

A stable matching based adaptive subcarrier
assignment method for multimodal fibre

access networks

Master’s thesis

Author:

Bart Sikkes

Supervising committee:

Prof.ir. A.C. van Bochove
Dr.ir. S.M. Heemstra de Groot
R.O. Taniman M.Sc.

Design and analysis of communication systems
Faculty of electrical engineering, mathematics and computer science
University of Twente
Augustus 1, 2006

Abstract

We live in a time when the internet becomes more and more present in our lives and
other services start using the same infrastructure. This causes an ever increasing need for
bandwidth, both in core networks and access networks. When focussing on the latter we
see a shift from using copper to using glass. These networks bring new challenges to
overcome. For example the subcarrier assignment problem when using the higher order
lobes of a multimodal fibre.

Developing an adaptive subcarrier assignment method to work in such a network is the
goal of this master assignment. To do this, first similar problems and algorithms are
explored. During that exploration we came across the stable matching algorithm. To
determine how well this algorithm works we need to test it. But as the real system isn’t
available yet, a simulation has to be used.

Once the simulation is implemented the functionality of the algorithm will be tested and
we will determine how well it performs compared to other subcarrier assignment
methods. For this three other methods are introduced: contiguous, interleaved and
Hungarian algorithm based.

The four methods are then compared on two things: on the amount of bits the ONUs are
able to load per symbol and on the mean sojourn times the ONUs experience. Several
cases of simulation inputs are defined to explore the different aspects of the stable
matching method.

These simulations show that indeed a working adaptive subcarrier assignment method
based on the stable matching algorithm has been developed. This resulting method has
some useful properties which are discussed in this thesis.

 ii

Preface

This thesis is the result of my master’s assignment done at the Design and Analysis of
Communication Systems (DACS) chair at the University of Twente. Most of the work
was performed at the DACS laboratory.

I’d like to thank my supervisors R.O. Taniman M.Sc., Prof.ir. A.C. van Bochove and
Dr.ir. S.M. Heemstra de Groot. Their support and guidance throughout this master’s
assignment has helped a lot.

Finally I’d like to thank my fellow students at DACS, flatmates, friends and family for
their support and accepting the occasional verbal explosion.

 iii

Table of contents

Abstract ... ii
Preface.. iii
Table of contents.. iv
1 Introduction... 1

1.1 Motivation... 1
1.2 Problem definition .. 1
1.3 Research goal .. 2
1.4 Approach... 2
1.5 Arrangement of the next chapters ... 3

2 Related systems and technologies... 4
2.1 FTTH... 4
2.2 PON... 4
2.3 The fibre.. 5
2.4 Communication in a PON... 5

3 The subcarrier assignment problem.. 7
3.1 Subcarrier assignment method.. 7

3.1.1 Single ONU... 7
3.1.2 Multiple ONUs.. 8

3.2 The methods.. 9
3.2.1 Heuristic approach .. 9
3.2.2 Water filling .. 9
3.2.3 Multiuser water filling .. 10
3.2.4 Linear programming approach.. 10

3.2.4.1 Applying to subcarrier assignment ... 11
3.2.5 Stable matching... 12

4 The used algorithms.. 13
4.1 Stable matching... 13

4.1.1 Introduction to stable matching .. 13
4.1.2 Basic stable matching algorithm... 14
4.1.3 Extensions to the stable matching algorithm 16

4.1.3.1 Unequal set sizes... 16
4.1.3.2 Hospital/Resident.. 16
4.1.3.3 Freeing entities.. 17
4.1.3.4 Virtual entities... 18

4.1.4 Complexity of the stable matching algorithms 19
4.1.4.1 Stable marriage ... 19
4.1.4.2 Hospital/Resident.. 19
4.1.4.3 Freeing entities.. 19
4.1.4.4 Virtual entities... 19

4.1.5 Using the stable matching algorithm .. 19
4.2 Hungarian algorithm ... 20

4.2.1 An assignment problem .. 21
4.2.2 The Hungarian algorithm.. 21

 iv

4.2.3 Maximization .. 22
4.2.4 Using the Hungarian algorithm... 23

5 Simulation description .. 24
5.1 Simulation development ... 24

5.1.1 The system model ... 24
5.1.1.1 Theoretical model ... 25

5.1.1.1.1 Timing... 26
5.1.1.1.2 Link quality... 26
5.1.1.1.3 Queue .. 28

5.1.1.2 Model implementation .. 28
5.1.1.2.1 Timing... 28
5.1.1.2.2 Link quality... 28
5.1.1.2.3 Queue .. 29

5.1.2 Assignment methods... 30
5.1.2.1 Theoretical .. 30

5.1.2.1.1 An assignment... 30
5.1.2.1.2 Stable matching (virtual users) ... 30
5.1.2.1.3 Contiguous .. 31
5.1.2.1.4 Interleaved... 31
5.1.2.1.5 Hungarian.. 31

5.1.2.2 Implementation ... 31
5.1.2.2.1 An assignment... 32
5.1.2.2.2 Subcarrier assignment method.. 32
5.1.2.2.3 Stable matching (virtual users) ... 33
5.1.2.2.4 Contiguous .. 34
5.1.2.2.5 Interleaved... 34
5.1.2.2.6 Hungarian.. 34

5.1.3 Bit loading... 35
5.1.3.1 Theoretical .. 35
5.1.3.2 Implementation ... 36

5.1.3.2.1 Uplink / Downlink .. 37
5.1.3.2.2 The transforming code .. 37

5.2 Simulation input.. 38
5.2.1 Input data .. 38

5.2.1.1 Distances, seeds, responses... 38
5.2.1.2 Traffic ... 38

5.2.2 Settings.. 38
5.2.3 Cases ... 40

5.3 Simulation outputs .. 41
5.3.1 Variables for debugging.. 42
5.3.2 Assigned subcarriers ... 42
5.3.3 Loaded bits per symbol... 42
5.3.4 Delays ... 43
5.3.5 Statistical analysis... 43

5.3.5.1 Initial transient removal .. 43
5.3.5.2 Independent samples... 44

 v

5.4 Simulation results.. 44
5.4.1 Loaded bits per symbol... 44

5.4.1.1 Average loaded bits per symbol.. 44
5.4.1.1.1 Case 1.. 45
5.4.1.1.2 Case 2.. 47
5.4.1.1.3 Case 3 / Case 4.. 49

5.4.1.2 Statistics .. 50
5.4.1.2.1 Confidence intervals ... 51

5.4.1.3 Elasticity of stable matching... 51
5.4.1.4 Equalization effect .. 55

5.4.2 Sojourn times .. 58
5.4.2.1 Mean sojourn times... 58

5.4.2.1.1 Case 1.. 58
5.4.2.1.2 Case 2.. 60
5.4.2.1.3 Case 3 / case 4... 62

6 Conclusion and future work.. 66
6.1 Discussion of the results ... 66
6.2 Future work... 67

References... 68
Appendix A OPNET.. 70

1 Introduction... 70
2 Modeling in OPNET... 70
3 Simulating in OPNET... 71
4 Modeling the system under study in OPNET ... 72

Appendix B The complete results ... 76
1 Loaded bits per symbol... 76
2 Mean sojourn times... 79

 vi

1 Introduction

1.1 Motivation

Because of continuing growth of interest in services like internet, digital television and
triple play there is a constant need for more bandwidth. While technologies like ADSL
2+ and VDSL try to squeeze the maximum amount of bits from a copper wire, fibre is the
most likely way to reach real high bandwidths. Currently most parts of the access
networks are already using fibre, but the so called “first mile” (previously known as “last
mile”) is often still copper. This is slowly changing and therefore more research is being
done in the area of fibre in the first mile.

Recent research (see for example [RaWh99] and [KoBo03]) has proven that not only the
baseband of the multi-mode fibre can be used for data transmission, but also the higher
order lobes of the spectrum. The problem with using this part of the fibre spectrum is that
it is expected to be time-variant and user specific. The part of the spectrum containing
these higher order lobes is divided in a number of smaller sections containing modulated
subcarriers. To be able to effectively use this part of the spectrum a so-called adaptive
subcarrier assignment method based on channel quality is needed.

Such a method will assign available subcarriers to users based on the quality of a
subcarrier for a user. Next to that it would be nice if the algorithm takes the traffic
characteristics of the users into account while running. And when the channel quality or
traffic characteristics change, the method should adapt to these changes and reassign
subcarriers if required. The development and simulation of such a method is what is
described in this thesis.

This master assignment is part of a larger project from the IOP GenCom program called
Full-service Access Network using Multimode Fibre [IOP-GenCom]. On the project the
DACS group at University of Twente cooperates with the ECO group at the University of
Eindhoven. The goal of the project is to define, design and implement a multimode fibre
access network for FTTH.

1.2 Problem definition

The design, simulation and analysis of an adaptive subcarrier assignment method is what
this assignment is about. To keep the assignment manageable some limitations have been
introduced.

The subcarriers are assigned to users based on the quality of a subcarrier for a user and
the traffic characteristics for that user. At first it was envisioned that research would be
started in the area of channel quality via Signal to Noise Ratio (SNR) estimation. After

 1

some initial research this appeared to be out of scope for the assignment. It is now
assumed that full channel information is known at the central office and at the users.

As mentioned, this assignment is a subpart of the project in which the full service access
network is designed and implemented. Currently that project is in its definition and early
design stage, so a complete system isn’t available yet. To evaluate expected results, a
simulator will be used. In this simulation the behaviour of a fibre will be modeled to be
used as the input for the model.

1.3 Research goal

Based on the above problem definition we define the following main goal of the
assignment: develop and simulate an adaptive subcarrier assignment method to be used in
a full service access network using multimode fibre.

To reach this goal several subgoals have been determined:

- Research the current subcarrier assignment methods in similar systems.
 - Define subcarrier assignment method.
 - Implement subcarrier assignment method in a simulation.
 - Evaluate subcarrier assignment method.

1.4 Approach

The assignment is roughly executed as follows.

Research
The research starts with some initial papers and information received from my
supervisors. Both the content and references from the papers contain information to work
with. Next to that, different internet search engines have been used to gather information:
specialistic search engines like Springer online [Springer] and general ones like Google
[Google]. The first subgoal is to find general information on subcarrier assignment. After
that, the next subgoal is to create an overview of the currently used subcarrier assignment
algorithms and what techniques are used.

Defining
Here the subcarrier assignment method will be defined by first determining which
technique is most suitable and then actually designing the method.

Implementing
Once the method has been defined it will have to be implemented in a simulation so it
can be executed and then evaluated.

 2

Evaluating
When the method has been implemented it has to be evaluated to determine if it works
like designed and to determine how well it function compared to other methods.

1.5 Arrangement of the next chapters

In chapter 2 the full-service access network in which the subcarrier assignment algorithm
will be used is described. The technologies used in the network and their effect on this
assignment are also discussed.

Chapter 3 gives the basic principles of subcarrier assignment. Further different types of
subcarrier assignment methods are described. Following in chapter 4, the algorithms used
in the chosen subcarrier assignment methods, stable matching and the Hungarian
algorithm, are described.

In chapter 5 the implementation of the simulation and assignment methods is presented
and the inputs and outputs from the simulations are described. Also the results which
have been obtained by executing the simulator are given and discussed.

In the final chapter 6 the conclusion is presented and possible future work is discussed.

 3

2 Related systems and technologies

As mentioned in the introduction this master assignment is a sub goal of a larger project
that has as goal to create a fibre-to-the-home (FTTH) access network based on
multimodal fibre. In this chapter we will discuss some of the technologies and systems
used in that project to place this master assignment in its proper context.

2.1 FTTH

Fibre-to-the-home is the term for optical networks used in the so called “first mile”. That
is the area between neighbourhood access points and the actual homes of the customers.
Usually fibre is already used up to this first mile, and from there copper is used. As
systems like ADSL appear to be unable to achieve the really high bandwidth that is
expected to be required in the future, FTTH is gaining popularity.

Two approaches are used on deciding what type of components to use in the network;
active and passive. In the case of active there will be electronic equipment installed in the
neighbourhood that does switching and routing. With the passive variant, which is
commonly called PON, this is not the case. Because this passive approach is used in the
larger project it will be discussed more in depth now.

2.2 PON

PON stands for passive optical network. As the name says all components in the optical
distribution network are passive. This in opposite to active components. It means that the
components don’t require any power and don’t process the information on the network.
The main advantage of such a network is that the components are simpler and are
expected to last longer than
active components; which
means less servicing and
repairing. Another advantage is
that the network can just be put
in the ground without needing
external power.

OLT

ONU
0

ONU
1

ONU
n

coupler

A PON, from which an
example can be seen in Figure
2.2, consists of a central
controlling component at the
Central Office (CO) called
Optical Line Terminator
(OLT), this is the start point of Figure 2.1: A PON with n ONUs
the PON. From this OLT there

 4

will be fibre to all the end nodes of the PON called Optical Network Units (ONU),
are also called Optical Network Terminals (ONT). To have the same signal received by
all ONUs a coupler or splitter will be used between the initial signal from the OLT and
all the ONUs.

these

2.3 The fibre

The type of fibre being used in the PON will be a so called multimode fibre. This is a
type op fibre with a large core diameter then the more often used single mode fibre.
Because of this larger core diameter it is possible to have more modes propagating
through it, therefore the name multimode fibre. This larger core has certain advantages,
the main one being that multimode fibres are easier to handle. The main problem is that
their bandwidth * fibre length ratio is less then with single mode fibre.

Research has been done to see if there are any ways to overcome this problem. One of the
things that was discovered is that a higher frequency area of the fibre spectrum appears to
be useable for transmitting signals. In the larger project it will be attempted to make use
these higher order lobes to make multimode fibres a viable transmission medium for the
access network. Unfortunately these higher order lobes have a problem also. The power
spectrum is time variant and different for each user of the system. Therefore a subcarrier
assignment algorithm has to be created that takes into account these issues, and that is
what this thesis is about.

2.4 Communication in a PON

There are two directions in which traffic can flow in a PON: the downstream direction, in
which the traffic goes from the OLT to the ONUs and the upstream direction, in which
the traffic goes from the ONUs to the OLT.

The handling of downstream traffic is usually rather simple to implement. When looking
at the most common scheme used in PONs, single channel with TDMA (Time Division
Multiple Access), in the downlink direction the data for all ONUs is send from the OLT
towards the ONUs. Then at the passive splitter the data is “replicated” and send to all the
ONUs. At the ONU the data meant for that ONU is accepted and the rest is discarded.

In such a PON in the upstream direction things become more complicated. There has to
be some scheme to prevent collisions when the data from the different ONUs arrive at the
OLT receiver at the same time. For this, a time-division multiplexing approach with
synchronized timeslots can be used. Access to the uplink channel is then divided in
timeslots. Every ONU has it own timeslot in which it can send data and it doesn’t send
during the timeslots of the other ONUs.

As mentioned before in the system that will be considered in this thesis, subcarrier
multiplexing is used. In the downstream direction this means that each ONU will only

 5

accept the data from the set of subcarriers it is assigned. For the handling of upstream
traffic it is extra useful, because a non overlapping subset of subcarriers is used by just
one ONU in a time epoch thus preventing the necessity of time division-multiplexing..

As transmissions between the OLT and ONUs should be in both directions (duplex), a
certain scheme must be used for that purpose. This is done by separating the traffic in the
upstream and downstream direction in some way. One possibility is by using separate
fibres for the upstream and downstream traffic. Another option is using different
wavelengths for upstream and downstream traffic. In the system considered in this thesis,
we assume some duplexing scheme is in place without specifying how that is done
exactly. A relevant reference can be given for this matter which is [TaBo05].

 6

3 The subcarrier assignment problem

In this chapter we will present the subcarrier assignment problem. And discuss solutions
that have been developed for it.

In a subcarrier multiplexing scheme, especially the multicarrier variant one, there is a
number of subcarriers available and a number of ONUs that want to use those subcarrier
to transmit data. To make this possible the subcarriers will have to be assigned to the
ONUs for a certain amount of time. That amount of time is called the time epoch, it can
vary from a large number of short time periods in a quickly changing environment or one
long time period. Theoretically these assignments are possible in every combination
between ONUs and subcarriers. In practice it will depend on which subcarrier is best
suited for an ONU, or which set of subcarriers is best suited for an ONU.

During subcarrier assignment the subcarriers are assigned to achieve some goal. Common
goals are: maximize the overall throughput or minimize the overall power consumption.
This can be combined with per ONU requirements, for example every ONU has at least a
certain minimum throughput available.

In wireless systems it is usually attempted to minimize the power, in the system under
study here it is attempted to maximize the throughput. So we attempt to assign a number
of subcarriers to a number of ONUs within a certain total power limit, to prevent
clipping, trying to maximize the total throughput while trying to stay below a certain
BER.

Next to subcarrier the term subchannel is used in the chapter. A subchannel is a further
undefined entity to transport information in an environment with multiple channels. One
way to do that is with subcarriers.

3.1 Subcarrier assignment method

Initially we will look at one ONU and several available subcarriers, later on we will
discuss the effect of multiple ONUs.

3.1.1 Single ONU

A subcarrier assignment method calculates an optimal subcarrier assignment based on
certain inputs and the goals it is designed to achieve. The inputs can for example be the
subchannel characteristics and the traffic characteristics. The first describes the quality of
the subchannel, e.g. in form of the subchannel normalized SNR and the second describes
the how much data an ONU wants to send (expressed in its queue size). The output is of
course the subcarrier assignment.

 7

Once the subcarrier assignment is done another step has to be taken before data can
actually be transmitted. For each subcarrier it has to be determined how many bits are
available per symbol, this is called the bit loading. During bit loading the amount of bits
per modulation symbol is determined based on, for example, channel conditions (the
normalized SNR), available power and required BER. Before bit loading can be
performed a subcarrier assignment should be available.

3.1.2 Multiple ONUs

With a single ONU and several subcarriers to choose from, the subcarrier assignment
isn’t that hard to get. The subcarrier assignment method picks the best subcarriers while
satisfying its constraint and is done. When multiple ONUs are considered things become
more complicated. Now when one subcarrier is assigned to a certain ONU it can’t be
assigned anymore to one of the other ONUs. A simple approach would be for the
subcarrier assignment method to determine for every subcarrier what the best ONU is and
make those assignments. But this could cause an assignment where some ONUs don’t get
any subcarriers.

This isn’t a problem when the system doesn’t care that some of its ONUs might never be
able to send any data. But it is reasonable to assume that in every system with a
subcarrier assignment method one wants to make sure every ONU can send data. So a
method will always have to make sure every ONU gets some of the available subcarriers
and is able to load some bits on those.

Making sure every ONU gets some throughput is still relatively easy. Things become
more complicated when it is attempted to achieve, for example, a maximum overall
throughput. Now it isn’t possible anymore to just assign a certain subcarrier to a certain
ONU without looking at the other ONUs, as that might cause a non optimal assignment.

The most straight forward way to deal with this is to generate every possible assignment
and then check which assignment offers the best overall throughput. The problem with
that is that it will take many calculations to determine all possible assignment. Moreover,
the algorithm doesn’t just have to combine all subcarriers with all ONUs, but also do the
bit loading. Next to that it might be required to do the calculation again if the related
circumstances change, for example, the subchannel quality, causing even more work. So
in general this calculation takes too much time, generally with exponential complexity,
and another solution must be found.

As achieving a maximum (per ONU or just overall) is something that would be very
useful there have been many attempts to find a way to do it. As these attempts are closely
related to a certain general approach of subcarrier assignment they will be discussed in
the next section about different approaches to subcarrier assignment.

 8

3.2 The methods

How the subcarrier assignment method will achieve its goals depends on the type of
method. In this section some approaches to subcarrier assignment methods will be
discussed.

3.2.1 Heuristic approach

In a heuristic approach, it’s common to make use of known optimal algorithms for
similar types of problems. These can then be combined and often small additions /
modifications are made to create a new approach. An example of its use is when one
divides a problem into parts and then uses a known optimal algorithm on one or more of
those parts.

One possibility is to use recent ideas from the research on multiuser orthogonal
frequency-division multiplexing (OFDM), also known as orthogonal frequency division
multiple access (OFDMA). OFDM is a modulation system in which the whole frequency
band is divided into subchannels that are orthogonal to each other and different
modulation level (of QAM) can be used for different subchannels. The OFDMA version
adds the support for multiple users.

It’s a typical fact that the research in the multiuser area is often a continuation of research
done on single user OFDM. A regularly used subcarrier assignment approach in single
user OFDM is the water filling algorithm. This algorithm has been extended to the case
of multiuser OFDM.

Inverse gain to noise ratio

Water (power)

Total water (power)

Figure 3.1: Water filling

3.2.2 Water filling

The single user water filling,
also known as water pouring
algorithm was designed to do
power allocation. It is assumed
that one user wants to transmit
data and has a number of
subchannels available. It is also
assumed that the subchannel
characteristics are known. The
question is how to optimally
spend the power the user has
available.

According to the water filling
theorem the optimal way is to
use the subchannels with the

 9

lowest inverse gain to noise ratio. The power will then be allocated as if it is water. For
this one can picture the gain to noise ratio as a bowl which is being filled with water
(power). The higher sides of the bowl won’t be filled as there isn’t enough water (power)
for that. A picture of the result of the water filling algorithm can be seen in Figure 3.2. It
consists of five subchannels with the associated inverse gain to noise ratios and shows
that three subchannels will be assigned a certain amount of power and two have a too bad
ratio.

There are several variations on the original water filling algorithm, which sometimes is
called the true or classical water filling algorithm. These variations are often relaxations
on some of the requirements in the original algorithm. That way it is possible to design
simpler and therefore less demanding algorithms. This is something that can be very
useful when the algorithm needs to run on a limited processor power system.

One of these variations, called constant power water filling [YuCi01], focuses on the
power allocation. In the classic water filling algorithm this is done per subchannel based
on the Shannon’s Gaussian capacity formula. It has been shown that this exact power
allocation isn’t very important. An almost identical result can be gotten when constant
power allocation is used. First is determined which of the subchannels are allocated
power. That is done based on the gain levels of the subchannels. Then the chosen ones all
get the same amount of power.

3.2.3 Multiuser water filling

In a multiuser environment there is more then one user that wants to transmit over a
number of subchannels and there is an amount of power available per user. Now it isn’t
possible anymore to just let every user do water filling for itself. Because that might
cause problems for other users, they could end up with subchannels they can’t transmit
any data on.

A possible approach is discussed in a paper by G. Münz, et al. [MuPf02]. Here the water
filling theorem is used to do the subcarrier assignment for multiple users. The water
filling graphs for all users are combined and best ones are chosen for each user. When the
subcarrier assignment is finished then, on a single user basis, the power allocation and bit
loading is done by already established algorithms. This can be done, for example, with
the single user water filling approach.

3.2.4 Linear programming approach

Another mathematical field that can offer assistance with subcarrier assignment is the
operations research, shortened to OR. It was initially started to help the British armed
forces during World War II with certain logistics and training problems. After the war the
use spread to other areas, most often in industrial applications. Currently OR is seen as an
scientific approach to decision making, which seeks to determine how best to design and

 10

operate a system, usually under conditions requiring the allocation of scarce resources
[Wins04].

Linear programming is one of the systems used to find optimal solutions to OR problems.
This requires the problem to be written in the linear programming model form. Such a
form always consists of the same structure and makes it possible to more easily determine
the optimal solution. The linear part of the name relates to the used functions in the
model, they have to be linear.

First the required decision variables need to be determined. These describe the decisions
to be made by the model. The object function consists of the decision variables with their
coefficients. This function will be maximized or minimized according to what the system
is trying to achieve. For example, if the object function describes costs, it will be
minimized. But if it’s about profit then it will of course be maximized.

If there would be just an object function then optimizing it would go on till infinity. This
is never the case as there are always some restrictions; these are called constraints in a
linear programming problem. A constraint limits the value of a decision variable. Finally
there are sign restrictions that are used to express if a decision variable can assume
negative and positive values or just positive ones.

A typical linear programming problem looks like this:

Max z = c1x1 + c2x2 (object function)

x1 + x2 < 10 (constraint 1)
x2 < 5 (constraint 2)

x1 > 0 (sign restriction 1)
x2 > 0 (sign restriction 2)

There are some variations of the basic linear programming problem. One of the most
common ones is the integer only version, where the solution is only allowed to consist of
integer values.

3.2.4.1 Applying to subcarrier assignment

So can OR / linear programming be applied to subcarrier assignment? We certainly want
to optimize something, for example the throughput or the power consumption. Examples
of the use of linear programming in subcarrier assignment can be found in the literature
[KiLe01], [RhCi01]. In several papers the linear programming form is used, but then just
to express the problem. Other approaches are then used to design a subcarrier assignment
algorithm. In other cases it is attempted to actually solve the linear programming problem
via OR techniques.

 11

3.2.5 Stable matching

Another approach comes from the stable matching problem, which on first glance doesn’t
appear to be an obvious choice. But with some extra code around it can be used very well
for a subcarrier assignment method. It is able to take two aspects into account during the
execution and implementing it into computer code seems straight forward. For more
information on this method we point to the first part of chapter 4.

3.2.6 Comparing the methods

In the previous sections we have seen a number of possible solutions to the subcarrier
assignment problem. Now we have to determine which one(s) can be useful for us in the
previously described network.

Single user water filling is certainly not an option, as we have a multi user environment,
though the multiuser variant might be useful. It results in an overall optimal subcarrier
assignment on which then power allocation and bit loading has to be performed. The
method only uses the gain as input, no other aspects are used. When a certain user has a
bad gain compared to the others it can end up without any subcarriers.

As mentioned before in the section on linear programming a mapping to an assignment
problem is possible. By using existing solving techniques for linear programming it
should then be possible to determine and optimal solution. With adding enough
constraints we should be able to form the solution we want. The problem is that we
would want to use integer linear programming (i.e. we don’t want to assign half
subcarriers) and solving such problems is NP hard.

The stable matching approach is able to come with a solution that looks at the interests of
the individual entities and won’t result in a user getting no subcarriers at all. Further it is
able to take two aspects into account, something which was mentioned earlier as an
interesting extra feature. There is a problem though; its basic version doesn’t allow
multiple entities to be matched with one. As we will have more subcarriers than users and
want all of them assigned, this certainly is an issue.

After looking at these different aspects of these methods we feel that the stable matching
approach is a promising way to go for the subcarrier assignment method we want to
develop. This because of the inherent fairness and that it can take two aspects into
account. Of course the issue of not being able to match multiple entities to one has to be
taken care of.

 12

4 The used algorithms

In this chapter we will present the algorithms that are used in the subcarrier assignment
methods which behaviour is simulated in chapter 5. We start with the stable matching
algorithm and then present the Hungarian algorithm.

4.1 Stable matching

The stable matching algorithm is the basis of our main assignment method. In this section
we start by giving some brief history on the algorithm, then present the basic form and
continue with some extensions on it. We conclude this section with describing what we
did with the stable matching algorithm to make it suitable for use in a subcarrier
assignment method.

4.1.1 Introduction to stable matching

Formally the stable matching problems where introduced by Gale and Shapley in their
paper [GaSh62] on stable marriage problems. We can view stable matching problems as a
group of problems which contains different types of stable matching problems, for
example the stable marriage problem. These problems differ in some aspects that we will
discuss later on, but they all want to result in a stable matching.

A basic matching is the situation when two sets containing
certain entities have been connected to each other. An
example can be seen in Figure 4.2. 1

2

3

4

1

2

3

4

x y

Before we can continue with discussing stable matching we
have to introduce the preference lists. Every entity (so all
from both sets) puts all the entities in the other set in a
certain order, this called the preference list. Now we can
call a matching stable when none of the entities rather want
to be connected with another entity then their currently
matched entity.

Figure 4.1: A basic matching

In the stable marriage problem the two sets are equal sized and consist of men and
women. The result should be a one-on-one mapping (marriages) in which all men and
women are married and satisfy the previously mentioned stability criterion.

In the hospitals/residents (also called college admissions problem) problem there are two
sets, one contains the residents and the other contains the hospitals. Here each hospital
has a certain maximum number of places available for residents. This means that each

 13

hospital can be matched with more then one resident, up to the maximum number of
places. Each resident is just matched with one hospital

In their paper Gale and Shapley presented an algorithm to solve the stable marriage
problem. Using the algorithm, it can be showed that for each stable marriage problem, so
for every combination of preference lists, there is at least one stable result. The result has
a special property; it gives the men the best possible partner within any stable matching.
In the same paper this algorithm was generalized to handle the hospitals/residents
problem also with the same property.

4.1.2 Basic stable matching algorithm

In the form we describe here we call the stable matching algorithm the stable marriage
algorithm. There are two disjoint sets of men and women of an equal size N. Every man
has a preference list containing all women in the order he likes them best. Every woman
has a similar list but then with all the men. When a man and woman are matched we call
them partners. If a certain pair of a man and a woman who are in the current matching not
partners but favour each other instead of the current partners exists in the matching we
call that a blocking pair. The existence of such a blocking pair means the current
matching is unstable.

We now present the basic Gale Shapely algorithm as noted in the book The Stable
Marriage Problem, Structures and Algorithms by D. Gusfield and R.W. Irving [GuIr89].

assign each person to be free;
while some man m is free do
begin
 w:= first woman on m’s list to whom m has not yet proposed;
 if w is free then
 assign m and w to be engaged
 else
 if w prefers m to her fiancé m’ then
 assign m and w to be engaged and m’ to be free
 else
 w rejects m
end;
output the stable matching consisting of the n engaged pairs

The principle is simple, a free man goes through his preference list proposing to the first
woman he hasn’t proposed to yet. If the woman being proposed is free they become
engaged. If the woman is already engaged but favours him over her current partner, they
become engaged and the previous partner is free again. If the woman is engaged and
doesn’t like the proposing man better then her current partner, she will reject the
proposing man. This process continues until all men have been engaged, then the
engagements can be turned into marriages.

 14

Let’s look at a very simple example with three man and woman. First we show the
preference lists for the man and woman in tables below. So man 1 likes woman 2 the
best, then woman 1 and woman 3 the least.

Woman 1st 2nd 3rd
1 1 2 3
2 3 1 2
3 1 3 2

Man 1st 2nd 3rd
1 2 1 3
2 3 2 1
3 2 3 1

When the algorithm is executed the following steps are made:

- man 1 proposes to the first woman on his list, woman 2, she accepts.
- man 2 proposes to the first woman on his list, woman 3, she accepts.
- man 3 proposes to the first woman on his list, woman 2, she favours him over man 1 so
she accepts the proposal from man 3 and breaks with man 1, he becomes free again.
- man 1 proposes to the second woman on his list, woman 1, she accepts.

This results in the following stable assignment.

Man Woman
1 1
2 3
3 2

Two of important properties of the Gale-Shapely algorithm are that it terminates for
every given preference lists and that it always produces a stable matching. We now show
the proofs from the previously mentioned book that this is indeed the case.

First that it always terminates, for this we first show that no man can be rejected by all
women. A man can only be rejected by an engaged woman and engaged women never
become free again. So if a man would be rejected by the last woman on his list that
means that all women are engaged. But as the number of man and woman is the same and
no woman is allowed to be engaged with more then one this isn’t possible. Further does
every step in the algorithm relate to one proposal and no man proposes twice to the same
woman. Therefore with N men and N women the number of steps can never be larger
then N2. Based on these two things we can be sure the algorithm terminates.

Secondly we show that the matching is always stable. If a man prefers a woman over his
current partner then that woman must have rejected him during the execution of the
algorithm. During that rejection the woman has been engaged to a man she prefers over
the first man. Every other engagement she breaks to start a new one will only result in a
better man for her. So this woman can’t prefer the initial man over her current partner and
they can’t form a blocking pair. Using this reasoning on every man shows us that there
isn’t any block pair and that the matching is stable

 15

As can be seen, this is the man-oriented version, every man will end up with the best
possible woman for him within the stable matching. By letting the woman propose it is
simple to turn it into a woman-oriented version.

The property that in the man-oriented version every man get’s the best woman can be
proved also, we do that now. This proof, again from [GuIr89] is a little more extensive
then the previous one and it involves another property, that every execution of the Gale
Shapely algorithm results in the same stable matching.

First we assume that E is an arbitrary execution of the algorithm and results in a stable
matching M. Then we assume there is a different stable matching M’, this is in
contradiction with the mentioned property. Now suppose there is a man m that prefers his
partner woman w’ from M’ over his partner woman w from M. So during the execution E,
w’ must have rejected m. Assume that this was the first rejection of a stable partner
during the execution and that it was caused by the engagement of w’ with m’. This means
that m’ can’t have a stable partner who he prefers over w’, as w’ was the first woman to
reject a stable partner. We now know that m’ prefers w’ over his current partner in M’ and
therefore they are the blocking pair in M’. From that we can conclude that every man m is
matched with his favourite stable partner w in M. Also because E was an arbitrary
execution of the algorithm this shows that all executions of the algorithm result to the
same stable matching.

4.1.3 Extensions to the stable matching algorithm

Since its first appearance, there have appeared many variations from small to large to the
original stable matching problem. Examples are: lying by entities, unacceptable partners
and with three sets of entities. While these can be very useful and interesting in certain
situations, we won’t use them. We restrict this discussion of extensions to ones we can /
will actually use.

4.1.3.1 Unequal set sizes
Previously we assumed that the sizes of the sets of man and woman are equal. But there
are situations in which this isn’t the case and we still want to have a stable matching. For
a simple extension like this, there are several possibilities. In the previously mentioned
book, they simply leave a part of the larger set unmatched. It is proved then that there is
always at least one stable matching that contains all members of the smaller set. The
larger set can be divided in two parts, one contains the members that are always matched,
the other contains the ones that are never matched.

4.1.3.2 Hospital/Resident
The previous one is one possible solution to the unequal set sizes problem, but what if we
want to match all members of the larger set? In the stable marriage version this means
that we have to allow multiple women being partnered with one man. This problem is

 16

very similar to the previously mentioned hospitals/residents problem. There, each
hospital can accommodate one or more residents. The hospital-oriented algorithm from
the previously mentioned book is shown below. We call an hospital undersubscribed
when it has places available for residents. As with the stable matching version before the
algorithm can be executed the hospital and residents make preference lists containing all
the opposite entities.

assign each resident to be free
assign each hospital to be totally unsubscribed
while (some hospital h is undersubscribed) and (h’s list contains a
 resident r not provisionally assigned to h) do
begin
 r := first such resident on h’s list
 if r is already assigned, say to h’, then
 break the provisional assignment of r to h’
 provisionally assign r to h

for each successor h’ of h on r’s list do
 remove h’ and r from each other’s lists

end

This algorithm uses a different approach then the original Gale Shapely one. It removes
entries from the preference lists when it is clear they won’t be used later on. Once the
algorithm finishes the undersubscribed hospitals have been assigned the residents on their
reduced lists. The hospitals that are not undersubscribed have been assigned the first q
residents on their reduced lists, where q is the number of available places.

4.1.3.3 Freeing entities
It turns out that a little different version of the Gale-Shapley algorithm we created can be
used for this variant of the problem with a similar result as for the original stable
marriage problem. Meaning there is always at least one stable matching. The algorithm is
shown below.

assign each person to be free
while some man m is free do
begin
 w:= first woman on m’s list to whom m has not yet proposed
 if w is free then
 assign m and w to be engaged
 else
 if w prefers m to her fiancé m’ then
 assign m and w to be engaged and m’ to be free
 else
 w rejects m
 if there are no free man and there are unassigned women then
 free the man
end
output the stable matching consisting of the n engaged pairs

The reason that every man only gets one woman in the stable marriage problem is that
once a man and woman engage the man isn’t free anymore. If we want to allow that more

 17

then one woman can be engaged to one man then we can free the men if there are any
women left. Doing that until every woman has been engaged results in a stable matching.

A problem with this approach is that it can result into a matching where all women are
engaged with one man. This occurs if all women have the same man on the first place in
their preference list. With the algorithm in its current form there is no possibility to
prevent this.

4.1.3.4 Virtual entities
Another way to handle the situation doesn’t involve any changes to the original algorithm
but only changes to the input. For the members of the smaller set, virtual entities are
created (including the associated preference lists) until the smaller set is of the same size
as the larger set. That has to be done before the creation of the preference lists of the
entities of the larger set because those have to include the virtual entities also. We created
this approach ourselves and it appears unique for the stable matching problem. Later we
saw similar approaches used in other systems, for example, in the Hungarian algorithm
[Kuhn55].

In Figure 4.2 an example of virtual entities is shown. The set x consists of 4 entities and
the set y of 8 entities. In Figure 4.2.a the virtual case is shown, here 4 virtual entities
(denoted by character instead of digits) are added. In Figure 4.2.b is shown what the
result is when the virtual entities are merged into the real ones.

Figure 4.2: Virtual entities

 18

4.1.4 Complexity of the stable matching algorithms

We will now discuss the complexity of the presented stable matching algorithms. As the
used algorithm is an extension to the original version we will first discuss the complexity
of the original.

4.1.4.1 Stable marriage
In every stable matching algorithm the defining action is the comparing of matchings. Is
the proposed matching better or worse then the current matching? In the stable marriage
algorithm for N men and N women we can easily determine that the maximum amount of
possible matchings is the number of users time the number of subcarriers, so N2. It isn’t
possible to say if all possible proposals are made without running the algorithm in
advance, but it gives the worst case limit of the algorithm.

The N2 possible proposals are only made in the worst case. In practice usually fewer
proposals will be made before a stable matching is found. According to [Wils72] the
average amount is N loge N. This was determined by running the algorithm many times
for different sets of preference lists and different problem sizes.

4.1.4.2 Hospital/Resident
There are M hospitals and these all have a number of available places for residents. The
total number of available places over all M hospitals we call M’. Now the number of
possible “proposals” is the number of residents N times to total number of available
places for residents per hospital M’. Therefore the worst case complexity is O(N*M’).

4.1.4.3 Freeing entities
We now have M men and N women, the algorithm has been changed so all women have
been matched once the algorithm terminates. The number of possible proposals still is the
number of men times the number of women, but that is M*N now. So the complexity in
worst case is O(M*N).

4.1.4.4 Virtual entities
Again we are dealing with M men and N women. Only in this case we add virtual men to
the number of men until it is the same as the number of women. So we end up with a
similar situation as with the original algorithm. Therefore the this version of the
algorithm has a worse case complexity of O(N2).

4.1.5 Using the stable matching algorithm

 19

When we say we use a stable matching algorithm in an assignment method we mean that
we use an algorithm that results in a stable matching. Which version of algorithm exactly
differs per situation and will be mentioned when it is used.

We stop calling the entities man and woman or hospital and residents and don’t use the
associated terms (e.g. proposal, engagement, etc.) anymore either. From now on, we use
ONUs and subcarrier, which are assigned to each other, forming an assignment. We
assume that there are more subcarriers then ONUs; to be exact, the number of subcarriers
is an integer multiple of the number of ONUs.

To ensure some fairness between the ONUs we want to prevent starvation. This can be
achieved in several ways. The simplest one is to assign every ONU the same integer
number of subcarriers such that all subcarriers are assigned. It should be mentioned that
this approach is not be the optimal one. Every ONU gets the same amount of subcarrier,
but it might not need that many subcarriers or could use more subcarriers then the fixed
amount.

Therefore another possible approach would be to dynamically distribute the subcarrier
over the ONU based on the traffic demands of the ONUs. Such an approach will likely
give a more optimal result, but is also more complicated to implement. So in this thesis
we will only use the simple approach for determining how many subcarrier each ONU is
assigned.

Using a fixed amount of subcarriers per ONU restricts us in choosing which algorithms
we can use, only the virtual user and hospitals/residents versions are usable. Both
versions result in the same stable matching, so on this issue it doesn’t matter which one is
used. Complexity wise there isn’t a difference between both versions either. But on the
issue of implementation the virtual user variant is the easier one as it
The preference lists are based on the normalized SNRs of the subcarriers for ONUs and
on the queue lengths of the ONUs for the subcarriers. For more information on this and
the actual implementation of the algorithms we refer to chapter 5 on simulation.

As mentioned before the virtual user case requires some extra work during the creation of
preference lists. The virtual entities have to be created and later the preference lists have
to reflect that.

4.2 Hungarian algorithm

The Hungarian algorithm is an algorithm that can be used to solve a so called assignment
problem. In this section we first explain what exactly an assignment problem is. We then
continue with explaining how the Hungarian algorithm is used to solve such an
assignment problem. This section is ended with explaining how we used the Hungarian
algorithm in a subcarrier assignment method.

 20

4.2.1 An assignment problem

The assignment problem is a well known combinatorial optimization in the operational
research. In its basic form it is usually presented as follows. There are a number of agents
and tasks. Each agent can perform one task for a certain cost; this cost can differ per
agent / task combination. Now we want to assign to each agent exactly one task and such
that the total cost of the assignment is minimized. When there are an equal number of
agents and tasks, then the sum of all agent costs is the total cost and we call it the linear
assignment problem.

4.2.2 The Hungarian algorithm

The Hungarian algorithm is one of the algorithms which can be used to solve such a
linear assignment problem in polynomial time, with a complexity of O(N³). Its first
version, which was called the Hungarian method then, was published by Harold Kuhn in
1955 [Kuhn55]. This method was based on work by two Hungarian mathematics Dénes
König and Jenő Egerváry, therefore the name Hungarian method. The Hungarian method
was revised by James Munkres in 1957 [Munk57] and since then has been called the
Hungarian algorithm (also known as the Munkres assignment algorithm or the Kuhn-
Munkres algorithm).

For the Hungarian algorithm the assignment problem is
modelled as an N x N matrix as shown to the right. In this
matrix the elements ci,j are the cost for performing a certain
task j by a certain worker i. So the workers are the rows a
the tasks are the columns. This matrix is called the cost
matrix. On this cost matrix the Hungarian algorithm finds
the solution with the lowest total cost.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnnn

n

n

ji

ccc

ccc
ccc

c

,1,0,

,11,10,1

,01,00,0

,

…
%

…
…

nd

The algorithm can be expressed in the following steps

1. subtract the lowest value in every row from each value in that
row.

2. subtract the lowest value in every column from each values in
that column.

3. try to cover all the zeroes with as little as possible lines
(both vertical and horizontal). If the number of lines is the
same as the size of the matrix find the solution (indicated by
the zeros in the matrix). If the number of lines is smaller then
the size of the matrix, find the smallest uncovered value.
Subtract this value from each uncovered value and add it to all
values at the intersections of the lines.

4. repeat step 3 until a solution is found.

Let’s look at a simple example; we start with the following cost matrix.

 21

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

683
512
243

After subtracting 2 from the values in the first row, 1 from the values in the second row
and 3 from the values in the third row, we get the following matrix.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

350
401
021

In this situation the algorithm is already done after step 1, step 2 isn’t required anymore,
this is of course not always the case. The matrix shows us that c1,3, c2,2 and c3,1 form the
minimized result. So worker 1 is assigned task 3, worker 2 is assigned task 2 and worker
3 is assigned task 1.

As mentioned before the Hungarian algorithm works on a square matrix. When this isn’t
the case, it can be handled for example by padding the smaller side with zeros such that
the matrix eventually becomes square. In this way, it won’t interfere with the algorithm.

4.2.3 Maximization

In some circumstances we don’t want to minimize the problem but maximize it. This
happens for example when the values in the matrix aren’t costs, but profits. The
Hungarian algorithm can handle this very simply. It is done by first determining the
highest value and then subtracting every value from this and then running the Hungarian
algorithm as normal.

Let’s look again at the previous example, first we find the highest value, which is 8 in
this case and subtract every value from that, this gives the following matrix.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

205
376
645

Subtracting the lowest value from each row from all the values in that row gives the
following matrix.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

205
043
201

 22

Then subtracting the lowest value from each column from all values in that column gives
the following matrix

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

204
042
200

In this matrix we see that c1,1, c2,3 and c3,2 form the maximized solution.

4.2.4 Using the Hungarian algorithm

When the Hungarian algorithm is used for subcarrier assignment, the following approach
is used. The matrix is of the profit variation containing the normalized SNR values of the
subcarriers for the ONUs. As there are more subcarrier then ONUs, this would mean the
matrix is not square. But like in the case of stable matching algorithm we create virtual
ONUs such that, once again, we end up with having a square matrix.

The Hungarian algorithm optimizes the total profit. It doesn’t care from which ONU the
profits come, just that the sum of individual normalized SNRs is the highest possible.
This means that in general it won’t favour certain ONUs over others based on anything
expect the possible profit.

 23

5 Simulation description

In this chapter we will discuss the simulation that is used to test and compare the
developed subcarrier assignment methods.

The first section is on the development of the simulation model in OPNET. We will give
a theoretical and implementation overview of the system model, assignment methods and
bit loading. After that a section on the inputs of the simulation follows. Then the
simulation outputs and statistical analysis that are preformed on those discussed. Finally
we present and discuss the results we obtained with the simulation.

5.1 Simulation development

In this section we describe the development of the OPNET simulation model. For all
parts we first give a theoretical description and then proceed with details on the
implementation.

5.1.1 The system model

We start the development section with the system model that is used for the simulations.

In the following sections we will sometimes discuss the location in the simulation where
a certain task is performed. Some of these tasks might seem strange or unrelated to their
location in a real system, but to prevent making the simulation too complicated they are
performed as mentioned. For example a real system wouldn’t make up impulse response
figures at the OLT.

 24

First we present an overview of the separate sections of the model in Figure 5.1.and what
they globally do. Not everything will be directly clear, but that is all explained in the rest
of this section.

Figure 5.1: The system model

5.1.1.1 Theoretical model

Starting with the most basic parts of the model; it consists of 1 OLT, 16 ONUs and 128
subcarriers. The subcarriers are 10 MHz wide and the spacing between two subcarriers is
20 MHz, from the centre frequency of one to the centre frequency of the next. The first
subcarrier starts around 5 GHz and with the mentioned spacing the last one starts around
7.54 GHz. In Figure 5.2 below the frequency response chart is shown.

Figure 5.2: Frequency response

 25

5.1.1.1.1 Timing

We decided on creating a new assignment every 100ms, because with this value every
subcarrier should have an approximately flat frequency response. Such a period we will
call the time epoch. We assume that during each such time epoch the link characteristics
are constant, they just change after every time epoch. With these settings we believe we
offer variable enough link characteristic in order to reasonably examine the different
assignment methods.

In Figure 5.3 a timeline is shown of a typical execution of the simulation, we focus here
on the first section up to 0.8 seconds.

0.0 0.5 0.6 0.7 0.8

time epoch #1 / start traffic
create

assignment
time epoch #2

start

4.9 5.0 5.1 107.8
107.9

108.0

start recording
sojourn times output results

sec

Figure 5.3: Simulation timeline, initialization

The simulation starts at 0 second. The first assignment is created a microsecond before
the first time epoch which starts at 0.5 seconds. The traffic generation also starts at 0.5
seconds. This initialisation time of 0.5 seconds is used so all parts of the simulator have
read the correct parameters once the subcarrier assignments creation starts. The exact
value is somewhat arbitrary and partly a leftover from an earlier version of the model.

5.1.1.1.2 Link quality

The master assignment is about studying subcarrier assignment algorithms in a
multimode PON where consequently the line quality is time varying. As we don’t have
measurements from a real system, a model was created to represent the link.

This link model is based on the calculation of impulse responses from the book
“Principles of optical fibre communication” by van Etten [EtPl00]. First the number of
available modes in a certain strand of fibre is determined. This number is always the
same for a certain set of parameters and for the ones used here the number of modes is
36. The parameters for this fibre are: wave length of 1310nm (the best value for a low
chromatic dispersion in a multimode silica fibre), fibre with parabolic refractive index
profile, fibre core radius 25e-6, numerical aperture of 0.2, refractive index core 1.5,
refractive index cladding 1.4866. Then the specific group delays for these modes are

 26

calculated, finally those are multiplied with the length of the fibre, to create group delays
τg. For this set of group delays we determine the lowest and highest value of group delays
to define a group delay interval.

Let’s start with the expression for the impulse response, it is shown in (1).

∑
=

− −=
K

i
ig

z zt
K
R

M
eth

1
)(

2)(1)(τδα (1)

The variables used are t for the time, α for the attenuation coefficient (in Neper/m), z for
the distance (in meter), R for the responsivity, K for the number of available modes, M
for the number of ONUs, δ for the delta function and τg(i) the group delay for mode i.
Function (2) then shows the calculation of the frequency response for a certain frequency
f.

∑
=

−−=
K

i

fjz ige
K
R

M
efH

1

22)(1)(τπα (2)

The variables are almost all the same; α for the attenuation coefficient (in Neper/m), z for
distance (in meter), R for responsivity, K for the number of available modes and M for the
number of ONUs.

Because we want to simulate a time varying link the following approach was used. For a
certain number of modes K, we can generate K uniformly distributed random numbers in
every time epoch. These numbers are then scaled and shifted in previously mentioned
group delay interval and with each different realization of those random numbers another
instance of the responses can be calculated.

For the simulation, we further determine the normalized SNR of every channel for each
ONU which is shown in expression (3).

)(
|)(|)(
2

fN
fHf =γ (3)

In the expression γ(f) is the normalized SNR, |H(f)| is the frequency response magnitude
and N(f) is the power spectral density of the noise. Regarding the noise, only the thermal
noise is considered here, as we assume a thermal noise limited system, via the expression
(4) below.

2
2

)(0N
R

Tk
fN

l

b == (4)

The variables used here are; kb for Boltzmann-constant (in Joule/Kelvin), T for
temperature (in Kelvin) and Rl for the load resistance (in Ω). Because the expression is

 27

independent of the frequency the noise level is a constant over the frequency range of
interest, which will be noted as N0.

The frequencies that are used for the calculation of the normalized SNR are those of the
128 subcarriers. The distances, which are associated with the ONUs, are predetermined at
the start and don’t change during a simulation.

Essentially, we have a matrix containing normalized SNR values for all ONUs on all
subcarriers for a certain time epoch. By doing these calculations for every time epoch
there will be new normalized SNR values each new time epoch. This way we simulate
the varying link qualities in which the subcarrier assignment methods will be applied.

5.1.1.1.3 Queue

The final part of the system model are the queues, they represent the data that the ONUs
or OLT wants to transmit over the network. As any normal queue they have an arrival
rate and service rate. During a simulation the arrival rate will be exponential but with a
fixed mean unless otherwise stated. The service rate will be dependant on the number of
bits per symbol that have been loaded on the subcarriers assigned to an ONU.

5.1.1.2 Model implementation

We will now discuss how the theoretical model was implemented in the simulation
environment OPNET. For more specific info on the implementation in OPNET we point
to appendix A. Starting at the network level, one OLT node and 16 ONU nodes were
created. The subcarriers aren’t modelled as visible objects in the simulator.

5.1.1.2.1 Timing

In OPNET timing is done via interrupts, at the OLT we schedule an interrupt to trigger a
microsecond before the starting time of 0.5 seconds. When that interrupt triggers, it will
cause the assign() function to be called. That function generates the normalized SNR
values, determines the subcarrier assignment and finally schedules another interrupt to
happen in the next 100ms. This way we create a subcarrier assignment just before the
start of every time epoch.
At the ONUs the first assignment is read at 0.5 seconds with the
getSubcarrierAssignment() function. At the end of this function an interrupt is also
scheduled to trigger 100ms later, so the next assignment is read at the start of the next
time epoch.

5.1.1.2.2 Link quality

 28

The implementation for the link quality is based on a implementation of the fibre model
in MATLAB. That code was translated in C and changed a little so it could be used in
OPNET. The code containing functions for calculating the link frequency response and
noise level is located in the separate file snrCalculation.cpp. The related functions are
called from the proc processor module in the OLT by calling the previously mentioned
assign() function. Just before a time epoch starts, the OLT becomes active and starts
creating a normalized SNR matrix for the upcoming time epoch via those functions for
the concerned distances and frequencies.

The written code is mostly a one on one mapping of the appropriate formulas into
computer code. Though one change was made here during the implementation, we now
use a scaling factor of 2 is applied to the specific group delays due to the non-ideality of
the components of the system (i.e. the coupler).

Both the link frequency responses (and therefore the normalized SNR values) and the
distances can be stored after they have been generated. In this way, different assignment
methods can be simulated on the exact same data.

5.1.1.2.3 Queue

The queues are implemented with a simple queuing system in the ONUs, every ONU has
one such system. As can be seen in Figure 5.4 this system consists of a source, queue and
sink processor.

Figure 5.4: A simple queueing system

The source has as parameters the packet interarrival time and packet size, which both
have a certain chosen distribution set via the simulator. The queue only has a service rate
as parameter. During the simulation the source creates packets according to its
parameters and sends those instantly to the queue. There packets are processed based on
the service rate. Finally the packets are send to the sink where they are destroyed. The
only parameter that changes in the queuing system during the simulation is the service
rate. It will be set, every time epoch, based on the number of bits loaded on the
subcarriers assigned to a certain ONU.

 29

Formally this system would only model the behaviour during uplink traffic as the queues
are located at the ONUs. But during one simulation run only uplink or downlink traffic is
simulated the same queue can then be used for downlink traffic. In that case they
represent data the OLT wants to send to the ONUs, with data for every ONU in a
different queue.

The service rate for the queue is set via a statistic wire (for more information see
appendix A) from the proc processor module. At the start of each time epoch the ONU
checks in the proc for its current subcarrier assignment and loaded bits and from that
calculates the service rate for that epoch. That value is then set on the statistic wire and
will be used by the queue.

We use the queues to simulate the traffic ONUs want to send or receive; the amount of
traffic is measured via the queue size. The larger the queue size the more traffic that
needs to be transmitted. The queue size is determined inside the queue processor module,
every time a packet arrives the queue size is updated. Via a globally shared array
containing the queue sizes of all ONUs the current values can be read instantaniously
when required by the OLT.

5.1.2 Assignment methods

We continue the development section with discussing the used assignment methods in the
simulation. Starting with theoretical descriptions and following with the implementation
details. For some of the methods a more extensive theoretical background already has
been presented in the previous chapter 4, so here we will mainly focus on the parts
important for the simulation.

5.1.2.1 Theoretical

5.1.2.1.1 An assignment

Before we introduce the assignment methods lets look at an assignment, a created
assignment consists of 128 (user, subcarrier) pairs, in which all subcarriers appear once.
How many times each user appears in the assignment depends on the assignment method.
Each subcarrier assignment method has to result in such an assignment.

5.1.2.1.2 Stable matching (virtual users)

Before the stable matching algorithm can be performed preference lists have to be
created. This is done based on the subcarrier quality for the users and on the queue size of
the users for the subcarriers. In the virtual user case some extra work is required so all

 30

virtual users have preferences lists and are all added on the right location in the
preference lists of the subcarriers.

When the preference lists are created then the virtual user version of the stable matching
algorithm is executed as described in the previous chapter 4. Once the algorithm is done
it has produced a subcarrier assignment.

With this subcarrier assignment as input the bit loading algorithm will be executed to
determine how many bits to load on each subcarrier. The details on the bit loading can be
found in section 5.1.3.

5.1.2.1.3 Contiguous

Here the subcarriers are assigned in contiguous blocks of 8 to each user. Starting with
subcarrier 1 through 8 to user 1, subcarrier 9 through 18 to user 2 and so on. This results
in a simple subcarrier assignment on which bit loading can be performed. A contiguous
assignment doesn’t change during the simulation, still bit loading happens every time
epoch, therefore we call it semi-static.

5.1.2.1.4 Interleaved

For the interleaved method subcarriers are also semi-statically assigned. Now a user is
assigned 8 subcarriers evenly spread out over the available ones. User 1 is assigned
subcarrier 1, 17, 33, 49, 65, 81, 97 and 113, user 2 is assigned subcarrier 2, 18, 34 and so
on.

5.1.2.1.5 Hungarian

Let’s look at how the Hungarian algorithm is applied to our case; we have the normalized
SNR values for all 16 users on all 128 subcarriers and want to find the best possible
overall throughput. This means that we want to find the highest normalized SNR values,
which can be seen as the profits here. So we have to use maximization and have to copy
the normalized SNR value lines 7 times so the profit matrix is equal sided. After the
algorithm has determined the maximum solution we just have to identify to which actual
users the virtual users belong and we have a subcarrier assignment ready for bit loading.

5.1.2.2 Implementation

We will now discuss the implementations of the assignment methods in OPNET, starting
with some global remarks about the programming. All the assignment methods are
located in a separate C file called assignmentMethods.c. This was done so they could be

 31

tested easily outside the OPNET environment. Initially the methods were spread over
several files, but that required changing #include lines in the OPNET code and
recompiling every time another algorithm was used so it was changed to just one file.

The C file is included in the OLT proc processor header section and during the
assignment the selected start method function is called with the appropriate parameters.
These parameters include the number of users, number of subcarriers, the SNR values,
queue size (for stable matching), impulse response values, the subcarrier assignment in
which store the calculated subcarrier assignment, the traffic direction and some debug
parameters. Beyond calling that start function very little of the subcarrier assignment
methods code is actually in OPNET. Once the start function has finished a complete
subcarrier assignment including loaded bits is available in the OLT. The OLT then has to
make it available for the ONUs so they can use that assignment for the coming time
epoch.

5.1.2.2.1 An assignment

In the simulation the assignment will be a two dimensional array containing for each
assignment the subcarrier, the user and the number of loaded bits. After an assignment
method has been executed the number of loaded bits will be unset until the bit loading
algorithm has been executed.

5.1.2.2.2 Subcarrier assignment method

Before looking at specific assignment methods we will first describe the general approach
used. Because this is partly identical for the different methods we prevent explaining the
same steps over and over.

All or some of the following tasks are performed in the start function of an assignment
method:

• Transform input from OPNET into usable values
• Perform assignment
• Transform result into generic form
• Perform bit loading
• Transform results into output to OPNET

The first task is only performed for assignment methods that determine the subcarrier
assignment based on certain input. From OPNET the SNRs and queue sizes are passed on
and in this task those are transformed into the required input values.

The assignment itself is always performed, for some methods this is very simple and for
others it requires some more work.

 32

We started with several different implementations to the assignment methods, all using
there own data structures. Also initially not all implementation included code for bit
loading. Once we took one implementation of the bit loading and wanted to use that for
other subcarrier assignment implementations we had to change the data structures
between the steps so it was possible to use the same bit loading code everywhere.

As the bit loading is pretty related to the assignment we decided to perform it here also.
In this way it was also easy to test the bit loading functions outside of OPNET. The bit
loading is identical for all different methods and is performed for all of them.

Because we defined a certain subcarrier assignment structure in OPNET the results of the
previous tasks need to be transformed into that structure at the end of the start function.

5.1.2.2.3 Stable matching (virtual users)

The implementation of the start function of the virtual user version of the stable matching
assignment method begins with transforming the SNRs values and the queue size into
preference lists which are used as input for the stable matching algorithm.

Initially the creation of these preference lists was done via simple sorting. The highest
SNR was put first in the preference list. But while looking at the data, especially with the
queue size we noticed that there were often equal queue sizes. This makes sense as under
light load the queues will often be empty or contain a single packet. When we
encountered such a group of equal values their order in de preference list was determined
based on the order of the queue sizes from OPNET. That order was on ONU number, so
with equal sizes the ONUs were put into the preference list based on their number. This
clearly favours lower numbered ONUs over higher numbered ONUs and can cause
unwanted effects on the subcarrier assignment and bit loading. We have solved this issue
by randomizing the order of the users or subcarriers with the same values before they are
put in the actual preference list.

At the beginning of the assignment part of the method some extra work is required to
create the virtual users and updated the preference lists of the subcarrier to include these
virtual users. When all virtual users are created and the preference lists are filled then the
stable matching algorithm can be executed. The implementation of that is basically a one
on one mapping of the pseudo code shown in section [x] into c code. Once the stable
matching algorithm is finished the virtual users have to be merged into their actual
versions and the subcarrier assignment is done.

Now some transforming of values is required in preparation of the bit loading, then bit
loading is performed and after that the subcarrier assignment is transformed in its final
form. As the bit loading implementation part is identical for all methods it is explained
once in section 5.1.3.

 33

5.1.2.2.4 Contiguous

The contiguous assignment method uses the start function of stable matching method.
But as there is no special input required that task is skipped here. And instead of a
complicated algorithm there is just one loop assigning the subcarriers in contiguous
blocks of 8 to the users. Then the usual code involving the bit loading is executed.

5.1.2.2.5 Interleaved

The implementation of the interleaved method closely follows the contiguous one. But
now the subcarriers are assigned according to the interleaved method described earlier.

5.1.2.2.6 Hungarian

The implementation of the Hungarian algorithm itself is done with code from Cyrill
Stachniss [Cyri04], which it is an enhancement of the version from the Stanford
GraphBase [Knut93].

The Stanford GraphBase is a set of functions and datasets that can be used to generate
and work with graphs and networks. It is developed by Donald Knuth at the Stanford
University. One of the functions available in the package is for performing the Hungarian
algorithm.

This function was written in C but targeted at a special case of a certain matrix. Brian P.
Gerkey [Bria04] took the code from the Stanford GraphBase and based on that created a
more general implementation. This implementation suffered from a deadlock problem in
certain obscure cases which the author was unable to fix. Eventually they were fixed by
Cyrill Stachniss who released a new version himself.

Because this code comes with its own input format and result format some more work
was required to transform everything in correct external formats.

Also because of this the implementation first started in a separate c file and was later on
merged in the assignmentMethod.c file. It still has its own start function in which the first
task is transforming the SNR values from OPNET into a cost matrix. Once this is done
the hungarian_solve function from the code by Stachniss is called to determine to optimal
solution.

Then, as for the other methods, code is executed to transform the previous solution into a
subcarrier assignment on which bit loading can be performed. Again bit loading is
performed and the total subcarrier assignment is created to be returned to OPNET.

 34

5.1.3 Bit loading

This last part of the simulation development section will be on bit loading. Bit loading is
the system where is determined how many bits are loaded (available) per symbol on
every channel. This can be done statically, by just setting the number of bits per symbol
to a certain value. But arguably a better way is to let the bit loading be dependent on the
channel quality characterized by the normalized SNRs. This dynamic approach is what is
used in this subcarrier assignment scheme.

In our system the bit loading follows the subcarrier assignment itself, first it is
determined which users get which channels. Then for every channel it is determined how
many bits are loaded.

5.1.3.1 Theoretical

We start the description of the theoretical bit loading model with the received signal at a
certain ONU j at a certain channel i which is shown in (6). In this expression P0 is the
optical power, Hj(fi) is the frequency response of a certain user at a certain frequency, mi
is the optical modulation index and si(t) is the modulating signal.

)(|)(|)(~
0, tsmfHPts iiijji = (6)

We will be using QAM modulation with an even number of bits per symbol, a square
constellation and a maximum of 8 bits per symbol. The required minimum distance
between two constellation points for a certain BER can be formulated as shown in (7).
N0/2 is the noise PSD for which we assume only thermal noise is a factor here. The
expression we use for the noise level is 2kBT / RB L, where kBB is the Boltzmann constant of
1.3806505×10−23 in Joule/Kelvin, T the temperature of 300 in Kelvin and RL the load
resistance at the receiver which is 50Ω. The Q-1 is the inverse Q function and Pe is the
BER which will be 10-9 in the simulation.

⎟
⎠
⎞

⎜
⎝
⎛= −

4
2 1

0
eP

QNd (7)

We now give the relation between that distance and the required signal amplitude (per
symbol) of a certain subcarrier. For this we express)2cos()(iiii tfats ϕπ += and also

)2cos(~)(~
,, iijiji tfats ϕπ += . With those expressions during one symbol time

i
s f

nT = ,

where n is a positive integer, so the symbol time is integer multiple of the frequency, d is
related to jia ,

~� as shown in (8), for the outer most constellation points.

 35

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 12~ 2

,

ic

s
ji T

da
�

 (8)

In this expression ci is the number of bits we want to load. This implies the following.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 12

|)(|
2

0

ic

sij
ii TfHP

dam � (9)

For now we want to avoid clipping, so the following expression (10) describes the
resulting constraint which on the downlink transmission.

∑
=

≤
N

i
iji cF

1
, 1)((10)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

Δ

12
|)(|

)(2

0
,

ic

sij
iji TfHP

dcF (11)

In this summation every term can be seen as the cost of loading ci bits on subcarrier i
belonging to user j and the total cost has to satisfy (10) to be allowable. Following this
expression we can define an expression for calculating the cost of the next step as shown
in (12). With the next step we mean the cost to add an additional 2 bits while the
concerned subcarrier has already been loaded with ci bits.

)()2()(,,, ijiijiiji cFcFcF −+=Δ
Δ

 (12)

With this expression we can use a greedy approach by every time selecting the subcarrier
with the cheapest step additional cost. This is followed by calculating the value of the
accumulated cost for that chosen subcarrier and the cost of the next step. By keep doing
this while the constraint in (10) is still satisfied, we get the optimal bit loading.

5.1.3.2 Implementation

The first version of the bit loading came from the multiple access method [xx] subcarrier
assignment algorithm. There it is the final step and based on a fixed amount of available
power for all users and looks at the channel SNR. The pseudo code for that algorithm was
turned into an implementation. Once we wanted to add bit loading to the stable matching
and later on the Hungarian method we used that same bit loading implementation from
the multiple access method.

 36

As the initial version of the bit loading wasn’t targeted to an optical system some changes
were required to get to the implementation based on the above theoretical system. Still
we were able to keep large parts of the previous implementation but now the total cost
was the main limiting factor where it was the power before.

The implementation of the bit loading itself is rather simple. It starts by calculating the
costs for loading 2 bits for every channel. Then in a while loop it will select the subcarrier
of which the cost of loading 2 bits is the lowest. After that the cost of loading another 2
bits on that channel is calculated. Now the system will look again for the lowest cost to
load 2 more bits and update the cost for the selected channel. Every time a bit is loaded
the cost of that is stored in the current total cost variable. Once the cost of loading 2 more
bits plus the current total cost becomes larger then the set limit of 1.0 then the while loop
ends and the bit loading stops.

During the loop we kept track of how many times bits where loaded on which channels
and that information can be used in a final transforming data step to create a complete
subcarrier assignment.

The cost function itself isn’t that simple as can be seen from the theoretical section. The
implementation of it wasn’t that complicated though, just mapping the mathematical
functions into computer code and calling them in the correct order.

5.1.3.2.1 Uplink / Downlink

In the initial bit loading implementation and also several of its revisions bit loading was
performed for an uplink situation, so traffic going from the ONUs to the OLT. In this
case every ONU has a certain amount of power it uses for bit loading on the subcarriers
that have been assigned to it. That process is then repeated for all users to get a complete
bit loading.

Because we also wanted to simulate downlink traffic we created another implementation
for that. Now the OLT has a certain amount of power and bit loading is performed for all
subcarriers at once instead of the ones assigned to one user.

5.1.3.2.2 The transforming code

As mentioned the implementation of the bit loading came from a certain larger piece of
code for the multiple access method. This means that it continues using certain data
structures that were started in the first section of the implementation. Once we just took
this implementation and used it in other assignment methods the data structures didn’t
match. At that time we decided to just transform the required data before the bit loading
into the structure the bit loading can use. And after the bit loading it is transformed to a
form that can be used by OPNET. When the bit loading changed internally some small

 37

changes were required on the transforming functions but the basic system remained in
place.

5.2 Simulation input

In this section we describe the inputs for the simulation. With the inputs we mean the
data that is used during the simulation and the settings that control how the simulation is
running.

5.2.1 Input data

This is the data the simulation uses as a primary input, it describes the simulation
behaviour.

5.2.1.1 Distances, seeds, responses
The main input data are the frequency responses; they are what determines the channel
SNR values and they are used in the bit loading cost function. They are dependent on the
distance between the ONU and OLT and the random chosen values.

5.2.1.2 Traffic
The other input data is the traffic and then exact flow of the traffic. Of course the type
and mean of the distribution are known but the exact instance of it is determined by the
OPNET seed value.

5.2.2 Settings

We can set a whole range of parameters for every simulation. This can be done via
OPNET simulation, global or local (object) variables, per node in the network model or
by setting them in the programming code. Here follows a list with descriptions of them.

Duration
This is the amount of simulation time, not clock time, the simulation will be running, it is
an OPNET simulation variable.

Seed
This is the seed value for the random function used by OPNET in for example
distributions used in traffic generation. It can be set to vary of multiple values for
different runs and is an OPNET simulation variable.

 38

Number of ONUs
The number of ONU nodes in the system, this always is 16 in the simulations. This
parameter is set via an OPNET global variable.

Number of channels
The number of available channels in the system, this value is set to 129 because it used to
include space for a control channel. This control channel isn’t used anymore in the
current simulation and everywhere this value is of importance 1 is subtracted to have 128
channels. This parameter is set via an OPNET global variable.

Distance source
With this parameter that is set via an object variable in OPNET we control the source of
the distances between the ONUs and OLT. They can be either generated as described in
section [x] and then be written to a file or be read from a file. If we generate and store the
values once we can then use them in the next simulation run to have an identical
situation.

Response source
Similar to the distance source but now for determining the response values.

Seed source
Similar to the distance source but for the determining the seed values used in generating
the response and in breaking ties in stable matching.

Assignment method
This parameter controls which assignment method to use during the simulation, it is set
as an object variable in OPNET.

Scenario
This OPNET object variable was used to write the scenario number in the result output
files, currently we use the OPNET network model simulation variable for that.

Traffic direction
With this parameter we control if downlink or uplink traffic is simulated, it is set as an
OPNET object variable.

Data set number
This parameter controls which data set to use during the simulation. A data set consists of
a related distances, responses and seeds file.

Traffic loads / interarrival times
The traffic load is the amount of data the source inside an ONU produces. This value can
be set in the network model for each ONU independently via the promoted node attribute
“Packet Interarrival Time”.

Start measuring time

 39

The time at which recording of a certain value starts, the value is set in the code. This
value is used to handle for example the initial transient removal which is discussed in the
next section.

Output data time
This is the time when values(s) we are observing are stored in a file or shown on the
screen. This for example used to write after a certain number of time epochs has passed
without exactly determining the simulation duration.

5.2.3 Cases

The above list shows us there are many settings and even more combinations of them.
We could try to simulate all possible combinations but this would take too much time and
result in a large amount of mostly useless data. To be able to get usable results we define
a set of parameters which we will call a case.

In one such a case all parameters are fixed and if we then run all assignment methods
they will be ran under identical circumstances. We have a number of these cases that
differ in a number of the parameters, the unlisted parameters are identical. We define
these cases so that the relevant measurements can clearly be observed but also try to keep
the simulation environment as realistic as possible.

Case 1
Distances: uniformly distributed between 1000 and 3000 meters
Traffic loads: all 100 Mbps

Case 2
Distances: uniformly distributed between 1000 and 3000 meters
Traffic loads: alternating between 150 Mbps and 50 Mbps

Case 3
Distances: all 2000 meters
Traffic loads: all 100 Mbps

Case 4
Distances: all 2000 meters
Traffic loads: alternating between 150 Mbps and 50 Mbps

Case 5
Distances: all 2000 meters
Traffic loads: first 4 ONUs 150 Mbps and 50 Mbps for the other ONUs

Case 6
Distances: all 2000 meters
Traffic loads: first ONU 150 Mbps and 50 Mbps for the other ONUs

 40

Case 7
Distances: all 2000 meters
Traffic loads: first ONU 200 Mbps and 50 Mbps for the other ONUs

Case 8
Distances: all 2000 meters
Traffic loads: first ONU 250 Mbps and 50 Mbps for the other ONUs

Case 9
Distances: uniformly distributed between 1000 and 3000 meters
Traffic loads: 150 Mbps on all ONUs

Case 10
Distances: uniformly distributed between 1000 and 3000 meters
Traffic loads: 150 Mbps on all ONUs
Time epochs: 576

Case 11
Distances: uniformly distributed between 1000 and 3000 meters
Traffic loads: 175 Mbps on all ONUs
Time epochs: 576

Case 12
Distances: uniformly distributed between 1000 and 3000 meters
Traffic loads: 200 Mbps on all ONUs
Time epochs: 576

5.3 Simulation outputs

To get results we have to define the simulation outputs. As can be seen in appendix A
OPNET offers possibilities for this via probes. So far we haven’t used those but the
outputs by writing the values we are interested in to the screen or to files. These outputs
can be “raw” values like the current queue size in bits or ones which we already
performed some processing on during the simulation, for example the mean packet
sojourn time.

First we present the timeline from a typical execution of the simulation in Figure 5.6, we
have seen this figure before but now we focus on the last part.

 41

0.0 0.5 0.6 0.7 0.8

time epoch #1 / start traffic
create

assignment
time epoch #2

start

4.9 5.0 5.1 107.8
107.9

108.0

start recording
sojourn times output results

sec

Figure 5.5: Simulation timeline

The writing of values to files might cause some delays due to the large number of values
that needs to be written. But as the simulation is event driven it doesn’t matter if an event
takes longer in clock time.

Several values have been measured during the different stages of the simulation
development. We will list the important ones now.

5.3.1 Variables for debugging

During the development of the simulation many values where measured to verify the
correct behavior of the simulation. These were usually outputted to the screen so they
could be checked easy and fast.

5.3.2 Assigned subcarriers

We measure the number of subcarriers that get assigned to each ONU during the whole
simulation. This is done by counting them after every time the subcarrier assignment
method has been executed.

5.3.3 Loaded bits per symbol

The number of loaded bits per symbol is determined every time epoch after the bit
loading is finished. Then the total amount of bits loaded on the subcarrier assigned to one
ONU is stored. Also the distribution of these total amounts is stored, so it is possible to
see how often a certain total amount of bits was assigned per ONU.

 42

5.3.4 Delays

Determining delays took a little longer then we expected at first. Initially we used a
statistic wire from the proc node in the ONU to the queue node. But it was unclear what
kind of delay was reported there and if it was an average or connected to a specific
packet.

So to be sure we were measuring the correct value we went inside the queue node and
used the op_q_stat() function with OPC_QSTAT_DELAY as argument to determine the
delay at the end of every service completion. This delay was documented better so we
know exactly what it consists off, it is the time a packet spends in the queue starting with
its arrival and ending once it has been processed. This delay is also known as the sojourn
time and that term we will be using in the future.

After every packet that is done processing we get a new sojourn time. We can record
every instance of this value or add it to a total sojourn time variable. With such a total
value variable and a sojourn time counter we can determine an average over the whole
simulation run.

5.3.5 Statistical analysis

Because of the nature of simulation it is required to perform some statistical analysis on
the obtained data. This section describes what we have done in that area.

5.3.5.1 Initial transient removal

Ideally we want to observe the simulation during a steady state situation, but when a
simulation starts it usually isn’t in such a state yet. That start up time in which the system
is unstable is called the initial transient period. To get clear results we don’t want to
include that initial transient in our measurement of the sojourn times. There are several
ways to remove this initial transient or to negate its effect. None of these methods are
perfect as it is very hard to exactly determine when the initial transient period is over.

One way is by running the simulation long enough so the effect of the initial transient is
neglectable on the total result. Another way is based on estimating the variance. All
samples will be divided in batches with a certain batch size. We calculate the mean for
all these batches and the variance of those batch means. Starting with a batch size of 2
and increasing it will cause the values of the initial transient period to get in the first
batches. The variance will go down during the process because more and more values of
the initial transient get into the first batch which will be the only big difference with the
other batches. The batch size from when the variance starts to decrease monotonously is
the number of samples that belong to the initial transient and should be removed from the
total number of samples.

 43

We recorded all the sojourn times for one simulation run and applied the above method.
From those variances we determined that the system settled down starting at around 5
seconds. And as can be seen in the timeline in figure [x5] that is the moment when the
measuring of the sojourn times starts.

5.3.5.2 Independent samples

Because a certain simulation runs with a fixed set of parameters and input values can
results in non typical results we run them several times while varying one input value.
Those results can be considered independent enough to draw conclusion from. We can
just determine the average over those values but better is to also determine a confidence
interval. That is a statistical method with which can we determine with a certain
confidence (for example 95%) that the result lies in a certain interval.

5.4 Simulation results

After discussing the simulation development, its inputs and the outputs we finally get to
the results now. At the start of every result a small overview of the used settings and the
measurement we are interested in will be given, then the results are and a discussion of
them is presented.

In general subcarrier assignment method the first possible result of interest is the number
of assigned subcarrier to each ONU. But because with the used subcarrier assignment
methods here that number of subcarriers per ONU is always 8 there is no need to give
any attention to it. The next useful result involves the number of loaded bits.

5.4.1 Loaded bits per symbol

Within the measurement of the loaded bits there are several possibilities of what we
exactly mean by loaded bits. The first thing we will look at is the average total amount of
loaded bits per ONU per symbol.

5.4.1.1 Average loaded bits per symbol

For every time epoch an assignment is created and every ONU will end up with a number
of bits per symbol it can use to transmit / receive data during that time epoch. That
amount of bits we call the total loaded bits, we track this value during the simulation and
determine an average of it in the end. This results in the average total amount of loaded
bits per symbol per ONU.

 44

For every case the simulation is executed for 5 different datasets and 15 different OPNET
seeds for a total of 75 simulation runs for one subcarrier assignment method. Every
dataset contains a different instance of the channel frequency responses, with a different
seed for every time epoch. And every different OPNET seed causes a different drawing
of random numbers for the traffic generation. The results of these 75 separate runs are
then averaged to come to the final result which is presented here. This is done so that we
are relatively sure the outcome wasn’t caused by a specific combination of inputs. As it is
possible that under certain circumstances a rare event occurs in which the results aren’t
representative at all for the system.

The first four cases are defined such to cover a large portion of situations of interest.
Based on those cases and the results they provide other cases are used to further explore
certain aspects of the algorithms. Therefore we first now present the results from those
four cases.

5.4.1.1.1 Case 1
In this case the distances between the OLT and ONUs are uniformly distributed between
1000 and 3000 meters. After the first run we obtain the randomly chosen distances, for
ONU 0 through ONU 15 they are: 2520, 2617, 2058, 1369, 1052, 2601, 2831, 2506,
2387, 1015, 2346, 1632, 2175, 1632, 2136, and 2590 meters. The traffic loads are set to
100Mbps for all ONUs. We simulate downlink traffic here and in all other cases unless
mentioned otherwise. With these settings we execute the simulation once for all 4
assignment methods for 1076 time epochs. The result after the necessary statistical
processing can be seen in Figure 5.6. In Figure 5.7 the previously mentioned distances
between the OLT and ONUs be seen, also the “reverse distance” is visible, that is 3000
meter minus the actual distance.

 45

Average total loaded bits per symbol per ONU case 1

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

bi
ts

 p
er

 s
ym

bo
l

stable matching contiguous interleaved hungarian

Figure 5.6

distances between OLT and ONUs

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

m
et

er

distance reverse distance

Figure 5.7

 46

In the chart the dots on the lines are the actual data points, the connecting lines are used
to make the behavior clearer. For the exact values see appendix B. The values on the y-
axis are the amount of bits per symbol and the values on the x-axis are the ONU numbers.
The chart shows that the Hungarian method is results in the most loaded bits, closely
followed by the stable matching method. The contiguous and interleaved methods clearly
get assigned less bits but the amount isn’t always higher for one of them. All methods
show a certain trend where for example ONU 4 and 9 stand out. This trend follows the
reverse distances shown in Figure 5.7 between the OLT and ONUs, here ONU 4 and 9
have the smallest distance to the OLT.

5.4.1.1.2 Case 2
In the next case we use the same distributed distance but change the traffic loads, those
will be alternating between 150 and 50 Mbps. This change is made to better examine the
stable matching method. In principle it should now favor the higher loaded ONUs over
the lower loaded ONUs. Again the simulation is executed for all 4 assignment methods
and the resulting chart can be seen in Figure 5.8.

The traffic loads for the ONUs is shown in Figure 5.9, as mentioned before it alternates
between 150 and 50 Mbps.

 47

Average total loaded bits per symbol per ONU case 2:
distributed distances (1000-3000m), alternating loads (50-150 Mbps)

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

bi
ts

 p
er

 s
ym

bo
l

stable matching contiguous interleaved hungarian

Figure 5.8

Traffic loads for ONUs

0.00

25.00

50.00

75.00

100.00

125.00

150.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

M
bp

s

traffic load

Figure 5.9

 48

Now the even numbered ONUs have a higher traffic load then the odd numbered ONUs.
The values for contiguous, interleaved and Hungarian loaded bits are exactly the same
because they aren’t affected by the traffic load. The values for the stable matching are
different though, the even numbered higher loaded ONUs have a higher amount of loaded
bits almost as high as the values for the Hungarian method. For the odd numbered, lower
loaded ONUs the opposite is the case. The difference in the total amount of loaded bits
over all ONUs is very small between the two cases, just the way they are spread out over
the ONUs is rather different.

5.4.1.1.3 Case 3 / Case 4
To make the results clearer we rerun the two cases but now with fixed distances of 2000
meter between the OLT and the ONUs. In this way the trend of the chart isn’t dependant
on the difference in distances anymore. The results of this are shown in Figure 5.10 and
Figure 5.11.

Average total loaded bits per symbol per ONU case 3

13.00

13.50

14.00

14.50

15.00

15.50

16.00

16.50

17.00

17.50

18.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

bi
ts

stable matching contiguous interleaved hungarian

Figure 5.10

 49

Average total loaded bits per symbol per ONU case 4:
equal distances (2000m), alternating loads (50-150 Mbps)

13.00

13.50

14.00

14.50

15.00

15.50

16.00

16.50

17.00

17.50

18.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

bi
ts

stable matching contiguous interleaved hungarian

Figure 5.11

In the case with equal loads the order of which method can load the most bits doesn’t
change. Hungarian loads the most, closely follow by stable matching. Contiguous and
interleaved follow some bits behind and the difference between them is very small and
not better for one of them. The charts show less difference per ONU now because of the
equal distances. The trend we see for all methods, though less profound, is caused by the
difference in frequency responses.

A similar result is shown for the case with alternating loads and equal distances. Stable
matching is able to come close to Hungarian for the higher loaded ONU. Here it is very
clear to see that the loaded bits per symbol follow the traffic loads, which were shown in
Figure 5.9.

5.4.1.2 Statistics

Next to just presenting the average values themselves we can perform some more
statistics on them. The first statistic we want to perform is summing the average loaded
bits per symbol per ONU for one assignment method. This can be seen as the total
throughput for the system for a certain assignment method.

 50

We now present those summed values for the 4 assignment methods in the 4 cases in
Table 5.1.

Case Stable matching Contiguous Interleaved Hungarian
1 265.9159 220.2688 221.8803 274.2175
2 266.0993 220.2688 221.8803 274.2175
3 265.2683 221.997 222.6929 273.4851
4 265.2408 221.997 222.6929 273.4851

Table 5.1: Summed average total loaded bits per symbol

We see that that in all cases the summed value remains pretty much the same in all cases
for all methods. For contiguous, interleaved and Hungarian there is no difference between
case 1 and 2 and case 3 and 4. This is because these methods don’t take the traffic loads
into account and that is the only difference between the cases.

Let’s look at the ratios between the different methods in relation to the Hungarian one,
they are shown in Table 5.2. It’s clear to see that in all cases the stable matching method
is very close to the Hungarian one, at 97.0%.

Case Stable matching Contiguous Interleaved Hungarian
1 0.969726 0.803263 0.80914 1.0000
2 0.970395 0.803263 0.80914 1.0000
3 0.969955 0.811733 0.814278 1.0000
4 0.969855 0.811733 0.814278 1.0000

Table 5.2: Ratio’s of different methods

5.4.1.2.1 Confidence intervals

As mentioned in section 5.3.5.2 confidence intervals can be calculated for a number of
independent samples. This gives the interval in which for certain certainty the results lie.
In the case of average loaded bits per symbol this is only useful for stable matching as for
the other methods the result is the same for the different seeds. The result was that on
average with 95% certainty the value is between 0.012 bits below and above the
previously shown average, a pretty small interval. For the all the confidence intervals see
appendix B.

5.4.1.3 Elasticity of stable matching

In the charts of the cases with alternating traffic loads we see that the stable matching
method is able to adapt in some degree to the difference in traffic loads. The higher
loaded ONUs get more loaded bits per symbol then the lower loaded ONUs, but as
mentioned the summed value remains about the same. So this doesn’t cause extra
throughput to become available or to loose throughput. For now we focus on the case
with equal distances because there it is easier to observe this effect of stable matching.

 51

But how much difference is there in load bits per symbol between the higher and lower
loaded ONUs? We take another look at case 4, as it shows the elastic effect of stable
matching the best. When we average the values for both sets of loaded bits we get 16.88
for the higher loaded ONUs and 16.27 for the lower loaded bits, so the interval is 0.60
bits. This value isn’t that large, compared to the 16.58 loaded bits per symbol on average
over all ONUs. But it does enable stable matching to come close to the Hungarian
method in certain circumstances. And this elasticity effect can be useful in handling
irregularly occurring large bursts of traffic.

A logical question now is; can we enlarge this interval of the stable matching assignment
method? Under what circumstance might the system offer a larger interval? Let’s
examine the cases with less higher loaded ONUs. For this, we use case 5 and case 6, with
respectively 4 and 1 higher loaded ONU(s). Because interleaved and contiguous are
independent of the traffic load and always perform worse then stable matching we leave
those out here. Hungarian is added though as a reference, but as it’s also independent of
the traffic load it will be the same as in cases 3 and 4.

For case 5 and 6 the resulting charts are respectively shown in Figure 5.12 and Figure
5.13.

Average total loaded bits per symbol per ONU case 5:
equal distances (2000m), 150Mbps on first 4 ONUs

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

bi
ts

 p
er

 s
ym

bo
l

stable matching contiguous interleaved hungarian

Figure 5.12

 52

Average total loaded bits per symbol per ONU case 6:
equal distances (2000m), 150Mbps on ONU 0

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

bi
ts

 p
er

 s
ym

bo
l

stable matching contiguous interleaved hungarian

Figure 5.13

The related statistics are given in Table 5.3 and Table 5.4, we also repeat the values for
case 4.

Case Stable matching Hungarian
4 265.24 273.49
5 265.26 273.49
6 265.21 273.49

Table 5.3: Summed average loaded bit per symbol

Case Avg loaded bits

high loaded ONU(s)
Avg loaded bits low
loaded ONUs

Interval Avg loaded bits
all ONUs

4 16.88 16.27 0.61 16.58
5 16.88 16.48 0.41 16.58
6 16.93 16.55 0.38 16.58

Table 5.4: The effect of less high loaded ONUs

Overall it doesn’t appear to matter much how many ONUs are highly loaded. The
maximum average amount of loaded bits per symbol seems to be around 16.90.
Another possible way to enlarge the interval is by increasing the traffic loads of the
higher loaded ONU(s). This has as effect that the higher loaded ONUs will have a larger
queue size all the time and therefore are always put in front of the preference lists of the
subcarriers. When an ONU is less highly loaded its queue length can become the same or

 53

smaller as the lower loaded ONUs. Then such an ONU might not be recognized as a
higher loaded ONU and therefore doesn’t get a better set of subcarriers.

On itself this is correct behavior, but if we want to examine how to increase the interval
we don’t want it to happen. So some variants of case 6, but with a higher traffic load for
the higher loaded ONU, were explored and it was indeed visible that the interval got a
little larger. The most extreme of these variants, case 8 was with 250 Mbps on one ONU
and 50 Mbps on the others; this resulted in 17.00 loaded bits per symbol for that user.

In both approaches the interval can be stretched a little more, but it’s not that spectacular.
Isn’t it simply possible to get more then around 17.00 bits for a certain user? This leads to
the question, what is really the maximum for a specific ONU, without being unfair to the
other ONUs? To answer that question a separate assignment method was developed,
called the unfair method. In this method one ONU, the selected ONU, can select the best
8 possible subcarriers, from its point of view, for itself. The other subcarriers are then
given to the other ONUs in no specific order. This means that the selected ONU gets the
best subcarriers and therefore should be able to get the highest amount of total loaded bits
per symbol during every time epoch for that specific ONU. The simulation was executed
using this subcarrier assignment method and that resulted in an amount of bits per symbol
below that of case 8 for the higher loaded ONU, about 16.30 bits per symbol.

Why did this happen? To understand this we need to look at the bitloading process. As
mentioned these were assigned in no specific order, so there is a chance bad subcarriers
are assigned. As we are simulating downlink traffic the available power in the bitloading
stage is used for all subcarriers, so besides the 8 subcarriers assigned to the selected
ONU, also on the 120 subchannels which are just assigned to ONUs without regard of
their quality for that ONU. During the bitloading the 8 subcarriers assigned to the
selected ONU get their 2 bits easily. The rest of the power will be used on loading the
first 2 bits on subcarriers that can require more power then when these subcarriers would
have been assigned based on quality like with stable matching. While these subcarrier
require more power to load 2 bits, it is not so much power that it would be cheaper to
load 2 more bits per symbol on the 8 subcarriers assigned to the selected ONU. So in the
end the randomly assigned subcarriers require too much power for the 8 subcarriers
assigned to the selected ONU to get loaded to their possible maximum.

So when looking at the bits per symbol we determine the unfair method doesn’t perform
better. Therefore we can’t draw any useful conclusions about the amount of bits per
symbol the stable matching method is able to load. But when looking at the actual
assigned subcarriers we see something interesting, these are almost identical between the
stable matching method in case 8 and the unfair method.

We say almost because there are two exceptions. The first one is during the first time
epoch, which assignment is determined before traffic starts so in stable matching the
heavy loaded ONU isn’t in front of the preference list yet. The other exception is when
there are more then one subcarriers whose associated subchannels have the same
normalized SNRs. When these subcarriers are around the 8th best it is possible that there

 54

is a difference between the one assigned by the unfair algorithm and the one assigned by
the stable matching. This is caused by the fact that with the unfair algorithm the
subcarriers are sorted and a lower numbered subcarrier will be in front of higher
numbered subcarrier whose associated subchannels have an equal normalized SNR. With
stable matching the ties of these subchannels with equal normalized SNR have been
randomly broken. So while different subcarriers are assigned the normalized SNRs of the
associated subchannels are equal.

We can conclude that when an ONU has the longest queue length, and therefore is in
front of the preference lists of the subcarriers, it behaves as the unfair method in respect
to the normalized SNR of the associated subchannels of its 8 subcarriers.

This also shows that the subcarrier assignment and bitloading process is a complicated
one in which several things depend on each other. We can limit the complexity somewhat
in the uplink direction. Among other things, then every ONU has its own amount of
available power for bitloading, so there is no effect caused by the subcarriers assigned to
other ONUs. If we run the simulation for traffic in the uplink direction we see that the
total bits per symbol loaded with unfair method surpasses that of the Hungarian method
for the chosen ONU. The stable matching method results in the same amount of loaded
bits per symbol for the most highly loaded ONU during the whole simulation. This is
what we expected as the Hungarian method tries to find an overall optimal solution
without actively favoring a certain ONU.

5.4.1.4 Equalization effect

Another measure of interest is the variance between the loaded bits of the different
ONUs. This is shown in Table 5.5 and can be seen as expressing with a number how flat
a certain line in the previously shown Figure 5.6, Figure 5.8, Figure 5.10, Figure 5.11.

Case Stable matching Contiguous Interleaved Hungarian
1 0.309924 0.285667 0.277138 0.42628
2 0.320073 0.285667 0.277138 0.42628
3 0.001960 0.051109 0.001333 0.00283
4 0.100077 0.051109 0.001333 0.00283

Table 5.5: Variance in the average total loaded bits per symbol

This table doesn’t show anything particularly interesting. For the distributed distances
cases the variance is larger compared to the equal distances cases. This is because the
difference in distance has a clear effect on the amount of bits per symbol that can be
loaded. In case 4 the variance for stable matching is larger then in case 3 because of the
adaptation to the traffic load effect.

But what if we increase the traffic load on all ONUs? This will have as an effect that the
stable matching algorithm can better notice the difference in distances. The ONUs that
are further away from the OLT will initially be loaded with less bits per symbol. That is

 55

because their normalized SNR is worse then that of the ONUs that are closer to the OLT.
As they have less loaded bits per symbol their queue lengths will grow. Then the higher
queue length causes these ONUs to be more in the front of the preferences lists.
Therefore these ONUs will be selected more easily in the stable matching method and get
more loaded bits per symbol, thereby (partly) negating the effect of their worse
normalized SNR.

In case 10, 11 and 12 all ONUs are loaded with respectively 150 Mbps, 175 Mbps and
200 Mbps on all ONUs, case 1 with 100 Mbps on all ONUs is added as a reference. The
resulting variances for stable matching and Hungarian are shown in Table 5.6.

Case Mbps Stable Matching Hungarian
1 100 0.30992 0.42628
10 150 0.27531 0.42093
11 175 0.00831 0.42093
12 200 0.00778 0.42093

Table 5.6: The equalization effect

To make things more clear we show the chart on which these variances are based in
Figure 5.14. Hungarian is just shown once as it doesn’t change with the different traffic
loads. We added some extra lines to show the effect in the range up to the point that the
method starts getting overloaded.

Loaded bits per symbol per ONU for different traffic loads

16.00

16.50

17.00

17.50

18.00

18.50

19.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ONU

bi
ts

 p
er

 s
ym

bo
l

100 Mbps 150 Mbps 155 Mbps 160 Mbps 165 Mbps
170 Mbps 175 Mbps Hungarian

Figure 5.14

 56

In Table 5.6 the variance for the Hungarian changes after case 1 because we only
performed simulations over 576 time epoch for the other three cases. This was done as
these simulations are very demanding on the computer they run on and therefore take a
long time to finish.

From Table 5.6 and Figure 5.14 we can see that for a higher load on all ONUs the
variance for stable matching decreases. The higher points and lower points in the chart
move towards each other, up to almost a flat line. This means that the difference in
loaded bits per symbol per ONU becomes smaller. So even though there is a difference in
distances and therefore normalized SNRs the stable matching method gives the ONUs a
more equal amount of loaded bits per symbol for higher loads.

 57

5.4.2 Sojourn times

The amount of average total assigned bits gives us a certain insight in the assignment
algorithms, but it doesn’t show the whole picture (more on this further in this section). To
be able to compare the algorithms further we look at the packet sojourn time.

5.4.2.1 Mean sojourn times

One such sojourn time on itself isn’t that useful, but the average value of all sojourn time
per ONU samples for an execution of the simulation is, we call that the mean sojourn
time. As with the loaded bits per symbol here we also execute the simulation for 5 data
sets and 15 OPNET seeds per dataset and average over the 75 results.

While using the loaded bits is pretty straight forward, working with the sojourn times is
somewhat more complicated. The first big difference is the number of samples, there are
only 8 loaded bits values per ONU per time epoch. But there are many more sojourn time
values during one time epoch per ONU. It does depend on the traffic load, but even with
a low traffic load there will be much more samples.

Because the mean sojourn times have an initial transient period (mentioned before in
section 5.3.5.1 initial transient removal is used in the results of the sojourn time. The
sojourn time samples from the first 5 seconds are ignored.

5.4.2.1.1 Case 1
Let’s first look at the mean sojourn times for the case 1, it is shown in Figure 5.15. Like
with the loaded bits, the dots show the actual data points and the connecting lines are
used to better see the behavior. In these charts time is the scale on the x-axis in seconds
and it represents sojourn time, and usually the lower is the better. So the lowest line in the
chart represents the most desirable outcome.

 58

Mean sojourn times per ONU case 1:
distributed distances (1000-3000m), equal loads (100 Mbps)

0.000000

0.005000

0.010000

0.015000

0.020000

0.025000

0.030000

0.035000

0.040000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

se
c

stable matching contiguous interleaved hungarian

Figure 5.15

This chart shows two things, first that the contiguous method has pretty bad mean sojourn
times. While we saw little to no difference in the amount of loaded bits between
contiguous and interleaved, this chart shows a whole different situation. The reason for
this is that with the contiguous method it can more easily happen that all subcarriers
assigned to a certain ONU are so bad so that no bits can be loaded for some time epochs.
This is because the link characteristic is like shown in Figure 5.2, and with the contiguous
method it is possible to get in such a dip with all assigned subcarriers. The instances
where for a whole time epoch no data can be send are very bad for the mean sojourn time
and causes the effect shown in the figure.

The second observation is a consequence of the first; the mean sojourn times for the
contiguous method are much larger in relation to the other methods, therefore making it
hard to see the other values. So we won’t show those values in the charts anymore, but as
they are usually much worse then the other methods they aren’t that useful. We will keep
track of them and when something interesting shows up it will be shown. The results
without the contiguous method are shown in Figure 5.16.

 59

Mean sojourn times per ONU without contiguous case 1:
distributed distances (1000-3000m), equal loads (100 Mbps)

0.000000

0.000500

0.001000

0.001500

0.002000

0.002500

0.003000

0.003500

0.004000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

se
c

stable matching interleaved hungarian

Figure 5.16

5.4.2.1.2 Case 2
In Figure 5.17 the chart is shown for case 2, again contiguous causes the chart to be
rather unreadable. Though here interleaved also produces too different results and is
removed from Figure 5.18. The associated traffic loads for the ONUs can be found in
Figure 5.9.

 60

Mean sojourn times per ONU case 2:
distributed distances (1000-3000m), alternating loads (50-150 Mbps)

0.000000

1.000000

2.000000

3.000000

4.000000

5.000000

6.000000

7.000000

8.000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

se
c

stable matching contiguous interleaved hungarian

Figure 5.17

Mean sojourn times per ONU without contiguous and interleaved
case 2: distributed distances (1000-3000m), alternating loads (50-150

Mbps)

0.000000

0.000500

0.001000

0.001500

0.002000

0.002500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

se
c

stable matching hungarian

Figure 5.18

 61

Both semi static methods clearly perform worse in the cases with the higher loaded
ONUs. This is because 150 Mbps is close to what these methods can handle based on the
amount of total bits per symbol that are loaded. So there will be time epochs when they
don’t have enough capacity and the mean sojourn time goes up because of that.

For stable matching and Hungarian the higher loaded ONUs also show a higher mean
sojourn time. This is a direct result from the traffic load, more traffic mean larger queue
sizes.

5.4.2.1.3 Case 3 / case 4
We show the mean sojourn times for case 3 and 4 in Figure 5.19 and Figure 5.20. Both
are without the contiguous and interleaved values as these make the charts less readable
and aren’t that interesting anyway.

Mean sojourn times per ONU case 3:
equal distances (2000m), equal loads (100 Mbps)

0.000000

0.000100

0.000200

0.000300

0.000400

0.000500

0.000600

0.000700

0.000800

0.000900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

se
c

stable matching hungarian

Figure 5.19

 62

Mean sojourn times per ONU case 4:
equal distances (2000m), alternating loads (50-150 Mbps)

0.000000

0.000500

0.001000

0.001500

0.002000

0.002500

0.003000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ONU

se
c

stable matching hungarian

Figure 5.20

The difference in values for case 3 seems to make sense; Hungarian is able to load more
bits per symbol so it’s getting better sojourn times. But in case 4 one would expect stable
matching to be closer to the sojourn times of Hungarianin the cases with higher loaded
bits.

Is this difference explainable? For this we have to look back at the loaded bits per
symbol. But now the distribution of the total loaded bits per symbol over all the time
epochs are examined. This means how many times a certain amount of total bits per
symbol is loaded during a time epoch for one simulation run. Examples can be seen in
Table 5.7and Table 5.8, they show the results from one simulation run of the stable
matching method and Hungarian method for one ONU.

bits times bits times bits times bits times
0 3 18 11 34 0 50 0
2 1 20 15 36 0 52 0
4 0 22 6 38 0 54 0
6 0 24 11 40 0 56 0
8 0 26 11 42 0 58 0
10 1 28 4 44 0 60 0
12 1 30 8 46 0 62 0
14 3 32 27 48 0 64 0
16 973

Table 5.7: Number of times a total number of bits per symbol is loaded for stable matching

 63

bits times bits times bits times bits times
0 0 18 12 34 0 50 0
2 0 20 13 36 0 52 0
4 0 22 9 38 0 54 0
6 1 24 8 40 0 56 0
8 0 26 4 42 0 58 0
10 0 28 6 44 0 60 0
12 1 30 11 46 0 62 0
14 0 32 40 48 0 64 0
16 970

Table 5.8: Number of times a total number of bits per symbol is loaded for Hungarian

As can be seen the maximum amount of bits per symbol for one ONU is 32. This means
that all 8 subcarriers were loaded with 4 bits per symbol. The bit loading algorithm is
able to load up to 8 bits on one subcarrier (so 64 bits per symbol for one ONU) but with
the characteristics (i.e. optical power, frequency response) of this system, 4 bit per
symbol per subcarrier is the limit.

For the stable matching method it is clear that the in over 75% of the time epochs 16 bits
per symbol are available for an ONU. After that 32 bit per symbol appears the most,
followed by occurrences from the range between 18 and 30 bits per symbol. Situations in
which less then 16 bits are available occur the least, in such a situation the bit loading
algorithm was unable to load any bits on at least one subcarrier.

How does this explain the difference in sojourn times and loaded bits per symbol? When
all the number of times are multiplied with the related amount of loaded bits per symbol
(i.e. 1 * 2, 1 * 4, 0 * 6, 2 * 8, ...) we get a higher total for stable matching then when we
do that for the Hungarian based method. This corresponds with what we see in the chart,
shown in Figure 5.11 of the loaded bits per symbol for case 4. But why do the mean
sojourn times for the same case show a different effect in Figure 5.20?

This is caused by the difference in how often during a simulation run the number of
available bits per symbol for one ONU in a time epoch is below 16. For the stable
matching method this occurs more often then for the Hungarian based method, as can be
seen when comparing both tables. These situations also have a stronger effect on the
mean sojourn time compared to when there are more bits available.

 64

Aren’t there situations when the stable matching assignment method is able to get better
mean sojourn times? It is able to come close to the amount of loaded bits per symbol of
Hungarian, so is it able to get better mean sojourn times? After some experiments we
were unable to find such occurrences though it comes close.

When we set the load for one ONU to 200 Mbps as in case 7 (and 50Mbps on the other
ONUs), we get mean sojourn times as shown in Table 5.9 for the different methods. The
values for case 6 are added as a reference, it can be seen that for 150 Mbps on one ONU
Hungarian has a better mean sojourn time than stable matching, though the difference is
small. Contiguous and interleaved are already overloading in case 6, they can’t handle the
150 Mbps traffic load.

Case Mbps on ONU Stable matching Contiguous Interleaved Hungarian
6 150 0.00184 2.57549 3.97617 0.00131
7 200 8.32093 15.8932 16.9673 8.12931
8 250 17.8145 23.9137 24.7690 17.6762

Table 5.9: Mean sojourn times for a higher loaded ONU

With 200 Mbps on one ONU, stable matching and Hungarian are both overloading, but
because of the less bits per symbol for stable matching it overloads a little earlier.
Contiguous and interleaved only get overloaded more then before.

We can raise the traffic load for the one ONU even more, for example to 250 Mbps in
case 8. Here for all methods the effect is only worse, they are even more overloaded. The
difference between stable matching and Hungarian is still small, but Hungarian remains
the best.

 65

6 Conclusion and future work

6.1 Discussion of the results

Let’s first recall the main goal of this assignment: “Develop and simulate an adaptive
subcarrier assignment algorithm to be used in a full service access network using
multimode fibre”.

After an exploration of the subcarrier assignment problem, we found the stable matching
algorithm. The properties it has - always resulting in a stable matching, getting the best
possible “partners” for the selecting entities and being able to take the preferences of both
sets of entities into account - appeared to be useful for a subcarrier assignment method.
There was a problem of unequal sets to solve, but several solutions for that were
presented.

Before the actual behaviour of the stable matching subcarrier assignment method can be
determined, a simulation had to be developed. For this OPNET was used. In it a simple
network with associated fibre frequency response was modelled. Then the stable
matching and three other subcarrier assignment methods (contiguous, interleaved and
Hungarian) were implemented for simulation.

Once this was all done, the behaviour of the stable matching subcarrier assignment
method along with the other assignment method can be simulated and a performance
comparison could be done. From this process we can draw the following conclusions
about the stable matching subcarrier assignment method.

• The method always creates subcarrier assignments that fulfil the defined demand
(assigning 128 subcarriers evenly over 16 ONUs and assigning each subcarrier to
only one ONU).

• The method is able to select the best possible subcarriers for a single ONU, in its
point of view, when that is the most heavily loaded ONU (the ONU with the
largest queue length, so in front of the preference lists of the subcarriers).

• The method shows an elasticity effect: when confronted with different traffic
loads it will load more bits per symbol on the higher loaded ONUs.

• The method shows an equalizing effect: when the traffic load is perceivably high
for some ONUs, the difference in loaded bit per symbol per ONU caused by the
variation in distances between ONUs and OLT is smaller than when those ONUs
are lowly loaded.

From this we can conclude that we indeed have developed an adaptive subcarrier
assignment algorithm to be used in a full service access network using multimode fibre.
A paper [TaSi06] on this method with preliminary results was published during NOC
2006.

 66

6.2 Future work

A thesis can never be exhaustive; there are always areas that could have used some more
attention and new questions that pop up during the thesis. Unfortunately time is limited
so it is not possible to do all that research and answer all the questions. Therefore we now
list what we feel are the things that could be explored further.

There is a distinct difference to make in the different directions this future work can go.
The first direction is that of the larger project and eventually the real life system.
Everything done in this thesis was with the idea that it could become part of the larger
project. So the best future work is actually putting this in the larger system once that is
finished.

But as that probably isn’t going to happen in the nearby future, there is another direction
to go: enhancing the simulation. A simulation is always an abstraction of a real system
and usually can’t match it exactly. In this case it was also the first time that the different
aspects of this system were explored. But now that there is a base on which to build, it’s
possible to enhance certain aspects. Future work can be, for example, creating more
realistic traffic generation.

Also within the chosen subcarrier assignment method future work is possible. As can be
seen in chapter 3, there are many types of subcarrier assignment methods. For some it’s
already clear they don’t meet the demands we have set for possible assignment methods,
but others might be possible, either with or without extra changes.

Even within the stable matching approach there are other possibilities to explore. For the
stable matching algorithm the “virtual user” variant was used. But as mentioned in
chapter 4 another approach is the “free user” one, which might be able to give some more
elasticity. On the area of elasticity future work would indeed be welcome, as this would
certainly make the method more effective. One possibility to examine here is allowing
more flexibility in the amount of subcarrier assigned per ONU. Now that was fixed to 8
per ONU, but with determining this dynamically based on the traffic demands a solution
much closer to the optimal one is possible.

 67

References

[Bria04] A C implementation of the Hungarian Method, B. P. Gerkey,
http://ai.stanford.edu/~gerkey/tools/hungarian.html (last checked 25-06-2006).

[Cyri04] C-implementation of the Hungarian Method, C. Stachniss,
http://www.informatik.uni-freiburg.de/~stachnis/misc.html (last checked 25-06-2006).

[EtPl00] W. van Etten and J. van der Plaats, Principles of optical fibre communication,
2000, Twente university press, Enschede.

[GaSh62] D. Gale and L.S. Shapley, College admissions and the stability of marriage,
American Mathematical Monthly, 69:9-15, 1962

[Google] Google, http://www.google.com/ (last checked 31-07-2006).

[GuIr89] D. Gusfield and R.W. Irving, The Stable Marriage Problem: Structures and
Algorithms, The MIT Press, 1989

[IOP-GenCom]
Full-service Access Network using Multimode Fibre,
http://www.ctit.utwente.nl/research/projects/national/iop-gencom/fsan.doc/ (last checked
24-06-2006).

[KiLe01] I. Kim, H. Leem Lee, B. Kim, Y. H. Lee, On the Use of Linear Programming
for Dynamic Subchannel and Bit Allocation in Multiuser OFDM, 2001, IEEE.

[Knut93] D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial
Computing, 1993, ACM Press, New York.

[KoBo03] T. Koonen, H. van den Boom, G.D. Khoe, Broadband Access and In-House
Networks - Extending the Capabilities of Multimode Fibre Networks. Proc. of ECOC,
2003.

[Kuhn55] Kuhn, H. W. (1955), "The Hungarian method for the assignment problem",
Naval Research Logistics Quarterly, 2:83–87.

[Munk57] Munkres, J. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics vol 5 no 1 p 32 (Mar.
1957), 32-38

[MuPf02] G. Munz, S. Pfletschinger, and J. Speidel, "An efficient waterfilling algorithm
for multiple access OFDM," Proc. IEEE Global Telecommunications Conf.
(GLOBECOM 2002), vol.1, pp.681–685, Nov. 2002.

 68

http://ai.stanford.edu/%7Egerkey/tools/hungarian.html
http://www.informatik.uni-freiburg.de/%7Estachnis/misc.html
http://www.google.com/
http://www.ctit.utwente.nl/research/projects/national/iop-gencom/fsan.doc/

[RaWh99] L. Raddatz, I.H. White, Overcoming the Modal Bandwidth Limitation of
Multimode Fiber by Using Passband Modulation, Photonics Technology Letters, IEEE,
1999.

[RhCi01] W. Rhee, J. M. Cioffi, Increase in Capacity of Multiuser OFDM System Using
Dynamic Subchannel Allocation, 2001, IEEE.

[Springer] SpringerLink, http://www.springerlink.com (last checked 31-07-2006).

[TaBo05] R.O. Taniman and A.C. van Bochove, Duplexing methods for PON systems
using multimode fiber with multicarrier transmission, Proceedings Symposium
IEEE/LEOS Benelux Chapter, 2005, Mons.

[TaSi06] R.O. Taniman, B. Sikkes, A.C. van Bochove, P.T. de Boer, Stable-matching-
based subcarrier assignment method for multimode PON using a multicarrier variant of
subcarrier multiplexing, 2006, NOC.

[Wils72] L.B. Wilson, An analysis of the stable marriage assignment algorithm, BIT,
12(1972), pp. 569-575.

[Wins04] W.L. Winston, Operations Research: Applications and Algorithms, 4th edition,
2004, PWS-KENT Publishing Company, Boston.

[YuCi01] W.Yu and J. M. Cioffi, “On constant-power water-filling,” in Proc. IEEE
Int. Conf. Communications (ICC 2001), vol. 6, Helsinki, Finland, June
11–14, 2001, pp. 1665–1669.

 69

http://www.springerlink.com/

Appendix A OPNET

In this appendix we discuss the simulator used in this thesis, OPNET version 11.5. We
start with giving some general background of OPNET and how modeling / simulating in
OPNET works. Then we discuss the actual implementation we made in OPNET.

1 Introduction

OPNET Modeler is a network modeling and simulation tool developed by OPNET
Technologies, Inc. It is a so called discrete event simulator; this means that it keeps a list
of events and times when these events are scheduled to happen. During execution it will
process the event list and when the internal simulation time is equal to the scheduled time
for an event the simulator will execute it. Events themselves can schedule new events to
simulate a system with recurring events. Because the simulator jumps from event to event
and thereby skipping the time in which nothing happens it is possible to simulate long
time periods in a fraction of that time.

The OPNET Modeler software is being used by a wide variety of companies and research
institutions. It contains a wide range of pre-defined network elements like routers,
switches, workstations and links from different vendors. But it is also possible to create a
new element from scratch. With these elements it is possible to create all kind of
networks. The network scale can be ranged from worldwide till just a few meters.

Next to wired links it is possible to use wireless links and even satellite links. For the
wireless links the terrain they function on can be modeled and for the satellite links their
orbits can be modeled. Overall it’s an extremely extensive modeling tool of which only a
limited portion will be used for this thesis.

2 Modeling in OPNET

Modeling a system in OPNET is done in a three level hierarchical fashion, as shown in
figure 1. At the top level is the network level, there different
nodes and links can be placed via the project editor. This is a
graphical editor in which via a drag and drop principle the
required network can be created. A project can contain
different scenarios with totally different network layouts or
just different settings for certain network elements.

Network Level

Node level

Process level

Figure A.1: The three
OPNET levels

 70

Below the network level there is the node level, consisting of different modules. The
modules are also modeled via a graphical editor. Modules can be for example
transmitters, receivers, queues or generic processors which functionality a user can
completely define. Sending packets from module to module is done via packets streams.
To read values from one module in another or to set values in one module from another
statistic wires can be used.

At the bottom is the process level, consisting of a combination of finite state machines
and c/c++ code. Via the process editor it is possible to define states and transitions
between those states. Then programming code can be created that should be executed
when a state is entered, exited or when a certain transition is made. This code is normal c
or c++ and can be enhanced with a wide array of functions offered by the Modeler
software. Those are function to for example send packets, take measurements on queues
or wireless links, log statistics and so on.

3 Simulating in OPNET

Once a system had been modeled its behavior can be simulated. It is possible to run the
same modeled system with different input settings so that effect of those can be
examined. OPNET offers an interface in which it is possible to manage these settings and
to queue them in a sequence. In this way it is possible to execute a number of simulation
runs with one click instead of starting them all separately.

Results from a simulation can be obtained by having the simulation itself output them via
the screen or files. OPNET itself offers some ways also, via statistics or probes. With
statistics a value is written to a statistic handle during the simulation and these values can
be recorded. With probes values can also be recorded but with some processing being
performed, for example determining the average. When the results are recorded by
OPNET they can be presented in graphs when the simulation has ended or stored to be
examined at a later stage.

 71

4 Modeling the system under study in OPNET

We will now describe the modeling in OPNET of the network used in this thesis. Starting
at the project level; figure 2 shows the network model and scenario of the project. In the
center there is one OLT and surrounding it are 16 ONUs. There are no links because no
packets are actually transmitted.

Figure A.2: Network model

 72

At first we will focus on the OLT, a figure of the OLT on the node level is shown in
figure 3. It consists of a single processing module called proc.

Figure A.3: OLT at node level

Looking at the process level, shown in figure 4, there is an init state and an idle state.

Figure A.4: OLT at process level

 73

When the simulation starts the init state is entered and is the OLT initialized. Then it
moves to the idle state where it waits until the first interrupt is triggered, it continues
waiting for interrupts causing it to become active once every time epoch.

Every ONU uses the same node level model, which can be seen in figure 5, it contains
more modules then the OLT.

Figure A.5: ONU at node level

The proc module is used for reading assignments and controlling the queue module via
the statistic wires (red dashed arrows). The source, queue and sink modules form a simple
queuing system. Between those modules the packets flow via the packet streams (blue
arrows). For the source and sink we use default OPNET models, some changes have been
made to the default queue model though.

The default model didn’t support a service rate of zero. But because we do need such
functionality that possibility was added. Now when the service rate is zero, the queue
accepts new packets, but doesn’t process any packets. Further code was added to keep
track of certain values inside the queue. This is discussed more extensively in the section
on simulation output in chapter 5.3.

 74

The state machine for proc module at the ONU is very similar to the one of the OLT, as
can be seen in figure 6. It initializes in the init state at the start of the simulation and then
waits in idle state to read the assignment once every time epoch.

Figure A.6: The ONU at process level

 75

Appendix B The complete results

In the simulation chapter we only presented a part of the data that was obtained from the
simulations. This is because we end up with lots of data from the simulation and not all of
that data is interesting to present in the main part of the thesis. But for completeness it
should of course be available and that is done in this appendix.

Further was much of the data presented in charts. The reason is that charts make it easier
to interpret the data. The actual values on which the charts are based are presented here.

1 Loaded bits per symbol

We start with the loaded bits per symbol values from the four main cases.

ONU Stable matching Contiguous Interleaved Hungarian
0 16.259430 13.513383 13.471004 16.714498
1 16.307311 13.617100 13.461338 16.771004
2 16.540991 13.889591 13.836803 17.007063
3 17.305725 15.053532 14.546468 17.790706
4 17.691078 13.886989 14.892193 18.330855
5 16.272119 13.318216 13.484387 16.705576
6 16.133755 13.151301 13.287360 16.510780
7 16.281908 13.306320 13.496282 16.715613
8 16.345601 13.443866 13.647584 16.823048
9 17.958315 14.873234 14.969888 18.801115
10 16.325725 13.571376 13.625279 16.779182
11 16.777670 14.140148 14.127881 17.412639
12 16.380867 13.482528 13.671747 16.918959
13 16.781413 13.866171 14.158736 17.363197
14 16.398042 13.739777 13.755390 16.928625
15 16.155985 13.415242 13.447955 16.644610

Table B.1: Average total loaded bits per symbol case 1

ONU Stable matching Contiguous Interleaved Hungarian
0 16.522007 13.513383 13.471004 16.714498
1 16.085799 13.617100 13.461338 16.771004
2 16.819033 13.889591 13.836803 17.007063
3 17.035514 15.053532 14.546468 17.790706
4 18.093358 13.886989 14.892193 18.330855
5 16.084585 13.318216 13.484387 16.705576
6 16.349889 13.151301 13.287360 16.510780
7 16.064783 13.306320 13.496282 16.715613
8 16.597745 13.443866 13.647584 16.823048

 76

9 17.549046 14.873234 14.969888 18.801115
10 16.590087 13.571376 13.625279 16.779182
11 16.497497 14.140148 14.127881 17.412639
12 16.686691 13.482528 13.671747 16.918959
13 16.496283 13.866171 14.158736 17.363197
14 16.743618 13.739777 13.755390 16.928625
15 15.883371 13.415242 13.447955 16.644610

Table B.2: Average total loaded bits per symbol case 2

ONU Stable matching Contiguous Interleaved Hungarian
0 16.548798 14.350186 13.945353 17.068030
1 16.577001 14.271375 13.940520 17.092565
2 16.525328 14.068401 13.916729 16.957249
3 16.557819 13.918959 13.908179 17.023420
4 16.633110 13.843123 13.956506 17.104461
5 16.630037 13.732714 13.927509 17.125279
6 16.696357 13.662825 13.976952 17.200743
7 16.584040 13.806692 13.916729 17.043494
8 16.604585 13.780669 13.950929 17.123420
9 16.585626 14.004089 13.842007 17.090334
10 16.556109 14.066914 13.941636 17.102230
11 16.564808 13.799628 13.860223 17.122305
12 16.561611 13.831970 13.933457 17.091822
13 16.558340 13.676580 13.889963 17.101487
14 16.520149 13.550558 13.876208 17.119331
15 16.564610 13.632342 13.910037 17.118959

Table B.3: Average total loaded bits per symbol case 3

ONU Stable matching Contiguous Interleaved Hungarian
0 16.855936 14.350186 13.945353 17.068030
1 16.292862 14.271375 13.940520 17.092565
2 16.781958 14.068401 13.916729 16.957249
3 16.280471 13.918959 13.908179 17.023420
4 16.897125 13.843123 13.956506 17.104461
5 16.331252 13.732714 13.927509 17.125279
6 16.975886 13.662825 13.976952 17.200743
7 16.304436 13.806692 13.916729 17.043494
8 16.891549 13.780669 13.950929 17.123420
9 16.280843 14.004089 13.842007 17.090334
10 16.862974 14.066914 13.941636 17.102230
11 16.249665 13.799628 13.860223 17.122305
12 16.897621 13.831970 13.933457 17.091822
13 16.210310 13.676580 13.889963 17.101487
14 16.882751 13.550558 13.876208 17.119331
15 16.245204 13.632342 13.910037 17.118959

 77

Table B.4: Average total loaded bits per symbol case 4

For the confidence intervals from the first four cases only stable matching results into
useful results, the other methods all result in identical values for the different OPNET
seeds.

ONU Case 1 Case 2 Case 3 Case 4
0 0.011332 0.006617 0.017703 0.006146
1 0.014015 0.009974 0.010113 0.010873
2 0.013590 0.007896 0.011568 0.014198
3 0.014037 0.012158 0.011185 0.011272
4 0.018016 0.008716 0.012173 0.010230
5 0.011844 0.009567 0.012893 0.012948
6 0.012100 0.005792 0.013018 0.011750
7 0.010136 0.011195 0.013394 0.013419
8 0.013417 0.008411 0.014210 0.009112
9 0.021328 0.014843 0.014627 0.009423
10 0.013237 0.006418 0.011175 0.009479
11 0.014478 0.019491 0.008593 0.012372
12 0.015879 0.008136 0.017578 0.010831
13 0.011371 0.012072 0.020059 0.012456
14 0.013874 0.009837 0.012872 0.007931
15 0.011622 0.013249 0.013298 0.012983

Table B.5: Confidence intervals (for 95%) of loaded bits per symbol

The elasticity experiments resulted in the following loaded bits per symbol values for the
stable matching method..

ONU Case 5 Case 6 Case 7 Case 8
0 16.907138 16.927757 16.997348 17.007014
1 16.890012 16.555266 16.551722 16.545006
2 16.849343 16.528352 16.519009 16.507831
3 16.888947 16.543346 16.546592 16.546716
4 16.549120 16.619727 16.617522 16.612392
5 16.528699 16.623123 16.613110 16.609021
6 16.620942 16.696506 16.690781 16.680025
7 16.477001 16.561338 16.551177 16.555291
8 16.513680 16.585626 16.582800 16.573383
9 16.488352 16.547782 16.548699 16.557348
10 16.448005 16.517348 16.512292 16.520545
11 16.438389 16.527584 16.527906 16.515242
12 16.435514 16.506468 16.491103 16.498513
13 16.407014 16.487856 16.491623 16.485774
14 16.396406 16.467435 16.466072 16.472491
15 16.419430 16.511301 16.496555 16.504411

Table B.6: Loaded bits per symbol for elasticity experiments

 78

The equalizing effect experiments resulted in the following loaded bits per symbol
values. For the Hungarian method they are identical for all three cases.

 Stable matching Hungarian
ONU Case 10 Case 11 Case 12 Case 10,11,12
0 16.25943 16.2856 16.62838 16.73542
1 16.30731 16.40722 16.71787 16.91389
2 16.54099 16.53264 16.68769 16.98819
3 17.30572 17.29866 16.78972 17.82986
4 17.69108 17.67921 16.83051 18.32431
5 16.27212 16.24273 16.61764 16.67639
6 16.13375 16.1456 16.50102 16.52361
7 16.28191 16.28417 16.62481 16.71458
8 16.3456 16.34954 16.66505 16.80139
9 17.95831 17.83384 16.82815 18.78819
10 16.32572 16.34394 16.64472 16.77292
11 16.77767 16.81111 16.7594 17.37361
12 16.38087 16.49787 16.72685 17.01597
13 16.78141 16.75898 16.78056 17.32014
14 16.39804 16.49056 16.70926 16.97431
15 16.15599 16.17843 16.59537 16.56875

Table B.7: Loaded bits per symbol for equalizing experiments

2 Mean sojourn times

The mean sojourn times for the four main cases, in each case followed by the
corresponding confidence intervals, for 95% certainty.

ONU Stable matching Contiguous Interleaved Hungarian
0 0.000776 0.030140 0.003409 0.000208
1 0.000646 0.026960 0.003363 0.000178
2 0.000607 0.023165 0.002917 0.000260
3 0.000702 0.012302 0.002320 0.000304
4 0.000498 0.026513 0.001565 0.000141
5 0.000612 0.031785 0.003297 0.000197
6 0.000602 0.036296 0.003396 0.000136
7 0.000601 0.036146 0.003009 0.000164
8 0.000693 0.029832 0.003112 0.000210
9 0.000444 0.015238 0.001493 0.000161
10 0.000722 0.027753 0.003209 0.000204
11 0.000828 0.021185 0.003054 0.000272
12 0.000817 0.029417 0.003181 0.000269
13 0.000568 0.023461 0.002286 0.000130

 79

14 0.000847 0.024137 0.003316 0.000151
15 0.000789 0.030360 0.003231 0.000184

Table B.8: Mean sojourn times case 1

ONU Stable matching Contiguous Interleaved Hungarian
0 0.0000324 0.0000795 0.0000229 0.0000013
1 0.0000340 0.0000710 0.0000164 0.0000014
2 0.0000394 0.0000607 0.0000198 0.0000022
3 0.0000383 0.0000379 0.0000180 0.0000021
4 0.0000345 0.0000745 0.0000121 0.0000010
5 0.0000323 0.0001194 0.0000196 0.0000012
6 0.0000342 0.0001596 0.0000296 0.0000003
7 0.0000446 0.0001062 0.0000153 0.0000013
8 0.0000583 0.0001059 0.0000154 0.0000018
9 0.0000301 0.0000442 0.0000083 0.0000014
10 0.0000415 0.0000990 0.0000155 0.0000013
11 0.0000310 0.0000571 0.0000170 0.0000012
12 0.0000402 0.0000760 0.0000153 0.0000014
13 0.0000386 0.0000411 0.0000104 0.0000001
14 0.0000461 0.0000690 0.0000222 0.0000007
15 0.0000308 0.0000928 0.0000179 0.0000011

Table B.9: Confidence intervals mean sojourn times case 1

ONU Stable matching Contiguous Interleaved Hungarian
0 0.002023 5.625757 5.890736 0.000865
1 0.000341 0.010187 0.000324 0.000112
2 0.001943 3.795065 4.102134 0.001238
3 0.000394 0.005826 0.000488 0.000165
4 0.001267 3.783692 0.517584 0.000623
5 0.000323 0.011361 0.000400 0.000117
6 0.001324 6.964275 6.386532 0.000672
7 0.000354 0.012521 0.000340 0.000098
8 0.002055 5.870990 5.160649 0.001036
9 0.000235 0.006855 0.000257 0.000108
10 0.002002 5.530382 5.213557 0.000994
11 0.000475 0.009080 0.000444 0.000150
12 0.002088 5.805397 5.064311 0.001167
13 0.000321 0.009623 0.000305 0.000088
14 0.001941 4.799258 4.743776 0.000724
15 0.000412 0.011394 0.000331 0.000106

Table B.10: Mean sojourn times case 2

ONU Stable matching Contiguous Interleaved Hungarian
0 0.0001408 0.0344268 0.0339956 0.0000111
1 0.0000173 0.0000179 0.0000032 0.0000007

 80

2 0.0001084 0.0209298 0.0213262 0.0000157
3 0.0000213 0.0000079 0.0000022 0.0000011
4 0.0000721 0.0263789 0.0188771 0.0000086
5 0.0000132 0.0000209 0.0000035 0.0000006
6 0.0000968 0.0297036 0.0302293 0.0000065
7 0.0000166 0.0000266 0.0000023 0.0000004
8 0.0001113 0.0296834 0.0302300 0.0000142
9 0.0000161 0.0000143 0.0000023 0.0000006
10 0.0001024 0.0275832 0.0283298 0.0000120
11 0.0000218 0.0000156 0.0000028 0.0000015
12 0.0001413 0.0268722 0.0270213 0.0000202
13 0.0000181 0.0000197 0.0000026 0.0000000
14 0.0000903 0.0287440 0.0291263 0.0000104
15 0.0000282 0.0000248 0.0000036 0.0000007

Table B.11: Confidence intervals mean sojourn times case 2

ONU Stable matching Contiguous Interleaved Hungarian
0 0.000844 0.018158 0.002962 0.000263
1 0.000657 0.020159 0.002962 0.000228
2 0.000681 0.022282 0.003078 0.000268
3 0.000674 0.022841 0.002996 0.000208
4 0.000611 0.022785 0.002883 0.000199
5 0.000596 0.025813 0.002890 0.000189
6 0.000524 0.027440 0.002389 0.000134
7 0.000753 0.023787 0.003127 0.000346
8 0.000703 0.028497 0.003146 0.000138
9 0.000745 0.022688 0.003204 0.000265
10 0.000647 0.022812 0.002641 0.000193
11 0.000722 0.025778 0.002893 0.000207
12 0.000701 0.025929 0.002731 0.000202
13 0.000780 0.028059 0.002853 0.000236
14 0.000805 0.028523 0.002810 0.000170
15 0.000804 0.029282 0.002700 0.000208

Table B.12: Mean sojourn times case 3

ONU Stable matching Contiguous Interleaved Hungarian
0 0.0000565 0.0000507 0.0000179 0.0000017
1 0.0000391 0.0000552 0.0000172 0.0000017
2 0.0000358 0.0000489 0.0000110 0.0000020
3 0.0000416 0.0000929 0.0000170 0.0000018
4 0.0000433 0.0000506 0.0000126 0.0000015
5 0.0000492 0.0000632 0.0000164 0.0000019
6 0.0000437 0.0000948 0.0000214 0.0000005
7 0.0000383 0.0000627 0.0000165 0.0000035
8 0.0000430 0.0000773 0.0000161 0.0000007

 81

9 0.0000392 0.0000616 0.0000153 0.0000021
10 0.0000302 0.0000755 0.0000182 0.0000012
11 0.0000399 0.0000599 0.0000155 0.0000014
12 0.0000518 0.0000751 0.0000172 0.0000012
13 0.0000476 0.0000698 0.0000165 0.0000016
14 0.0000520 0.0000858 0.0000199 0.0000011
15 0.0000428 0.0000899 0.0000124 0.0000015

Table B.13: Confidence intervals mean sojourn times case 3

ONU Stable matching Contiguous Interleaved Hungarian
0 0.002398 2.576236 3.976102 0.001309
1 0.000383 0.008419 0.000482 0.000140
2 0.002268 3.984262 4.042911 0.001433
3 0.000431 0.008899 0.000483 0.000112
4 0.001910 4.266810 3.923695 0.001148
5 0.000347 0.009607 0.000390 0.000111
6 0.001495 4.793219 3.769039 0.000645
7 0.000422 0.009596 0.000455 0.000192
8 0.001848 4.384644 3.784025 0.000708
9 0.000400 0.009371 0.000490 0.000148
10 0.001593 3.694374 4.035367 0.000898
11 0.000404 0.010339 0.000375 0.000117
12 0.002059 4.493368 4.069455 0.001092
13 0.000448 0.011048 0.000382 0.000138
14 0.002166 5.499378 4.276317 0.000912
15 0.000419 0.011134 0.000372 0.000117

Table B.14: Mean sojourn times case 4

ONU Stable matching Contiguous Interleaved Hungarian
0 0.0001139 0.0338321 0.0349525 0.0000221
1 0.0000186 0.0000174 0.0000032 0.0000010
2 0.0000905 0.0215877 0.0214861 0.0000249
3 0.0000145 0.0000127 0.0000044 0.0000010
4 0.0001561 0.0270083 0.0277847 0.0000137
5 0.0000160 0.0000165 0.0000038 0.0000006
6 0.0001273 0.0303436 0.0312713 0.0000070
7 0.0000161 0.0000187 0.0000037 0.0000016
8 0.0001124 0.0300463 0.0305668 0.0000109
9 0.0000189 0.0000150 0.0000028 0.0000009
10 0.0001200 0.0269490 0.0283559 0.0000116
11 0.0000233 0.0000170 0.0000030 0.0000007
12 0.0000666 0.0274228 0.0271282 0.0000170
13 0.0000225 0.0000211 0.0000029 0.0000006
14 0.0001251 0.0291140 0.0290806 0.0000144
15 0.0000228 0.0000245 0.0000026 0.0000006

 82

Table B.15: Confidence intervals mean sojourn times case 4
Here are the complete results for case 6, 7 and 8, used in exploring the effect of
overloading on mean sojourn times.

ONU Stable matching Contiguous Interleaved Hungarian
0 0.001841 2.575485 3.976168 0.001307
1 0.000207 0.008415 0.000483 0.000139
2 0.000219 0.008947 0.000469 0.000161
3 0.000237 0.008912 0.000483 0.000112
4 0.000188 0.008972 0.000422 0.000106
5 0.000163 0.009600 0.000392 0.000111
6 0.000149 0.010533 0.000322 0.000089
7 0.000249 0.009607 0.000453 0.000192
8 0.000229 0.011388 0.000408 0.000089
9 0.000241 0.009381 0.000490 0.000149
10 0.000202 0.009316 0.000380 0.000117
11 0.000238 0.010355 0.000370 0.000115
12 0.000236 0.010155 0.000412 0.000117
13 0.000259 0.011055 0.000381 0.000138
14 0.000243 0.010476 0.000368 0.000092
15 0.000242 0.011141 0.000374 0.000117

Table_Apx B.16: Mean sojourn times for case 6

ONU Stable matching Contiguous Interleaved Hungarian
0 8.320926 15.893182 16.967304 8.129310
1 0.000212 0.008403 0.000484 0.000140
2 0.000231 0.008970 0.000471 0.000162
3 0.000235 0.008903 0.000486 0.000112
4 0.000207 0.008968 0.000424 0.000107
5 0.000167 0.009591 0.000391 0.000111
6 0.000157 0.010511 0.000320 0.000089
7 0.000250 0.009601 0.000457 0.000194
8 0.000206 0.011377 0.000412 0.000089
9 0.000245 0.009362 0.000490 0.000149
10 0.000199 0.009315 0.000378 0.000118
11 0.000240 0.010351 0.000371 0.000116
12 0.000239 0.010141 0.000409 0.000117
13 0.000259 0.011084 0.000385 0.000139
14 0.000253 0.010455 0.000372 0.000091
15 0.000250 0.011148 0.000374 0.000117

Table B.17: Mean sojourn times for case 7

 83

ONU Stable matching Contiguous Interleaved Hungarian
0 17.814483 23.913668 24.768948 17.676220
1 0.000209 0.008413 0.000483 0.000139
2 0.000234 0.008951 0.000465 0.000162
3 0.000230 0.008895 0.000485 0.000112
4 0.000212 0.008968 0.000422 0.000106
5 0.000172 0.009595 0.000387 0.000110
6 0.000156 0.010527 0.000320 0.000089
7 0.000253 0.009586 0.000457 0.000192
8 0.000215 0.011394 0.000409 0.000089
9 0.000241 0.009366 0.000490 0.000149
10 0.000200 0.009312 0.000379 0.000117
11 0.000241 0.010357 0.000371 0.000116
12 0.000229 0.010152 0.000412 0.000117
13 0.000243 0.011047 0.000383 0.000139
14 0.000242 0.010477 0.000369 0.000091
15 0.000240 0.011120 0.000372 0.000117

Table B.18: Mean sojourn times for case 8

 84

