


 



Semantics in Service-Oriented Architectures

A.B. Vrijkorte

August, 2006

Thesis for a Master of Science degree in
Business Information Technology, Architecture

from the University of Twente, Enschede, The Netherlands

Graduation Committee

dr. L. Ferreira Pires University of Twente, Enschede
dr. A.B.J.M. Wijnhoven University of Twente, Enschede
dr. ir. H.J.M. Bastiaansen TNO ICT, Groningen
W. Pathuis TNO ICT, Groningen

i





I have suffered a great deal from writers who have quoted
this or that sentence of mine either out of its context or in
juxtaposition to some incongruous matter which quite
distorted my meaning, or destroyed it altogether.

Alfred North Whitehead
English mathematician & philosopher (1861 – 1947)

Preface

This thesis is the result of an assignment carried out for TNO ICT as part
of a Master of Science degree program. I hope to have written a readable,
enjoyable and in-depth report on the current state of the art in semantic
service-oriented architectures.

I’d like to use this opportunity to thank my supervisors at TNO and at
the university of Twente. Thanks go out to Harrie Bastiaansen, Wiltfried
Pathuis, Luís Ferreira Pires and Fons Wijnhoven for their insightful advice
and their commitment to this project. Furthermore I’d like to thank all the
people who proofread earlier versions of this report.

Support of friends and family, and my colleagues at TNO, provided me
with the motivation necessary to complete this project. I’d like to express
my gratitude towards them.

Bart Vrijkorte
Groningen, July 2006

iii





Executive Summary

In rapidly changing markets it is of primary importance for organizations
to be able to cooperate in a flexible manner with diverse external partners.
In such a joint venture it is readily required to integrate business processes
and their associated IT support.

Unfortunately, in practice it often turns out that integrating applica-
tions and processes is time consuming, error-prone and expensive. As
a consequence the realized synergy advantages are limited. An impor-
tant cause for this problem is that business-to-business (B2B) application-
integration is a manual task. On one hand some improvement may be
realized by using a more structured way of working. On the other hand it
is attractive to investigate possibilities for enabling automatic integration
of applications and processes.

Proponents of the service-oriented architecture (SoA) forsee a future in
which IT support is flexible. In this future IT functions are fulfilled by
components that offer their services in a centralized directory. When an
application needs a specific service, the available services in the registry
are searched. The most appropriate service is found and the application
can automatically make use of it.

Web-service technology is generally presented as a means for realiz-
ing the service-oriented architecture. Well known web-service techniques
for describing (WSDL) and finding (UDDI) services however have an im-
portant shortcoming. These techniques namely describe services on a su-
perficial, syntactic, level. From the syntactic description of a service it is
not possible to unambiguously deduce what will happen in the real world
when the service is used. Description of the semantic aspect of service
provisioning is required to live up to the SoA promise.

Semantic web-service methods acknowledge this requirement and strive
to enable architectures which are flexible and can be automatically com-
posed. Currently however it is unknown which requirements should apply
to methods for semantic web services and how these methods should be
evaluated.

This report discusses the aspects that play a role in service provision-
ing. An important result is the summarization of important concerns in
service provisioning and the resulting requirements on semantic web ser-
vice methods in chapter 6. Based on this framework we derive require-
ments that methods for semantic web services should meet.

In chapter 9 two concrete methods are evaluated. In this chapter we
show that the methods proposed in the scientific literature still have signif-
icant gaps in the offered functionality. Our conclusion is that at the current

v



time it is unlikely that organizations can build a service-oriented architec-
ture in which components are fully automatically connected to each other.

Organizations can however make first steps toward a more semantic
description of their services. Our recommendation is that organizations
develop a data model of their business domain. Organizations can then
describe their services in terms of this standardized domain. Taking these
steps will initially facilitate a more structured approach to business pro-
cess integration and in the long term it should clear the path towards par-
tial automatic composition of architectures.

vi



Contents

Contents vii

I Introduction 1

1 Research Design 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Case Description 7
2.1 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Future vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Service Concept 11
3.1 Characteristics of Services . . . . . . . . . . . . . . . . . . . . 11
3.2 Managing Services . . . . . . . . . . . . . . . . . . . . . . . . 12

II Service-oriented Architecture 15

4 Service-Oriented Architectures 17
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 The Service Concept in Service-Oriented Architecture . . . . 19

5 The Web Services Platform Architecture 21
5.1 Description and Basic Operations Layer . . . . . . . . . . . . 21

Message Exchange . . . . . . . . . . . . . . . . . . . . . . . . 22
Interface Description . . . . . . . . . . . . . . . . . . . . . . . 22
Service Publication & Discovery . . . . . . . . . . . . . . . . . 23

5.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

WS-Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
WSLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



CONTENTS

III Semantic Aspects 27

6 A Framework for Semantic Web Services 29
6.1 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Aspects of Service Provisioning . . . . . . . . . . . . . . . . . 30

The Structure Viewpoint . . . . . . . . . . . . . . . . . . . . . 30
The Process Viewpoint . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Realization Concerns . . . . . . . . . . . . . . . . . . . . . . . 33
Business Service Level . . . . . . . . . . . . . . . . . . . . . . 33
Communication Level . . . . . . . . . . . . . . . . . . . . . . . 33
Delivery Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 Requirements on Semantic Web Service Methods . . . . . . 34
6.5 Validation of Requirements . . . . . . . . . . . . . . . . . . . 35

Validation Approaches . . . . . . . . . . . . . . . . . . . . . . 35
Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Ontologies 39
7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Conceptual framework . . . . . . . . . . . . . . . . . . . . . . 40

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Types of Knowledge Representation Languages . . . . . . . 41

First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . 42
Semantic Networks . . . . . . . . . . . . . . . . . . . . . . . . 42
Frame-based logics . . . . . . . . . . . . . . . . . . . . . . . . 43
Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . 44
Rule-Based Logics . . . . . . . . . . . . . . . . . . . . . . . . . 45
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.4 Building Ontologies . . . . . . . . . . . . . . . . . . . . . . . . 47
Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Standard Ontologies . . . . . . . . . . . . . . . . . . . . . . . 48

7.5 Heterogeneity in ontologies . . . . . . . . . . . . . . . . . . . 49

8 Discovery 51
8.1 Preciseness of Service Descriptions . . . . . . . . . . . . . . . 51
8.2 Keyword-Based Discovery . . . . . . . . . . . . . . . . . . . . 52
8.3 Description Logics-Based Discovery . . . . . . . . . . . . . . 52
8.4 Rule Logic-Based Discovery . . . . . . . . . . . . . . . . . . . 53

IV Evaluation and Conclusions 55

9 Evaluation of Existing Methods 57
9.1 OWL-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2 WSMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.3 SWSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.4 Evaluation and Comparison . . . . . . . . . . . . . . . . . . . 61

viii



10 Conclusions and Recommendations 63
10.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 64

Realizable Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Future Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67

List of Abbreviations 73

OWL Description Logic Discovery 75

List of Figures 78

List of Tables 78

ix





Part I

Introduction

1





1 Research Design

Information systems architecture is a broad and active research topic in
which many developments take place. A current direction in IT architec-
ture research is the Service-oriented Architecture (SoA). In this architec-
tural style, software components work together in a loosely coupled way.
The components offer their functionality through so called services that
are made public to other components and external parties. Service descrip-
tions can be retrieved from a centralized directory so that any component
or third-party can locate a service and make use of it. In this way IT sup-
port is flexible and can be easily reconfigured when needs change. Rapid
business processes integration between partners then becomes a possibil-
ity.

1.1 Motivation

Web services are seen as the main technology for realizing service oriented
architectures, offering support for many of the ideas in that architecture.
However, realizing dynamic coupling of components through a directory is
still problematic. The essential problem is that it is unclear how services in
a service-oriented architecture can be described in an unambiguous way.
Communication about services is currently done on the basis of syntac-
tic interface descriptions. This kind of descriptions provides no meaning
behind the terms used and therefore the effects of using the described ser-
vice are unclear. Those who wish to make use of a service have to guess for
the semantic aspects. As a consequence, locating services and integrating
business processes is a manual, error prone, slow and expensive activity.

This problem is especially relevant in the telecom industry. In the in-
ternet service provider market competition is fierce and there is a very
high pressure to lower costs. Providers purchase connectivity from tele-
com operators and they want to be able to quickly engage in a business-
to-business relationship without having to go through a lengthy and ex-
pensive integration process. Similarly, telecom operators want to be able
to offer their services to new customers. It is therefore in their best inter-
est to enable a fast business-to-business integration process. Ideally orga-
nizing the IT support should not be a limiting factor for building flexible
business-to-business relations.

The main cause for the problem that business-to-business integration
is slow, is that service description is currently done only on a syntactic
basis. If the semantic aspects of services could be unambiguously repre-
sented then the integration process could be a lot quicker. It may even

3



1. RESEARCH DESIGN

become possible that no human support for the process is necessary and
that intelligent software agents can forge business integration relations
automatically. In the scientific literature several methods are proposed
that claim to enable web services with semantic support, so called seman-
tic web services.

1.2 Objectives

In this project we want to evaluate existing methods for building semantic
web services. To do this we build a conceptual framework for semantic web
services and we derive requirements from this framework. With these
requirements we can assess the suitability of the proposed methods for
realizing semantic web services. Furthermore we can see which problems
surrounding semantic web services have been solved and which problems
are still open for further research.

1.3 Approach

Our approach in this report was to first identify the need for service-
oriented architectures. We did this by presenting a motivating case study
from the telecom world. This case study illustrates the challenges that the
service-oriented architecture was designed to address.

We characterized the service concept and then introduced the service-
oriented architecture vision. We set out to clarify the motivation, ideas
and concepts behind this architectural style. After that we investigated
the web services platform architecture that is meant to be a realization of
the service-oriented architecture. We evaluated the platform against the
service-oriented architecture promises.

We determined that current web service technology ignores the seman-
tic aspects of service provisioning. This led us to develop a framework that
identifies the concepts that surround service provisioning. Based on this
framework we developed requirements for methods that strive to enable
semantic services.

The final phase in the research was to evaluate semantic web service
methods with respect to the conceptual framework. The result of this anal-
ysis provides us with insight about what currently can be done and what
open issues still exist in semantic web service research.

1.4 Research Questions

The research has been conducted in four phases. In the first phase we
needed to clarify the ideas and concepts of the service oriented architec-
ture. The following research questions are associated with these goals:

1. What are the benefits of the service-oriented architecture?

a) What is the motivation for the service oriented architecture?

b) What are the promises of the service oriented architecture?

4



Research Questions

In answering this research question we came up with a conceptual
model of the service-oriented architecture. In the second phase of
the research we investigated how service-oriented architectures are
currently realized.

2. How are service oriented architectures currently realized?

a) What technologies are available for realizing the service-oriented
architecture?

b) How do these technologies relate to the conceptual model of the
service-oriented architecture?

c) Are all concepts of the service-oriented architecture supported
by current technology?

Answering these questions has given us insight in the capabilities
and limitations of current technology.

In the third phase we investigated more closely the semantic aspects
of service oriented architectures. This aspect is not included in cur-
rent technologies and it is unclear what support for the semantic as-
pect should look like. This led us to the following research questions:

3. How can the semantic aspects of services be represented?

a) Why is it necessary to represent the semantic aspects of ser-
vices?

b) What does a conceptual architecture for combining semantics
and web services look like?

c) What technologies exist to support semantic web services?

With the answers to these questions we established a framework that
identifies the critical concepts and issues that surround semantic ser-
vice provisioning. The final step was to assess currently available
methods.

4. How do current methods for semantic web services compare to the
framework?

a) What methods are available that claim to support semantic web
services?

b) Can the methods be used in practice?

c) What gaps still exist in the methods?

d) What parts of the semantic service oriented architecture can be
realized with current technology?

With the answers to these questions we were able to assess the use-
fulness of current semantic web service methods and to provide an in-
depth advice for the migration towards semantically enabled service-
oriented architectures.

5



1. RESEARCH DESIGN

1.5 Structure

This report consists of four parts. The first part of the report consists
of three introductory chapters in which we detail the background for the
research. In this first chapter we detail the research objectives and ap-
proach. In chapter 2 we introduce a case description situated in the tele-
com world that illustrates the context in which a semantically enabled
service-oriented architecture is highly desirable. In chapter 3 we provide
background on the service concept in a business administration context.

In the second part of the report we investigate the service-oriented ar-
chitecture, its motivation and its promises. In chapter 4 we discuss the
service-oriented architecture by means of a layered conceptual model. In
chapter 5 we treat web services technology and compare it to the layered
model of the service-oriented architecture. In this chapter the current
state of technology is determined and gaps between the service-oriented
architecture vision and current practice are identified.

The third part of the report is about the semantic aspects of service pro-
visioning which are ignored in current web service technologies. In chap-
ter 6 we provide an overview of these aspects and derive requirements
for methods that strive to enable semantic services. Two large topics are
discussed separately: in chapter 7 we investigate the central concept of on-
tologies in more detail, and in chapter 8 the subject of semantic discovery
of services is treated.

In the fourth and final part of our report we evaluate proposed meth-
ods and present our conclusions. In chapter 9 we evaluate methods that
are proposed in the scientific literature for realizing semantic services. In
chapter 10 we summarize the findings of this report, provide advice for
organizations that want to take steps toward enabling semantic services,
and we make recommendations for further research.

6



2 Case Description

In this report we use a case study from the telecom world to illustrate
the need for flexible IT integration. In this chapter we first discuss the
way that internet connectivity services are currently provisioned. We then
identify the real challenges that currently face the telecom world. We dis-
cuss the expected future developments and how the industry should cope
with those. We signal a gap between the IT support that is required and
what is offered by current technology.

Our case is centered around the way broadband connectivity is offered
and managed by large telecom operators. The service we describe has
many interesting aspects such as context dependence and significant non-
functional characteristics. Part of this case was inspired on the case de-
scription found in [Duke et al., 2005].

2.1 Current Situation

In the internet connectivity market, internet service providers (ISPs) offer
internet connectivity to customers who are also the end users of the con-

Figure 2.1: Current situation in the telecom world.

7



2. CASE DESCRIPTION

nection. The customer orders the service through a retail interface pro-
vided by the ISP. The internet service providers offer diverse additional
services on top of the internet connection, such as e.g. e-mail, but they
usually do not provide the actual connectivity to the customer. Instead,
they order the connection from a telecom operator company (Telco). The
commercial relationships between the involved parties are depicted in fig-
ure 2.1.

The interaction between the telecom operator and the ISP is a business-
to-business relation. This relation is supported by enterprise application
integration software. The telecom operator uses this software to offer a
wholesale interface through which the ISP can order and cease connections
for customers. This wholesale interface is the focus of this case study.

The wholesale interface offers a service to the internet service provider,
namely to offer connectivity between an end-user of the internet connec-
tion and the ISP. The connectivity may be realized in many ways, depend-
ing on the location of the end-user. In some areas a high speed glass fiber
connection can be offered but in other areas DSL connections may be avail-
able. Wireless connections might be offered in sparsely populated areas.
There might also be areas where no service is offered at all. The role of the
telecom operator is to offer connectivity to the internet service provider at
the data link layer of the internet protocol stack. In some areas multi-
ple connection types are offered and each of these is offered with different
characteristics and against a different price. The telecom operator can of-
fer multiple variants that differ in the guaranteed connection speed and
availability. If a customer selects a different variant then the price is ad-
justed accordingly. For scoping reasons we assume that the services are
offered exclusively in the Netherlands.

In the telecom world connectivity services are commonly described on
three levels: the technical, operations and support level.

Technical On this level the precise details of the connection are described
that together determine the quality of service. There are many frame-
works that describe the quality of service of an IP connection, such as
those defined by ITU/ETSI and IETF [Gozdecki et al., 2003]. For sim-
plicity we consider only a limited number of quality of service param-
eters. These are bit rate of transferring (which defines the through-
put of a connection), delay experienced by packets, jitter (variations
in IP packet delay) and the packet loss rate.

Operations The operations level describes the processes that are required
for fulfillment (providing ordering for connections), assurance (pro-
cesses for monitoring and maintaining service quality) and billing.
These processes are described by the eTOM (Enhanced Telecom Op-
erations Map) framework [Milham, 2004]. This standard prescribes
which business processes need to be organized to support the provi-
sion of telecom services. The standard does not prescribe the busi-
ness processes themselves.

Support On this level we find descriptions of the availability of the ser-
vice, the expected mean time between failures and the time required

8



Future vision

Figure 2.2: Future situation in the telecom world.

to repair faults. Furthermore this level describes the availability of
the support desk.

The epBOM (eTOM public B2B Business Operations Map) standard by the
TeleManagement forum specifies which operations should be supported by
wholesale B2B interfaces in order to fulfill the eTOM framework. Accord-
ing to the epBOM framework, required processes include processes for ful-
fillment, assurance and billing. For simplicity and understandability we
consider only a limited subset of these operations. In this case study, the
wholesale management interface offers methods to order a new line, to
cease a line and to report trouble. The interface is accessible by ISP’s as a
web service, supported by telecom operators.

2.2 Future vision

In figure 2.1 we identified only one ISP and only one telecom operator. In
reality there are many ISPs and multiple telecom operators. We expect
that in the future the number of ISPs will increase as will the number of
competing telecom operators. As a consequence, competition in the mar-
ket will be fierce. This will force each ISP to obtain connectivity at the
lowest possible cost. As a result ISPs will want to be able to switch be-
tween telecom operators quickly and cheaply. Currently the process that
is performed to enable the interaction between the ISP and the telecom
operator through the wholesale interface is difficult and time consuming.
This is because different systems at the ISP and the telecom operator need
to be manually integrated. According to [Duke et al., 2005], up to 50% of
IT costs in the telecom industry are attributable to integration activities.

The vision for the future is depicted in figure 2.2. In this vision, ISPs
with connectivity requirements will look into a directory of services to find
out which telecom operator can provide them with connectivity at some
cost. After retrieving a description of the available connectivity services
the best offer is selected and the services are procured from the selected

9



2. CASE DESCRIPTION

telecom operator. All this should happen automatically. The service de-
scription obtained from the directory includes enough information to au-
tomatically build the required B2B connections so that all management
operations can be performed.

This vision for the future coincides with the service-oriented architec-
ture vision which we discuss in chapter 4. Even though a lot of material
on service oriented architectures exists, realizing the sketched ideal situa-
tion is not a solved problem. The important unsolved problem is that the
semantic information which is necessary for business-to-business integra-
tion is lacking. The goal of this report is finding out if and how the service
oriented vision can be realized by taking into account semantic aspects.

10



3 The Service Concept

In this report we are interested in describing the semantic aspects of ser-
vice provisioning. Therefore we need to know what a service is and how
services are typically provisioned.

The word service has multiple meanings. In the context of marketing
research it has a different meaning than it has in the context of informa-
tion systems research. In this report we build a bridge between the two
worlds. In this chapter we discuss the service concept from a marketing
angle. The information systems view on services is presented in section
4.3. We first characterize the service concept and then provide background
on how services are managed.

3.1 Characteristics of Services

In the field of marketing there are many definitions of what a service is.
There is currently no consensus which makes it very to give an exact def-
inition. It is however possible to provide a workable characterization of
the service concept. Often a service is described as “an activity or bene-
fit that one party can offer to another that is essentially intangible and
does not result in the ownership of anything. Its production may or may
not be tied to a physical product” [Kotler and Armstrong, 2005]. Lovelock
[Lovelock, 1992] additionally describes a service as being intangible and
perishable, meaning that unused capacity at the time of production trans-
lates to lost economic opportunity.

This last point is illustrated by the example of an airline company: if
at the time of a flight some seats are unoccupied then the airline company
loses money. It is not possible to stock services.

Furthermore services are non-transportable and heterogeneous, mean-
ing that the service is specific to one customer and that it is hard to mass-
produce a service. Finally, services tend to be labor intensive, sensitive to
demand fluctuations and are likely to involve a high degree of customer
interaction. Due to these characteristics it is hard to achieve economics of
scale with services. Examples of services include cleaning, medical care,
entertainment, consulting and education.

Many researchers note that there is no hard division between a service
and a product. Rather, there is a continuum between pure manufacturing
and pure service provision [Voss et al., 1985]. All value-adding activities
lie somewhere on this scale, depending on the amount of customer inter-
action and the tangibility of the result.

11



3. THE SERVICE CONCEPT

Figure 3.1: The service level lemniscate.

As mentioned in [Baida et al., 2003], a service is often offered as a col-
lection of related services, sometimes called the ‘service flower’. The pri-
mary service process is often supported by a number of support processes.
For example, in the telecom world it is common to offer a service for report-
ing and rectifying failures as part of a connectivity service. Furthermore
[Baida et al., 2003] observes that frequently a service is really an aggrega-
tion of simpler services. Providers add value by tuning different services
into a coherent valuable package for a customer. This type of aggrega-
tion is called bundling. For example, in the telecom world we see that an
account with an internet service provider often consists of an internet con-
nectivity service, an e-mail service and sometimes even a phone service.

3.2 Managing Services

According to [Parasuraman et al., 1984] customers estimate the service
quality by comparing performance with expectations. If the performance is
according to expectations then the service will be considered to be of high
quality. Therefore it is essential that a customer of a service knows what
quality of service he can expect. In practice, especially in the IT world,
Service Level Agreements (SLA) are used to manage service quality by
defining the expectations. In an SLA the supplier and the customer of a
service negotiate the properties of the service that is to be delivered. The
expectations about the service performance are accurately defined in the
SLA. This can prevent conflicts between supplier and customer later on
since both parties agree on the service performance that is to be expected
beforehand. [Thiadens, 2005]

An SLA is realized according to the service management lemniscate
(see figure 3.1) [Trienekens et al., 2004]. As can be seen in the figure, there
is a gap between the needs of the customer and what a supplier is prepared
to deliver. In a continuous process the required service level is agreed upon
and evaluated.

A service can be considered to consist of a service pit and a service shell
[Trienekens et al., 2004]. The service pit is formed by the core (IT) object
that is delivered to the customer, e.g. access to a network infrastructure.
The service shell comprises the supporting processes and agreements of a

12



Managing Services

service. An example is the support provided by a helpdesk or a guaranteed
level of data security. We consider the service pit to be made up of the
essential criteria of the service and the service shell comprises the support
criteria. A service level agreement specifies the characteristics of both
service pit and shell.

In the connectivity service from our case description the essential crite-
ria are the throughput of the connection, the delay experienced by packets,
jitter and the packet loss rate. The service shell criteria include those cri-
teria about the time required by the support desk to answer questions and
resolve problems.

13





Part II

Service-oriented Architecture

15





4 Service-Oriented Architectures

In this chapter we introduce the service-oriented architecture vision. First
we discuss the motivation behind the service-oriented architecture. Then
we discuss the components of the service-oriented architecture using a lay-
ered structure. Finally we elaborate on what is meant with a service in a
service oriented architecture and we contrast this with the service concept
in the marketing field.

4.1 Motivation

In the past business to business relations between companies were often
forged for many years. Integrating business processes and information
support took a lot of time, but since relationships were stable this was
not too much of a problem. Nowadays, however, business environments
change quickly thereby forcing companies to adapt rapidly to changing cir-
cumstances. Information technology should therefore be flexible to support
quickly changing demands. A common vision in the scientific literature is
that the software that supports businesses needs to be built up from dis-
crete parts of functionality. It should be possible to reuse these parts and to
reconfigure then in order to adapt to changing environments. This vision
is propagated by the component-based development approach.

A number of technologies that support the component-based develop-
ment ideas can be found in [Stojanovic and Dahanayake, 2005]. Among
these are CORBA, Enterprise Java Beans (EJB) [Sun Microsystems, 1999]
and Microsoft’s COM+ and .NET [Microsoft Corporation, 2006]. These tech-
nologies all are based on defining reusable objects with a strictly specified
interface. In addition to the promised benefits of component-based soft-
ware development, there are some shortcomings. The application devel-
oper who wants to make use of a component needs to know in advance
which components are available and what interfaces are exported by the
components. This approach is not very scalable since the problem of find-
ing components tends to become harder when more components become
available. Another problem of current components based development
products is that products by different vendors (such as EJB and COM+)
are generally incompatible. This seriously hinders cross organizational co-
operation. The service-oriented architecture movement strives to address
these shortcomings.

17



4. SERVICE-ORIENTED ARCHITECTURES

Figure 4.1: The service-oriented architecture pyramid.

4.2 Layering

The service-oriented architecture reuses the design philosophy of compo-
nents-based development, namely that functionality should be split up
over components that are loosely coupled. But while component-based de-
velopment is mainly a software development methodology, service-oriented
architecture can be placed in a broader perspective, namely as an entire
information system architecture for organizations. As was discussed in
[Orlowska et al., 2003], the SoA concept can be visualized as a pyramid. At
the bottom layer, the basic operations layer, basic components (called ser-
vices) offer discrete parts of functionality. The SoA architecture provides
a mechanism for the publication and discovery of these services, thereby
offering a solution for the scalability problem that plagues component-
oriented approaches. At the second layer, the composition layer, we find
technology that supports the aggregation of multiple basic services into
composite services. In this layer technology support is necessary for coor-
dination, monitoring of performance and quality of service. The top layer
of the pyramid is the management layer, which prescribes that organiza-
tions should think about service level agreements, assurance and support
for the information systems architecture. This pyramid structure is de-
picted in figure 4.1.

Service-oriented architectures should eventually enable a distributed
computing infrastructure across the internet so that organizations can col-
laborate and integrate applications. Organizations will offer all of their

18



The Service Concept in Service-Oriented Architecture

value adding activities to the public via the internet and when specific IT
support is needed for performing a business process, the required services
can be found quickly in a centralized registry. This registry can be shared
between a number of companies that operate in the same industry sector.
Discovery of services is a crucial aspect in service-oriented architectures.
The availability of services will be dynamic and it should be possible to
switch quickly and without problems between suppliers that offer a spe-
cific service. When this infrastructure is in place, IT support for the ac-
tivities of organizations will be flexible and easily adjustable to changing
circumstances.

The service-oriented architecture is only a vision of which web services
are meant to be a concrete realization. Since the service-oriented architec-
ture relies on universally accepted web service standards like XML, WSDL
and SOAP, the interoperability problem that plagues component-based de-
velopment should be eliminated. In chapter 5 we discuss web service tech-
nology in more detail and we investigate to what extent it can be used to
realize the service-oriented architecture vision that we sketch here.

4.3 The Service Concept in Service-Oriented Architecture

In the context of a service-oriented architecture, a service is essentially a
component that offers its functionality to external components through an
interface that is described in a standardized way. The coupling between
services is done through a registry of available interfaces, often called a
directory [Stojanovic and Dahanayake, 2005]. In the directory a user can
search for an interface that will meet his or her goals. The directory should
also be searchable by individual components in order to support loose cou-
pling.

A service in this sense (a software component that offers an interface) is
different from the concept of a service in marketing (an intangible benefit
offered by one party to another, see chapter 3). In general a service in the
context of a service-oriented architecture is not necessarily a service in the
marketing sense of the word. In this report however we take the position
that application services in a service oriented architecture realize a higher
level business service.

We think that this two-layer approach to services (the economic per-
spective combined with the computational perspective) is very useful. It
requires components in a service-oriented architecture to offer an economic
value to users. Thinking about services in this way makes it possible to
make intelligent investment decisions about service development based
on expected returns. Additionally, using this definition, it makes sense to
offer services to an on-line market and to external parties. Finally, con-
sidering the economic benefit of a service can be a good starting point to
decide what services to offer.

Examples of services that comply with this definition are: internet
banking, electronic messaging and other forms of telecommunication ser-
vices. In contrast, there exist computational services which do not offer
a clear economic benefit. Typical examples are toy-services like “hello
world” programs, or services which find out how many results a certain

19



4. SERVICE-ORIENTED ARCHITECTURES

keyword returns on internet search engines. A gray area is occupied by
semi-manufactured products such as database look-up components that
are only useful as part of a larger whole.

20



5 The Web Services Platform
Architecture

In this chapter we investigate web service technology. We first detail the
general concepts of web service technology. Then we discuss for each of the
layers in the service-oriented pyramid (see chapter 4) how the activities at
that level are supported by web services technology.

Web services can be seen as an implementation of the service-oriented
architecture vision. Services are offered by components that can be im-
plemented in conventional programming languages such as Java or .NET.
Web service technology guarantees that components developed using any
technology on any infrastructure can communicate with any other com-
ponent that offers a web service description. The services are described
in a standardized way and these descriptions are published in a central-
ized directory of services. Parties that want to use the service, retrieve
the description from the directory and can then interpret that description
to make calls to the service. The activity of finding and making use of a
service is called binding. Parties can also offer services that are composed
of other services. The description of such a composition is called choreog-
raphy.

Web services technology is described in numerous standards. These
standards are generally based on XML technology. For many of the com-
ponents from the service-oriented architecture pyramid (section 4.2) a web
service standard is available. In the web service architecture we find,
among others, standards for message exchange, description of service in-
terfaces, discovery of services and the composition of services. This chapter
is structured according to the layers of the service-oriented pyramid. We
discuss what standard support exists for each of these layers.

5.1 Description and Basic Operations Layer

The foundation of the service-oriented pyramid is formed by the descrip-
tion and basic operations layer. Components in this layer form the building
blocks for building web service based architectures. We describe the stan-
dards that support message exchange, interface descriptions and service
publication and discovery.

21



5. THE WEB SERVICES PLATFORM ARCHITECTURE

Message Exchange

The message exchange layer of the web services stack is provided in the
form of the SOAP protocol. A SOAP message is an XML document that
consists of a header and a body. The body describes the actual message
that is passed to the web service, and header elements can be used for
many purposes such as additional routing information or security require-
ments. The header information is also passed on to the called web service.

SOAP messages are transmitted between so called SOAP nodes. A mes-
sage may pass any number of SOAP nodes and the SOAP nodes may in-
spect or alter the message headers. It is possible to specify that it is nec-
essary for SOAP nodes to understand and process a header. In that case
if a SOAP node does not understand the header, a fault condition occurs
and an error message is sent back to the node that generated the SOAP
message.

SOAP messages can be bound to any transport protocol. Examples are
HTTP or SMTP (e-mail). HTTP transport, however, is the most commonly
used. The SOAP standard intentionally does not prescribe an interaction
protocol between the caller and the application service. Other web service
standards, such as WSDL and BPEL, can be used to define the allowed
message exchange patterns. [Weerawarana et al., 2005].

Interface Description

The set of operations that an application service offers is called the inter-
face of the service. The WSDL standard (Web Service Description Lan-
guage) is used to describe this interface. WSDL uses the concepts of type,
message, portType, binding and service [Weerawarana et al., 2005]. For
many of these concepts WSDL uses an extensibility mechanism, based on
XML namespaces, so that new technologies can be used with a WSDL de-
scription.

In the types part of a WSDL document, data structures are declared
that can be used later to define parts of messages. These structures can be
defined in any schema language, but XML Schema [Fallside, 2001] is the
de facto standard.

In the message part of the WSDL description, the structure of the mes-
sages that are exchanged between the web service and the caller is speci-
fied. A message consists of one or more parts of a specific type which are
either built-in XML Schema types, or types described in the types section.

The portType part describes the input and output messages (if any) of
the operations of the web service. Web services can use a request-response
or a one-way interaction pattern. Theoretically WSDL makes it possi-
ble for the service to initiate the conversation but it is not supported by
available implementations due to practical difficulties that arise when this
form of interaction is implemented (e.g. it is unclear where to the message
should be sent) [Weerawarana et al., 2005].

The binding part of the interface specification describes precisely how
the messages are exchanged, using which protocol and using what layout.
The de facto standard is to use SOAP over HTTP transport. The recom-
mended document operation style entails that the content of the messages

22



Composition

are directly inserted in the SOAP body. There is also an RPC style that
is supposed to make it easier to directly map methods defined in object
oriented programming languages to SOAP messages.

Finally the service part describes the location where the web service
can be found. For a SOAP web service this is specified in the form of a
URL. The interface description in WSDL format only offers a description
of the syntactic properties of an interface (the format of the incoming and
outgoing messages), the semantics of the interface cannot be described in
the WSDL language.

Service Publication & Discovery
Discovery for web services is provided by the UDDI (Universal Descrip-
tion, Discovery and Integration) standard. The UDDI standard is meant
to facilitate the operation of a central registry or directory of web ser-
vices. The UDDI uses a data model that stores information about service
providers and services. A lot of basic information is stored about the ser-
vice providers, such as names, descriptions, addresses, telephone numbers,
etc. This information might even be stored in multiple languages. For
services, a plain text description field is provided and one or more bind-
ingTemplates point at the WSDL document necessary to call the service.
Searching a UDDI directory can be done with a keyword-based search.

Recent versions of UDDI include support for digital signatures. With
these digital signatures it is possible to verify the identity of the publisher
of the service. This way the results from an UDDI query are more trust-
worthy. Furthermore, UDDI offers a subscription API for notifying clients
when new services become available. [Weerawarana et al., 2005]

5.2 Composition

On the higher layers of the Service-oriented Architecture we find the need
to support aggregation of services into composite services. WS-BPEL (Busi-
ness Process Execution Language for Web Services) strives to model pro-
cesses of web service executions. Individual web service calls are the steps
in the process. The entire process description can be published as a web
service to offer transparent web service aggregation. BPEL is meant to be
interpreted and executed by machines so that long running processes can
be executed automatically.

BPEL models business process logic in a procedural way. This means
that all steps that have to be carried out by the interpreter are explicitly
spelled out. Interaction with web services is specified by commands that
receive and send messages. The language offers support for branching,
loops, variables and calculations. Parallelism is supported as well, allow-
ing business processes of arbitrary complexity to be modeled. Typically
BPEL processes are bound to specific web services at deployment time.
It is however possible to specify that the web services to be used are de-
termined at runtime. This can be realized, for example, by querying a
directory web service at the start of the process.

BPEL makes a distinction between executable and abstract process de-
scriptions. Executable processes define all the logic that is to be followed

23



5. THE WEB SERVICES PLATFORM ARCHITECTURE

in the process and all the messages that are to be sent. This way an exe-
cutable BPEL process offers a glass box representation of service behavior.

An abstract process is a projection of a BPEL process that only models
the interaction with certain external parties. This interaction is defined in
terms of the message exchanges that take place. Sharing this information
with third parties may be necessary so they know what message exchange
patterns are to be expected between the web services. Abstract process de-
scriptions allow sharing of only the interaction information while keeping
the actual business process details confidential, thereby providing a black
box representation of service behavior. [Weerawarana et al., 2005]

5.3 Management

The management layer of the service-oriented pyramid contains tasks that
(mainly) entail the arrangement and enforcement of service level agree-
ments. In section 3.2 Service level agreements are briefly introduced. In
this section we discuss what web service standards exist in this area.

For our treatment of the available technologies it is important to realize
that an SLA primarily defines a set of metrics that need to be measured
periodically. Furthermore an SLA includes a set of parameters that spec-
ify algorithms for determining the performance of the service given the
input metrics. For each parameter, acceptable values and deviations are
specified. Finally SLAs specify the involved parties and the consequences
of violating the expectations raised in the agreement.

Important success factors for service level agreements are that the
specification of the service contains only a limited number of measuring
points that capture the essence of the service. The pricing for the ser-
vice should be transparent and clear to all parties. A final requirement
for a good SLA is that it contains a penalty clause that specifies the sanc-
tions that are applied to a party that does not comply with the agreement
[Thiadens, 2005].

For determining the service level parameters one can use an industry
standard framework. In [Gozdecki et al., 2003] a number of these frame-
works in the context of IP networks and their related parameters are dis-
cussed. Additionally they identify a number of relevant intrinsic parame-
ters that apply to all such networks.

According to [Keller and Ludwig, 2003] SLAs are often specified in nat-
ural language and therefore they are also monitored manually. Big cus-
tomers of an organization will want to negotiate a specific SLA for their
purposes, and sometimes they want to specify custom measurement meth-
ods for assessing service performance. In contrast it is also possible for the
supplying organization to define a standardized portfolio of services and
associated SLAs. It is desirable however to automate the monitoring of
SLAs, this requires a standardized way of specifying SLAs.

WS-Policy

In the current web services platform architecture there is no comprehen-
sive standardized support for monitoring and enforcing the quality criteria

24



Management

specified in an SLA. There is, however, the WS-Policy web service stan-
dard which aims to support non-functional capabilities and requirements
for web services [Weerawarana et al., 2005]. We briefly describe this stan-
dard here.

A policy specification contains a list of policy containers that each rep-
resent a valid policy alternative. Each of these alternatives is described
by a list of assertions that must hold about a service. The subject of the
assertions is free form, and only presence or absence of an attribute can
be described. For example, we can express in the language that the secu-
rity should be guaranteed by performing the RSA algorithm. We can not
specify that at least 128 bit encryption should be used, but we can specify
that exactly 128 bit security is to be used. Similarly we can not specify a
minimum up-time or a maximum delay of a connection. Other complicated
constructs, such as if-then-else constructs or assertions that are only valid
on certain dates or times are not available. This all seems too limiting
as many current SLAs require this level of complexity for specifying min-
imum response times, availability during peak hours, etc. Furthermore,
the WS-Policy standard offers no support for semantics. The policy de-
scriptions can be interpreted only if the meaning of the subject (encryption
in our example) are defined externally. In its current form the WS-Policy
standard is not really sufficient to describe the quality criteria of web ser-
vices.

WSLA
WSLA is an XML based language for electronically representing service
level agreements [Keller and Ludwig, 2003]. WSLA strives to model in an
unambiguous way the SLA parameters, the way of measuring performance
and the consequences of violation of the SLA. A WSLA document contains
a description of the involved parties, which have a direct interest in the
SLA, such as the supplier and the customer. It also gives the possibility to
define third parties, which play a role in monitoring compliance with the
SLA. Contact information is specified for all parties. A WSLA document
also contains a service description section that defines the observable pa-
rameters of the service. It describes the metrics that can be collected, how
these can be collected and by whom. The values for the metrics can be
aggregated, e.g., to obtain average values over time. Finally, the service
description section contains the definitions for the SLA parameters. The
obligations section specifies, using logic conditions, under which circum-
stances (e.g., during what times, or under what system loads) what values
for the metrics are acceptable. It also contains a section that describes
what actions are taken when a violation is detected. In its current ver-
sion WSLA only supports the notification of SLA violations to interested
parties.

A limitation of WSLA is that there is no provision for specifying and
monitoring the behavior of non-automated services such as for example a
help desk.

Just like WS-Policy, WSLA offers no support for defining the semantics
of the criteria that are measured. As a result we conclude that it seems
possible for a computer to understand and monitor the compliance with an

25



5. THE WEB SERVICES PLATFORM ARCHITECTURE

SLA, but that it will be difficult for algorithms to reason about the value of
an SLA for a customer. Automatically negotiating and enforcing the terms
of an SLA is out of reach with current technology.

5.4 Evaluation

With the technologies discussed in this chapter it is possible to specify a
service in the context of service-oriented architectures on a syntactic level.
We can specify the input and output parameters of services and we can
describe composite services that are built up from smaller services. This
information, however, carries little meaning for the user of a web service.
A customer will have to contact the supplier of a service to find out its
expected behavior or alternatively will have to interpret and guess the
meaning of the service from the input and output parameters. This is a
time consuming and error prone process that prevents dynamic switching
of web service suppliers. The lack of semantics hinders the realization of
the service-oriented architecture vision discussed in chapter 4. What is
necessary is a complete and unambiguous description of a service so that
it is clear to the customer what the application service does. In the next
chapters we investigate how the context of a service can be described in a
way that can be interpreted by machines.

26



Part III

Semantic Aspects

27





6 A Framework for Semantic Web
Services

Semantic web services are web services that are described in such a way
that machines can reason about their utility. In this report we investi-
gate a number of methods that strive to enable such semantic services.
In order to evaluate these methods we need to establish the evaluation
criteria which are to be used. In this chapter we therefore discuss what
aspects play a role in the semantic description of business and application
services.

We first discuss the vision of the semantic web, on which much of the
current work in the field of semantic service description is based. Then
we introduce our own framework that identifies the important concepts
in semantic service description and delivery. Based on the framework we
identify a number of concerns that should be addressed by methods that
strive to realize automatic, semantic service delivery. Finally we arrive
at a list of concrete requirements which we can use to evaluate concrete
methods.

6.1 The Semantic Web

In [Berners-Lee, 2001] the usefulness of a semantic web is discussed. The
article discusses how in a semantic web information is given a well-defined
meaning, thereby “enabling computers and people to work in cooperation”.
The article sketches a vision where software agents are able to combine in-
formation from many heterogeneous sources and draw conclusions based
on the combined information. This way complicated tasks can be per-
formed. The article provides the example of making appointments with
a medical specialist. The agent has to consider available dates and times
of multiple people, the rating of the specialist and whether or not the insur-
ance company has a contract with the specialist. Berners-Lee et al. foresee
that in the semantic web, web pages provide information in semantic form
to be processed by computers.

Semantic web technology should also be useful to realize service ori-
ented architectures, and to facilitate flexible business-to-business integra-
tion. In order to do this services should be described semantically such
that a computer can interpret the service description. Describing ser-
vices in this way will enable dynamic binding of services which is a crucial
part of the service-oriented architecture vision. Semantic web technology

29



6. A FRAMEWORK FOR SEMANTIC WEB SERVICES

promises to be able to describe the meaning of information in a computer
understandable way.

6.2 Aspects of Service Provisioning

For our introduction of the service-oriented architecture in chapter 4 we
utilized the pyramid structure as proposed by [Orlowska et al., 2003]. In
this pyramid, and in the current web services platform architecture, the
semantic aspect of service provisioning is disregarded. Without consider-
ing this semantic aspect a number of tasks in the service-oriented architec-
ture, such as service description and discovery seem simple. These tasks
were therefore grouped in one layer, situated at the bottom of the pyramid.

However in semantic web-service research, tasks like service descrip-
tion and discovery are at the center of attention. Currently there is no
scientific consensus about how discovery of services should take place or
how services should be described. It is not even clear which are the impor-
tant issues in semantic service-oriented architectures.

Since the subject matter of semantic web services is so complex and
since it does not fit the pyramid model introduced in chapter 4, we decided
to develop our own framework of this domain. Our framework provides
an overview of the concepts that enable service provisioning in a semantic
service-oriented architecture. Instead of splitting up the subject in layers
(as was done in the service-oriented pyramid), our framework provides a
holistic view of the application domain.

The framework we introduce in this section consists of a structural and
a procedural viewpoint. We discuss these viewpoints separately.

The Structure Viewpoint
The structure viewpoint describes the field of semantic service provision-
ing. In figure 6.1 this viewpoint is depicted. We discuss the the elements
in the figure separately.

We consider the service concept in a service-oriented architecture to be
made up of two parts: a business service and an application service. The
business service concept represents the economic value of the service. The
application service is the software component that realizes the business
service.

Services can be built by bundling simpler services into a larger pack-
age. Bundling services is discussed in chapter 3. In the diagram, bundling
of business services is represented by the business service bundle concept.
Each bundle consists of a number of atomic business services. An atomic
business service is a business service that is not made up from other busi-
ness services. The bundling of business services is reflected in the bundling
of application services (application service composition and atomic appli-
cation service).

A business service contains a business process that provides the added
value of the service. Business processes can be described in terms of their
effects or in terms of the activities that are carried out in the process.

Another important component of a business service is the service level
agreement. Service level agreements are used to manage expectations of

30



Aspects of Service Provisioning

Legend

Composite Part
Consists of

Concept Means of Expression
In terms of

Implementation Abstraction
Realizes

Business Service Bundle

Atomic Business Service

Service Level Agreement Process

Application Service Composition

Atomic Application Service

Interface

Implementation

Domain

Ontology

Service

Criterion Target Consequence

Message Patterns

Effect Activity

Figure 6.1: The structure viewpoint.

service performance (see chapter 3 for details). A service level agreement
contains a list of criteria which are used to measure performance. The per-
formance is compared to a predetermined target. The consequences clause
of an SLA determines what happens when the agreed performance was
not realized.

An application service offers an interface through which it can be used,
all communication by external parties with the application service goes
through the interface. The interface is defined in terms of allowed message
exchange patterns. An implementation in software is used to realize an
atomic application service.

As can be seen in figure 6.1, most concepts in the framework are ex-
pressed in terms of the (application) domain. It represents the view that
in order to enable semantic communication about a service, the application
domain must be defined. When we want to communicate about the util-
ity of a service, we will always need to do so this in reference to a certain
domain.

31



6. A FRAMEWORK FOR SEMANTIC WEB SERVICES

Provider Requester Registry

Formulate 
Request

Rank 
Providers

Match 
Request

Negotiate

Deliver

Figure 6.2: The process viewpoint.

To facilitate communication, the parties must share a common vocabu-
lary about the service, this vocabulary can be expressed in an ontology. An
ontology is a means to represent knowledge in a computer understandable
way. In figure 6.1 we see that ontology is the central concept in a semantic
service-oriented architecture: all concepts are expressed using an ontology.
Ontologies are discussed in detail in chapter 7.

The Process Viewpoint

The process viewpoint is illustrated in figure 6.2. The process viewpoint
of the framework describes how services can be found and executed in a
semantic service-oriented architecture.

Service delivery is initiated by a requester who formulates a service
request. Then, a centralized registry matches this request against service
descriptions which were previously registered by providers. The service
descriptions that match the service request are ranked by their relevance
and returned to the requester. The requester then initiates a negotiation
session with the provider to determine the exact service parameters. Fi-
nally, when an agreement is reached, the service is delivered in accordance
with the agreement. The subject of service discovery is treated in more de-
tail in chapter 8.

32



Realization Concerns

6.3 Realization Concerns

From the framework introduced in section 6.2, we can derive a number
of specific issues that arise in realizing semantic services. A method for
semantic services should provide a means for dealing with each issue. We
can group the issues in three levels: the business service level, the commu-
nication level and the delivery level. Many of the terms we refer to have
been introduced in figure 6.1, these terms are typeset in italics below.

Business Service Level

At the business service level we are concerned with representing the util-
ity of a service. A number of concerns are relevant on this level: model-
ing business processes, representing service level agreements and specify-
ing bundling of services.

Business processes describe the value-adding activities that take place
in the delivery of a service. Processes can be represented in two different
ways: a procedural and a declarative way. The procedural way represents
processes as an ordered set of activities that are carried out in the course of
the process. The declarative way describes only the effects of the process,
not how these outcomes are realized.

Processes can be described in formal or informal ways. Formal specifi-
cations have meanings that are precisely defined by mapping statements
on mathematical structures, whereas informal specifications rely on the
interpretative capabilities of the reader. Computers are only able to in-
terpret formal specifications hence process specifications for semantic ser-
vices will need to be formal.

Examples of formal procedural specifications of processes are SADT di-
agrams (as described in [Congram and Epelman, 1995]) or Petri Nets (de-
scribed in [van der Aalst, 2002]). Prolog, a logic programming language, is
an example of a method that can be used for formally describing processes
in a declarative way [McIlraith and Son, 2002].

The ideas behind service level agreements are introduced in section 3.2.
Methods for representing service level agreements are discussed in section
5.3. A semantic web service method should provide support for negotiating
and monitoring service level agreements.

Bundling refers to the fact that services can be built by aggregating
simpler services into a larger package. Bundling is discussed in chapter
3. Since it is common to bundle services in order to add value, a semantic
web service method should offer support for bundling.

Communication Level

At the communication level, the main issue is to represent the terminol-
ogy of the application domain in a machine understandable way. Further-
more there is the problem of matchmaking between service requesters and
providers. A final concern is how to represent allowed message patterns.

Ontologies are a way of representing terminology in a computer under-
standable way. Usually ontologies are defined using a knowledge repre-

33



6. A FRAMEWORK FOR SEMANTIC WEB SERVICES

sentation language based on logic. Since ontology representation is such a
large topic, it is discussed separately in chapter 7.

The process of matching providers and customers of services is called
discovery. A semantic web service method should provide an automatic
way of locating providers who can meet a customer’s demand. This subject
is treated in more detail in chapter 8.

During service delivery the provider and requester exchange messages.
Semantic web service methods should provide a way of representing these
message patterns. A difficult issue is that of heterogeneity in message ex-
change patterns. For communication purposes, the provider and requester
must be able agree on the allowed message exchanges.

Delivery Level
At the delivery level we are concerned with resolving details about the
exact parameters of service invocations.

The discovery process usually does not result in an unambiguous ser-
vice description that is correct and complete (see chapter 8 for details). To
address this issue [Preist, 2004] proposes to include a negotiation phase af-
ter the discovery phase, during which the concrete service parameters can
be negotiated from an abstract description. During the negotiation phase
the provider and requester agree on the exact parameters of a service and
the message exchange patterns.

Since advertising concrete services is often infeasible, any semantic
web service method should offer support for refining and possibly nego-
tiating the exact parameters of a service.

6.4 Requirements on Semantic Web Service Methods

Based on the conclusions of sections 6.2 and 6.3, we are able to derive
concrete requirements for methods that strive to enable semantic web ser-
vices. In this section we present the requirements that apply to methods
that strive to realize semantic service-oriented architectures.

1. Business process modeling. The method should support describing
processes that define the value-adding activities of the service. Pro-
cesses can be represented procedurally or in a declarative manner.

2. Service level agreements. A semantic web service method should pro-
vide support for negotiating and monitoring service level agreements.

3. Bundling. Since it is common to aggregate services in order to add
value, a semantic web service method should offer support for creat-
ing bundles of services.

4. Ontology. An ontology-based language should be used to represent
the semantics underlying the service.

a) A method should be able to account for ontological heterogeneity
that occurs when different organizations independently develop
their own domain models (see section 7.5).

34



Validation of Requirements

5. Discovery. A semantic web service method should provide an auto-
matic way of locating providers who can meet a requester’s demand.

a) (preferable) Matching is done on the basis of ontological descrip-
tions.

b) (preferable) Matching is done on the basis of the transforma-
tion(s) of the world that delivery of the service achieves.

6. Message patterns. A semantic web service method should have a way
of representing message patterns and conforming to existing mes-
sage exchange patterns.

7. Parameter refinement. A semantic web service method should offer
support for generating concrete parameters from an abstract service
description.

a) (desirable) The method offers support for automatic negotiation
about parameter values between provider and requester.

6.5 Validation of Requirements

Validating requirements on software architectures is a difficult issue which
has not received extensive treatment in the scientific literature. In this
section we therefore discuss a number of ways in which we could validate
the requirements introduced in section 6.4.

Validation Approaches

An intuitive approach to validating requirements would be to check if ful-
filling the requirements will necessarily lead to a satisfying solution to the
problem. The difficulty with this approach is that this method of proof is
infeasible. It requires building all possible artifacts that meet the require-
ments and then to check if the solutions solve the problem and fulfill the
requirements. This is not a practical strategy to requirements validation
since validating the requirements would entail building the solution to the
problem.

We take a more practical approach: validation of individual require-
ments can be done on the basis of use cases that each address a part of the
problem. By checking the necessity of each requirement in section 6.4 by
means of a scenario, a reasonable argument for the merit of each require-
ment can be made. Even though no guarantee for the completeness of the
requirements can be given, this approach does provide us with insight in
the value of the requirements.

The approach is especially useful for our purposes since we want to
check the suitability of semantic web service methods for their intended
use. This means that if we know a set of necessary requirements, we can
check if the methods fulfill these requirements. If a method does not fulfill
all requirements we know that problems may arise when we try to realize
a semantic service-oriented architecture using the method. If it does meet

35



6. A FRAMEWORK FOR SEMANTIC WEB SERVICES

all requirements we have a reasonable indication that the method is suit-
able for this purpose. The scenarios which we will use are inspired on the
case description introduced in chapter 2.

Scenarios

In this section we provide a number of scenarios to motivate the require-
ments introduced in section 6.4. For each scenario we indicate what re-
quirements are necessary to fulfill the scenario.

1. An ISP wishes to purchase connectivity to connect a customer to its
own network. In order to do this the ISP will need to find a service
that fulfills this goal.

The ISP formulates the request for a new connection in terms of pre-
and postconditions in an ontology. Then the request is sent to a party
that matches supply and demand.

2. A matchmaking party compares an incoming service request with all
service offers registered by the providers. The most relevant matches
are determined using ontological comparison and send back to the
requester.

3. In order to enable service delivery it is necessary to define what mes-
sages can be exchanged between the requester and the provider. Of-
ten the message exchange patterns are simple, but this scenario pro-
vides an example of a more complicated exchange pattern.

When a problem occurs with the connectivity between the telecom
provider and the ISP, a diagnostic procedure needs to be carried out.
This procedure might consist of a number of checks that are per-
formed on either end of the connection with the results reported back
to the other party. A powerful method for defining these exchanges
is required.

4. An ISP wants to order a connectivity service from a specific telecom
operator. However the telecom operator does not use the same termi-
nology as the ISP. Mediation is necessary to translate the messages
of the ISP into a format that the telecom operator understands and
vice versa.

5. In order to remedy failures, the telecom operator offers a fault-clearing
service with each connection. Failures can be reported to this ser-
vice so that they will be resolved. This service is only worthwhile
in combination with a connectivity service and must be purchased
simultaneously.

6. The service that the telecom provider offers depends on the location
of the end user of the connection. In some areas higher connection
speeds can be realized than in others. A negotiation process between
the ISP and the telecom operator ensures that the desires and possi-
bilities match.

36



Validation of Requirements

Requirement: 1 2 3 4 5 6 7
Scenario 1: • •
Scenario 2: •
Scenario 3: •
Scenario 4: •
Scenario 5: •
Scenario 6: •
Scenario 7: •

Table 6.1: Requirements traceability matrix

7. An ISP wants to order connectivity for a business customer. The busi-
ness customer requires specific, measurable guarantees about avail-
ability and quality of the connection. The ISP searches for telecom
operators that are willing to agree to these specific requirements.

Tracing
Table 6.1 indicates which requirements are necessary to fulfill each indi-
vidual use case. When a requirement is necessary to fulfill a scenario this
is indicated with a mark. From this table we can deduce that each re-
quirement mentioned in section 6.4 is covered by a use case. The use cases
are realistic and representative for realizing a semantic service-oriented
architectures in the telecom sector. The use cases are specific to the tele-
com sector, but there is no indication to believe that the requirements are
only applicable to the telecom sector. It is more likely that these require-
ments are in general applicable to methods for realizing semantic service-
oriented architectures and that therefore they form a good basis to evalu-
ate methods for semantic web services.

37





7 Ontologies

In this chapter we investigate ontologies as a means for modeling domains.
We discuss what ontologies are and why they are useful. We investigate
the different approaches for representing ontologies and evaluate those for
our purpose. Finally we discuss how ontologies can be built and we discuss
the merits of reusing standardized ontologies.

7.1 Definition

As discussed by [Singh and Huhns, 2005], communication about services
is meaningless without a common understanding of the domain. Ontolo-
gies are a means to realize this shared understanding and are therefore an
essential part of any semantic web service architecture. The term ontology
is defined in [Guarino and Giaretta, 1995]:

[An ontology is] a representation of a conceptual system that is
characterized by specific logical properties (special type of logi-
cal theory containing only necessarily true formulas).

In figure 7.1, taken from [Guizzardi, 2005], the parts that make up
an ontology are placed in perspective. This figure shows that a model of
the world is represented by a formal specification. This specification is
composed using a modeling language. Behind the modeling language are

Figure 7.1: Terms surrounding knowledge representation.

39



7. ONTOLOGIES

assumptions about how knowledge about a domain should be represented:
the conceptualization. The entire system is called an ontology.

7.2 Conceptual framework

In [Reichgelt, 1991] a number of the most common conceptualizations for
representing knowledge are discussed. This discussion is based around a
conceptual framework for knowledge representation which we introduce
in this section.

According to the framework a modeling language consists of a syntactic
and an inferential aspect. The syntactic aspect covers the issue of how ex-
pressions in the language are made. The inferential aspect addresses how
new conclusions can be drawn from existing knowledge. The framework
is further subdivided in four levels. These levels are the implementation,
logical, epistemological and the conceptual level. We discuss each of these
levels here.

Implementation: on the implementation level one is concerned with build-
ing a computer program that can interpret the knowledge represen-
tation language. On this level issues of data structures and algo-
rithms play a role.

Logical: the logical level is concerned with the precise meaning of the
constructs in the language. Furthermore on this level we consider
what kind of information can be expressed using the constructs. An
example of a question on this level is: “can we express that either
statement a or statement b is true?”

Epistemological: The epistemological level is concerned with the way
that knowledge is structured in the language. The choice for a cer-
tain type of structure is linked with the application domain in which
the language will be used.
We explain these ideas using some examples inspired on our case
study. A possible choice at this level is to represent the telecom do-
main as a list of unstructured facts: ‘a connection runs between two
points’, ‘a person has a name’, ‘bob is a name’, ‘connection y belongs
to the person named bob’.
Another possible choice is to use an object-oriented style of model-
ing. Using this style connection and person would be a classes. The
classes would have attributes associated with them such as name and
throughput.
The choice for a certain structure should be based on the intended
application and the structure of the application domain.

Conceptual: At the conceptual level decisions are made about the prim-
itives that are included in the language. The primitives that are
applicable are prescribed by the choices made at the epistemological
layer. For example, if at the epistemological level it is decided that a
network structure is used, then at the conceptual level the required
connection types and their conceptual meanings are determined.

40



Types of Knowledge Representation Languages

Requirements

Next to the conceptual framework for knowledge representation we dis-
cussed previously, [Reichgelt, 1991] also proposes a number of require-
ments for modeling languages. The requirements are organized according
to the layers of the conceptual framework.

Implementation The most important requirement on knowledge rep-
resentation languages at the implementation layer, is that of efficiency.
Drawing inferences should be reasonably fast and representing knowledge
should be space efficient.

Logical From a logical stance, a knowledge representation language is
required to have clear semantics. This entails that all the syntactically al-
lowed constructs should have a clear and unambiguous meaning. Further-
more, the inference rules should be sound, this means that it should not
be possible to draw false conclusions from true information in the model.

Epistemological The main requirement at the epistemological layer is
that the construction and interpretation of representations should be nat-
ural. The structure of the modeling language should correspond to the
structure of the domain in which the language is applied. In some do-
mains a rule based approach might be desirable whereas in other cases an
object-oriented language might be more natural.

Additionally a language should be modular so that when a piece of in-
formation needs to be changed, only a small part of the representation has
to be changed. Furthermore the granularity of the language constructs
should be appropriate, knowledge might be represented as a collection
of facts (fine granularity) or it might be structured along larger concepts
(course granularity).

Finally the primitives chosen at the conceptual level should align with
the decisions made at the epistemological level.

Conceptual At the conceptual layer the most important criterion is that
knowledge should be representable in a concise way. In [Reichgelt, 1991] it
is argued that if it is impossible to represent a simple piece of knowledge in
a concise way, then the primitives used at the conceptual level are proba-
bly wrong. Similarly if a simple inference requires complicated constructs
then the inference procedure is not adequate.

7.3 Types of Knowledge Representation Languages

In this section we discuss the different approaches to knowledge repre-
sentation found in the literature. We discuss first order logic, semantic
networks, frame-based logics, description logics and rule based logics. For
each of these approaches we discuss the underlying principles and we in-
dicate languages that take the approach.

41



7. ONTOLOGIES

First-Order Logic
First-order logic is the classical mathematical way of representing logical
statements. The standard notation for symbolic logic, the Peano-Russell
notation, was introduced in 1889 and was structured after algebra. In
[Sowa, 1983] a brief overview of first order logic is provided.

Knowledge is represented as a set of predicates about variables. Pred-
icates can be connected with boolean operators (∧, ‘and’; ∨, ‘or’; ¬, ‘not’,
→, ‘implies’) which can be used to create complex expressions. Further-
more, there are the universal (∀, ‘for-all’) and existential (∃, ‘there exists’)
quantifiers.

A first-order logic language is built up from sentences where each sen-
tence is a logical statement that is true. In the example below we illustrate
how we can represent that a connection which is reliable must be expen-
sive:

Connection(a)
Expensive(b)
Reliable(c)
∀x : Connection(x) ∧Reliable(x) → Expensive(x)

In [Reichgelt, 1991] the benefits and drawbacks of first-order logic are
discussed. Firstly, a benefit is that first-order logic notation is very expres-
sive. As a consequence it should be possible to represent almost any knowl-
edge representation language in first-order logic primitives. Secondly, the
meanings of the constructs in the language are well defined.

The drawback is that reasoning in first-order logic is inefficient and un-
decidable, that is, we cannot guarantee that the truth-value of an expres-
sion can be determined in finite time. Additionally, reading and writing
first-order logic seems not very natural: the notation requires training to
understand. Furthermore, first-order logic does not enforce a structured
representation of the facts. This can easily lead to domain models that are
hard to understand and to maintain. For a large domain such as service
provisioning in the telecom world it is likely that these issues pose major
problems.

Semantic Networks
Proponents of semantic net languages take the point of view that associ-
ations between concepts are the most important concern in representing
meaning. As such, a semantic net language is built up from two primitive
types: nodes and unidirectional arcs [Reichgelt, 1991]. Nodes represent
concepts in the world and the arcs (or links) represent the relations be-
tween the concepts. Arcs and nodes can be annotated with labels to link
the constructs with the human understanding of a term. Conclusions are
drawn by following the arcs between nodes.

RDF The RDF language [Manola and Miller, 2004] is proposed as the
facilitating language for the semantic web in [Berners-Lee, 2001]. It is a

42



Types of Knowledge Representation Languages

semantic network language that is used to state assertions about resources
on the internet. Resources are modeled as nodes and are annotated with
URLs. Arcs represent relations between nodes and are annotated with
URLs as well. The meaning of the links in an RDF graph is determined by
the meaning that a parser associates with the used URL. Since RDF spec-
ifies no meaning for the arcs between nodes, the language has no logical or
conceptual foundation. Consequently, an RDF document by itself has no
meaning.

RDF-Schema Since RDF has no meaning on its own, the RDF-Schema
language [Brickley and Guha, 2004] was defined. This specification allows
us to define, using RDF syntax, classes and the relationships between
classes. We can say that a certain class is a subclass of another class
and we can define attributes. We can also specify that certain attribute
arcs can only take certain kind of destination classes (range restriction).
The reverse, specifying that certain arcs only take a certain kind of ori-
gin classes (domain restriction) is also possible. This way RDF-Schema
presents a conceptual foundation for the RDF language.

However, RDF-Schema does not have a logical foundation. The mean-
ing of many concepts is not defined precisely and there is room for inter-
pretation by reasoners. An example of this is that it is not specified how
reasoners should handle range and domain restrictions. One interpreta-
tion might be that a violation of this restriction leads to an invalid docu-
ment. Another interpretation is that the association turns the connected
classes into subclasses of the desired type. The RDF Schema specification
explicitly leaves open both interpretations.

Another problematic aspect is that it is possible to modify the RDF-
Schema language using its own constructs. As a consequence it is almost
impossible to build reasoning software for RDF-Schema based models.

Frame-based logics

Frame-based logics are based on the intuition that humans organize knowl-
edge in a hierarchy of concepts [Reichgelt, 1991]. At the top of the hierar-
chy abstract concepts are placed and deeper in the hierarchy we find more
specific concepts. Many frame languages allow for multiple inheritance.
This makes it possible to have a specific concept as a specialization of mul-
tiple abstract concepts. The concepts are called frames. The description of
a frame is constructed using slots that are associated with it. A slot can be
a name-value pair, but it can also point at another frame, thereby forming
an association. Slots can be given default value at a frame higher in the
hierarchy, which can be overridden by a more specific frame. Additionally
it is possible to put restrictions on the possible values for a slot.

Reasoning in a frame logic is generally done on the basis of matching
and inheritance. The first step is that some information about an unknown
concept is given to the reasoner. On the basis of the known frames, their
slots and their restrictions, a set of super-classes of the concept is deter-
mined; this is called matching. When the super-classes of the unknown
concepts are known, it is possible to look up all defined slots and the de-

43



7. ONTOLOGIES

fault values for slots in the super-classes. This way statements about the
unknown concept can be made.

According to [Reichgelt, 1991], frame logics are appealing from an epis-
temological standpoint. The expressive power of frame logics, however, is
rather limited. It is not possible to specify statements like (“a connection
is unreliable, or it is expensive”). This is because traditional frame based
logics only make statements about classes of objects. Statements that rea-
son about the relations between classes, such as the one mentioned, are
not possible.

F-Logic An example of a frame based logic is the F-Logic language de-
scribed in [Kifer and Lausen, 1989]. F-Logic additionally contains connec-
tives (∧, ∨, ¬) and quantifiers (∃, ∀) beyond those found in traditional frame
based logic. These can be used to specify complex frames while still keep-
ing the language decidable.

WSML-Flight WSML is a language that is specifically proposed for an-
notating semantic web services described in [de Bruijn et al., 2005]. The
WSML-Flight profile is based on the F-Logic language described above.
We discuss the WSMO project (which WSML is part of ) in more detail in
chapter 9.2.

Description Logics

Description logics are quite similar to the frame-based logics described ear-
lier in this section. Description logics allow us to specify a hierarchy of con-
cepts with associated descriptions. A major difference is that description
logics make a distinction between the concepts (called classes) and their in-
stances (called individuals). A further difference is that description logics
do not allow subclasses to override attribute values defined in their super-
classes. Classes can be connected through roles with other classes. This
mechanism can be used to specify attribute values. Complex classes can be
specified through logic expressions on other classes. Reasoning on descrip-
tion logics is done by determining what classes an instance belongs to or by
determining the super-classes of a specific class. [Baader and Nutt, 2003]

It is possible to build reasonably efficient reasoners for description log-
ics and the representation seems natural for the description of services.
The expressivity of description logics, however, is (similarly to frame lan-
guages) rather limited.

OWL OWL comes in three variants: OWL-Lite, OWL-DL and OWL-Full.
Only the first two can be considered description logics. However, as elab-
orated in a.o. [Preist et al., 2005], there are still some shortcomings. One
of these is that OWL-DL cannot reason over restrictions on data ranges
even though this is allowed according to the description logic theory. For
example, it is not possible to specify a class fast_connection for which the
speed property is defined to be more than 1024 kbs. In OWL-DL we can
only restrict a datatype property to a single value (such as speed = 1024
kbs).

44



Types of Knowledge Representation Languages

OWL-Lite is a restricted version of OWL that is easier to reason about.
The OWL-Full profile was designed to offer a migration path from RDF-
Schema. However the authors admit that it is close to impossible to build
reasoning software for OWL-Full. [McGuinness and van Harmelen, 2004]

WSML-DL As described in [de Bruijn et al., 2005], WSML offers a de-
scription logic profile as well. The properties of this profile are comparable
to OWL-DL.

Rule-Based Logics

Rule-based logics model the world as a list of antecedent consequent pairs.
Reasoning is done by checking which antecedent conditions hold. Based
on that knowledge the consequences can be inferred. Rule-based systems
lend themselves well for modeling pre-conditions and post-conditions. In-
stead of a logical condition, a procedure can be specified. In this way pre-
conditions and post-conditions for the procedure can be described. It is
important to realize that this way of reasoning can be non-deterministic
when multiple rules match the current situation but have different effects.

Rule-based systems commonly use a flat representation of the rules,
which can easily lead to a disorganized model. However, it is possible to
add frame-like constructs to organize these rules.

SWRL SWRL (Semantic Web Rule Language) is a language that is meant
to be used as a rule-based extension on OWL [Horrocks et al., 2004]. Its
main purpose is to enable the specification of pre-conditions and post-
conditions of web services.

Transaction Logic Transaction logic [Kifer, 2005] is a comprehensive
rule-based language based on first-order logic. It is exceptional in that
it defines clear semantics for executing state-changing procedures. In con-
trast with SWRL, Transaction Logic allows the user to program procedures
using a logic notation.

Conclusion

It table 7.1 we compare the different ontology description approaches. To
assess the epistemological qualities of each of the logics we use the domain
of service provisioning using web services. For some languages we have not
been able to find scientific evidence for their performance on all criteria.
In those cases no rating has been given.

The choice of knowledge representation technique for representing on-
tologies has significant consequences for the suitability of a semantic ser-
vice method. This is because the choice for a certain knowledge represen-
tation logic prescribes the mechanisms used for service description and
discovery.

In the domain of formulating service descriptions it is important to re-
alize that services achieve a transformation in the world. Description of
this dynamic aspect is of crucial importance. Based on this structural,

45



7. ONTOLOGIES

C
la

ss
ic

Se
m

.N
et

s
F

ra
m

e-
ba

se
d

D
es

cr
ip

ti
on

R
ul

e-
B

as
ed

F
ir

st
O

rd
er

R
D

F
R

D
F

F
-L

og
ic

W
SM

L
O

W
L

W
SM

L
SW

R
L

T
ra

ns
ac

ti
on

L
og

ic
Sc

he
m

a
F

lig
ht

D
L

D
L

L
og

ic
Im

pl
em

en
ta

ti
on

ef
fic

ie
nc

y
-

+
+

+
+

+
+

L
og

ic
al

cl
ea

r
se

m
an

ti
cs

+
-

-
+

+
+

+
-

+
ex

pr
es

si
vi

ty
+

-
-

�
�

�
�

�
+

so
un

d
in

fe
re

nc
e

+
-

-
+

+
+

+
+

+
E

pi
st

em
ol

og
ic

al
st

ru
ct

ur
e

-
-

-
-

-
-

-
+

+
m

od
ul

ar
-

+
+

+
+

+
+

-
-

pr
im

it
iv

es
+

+
+

+
+

+
+

+
+

C
on

ce
pt

ua
l

co
nc

is
e

-
+

+
+

+
�

�
-

-

Table 7.1: Assessment of knowledge representation techniques.

46



Building Ontologies

epistemological, criterion a rule-based language would be the best choice
for modeling service behavior. A major problem is that no full implementa-
tion exists for both the researched rule-based languages, SWRL and Trans-
action Logic.

7.4 Building Ontologies

In [Uschold and Grüninger, 1996] a methodology is provided for building
ontologies. We briefly discuss the steps in this methodology. The following
steps are discerned: determining purpose and scope, building the ontology
and evaluation.

Determining purpose and scope. The first step is to establish the pur-
pose and the scope of the ontology, it should be clear why the ontology
is being built and what its intended uses are.

Building the ontology. The second step is to build the ontology. This
step consists of three sub-steps: capture, coding and integration.
During the capture step the key concepts and relationships in the
domain are identified. A clear textual description for each of the con-
cepts is agreed upon and names are assigned to the concepts and
relationships.

Uschold et al. recommend a middle-out approach rather than a top-
down or bottom-up approach when determining the concepts that
should go in the ontology. The middle-out approach entails finding
the central terms in the ontology and to expand from there. Uschold
et al. argue that bottom up approaches tend to lead to overly de-
tailed ontologies where no useful abstractions are found. Top-down
design can lead to ontologies that are based on theoretical concepts
that may have little affiliation with reality. The middle-out approach
guarantees that the important concepts are included and, therefore,
that the ontology will be relatively stable as it is grounded in reality.

Next, in the coding step, a suitable ontology description language
is chosen. Then the ontology is coded in the ontology description
language.

During the integration step (which might occur simultaneously with
the other two steps) related ontologies are identified and it is decided
if portions of these related ontologies can be reused.

Evaluation. The third and final step of ontology building is the evalua-
tion step. During this step the suitability of the proposed ontology
for its intended uses is determined.

Uschold et al. do not say anything about the level of detail that should be
employed when specifying associations and the relations between them. It
seems to be a reasonable approach to define only those relations that will
be necessary to support the intended purpose.

47



7. ONTOLOGIES

Tools

Building ontologies and writing logical statements about the ontology by
hand can be a difficult task, especially if the ontology description language
has a syntax that is hard to work with. In such cases one can use modeling
tools that assist the user. Additionally, tools can provide overview of an
ontology with a graphical user interface. This way it might be easier to
define relations between concepts.

Protégé [Gennari et al., 2003] is a tool designed for developing knowledge-
based systems and consequently it can also be used for modeling ontolo-
gies. Recent versions of Protégé are based on a plug-in architecture so
that external developers can contribute additional functionality . The user
interface displays a list of tabs where each tab offers certain functional-
ity. These tabs are implemented as plug-ins. Support for working with
OWL, RDF and OWL-S is offered using such an externally developed plug-
in [Elenius et al., 2005].

Protégé presents a graphical user interface with which an ontology can
be built. The user can enter classes, properties, constraints and instances.
Plug-ins offer support for converting this internal representation to exter-
nal file formats. Additionally, the tool supports the visualization of ontolo-
gies. Plug-ins for specific ontology languages can offer specialized support
for the features of that language.

Standard Ontologies

Rather than modeling an ontology for each separate web service, which
introduces a huge risk that incompatibilities arise, it can be advantageous
to make use of industry standard ontologies. Using a standard ontology
can reduce development time. This is because it is not necessary to do ex-
tensive domain research before a service can be developed and marketed.
Additionally if multiple parties reuse the same ontology, the potential for
compatibility problems that hinder communication about a service is much
lower.

In contrast a common ontology may lack focus and try to include every
possible detail from the domain. Such a model can become hard to under-
stand and it could be difficult to express a specific service in the generic
domain model. Further, it may then be necessary to adapt the design of
the service to fit in the standardized ontology, which may not be what we
want.

In the telecom world the TeleManagement Forum’s Shared Informa-
tion/Data model (SID) offers a standard ontology for provisioning telecom
services [Strassner et al., 2003]. The SID is provided as a set of UML mod-
els that capture domain knowledge. All information entities that are nec-
essary to support telecom operations are defined in the model. The number
of classes that describe various aspects of telecom operations is very large
and attributes and associations between the classes are defined as well.
The model is meant to be used with Model Driven Architecture (MDA)
tools that are able to build application code based on a (UML) model of the
application domain. The SID model is very complete and very complicated

48



Heterogeneity in ontologies

and it is hard to become familiar with it. An important benefit of using
this model is that the terminology in the telecom world is clearly defined.

A problem that may arise when using this model to describe services
is that the model is represented in UML. If one wants to employ a dif-
ferent ontology modeling language to describe a service than it is neces-
sary to convert the SID model semantics to the target ontology language.
These ontology languages can be quite different from the UML. More im-
portantly, UML does not have formal semantics comparable to the logic
based ontology modeling languages.

7.5 Heterogeneity in ontologies

A big problem in enterprise application integration is that of data integra-
tion. When two applications have to be integrated it often becomes clear
that the data models used by the applications are quite different. This can
occur even if the applications to be integrated have a similar purpose. In
[Batini et al., 1986] an overview of data modeling conflicts is provided.

The conflicts can be divided in naming conflicts and structural conflicts.
Naming conflicts arise from different people using the same term to mean
different things or, reversely, from people using different terms to mean the
same thing. Structural conflicts arise when conflicting modeling constructs
are used to represent the same concept.

As we said before, in order to enable communication between different
parties it is crucial that both parties have a shared understanding of the
used terms. It is therefore required that both parties use a common on-
tology. In a heterogeneous environment such as the internet it is unlikely
that two parties will come up with exactly the same ontology.

A method for semantic web services, therefore, has to provide a way
to bridge heterogeneity in ontological descriptions. Data integration is a
rather old problem, especially in the context of relational databases, and
a lot of material on the subject is available. The main problem in data
integration is to identify mappings between different ontologies. From the
literature we conclude that currently no reliable fully automatic method
exists for identifying these mappings. It is unavoidable that the involve-
ment of domain experts during the integration process is required.

Ontology modeling languages are generally more expressive than the
entity-relationship model, they probably have even more potential for data
integration conflicts. A method for semantic web services therefore needs
to recognize that differentiation in ontologies will occur and that a method
for bridging ontological differences is required.

49





8 Discovery

In this chapter we introduce a number of approaches for realizing semantic
service discovery. For each of these approaches we discuss their benefits
and drawbacks. In the next section we discuss the criteria by which a
discovery method should be judged. In the subsequent sections we discuss
keyword-based, description logic-based and rule logic-based discovery.

8.1 Preciseness of Service Descriptions

In semantic web service architectures, discovery is the task of matchmak-
ing between providers and requesters. The typical use case is that service
providers create descriptions of their services. Subsequently these service
advertisements are registered with a central matchmaking party. When a
service requester looks for a service, he or she formulates a description of
the desired service. The request is then passed on to the central match-
making party. The matchmaking party searches through all registered
service advertisements and determines which providers could fulfill the
request. A list of matching providers is returned to the requester.

As discussed in [Preist, 2004], a service description usually provides an
abstract description of a service with which countless different concrete
service instantiations can be described. The concrete instances differ in
terms of the parameters used for a service. Often a service is specific to
the location of the customer, or there are multiple variants of a service of
which the customer can select one. Some parameters, such as price, might
even be negotiable.

A concrete service is an instantiation of the service that performs the
service tasks. A concrete description contains details about the involved
parties and the message content that is exchanged. Usually a concrete
service is not advertised as such, but rather an abstract service is used for
that purpose.

An abstract service describes a set of concrete services. It describes a
collection of concrete services that a service provider is willing to offer. An
abstract service can be defined by listing all possible concrete services, but
typically it is specified in a formal way using an ontology.

It is hard to accurately describe an abstract service in a formal way. As
indicated by [Hepp, 2006] the information space needed to fully describe
all possible service instances can get very big and can be highly dynamic.
Consider the following example: a user may specify that he or she is inter-
ested in purchasing a specific book. To deliver the service it is not enough
to know that a service sells books and that the user is looking for a book.

51



8. DISCOVERY

This namely does not guarantee that the specific book the user wants can
be purchased at the specific web service. Oren et al. describe a related
problem in the domain of the sale of ADSL lines [Oren et al., 2004a]. In
this domain, the availability of the service depends on the phone number
of the customer. The problem with this is that the list of valid phone num-
bers is enormous and might change rapidly.

These concerns are addressed in [Preist, 2004] by means of the cor-
rectness and completeness criteria. A complete description describes all
possible concrete services. For a description to be correct, it is required
that each service that is described by abstract service description is also
offered as a concrete service. A discovery mechanism preferably enables
correct and complete discovery of services.

8.2 Keyword-Based Discovery

Perhaps the simplest approach to service discovery is to use keyword-
based matching. In this approach, service providers describe their ser-
vice by associating (possibly standardized) keywords with it. The UDDI
standard discussed in section 5.1 uses this approach. A requester discov-
ers services by specifying keywords that apply to the desired service. The
approach can be extended by allowing boolean operations (such as ‘AND’,
‘OR’ and ‘NOT’) on keywords to make matches more accurate.

The approach is simple, but it has significant drawbacks as it is hard
to be precise and complete in keyword descriptions. The reason for this is
that keywords derived from natural language are often ambiguous. Fur-
thermore, an important point in service description is that services achieve
a transformation in the world. Specifying such a transformation using
only keywords seems impossible. If keywords are sufficiently standardized
then the technique could be more successful. This, however, requires that
all possible services and their associated keywords are predefined. This is
unfeasible because it is inflexible and therefore goes against the service-
oriented architecture’s principles. A keyword-based search is, therefore,
not acceptable for automated service discovery.

8.3 Description Logics-Based Discovery

More sophisticated methods of discovery perform matching on ontology-
based descriptions of services. These methods have the potential to be
more precise. The main benefit of these methods is that the matching
can be done on the actual service description instead of just on meta-data.
In this section we discuss a method proposed by [Grimm et al., 2004] for
discovery based on description logics (see chapter 7).

The method is based on describing services as concepts in a descrip-
tion logics ontology. A connection service could be represented as a class
(e.g., connectivity_offer). This class could have attributes that indicate the
properties of the connection (such as speed and delay). A technology role
could be defined that connects the DSL class to the connectivity class. A
service provider could describe their services in this way and register the
description with a directory.

52



Rule Logic-Based Discovery

The service requester makes a similar description of the desired ser-
vice, usually in a more generic way. The requester might specify a class
connectivity_request with a value of 1mbs for speed while leaving unspec-
ified the delay and realization technology. A centralized registry then de-
termines which provider descriptions match the requester’s description.

In [Grimm et al., 2004] a number of methods for matching these kinds
of descriptions are presented. A straightforward method is to check if the
advertisement and the request are logically equivalent. Two concepts are
considered equivalent if they have the same values for all properties. An
exact match, however, is expected to be rare, since it is more likely that
the advertisement is more specific than the request or vice-versa. In our
example, we see that the requester is only interested in the speed of the
connection, and the advertisement is much more detailed. A matcher can
then check that the advertisement subsumes the request, or vice-versa.

In description logic notation, a subsumption condition that checks if the
service offer is more specific than the request is written as follows:

ι : (connectivityoffer u ¬connectivityrequest) is unsatisfiable

Another, very weak, check is to see if the advertisement and the request
are not disjoint, i.e., whether it is possible to define an instance which is
a member of both the advertisement and the request class. According to
these checks a matcher can rank the results and return the list of matches
to the requester.

This method of service matching adds a semantic aspect to the discov-
ery process and is relatively easy to implement. Description logic reason-
ers are generally available and the method is conceptually intuitive. The
discovery scenario discussed in this paragraph has been executed in the
OWL-DL language and is provided as an appendix to this report.

The discovery approach detailed in this section is however not without
its drawbacks. A practical problem is that in order to generate reasonably
correct matches, this technique requires one description to be more specific
than the other. It is likely, however, that in many cases the advertisement
is in some parts more specific than the request and the other way around
for other parts.

A more fundamental problem with this approach is that it does not
acknowledge that services achieve a transformation in the real world, a
transformation that has preconditions and effects. In description logic-
based modeling, services are static concepts which can be described as if
they are physical objects. As a consequence, a large opportunity for am-
biguity in service description arises. A discovery mechanism based on de-
scription logic is, therefore, likely to return inaccurate results.

8.4 Rule Logic-Based Discovery

The most natural form of discovery seems to be a method that enables
a requester to formulate the current state of the world, and the desired
end-state. The discovery component then returns the providers that can
achieve the desired transformation. An approach like this is promised in
[Kifer et al., 2004]. Transaction logic makes it possible to reason about

53



8. DISCOVERY

modifications in knowledge bases. With transaction logic, preconditions
and post-conditions can be described and reasoned with.

An example of how semantic service discovery can be performed is pro-
vided in [Kifer et al., 2004]. The method presented requires all requesters
and providers in the application domain to agree on a set of discovery goals.
An example of such a goal, relevant in our case description (see chapter 2),
could be connect_end_user. This goal represents that an end user of an
internet connection will be connected to the network of an ISP. The goal
contains parameters to identify which end-user has to be connected. A reg-
istry maintains a list of services that achieve the goal, each with their own
interface. Associated with each service is a mediation component that can
translate from the agreed domain specific goals to the service specific call-
ing interface. The mediator contains a hard-coded list of services of which
it knows the calling interface. All intelligence is in the mediator compo-
nent, which can take a standardized request and pass it on to a specific
service it knows about.

Unfortunately, this approach is limited and does not improve on the
current approach to web services. The method depends on a standardized
list of operations. Mapping between the standardized operations and the
services must be performed manually. It is not possible to perform seman-
tic queries on post-conditions. An example of such a query could be ‘return
all services which at least result in the predicate connection(customer ,
internet_service_provider) to be true’

Furthermore, with the transaction logic approach it becomes very com-
plex to develop service descriptions and to check if they meet certain goals.
The main strength of transaction logic lies more in the area of implement-
ing logic-based programs than in the area of discovering web services.

The implementation support for transaction logic is limited. The only
implementation, the Flora-2 system [Yang et al., 2003], does not support
the important hypothetical update operators. We conclude that transac-
tion logic, in its current state, is not a good basis for semantic service dis-
covery.

54



Part IV

Evaluation and Conclusions

55





9 Evaluation of Existing Methods

In the previous chapters we discussed the theory behind semantic service
provisioning and developed requirements for assessing methods. In this
chapter we evaluate and compare two concrete methods for realizing se-
mantic web applications. In the literature, OWL-S and WSMO methods
are proposed as methods with which semantic web services can be real-
ized. We first review both methods separately and after that we compare
them.

We discuss the methods using the subdivision of issues around seman-
tic service provisioning introduced in section 6.3. The concerns are subdi-
vided in the service level, the communication level and the delivery level.
We further look at the practical applicability and the tool support for each
method.

In section 9.4 we evaluate both methods against the list of require-
ments set apart in section 6.4. We conclude this chapter with an assess-
ment of the applicability of the methods.

9.1 OWL-S

The first method which we have investigated is the OWL-S method. OWL-
S, as described in [Martin, 2004, Martin et al., 2004], is a method for de-
scribing web services; it is built on top of the OWL ontology description
language and hopes to enable automated web service discovery, execution,
composition and inter-operation.

Business Service Level At the service level we look at the support the
method offers for modeling processes, for bundling services and for repre-
senting service level agreements. OWL-S makes no distinction between
business services and application services. A service in OWL-S is an ap-
plication service that might realize a business service, but this is not en-
forced.

In OWL-S, the essence of the service is represented by two components:
the service profile and the process model. The service profile is meant to
advertise what the service does. It contains a description of the incoming
and outgoing parameters, preconditions and results of using the service.
Processes are thus described in a declarative fashion. Additionally it is
possible to assign a category to the service in a taxonomy of services.

Bundling of services is supported through the process model, which
supports aggregating services with a BPEL-like (see section 5.2) control
language.

57



9. EVALUATION OF EXISTING METHODS

OWL-S offers no support for specifying or monitoring compliance with
service level agreements.

Communication Level At the communication level we look at ontology
representation, discovery and representation of message patterns.

OWL-S uses OWL-DL, a description logic based ontology language, for
representing the world (see section 7.3). Additionally OWL-S allows au-
thors to describe services using the SWRL rule-based language. Using
this language, pre-conditions and post-conditions on services can be rep-
resented. These pre-conditions and post-conditions detail the input and
output parameters and the relations between the two.

OWL-S does not provide a way to deal with ontology inconsistencies
that arise in a heterogeneous environment.

According to [Martin, 2004], discovery can be done in two ways. Firstly
the description logic subsumption approach, which has been discussed in
section 8.3. This approach is most commonly mentioned in OWL-S related
publications. Secondly, it is in principle possible to perform reasoning on
SWRL-based descriptions of transformations that services realize. How-
ever, no SWRL reasoner implementations are available and it is unclear
how the SWRL-based descriptions can be integrated with the ontology-
based description of the domain. The OWL-S specification itself does not
prescribe a technique for matching service descriptions.

Message exchange patterns can be derived from the input and output
parameters. OWL-S provides a mechanism to derive a WSDL specification
from an OWL-S service description.

For composite services, the message exchanges can be derived from the
process model description. As mentioned in [Preist, 2004], this means that
OWL-S does not maintain a separation between the implementation of ser-
vices and the calling interface. In many cases this separation is desirable,
otherwise internal information is exposed, and the interface of the service
becomes dependent on the concrete implementation.

Delivery Level The main issue at the delivery level is to determine the
exact parameters that are to be used for the service contract. This is nec-
essary to refine the results of the discovery phase.

The OWL-S specification does not specify how service descriptions that
are retrieved from the discovery phase can be refined. Neither is it clear
how a contract for service delivery is arranged. Similarly, there is no sup-
port for negotiating parameters such as price.

Practical Applicability and Tool Support Next to the theoretical con-
siderations about whether a method fulfills the requirements, we also look
at the practical applicability of each method. In particular we look at the
tool support that exists. Furthermore we investigate if the method has
been used successfully in practice.

Tool support for OWL-S comes mainly in the form of OWL ontology
editors. The Protégé editor [Gennari et al., 2003] is a featureful ontology
editor that has support for graphically representing and editing ontologies.

58



WSMO

Tool support for creating OWL-S service descriptions is very limited, but
there is a plug-in available for Protégé [Elenius et al., 2005].

So far no practical implementations of OWL-S have been demonstrated.
In [Balzer et al., 2004] a number of practical problems that arise when try-
ing to semantically describe OWL-S services are discussed. The authors
mention ontological inconsistencies in the OWL-S service model, lack of
support for discovery and lack of tool support.

9.2 WSMO

Another method that is proposed in the literature is WSMO. In this section
we investigate this method.

WSMO is an implementation of the Web Service Modeling Framework
proposed in [Fensel and Bussler, 2002]. The WSMO (Web Service Model-
ing Ontology) working group started out in early 2004 and its goal is to
work towards further standardization in the area of semantic web services
and to design a common architecture platform. To this end the working
group formulated the WSMO ontology that describes what components
are required for building semantic web services. The WSML (Web Ser-
vices Modeling Language) sub-project developed a formal notation for de-
scribing the elements in the WSMO ontology. The WSMX (Web Service
Modeling Execution Environment) project strives to build an implementa-
tion of the WSMO platform that can be used for discovery and invocation
of semantic web services. An overview of the WSMO approach is given in
[Oren et al., 2004b].

Business Service Level WSMO does not differentiate between applica-
tion services and business services, but mainly describes application ser-
vices. Services in WSMO are represented using the web service notion.
Another important notion is that of goals, which are descriptions of objec-
tives that a client of a web service may have. Web services are described in
terms of the goals they achieve (the capability). The goals are described in
terms of the preconditions and post-conditions in an ontology. According to
[Fensel and Bussler, 2002], goals should be specified separately from web
service descriptions because a web service can satisfy multiple goals and
multiple web services might be able to achieve the same goal.

At the moment WSMO does not offer support for creating bundles of
services or for representing or negotiating service level agreements.

Communication Level In the WSMO framework, ontologies are rep-
resented using the WSML language. WSML has several profiles but the
commonly recommended profile, WSML-Flight is based on a frame-based
logic (see section 7.3). WSMO acknowledges that in a heterogeneous en-
vironment it is likely that different ontologies arise. To address this prob-
lem, WSMO suggests the use of a mediator component, which is able to
map between ontological descriptions. WSMO, however, does not specify
how such a component could be built. As discussed in section 7.5, resolv-
ing structural integration conflicts in an expressive ontology is likely to be
very difficult.

59



9. EVALUATION OF EXISTING METHODS

Discovery for WSMO is discussed in [Keller et al., 2004]. In the arti-
cle, variants of the techniques discussed in chapter 8 are applied to the
WSMO framework. The WSMO project has not yet adopted any of these
techniques.

In [Roman and Scicluna, 2006] it is discussed how message exchange
patterns can be represented in WSMO. In this article, it is argued that
message exchange patterns can be represented using abstract state ma-
chines as described by [Börger and Stärk, 2003].

Delivery Level The WSMO framework does not make a distinction be-
tween an abstract service and a concrete service. As a result there is no
mechanism available to refine the results of the discovery process either.
Negotiation support is not provided either.

Practical Applicability and Tool Support WSMX is an implemen-
tation of the WSMO and will eventually offer support for the complete
WSMO conceptual model, including discovery, mediation, selection and in-
vocation of services. The WSMX group strives to build an enterprise ap-
plication architecture for semantic web services. WSMX is developed in
an iterative manner, which means that current early versions have only
very limited functionality. Currently it is possible to specify goals and to
associate web services with them [Oren et al., 2004b].

Initial experience with the WSMX framework shows that the software
is in a very early phase where not all components work together. In its
current state functionality is rather limited. The main result available
right now is an architecture on which components can be built.

9.3 SWSF

The SWSF (Semantic Web Service Framework) method is another method
for realizing semantic web services, introduced in [Battle et al., 2005]. Anal-
ogous to WSMO, the SWSF method consists of an ontology language, SWSL,
and a service ontology, SWSO. The SWSF initiative places an emphasis on
the representation of process models.

Business Service Level Similar to WSMO and OWL-S, SWSF does not
distinguish between application services and business services. SWSF
does support the notion of composite services which are build up from
atomic services. Atomic services are represented using their inputs, out-
puts, preconditions and effects. Composite services are defined using a
process model, specifying which messages are sent and received and in
what order atomic services are called. This way, SWSF supports repre-
senting business processes and the bundling of services. SWSF offers no
support for representing and managing service level agreements.

Communication Level SWSF uses a rule based language, SWSL-Rules,
to model the application domain and to represent services. The rule lan-
guage is defined by mapping its constructs on a first order language, SWSL-
FOL. A rule based language is used to enable implementation of efficient

60



Evaluation and Comparison

reasoning software. SWSF does not address the problem of ontological
heterogeneity that was discussed in section 7.5.

The SWSF method prescribes logic-based matchmaking, as discussed
in section 8.4, for discovery of services.

Message patterns between parties can be represented in SWSF process
models. The SWSO ontology contains constructs for sending and receiving
messages. There are no provisions in SWSF for integrating message flows
between parties that expect different message exchange patterns.

Delivery Level SWSF recognizes the problem of refining abstract ser-
vice descriptions. The approach recommended by the method is to solve
the problem at the application level. This entails creating domain specific
application services for searching and refining application and business
services. There is no generic negotiation support in the SWSF method.
This hinders flexibility, because each party is free to choose their own ne-
gotiation protocol.

Practical Applicability and Tool Support The SWSF specification is
quite recent and at this time no tool support is available. The specification,
especially the ontology language, is also quite complex. This complexity
stems from the use of first order logic which, as discussed in section 7.3, is
so expressive that it is not decidable. The first-order logic part of the spec-
ification will therefore be hard to implement. The rule-based ontology lan-
guage is probably feasible to implement. The Flora-2 rule logic program-
ming system [Yang et al., 2003], some developers of which also partake in
SWSF project, demonstrates that such an implementation is possible.

9.4 Evaluation and Comparison

In table 9.1 the methods for semantic web services are compared with each
other and with the requirements introduced in section 6.4. We see that no
method fulfills all the requirements. A big issue with two of the methods
is that no commitments are made as to what algorithms should be used for
discovery. It is essential that a method is clear about this subject since dis-
covery is an essential component of a semantic web service architecture.
The discovery mechanism influences the way services are described. With-
out clarity about this subject, the feasibility of the entire method becomes
unclear.

Furthermore, no method supports the activities in the management
layer of the service-oriented architecture. This means that no explicit sup-
port is provided for specifying and negotiating service level agreements.

An important problem with all of the proposed frameworks is that they
are very theoretical and experimental. No working practical applications
have been demonstrated with either framework for semantic web services.
We believe that there are both theoretical and practical reasons for this.

A problem we see with the OWL-S language is that it uses different
languages for modeling the ontology and for modeling preconditions and
post-conditions. As a result, it is very hard to work with OWL-S service

61



9. EVALUATION OF EXISTING METHODS

Requirement OWL-S WSMO SWSF
1: Process modeling Yes Yes Yes
2: Service Level Agreements No No No
3: Bundling of services Yes No Yes
4: Representation of ontologies Yes Yes Yes

4a: Dealing with heterogenity No Partiala No
5: Discovery of services Partialb Partialc Partiald

5a: Ontological discovery Partial Partial Partial
5b: Transformation based discovery No No Partial

6: Representation of message patterns Partiale Yes Yes
7: Refinement of service parameters No No No

7a: Negotiation of parameters. No No No

aThe WSMO framework acknowledges the problem but does not offer a concrete solution.
bOWL-S does not specify a concrete discovery mechanism, several possible approaches

are mentioned in the literature.
cSeveral approaches are possible, but no commitment to a specific method has been made.
dThe proposed method, rule logic-based discovery, has major drawbacks as discussed in

section 8.4.
eMessage patterns definition is mixed with the bundling specification, limiting flexibility.

Table 9.1: Comparison of approaches for semantic web services.

descriptions and it is unclear how the preconditions and post-conditions
interact with the domain model.

The result of this evaluation is that neither of the methods meet the
requirements for enabling semantic web services. As a result we must
conclude that no method is currently suitable for realizing the service-
oriented architecture vision described in chapter 4. In the next chapter we
summarize the results from this report. Additionally we recommend steps
that can be taken towards realizing semantic service provisioning.

62



10 Conclusions and
Recommendations

In this chapter we recapitulate the findings of this report with regard to
the state of the art in semantics in service-oriented architecture. Addition-
ally we make recommendations for further research. In section 10.1 we
present the results of this research. In section 10.2, we compare the ideal
situation to the current situation. Based on this comparison, we determine
what concrete steps can be taken towards a realizable and desirable result.

10.1 Findings

In this report we have investigated the semantic aspects related to the
service-oriented architecture vision. Our goal was to find out what current
possibilities exist to enable automatic service discovery and delivery. Our
first step was to define the notion of a service. We consider a service to be
made up of two parts: a business part and a technology part. The business
side of the service concept dictates that a service represents an activity
that has a value to the customer. The technological side of the service
concept is concerned with delivering this value in an automated way.

We then treated the service-oriented architecture vision and discussed
its motivation and promises. The main promise of the service-oriented ar-
chitecture is that information system support is separated in components.
These components advertise their services in a centralized directory. When
an application needs a certain service, this service is looked up in the direc-
tory and used automatically. The benefit of organizing IT support in this
way is that it is easy to modify, replace and introduce components without
having to change all applications.

Web service technology is widely regarded as a means to realize service
oriented architectures. We have investigated if web service technology is
usable for this purpose. We found that web service technology only sup-
ported syntactic descriptions and ignored the semantic aspect of service
descriptions. This means that web service technology by itself cannot sup-
port automated discovery or delivery.

This conclusion led us to investigate what aspects play a role in ser-
vice provisioning in service-oriented architectures. We built a conceptual
framework that recognizes the structures and processes that surround ser-
vice provisioning. Several concerns related to service description, commu-
nication and delivery were identified. We further researched and evalu-

63



10. CONCLUSIONS AND RECOMMENDATIONS

ated approaches towards solving the essential problems of ontologies and
discovery of services.

Based on our conceptual framework, we were able to derive require-
ments for methods that strive to enable semantic service provisioning.
Three of such methods are proposed in the literature: OWL-S, WSMO and
SWSF. We evaluated these methods with the aid of our framework and the
requirements.

The conclusion of the evaluation is that the proposed methods do not
meet the requirements. We identified three major problems with the pro-
posed methods. Firstly, discovery of services is not done based on the trans-
formation of the world achieved by the service. Secondly, no plausible
solution for the problem of heterogeneous data representations is given.
Thirdly, no working implementations have been demonstrated.

Consequently, we must conclude that it is not possible to realize the
entire service-oriented architecture vision with the proposed methods for
semantic web services. However, in the next section we introduce a viable
strategy for realizing a useful subset of the service-oriented architecture
vision.

10.2 Recommendations

Knowing that, at this time, it is not possible to describe and build services
in such a way that they can be fully automatically found and used, it be-
comes relevant to investigate what parts of the semantic service-oriented
architecture can be realized in the near future. In this section we inves-
tigate what useful results can be achieved with current technology. After-
ward we look at the steps that can be taken towards realization of the full
service-oriented architecture vision.

Realizable Goals

An important realization is that integrating business processes between
companies requires the integration of data models as well. Processes can
only be integrated if all parties agree about the meanings of the terms
used. A shared data model is therefore a good starting point for a semantic
service-oriented architecture, as it fulfills the role of the ontology in the
framework introduced in chapter 6.

We recommend that companies that want to partake in an industry-
wide semantic service-oriented architecture start with jointly developing
a shared data model of their operating domain. The data model should in-
clude the essential abstractions and the instance data that must be shared.
Sharing a common data-model and its instance data can be realized by
utilizing distributed relational database technology. This technology is at-
tractive because it is mature and well understood.

The shared data model can be built by integrating the different com-
pany specific schemas or by adopting an already existing standardized
model. In the telecom world, the SID data model (see section 7.4) can
be used for this purpose.

64



Recommendations

Components that offer services can be built on top of this shared data
model. Their behavior can be documented using the transaction logic for-
mal notation (transaction logic is discussed in section 7.3) or an easier to
use and more informal language such as UML activity diagrams.

If services are described using this method then their fundamental
characteristics are described. With this information it will be easier for
application developers to determine what a service does. This will make
it easier to make use of a service. As a result, the time required to link
applications and components will be reduced and costs can be saved.

We recommend that IT-dependent industries investigate the possibili-
ties of developing such a distributed data model in which operations can
be offered. Integrating services will still be a manual activity, but since
services can be described in a formal way it will be clear what each service
does, thereby reducing costs.

Future Goals
The most important future goals for semantic service-oriented architec-
tures are those of automated application service discovery and invocation.
We think that the best way to offer this functionality is to describe the
services using transaction logic. Using this language, preconditions and
post-conditions can be modeled and therefore the transformation that the
service achieves in the world is known. Transaction logic can also be used
as a declarative programming language. The most important future goal is
to realize a full implementation of transaction logic on top of a distributed
relational database system. When this implementation exists services can
be discovered based on the transformation they achieve in the world.

Another important remaining task is that of representing, negotiating
and monitoring service level agreements. Initially, the best way to offer
support for service level agreements could very well be to include indus-
try wide standardized service level packages in the data model. Negoti-
ation of service level agreements would then become unnecessary. In the
future, research in multi-agent systems might enable software systems to
autonomously negotiate favorable deals. This kind of research is discussed
in [Wooldridge, 2002, pp. 129–163].

We conclude that although the technology for building semantic service-
oriented architectures has not been fully realized yet, it is possible to make
important steps right now. The first step companies should make is to
prepare for the semantic service-oriented architecture by developing a do-
main model of their industry. This shared model will be a stepping stone
for when all the required technology becomes available.

65





Bibliography

[Baader and Nutt, 2003] Baader, F. and Nutt, W. (2003). Basic description
logics. pages 43–95.

[Baida et al., 2003] Baida, Z., Akkermans, H., and Gordijn, J. (2003).
Serviguration: towards online configurability of real-world services. In
Sadeh, N. M., Dively, M. J., Kauffman, R. J., Labrou, Y., Shehory, O.,
Telang, R., and Cranor, L., editors, ICEC, pages 111–118. ACM.

[Balzer et al., 2004] Balzer, S., Liebig, T., and Wagner, M. (2004). Pitfalls
of OWL-S: a practical semantic web use case. In ICSOC ’04: Proceedings
of the 2nd international conference on Service oriented computing, pages
289–298, New York, NY, USA. ACM Press.

[Batini et al., 1986] Batini, C., Lenzerini, M., and Navathe, S. B. (1986). A
comparative analysis of methodologies for database schema integration.
ACM Comput. Surv., 18(4):323–364.

[Battle et al., 2005] Battle, S., Bernstein, A., Boley, H., Grosof, B.,
Gruninger, M., Hull, R., Kifer, M., Martin, D., Mcilraith, S., Mcguin-
ness, D., Su, J., and Tabet, S. (2005). Semantic web services framework
(SWSF) overview. Technical report.

[Berners-Lee, 2001] Berners-Lee, T. (2001). The semantic web. Scientific
American, 284(5):28.

[Börger and Stärk, 2003] Börger, E. and Stärk, R. (2003). Abstract State
Machines : A Method for High-Level System Design and Analysis.
Springer.

[Brickley and Guha, 2004] Brickley, D. and Guha, R. V. (2004). RDF vo-
cabulary description language 1.0: RDF-Schema. W3c recommendation,
World Wide Web Consortium.

[Congram and Epelman, 1995] Congram, C. and Epelman, M. (1995).
How to describe your service: An invitation to the structured analysis
and design technique. International Journal of Service Industry Man-
agement, 6(2):6–23.

[de Bruijn et al., 2005] de Bruijn, J., Lausen, H., Krummenacher, R.,
Polleres, A., Predoiu, L., Kifer, M., and Fensel, D. (2005). The web ser-
vice modeling language WSML. WSML final draft, Digital Enterprise
Research Institute. http://www.wsmo.org/TR/d16/d16.1/v0.2/.

67



BIBLIOGRAPHY

[Duke et al., 2005] Duke, A., Davies, J., and Richardson, M. (2005). En-
abling a scalable service-oriented architecture with semantic web ser-
vices. BT Technology Journal, 23(3):191–201.

[Elenius et al., 2005] Elenius, D., Denker, G., Martin, D., Gilham, F.,
Khouri, J., Sadaati, S., and Senanayake, R. (2005). The OWL-S edi-
tor – a development tool for semantic web services. Lecture Notes in
Computer Science, 3532:78–92.

[Fallside, 2001] Fallside, D. C. (2001). XML-Schema part 0: Primer. Tech-
nical report.

[Fensel and Bussler, 2002] Fensel, D. and Bussler, C. (2002). The web ser-
vice modeling framework WSMF. Electronic Commerce Research and
Applications, 1(2):113–137.

[Gennari et al., 2003] Gennari, J. H., Musen, M. A., Fergerson, R. W.,
Grosso, W. E., Crubzy, M., Eriksson, H., Noy, N. F., and Tu, S. W. (2003).
The evolution of protégé: An environment for knowledge-based systems
development.

[Gozdecki et al., 2003] Gozdecki, J., Jajszczyk, A., and Stankiewicz, R.
(2003). Quality of service terminology in IP networks. Communications
Magazine, IEEE, 41(3):153–159.

[Grimm et al., 2004] Grimm, S., Motik, B., and Preist, C. (2004). Variance
in e-business service discovery. In Semantic Web Services: Preparing to
Meet the World of Business Applications.

[Guarino and Giaretta, 1995] Guarino, N. and Giaretta, P. (1995). Ontolo-
gies and knowledge bases: Towards a terminological clarification. In
Mars, N. J. I., editor, Towards Very Large Knowledge Bases, pages 25–
32. IOS Press, Amsterdam.

[Guizzardi, 2005] Guizzardi, G. (2005). Ontological Foundations for Struc-
tural Conceptual Models. PhD thesis, University of Twente.

[Hepp, 2006] Hepp, M. (2006). The true complexity of product representa-
tion in the semantic web. In Proceedings of the 14th European Confer-
ence on Information Systems.

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P., Boley, H., Tabet,
S., Grosof, B., and Dean, M. (2004). SWRL: A semantic web rule lan-
guage combining OWL and RuleML. W3c member submission, World
Wide Web Consortium.

[Keller and Ludwig, 2003] Keller, A. and Ludwig, H. (2003). The WSLA
framework: Specifying and monitoring service level agreements for web
services. Journal of Network and Systems Management, 11(1):57–81.

[Keller et al., 2004] Keller, U., Lara, R., Polleres, A., Toma, I., Kifer, M.,
and Fensel, D. (2004). WSMO web service discovery. WSMO Working
Draft.

68



[Kifer, 2005] Kifer, M. (2005). Requirements for an expressive rule lan-
guage on the semantic web. In Rule Languages for Interoperability.
W3C.

[Kifer et al., 2004] Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U.,
Lausen, H., and Fensel, D. (2004). A logical framework for web service
discovery. In ISWC 2004 Workshop on Semantic Web Services: Prepar-
ing to Meet the World of Business Applications, volume 119, Hiroshima,
Japan. CEUR Workshop Proceedings.

[Kifer and Lausen, 1989] Kifer, M. and Lausen, G. (1989). F-Logic: A
higher-order language for reasoning about objects, inheritance, and
scheme. In SIGMOD Conference, pages 134–146.

[Kotler and Armstrong, 2005] Kotler, P. and Armstrong, G. (2005). Princi-
ples of Marketing. Prentice Hall, 11th edition edition.

[Lovelock, 1992] Lovelock, C. H. (1992). Managing Services: Marketing,
Operations, and Human Resources. Prentice Hall College Div.

[Manola and Miller, 2004] Manola, F. and Miller, E. (2004). RDF Primer,
W3C Recommendation. Technical report.

[Martin, 2004] Martin, D. (2004). OWL-S: Semantic Markup for Web Ser-
vices. Technical report. http://www.daml.org/services/owl-s/
1.0/owl-s.html.

[Martin et al., 2004] Martin, D. L., Paolucci, M., McIlraith, S. A.,
Burstein, M. H., McDermott, D. V., McGuinness, D. L., Parsia, B., Payne,
T. R., Sabou, M., Solanki, M., Srinivasan, N., and Sycara, K. P. (2004).
Bringing semantics to web services: The OWL-S approach. In Cardoso,
J. and Sheth, A. P., editors, SWSWPC, volume 3387 of Lecture Notes in
Computer Science, pages 26–42. Springer.

[McGuinness and van Harmelen, 2004] McGuinness, D. L. and van
Harmelen, F. (2004). OWL web ontology language overview. W3c rec-
ommendation, World Wide Web Consortium.

[McIlraith and Son, 2002] McIlraith, S. and Son, T. (2002). Adapting golog
for composition of semantic web services. In Proceedings of the Eighth
International Conference on Knowledge Representation and Reasoning,
pages 482–496.

[Microsoft Corporation, 2006] Microsoft Corporation (2006). What is
.NET?

[Milham, 2004] Milham, D. (2004). etom – public B2B business opera-
tions map (bom) application note c: An initial proposal for the scope and
structure of ict business transaction.

[Oren et al., 2004a] Oren, E., Wahler, A., Schreder, B., Balaban, A., and
Zaremba, M. (2004a). Demonstrating WSMX - least cost supply man-
agement. In Proceedings of the Workshop on WSMO Implementations.

69



BIBLIOGRAPHY

[Oren et al., 2004b] Oren, E., Zaremba, M., and Moran, M. (2004b).
Overview and Scope of WSMX. WSMO Working Draft v01.

[Orlowska et al., 2003] Orlowska, M. E., Weerawarana, S., Papazoglou,
M. P., and Yang, J., editors (2003). Service-Oriented Computing - IC-
SOC 2003, First International Conference, Trento, Italy, December 15-18,
2003, Proceedings, volume 2910 of Lecture Notes in Computer Science.
Springer.

[Parasuraman et al., 1984] Parasuraman, A., Zeithaml, V. A., and Berry,
L. L. (1984). A Conceptual Model of Service Quality and Its Implications
for Future Research (Report No 84-106). Marketing Science Inst.

[Preist, 2004] Preist, C. (2004). A conceptual architecture for semantic
web services. In International Semantic Web Conference, pages 395–
409.

[Preist et al., 2005] Preist, C., Cuadrado, J. E., Battle, S., Grimm, S., and
Williams, S. K. (2005). Automated business-to-business integration of
a logistics supply chain using semantic web services technology. In Gil,
Y., Motta, E., Benjamins, V. R., and Musen, M. A., editors, International
Semantic Web Conference, volume 3729 of Lecture Notes in Computer
Science, pages 987–1001. Springer.

[Reichgelt, 1991] Reichgelt, H. (1991). Knowledge Representation: An Ai
Perspective (Tutorial Monographs in Cognitive Science). Ablex Pub.

[Roman and Scicluna, 2006] Roman, D. and Scicluna, J. (2006). Ontology-
based choreography of WSMO services. WSMO Working Draft.

[Singh and Huhns, 2005] Singh, M. P. and Huhns, M. N. (2005). Service-
Oriented Computing : Semantics, Processes, Agents. John Wiley & Sons.

[Sowa, 1983] Sowa, J. F. (1983). Conceptual Structures: Information Pro-
cessing in Mind and Machine (Systems Programming Series). Addison-
Wesley.

[Stojanovic and Dahanayake, 2005] Stojanovic, Z. and Dahanayake, A.
(2005). Service-Oriented Software System Engineering Challenges and
Practices. Idea Group Publishing.

[Strassner et al., 2003] Strassner, J., Fleck, J., Huang, J., Faurer, C., and
Richardson, T. (2003). TMF white paper on NGOSS and MDA.

[Sun Microsystems, 1999] Sun Microsystems (1999). Simplified guide to
the java 2 platform, enterprise edition.

[Thiadens, 2005] Thiadens, T. (2005). Manage IT! : Organizing IT De-
mand and IT Supply. Springer.

[Trienekens et al., 2004] Trienekens, J. J. M., Bouman, J. J., and Zwan,
M. V. D. (2004). Specification of service level agreements: Problems,
principles and practices. Software Quality Control, 12(1):43–57.

70



[Uschold and Grüninger, 1996] Uschold, M. and Grüninger, M. (1996).
Ontologies: principles, methods, and applications. Knowledge Engineer-
ing Review, 11(2):93–155.

[van der Aalst, 2002] van der Aalst, W. M. P. (2002). Making work flow:
On the application of petri nets to business process management. In
Esparza, J. and Lakos, C., editors, ICATPN, volume 2360 of Lecture
Notes in Computer Science, pages 1–22. Springer.

[Voss et al., 1985] Voss, C., Armistead, C., Johnston, B., and Morris, B.
(1985). Operations Management in Service Industries and the Public
Sector: Text and Cases. John Wiley & Sons.

[Weerawarana et al., 2005] Weerawarana, S., Curbera, F., Leymann, F.,
Storey, T., and Ferguson, D. F. (2005). Web Services Platform Architec-
ture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR.

[Wooldridge, 2002] Wooldridge, M. (2002). Introduction to MultiAgent Sys-
tems. John Wiley & Sons.

[Yang et al., 2003] Yang, G., Kifer, M., and Zhao, C. (2003). Flora-2: A
rule-based knowledge representation and inference infrastructure for
the semantic web. In Meersman, R., Tari, Z., and Schmidt, D. C., ed-
itors, CoopIS/DOA/ODBASE, volume 2888 of Lecture Notes in Com-
puter Science, pages 671–688. Springer.

71





List of Abbreviations

API: Application Programming Interface

B2B: Business to Business

CBD: Component Based Development

COM: Component Object Model

CORBA: Common Object Request Broker Architecture

DSL: Digital Subscriber Line

EJB: Enterprise Java Beans

epBOM: eTOM public B2B Business Operations Map

eTOM: Enhanced Telecom Operations Map

HTTP: Hyper Text Transfer Protocol

IETF: Internet Engineering Task Force

ISP: Internet Service Provider

IT: Information Technology

ITU/ETSI: International Telecommunication Union / European Telecom-
munications Standard Institute

MDA: Model driven architecture

MOF: Meta Object Facility

OO: Object Oriented

OWL: Web Ontology Language

OWL-S: Web Ontology Language for Services

RDF: Resource Description Framework

RSA: Cryptographic algorithm named after its inventors: Rivest, Shamir,
Adleman.

SADT: Structured Analysis and Design Technique

SID: Shared Information/Data Model

73



LIST OF ABBREVIATIONS

SLA: Service Level Agreement

SoA: Service-oriented Architecture

SOAP: Previously: Simple Object Access Protocol. This acronym was
deemed misleading and therefore currently SOAP doesn’t have an
acronym expansion anymore.

SWRL: Semantic Web Rule Language

SWSF: Semantic Web Service Framework

SWSL: Semantic Web Service Language

SWSO: Semantic Web Service Ontology

UDDI: Universal Description, Discovery and Integration

URI: Uniform Resource Identifier

UML: Unified Modeling Language

WS-BPEL: Business Process Execution Language for Web Services

WSDL: Web Service Description Language

WSLA: Web Service Level Agreement

WSMF: Web Service Modeling Framework

WSMO: Web Service Modeling Ontology

WSML: Web Service Modeling Language

WSMX: Web Service Modeling Execution Environment

XML: Extensible Markup Language

XML-Schema: Meta-modeling language to define a concrete XML based
language

74



OWL Description Logic
Discovery

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns="http://www.owl-ontologies.com/telecom.owl#"
xml:base="http://www.owl-ontologies.com/telecom.owl">
<owl:Ontology rdf :about="" / >
<owl:Class rdf :ID="connectivity_offer">

<owl:equivalentClass>
<owl:Class>

<owl : intersect ionOf rdf:parseType="Collection">
<owl :Restr i c t ion>

<owl:hasValue
rdf :datatype="http://www.w3.org/2001/XMLSchema#int">
1000

< / owl:hasValue>
<owl:onProperty>

<owl:FunctionalProperty rdf :ID="speed" / >
< / owl:onProperty>

< / owl :Restr i c t ion>
<owl :Restr i c t ion>

<owl:someValuesFrom>
<owl:Class rdf :ID="DSL" / >

< / owl:someValuesFrom>
<owl:onProperty>

<owl:ObjectProperty rdf :ID="technology" / >
< / owl:onProperty>

< / owl :Restr i c t ion>
<owl :Restr i c t ion>

<owl:onProperty>
<owl:DatatypeProperty rdf :ID="delay" / >

< / owl:onProperty>
<owl:hasValue

rdf :datatype="http://www.w3.org/2001/XMLSchema#int">
20

< / owl:hasValue>
< / owl :Restr i c t ion>

75



OWL DESCRIPTION LOGIC DISCOVERY

< / owl : intersect ionOf>
< / owl:Class>

< / owl:equivalentClass>
< / owl:Class>
<owl:Class rdf :ID="match_cr_dsl_co">

<owl:equivalentClass>
<owl:Class>

<owl : intersect ionOf rdf:parseType="Collection">
<owl:Class rdf :about="#connectivity_offer" / >
<owl:Class>

<owl:complementOf>
<owl:Class rdf :ID="connectivity_request" / >

< / owl:complementOf>
< / owl:Class>

< / owl : intersect ionOf>
< / owl:Class>

< / owl:equivalentClass>
<rdfs:subClassOf

rd f : resource="http://www.w3.org/2002/07/owl#Thing" / >
< / owl:Class>
<owl:Class rdf :ID="WiMax" / >
<owl:Class rdf :ID="connectivity_request_dsl">

<rdfs:subClassOf>
<owl :Restr i c t ion>

<owl:someValuesFrom rdf : resource="#DSL" / >
<owl:onProperty>

<owl:ObjectProperty rdf :about="#technology" / >
< / owl:onProperty>

< / owl :Restr i c t ion>
< / rdfs:subClassOf>
<rdfs:subClassOf

rd f : resource="http://www.w3.org/2002/07/owl#Thing" / >
< / owl:Class>
<owl:Class rdf :about="#connectivity_request">

<owl:equivalentClass>
<owl :Restr i c t ion>

<owl:hasValue
rdf :datatype="http://www.w3.org/2001/XMLSchema#int">
1000

< / owl:hasValue>
<owl:onProperty>

<owl:FunctionalProperty rdf :about="#speed" / >
< / owl:onProperty>

< / owl :Restr i c t ion>
< / owl:equivalentClass>

< / owl:Class>
<owl:Class rdf :ID="match_cr_co">

<owl:equivalentClass>
<owl:Class>

<owl : intersect ionOf rdf:parseType="Collection">
<owl:Class rdf :about="#connectivity_offer" / >
<owl:Class>

<owl:complementOf rd f : resource="#connectivity_request" / >
< / owl:Class>

76



< / owl : intersect ionOf>
< / owl:Class>

< / owl:equivalentClass>
< / owl:Class>
<owl:ObjectProperty rdf :about="#technology">

<rdfs:domain>
<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf :about="#connectivity_request_dsl" / >
<owl:Class rdf :about="#connectivity_offer" / >

< / owl:unionOf>
< / owl:Class>

< / rdfs:domain>
<rdf : type

rdf : resource="http://www.w3.org/2002/07/owl#FunctionalProperty"
/ >
<rdfs:comment

rdf :datatype="http://www.w3.org/2001/XMLSchema#string">
This property points at a concrete technology that i s
used for rea l i z ing the connection .

< / rdfs:comment>
< / owl:ObjectProperty>
<owl:DatatypeProperty rdf :about="#delay">
<rdf : type

rdf : resource="http://www.w3.org/2002/07/owl#FunctionalProperty" / >
<rdfs:comment

rdf :datatype="http://www.w3.org/2001/XMLSchema#string">
Average packet delay in miliseconds between the customer
and the ISP network .

< / rdfs:comment>
<rdfs :range

rdf : resource="http://www.w3.org/2001/XMLSchema#integer" / >
< / owl:DatatypeProperty>
<owl:FunctionalProperty rdf :about="#speed">
<rdfs :range

rdf : resource="http://www.w3.org/2001/XMLSchema#integer" / >
<rdfs:comment

rdf :datatype="http://www.w3.org/2001/XMLSchema#string">
The throughput of the connection in k i l o b i t s per second
( kbps ) .

< / rdfs:comment>
<rdf : type

rdf : resource="http://www.w3.org/2002/07/owl#DatatypeProperty" / >
<rdfs:domain>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf :about="#connectivity_offer" / >
<owl:Class rdf :about="#connectivity_request" / >

< / owl:unionOf>
< / owl:Class>

< / rdfs:domain>
< / owl:FunctionalProperty>

< / rdf:RDF>< !−− Created with Protege ( with OWL Plugin 2.1 , Build 284)
h t tp ://protege . stanford . edu −−>

77



List of Figures

2.1 Current situation in the telecom world. . . . . . . . . . . . . . . 7
2.2 Future situation in the telecom world. . . . . . . . . . . . . . . . 9

3.1 The service level lemniscate. . . . . . . . . . . . . . . . . . . . . . 12

4.1 The service-oriented architecture pyramid. . . . . . . . . . . . . 18

6.1 The structure viewpoint. . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 The process viewpoint. . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1 Terms surrounding knowledge representation. . . . . . . . . . . 39

List of Tables

6.1 Requirements traceability matrix . . . . . . . . . . . . . . . . . . 37

7.1 Assessment of knowledge representation techniques. . . . . . . 46

9.1 Comparison of approaches for semantic web services. . . . . . . 62

78



 


