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Abstract
This report  details  the integration of real-time motion-capture into VR physics-enabled environments. 
This report also treats of the basics of real-time rigid body dynamics, how these dynamics are used to 
integrate the motion capture into VR, and how to increase the stability of the physics simulation. 

The  report  describes  some points  of  the  research  and  implementation  that  went  into  creating  Lumo 
Scenario, a networked VR environment, developed at re-lion, that is used as a frame to run the motion 
capture simulation in.

The  motion  capture  integration  techniques  are  applied  in  particular  to  the  kinematics  generated  by 
motion-capturing a full human body using inertial sensors. 

A high-level overview is given of a demonstration application that shows off these technologies.
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 1 Introduction
This is the report of my final project (thesis) of the Computer Science study of the University of Twente. 
It documents the research I have done for re-lion, a company active in the field of VR.

This  research  pertained  the  creation  of  a  virtual,  physics-enabled,  multi-user,  fully  scripted  virtual 
environment, and the integration, using rigid body dynamics, of motion-captured full-body avatars into 
this environment.

 1.1 About the parties involved

Re-lion, formerly known as Keep IT Simple Software, is a high-tech company located in  Enschede. It 
provides  contract  programming services,  products  and advice,  mostly in the area of  3D graphics  and 
Virtual Reality. I am a co-owner of re-lion. 

Two of the re-lion products used in this project are Lumo, a 3D graphics engine, and Lumo Scenario, a 
networked dynamics product still in development and due for release in 2006. 

Throughout the project, development versions of the Xsens motion capture system were used. Xsens,  a 
company  also  located  in  Enschede,  manufactures  high-precision  inertial  measurement  sensors  and 
software. Ir. Per Slycke has supervised the project on behalf of Xsens.

Parts of the Dismounted Trainer software were commissioned by TNO Defense & Safety.

Parts of the Lumo Scenario software were developed during the Scomosi project, a scoot mobile driving 
simulator using the Lumo Scenario software as basis. The Scomosi project was a joint project by re-lion, 
Roessingh' R&D, and the University of Twente.

Dr. Ir. Job Zwiers was a supervisor of the project on behalf of the Human-Media Interaction Group of the 
University of Twente. He is working on Virtual Reality research and projects for HMI.

Dr.  Ir.  Herman  van  der  Kooij,  assistant  professor  at  the  Biomechanical  Engineering  group  of  the 
University of Twente was also a supervisor.

 1.2 Goals of this research

The main goal of my final project is a multi-user scriptable VR environment, with a representation of a 
human body being motion captured in real-time, integrated into the 3D world. This representation should 
be as close as possible to the actual body position, but not necessarily the same: it needs to look good and 
not in violation of the physical rules of the virtual universe. These physical rules are dictated by a physics 
engine, in this  case ODE (Open Dynamics Engine).  An important  aspect  is  how much of the physics 
engine used to run in the VR environment we can use to aid in integrating the motion capture into the VR 
world.
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 2 Overview
The main goal  is  to  create  a  virtual  multi-user   environment,  enabled with physics  and scripts,  with 
integrated full-body motion capture functionality.

First the current full-body motion hardware is reviewed (section 3.1.1). Because of the promising nature 
of inertial motion capture, and the availability of a pre-production version of an Xsens motion capture 
suit,  inertial motion capture was chosen. The advantages of inertial motion capture compared to many 
other motion capture techniques are: 3DOF orientation capture (meaning all rotation axes are captured), 
precise captures, portable and low-power sensors. Of course, some brands of inertial  sensors are more 
precise, portable, etc than others. The Xsens sensors are also wireless. A disadvantage of inertial motion 
capture is that only orientation can be reliably captured. 

Next, the virtual world the avatar operates in is defined. This is a world that exists only in the state of a 
physics engine, on a single machine. This machine is called the server. The objects in this mathematically 
described world all have real-life equivalent properties, such as a position, speed, mass, center-of-mass, 
orientation, angular velocity, and a clearly defined shape. One can imagine that these objects can interact 
with each other, for example a sphere lying on the floor or stack of boxes collapsing in on each other. 
This is called an  interactive simulation. 'Interactive' because a user can interact with the objects (for 
example, using a motion capture suit).

The software that makes all this possible is called a physics engine, or dynamics engine (chapter 5). The 
terms 'physics' and 'dynamics' are used interchangeably in this report. We assume all objects interacting 
with each other on the server are all rigid. Therefore, we simulate rigid body dynamics. 

In this case, ODE (Open Dynamics Engine) was used. Is this because the engine is open-source, making 
it easier to tweak and understand. Also, it has a proven track record of many diverse applications. 

The problems pervasive in dynamics engines are threefold. First, the simulation can be unstable, causing 
it to 'explode', meaning the objects fly off to infinity. Causes for this are too small time steps, too large 
forces being exerted on objects, using high-friction surfaces or mixing very small and very large masses 
in the same simulation. A second problem in dynamics engines is that the simulation might be too slow to 
use in interactive environments. Finally, a more insidious problem can be the sheer number of parameters 
to tweak. For example, a simulated car has many properties: the mass of the chassis and wheels, four 
joints keeping the wheels in place (each joint has a large number of parameters), controllers (motors) that 
drive the engine, the amount of down-force to generate at what speeds, the tire friction in the driving 
direction and in the tangential  direction,  air  resistance,  brake strength,  etc.  All  these parameters have 
complex relationships can be make tweaking parameters a black art.

Now that all objects can interact with each other in a way that makes sense physically, we need to control 
what happens on a higher level. For example, what objects are created, what environments are loaded, 
how do objects respond to input, etc. For this a scripting language was chosen, in this case Lua. While 
integrating the physics and other systems successfully into a scripting engine is a considerable task in 
itself, it is not further discussed in this report.

The next thing to do in the server is creating a physical object that represents a human body (section . 
After all, the motion capture data acquired is from a human body. Simulating human bodies in physics 
engines has become commonplace in the games market for some years now. This is usually referred to as 
ragdoll dynamics. A set of limb-like objects is created in the physics engine and attached to each other 
with ball joints or hinge joints. Because no controlling forces are exerted, the system will collapse in a 
ragdoll-like fashion.  This  is  often used to simulate enemies in games getting killed and falling down 
stairs, etc. 

While sending limp ragdolls down sets of stairs is certainly a lot of fun, the next step is to  actuate the 
ragdoll with the motion capture data. This means having the limbs of the physics engine roughly take the 
orientation of the motion capture data. This can be done in several ways. First, it is possible to directly set 
each limb in the correct orientation. The major downside of this approach is that it mostly disables natural 
physics interaction with the ragdoll and the rest of the environment.  Second, another way is applying 
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forces to each limb to have it assume the desired position. While this works, stability problems arise from 
the fact that we are actually modeling springs to keep the limbs in place. A third option is to use motor 
controllers, this is called an 'angular motor' in ODE physics terms. However, there are still stability and 
usability issues left.

Another important aspect to the simulation system is the requirement that is should be multi-user. This is 
because professional simulations rarely use one rendering station only, and many simulations require the 
involvement of multiple persons. To reiterate, the  server runs the physics simulation and scripting that 
controls the physics and the flow of the simulation. We still cannot actually see what is going on the the 
server. We need one or more clients for that. Each client is fed a constant stream of update packages from 
the server through a  network  link. It renders the positions of the objects and the static environment. It 
also generates the appropriate sounds and samples any input devices (such as keyboard, mouse, motion 
capture suit) and sends this data to the server for processing.

The server sends updates at a low frequency, 10-15 Hz depending on the simulation. This means that on 
the clients, the objects will jerkily move around at the same frequency. A solution to this problem is using 
interpolation  and  extrapolation  to  smooth  movement.  Some  problems  remain,  such  as  objects 
extrapolating for too long. 

Some techniques are used to reduce network bandwidth, such as quaternion compression in the case of 
motion capture data, which consists mostly of quaternions. Quaternions are a non-commutative extension 
of complex numbers and can, in unit  form, describe three-dimensional  rotations. Multiple threads and 
queues are used to optimize CPU usage of transferring and receiving data.

The motion capture data is sent from the client to server,  processed in the physics engine on the server, 
then sent back to all clients for displaying.  Because of this long path, the del€ays on the client between 
sampling and displaying movement can be significant. A local feedback mode was used to alleviate this 
problem, at the cost of the loss of some interaction with the environment (section 7.5).

All  this  technology was wrapped up in  a demo (chapter  9),  allowing two (or  more) people,  wearing 
motion  capture  suits,  to  visually  interact  with  each  other  and  the  environment,  and  showing vehicle 
dynamics by allowing people to drive around in a tank. It employs most of the technologies described in 
this report.

In conclusion, it can be said that most of the supporting framework for successfully running interactive 
simulations is now firmly in place. However, the ragdoll interaction with the environment needs more 
attention. The two main problems to battle are the latency of such a complex system, and the stability and 
feasibility of actuating limbs with forces or motors. It is possible to alleviate these problems by indirectly 
interacting with the environment (by proxy) instead of directly.
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 3 Current technology

 3.1 Kinematics and dynamics overview

We will take a look at the current research and technology in the kinematics and dynamics fields.

 3.1.1 Motion capture (kinematics) overview

Motion capture is the technology of capturing some real-life motion into a computer, for later playback or 
analysis. Commercial motion capture has been around for two decades. Many kinds of technologies are 
available:

Optical motion capture

Optical motion capture systems work with one or more cameras. Usually the subject is equipped with 
reflective  patches  or  spheres  (called  markers),  indicating  the  position  to  the  cameras.  The  markers 
themselves are tracked using software. By combining the same markers on multiple cameras (which all 
have a different position), a 3D position of a marker can be determined. The cameras are often infra-red 
and mounted to a rig or to the walls of a room. 

The advantages:

• High precision

• Absolute position determination

• Can cope with a high number of markers

The disadvantages:

• Multiple cameras: a set-up can have a high cost

• Fixed location

• Limited reach

• Capturing rotation of limbs can be tricky. Sometimes, marker clusters (three or more markers 
fixed to a small frame) are used to capture a rotation. Because the software knows the relative 
positions of the markers in a cluster,  it  can calculate the orientation of the body attached the 
cluster.

• It's possible that some markers are (temporarily) obscured, heuristic algorithms have to be applied 
to determine where the marker went and what marker maps to what limb

Some companies that develop optical motion capture solutions are:

• Vicon Peak

http://www.vicon.com/

• Motion Analysis 

http://www.motionanalysis.com

• Adaptive Optics

http://www.aoainc.com/technologies/adaptiveandmicrooptics/wavescope.html

• Charnwood Dynamics 

http://www.charndyn.com/Products/Products_Hardware.html
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Magnetic motion capture

Electro-magnetic motion capture use sensors which operate in a low-frequency electromagnetic field. The 
sensors report their movement and orientation based on that field.

Advantages:

• Absolute orientation as well as position are measured

Disadvantages:

• The motion captured subject cannot be near, or contain, metal

• Fixed location

• Limited reach

• Limited number of sensors 

Some companies that develop magnetic motion capture solutions are:

• Polhemus

http://www.polhemus.com/

• Ascention Techonolgy

http://www.ascension-tech.com/

Mechanical motion capture

Mechanical motion capture uses exo-skeletal structures to measure relative joint angles.

Advantages are:

• Precise

• Portable

• Unlimited reach

Disadvantages:

• Captures joint rotations only

• Unwieldy exo-skeletons

• Can only capture (parts of) the human body

The  leading  company  in  mechanical  motion  capture  is  Animazoo  (with  their  Gypsy4  product) 
(http://www.animazoo.com/products/gypsy4.htm).

Inertial motion capture

Inertial motion capture uses gyroscopes, sometimes combined with measuring the magnetic north and the 
gravity vector, to measure the 3DOF orientation of a sensor. 

Advantages are:

• Precise

• Very portable

• Low-power

• Captures complete orientation

Disadvantages:
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• Does not capture position

Some companies that develop inertial motion capture solutions are:

• Xsens (using their own sensors to develop to full-body motion capture suit)

http://www.xsens.com

• Intersense

http://www.isense.com/

• Animazoo (Gypsy Gyro-18, using intersense sensors)

http://www.animazoo.com/products/gypsyGyro.htm 

 3.1.2 Dynamics today

A rigid body dynamics simulation (physics engine) is a library that simulates how objects would behave, 
based on Newtonian physics, using variables such as mass, friction, (angular) speed and position. Physics 
engines usually consist of a collision detection engine and a dynamics simulation engine. The collision 
detection engine obviously detects inter-penetrating bodies. This data is used to generate forces on the 
bodies, that are resolved in the dynamics simulation step.

There are a couple of important variables regarding different implementations of physics engines:

• Performance – efficiency of algorithms and implementation

• Stability – how easy it is for simulations to arrive in incorrect states (for example, objects flying 
at infinite speed or being stuck in each other)

• Precision – how much detail the simulation has and how much the objects in it behave like real-
world objects

• Ease  of  use  –  an  easy  pitfall  when creating  physics  engines  is  to  introduce  too  many user-
adjustable variables. This makes the simulation very hard to tune

A  real-time physics engine sacrifices  some precision to attain interactive speed.  Stability can also be 
'traded in' for precision. The revolution of real-time, low precision, realistic physics in simulations and 
especially games, is well underway. 

A good and entertaining start on Newtonian physics is [feyn], a set of lectures (in book form) by Nobel-
prize winner Richard Feynman and others.  The first  part  of the book is  a sufficient  introduction;  the 
physics emulated in rigid body dynamics are not very complicated.

A good place to learn the basics of rigid body dynamics is a series of four articles called  Physics, The 
Next Frontier  written by Chris Hecker of Game Developer Magazine [hecker96]. The series starts off 
with numerical integration, moves on to two-dimensional dynamics, and finishes with an introduction to 
three-dimensional dynamics.

Andrew  Witkin  and  David  Baraff  also  have  created  an  excellent  course  called  Physically  Based  
Modeling:  Principles  and  Practice  for  Siggraph  '97  [witkin97],  aimed  at  math-challenged  computer 
graphics specialists. The course covers ordinary differential equations,  implicit and explicit integrators, 
constrained dynamics, and unconstrained and constrained rigid body dynamics. Baraff and Witkin are oft-
quoted researchers in the field of rigid-body dynamics. 

The rigid body dynamics engine used in Lumo Scenario, ODE, is described in more detail in chapter 4.

Commercial real-time physics technologies include:

• Havok Physics 3 is a popular commercial physics engine.

http://www.havok.com/content/view/17/30/

• AGEIA PhysX Technologies also supplies a physics engine, but takes physics processing one step 
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further with the addition of a physics processing unit  (PPU, in the same vein as the graphics 
processing unit, GPU). The PPU has recently become commercially available.

http://www.ageia.com/

The trend in dynamics:

● Offloading work to other processing units, such as the GPU (ATI, NVidia) or to a specialized 
PPU (Ageia).

● Load-balancing physics processing to accommodate dual-core processors.

 3.1.3 Kinematics and dynamics combined

A recent development is blending motion capture and dynamics using controllers. A leading paper on this 
subject is  Hybrid Control for Interactive Character Animation by Ari Shapiro, Fred Pighin, and Petros 
Faloutsos [shapiro03]. This technique, which I will refer to as hybrid control, implies switching between 
pre-recorded  sequences  (kinematics)  and  run-time  simulations  (dynamics).  The  dynamics  part  is 
augmented by different types of controllers, such as rule-based controllers and even genetics-based AI 
controllers. The controllers emulate how a normal person would react to different situations. For example, 
a rag doll could execute a prerecorded kinematics walking sequence, until it reaches a tripwire, causing 
the processing to switch to dynamics mode, which uses controllers to extend the arms forward to try to 
maintain balance, like a real human would.

A great example of such a system is NaturalMotion endorphin 2.0 [end], a “dynamic motion synthesis” 
software that enables you to interactively set up stages for rag doll actors to play in.

It  is  important  to  note  that,  while  hybrid  control  combines  dynamics  and  kinematics,  it  does  it  in  a 
different way than proposed in this research. Hybrid control is designed to create new behaviors using 
dynamics,  extrapolated  from post-processed  motion  captured  or  even  hand-made  kinematics.  This  in 
contrast to this thesis, which tries to correct raw motion capture data using dynamics. 

http://www.magix.ucla.edu/pacificgraphics2003/
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http://www.ode.org/slides/igc02/s17.html

 3.2 Existing technologies employed

While a solid theoretical basis is very important,  a smoothly working framework to conduct tests and 
record results with is also invaluable. To this end, I have chosen to use the following technologies during 
this project.

 3.2.1 Xsens Xbus Master system

The Xsens Xbus Master system is a portable, wireless bus system that can 
have up to fifteen Xsens motion trackers attached. [xsens01]

Each motion tracker can measure its own orientation in space. The reasons 
for choosing the MTx were:

• Re-lion already has experience with Xsens software and  hardware

• Xsens is a local company, operating from the BTC-Twente, and re-lion 
has a good business relationship with it

• the device itself is very accurate and is suitable for real-time processing

 3.2.2 Open Dynamics Engine

The Open Dynamics Engine (often referred to as ODE) is an open source 
rigid body dynamics library. [ode03]

It has the following features:

• Stable and fast; several types of integrators (steppers) are available

• Rigid bodies

• Advanced joint types

• Integrated collision detection 

• Open source: I was able tweak the library to my liking

Using ODE has  allowed me to concentrate  on solving problems with a 
dynamics  engine  instead  of  spending  most  of  my  time  creating  and 
tweaking a dynamics engine myself.

 3.2.3 Lumo SDK

The Lumo SDK is a full-blown VR visualization toolkit. 
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Features include:

• multi-platform: Microsoft Windows, GNU/Linux, MacOS X

• DirectX 6, 8 and 9, OpenGL renderer support

• Serializable scenegraph data structure

• Culling, resource management, etc. all done automatically

• VR-device support (such as the Xsens Xbus master system)

The main reason I have chosen Lumo for visualization is that, of course, 
my own company produces the software. Another reason is that, just like 
using ODE,  I did not have to worry about displaying worlds and avatars 
during the  project,  which  allowed me to  concentrate  on developing the 
algorithms.

 3.2.4 Lua

Lua is a scripting language [lua01]. Its most eye-catching features are:

• Really fast and small code, still full-featured

• Byte-code interpreted by register-based virtual machine

• Easily embeddable into existing programs

• Powerful language features

• ANSI C compliant open source software.

The  Lua  scripting  was  used  to  facilitate  several  tasks,  such  as  loading 
BVH, worlds and configuration files,  and creating events  and dynamics 
controllers.

 3.3 New technology developed

 3.3.1 Lumo Scenario

Many of the libraries and products described above are being integrated into a new product called Lumo 
Scenario. Lumo Scenario is  currently being developed at re-lion, mostly in tandem and sometimes as a 
part  of  my final  project.  It is  designed to  enable  our customers to  more easily  create  full-blown VR 
simulations. Its features will include:

• Distributed client/server architecture

• All popular VR input devices supported

• Passive and active stereo supported, active stereo on a single render station or rendering each eye 
on separate stations

• Multiple participants, using any kind of input/output combination

• Realistic dynamics simulation 

• Full scripting support, both server-side and client-side

• Full world-building support though Lumo Editor, using ready-made building blocks

• Full integration with the Lumo 3D engine

Many  of  the  techniques  described  above  and  developed  during  my final  project  are  used  in  Lumo 
Scenario.
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 3.3.2 Dismounted Trainer

The dismounted trainer (DT) is a project whose first phase was developed by re-lion for TNO Defense, 
Security & Safety, commissioned by the Royal Dutch Army. The intent of the DT is to train soldiers for 
combat on foot (dismounted combat). 

Users are completely immersed in their environment. They wear a HMD and motion capture suit. The 
HMD shows the surroundings and the virtual body of the user.

One can replay a training from the start (after-action review), from many camera positions. It is possible 
to record to movie files (AVI format) for on-line fixed-camera reviewing without the simulation software 
present.

The DT is still in a prototype phase, but future training goals include:

● Squad-based training

● Mission rehearsal

● Reconnaissance - train in a building or urban environment prior to a real operation

The dismounted trainer from a hardware point of view

For an graphical overview of all hardware involved, see diagram 1 below.

Each actively participating user carries the following hardware.
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● A wired Xsens motion capture suit.

● A  wired  head-mounted  display,  in  this  case  a  low-cost,  light-weight  eMagin  Z800  visor 
(www.emagin.com).

● A backpack, carrying a laptop. The motion capture suit and HMD are connected to the laptop. 
The laptop uses a standard 802.11g wireless LAN connection to connect to a wireless Access 
Point. The laptops have capable real-time graphics performance (e.g., an NVidia GeForce Go or 
ATI X600).

Furthermore, a server computer (a standard PC) and an observer rendering computer are connected to the 
same network as the Access Point.

The dismounted trainer from a software point of view

From a software point of view, things look a lot simpler: see diagram 2 below for a high-level overview of 
separate computers (boxes), communication lines (arrows), and the database (cylinder).

The  server  runs  the  physics  simulation,  guided  by  Lua 
scripts. It communicates with a number of clients. All user 
input the clients gather are sent to the server, and the server 
sends the current VR world state to each client.

Each client can be a participant or an observer. The output 
of a client is always vision (taken care of by the Lumo 3D 
engine)  and  sound  (a  3rd-party  3D  sound  engine), 
controlled  by  the  network  input.  Optionally  other  VR 
output  devices  can  be  used,  such  as  force-feedback 
platforms and other real-world actuators. The input for the 
clients are the usual input devices (keyboard and mouse), 
and VR input  devices.  In the  case  of  the  DT, the  Xsens 
motion  capture  suit  is  the  VR  input  device  for  the 
participating clients.

All  simulation  related  data,  such  as  3D  models,  scripts, 
textures,  etc.,  are  stored  in  a  network  file  share  on  the 
server.  Server and clients  use this  file  share to load data 
from.
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 3.3.3 Motion capture integration

The idea is to virtually actuate a 'rag doll' simulated physics object with on- or off line motion capture 
data. This enables the interaction of the rag doll with its environment:

• Collision detection and response with the world – for example, will our rag doll be able to walk 
into a wall, or up a flight of stairs? 

• Ice-skating prevention – because the sensors only measure orientation, and the root (origin) of the 
skeletal model (rag doll) is its pelvis or torso, the feet will not have any meaningful contact with 
the floor, even assuming it is flat. There are many seemingly viable solutions or workarounds to 
this problem:

• Using Global Positioning System to determine the global  position. This is probably not very 
precise. I will not pursue this technique in this thesis.

• Using sensors in the shoes, detecting whether or not a shoe is on the ground. One can then use 
skeletal re-rooting or dynamics constraints (joints) to fix one or two feet to the ground. This 
technique looks very promising, but needs modification to the hardware.

• Using simple position determination (linear algebra) to check what the horizontal positions of 
the feet are. The lowest foot is probable to be on the ground. Next, you could use the same 
techniques as sensors in the shoes to lock one or two feet to the ground. See section 8.4.1.

• Using the physics engine itself: if one can keep the rag doll upright, using a pendulum weight 
or angular motor, the contact joints generated by the feet touching the ground might result in a 
realistic motion. See chapter 8.4.3.

 3.4 Inertial sensor calibration and correction

This thesis is not about sensor calibration, correction or real-world precision validation. A lot of research 
has been done and is currently being done on this subject. 

Of course, the more precise the input is, the better the quality of the final motion will be. So, rather than 
replacing existing sensor calibration algorithms, the algorithms described in this thesis can be applied to 
the output of the calibration algorithms.

 3.5 Why real-time?

I have chosen to create algorithms that  run in real-time, responding to real-time or recorded captured 
motion data. This has some important consequences. 

• First, the amount of computation that can be done per frame is limited. This is why algorithms 
and implementations will also have to be analyzed with regard to their efficiency as well as the 
other criteria. However, we have found that careful programming can keep processing time well 
within the real-time time frame. Most  of  the problems arise  when multiple rag dolls  must be 
calculated, or other simulations have to be run on the same computer.

• Second, some of the more advanced algorithms could benefit from a certain amount of foresight 
determining what the most probable pose is. This is called 'causality'.

But the advantages are also evident. 

• Most importantly for the Dismounted Trainer: the  Dismounted Trainer is a real-time simulator, 
just like a flight simulator or other “mounted” simulator. Real-time, low-latency feedback is of 
vital importance to the user experience.

• We have noticed that real-time feedback saves valuable time during motion capture sessions. For 
example, sensors can malfunctioning or other errors can creep in. Motion capture is still a process 
of trial and error; the earlier the errors in acting and setup are caught, the less money and time 
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have to be spent on doing re-takes, or even worse manually correcting animations later on.

• It also enables live-feedback entertainment purposes. For example, re-lion has demonstrated an 
early version of the Xsens motion capture system and re-lion software during the “Dance 4 Life” 
festival, showing an Elvis (modeled by 2morrow, http://www.2morrow.nl) mimicking the dancing 
of someone picked from the audience in an Xsens motion capture suit: see the illustration to the 
right.

• In simulations and games, NPC's (non-player characters)  can also be driven using the physics 
engine,  resulting  in  more realistic  interactions  with  the  environment. Using  'hard'  animations 
often results in the character walking through objects, or sticking limbs trough the floor or walls.
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 4 Architecture

 4.1 Client/server architecture

The simulations run in a client/server network. The server runs scripting and physics, the client renders 
scenes and processes input. 

There are a couple of reasons for this division.

• The  fixed  time  stepping  required  for  stable  physics  requires  the  physics  calculations  to  be 
decoupled from the rendering loop. There isn't a more drastic way of doing this than moving it to 
another process, optionally on another PC. More on why this is necessary in section 5.

• It enables multi-user interactive training and entertainment environments: each player has its own 
client station that gathers input and renders the simulation.

• It  enables  complex  multi-display VR-setups,  such  as  multiple  projectors,  CAVE VR systems 
[cave] or passive stereo setups: each display has its own client station that renders the simulation, 
and the server or a specific client station gathers input.

• Computing power can be distributed. For example, when running a single-PC client/server setup, 
processing the physics at the server could become too intensive. You can then move the server to 
another PC, drastically increasing available processing time for both server and client.

• Network feeds from the server to the client can easily be recorded. This allows sessions to be 
reviewed at a later time, or converted to an .mpeg or .avi  movie, for example.

The big downside is, of course, the communication between the clients(s) and the server, which leads to:

• Latency and timing problems: packets can arrive too late or out of order. Packets arriving too late 
results in a sluggish simulation.

• Bandwidth and flow control problems: the data stream from the server to client can become too 
great for the client or connection to handle.

• Complexity of code: managing the synchronization of states is a difficult job, involving a lot of 
timing issues and network messages. This complicates development considerably.

  More information on the network issues in chapter 5.
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Diagram 3: Global architecture (image taken from Footprint documentation)



 4.2 Physics world vs. mesh world

Lumo Scenario has three visualization 'worlds' you can turn on or off. Each world has its own special 
uses.

 4.2.1 Mesh world

The “mesh world” contains the final appearance of all dynamic objects. Every server-side PhysicsEntity 
object  is  represented  by  a  client-side  Visualizer  class,  which  loads  the  appropriate  meshes  and 
decompresses the network stream for specific objects into graphical effects (position changes, rotating 
elements, etc). This is also chiefly where interpolation occurs, see section 7.1. 

Keeping  this  world  in  sync  with  the  server  is  a  great  challenge  and  a  strain  on  even  broadband 
connections.

 4.2.2 Static world

The static  world  is  the  visual  representation of  the  non-changing environment  in which  the  dynamic 
objects move around. The static world is usually quite large, and thus rendering it at interactive speeds 
poses a special challenge. 

Because it is, by definition, an unchanging world, some optimizations can be used to speed up rendering, 
all of which are some form of pre-computation.

● Potentially visible sets: divide the world into cells, and for each cell pre-compute what other cells 
are visible.

● Binary Space Partition trees:  can be used to do quick front-to-back ordering and are a useful 
partition.

● Portals: the world is divided into cells. The area where two cells are joined, for example, a door, 
is called a “portal”. Any rendering of a portal triggers the rendering of the cell behind that portal.  
This cell can then be recursively rendered, with a smaller view frustum.

Combining  these  techniques  yields  sufficiently  fast  world  rendering  for  most  indoor  environments. 
Outdoor environments are more difficult There are many other techniques, using both pre-computation 
and run-time processing.

Because there are no moving parts in the static world, no network traffic is required, other than a few 
messages when a new static world should be loaded.

19

Illustration 3: Left to right: Mesh and static world, all worlds, physics and static world, physics world only



 4.2.3 Physics world

The “physics world” shows the direct state of the physics engine using wireframe primitives. The physics 
world is used for physics engine- and simulation state debugging purposes. Because of this, there is no 
network optimization, network interpolation or rendering optimization done for this world. 

The physics world is used to:

● check positions of objects present in the physics engine ('bodies') and the shape these objects take 
('geoms', see next chapter),

● check interpolation network performance (see chapter 7),

● check simulation logic, such as object scripting states and triggers.
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 5 ODE physics
As stated before,  Lumo Scenario uses the Open Dynamics Engine (ODE) for  its  physics.  ODE has a 
structure that is fairly typical to all  physics engines, which is outlined below. For clarity, a simplified 
model of the ODE code will be presented. A lot of members and classes are left out.

The main concept in a rigid body physics simulation is, of course, the rigid body. In ODE, this is the 
dBody class. 

A body has a position, orientation, velocity and angular velocity that changes over time. Some  properties 
of bodies are the mass and center of mass. These properties are enough to move ('step') the body over time 
and have forces act on it.

The dBody is tightly coupled, in a one-to-one relation, to a dGeom. The reason the dBody and dGeom are 
not a single class is because the physical behavior and physical shape of an object are disparate in ODE. 

Forces that act on the body can be constant forces, such as gravity. They also can be forces resulting from 
contact with other bodies. But note that the physical appearance of the body isn't one of the properties of 
a body, so if we only had the bodies,  we could not actually know if bodies are in contact. For collision 
detection the shape of the body is needed, 'geometry objects' or geoms for short. These objects are for 
example spheres, rectangles, (capped) cylinders, or meshes.

The dBody has all the relevant physical properties and the dGeom contains information about the shape 
of the object.

This is reflected in the entire structure of ODE. The integrator uses properties from the dBodies to step 
the world. Constraints make sure the next state of the world can only be in certain states. For example, 
joints are constraints.

 5.1.1 Bodies

The bodies define the Newtonian physical properties of a rigid body. A body is optionally associated with 
a geom, which relates to collision detection and will be described in section 5.1.4.

The 'mass' property is the simulated mass of an object, represented by a dMass type (more on that later). 
The orientation of the body is represented by a quaternion, and a 3x3 rotation matrix. Both represent the 
same orientation, and are kept in sync for efficiency reasons. The current linear velocity of the body is 
represented by 'linearVel', the current angular velocity is represented by 'angularVel'.
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Diagram 4: dBody and dGeom relation
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To formalize:

Name Symbol Properties
Body position p The position of the center of the body in ℝ3  Cartesian space.

p=[ p x

p y

pz
]

Body orientation 

  as quaternion
q The quaternion q  is defined as

q=q0, q1, q2, q3∈ℝ
4

Or, more refined

q=cos /2 ,u∗sin /2

where  u  is  a  rotation  axis  of  unit  length  in  ℝ3  Cartesian 
space, and   is the angle the object is rotated along u .
This means that logically

q0
2q1

2q2
2q3

2=1

making  q  a  unit  quaternion,  rotating  about  axis  u .  In  other 
words, unit quaternions live on the unit hypersphere.
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Diagram 5: dBody properties

dBody

mass : dMass
position : dVector
orientation : dQuaternion
orientationR : dMatrix
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Name Symbol Properties
Body orientation 

  as 3x3 matrix

R The 3x3 rotation matrix R is defined as

R=[lx x

lx y

lx z

ly x

ly y

ly z

lz x

lz y

lz z
]

The vectors lx, ly and lz are all of length 1, and represent the body-
local  x, y, and z axes of the object in global space. Note that you 
can rotate a vector l∈ℝ3  from local space by global space by 
multiplying it with R:

l '=Rl
where l' is the global vector.

This means that

k '=Rkp

yields the global position k '∈ℝ3 of a point k∈ℝ3 .

Body velocity v The  current  velocity  (speed)  of  the  center  of  the  body in  ℝ3  
Cartesian space.

v=[vx

vy

vz
]

Body angular velocity  The angular velocity

=[x

 y

z
]

specifies the rate of rotation of the body. You can look at the 
as a vector from the origin of the body. The body rotates about this 
vector. The length of the vector specifies how fast the body rotates. 
The 

  is defined in the global space.

More specific,  if  l  is  a  vector in  ℝ3 ,  in  the  global  space, 
indicating the position of a point (any point) relative to the center 
of the body ( p ), the speed (time-derivative) of l  is

̇l=×l  
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Name Symbol Properties
Body force 

  accumulator

The  body force  accumulator  is  a  global  space  vector  that  keeps 
track of all forces on an object. The force accumulators are cleared 
every  physics  step.  Gravity,  user  forces  and  LCP  forces  (see 
section  5.1.6)  are  all  added  to  the  force  accumulator.  The 
accumulator is then used in the step function itself. 

Body torque

  accumulator

The  body torque  accumulator  does  the  same thing  as  the  force 
accumulator, only for rotations.

For more information about these properties, see [ode02].

These properties are sufficient to integrate object positions over time: the user adds forces to the force 
accumulators and the bodies will fly around correctly. However, they will fly through each other and it is 
not  possible  to attach two bodies together in a meaningful  way. So to complete  the definition of the 
physics world, we need joints.

 5.1.2 Joints

Joints make sure two bodies can only move in some regard relative to each other; in other words, they 
remove one or more degrees of freedom from the simulation.

Here is a simplified UML diagram of the joint implementation in ODE.

Some joints are in a dJointGroup. This allows efficient addition and removal of many joints at a time, 
which is convenient for reasons that will later become apparent (contact joints).

The dJointBall (ball joint) and dJointAMotor (angular motor joint) are two examples of joints. There are 
many more joint types, such as hinge joints, universal joints, slider joints, and, important for collision 
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Diagram 6: Joints in ODE

joints

dJoint

dJointGroup

dJointBall

anchor1 : dVector
anchor2 : dVector

dJointAMotor

axisCount : int
axis : dVector[3]
limot : dJointLimitMotor [3]

dJoint...

...

0/1

nextJoint



detection, contact joints.

The ball  and angular motor joints  are mentioned here because they play in important role in rag doll 
physics. The ball joint, obviously, keeps tho bodies pivoting around a shared point. However, it does not 
constrain the movement in any other way. This means two bodies can rotate freely about, or even into 
themselves. 

Compare this to a hinge joint, which restricts relative body motion to a single rotational axis and has stops 
on this axis (called low and high stops) that restrict the range of motion along the axis, 

 5.1.3 Worlds, bodies and joints

The world keeps track of all the joints and bodies. We will now combine the above two UML diagrams 
into one and add the world.

Each joint has zero, one or two bodies associated with it. These are the bodies it is constraining. 
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Diagram 7: Joints, geoms and world

dBody

mass : dMass
position : dVector
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 5.1.4 Geoms

The geoms determine the physical 'appearance' of bodies. Because ODE is a physics engine (and not a 
graphics  engine)  a mathematical  description of the  appearance  of bodies  will  often  suffice.  Collision 
detection  generates  contact  joints  when  bodies  intersect.  So  the  entire  goal  of  the  complete  dGeom 
structure is generating all contact joints fast enough for real-time calculations.

You can recognize the Composite pattern ([gamma95], page 163) here. Lumo Scenario uses one main 
collision space, an instance of dSimpleSpace. All other spaces and geoms are put into this space. The 
position and orientation of a geom is linked to the position and orientation of the body.

Static Geoms

If a geom has no body, it is considered static. In this case, the geom has its own position and orientation 
(contrary to the diagram above). Without a body, it cannot move in response to impulses. This is why its 
called static. Usually these kinds of objects are used for the world the dynamic objects are in (if they 
respond to collisions by generating contact joints), or sensors (if they respond to collisions by triggering 
some application-specific sensor event).

 5.1.5 Collisions and contact points

The output of collision detection is a list of points, indicating the intersections between all intersecting 
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Diagram 8: Geoms
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points. These are called 'contacts'. This list is regenerated each frame. ODE does not simulate contact 
surfaces, as this is generally considered too computationally intensive for interactive simulations. These 
contact points are converted to contact joints and added into the joint list. This is the bridge between 
collision detection and the integrator.

 5.1.6 Linear Complementary Problem

So, now we have a list of bodies, with all the properties mentioned above, and a list of constraints of 
where those objects can and cannot go. 

Each violated constraint generates a correction force that would resolve any constraint violations. If these 
correction forces were all applied in order without regard to each other, there would only be one-to-one 
interactions between objects.

Instead, we need to find forces  on all  the objects  that  satisfy the constraints.  This  means solving the 
constraints as a linear system. Solving the system using standard linear algebra techniques does not work. 
This has two major reasons.  The first  is  because this  approach will  sometimes yield negative forces, 
which  are  physically  meaningless.  The  second  is  that  the  system is  unsolvable  if  constraints  do  not 
provide enough information to arrive at one correct state.

If we require that all forces be positive, we have a linear system with some extra constraints, also known 
as a linear complementary problem. This is an iterative method of solving that can provide a solution 
where all forces are positive (or zero). The most basic example of an LCP solver the the simplex method. 
More information on the basics of LCP can be found in [winston93]. ODE uses the Dantzig LCP solver 
described by Baraff in [baraff97].

 5.1.7 Time stepping

Physics engines work best when each integrator step moves the simulation forward by the same amount of 
time. To illustrate this, imagine what would happen if we couple the rendering loop with the physics loop 
and step the simulation with the last frame time. This would mean that with a fast frame rate the physics 
are very smooth and will generally behave correctly. However, if for any reason the framerate is lower 
than expected, the stability will decrease to a point where the simulation might explode. It might even 
explode only on a particular sequence of frame times, even if those frame times are very small (=high 
frame rates). The upshot of all this is that you cannot be sure that the simulation is stable when you have 
an varying frame time.

To remedy this problem, the physics loop is decoupled from the rendering loop. It runs in its own thread, 
and, this in case, even in its own process: the server executable. The server does its physics and other 
processing, then measures the time left in the frame, and yields the thread to other processes and threads 
(such as rendering) until it's time to start the next physics frame.
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This makes sure the physics run at a steady frame rate, but also puts a hard limit on how much physics 
processing you can do in a single physics frame. If the physics calculations (and scripting and other tasks 
described in the illustration above) take too long, the physics thread will not sleep at all. However, the 
physics time steps will remain the same, so the simulation will run slower than real-time (meaning, the 
time in the physics world will run slower than actual time).

Another big advantage of using a stable physics frame time is that the simulation becomes deterministic. 
If you set the simulation of a particular state and step a couple of times, you will end up with the same 
state over and over, each time you try this. With a variable frame time there is no telling where your 
simulation might end up. There are some caveats when relying on ODE being deterministic:

● random generators  are  used  to  randomize constraint  orders  in  the  LCP solving iteration  (see 
section  5.1.6).  This  can  be solved  by resetting  the  random generator's  seed  before  starting a 
simulation.

● Different CPU architectures and even CPU brands vary slightly in floating point precision. There 
are no viable solutions to this, other than using the same CPU when replaying a simulation.
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Diagram 9: Tasks of the physics thread on the server



 6 Sampling and displaying rag dolls
This  chapter  describes  how  the  motion  capture  data  is  sampled  at  a  client,  sent  to  the  server  for 
processing, then sent  back to all  clients for  displaying. The illustration below shows the path motion 
captured  data  takes  in  Lumo Scenario.  Because  of  this  long  path,  the  delays  on  the  client  between 
sampling and displaying movement can be significant. A local feedback mode was used to alleviate this 
problem, see section 7.5.

A diagram of the flow of rag doll orientation data, from sampling to displaying, is shown below.

 6.1 Client-side sampling

It all starts out with sampling each inertial sensor at the client, box 1) in diagram 10 
above. The Xsens quaternion data is in a right-handed coordinate system, as shown 
in the illustration to the right.

The identity quaternion represents a sensor with its Z+ axis pointing up, and its X+ 
axis  facing  the  magnetic  North.  This  means  each  sensor  reports  its  orientation 
relative to the North.

All orientations should be relative to the 'reset pose' of the model. This process is 
called resetting and is done as follows. The person in the motion capture suit mimics 
the reset pose as much as possible. These orientations are inverted and stored:

q i '=qi
−1
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Diagram 10: The path a motion capture sample travels, from client to server to client
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Where q i is the sampled orientation of limb i and q i ' the calibration quaternion.

In client-side Lumo Scenario code:

local calibration

-- Reset the Xsens motion capture pose. Called from the server
-- when the 'Reste Pose' button is clicked.
-- sensorList: list of all Xsens sensors' quaternions
function resetXsensPose(sensorList)
   calibration = {}
   for sensorIdx,q in ipairs(sensorList) do
       calibration[sensorIdx] = q:inversed()
   end
end

Then, as the sensors are sampled, the samples are calibrated:

si '=qi ' s i

Where si is the sampled orientation of limb i and si ' the calibrated quaternion.

-- Called after sampling the Xsens sensors. Returns
-- calibrated orientations.
function calibrateXsens(sensorList)
   local orientations = {}
   for sensorIdx,q in ipairs(sensorList) do
       orientations[sensorIdx] = q * calibration[sensorIdx]
   end
end

This data then is sent off to the server at a fixed rate. This way, each client connected to the server is free 
to have one (or more) full-body motion captures. This means it is possible for each client to control a rag 
doll in the same virtual space.

 6.2 Server-side transformations

So, the server receives a set of quaternions, ri=q0, q1,q2, q3∈ℝ
4 , i=1.. n , with n = number of limbs, 

indicating  the  limb  movement  relative  to  the  reset  pose.  We  still  cannot  use  these  to  set  the  limb 
orientations; all limbs would be in their unrotated positions. We want them to be in the reset pose.
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Multiplying the quaternions with the quaternions representing orientations of the limbs corresponding to 
the  reset  pose  solves  this.  That  is  why  every  rag  doll  has  an  initial  orientation  list 
ii
,=q0, q1, q2, q3∈ℝ

4 , i=1.. n . These orientations and other information are in a Lua data file:

geoms =
{
   -- Static Geom 'CM_Head'
   [1] = { type = "pill", x = 0.002308, y = 1.629900, z = 0.023619, rx = 0.000000, ry = 0.660030, 
rz = -0.751239, rw = 0.000000, radius = 0.111881, length = 0.051264 },
   -- Static Geom 'CM_Spine'
   [2] = { type = "box", x = 0.006147, y = 1.140748, z = 0.011621, rx = -0.000000, ry = 0.707107, 
rz = 0.707107, rw = 0.000000, sizex = 0.306296, sizey = 0.216449, sizez = 0.621202 },
   -- Static Geom 'CM_LeftUpperArm'
   [3] = { type = "pill", x = -0.176760, y = 1.269023, z = -0.024673, rx = 0.093603, ry = 
0.694184, rz = -0.707756, rw = -0.091808, radius = 0.042317, length = 0.216325 },
... (and so on for 13 items) ...
   -- Static Geom 'CM_RightFoot'
   [13] = { type = "box", x = 0.119015, y = 0.030124, z = 0.055110, rx = -0.000000, ry = 0.707107, 
rz = 0.707107, rw = 0.000000, sizex = 0.093834, sizey = 0.222733, sizez = 0.060007 },
},

Now,

q i=ri ii

makes qi the orientation to set the limb to. We are now ready to set the orientation directly or do other 
processing. The orientations in the above Lua file shown in the rag doll:
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Diagram 11: Reset pose directly set in limbs: all limbs unrotated



After physics processing, the resulting orientations and positions of the limbs are sent to each client that 
potentially has the rag doll in view. Algorithms to determine what is potentially in view for each client 
can include frustum-culling and/or potentially visible sets (PVS), see 4.2.2.

 6.3 Client-side transformations

When all  matrices  in the bone palette  are the identity matrix  Id,  the  skinned mesh takes its  modeled 
position (the position in the  position : float3 entries  in the vertices).  In this  case this  is  the 
position shown below in illustration 5.

The origin of the skinned mesh rag doll is, by re-lion convention, at the base the of model, near the feet. 
The diagram below shows this:
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Diagram 12: Rag 
doll initial limb 
positions



Also by re-lion convention, the rag doll looks along the Z axis. Because the rag doll is shown from the 
front,  the X axis points the other way it normally does. And because we use a left-handed coordinate 
system, the Z axis points out of your paper/screen.

As shown later on, the physics engine calculates the positions and orientations of the limbs. Because a 
physics engine outputs these positions and orientations exclusively in global space (world space), the data 
for bone position and orientation is sent to the client using global space position/quaternion pairs. This 
means we do not need the rag doll to be hierarchical.

Now, when we for example rotate the bone associated with the head, using the Lumo graphics engine, it 
will rotate around the origin of the rag doll like this:
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Diagram 13: 
Schematic rag doll,  
all bones = identity  
matrix



The  physics  engine  (ODE) always uses  the  center  of  a  limb as  center  of  mass  and  reference  point. 
Meaning, the position vector p of a body indicates the center of a limb. This means we will have to 
rotate the head around this pivot. Note that p changes position as the head rotates.

The pivot is the yellow dot. The 'mustache' is the movement of the pivot. This is the limb position sent by 
the physics engine. One might expect the head pivot to be at the joint location, that is, the neck. This is 
not the case because ODE geoms and bodies are represented by their center positions (see 5.1.1).
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Diagram 14: Rotating the head

Diagram 15: Rotating 
about the pivot



So, we need the bones to rotate about the pivot instead of the model origin.

First,  let's  define M  x as the 4x4 geometrical  transform matrix  of  x ,  where x can be a vector  or 
quaternion. 

As an aside:

Converting a vector t∈ℝ3 to a matrix:

M tt =[1 0 0 0
0 1 0 0
0 0 1 0
t x t y t z 1]

Converting a quaternion q=q0, q1, q2, q3∈ℝ
4  to a 3x3 rotation matrix is a bit more 

involved, and is described in [kuipers98], section 5.14. 

With this we can create a formula to rotate a bone about a pivot and translate it:

M ,=M pM t M qM −t 
With

● p∈ℝ3 is the position of the limb pivot in global space, as produced by the physics engine;

● t ∈ℝ3 is the position of the pivot in the untransformed rag doll local space (object space);

● q∈ℝ4 is the orientation of the limb in global space, as produced by the physics engine;

● M , is the bone matrix associated with the limb.

There are a lot of 4x4 matrix multiplications and conversions involved. A faster way might be to directly 
set the quaternion and position into the bone matrix. The orientation then matches instantly (observe that 
eq. 1 only has M q actually rotating the object); we only need to figure out how to move the object 
around t  instead of the origin o=0,0 ,0 , without resorting to the matrix math described above.
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Diagram 16: Rotating an object about point p
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Rotating o about p  yields the correct offset:

o ,=0−t qt

As an aside:

Here we are multiplying -p by quaternion q. This commonly means transforming (rotating) 
the vector by the quaternion. To compensate for the rotation, we need to translate (move) 
the object with o'.

Rotating a vector directly by a quaternion is done elegantly like this:

v ,=qv q *

Where q∈ℝ4 is  a  unit  quaternion,  and v∈ℝ3 the  vector  to  be  rotated. v ,∈ℝ3 is  the 
rotated vector.  Note that multiplying a vector by a quaternion is done by treating it as a 
quaternion q∈ℝ4 with qw=0 ,  meaning the  real  part  of  the  quaternion  is  zero.  This  is 
called a pure quaternion. For more information see chapter 5.8 of [kuipers98].

Another, slower, way of rotating a vector by a quaternion is converting the quaternion to a 
matrix and transforming the vector by this matrix. 

Combining eq. 2 and 3 yields:

o ,=q −t q *t
Adding the physics engine position of the pivot in global space:

o ,=q −t q *tp

Thus, setting the limb position to the o '∈ℝ3 and the limb orientation directly to q∈ℝ4 yields correct 
results.

 6.4 The skinned mesh

On the client,  a skinned mesh is used to represent  the rag doll.  This skinned mesh uses a set  of 3x3 
rotation matrices,  representing the position of each limb. This list of matrices is commonly called the 
bone palette. Each vertex of the mesh has a small list (two to four items) of bone indices and weights. The 
indices refer to the bone palette, the weights to how much the indexed bone influences the vertex. The 
weights should add up to 1.

36

Eq. 2 

Eq. 3 



Assuming these are vertices and the input parameters of a vertex shader:

struct VS_INPUT
{
   float3 Pos;
   float3 Normal;
   float2 Tex;
   float4 BlendWeights;
   float4 BlendIndices;
};
VS_INPUT SkinnedMeshVertex;
float4x4 WorldViewProjection;
float4x3 BonePaletteArray[26];  

The positions of the vertices can then calculated in the vertex shader:

// The number of bones per vertex in the mesh
static int BoneCount = 4;              
// Iterate over all bones except the final bone,
// add them to ObjectSpacePos
float LastWeight = 1;
float3 ObjectSpacePos = 0;
for(int b = 0; b < BoneCount-1; b++)
{
   LastWeight = LastWeight - SkinnedMeshVertex.BlendWeights[b];
   ObjectSpacePos += mul(float4(SkinnedMeshVertex.Pos, 1), 
     BonePaletteArray[SkinnedMeshVertex.BlendIndices[b]]) * 
     SkinnedMeshVertex.BlendWeights[b];
}
// Add in final bone (this makes sure the weights always add up to 1)
ObjectSpacePos += mul(float4(SkinnedMeshVertex.Pos, 1), 
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Diagram 17: Bone palette and vertex array of skinned mesh

Bone Palette

Bone mtx 0

Bone mtx 1

Bone mtx 2

Bone mtx 3

...

position : float3

normal: float3

texture: float2

blend indices: int4

blend weights: float4

Vertex Array

...

...



  BonePaletteArray[IndexArray[BoneCount-1]]) * LastWeight;
// Transform to view space and we're done
Viewspace_Position = mul(float4(ObjectSpacePos, 1), WorldViewProjection);

Combined with the talents of the re-lion graphics department, this results in a skinned mesh 
looking like this:

Now we have come full circle, from the client sampling the inertial sensors, to the server doing 
the processing, and back again to the client displaying the rag doll.
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Illustration 5: Skinned mesh 
soldier



 7 The network
This section describes some issues encountered while constructing a network protocol that could handle 
the one-way synchronization of the VR world in the physics engine to each connected client.

Interpolation and extrapolation are described because they are fundamental to creating fluid movement on 
clients.  Some  bandwidth-reducing  techniques  are  discussed,  and  the  problem  of  network  delays  is 
addressed.

 7.1 Interpolation and extrapolation

Let's  make up  a  server-side  value  that  we  want  all  clients  to  follow as  closely  as  possible.  For  the 
purposes of this discussion, we will treat this as a generic value, from the state of a physics body. This 
means the value is  a component  of  p (position) or a complete  q  (orientation).  See  5.1.1 for  more 
information about physics bodies.

The value makes a sharp nudge in the middle of the graphic, caused, for example, by a bounce or other 
sudden impulse to the body.

The vertical stippled lines represent the moments the server would like to send all moving objects to the 
client (the 'mesh world', see 4.2.1). The dots represent the value at these moments.

The server does three physics steps before sending the state data to the clients, as shown below in diagram 
19. This diagram shows the highest definition the value actually has.
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Diagram 18: Example X,Y,Z or rotational value component of a server-side object
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server-side network send event

client update rate (10 ms)

server-side value at network send events



A first implementation might set the value on the server as it is received, as shown below in diagram 20.

Of course there is a delay while the updates are being sent from the server to the client, called the half 
round-trip time. In this illustrative case, it is about 25 milliseconds. Usual round trip times, sometimes 
inaccurately called 'ping' times, are about 2 to 20 milliseconds on a local area network, making the half 
round-trip time about  1 to 10 milliseconds.  The little  x's mark the time when a sent  value (a dot)  is 
actually received by the client. It should be noted that round-trip times can vary during a session, which is 
not shown here.

Diagram 20 shows that objects will jerk around a lot. A straightforward solution to this is decreasing the 
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Diagram 19: Actual value through server ticks
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Diagram 20: Naive approach: set value as it is received
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number of physics steps between sending data. This increases the definition of animation, but  generates a 
proportionally higher network bandwidth. Detrimental effects of this are:

● more CPU time (on both server and clients) devoted to handling this bandwidth

● send and receive buffers (on both server and clients) get clogged with data, increasing network 
delay

● less clients can be serviced

During testing at an update rate of one-to-one to the server rate, which is 30 Hz, sometimes server-side 
send  buffers  got  so clogged that  the  system froze  up completely.  This  happens  when more  memory 
allocation requests (for increasing the send buffer size) are issued than the Windows kernel can handle.

The next step is to interpolate (at the client) the values that are received. For interpolation to 
work, we need something to interpolate to. That is why we need to wait one frame before 
interpolation can take place, see diagram 21 below.

While producing smooth movement, a disadvantage of client-side interpolation is that object updates are 
consistently lagging behind for the amount of an update frame, plus the half round-trip time. In this case, 
this amounts to 125 milliseconds.

To counter this, the current derivative (speed) of the value is considered. This data is part of the state of a 
physics body. This way, it's possible to extrapolate where, approximately, the value will  be when the 
client receives the next update.
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Diagram 21: Interpolation
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The arrows indicate  the derivative.  The dotted lines  represent  the  extrapolation.  Each time the  client 
receives an update, the current client position is used to interpolate the extrapolated value sent.A cleaned-
up version is presented below. 

This  technique  results  in  more  accurate  movement  along  smooth  movement,  but,  like  normal 
interpolation, fails at sudden changes of direction. This is the current technique implemented in Lumo 
Scenario.

Possible improvements include:

● also including second derivative (acceleration)

● while  stepping  the  physics  engine,  it  is  possible  to  detect  sharp  jolts.  This  can  be  done  by 
checking the position/speed vector, or by checking if the total force (multiplied by the mass) on 
an object. If this value is larger than some threshold, send an 'intervention' packet immediately, 
telling the client the new value a bit earlier.

● one could also run a secondary physics simulation on the client. The client is only corrected by 
the server is the simulation went wrong. This is called client-side prediction. This has always 
been a very popular technique in first  person shooter  games. However, because the arrival of 
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Diagram 23: Cleaned up extrapolation
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physics  engines  make  this  client-side  prediction  exceedingly  difficult,  and  because  the 
introduction  of  broadband  networks  for  the  masses  reduced  the  average  latency,  client-side 
prediction is not often used anymore in modern simulations and games.

 7.2 Data rates and threading

As shown above,  using less bandwidth is  a good thing. There  are many techniques to further reduce 
network bandwidth:

● only sending updates when an object actually moves or rotates. This couples nicely with the 'auto 
disable' feature of the physics engine. This feature disables the physics processing part of a body 
when body movement and rotation are below an adjustable threshold for an adjustable amount of 
time. Note that only the body is disabled, but not the geometry part used for collision detection, 
see sections 5.1.1 and 5.1.4. When a body is hit by another body, it is re-enabled again. It is easy 
to check for disabled bodies when sending updates.

● using  knowledge  about  what  kind  of  data  is  sent.  For  example,  positions  can  be  reduced  in 
dimensionality or precision (number of bits used) in some specific cases. Also, unit quaternions 
can be compressed in several ways (see 7.3 below).

● letting  the  client  extrapolate  further  by  not  sending  updates,  if  the  velocity  of  the  value  is 
constant. This is called dead reckoning, see [aronson97].

● using  server-side  potentially  visible  sets  (see  section  4.2.2)  or  other  occlusion  detection 
techniques to determine line-of-sight for each client vs. each object. Only send the updates for the 
potentially visible objects. 

● using dictionary-based data compression techniques, such as zip or bz2 compression. It is a good 
idea to use a single dictionary over all network messages.

The last two techniques are not researched or implemented in Lumo Scenario at the moment, the others 
are.

 7.3 Quaternion compression

The implementation of quaternion compression is described in here. This is because in the dismounted 
trainer, most of the rag doll data consist of a set of 15 to 20 quaternions. The number depends on the 
number of limbs in the rag doll and the number of sensors in the motion capture suit. See sections  6.1 
through 6.4 above.

A rotation quaternion is defined as (see 5.1.1):

q=cos /2 ,u∗sin /2

where u  is a rotation axis of unit length, and   is the angle the object is rotated along u .

Define q  as 

q=q0, q1, q2, q3∈ℝ
4

a property of q  (as long as it is a unit quaternion) is then:

q0
2q1

2q2
2q3

2=1  

making q  a unit quaternion, rotating about axis u .

So, when using single-precision (32-bit)  IEEE Standard 754 floating point [wiki2006] numbers, sending 
one quaternion over uses 16 bytes in the data stream.

Although quaternions have much less redundant data than rotation matrices, you can still create non-unit 
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quaternions by scaling a quaternion linearly. You can remove this redundant information by removing a 
component. E.g. when we solve Eq. 1 for q0 :

q0=±1−q1
2−q2

2−q3
2

it is clear that we can reconstruct one component from the three others, except the sign of q0 . But we 
can solve this  when we realize that  component-wise negated quaternion −q0,−q1,−q2,−q3 actually 
describes the same rotation. This makes sense: when the axis an object rotates about is inverted together 
with the rotation direction, you end up with the same rotation. 

So, if q0  turns out to be negative, the whole quaternion is negated first. So, when decompressing, q0  
must always be positive:

q0=1−q1
2−q2

2−q3
2

During implementation, we noticed that sometimes objects would disappear randomly. This turned out to 
be due to precision errors in the subtraction under the square-root sign of Eq. 2, leading to a negative 
square root, leading to an indefinite value for q0 . These precision errors are amplified by the fact that 
sometimes numbers very close to each other are subtracted [forsyth06].

So,  we  can  reduce  the  number  of  bytes  sent  per  quaternion  to  12.  Despite  the  precision  problems 
described above, this can be done without losing much precision.

As stated above, any of the three components can be removed. 

If  we  care  less  about  precision,  it  is  possible  to  reduce  the  number  of  bytes  to  4.  This  is  done  by 
converting  the  resulting  direction  vector  (three  components)  into  polar  coordinates  (pitch,  yaw)  and 
length.  These  allow for  distributing the  bits  for  yaw and pitch  values  according to  their  values.  For 
example, when the pitch points straight up, the yaw value does not have to be very refined. On the other 
hand, a pitch of zero (pointing along the equator) requires more precision in the pitch and much less in the 
yaw.

The  polar  solution  was  tested,  and  deemed  to  imprecise  for  the  dismounted  trainer:  it  introduced  a 
noticeable  jitter  in  the  movement  of  extremities  (hands  and  feet).  Because  the  dismounted  trainer 
application is expected to run on a local network, the trade-off decision between precision and data rate 
was made in  favor  of  precision.  Nevertheless,  for  simulations  running on wide-area  networks  or  the 
Internet, this is a very viable form of compression.

 7.4 Network delay

Because of the long path taken by the sampling data,  the delays on the client  between sampling and 
displaying that sample can be significant, up to 100 ms. Most importantly for the Dismounted Trainer, 
real-time training using full-body motion capture needs immediate real-time feedback to the user.  The 
delays incurred in the system described so far were measured.

 7.4.1 Delay measurement method

During each Xsens suit sample (box 1 in diagram 10 on page 29), two extra items of data were added to 
the sample:

● a unique sample ID: the serial number of the sample. This serial number is increased after every 
successful sample.

● the local time of the sample.

Then, this information is carried over from the client to the server (boxes 2 and 3 in diagram 10), which 
stores it, and after the physics processing tick (box 4), sends it back to the client along with the object (rag 
doll) update packet (boxes 5 and 6). At each step, the time is recorded, up until the rendering of the rag 
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doll.

The delays were measured on the re-lion standard single-user dismounted trainer setup, which is:

● Server: Intel P4, 3.2 GHz, 1024 MB memory

● Client:  Dell  Dimension  8400,  3.4  GHz,  512  MB memory,  NVidia  GeForce  6800,  256  MB 
memory

● Network: 1 Gbit direct crosslink cable

Note that during official dismounted trainer sessions, a wireless network is used. These delays were not 
measured, but have been observed to be noticeably larger than a LAN connection.

 7.4.2 Hypothetical delay

Based on known delays, one can create a worst- and best case scenario:

Phase 

number

Phase description Delay (msec) Total best - worst 

case (msec)
1 Xsens sensor sampling 0 0

2 Frame delay polling (assumed 50 Hz frame 
rate)

0-20 0-20

3 Net send to server (LAN) 2-17 2-37

4 Server processing (30 Hz fixed rate) 0-33 2-70
5 Net sent to client (LAN) 2-17 4-87

6 Frame  delay  on  client  for  rendering 
(assuming a 50 Hz frame rate)

0-20 4-107

7 1-2  potentially  queued  frames  on  client 
(assuming a 50 Hz frame rate) -- see below

0-40 4-147

The best case is very hypothetical: each loop in the system (network polling loops, server tick loop, client 
rendering loop) will have to be perfectly synchronized to make this happen. 

It should be noted in phase 1 that the sample delay of the Xsens sensors themselves was not measured.

Because the client checks for availability of new Xsens orientation data once every frame, the potential 
delay suffered here is one frame, which is 20 milliseconds. A potential optimization here is to have a 
separate thread sample the sensors, which immediately independently from the main thread, sends the 
new orientations to the server. This was not implemented in the dismounted trainer.

The send delay from and to the server (phases 3 and 5) are always between 2-17 milliseconds. This is a 
real-life measurement.

The rendering frame rendering (phases 6)  is  potentially lost  if  the network message arrives just  after 
polling the incoming network queue. The message will be processed one frame later, and thus the updated 
rag doll position will be drawn that frame. 

Unfortunately, due to hardware render command queuing and frame buffer flipping, some graphics cards 
render as much as two frames ahead of what is actually showing on the screen (phase 7). The makes for 
two more potential frames lost. At an assumed framerate of 50 Hz (the current operating frame rate of the 
ITEC demo), this is another 60 milliseconds potentially lost. 
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 7.4.3 Measurement results

A delay measurement was done during a dismounted trainer session. The results  were measured over 
3524 frames. The total a duration of the sample is 67.4 seconds, making the average frame rate 51.2 
frames per second (19,5 milliseconds).

The mean delay was 50.7 milliseconds, with a standard deviation of  13.7 milliseconds. This quite large 
standard deviation signifies that the system's different loops are not running in sync at all. On the up side, 
it is always much less than the worst case of 147 milliseconds.

Below a graph is showing the bell curve that emerges when assessing delay vs. frequency of that delay.

 7.5 Local feedback mode

As demonstrated  above,  the  network  delay  is  about  50  milliseconds.  Because  of  the  many  steps  a 
measurement takes, it is quite complex to reduce this delay: you would have to individually optimize each 
step. 

The delay is most noticeable on the client that samples the motion capture suit. A typical dismounted 
trainer configuration means the participant wears the motion capture suit and a HMD to look around. This 
means the participant can see his/her own hands and limbs moving, delayed about 80 milliseconds. This 
breaks the feel of immersion and makes manipulating objects exceedingly difficult.

A way around this, at least on the sampling client, is implementing a local feedback mode. In short, the 
client will locally make the movements it expects the server to send.

The  major  downside  is  that,  if  the  client-side  movements  turn  out  to  be  wrong,  the  rag  doll  limb 
orientations are corrected to the server-dictated orientations when the server update arrives in the client. 
Even  though  interpolation  was  used  to  smoothly  correct  the  orientations,  this  still  lead  to  jittery 
movement. Therefore, this method is not suitable for detailed interaction with the VR world.

However, it is suitable for the dismounted trainer. This is because in the dismounted trainer gestures and 
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Diagram 24: Percentage of samples with a specific delay
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body positions must be conveyed to other participants and interactions are mostly indirect, for example 
through weapons fire and explosions.
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 8 Rag doll actuation
'Rag doll actuation' for the purposes of this report means having a rag doll mimic the pre-animated real-
time data that was captured from a client.

 8.1 Direct-set method

The most straightforward way of integrating a pre-animated rag doll  into a physics engine is brutally 
resetting the position of each limb to the position the kinematics dictate,  before starting each physics 
frame.

 8.1.1 Theory

Much of the theory has already been outlined in section 6.2, since we already have the limb orientations 
as quaternions we can just set them directly to the limbs of the rag doll. 

There are some adjustments that need to be made for this to work:

1. the physics engine must not do any active physics processing on the limbs;

2. the positions of the limbs must be set (we only have the orientations now).

Placing a geom into the world without an associated body makes it a static geom. Forces on static geoms 
have no effect on it, effectively making it immovable, part of the static world. So to achieve the desired 
direct-set effect, the bodies associated with the rag doll are removed.

The second point (setting the limb positions correctly) is done by linearly traversing a list of joints and 
moving each limb so that the joint anchor points on both bodies match up.

Lets define the parent body as R0 (rotation matrix) and p0 (position). To transform from local space 
to global space:

p ' 0=R0
l  p0

The child body is defined as R1 and p1 . j 0 and j 1 are the joint positions in local body space. 
This means they are local to the bodies. To transform them into global space we use eq 1:
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Diagram 25: Parent body and required translation to child body
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j ' i=Ri
ji pi i=0,1

Now that both j ' 0  and j ' 1  are in the same coordinate space, we can safely subtract them to get 
vector d :

d=j ' 0−j ' 1

We need to move the child body with d. This results in the following transformation on the child body's 
position:

p ' 1= p1d

Where p ' 1 is the new position of the body. Combining Eq. 2, 3 and 4 and simplifying yields:

p ' 1= p0R0 j0− R1 j1

Note that we should traverse the list of joints in a logical order. All lower-level bodies should be below 
higher-level bodies. For example, an upper arm should be processed before a lower arm. This is because 
the upper arm will function as a parent for the lower arm.

Recursion and a tree of joints can be used to enforce this, but a linear list was chosen for convenience of 
data notation and implementation.

 8.1.2 Implementation results

Of  course,  one  cannot  expect  any  correcting  behavior  from  the  physics  engine  when  there  are  no 
dynamics involved in the rag doll. The movements are exactly the same as without a physics engine. You 
can still look at the response the rag doll has on the physics world, as shown by the movie in illustration 6 
below. A rudimentary walking algorithm is implemented here, described in section 8.4.1.

You can see the objects are perturbed somewhat by the rag doll. When the limb bodies are set directly 
into the dynamic bodies (in this case, the crates), ODE creates special non-penetration constraints (also 
known as joints – the terms joints and constraints are often used interchangeably in dynamics). This type 
of joint is called a contact joint.

The contact joint will be in violation of the constraint it should hold. The constraint it should hold is to 
keep the two bodies, the rag doll limb and the crate, in a non-penetrating state. The mechanism used in 
most dynamics engines to resolve these joint errors is introducing an error reduction parameter, ERP for 
short. The ERP controls how much force is exerted on the bodies to correct the joint error. Setting the 
ERP to  1.0  will  fix  the  joint  error  as  much  as  possible,  within  round-off  errors  and  other  internal 
approximations. Setting the ERP to 0 does not correct joint errors at all and will cause bodies to drift 
apart.  The movie was made with an ERP of 0.2. The forces generated by the ERP are not enough to 
resolve the joint violations quickly enough to resemble natural movement. Setting the ERP to 0.9 perturbs 
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Diagram 26: Correct translation
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the crates more, but not enough to even push them aside.

 8.1.3 Conclusion

Directly setting the orientations of the limbs of a rag doll is a nice way of testing if the whole chain 
described in chapter  4 works, but of course does not actually use the physics engine in any meaningful 
way. Any collision response of the rag doll itself is absent and the collision response of other objects 
(should the rag doll geoms penetrate them) is inadequate.

 8.2 Converting animations into forces

A controller is used to compare the current state of the rag doll to the state the kinematics dictate. Forces 
are applied to the rag doll to nudge it into the desired position.

 8.2.1 Theory

Given a motion-captured animation set, how does one drive the physics engine so the resulting animation 
will be give same result?

What complicates the matter, of course, is that the forces calculated here are not the only forces working 
on the physics model. First, there's gravity and the normal forces from the ground, and, if the rag doll  
walks into a wall or otherwise collides with the worlds, the results can be unexpected indeed. So for the 
first iteration, we will disable these forces by disabling the gravity and having no objects in the rag doll its 
way.

To convert a kinematics frame to a dynamics forces and torques, we use this procedure, adopted from 
[ode01]. For each body of the current model, measure the angle relative to its parent in the animation 
hierarchy. Compare this to the same relative angle of the animation. This results in a relative angle error 
of the body. Calculate and apply the torque necessary to move the body to the angle relative angle of the 
animation.

Let's define  k as the kinematic quaternion of some limb and  q as the dynamic quaternion, that is that 
current orientation of the body representing the limb. The error quaternion between these two is:

e=qk−1

To repeat, the definition of quaternions,

e=cos /2 ,u∗sin /2
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Illustration 6: Direct-set method filmstrip. The rag doll walks through a set of crates, slightly perturbing them.



where u  is a rotation axis of unit length in ℝ3  Cartesian space, and   is the angle the object is 
rotated along u .

This means that u is the axis to rotate the body around to get it into orientation k. We can feed 
this value into the angular force accumulator, scaled by the angular distance to travel and a spring 
constant k:

 f=∣u∣ k

The value of the spring constant determines the strength of the spring, and thus the resulting animation 
and stability. A large spring constant value causes the rag doll to rigidly follow the animation and exert a 
large force if stopped (by another body or wall, for example). However, a large spring constant can cause 
instability. 

Another problem with this method is that, when some rotations achieve a constant speed,  some bodies 
may be off for many steps. A solution to this is to introduce an error accumulator, in the form of a leaky 
integrator1.  The  force  added  to  the  body  is  multiplied  by  the  result  of  the  error  accumulator.  The 
following equation can be used for a leaky integrator:

dx
dt
=i−ax

• x = x(t) is the angle error over time

• i is the input angle error
• a, a constant, represents the decay rate

In this case, we can use the  as angle error and compensate by multiplying  f  by the result of the 
leaky integrator. 

 8.2.2 Conclusion

One of the major problems with the forces method is that we have effectively created a spring, pushing 
the rag doll limbs into the animated position. Any time a spring is used, the programmer should be wary 
of the stability and usability of the simulation. 

The first problem is that, even with a leaky integrator, it will take some simulation steps before the body 
is in the desired position, introducing (more) lag to the simulation.

The second problem is that the spring constant  k and leaky integrator decay rate  a from the discussion 
above must be chosen carefully. If it is too low the body will never reach its final orientation. If it is too 
high the body will take too large steps (overcompensating), and the simulation could become unstable and 
'explode'.

The third and final problem is that, if other forces (such as gravity) are applied to the body, the body may 
never reach its final orientation. In some cases this can be beneficial for integrating the rag doll with the 
world, as described in the section above.

 8.3 Angular motor

There are some big problems with the forces approach (see the section above). These problems are similar 
to the problems solved by motors and joints in a physics engine. These use implicit first-order integration 
to achieve similar effects, but without the downsides of joints (tweaking, instability, more steps to achieve 
desired state). 

1A leaky integrator model is an integrator thats 'leaks' at a rate proportional to its value.
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 8.3.1 Theory

For this to work, we will need two sets of constraints on each rag doll joint. This means two joints are 
attached for each rag doll joint, one ball joint and one angular motor.

The first type of joint, the ball joint, keeps the bodies together, rotating around a specified joint position. 
Ball joints do not constrain any angular degrees of freedom; in other words, the bodies can freely rotate 
about the ball joint positions.

The second type of joint, the angular motor, controls the relative angular velocities between two bodies. 
Let's assume we have angular motors attached to all joints of a rag doll. If we tell the motor to keep the 
speed at zero, we will effectively have implemented dry (Coulomb) friction in the joints.

So now, instead of a force (which is an acceleration times mass), we can supply a speed to control the 
animation. We still need the spring, but now it is in the speed domain instead of the acceleration domain, 
making it more stable.

 8.3.2 Conclusion

The angular motor is more stable than the springs/force method. However, the movement of the rag doll is 
still somewhat sluggish: if the motion capture feed moves too fast, the rag doll will still become unstable.

 8.4 Walking

Many types of motion capture data do not have an absolute position recorded with them (see section 
3.1.1).  If  the  rag  doll  is  modeled  accurately  enough,  we  can  try  to  use  the  collision  and  dynamics 
responses  from the physics  engine to  make the  model  walk around.  Correct  friction  simulation is  an 
important part of this process.

 8.4.1 Lowest foot

In a nutshell,  the lowest foot method simply checks which foot is lowest and then anchors the model 
around that point. 

Theory

Let c i , i=1..n be a number of sample points near the feet. Below is a diagram showing where these 
coordinates are.  They are stored as local  coordinates  to the  left  and right  foot  dBodies,  respectively. 
Increasing the number of sample points (n) increases the definition of the foot contact algorithm, but for 
the purposes of this test x were chosen.

The reason the points at the front of the feet are not at the tip of the shoes is because this allows the feet  
to pivot at these points while walking, emulating the bending of the toes. This has the effect that the toes 
disappear a small amount into the ground, because they are part the the foot bone and not a separate bone 
or limb.
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At run-time, these coordinates are translated from this local space of the foot limb they belong to global 
coordinates. The resulting global coordinate with the lowest (smallest) y axis is then designated as lowest 
point, thus the point that should be constrained to the ground.

Let's designate  j  as the index of the lowest point, as determined by the 'algorithm' defined above. This 
makes c j the lowest  point.  To keep point  c j  constant  while the rest  of the body moves, simply 
subtract the c j  from the positions of all limb of the rag doll for each frame. 

p '=p−c j

Here p is the current position of the limb and p ' the position to use for physics processing. Note 
that this calculation is done each frame and that p (the state) is unchanged.

Now the change from one contact point to another we need to be handled. If nothing is done, the rag doll 
will 'jump around' each contact point, each contact point being the center of the rag doll. If j changes from 
one frame to the next, it is clear that a new contact point to the lowest. Here,  k is the old contact point 
index.

p=pc j−ck

In this case, the state of the bodies is modified to incorporate the offset between the old and new lowest 
point.

Evaluation

The main advantage of the lowest foot method is that it is simple to implement and looks reasonable. 
However, disadvantages are manifold:

● The algorithms only works for persons standing on their feet. Crouching, lying down and standing 
upside-down do not work, because only the feet contact points are checked.

● The technique (as described here) only works on a flat surface. One could ray-cast the points to 
collide with the rest of the virtual world and adjust the height of the rag doll  accordingly. Of 
course ray-casting leaves open the possibility of missing important geometry with the ray cast. A 
better solution along these lines is presented in the next section.

● The wrong foot might the chosen as lowest foot, when the lowest points of the two feet are very 
close together  and the motion-captured person is  still  moving. For example,  this  can happen, 
when he/she drags his/her feet. The result of this is incorrect movement of the rag doll.

● Walking does not look very natural; the character bounces up and down too much. This is due to 
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Diagram 27: Sample points on the feet for the lowest point  
measurement (feet seen from below ground position)



the tips of the toes not bending. It is possible to incorporate this bending into the algorithm.

 8.4.2 ODE collision detection

The lowest  point is the 'direct set method' of walking: it  does not use the physics engine to generate 
contact points or more the rag doll. A first step is using the contact point generation algorithms to:

● enable walking over uneven terrain

● increase the definition of collision detection: because ODE uses solid collision primitives, the rag 
doll will not fall through uneven terrain

A detail of the collision mesh illustrates the concept in diagram 28 below. The blue wireframe represents 
the collision geom primitives. The green wireframe is the 'mesh world' mesh. Unrelated to this discussion, 
the red wireframe represents the bone structure.

The physics engine (ODE) can now generate the contact points using the collision detection. Normally 
these are used to generate contact joints (see chapter 5). Using these contact points results in a variable 
number of contact points each frame (n), which can then be processed in the same manner detailed in the 
section above.

 8.4.3 Invisible pendulum model

When physics are enabled using the force/spring method (see  8.2) or angular  motors (see  8.3),  it  is 
possible to directly move the rag doll by letting the physics do their job. A problem is that, unless the 
animation is impossibly perfect, the rag doll will fall over almost immediately. A simple, yet inaccurate 
solution is attaching a body with the center of mass to way outside and below the  rag doll. This weight 
works as a pendulum, keeping the rag doll upright.

A disadvantage to the invisible pendulum method is that it further increases the amount of force both the 
force/spring method and angular motor method need to generate, and thus make them (even) less stable.

Another  disadvantage  is  that  the  distribution  of  weight  is  altered,  which  results  in  not  very  natural 
movement.
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Diagram 28: Left foot of soldier, with collision primitives 
and bones



 8.4.4 Self-righting constraints

Instead of using a pendulum-like construction, one could also attach an extra angular motor on each limb, 
or on a set of major limbs, such as the pelvis and torso, to keep the rag doll upright. The angular motors 
are also attached to the static world. The error angle is measured and feedback force is supplied to keep 
the torso upright. This method should have as an advantage that the pendulum will never 'sway'. This 
method has not been implemented.
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 9 ITEC/Dismounted Trainer demo
The ITEC/dismounted trainer demo is an application that allows two (or more) people, wearing motion 
capture suits,  to visually interact  with each other and the environment.  It shows vehicle dynamics by 
allowing people to drive around in a tank.

The demo demonstrates Lumo Scenario physics, scripting and multi-user capabilities. 

 9.1 Tank physics

The tank uses  a set  of  ten spheres  as wheels.  The reason  for  this  is  that  this  configuration provides 
excellent stability and tank-like vehicle behavior at a modest performance cost.

Alternative configurations are:

● Individually modeling tank tread links. Far too costly in CPU terms (the number of contact points 
and the physics engine's LCP matrix would become huge) and very unstable.

● Using ray-casting and a feedback loop to model a “hovertank”, emulate tread contacts with the 
ground. This interesting approach takes very little  CPU time. However, it  is more complex to 
implement  and  it  remains  to  be  seen  if  tank-like  behavior  is  possible.  This  is  why  an 
implementation was not attempted. Certainly an option if many tanks need to be simulated. See 
[watte06].

● One can create rigid bodies shaped like tank treads.  The contact  points these bodies generate 
could be modified to transport the bodies forward, much like an up-side-down conveyor belt. This 
is quite a low performance overhead technique, but creating adequate suspension is a challenge.

We believe using spheres a collision primitives results in an acceptable trade-off between physics quality, 
CPU resource usage and implementation time.  

The spheres are connected to the main body using dampened slider joints. This means they can move up 
and down individually.  An angular  motor  joint  on each  sphere  controls  the  angular  velocity  of  each 
sphere, and with that the forward and backward movement of the tank.

The contact joints generated by the inner 'tread' spheres allow for considerable sideways slipping. This is 
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Illustration 7: Tank with sphere 'treads'



because tanks corner by letting one 'tread' move faster than the other, effectively slipping around corners. 
If slipping in the contacts joints is disallowed, the tank cannot turn at all!

The front  and back two spheres  are elevated somewhat and do not  normally touch the ground when 
driving around. They do help when climbing obstacles and maneuvering hilly terrain. These spheres slip 
considerably less than the others, to allow for easier climbing of steep obstacles. 

The tank also includes a special client-side visualizer. A visualizer is an object that interprets the object 
update messages from the server into objects to render. The tank visualizer includes the following special 
effects:

● rotating turret

● exhaust valves that bounce according to engine rev

● diesel fume particle systems from the exhausts, taking into account the engine rev

● dust clouds from the tank treads ground-contact points, taking into account the tank velocity

● tank commander hatch opens and closes

● the tank tread meshes are separate meshes, rotated and translated according to the mean position 
of eight sphere wheels

● tank tread textures in these meshes are animated. These animations are driven by the individual 
speed of each tread (left or right)

● the sixteen mesh wheels and two cogs (at the end of the tank) are animated. These animations are 
also driven by the individual speed of each tread (left or right), and each cog meshes with the 
treads in the texture

This shows the power of  using specialized network message handlers  of  each type of object:  special 
effects can be programmed at client-side, without increasing network bandwidth. 

The particles effects are created using a custom particle system described below.

 9.2 Particle dynamics

Newly  developed  for  the  dismounted  trainer/ITEC  demo  is  a  particle  system,  called  Subatomic. 
Subatomic plugs into Lumo Scenario (and other Lumo applications). 

Particle  systems,  in  a real-time VR simulation  context,  are  usually  a cloud of  many facing quads or 
triangles. “Facing”, in this context, means that the particle always faces the viewer. 
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Illustration 8: Particle wireframe, textured saturated triangle particles, textured alpha-blended quad particles



Each particle has some properties that determine its appearance:

● Texture

● Color

● Size

● 3D position

● Rotation

● Topology - quad or triangle

● Blend mode - alpha blending or saturated blending. Alpha blending uses a mask to blend different 
parts of the particle differently with the background. Saturated blending adds the particle to the 
background.

Each particle also has some other characteristics, that are dependent on what type of effect the particle 
system is supposed to model. These can include:

● Speed

● Weight

● Time-to-live

● Behavior

An interesting feature of this particle system is that these characteristics are modeled using an approach 
similar  to vertex  shaders.  The rendering of  the  particle  is  done in  the  base  system. The logic  of  the 
particle  is  separated  into  a  .c  file,  which  is  compiled  on  the  fly  using  a  modified  version  of  TCC 
[bellard05]. TCC (TinyCC) is a small, open-source x86 compiler, used here as a back-end for run-time 
code generation.

The particle system (called Subatomic) compiles the .C code into machine code at run-time. This has the 
following advantages:

● Speed: much faster than scripting.

● Flexibility:  the  system can re-load and re-compile  a particle  C file.  This  means that  you can 
immediately check the results of your changes, without restarting the simulation.

● Ease of use: isolating the particle behavior in a single file enables non-programmers to create and 
tune their own particle effects, easing the burden on programmers.

Disadvantages:

● Because particle C files are machine code (and not interpreted scripts or byte-codes, such as Lua), 
it is possible to crash a process using an incorrect particle C file.

● TCC does not yet generate SIMD (Single-instruction, multiple data) code, which would be ideally 
suited for these kind of calculations.

An example .pc (particle C) file:

typedef struct
{
   float position[3];
   float size;
   float speed[3];
   float life;
} my_particle_t;
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const char* texture = "flare2.bmp";
int count = 300;
BLENDTYPE blendtype = BLENDTYPE_SATURATED;
PARTICLETYPE particletype = 
PARTICLETYPE_TRI_UNIQUESIZE_UNROTATED_SINGLECOLOR;
unsigned long constant_color = 0x8f3403;
int particledatasize = sizeof(my_particle_t);
int emitterdatasize = sizeof(EmitterData);

void init(EmitterData* emitter, my_particle_t* particle)
{
   particle->position[0] = rnd_getrange(-1, 1);
   particle->position[1] = 0;
   particle->position[2] = rnd_getrange(-1, 1);
   particle->speed[0] = rnd_getrange(-2, -31);
   particle->speed[1] = rnd_getrange(18, 20);
   particle->speed[2] = rnd_getrange(-15, 15);
   particle->size = rnd_getrange(1,2);
   particle->life = rnd_getrange(0,.6);
}

int update(EmitterData* emitter, my_particle_t* particle)
{
   particle->position[0] += particle->speed[0] * emitter->timepast;
   particle->position[1] += particle->speed[1] * emitter->timepast;
   particle->position[2] += particle->speed[2] * emitter->timepast;
   
   particle->speed[1] -= 40 * emitter->timepast;
   particle->size -= emitter->timepast*0.5;

   particle->life -= emitter->timepast;
   if(particle->life < 0) init(emitter, particle);
   
   if(particle->position[1] < 0) particle->speed[1]*=-1;

   return 0;
}

A small application, called Subatomic Studio, was created. It immediately recompiles a particle C file 
after  every  key press.  Because  TCC compiles  such  a  small  file  in  manner  of  microseconds,  results 
(including error messages) are immediate.

A screen shot of Subatomic Studio in action:

59



60

Illustration 9: Subatomic Studio



 9.3 Demo screenshots

All models and textures in the screenshots are made by the re-lion graphics department, being Edwin van 
het Bolscher and Bart Wttewaall.

The  main areas  in  the  ITEC demo world  are  a  desert,  a  desert  town,  and  a  hangar.  The  desert  has 
moderate bumps and hills to show off tank physics. The town was made to demonstrate tank behavior in 
more confined spaces, and to show the city- and road-building capabilities of Lumo Builder,  our VR 
world creation tool. The hangar was integrated from a previous demo as an area to experiment with the 
dismounted trainer. This factory-like structure contains crates and other objects to interact with.

The actuated rag doll  was, in this  case,  put into a tank hatch to underline the fact that both the tank 
operator and the motion captured person were in the same world.

The next screen shot shows the rag doll and a part of the hangar most of the dismounted trainer was 
developed in.
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Illustration 10: The avatar sitting in a tank hatch. One user drives the tank, the other the ragdoll in the tank hatch
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Illustration 11: The dismounted trainer avatar on its own. The tank is driving around elsewhere



 10 Conclusion

 10.1 The good and the bad

The  client/server  architecture  has  proved  itself  to  be  very  extendable  and  maintainable.  Because 
functionality  is  so  strictly  separated,  computing  power  is  efficiently  distributed  between  clients  and 
servers. The server calculates all simulation logic and physics, the clients do the graphics rendering. This 
scales  very well,  as  adding  more  users  entails  connecting  more  clients  to  the  server,  meaning more 
computing power in the total system.

Using extrapolation  for  object  updates  greatly  increases  smoothness  of  movement,  and  increases  the 
number of objects that can be sent to a server, because it greatly decreases necessary network bandwidth. 
Network and processing delays remain a problem but can be reduced, at significant engineering effort, by 
client-side prediction and processing.

Using physics engines for full-body motion capture integration in 3D worlds was not that fruitful. While 
it should be possible, in theory, to actuate a rag doll instead of using the direct-set method, some problems 
remain: 

● stability  problems:  the  rag doll  (virtual  avatar)  needs  springs or  motor  forces  to   assume the 
correct position. Tuning these motors and springs is exceedingly difficult.

● precision problems: despite usage of leaky integrators and other stop-gap measures, limbs tend to 
be out of sync with the motion captured source more than is generally acceptable.

Another,  more general  problems identified  was if  one was to  walk a  distance  using the  dismounted 
trainer,  you  could  bump into  a  real  wall!  The  real  environment  will  usually  differ  from the  virtual 
environment.  

One  of  the  easier  solutions  to  use  in  production-level  simulators  would  be  not  using  a  completely 
articulated rag doll at all, but an approximation, such as a capped cylinder (a cylinder with semi-spheres 
as caps), standing on its side, moving around. This is an approach common in current-generation games 
(Quake 4,  Half  Life  2, etc).  Interaction  is  usually  done by proxy. 'Proxy' in  this  case  usually  means 
weapons to blow stuff up and shoot crates,  monsters,  etc.   Half Life 2 has shown interesting indirect 
manipulation possibilities by way of a 'gravity gun'. 

The full-body motion capture then, seems more suitable for the following tasks:

● visual interaction with team mates

● exact replay of body movement for later analysis

● interaction with the environment, mainly through weapons and other tools

The sheer volume of the system required to start experimenting with real person-to-person interactions 
has  limited  the  amount  of  time  available  for  more  creative  experimenting,  especially  in  the  area  of 
integrating the rag doll motion capture into the physics engine.   

 10.2 Near-future products

The base multi-user system is  now up and running, and there are already next-generation simulations 
being developed with it. A simulator also developed on the Footprint platform during the time frame of 
this  project,  besides  the  ITEC/Dismounted  Trainer  demo  presented  in  chapter  9,  is  a  scootmobile 
simulator.  This  simulator  has  been  written  for  a  different  project,  a  co-operation  between  Roesingh' 
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Research & Development, the University of Twente and re-lion. 

Also in developed at re-lion during the same time, but not by this author, is a content creation tool that 
can drastically speed up creation of VR worlds using a point-and-click interface. This product is called 
Lumo Builder. re-lion hopes that more useful simulations based on Lumo Scenario and/or Builder will be 
developed in the future.  
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 11.3 Reading BVH files into a Lua table

The .bvh format [gleicher99] is a text-based motion capture format. The transformations described in the 
.bvh file can sometimes be a bit tricky, and a lot of text parsing is required to read the format. Because 
text parsing is best done in scripts, I have created a Lua script that:

• Reads and validates the .bvh file

• Executes  the  relative  transforms  to  generate  world-space  quaternions.  We  need  worldspace 
quaternions because the physics engine does not use hierarchies

Each segment has an 'offset' vector, a 'rotation' list (containing one non-relative (worldspace) quaternion 
for each frame of animation), and an optional 'segments' list, which contains sub-segments.

The .bvh format was used to store and play back motion captures, because most of the time access to the 
available motion capture suits were limited, and working in the motion capture suit while at the same time 
programming a simulator is very tiring.

First the script is given, then an example .bvh file and the resulting Lua table.

--[[
   Parses a .bvh (motion capture) file into Lua table format.
--]]

-- A list of valid BVH transform tokens and their
-- quaternion sequence equivalents.
local xform_tokens = 
{ 
   Xrotation = "rx", 
   Yrotation = "ry", 
   Zrotation = "rz", 
   Xposition = "tx", 
   Yposition = "ty", 
   Zposition = "tz" 
}
-- Main Function
BVH2Table = function(bhvfilename)
   local bhvfile, linenumber, bvhtable, levels_temp_info, line, rest, _ = 
         assert(io.open(bhvfilename)), 0, {}, {}
   
   local function readline()
       repeat
           linenumber = linenumber + 1
           line = bhvfile:read("*line")
           -- trim
           line = line and string.gsub(string.gsub(line, "^[ \t]*", ""), "[ \t\n]*$", "") or nil  
           -- enable comments and while lines
       until not line or (line ~= "" and string.sub(line, 1, 1) ~= "#")     
       _,_,token = string.find(line or "", "^([%u%l{}:]+)")
       -- rest of line, stripped
       _,_,rest = string.find(line or "", "^[%u%l{}:]+[ \t]([%a%d%s%c%p]*)")
   end
   
   local function parse_error(err, ...)
       error(string.format("%s:%d: %s", bhvfilename, linenumber, string.format(err, unpack(arg))), 
0)
   end
   
   local function checktoken(ctoken)
       if ctoken ~= token then
           parse_error("token %s expected, got %s", ctoken, token)
       end
   end
   bvhtable.root_segment = {}
   local function read_joint_level(level)
       local level_temp_info = { rotation_seq = {}, level = level }   
       -- stored info for use at animation frame decoding time
       table.insert(levels_temp_info, level_temp_info)  
       level.rotation = {}  -- one for each animation frame
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       checktoken("{") readline()
       while token ~= "}" do
           if token == "OFFSET" then
               local ox, oy, oz
               _, _, ox, oy, oz = string.find(rest, "[ \t]*([%-%+%d%.]+)[ \t]+([%-%+%d%.]+)[ 
\t]+([%-%+%d%.]+)")
               level.offset = vec4(ox, oy, oz)
           elseif token == "CHANNELS" then
               local _, e, channelcount = string.find(rest, "([%d]+)[ \t]*")
               for i=1, channelcount do
                   local chname
                   -- extract channel name (such as "Xrotation")
                   _, e, chname = string.find(rest, "([%w]+)[ \t]*", e)
                   local token = xform_tokens[chname] or 
                       parse_error("unknown channel type %s", chname or "(nil)")
                   if string.sub(token, 1,1) ~= "t" then  -- ignore translation tokens.
                       table.insert(level_temp_info.rotation_seq, token)   -- "rx", "ry", or "rz"
                       table.insert(level_temp_info.rotation_seq, 0)       -- spot to put the 
angle
                   end
               end
           elseif token == "JOINT" or token == "End" then
               local newlevel = {}
               level.segments = level.segments or {} -- make sure we have a table there
               level.segments[(token == "End") and "EndSite" or rest] = newlevel  -- new level
               readline()
               read_joint_level(newlevel)
           elseif token ~= "}" then
               parse_error("illegal/unknown token '%s'", token)
           end
           readline()
       end
   end
   
   -- Read hierarchy
   readline()
   checktoken("HIERARCHY")  readline()
   checktoken("ROOT")  readline()
   read_joint_level(bvhtable.root_segment)     
   readline()
   
   -- Read frames (insert them into the right places of the hierarchy)
   checktoken("MOTION") 
   readline()
   
   checktoken("Frames:") 
   _,_,bvhtable.framecount = string.find(rest, "([%d]+)")
   readline()
   
   checktoken("Frame")
   _,_,bvhtable.frametime = string.find(rest, "([%d%.]+)")
   readline()
   
   for fr = 1, bvhtable.framecount do
       if token or not line then parse_error("frame data expected") end
       local e = 1
       
       -- Skip global translation - we don't need it
       for l = 1, 3 do
           local n
           _,e,n = string.find(line, "([%-%+%d%.]+)[\t ]*", e)
       end
       
       -- fill in the rotation sequence in rotation_seq with 
       -- the right angles, turn it into a quaternion
       for l = 1, table.getn(levels_temp_info) do
           local rs = levels_temp_info[l].rotation_seq
           for c = 2, table.getn(rs), 2 do
               local n
               _,e,n = string.find(line, "([%-%+%d%.]+)[\t ]*", e)  -- capture number
               rs[c] = math.rad(tonumber(n)) -- insert right number into rotation sequence
           end
         -- constructs quad from rotation sequence
           levels_temp_info[l].level.rotation[fr] = quat(unpack(rs))  
       end
       readline()
   end
   
   return bvhtable
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end

This is one of the .bvh files tested. This BVH file has only two frames of animation:

HIERARCHY          
ROOT Hips    
{

OFFSET 0.00 0.00 0.00 
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT Chest
{

OFFSET  0.00  5.21  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT Neck
{

OFFSET  0.00  18.65  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT Head
{

OFFSET  0.00  5.45  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
End Site 
{

OFFSET  0.00  3.87  0.00
}

}
}
JOINT LeftCollar
{

OFFSET  1.12  16.23  1.87
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftUpArm
{

OFFSET  5.54  0.00  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftLowArm
{

OFFSET  0.00 -11.96  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftHand
{

OFFSET  0.00 -9.93  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
End Site 
{

OFFSET  0.00 -7.00  0.00
}

}
}

}
}
JOINT RightCollar
{

OFFSET -1.12  16.23  1.87
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT RightUpArm
{

OFFSET -6.07  0.00  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT RightLowArm
{

OFFSET  0.00 -11.82  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT RightHand
{

OFFSET  0.00 -10.65  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
End Site 
{
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OFFSET  0.00 -7.00  0.00
}

}
}

}
}

}
JOINT LeftUpLeg
{

OFFSET  3.91  0.00  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftLowLeg
{

OFFSET  0.00 -18.34  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftFoot
{

OFFSET  0.00 -17.37  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
End Site 
{

OFFSET  0.00 -3.46  0.00
}

}
}

}
JOINT RightUpLeg
{

OFFSET -3.91  0.00  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT RightLowLeg
{

OFFSET  0.00 -17.63  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT RightFoot
{

OFFSET  0.00 -17.14  0.00
CHANNELS 3 Zrotation Xrotation Yrotation
End Site 
{

OFFSET  0.00 -3.75  0.00
}

}
}

}
}
MOTION
Frames:    2
Frame Time: 0.033333
 8.03  35.01  88.36 -3.41  14.78 -164.35  13.09  40.30 -24.60  7.88  43.80  0.00 -
3.61 -41.45  5.82  10.08  0.00  10.21  97.95 -23.53 -2.14 -101.86 -80.77 -98.91  
0.69  0.03  0.00 -14.04  0.00 -10.50 -85.52 -13.72 -102.93  61.91 -61.18  65.18 -
1.57  0.69  0.02  15.00  22.78 -5.92  14.93  49.99  6.60  0.00 -1.14  0.00 -16.58 -
10.51 -3.11  15.38  52.66 -21.80  0.00 -23.95  0.00

 7.81  35.10  86.47 -3.78  12.94 -166.97  12.64  42.57 -22.34  7.67  43.61  0.00 -
4.23 -41.41  4.89  19.10  0.00  4.16  93.12 -9.69 -9.43  132.67 -81.86  136.80

 0.70  0.37  0.00 -8.62  0.00 -21.82 -87.31 -27.57 -100.09  56.17 -61.56  
58.72 -1.63  0.95  0.03  13.16  15.44 -3.56  7.97  59.29  4.97  0.00  1.64  0.00 -
17.18 -10.02 -3.08  13.56  53.38 -18.07  0.00 -25.93  0.00

Calling BVH2Table("Example1.bvh") results in this Lua table (truncated for brevity):

framecount = 2,
frametime = 0.033333,
root_segment =
{
   offset = vec4 (0, 0, 0, 0),
   rotation =
   {
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       1 = quat (-0.11577000161481, 0.98634074464164, 0.1308934246975, 0.11462942471842),
       2 = quat (-0.092123745446054, 0.99079162002462, 0.11519387419897, 0.096296434110259)
   },
   segments =
   {
       Chest =
       {
           offset = vec4 (0, 5.21, 0, 0),
           rotation =
           {
               1 = quat (-0.67846116148714, 0.12346290260154, -0.018118578146337, 
0.80173868330825),
               2 = quat (-0.71002633530165, 0.10297149585287, -0.016228624073583, 
0.78534731626565)
           },
           segments =
           {
               LeftCollar =
               {
                   offset = vec4 (1.12, 16.23, 1.87, 0),
                   rotation =
                   {
                       1 = quat (0.0078171064286399, -0.088637181342426, -0.087502717571974, 
0.99218225006713),
                       2 = quat (0.006021618823607, -0.035791871462232, -0.16579892649827, 
0.98549144999639)
                   },
                   segments =
                   {
                       LeftUpArm =
                       {
                           offset = vec4 (5.54, 0, 0, 0),
                           rotation =
                           {
                               1 = quat (0.25104554088208, 0.31639235427109, -0.70958017540797, 
0.61232540952431),
                               2 = quat (0.056273758461838, 0.17854386715035, -0.72064600783116, 
0.67287313254332)
                           },
                           segments =
                           {
                               LeftLowArm =
                               {
                                   offset = vec4 (0, -11.96, 0, 0),
                                   rotation =
                                   {
                                       1 = quat (1.0258909101019, -0.3453428852374, 
-0.25181944097625, 0.42973722992851),
                                       2 = quat (0.93886074109298, 0.39227367663586, 
0.38287494672031, 0.49726498409251)
                                   },
                                   segments =
                                   {
                                       LeftHand =
                                       {
                                           offset = vec4 (0, -9.93, 0, 0),
                                           rotation =
                                           {
                                               1 = quat (-0.00052358926859083, -3.1527711529578e-
006, -0.006021348914081, 0.99998176870407),
                                               2 = quat (-0.0064575696942592, -3.9447539165837e-
005, -0.0061085188626025, 0.9999657042768)
                                           },
                                           segments =
                                           {
                                               EndSite =
                                               {
                                                   offset = vec4 (0, -7, 0, 0),
                                                   rotation =
                                                   {
                                                       1 = quat (0, 0, 0, 1),
                                                       2 = quat (0, 0, 0, 1)
                                                   }
                                               }
                                           }
                                       }
                                   }
                               }
                           }
                       }
                   }
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               },
               Neck =
               {
                   offset = vec4 (0, 18.65, 0, 0),
                   rotation =
                   {
                       1 = quat (-0.71735991013929, -0.049407855716724, -0.054194112699621, 
0.78685227788826),
                       2 = quat (-0.71471783287338, -0.04791004629929, -0.052869941930909, 
0.78870911718489)
                   },
                   segments =
                   {
                       Head =
                       {
                           offset = vec4 (0, 5.45, 0, 0),
                           rotation =
                           {
                               1 = quat (0.68257456765686, -0.069016051683096, 0.043433909627014, 
0.80788328327002),
                               2 = quat (0.68201735316684, -0.065119491426392, 0.044949626769842, 
0.80845129359348)
                           },
                           segments =
                           {
                               EndSite =
                               {
                                   offset = vec4 (0, 3.87, 0, 0),
                                   rotation =
                                   {
                                       1 = quat (0, 0, 0, 1),
                                       2 = quat (0, 0, 0, 1)
                                   }
                               }
                           }
                       }
                   }
               },

... etc ...
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