the policy iteration and modified policy iteration algorithms the worst-
case complexity of Combined, ()LcombinedO , relates to the standard upper-bound complexity of

not using Combined, ()LandardstO , in the following way:

•
()

() ()LL
L

andardstcombined

andardst
OO

g

O
≤≤

3

•
()

() ()LL
L

andardstcombined

andardst
OO

g

O
≤≤

2

The possible worst-case reduction is greater when using standard PI than when using
modified PI, because the state set size n of both methods are respectively of the order ()4nO

and ()3nO .

The empirical evaluation showed that the reduction in computational cost when using the
Combined method in the modelled environment lay between 7.4% and 66.3%, depending on
used reward function, discount factor and a combination of the two. Averaged over used
reward functions and discount factors, the average empirical reduction in computational cost
was 37,47%.

The empirical evaluation on policy optimality was performed by using game performance as
an indication to optimality. The empirical evaluation showed a danger of using the Combined
method. Although the original environment described in appendix D, referenced to as the
Standard environment, appeared correct in the sense that higher rewards were only given to
states for which it was safe to say that they were more preferable, an unforeseen problem
where an episodic situation was created devastated game performance. In direct competitions
between Combined and Complete policies, where the Complete method can be described as
being the conventional application of the policy learning algorithm, the Combined policies
were outmatched in all cases. Between 40% and 80% of games were most lost, although
performance drastically increased when the above mentioned problem was solved, referenced
to as the Alternative environment. When only considering the Alternative environment, the
Combined policies lost 51.4% more games averaged over discount factors. Against an
opponent that plays random moves, the Alternative Combined policies performed nearly as
well as the Complete policies. The evaluation showed that although lower discount factor
resulted in lower game performance for all methods, the reduction in performance is greater
for the Complete method than for the Combined method.

The empirical evaluation also showed that although using a more complex reward structure,
meaning a reward structure that assigns more unique rewards, can distract an agent from
winning the game, it can also assist the agent in finding an optimal policy sooner, especially
for lower discount factors. So although the use of a more complex reward function does have
implications on computational cost and policy optimality, it may prove to be a worthwhile
endeavour if the rewards are chosen carefully by the developer.

The computational cost of using the Enhanced method was for all but one combination of
environment and discount factor greater than the computational cost of using the Complete
method. This indicates that although it is possible to reduce complexity cost for an equal level
of optimality, it is most likely not the case if the Enhanced method is used in it’s current form
that uses the modified policy iteration algorithm. Because of a possible problem when using
the global utility set – which is a requirement for modified policy iteration to continue

 62

learning – and because the reduction in computational cost brought about by the Combined
method depends on the learning algorithm used, the Enhanced method may yet prove to be
useful when other policy learning algorithms are used. This is then especially the case for
policy learning algorithms where the computational complexity is largely dependant on state
set size.

The applicability of SRL covers a broad domain – any MDP-like environment and dynamic
programming algorithm can be used – and in it’s current form the method could prove useful
for problems with unambiguous situation-orderings, such as illustrated with the taxi domain in
paragraph 2.4. In my opinion, the policy optimality loss created by the use of the Combined
method is still too great for most practical application. I believe that the significant reduction
in computational cost on the other hand is enough of an incentive to perform further research
methods to reduce the optimality loss.

 63

9 Further research
Based on the research described in this document, further research of situational
reinforcement learning can be divided into two categories: additional research on the
implications of the approach as described in this document and research into enhancements of
the approach. The first category aims to getter a deeper insight into the pro’s, con’s and
potentials of SRL, where the second category tries to increase the performance of SRL.

The following items are eligible for additional research into the implications of SRL:

• Perform an evaluation where a guarantee can be given that the optimal policy has been
learned instead of an assumption.

• Perform an evaluation where the SRL is applied to other environments and not just to
a CTF modelled Markov game environment.

• Perform an evaluation on how SRL performs against similar learning methods, such as
the described Envelope method or Hierarchical Reinforcement Learning.

• Research what the implications are when the Enhanced method is used in conjunction
with other policy learning algorithms than just modified policy iteration.

• Research how SRL can be modified to be compatible with reinforcement learning
methods that use an incomplete model of the environment.

As for the enhancements to SRL, I believe that the following may prove worthwhile:

• After having learned local policies for situations, make use of this learned local
information, such as learned utility values, to benefit the learning process of
neighbouring situations. A possibility that might be worthwhile to research is to use
the learned utility values of inner states as the utility values for the learning process of
neighbouring situations where those inner states are outer states. In such a fashion, the
local learning processes remain local (in contradiction to the Enhanced method, where
the learning scope became global) whilst still incorporating learned information of
other parts of the global environment.

• Make use of action abstraction within situations to ignore actions irrelevant for
transitions within the situation.

• Use an Envelope kind-of method, where the envelop which starts from a certain
situation is continually expanded with most-likely reached situations.

• Extend the local learning to a pre-defined ‘depth’ of situations. The Combined method
described in this document would have a pre-defined depth of 1: consider only the
current situation. A higher depth of for example 2 would expand the learning process
to also incorporate single-transition neighbouring situations.

 64

10 Literature

Aberdeen, D. (2003, December). A (Revised) Survey of Approximate Methods for Solving

Partially Observable Markov Decision Processes. Retrieved July 7th, 2006, from
http://users.rsise.anu.edu.au/~daa/files/papers/pomdpreview.pdf

Bakkes, S., Spronck, C., & Postma, E. (2004). TEAM: The Team-oriented Evolutionary
Adaptability Mechanism. In Rauterberg, M. (Eds.), Entertainment Computing - ICEC 2004,
volume 3166. Retrieved July 26th, 2006, from
http://www.cs.unimaas.nl/p.spronck/Pubs/Team.pdf

Bakkes, S., Spronck, C., & Postma, E. (2005). Best-Response Learning of Team Behaviour in
Quake III. In Aha, D.W., Muñoz-Avila, H., & Lent, M. (Eds.), Proceedings of the 2005 IJCAI

Workshop on Reasoning, Representation, and Learning in Computer Games. Retrieved Julyt
26th, 2006, from http://www.cse.lehigh.edu/~munoz/Publications/IJCAI05W-proceedings.pdf

Darryl, C (2003, November). Challenges for artificial intelligence in digital games. In Copier,
M., & Raessens, J. (Eds.), Digital Games Research Conference (chap. 17). Utrecht
University.

Dietrich, T.G. (1999, May). Hierarchical Reinforcement Learning with the MAXQ Value

Function Decomposition. Retrieved July 7th, 2006, from
http://arxiv.org/PS_cache/cs/pdf/9905/9905014.pdf

Dietrich, T.G (2000, July). An overview of MAXQ Hierarchical Reinforcement Learning. In
Choueiry, B.Y. & Walsh, T. (Eds.), Abstraction, Reformulation, and Approximation: 4th

International Symposium (pp. 26-44). Springer, Berlin / Heidelberg.

Gardiol, N.H., & Kaelbling, L.P. (2004). Envelope-based Planning in Relational MDPs. In
NIPS-03. Retrieved July 7th, 2006, from
http://people.csail.mit.edu/nhg/papers/nhg_lpk_nips03.pdf

Gill, A. (1962). Introduction to the Theory of Finite-state Machines. McGraw-Hill.

Haykin, S (1999). Neural Networks: A Comprehensive Foundation. Macmillan College
Publishing, 2nd ed.

Kaelbling, L.P. (1996, May). Reinforcement Learning: A Survey. In Journal of Artificial

Intelligence Research 4 (pp. 237-285). Retrieved July 7th, 2006, from
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a.pdf

Kaelbling, L.P., Littman, M.L., & Cassandra, A.R. (1998). Planning and Acting in Partially
Observable Stochastic Domains. In Artificial Intelligence, volume 101 (pp. 99-134). Retrieved
July 7th, 2006, from http://athos.rutgers.edu/~mlittman/papers/aij98-pomdp.pdf

Littman, M.L. (1994). Markov games as a framework for multi-agent reinforcement learning.
In Proceedings of the Eleventh International Conference on Machine Learning (pp. 157-163).
San Francisco. Morgan Kaufmann. Retrieved July 7th, 2006, from
http://www.cs.ualberta.ca/~bowling/classes/cmput608/Littman94.pdf

 65

Mansour, Y., & Singh, S. (1999). On the Complexity of Policy Iteration. In Uncertainty in

artificial intelligence ’99. Retrieved July 7th, 2006, from
www.cs.tau.ac.il/~mansour/papers/99uai.ps

Morris, P. (1994). Introduction to game theory. Springer.

Pineau, J., Gordon, G., & Thrun, S. (2003). Policy-contingent abstraction for robust robot
control. In Meek, C. & Kjaelruff, U. (Eds.), Proceedings of the 19th Annual Conference on

Uncertainty in Artificial Intelligence, Acapulco, Mexico. Retrieved July 7th, 2006, from
http://www.cs.cmu.edu/~jpineau/files/jpineau-uai03.pdf

Russel, S., & Norvig, P. (2003). Artificial Intelligence, A modern approach, second edition.
New Jersey: Pearson Education, Inc. (Original work published 1995).

Russel, S., & Tash, J. (1994). Control strategies for a stochastic planner. In Proceedings of the

Twelfth National Conference on Artificial Intelligence (pp. 1079-1085). Retrieved July 7th,
2006, from http://www.cs.berkeley.edu/~russell/papers/aaai94-mdp.ps

Sutton, R.S., & Barto, A.G. (1998). Reinforcement Learning. MIT Press. Retrieved July 26th,
2006, from http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

Vrielink, S.B. (2005, December). A literature study on the MDP environment. Retrieved July
7th, 2006, from http://members.home.nl/s.h.vrihen/School/MDP_LitStudy.doc

Woodward, R.T. (2006, June). Markov processes and Burt & Allison 1963. Retrieved July 7th,
2006, from http://agecon2.tamu.edu/people/faculty/woodward-richard/637/notes/09.pdf

 66

Appendix A: Frequently used terms
This appendix contains an explanation of several frequently used terms in the document.

Dynamic programming

Dynamic programming is a form of reinforcement learning and stands for a collection of
algorithms that are able to learn optimal behaviour if a complete model of the environment is
given. Examples of dynamic programming algorithms are value iteration and (modified)
policy iteration.

Markov Decision Process

A Markov Decision Process (MDP) and is a framework for modelling an environment. An
MDP can be described by the tuple RTAS ,,, , where:

• S is a finite set of states of the world.
• A is a finite set of actions that can be performed by the agent.
• ()∏→× SAST : is the transition function that specifies for an originating state and

an action a probability distribution on resulting states. We write ()sasT ′,, for the
probability that the agents reaches state s′ , given that the agent performs action a in
state s.

• R→× ASR : 1 is the reward function that specifies an immediate expected reward if
an agent performs an action in a state. We write ()asR , for the expected immediate
reward the agent gains if he performs action a in state s.

Within an MDP environment, behaviour of the agent is most often described by a policy π .
The policy maps to each state of the environment a single action. Within MDP environments,
the most common goal for agents is to maximize the amount of rewards gained during the
lifetime of the agent. With this goal, most learning algorithms try to learn an optimal policy
that maximizes expected rewards (Russel & Norvig, 2003; Kaelbling et al., 1998; Aberdeen,
2003) elaborate on the MDP framework in more detail. Appendix B explains the process of
(modified) policy iteration in an MDP framework and appendix C elaborates on complexity
functions learning policies in an MDP modelled environment.

Markov game

A Markov game is an enhancement of the MDP framework to include multiple agents by
explicitly modelling secondary agents. This allows for the modelling of complex behaviour of
multiple agents in a single environment. Finding the optimal policy becomes somewhat more
complicated than in the MDP setting because of the choice that opponents now have. Littman
(1994) described this as “In the game theory literature, the solution to this dilemma is to
eliminate the choice and evaluate each policy with respect to the opponent that makes it look
the worst” (Littman, 1994, p. 2). This is the essence of minimax: Behave so as to maximize
your reward in the worst case.

We will only consider the two-player game of competing agents because this simplifies the
method and it is all that is required for the proposed assignment. The Markov game
frameworks can then be described by the tuple RTOAS ,,,, , where:

1 Also R→SR : and R→×× SASR : can be used, but these create no significant differences.

 67

• Instead of a single set of actions A, a collection of action sets kAA ,,1 L is given: an

action set for each agent in the environment. Because a two-player game is considered,
we will use action set A for the agent and action set O for the opponent.

• The transition function T now needs to incorporate for a single transition an action for
each agent: ()∏→××× SAAST kL1: . For the two player game this consists of

()∏→×× SOAST : and we write ()soasT ′,,, for the probability of ending in state

s’ if the agent takes action a and the opponent takes action o, both from state s.
• Instead of a single reward function R, each agent has an associated reward function:

R→××× ki AASR L1: . For a two-player zero-sum game only one reward function

can suffice that one agent then tries to maximize while the other tries to minimize it.
For the two-player game this becomes R→×× OASR : and we write),,(oasR for
the expected immediate reward if, from state s, the agent takes action a and the
opponent takes action o.

Besides this, the Markov game framework also introduces the stochastic policy

()∏→ AS:π . Given a state, the stochastic policy yields a probability distribution over

actions. In this assignment, we will not be using stochastic policies.

Littman (1994) elaborates the Markov game framework into more detail. For an elaboration
on policy iteration and complexity issues in a Markov game modelled world, respectively
appendix B and C can be examined.

Policy

A policy π is a mapping from each state to a single action:
• AS →:π for an agent policy.
• OS →:π for an opponent policy.

()sπ is written to indicate the action that policy π prescribes for state s. A policy must map a
single action to each state in the environment.

Reinforcement learning

The name reinforcement learning is used for a collection of AI learning methods that use a
reward structure as a means to reinforce desired behaviour. Central to reinforcement learning
algorithms are the rewards distributed to the agents inhabiting the modelled environment.
Optimal behaviour when using reinforcement learning is behaviour that maximizes
accumulated rewards. Examples of reinforcement learning methods are dynamic
programming, temporal difference learning and Q-learning.

State utility

Although there are multiple ways to define what compromises the utility of a state, the
worded explanation of state utility used in the context of this document would be “The
immediate expected reward for being in a state plus the expected discounted utility of the next
state, assuming that the agent chooses the optimal action”. Simply put, the state utility is the
reward for a state and the discounted future rewards. For a utility maximizing agent in a
Markov game environment, Littman (1994) gives the utility of a state by:

() () () ()[]∑ ′
′⋅′⋅+=

soa
sUsoasToasRsU ,,,,,minmax γ (Littman, 1994, p. 3)

 68

Appendix B: Policy Iteration
This appendix elaborates on the (modified) policy iteration algorithm for MDP- and two
player zero-sum Markov game environment.

Policy iteration in an MDP environment

As was said in appendix A, an MDP environment can be described by the tuple RTAS ,,, .

In such environments, the utility of a state ()sU can be described by

(B1) () () () ()[]∑ ′
′⋅′⋅+=

sa
sUsasTasRsU ,,,max γ

The problem most learning algorithms for MDP environments try to solve, is how to find an
optimal policy *π for the environment given this definition of state utility and the
environment.

The idea behind the policy iteration algorithm, is to begin from a random policy and
continually improve this policy until the optimal policy has been found. Each iteration of the
PI algorithm consists of two phases: policy evaluation and policy improvement. In the policy
evaluation phase, the utility of each state is recalculated by using the current policy. In the
policy improvement phase, these new utility values are used to improve the policy. Let iπ be

the policy after i iterations of PI, then the utility of a state under policy iπ , ()sU
iπ , is given

by:
(B2) () ()() ()() ()∑ ′

′⋅′⋅+=
s ii sUsssTssRsU

ii ππ πγπ ,,,

Using these utility values, the policy can be improved by using a one-step greedy look-ahead
function with respect to utility: choose the action that has the highest expected utility gain:

(B3) () () () ()[]∑ ′+
′⋅′⋅+=

sa
i sUsasTasRs

iπγπ ,,,max1

This process of policy evaluation and policy improvement is repeated until no change occurs
to the policy, ii ππ =+1 . If this is the case, then the policy iteration algorithm guarantees the

optimal policy is found (Kaelbling, 1996).

Modified policy iteration

A problem with the previously described policy iteration algorithm, is that the computational
cost of solving the set linear equations that are created by (B2) is high. For that reason,
modified policy iteration was created. The idea behind modified policy iteration, is that it
might not be required to calculate the utility of each state exactly, but that an approximation to
this exact value might yield the same results. Modified policy iteration acquires this
approximation by keeping the policy fixed for k successive executions of the policy
evaluation phase (B2), meaning that the utility of a state under policy iπ is given by:

(B4) () ()() ()() ()∑ ′
′⋅′⋅+←

−s ii

k

sUsssTssRsU
ii 1

,,, ππ πγπ

In essence, the policy evaluation phase in the modified policy iteration algorithm consists of k
iterations of policy evaluation, where in each iteration the previous calculated utility value is
used to calculate a new utility value. (B4) can be rewritten as the following equations:

(B5) () () 1≥= ksUsU
k

ii ππ

(B6) () ()() ()() () kjsUsssTssRsU
s

j

ii

j

ii
≤≤′⋅′⋅+= ∑ ′

− 1,,, 1
ππ πγπ

(B7) () ()() ()() ()∑ ′
′⋅′⋅+=

−s ii sUsssTssRsU
ii 1

,,,0
ππ πγπ

 69

It can be shown, that if k reaches infinity, the perfect approximation is reached, meaning that
the result of (B4) equals the result of (B2) for all states (Woodward, 2006). A problem is to
find the minimal k value that guarantees that level of approximation.

Modified policy iteration in a Markov game environment

As was said in appendix A, a two-player zero-sum Markov game environment can be
described by the tuple RTOAS ,,,, . We will only consider this variant of the Markov game,

but variants with more action sets or rewards functions work in an analogous way. We will
also not consider the use of stochastic policies meaning that only deterministic policies are
used. For all equations it must be stated that the agent is trying to maximize utility and the
opponent is trying to minimize utility.

By integrating the new opponent action set O, the utility of a state in a Markov game
environment – which for the MDP environment was given by (B1) – becomes respectively for
the agent and opponent:

(B8) () () () ()[]∑ ′
′⋅′⋅+=

soa
sUsoasToasRsU ,,,,,minmax γ

(B9) () () () ()[]∑ ′
′⋅′⋅+=

sao
sUsoasToasRsU ,,,,,maxmin γ

When using the policy iteration algorithm, the utility of a state under policy iπ - which for

the MDP environment was given by (B2) – respectively becomes for the agent and opponent:
(B10) () ()() ()() ()[]∑ ′

′⋅′⋅+=
s ii

o
sUsossTossRsU

ii ππ πγπ ,,,,,min

(B11) () ()() ()() ()[]∑ ′
′⋅′⋅+=

s ii
a

sUssasTsasRsU
ii ππ πγπ ,,,,,max

and the policy improvement phase – (B3) for the MDP framework – is respectively achieved
for the agent and opponent by:

(B12) () () () ()[]∑ ′+
′⋅′⋅+=

soa
i sUsoasToasRs

iπγπ ,,,,,minmax1

(B13) () () () ()[]∑ ′+
′⋅′⋅+=

sao
i sUsoasToasRs

iπγπ ,,,,,maxmin1

Now, altering (B8) and (B9) to use the modified policy iteration algorithm respectively results
in:

(B14) () ()() ()() ()[]∑ ′
′⋅′⋅+←

−s ii
o

k

sUsossTossRsU
ii 1

,,,,,min ππ πγπ

(B15) () ()() ()() ()[]∑ ′
′⋅′⋅+←

−s ii
a

k

sUssasTsasRsU
ii 1

,,,,,max ππ πγπ

And it are (B12), (B13), (B14) and (B15) that will be used to learn policies in the modelled
CTF game world.

 70

Appendix C: Computational complexity and cost
This appendix gives an elaboration on the computational complexity and cost functions that
are used during the assignment. For the theoretical evaluation of the computational
implications of using situational reinforcement learning we will use worst-case upper-bound
computational complexity functions. For the empirical evaluation, we will use computational
cost value functions that approximate the amount of required calculations. All used functions
are meant to give an indication to the amount of arithmetic calculations that are required to
learn a policy and the complexity functions only apply to policy iteration algorithms which
use a greedy algorithm with respect to utility in the policy improvement phase.

Worst-case upper-bound computational complexities

The upper bound complexity of using a greedy policy iteration algorithm is the product of the
upper bound of iterations required to learn a policy and the upper bound computational
complexity of a single iteration. Although there is currently no exact upper bound known for
the amount of iterations required, according to Mansour & Sing (1999) it is in practice
difficult to construct an MDP in which greedy policy iteration takes more steps than the total
amount of states n (Mansour & Sing, 1999, p. 2). Therefore we will use ()nO as the worst-
case upper-bound complexity for the amount of policies required to learn a policy.

But what of the upper bound complexity of a single iteration? Each iteration of policy
iteration consists of two phases: policy evaluation and policy improvement. In the policy
evaluation phase, a new utility is calculated for each state, by solving the following equation
for each state:

(C1) () ()() ()() ()()∑ ′
′⋅′⋅+=

s
sUsssTssRsU ππ πγπ ,,,

This results in n linear equations, which by using standard linear algebra has an upper bound
complexity of ()3nO .
 In the policy evaluation phase, a new action is calculated for each state by using a greedy
one-step look-ahead function on utility to find the best action, as given by:

(C2) () () () ()()[]∑ ′
′⋅′⋅+=′

sa
sUsasTasRs πγπ ,,,max

In (C2), the summation ∑ ′s
sums as many steps as the amount of possibly resulting states

from taking action a in state s. In the worst case, the amount of possibly resulting states equals
the total amount of states n; Because each action a must be evaluated a single time for each
state, the upper bound complexity of the policy evaluation phase becomes ()2naO ⋅ .
 Add together the upper bound complexity of the policy evaluation phase and the policy
improvement phase yields a total upper bound complexity for a single iterations of

(C3) ()32 nnaO +⋅
, which is confirmed by Kaelbling (1996, p. 15).

Although (C3) is the upper bound complexity of a single iteration of the policy iteration
algorithm, the evaluated form of situational reinforcement learning uses the modified policy
iteration algorithm. The only difference between policy iteration and modified policy iteration
is that in the policy evaluation phase, no exact utility is calculated for each state but k
successive approximating steps are taken for each state, where the policy remains fixed, as
explained in appendix B and given by:

(C4) () ()() ()() ()()∑ ′
′⋅′⋅+←′

s

k

sUsssTssRsU ππ πγπ ,,,

 71

Unlike (C1), this no longer results in n linear equations, but simply in n equations. The
summation still takes at worst n steps and for each state the equation must be calculated k
times, resulting in an upper bound of ()2nkO ⋅ . Because the policy improvement phase does
not change, the upper bound complexity of a single iteration of modified policy iteration
becomes:

(C5) () ()()222 nkaOnankO ⋅+=⋅+⋅

But this is still not where we want to be. Although (C5) applies for modified policy iteration
in an MDP framework, it does not hold for a Markov game framework. The policy evaluation
and policy improvement phases of modified policy iteration in a Markov game framework
are, as explained in appendix B, given by:

(C6) () ()() ()() ()()[]∑ ′
′⋅′⋅+←′

so

k

sUsossTossRsU ππ πγπ ,,,,,min

(C7) () () () ()()[]∑ ′
′⋅′⋅+=′

soa
sUsoasToasRs πγπ ,,,,,minmax

(C6) differs from (C4) only in the opponent action o; Because the calculation between
brackets must be evaluated for each action o, the resulting upper bound complexity for (C6)
becomes ()2nokO ⋅⋅ . (C7) differs in the same way from (C2) and the upper bound

complexity there thus becomes ()2noaO ⋅⋅ . The total upper bound complexity of a single
iteration of modified policy iteration in a Markov game framework can thus be given by:

(C8) () () ()()222 nokaOnoanokO ⋅⋅+=⋅⋅+⋅⋅

By also taking the worst-case upper-bound amount of iterations into account, ()nO , the worst-
case upper-bound complexity of learning an optimal policy using greedy modified policy
iteration in a Markov game framework becomes:

(C9) () ()() () ()()32 nokaOnokanO ⋅⋅+=⋅⋅+⋅

CTF computational cost

Besides the theoretical worst-case upper-bound complexities of the various learning methods,
an indication will also be given on the difference between the methods with respect to the
average computational cost required to learn a policy explicitly for the modelled CTF world
when using the modified policy iteration algorithm. This difference in cost will be calculated
by comparing average computational cost values C. These values should give an indication on
the average amount of calculations required to learn a policy.

Just like with the previously described upper-bound complexity, but then averaged, the
complexity value C = average amount of iterations * computational cost of a single iteration.
The average amount of iterations is given by avgi and is derived from empirically learning

policies. The computational cost of a single iteration is derived from the modified policy
iteration in a similar fashion as was done in (C8) for the upper bound case, but then without
the worst-case assumption. This results in one difference with (C8): In the upper bound case,
the summation in (C6) and (C7) requires at most n steps, the worst case. For the CTF world,
this is never the so: at most there are 8 possibly resulting states (when a player returns from
being dead into the game), but with the bulk of the state-action pairs there are but 1 or 2
possibly resulting states. Because 8 << n, which lies around 150000, the amount of steps
required by the summation is ignored by the computational cost value. The computational
cost values that indicates the average amount of calculations required to learn an optimal

 72

policy in the CTF world or a situation therein when using the modified policy iteration
algorithm thus becomes:

(C10) () () ()
avgavg inokanoanokiC ⋅⋅⋅+=⋅⋅+⋅⋅⋅=

For the evaluation of computational cost, we will not use the empirically found avgi directly,

but rather a corrected amount avgî . This corrected amount avgî is the found avgi decremented

by the intuitive save t value that was used to assure that the optimal policy was found, as is

explained in appendix E. The reason that avgî is decremented by the t value, is because we are

interested in the amount of iterations required to learn an optimal policy, not in the amount of
iterations required to be certain that we have acquired the optimal policy. Because the t values
were chosen in such a manner that we assume that the optimal policy has been found, the

corrected amount of iterations avgî represents for each environment the average minimal

amount of iterations required to learn the optimal policy. By using the corrected average
amount of iterations, it is not required to use the minimal save t value explained in appendix
E, savet , for each environment but any savett ≥ value can be used without influencing the

evaluation complexity function.

Because we are interested in the difference in average computational cost between the
methods, all variables from (C10) that remain the same between methods can be eliminated.

By removing these variables a, o and k and also introducing the corrected amount avgî , (C10)

can be written as:

(C11) niC avg ⋅= ˆ

These last two variables avgî and n may not be removed, because they differ between

methods. The average amount of iterations is dependant on several factors, two of which are
the initial policy and the size of the environment. If the initial policy is more optimal, then it
is likely that less iterations are required because the initial policy required less ‘improvement’.
If the environment has a larger state set, it is likely that more iterations are required because
policy improvement influencing state rewards may come from farther states and thus require
more iterations to iterate through the environment. Because the Combined method uses
environments with smaller state sets and the Enhanced method uses a (probable) more

optimal starting policy, the variables n and avgî may not be removed from (C10).

If (C11) is applied to the three methods, the following equations for average complexity are
derived, and these are used as part of the empirical evaluation:

(C12) niC completeavgcomplete ⋅= ,
ˆ

(C13) ()∑ Θ∈
⋅=

θ θθ niC avgcombined ,
ˆ

(C14) ()niCC enhancedavgcombinedenhanced ⋅+= ,
ˆ

Within these three equations, the only true unknown is avgî because the values of n and all θn

are fixed by the CTF environment. Because the CTF average complexity values are indicating
values for comparison and not ‘order of’ ()LO notations as used in the previously described
upper bound complexities, these constants values may not be removed. In words, they serve to
indicate the cost of a single iteration of modified PI. A single iteration of modified PI has a

 73

greater cost in a larger environment, because the calculations must be performed for more
states.

 74

Appendix D: The CTF game world
This appendix explains the various features that belong to the “Capture the flag” game. An
overview of the world is given and the rules of the game will be explained. Also the variables
that define the state of the world will be given as well as the available actions and some
examples of possible transitions. The reward structure for the CTF world is elaborated on in
the last paragraph.

A world overview

The CTF game that will be played contains two players that will compete against each other.
The player will be referred to as the “Agent” and as the “Opponent”. The game environment
contains the following elements:

• 8 valid locations where each player can move to. Each location is determined by two
coordinates ()yx, , where ()0,0 is the bottom left corner and ()2,2 the top right corner.

• 1 wall location that is inaccessible.
• 1 of the 8 valid locations is called the “Agent Flag Starting Position”.
• 1 of the 8 valid locations is called the “Opponent Flag Starting Position”.
• 1 flag belonging to the agent, called “Agent Flag”. The location of the flag is given by

the state variable “Agent Flag Location”.
• 1 flag belonging to the opponent, called “Opponent Flag”. The location of the flag is

given by state variable “Opponent Flag Location”.

Figure D.1 shows the world from a top view with no players placed in it.

OFL

OFSP

AFL

AFSP

OFSP: Opponent Flag Starting Position
AFSP: Agent Flag Starting Position.

OFL: Opponent Flag Location.
AFL: Agent Flag Location.

Valid location

Wall location

OFL

OFSP

AFL

AFSP

OFSP: Opponent Flag Starting Position
AFSP: Agent Flag Starting Position.

OFL: Opponent Flag Location.
AFL: Agent Flag Location.

Valid location

Wall location

Figure D. 1: The CTF world with no players

Rules of the game

The game has the following rules:
• The players take simultaneous actions. It is impossible for one player to take an action

and for the other player not to do so. A player may choose to do nothing, but doing
nothing in such a fashion is seen as an action. Any inconsistencies that may arise from
this will be handled explicitly in the rules of the game.

• Each player can navigate the valid locations of the game world. An agent can move
one space in any horizontal or vertical direction, if a valid location is in that direction.
A player cannot move diagonally. It is allowed for multiple agents to occupy the same
location.

 75

• Each player can score a point by returning the flag of the opponent to the starting point
of the agent’s own flag. If a point is scored, the opposing flag is returned to it’s
starting location. The number of points scored in a game are recorded and define a
way to end the game.

• Each player can pickup a flag, if that flag is on the same location as the player and is
not already carried by the player himself or the opposing player. If the own flag is
picked up in such a fashion, the flag is transported back to the starting location of the
player. If it concerns the opposing flag, the player now carries the flag and the flag
will thus move along with the agent.

o If both players try to pickup the same flag simultaneously, the player to which
the flag belongs has precedence.

o If both flags are on the same location, not being carried, and a player performs
a pickup, then the flag belonging to that player is always picked up first.

• Each player can attack the opposing player if the players are on the same location. If
either player attacks, there must first be one of the following two possible outcomes:
the agent or the opponent dies. One of the players must die. The probability of the
agent dying depend on the following values:

o The base chance of dying is 0.5.
o If the agent/opponent holds the flag, the chance of dying is increased/decreased

by 0.3.
o If the agent/opponent performed the attack action, the change of dying is

decreased/increased by 0.1.
The chance that the opponent dies is 1 minus the chance the agent dies. For all actions,
the attack has precedence. If for example, a player tries to attack, whilst the other
player’s action was to move away from the attacking player (which would make an
attack illegal), the attack takes precedence. Should a non-attacking player remain
alive, the effect of the action taken by that player still occurs.

• A player that has dies will be brought back into the game on a random location in the
game after two actions of the player that is still alive, as will be explained further on
with the state variables.

• The game can end in three ways:
o At least one of the players scored the maximum amount of points.
o Both players choose to do nothing in two consecutive turns.
o A to be defined amount of time has expired.

State of the world

The state of the world is defined by 9 state variables GSOPAPOSASOFLAFLOLAL ,,,,,,,,

which are:
• AL of “Agent Location”, which represents the location of the agent. Possible values

are all valid locations.
• OL of “Opponent Location”, which represents the location of the opponent. Has the

same possible values as L.
• AFL of “Agent Flag Location”, which represents the location of the “Agent Flag”.

Possible values are all valid locations.
• OFL of “Opponent Flag Location”, which represents the location of the “Opponent

Flag”. Possible values are all valid locations.
• AS of “Agent Status”, which represents the status of the agent. Possible values are

‘Normal’, “Carrying Flag”, ‘Dead2’ and ‘Dead1’.

 76

• OS of “Opponent Status”, which represents the status of the opponent. Has the same
possible values as AS.

• AP of “Agent points”, which represent the amount of points scored by the agent. In the
modelled CTF world, a maximum of 2 points can be scored by a player.

• OP of “Opponent points”, which represent the amount of points scored by the
opponent. Has the same possible values as AP.

• GS of “Game Status”, which represent the status of the game. Possible values are
‘Normal’, ‘Idle’, ‘Deadlock’.

Modelling this world reveals a total of 1769472 unique states. When taking the actions,
transitions and game rules into consideration, there is a total of 136737 reachable states.

Available actions

The action set of the agent A is the same as the action set for the opponent O. Each action set
has 8 possible actions:

• DoNothing: The player does nothing.
• Up: The player moves one space up. This action is possible if there is a valid location

north of the player.
• Down: The player moves one space down. This action is possible if there is a valid

location south of the agent.
• Left: The player moves one space to the left. This action is possible if there is a valid

location west of the player.
• Right: The player moves one space to the right. This action is possible if there is a

valid location east of the player.
• PickUp: The player picks up a flag. A pickup is possible if the player and a flag are on

the same location and the player is not already carrying the flag it wants to pick up. If
the own flag is picked up, it is transported back to the player’s flag starting position. If
the other player’s flag is picked up, the status of the player is set to “Carrying flag”
and the opposing flag now moves along with the player.

• Score: The player scores a point. A score is possible if the player is carrying the
opposing flag and is at the player’s flag starting position. After a point has been
scored, the opposing flag is immediately transported back to the opposing flag starting
position. After a player has scored, the points of that player is increased by one.

• Attack: The player attacks the other player. This action is possible if the agent and
opponent are on the same locations. If an attack occurs one of the player must die
(status changed to ‘Dead2’).

Transitions

The transitions and their corresponding probability that are specified by the transition function
can be derived from the world states, available actions and the game rules. All actions create
deterministic effects, except for the attack action and the returning of a dead player.
Transitions that have not yet been described by the rules or action effects are:

• Time is not explicitly modelled in the game, and the players are not aware of the time
end condition.

• All states where either of the other two end conditions are met, are absorbing states.
• For the GS state variables, the following holds:

o If the GS variable has the ‘Normal’ value and both players are alive and both
players choose to do nothing, the GS variables is set to ‘Idle’.

 77

o If the GS variable has the ‘Idle’ value and both players choose to do nothing,
the GS variable is set to ‘Deadlock’ and the game ends in a tie.

o In all other cases, the GS variable is set to ‘Normal’.

Because there are an enormous amount of possible (probability >0) transitions, we will not
give them all here, but give some example transitions of interesting situations. To keep the
transitions simple, the following notations are used:

• ? means that there are multiple possibilities, but that these possibilities are not really
interesting for the example.

• λ means “any action”.
• As a reminder: ()soasT ′,,, was written for the probability of ending in state s’ if,

from state s, the agent takes action a and the opponent takes action o.
• A state was given by the tuple GSOPAPOSASOFLAFLOLAL ,,,,,,,, .

A completely out written example where both players move, and the agent is carrying the
flag:

() () () ()()

() () () ()()
0.1

,,,,,0,1,2,1,1,0,0,1

,,

,,,,,,0,0,2,1,2,0,0,0

=
















NormalZeroZeroNormallagCarrying F

DownRight

NormalZeroZeroNormallagCarrying F

T

An example of an attack when no player is carrying the flag:

() ()()

() ()()

() ()()

() ()()
6.0

??,?,,,2?,?,,0,0,0,0

,,

,??,?,,,?,?,,0,0,0,0

4.0

??,?,,2,?,?,,0,0,0,1

,,

,??,?,,,?,?,,0,0,0,0

=
















=
















NormalDead

AttackRight

NormalNormal

T

DeadNormal

AttackRight

NormalNormal

T

Some examples of flag pickups:

() () () ()()

() () () ()()

() () () ()()

() () () ()()

() ()()

() ()()
0.1

??,?,?,,,0,0?,?,,0,0

?,,

,??,?,?,,,0,0?,?,,0,0

0.1

??,?,,,,2,1,0,1,1,0,1,0

,,

,??,?,,,,1,0,1,0,1,0,1,0

0.1

??,?,,,,2,1,0,1,0,0,0,0

,,

,??,?,,,,2,1,0,0,0,0,0,0

=
















=
















=
















lagCarrying F

PickUp

Normal

T

NormalNormal

PickUpPickUp

NormalNormal

T

NormalNormal

PickUpPickUp

NormalNormal

T

An example of a score:

 78

() ()()

() ()()
0.1

??,,?,,,2,1?,?,,0,1

?,,

,??,,?,,,0,1?,?,,0,1

=
















OneNormal

Score

ZerolagCarrying F

T

An example of successive transitions when the agent is dead:

()

()

()

()()

()

()()
8

1

??,?,?,,?,?,?,,2,2

?,,

,??,?,?,,1?,?,?,?,

8

1

??,?,?,,?,?,?,,0,0

?,,

,??,?,?,,1?,?,?,?,

0.1

??,?,?,,1?,?,?,?,

?,,

,??,?,?,,2?,?,?,?,

=
















=
















=
















Normal

Dead

T

Normal

Dead

T

Dead

Dead

T

λ

λ

λ

M

Rewards

Situational reinforcement learning assumes a decomposition of the reward function R into an
action reward function AR and a state reward function SR, as was given by

() () () ()∑ ′
′⋅′+=

s
sSRsoasToaARoasR ,,,,,, .

The action reward AR for the modelled CTF world is the sum of the reward of both actions
and can be summarised as being:

• The actions ‘DoNothing’, ‘Up’, ‘Down’, ‘Left’, ‘Right’ and ‘Attack’ if executed
respectively by the agent and opponent have a reward of -0.05 and +0.05.

• The actions ‘PickUp’ and ‘Score’ if executed respectively by the agent and opponent
have a reward of -0.02 and +0.02.

The state reward of a state in the CTF world depends on the values of the state variables. All
states where the GS variable has the value ‘DeadLock’ have a state reward of 0, no matter the
other variables. The state reward of all other states is the sum of the following rules:

• The value “Carrying Flag” for AS or OS has a respective reward of +2 and -2.
• The values ‘Dead2’ and ‘Dead1’ for AS or OS has a respective reward of -2 and +2.
• The reward of AP and OP is respectively 10 times and -10 times the value of AP and

OP (If for example AP is 1, it’s addition to the state reward is 10101 =⋅).

Using this state reward structure, a total of 21 game situations with reachable states can be
derived with the state rewards -22,-20,-18,-14,-12,-10,-8,-6,-4,-2,0,2,4,6,8,10,12,14,18,20,22.

 79

Appendix E: Modified policy iteration variables
This appendix elaborates on the variables used in the modified policy iteration algorithm and
how these values will be set for the evaluation of SRL. In the modified policy iteration
algorithm, there are two variables that are not defined by the environment, but that must be set
by the developer: The discount factorγ and the approximation variable k. First, the influence
of both variables will be explained, after which the values are explained that will be used for
evaluation.

Approximation value k and termination value t

The most common termination criteria for policy iteration, is to terminate if no change occurs
in the policy during the policy improvement phase. The policy iteration algorithm can
guarantee that the optimal policy is found if this termination criteria is reached (Kaelbling,
1996). Modified policy iteration uses the approximation variable k to derive a certain degree
of approximation to conventional policy iteration. If k is chosen high enough, a perfect
approximation is realised. This means that the policy evaluation phase of PI and modified PI
would yield the same utility values and that the modified PI algorithm can make the same
guarantee of optimality as the PI algorithm (Woodward, 2006). Unfortunately, no exact
method can be given to determine the minimal value of k required to reach that level of
approximation. It is known that k grows linearly inγ and that if k reaches infinity, the
approximation becomes perfect (Woodward 2006). Should a value of k be chosen that leads to
a less than perfect approximation, the PI algorithm could converge to a local1 optimum of
utilities, resulting in a sub-optimal policy if the same termination criteria would be used.
Figure E.1 and table E.1 depicts this for a simple environment where all actions have
deterministic effects, all transitions are depicted by arrows, all rewards for reaching a state are
written below the state name and where we are only interested in the action for state 2s . The
obvious optimal policy for this environment is R=π& . If the initial policy is the sub-optimal
policy Lo =π and the minimal 1=k is chosen, the first iteration reveals no policy change

because the policy iteration algorithm for state s2 converges to the local ()321 ,, sss optimal

utility value of 3 instead of the global ()54321 ,,,, sssss optimal utility value of 10. If the

conventional termination criteria would be used, the found policy would be sub-optimal. If a
higher k value is chosen, for example 3, a better approximation is made and the optimal policy
is found even if the termination criteria of one unchanging policy is used.

By increasing the required amount of iterations where the policy improvement phase yields no
change, henceforth called the termination value t, PI is given the chance to escape local
optimal policies if a value of k is chosen that gives a sub-optimal approximation. The example
of figure E.1 and table E.1 also depict this: even if low value of k is chosen, if t is high enough
the optimal policy can still be found. As with k, there is also no method available to determine
a value of t that guarantees an optimal policy.

1 The word ‘local’ in the appendix does not refer to a situation, but rather refers to a sub-set of the global
environment.

 80

s1

3
s2

0

L
s3

1
s4

2
s5

10

R
s1

3
s2

0

L
s3

1
s4

2
s5

10

R

Figure E. 1 Simple example world with deterministic actions and no action rewards

Modified PI with () []

1
10|2|1|0|3

−
== πUsR , L=0π and 8.0=γ

1=k 3=k

1:
[]

01

18|10|6.2|4.2|4.5
0

ππ

π

==

=

L

U

1:

[]

[]

[]

01

3

2

1

5.29|5.21|1.14|9.5|9.8

4.24|4.16|0.9|3.4|3.7

18|10|6.2|4.2|4.5

0

0

0

ππ

π

π

π

≠=

=

=

=

R

U

U

U

2:
[]

12

4.24|4.16|0.9|3.4|3.7
1

ππ

π

≠=

=

R

U

2:

[]

[]

[]

12

3

2

1

5.39|5.31|1.24|2.17|9.11

9.36|9.28|5.21|6.14|1.11

6.33|6.25|2.18|3.11|1.10

0

0

0

ππ

π

π

π

==

=

=

=

R

U

U

U

3:
[]

23

5.29|5.21|1.14|2.7|9.8
2

ππ

π

==

=

R

U

M

Table E.1. Modified PI performed for 3 iterations with k=1 and k=3 on MDP of figure E.1

Discount factor γ

The discount factorγ , which has a value between 0.0 and 1.0, defines the weight of future
rewards. Each discount factor creates a different optimal policy in the environment. In
general, higher discount factors require more iterations of modified policy iteration to
terminate because:

1. In (modified) PI, the influence of the reward of a certain state into the utility of other
states iterates further into the environment with each iteration. Because a higher
discount factor means that the influence of future rewards is greater, the chance is also
greater that such a future reward chances the policy. This means that it will generally
take more iterations to find an unchanging policy with a higher discount factor.

2. Because k grows linearly inγ (Woodward, 2006), a higher discount factor with an
equal value of k results in worse approximations, which in turn means that more
iterations are required to find the optimal policy.

3. The number of iterations required to reach the optimal value function is polynomial in
the number of states and the magnitude of the largest reward if the discount factor is
held constant. However, in the worst case the number of iterations grows polynomially

in
()γ−1

1
, so the convergence rate slows considerably as the discount factor

approaches 1 (Kaelbling, 1996).

For the modelled CTF world, with 4=t and 1=k , this is also demonstrated in figure E.2 for
the Standard Complete and Simple Complete environments.

 81

Required iterations for multiple discount

factors

0

50

100

150

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Discount factor

It
e
ra

ti
o

n
s Standard

Complete

Simple

Complete

Figure E. 2. Required iterations for multiple discount factors with t=4 and k=1

Choosing the variables

A goal of the assignment is to evaluate the implications SRL on optimality and computational
cost. In order to evaluate the implication of the Combined method on optimality by comparing
the learned policies with learned policies of other methods through games of CTF, it must be
made sure that the local policies learned by the Combined method have an equal degree of
optimality as the global policies learned by the other methods. Should this not be the case,
then any difference in optimality of the global policies between methods could also be the
result of the initially learned local policies and not solely because of the methods. Choosing
the same values of k for all methods would not be fair, because the value of k in order to
obtain an equal degree of approximation is undoubtedly related to the size of the state set, and
this size differs between the Combined method and other methods. Because there is no
method available that, for a certain value of k and a certain environment, guarantees a certain
degree of approximation, choosing a value of k for each environment is a problem. As was
said previously, a higher value of t could still enable PI to find the optimal policy even if k is
chosen to give a sub-optimal approximation. Finding a t value for each environment that
enables the optimal policy to be found thus also ensures an equal degree of optimality.
Unfortunately, there is also no method available that defines a t value that guarantees that the
optimal policy can be found.

Because we are unable to find a method that guarantees an equal degree of optimality of the
learned policies within their environments, we will use a method that assumes that the
methods have found the optimal policy. We will use the t value to determine this optimal
policy, keeping the value of k to be the minimal 1. By empirically testing the environments
for multiple high values of t and analysing the longevity of found local optimal policies
(iterations where no change is found), intuitive save t values can be found. Figure E.3 depicts
this for the Simple Complete environment: The longest local optimal policy found lasted for 6
iterations and a t value of 1000 was used. When the algorithm terminated, there is one of two
possibilities:

1. The optimal policy has been found.
2. A local optimal policy has been found that lasts for more than 1000 iterations.

Although no guarantees can be given that the first possibility has become reality, it seems
unlikely that the second possibility happened, because the longest found other local optimal
policy lasted for 6 iterations, which is far smaller than the t value of 1000 that is used. For
each environment, intuitive save t values will be found and used. In words, the assumption
that will be made is “A policy learned with the intuitive save t value, savet , is optimal if the

 82

longest found sequence of iterations without policy change, maxi , is no more than 5% of

savet ”1. For the Simple Complete world of figure 6, where 6max =i , the learned policy would

be considered optimal if the used t value was greater than or equal to 120.

t=1000, k=1, γ=0.9, Simple Complete world,

average of 40 runs

0

0,2

0,4

0,6

1 2 3 4 5 6

Amount of iterations without policy

change (local policy longevity)

A
v

e
ra

g
e

 a
m

o
u

n
t

fo
u

n
d

Amount found

Figure E. 3 Average amount of local policies found per longevity.

Each discount factor creates a different optimal policy for the environment. Higher discount
factors means that, from the perspective of a single state, rewards of states that lie farther
away have a greater influence in the state utility. Because in games it is often better to think as
far ahead as possible, a higher discount factor will in general result in policies that have a
better game performance. As explained previously, it is also true in generals that a higher
discount factors requires more iterations to find the optimal policy, meaning that a higher
discount factor results in higher computational costs if the environment is held constant.
Because it can thus be said that in general the effect of a higher discount factor results in
better game performance and higher computational costs, three discount factors will be used
for the evaluation that should give an indication for all discount factors. The evaluation will
therefore use a low discount factor of 0.1, a high discount factor of 0.9 and a discount factor
in between of 0.5.

1 5% is used because this value is often used in statistics as a border value for statistical significance

 83

Appendix F: The developed program
This appendix elaborates on the developed program. This appendix will not go into
programming details – the source code of the program can be referenced for this – and will
only elaborate on the features that the program provides. The goals of the program are:

• To provide a practical application of situational reinforcement learning by modelling
the game of CTF as described in appendix D.

• To use the modelled environment as a platform for the empirical evaluation as
described in paragraph 4.2.

As such, the program provides the following features that will be explained in the upcoming
paragraphs:

• Enable policy learning with various discount factors (0.1, 0.5 and 0.9), environments
(Standard, Alternative and Simple) and learning methods (Combined, Enhanced and
Complete).

• Compute average computational cost values for the learned policies as explained in
paragraph 4.2.5.

• Allow learned policies to compete in games of CTF against each other, random
policies and human players.

The program – which is written in the Java programming language – is present on a CD that is
delivered along with this document. On this CD, the following items are present:

• A markovgame(compiled).rar file that contains the compiled version of the
developed program.

• A markovgame(uncompiled).rar file that contains the uncompiled java source files
of the developed program.

• A markovgame directory that contains both the compiled and uncompiled java
source files of the developed program.

• A policies.rar file that contains the learned policies that were used in the empirical
evaluation described in this document.

• A markovgame.jar package file that contains a compiled version on the developed
program.

• A markovgame.bat file that can be used to start the program. The upcoming
paragraph explain more on how to start the program.

• A version of this document.

In the upcoming paragraph an explanation is given on how the program can be started. How
to access the various features of the program is explained in the paragraphs thereafter. The
final paragraph elaborates on the files that are edited by the program.

Starting the program

The developed program has been written in the Java programming language. The Java
runtime environment version 1.4.2 or higher is required in order to compile and start the
program. In order for all features of the program to work, at least 256 MB of RAM memory
must be available to the program. Besides this amount of internal memory, it might be prudent
to have at least 500 MB of hard drive space available.

Because the program performs file editing – as will be explained in the last paragraph – the
program must be run in an environment where it is allowed to read and write files. The
program can thus not be run from the CD on which it is delivered. The entire program is

 84

written as a single Java package: the markovgame package. In order to start the program, one
must first decide a working directory from which to run the program, let’s assume this
working directory to be “C:\SRL\”. Besides the markovgame.bat file, either of the following
must be copied into the working directory:

1. The markovgame directory that is present on the CD.
2. The markovgame directory that resides compressed in the

markovgame(compiled).rar file on the CD.
3. The markovgame.jar file that is present on the CD.

After this is done, the markovgame.bat file can be edited accordingly your system. The file
contains the following as default:

• java -Xmx256m -cp . markovgame.CTF_MainEngine

and this is sufficient if the java run-time environment is present in your system path and you
copied either of the two directories. If the java run-time environment in not present in your
system path, then the line must be edited accordingly. A possible alteration could be:

• C:\Program Files\Java\bin\java.exe -Xmx256m -cp . markovgame.CTF_MainEngine

If you did not copy either of the two directories, but rather the markovgame.jar file, then the
class-path must be redirected to this file explicitly in the following manner:

• java -Xmx256m -cp markovgame.jar markovgame.CTF_MainEngine

The argument –Xmx256m is required in order for the java virtual machine to assign sufficient
internal memory for all program features to work. The CTF_MainEngine class is the main
class for the program and it can take two arguments. These arguments define the width and
height of the frame used by the program. If you desire another dimension in pixels for your
frame than the default dimension, you can alter it accordingly, for example in:

• java -Xmx256m -cp . markovgame.CTF_MainEngine 1024 768

After the markovgame.bat file is edited to your specific system, you can run it and the
following screen should appear:

Figure F. 1. The program starting screen.

You have succeeded in starting the program. If at any time you wish to close the program, you

can choose Exit from the menu bar or click on the in the upper-right corner of the
program frame. If you wish to use a program feature, you can select Display from the menu
bar and choose the desired feature. Each feature will be explained in the following
paragraphs.

Learning policies

In order to learn policies, you can select the Learning item from the Display menu in the
menu bar – as displayed in figure F.2 – which will result in the displaying of figure F.3.

 85

Figure F. 2. Selecting the learning feature.

Figure F. 3. The learning feature screen.

In this screen, you can input the learning parameters you desire. The following parameters
must be given:

• Environment: you must choose for which environment a policy must be
learned. This can either be Standard, Alternative or Simple.

• Method: you must choose which learning method is used to learn a policy.
This can either by Complete, Combined or Enhanced. The Enhanced method
can only be used if Combined policies with the same parameters have already
been learned and written to file.

• Discount factor: you must choose which discount factor to use in the learning
process. A discount factor must be a value between 0.00 and 1.00.

• Termination value: you must choose the t value – which is explained in
appendix E. The termination value represents the amount of iterations of
unchanging policies are required to terminate the learning process. If during
the learning process a local optimum is found that more iterations than 5% of
the termination value, then the learning process of the current policy is aborted.
This is explained in appendix E as to enable the assumption that the optimal
policy is found. The termination value must be a value of 1 or higher.

 86

• Policy amount to learn: you must choose the amount of policies that must be
learned. If all parameters are set and the learning has started, the progress bar
at the right of the frame gives the percentage of policies for which learning is
completed.

• Maximizing utility: If maximizing utility is enabled then the learned policy is
a policy for the agent. If it is disabled, the learned policy is for the opponent. In
order for policies to be used in game playing, both agent and opponent policies
must have been learned.

• Reset output files: If this is enabled, then previously learned policies with the
same parameters are overwritten with the newly learned policies. If it is
disabled, the newly learned policies are written besides the existing ones.

After all parameters are set, the Start Learning button can be pushed to initiate the learning
process. The Output field will give program output. If the Pause learning or Stop learning
buttons are pushed, the corresponding action will occur after the current learning process is
completed. Depending on the learning parameters and your system, it might take several
minutes to half an hour for a single learning process to complete. If the learning process is
paused, it can be resumed again at a later stage. If the learning process is interrupted, for
example by a program shutdown or by clicking Stop learning, then no policy is stored to file.
If the process completes, then all policies for which the optimal assumption has been met –
see appendix E – are written to file.

Calculating computational cost

In order to calculate computational costs, you can select the Complexity item from the Display
menu in the menu bar in a similar fashion as figure F.2. This will result in the displaying of
figure F.4.

Figure F. 4. The computational cost feature screen.

In this screen, you must input the parameters that define the policies for which you wish to
calculate the computational cost. The calculation uses all policies that were learned with the

 87

given parameters. In order to calculate the computational cost values, there must be at least
one learned policy with the given parameters. In the General Output area, more detailed
information is displayed of the last calculation. Each new calculation resets this output area.
The Complexity Output area only displays the resulting computational cost values and does
not reset when a new calculation is started, allow for easy comparison between multiple
calculations.

Playing games

In order to play games, you can select the Playing item for the Display menu in the menu bar
in a similar fashion as illustrated in figure F.2. This action will result in the displaying of
figure F.5.

Figure F. 5. The playing feature initial screen.

In this screen you must select how you wish the game to be simulated and which players
should compete. The following parameters must be set:

• Simulation Method: three ways of simulating the game are present: Unsimulated

Computer Play, Simulated Computer Play and Simulated Human Play. In the
Unsimulated Computer Play, each played game is not displayed but instead the
desired amount of games are played in one run and only the results of the games are
given. Because it is impossible for a human player to play without the game being
simulated, it must be two computer controlled players competing with this simulation
method. In a simulated play, each game is played turn-by-turn, meaning that a game-
board is visible and each action is displayed upon this board. The difference between
Computer Play and Human Play is that in the latter case one of the learning methods
used must be Human.

• Learning Method, Learning Environment and Learning discount factor: these
parameters do not differ from the learning feature explained in the Learning policies
paragraph.

 88

• Amount of policies: you must select the amount of different policies you wish to use
for the game play. The given amount define the minimal amount of policies that must
have been learned with the given parameters as agent and opponent. This means that,
when you input the amount of 20, 40 policies will be read from file: 20 agent and 20
opponent policies. If insufficient policies are present, an error will be given.

When all parameters are set, you can press the Start Simulation button. The Unsimulated

Computer Play and Simulated Human Play simulation screens will be explained next. The
Simulated Computer Play works in an analogous fashion as Simulated Human Play.

Unsimulated Computer Play

If you have chosen Unsimulated Computer Play, then a screen similar to the one displayed in
figure F.6 should appear.

Figure F. 6. Unsimulated Computer Play.

Each panel on the screen has the following purpose:

• Player 1 and Player 2: These panels display information about the competing players.
• Results: This panel displays the results of played games. The Calculation Progress

bar indicates the progress if games are being played.
• Buttons: This panel is the input panel for the user. The Start- Pause- and Stop games

buttons are self explanatory. The Play stop criteria can either be Unique Games or
Minimal Valid. If Unique Games is chosen, then every policy of player 1 will play a
single game against every policy of player 21, so each unique game – which is a
unique combination of a player 1 and player 2 policy – is played exactly one time. If
Minimal Valid is chosen, then the user must input a minimal amount of valid games
that must be played and the two players will continue to compete against each other

1 Of course it is only possible to let agent policies play against opponent policies.

 89

until the minimal amount has been reached1. The obvious difference between the two
stop criteria is that in the latter case the user can input the minimal amount of desired
valid games.

• Output: This panel displays the output generated by the program.

Simulated Human Play

A screen similar to figure F.7 is displayed if Simulated Human Play is chosen.

Figure F. 7. Simulated Human Play – game selecting screen.

The frame displayed in figure F.7 is the game selecting screen where the user must input
which policy will be used for the upcoming game. After a game is finished, this screen will
re-appear. Let’s explain all the panels that are present in this screen:

• Player 1 Behaviour and Player 2 Behaviour: These panels display information about
the two players.

• Game overview: This panel displays which side each player is playing on and it
contains the button Hide/Show behaviour information. This button hides or shows the
behavioural information of both players displayed in the previously two mentioned
panels. This option was implemented in the game to shield the human players that
helped as part of the empirical evaluation from information that could influence their
zeal and effort.

• Action Buttons: This panel contains all the possible actions that can be used by the
human player. In the game selecting screen, these buttons are all disabled because no
game is in progress. Once the game has started – as illustrated in figure F.8 – the
buttons are enabled that represent actions that are possible for the human player.

• Start new game: This panel contains the input fields required to start a new game.
The panel is replaced by a game board if a game is started. The user can determine

1 In each new game, a new policy for player 1 and player 2 is used. If the given minimal valid amount is greater
than the amount of possible unique games, then every policy of player 1 has played against every policy of
player 2 at least once.

 90

which player will play as agent and which policy will be used by the computer-
controlled player. The policy-selecting-slider is disabled for the human player, but if
Simulated Computer Play was chosen then both sliders would be enabled. When the
parameters are set, the user can click the Start new game button.

• Game Status: This panel displays information relevant for the game in progress.
• Results: The results of games that have been played are displayed in this panel.
• Output: All relevant output generated by the game is displayed here.

Once the game has been started, the following screen appears:

Figure F. 8. Simulated Human Play - game in progress.

As can be seen, the Start new game panel is replaced by a game board. The state of the game
can be seen from this board and the Game Status panel. On the board, the agent is represented
by a green figure, the agent flag by a green flag and the agent flag starting position by a green
star. The red symbols correspond with the same elements for the opponent player. The game
board is automatically replaced by the Start new game panel when the game ends.

Program files

The following files are edited by the program when it is running. Let’s assume that C:\SRL\
is the working directory:

• Immediately after starting the program, a file C:\SRL\err.log is created. All error
messages generated by the program are written into this file. If at any time the
program reacts strangely and the generated output of the program is insufficient, then
you can check this error file to see if anything went wrong.

• If you have used the program to learn policies then those policies will be placed in the
C:\SRL\policies\ directory. If you wish to use previously learned policies – for
example by using the policies in the policies.rar file delivered on the CD – then those
policies must be placed in this directory. Any policy is identifiable by learning
environment, learning method, discount factor and whether it is maximizing or
minimizing utility. As such, each policy is placed in the file that corresponds to

 91

.\policies\<environment>\d<discount factor>\<max|min><method>.ctf, where
<environment> is either Standard, Alternative or Simple, <discount factor> is either
0.1, 0.5 or 0.9 and <method> is either Complete, Combined or Enhanced. A utility
maximizing policy learned in the Alternative environment with a discount factor of 0.5
by using the Complete method would thus be placed in the file
.\policies\Alternative\d0.5\maxComplete.ctf.

• Besides the global policies that are placed in the previously explained files, the
Combined method also requires a division into situation state sets and local policies.
The division into state sets for an environment is placed in the
.\policies\<environment>\localStateSets.ctf file, for example
.\policies\Standard\localStateSets.ctf. The situational policies are written to the
.\policies\<environment>\d<discount factor>\local\<max|min>local(<base
reward>).ctf, where <base reward> is the heuristic state reward upon which the
situation is based.

