Incremental Compilation in Compose*

A thesis submitted for the degree
of Master of Science at
the University of Twente

Dennis Spenkelink

Enschede, October 28, 2006

Research Group Graduation Committee
Twente Research and Education prof. dr. ir. M. Aksit
on Software Engineering dr. ir. L.M.]. Bergmans
Faculty of Electrical Engineering, M.Sc. G. Gulesir

Mathematics and Computer Science
University of Twente

Abstract

Compose* is a project that provides aspect-oriented programming for object-oriented lan-
guages by using the composition filters model. In particular, Compose*.NET is an implemen-
tation of Compose* that provides aspect-oriented programming to Microsoft Visual Studio
languages.

The compilation process of Compose*.NET contains multiple compilation modules. Each of
them has their own responsibilities and duties such as parsing, analysis tasks and weaving.
However, all of them suffer from the same problem. They do not support any kind of incre-
mentality. This means that they perform all of their operations in each compilation without
taking advantage of the results and efforts of previous compilations. This unavoidably results
in compilations containing many redundant repeats of operations, which slow down compila-
tion. To minimize these redundant operations and hence, speed up the compilation, Compose*
needs an incremental compilation process.

Therefore, we have developed a new compilation module called INCRE. This compilation
module provides incremental performance as a service to all other compilation modules of
Compose*. This thesis describes in detail the design and implementation of this new compila-
tion module and evaluates its performance by charts of tests.

Acknowledgements

My graduation time was a long but exciting process and I would not have missed it for the
world. Many people contributed to the completion of this thesis, for which I am grateful. In
particular, I would like to express my appreciation to the following people.

First, I would like to thank my supervisor Lodewijk Bergmans for his enthusiastic and expert
guiding. In addition, I am thankful to Gurcan Gulesir and Istvan Nagy for their assistance in
writing this thesis. Furthermore, I thank my fellow members of the Compose* project for their
valuable comments and tips. I learned a lot from you guys. Finally, many thanks go to my
family for encouraging me to do my best and supporting me all the way.

ii

Contents

Abstract

Acknowledgements

List of Figures

List of Listings

Reading Guide

1 Introduction to AOSD

1.1
1.2
1.3

1.4

2 Compose*

2.1
2.2
23

Introduction
Traditional Approach
AOP Approach
131 AOPComposition
132 AspectWeaving

1321 Source Code Weaving

1.3.22 Intermediate Language Weaving

1.3.23 Adapting the Virtual Machine
AOPSolutions
141 Aspect] Approach
142 Hyperspaces Approach
143 CompositionFilters 0.
Evolution of Composition Filters
Composition Filters in Compose*
Demonstrating Example 0oL
2.3.1 [Initial Object-Oriented Design
2.3.2 Completing the Pacman Example

iii

xii

Xiv

XV

2321 Implementationof Scoring

2.3.2.2 Implementation of Dynamic Strategy

24 Compose* Architecture
241 Integrated Development Environment

242 CompileTime

243 Adaptation

244 Runtime

25 Platforms
2.6 Features Specific to Compose*x

3 Problem Statement

31 Background
3.1.1 OOP Work on Incremental Compilation
3111 MakeTool.

3112 Jikes . . .o

3.1.1.3 Tichy’s Smart Recompilation

3114 EclipseCompiler.

3115 IBMVisualAgeC++ L

3.1.2 AOP Work on Incremental Compilation
3.1.21 Whole-program and Incremental Weaving

3.1.2.2 Crosscutting Complicates Incremental Weaving

3.1.2.3 Incremental Weavers

3.2 Non-incremental Compilation in Compose*
33 Motivation
3.4 Problem Summary and Conclusion

4 Solution Approaches

41 Model of a Compilation Module in Compose*
4.2 RestorationinSevenSteps L L oL
43 RebuildinginFiveSteps o o
44 Comparison of Solution Approaches
441 ComparisonCriteria
442 Applying the Comparison Criteria
4421 Criteria applied to Restoration and Rebuilding

4422 Conclusion o

5 Design Alternatives Rebuilding Approach

33
33
35
37
38
38
39
39
40

41

51 DesignDecisions e 41
52 Storageand Retrieval oo o 42
521 Java Object Serialization (JOS) 42

5.2.2 Java Database Connectivity JDBC) 43

523 JavaDataObjects(JDO) 44

524 ComparisonCriteria 46

525 ApplyingtheCriteria 47
5251 CriteriaappliedtoJOS 47

525.2 Criteriaappliedto]DBC 48

5253 CriteriaappliedtoJDO 48

52.6 Choice Motivation o .. 49
52.7 Limitations of chosen alternative 50

53 DataComparison e 50
53.1 FileComparison 50
53.1.1 Byte-by-byte comparison 0L 50

53.1.2 Timestamp comparison 50

5.3.2 Repository Entities Comparison 51

54 Acquisition of DependentData 53
55 Conclusion 55
Implementation 56
6.1 Adaptations to the Compose* architecture 56
6.2 XML configurationfile o oo 58
6.3 Implementation of the object comparator mechanism 59
6.4 Reporting. e 62
6.5 Control Flow e 63
6.5.1 IsProcessedByservice 64

6.6 Conclusion 66
Realization of Incremental Compose* Compilation Modules 67
7.1 Compilation Modules Enhanced 67
7.2 Step One: Identifying Input, Output and Data Dependencies 68
721 FILTH Analysis 68

722 RECOMA Analysis 69

7.3 Step Two: Serializing Repository 70
74 Step Three: Implementing Copy Operation 70

741 CopyOperation FILTH
742 Copy Operation RECOMA
7.5 Step Four: Configuring Data Dependencies
7.5.1 Dependency Configuration FILTH
7.5.2 Dependency Configuration RECOMA
7.6 Step Five: Optimizing Repository Entity Comparison
7.6.1 Comparison Configuration FILTH
7.6.2 Comparison Configuration RECOMA
77 Conclusion
Evaluation
8.1 TestCasesand Conditions
811 Cases o i e e
812 Conditions
8.2 Chartsand ExpectedResultso o L
8.3 Non-incremental Compilation Time of Compilation Modules
8.4 Performance Improvement by Example and Scenario
8.5 Overhead by Example and Scenario
8.6 Average Performance of Compilation Modules
8.7 Evaluationof INCRE
8.8 Evaluationof COPPER
8.9 Evaluation of HARVESTER
8.10 Evaluation of COLLECTORttt
8.11 Evaluation of LOLA e
8.12 Evaluation of FILTH
8.13 Evaluation of SECRET
8.14 Evaluation of RECOMA
8.15 Evaluation of ILICIT e e
8.16 Conclusions e e

Conclusion, Future and Related Work

9.1 Conclusion and Evaluation
9.1.1 Evaluation

9.2 Future Work e
9.21 Automation of XML Configuration.

9.2.2 Further Modulation and Enhancing with Incremental Performance

75
75
75
76
76
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
93
94
95
95
95

9.2.3 Alternative Java Object Persistence Mechanism 96

93 Related Work 96
931 Aspect] e 96

932 Apostle. 96
Bibliography 97
Appendices 100
A INCREConfig.xml Definition 101
B XML Configuration of Compose* Compilation Modules 104
B.1 ASTRA Configuration 104
B.2 BACOConfiguration 104
B.3 CHKREP Configuration 104
B.4 COLLECTOR Configuration 104
B.5 CONE Configuration 105
B.6 COPPER Configuration 105
B.7 DUMMER Configuration 105
B.8 FILTH Configuration 105
B.9 HARVESTER Configuration 106
B.10 ILICIT Configuration i 106
B.11 LOLA Configuration 107
B.12 RECOMA Configuration 107
B.13 REXREF Configuration 108
B.14 SANE Configuration 108
B.15 SECRET Configuration 108
B.16 SIGN Configuration. 110

C Realization of Incremental Compose* Compilation Modules 111
C.1 Realization of Incremental COPPER 111
Cl11 Analysis 111

C12 CopyOperation. 111

C.1.3 Dependency Configuration 112

C14 Comparison Configuration 112

C.2 Realization of Incremental HARVESTER 112
C21 Analysis 112

C22 CopyOperation. 113

C3

C4

C5

C.6

C.2.3 Dependency Configuration 113

C.24 Comparison Configuration 114
Realization of Incremental COLLECTOR 114
C3.1 Analysis 114
C32 CopyOperation. 114
C.3.3 Dependency Configuration 114
C.3.4 Comparison Configuration 115
Realization of Incremental LOLA 115
C41 Analysis e 115
C.4.2 Alternative Algorithm for Incremental Evaluation 115
Realization of Incremental SECRET 120
Cb51 Analysis e 120
Cb52 CopyOperation. 121
C.5.3 Dependency Configuration 121
C.54 Comparison Configuration 122
Realization of Incremental ILICIT 122
C.6.1 Analysis 122
C6.2 CopyOperation. 123
C.6.3 Dependency Configuration 123

C.6.4 Comparison Configuration 124

List of Figures

1.1 Dates and ancestry of several important languages

2.1 Components of the composition filtersmodel
2.2 UML class diagram of the object-oriented Pacmangame

2.3 Overview of the Compose* architecture
3.1 Control flow of compilation o L.

41 Model of a Compilation Module in Compose*
4.2 Incremental restoration of the Compose* repository

4.3 Incremental rebuilding of the Compose* repository

5.1 Illustration of the class enhancement process

5.2 Arecursive, generic way of comparing objects using reflection

6.1 Compose* architecture with INCRE and adapted compilation modules high-
lighted

6.2 UML static structure of compilation module INCRE.
6.3 UML static structure of the parser of the XML configuration file
6.4 XML configuration file converted to an object model
6.5 UML sequence diagram of comparing objects
6.6 UML activity diagram of comparing objects
6.7 Example HTML timingreport
6.8 UML sequence diagram - control flow of incremental compilation
6.9 UML sequence diagram - control flow of operation isProcessedBy

6.10 UML sequence diagram - control flow of retrieving a data dependency

8.1 Share of compilation modules in non-incremental compilation time
8.2 Performance improvement of incremental compiler by example and scenario
8.3 Overhead of incremental compiler by example and scenario

8.4 Average performance improvement and overhead of compilation modules

X1

8.5 Overhead created by INCRE 83
8.6 COPPER: Performance improvement and overhead by example and scenario . . 84
8.7 HARVESTER: Performance improvement and overhead by example and scenario 85
8.8 COLLECTOR: Performance improvement and overhead by example and scenario 86

8.9 LOLA: Performance improvement and overhead by example and scenario 87
8.10 FILTH: Performance improvement and overhead by example and scenario 88
8.11 SECRET: Performance improvement and overhead by example and scenario . . . 89
8.12 RECOMA: Performance improvement and overhead by example and scenario. . 90

8.13 ILICIT: Performance improvement and overhead by example and scenario 91

Listings

1.1 Modeling addition, display, and logging without using aspects

(@) Addition e e e

(b) CalcDisplay
1.2 Modeling addition, display, and logging with aspects

(a) Additionconcern

(b) Tracingconcern
1.3 Example of dynamic crosscutting in Aspect]
1.4 Example of static crosscutting in Aspect] 0L
1.5 Creationofahyperspace L L.
1.6 Specification of concern mappings oL L.
1.7 Definingahypermodule
2.1 Abstractconcerntemplate Lo Lo oo
2.2 DynamicScoring concernin Compose*
2.3 ImplementationofclassScore o L
2.4 DynamicStrategy concernin ComposeX
5.1 Java serialization and deserialization of currentdate
5.2 Make objects ready for serialization
5.3 Establish a database connection withJDBC
5.4 Retrieving Java Objects through JDBC statement
5.5 Using JDBC PreparedStatement
5.6]JDO: obtain an instance of PersistenceManager
5.7 Persist Java objects by using JDO Lo Lo oo
5.8 Retrieve Java objects by using the Extent interface
5.9 Retrieve Java objectsby using JDOQL
5.10 Recursion in Compose* repository
5.11 Compare two persons by name using Java reflection and a configuration file . . .
5.12 XML DTD of a dependency configuration file for Compose*

6.1 Code snippet for timingaprocess.

7.1

7.2
73

7.4

7.5

B.1
C1
C2
C3
C4
C5
C.6
Cc7
C8
C9

Copy Operation FILTH 70

Dependency Configurationof FILTH 71
Dependency Configuration of RECOMA 72
Comparison Configurationof FILTH 73
Comparison Configuration of RECOMA 74
XML configurationof ASTRA L 104
Dependency Configuration of COPPER 112
Dependency Configuration of HARVESTER 113
Step one of dividing algorithm LOLA 116
Step two of dividing algorithm LOLA 117
Step three of dividing algorithm LOLA 117
Step four of dividing algorithm LOLA 118
Step five of dividing algorithm LOLA 120
Dependency Configuration of SECRET 121
Dependency Configuration of ILICIT 124

Reading Guide

This page presents a brief guide to reading this thesis.

Chapter 1 provides a general introduction of Aspect-Oriented Software Development (AOSD).
We recommend you to read this chapter if you are unfamiliar with concepts such as AOP,
Aspect] and Composition Filters.

Chapter 2 gives insight into our implementation of the composition filters approach called
Compose*. If you are already familiar with the internals of Compose*, you can skip this
chapter and proceed to the next chapter. If not, then we advice you to read this chapter because
it provides the necessary background information to understand the remaining chapters.

Chapter 3 identifies the goal of this thesis, which is providing incremental compilation to
Compose*. Chapter 4 presents two solution approaches to achieve this goal. Further, it com-
pares the two solution approaches and selects the most desirable one. Based on the chosen
solution approach, chapter 5 compares several design alternatives and selects the most desir-
able design.

The compilation process of Compose* contains multiple compilation modules. Each of them
has their own responsibilities and duties. To bring incremental compilation to Compose*, we
have developed a new compilation module called INCRE. This compilation module provides
incremental performance as a service to all other compilation modules. Chapter 6 describes
our implementation efforts of INCRE. Therefore, it uses Unified Modeling Language (UML)
diagrams. If you are not familiar with UML concepts, we advice you to visit UML’s official
resource page'.

In chapter 7, we describe in detail how eight existing non-incremental compilation modules
have been adapted to use the incremental performance service provided by INCRE.

Chapter 8 evaluates the efficiency of the developed incremental compiler by means of charts.
Based on these charts, we point out the most important benefits and limitations of the incre-
mental compiler. Finally, chapter 9 summarizes the main findings of this thesis and identifies
future and related work.

You can find more information on the Compose* project and the incremental compiler at the
website of Compose* 2. You can browse the source code of the incremental compiler online at
SourceForge®.

http://www.uml.org/
Zhttp://composestar.sf.net
3http://svn.sourceforge.net/viewvc/composestar/home/dspenkel/code

XV

http://www.uml.org/
http://composestar.sf.net
http://svn.sourceforge.net/viewvc/composestar/home/dspenkel/code

Chapter 1

Introduction to AOSD

The first two chapters have originally been written by seven M. Sc. students [27, 16, 59, 11, 52,
25, 10] at the University of Twente. The chapters have been rewritten for use in the following
theses: [58, 12, 55,30, 15, 28] and this thesis. They serve as a general introduction into Aspect-
Oriented Software Development and Compose* in particular.

1.1 Introduction

The goal of software engineering is to solve a problem by implementing a software system. The
things of interest are called concerns. They exist at every level of the engineering process. A re-
current theme in engineering is that of modularization: separation and localization of concerns.
The goal of modularization is to create maintainable and reusable software. A programming
language is used to implement concerns.

Fifteen years ago, the dominant programming language paradigm was procedural program-

Snal | tal k

2000 ____l(Thvoer/d)o——— e C#)emmmm o et e

2005 (Qomposer

aspect-oriented obj ect-oriented procedural and concurrent functional logic
| anguages | anguages | anguages | anguages | anguages

Figure 1.1: Dates and ancestry of several important languages

Incremental Compilation in Compose* University Twente

ming. This paradigm is characterized by the use of statements that update state variables.
Examples are Algol-like languages such as Pascal, C, and Fortran.

Other programming paradigms are the functional, logic, object-oriented, and aspect-oriented
paradigms. Figure 1.1 summarizes the dates and ancestry of several important languages [60].
Every paradigm uses a different modularization mechanism for separating concerns into mod-
ules.

Functional languages try to solve problems without resorting to variables. These languages are
entirely based on functions over lists and trees. Lisp and Miranda are examples of functional
languages.

A logic language is based on a subset of mathematical logic. The computer is programmed to
infer relationships between values, rather than to compute output values from input values.
Prolog is currently the most used logic language [60].

A shortcoming of procedural programming is that global variables can potentially be accessed
and updated by any part of the program. This can result in unmanageable programs because no
module that accesses a global variable can be understood independently from other modules
that also access that global variable.

The Object-Oriented Programming (OOP) paradigm improves modularity by encapsulating
data with methods inside objects. The data may only be accessed indirectly, by calling the
associated methods. Although the concept appeared in the seventies, it took twenty years to
become popular [60]. The most well known object-oriented languages are C++, Java, C#, and
Smalltalk.

The hard part about object-oriented design is decomposing a system into objects. The task
is difficult because many factors come into play: encapsulation, granularity, dependency,
adaptability, reusability, and others. They all influence the decomposition, often in conflict-
ing ways [21].

Existing modularization mechanisms typically support only a small set of decompositions and
usually only a single dominant modularization at a time. This is known as the tyranny of the
dominant decomposition [54]. A specific decomposition limits the ability to implement other
concerns in a modular way. For example, OOP modularizes concerns in classes and only fixed
relations are possible. Implementing a concern in a class might prevent another concern from
being implemented as a class.

Aspect-Oriented Programming (AOP) is a paradigm that solves this problem.

AOQOP is commonly used in combination with OOP but can be applied to other paradigms as
well. The following sections introduce an example to demonstrate the problems that may arise
with OOP and show how AOP can solve this. Finally, we look at three particular AOP method-
ologies in more detail.

1.2 Traditional Approach

Consider an application containing an object Add and an object CalcDisplay . Add inherits from
the abstract class Calculation and implements its method execute(a, b) . It performs the
addition of two integers. CalcDisplay receives an update from Add if a calculation is finished
and prints the result to screen. Suppose all method calls need to be traced. The objects use a
Tracer object to write messages about the program execution to screen. This is implemented

Dennis Spenkelink 2

1. Introduction to AOSD

public class Add extends Calculation{

private int result;
private CalcDisplay calcDisplay;
private Tracer trace;

Add() {
result = 0O;
calcDisplay = new CalcDisplay();
trace = new Tracer();

}

public void execute(int a, int b) {
trace.write("void Add.execute(int, int
)"
result = a + b;
calcDisplay.update(result);

public class CalcDisplay {
private Tracer trace;

public CalcDisplay() {
trace = new Tracer();

}

}

public void update(int value){
public int getLastResult() { trace.write("void CalcDisplay.update(
trace.write("int Add.getLastResult()") int)");
; System.out.printin("Printing new value

return result; of calculation: "+value);

} }

(a) Addition (b) CalcDisplay

Listing 1.1: Modeling addition, display, and logging without using aspects

by a method called write . Three concerns can be recognized: addition, display, and tracing.
The implementation might look something like Listing 1.1.

From our example, we recognize two forms of crosscutting: code tangling and code scattering.

The addition and display concerns are implemented in classes Add and CalcDisplay respec-
tively. Tracing is implemented in the class Tracer , but also contains code in the other two
classes (lines 5, 10, 14, and 20 in (a) and 2, 5, and 9 in (b)). If a concern is implemented across
several classes, it is said to be scattered. In the example of Listing 1.1, the tracing concern is
scattered.

Usually a scattered concern involves code replication. That is, the same code is implemented
a number of times. In our example, the classes Add and CalcDisplay contain similar tracing
code.

In class Add the code for the addition and tracing concerns are intermixed. In class
CalcDisplay the code for the display and tracing concerns are intermixed. If more then
one concern is implemented in a single class they are said to be tangled. In our example, the
addition and tracing concerns are tangled. Also display and tracing concerns are tangled.
Crosscutting code has the following consequences:

Code is difficult to change
Changing a scattered concern requires us to modify the code in several places. Making
modifications to a tangled concern class requires checking for side effects with all existing
crosscutting concerns;

3 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

public class Add extends Calculation{

private int result;
private CalcDisplay calcDisplay;

Add() {

result = 0O;

calcDisplay = new CalcDisplay(); aspect Tracing {
} Tracer trace = new Tracer();
public void execute(int a, int b) { pointcut tracedCalls():

result = a + b; call (* (Calculation+). *() ||

calcDisplay.update(result); call (* CalcDisplay. *(..));
}

before (): tracedCalls() {

public int getLastResult() { trace.write(thisJoinPoint .getSignature()

return result; .toString());
} }

}
(a) Addition concern (b) Tracing concern

Listing 1.2: Modeling addition, display, and logging with aspects

Code is harder to reuse
To reuse an object in another system, it is necessary to either remove the tracing code or
reuse the (same) tracer object in the new system;

Code is harder to understand
Tangled code makes it difficult to see which code belongs to which concern.

1.3 AOP Approach

To solve the problems with crosscutting, several techniques are being researched that attempt
to increase the expressiveness of the OO paradigm. Aspect-Oriented Programming (AOP) in-
troduces a modular structure, the aspect, to capture the location and behavior of crosscutting
concerns. Examples of Aspect-Oriented languages are Sina, Aspect], Hyper/J, and Compose*.
A special syntax is used to specify aspects and the way in which they are combined with reg-
ular objects. The fundamental goals of AOP are twofold [23]: first to provide a mechanism to
express concerns that crosscut other components. Second to use this description to allow for
the separation of concerns.

Join points are well-defined places in the structure or execution flow of a program where ad-
ditional behavior can be attached. The most common join points are method calls. Pointcuts
describe a set of join points. This allows us to execute behavior at many places in a program by
one expression. Advice is the behavior executed at a join point.

In the example of Listing 1.2, the class Add does not contain any tracing code and only imple-
ments the addition concern. Class CalcDisplay also does not contain tracing code. In our
example, the tracing aspect contains all the tracing code. The pointcut tracedCalls specifies
at which locations tracing code is executed.

The crosscutting concern is explicitly captured in aspects instead of being embedded within

Dennis Spenkelink 4

1. Introduction to AOSD

the code of other objects. This has several advantages over the previous code.

Aspect code can be changed
Changing aspect code does not influence other concerns;
Aspect code can be reused
The coupling of aspects is done by defining pointcuts. In theory, this low coupling allows
for reuse. In practice, reuse is still difficult;
Aspect code is easier to understand
A concern can be understood independent of other concerns;
Aspect pluggability
Enabling or disabling concerns becomes possible.

1.3.1 AOP Composition

AOP composition can be either symmetric or asymmetric. In the symmetric approach, every
component can be composed with any other component. For instance, Hyper/] follows this
approach.

In the asymmetric approach, the base program and aspects are distinguished. The base pro-
gram is composed with the aspects. For instance, Aspect] (covered in more detail in the next
section) follows this approach.

1.3.2 Aspect Weaving

The integration of components and aspects is called aspect weaving. There are three approaches
to aspect weaving. The first and second approach rely on adding behavior in the program,
either by weaving the aspect in the source code, or by weaving directly in the target language.
The target language can be intermediate language (IL) or machine code. Examples of IL are Java
byte code and Common Intermediate Language (CIL). The remainder of this chapter considers
only intermediate language targets. The third approach relies on adapting the virtual machine.
Each method is explained briefly in the following sections.

1.3.2.1 Source Code Weaving

The source code weaver combines the original source with aspect code. It interprets the defined
aspects and combines them with the original source, generating input for the native compiler.
For the native compiler there is no difference between source code with and without aspects.
Hereafter the compiler generates an intermediate or machine language output (depending on
the compiler-type).

The advantages of using source code weaving are:

High-level source modification
Since all modifications are done at source code level, there is no need to know the target
(output) language of the native compiler;

Aspect and original source optimization
First, the aspects are woven into the source code and hereafter compiled by the native
compiler. The produced target language has all the benefits of the native compiler opti-

5 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

mization passes. However, optimizations specific to exploiting aspect knowledge are not
possible;

Native compiler portability
The native compiler can be replaced by any other compiler as long as it has the same
input language. Replacing the compiler with a newer version or another target language
can be done with little or no modification to the aspect weaver.

However, the drawbacks of source code weaving are:

Language dependency
Source code weaving is written explicitly for the syntax of the input language;

Limited expressiveness
Aspects are limited to the expressive power of the source language. For example, when
using source code weaving, it is not possible to add multiple inheritance to a single in-
heritance language.

1.3.2.2 Intermediate Language Weaving

Weaving aspects through an intermediate language gives more control over the executable
program and solves some issues as identified in subsubsection 1.3.2.1 on source code weaving.
Weaving at this level allows for creating combinations of intermediate language constructs
that cannot be expressed at the source code level. Although IL can be hard to understand, IL
weaving has several advantages over source code weaving:

Programming language independence
All compilers generating the target IL output can be used;

More expressiveness
It is possible to create IL constructs that are not possible in the original programming
language;

Source code independence
Can add aspects to programs and libraries without using the source code (which may not
be available);

Adding aspects at load- or runtime
A special class loader or runtime environment can decide and do dynamic weaving. The
aspect weaver adds a runtime environment into the program. How and when aspects
can be added to the program depend on the implementation of the runtime environment.

However, IL weaving also has drawbacks that do not exist for source code weaving;:

Hard to understand
Specific knowledge about the IL is needed;

More error-prone
Compiler optimization may cause unexpected results. Compiler can remove code that
breaks the attached aspect (e.g., inlining of methods).

1.3.2.3 Adapting the Virtual Machine

Adapting the virtual machine (VM) removes the need to weave aspects. This technique has the
same advantages as intermediate language weaving and can also overcome some of its disad-

Dennis Spenkelink 6

1. Introduction to AOSD

vantages as mentioned in subsubsection 1.3.2.2. Aspects can be added without recompilation,
redeployment, and restart of the application [49, 48].

Modifying the virtual machine also has its disadvantages:

Dependency on adapted virtual machines
Using an adapted virtual machine requires that every system should be upgraded to that
version;

Virtual machine optimization
People have spent a lot of time optimizing virtual machines. By modifying the virtual
machine these optimizations should be revisited. Reintegrating changes introduced by
newer versions of the original virtual machine, might have substantial impact.

1.4 AOP Solutions

As the concept of AOP has been embraced as a useful extension to classic programming, dif-
ferent AOP solutions have been developed. Each solution has one or more implementations to
demonstrate how the solution is to be used. As described by [18] these differ primarily in:

How aspects are specified
Each technique uses its own aspect language to describe the concerns;
Composition mechanism
Each technique provides its own composition mechanisms;
Implementation mechanism
Whether components are determined statically at compile time or dynamically at run
time, the support for verification of compositions, and the type of weaving.
Use of decoupling
Should the writer of the main code be aware that aspects are applied to his code;
Supported software processes
The overall process, techniques for reusability, analyzing aspect performance of aspects,
is it possible to monitor performance, and is it possible to debug the aspects.

In the next sections, we introduce Aspect] [42], Hyperspaces [47] and Composition Filters [9],
which are three main AOP approaches.

1.4.1 Aspect] Approach

Aspect] [42] is an aspect-oriented extension to the Java programming language. It is probably
the most popular approach to AOP at the moment, and it is finding its way into the industrial
software development. Aspect] has been developed by Gregor Kiczales at Xerox’s PARC (Palo
Alto Research Center). To encourage the growth of the Aspect] technology and community,
PARC transferred Aspect] to an open Eclipse project. The popularity of Aspect] comes partly
from the various extensions based on it. Various projects are porting Aspect] to other languages
resulting in tools such as AspectR and AspectC.

One of the main goals in the design of Aspect] is to make it a compatible extension to Java.
Aspect] tries to be compatible in four ways:

7 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

aspect DynamicCrosscuttingExample {
Log log = new Log();

pointcut traceMethods():
execution (edu.utwente.trese. *.ox (L))

before () : traceMethods {
log.write("Entering " + thisJointPoint.getSignature());

}

after () : traceMethods {
log.write("Exiting " + thisJointPoint.getSignature());

}
}

Listing 1.3: Example of dynamic crosscutting in Aspect]

Upward compatibility
All legal Java programs must be legal Aspect] programs;
Platform compatibility
All legal Aspect] programs must run on standard Java virtual machines;
Tool compatibility
It must be possible to extend existing tools to support Aspect] in a natural way; this
includes IDEs, documentation tools and design tools;
Programmer compatibility
Programming with Aspect] must feel like a natural extension of programming with Java.

Aspect] extends Java with support for two kinds of crosscutting functionality. The first allows
defining additional behavior to run at certain well-defined points in the execution of the pro-
gram and is called the dynamic crosscutting mechanism. The other is called the static crosscutting
mechanism and allows modifying the static structure of classes (methods and relationships be-
tween classes). The units of crosscutting implementation are called aspects. An example of an
aspect specified in Aspect] is shown in Listing 1.3.

The points in the execution of a program where the crosscutting behavior is inserted are called
join points. A pointcut has a set of join points. In Listing 1.3 is traceMethods an example of
a pointcut definition. The pointcut includes all executions of any method that is in a class
contained by package edu.utwente.trese

The code that should execute at a given join point is declared in an advice. Advice is a method-
like code body associated with a certain pointcut. Aspect] supports before, after and around
advice that specifies where the additional code is to be inserted. In the example, both before
and after advice are declared to run at the join points specified by the traceMethods pointcut.

Aspects can contain anything permitted in class declarations including definitions of pointcuts,
advice and static crosscutting. For example, static crosscutting allows a programmer to add
tields and methods to certain classes as shown in Listing 1.4.

The shown construct is called inter-type member declaration and adds a method trace to class
Log. Other forms of inter-type declarations allow developers to declare the parents of classes
(superclasses and realized interfaces), declare where exceptions need to be thrown, and allow
a developer to define the precedence among aspects.

Dennis Spenkelink 8

1. Introduction to AOSD

aspect StaticCrosscuttingExample {
private int Log.trace(String traceMsg) {
Log.write(" --- MARK --- " + traceMsgQ);

}
}

Listing 1.4: Example of static crosscutting in Aspect]

With its variety of possibilities, Aspect] can be considered a useful approach for realizing soft-
ware requirements.

1.4.2 Hyperspaces Approach

The Hyperspaces approach is developed by H. Ossher and P. Tarr at the IBM T.]. Watson Research
Center. The Hyperspaces approach adopts the principle of multi-dimensional separation of
concerns [47], which involves:

Multiple, arbitrary dimensions of concerns;

Simultaneous separation along these dimensions;

Ability to dynamically handle new concerns and new dimensions of concern as they arise
throughout the software life cycle;

Overlapping and interacting concerns. It is appealing to think of many concerns as inde-
pendent or orthogonal, but they rarely are in practice.

We explain the Hyperspaces approach by an example written in the Hyper/] language. Hyper/]
is an implementation of the Hyperspaces approach for Java. It provides the ability to identify
concerns, specify modules in terms of those concerns, and synthesize systems and components
by integrating those modules. Hyper/] uses bytecode weaving on binary Java class files and
generates new class files to be used for execution. Although the Hyper/] project seems aban-
doned and there has not been any update in the code or documentation for a while, we still
mention it because the Hyperspaces approach offers a unique AOP solution.

As a first step, developers create hyperspaces by specifying a set of Java class files that contain
the code units that populate the hyperspace. To do this is, you create a hyperspace specification,
as demonstrated in Listing 1.5.

Hyper/] will automatically create a hyperspace with one dimension—the class file dimension.
A dimension of concern is a set of concerns that are disjoint. The initial hyperspace will con-
tain all units within the specified package. To create a new dimension you can specify concern
mappings, which describe how existing units in the hyperspace relate to concerns in that di-
mension, as demonstrated in Listing 1.6.

The first line indicates that, by default, all of the units contained within the package edu.
utwente.trese.pacman address the kernel concern of the feature dimension. The other map-

Hyperspace Pacman
class edu.utwente.trese.pacman. *

Listing 1.5: Creation of a hyperspace

9 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

package edu.utwente.trese.pacman: Feature.Kernel
operation trace: Feature.Logging
operation debug: Feature.Debugging

Listing 1.6: Specification of concern mappings

pings specify that any method named trace or debug address the logging and debugging
concern respectively. These later mappings override the first one.

Hypermodules are based on concerns and consist of two parts. The first part specifies a set of
hyperslices in terms of the concerns identified in the concern matrix. The second part specifies
the integration relationships between the hyperslices. A hyperspace can contain several hyper-
modules realizing different modularizations of the same units. Systems can be composed in
many ways from these hypermodules.

Listing 1.7 shows a hypermodule with two concerns, kernel and logging. They are related
by a mergeByName integration relationship. This means that units in the different concerns
correspond if they have the same name (ByName) and that these corresponding units are to be
combined (merge). For example, all members of the corresponding classes are brought together
into the composed class. The hypermodule results in a hyperslice that contains all the classes
without the debugging feature; thus, no debug methods will be present.

The most important feature of the hyperspaces approach is the support for on-demand remod-
ularisation: the ability to extract hyperslices to encapsulate concerns that were not separated in
the original code. This makes hyperspaces especially useful for evolution of existing software.

1.4.3 Composition Filters

Composition Filters is developed by M. Aksit and L. Bergmans at the TRESE group, which is
a part of the Department of Computer Science of the University of Twente, The Netherlands.
The composition filters (CF) model predates aspect-oriented programming. It started out as an
extension to the object-oriented model and evolved into an aspect-oriented model. The current
implementation of CF is Compose*, which covers .NET, Java, and C.

One of the key elements of CF is the message. A message is the interaction between objects, for
instance a method call. In object-oriented programming, the message is considered an abstract
concept. In the implementations of CF, it is therefore necessary to reify the message. This reified
message contains properties, like where it is send to and where it came from.

The concept of CF is that messages that enter and exit an object can be intercepted and manip-
ulated, modifying the original flow of the message. To do so, a layer called the interface part is
introduced in the CF model. This layer can have several properties. The interface part can be
placed on an object, which behavior needs to be altered, and this object is referred to as inner.

hypermodule Pacman_Without_Debugging
hyperslices : Feature.Kernel, Feature.Logging;
relationships : mergeByName;

end hypermodule ;

Listing 1.7: Defining a hypermodule

Dennis Spenkelink 10

1. Introduction to AOSD

There are three key elements in CF: messages, filters, and superimposition. Messages are sent
from one object to another, if there is an interface part placed on the receiver, then the message
that is sent goes through the input filters. In the filters the message can be manipulated before
it reaches the inner part, the message can even be sent to another object. How the message will
be handled depends on the filter type. An output filter is similar to an input filter. The only
difference is that it manipulates messages that originate from the inner part. The latest addition
to CF is superimposition, which is used to specify which interfaces needs to be superimposed
on which inner objects.

11 Dennis Spenkelink

Chapter 2

Composex

Compose* is an implementation of the composition filters approach. There are three target
environments: the .NET, Java, and C. This chapter is organized as follows, first the evolution
of Composition Filters and its implementations are described, followed by an explanation of
the Compose* language and a demonstrating example. In the third section, the Compose*
architecture is explained, followed by a description of the features specific to Compose*.

2.1 Evolution of Composition Filters

Compose* is the result of many years of research and experimentation. The following time
line gives an overview of what has been done in the years before and during the Compose*
project.

1985 The first version of Sina is developed by Mehmet Aksit. This version of Sina contains a
preliminary version of the composition filters concept called semantic networks. The
semantic network construction serves as an extension to objects, such as classes, mes-
sages, or instances. These objects can be configured to form other objects such as
classes from which instances can be created. The object manager takes care of syn-
chronization and message processing of an object. The semantic network construction
can express key concepts like delegation, reflection, and synchronization [43].

1987 Together with Anand Tripathi of the University of Minnesota the Sina language is
further developed. The semantic network approach is replaced by declarative specifi-
cations and the interface predicate construct is added.

1991 The dispatch filter replaces the interface predicates, and the wait filter manages the
synchronization functions of the object manager. Message reflection and real-time
specifications are handled by the meta filter and the real-time filter [8].

1995 The Sina language with Composition Filters is implemented using Smalltalk [43]. The
implementation supports most of the filter types. In the same year, a preprocessor
providing C++ with support for Composition Filters is implemented [22].

1999 The composition filters language Compose] [61] is developed and implemented. The
implementation consists of a preprocessor capable of translating composition filter
specifications into the Java language.

2001 Concern] is implemented as part of a M. Sc. thesis [50]. Concern] adds the notion of
superimposition to Composition Filters. This allows for reuse of the filter modules

12

2. Compose*

and facilitation of crosscutting concerns.

2003 The start of the Compose* project, the project is described in further detail in this
chapter.

2004 The first release of Compose*, based on .NET.

2005 The start of the Java port of Compose*.

2006 Porting Compose* to C is started.

2.2 Composition Filters in Compose*

A Compose* application consists of concerns that can be divided in three parts: filter module
specifications, superimposition, and implementation. A filter module contains the filter logic
to filter on incoming or outgoing messages on superimposed objects. Messages have a tar-
get, which is an object reference, and a selector, which is a method name. A superimposition
part specifies which filter modules, annotations, conditions, and methods are superimposed on
which objects. An implementation part contains the class implementation of a concern. How
these parts are placed in a concern is shown in Listing 2.1.

The working of a filter module is depicted in Figure 2.1. A filter module can contain input and
output filters. The difference between these two sets of filters is that the first is used to filter
on incoming messages, while the second is used to filter on outgoing messages. The return of
a method is not considered an outgoing message. A filter has three parts: a filter identifier, a
filter type, and one or more filter elements. A filter element exists out of an optional condition
part, a matching part, and a substitution part. These parts are shown below:

identi fier filter type condition part

stalker_filter : Dispatch = {!pacmanlsFEvil =>

matching part substitution part

[x.get NextMove] stalk_strategy.get NextMove }

concern {
filtermodule {
internals
externals
conditions
inputfilters
outputfilters

}

superimposition {
selectors
filtermodules
annotations
constraints

}

implementation

}
Listing 2.1: Abstract concern template

13 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

received messages

input filters

interface part
A

/
inner part

output filters

\/
sent messages

Figure 2.1: Components of the composition filters model

A filter identifier is a unique name for a filter in a filter module. Filters match when both the
condition part and the matching part evaluate to true. In the demonstrated filter, every message
where the selector is getNextMove matches. If an asterisk (x) is used in the target, every target
will match. When the condition part and the matching part are true, the message is substituted
with the values provided in the substitution part. How these values are substituted, and how
the message continues, depends on the type of filter used. At the moment there are four basic
filter types defined in Compose*. It is, however, possible to write custom filter types.

Dispatch If the message is accepted, it is dispatched to the specified target of the message,
otherwise the message continues to the subsequent filter. This filter type can only be
used for input filters;

Send If the message is accepted, it is sent to the specified target of the message, otherwise
the message continues to the subsequent filter. This filter type can only be used for
output filters;

Error If the filter rejects the message, it raises an exception, otherwise the message contin-
ues to the next filter in the set;

Meta If the message is accepted, the message is sent as a parameter of another meta mes-
sage to an internal or external object, otherwise the message just continues to the
next filter. The object that receives the meta message can observe and manipulate
the message and can re-activate the execution of the message.

The identifier pacmanisEvil , used in the condition part, must be declared in the conditions
section of a filter module. Targets that are used in a filter can be declared as internal or external.
An internal is an object that is unique for each instance of a filter module, while an external is
an object that is shared between filter modules.

Filter modules are superimposed on classes using filter module binding, which specifies a se-
lection of objects on the one side, and a filter module on the other side. The selection is spec-

Dennis Spenkelink 14

2. Compose*

ified in a selector definition. This selector definition uses predicates to select objects, such as
isClassWithNamelnList , isNamespaceWithName , and namespaceHasClass . In addition to
filter modules, it is possible to bind conditions, methods, and annotations to classes using su-
perimposition.

The last part of the concern is the implementation part, which can be used to define the behav-
ior of a concern. For a logging concern, for example, we can define specific log functions and
use them as internal.

2.3 Demonstrating Example

To illustrate the Compose* toolset, this section introduces a Pacman example. The Pacman
game is a classic arcade game in which the user, represented by pacman, moves in a maze to
eat vitamins. Meanwhile, a number of ghosts try to catch and eat pacman. There are, however,
four mega vitamins in the maze that make pacman evil. In its evil state, pacman can eat ghosts.
A simple list of requirements for the Pacman game is briefly discussed here:

The number of lives taken from pacman when eaten by a ghost;

A game should end when pacman has no more lives;

The score of a game should increase when pacman eats a vitamin or a ghost;
A user should be able to use a keyboard to move pacman around the maze;
Ghosts should know whether pacman is evil or not;

Ghosts should know where pacman is located;

Ghosts should, depending on the state of pacman, hunt or flee from pacman.

2.3.1 Initial Object-Oriented Design

Figure 2.2 shows an initial object-oriented design for the Pacman game. Note that this UML
class diagram does not show the trivial accessors. The classes in this diagram are:

Game
This class encapsulates the control flow and controls the state of a game;
Ghost
This class is a representation of a ghost chasing pacman. Its main attribute is a property
that indicates whether it is scared or not (depending on the evil state of pacman);
GhostView
This class is responsible for painting ghosts;
Glyph
This is the superclass of all mobile objects (pacman and ghosts). It contains common
information like direction and speed;
Keyboard
This class accepts all keyboard input and makes it available to pacman;
Main
This is the entry point of a game;
Pacman
This is a representation of the user-controlled element in the game. Its main attribute is a
property that indicates whether pacman is evil or not;

15 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

World

-screenData - short[][]
-pacman : Pacman
+Warld()

+canMove() : bool
+canMoveDown() : bool
+oanMovelefi() : bool
+canMaoveRight() : baol

Glyph +canMovelp() - bool
— +eatFocd()
[+speed it = 0 world [+eatVitamin()
+direction @ int =3 +faodCn(} - bool
X Int =1 " l+isEmpty() - bool
yrint= a 1 |epaint()
Hdxcint =0 +reset()
dy 2 int = P
w: : i:t - ? +V|tam|n0nﬂ : bool
vy tint=0 id . Frame
Glyph() o
+doTurn()
Hmovel)
Fresel()
+setStartPosition()
Hupdata(}
4}_ Game
-level |int i
Hives © int Panel Main
lstate : State
0.* i ooSE [vGame() ain()
+addGhosi{) +maini}
Ghost +doGameaovear|)
: +doPlaying) instantiates
[scared : bool +gamalnit()
Pacman +Ghast() ‘+ghostBumpsPacman()|
P Tr— +doTurmi) +paint()
Ep"""'”"e - bong isScared) : bool play() | -
: di_lgmanf] +paint(} +proceed() View
et urnl) +update() +pacmarnkKilled() -+ +bufferGraphics - Graphics|+#
+p?5|r1_LI(] oo . +reset() game +bufferimage : Image
+|5 Vi [[}J . +roundinit() e)
| serSianPesition()) sroundOuer() clearBuffer()
; apdate) pacman +roundStart() :f.l-la:l?;ﬁ.uﬁef(]
k A
parent | 1 parent | 1
1 keyboard
L J
Keyboard strategy RandomStrategy
[direction : int=0 >
+getMexthovel) | int 1 +gatMaxthMoval) :int
theyPressed()
[theyReleased())
[HeyTyped() w"Tj'“ Ghostviow child
1 ' Hmages : Image][] h 1
v +GhostView()
PacmanView *painti}
Fimages : Image(][])
HPacmaniew) chid
H+palnt) T

Figure 2.2: UML class diagram of the object-oriented Pacman game

Dennis Spenkelink 16

2. Compose*

PacmanView
This class is responsible for painting pacman;

RandomStrategy
By using this strategy, ghosts move in random directions;

View
This class is responsible for painting a maze;

World
This class has all the information about a maze. It knows where the vitamins, mega
vitamins and most importantly the walls are. Every class derived from class Glyph checks
whether movement in the desired direction is possible.

2.3.2 Completing the Pacman Example

The initial object-oriented design, described in the previous section, does not implement all the
stated system requirements. The missing requirements are:

e The application does not maintain a score for the user;
e Ghosts move in random directions instead of chasing or fleeing from pacman.

In the next sections, we describe why and how to implement these requirements in the
Compose* language.

2.3.2.1 Implementation of Scoring

The first system requirement that we need to add to the existing Pacman game is scoring. This
concern involves a number of events. First, the score should be set to zero when a game starts.
Second, the score should be updated whenever pacman eats a vitamin, mega vitamin or ghost.
Finally, the score itself has to be painted on the maze canvas to relay it back to the user. These
events scatter over multiple classes: Game (initializing score), World (updating score), Main
(painting score). Thus scoring is an example of a crosscutting concern.

To implement scoring in the Compose* language, we divide the implementation into two parts.
The first part is a Compose* concern definition stating which filter modules to superimpose.
Listing 2.2 shows an example Compose* concern definition of scoring.

This concern definition is called DynamicScoring (line 1) and contains two parts. The first part
is the declaration of a filter module called dynamicscoring (lines 2-11). This filter module
contains one meta filter called score_filter (line 6). This filter intercepts five relevant calls
and sends the message in a reified form to an instance of class Score . The final part of the
concern definition is the superimposition part (lines 12-18). This part defines that the filter
module dynamicscoring is to be superimposed on the classes World , Gameand Main .

The final part of the scoring concern is the so-called implementation part. This part is defined by
a class Score . Listing 2.3 shows an example implementation of class Score . Instances of this
class receive the messages sent by score_filter and subsequently perform the events related
to the scoring concern. In this way, all scoring events are encapsulated in one class and one
Compose* concern definition.

17 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

concern DynamicScoring in pacman {

filtermodule dynamicscoring {
externals
score : pacman.Score = pacman.Score.instance();
inputfilters
score_filter : Meta = {[* eatFood] score.eatFood,
[*.eatGhost] score.eatGhost,
[* .eatVitamin] score.eatVitamin,
[*.gamelnit] score.initScore,
[* .setForeground] score.setupLabel}
}
superimposition {
selectors

scoring = { C | isClassWithNamelnList(C, ['pacman.World’,
‘pacman.Game’, 'pacman.Main’]) };
filtermodules
scoring <- dynamicscoring;

Listing 2.2: DynamicScoring concern in Compose*

2.3.2.2 Implementation of Dynamic Strategy

The last system requirement that we need to implement is the dynamic strategy of ghosts. This
means that a ghost should, depending on the state of pacman, hunt or flee from pacman. We
can implement this concern by using the strategy design pattern. However, in this way, we
need to modify the existing code. This is not the case when we use Compose* dispatch filters.
Listing 2.4 demonstrates this.

This concern uses dispatch filters to intercept calls to method RandomStrategy.getNextMove

and redirect them to either StalkerStrategy.getNextMove or FleeStrategy.getNextMove
If pacman is not evil, the intercepted call matches the first filter, which dispatches the inter-
cepted call to method StalkerStrategy.getNextMove (line 9). Otherwise, the intercepted

call matches the second filter, which dispatches the intercepted call to method FleeStrategy.
getNextMove (line 11).

2.4 Compose* Architecture

An overview of the Compose* architecture is illustrated in Figure 2.3. The Compose* archi-
tecture can be divided in four layers [45]: IDE, compile time, adaptation, and runtime.

2.4.1 Integrated Development Environment

Some of the purposes of the Integrated Development Environment (IDE) layer are to interface
with the native IDE and to create a build configuration. In the build configuration it is specified
which source files and settings are required to build a Compose* application. After creating
the build configuration, the compile time is started.

The creation of a build configuration can be done manually or by using a plug-in. Examples

Dennis Spenkelink 18

2. Compose*

import Composestar.Runtime.FLIRT.message. *;
import java.awt. *;

public class Score

{
private int score = -100;
private static Score theScore = null ;
private Label label = new java.awt.Label("Score: 0");

private Score() {}

public static Score instance() {

if (theScore == null) {
theScore = new Score();

}

return theScore;

}

public void initScore(ReifiedMessage rm) {
this .score = O;
label .setText("Score: "+score);

}

public void eatGhost(ReifiedMessage rm) {
score += 25;
label .setText("Score: "+score);

}

public void eatVitamin(ReifiedMessage rm) {
score += 15;
label .setText("Score: "+score);

}

public void eatFood(ReifiedMessage rm) {
score += b5;
label .setText("Score: "+score);

}

public void setupLabel(ReifiedMessage rm) {
rm.proceed();
label = new Label("Score: 0);
label .setSize(15 *View.BLOCKSIZE+20,15 +View.BLOCKSIZE);
Main main = (Main)Composestar.Runtime.FLIRT.message.Messagelnfo
.getMessagelnfo().getTarget();
main.add(label ,BorderLayout.SOUTH);

Listing 2.3: Implementation of class Score

19 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

concern DynamicStrategy in pacman {
filtermodule dynamicstrategy {
internals
stalk_strategy : pacman.Strategies.StalkerStrategy;
flee_strategy : pacman.Strategies.FleeStrategy;
conditions
pacmanliskEvil : pacman.Pacman.isEvil();
inputfilters
stalker_filter : Dispatch = {!pacmanlisEvil =>
[*.getNextMove] stalk_strategy.getNextMove};
flee_filter : Dispatch = {
[*.getNextMove] flee_strategy.getNextMove}

}
superimposition {
selectors
random = { C | isClassWithName(C,
‘pacman.Strategies.RandomsStrategy’) };
filtermodules
random <- dynamicstrategy;
}

Listing 2.4: DynamicStrategy ~ concern in Compose*

IDE

Composition-filter Builq '
Specifications Configuration

y Compile Time

Repository

Source Code
Implementation yA

Adaptation

A

Compiled Code Weaving Specification

Woven Code Repository Copy

Y .
- Runtime interaction ﬂne

Figure 2.3: Overview of the Compose* architecture

Dennis Spenkelink 20

2. Compose*

of these plug-ins are the Visual Studio add-in for Compose*/ .NET and the Eclipse plug-in for
Compose* /] and Compose*/C.

2.4.2 Compile Time

The compile time layer is platform independent and reasons about the correctness of the com-
position filter implementation with respect to the program which allows the target program to
be build by the adaptation.

The compile time “pre-processes’ the composition filter specifications by parsing the specifica-
tion, resolving the references, and checking its consistency. To provide an extensible architec-
ture to facilitate this process a blackboard architecture is chosen. This means that the compile
time uses a general knowledgebase that is called the ‘repository’. This knowledgebase contains
the structure and metadata of the program which different modules can execute their activities
on. Examples of modules within analysis and validation are the three modules SANE, LOLA
and FILTH. These three modules are responsible for (some) of the analysis and validation of
the super imposition and its selectors.

2.4.3 Adaptation

The adaptation layer consists of the program manipulation, harvester, and code generator.
These components connect the platform independent compile time to the target platform. The
harvester is responsible for gathering the structure and the annotations within the source pro-
gram and adding this information to the knowledgebase. The code generation generates a
reduced copy of the knowledgebase and the weaving specification. This weaving specification
is then used by the weaver contained by the program manipulation to weave in the calls to
the runtime into the target program. The result of the adaptation is the target program that
interfaces with the runtime.

2.4.4 Runtime

The runtime layer is responsible for executing the concern code at the join points. It is acti-
vated at the join points by function calls that are woven in by the weaver. A reduced copy
of the knowledgebase containing the necessary information for filter evaluation and execution
is enclosed with the runtime. When the function is filtered the filter is evaluated. Depending
on if the condition part evaluates to true, and the matching part matches, the accept or reject
behavior of the filter is executed. The runtime also facilitates the debugging of the composition
filter implementations.

2.5 Platforms

The composition filters concept of Compose* can be applied to any programming language,
given that certain assumptions are met. Currently, Compose* supports three platforms: .NET,
Java and C. For each platform, different tools are used for compilation and weaving. They all
share the same platform independent compile-time.

21 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

Compose*/.NET targets the .NET platform and is the oldest implementation of Compose*. Its
weaver operates on CIL byte code. Compose*/.NET is programming language independent as
long as the programming language can be compiled to CIL code. An add-in for Visual Studio is
provided for ease of development. Compose* /] targets the Java platform and provides a plug-
in for integration with Eclipse. Compose*/C contains support for the C programming lan-
guage. The implementation is different from the Java and .NET counterparts, because it does
not have a run-time environment. The filter logic is woven directly in the source code. Because
the language C is not based on objects, filters are woven on functions based on membership of
sets of functions. Like the Java platform, Compose*/C provides a plug-in for Eclipse.

2.6 Features Specific to Compose*

The Composition Filters approach uses a restricted (pattern matching) language to define fil-
ters. This language makes it possible to reason about the semantics of the concern. Compose*
offers three features that use this possibility, which originate in more control and correctness
over an application under construction. These features are:

Ordering of filter modules
It is possible to specify how the superimposition of filter modules should be ordered.
Ordering constraints can be specified in a fixed, conditional, or partial manner. A fixed
ordering can be calculated exactly, whereas a conditional ordering is dependent on the re-
sult of filter execution and therefore evaluated at runtime. When there are multiple valid
orderings of filtermodules on a join point, partial ordering constraints can be applied to
reduce this number. These constraints can be declared in the concern definition;

Filter consistency checking
When superimposition is applied, Compose* is able to detect if the ordering and con-
junction of filters creates a conflict. For example, imagine a set of filters where the first
filter only evaluates method m and another filter only evaluates methods a and b. In this
case the latter filter is only reached with method m; this is consequently rejected and as a
result the superimposition may never be executed. There are different scenarios that lead
to these kinds of problems, e.g., conditions that exclude each other;

Reason about semantic problems
When multiple pieces of advice are added to the same join point, Compose* can reason
about problems that may occur. An example of such a conflict is the situation where a
real-time filter is followed by a wait filter. Because the wait filter can wait indefinitely, the
real-time property imposed by the real-time filter may be violated.

The above mentioned conflict analyzers all work on the assumption that the behavior of every
filter is well-defined. This is not the case for the meta filter, its user-undefined, and therefore
unpredictable, behavior poses a problem to the analysis tools.

Furthermore, Compose* is extended with features that enhance the usability. These features
are briefly described below:

Integrated Development Environment support
The Compose* implementations all have a IDE plug-in; Compose* /.NET for Visual Stu-
dio, Compose* /] and Compose* /C for Eclipse;

Dennis Spenkelink 22

2. Compose*

Debugging support
The debugger shows the flow of messages through the filters. It is possible to place break-
points to view the state of the filters;

Incremental building process
Incremental rebuilding re-uses the compilation results of previous buildings to safe com-
pilation time

Some language properties of Compose* can also be seen as features, being:

Language independent concerns
A Compose* concern can be used for all the Compose* platforms, because the composi-
tion filters approach is language independent;

Reusable concerns
The concerns are easy to reuse, through the dynamic filter modules and the selector lan-
guage;

Expressive selector language
Program elements of an implementation language can be used to select a set of objects to
superimpose on;

Support for annotations
Using the selector, annotations can be woven at program elements. At the moment anno-
tations can be used for superimposition.

23 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

Dennis Spenkelink 24

Nothing is a waste of time if you use the experi-
ence wisely.
— Auguste Rodin

Chapter 3

Problem Statement

To decrease compilation time, modern compilers support incremental compilation. Incremental
compilers produce the same results as non-incremental compilers, but (re)compile only what
is necessary in order to complete compilation as fast as possible. This chapter first describes
several OOP and AOP incremental compilers and identifies the problems these compilers over-
come. Then it introduces the non-incremental compilation process in Compose* and finally, it
describes the motivation for this thesis.

3.1 Background

In the OOP world, incremental compilation is well established. Numerous OOP incremental
compilers compete with each other. Some examples are: Jikes [37], Eclipse compiler [17] and
IBM’s VisualAge C++ [31]. In this section, we first describe several OOP incremental compila-
tion techniques and implementations of these techniques. Thereafter, we discuss the differences
between incremental compilation in OOP and AOP. Finally, we describe existing AOP work on
incremental compilation.

3.1.1 OOP Work on Incremental Compilation

An object-oriented program is generally coded across multiple source files. When a compiler
compiles a program for the first time, it compiles all source files into binary format. Now
imagine that a programmer makes a small change to a source file and subsequently asks a
non-incremental compiler to recompile the program. In turn, a non-incremental compiler will
recompile all source files. This strategy may result in redundant recompilations of source files,
because the programmer’s change might not affect all source files. Incremental compilers try
to minimize the number of redundant recompilations. They achieve this by only recompiling
the source files that are changed and the source files that are affected by the changes. The latter
is the main issue for incremental compilers. How does an incremental compiler know which source
files are affected by a change in another source file?

25

Incremental Compilation in Compose* University Twente

3.1.1.1 Make Tool

To answer the previous question, incremental compilers use various techniques. The Make
program [20] implements the most simple (and most inefficient) one. Make is a UNIX utility
that people use to manage source code compilation. It uses a makefile that contains dependency
rules. These dependency rules define dependencies between source files. When a programmer
changes one source file, make only compiles that source file and dependent source files. This
approach has two major drawbacks:

File-level granularity of dependencies. The make tool only recognizes dependencies on file-
level. This means that all types of changes made to a file result in recompilation of depen-
dent files. Thus, this also applies when the programmer just adds some commentary. This
is not ideal and obviously affects the number of redundant recompilations negatively.

Manual dependencies. The programmer needs to specify the dependencies in the makefile
manually. This potentially leads to inconsistent compilation results and redundant re-
compilations. The first one may be the case when the programmer misses a dependency.
The second one may be the case when the programmer defines too many or redundant
dependency rules.

3.1.1.2 Jikes

To overcome the latter issue, some incremental compilers support automatic creation of a make-
file. An example implementation is Jikes [37]. Jikes is a high performance Java compiler that per-
forms dependency analysis for the programmer. This dependency analysis results in a makefile
for each source file. To determine the dependency rules that make up a makefile, Jikes relies
upon the class references found in the compiled source files (.class files).

3.1.1.3 Tichy’s Smart Recompilation

However, Jikes still uses the file-level granularity of dependencies. Thus, small changes like
adding commentary still may lead to redundant recompilations. To overcome this problem,
Tichy [56] describes a finer grained solution for incremental compilation. This solution is called
“smart recompilation”. The basic idea of this approach is as follows. After a program is modified,
a change analysis will produce a change set. This change set consists of items that are added,
changed or deleted. The change set is then intersected with the reference set of each compilation
unit. The reference set of a compilation unit consists of items referenced by the compilation
unit. A compilation unit is recompiled when the intersection of the change set and reference
set is not empty. If the intersection is empty, the compilation unit is not recompiled. This
approach avoids redundant recompilation after adding commentary because commentary is
not supposed to be referenced by any compilation unit.

Dennis Spenkelink 26

3. Problem Statement

3.1.1.4 Eclipse Compiler

One successful implementation of Tichy’s “smart recompilation” is Eclipse’s Java compiler [17].
This compiler works as follows. To implement Tichy’s reference set, the compiler maintains a
built state. This built state includes a list of all types (classes and interfaces) that are referenced
by each type in the workspace. Besides this built state, the compiler maintains a resource delta.
This resource delta describes which files are added, removed and changed since last compilation.
For removed files, the compiler deletes the corresponding .class files. Added and changed files
are added to a queue of files. The compiler processes this queue as follows:

e Remove a file from the queue and compile it.

e Compare the resulting .class file with the .class file of the last compilation. See whether
the type has some structural changes. Structural changes are changes that may affect the
compilation of a referencing type. Examples are addition or removal of methods.

If the type has structural changes, add the files of the referencing types to the queue.
Update the built state according the new reference information of the compiled type.
Repeat the above steps until the queue is empty.

This approach makes the Eclipse compiler fast. A programmer is namely likely to add just a
few small changes. In addition, most of the time, these changes are not structural changes.
Thus, this results in recompilation of only a small set of files.

3.1.1.5 IBM VisualAge C++

To conclude this section we shortly present an even more fine-grained solution. This solution is
found in IBM’s VisualAge C++ compiler [31]. This compiler keeps all declarations, definitions
and their dependencies in a database called CodeStore [41, 44]. Whenever a source file changes,
the compiler determines which of the declarations or definitions have been changed. Then the
compiler only recompiles the changed declarations or definitions and the ones that are affected
by the changes. Thus, the compiler only recompiles a minimal set of affected source code parts
instead of whole source files.

27 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

3.1.2 AOP Work on Incremental Compilation

Compilation in AOP involves more complexity that compilation in OOP. More specifically,
AOP compilers need to perform an additional operation called weaving. This weaving process
integrates object-oriented components with declared aspects. Section 1.3.2 describes two
widely-used weaving techniques: source code weaving and byte-code weaving.

3.1.2.1 Whole-program and Incremental Weaving

Most AOP implementations use a whole-program weaving technique [13] [14]. This means that
even a single change to an aspect, leads to re-weaving of the entire program. Weaving is a costly
operation. Therefore, some AOP implementations support incremental weaving [13]. Incremen-
tal weaving is to weaving as incremental compilation is to compilation [14]. This means that
incremental weavers only weave (compiled) sources that are affected by changes to aspects.

3.1.2.2 Crosscutting Complicates Incremental Weaving

Supporting incremental weaving is complicated by the crosscutting nature of aspects because
a single change to one aspect may lead to reweaving of an entire program [14]. For example,
suppose that we add a logging concern that logs all method calls during the execution of a
program. This will unavoidably affect the weaving of all (compiled) source files of the program,
because the logging concern needs to be woven across the entire program.

3.1.2.3 Incremental Weavers

To conclude this section, we briefly present two AOP implementations that successfully imple-
mented incremental weaving;:

1. ajc. This is the original compiler for the Aspect] [7] language. The ajc compiler sup-
ports incremental byte-code weaving on a per-class basis. This means that the compiler
minimizes the number of weave operations between classes and aspects in .class form.
Aspect] recognizes the complication of aspects on incremental weaving by saying that
the Aspect] tools are getting better at minimizing weaving, but to some degree, weaving
is unavoidable due to the crosscutting semantics [2].

2. Apostle. Apostle is an aspect-oriented extension to the Smalltalk [51] programming lan-
guage. Apostle uses incremental source-code weaving to weave Smalltalk source code and
aspects together into equivalent pure Smalltalk results called target models. These mod-
els are compiled and installed by using a Smalltalk compiler. For further reading, [13]
and [14] give a comprehensive description of the Apostle weaver implementation.

Dennis Spenkelink 28

3. Problem Statement

3.2 Non-incremental Compilation in Compose*

In this section, we describe the NET Compose*
compilation process (before supporting incremen-
tality). Figure 3.1 shows the control flow of

Compose” Parser
(COPPER)

Y
A

Compose®

the .NET Compose* compilation process. In e souces
short, this process parses all user-provided project
sources consisting of .NET sources and Compose*
aspects. Then it executes several analysis tools,
and finally, it compiles and weaves the project
sources into executable code. To realize this, the

Dummy Generator
(DUMMER)

4

Type Harvesting
(HARVESTER)

h 4
A

Type Collecting |
(COLLECTOR) [

Y

compilation process contains sixteen compilation Resalve Extrnal
. »| FReferences =
modules. We call one of them Master. This com- (REXREF)

pilation module serves as the main controller of
the control flow. Master sequentially calls all other
compilation modules, which in turn perform their > e
own responsibilities and duties. All information

Logic Language |
(LOLA) -

Y

. . . . Superimposition
produced by the compilation modules is stored | "{&E" > s Ere 4 P Feosion vry
. . . stract Syntax
into a central data store called repository. We briefly T— Tree (VAST)
introduce the compilation modules below: g e
S\gnatqrg
COPPER (Composestar Parser) i Bl
This is the parser of the source files that Semanic
. « el . = Reasoning Tool |-
contain Compose* concern definitions (files SECRET)
with .cps extension). It parses each con- Jasemby
: ransformer g
cern source file and throws errors when it (ASTRY
1 i i i - Source Compiler
finds syntax errors. While parsing, it con) S e |
verts parsed concern data into Java objects o
and adds them to the repository. > e souces
IL Interception |
- Inserter < |
DUMMER (Dummy Manager) oom ||
DUMMER transforms the .NET sources into Sl ety
. . Py
dummy sources and compiles them by using a
NET compiler. A dummy source is a source) L
with empty method blocks [27]. Figure 3.1: Control flow of compilation

HARVESTER (Type Harvesting)
HARVESTER extracts meta-information (type and method signatures) from the input as-
semblies and writes this information to an XML file.

COLLECTOR (Type Collecting)
COLLECTOR parses the XML file produced by HARVESTER and stores the meta-
information into the repository.

REXREF (Resolve External References)
Concerns may have both internal and external references to objects, methods and condi-
tions. REXREF traverses the repository and resolves these references.

29 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

LOLA (Logic Language)
LOLA evaluates the selector queries expressed in prolog [25]. This results in sets of se-
lected program elements per superimposition selector.

CHKREP (Check Repository)
CHKREP performs several sanity checks on the repository, e.g. the existence of unused
references. This may result in errors and warnings presented to the user.

SANE (Superimposition Analysis Engine)
SANE imposes filtermodules on every program element selected by any superimposition
selector.

FILTH (Filter Composition & Checking)
SANE produces information about where filtermodules are superimposed. However,
it does not say anything about the order in which the filtermodules should be applied.
FILTH therefore calculates all possible orderings of filtermodules. A user can put con-
straints on orderings by configuring the filter ordering specification file.

SIGN (Signature Generation)
Composition filters may grow or shrink the signature of a concern [27]. SIGN computes
full signatures for all concerns and detects whether there are filters leading to ambiguous
signatures.

SECRET (Semantic Reasoning Tool)
When multiple filtermodules are imposed on the same joinpoint, certain semantic con-
flicts may be introduced. SECRET aims to reason about these kinds of semantic conflicts.
It performs a static analysis on the semantics of the filters and detects possible conflicts.

The used model is, through the use of an XML input specification, completely user adapt-
able [16, 52].

ASTRA (Assembly Transformer)
ASTRA transforms the compiled dummy sources according to the full signatures calcu-
lated by SIGN.

RECOMA (Source Compiler)
RECOMA uses a .NET compiler to compile the .NET sources against the compiled
dummy sources [27].

CONE (Code Generation)
CONE makes all repository data available at runtime by saving it to an XML file. CONE
also creates a interception specification file containing instructions for the weaver.

Dennis Spenkelink 30

3. Problem Statement

ILICIT (Interception Inserter)
ILICIT is a .NET Intermediate Language (IL) weaver. It uses CONE’s interception spec-
ification file to insert (weave) additional code in the .NET assemblies (at the execution
joinpoints). The resulting weaved assemblies enforce the Compose* runtime to execute
the declared aspects [10].

BACO (Bulk Assembly Copy)
BACO copies all assemblies, created and referenced during compilation, to the output
directory of the user-provided project. This ensures that Compose* runtime has all re-
sources to execute the compiled project correctly.

3.3 Motivation

The motivation for this thesis is to provide incremental compilation to Compose*. The current
Compose* version, described in the previous section, does not support incremental compi-
lation. This means that whenever a programmer modifies a Compose* project, the sixteen
compilation modules perform their duties again. They ignore hereby all efforts and results of
a previous compilation. While this non-incremental compilation is not a big problem for small
Compose* projects, it will give a huge burden for large Compose* projects. Table 3.1 illustrates
this.

Table 3.1: Compose* compilation time for projects with different sizes

Size Source files Lines of Code Classes FilterModuleOrders Time in seconds
Very Small 4 199 4 1 6.3
Small 21 2170 21 11 15.7
Medium 107 2872 107 124 58.2
Large 344 68459 472 731 391.5

Table 3.1 shows the compilation time for Compose* projects with different sizes. The columns
in this table are:

Size. An indication of the project’s size. The projects scale from “very small” to “large”.
Source files. The number of source files in the project.

Lines of Code. The total lines of codes of all source files.

Classes. The number of classes declared in the source files.

FilterModuleOrders. A filtermoduleorder is an ordering of superimposed filtermodules.
When we superimpose two filtermodules on a class, the number of filtermodule order-
ings for that class is two (one ordering and the reverse ordering). When we superimpose
n filtermodules on a class, the number of filtermodule orderings for that class is n!. The
FilterModuleOrders column shows the total sum of filtermodule orderings of all classes in
the project.

e Time in seconds. The number of seconds spent to compile all source files in the project.

The table shows us that a programmer has to wait for about six and a half minutes to recompile
a large project. But, the programmer often wants to recompile after making only a few small

31 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

changes to a program. Thus, when the compiler only recompiles what is necessary, the pro-
grammer might not wait that long (see compilation time for small projects). In other words, by
using incremental compilation we might decrease compilation time of Compose* projects.

3.4 Problem Summary and Conclusion

The current version of Compose* contains sixteen compilation modules. Each of them has
their own duties and responsibilities. However, all of them suffer from the same problem.
They do not support any kind of incrementality. This means that they perform their operations
repeatedly without taking advantage of the work already done in a previous compilation. This
unavoidably results in compilations consisting of numerous redundant operations. These re-
dundant operations slow down compilation. To speed up the compilation, we want to add
incremental performance to the Compose* compilation modules. The next chapter elaborates
on this problem and compares two possible solution approaches.

Dennis Spenkelink 32

Chapter 4

Solution Approaches

The previous chapter describes the problem of incremental compilation in Compose*. This
chapter first elaborates on this problem by describing a model of a compilation module in
Compose*. Then, based on this model, it proposes two possible solution approaches for incre-
mental compilation in Compose*. Finally, it defines a set of comparison criteria, applies this
set on both approaches and selects the most desirable approach.

4.1 Model of a Compilation Module in Compose*

The previous chapter concludes that incremental compilation in Compose* involves mini-
mization of redundant operations performed by compilation modules. But, what do we mean
when we speak of redundant operations of a compilation module? To answer this question,
we use a black box model of a compilation module. Figure 4.1 shows this model.

dependant data

Compilation madule

input {process input) —

H H ""h—-_.—l-l""
objects f————m —_—
4 output repository

Figure 4.1: Model of a Compilation Module in Compose*

In the model of Figure 4.1, the rounded rectangle represents a compilation module. Compose*
contains sixteen of such compilation modules. See Section 3.2 for a brief description of these
compilation modules. Each compilation module processes a set of input objects. To clarify
this, we apply this to one of the sixteen compilation modules, called FILTH. This compilation
module is responsible for calculating all possible orderings of the filtermodules superimposed
on a concern. To fulfill this task, FILTH iterates over each concern available in the repository.
Hence, the input objects of FILTH are all concerns available in the repository.

33

Incremental Compilation in Compose* University Twente

Each processing of an input object results in some output. This could either be data stored on
disk or data inserted into a Compose* repository. When we apply this to FILTH, we see that
it calculates two objects called “SingleOrder” and “FilterModuleOrders”. It inserts both objects
into the repository. The first object contains a first ordering of the filtermodules superimposed
on the concern. The second object contains all possible orderings of the filtermodules superim-
posed on the concern. From this observation, we can conclude that the outputs of FILTH are
the “SingleOrder” and the "FilterModuleOrders” objects.

The way a compilation module processes its input depends on a set of dependent data (repre-
sented by the block arrows). This set of dependent data is unique for each combination of input
object and compilation module. Examples of dependent data are configuration files, project
configurations and parts of the input object itself. For instance, the way FILTH processes its
input (concerns) depends on two types of data. The first one is an XML ordering specification
file, in which the user can put constraints on certain orderings. The second one is the names of
all filtermodules superimposed on a concern. When you change one of these two data types
for a concern, you might affect the filtermodule orderings calculated by FILTH for that concern.
From the above model, we can now derive the following definition for a redundant operation
of a compilation module.

A redundant operation of a compilation module is the processing of an input object that has already
been processed in the previous compilation, and which results in exactly the same output as that previ-
ous processing. This operation is redundant because it repeats an operation performed in the previous
compilation.

This definition raises several questions. For instance, how do you know whether an input
object has already been processed in the previous compilation? When does a compilation
module produce the same output as in the previous compilation? But most importantly, how
can we minimize redundant operations without producing incorrect or unexpected compila-
tion results? These questions need answers in order to establish incremental compilation in
Compose*. The next two sections present two possible solution approaches to answer these
questions.

Dennis Spenkelink 34

4. Solution Approaches

4.2 Restoration in Seven Steps

The first solution approach takes the repository from a previous compilation as its starting
point. During incremental compilation, all compilation modules adapt this repository. We ad-
dress this model with the term restoration. Figure 4.2 shows a model of incremental restoration
of the Compose* repository.

I » Madule operation e ;
(process input) e output
input chjects o
4
WBE e g
Flag operation P 7 ¥
1 {set unmodified flags) : : :
fundo ;o Calculate flags
4 e T SR : imodified
o : unmadified)
oes the input object 3 &
need lo be processed o & '3'”1:5'”1
again or not? _.\/7 :
One flag modified? -
"""Il-—---'."‘I
4 .
refrieve flags——w leoeeeeeiees 5

dependent data
from repository

I“‘"“'-I—--""-'I

Figure 4.2: Incremental restoration of the Compose* repository

ocutput flagged —

The dotted line in this model represents the non-incremental process of a compilation module
described in Section 4.1. The solid line represents incremental restoration of the Compose*
repository. This incremental restoration model contains the following seven steps:

1. Redirect input. The first step in the restoration model is the redirection of the input of a

compilation module to a new process. This means that the compilation module no longer
processes its input directly. For each redirected input, the restoration model continues
with step two.

. Retrieve set of flags. As we have seen in Section 4.1, each input object has a unique set of

dependent data. The restoration model supposes that each of these dependent data has
a flag either modified or unmodified. These flags tell whether certain data differs from the
previous compilation or not. At the start of the compilation, all flags are set to modified. In
this second step, we collect the flags of all dependent data of the redirected input object.

. Check set of flags. The third step in the restoration model is the most important one. In

this step, we minimize the number of redundant operations of the compilation module
by answering the following question for each redirected input object:

“Does the redirected input object need to be processed again by the compilation module?”

35

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

To answer this question, we use the retrieved set of flags as follows. When all flags are
set to unmodified, we know that the input object and its dependent data have not been
modified since the previous compilation. This means that processing the redirected input
object again, would result in a repeat of a processing completed in the previous compi-
lation. So, processing the redirected input object again would result in exactly the same
output as produced in the previous compilation. But, because we have kept these com-
pilation results, we do not need to reprocess the redirected input object again. Instead,
we can take advantage of the work done in the previous compilation by reusing the kept
compilation results. To achieve this, we answer the above question with “no” and con-
tinue with step six. When one flag is set to modified, we do not know for sure whether we
can find the correct output in the kept compilation results. Hence, we must reprocess the
redirected input object again. So, we answer the above question with “yes” and continue
with step four.

4. Process input. In this step, a compilation module processes a redirected input object in
its regular way. The output of this process is intercepted. For each intercepted output,
the restoration model continues with step five.

5. Flag output. Recall that at the start of the compilation, we flag each compilation result as
modified. To be able to skip redundant operations, however, we rely on the existence of
"unmodified” flags (see step three). Hence, we need to flag the intercepted output repos-
itory objects and files before they are stored into the repository or stored on disk. To
achieve this we do the following. For each intercepted output, find a matching repository
object or a matching file. By a matching repository object, we mean a repository object that
has the same identifier as the intercepted output repository object. By a matching file,
we mean a file that has the same absolute path as the intercepted output file. When you
found a match, compare it with the intercepted output. While comparing, flag the equal
parts to unmodified and the unequal parts to modified. Finally, overwrite the matching
repository object or matching file.

6. Reuse kept compilation results. The sixth step in the restoration model is an optimiza-
tion step. In this step, we search for the compilation results of the skipped input object
and set the flags of the found objects from modified to unmodified. By doing this, we tell
the restoration model that the compilation results of the skipped input object have not
been modified since the previous compilation. In other words, we are reusing these com-
pilation results. In this way, we minimize the number of modified flags. This increases the
chance of skipping next operations. This latter can be directly derived from step three.

7. Clean up repository. In the final step of the restoration model, we clean up outdated
repository data. By outdated repository data, we mean repository data that are produced
in a previous compilation and which are no longer consistent with the current compila-
tion. We need this cleaning because of the following two reasons. First, without it, the
repository would further grow after each compilation. Second, the processing of outdated
repository data could potentially lead to incorrect and unexpected compilation results. To
remove outdated repository data, each compilation module has a new undo operation. We
invoke this undo operation after a compilation module has processed all its input.

Dennis Spenkelink 36

4. Solution Approaches

4.3 Rebuilding in Five Steps

The second solution approach considers the repository from a previous compilation as a
backup to rebuild the Compose* repository faster. We address this model with the term re-
building. Figure 4.3 shows a model of incremental rebuilding of the Compose* repository.

. . > Module aperation sutput
input objects 4 repository
yes
Copy operation 5
4 Y

Does the input abject 3 5 J
need lo be processed no 5

again or not? R

copy data from backup
into repositony

% One depandent data modified?
F

dependent data 2

from backup capture dependent data backup
from backup

Figure 4.3: Incremental rebuilding of the Compose* repository

The dotted line in this model represents the non-incremental process of a compilation module
described in Section 4.1. The solid line represents incremental rebuilding of the Compose*
repository. This incremental rebuilding model contains the following five steps:

1. Redirect input. The first step in the rebuilding model is the redirection of the input of a
compilation module to a new process. This means that the compilation module no longer
processes its input directly. For each redirected input, the rebuilding model continues
with step two.

2. Retrieve dependent data from repository and backup repository. As we have seen in
Section 4.1, each input object has a unique set of dependent data. In this second step, we
retrieve these dependent data from the backup repository and the repository being built.
After we have retrieved both sets of data, we continue with step three.

3. Compare retrieved data sets. The third step in the rebuilding model is the most impor-
tant one. In this step, we minimize the number of redundant operations of the compila-
tion module by answering the following question for each redirected input object:

“Does the redirected input object need to be processed again by the compilation module?”

37 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

To answer this question, we compare the retrieved data sets of step two. When we do
not find any mismatch, we know that the input object and its dependent data have not
been modified since the previous compilation. This means that processing the redirected
input object again, would result in a repeat of a processing completed in the previous
compilation. In addition, processing the redirect input object again would result in ex-
actly the same output as produced in the previous compilation. But, because we have
kept these compilation results, we do not need to reprocess the redirected input object
again. Instead, we can take advantage of the work done in the previous compilation by
reusing the kept compilation results. To achieve this, we answer the above question with
“no” and continue with step five. When we find at least one mismatch, we do not know
for sure whether we can find the correct output in the kept compilation results. Hence,
we must reprocess the redirect input object again. So, we answer the above question with
“yes” and continue with step four.

4. Process input. In this step, a compilation module processes a redirected input object in
its regular way. The output of this processing is stored on disk or added to the repository
being built.

5. Reuse kept compilation results. In this step, we reuse the kept compilation results of
the skipped input object. We achieve this by calling a new so-called copy operation of
the compilation module. This copy operation it responsible for the following two tasks:
finding the correct compilation results in the backup repository and copying these com-
pilation results into the repository being built.

4.4 Comparison of Solution Approaches

Section 4.2 and Section 4.3 present restoration and rebuilding as solution approaches for incre-
mental compilation in Compose*. To compare these approaches, we first define a set of com-
parison criteria. Then, we apply these criteria on both approaches and finally, we select the
most desirable approach.

4.4.1 Comparison Criteria

To compare the solution approaches restoration (Section 4.2) and rebuilding (Section 4.3), we
define the following comparison criteria:

Efficiency. The degree to which the incremental compiler can perform its designated functions
with minimum consumption of resources like CPU and memory [5].

Simplicity. The degree to which the approach is straightforward and easy to understand [5].

Severity. The degree of impact that an implementation fault has on the development or oper-
ation of the incremental compiler [5].

Maintainability. The ease to which the implementation of the approach can be modified to
correct faults, improve performance, or adapt to a changed environment [5].

Dennis Spenkelink 38

4. Solution Approaches

4.4.2 Applying the Comparison Criteria

In this section, we apply the comparison criteria on the solution approaches restoration and
rebuilding. Table 4.1 shows the degrees of each criteria applied on the approaches, with ”++”
being the highest degree, and ”- -” the lowest degree.

Table 4.1: Comparison criteria applied to solution approaches

Approach Efficiency Simplicity Severity Maintainability
Restoration + +/- - -
Rebuilding +/- ++ + +/-

4421 Criteria applied to Restoration and Rebuilding

Efficiency. Restoration scores better on efficiency than rebuilding. The reason for this is

twofold. First, restoration requires one instead of two repositories. Maintaining one
repository involves consumption of resources like memory or disk (depending on the im-
plementation). One extra repository unavoidably results in more consumption of these
resources.

The second reason comes from the following estimation of the number of object compar-
isons in both approaches. First, consider the number of object comparisons in restoration.
By using restoration, object comparison is required when a compilation module produces
its output as normal (to flag it as unmodified or modified). These normal operations de-
crease when more flags are set to unmodified. The number of unmodified flags, in turn,
likely increases when a programmer makes fewer changes to its program. From these ob-
servations, we conclude that the number of comparisons in restoration decreases when a
programmer makes fewer changes to a program.

Now we consider the number of object comparisons in rebuilding. By using rebuilding,
object comparison is required just before a regular operation of a compilation module.
For each input object, we compare a set of dependent data with a set of data found in
the backup repository. While comparing these sets, we can stop when we found one
modification. On the other hand, when there are no modifications found, we will have to
complete all object comparisons. From these observations, we conclude that the number
of comparisons in rebuilding decreases when a programmer makes more changes to a
program.

Now assume that a programmer is more likely to recompile after making a few small
changes to a program rather than after making many changes. From this assumption and
the above estimations, we conclude that restoration requires less object comparisons than
rebuilding. In other words, restoration is potentially more efficient than rebuilding.

Simplicity. When it comes to simplicity, restoration scores worse than rebuilding. The main

reason for this is the complexity of its flagging algorithm. Another reason for the lower
degree of simplicity is the fact that the restoration model requires the addition of an undo
operation to all compilation modules. Because, without these undo operations, the repos-
itory would further grow after each compilation and possibly contain outdated compila-
tion results.

39

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

Severity. Restoration scores low on severity. The main reason for this is its ”All-or-nothing”

character. This means that restoration requires implementation of incremental perfor-
mance for each compilation module. Whether it is beneficial or not, we always need to
add undo and flag operations. This implies that one implementation fault results in a
loss of the whole incremental performance. Another reason for the low degree of severity
is the fact that one compilation module could rely on the flags set by another compila-
tion module. Hence, implementing a bad flagging algorithm for one compilation module
could lead to a performance decrease of other compilation modules.
The above limitations do not apply to rebuilding. This is because, in rebuilding, the
implementation and performance of a compilation module does not depend on other
compilation modules. This makes is possible to shut down the incremental performance
of a compilation module without losing incremental performance of other compilation
modules. Thus, the impact of an implementation fault in rebuilding is less severe than in
restoration.

Maintainability. The restoration model is hard to maintain because of its ”All-or-nothing”
character. We need to enhance each compilation module with incremental performance.
Whenever a compilation module is adapted, its incremental performance needs to be
checked and possibly adapted as well. This is not the case in rebuilding, where incre-
mental performance can be shut down and new compilation modules can be introduced
without any incremental performance.

4.4.2.2 Conclusion

From the applied criteria, we draw the following conclusion. Restoration is the most efficient
one but it has its costs. Compared to rebuilding, it is more complex, suffers more from im-
plementation faults and is less maintainable. Therefore, we believe that rebuilding is the most
desirable solution approach for incremental compilation in Compose*. In the next chapter, we
compare several design alternatives for this solution approach.

Dennis Spenkelink 40

The best way to escape from your problem is to
solve it.
— Dr. Robert Anthony

Chapter 5

Design Alternatives Rebuilding
Approach

Chapter 3 presented rebuilding as an approach for incremental compilation in Compose*.
This chapter elaborates on this approach by first identifying the design decisions for this ap-
proach. After describing these decisions, it compares several design alternatives and chooses
the most desirable ones. Finally, it summarizes our design solution for incremental compilation
in Compose*.

5.1 Design Decisions

Development of the rebuilding (Section 4.3) model presents several design decisions for the
developer. We classify these decisions into three categories:

Storage and Retrieval. The first design decisions relate to the storage and retrieval of compila-
tion results. To produce the same results as a previous compilation, without recompiling,
we need to preserve the previous compilation results. Section 4.1 tells us that the com-
pilation results consist of data stored on disk and Java objects inserted into a repository.
Since files are already preserved, we only need to find a way to preserve the repository
data between compilations. The most commonly used term for this is object persistence [6].

Data Comparison. The second design decisions relate to the comparison of compilation data.
To know what changed between two subsequent compilations, we need to have a mecha-
nism to compare the compilation data of both compilations. Knowledge of the differences
between compilations is indispensable, because it is a change that potentially leads to dif-
ferent compilation results.

Acquisition of Dependent Data. The last type of design decisions relate to the acquisition of
dependent data of a compilation module. Our rebuilding approach relies on this data to
tell whether a compilation module needs to process an input object again. The acquisition
of this data should be accurate. We cannot afford to miss out any dependent data because
of potential inconsistent compilation results. This is the case when we forget to check
one modified dependent data for an input object, and consequently, falsely classify that

41

Incremental Compilation in Compose* University Twente

input object as “not to be processed again”. We also cannot afford to define too many
dependencies, because this could lead to redundant dependency checking. The latter
obviously affects the performance of the incremental compiler negatively.

In the next sections, we present design alternatives for each of the above design decisions and
choose the most desirable ones.

5.2 Storage and Retrieval

The first design decision to make is how to make the Compose* repository persistent. In the
Java world, there are numerous persistence technologies (JOS [53], JDBC [32], JDO [35], Hiber-
nate [26], Oracle TopLink [46]). In the next sections, we describe three persistence technologies:
Java Serialization (JOS), Java Database Connectivity (JDBC) and Java Data Objects (JDO). Then,
we define a set of criteria for successful usage in Compose*. Finally, we apply the set of criteria
on the alternatives to make the best choice for Compose*.

5.2.1 Java Object Serialization (JOS)

Java Object Serialization [53] (JOS) is a well-established mechanism to persist objects. By us-
ing JOS, you can easily serialize object graphs to disk. The reverse operation, deserializa-
tion, is the process of reading data from disk and reconstructing the graph. Serialization

and deserialization are accomplished with the java.io.ObjectOutputStream and java.io
.ObjectinputStream classes.
public void write(}{ Il serialize
ObjectOutputStream 00s = new ObjectOutputStream(
new FileOutputStream("myfile.dat"));
oos.writeObject(new Date()); /I write current date
00s.close(); Il close stream
}
public void read(){ // deserialize
ObjectinputStream ois = new ObjectinputStream(
new FilelnputStream("myfile.dat"));
Date d = (Date)ois.readObject(); /Il read date
ois.close(); /I close stream

}

Listing 5.1: Java serialization and deserialization of current date

Listing 5.1 contains code for serialization and deserialization of the current date. The code
contains two methods named write (lines 1- 6) and read (lines 8- 13). Within the write
method, an instance of java.io.ObjectOutputStream is created to write objects to the file
"myfile.dat”. Then, a new instance of class java.util.Date is instantiated. The date is written
to the output stream by calling the writeObject ~ method (line 4). After writing the date, the
output stream is closed (line 5). A serialized object is read back by creating an instance of class
java.io.ObjectInputStream (line 9) and invoking its readObject ~method (line 11). You
need to cast read objects explicitly, as line 11 shows for the java.util. Date object. Again, we
close the stream by calling the close method (line 12).

Dennis Spenkelink 42

5. Design Alternatives Rebuilding Approach

With just a few lines of code, you can write and read objects. The only restriction to this is that
all objects to be persisted must implement the java.io.Serializable interface or inherit that
implementation from its object hierarchy. Listing 5.2 shows how to accomplish this.

public class PersistentObject implements java.io.Serializable

{

/I public void writeObject () {/ *to support custom serialization * [}
/I public void readObject () {/ *to support custom deserialization * [}

}
Listing 5.2: Make objects ready for serialization

To make the class PersistentObject serializable, we just declare that the class implements
the interface java.io.Serializable (line 1). The interface java.io.Serializable has two
methods: writeObject ~ and readObject . Finally, we may override these methods to support
custom serialization and custom deserialization [24].

5.2.2 Java Database Connectivity (JDBC)

A second alternative for Java object persistence is Java Database Connectivity (JDBC). The JDBC
API [32] provides access to database management systems (DBMS), which support the Struc-
tured Query Language (SQL). Further, JDBC allows you to create SQL statements that retrieve,
store, update or delete Java objects in a database. Before you can use JDBC, you require a data-
base driver [33] and add it to your classpath. Once added, you need to establish a connection
with a DBMS. Listing 5.3 shows code that illustrates this.
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:myDataSource";
Connection con = DriverManager.getConnection(url,"myLogin", "myPassword");

Listing 5.3: Establish a database connection with JDBC

First, you need to load the driver (line 1). Class.forName automatically creates an instance of
a driver and registers it with the DriverManager. After loading the driver, you can connect the
driver to a DBMS (lines 2—- 3). To accomplish this, you need to set the connection URL. This
URL depends on the type of driver you are using. When you are using the JDBC-ODBC Bridge
driver, the URL starts with jdbc:odbc.

Once you have an active connection, you need to construct a JDBC statement to send SQL
queries. You can send a SQL query by executing the appropriate execute method of the JDBC
statement. For SELECT queries, the appropriate execute method is executeQuery . For queries
that insert or modify data, the appropriate execute method is executeUpdate . Listing 5.4
demonstrates the use of the executeQuery method.
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(

"SELECT Employee FROM personnel WHERE Employee.no=18");

rs.next();
Employee emp = (Employee)rs.getObject(1);

Listing 5.4: Retrieving Java Objects through JDBC statement

The example retrieves all employees with employee-number 18 from a table called ”personnel”.
First, it takes an instance of an active connection to create a Statement object (line 1). Then, we
supply the JDBC Statement with an SQL query (line 2). The execution of this SQL query results

43 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

in an instance of ResultSet . The ResultSet provides a cursor that you can move backwards
and forwards to access rows in turn. By invoking the next method, we move the cursor to the
tirst row (line 4). Finally, we obtain an Employee instance by calling the getObject method of
the ResultSet instance (line 5).

When a DBMS receives a SQL query, it first parses the query to see if there are any syntax
errors. Then, it needs to figure out the most efficient way to execute it. In other words, it
creates a query plan. To avoid generating such a plan twice for the same queries, JDBC provides
a PreparedStatement . Listing 5.5 demonstrates the use of prepared statements.
PreparedStatement pstmt = con.preparedStatement(

"SELECT Employee FROM personnel WHERE Employee.no=?");

pstmt.setint(1,18);
pstmt.executeQuery();

Listing 5.5: Using JDBC PreparedStatement

Again, we want to retrieve all employees with employee-number 18. But, this time by using
PreparedStatement instead of Statement . This gives us the possibility to parameterize the
SQL statement. At line 1, we declare one PreparedStatement and supply it with a single
parameterized SQL statement. The SQL statement expects one parameter, namely an employee
number. We set this employee number by calling the setint method (line 3). Finally, we
execute the SQL statement by calling the executeQuery method (line 4).

Besides the use of ‘prepared’ statements, JDBC has some other features. To conclude our intro-
duction of JDBC, we briefly summarize these features below:

Batch Processing. The ability to send multiple update SQL statements to process as a batch.
This can be much more efficient than sending statements separately.

Transaction and Savepoints. The ability to use transactions and set savepoints to roll back
transactions to.

Connection Pooling. The ability to cache and reuse connections.

Statement Pooling. The ability to cache and reuse statements.

5.2.3 Java Data Objects (JDO)

A third alternative for Java object persistence is Java Data Objects (JDO). The JDO API [35] is a
specification to provide transparent persistence to developers of Java applications. Transparent
persistence is the storage and retrieval of data with little or no work from the developer [57].
The JDO API primarily contains interfaces. So-called JDO implementations or JDO vendors
implement these interfaces to comply with the JDO standard. These JDO vendors might either
store Java objects in a relational database, object database or flat file. [38] lists a number of
available commercial and non-commercial JDO implementations.

To persist objects, JDO requires all objects to implement the javax.jdo.spi.PersistenceCapable
interface. Fortunately, unlike JOS, you do not need to add this interface by hand. Instead,
each JDO vendor supports a so-called enhancer. An enhancer modifies the byte-code of a
.class file based on XML meta-data. This meta-data specifies which classes and fields are
persistent-capable. Figure 5.1 illustrates the enhancement process of a class Employee .

Just like JOS and JDBC, you need to set up a connection before you can persist objects.
In JDO, connection to a data store is handled by an instance of PersistenceManager

Dennis Spenkelink 44

5. Design Alternatives Rebuilding Approach

Employes_ java

(Source File]
Employes jdo
(%ML Metadata)
Employee class Employee class
(Class File) {Enhanced Class File)

Figure 5.1: Illustration of the class enhancement process

PersistenceManager is the main interface of JDO. It is the factory for Query and Transaction
instances, and has methods to manage a cache of PersistenceCapable instances. To obtain
an instance of PersistenceManager , you can use PersistenceManagerFactory . Listing 5.6
shows example code that demonstrates this.

Properties props = new Properties();
props.put(“javax.jdo.PersistenceManagerFactoryClass","myFactoryClass");
props.put(“javax.jdo.option.ConnectionURL","myConnectionURL");
props.put(“javax.jdo.option.ConnectionUserName","myUserName");
props.put(“javax.jdo.option.ConnectionPassword","myPassword");

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(props);

PersistenceManager pm = pmf.getPersistenceManager();

Listing 5.6: JDO: obtain an instance of PersistenceManager

At lines 1- 5, we define some properties to configure the PersistenceManagerFactory . Af-
ter configuring, we obtain an instance of PersistenceManagerFactory by calling the sta-
tic getPersistenceManagerFactory method of class JDOHelper (line 6). Finally, we obtain
an instance of PersistenceManager by calling the getPersistenceManager method of the
PersistenceManagerFactory instance (line 7).

Once you have an instance of PersistenceManager , you can use it to store, retrieve, update
or delete Java objects in your data store. The following listing demonstrates how to persist an
object.

/Il pmis a PersistenceManager instance
Transaction tx = pm.currentTransaction();
tx.begin();

Employee emp = new Employee("John", 23, 40000);
pm.makePersistent(emp);
tx.commit();

Listing 5.7: Persist Java objects by using JDO

The example in Listing 5.7, persists a single instance of class Employee (constructed at
line 4). To persist a Java object, you need to pass it to the makePersistent ~ method of a
PersistenceManager (line 5). To make use of JDO transactions, we place the call of the
makePersistent ~ method within a begin (line 3) and a commit (line 6) of a transaction. This
ensures that the Employee is not persisted until we call the transaction’s commit method. When
you persist an instance, all referenced PersistentCapable instances are also automatically
persisted. Thus, like JOS, you can persist entire object graphs by a single makePersistent call.

45 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

To conclude our introduction of JDO, we demonstrate how to retrieve JDO persisted objects.
JDO supports two ways to retrieve persisted objects. The first one is via the Extent interface.
By using this interface, you can retrieve all instances of a class and its subclasses. Listing 5.8
demonstrates the use of the Extent interface.
/I pmis a PersistenceManager instance
Extent employees = pm.getExtent(Employee. class , true);
Iterator empltr = employees.iterator();
while (empltr.hasNext()){

Employee emp = (Employee)empltr.next();

System.out.printin(emp.getName());

}
Listing 5.8: Retrieve Java objects by using the Extent interface

The example in Listing 5.8, prints the names of all persisted Employees to the console. To
retrieve all persisted employees, we call the getExtent method of the PersistenceManager
instance (line 2). To be able to iterate over the employees, we obtain the iterator of the returned
Extent instance (line 3). Finally, we iterate over the employees and print their names to the
console by calling System.out.printin (lines 4-7).

The second way to retrieve objects is to use the query language of JDO, called Java Database
Objects Query Language (JDOQL). JDOQL is a query language whose syntax and expressions
are largely based on Java. Listing 5.9 demonstrates the use of JDOQL.

/I pmis a PersistenceManager instance

Extent employees = pm.getExtent(Employee. class , true);

String filter = "age == 23"

Query query = pm.newQuery(employees, filter);

Collection results = (Collection) query.execute();

Listing 5.9: Retrieve Java objects by using JDOQL

The example in Listing 5.9, retrieves all Employees of age 23. First, we declare the classes we are
interested (line 2). In our case, we are looking for instances of class Employee . Then, we define
a query filter to restrict our search to employees of age 23 (line 3). Once we have an Extent and
a query filter, we can obtain an instance of class Query . We obtain a Query instance by calling
the newQuery method of the PersistenceManager instance (line 4). Finally, we execute the
Query instance by calling its execute method (line 5). As result, the executed Query returns an
instance of class Collection . This collection contains all employees of age 23.

5.2.4 Comparison Criteria

To choose one of the three Java object persistence alternatives, we compare the alternatives on
some comparison criteria. In this section, we shortly define our comparison criteria.

Ease of use. How much effort does it take, from both developer and user perspectives, to store
and retrieve the Compose* repository?

Portability. Do we need to rewrite code when we move the application from one platform to
another?

Performance. How much time does it take to store the Compose* repository? In addition,
how fast can we retrieve an object or set of objects from the stored repository?

Scalability. How well does the mechanism perform as the Compose* repository increases?

Dennis Spenkelink 46

5. Design Alternatives Rebuilding Approach

Note that whether the persistence mechanism provides a query language is not a criterion for
us. We take this view because the Compose* repository is designed to act like a database.
Therefore, it already supports basic query operations like insertion, deletion and retrieval of
objects by key. Further, we do not need concurrency control because of two reasons. First, there
is only user (the programmer) that stores and retrieves the repository. Second, the compilation
process is single threaded.

5.2.5 Applying the Criteria

In this section, we apply the comparison criteria on the three persistence alternatives. Table 5.1
shows the degrees of each criteria applied on the alternatives, with “++” the highest degree,
and ”-” the lowest degree. These degrees are not precise, but give merely an indication. Further,
our conclusions are primarily based on the findings of [40] and [39].

Table 5.1: Comparison criteria applied to persistence mechanisms

Mechanism Ease of Use Portability Performance Scalability

JOS ++ + + -
JDBC - - +/- +/-
JDO + +/- + +/-

5.2.5.1 Criteria applied to JOS

Ease of use. From a developer perspective, JOS is easy to use. It has a simple API that makes
it possible to store an entire object graph with just a few lines of code. From a user per-
spective, JOS is also very easy to use. Because it requires no further actions from the user
except for file management. This is in contrast to JDBC and JDO, where the user might
be required to install and manage a database.

Portability. Portability of JOS is high because it is a standard component of every Java Virtual
Machine (JVM). However, the downside of JOS is that it does not guarantee serialization
of objects across different Java versions. This means that, without adapting the serializa-
tion code, an object serialized in one Java version may not deserialize in another version.

Performance. JOS performs well for small objects compared to JDO and JDBC, because JOS
does not need to perform actions for caching, transactions and concurrency control. An-
other benefit of JOS is that it does not require a connection to a database. On the down-
side, JOS does not support on-demand storage and retrieval of objects. This makes JOS
unsuitable for applications that update serialized objects often.

Scalability. JOS scores low on scalability because it suffers from the “big inhale and exhale”
problem [19]. This problem refers to the fact that JOS only supports storage and retrieval
of whole graphs and not partial graphs. Another downside of JOS’s scalability is the
potential StackOverFlowEror . This error could arise while serializing deeply nested
object graphs, because JOS performs a depth-first search of the object graph. This means
that JOS may visit the same objects twice. However, a JVM can only handle a limited
number of objects before it throws a StackOverFlowError

47 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

5.2.5.2 Criteria applied to JDBC

Ease of use. From a developer perspective, JDBC is more difficult than JOS and JDO because
it requires knowledge of SQL queries. From a user perspective, JDBC is no more diffi-
cult than a JDO vendor implemented for databases, because both require installation and
management of a database.

Portability. Code written for JDBC primarily contains SQL queries. SQL is a standard, so you
would expect high portability. But, in practice, SQL queries are rarely portable across
SQL implementations. [39].

Performance. The performance of JDBC is dominated by crossing the domain boundary be-
tween the Java environment and the SQL environment. Object-style navigation of data
structures represented in SQL is extremely slow compared to the equivalent pointer-
following operation of a JVM. The key to a good performance is to execute the majority of
your JDBC application as SQL queries. Hereby, you minimize the number of round trips
between the two environments and render the query optimization mechanism of the SQL
server.

Scalability. In general, JDBC applications that do not create large numbers of objects that
proxy data from the database scale well because they do not consume many JVM re-
sources. In practice, however, JDBC applications are forced to explicitly cache data be-
cause of the high latency overhead of database round trips. This caching quickly becomes
a source of complexity and errors [40]. Finally, JDBC scores better on scalability than JOS
because, as a database solution, it does not suffer from the “big inhale and exhale” prob-
lem.

5.2.5.3 Criteria applied to JDO

Ease of use. From a developer perspective, JDO is slightly more difficult than JOS. The de-
veloper needs to “enhance” classes and maintain a meta data file written in XML. At a
minimum, the meta data only specifies which classes are persistent. At a maximum, it
also specifies the element type of collections, and whether, JDO should maintain an ex-
tent for a class. An extent is a mechanism to access all the instances of a class [39]. From
a user perspective, JDO could be as easy as JOS. This is the case when the JDO vendor
provides implementation for file stores. But, JDO vendors primarily provide implemen-
tation for relational and object databases. These implementations require installation and
management of a database.

Portability. One objective of JDO is to allow an application to be portable across multiple JDO
implementations. However, to port an application from one JDO implementation to an-
other, both implementations need to support the same features. This is not always the
case. Some features are optional and thus not supported by all implementations. To im-
prove portability of JDO code, [36] describes some portability guidelines. These guide-
lines ensure that your JDO code is portable across JDO implementations.

Performance. For storage of small objects, JOS will generally perform better than JDO because
there is simply less work to do. However, for larger objects, the differences reduce, be-
cause JOS suffers from scalability (see scalability applied on JOS). Retrieval of objects
could be as fast as JOS, because of two features. Firstly, JDO has an automatic built-in
caching mechanism. This means that it automatically adds all persisted objects to the
cache of the PersistenceManager . This way, persisted objects stay in memory for fast
retrieval. Note, however, that the caching performance differs between JDO implementa-

Dennis Spenkelink 48

5. Design Alternatives Rebuilding Approach

tions. The second reason, that might see JDO outperforming JOS in data retrieval, is that
JDO allows retrieval of only the objects needed by the application. This is in contrast to
JOS, which will always retrieve whole graphs of objects at once.

Scalability. Because of the caching mechanism mentioned above, JDO scores better on scala-

bility than JOS. It does not suffer from the “big inhale and exhale” problem as objects can
be added and retrieved from the cache on demand.

5.2.6 Choice Motivation

Based on the following considerations we believe that JOS is the best solution for persistence
of the Compose* repository.

JOS is the easiest way to achieve object persistence.

We do not need concurrency control since there is always one user that stores and re-
trieves the repository and the compilation process is single threaded.

JOS outperforms JDO and JDBC for small objects. The Compose* repository currently
scales from a couple of megabytes for small projects, to thirty megabytes for large
projects. This is still considered as a “small” object compared to enterprise applications
(100-1000 megabytes), thus JOS should have the best performance.

We do not need a powerful query language because the repository already supports basic
queries like insertion, retrieval and deletion of objects by key.

We can use custom serialization to control the class depth of the repository. This way,
we can avoid the occurrence of a StackOverFlowError . The following example demon-
strates this.

public abstract class FieldInfo extends ProgramElement

{
public String FieldTypeString;

private Type FieldType; /I parent type

public Type fieldType()

{
if (this .FieldType == null)
{
TypeMap map = TypeMap.instance();
FieldType = map.getType(FieldTypeString);
}
return FieldType;
}

Listing 5.10: Recursion in Compose* repository

Listing 5.10 shows the code responsible for the deep recursion. Serialization of a
Fieldinfo object causes serialization of its parent object (line 4). This parent object
contains the same field among others, which causes deep recursion. But, we do not
need to serialize the field FieldType because of the existence of the fieldType method
(lines 6—14). By using custom serialization, we can choose which fields to serialize. Thus,
we can control the class depth.

JOS is not suitable for applications that update serialized data often, but we only need to
update the serialized repository once at the end of the compilation.

49

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

5.2.7 Limitations of chosen alternative
When choosing JOS to persist the Compose* repository, we recognize the following limitations:

e We must read the whole serialized repository once before we can use it. We cannot load
parts of the repository data on-demand unless we store the repository data in separate
files. Reading the whole repository has a negative impact on memory usage and perfor-
mance.

e The scalability of JOS is poor. Currently, custom serialization and stack increases avoid
the StackOverFlowError but that is not a guarantee for the future.

e Serialization creates copies of objects when they are written and read. This can break code
based on hashcodes. This implies that we cannot compare objects based on hashcodes.
Section 5.3 describes how this affects our way of data comparison.

5.3 Data Comparison

The second design decision for incremental rebuilding of the Compose* repository is data com-
parison (see Section 5.1). More precise, we distinguish between two types of data comparison:

File Comparison. To tell whether a file changed since previous compilation.
Repository Entity Comparison. To tell whether a repository entity changed since previous
compilation.

In the next sections, we discuss design alternatives for both types of data comparison.

5.3.1 File Comparison

In this section, we discuss two alternatives for file comparison: byte-by-byte and timestamp
comparison. We compare the two alternatives on the following criteria:

Accuracy. How sure are we that a file changed since last compilation?
Performance. How fast can we conclude that a file changed since last compilation?

5.3.1.1 Byte-by-byte comparison

Byte-by-byte comparison takes two files, starts reading the bytes of both files and stops reading
when it founds a mismatch in bytes. Since it compares all bytes, byte-by-byte is the safest way
of file comparison. On the other hand, it scores low on performance. To use byte-by-byte
comparison you need to have two files. For Compose*, this means that we need to copy each
file used during a compilation cycle. Besides that, reading a file is a costly operation.

5.3.1.2 Timestamp comparison

Timestamp comparison is a solution based on the ’last-modified” timestamp of a file. To
tell whether a file changed between compilation cycles, you only need to compare the "last-
modified” timestamp of the file with the completion timestamp of the last compilation. There-

Dennis Spenkelink 50

5. Design Alternatives Rebuilding Approach

fore, timestamp comparison is much faster compared to byte-by-byte comparison. But, it has
also two limitations that decrease accuracy:

1. Depending on the operating system, a copy of a file may not automatically have an up-
dated timestamp. For instance, when you copy an old file on a Windows XP system, the
copy has the same last-modified timestamp as the original file. Since we are only checking
timestamps, we may wrongly classify a copied old file as unmodified.

2. If you add meaningless white spaces or save your file without making changes, you may
update the timestamp of the file. This means that the file is classified as modified while the
content has not changed. This is a wrong classification.

However, you can argue whether these scenarios are likely. We believe that these limitations
do not outweigh the increase of performance. Based on this, we conclude that timestamp com-
parison is the most viable solution for file comparison in Compose*.

5.3.2 Repository Entities Comparison

The repository entities are Java objects. The main way to compare Java objects is to use the
standard Java equals method. However, the JDK API [34] states one major contract between
the equals and hashCode method:

Equal objects must produce the same hashcode!

But, hashcodes are not preserved when an object is serialized and subsequently deserialized by
using JOS. Therefore, our choice for JOS breaks this contract. To repair the contract we should
override the equals or hashCode method, but this is undesirable. Instead, we found a solution
in Java reflection. Reflection gives us the possibility to configure the fields to use for object
comparison manually. This is best explained by the following example:

Suppose that we have a class Person with three attributes: name, age and nationality . In
addition, we have a configuration file that contains the following information:

e The fully qualified names of the classes to compare. In our case Person .
e The fields to use when comparing a class. In our example, we are only interested in the
name of a person.

By using reflection, we can now compare two persons by name and ignore the two other at-
tributes. Listing 5.11 shows example code that accomplishes this.

import java.lang.reflect.Field;
public class Comparator {
public HashMap fieldsByClasses = new HashMap();

public boolean compare(Object a, Object b){
Iterator fields = fieldsByClasses.get(a.getClass()).iterator();
while (fields.hasNext()){
String field = (String)fields.next();
Object fielda = getField(a,field);

51 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

Object fieldb = getField(b,field);
if (! this .compare(fielda,fieldb)) return false ;

}

return true ;

}

public Object getField(Object obj, String field){
Field f = obj.getClass().getDeclaredField(field);

f.setAccessible(true); // to get access to private fields
return f.get(obj);

}

public void parseConfigFile(){ / =code omitted */ }

public static void main(String[] args){
Comparator comp = new Comparator();
comp.parseConfigFile(args[0]);
Person pl = new Person("John",21,"The Netherlands");
Person p2 = new Person("Mary",23,"Germany");
comp.compare(pl,p2);

Listing 5.11: Compare two persons by name using Java reflection and a configuration file

This code contains a class Comparator with one main method. This main method expects one
argument, namely the path of a configuration file. The main method, firstly, creates an instance
of class Comparator (line 28). Then, the information of the configuration file is retrieved by
calling the parseConfigFile method (line 29). This method parses the configuration file and
stores the configurations in a hashmap called “fieldsByClasses”. We have omitted the details
of this method. After parsing the configuration file, the main method continues by creating
two instances of class Person (line 30— 31). To compare the two instances of class Person , we
call the compare method (line 32). This method retrieves the fields to compare and iterates over
them (line 8). For each field, we collect the corresponding values (of the two compared objects).
This is done by calling the getField method, which uses reflection. When there is a mismatch
for a field, the comparator stops and returns false (line 13). Otherwise, it goes on to the next
field. When all configured fields are equal, the comparator returns true (line 16).

Based on the above example, we constructed a solution model for comparing repository en-
tities. This model is shown in Figure 5.2. To compare an object from the repository and its
backup we first parse the configuration file. Then, by using reflection and the information from
the configuration file, we collect the fields we want to compare. After collecting the fields, the
second process collects the values of the fields. Once the values are collected, we can compare
them. To compare the values we distinguish between four different types of values:

Primitives. To compare primitives we use the standard '==" operator.

Strings. To compare strings we use the standard equals method.

Collections. Two collections are equal when sizes and all elements are equal. To compare
two collections we first compare the sizes. After comparing the sizes, we compare the
elements of the collections by iterating over them.

Objects. In case the values are objects, we recursively start the comparing process.

Dennis Spenkelink 52

5. Design Alternatives Rebuilding Approach

Reposiary

F 3

-

¥

AP

Java Reflection

Y

| Collect values

of fields

-
L

F 3 Fy

Object B ¥ ¥

Field Java Reflection
Configuration AP

_——

=y
A

Object

- racursive call- - e o 1 {field)

String
{equals)

Collection
(iterate)

Primitive
(==)

Figure 5.2: A recursive, generic way of comparing objects using reflection

Finally, as an optimization, we keep track of the comparison results. When we must compare
two objects that we have compared before, we return the result of that previous comparison.

This way, we avoid performing the same comparison more than once.

5.4 Acquisition of Dependent Data

The last design decision for incremental rebuilding of the Compose* repository is how to
acquire the dependent data of a compilation module (see Section 5.1). Since this data is subject
to change, we have chosen to configure these data dependencies in an XML configuration
file. Listing 5.12 presents an XML Document Type Definition (DTD) [4] of our dependency

configuration file.

<! ELEMENTmodule (dependency) *>
<I ATTLIST module
name CDATA#REQUIRED

<! ELEMENTdependency (dependencypath)>
<I ATTLIST dependency
name CDATA#REQUIRED
type ("FILE" | "OBJECT")>

<! ELEMENTdependencypath (dependencynode) *>
<I ATTLIST dependencypath EMPT¥

<! ELEMENTdependencynode EMPTY¥
<I ATTLIST dependencynode
type ("CONFIG" | "DYNAMIC" | " FIELD" | "METHOD")
value CDATA #REQUIRED>

Listing 5.12: XML DTD of a dependency configuration file for Compose*

53

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

In this XML configuration file, each compilation module has an entry (line 1). For each com-
pilation module, we can configure a set of data dependencies. A data dependency has three
attributes:

Name. The first one is a naming property (line 7). This attribute is used for identification.

Type. The second one refers to the type of dependency (line 8). We distinguish between two
types of dependencies: a file dependency and an object dependency. This distinction is
necessary when it comes to data comparison (see Section 5.3).

Path of dependency. The last attribute is the most important and difficult one. It describes a
way to retrieve dependent data for any input object of the compilation module. A path
of dependency nodes (line 10) represents the way of retrieval. Each node refers to a way
of data retrieval. More specifically, each node expects a Java object as input and returns
a Java object as output. The output of one node is passed on to the next node. Thus, by
setting the input of the first node to a specific input object of the compilation module,
and visiting the path of dependency nodes, we acquire the configured dependent data
for the specified input object. To be able to configure the dependencies in different ways,
we have chosen for the following four types of nodes (line 15):

e Field node. This node references a field of the input object. The output of this node is
the value of the referenced field.

o Config node. This node references a project configuration. Project configurations are
configurations that can be set by the user per Compose* project. The output of this
node is the value of the referenced project configuration.

e Dynamic node. Each repository entity has a map containing zero or more "dynamic’
objects. This node references a dynamic object “attached’ to the input object. The
output of this node is the value of the referenced dynamic object.

e Method node. This is a reference to a method. By visiting this node, the specified
method is invoked. The parameter of this method is the input of the node. The
output of this node is the return value of the invoked method.

This design solution gives us multiple ways to define data dependencies for Compose* com-
pilation modules. It is our task to find the most suitable one.

Dennis Spenkelink 54

5. Design Alternatives Rebuilding Approach

5.5

Conclusion

This and the previous chapter presented in detail our solution for incremental compilation
in Compose*. This solution involves persistence of the repository by using JOS, incremental
rebuilding of the repository by replacing redundant operations by so-called copy operations,
comparison of files and repository entities by using timestamp comparison and Java reflection,
and configuration of the data dependencies of a compilation module by using an XML con-
figuration file. To summarize, we here briefly outline a five-step procedure for enhancing a
Compose* compilation module with incremental performance:

1.

Define the input, output and data dependencies of a compilation module. Each com-
pilation module processes an input object or a set of input objects. Each input object
processed by a compilation module results in some output. This output could be repos-
itory entities as well as files stored on disk. The way a compilation module processes
its input objects depends on a set of data. This set of data dependencies is unique for
each combination of compilation module and input object. Knowledge of input, output
and data dependencies of a compilation module is indispensable for performing the next
tasks.

Store and retrieve all repository objects produced and used by the compilation module
by using Java’s standard object serialization. Break potential deeply nested recursion by
using custom serialization and custom deserialization. Ensure that each repository object
produced and used by the compilation module implement the java.io.Serializable
interface or inherit that implementation from its object hierarchy. Otherwise, the serial-
ization process will throw a java.io.NotSerializableException

Add a copy operation to a compilation module (see Section 4.3). This copy operation
should copy the output belonging to a specific input object from the backup repository
into the repository being built. Note that this copy operation should be faster than an
original processing of an input object in order to safe compilation time. Further, this
copy operation only applies to compilation modules that produce one or more repository
objects and not files. The reason for this is that it is redundant to replace a file with a copy
of that file.

Configure the identified data dependencies of a compilation module by using a XML
configuration file. This XML configuration file provides several XML tags to define data
dependencies of a compilation module (see Section 5.4).

Define and configure the fields to use for repository entity comparison (see Section 5.3.2).
For each compilation module, you can configure on which fields to compare two objects
of a certain type. If you do not configure these fields, the comparator will compare two
objects on all fields by default. Otherwise, it compares two objects on the configured
fields only. This way, you can minimize the number of comparisons.

55

Dennis Spenkelink

Chapter 6

Implementation

This chapter presents an implementation of the incremental compiler described in Chapter 4
and Chapter 5.

COMpose*
P Addin
_______________ —»| (coma)
- o : 1
|
|
|
| 1 embedded DUMmy AnNotation ASsembly
| ini ‘ | Coléng’.mﬂ\lbfger MAst:{AI\'tmaqal SOUFCE manager ManagER manaGER MAnager
' | i) {) 0 (DUMMER) (ANGER) (ASMA)
I ‘ I I
Visuar studio ¥
1al Studio J
Jadin r—=— | L e e e e
_____________________________ _".___-_-_-_-_-_-_-_l__-______________-_-_-_-_-_-_-_-.r-_
| r
| Meain |
| Ly ool A |
| | (MASTER) | |
| | ! _rl_ I
A Ao |
| ==
| : v v ¥ I ¥ ¥ v v v v v v [
EMBedded . Resalve Superimp. FILTer COnsistency SEmantiC
[COmPase’ source Tpe | LOgical EXternal CHeck ANalysis compasition & Slgnature Reasoning Reasoning l
» FPasER Mystification Language REFusitory i . GeNeration " |
| CORPER ExXtractor I REFerences CHKRER) Engine cHecking (SIGN Engine Tool
| () (EMBEX) (i | LALEY (REXREF) L ! (SANE) (FILTH)) (CORE) (SECRET } |
3 | f I T '
| ——h
I ¥ [
| |
|
| | | Fliter Reasoning |
| | | Engine (FIRE) I
! A4 .
T |
| | Incremental B
|
I] | Controller |g|—
| | (INCRE) |
4 |
et e -—- |
T - !
Code |
RECOMpile ASsembly
|l L InterCeption geNEration Asssmbiss | | | TRAnstomer - — »> 4
(CONE)
InserTar (RECOMA) | | (ASTRA
{ILicIT)
2 7 T
Adaptation | ——q
___________ = r r
Interpreter | |
| |
| |
| |
_____________________________ | ———

Figure 6.1: Compose* architecture with INCRE and adapted compilation modules highlighted

6.1 Adaptations to the Compose* architecture

This section gives an overview of the adaptations made to the Compose* architecture. Fig-
ure 6.1 shows the Compose* architecture with the new or adapted components highlighted.

56

6. Implementation

A new compilation module called INCRE manages incremental compilation. This compilation
module is designed as a service for all other Compose* compilation modules. The highlighted
compilation modules use this new service. Figure 6.2 shows an UML static structure of INCRE.

1

1 1

1

INCREConfigurations INCRE ConfigManager

fhistory : Properties comfigmanager | ConfigManager Fmadules : LinkedHashhMap
l-current : Properties eurrentRepository : DataStore |-xmiparser : INCREXMLParser
+INCRE Configurations(} ~enabled | boolean +Confighlanager()
HaddConfiguration() Fhistory : DataStore: +addModule()
getConfiguration() : String FhistoryFile : String +getModulaBylD() : Module
Linit() Finstance : INCRE [+parsaXML()

HastCompTime : Date

Hreporter | INCREReporter 1

-searchingHistory : boolean 0.

INCREComparator Hinstance() : INCRE 1
Feomparisons : HashMap +INC{|]?EU Module
keount : int R . ; INCREXMLP jects |
Lmodule : String pfindHistoryObject() : Object arser W " Ijb;afrsk.egﬁsnmp
FNCREComparalor] HisFilefdded() - boolean rconfigmanager : ConfigManager -enepe'ahleder‘;::e;elalln ashiap)
raddComparisan() Jizhl=hed = IEkates *INCREXMLParser() sulliype - Strin
kcompare() - boolean [Raancesssitibclieibesieay *startElement() -incriprr:-mal : Eodean
l+compareAbstractlists() - boolean :!::\[:):Islmlrm el - boal +endElementi) -name - String
rcompareAbstractSets() : boolean il w’_ﬂ_;" t:oncrems Zlhe ean : Fmodulel)
reomparelNCREFields() : boolean kel] +addDependency()
*wglmpaﬁssnil boolean ’ +addComparableObject()
gelFielkds() : Veclor -
tHsComparisonhade() : boolean asubsystems TTWUH} I
XML document handlers Helncramantal()

1
! INCRETimer
CTYPE_ALL :int = asubsystems
INCREReporter | TYPE_INCREMENTAL - int Dependency Object Model
writer - BufferedWriter -TYPE_NORMAL : int

CTYPE_OVERHEAD : int
-deseription @ String

buffer : StringBuffer
cssfile : String

reportfile : Sting . Fmodule : String

timings : LinkedHashMap . Htype :int

FTNCRERsporer]) 10" Lelapsediime : long

+addTimer() -starttime : long

+close() stoplime : long

+open() +HINCRETimer()
Festart(}

+slop()

Figure 6.2: UML static structure of compilation module INCRE

The components in the INCRE package are:

INCRE This is the heart of the incremental compilation. It is responsible for the decision
whether to reprocess input of a compilation module or not. It also stores and retrieves
the compilation results.

INCREConfigurations This class contains the user-provided project configurations used in the
previous and current compilation process.

INCREComparator This is the comparator mechanism discussed in Section 5.3. It compares
data from current and previous compilations and keeps track of the completed compar-
isons. Section 6.3 discusses this mechanism in more detail.

ConfigManager This class keeps a list of all Compose* compilation modules extracted from
the XML configuration file. It is also responsible for setting up the XML parser.

INCREXMLParser This is the parser of the XML configuration file. The parser contains multi-
ple XML document handlers. Section 6.2 describes the implementation of this parser.

Module This class represents a Compose* compilation module extracted from the XML con-
figuration file. Each compilation module has a set of data dependencies. These data
dependencies are structured in an object model. Section 6.2 describes this object model.

INCRETimer This is a stopwatch for timing the different compilation processes.

INCREReporter This is the reporter of the profiling results. It generates timings reports in
HTML format. Section 6.4 describes this reporter in more detail.

57 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

6.2 XML configuration file

Incremental compilation is configured with an XML configuration file called “INCRECon-
fig.xml”. Appendix A summarizes the type of configurations. Appendix B shows an example
configuration. The XML file contains information on all Compose* compilation modules. An
XML parser reads this information. Figure 6.3 shows the implementation of this XML parser.

1 ConfigManager
INCREXMLParser 1 1 -modules : LinkedHashMap
~configmanager : Confighanager -xmiparser | INCREXMLParser|
+INCREXMLParser() +Confighlanager()
+startElement) +addhdodule])
+endElement() [+getModuleBylD() - Module
+parsexXML()
1 1 1 1
MeodulesHandler DependencyHandler PathHandler
— feonfigmanager | ConfigManager Feonfigmanager : ConfigManager| ~configmanager : ConflgManager
1 tretumhandler | INCREXMLParser +returmhandler : ModulesHandler Lreturnhandler : DependencyHandler
+ModulesHandler() +DependencyHandler() +PathHandler()
+startElement() +startElement() +stariElement()
+endElament) +endElament() +andElement()
1
1 1 1 1
ComparisonsHandler TypeHandler ComparisonsPathHandler
Leonfigmanager : Confighlanager Leonfigmanager @ ConfigManager -configmanager : ConfigManager!
1 treturnhandler : DependencyHandler| Lreturnhandler | ComparisonsHandler urnhandler : TypeHandler
+ComparisansHandler() +TypeHandler() +ComparisonsPathHandbker()
+stariElement() +stariElement() +startElemeant()
+andElament() +endElament() +endElemant()

Figure 6.3: UML static structure of the parser of the XML configuration file

An instance of INCREXMLParser opens the XML file and parses it. It uses the standard Java
SAX API [29]. This API is event based. Each XML parser that implements the SAX API gen-
erates events while parsing XML. Our XML parsers implement the events startElement ~ and
endElement . These events represent the start and end of tags. There is one handler for each
type of tag. All information found by the parser is converted to objects. Figure 6.4 shows the
object model of the XML configuration file.

In this figure, class Module represents a Compose* compilation module. An instance of
ConfigManager maintains a list of these compilation modules. Each compilation module has
the following attributes:

A name used for identification.

A boolean enabled. Whether the compilation module is enabled or not.

A boolean incremental. Whether the compilation module is incremental or not.

The fully qualified type of the represented compilation module. This string is used to

create and run the represented compilation module by using reflection.

e A mapping between types and fields. For each type you can define a list of fields to use
for object comparison. Section 6.3 discusses object comparison in more detail.

e A map of dependencies. A dependency either represents a file (FileDependency)

or a Java object (ObjectDependency). The value of a dependency is found with the

getDepObject() = method. This method visits a "dependency path’. A dependency path

is a collection of dependency nodes. Each node expects a Java object as input and returns

a value either related to the input or not. The four types of nodes are (see also Section 5.4):

1. ConfigNode , which returns the referenced project configuration.

Dennis Spenkelink 58

6. Implementation

1 ConfigManager
—-modules : LinkedHashMap
lFemiparser | INCREXMLParsar
+Confighanager()
Haddiodule()

HgetModuleBy| D) - Module
Hparse XML

R Enp—

Dependency

Path

Module Fname : String Friodes © ArrayList
~comparableObjects - HashMap Fpath : Path +Path() _
-dependencies : LinkedHashMap Hookup : backean +ollow() - Chject
Lanabled : baolean . [store: boolean +addr~llode(]
fulltype : String 1 0. +Dependency() +getFirsthode) : Node|
|__|sincremental : boolean +addNade() +isEmpty() : boolean
. [name: Siring +getDepObject() : Object
0. H+module() 1
+addDependencyi)
::::guot;}?mableomectg] FileDependency ObjectDependency Node
+islncremental() HsAdded | boolean [reference : String
H+FileDependency() +ObjeciDependencyl) +Noded)]
HgetDepObject() : Object| [+getDepObject() : Object +getUniguelD(} : String
+visit() : Chject
Confighode DynamicNode FieldNode MethodNode
+Confighade() +Dynamichode) +FieldNode() +MethodMode()
+oetlUniquelD() : Siring| [+aetUniguelD{} : String| [+aetUniquelD() : String| FgetUniquelD() : String
+vigit() : Object [+visit(} : Object +visit() : Object Fevisit() : Object

Figure 6.4: XML configuration file converted to an object model

FieldNode , which returns the referenced field of the input object.

MethodNode , which invokes the referenced method with the input object as first
parameter and returns the return object of the invoked method.

DynamicNode , which returns the referenced dynamic object attached to the input
object.

6.3 Implementation of the object comparator mechanism

The class INCREComparator implements the solution model for object comparison, described
in Section 5.3.2. Figure 6.5 shows a simple UML sequence diagram of the interaction between

INCRE and INCREComparator .

\ INCREComparatoriModule) 1

compare(Object, Object)

trueffalse

Figure 6.5: UML sequence diagram of comparing objects

The interaction starts when INCRE creates a comparator for a specific compilation module. Then
INCRE asks the comparator to compare two objects. The comparator compares the two objects
and returns false in case the objects differ and true if not. Figure 6.6 shows an UML activity
diagram of the comparator.

The first task of the comparator is counting the number of comparisons. Therefore, it increases
its internal counter by one. The total number of comparisons is a good indication for the effec-

59 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

¢

Gﬂmp adds one to number of cnmparisnra

return result
Comg checks null value {Both null or one null}
return false

Gorrp comparas types of ohjeca—{mismawh} 4>©

Gmﬂp COMmMpares primltlvea Gnmp compares stringa Gnmp asks module for configuraled ﬂalda @amp compares sizes of mllacﬂona

{mismatch) retum false

@amp compares elements one by orla

{Any} {MNone}

éﬂl‘l‘lp collects values of configurated fielda Gornp oollects values of public ﬁelr@

Comp collects key of fisld Gﬂmp compares fields one by on9

Gomp searches previous mmparisnna

Comp comparas fields one by nna

{found}

retum result

Figure 6.6: UML activity diagram of comparing objects

Dennis Spenkelink 60

6. Implementation

tiveness of the comparator. Keeping the number of comparisons low also means low overhead
costs. After increasing the counter, the comparator follows its algorithm of comparing two
objects. The steps of this algorithm are:

1. Comparing the objects on null value. The comparator returns false in case one object is

null and true in case both are null. The comparator continues with step two in case both
objects are not null.

. Comparing the type of objects. When there is a mismatch in types, the comparator returns

false . Otherwise is continues with step three.

. This step depends on the type of the objects that are compared. The comparator recog-

nizes four different cases:

(a) Two primitives are compared with standard Java "==" operator.

(b) Two strings are compared with standard Java equals() method.

(c) For collections, the comparator first compares both sizes. If there is a mismatch in
size, then it returns false . Otherwise, it iterates over the collection and compares
the elements one by one. Two elements are compared by making a recursive call to
the comparator. If two elements differ from each other, then the comparator returns
false

(d) For all other types the comparator continues with step four.

. Collecting the fields of the type to compare. In the XML configuration file, each compi-

lation module may have been configured with a list of comparisons. Each comparison
consists of a type and a list of fields. The comparator asks the compilation module ex-
tracted from the XML configuration file for his list of comparisons. When this list contains
an entry for the type, the comparator collects the values of the type’s configured fields by
using reflection. In case the XML does not contain an entry, the comparator collects all
public fields of the type and its parent(s).

. The final step is comparing the collected fields. For fields not collected from the XML

file, the comparator simply compares the values one by one by making a recursive call to
the compare method. When it finds a mismatch, the comparator stops comparing and re-
turns false . In case all fields are equal, the comparator returns true . For fields extracted
from the XML file, the comparator uses an optimization. Each comparison has a unique
key namely the hashcodes of both fields combined. Before comparing the fields, the com-
parator checks its list of comparison results to see whether it has already completed the
comparison before. If this is the case, then the comparator uses this result instead of
comparing again. Otherwise, the comparator compares the fields. After comparing the
fields, the comparator adds the result of the comparison to its internal list. This way the
comparator minimizes the number of comparisons.

61

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

6.4 Reporting

We have implemented a reporter that generates a timing report in HITML format. Figure 6.7
shows a snapshot of an example report. The report contains timings of processes performed
by a compilation module. A process consists of a description, timing in milliseconds and a
category. There are three timing categories:

e Normal: for timing a non-incremental process.
e Incremental: for timing an incremental process.
e Overhead: for timing a process that causes overhead.

INCRE REPORT
Date: Tue Apr 18 13:35:55 CEST 2006
Project: C:/examplesDotNET /Pacman/

PROCESSES OF INCRE TYPE ELAPSED
Parsing configuration file suerhead 38 ms
Loading histary ouerhead 1170 ms
Total Overhead 1207 ms
Total Mormal 16 ms
Total Incremental Oms
Total Elapsed 1223 ms
PROCESSES OF COPPER TYPE ELAPSED
IMCRE::isProcessedBy(Composestar.Core.Master.Canfig, Concern Source@fd 2add) ouerhead 123 ms
CifenamplesDotNET/Pacman/Concerns/DynamicStrateqy.cps incremental 2 ms
INCRE::isProcessedBy(Composestar.Core.Master.Config. ConcernSource@1a42792) ouerhead 0 ms
CifenamplesDotNET/Pacman/Concernsflevels.cps incremental 2 ms
INGCRE::isProcessedBy(Composestar.Core.Master.Conflg Concern Source@220045) averhead 0ms
CifenamplesDotNET/Pacman/Concerns/Scoring.cps incremental Sms
INCRE::isProcessedBy(Composestar.Core.Master.Config, Concern Source@5dd532) ouerhead Oms
CifenamplesDotNET/Pacman/Concerns/Sound.cps incremental 4 ms
Total Cuerhead 18 ms
Total Mormal Sms
Total Incremental 11 ms
Total Elapsed 34 ms

Figure 6.7: Example HTML timing report

Listing 6.1 shows a code snippet for timing any process. First, we acquire an instance of
INCREReporter (lines 1 —2). Then, we start the timing of the process by calling the reporter’s
openProcess method. This method requires three parameters: the name of the compilation
module that performs the process, the description of the process and the type of process. By
receiving this call, the reporter creates and starts a timer. At the end of the process, we stop the
timer (line 8) and the reporter subsequently stores the elapsed time. Finally, all timed processes
are printed in HTML format as soon as the reporter is closed (line 9).

INCRE incre = INCRE.instance(); /I get an instance of INCRE
INCREReporter reporter = incre.getReporter(); /[get a reporter

/I start timing process

INCRETimer timer = reporter.openProcess(
"MODULE","PROCESS_DESC",INCRETimer.TYPE_OVERHEAD);

- /I continue process

timer.stop(); /I stop timing

reporter.close(); /[close reporter

Listing 6.1: Code snippet for timing a process

To provide a means to analyze the difference between the non-incremental and incremental
compilation, we included the following processes in the HTML report. Firstly, for each compi-
lation module, we timed each processing of an input object. Secondly, to find the bottlenecks
of a compilation module, we timed some individual parts of a compilation module. Finally,
we timed INCRE'’s isProcessedByModule ~ method to find out how much compilation time
(overhead) INCRE consumes to fulfill incremental compilation.

Dennis Spenkelink 62

6. Implementation

6.5 Control Flow

This section describes the control flow of incremental compilation. Figure 6.8 shows an UML
sequence diagram of the control flow. The diagram defines the following sequence of actions:

| WASTER ‘ ‘ INCRE
| un()

parseXML{configfile)

> loadHistory()

getModules()

isProcessedBy(module)

e e

> [Processed] copy()
> [Unprocessed] run)
L)

For eachinput -

For sach module s

> storeHistory()

TS~ =TT T

Figure 6.8: UML sequence diagram - control flow of incremental compilation

1. Start INCRE module. The MASTER:alls the run() method to start INCRE'.

2. Collect configurations by parsing the XML configuration file. An instance of
ConfigManager parses the XML configuration file called “INCREConfig.xml”. (see
Section 6.2).

3. Load the historical compilation results. An instance of INCRE is responsible for retriev-
ing the repository of a previous compilation of the same project. To accomplish this, it
serializes the repository to a file called “history.dat”. INCRE uses standard Java deserial-
ization to reconstruct the "history” repository.

4. Run the Compose* compilation modules. An instance of INCRE first asks its
ConfigManager for all compilation modules extracted from the XML file. Then, for
each compilation module its run() method is called.

5. Run normal or copy operation of a compilation module. Each compilation mod-
ule processes a set of input objects. For each input object, a compilation module can
use INCRE’s service called isProcessedBy . This service tells the compilation module
whether it has already processed an input object in an earlier compilation or not. If so,
the compilation module does not need to reprocess the input object. Instead, it can search
the backup repository for the result of that previous process. The copy operation of the

"Note that this sequence diagram contains two instances of INCRE. This is only done for visibility purposes.
In reality, there is only one instance of INCRE

63 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

compilation module realizes this. The service isProcessedBy is further explained in
Section 6.5.1.

6. Store the compilation results. The incremental compilation ends with serialization of the
repository by invoking the storeHistory =~ method of INCRE. This method uses standard
Java serialization to dump the repository into a “history.dat” file.

6.5.1 IsProcessedBy service

This section describes the control flow of the service isProcessedBy . Figure 6.9 shows an UML
sequence diagram of the control flow. The diagram defines the following sequence of actions:

CTCommonhedule INGRE ‘M.M.MSL| ‘M‘ INCREComparator

=

IsProcessadBy{input, module)

[Disabled] false

[Enabled] gethModuleBylDimadule)

islncremental()

[Motincremental] false

Comparaton module)

[Mismatch] false

getDependencyObject{input)

R D N 1
> isFileAddad(flaname)

> isFileModified(filenarme)
L For each file

> findHistoryObject{input)

[FileAddad] false

getDependencyChject|historyobject) X

compare(i

P R T T tueffalse o
[Mismatch] false

R For each object

[I

Figure 6.9: UML sequence diagram - control flow of operation isProcessedBy

Dennis Spenkelink 64

6. Implementation

1.

Start service. The service starts when INCRE receives a call from a compilation module.
This call has two parameters, the input object to be checked and the name of the calling
compilation module.

. Verify if calling module is incremental. There is a project configuration for enabling

or disabling incremental compilation. If this configuration is off, then INCRE does not
continue and returns false (input unprocessed). In addition, each compilation module
has an incremental compilation option. INCRE asks ConfigManager for the compilation
module and retrieves the value of this option. If the option is off, then INCRE stops and
returns false

Initialize comparator. Before comparing objects for a compilation module, the compara-
tor needs to know for which compilation module it is comparing. Therefore, we call the
constructor of class INCREComparator . This constructor has one parameter, the name of
the compilation module to compare for.

Verify input. INCRE is enhanced with input verification. The type of the input object is
compared with the configured value of the Module . If there is a mismatch, then INCRE
logs an error message and returns false . Otherwise, it continues with the next step.

Check data dependencies. INCRE checks the data dependencies in the following steps:

(a) Retrieve the configured dependencies of a module. Each compilation module has a
set of dependency objects obtained after parsing the XML configuration file. INCRE
asks the calling compilation module for this set.

(b) For each dependency object, collect the value used in the current compilation cy-
cle. INCRE achieves this by calling the getDependencyObject ~ method. This method
has one parameter: the input object of the calling compilation module. Figure 6.10
shows the control flow of the getDependencyObject method. It shows that each
dependency has a path of nodes. The value of a dependency is obtained by follow-
ing this path. Each node in the path expects one input object and returns one output
object. The output of one node is passed on to the next node. The first node receives
the input of the calling module. The object returned by the last node is the value of
the dependency.

(c) For file dependencies, perform timestamp-comparison. In case the value of a de-
pendency is a file, INCRE firstly checks whether the file is available in the stored
project configurations (isFileAdded). If not available, then the file is newly added
and thus marked as unprocessed. If available, then INCRE checks the timestamp of
the file (isFileModified). If the file is older than the completion timestamp of the
previous compilation, then INCRE marks the input as processed. Otherwise, the file
is possibly modified. Therefore, the input is marked as unprocessed.

(d) For object dependencies, perform object-comparison. INCRE performs object com-
parison in the following steps:

i. Retrieve the stored input object. Each input processed by a compilation mod-
ule has a unique identifier. INCRE searches the history repository for an object
with the same identifier (findHistoryObject). If it does not find such an ob-
ject, then INCRE marks the input as unprocessed. Otherwise, it continues with
the next step.

65

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

ii. Collect the value of the dependency used in a previous compilation cycle.
INCRE calls getDependencyObject of the checked dependency for the found
history object. In addition, all nodes in the path use the stored repository instead
of the newly built one.

iii. Compare the two collected dependency objects. Therefore, INCRE calls the
compare method of INCREComparator . Section 6.3 elaborates on the comparing
mechanism. In case the comparator finds a mismatch, INCRE stops and marks
the input of the compilation module as unprocessed. Otherwise, INCRE checks
the next dependency.

6. Finish service. INCRE returns true when it has checked all data dependencies and did
not find any mismatches. The compilation module now knows that it is safe to execute
the copy operation instead of its slower regular operation.

Bath Mode

INCRE Dependency

getDependencyObject{obi)

follow{obi)

visitiobil 2

For each node 4

L _final object

_ _ _finalobiest_ _ _ _ _ e T

Figure 6.10: UML sequence diagram - control flow of retrieving a data dependency

6.6 Conclusion

This chapter presented the implementation of package INCRE, which introduces incremental
compilation to Compose*. The next chapter elaborates on how this implemented service is
configured and used by several Compose* compilation modules.

Dennis Spenkelink 66

I had been told that the training procedure with
cats was difficult. It is not. Mine had me trained
in two days.
— Bill Dana

Chapter 7

Realization of Incremental Composex
Compilation Modules

Chapter 5 concluded with a five-step procedure for enhancing Compose* compilation modules
with incremental performance. In this chapter and Appendix C, we perform this procedure for
eight chosen compilation modules.

7.1 Compilation Modules Enhanced

Section 3.2 describes that the non-incremental Compose*/.Net compilation process contains
sixteen compilation modules. From these sixteen compilation modules, we have chosen to
enhance the following eight ones with incremental performance:

COPPER - Compose* Parser FILTH - Filter Composition & Checking
HARVESTER - Type Harvesting SECRET - Semantic Reasoning Tool
COLLECTOR - Type Collector RECOMA - Source Compiler

LOLA - Logic Language ILICIT - Interception Inserter

We have chosen to enhance these compilation modules, because they generally consume the
most compilation time and resources. Thus, adding incremental performance to these compi-
lation modules likely provides the best chance of decreasing compilation time.

Throughout the remainder of this chapter, we use the compilation modules FILTH and RE-
COMA as examples to clarify the five-step procedure. For a detailed description of the other
six compilation modules, we refer to Appendix C.

67

Incremental Compilation in Compose* University Twente

7.2 Step One: Identifying Input, Output and Data Dependencies

In our incremental rebuilding solution, exact knowledge of a compilation module’s input, out-
put and data dependencies is indispensable to minimize the redundant operations of a com-
pilation module. Hence, the first step for enhancing a compilation module with incremental
performance is identification of these three characteristics. To identify these three characteris-
tics, we manually analyzed the compilation modules and filled in the following scheme.

Input: - What are the input objects of the compilation module?

Processing: - How processes the compilation module its input to output?

Output: - What is the output of the compilation module?

Dependencies: - Which data (e.g., objects and files) influence the way the compilation module
processes a certain input object?

Motivation Incremental Performance - Why should we enhance the compilation module with
incremental performance?

The next two subsections present the results of our manual analysis of the compilation modules
FILTH and RECOMA. We refer to Appendix C for the analyses of the remaining six compilation
modules.

7.2.1 FILTH Analysis

The results of our analysis of FILTH are:

Input: Repository with superimposition resolved and a filter ordering specification file that
contains orderings constraints in XML format.

Processing: FILTH iterates over all concerns with one or more filtermodules superimposed
on. For each concern, it calculates all possible filtermodule orderings. A filtermodule
ordering is an ordered list containing the names of superimposed filtermodules. The
user can put constraints on the orderings by configuring an XML ordering specification
file.

Output: Two objects attached to the input concern. The first is called “SingleOrder” and con-
tains a first ordering of filtermodules superimposed on the concern. The second one is
called “FilterModuleOrders” and contains all possible orderings of filtermodules super-
imposed on the concern.

Dependencies: The following two types of data influence FILTH’s processing of an input con-
cern:

1. The names of all filtermodules superimposed on the input concern. It is trivial that
a change to a set consequently affects the possible orderings of that set.

2. The parts of the filter ordering specification file that relate to the input concern.
When the user makes structural changes to these parts, he can introduce or remove
constraints on the filtermodule orderings for the input concern. This may affect the
set of possible filtermodule orderings for the input concern.

Motivation Incremental Performance FILTH recalculates all possible filtermodule orderings
in every compilation. This strategy is inefficient as it leads to redundant repeats of calcu-
lations. By applying our incremental rebuilding solution to FILTH, we should minimize
these redundant recalculations and improve FILTH’s performance.

Dennis Spenkelink 68

7. Realization of Incremental Compose* Compilation Modules

7.2.2 RECOMA Analysis

The results of our analysis of RECOMA are:

Input: User-provided .NET sources and compiled dummy sources with full signatures (pro-
duced by compilation module ASTRA).

Processing: RECOMA iterates over all user-provided .NET sources and compiles them against
the dummy assemblies with full signatures [27]. To compile the sources, RECOMA uses
the standard Microsoft .NET compilers [3].

Output: Compiled .NET sources stored on disk.

Dependencies: The following five data influence RECOMA’s compilation of a source:

1.

Compiled source produced in the previous compilation. If the compiled version of
the input source is missing, due to deletion or replacement, then RECOMA needs to
recompile the input source.

Structural content of the input source. Structural changes to the input source may
introduce compilation errors and unavoidably affects the compilation results. Ex-
amples of structural changes are: addition of methods or renaming fields. Examples
of not structural or meaningless changes are changes to comments, tabs and spaces.

Structural content of referenced sources. A source may depend on the content of
another source. An example of this is the signature of an interface. People often
declare an interface in another source than its implementation. A change to the sig-
nature of an interface may introduce compilation errors when compiling the source
containing its implementation.

. Structural content of referenced libraries. A source may, similar to referenced

sources, depend on the content of referenced libraries.

Full signatures of concerns extracted from referenced sources. A source is compiled
by calling the correct .NET compiler and using the dummy assembly (compiled
dummy sources) as link input. The reason for this is to overcome the signature
mismatch problem described in [27]. The dummy assembly contains the full signa-
tures of concerns declared in all user-provided sources. However, not all of these full
signatures influence the compilation of a source. Note that the full signatures of con-
cerns extracted from the input source itself are not a dependency. This is because,
while compiling, a .NET compiler uses the original signature of the input source
instead [27]. In addition, full signatures of concerns extracted from unreferenced
sources are not a dependency because they are simply not referenced by the input
source and thus not used when compiling the input source.

Motivation Incremental Performance RECOMA recompiles all sources in every compilation.
This strategy is inefficient as it leads to redundant repeats of compilations. By applying
our incremental rebuilding solution to RECOMA, we should minimize these redundant
recompilations and improve RECOMA’s performance.

69

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

7.3 Step Two: Serializing Repository

Our incremental rebuilding solution requires that the input, output and dependent data of
a compilation module are kept between compilations (see Section 4.3). To realize this, INCRE
provides two methods called storeHistory and loadHistory . These methods use Java’s stan-
dard object serialization to read and write the whole Compose* repository to disk. However,
to be able to use these methods, we must meet the following requirement.

Each object to be serialized must implement the java.io.Serializable interface or inherit that
implementation from its object hierarchy.

In this second step, we verify whether the above requirement is met for all input, output and
dependent data of a compilation module. This seems tedious but it is not because of the
following reasons. Firstly, most objects stored in the repository inherit from the superclass
RepositoryEntity . Secondly, we implemented the java.io.Serializable interface for this
superclass. By doing this, we fulfilled the above requirement for all objects that inherit from
this superclass. This makes this step easier as most objects stored in the repository already
fulfill the above requirement.

7.4 Step Three: Implementing Copy Operation

Step three of our incremental rebuilding solution is the implementation of the so-called copy
operation. This copy operation should copy the output belonging to a specific input object
from the backup repository into the repository being built. In order to safe compilation time,
this copy operation should be faster than an original processing of an input object. In the next
two subsections, we present the implementation of the copy operations for the compilation
modules FILTH and RECOMA.

7.4.1 Copy Operation FILTH

In Section 7.2.1, we concluded that the input of FILTH are concerns and that the output of
FILTH are two calculated objects attached to these concerns. Hence, the copy operation of
FILTH should do the following. Search the backup repository for the two calculated objects be-
longing to a specific concern and copy them into the repository being built. Listing 7.1 presents
a copy operation that achieves this.

public void copyOperation(Concern c)

{
INCRE inc = INCRE.instance();

/I Copy dynamic objects ' FilterModuleOrders " and ’ SingleOrder
Concern cop = (Concern)inc.findHistoryObject(c);

LinkedList forders = (LinkedList)cop.getDynObject("FilterModuleOrders");
c.addDynObject("FilterModuleOrders",forders);

FilterModuleOrder fmorder = new FilterModuleOrder((LinkedList)forders.getFirst());
c.addDynObject("SingleOrder",fmorder);

Listing 7.1: Copy Operation FILTH

Dennis Spenkelink 70

7. Realization of Incremental Compose* Compilation Modules

This copy operation has one parameter: the input concern of FILTH which should be copied
for. The method block of FILTH’s copy operation contains six statements. The first statement
obtains the singleton instance of class INCRE by calling the instance() =~ method of class INCRE
(line 3). After obtaining an instance of INCRE, the copy operation asks it to search the backup
repository for a copy of the input concern. It obtains a copy of the input concern by calling IN-
CRE’s findHistoryObject method (line 6). Finally, the copy operation retrieves the two calcu-
lated objects from this copy and attaches them to the input concern by calling its addDynObject
method (lines 8-12).

7.4.2 Copy Operation RECOMA

For RECOMA, we do not need to implement a copy operation. The reason for this is the fol-
lowing. Recall that the copy operation only applies to compilation modules that produce one
or more repository objects (see Section 5.5). In Section 7.2.2, we concluded that the output of
RECOMA only consists of compiled sources stored on disk. This means that RECOMA does
not produce any repository objects. Hence, we do not need to implement a copy operation for
RECOMA.

7.5 Step Four: Configuring Data Dependencies

Step four of our incremental rebuilding solution is the configuration of the data dependencies
of a compilation module. By configuring these data dependencies, we specify which data IN-
CRE should compare to answer the main question of our incremental rebuilding solution: Does
an input object need to be processed again by the compilation module? For a detailed description of
how INCRE uses these configurations to answer this main question, we refer to Section 6.5.

To configure the data dependencies of a compilation module, we can use our XML configu-
ration file. This XML configuration file supports several XML tags for configuring the data
dependencies. For a detailed description of these XML tags, we refer to Appendix A. In the
next two subsections, we present our dependency configurations for the compilation modules
FILTH and RECOMA.

7.5.1 Dependency Configuration FILTH

From FILTH’s analysis (see Section 7.2.1), we conclude that there are two data types that influ-
ence the possible filtermodule orderings for a concern. These are the user-provided configura-
tion file, which puts constraints on the filtermodule orderings, and the names of all superim-
posed filtermodules. Listing 7.2 presents a configuration of these two data dependencies.

<dependencies>
<dependency type="FILE” name="specfile”>
<path>
<node type="CONFIG” nodevalue="FILTH_INPUT”></node>
</path>
</dependency>
<dependency type="OBJECT” name="fmodules”>
<path>
<node type="DYNAMIC” nodevalue="superImpInfo”></node>
<node type="FIELD” nodevalue="theFmSIinfo”></node>

71 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

</path>
</dependency>
</dependencies>

Listing 7.2: Dependency Configuration of FILTH

The first configured dependency is the user-provided configuration file. This file is referenced
by a project configuration called “FILTH_INPUT”. To retrieve this file, we only need to specify
a dependency of type "FILE” containing a path of one config node (lines 2-6).

The second configured dependency refers to all superimposed filtermodules on a concern.
These superimposed filtermodules are referenced by the field “theFmSlinfo” of a concern’s
dynamic object called “superImpInfo”. To retrieve these objects, we only need to specify one
dependency of type "OBJECT” containing a path of one dynamic node and one field node
(lines 8-11). Note that this second dependency returns whole filtermodules instead of only
their names. In Section 7.6.1, we explain how this can be further optimized.

7.5.2 Dependency Configuration RECOMA

From RECOMA'’s analysis (see Section 7.2.2), we conclude that there are five dependencies
that influence RECOMA's compilation of a user-provided source. We have configured four of
these dependencies in our XML configuration file. These four dependencies are the content of
the input source, the content of all its referenced sources, the content of referenced assemblies
and the full signatures of concerns extracted from a referenced source. Listing 7.3 presents a
configuration of these four dependencies.

<dependencies>
<dependency type="FILE” name="source”>
<path>
<node type="FIELD” nodevalue="fileName”></node>
</path>
</dependency>
<dependency type="FILE” name="xternals”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.COMP. DotNETCompiler .
externalSources”></node>
</path>
</dependency>
<dependency type="FILE” name="CompileLibsDependencies”>
<path><node type="CONFIG” nodevalue="Dependencies”></node></path>
</dependency>
<dependency type="OBJECT” name="fullsignatures”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.COMP. DotNETCompiler .
fullSignatures”></node>
</path>
</dependency>
</dependencies>

Listing 7.3: Dependency Configuration of RECOMA

The first dependency returns the filename of an input source. This filename is referenced by a
field “fileName” of the input source (line 4). The second dependency returns the filenames of
sources referenced by an input source. These filenames are obtained by a new helper method
called “externalSources” (line 9). The third dependency returns the filenames of all assemblies

Dennis Spenkelink 72

7. Realization of Incremental Compose* Compilation Modules

referenced by a user-provided base program. These filenames are referenced by a project con-
figuration called “Dependencies” (line 15). The last dependency returns the full signatures of
all concerns extracted from sources referenced by an input source. These signatures are ob-
tained by a new helper method called "“fullSignatures” (line 17).

7.6 Step Five: Optimizing Repository Entity Comparison

As described in Section 5.3.2, our incremental rebuilding solution requires a comparator for
comparing repository objects. In Section 6.3, we described an implementation of this com-
parator called INCREComparator . Below, we briefly summarize the working procedure of this
comparator.

When a compilation module asks the comparator to compare two objects, it first retrieves and
compares the types of these objects. If there is a mismatch in these types, it returns false
Otherwise, it continues with the next step. In this second step, the comparator verifies whether
the user has configured so-called field-restrictions for the type and calling compilation module.
If this is the case, then the comparator will compare the two objects only on these configured
tields. Otherwise, the comparator will compare the two objects on all their fields by default.

So, in other words, by configuring field-restrictions, the user can control and optimize the com-
paring mechanism. This optimization of the comparator is the final (optional) step of our re-
building solution. To clarify this optimization step further, the next two subsections present our
comparator optimizations for FILTH and RECOMA. We refer to Appendix C for comparator
optimizations of the remaining six compilation modules.

7.6.1 Comparison Configuration FILTH

FILTH’s second dependency returns a list of filtermodules rather than only the names of the
filtermodules. This means that it returns more data than we actually need. This slows down
our comparing mechanism, because the comparator will compare whole filtermodules instead
of only their names. Therefore, we want to restrict the comparison of filtermodules further. We
achieve this by configuring a field-restriction for filtermodules. Listing 7.4 shows this restric-
tion.

<comparisons>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. References.
FilterModuleReference”>
<field name="name”></field>
</type>
</comparisons>

Listing 7.4: Comparison Configuration of FILTH

The above configuration restricts the comparison of instances of FilterModuleReference

to their field called “name”. This means that when we compare two instances of
FilterModuleReference , we only compare on their names and ignore their other redun-
dant data.

73 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

7.6.2 Comparison Configuration RECOMA

RECOMA'’s fourth configured dependency returns a list of signatures. However, not all fields
of these signatures might influence RECOMA’s compilation of a source file. This means that
it returns more data than we actually need. Again, we can restrict this data further by means
of our comparison configuration. Listing 7.5 presents a configuration of this restriction. This
configuration restricts the comparison of signatures to only the fields that may influence RE-
COMA’s compilation of a source file.
comparisons>
<type fullname="Composestar.Core.CpsProgramRepository.Signature”>
<field name="methodByName”></field>
</type>
<type fullname="Composestar.Core.CpsProgramRepository.MethodWrapper”>
<field name="RelationType”></field >
</type>
</comparisons>

Listing 7.5: Comparison Configuration of RECOMA

7.7 Conclusion

This chapter and Appendix C described in detail how eight Compose* compilation modules
have been enhanced with incremental strategies. In the next chapter, we evaluate the efficiency
of these implemented incremental strategies by charts of tests.

Dennis Spenkelink 74

Chapter 8

Evaluation

In this chapter, we evaluate the efficiency of the strategies described in the previous chapter
by means of charts. The organization of this chapter is as follows. The charts presented in this
chapter are the results of numerous timing tests. To clarify on this, we first describe which and
how we have executed these timing tests. After this clarification, we give an overview of the
charts presented in this chapter and summarize the expected results. Finally, we present the
charts and explain any unexpected results.

8.1 Test Cases and Conditions

This section defines test cases and test conditions used for testing the performance of the incre-
mental compiler.

8.1.1 Cases

To test the performance of the incremental compiler, we have used the following tests cases:
Four different example projects. To test the scalability of the compiler, we have used four

different example projects scaling from very small to large. Table 8.1 shows the charac-
teristics of these examples.

Table 8.1: Characteristics of test examples

Name Size Source files Lines of Code Classes FilterModuleOrders
EX1 Very Small 4 199 4 1

EX2 Small 21 2170 21 11

EX3 Medium 107 2872 107 124

EX4 Large 344 68459 472 731

Six different scenarios. To test the performance of the incremental compiler, we have chosen
for the following six scenarios.

S1 Compilation after no modifications to base program and aspects.

75

Incremental Compilation in Compose* University Twente

S2 Compilation after modifying the signature of one concern (e.g., adding a method).
S$3 Compilation after adding a logging concern.

S4 Compilation after modifying one method block (e.g., adding a print statement).
S5 Compilation after adding one new joinpoint.

S6 Compilation after modifying one predicate selector into an equivalent one.

Note that there are numerous more scenarios to think of. However, our intention is not
to be complete but rather give an indication for a few distinctive and common scenarios.

Non-incremental versus incremental. To recognize the differences between non-incremental
and incremental compilation, we have executed the above combinations of examples and
scenarios for both the non-incremental and incremental compiler.

To increase the reliability of the tests, we have conducted each test case ten times and averaged
the results. This brings the total number of tests to 480 .

8.1.2 Conditions

In order to have the same conditions for all tests, we have executed all tests on one system.
Table 8.2 shows the configuration of this system.

Table 8.2: Configuration of the system used for testing
Central Processing Unit AMD Athlon(tm) 64 Processor 3000+ 2.00 GHz

Memory 512 MB of RAM
Operating System Windows XP
Java VM Options -Xmx512m -Xms512m -Xmn128m

8.2 Charts and Expected Results

In this chapter, we present the following charts:

1. Share of compilation modules in non-incremental compilation time. This chart shows,
for each example, which compilation modules are relatively fast or slow during non-
incremental compilation of that example. This information helps us in deciding for which
compilation modules to introduce or maintain incremental performance. The reason for
this is the following. The more compilation time a compilation module consumes, the
bigger the chance we can decrease this consumption of compilation time by means of
incremental performance. In this chart, we also expect to see differences in scalability be-
tween compilation modules because of differences in complexity and responsibility. This
information tells us which compilation modules need improvement to ensure scalability
of Compose* compilation.

four (examples) multiplied by six (scenarios), multiplied by two (incremental and non-incremental) and finally
multiplied by ten (average results)

Dennis Spenkelink 76

8. Evaluation

2. Performance improvement by example and scenario. This chart shows, for each combi-

nation of example and scenario, the performance improvement of the incremental com-
piler compared to the non-incremental compiler. This information tells us in which cases
it is beneficial to use the incremental compiler and which not. In this chart, we expect to
see the following two results:

(a) Out of all scenarios, we should realize the biggest performance improvement in the
first scenario. We expect this because of the following. INCRE only recognizes an
operation as redundant when none of its dependent data has been modified. In
the first scenario nothing has been modified, thus INCRE should find the most re-
dundant operations in this scenario. For each operation recognized as redundant,
INCRE calls the copy operation of a compilation module instead of its regular oper-
ation. These copy operations are intended to be faster than the regular operations.
Thus, the more redundant operations INCRE finds, the faster the compilation will
be. Because the first scenario should have the most redundant operations, this sce-
nario should also have the fastest compilation. This explains why we should realize
the biggest performance improvement in the first scenario.

(b) We expect to see a positive performance improvement in all test cases. We expect
this because of the following. In all test cases, we only perform limited (zero or one)
changes to the examples rather than many changes. Because of this limited changes,
we expect that the incremental compiler should be able to find enough redundant
operations to speed up compilation of the examples.

3. Overhead by example and scenario. This chart shows the overhead created by the incre-

mental compiler for each combination of example and scenario. By overhead, we mean
compilation time consumed by the compilation module INCRE to fulfill its service, incre-
mental compilation. This information gives us insight into the maximum and minimum
performance improvement of the incremental compiler compared to the non-incremental
compiler. To be precise, the maximum performance improvement of the incremental
compiler is hundred percent minus the maximum overhead of INCRE. In addition, the
minimum performance improvement is zero percent minus the maximum overhead of
INCRE. In this chart, we expect to see the following result:

(a) Out of all scenarios, we should realize the maximum overhead in the first scenario.
We expect this because of the following. INCRE'’s overhead consists of two tasks.
The first task is serialization and deserialization of the repository. The second task
is dependency checking (acquire two sets of dependent data and compare them). To
complete the latter task, INCRE uses the following strategy. It starts by checking the
first dependent data of a compilation module. When this dependent data has not
been modified since the previous compilation of the same project, INCRE moves on
to next dependent data. Otherwise, it stops dependency checking. In other words,
the more changes a programmer makes to its program, the less dependency checks
are performed by INCRE. In the first scenario, nothing has been modified. This is in
contrast to the other scenarios, in which we do perform changes. This explains why
we should realize the biggest overhead in the first scenario.

77

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

4. Average performance improvement and overhead of compilation modules. This chart
shows the average (of each example and scenario) performance improvement and over-
head of the eight incremental compilation modules and INCRE. This information tells us
which compilation modules profit the most from incremental compilation. In this chart,
we expect to see differences between compilation modules because of differences in com-
plexity and responsibility.

5. Performance improvement and overhead of a compilation module by example and sce-
nario. This chart shows, for each combination of example and scenario, the performance
improvement and overhead of a compilation module. This information tells us whether
for a specific case, it is beneficial to turn on the incremental performance of a compilation
module or not. We present this type of chart for the compilation module INCRE and the
eight incremental compilation modules. We expect to see performance improvement for
incremental compilation modules in almost all cases. Exceptions to this are the following
cases:

(a) FILTH and the third scenario. In the third scenario, we add a logging concern to the
examples. This logging concern implies creating a new filtermodule that is super-
imposed on each concern of the user-provided base program. For FILTH, this has
the following consequence. In Section 7.2.1, we described that one of the data de-
pendencies of FILTH are the names of all superimposed filtermodules on a concern.
When we add a logging concern, we affect this data dependency for each concern.
This means that FILTH needs to recalculate filtermodule orderings for each concern.
To come to this conclusion, however, INCRE needs to perform dependency checks
for each concern. Hence, FILTH will always have a performance loss in the third
scenario rather than a performance improvement.

(b) SECRET and the third scenario. In Section C.5.1, we described that one of the data
dependencies of SECRET are the filtermodule orderings calculated by FILTH. In the
above explanation for FILTH, however, we concluded that the filtermodule order-
ings of all concerns are affected when we add a logging concern. Thus, in the third
scenario, SECRET needs to re-perform semantic analysis for each concern. Again, to
come to this conclusion, INCRE needs to perform dependency checks for each con-
cern. This explains why SECRET will always have a performance loss in the third
scenario rather than a performance improvement.

The next sections present and evaluate these charts one by one.

Dennis Spenkelink 78

8. Evaluation

8.3 Non-incremental Compilation Time of Compilation Modules

45%
40%
35%
30%
25%
20%
15%
10%

5%

0% -

Share in percentage

COP

Share of compilation modules in normal {non-incremental) compilation time

DUM

HAR

CcoL

LOL

FIR | SIG | AST

REC

ILI

SEC

CONZ2

OEX1
mEX2
OEX3
O EX4

BAC

OEX1

2%

3%

14%

19%

6%

26% | 3% | 3%

8%

1%

1%

3%

0%

mEX2

1%

5%

8%

12%

3%

13% | 7% | 3%

20%

23%

0%

4%

1%

OEX3

0%

5%

6%

10%

3%

3% | 5% | 1%

36%

27%

0%

2%

1%

O EX4

0%

4%

2%

2%

1%

1% [18% | 1%

12%

40%

7%

9%

3%

Compilation Modules

Figure 8.1: Share of compilation modules in non-incremental compilation time

The chart presented in Figure 8.1, shows the shares of the compilation modules in the total com-
pilation time of four examples. As expected, we see fluctuations in consumption of compila-
tion time by compilation module and example. From these fluctuations, we draw the following

conclusions:

1. For smaller examples, the compilation modules HARVESTER and COLLECTOR mainly
cover the compilation time. This means that, in order to decrease compilation time of
smaller examples, it might be wise to concentrate on these two compilation modules first.

2. For larger examples, the compilation modules SIGN, RECOMA and ILICIT mainly cover
the compilation time. Hence, in order to decrease compilation time of larger examples, it
might be wise to concentrate on these three compilation modules first.

3. The scalability of the Compose* non-incremental compiler suffers most from the compi-
lation modules SIGN and ILICIT. These two compilation modules lose the most perfor-
mance when we upscale examples. Thus, to ensure scalability of Compose* compilation,
these two compilation modules need improvement.

79

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

8.4 Performance Improvement by Example and Scenario

Performance improvement by example and scenario

B Performance Improvement % O Expected Performance Improvement %

100.00%

80.00%

60.00%

40.00%

Percentage

20.00%

0.00%

-20.00%

Example and Scenario

Figure 8.2: Performance improvement of incremental compiler by example and scenario

The chart presented in Figure 8.2, shows, for each test case, the performance improvement of
the incremental compiler compared to the non-incremental compiler. The first bar depicts the
performance improvement in percentage of the total compilation time of all compilation mod-
ules. The second bar depicts the performance improvement in percentage of the total com-
pilation time of only incremental compilation modules. This way, we have made a distinction
between the actual realized performance improvement and an expected performance improve-
ment (when we have enhanced all compilation modules with incremental performance). In
Section 8.2, we described two results which we expected to see in this chart. Below, we verify
these two expectations:

1. The first expectation is that out of all scenarios, we should realize the biggest performance
improvement in the first scenario. When we look at the chart, we see that this is indeed
the case.

2. The second expectation is that all test cases should realize a positive performance im-
provement. When we look at the chart, we see that this is the case for all but except one
test case. We can explain this unexpected result as follows. Our incremental rebuild-
ing solution requires two repositories: the repository being built and the repository kept
from the previous compilation of the same project (see Section 4.3). To read and write a
repository, INCRE uses Java’s standard serialization mechanism called Java Object Serial-
ization (JOS). By using this mechanism, however, it cannot read parts of the repository on
demand. Therefore, INCRE needs to read the whole repository at once. This big inhale
results in a large number of objects allocated to memory at the start and until the end of
compilation. This, in turn, increases the chance that the application runs out of memory
and consequently triggers the JVM’s garbage collector to free up memory. Based on ex-
periments, we conclude that for the first three examples, the garbage collector is not (or
not often) triggered. This is in contrast to the fourth example, for which INCRE needs

Dennis Spenkelink 80

8. Evaluation

much more memory and triggers the garbage collector multiple times. This triggering
occurs even more in the third scenario, in which the repository contains more objects
compared to the other scenarios because of the extra logging concern. In other words,
INCRE suffers from scalability due to the increasing influence of the garbage collector.
This problem is inherent to our choice of Java’s standard object serialization and can only
be solved by choosing a Java object persistence technology that supports on-demand re-
trieval of objects.

8.5 Overhead by Example and Scenario

Overhead by example and scenario

B Overhead % O Expected Overhead%

40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

Overhead in percentage

5.00%
0.00%

Example and Scenario

Figure 8.3: Overhead of incremental compiler by example and scenario

The chart presented in Figure 8.3, shows, for each test case, the overhead of the incremental
compiler. The first bar depicts the overhead in percentage of the total compilation time of all
compilation modules. The second bar depicts the overhead in percentage of the total compi-
lation time of only incremental compilation modules. This way, we have made a distinction
between the actual realized overhead and an expected overhead (when all compilation mod-
ules are enhanced with incremental performance). From this chart, we draw the following
conclusions:

1. As expected, out of all scenarios, we realize the maximum overhead in the first scenario.

2. For the first three examples, the overhead tends to decrease when examples are upscaled.
However, this does not apply to the fourth example, in which the overhead suddenly
increases. This latter implies that INCRE suffers from scalability issues. The exact reason
for this unexpected result can be found in Section 8.7.

81 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

8.6 Average Performance of Compilation Modules

Average performance improvement and overhead by compilation module

O Avg Perf. Impr. B Avg Overhead

20.0%
15.0%
10.0%

5.0%

0.0%

Percentage

-5.0%

-10.0%

-15.0%

INC COoP HAR CcoL LoL FIL REC ILI SEC

O Avg Perf. Impr. | -11.0% | 0.6% 4.7% 8.7% 0.8% 01% | 16.6% | 185% | 0.2%
W Avg Overhead | 11.4% | 0.0% 0.0% 0.0% 05% 0.0% 1.0% 0.7% 0.3%
Compilation Modules

Figure 8.4: Average performance improvement and overhead of compilation modules

The chart presented in Figure 8.4, shows the average performance improvement and overhead
of nine compilation modules in percentage of the average compilation time of all test cases.
By overhead of the incremental compilation modules, we mean compilation time consumed
by INCRE to enforce incremental performance of that compilation module (e.g., data compar-
ison). By overhead of INCRE, we mean compilation time consumed by INCRE to read and
write the repository. As expected, we see fluctuations in performance improvement between
compilation modules. From these fluctuations, we draw the following conclusions:

1. The compilation modules RECOMA and ILICIT profit the most from incremental com-
pilation. These compilation modules are showing respectively a performance improve-
ment of sixteen and eighteen percent. The other six incremental compilation modules are
also showing performance improvements but in lesser degree. This means that, when it
comes to maintenance of the incremental compiler, it might be wise to concentrate on the
compilation modules RECOMA and ILICIT first.

2. The performance improvement realized for the eight incremental compilation modules,
outweigh the average performance decrease created by INCRE. This means that the in-
cremental compiler has a performance advantage over the non-incremental compiler (see
also Section 8.4).

3. Reading and writing the repository is relatively costly compared to INCRE'’s other tasks.
This implies that, in order to improve INCRE’s performance further, it might be wise to
concentrate on improving these tasks first.

Dennis Spenkelink 82

8. Evaluation

8.7 Evaluation of INCRE

INCRE: Overhead by example and scenario

20.0%
18.0%
16.0%
14.0%
12.0%
10.0%
8.0%
6.0%
4.0%
2.0%
0.0%

INC

Figure 8.5: Overhead created by INCRE

The chart presented in Figure 8.5, shows the overhead of the compilation module INCRE for
all test cases. By overhead of INCRE, we mean compilation time consumed by INCRE to read
and write the repository. From this chart, we draw the following conclusion. For the first
three examples, INCRE’s overhead tends to decrease as examples are upscaled. However, this
does not apply to the fourth example, for which the overhead suddenly increases. In other
words, INCRE'’s reading and writing of the repository suffers from scalability. In Section 8.4,
we already explained that this can be subscribed to the big inhale problem of Java’s standard
object serialization mechanism.

83 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

8.8 Evaluation of COPPER

COPPER: Performance improvement and overhead by example and scenario

O Performance Improvement B Overhead

100.0%
90.0% +
80.0% -~
70.0% +
60.0% ~
50.0% ~
40.0% A
30.0% +
20.0% +
10.0% A

0.0% ~

Percentage

COP

Example and Scenario

Figure 8.6: COPPER: Performance improvement and overhead by example and scenario

The chart presented in Figure 8.6, shows, for each test case, the performance improvement and
overhead of COPPER in percentage of its non-incremental compilation time. From this chart,
we draw the following conclusions:

1. As expected, COPPER is showing high performance improvements in every test case.
This means that in general, it is beneficial to use COPPER’s incremental performance
rather than its non-incremental performance.

2. The maximum overhead of COPPER is minimal. This also implies that its maximum loss
is minimal. This means that there is almost no risk of losing performance when you turn
on COPPER’s incremental performance.

3. Scenarios S1, S2 and 54 are showing the best performance improvements. This is expected
and explained as follows. The incremental strategy of COPPER ensures that untouched
concern files are not parsed again. Instead, COPPER performs a copy operation for these
concern files. In scenarios S1, S2 and S4, we do not touch any concern file. Thus, in these
scenarios, all concern files are not parsed again but instead copied. This is not the case for
the other three scenarios. In these scenarios, we add or modify one concern file, which
COPPER needs to parse. Together with the performance improvements of Figure 8.6, we
can now conclude that COPPER’s copying for a concern file is much faster than parsing
that concern file. In other words, the less concern files you modity, the faster COPPER
will perform its task.

Dennis Spenkelink 84

8. Evaluation

8.9 Evaluation of HARVESTER

HARVESTER: Performance improvement and overhead by example and scenario

O Performance Improvement B Overhead

90.0%

80.0%

70.0%

2 60.0%
£ 50.0% -
S 40.0% -
£ 30.0% -
20.0% 1
10.0% -
0.0% -

e

I

EX1 EX2 EX3 EX4
HAR

Example and Scenario

Figure 8.7: HARVESTER: Performance improvement and overhead by example and scenario

The chart presented in Figure 8.7, shows, for each test case, the performance improvement and
overhead of HARVESTER in percentage of its non-incremental compilation time. From this
chart, we draw the following conclusions:

1. The performance improvement varies from thirty to eighty percent. So, as expected,

HARVESTER is showing high performance improvement in every test case. This means
that, in general, it is more beneficial to use HARVESTER’s incremental performance
rather than its non-incremental performance.

. The maximum overhead of HARVESTER is minimal. This also implies that its maximum

loss is minimal. This means that there is almost no risk of losing performance when you
turn on HARVESTER's incremental performance.

. Since the performance improvement in scenario S1 is not hundred percent, we can con-

clude that HARVESTER is always reading one or more assemblies during incremental
compilation. Looking closer to HARVESTER's process tells us that HARVESTER is al-
ways reading the .NET assembly called “dummies.dll”. The compilation module DUM-
MER creates this assembly. This compilation module has not yet incremental perfor-
mance, so it regenerates “dummies.dll” in every compilation. This means that we can
further improve HARVESTER by enhancing DUMMER with incremental performance.

85

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

8.10 Evaluation of COLLECTOR

COLLECTOR: Performance improvement and overhead by example and scenario

O Performance Improvement B Overhead

100.0%

Percentage
om
o
o
B
1

CcoL

Example and Scenario

Figure 8.8: COLLECTOR: Performance improvement and overhead by example and scenario

The chart presented in Figure 8.8, shows, for each test case, the performance improvement and
overhead of COLLECTOR in percentage of its non-incremental compilation time. From this
chart, we draw the following conclusions:

1. As expected, COLLECTOR is showing high performance improvement in every test case.
Thus, in general, it is more beneficial to use COLLECTOR'’s incremental performance
rather than its non-incremental performance.

2. The performance improvement varies from fifty to ninety percent. These high percent-
ages are the direct result of HARVESTER’s minimization of the XML file containing type
information. Because this way, COLLECTOR only needs to read a minimal XML file and
copy the remaining (missing) type information from the backup repository. This copy
operation is significant faster compared to the costly read operations.

Dennis Spenkelink 86

8. Evaluation

8.11 Evaluation of LOLA

LOLA: Performance improvement and overhead by example and scenario

O Performance Improvement B Overhead

100.0%

50.0%

0.0%

-50.0%

Percentage

-100.0%

-150.0%

LOL

Example and Scenario

Figure 8.9: LOLA: Performance improvement and overhead by example and scenario

The chart presented in Figure 8.9, shows, for each test case, the performance improvement and
overhead of LOLA in percentage of its non-incremental compilation time. From this chart, we
draw the following conclusions:

1. LOLA is showing a performance loss in the fourth example because of the influence of

the garbage collector (see Section 8.4). This means that it is not beneficial to turn on
incremental performance of LOLA for large examples.

. In the first three examples, LOLA has a performance loss for scenarios S3, S5 and S6. We

can explain this unexpected loss as follows. LOLA consists of two phases: initialization
of the prolog engine and evaluation of the prolog queries. Note that the initialization
phase is only needed when LOLA needs to evaluate one or more predicate selectors.
Looking at the six scenarios, tells us that we only add or modify a predicate selector
in scenarios S3, S5 and S6. This means that the initialization phase is only performed
in these scenarios and not in scenarios S1, S2 and S4. Together with the performance
improvements of Figure 8.9, we can now conclude that LOLA's initialization phase is a
relatively costly operation compared to the evaluation of prolog queries. In fact, it is so
costly that the overhead of LOLA does not outweigh the performance improvement of
skipping predicate queries. In other words, it is only beneficial to use the incremental
performance of LOLA, when you can avoid LOLA's initialization phase. In general, this
is not likely as a programmer constantly adds or modifies a predicate selector. Thus,
LOLA'’s incremental performance needs improvement to benefit a programmer.

87

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

8.12 Evaluation of FILTH

FILTH: Performance improvement and overhead by example and scenario

O Performance Improvement B Overhead

100.0%
80.0%
60.0%
40.0%
20.0%

0.0%
-20.0%
-40.0%
-60.0%
-80.0%

-100.0%

Percentage

FIL

Example and Scenario

Figure 8.10: FILTH: Performance improvement and overhead by example and scenario

The chart presented in Figure 8.10, shows, for each test case, the performance improvement
and overhead of FILTH in percentage of its non-incremental compilation time. From this chart,
we draw the following conclusion:

1. FILTH is showing the worst performance improvements for large examples. In fact, these
performance improvements are so low in absolute terms (milliseconds), that it is perhaps
more beneficial to turn the incremental performance of FILTH off for large examples.
This latter can be explained as follows. When FILTH is not incremental, we do not need
to store its output any longer. This means that we can reduce the number of objects stored
in the backup repository. This directly results in less objects allocated to memory, which
reduces the chance of triggering the garbage collector to free memory (see Section 8.4).
This may result in a performance improvement of the garbage collector that outweighs
the small performance improvement of FILTH.

Dennis Spenkelink 88

8. Evaluation

8.13 Evaluation of SECRET

SECRET: Performance improvement and overhead by example and scenario

O Performance Improvement B Overhead

300.0%

200.0%

100.0%

0.0%

Percentage

-100.0%

-200.0%

-300.0%

SEC

Example and Scenario

Figure 8.11: SECRET: Performance improvement and overhead by example and scenario

The chart presented in Figure 8.11, shows, for each test case, the performance improvement and
overhead of SECRET in percentage of its non-incremental compilation time. From this chart,
we draw the following conclusion:

1. For smaller examples, SECRET has a performance loss rather than performance improve-

ment. The reason for this unexpected loss of performance can be found in the number
of filtermodule orderings in each example. Table 8.1 lists the number of filtermodule or-
derings by example. From this table, we conclude that the number of filtermodule order-
ings significantly increases for the two largest examples. This increase has the following
consequence for SECRET’s execution time. For each test case, we have used SECRET’s
progressive mode. Because of this mode, SECRET needs to analyze all possible filtermod-
ule orderings per concern. This means that the execution time of SECRET is linear to the
number of filtermodule orderings. Thus, SECRET’s execution time also significantly in-
creases for the two largest examples. When we now look at the overhead percentages in
Figure 8.11, we see that the overhead decreases when examples are upscaled. This tells us
that the number of filtermodule orderings has less influence on SECRET’s overhead than
on SECRET’s analysis. In other words, the more filtermodule orderings SECRET needs
to analyze, the more it can benefit from its incremental performance.

89

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

8.14 Evaluation of RECOMA

RECOMA: Performance improvement and overhead by example and scenario

O Performance Improvement B Overhead

120.0%

100.0%

80.0% A

60.0% -

Percentage

40.0% +

20.0% A

0.0% -

REC

Example and Scenario

Figure 8.12: RECOMA: Performance improvement and overhead by example and scenario

The chart presented in Figure 8.12, shows, for each test case, the performance improvement
and overhead of RECOMA in percentage of its non-incremental compilation time. From this
chart, we draw the following conclusions:

1. The performance improvement varies from twenty to ninety-nine percent. So, as ex-
pected, RECOMA is showing high performance improvement in every test case. This
means that, in general, it is more beneficial to use RECOMA's incremental performance
rather than its non-incremental performance.

2. In the fourth example, RECOMA’s overhead is relatively high compared to the other
three examples. The reason for this unexpected high level of overhead is twofold. The
first reason can be found in the influence of the garbage collector. The garbage collector
has almost no influence on the first three examples. However, in the fourth example,
the number of allocated objects becomes so high that it triggers the garbage collector to
free memory. These garbage collections increase the overhead. The second reason can
be found in the complexity of the fourth example. By complexity, we mean in this case,
the degree of dependencies between source files. The complexity of the fourth example
is much higher compared to the other three examples. This higher degree of complexity
has the following consequence for RECOMA'’s overhead for a source file. When we look
at RECOMA'’s dependencies (see Section 7.2.2), we see that two of them strongly depend
on the number of relations between source files. These two are the source files referenced
by a source file and the full signatures of concerns extracted from these referenced source
files. Thus, the higher the complexity of a project, the more compilation time INCRE
needs to check these two dependencies. Therefore, the overhead in the fourth example is
higher than in the other three less complex examples.

Dennis Spenkelink 90

8. Evaluation

8.15 Evaluation of ILICIT

ILICIT: Performance improvement and overhead by example and scenario

O Performance Improvement B Overhead

120.0%
100.0%

80.0% ~
60.0% ~
40.0% A

Percentage

20.0% ~
0.0%
-20.0%

ILI

Example and Scenario

Figure 8.13: ILICIT: Performance improvement and overhead by example and scenario

The chart presented in Figure 8.13, shows, for each test case, the performance improvement
and overhead of ILICIT in percentage of its non-incremental compilation time. From this chart,
we draw the following conclusions:

1. ILICIT is showing high performance improvements in all test cases except for scenario
S3. This is expected and explained as follows. In scenario S3, we add a logging concern
that logs each method call. To enforce this logging concern at runtime, the weaver must
weave some additional IL-code at each method call. In our examples, this affects almost
each assembly. In other words, almost each assembly needs to be rewoven. This in con-
trast to the other scenarios, where the changes result in reweaving of only a small set
of assemblies (S2,54,55) or even zero assemblies (51,56). Hence, ILICIT consumes much
more compilation time in scenario S3 than in the other scenarios. This explains the low
performance scores for scenario S3 compared to the other scenarios.

2. The maximum overhead of ILICIT is minimal. This also implies that its maximum loss
is minimal. So there is almost no risk of losing performance when you turn on ILICIT’s
incremental performance.

91 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

8.16 Conclusions

This chapter evaluated the incremental performance of eight compilation modules by means of
charts. To conclude this chapter, we here briefly summarize the main expected and unexpected
results represented in these charts:

Expected Results:

1.

For smaller examples, the compilation modules HARVESTER and COLLECTOR mainly
cover the compilation time. Thus, in order to decrease compilation time of smaller exam-
ples, it might be wise to concentrate on these two compilation modules first.

For larger examples, the compilation modules SIGN, RECOMA and ILICIT mainly cover
the compilation time. Thus, in order to decrease compilation time of larger examples, it
might be wise to concentrate on these three compilation modules first.

The compilation modules RECOMA and ILICIT profit the most from incremental com-
pilation. This means that, when it comes to maintenance of the incremental compiler, it
might be wise to concentrate on the compilation modules RECOMA and ILICIT first.

. The compilation modules COPPER, HARVESTER, COLLECTOR, RECOMA and ILICIT

are showing high performance improvements in every test case. This means that, in
general, it is more beneficial to use the incremental performance of these compilation
modules rather than their non-incremental performance.

Unexpected Results:

1.

INCRE's reading and writing of the repository suffers from scalability due to the increas-
ing influence of the garbage collector. This problem is inherent to our choice of Java object
serialization. We can only solve this by choosing a Java object persistence technology that
supports on-demand retrieval of objects.

Reading and writing the repository is relatively costly compared to INCRE’s other tasks.
This implies that, in order to improve INCRE’s performance further, it might be wise to
concentrate on improving these tasks first.

We can further improve the compilation modules HARVESTER and COLLECTOR by
enhancing DUMMER with incremental performance.

The incremental performance of the compilation modules LOLA and FILTH suffer from
scalability due to the increasing influence of the garbage collector. Therefore, it is not
beneficial to use the incremental performance of these compilation modules for large ex-
amples.

As expected the more filtermodule orderings SECRET needs to analyze, the more it can
benefit from its incremental performance. However, this also unexpectedly implies that
it is not beneficial to use SECRET’s incremental performance for small examples.

Dennis Spenkelink 92

Chapter 9

Conclusion, Future and Related Work

In this final chapter, we conclude this thesis. The chapter is organized as follows. First, we
summarize and evaluate the contributions of this thesis with respect to incremental compilation
in Compose*. Finally, we describe some future and related work on this subject.

9.1 Conclusion and Evaluation

The previous version of Compose* contained sixteen compilation modules. Each of them suf-
fered from the same problem. They did not support any kind of incrementality. This means that
they performed all their operations in every compilation without taking advantage of the work
already done in a previous compilation. This unavoidably resulted in compilations consisting
of numerous redundant repeats of operations. These redundant operations slowed down com-
pilation to such a degree that it became a burden for Compose* programmers. Therefore, the
motivation for this thesis has been to develop an incremental compiler for Compose*.

To achieve this goal, we proposed two possible solution approaches called restoration and re-
building. The first approach considers the repository from a previous compilation as a starting
point. During incremental compilation, each compilation module adapts this repository to re-
flect the correct compilation results. The second approach considers the repository kept from
a previous compilation as a backup to rebuild a new repository faster. We compared these
two solution approaches on four software metrics: efficiency, simplicity, severity and maintain-
ability. From these software metrics, we concluded that the rebuilding approach is the most
desirable one for Compose*.

Based on the rebuilding approach, we designed and implemented a new compilation module
called INCRE. This compilation module offers incremental performance as a service to all other
compilation modules. In order to have this service used by a compilation module, you must
complete the following five-step procedure:

1. The first step is to acquire knowledge of the input, output and data dependencies of the
compilation module. Each compilation module processes a set of input objects to some
output. The way it processes its input objects depends on a set of a data. These data
dependencies are unique for each combination of input object and compilation module.
Knowledge of the input, output and data dependencies is essential for enhancing the
compilation module with incremental performance.

93

Incremental Compilation in Compose* University Twente

2. The second step is to ensure that each repository object produced and used by the com-
pilation module implements the java.io.Serializable interface or inherits that im-
plementation from its object hierarchy. Otherwise, the serialization process will throw a
java.io.NotSerializableException

3. The third step is the addition of a so-called copy operation to the compilation module.
This copy operation should copy the output belonging to a specific input object from the
backup repository into the repository being built. In order to safe compilation time, this
copy operation should be faster than the compilation module’s original processing of an
input object.

4. The fourth step is configuration of the input and data dependencies of a compilation
module. This is achieved by using a XML configuration file. In this XML file, you can
configure the data dependencies of a compilation in different ways by using the designed
XML tags. Appendix A presents an XML Document Type Definition (DTD) [4] of the XML
configuration file.

5. The final step is not required but highly advisable. For each compilation module, you
can configure on which fields to compare two objects of a certain type. When you do
not configure fields, INCRE compares two objects on all fields by default. Otherwise, it
compares two objects on the configured fields only. In this way, you can minimize the
number of comparisons by INCRE to decrease compilation time further.

9.1.1 Evaluation

To proof our concept, we have enhanced eight of the sixteen compilation modules with incre-
mental performance. The changes to these compilation modules have been tested on four .NET
projects of different sizes. For each project, we have used six different OOP and AOP scenarios.
The results of these tests are described in the evaluation chapter. From these test results, we
draw the following three main conclusions.

Firstly, the different test cases show performance improvements from thirty to eighty-five per-
cent. The average performance improvement lays around fifty-five percent. This amount tells
us that incremental compilation reduces the average compilation of the test cases with a factor
of two compared to non-incremental compilation. In other words, on average, it is beneficial to
use incremental compilation rather than non-incremental compilation.

Secondly, the compilation module INCRE has one major drawback. It suffers from scalabil-
ity. The reason for this is the following. To read and write the repository, INCRE uses Java’s
standard serialization mechanism called Java Object Serialization (JOS). By using this mecha-
nism, it cannot read parts of the repository on demand. Therefore, INCRE needs to read the
whole repository at once. This result in a large number of objects allocated to memory at the
start of a compilation. These objects stay in memory until the end of compilation. However,
the more objects allocated to memory, the bigger the chance of triggering the JVM’s garbage
collector to free memory. These garbage collections are expensive and slow down compilation.
In other words, INCRE’s reading of the repository suffers from scalability due to the increasing
influence of the garbage collector. This problem is inherent to our choice of Java object serial-
ization. We can only solve this by choosing a Java object persistence technology that supports
on-demand retrieval of objects.

Dennis Spenkelink 94

9. Conclusion, Future and Related Work

Thirdly, the performance improvements vary by compilation module and project size. This
also means that a compilation module may not benefit from incremental compilation for all
kinds of projects. For instance, the compilation module SECRET only benefits from incremental
compilation when the project is “large” enough. By large, we mean a project that uses a large
number of filtermodules. In other words, the more filtermodules the project uses, the more
SECRET benefits from incremental compilation. On the other hand, there are also compilation
modules that only benefit from incremental compilation when the example is small. Examples
of these kinds of compilation modules are FILTH and LOLA. Thus, depending on the size of a
project, you may need to turn off incremental performance of a compilation module to achieve
maximum performance improvement.

9.2 Future Work

In this section, we describe possible future work on incremental compilation in Compose*.

9.2.1 Automation of XML Configuration

The first area we would like to investigate is automatic generation of the XML configuration
tile used by INCRE. The reason for this is twofold.

Firstly, in order to enhance a compilation module with incremental performance, a Compose*
developer needs to configure its data dependencies in the XML configuration file. Currently,
this has to be done manually. This can be a tedious and error-prone process especially when the
compilation module is complex. Therefore, we would like to investigate whether it is possible
to configure the data dependencies of a compilation module, or a part of it, automatically. This
would relieve the Compose* developer of the task of maintaining and developing incremental
performance for compilation modules.

Secondly, in the previous evaluation section, we described that the incremental performance
of a compilation module depends on the size of the user-provided project. There are compila-
tion modules that perform well for small-sized projects and, on the other hand, for large-sized
projects. This means that, depending on the size of a project, a programmer may need to turn
off incremental performance of a compilation module to achieve fastest compilation time. Cur-
rently, a programmer can establish this by manually modifying the XML configuration file. We
would like to investigate whether it is possible to automate this process.

9.2.2 Further Modulation and Enhancing with Incremental Performance

A second area of future work is further modulation of the compilation process and enhancing
remaining compilation modules with incremental performance. Currently, we have enhanced
eight of the sixteen compilation modules. This means that we can add incremental performance
to another eight compilation modules to improve the incremental compilation further. In the
evaluation chapter, we described that the compilation module DUMMER is a good candidate
to start with. Enhancing this compilation module with incremental performance does not only
benefit DUMMER itself, but it would also benefit the compilation modules HARVESTER and
COLLECTOR. In addition, we would like to investigate whether it is possible to modulate the
compilation process further. When we do this, we create more and less complex compilation

95 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

modules that we can enhance with incremental performance. By doing this, we could further
optimize incremental compilation in Compose*.

9.2.3 Alternative Java Object Persistence Mechanism

The main limitation of the developed incremental compiler is that it suffers from scalability. In
the evaluation section, we described that this problem is inherent to our choice of Java object se-
rialization as Java object persistence technology. This persistence technology does not support
on demand retrieval of objects, which causes scalability problems. In the future, we would like
to have an alternative persistence technology that guarantees scalability of incremental compi-
lation in Compose*. Recent work shows that db4o [1], an open source object database, might
be a good candidate.

9.3 Related Work

To conclude this chapter, we here briefly present two other AOP implementations that success-
fully integrated incremental compilation.

9.3.1 Aspect]

The original AOP compiler for the Aspect] [7] language is called ajc. This compiler supports
incremental byte-code weaving on a per-class basis. This means that it minimizes the number
of weave operations between classes and aspects in .class form. Aspect] recognizes the com-
plication of aspects on incremental weaving by stating that the Aspect] tools are getting better
at minimizing weaving, but to some degree, weaving is unavoidable due to the crosscutting
semantics [2].

9.3.2 Apostle

Apostle is an aspect-oriented extension to the Smalltalk [51] programming language. Apostle
uses incremental source-code weaving to weave Smalltalk source code and aspects together
into equivalent pure Smalltalk results called target models. These models are compiled and
installed by using a Smalltalk compiler. For further reading, [13] and [14] give a comprehensive
description of the Apostle weaver implementation.

Dennis Spenkelink 96

Bibliography

[1] db40 - An Open Source Object Database. URL http://www.db4o.com/

[2] Introduction to the aspectj tools. =~ URL http://www.eclipse.org/aspectj/doc/
released/devguide/bytecode-concepts.html

[3] Language and Compilers in the .net Framework. URL http://msdn2.microsoft.com/
en-us/library/ms229699.aspx

[4] XML DTD - An Introduction to XML Document Type Definitions. URL http://www.
xmlfiles.com/dtd/

[5] IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990, De-
cember 1990.

[6] Objectmatter: Glossary of Terms, 2003. URL http://www.objectmatter.com/
glossary.htm

[7] Aspect]. Aspect]. URL http://www.eclipse.org/aspectj/

[8] L. Bergmans. Composing Concurrent Objects. ~ PhD thesis, University of Twente,
1994. URL http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.
pi.top.htm

[9] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters.
Comm. ACM, 44(10):51-57, Oct. 2001.

[10] S. R. Boschman. Performing transformations on .NET intermediate language code. Mas-
ter’s thesis, University of Twente, The Netherlands, Aug. 2006.

[11] R. Bosman. Automated reasoning about Composition Filters. Master’s thesis, University
of Twente, The Netherlands, Nov. 2004.

[12] O. Conradi. Fine-grained join point model in Compose*. Master’s thesis, University of
Twente, The Netherlands, Aug. 2006.

[13] B. S. de Alwis. Aspects of incremental programming, 2002. URL http://www.cs.ubc.
ca/grads/resources/thesis/May02/Brian _deAlwis.pdf

[14] B. S. de Alwis. Apostle: A simple incremental weaver for a dynamic aspect language,
2003. URL http://www.cs.ubc.ca/ ~bsd/papers/tr-2003-16.pdf

[15] D. Doornenbal. Analysis and redesign of the Compose* language. Master’s thesis, Uni-
versity of Twente, The Netherlands, Oct. 2006.

97

http://www.db4o.com/
http://www.eclipse.org/aspectj/doc/released/devguide/bytecode-concepts.html
http://www.eclipse.org/aspectj/doc/released/devguide/bytecode-concepts.html
http://msdn2.microsoft.com/en-us/library/ms229699.aspx
http://msdn2.microsoft.com/en-us/library/ms229699.aspx
http://www.xmlfiles.com/dtd/
http://www.xmlfiles.com/dtd/
http://www.objectmatter.com/glossary.htm
http://www.objectmatter.com/glossary.htm
http://www.eclipse.org/aspectj/
http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/bergmans.phd.pi.top.htm
http://www.cs.ubc.ca/grads/resources/thesis/May02/Brian_deAlwis.pdf
http://www.cs.ubc.ca/grads/resources/thesis/May02/Brian_deAlwis.pdf
http://www.cs.ubc.ca/~bsd/papers/tr-2003-16.pdf

Incremental Compilation in Compose* University Twente

[16] P.E. A. Diirr. Detecting semantic conflicts between aspects (in Compose*). Master’s thesis,
University of Twente, The Netherlands, Apr. 2004.

[17] Eclipse Java Builder. Eclipse. URL http://www.eclipse.org/articles/
Article-Builders/builders.html

[18] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Comm. ACM, 44(10):
29-32, Oct. 2001.

[19] H. Evans. Why object serialization is inappropriate for providing persistence in java, 1999.
URL citeseer.ist.psu.edu/evans00why.html

[20] S. I. Feldman. Make-a program for maintaining computer programs. Software - Practice
and Experience, 9(4):255-65, 1979. URL citeseer.ist.psu.edu/feldman79make.html

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: elements of reusable
object-oriented software. Addison Wesley, 1995.

[22] M. Glandrup. Extending C++ using the concepts of composition filters. Master’s the-
sis, University of Twente, 1995. URL http:/trese.cs.utwente.nl/publications/
paperinfo/glandrup.thesis.pi.top.htm

[23] J. D. Gradecki and N. Lesiecki. Mastering Aspect]: Aspect-Oriented Programming in Java.
John Wiley and Sons, 2003. ISBN 0471431044

[24] T. Greanier. Discover the secrets of the Java Serialization API. 2000. URL http://www.
javaworld.com/javaworld/jw-07-2000/jw-0714-flatten-p2.html

[25] W. Havinga. Designating join points in Compose* - a predicate-based superimposition
language for Compose*. Master’s thesis, University of Twente, The Netherlands, May
2005.

[26] Hibernate. Hibernate, relational persistence for Java and .NET, 2006. URL http://www.
hibernate.org/

[27] E.J. B. Holljen. Compilation and type-safety in the Compose* .NET environment. Master’s
thesis, University of Twente, The Netherlands, May 2004.

[28] R. L. R. Huisman. Debugging Composition Filters. Master’s thesis, University of Twente,
The Netherlands, 2006. To be released.

[29] R. Hustead. Mapping XML to Java: Employ the SAX API to Map XML Documents To
Java Objects. 2000. URL http://java.sun.com/developer/technicalArticles/xml/
mapping/index.html

[30] S. H. G. Huttenhuis. Patterns within aspect orientation. Master’s thesis, University of
Twente, The Netherlands, 2006. To be released.

[31] IBM VisualAge C++. IBM VisualAge C++. URL http://www-306.ibm.com/software/
awdtools/vacpp/

[32] JDBC. Java Database Connectivity (JDBC) Technology, 2006. URL http://java.sun.
com/products/jdbc/

Dennis Spenkelink 98

http://www.eclipse.org/articles/Article-Builders/builders.html
http://www.eclipse.org/articles/Article-Builders/builders.html
citeseer.ist.psu.edu/evans00why.html
citeseer.ist.psu.edu/feldman79make.html
http://trese.cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/glandrup.thesis.pi.top.htm
http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten-p2.html
http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten-p2.html
http://www.hibernate.org/
http://www.hibernate.org/
http://java.sun.com/developer/technicalArticles/xml/mapping/index.html
http://java.sun.com/developer/technicalArticles/xml/mapping/index.html
http://www-306.ibm.com/software/awdtools/vacpp/
http://www-306.ibm.com/software/awdtools/vacpp/
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/

Bibliography

[33] JDBC Drivers. JDBC Drivers, 2006. URL http://developers.sun.com/product/jdbc/
drivers

[34] JDK 1.4.2 API Class Object. JDK 1.4.2 API Class Object, 2006. URL http://java.sun.
com/j2se/l1.4.2/docs/apil/javal/lang/Object.html .

[35] JDO. Java Data Objects (JDO), 2006. URL http://java.sun.com/products/jdo/

[36] JDO Portability Guidelines. JDO Portability Guidelines. URL http://www.solarmetric.
com/Software/Documentation/jdospec/jdo19.html .

[37] Jikes. Jikes. URL http://jikes.sourceforge.net/
[38] D. Jordan. JDO Links. URL http://www.jdocentral.com/JDO _Links _Body.html

[39] D. Jordan. A Comparison Between Java Data Objects (JDO), Serialization and JDBC
for Java Persistence. 2002. URL http://www.jdocentral.com/pdf/DavidJordan -
JDOversion _12Mar02.pdf

[40] M. Jordan. A Comparative Study of Persistence Mechanisms for the Java Platform. 2004.
URL http://research.sun.com/techrep/2004/smli _tr-2004-136.pdf

[41] M. Karasick. The architecture of montana: an open and extensible programming envi-
ronment with an incremental c++ compiler. pages 131-142, 1998. URL http://doi.acm.
0rg/10.1145/288195.288284

[42] G.Kiczales, E. Hilsdale, J]. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of Aspect]. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS 2072, pages 327-353, Berlin,
June 2001. Springer-Verlag.

[43] P. Koopmans. Sina user’s guide and reference manual. Technical report, Dept. of
Computer Science, University of Twente, 1995. URL http://trese.cs.utwente.nl/
publications/paperinfo/sinaUserguide.pi.top.htm

[44] L. R. Nackman. CodeStore and Incremental C++. Dr Dobb’s Journal, 1997. URL http:
[Iwww.ddj.com/184410345

[45] 1. Nagy. On the Design of Aspect-Oriented Composition Models for Software Evolution. PhD
thesis, University of Twente, The Netherlands, June 2006.

[46] Oracle Toplink. Oracle Toplink, 2006. URL http://www.oracle.com/technology/
products/ias/toplink/index.html

[47] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the Hyperspace
approach. In M. Aksit, editor, Software Architectures and Component Technology. Kluwer
Academic Publishers, 2001. ISBN 0-7923-7576-9.

[48] A. Popovici, G. Alonso, and T. Gross. Just in time aspects. In M. Aksit, editor, Proc.
2nd Int” Conf. on Aspect-Oriented Software Development (AOSD-2003), pages 100-109. ACM
Press, Mar. 2003.

[49] A.Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-oriented programming.
In G. Kiczales, editor, Proc. 1st Int” Conf. on Aspect-Oriented Software Development (AOSD-
2002), pages 141-147. ACM Press, Apr. 2002.

99 Dennis Spenkelink

http://developers.sun.com/product/jdbc/drivers
http://developers.sun.com/product/jdbc/drivers
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/products/jdo/
http://www.solarmetric.com/Software/Documentation/jdospec/jdo19.html
http://www.solarmetric.com/Software/Documentation/jdospec/jdo19.html
http://jikes.sourceforge.net/
http://www.jdocentral.com/JDO_Links_Body.html
http://www.jdocentral.com/pdf/DavidJordan_JDOversion_12Mar02.pdf
http://www.jdocentral.com/pdf/DavidJordan_JDOversion_12Mar02.pdf
http://research.sun.com/techrep/2004/smli_tr-2004-136.pdf
http://doi.acm.org/10.1145/288195.288284
http://doi.acm.org/10.1145/288195.288284
http://trese.cs.utwente.nl/publications/paperinfo/sinaUserguide.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/sinaUserguide.pi.top.htm
http://www.ddj.com/184410345
http://www.ddj.com/184410345
http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.oracle.com/technology/products/ias/toplink/index.html

Incremental Compilation in Compose* University Twente

[50] P. Salinas. Adding systemic crosscutting and super-imposition to Composition Filters.
Master’s thesis, Vrije Universiteit Brussel, Aug. 2001.

[51] Smalltalk. Smalltalk. URL http://www.smalltalk.org/main/

[52] T. Staijen. Towards safe advice: Semantic analysis of advice types in Compose*. Master’s
thesis, University of Twente, Apr. 2005.

[53] I Sun Microsystems. Java Object Serialization. 2002. URL http://java.sun.com/j2se/
1.4.2/docs/guide/serialization/index.html

[54] P. Tarr, H. Ossher, S. M. Sutton, Jr., and W. Harrison. N degrees of separation: Multi-
dimensional separation of concerns. In R. E. Filman, T. Elrad, S. Clarke, and M. Aksit,
editors, Aspect-Oriented Software Development, pages 37-61. Addison-Wesley, Boston, 2005.
ISBN 0-321-21976-7.

[55] J. W. te Winkel. Bringing Composition Filters to C. Master’s thesis, University of Twente,
The Netherlands, 2006. To be released.

[56] W. E. Tichy. Smart recompilation. ACM Trans. Program. Lang. Syst., 8(3):273-291, 1986.
ISSN 0164-0925. URL http://doi.acm.org/10.1145/5956.5959

[57] Transparent Persistence. Transparent Persistence. URL http://www.solarmetric.com/
Software/Documentation/2.3.0/jdo _overview _intro _transpers.html

[58] M. D. W. van Oudheusden. Automatic Derivation of Semantic Properties in .NET. Mas-
ter’s thesis, University of Twente, The Netherlands, Aug. 2006.

[59] C. Vinkes. Superimposition in the Composition Filters model. Master’s thesis, University
of Twente, The Netherlands, Oct. 2004.

[60] D. A. Watt. Programming language concepts and paradigms. Prentice Hall, 1990.

[61] J. C. Wichman. The development of a preprocessor to facilitate composition filters in the
Java language. Master’s thesis, University of Twente, 1999. URL http://trese.cs.
utwente.nl/publications/paperinfo/wichman.thesis.pi.top.htm

Dennis Spenkelink 100

http://www.smalltalk.org/main/
http://java.sun.com/j2se/1.4.2/docs/guide/serialization/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/serialization/index.html
http://doi.acm.org/10.1145/5956.5959
http://www.solarmetric.com/Software/Documentation/2.3.0/jdo_overview_intro_transpers.html
http://www.solarmetric.com/Software/Documentation/2.3.0/jdo_overview_intro_transpers.html
http://trese.cs.utwente.nl/publications/paperinfo/wichman.thesis.pi.top.htm
http://trese.cs.utwente.nl/publications/paperinfo/wichman.thesis.pi.top.htm

Appendix A

INCREConfig.xml Definition

This XML file is used to configure the incremental compilation. The XML file supports the
following configurations:

<!ELEMENT module (dependency* , comparison*)
<!ATTLIST module
name CDATA #REQUIRED
fulltype CDATA #REQUIRED
input CDATA #REQUIRED
enabled (true | false) false
incremental (true | false) false
summary CDATA #REQUIRED
NB. The order of compilation modules is the control flow of compilation.

Description of module attributes:

e name - the name of the Compose* compilation module like "LOLA”.

o fulltype - the fully qualified name of a compilation module like ”“Composes-
tar.DotNET.LOLA.DotNETLOLA”

e input - defines the full type of the input of a compilation module for validation purpose.
For example “java.lang.String”.

e enabled - defines whether the compilation module is enabled or not. By default false.

e incremental - defines whether the compilation module is incremental or not. By default
false.

e summary - a small description of the compilation module printed before running it.

<!ELEMENT dependency (dependencypath)
<!ATTLIST dependency
type ("FILE” | "OBJECT”)
name CDATA #REQUIRED
isAdded (true | false) true
store (true | false) false
lookup (true | false) false

101

Incremental Compilation in Compose* University Twente

Description of dependency attributes:

e type - defines the type of the dependency. Either "FILE” or "OBJECT”.

e name - defines the name of the dependency for debug purpose.

e isAdded - whether to check a file for ‘added to project” or not. This attribute only applies
to file dependencies and is by default true. Set this attribute to false to skip the check.
Used for optimization purpose.

e store - whether to store the result of a data comparison or not. By default false. Used for
optimization purpose.

e lookup - whether to lookup the result of a previous data comparison instead of com-
paring the data dependency. By default false. When this attribute is set to true, the de-
pendency is only checked once for all input objects of a compilation module. Used for
optimization purpose.

<!ELEMENT dependencypath (dependencynode)*
<!ATTLIST dependencypath EMPTY

<!ELEMENT dependencynode EMPTY

<!ATTLIST dependencynode
type ("CONFIG” | "/DYNAMIC” | ” FIELD” | "METHOD”)
value CDATA #REQUIRED

Description of dependencynode attributes:

o type - defines the type of node. The different nodes are: confignode representing a project
configuration, dynamicnode representing a dynamic object, fieldnode representing a field
and methodnode representing a method.

e value - the value of the node. This value is a reference to a specific project configuration,
dynamic object, field or method.

<!ELEMENT comparison (comparisontype*)
<!ATTLIST comparison EMPTY

<!ELEMENT comparisontype (comparisonfield , comparisonpath)
<!ATTLIST comparisontype
fullname CDATA #REQUIRED

Description of comparisontype attributes:

e fullname - The fully qualified name of the type checked by the comparator like “Compos-
estar.Core.CpsProgramRepository.CpsConcern.Filtermodules.FilterModule”

<!ELEMENT comparisonfield EMPTY
<!ATTLIST comparisonfield
name CDATA #REQUIRED

Description of comparisonfield attributes:

e name - the name of a field.

Dennis Spenkelink 102

A. INCREConfig.xml Definition

<!ELEMENT comparisonpath (comparisonmethod+)
<!ATTLIST comparisonpath EMPTY

<!ELEMENT comparisonmethod EMPTY
<!ATTLIST comparisonmethod
name CDATA #REQUIRED

Description of comparisonmethod attributes:

e name - the name of a method.

103 Dennis Spenkelink

Appendix B

XML Configuration of Composex
Compilation Modules

B.1 ASTRA Configuration

<module name="ASTRA” fulltype="Composestar.DotNET.TYM. SignatureTransformer.
DotNETSignatureTransformer” enabled="true” incremental="false” summary="">
<dependencies></dependencies>

</module>
Listing B.1: XML configuration of ASTRA

B.2 BACO Configuration

<module name="BACO” fulltype="Composestar.DotNET.BACO.DotNEIBACO” enabled="true”

incremental="false” summary="Copying assemblies...” >
<dependencies></dependencies>
</module>

Listing B.2: XML configuration of BACO
B.3 CHKREP Configuration

<module name="CHKREP” fulltype="Composestar.Core .CHKREP.Main” enabled="true”

incremental="false” summary="Checking repository...” >
<dependencies></dependencies>
</module>

Listing B.3: XML configuration of CHKREP
B.4 COLLECTOR Configuration

<module name="COLLECTOR” fulltype="Composestar.DotNET.TYM. TypeCollector.
DotNETCollectorRunner” enabled="true” incremental="false” summary="Collecting

type information...” >
<dependencies></dependencies>
</module>

Listing B.4: XML configuration of COLLECTOR

104

B. XML Configuration of Compose* Compilation Modules

B.5 CONE Configuration

<module name="CONE” fulltype="Composestar.DotNET.CONE.DotNETCONE” enabled="true”
incremental="false” summary="">
<dependencies></dependencies>

</module>
Listing B.5: XML configuration of CONE

B.6 COPPER Configuration

<module name="COPPER” fulltype="Composestar.Core.COPPER.COPPER” input="Composestar.
Core. Master . Config.ConcernSource” enabled="true” incremental="true” summary="
Parsing concerns...” >
<dependencies>
<dependency type="FILE” name="cpsfile”>
<path>
<node type="FIELD” nodevalue="fileName”></node>
</path>
</dependency>
</dependencies>
</module>

Listing B.6: XML configuration of COPPER

B.7 DUMMER Configuration

<module name="DUMMER” fulltype="Composestar.Core DUMMER. DummyManager” enabled="true”

incremental="false” summary="Generating dummy sources...” >
<dependencies></dependencies>
</module>

Listing B.7: XML configuration of DUMMER

B.8 FILTH Configuration

<module name="FILTH” fulltype="Composestar.Core.FILTH.FILTH” input="Composestar.Core
.CpsProgramRepository.Concern” enabled="true” incremental="true” summary="
Determining order of filter modules at shared join points...” >
<dependencies>
<dependency type="FILE” name="specfile”>
<path>
<node type="CONFIG” nodevalue="FILTH INPUT”></node>
</path>
</dependency>
<dependency type="OBJECT” name="fmodules”>
<path>
<node type="DYNAMIC” nodevalue="superImpInfo”></node>
<node type="FIELD” nodevalue="theFmSIinfo”></node>
</path>
</dependency>
</dependencies>
<comparisons>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. References.
FilterModuleReference”>

105 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

<field name="name”></field >
</type>
</comparisons>
</module>

Listing B.8: XML configuration of FILTH

B.9 HARVESTER Configuration

<module name="HARVESTER” fulltype="Composestar.DotNET.TYM. TypeHarvester.
DotNETHarvestRunner” input="java.lang.String” enabled="true” incremental="true”
summary="Harvesting type information...” >
<dependencies>
<dependency type="FILE” name="assembly”></dependency>
<dependency type="OBJECT” name="previousinput”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.TYM. TypeHarvester .
DotNETHarvestRunner. previnput”></node>
</path>
</dependency>
<dependency type="FILE” name="previousassemblies”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.TYM. TypeHarvester .
DotNETHarvestRunner. prevAssemblies”></node>
</path>
</dependency>
<dependency type="FILE” name="externalassemblies” isAdded="false”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.TYM. TypeHarvester .
DotNETHarvestRunner. externalAssemblies”></node>
</path>
</dependency>
</dependencies>
</module>

Listing B.9: XML configuration of HARVESTER

B.10 ILICIT Configuration

<module name="ILICIT” fulltype="Composestar.DotNET.ILICIT.ILICIT” input="java.lang.
String” enabled="true” incremental="true” summary="Weaving assemblies...” >
<dependencies>
<dependency type="FILE” name="assembly” isAdded="false”></dependency>
<dependency type="OBJECT” name="ApplicationInfo” store="true” lookup="true”>
<path>
<node type="CONFIG” nodevalue="ApplicationStart”></node>
</path>
</dependency>
<dependency type="OBJECT” name="RunDebuglLevel” store="true” lookup="true”>
<path>
<node type="CONFIG” nodevalue="RunDebugLevel”></node>
</path>
</dependency>
<dependency type="OBJECT” name="ConcernsWithFMO"”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.ILICIT .ILICIT.
getConcernsWithFMO”></node>

Dennis Spenkelink 106

B. XML Configuration of Compose* Compilation Modules

</path>
</dependency>
<dependency type="OBJECT” name="Castinglnterceptions”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.ILICIT.ILICIT.
castingInterceptions”></node>
</path>
</dependency>
<dependency type="OBJECT” name="InstantiationClasses”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.ILICIT.ILICIT.
getAfterInstantiationClasses”></node>
</path>
</dependency>
<dependency type="OBJECT” name="ConcernsWithOutputFilters”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.ILICIT.ILICIT.
getConcernsWithOutputFilters”></node>
</path>
</dependency>
</dependencies>
</module>

Listing B.10: XML configuration of ILICIT
B.11 LOLA Configuration

<module name="LOLA” fulltype="Composestar.DotNET.LOLA.DotNETLOLA” enabled="true”
incremental="true” summary="Evaluating predicate selectors...” >
<dependencies></dependencies>
<comparisons>
<type fullname="Composestar.Core.CpsProgramRepository.PrimitiveConcern”>
<field name="platformRepr”></field>
</type>
<type fullname="Composestar.Core.LAMA. UnitResult”>
<field name="multiRes”></field>
<field name="singleRes”></field>
</type>
</comparisons>
</module>

Listing B.11: XML configuration of LOLA
B.12 RECOMA Configuration

<module name="RBCOMA” fulltype="Composestar.Core .TYM. SrcCompiler.RealSourceManager”
input="Composestar.Core. Master.Config.Source” enabled="true” incremental="true”
summary="Compiling all sources...” >
<dependencies>
<dependency type="FILE” name="source”>
<path>
<node type="FIELD” nodevalue="fileName”></node>
</path>
</dependency>
<dependency type="FILE” name="xternals”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.COMP. DotNETCompiler.
externalSources”></node>

107 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

</path>
</dependency>
<dependency type="FILE” name="CompileLibsDependencies”>
<path>
<node type="CONFIG” nodevalue="Dependencies”></node>
</path>
</dependency>
<dependency type="OBJECT” name="fullsignatures”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.COMP. DotNETCompiler .
fullSignatures”></node>
</path>
</dependency>
</dependencies>
<comparisons>
<type fullname="Composestar.Core.CpsProgramRepository.Signature”>
<field name="methodByName”></field>
</type>
<type fullname="Composestar.Core.CpsProgramRepository.MethodWrapper”>
<field name="RelationType”></field>
</type>
</comparisons>
</module>

Listing B.12: XML configuration of RECOMA
B.13 REXREF Configuration

<module name="REXREF” fulltype="Composestar.Core.REXREF.Main” enabled="true”

incremental="false” summary="Resolving references...” >
<dependencies></dependencies>
</module>

Listing B.13: XML configuration of REXREF
B.14 SANE Configuration

<module name="SANE” fulltype="Composestar.Core.SANE.SANE” enabled="true” incremental

="false” summary="Resolving superimpositions...” >
<dependencies></dependencies>
</module>

Listing B.14: XML configuration of SANE
B.15 SECRET Configuration

<module name="SECRET” fulltype="Composestar.Core .CKRET.SECRET” input="Composestar.
Core.CpsProgramRepository.Concern” enabled="true” incremental="true” summary="
Checking for semantic conflicts among aspects...” >
<dependencies>
<dependency type="FILE” name="SECRETConfigFile” isAdded="false”>
<path>
<node type="CONFIG” nodevalue="SECRETConfigFile”></node>
</path>
</dependency>
<dependency type="OBJECT” name="SECRETMode” store="true” lookup="true”>

Dennis Spenkelink 108

B. XML Configuration of Compose* Compilation Modules

<path>
<node type="CONFIG” nodevalue="SECRETMode”></node>
</path>
</dependency>
<dependency type="OBJECT” name="semantics” store="true” lookup="true”>
<path>
<node type="MEIHOD” nodevalue="Composestar.Core.CKRET.SECRET.
getSemanticAnnotations”></node>
</path>
</dependency>
<dependency type="OBJECT” name="filtermoduleorders”>
<path>
<node type="DYNAMIC” nodevalue="FilterModuleOrders”></node>
</path>
</dependency>
</dependencies>
<comparisons>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. References.
FilterModuleReference”>
<field name="name”></field >
<field name="ref”></field>
</type>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. Filtermodules.
FilterModule”>
<field name="inputFilters”></field>
</type>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. Filtermodules.
Filter”>
<field name="filterElements”></field>
</type>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. Filtermodules.
FilterElement”>
<field name="conditionPart”></field>
<field name="matchingPatterns”></field>
</type>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. Filtermodules.
ConditionLiteral”>
<path>
<method name="getCondition”></method>
<method name="getRef”></method>
<method name="getQualifiedName”></method>
</path>
</type>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. Filtermodules.
Or”>
<field name="left”></field>
<field name="right”></field>

</type>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. Filtermodules.
MatchingPart”>
<path>

<method name="getTarget”></method>
<method name="getName”></method>
</path>
<path>
<method name="getSelector”></method>
<method name="getName”></method>
</path>
</type>

109 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. Filtermodules.

SubstitutionPart”>

<path>
<method name="getTarget”></method>
<method name="getName”></method>

</path>

<path>
<method name="getSelector”></method>
<method name="getName”></method>

</path>
</type>
<type fullname="Composestar.Core.CpsProgramRepository.CpsConcern. Filtermodules.
MessageSelector”>
<field name="typeList"></field>
</type>

<type fullname="Composestar.DotNET.LAMA. DotNETAttribute”>
<field name="value”’></field>
<field name="target”></field>

</type>

<type fullname="Composestar.DotNET.LAMA. DotNETMethodInfo”>
<field name="Name”></field>

</type>

</comparisons>
</module>

Listing B.15: XML configuration of SECRET

B.16 SIGN Configuration

<module name="SIGN” fulltype="Composestar.Core.SIGN2.Sign” enabled="true”
incremental="false” summary="Generating signatures...” >
<dependencies></dependencies>
</module>

Listing B.16: XML configuration of SIGN

Dennis Spenkelink 110

Appendix C

Realization of Incremental Composex
Compilation Modules

Chapter 5 concluded with a five-step procedure for enhancing Compose* compilation modules
with incremental performance. In Chapter 7, we performed this procedure for the compilation
modules FILTH and RECOMA. In this appendix, we perform this procedure for six other com-
pilation modules. Note that we omit the trivial serialization step (second step).

C.1 Realization of Incremental COPPER

C.1.1 Analysis

Input: The files that contain declarations of Compose* concerns (files with .cps extension).

Output: The parsed concern data are converted into Java objects and inserted into a repository.

Processing: COPPER is the parser of the Compose* concern files. It scans each input file and
checks whether they fulfill the Compose* grammar or not.

Dependencies: The only dependent data is the structural or meaningful content of the parsed
file. This is, in this case, any content except for meaningless content like tabs, spaces and
comments. Note that we recognize the Compose* grammar as fixed or not modifiable
by the user without installing an updated Compose* version. Therefore, the Compose*
grammar is not a dependency.

Motivation Incremental Performance COPPER parses all files in every compilation. This
strategy is inefficient as it leads to redundant repeats of parsings. By applying our incre-
mental rebuilding solution to COPPER, we should minimize these redundant parsings
and improve COPPER’s parsing performance.

C.1.2 Copy Operation

Each repository entity extracted from a .cps file, has an attribute called descriptionFileName

This attribute tells COPPER from which file a repository entity has been extracted. COPPER’s
copy operation uses this information to search the backup repository for all objects extracted
from a skipped .cps file. Each object found this way, is cloned and copied into the repository
being built.

111

Incremental Compilation in Compose* University Twente

C.1.3 Dependency Configuration

From COPPER'’s analysis, we conclude that COPPER has only one data dependency namely
the content of the parsed file. Listing C.1 presents a configuration of this file dependency.
<dependency type="FILE” name="cpsfile”>
<path>
<node type="FIELD” nodevalue="fileName”></node>

</path>
</dependency>

Listing C.1: Dependency Configuration of COPPER

This dependency is of type FILE and is called “cpsfile” (line 1). To tell whether a file has
already been parsed in a previous compilation, we only need the actual filename of that file.
This filename is referenced by the field “fileName” of a COPPER’s input object. To retrieve this
tilename, we only need to specify a path consisting of one field node (line 3).

C.1.4 Comparison Configuration

We do not need to configure fields-restrictions for COPPER. This is because these fields-
restrictions are only used for comparing repository objects and not for files (see Figure 6.9).
COPPER has only one dependent data and that one is a file.

C.2 Realization of Incremental HARVESTER

C.2.1 Analysis

Input: Compiled dummy sources and assemblies referenced by the user-provided project(s).

Output: Meta-information written to an XML.

Processing: HARVESTER processes each input assembly one by one. While processing, it uses
reflection to extract type information from a processed assembly. Each type directly ex-
tracted from the assembly is written to an output XML file. All indirect or referenced
types are added to a pending list. This pending list grows and shrinks while HARVESTER
processes its input assembly. HARVESTER processes this pending list of types when all
types of the input assembly have been processed. Finally, it contains a list of processed
types to avoid duplicates in the output XML file.

Dependencies: The following three types of data influence HARVESTER's processing of one
input assembly:

e Content of the input assembly. This dependency is trivial because changing the
content of an assembly results in a different output XML file.

e Content of all assemblies referenced by the input assembly. This is a dependency
because it may influence the above-mentioned pending list of the input assembly.
Note that not all content of referenced assemblies influence the pending list but
merely the part that is actually referenced. However, you cannot tell which part
without reading or reflecting the input assembly first. But, we would like to skip
these read operations. Therefore, we recognize all content of referenced assemblies
as one dependency instead of their actual referenced parts.

Dennis Spenkelink 112

C. Realization of Incremental Compose* Compilation Modules

e The order of all previous (before the input assembly) processed assemblies. HAR-
VESTER maintains a list of processed types to avoid duplicates types in the XML
file. Besides this, each written type contains a fromDLL attribute which defines the
assembly where the type is extracted from. When we reorder the processing of as-
semblies, we possibly influence the list of processed types and consequently the
fromDLL attribute of a written type. Thus, for each input assembly, the order of
previous processed assemblies is a dependency.

Motivation Incremental Performance HARVESTER recreates its whole XML file in every com-
pilation. This writing strategy is inefficient as it leads to redundant repeats of writing. By
applying our incremental rebuilding solution to HARVESTER, we should minimize these
redundant writings and improve HARVESTER's writing performance.

C.2.2 Copy Operation

For each skipped assembly, HARVESTER performs a copy operation. This copy operation adds
the assembly to a list of skipped assemblies. When all skipped assemblies have been added,
the list is made available to COLLECTOR by adding it to the repository.

C.2.3 Dependency Configuration

From HARVESTER’s analysis, we conclude that there are three data types that influence HAR-
VESTER'’s processing of an assembly. This means that when none of these three data types
have been changed since a previous compilation, HARVESTER will reproduce the same results
for that assembly. Listing C.2 presents a configuration of these three data dependencies.

<dependencies>
<dependency type="FILE” name="assembly”></dependency>
<dependency type="FILE” name="previousassemblies”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.TYM. TypeHarvester.
DotNETHarvestRunner . prevAssemblies”></>
</path>
</dependency>
<dependency type="FILE” name="externalassemblies” isAdded="false”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.TYM. TypeHarvester.
DotNETHarvestRunner. externalAssemblies”></>
</path>
</dependency>
</dependencies>

Listing C.2: Dependency Configuration of HARVESTER

The first dependency refers to the input object itself which is the filename of the to be written
assembly. This dependency is of type FILE and is called “assembly” (line 2). The second de-
pendency’s refers to the filenames of assemblies that are processed before the input assembly.
These filenames are obtained by a new helper method called ”"prevAssemblies” (line 5). The
last dependency gives us all referenced assemblies of an input assembly. These assemblies are
obtained by a new helper method called “externalAssemblies” (line 10).

113 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

C.24 Comparison Configuration

We do not need to configure fields-restrictions for HARVESTER. The reason for this is the same
as for COPPER. Fields-restrictions are only used for optimizing comparison of repository ob-
jects. HARVESTER does not have any object dependencies.

C.3 Realization of Incremental COLLECTOR

C.3.1 Analysis

Input: XML file produced by HARVESTER.

Output: Meta-information put into repository.

Processing: COLLECTOR reads the XML file produced by HARVESTER. It converts each
found type, field, parameter and method into Java objects, registers them in a special
dictionary and stores them into a repository.

Dependencies: COLLECTOR has only one trivial dependent data namely the structural or
meaningful content of the input XML file.

Motivation Incremental Performance COLLECTOR reads the XML file created by HAR-
VESTER, maps the read type information to Java objects, registers them in a special dic-
tionary and adds the objects to the repository. This is a costly operation because the XML
file is generally of megabyte size. By applying our incremental rebuilding solution to
COLLECTOR, we should minimize the XML file and improve COLLECTOR’s reading
performance.

C.3.2 Copy Operation

The copy operation of COLLECTOR first asks the HARVESTER for all assemblies whose type
information were not written to XML. Then, it searches the backup repository for all type in-
formation extracted from these assemblies. Finally, it clones, registers and adds the found type
information to the repository being built. In this way, it ensures no loss of type information.

C.3.3 Dependency Configuration

From COLLECTOR'’s analysis, we conclude that COLLECTOR has one data dependency
namely the content of the XML file produced by HARVESTER. However, we do not need
to configure this file dependency. The reason for this is the following. By configuring this
tile dependency, we would have INCRE checking the XML file for modification. However,
the incremental strategy of HARVESTER implies COLLECTOR to read the XML file produced
by HARVESTER and copying the types omitted by the HARVESTER. This means that COL-
LECTOR should always read the XML file produced by HARVESTER. This latter implies that
checking the XML file for modification is redundant. Hence, we do not need to configure this
file dependency for COLLECTOR.

Dennis Spenkelink 114

C. Realization of Incremental Compose* Compilation Modules

C.3.4 Comparison Configuration

We do not need to configure fields-restrictions for COLLECTOR because COLLECTOR does
not have any object dependencies.

C.4 Realization of Incremental LOLA

C.4.1 Analysis

Input: Superimposition selectors and program elements with relations between them.

Output: Sets of selected program elements per superimposition selector.

Processing: LOLA iterates over each superimposition selector and evaluates its prolog query
by means of a prolog engine. The evaluation of a prolog query results in the selection of
a set of program elements [25].

Dependencies: The following three data types influence LOLA’s evaluation of a superimposi-
tion selector:

e Syntax of the selector’s prolog query. It is clear that changing the syntax of a query
may result in a different selection of program elements.

e Type information relevant for the prolog query. Each prolog query selects its pro-
gram elements based on the existence of its own relevant type information. For
instance, the simple prolog query isClass(C), is only interested in classes rather than
fields and methods. A change to one of this set of type information may affect the
selection of program elements. For instance, adding a class affects the prolog query
isClass(C) because the added class should be selected.

e Result set of other superimposition selectors. A selector to be evaluated may depend
on the result set of another selector B when and only when:

1. The selector to be evaluated selects its program elements based on the existence
of one or more annotations.
2. Atleast one of the above annotations is superimposed on the program elements
selected by selector B.
Havinga [25] elaborates on the consequences of having dependencies between su-
perimposition of annotations and selectors.

Motivation Incremental Performance LOLA re-evaluates all predicate selectors in every com-
pilation. This strategy is inefficient as it leads to redundant repeats of evaluations. By
applying our incremental rebuilding solution to LOLA, we should minimize these re-
dundant evaluations and improve LOLA’s performance.

C.4.2 Alternative Algorithm for Incremental Evaluation

Like the other compilation modules, we can tell which predicate selectors have been evalu-
ated in the previous compilation by checking LOLA’s dependent data. But, for LOLA, we
cannot use our XML configuration file to accomplish this. The reason for this is the following
limitation of the XML configuration file. It does not provide any XML tags yet to configure
inter-dependencies between input objects. In other words, we cannot configure LOLA’s third
dependency, which is the dependency between predicate selectors. Because of this limitation,
LOLA forms an exception to our normal procedure for adding incremental performance to

115 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

a compilation module. To overcome this limitation, we have developed an alternative hard-
coded Java pre-process algorithm. This algorithm realizes incremental evaluation of predicate
selectors by completing the following six steps:

1. Collect all user-provided predicate selectors. The first step is to collect all predicate
selectors. The next steps divide these predicate selectors into two lists:

(a) toBeSkipped . This list contains predicate selectors for which we do know for sure
that they have been evaluated in the previous compilation.

(b) toBeProcessed . This list contains the remaining predicate selectors, which are to
be evaluated by LOLA.

2. Divide the predicate selectors based on toBeCheckedByINCRE . The predicate selectors
are first divided on their boolean attribute toBeCheckedByINCRE . This attribute is only
true for predicate selectors that are interested in minimal type information. By this, we
mean the following. While evaluating a predicate selector, LOLA’s prolog engine searches
only for relevant type information. E.g., for predicate isClass(C) , the prolog engine is
only interested in the names of classes rather than methods and parameters. One can
imagine that checking this relevant type information for changes could potentially result
in a huge overhead. Hence, we have decided to avoid checking large amount of type
information by introducing the attribute toBeCheckedByINCRE . When this attribute is
set to false for a specific predicate selector, we do not check its other dependent data
and recognize that predicate selector as to be processed by LOLA. Listing C.3 shows Java
code that realizes this first dividing of predicate selectors.

public ArrayList splitSelectors(ArrayList selectors) throws ModuleException

{
INCRE incre INCRE.instance();

DataStore ds = DataStore.instance();

/I Step 1. whether selector needs to be checked by INCRE
/[First split is based on the selector ' s attribute toBeCheckedByINCRE

ArrayList toBeProcessed = new ArrayList();
ArrayList toBeSkipped = new ArrayList();
ArrayList toBeMoved = new ArrayList();

Iterator predicatelterStepl = selectors.iterator();
while (predicatelterStepl.hasNext()){
PredicateSelector predSel = (PredicateSelector)predicatelterStepl.next();
if (predSel.getToBeCheckedByINCRE())
toBeSkipped.add(predSel);
else toBeProcessed.add(predSel);

}

/I split on remaining dependencies

} /I end method splitSelectors
Listing C.3: Step one of dividing algorithm LOLA

The above code iterates over each predicate selector (line 12) and checks their boolean at-
tribute toBeCheckedByINCRE (line 14). When this attribute is true , the predicate selector
is added to the toBeSkipped list (line 15). Otherwise, it is added to the toBeProcessed
list (line 16).

Dennis Spenkelink 116

C. Realization of Incremental Compose* Compilation Modules

3. Divide the predicate selectors based on query syntax. The second dividing of predicate

selectors is made based on the syntax of the query. When this syntax has changed since
a last compilation, we do not know for sure whether the result of the predicate selec-
tor will be the same as in the previous compilation. Hence, we add this selector to the
toBeProcessed list. Listing C.4 shows Java code that realizes this second dividing of
predicate selectors.
/I Step 2: split further based on syntax of query
/I 'When query modified => process selector
Iterator predicatelterStep2 = toBeSkipped.iterator();
while (predicatelterStep2.hasNext()){

PredicateSelector predSel = (PredicateSelector)predicatelterStep2.next();

PredicateSelector copySel = (PredicateSelector)incre.findHistoryObject(
predSel);

if (copySel'l= null }{ / check query syntax

if (!(predSel.getQuery()).equals(copySel.getQuery()))
toBeMoved.add(predSel);
}

else toBeMoved.add(predSel);
}

/I move selectors from toBeSkipped to toBeProcessed
moveSelectors(toBeMoved,toBeSkipped,toBeProcessed);

Listing C.4: Step two of dividing algorithm LOLA

The above code iterates over each predicate selector still to be processed by LOLA (line 4).
For each of these predicate selectors, we check whether the syntax query has changed
since a last compilation. We check this by first asking an instance of INCRE for an old
copy of the predicate selector (line 6). When this copy is not null , we compare the syntax
of both queries (line 9). When the syntax differs or when the old copy cannot be found,
we move the predicate selector from the toBeSkipped list to the toBeProcessed list.
This way, only predicate selectors whose query syntax have not changed, are kept in the
toBeSkipped list.

. Divide the predicate selectors based on type information. The third dividing of predi-

cate selectors is based on the predicate selector’s relevant type information (see step 2 for
explanation of relevant type information). Listing C.5 shows Java code that realizes this
third dividing of predicate selectors

/[Step 3: split based on query specific type information
/I When type information modified => process selector
Iterator predicatelterStep3 = toBeSkipped.iterator();
ArrayList currentTYM = incre.getAllModifiedPrimitiveConcerns(ds);
ArrayList historyTYM = incre.getAllModifiedPrimitiveConcerns(incre.history);
Module lola = incre.getConfigManager().getModuleByID("LOLA");
MyComparator comparator = new MyComparator("LOLA");
while (predicatelterStep3.hasNext()){
PredicateSelector predSel = (PredicateSelector)predicatelterStep3.next();
lola.addComparableObjects(predSel.getTYMinfo());
comparator.clearComparisons();
if (lcomparator.compare(currentTYM,historyTYM)) /[compare type information
toBeMoved.add(predSel);
lola.removeComparableObjects(predSel.getTYMiInfo());

}

/I move selectors from toBeSkipped to toBeProcessed

117

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

moveSelectors(toBeMoved,toBeSkipped,toBeProcessed);
Listing C.5: Step three of dividing algorithm LOLA

The above code iterates over each predicate selector still to be processed by LOLA (line 8).
For each of these predicate selectors, we check whether its relevant type information has
changed since a last compilation or not. We check this by first setting up an instance of
MyComparator (line 7). Then we tell this comparator to compare objects solely on the
predicate selector’s relevant type information by means of its addComparableObjects
method (line 10). Finally, we compare all concerns from the repository being built and
the backup repository to see whether there is a mismatch in the relevant type information
or not (line 12). When this is the case, we move the current predicate selector from the
toBeSkipped list to the toBeProcessed list. This way, only predicate selectors whose
relevant type information have not changed, are kept in the toBeSkipped list.

5. Divide the predicate selectors based on inter-dependencies. The fourth dividing of
predicate selectors is based on the inter-dependencies between predicate selectors. From
LOLA’s analysis, we recall that a predicate selector A depends on a predicate selector B
when and only when they satisfy the following two conditions:

(a) Predicate selector A selects its program elements based on the existence of one or
more annotations.

(b) At least one of these annotations is superimposed on the program elements selected
by predicate selector B.

Based on these two conditions, we can retrieve all dependent predicate selectors for a spe-
cific predicate selector A. When one of these dependent predicate selectors has changed
since a previous compilation, we do not know for sure whether the result of predicate
selector A will be the same as in the previous compilation. In other words, when a predi-
cate selector is recognized as to be skipped by LOLA, all its dependent predicate selectors
should be recognized as to be skipped as well. If not, then the predicate selector must be
processed by LOLA. Listing C.6 shows this fourth and final dividing of predicate selec-

tors.
/I Step 4: split selectors based on dependent selectors
ArrayList depSelectorsList = new ArrayList();
boolean restart = true ;
while (restart){ /[enter main loop
restart = false

depSelectorsList.clear();
if ('toBeSkipped.isEmpty()){
Iterator predicatelterStep4 = toBeSkipped.iterator();
while (predicatelterStep4.hasNext()){
/[for each selector gather dependent selectors
PredicateSelector predSel = (PredicateSelector)predicatelterStep4.next();
if (IpredSel.getAnnotations().isSEmpty(){
Iterator annots = predSel.getAnnotations().iterator();
while (annots.hasNext()){
/I for each annotation find selectors superimposing it
String annotToFind = (String)annots.next();
Iterator annotBindinglter = dataStore.getAllinstancesOf(
AnnotationBinding. class);
while (annotBindinglter.hasNext()){
AnnotationBinding annotBind = (AnnotationBinding) annotBindinglter.
next();

Dennis Spenkelink 118

C. Realization of Incremental Compose* Compilation Modules

Iterator annotRefs = annotBind.annotationList.iterator();
while (annotRefs.hasNext()){
ConcernReference annotRef = (ConcernReference)annotRefs.next();
Type annotation = (Type)annotRef.getRef().
getPlatformRepresentation();
if (annotation.getUnitName().equals(annotToFind)){
depSelectorsList.add(annotBind.getSelector().getRef());
continue ;

/[check whether dependent selectors are in toBeSkipped
/[If not, then process current selector and restart this step
if (!depSelectorsList.isEmpty()){
Iterator depSelectors = depSelectorsList.iterator();
while (depSelectors.hasNext()){
SelectorDefinition depSelector = (SelectorDefinition)depSelectors.
next();
Iterator selExpressions = depSelector.selExpressionList.iterator();
while (selExpressions.hasNext()){
SimpleSelExpression simpleSel = (SimpleSelExpression)selExpressions
.next();
if (simpleSel instanceof PredicateSelector){
if (toBeProcessed.contains((PredicateSelector)simpleSel) &&
toBeSkipped.contains(predSel)){
moveSelector(predSel,toBeSkipped,toBeProcessed);

restart = true ;
}
}
}
}
}
if (restart) break ;
} /I end selector iteration

}

Y/ end main loop

Listing C.6: Step four of dividing algorithm LOLA

The above code first enters a main loop (line 4). Within this loop, we iterate over each
predicate selector still to be processed by LOLA (line 9). For each of these predicate selec-
tors, we check whether the selector selects its program elements based on the existence
of any annotation (line 12). If so, we collect these annotations and for each of these anno-
tations, we search for any predicate selector that is used to superimpose that annotation
(lines 13-30). Then, we check whether all of these predicate selectors are available in the
toBeSkipped list. If not, we move the current predicate selector from the toBeSkipped
list to the toBeProcessed list (line 44). Finally, we indicate that there has been a change
in these lists (line 45). This loop repeats until nothing changes. This way, only predi-
cate selectors whose dependent selectors are all in the toBeSkipped list, are kept in the
toBeSkipped list.

Call copy operation for toBeSkipped predicate selectors. The final step of this algorithm
is calling a copy operation for each predicate selector in the toBeSkipped list. Listing C.7

119

Dennis Spenkelink

Incremental Compilation in Compose* University Twente

shows code that accomplishes this.

/I Step 5: resolve answers of skipped selectors
Iterator predicatelterStep5 = toBeSkipped.iterator();
while (predicatelterStep5.hasNext()){
PredicateSelector predSel = (PredicateSelector)predicatelterStep5.next();
if (!predSel.resolveAnswers()){
/I answers cannot be resolved , re -evaluate selector
toBeMoved.add(predSel);

}
}

/I move selectors from toBeSkipped to toBeProcessed
moveSelectors(toBeMoved,toBeSkipped,toBeProcessed);

/I return the list containing all selectors still to be processed
return toBeProcessed;

Listing C.7: Step five of dividing algorithm LOLA

First, we iterate over each predicate selector to be skipped by LOLA (line 3). Then,
for each of these predicate selectors, we call their copy operation that is called
resolveAnswers (line 5). This method searches the backup repository for all pro-
gram elements selected by the predicate selector in the previous compilation. Finally,
if these programs elements cannot be resolved, we move the predicate selector to the
toBeProcessed list (line 7). This security mechanism ensures us that a predicate selector
is still evaluated when its copy operation fails.

C.5 Realization of Incremental SECRET

C.5.1 Analysis

Input: Concerns with a concrete filtermodule ordering (calculated by FILTH) and a user-
provided filter specification file.

Output: A HTML conflict report showing where and how semantic conflicts occur.

Processing: When multiple filtermodules are imposed on the same joinpoint, certain seman-
tic conflicts may be introduced. SECRET aims to reason about these kinds of semantic
conflicts for each concern with one or more filtermodule orderings. It performs a static
analysis on the semantics of the filters and detects possible conflicts. The used model is,
through the use of an XML input specification, completely user adaptable [16, 52].

Dependencies: The following x data types influence SECRET’s processing of a concern:

e Configuration of mode. SECRET has three different modes of operation namely:

normal SECRET only checks the first filtermodule ordering selected by FILTH.

redundant SECRET checks all other possible filtermodule orderings.

progressive SECRET checks all other possible filtermodule orderings and selects
the first one without semantic conflicts.

Changing this mode for a concern may result in a different filtermodule ordering
selected and less or more conflicts detected.

e Structural content of XML configuration file. A user can influence SECRET’s analy-
sis by adding or removing semantic constraints. While analyzing a filtermodule or-

Dennis Spenkelink 120

C. Realization of Incremental Compose* Compilation Modules

Table C.1: Data of a filtermodule ordering analyzed by SECRET

Instance of SECRET data

FilterModuleOrder order of the contained filtermodule references
FilterModuleReference field ref (contains a FilterModule object)
FilterModule field inputfilters (output filters are not analyzed)
Filter field filterelements

FilterElement fields conditionPart and matchingPatterns
ConditionLiteral qualified name of the referenced condition

Or tields left and right

MatchingPart name of target and selector

SubstitutionPart name of target and selector

MessageSelector field typeList

DotNETAttribute fields value and target

DotNETMethodInfo field name

dering, SECRET detects semantic conflicts for each unsatisfied constraint. Changing
these semantic constraints may influence the number of semantic conflict detections.

¢ All semantic annotations of methods that are called by a meta filter superimposed
on the input concern. SECRET uses these semantics to detect semantic conflicts.
Changing these semantics may influence the number of semantic conflict detections.

e SECRET data of the filtermodule ordering selected by FILTH and all other possible
filtermodule orderings calculated by FILTH. SECRET data of a filtermodule ordering
is data that is used by SECRET while analysing that filtermodule ordering. Table C.1
defines this data. Note that the SECRET data of the filtermodule orderings that
are not selected by FILTH are only a dependency when SECRET’s mode is either
redundant or progressive. In normal mode, these filtermodule orderings are not
analyzed.

Motivation Incremental Performance SECRET performs all semantic analyses in every com-
pilation. This strategy is inefficient as it leads to redundant repeats of analyses. By apply-
ing our incremental rebuilding solution to SECRET, we should minimize these redundant
analyses and improve SECRET’s performance.

C.5.2 Copy Operation

Each concern analyzed by SECRET, receives an object called “SECRETReports”. This object
contains a report of the semantic analyze performed by SECRET. The copy operation of SE-
CRET searches the backup repository for these kinds of objects and adds them to the repository
being built.

C.5.3 Dependency Configuration

From SECRET’s analysis, we conclude that four data types influence a semantic analysis of a
concern. Listing C.8 presents a configuration of these four data dependencies:

<dependencies>
<dependency type="FILE” name="SECRETConfigFile” isAdded="false”>

121 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

<path>
<node type="CONFIG” nodevalue="SECRETConfigFile”></node>
</path>
</dependency>
<dependency type="OBJECT” name="SECRETMode” store="true” lookup="true”>
<path>
<node type="CONFIG” nodevalue="SECRETMode”></node>
</path>
</dependency>
<dependency type="OBJECT” name="semantics” store="true” lookup="true”>
<path>
<node type="MEIHOD” nodevalue="Composestar.Core.CKRET.SECRET.
getSemanticAnnotations”></node>
</path>
</dependency>
<dependency type="OBJECT” name="filtermoduleorders”>
<path>
<node type="DYNAMIC” nodevalue="FilterModuleOrders”></node>
</path>
</dependency>
</dependencies>

Listing C.8: Dependency Configuration of SECRET

The first two dependencies are referenced by project configurations. The first dependency is
SECRET’s configuration file. This file is referenced by a project configuration called "SECRET-
ConfigFile” (line 4). The second dependency is SECRET’s mode of operation. This mode is ref-
erenced by a project configuration called "SECRETMode” (line 9). SECRET’s third configured
dependency refers to the semantic annotations of the user-provided base program. These an-
notations are obtained by a new helper method called “getSemanticAnnotations” (line 14). The
fourth configured dependency refers to all possible filtermodule orderings of a concern. These
orderings are referenced by a concern’s dynamic object called “FilterModuleOrders” (line 19).

C.5.4 Comparison Configuration

SECRET’s fourth dependency returns a list of all possible filtermodule orderings for a concern
rather than only the SECRET data listed in Table C.1. This means that it returns more data
than is necessary. However, just like FILTH's case, we can restrict this data further by means of
our comparison configuration. Appendix B presents a configuration of this restriction. This
configuration restricts the comparison of instances of FilterModuleReference to the data
listed in Table C.1.

C.6 Realization of Incremental ILICIT

C.6.1 Analysis

Input: .NET assemblies from disk and CONE’s interception specification file.

Output: Weaved .NET assemblies on disk.

Processing: ILICIT is a .NET Intermediate Language (IL) Weaver. It uses CONE’s weave spec-
ification file to insert (weave) additional IL-code in the .NET assemblies produced by

Dennis Spenkelink 122

C. Realization of Incremental Compose* Compilation Modules

RECOMA. The resulting weaved assemblies enforce the Compose* runtime to execute
the declared aspects.
Dependencies: The following four data types influence ILICIT’s weaving of a .NET assembly:

e Content of the input .NET assembly. When the content of a .INET assembly differs
before weaving, the content also differs after weaving. This is because ILICIT only
inserts rather than deletes and modifies IL-code.

e Application start-up object. Each .NET application has one start-up object. At the
entry-point of this start-up object, ILICIT weaves some special IL-code. This IL-code
enforces the Compose* runtime to deserialize the repository serialized at the end
of compilation. When the start-up object changes, the place of this special IL-code
needs to change accordingly.

e Configuration of the debug level of Compose* runtime. ILICIT weaves the value
of this configuration at the entry-point of the application. This enforces the level of
debugging while executing a Compose* program.

e Content of weave specification file. A weave specification file tells ILICIT what and
where to weave in .NET assemblies. The following data types form the weave spec-
ification for a specific NET assembly:

1. Concerns with one or more filtermodules superimposed and which have at least
one method that may be invoked by the specified .NET assembly.

2. Concerns which instantiations are intercepted by the weaver and which are ac-
tually instantiated by the specified .NET assembly. The weaver intercepts the
instantiation of the following concerns:

(a) Concerns that form the implementation part of the composition filters.
(b) Concerns with one or more filtermodules superimposed.
3. The following castings performed by the specified .NET assembly:
(a) Castings to concerns with one or more filtermodule internals superimposed.
(b) Castings to internals of superimposed filtermodules.

4. Concerns with one or more outputfilters superimposed and which have at least
one method that may be invoked by the specified .NET assembly.

Motivation Incremental Performance ILICIT reweaves all assemblies in every compilation.
This strategy is inefficient as it leads to redundant repeats of weavings. By applying our
incremental rebuilding solution to ILICIT, we should minimize these redundant weav-
ings and improve ILICIT’s weaving performance.

C.6.2 Copy Operation
The copy operation of ILICIT, only needs to add the weaving target of a skipped assembly to

its internal list of woven assemblies. This is necessary because the compilation module BACO
(Bulk Assembly Copy) relies on this information to work correctly.

C.6.3 Dependency Configuration

From ILICIT’s analysis, we conclude that there are seven data types that influence ILICIT’s
weaving of an assembly. We have added these seven data dependencies to our XML configu-
ration file. Listing C.9 presents this configuration.

123 Dennis Spenkelink

Incremental Compilation in Compose* University Twente

<dependencies>
<dependency type="FILE” name="assembly” isAdded="false”></dependency>
<dependency type="OBJECT” name="ApplicationInfo” store="true” lookup="true”>
<path>
<node type="CONFIG” nodevalue="ApplicationStart”></node>
</path>
</dependency>
<dependency type="OBJECT” name="RunDebuglLevel” store="true” lookup="true”>
<path>
<node type="CONFIG” nodevalue="RunDebugLevel”></node>
</path>
</dependency>
<dependency type="OBJECT” name="ConcernsWithFMO”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.ILICIT .ILICIT.
getConcernsWithFMO”></node>
</path>
</dependency>
<dependency type="OBJECT” name="CastingInterceptions”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.ILICIT .ILICIT.
castingInterceptions”></node>
</path>
</dependency>
<dependency type="OBJECT” name="InstantiationClasses”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.ILICIT .ILICIT.
getAfterInstantiationClasses”></node>
</path>
</dependency>
<dependency type="OBJECT” name="ConcernsWithOutputFilters”>
<path>
<node type="MEIHOD” nodevalue="Composestar.DotNET.ILICIT .ILICIT.
getConcernsWithOutputFilters”></node>
</path>
</dependency>
</dependencies>

Listing C.9: Dependency Configuration of ILICIT

The first dependency returns the input object itself which is the filename of an assembly to be
weaved. This dependency is of type FILE and is called “assembly” (line 2). The second depen-
dency refers to the start-up object of the user-provided project. This object is referenced by the
project configuration called ”ApplicationStart” (line 5). ILICIT’s third configured dependency
is the level of debugging output at runtime. This level is referenced by the project configuration
called “"RunDebugLevel” (line 10). The last four dependencies return the four data types that
form the weave specification file for an assembly (see Section C.6.1 for a description of these
four data types). Each of these four data types is obtained by a new helper method (lines 13-32).

C.6.4 Comparison Configuration

ILICIT has six configured object dependencies. Each of the data dependencies refer to either
a primitive or a list of primitives. These primitives cannot further be restricted to optimize
repository entity comparison. Hence, there are no field-restrictions configured for ILICIT.

Dennis Spenkelink 124

	Abstract
	Acknowledgements
	List of Figures
	List of Listings
	Reading Guide
	1 Introduction to AOSD
	1.1 Introduction
	1.2 Traditional Approach
	1.3 AOP Approach
	1.3.1 AOP Composition
	1.3.2 Aspect Weaving
	1.3.2.1 Source Code Weaving
	1.3.2.2 Intermediate Language Weaving
	1.3.2.3 Adapting the Virtual Machine

	1.4 AOP Solutions
	1.4.1 AspectJ Approach
	1.4.2 Hyperspaces Approach
	1.4.3 Composition Filters

	2 Compose*
	2.1 Evolution of Composition Filters
	2.2 Composition Filters in Compose*
	2.3 Demonstrating Example
	2.3.1 Initial Object-Oriented Design
	2.3.2 Completing the Pacman Example
	2.3.2.1 Implementation of Scoring
	2.3.2.2 Implementation of Dynamic Strategy

	2.4 Compose* Architecture
	2.4.1 Integrated Development Environment
	2.4.2 Compile Time
	2.4.3 Adaptation
	2.4.4 Runtime

	2.5 Platforms
	2.6 Features Specific to Compose*

	3 Problem Statement
	3.1 Background
	3.1.1 OOP Work on Incremental Compilation
	3.1.1.1 Make Tool
	3.1.1.2 Jikes
	3.1.1.3 Tichy's Smart Recompilation
	3.1.1.4 Eclipse Compiler
	3.1.1.5 IBM VisualAge C++

	3.1.2 AOP Work on Incremental Compilation
	3.1.2.1 Whole-program and Incremental Weaving
	3.1.2.2 Crosscutting Complicates Incremental Weaving
	3.1.2.3 Incremental Weavers

	3.2 Non-incremental Compilation in Compose*
	3.3 Motivation
	3.4 Problem Summary and Conclusion

	4 Solution Approaches
	4.1 Model of a Compilation Module in Compose*
	4.2 Restoration in Seven Steps
	4.3 Rebuilding in Five Steps
	4.4 Comparison of Solution Approaches
	4.4.1 Comparison Criteria
	4.4.2 Applying the Comparison Criteria
	4.4.2.1 Criteria applied to Restoration and Rebuilding
	4.4.2.2 Conclusion

	5 Design Alternatives Rebuilding Approach
	5.1 Design Decisions
	5.2 Storage and Retrieval
	5.2.1 Java Object Serialization (JOS)
	5.2.2 Java Database Connectivity (JDBC)
	5.2.3 Java Data Objects (JDO)
	5.2.4 Comparison Criteria
	5.2.5 Applying the Criteria
	5.2.5.1 Criteria applied to JOS
	5.2.5.2 Criteria applied to JDBC
	5.2.5.3 Criteria applied to JDO

	5.2.6 Choice Motivation
	5.2.7 Limitations of chosen alternative

	5.3 Data Comparison
	5.3.1 File Comparison
	5.3.1.1 Byte-by-byte comparison
	5.3.1.2 Timestamp comparison

	5.3.2 Repository Entities Comparison

	5.4 Acquisition of Dependent Data
	5.5 Conclusion

	6 Implementation
	6.1 Adaptations to the Compose* architecture
	6.2 XML configuration file
	6.3 Implementation of the object comparator mechanism
	6.4 Reporting
	6.5 Control Flow
	6.5.1 IsProcessedBy service

	6.6 Conclusion

	7 Realization of Incremental Compose* Compilation Modules
	7.1 Compilation Modules Enhanced
	7.2 Step One: Identifying Input, Output and Data Dependencies
	7.2.1 FILTH Analysis
	7.2.2 RECOMA Analysis

	7.3 Step Two: Serializing Repository
	7.4 Step Three: Implementing Copy Operation
	7.4.1 Copy Operation FILTH
	7.4.2 Copy Operation RECOMA

	7.5 Step Four: Configuring Data Dependencies
	7.5.1 Dependency Configuration FILTH
	7.5.2 Dependency Configuration RECOMA

	7.6 Step Five: Optimizing Repository Entity Comparison
	7.6.1 Comparison Configuration FILTH
	7.6.2 Comparison Configuration RECOMA

	7.7 Conclusion

	8 Evaluation
	8.1 Test Cases and Conditions
	8.1.1 Cases
	8.1.2 Conditions

	8.2 Charts and Expected Results
	8.3 Non-incremental Compilation Time of Compilation Modules
	8.4 Performance Improvement by Example and Scenario
	8.5 Overhead by Example and Scenario
	8.6 Average Performance of Compilation Modules
	8.7 Evaluation of INCRE
	8.8 Evaluation of COPPER
	8.9 Evaluation of HARVESTER
	8.10 Evaluation of COLLECTOR
	8.11 Evaluation of LOLA
	8.12 Evaluation of FILTH
	8.13 Evaluation of SECRET
	8.14 Evaluation of RECOMA
	8.15 Evaluation of ILICIT
	8.16 Conclusions

	9 Conclusion, Future and Related Work
	9.1 Conclusion and Evaluation
	9.1.1 Evaluation

	9.2 Future Work
	9.2.1 Automation of XML Configuration
	9.2.2 Further Modulation and Enhancing with Incremental Performance
	9.2.3 Alternative Java Object Persistence Mechanism

	9.3 Related Work
	9.3.1 AspectJ
	9.3.2 Apostle

	Bibliography
	Appendices
	A INCREConfig.xml Definition
	B XML Configuration of Compose* Compilation Modules
	B.1 ASTRA Configuration
	B.2 BACO Configuration
	B.3 CHKREP Configuration
	B.4 COLLECTOR Configuration
	B.5 CONE Configuration
	B.6 COPPER Configuration
	B.7 DUMMER Configuration
	B.8 FILTH Configuration
	B.9 HARVESTER Configuration
	B.10 ILICIT Configuration
	B.11 LOLA Configuration
	B.12 RECOMA Configuration
	B.13 REXREF Configuration
	B.14 SANE Configuration
	B.15 SECRET Configuration
	B.16 SIGN Configuration

	C Realization of Incremental Compose* Compilation Modules
	C.1 Realization of Incremental COPPER
	C.1.1 Analysis
	C.1.2 Copy Operation
	C.1.3 Dependency Configuration
	C.1.4 Comparison Configuration

	C.2 Realization of Incremental HARVESTER
	C.2.1 Analysis
	C.2.2 Copy Operation
	C.2.3 Dependency Configuration
	C.2.4 Comparison Configuration

	C.3 Realization of Incremental COLLECTOR
	C.3.1 Analysis
	C.3.2 Copy Operation
	C.3.3 Dependency Configuration
	C.3.4 Comparison Configuration

	C.4 Realization of Incremental LOLA
	C.4.1 Analysis
	C.4.2 Alternative Algorithm for Incremental Evaluation

	C.5 Realization of Incremental SECRET
	C.5.1 Analysis
	C.5.2 Copy Operation
	C.5.3 Dependency Configuration
	C.5.4 Comparison Configuration

	C.6 Realization of Incremental ILICIT
	C.6.1 Analysis
	C.6.2 Copy Operation
	C.6.3 Dependency Configuration
	C.6.4 Comparison Configuration

