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Summary

Aspect-oriented programming makes it possible to separate crosscutting concerns from
the base program. It is an extension to the object-oriented programming paradigm, but
crosscutting concerns are not an object-oriented problem. Such concerns are also seen
in other programming languages, for instance in C.

Bringing aspect-oriented programming to C is valuable, because C is still very popular
and crosscutting concerns are troublesome. This is for example the case in the legacy sys-
tem of ASML, where four major crosscutting concerns are responsible for approximately
31% of the 12 million lines of code in the system.

At the moment there are a few aspect-oriented weavers for C. These weavers are all
based on the AspectJ methodology. In this research an aspect-oriented weaver for C is
developed with the Composition Filters approach. The main benefit that composition
filters offer over the AspectJ approach is that it supports a declarative way for specifying
advice by use of a filter.

For implementing a weaver, first a mapping from composition filters to C is devel-
oped. This is not easy, because composition filters are an extension to the object-based
paradigm, and it uses some language constructs from this paradigm which do not exist
in C. Key elements in composition filters are: a message, a filter, and a superimposition
unit. In order to create a weaver for C, these elements need to be defined in C.

After the mapping is created, Compose* C is presented, which is an extension of the cur-
rent implementation of composition filters named Compose*. Extending Compose* was
possible, because a large part of its design and implementation is language independent
which means that it could be reused. Components that are not language independent
are: the code-weaver, the language model, the collecting of program-information, the
filters, and IDE support. Therefore these components had to be developed by ourselves,
except for the code-weaver for which an existing weaver is selected.
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Chapter 1

Introduction to AOSD

The first two chapters have originally been written by seven M. Sc. students [38, 28, 60,
15, 57, 37, 14] at the University of Twente. The chapters have been rewritten for use
in the following theses [59, 23, 58, 40, 24, 39, 55]. They serve as a general introduction
into Aspect-Oriented Software Development and Compose* in particular.

1.1 Introduction

The goal of software engineering is to solve a problem by implementing a software system.
The things of interest are called concerns. They exist at every level of the engineering
process. A recurrent theme in engineering is that of modularization: separation and lo-
calization of concerns. The goal of modularization is to create maintainable and reusable
software. A programming language is used to implement concerns.

Fifteen years ago the dominant programming language paradigm was procedural pro-
gramming. This paradigm is characterized by the use of statements that update state
variables. Examples are Algol-like languages such as Pascal, C, and Fortran.

Other programming paradigms are the functional, logic, object-oriented, and aspect-
oriented paradigms. Figure 1.1 summarizes the dates and ancestry of several important
languages [61]. Every paradigm uses a different modularization mechanism for separating
concerns into modules.

Functional languages try to solve problems without resorting to variables. These lan-
guages are entirely based on functions over lists and trees. Lisp and Miranda are exam-
ples of functional languages.

A logic language is based on a subset of mathematical logic. The computer is pro-
grammed to infer relationships between values, rather than to compute output values
from input values. Prolog is currently the most used logic language [61].

Johan te Winkel 1
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Figure 1.1: Dates and ancestry of several important languages

A shortcoming of procedural programming is that global variables can potentially be
accessed and updated by any part of the program. This can result in unmanageable
programs because no module that accesses a global variable can be understood indepen-
dently from other modules that also access that global variable.

The Object-Oriented Programming (OOP) paradigm improves modularity by encapsu-
lating data with methods inside objects. The data may only be accessed indirectly, by
calling the associated methods. Although the concept appeared in the seventies, it took
twenty years to become popular [61]. The most well known object-oriented languages
are C++, Java, C#, and Smalltalk.

The hard part about object-oriented design is decomposing a system into objects. The
task is difficult because many factors come into play: encapsulation, granularity, depen-
dency, adaptability, reusability, and others. They all influence the decomposition, often
in conflicting ways [34].

Existing modularization mechanisms typically support only a small set of decompositions
and usually only a single dominant modularization at a time. This is known as the
tyranny of the dominant decomposition [32]. A specific decomposition limits the ability
to implement other concerns in a modular way. For example, OOP modularizes concerns
in classes and only fixed relations are possible. Implementing a concern in a class might
prevent another concern from being implemented as a class.

Aspect-Oriented Programming (AOP) is a paradigm that solves this problem. AOP is

Johan te Winkel 2
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commonly used in combination with OOP but can be applied to other paradigms as well.
The following sections introduce an example to demonstrate the problems that may arise
with OOP and show how AOP can solve this. Finally, we look at three particular AOP
methodologies in more detail.

1.2 Traditional Approach

Consider an application containing an object Add and an object CalcDisplay. Add inherits
from the abstract class Calculation and implements its method execute. It performs
the addition of two integers. CalcDisplay receives an update from Add if a calculation is
finished and prints the result to screen. Suppose all method calls need to be traced. The
objects use a Tracer object to write messages about the program execution to screen.
This is implemented by a method called write. Three concerns can be recognized:
addition, display, and tracing. The implementation might look something like Listing 1.1.
From our example, we recognize two forms of crosscutting: code tangling and code
scattering.

The addition and display concerns are implemented in classes Add and CalcDisplay,
respectively. Tracing is implemented in the class Tracer, but also contains code in the
other two classes (lines 5, 10, 15, and 22 in Listing 1.1a and 2, 5, and 10 in Listing 1.1b).
If a concern is implemented across several classes it is said to be scattered. In the
example of Listing 1.1 the tracing concern is scattered.

Usually a scattered concern involves code replication. That is, the same code is imple-
mented a number of times. In our example the classes Add and CalcDisplay contain
similar tracing code.

In class Add the code for the addition and tracing concerns are intermixed. In class
CalcDisplay the code for the display and tracing concerns are intermixed. If more then
one concern is implemented in a single class they are said to be tangled. In our example
the addition and tracing concerns are tangled. Also display and tracing concerns are
tangled. Crosscutting code has the following consequences:

Code is difficult to change
Changing a scattered concern requires us to modify the code in several places.
Making modifications to a tangled concern class requires checking for side-effects
with all existing crosscutting concerns;

Code is harder to reuse
To reuse an object in another system, it is necessary to either remove the tracing
code or reuse the (same) tracer object in the new system;

Code is harder to understand
Tangled code makes it difficult to see which code belongs to which concern.

3 Johan te Winkel
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public class Add extends Calculation{

private int result;

private CalcDisplay calcDisplay;

private Tracer trace;

Adda () {
result = 0;

calcDisplay = new CalcDisplay();

trace = new Tracer ();

public void execute(int a, int b) {

trace.write("void
Add.execute (int ,int)");
result = a + b;
calcDisplay.update(result);
}

public int getLastResult () {
trace.write("int
Add.getLastResult (O ");
return result;

(a) Addition

public class CalcDisplay {
private Tracer trace;

public CalcDisplay () {
trace = new Tracer ();

}

public void update (int value){
trace.write("void
CalcDisplay.update (int)");
System.out.println(
"Printing new value of
calculation: " +value);

(b) CalcDisplay

Listing 1.1: Modeling addition, display, and logging without using aspects

Johan te Winkel
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1.3. AOP APPROACH

public class Add extends Calculationf{

}

private int result;
private CalcDisplay calcDisplay;

Add OO {

result = 0;

calcDisplay = new CalcDisplay();
}

public void execute(int a, int b) {
result = a + b;
calcDisplay.update (result);

}
public int getLastResult () {

return result;

}

(a) Addition concern

aspect Tracing {
Tracer trace = new Tracer();

pointcut tracedCalls ():
call(*(Calculation+).*(..))
I
call (*CalcDisplay.*(..));

before(): tracedCalls () {
trace.write(thisJoinPoint.
getSignature ().
toString ());
}
}

(b) Tracing concern

Listing 1.2: Modeling addition, display, and logging with aspects
1.3 AOP Approach

To solve the problems with crosscutting, several techniques are being researched that
attempt to increase the expressiveness of the OO paradigm. Aspect-Oriented Program-
ming (AOP) introduces a modular structure, the aspect, to capture the location and
behavior of crosscutting concerns. FExamples of Aspect-Oriented languages are Sina,
AspectJ, Hyper/J, and Compose*. A special syntax is used to specify aspects and the
way in which they are combined with regular objects. The fundamental goals of AOP
are twofold [36]. First, to provide a mechanism to express concerns that crosscut other
components. Second, to use this description to allow for the separation of concerns.

Join points are well-defined places in the structure or execution flow of a program where
additional behavior can be attached. The most common join points are method calls.
Pointcuts describe a set of join points. This allows us to execute behavior at many
places in a program by one expression. Advice is the behavior executed at a join point.

In the example of Listing 1.2 the class Add does not contain any tracing code and only im-
plements the addition concern. Class CalcDisplay also does not contain tracing code. In
our example the tracing aspect contains all the tracing code. The pointcut tracedCalls
specifies at which locations tracing code is executed.

The crosscutting concern is explicitly captured in aspects instead of being embedded
within the code of other objects. This has several advantages over the previous code.

) Johan te Winkel



1.3. AOP APPROACH University Twente

Aspect code can be changed
Changing aspect code does not influence other concerns;
Aspect code can be reused
The coupling of aspects is done by defining pointcuts. In theory, this low coupling
allows for reuse. In practice reuse is still difficult;
Aspect code is easier to understand
A concern can be understood independent of other concerns;
Aspect pluggability
Enabling or disabling concerns becomes possible.

1.3.1 AOP Composition

AOP composition can be either symmetric or asymmetric. In the symmetric approach
every component can be composed with any other component. This approach is followed
by Hyper/J, for example. In the asymmetric approach, the base program and aspects
are distinguished. The base program is composed with the aspects. This approach is
followed by AspectJ, for example. AspectJ and Hyper/J are covered in more detail in
Section 1.4.

1.3.2 Aspect Weaving

The integration of components and aspects is called aspect weaving. The three most
common approaches to aspect weaving: weaving in source code, weaving in an interme-
diate language, and weaving in a virtual machine. The first and second approach rely
on adding behavior in the program, either by weaving the aspect in the source code, or
by weaving directly in the target language. The target language can be Intermediate
Language (IL) or machine code. Examples of IL are Java byte code and Common In-
termediate Language (CIL). The remainder of this chapter considers only intermediate
language targets. The third approach relies on adapting the virtual machine. Each
method is explained briefly in the following sections.

1.3.2.1 Source Code Weaving

The source code weaver combines the original source with aspect code. It interprets
the defined aspects and combines them with the original source, generating input for
the native compiler. For the native compiler there is no difference between source code
with and without aspects. Hereafter the compiler generates an intermediate or machine
language output (depending on the type of compiler).

The advantages of using source code weaving are:

Johan te Winkel 6
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High-level source modification
Since all modifications are done at source code level, there is no need to know the
target (output) language of the native compiler;

Aspect and original source optimization
First the aspects are woven into the source code and hereafter compiled by the
native compiler. The produced target language has all the benefits of the native
compiler optimization passes. However, optimizations specific to exploiting aspect
knowledge are not possible;

Native compiler portability
The native compiler can be replaced by any other compiler as long as it has the
same input language. Replacing the compiler with a newer version or another
target language can be done with little or no modification to the aspect weaver.

However, the drawbacks of source code weaving are:

Language dependency
Source code weaving is written explicitly for the syntax of the input language;
Limited expressiveness
Aspects are limited to the expressive power of the source language. For example,
when using source code weaving, it is not possible to add multiple inheritance to
a single inheritance language.

1.3.2.2 Intermediate Language Weaving

Weaving aspects through an intermediate language gives more control over the exe-
cutable program and solves some issues as discussed in subsubsection 1.3.2.1 on source
code weaving. Weaving at this level allows for creating combinations of intermediate
language constructs that can not be expressed at the source code level. Although IL can
be hard to understand, IL weaving has several advantages over source code weaving:

Programming language independence
All compilers generating the target IL output can be used;

More expressiveness
It is possible to create IL constructs that are not possible in the original program-
ming language;

Source code independence
Can add aspects to programs and libraries without using the source code (which
may not be available);

Adding aspects at load- or run-time
A special class loader or run-time environment can decide and do dynamic weaving.
The aspect weaver adds a run-time environment into the program. How and when
aspects can be added to the program depend on the implementation of the run-time
environment.

However, IL weaving also has drawbacks that do not exist for source code weaving;:

7 Johan te Winkel
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Hard to understand
Specific knowledge about the IL is needed;

More error-prone
Compiler optimization may cause unexpected results. Compiler can remove code
that breaks the attached aspect (e.g., inlining of methods).

1.3.2.3 Adapting the Virtual Machine

Adapting the virtual machine (VM) removes the need to weave aspects. This technique
has the same advantages as intermediate language weaving and can also overcome some
of its disadvantages as mentioned in subsubsection 1.3.2.2. Aspects can be added without
recompilation, redeployment, and restart of the application [48, 49].

Modifying the virtual machine also has its disadvantages:

Dependency on adapted virtual machines
Using an adapted virtual machine requires that every system should be upgraded
to that version;

Virtual machine optimization
People have spend a lot of time optimizing virtual machines. By modifying the
virtual machine these optimizations should be revisited. Reintegrating changes in-
troduced by newer versions of the original virtual machine, might have substantial
impact.

1.4 AOQOP Solutions

As the concept of AOP has been embraced as a useful extension to classic programming,
different AOP solutions have been developed. Each solution has one or more implemen-
tations to demonstrate how the solution is to be used. As described by Elrad et al. [29],
these differ primarily in:

How aspects are specified

Each technique uses its own aspect language to describe the concerns;
Composition mechanism

Each technique provides its own composition mechanisms;
Implementation mechanism

Whether components are determined statically at compile time or dynamically at

run time, the support for verification of compositions, and the type of weaving.
Use of decoupling

Should the writer of the main code be aware that aspects are applied to his code;
Supported software processes

The overall process, techniques for reusability, analyzing aspect performance of

aspects, is it possible to monitor performance, and is it possible to debug the
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aspects.

This section will give a short introduction to AspectJ and Hyperspaces, which together
with Composition Filters are three main AOP approaches.

1.4.1 AspectJ Approach

AspectJ [43] is an aspect-oriented extension to the Java programming language. It is
probably the most popular approach to AOP at the moment, and it is finding its way into
the industrial software development. AspectJ has been developed by Gregor Kiczales at
Xerox’s PARC (Palo Alto Research Center). To encourage the growth of the AspectJ
technology and community, PARC transferred AspectJ to an open Eclipse project. The
popularity of AspectJ comes partly from the various extensions based on it, build by
several research groups. There are various projects that are porting AspectJ to other
languages, resulting in tools such as AspectR and AspectC.

One of the main goals in the design of AspectJ is to make it a compatible extension to
Java. Aspectd tries to be compatible in four ways:

Upward compatibility
All legal Java programs must be legal AspectJ programs;

Platform compatibility
All legal AspectJ programs must run on standard Java virtual machines;

Tool compatibility
It must be possible to extend existing tools to support AspectJ in a natural way;
this includes IDEs, documentation tools and design tools;

Programmer compatibility
Programming with AspectJ must feel like a natural extension of programming with
Java.

Aspectd extends Java with support for two kinds of crosscutting functionality. The first
allows defining additional behavior to run at certain well-defined points in the execution
of the program and is called the dynamic crosscutting mechanism. The other is called
the static crosscutting mechanism and allows modifying the static structure of classes
(methods and relationships between classes). The units of crosscutting implementation
are called aspects. An example of an aspect specified in AspectJ is shown in Listing 1.3.

The points in the execution of a program where the crosscutting behavior is inserted are
called join points. A pointcut has a set of join points. In Listing 1.3 is traceMethods an
example of a pointcut definition. The pointcut includes all executions of any method
that is in a class contained by package edu.utwente.trese.

The code that should execute at a given join point is declared in an advice. Advice is
a method-like code body associated with a certain pointcut. AspectJ supports before,
after and around advice that specifies where the additional code is to be inserted. In
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aspect DynamicCrosscuttingExample {
Log log = new Log();

pointcut traceMethods ():
execution(edu.utwente.trese.*.*x(..));

before() : traceMethods {
log.write("Entering " + thisJointPoint.getSignature());

}

after() : traceMethods {
log.write("Exiting " + thisJointPoint.getSignature());

}
}

Listing 1.3: Example of dynamic crosscutting in AspectJ

the example both before and after advice are declared to run at the join points specified
by the traceMethods pointcut.

Aspects can contain anything permitted in class declarations including definitions of
pointcuts, advice and static crosscutting. For example, static crosscutting allows a
programmer to add fields and methods to certain classes as shown in Listing 1.4.

The shown construct is called inter-type member declaration and adds a method trace
to class Log. Other forms of inter-type declarations allow developers to declare the
parents of classes (superclasses and realized interfaces), declare where exceptions need
to be thrown, and allow a developer to define the precedence among aspects.

With its variety of possibilities AspectJ can be considered a useful approach for realizing
software requirements.

1.4.2 Hyperspaces Approach

The Hyperspaces approach is developed by H. Ossher and P. Tarr at the IBM T.J. Watson
Research Center. The Hyperspaces approach adopts the principle of multi-dimensional

aspect StaticCrosscuttingExample {
private int Log.trace(String traceMsg) {
Log.write(" --- MARK --- " + traceMsg);
}
}

Listing 1.4: Example of static crosscutting in AspectJ
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Hyperspace Pacman
class edu.utwente.trese.pacman. *;

Listing 1.5: Creation of a hyperspace

separation of concerns [46], which involves:

e Multiple, arbitrary dimensions of concerns;

e Simultaneous separation along these dimensions;

e Ability to dynamically handle new concerns and new dimensions of concern as they
arise throughout the software life cycle;

e Overlapping and interacting concerns. It is appealing to think of many concerns
as independent or orthogonal, but they rarely are in practice.

We explain the Hyperspaces approach by an example written in the Hyper/J language.
Hyper/J is an implementation of the Hyperspaces approach for Java. It provides the
ability to identify concerns, specify modules in terms of those concerns, and synthesize
systems and components by integrating those modules. Hyper/J uses bytecode weaving
on binary Java class files and generates new class files to be used for execution. Although
the Hyper/J project seems abandoned and there has not been any update in the code or
documentation for a while, we still mention it because the Hyperspaces approach offers
a unique AOP solution.

As a first step, developers create hyperspaces by specifying a set of Java class files
that contain the code units that populate the hyperspace. To do this is, you create a
hyperspace specification, as demonstrated in Listing 1.5.

Hyper/J will automatically create a hyperspace with one dimension—the class file dimen-
sion. A dimension of concern is a set of concerns that are disjoint. The initial hyperspace
will contain all units within the specified package. To create a new dimension you can
specify concern mappings, which describe how existing units in the hyperspace relate to
concerns in that dimension, as demonstrated in Listing 1.6.

The first line indicates that, by default, all of the units contained within the package
edu.utwente.trese.pacman address the kernel concern of the feature dimension. The
other mappings specify that any method named trace or debug address the logging and
debugging concern, respectively. These later mappings override the first one.

package edu.utwente.trese.pacman: Feature.Kernel
operation trace: Feature.Logging
operation debug: Feature.Debugging

Listing 1.6: Specification of concern mappings
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hypermodule Pacman_Without_Debugging
hyperslices: Feature.Kernel, Feature.Logging;
relationships: mergeByName;

end hypermodule;

Listing 1.7: Defining a hypermodule

Hypermodules are based on concerns and consist of two parts. The first part specifies
a set of hyperslices in terms of the concerns identified in the concern matrix. The
second part specifies the integration relationships between the hyperslices. A hyperspace
can contain several hypermodules realizing different modularizations of the same units.
Systems can be composed in many ways from these hypermodules.

Listing 1.7 shows a hypermodule with two concerns, kernel and logging. They are related
by a mergeByName integration relationship. This means that units in the different concerns
correspond if they have the same name (ByName) and that these corresponding units are
to be combined (merge). For example, all members of the corresponding classes are
brought together into the composed class. The hypermodule results in a hyperslice that
contains all the classes without the debugging feature; thus no debug methods will be
present.

The most important feature of the hyperspaces approach is the support for on-demand
remodularisation: the ability to extract hyperslices to encapsulate concerns that were not
separated in the original code. Which makes hyperspaces especially useful for evolution
of existing software.

1.4.3 Composition Filters

Composition Filters is developed by M. Aksit and L. Bergmans at the TRESE group,
which is a part of the Department of Computer Science of the University of Twente, The
Netherlands. The composition filters (CF) model predates aspect-oriented programming.
It started out as an extension to the object-oriented model and evolved into an aspect-
oriented model. The current implementation of CF is Compose*, which covers .NET,
and Java.

One of the key elements of CF is the message, a message is the interaction between
objects, for instance a method call. In object-oriented programming the message is
considered an abstract concept. In the implementations of CF it is therefore necessary
to reify the message. This reified message contains properties, like where it is send to
and where it came from.

The concept of CF is that messages that enter and exit an object can be intercepted
and manipulated, modifying the original flow of the message. To do so, a layer called
the interface part is introduced in the CF model, this layer can have several properties.
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The interface part can be placed on an object, which behavior needs to be altered, and
this object is referred to as inner.

There are three key elements in CF: messages, filters, and superimposition. Messages
are sent from one object to another, if there is an interface part placed on the receiver,
then the message that is sent goes through the input filters. In the filters the message
can be manipulated before it reaches the inner part, the message can even be sent to
another object. How the message will be handled depends on the filter type. An output
filter is similar to an input filter, the only difference is that it manipulates messages that
originate from the inner part. The latest addition to CF is superimposition, which is
used to specify which interfaces needs to be superimposed on which inner objects.
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Chapter 2

Composex

Compose* is an implementation of the composition filters approach. There are two
target environments: the .NET, and Java. This chapter is organized as follows, first
the evolution of Composition Filters and its implementations are described, followed by
an explanation of the Compose* language and a demonstrating example. In the third
section, the Compose* architecture is explained, followed by a description of the features
specific to Composex.

2.1 Evolution of Composition Filters

Compose* is the result of many years of research and experimentation. The following
time line gives an overview of what has been done in the years before and during the
Compose* project.

1985

1987

1991

The first version of Sina is developed by Mehmet Aksit. This version of Sina
contains a preliminary version of the composition filters concept called semantic
networks. The semantic network construction serves as an extension to objects,
such as classes, messages, or instances. These objects can be configured to form
other objects such as classes from which instances can be created. The object
manager takes care of synchronization and message processing of an object.
The semantic network construction can express key concepts like delegation,
reflection, and synchronization [44].

Together with Anand Tripathi of the University of Minnesota the Sina language
is further developed. The semantic network approach is replaced by declarative
specifications and the interface predicate construct is added.

The interface predicates are replaced by the dispatch filter, and the wait filter
manages the synchronization functions of the object manager. Message reflec-
tion and real-time specifications are handled by the meta filter and the real-time
filter [10].
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1995

1999

2001

2003

2004
2005

The Sina language with Composition Filters is implemented using
Smalltalk [44]. The implementation supports most of the filter types. In
the same year, a preprocessor providing C++ with support for Composition
Filters is implemented [35].

The composition filters language ComposeJ [62] is developed and implemented.
The implementation consists of a preprocessor capable of translating composi-
tion filter specifications into the Java language.

ConcernJ is implemented as part of a M. Sc. thesis by Salinas [52]. Concern]J
adds the notion of superimposition to Composition Filters. This allows for
reuse of the filter modules and to facilitate crosscutting concerns.

The start of the Compose* project, the project is described in further detail in
this chapter.

The first release of Compose*, based on .NET.

The start of the Java port of Compose*.

2.2 Composition Filters in Compose*

A Compose* application consists of concerns that can be divided in three parts: filter
module specifications, superimposition, and implementation. A filter module contains
the filter logic to filter on incoming or outgoing messages on superimposed objects. Mes-
sages have a target, which is an object reference, and a selector, which is a method
name. A superimposition part specifies which filter modules, and annotations are super-
imposed on which objects. An implementation part contains the class implementation
of a concern. How these parts are placed in a concern is shown in Listing 2.1.

concern {
filtermodule {
intermnals
externals

conditions
inputfilters
outputfilters

}

superimposition {
selectors
filtermodules

annotations

}

implementation

}

Listing 2.1: Composition Filters concern elements
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Figure 2.1: Components of the composition filters model

The working of a filter module is depicted in Figure 2.1. A filter module can contain
input and output filters. The difference between these two sets of filters is that the first
is used to filter on incoming messages, while the second is used to filter on outgoing
messages. The return of a method is not considered an outgoing message. A filter has
three parts: a filter identifier, a filter type, and one or more filter elements. A filter
element exists out of an optional condition part, a matching part, and a substitution
part. These parts are shown below:

identi fier filter type condition part

stalker_filter : Dispatch = {!pacmanlsEvil =>

matching part substitution part

[x.getNextMove| stalk_strategy.getNextMove }

A filter identifier is a unique name for a filter in a filter module. Filters match when
both the condition part and the matching part evaluate to true. In the demonstrated
filter, every message where the selector is getNextMove matches. If an asterisk (*) is used
in the target, every target will match. When the condition part and the matching part
are true, the message is substituted with the values provided in the substitution part.
How these values are substituted, and how the message continues, depends on the type
of filter used. At the moment there are four built-in filter types defined in Composex.
It is, however, possible to write custom filter types.

Dispatch If the message is accepted, it is dispatched to the specified target of the
message, otherwise the message continues to the subsequent filter. This filter
type can only be used for input filters;

Send If the message is accepted, it is sent to the specified target of the message,
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otherwise the message continues to the subsequent filter. This filter type can
only be used for output filters;

Error If the filter rejects the message, it raises an exception, otherwise the message
continues to the next filter in the set;

Meta If the message is accepted, the message is sent as a parameter of another
meta message to an internal or external object, otherwise the message just
continues to the next filter. The object that receives the meta message can
observe and manipulate the message and can re-activate the execution of the
message.

The identifier pacmanIsEvil, used in the condition part, must be declared in the con-
ditions section of a filter module. Targets that are used in a filter can be declared as
internal or external. An internal is an object that is unique for each instance of a filter
module, while an external is an object that is shared between filter modules.

Filter modules are superimposed on classes using filter module binding, which specifies a
selection of objects on the one side, and a filter module on the other side. The selection
is specified in a selector definition. This selector definition uses predicates to select
objects, such as isClassWithNameInList, isNamespaceWithName, and namespaceHasClass.
In addition to filter modules, it is possible to bind conditions, methods, and annotations
to classes using superimposition.

The last part of the concern is the implementation part, which can be used to define
the behavior of a concern. For a logging concern, for example, we can define specific log
functions and use them as internal.

2.3 Demonstrating Example

To illustrate the Compose* toolset, this section introduces a Pacman example. The
Pacman game is a classic arcade game in which the user, represented by pacman, moves
in a maze to eat vitamins. Meanwhile, a number of ghosts try to catch and eat pacman.
There are, however, four mega vitamins in the maze that make pacman evil. In its evil
state, pacman can eat ghosts. A simple list of requirements for the Pacman game is
briefly discussed here:

e The number of lives taken from pacman when eaten by a ghost;

A game should end when pacman has no more lives;

The score of a game should increase when pacman eats a vitamin or a ghost;
A user should be able to use a keyboard to move pacman around the maze;
Ghosts should know whether pacman is evil or not;

Ghosts should know where pacman is located;

Ghosts should, depending on the state of pacman, hunt or flee from pacman.
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2.3.1 Imitial Object-Oriented Design

Figure 2.2 shows an initial object-oriented design for the Pacman game. Note that this
UML class diagram does not show the trivial accessors. The classes in this diagram are:

Game This class encapsulates the control flow and controls the state of a
game;
Ghost This class is a representation of a ghost chasing pacman. Its main

attribute is a property that indicates whether it is scared or not
(depending on the evil state of pacman);

GhostView This class is responsible for painting ghosts;

Glyph This is the superclass of all mobile objects (pacman and ghosts). It
contains common information like direction and speed;

Keyboard This class accepts all keyboard input and makes it available to pac-
man;

Main This is the entry point of a game;

Pacman This is a representation of the user controlled element in the game.
Its main attribute is a property that indicates whether pacman is evil
or not;

PacmanView This class is responsible for painting pacman;

RandomStrategy By using this strategy, ghosts move in random directions;

View This class is responsible for painting a maze;

World This class has all the information about a maze. It knows where
the vitamins, mega vitamins and most importantly the walls are.
Every class derived from class Glyph checks whether movement in the
desired direction is possible.

2.3.2 Completing the Pacman Example
The initial object-oriented design, described in the previous section, does not implement
all the stated system requirements. The missing requirements are:

e The application does not maintain a score for the user;
e Ghosts move in random directions instead of chasing or fleeing from pacman.

In the next sections, we describe why and how to implement these requirements in the
Compose* language.

2.3.2.1 Implementation of Scoring

The first system requirement that we need to add to the existing Pacman game is scoring.
This concern involves a number of events. First, the score should be set to zero when
a game starts. Second, the score should be updated whenever pacman eats a vitamin,
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Figure 2.2: Class diagram of the object-oriented Pacman game
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concern DynamicScoring in Pacman {
filtermodule dynamicscoring {
externals

score : pacman.Score = pacman.Score.instance ();
inputfilters
score_filter : Meta = {[*.eatFood] score.eatFood,

[*.eatGhost] score.eatGhost,
[*.eatVitamin] score.eatVitamin,
[*.gameInit] score.initScore,
[*.setForeground] score.setupLabel}
}
superimposition {
selectors
scoring = { C | isClassWithNameInList(C, [’pacman.World’,
’pacman.Game’, ’pacman.Main’]) };
filtermodules
scoring <- dynamicscoring;

Listing 2.2: DynamicScoring concern in ComposeX

mega vitamin or ghost. And finally, the score itself has to be painted on the maze canvas
to relay it back to the user. These events scatter over multiple classes: Game (initializing
score), World (updating score), Main (painting score). Thus scoring is an example of a
crosscutting concern.

To implement scoring in the Compose* language, we divide the implementation into two
parts. The first part is a Compose* concern definition stating which filter modules to
superimpose. Listing 2.2 shows an example Compose* concern definition of scoring.

This concern definition is called DynamicScoring (line 1) and contains two parts. The
first part is the declaration of a filter module called dynamicscoring (lines 2-11). This
filter module contains one meta filter called score_filter (line 6). This filter intercepts
five relevant calls and sends the message in a reified form to an instance of class Score.
The final part of the concern definition is the superimposition part (lines 12—18). This
part defines that the filter module dynamicscoring is to be superimposed on the classes
World, Game and Main.

The final part of the scoring concern is the so-called implementation part. This part is
defined by a class Score. Listing 2.3 shows an example implementation of class Score

Instances of this class receive the messages sent by score_filter and subsequently
perform the events related to the scoring concern. In this way, all scoring events are
encapsulated in one class and one Compose* concern definition.
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public class Score
{
private int score = -100;
private static Score theScore = null;
private Label label = new java.awt.Label("Score: 0");

private Score() {}

public static Score instance() {
if (theScore == null) {
theScore = new Score();
}

return theScore;

public void initScore(ReifiedMessage rm) {
this.score = 0;
label.setText ("Score: "+score);

public void eatGhost(ReifiedMessage rm) {
score += 25;
label.setText ("Score: "+score);

public void eatVitamin(ReifiedMessage rm) {
score += 15;
label.setText ("Score: "+score);

public void eatFood(ReifiedMessage rm) {
score += 5;
label.setText ("Score: "+score);

public void setuplLabel (ReifiedMessage rm) {
rm.proceed () ;
label = new Label("Score: 0");

label.setSize (15*View.BLOCKSIZE+20,15*View.BLOCKSIZE) ;

Main main = (Main)Composestar.Runtime.FLIRT.

message .MessageInfo.getMessageInfo().getTarget ();

main.add (label ,BorderLayout.SOUTH) ;

Listing 2.3: Implementation of class Score

Johan te Winkel
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concern DynamicStrategy in Pacman {
filtermodule dynamicstrategy {
internals
stalk_strategy : pacman.Strategies.StalkerStrategy;
flee_strategy : pacman.Strategies.FleeStrategy;
conditions
pacmanIsEvil : pacman.Pacman.isEvil();
inputfilters
stalker_filter : Dispatch = {!pacmanIsEvil =>
[*.getNextMove] stalk_strategy.getNextMovel};
flee_filter : Dispatch = {
[*.getNextMove] flee_strategy.getNextMovel}
}
superimposition {
selectors
random = { C | isClassWithName (C,
’pacman.Strategies.RandomStrategy’) };
filtermodules
random <- dynamicstrategy;

Listing 2.4: DynamicStrategy concern in ComposeX

2.3.2.2 Implementation of Dynamic Strategy

The last system requirement that we need to implement is the dynamic strategy of
ghosts. This means that a ghost should, depending on the state of pacman, hunt or
flee from pacman. We can implement this concern by using the strategy design pattern.
However, in this way, we need to modify the existing code. This is not the case when
we use ComposeX dispatch filters. Listing 2.4 demonstrates this.

This concern uses dispatch filters to intercept calls to method RandomStrategy.
getNextMove and redirect them to either StalkerStrategy.getNextMove or FleeStrategy
.getNextMove. If pacman is not evil, the intercepted call matches the first filter, which
dispatches the intercepted call to method StalkerStrategy.getNextMove (line 9). Oth-
erwise, the intercepted call matches the second filter, which dispatches the intercepted
call to method FleeStrategy.getNextMove (line 11).

2.4 Compose* Architecture

An overview of the Compose* architecture is illustrated in Figure 2.3. The Compose*
architecture can be divided in four layers [45]: IDE, compile-time, adaptation, and run-
time.
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Figure 2.3: Overview of the Compose* architecture

2.4.1 Integrated Development Environment

One of the purposes of an integrated development environment (IDE) layer is to provide
an interface to the native IDE and create a build configuration. A build configura-
tion specifies which source files and settings are required to build an application with
Composex.

A build configuration can be created manually, or by using a plug-in. For example
Compose*.NET supports a plug-in for Visual Studio. After creating a build configura-
tion, the compile-time is started.

2.4.2 Compile-time

The compile-time layer is platform independent and reasons about the correctness of
a composition filter specification with respect to a program. This allows the target
program to be build by the adaptation layer.

The compile-time ‘pre-processes’ the composition filter specifications by parsing the
specification, resolving the references, and checking its consistency. To provide an ex-
tensible architecture to facilitate this process, a blackboard architecture is chosen. This
means that the compile-time uses a general knowledge-base, called the ‘repository’. This
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knowledge-base contains the structure and meta-data of the program. It is used by dif-
ferent modules to base their activities on. Examples of analysis and validation tools
are the three modules SANE, LOLA and FILTH. These three modules are responsi-
ble for (some) of the analysis and validation of the superimposition specification. The
compile-time layer creates a weave specification that is used as input by the adaptation
layer.

2.4.3 Adaptation

The adaptation layer consists of modules for program manipulation, type harvesting,
and code generation. These modules connect the platform independent compile-time
to the target platform. The harvester is responsible for gathering the structure and the
annotations within the source program and adds this information to the knowledge-base.
During code generation a reduced copy of the knowledge-base is generated along with
a weave specification. This weave specification is used by the weaver during program
manipulation to instrument the target program with hooks to the run-time environment
of Composex.

2.4.4 Run-time

The Compose* run-time environment is responsible for execution of concerns at join
points. It is activated by the hooks present in the program, as woven by the adaptation
layer. A reduced copy of the knowledge-base, containing the necessary information for
filter evaluation and execution, is used for evaluation of messages. When an instrumented
function is called, that message is evaluated by the imposed filter modules. Depending
on the condition part and matching part of a filter, accept or reject behavior is executed.

2.5 Supported Platforms

The composition filters concept of Compose* can be applied to any programming lan-
guage, given that certain assumptions are met. Currently, Compose* supports two
platforms: .NET, and Java. For each platform different tools are used for compilation
and weaving. They all share the same platform independent compile-time.

Composex.NET targets the .NET platform and is the oldest implementation of
Compose*. Its weaver operates on CIL byte code. Composex.NET is programming
language independent as long as the programming language can be compiled to CIL
code. An add-in for Visual Studio is provided for ease of development. Compose* Java
targets the Java platform, but is still under construction.
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2.6 Features Specific to Composex*

The Composition Filters approach uses a restricted (pattern matching) language to
define filters. This language makes it possible to reason about the semantics of the
concern. ComposeX offers three features that use this possibility, which contribute to
more control and correctness over the application under construction. These features
are:

Ordering of filter modules
It is possible to specify how the superimposition of filter modules should be ordered.
Ordering constraints can be specified in a fixed, conditional, or partial manner. A
fixed ordering can be calculated exactly, whereas a conditional ordering is depen-
dent on the result of filter execution and therefore evaluated at run-time. When
there are multiple valid orderings of filter modules on a join point, partial order-
ing constraints can be applied to reduce this number. These constraints can be
declared in the concern definition;

Filter consistency checking
When superimposition is applied, Compose* is able to detect if the ordering and
conjunction of filters creates a conflict. For example, imagine a set of filters where
the first filter only evaluates method m and another filter only evaluates methods a
and b. In this case the latter filter is only reached with method m; this is conse-
quently rejected and as a result the superimposition may never be executed. There
are different scenarios that lead to these kinds of problems, e.g., conditions that
exclude each other;

Reason about semantic problems
When multiple pieces of advice are added to the same join point, Compose* can
reason about problems that may occur. An example of such a conflict is the
situation where a real-time filter is followed by a wait filter. Because the wait filter
can wait indefinitely, the real-time property imposed by the real-time filter may
be violated.

The above mentioned conflict analyzers all work on the assumption that the behavior
of every filter is well-defined. This is, however, not the case for the user-defined meta
filter. Its behavior is unpredictable and therefore poses a problem for the analysis tools.

Furthermore, Compose* is extended with features that enhance usability. These features
are briefly described below:

Integrated Development Environment support
The Compose* implementations provide a plug-in for an IDE. Compose*x.NET
provides a plug-in for Visual Studio, while the objective of Compose* Java is to
provide one for Eclipse;

Debugging support
The debugger shows the flow of messages through the filters. It is possible to place
breakpoints to view the state of the filters;
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Incremental building process
When a project is build and not all the modules are changed, incremental building
saves time.

The following language properties of Compose* can also be seen as features:

Language independent concerns
A Compose* concern can be used for all the Compose* platforms, because the
composition filters approach is language independent;

Reusable concerns
The concerns are easy to reuse, through the dynamic filter modules and the selector
language;

Expressive selector language
Program elements of an implementation language can be used to select a set of
objects to superimpose on;

Support for annotations
Using the selector, annotations can be woven at program elements. At the moment
annotations can be used for superimposition.
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Chapter 3

Problem Identification

This chapter will motivate why we want to apply composition filters to C. It starts with a
description of problems that are caused by crosscutting concerns, which is then clarified
with a concrete example. After this the choice for composition filters is explained. This
chapter results in some requirements for the prototype of Compose* C.

3.1 Background

Aspect-oriented programming makes it possible to split crosscutting concerns from the
base code, by placing them in a new module called an aspect. Splitting crosscutting
concerns improves the modularity of the program, because this has a positive influ-
ence on the reusability, changeability and understandability of the programming code,
Section 1.2. Aspect-oriented programming is developed as an extension to the object-
oriented paradigm, but recent research has shown that crosscutting concerns are not an
object-oriented problem. One of the not-object-oriented languages where problems with
crosscutting concerns are identified is C, which is the focus of this research.

C is a procedural programming language, which means that it has less support for mod-
ularity techniques. Problems with such languages were already recognized years ago and
resulted in new programming paradigms such as object-oriented programming. How-
ever, C is still very popular because of its efficiency. Therefore extending C with aspect-
oriented programming is valuable, because aspect-oriented programming addresses mod-
ularity problems.

Aspect-oriented programming for C can especially be valuable for reducing problems
with existing legacy systems. A legacy system can be defined as “any information system
that significantly resists modification and evolution”[16]. It is characterized as a large
and complex system, with unacceptable high maintenance costs, a result of evolution
over years. Nevertheless, in these years such a system has become mission critical,
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and therefore it is not an option to stop using the system [12][22]. Such a system is
troublesome, when business needs are changing, and therefore the requirements of the
system need to change. These changes will result in high costs. Modernizing, or also
called re-engineering, a legacy system is required in order to improve its evolvability. An
example of a system that rejects evolution, because of problems caused by crosscutting
concerns, is described in [17], and [27]. This system consists of 12 million lines of code and
contains four major crosscutting concerns that are spread out over the entire program.
Together these concerns take up approximately 31% of the code.

In the next section the modularization problems in C that are caused by crosscutting
concerns will be explained on the basis of an example.

3.2 Crosscutting Examples

The last few years, recognition of crosscutting problems in C is risen. For example
in [54], [26] the following crosscutting concerns are described: memory and thread
management, event dispatching and handling, initialization and destruction for efficient
start up and secure shutdown, network communication, configuration of middleware,
exchangeability, switching the network protocol, buffer overflows and prefetching.

In this thesis the crosscutting concerns that are found by the Ideals project in the
legacy system of ASML [17] are central to our research, because these concerns are well
documented [18, 27] and give a clear insight of the problems with crosscutting concerns
in C.

In the legacy system of ASML four major crosscutting concerns are distinguished. At
ASML it is mandatory that these concerns are applied to every function in the system.
In Listing 3.1 a function is shown, where the ASML concerns are applied to. These
concerns are:

Reflection
Functions have a local variable that contains the function’s name, which is used
for logging. This variable is set at the beginning of the function as in line 13;

Dynamic Execution Tracing
Logs the values of the in-, out-, inout- parameters at the beginning or end of a
function for debugging purposes, see lines 29, 36. These functions need a tracing
handler that takes care of the tracing. This handler is declared in a global struct,
line 5;

Parameter Checking
Examines if an in-, or inout- parameter is not NULL and if an out-parameter is
NULL, if this is the case an error needs to be logged, and also an error needs to
be returned to the calling function, lines 14, and 18;

Timing
Times the function’s execution. To do this first a timer handler is declared, line 4
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and defined, line 24. This handler is used in the actual timing supported by the
in and out functions in lines 27, and 39. [18]

The function in the example divides parameter op! by parameter op2 and writes the
result in parameter answer, if op2 is not zero, line 32. This is the only code of the
function and it only covers a small part of the total code-size of the function.

typedef struct
{

TIMING_handle ti_handle;
TRACING_handle tr_handle;

} CALCmodule_data_struct;

int CALCdivide (int * answer, int opl, int op2)
{
const char* func_name = "CALCdivide";
if (opl == NULL || op2== NULL){
ERROR_LOG("Input Parameter error in function : \%i",func_name);
return (INPUT_PARAMETER_ERROR) ;
}
if (answer == NULL){
ERROR_LOG ("InOutput Parameter error in function: \%i",func_name);
return (INOUT_PARAMETER_ERROR);
}

int result = 0K;
TIMING_handle TIMING_hdl = NULL;

TIMING_in(TIMING_func_timing_hdl, CALCmodule_data_struct.ti_handle,
func_name, &TIMING_hdl);

TRACE_in( CALCmodule_data_struct.tr_handle, func_name);

/%% original code of function CALCdivide *%*/
if (op2 !'= 0)

*answer = opl / op2;
else result ERROR ;

TRACE_out (CALCmodule_data_struct.tr_handle, func_name, result);

TIMING_out(TIMING_func_timing_hdl, CALCmodule_data_struct.ti_handle,
func_name, &TIMING_hdl);

return result;

Listing 3.1: Function from file Calc.c with all ASML concerns

The Figures 3.1, 3.2, 3.3, and 3.4 show a component of the ASML system, where occur-
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rences of the code belonging to a specific concern are highlighted.
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The example and figures show that the problems described in Section 1.2, apply to these
concerns. These problems are:

Code is difficult to change
Because the crosscutting concerns are scattered over the entire program, making
changes to one of these concerns may require a change at all the positions in
the program where code belonging to the concern is placed. As we see in the
Figures 3.1, 3.2, 3.3, and 3.4 this would be a very time consuming job, while
these components are only a small part of the entire system. Furthermore, when
modifications are made to one of the tangled files, checking for side-effects with all
crosscutting concerns is required;

Code is harder to reuse
When a function of this system needs to be reused, the crosscutting code should
be deleted or the code should also be added to the other functions in the new
system. Reusing the function with crosscutting code requires the copying of used
global variables, such as the handler that is used by the tracing concern, line 5
from Listing 3.1;
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Code is harder to understand
Tangled code makes it difficult to see which code belongs to which concern. This
problem becomes clear through Listing 3.1, where only lines 32 till 34 belong to
the CALCdivide function.

3.3 Composition Filters

In the preceding paragraphs the need for aspect-oriented programming in C has been
clarified. This was already concluded by some other projects, scuh as: AspectC, As-
pectC++, Arachne, and WeaveC. These projects all resulted in an aspect-oriented
weaver that works and possibly can tackle the problems described in the paragraphs.
However, these weavers are based on the AspectJ methodology described in Section 1.4.

The intention of this research is to develop an aspect-oriented weaver for C with the
Composition Filters approach. We have chosen for composition filters, because of its
declarative manner of specifying advice, by using a filter. Declarative specifying advice
is easy to understand, and therefore it is simple to create composition filters concerns.
Furthermore, because of the declarative way to specify filters it is possible to reason
about the semantics of a concern. Nevertheless, the applicability of composition filters
to C is questionable. It is stated that the concept of composition filters is language
independent. However, it is developed as an extension of the object-based paradigm.

The implementation of the Composition Filters approach, Compose*, uses the reasoning
to improve the control over the program, see Section 2.6. This section also shows that
Compose* is very extensive. Porting Compose* to C, Compose*x C, should make it
possible to use some of these features. It seems feasible, because during the design of
Compose*, support for multiple languages is taken into account. At the moment it
already has the ability to weave at IL and Java.

3.4 Composex C Requirements

Before we start looking how composition filters can be applied to C and how we can
realize a weaver, we need to specify some non-functional or quality requirements that
the weaver should fulfill. These requirements are needed in order to make design decisions
throughout this research. Functional requirements of the weaver are not discussed here
because they cannot be defined before we know what the weaver should do.

Requirements can be deduced from the characteristics of C as well as the intention of
composition filters. Characteristics of C that need to be taken into account when an
aspect-oriented weaver is developed are:

General applicable
It needs to be possible to use the weaver on existing programs. This is not easy,
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because there are several C dialects. The working of the prototype should be
independent from naming conventions that are common in C projects;

Efficient
A C program is very efficient. One of the requirements we would like to fulfill for
this prototype is that the execution overhead stays within acceptable limits, after
using the weaver.

Composition filters is a language independent concept, which has resulted in multiple
Compose* implementations for different languages. We would like the weaver to fulfill
the requirement:

Compatibility of Compose* concerns
Using the same composition filters syntax will make the understanding of compo-
sition filters easier and it will make it possible to reuse concerns across platforms.

3.5 Summary

Aspect-oriented programming makes it possible to separate crosscutting concerns from
the base code; in this way the modularity of a program will be improved. Aspect-oriented
programming for C can be very valuable, because C lacks modularity techniques, and
recent research has shown that crosscutting concerns are problematic in C.

There already are some aspect-oriented weavers for C. However, these weavers are all
based on the AspectJ approach. In this research an aspect-oriented C weaver based on
the Composition Filters approach will be developed, Compose* C. Compose* has some
specific, useful features and is easy to port to other languages.

Based on the characteristics of C and an intention of the Compose* project some re-
quirements are formulated. The weaver needs to be generally applicable and preserve
the performance of a C program. Also, the Compose* concerns need to be compatible
with the other Compose* implementations.
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Chapter 4

The C Programming Language

C is a procedural programming language developed in the early 1970s by Dennis Ritchie.
It was intended for use on the Unix operating system, but has spread to many others. At
the moment it is one of the most popular programming languages. Because a C program
is very efficient, C is still very popular for writing system software. However, C can also
be used for developing other kind of applications. [19]

4.1 C-Program

A C-program consists of text that is kept in units called source- or preprocessing files. A
source file, together with all the headers and source files included via the preprocessing
directive #include, is known as a preprocessing translation unit. After preprocessing, a
preprocessing translation unit is called a translation unit. Previously translated transla-
tion units may be preserved individually or in libraries. The separate translation units
of a program communicate by, for example, calls to functions whose identifiers have
external linkage, manipulation of objects whose identifiers have external linkage, or ma-
nipulation of data files. Translation units may be separately translated and then later
linked to produce an executable program. [41] [42]

A C-program is a sequence of functions that call each other for processing. This se-
quence starts with a function named “main”. In C, functions are the way to abstract
information. Functions can be reused from the standard library that comes with the
compiler, or developed by oneself.

4.2 Type system

The type system of C supports the basic types, char, int, float, double and enumerations,
where some qualifiers can be applied to, for instance short and long to integers. From
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the basic types, derived types are constructed, being:

Arrays
are sets of objects of a given type;

Functions
encapsulate some computation and hide the details of the operation from other
parts of the program, which do not need to know about them:;

Pointers
are variables that contain the address of a variable;

Structures
are collections of one or more variables, possibly of different types, grouped together
under a single name for convenient handling;

Unions
are variables that may hold objects of different types and sizes. It is a single area
of storage big enough to hold the widest member. [41] [42]

Nevertheless C does not support classes.

C is a weak-typed language. The compiler does check if the type of an expression is
correct, but it is possible in C to override the checks. In C a value of one type can be
treated as another, so it is for instance possible to store a character in a int, because
the size of an int is larger than a char. By use of a cast the actual character can be
retrieved.

4.3 External objects

A C program consists of a set of external objects, which are either variables or functions.
External variables are defined outside of any function and are therefore available to
many functions. By default external variables and functions have the property that all
references by the same name are references to the same thing. External variables are
permanent so they retain values from one function invocation to another. Any function
may access an external variable by referring to it by name, if the name has been declared
somehow. The scope of an external variable or function is the point from which it is
declared, to the end of the file being compiled. If an external variable is used before it is
defined, or when it is defined in another source file than it is used, an extern declaration
is needed. In C there is a difference between a definition and declaration of an extern
variable. A definition sets aside storage and also serves as the declaration for the rest
of the file. A declaration announces the properties of a variable, primarily its type. By
prefixing an external object with the word static, the scope of the object will be limited
to the rest of the source file being compiled. This is a way to hide the objects. [42]
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4.4 Local variables

Variables declared in a function are named automatic/local. The scope of such a variable
is the function where it is declared. Variables of the same name in different functions
are unrelated. With internal variables also the static declaration can be used. Static
means here that the local variables remain in existence rather than coming and going
each time a function is activated. Internal static variables provide private, permanent
storage within a single function.[42]

4.5 Preprocessor

C provides certain language facilities by means of a preprocessor, which is conceptually
a separate first step in the compilation process. One of the most frequently used features
is #include, which makes it possible to include the contents of a file during compilation.
There are often several #include lines at the beginning of a source file, to include com-
mon #define statements and extern declarations, or to access the function prototype
declarations for library functions from headers. Included files may also contain #include
lines. #include is the preferred way to tie the declarations together for a large program.
[42]

4.6 Naming Conventions

In C it is common to use naming conventions for adding meta-information to your
program. With naming conventions the level of abstraction can be enhanced, compared
to normal source code; this makes the software for instance better maintainable. Naming
conventions are used in [4] and [5] to imitate for instance namespaces, by applying file
naming conventions. At ASML naming conventions are used to define modules. However
it is not realistic to expect that everyone applies naming conventions with care [4][5] and
it is possible that naming conventions overlap other identifier names, for instance using
set* functions for setting a variable and a function settle[45].

4.7 Example

In the following listings an example Hello World C-program is seen. This example prints
the two lines, “Hello World”, and ”Hello user”, and shows most of the concepts discussed
in this chapter. In line 3 of 4.1 the main function is seen, which calls another function,
worldAnswer line 6. worldAnswer is declared in the file World.h, 4.4, which is included
in line 2. The definition of worldAnswer is found in 4.3. In 4.1 line 4 a local variable of
type char* is shown, and in 4.3 line 3 a char* external variable. In this example also a
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naming convention is applied; all elements which belong to the file World, header and
source file, start with the pattern “world”.
#include "HelloWorld.h"
#include "World.h"
int main (){
char* userText= "Hello World";
printf ("%s \n", userText);
worldAnswer () ;
return O0;

Listing 4.1: HelloWorld.c

#include <stdio.h>
int main();

Listing 4.2: HelloWorld.h

#include "World.h"
char*x worldText ="Hello user";

void worldAnswer (){
printf ("%s\n",worldText);
}

Listing 4.3: World.c

#include <stdio.h>
void worldsAnswer ();

Listing 4.4: World.h

4.8 Summary

C is an older programming language, but still often used because of its efficiency. A C
program is a series of functions that call each other. A function in C is used to abstract
behavior, and therefore it is the unit that can be reused. C’s type system consists of
basic and derived types, but does not support classes. The scope of an object in C can
be local or external. Local means that a variable is defined inside the function. Whereas
an external object is a function or variable that can be used in the whole file it is defined.
An external object can be used in another file when it is declared as extern. Separate
files can be combined into a program by using the preprocessor. In C it is common to
use naming conventions to enhance the abstraction level.
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Composition Filters in C

With composition filters, messages that enter and exit an object can be intercepted and
manipulated by a sequential composition of filters. This makes it possible to modify
the behavior of an object. By use of superimposition filter modules can be added to
objects [11]. In Figure 5.1 the working of composition filters is shown.

Composition filters are developed as an extension of the object-based model. Object-
based languages are higher structured imperative languages than procedural languages,
such as C. The intention of this thesis is to apply composition filters to the program-
ming language C. Characteristics that distinguish object-based languages from other
imperative languages are:

e The concepts Objects and Classes;

e Objects are first class-values. This means that objects can be used as arguments
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Figure 5.1: A Composition Filters Principle [11].
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and return types of operations. [61]

Object-based is not the same as object-oriented, because object-oriented languages re-
quire inheritance support. An example of an object-based language is Visual Basic 6.0.

Programs are built up from a combination of program elements of the implementation
language. This combination forms the static structure of the program and is used by
composition filters to designate the join points in an application. [37]

Composition filters use program elements from the object-based paradigm that do not
have an alternative in C, for instance objects. In this chapter we propose a mapping for
composition filters to C. This mapping is discussed based on the key elements of com-
position filters and how these elements are selected or created with a composition filters
concern. These elements are messages, superimposition and filter modules. Listing 5.1
presents a template with all the important elements of such a concern. This template
shows that the concern is split up in a filter module and a superimposition part, which
both contain several elements.
concern MyConcern ; {
filtermodule MyFilterModule {
internals
externals
conditions
inputfilters
outputfilters
}
superimposition {
selectors
filtermodules
annotations

Listing 5.1: Composition Filters concern elements

5.1 Message

A message is used as an interaction instrument between objects. Messages contain
information about the target object, method, and possibly parameters. The sender
object sends a message by calling a method in the target object, the target object then
executes the intended method and returns control to the sender [50]. A method call is
seen as a service request of an object, consistent to the intended behavior of the object.
Composition filters intercept messages at the sender and/or target object’s interface and
possibly manipulate them.

A C program consists of functions and external variables, possibly divided over different
translation units. The execution of a C program starts with the function main, followed
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CALCahide main{} STpush double
{Int* &, Int op1, Imt op2) {double f) STstack [100]
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Figure 5.2: Messages in a C program. [42]

by a sequence of calls and executions of other functions. Information between functions
is shared by calling a function with arguments or by manipulating external variables.
[41]

The communication between functions is presented in Figure 5.2, where a C program is
shown. The figure describes an adjusted version of the PolishCalculator from [42]. The
program starts in the function main, and retrieves one by one operands with the getop
function. Depending of the operand retrieved, the STpush and/or STpop functions are
called and the right calculations are executed, CALCdivide or CALCadd. The STpush
and STpop functions share the external variables STstack, where values are written and
read, and STSP, which controls the size of STstack. Therefore the arrows in the figure
can be seen as the messages that are sent in a C-program.

In essence, a message in C is very similar to a message in object-based languages. In
both approaches functions or methods are called and executed. Object-based languages
contain objects that encapsulate methods and variables. With a clear interface the state
of the object is controlled. Also, in C functions update external variables, these variables
are shared with all functions in the same scope.

So we can distinguish two principles of sending messages in C, updating an external
variable and calling a function. However, variables are always updated with functions,
just as in our example the functions STpush and STpop. Because of this we will only
focus on function calls in our research.

5.2 Superimposition

Superimposition is developed as a technique to add filter modules to concerns. The use
of superimposition is therefore associated with the concept of objects in object-oriented
programming languages, but objects are not supported by C. In this section we discuss
to what concern, or module, a filter module should be superimposed in C, and how we
can select it with the superimposition part of the concern specification.

41 Johan te Winkel



5.2. SUPERIMPOSITION University Twente

5.2.1 Module

Objects are a way to modularize programs. A module is illustrated by the following
definition: “Every named program element that can be implemented as an independent
entity can be seen as a module. A well designed module has a single purpose and a
narrow interface to other modules. A module supports abstraction [61].”

In the concept of composition filters the most important characteristic of a module is
that it sends and receives messages. Therefore the element that should serve as a module
has to encapsulate one or more functions. In C the “largest” language unit which can
abstract information is a function and therefore the most logical program element that
could serve as a module. Because the function name is unique in a C-program, it is
possible to weave at all the join points in the program. However, selecting a function as
a module, limits the generality of selecting join points, because it is then only possible
to superimpose a filter module at one function, Listing 5.4 or all functions, Listing 5.3,
in the program.
superimposition {

selectors

oneFunction = { C | isModuleWithName(C, ’STpop’) 1};

filtermodules
oneFunction <- fm;

Listing 5.2: Superimposing one function

superimposition {
selectors
allFunctions = { C | isModule(C) };
filtermodules
allFunctions <- fm;

Listing 5.3: Superimposing all functions

There are some techniques that can create a set of functions. Creating a set of functions
offers a more extensive pointcut model, because of the possibility to weave at all the
functions in the set. These techniques are:

File

A file is the only unit in C that encapsulates functions. A file defines the scope of
the program elements in it. However, a file does not exist during computation, so
it is not a program element, or value itself [61]. Because files are the input sources
for the compiler, there is a possibility to retrieve the file name at compile-time.
Also, the name at runtime can be retrieved with macros. A file is a convenient
way to separate large programs in logical sets of functions. Therefore it is possible
to use a file to select a set of functions, and in this way to select join points in a
general manner.
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Directory
A directory is not an element in C, however it is often used to logically group files
and therefore functions. At compile-time it is possible to know in which directory
the functions are found, because the file is used as input to the compiler, and it
is possible to find out in which directory the file is located. The properties of a
directory are very similar to a file, because it is not a program element. However,
a directory may have subdirectories, which creates subsets and therefore more
general pointcuts. Nevertheless, a directory may contain one or more files, so the
number of functions it contains is at least equal to the number of functions in one
file, but normally larger.

Naming Convention
In C it is usual to create logical units based on naming conventions. A naming
convention is a pattern or series of patterns that prefixes an identifier of one or more
elements in a program. If naming conventions are applied to program elements that
exist during computation, then the naming convention is also available during
computation. When naming conventions are applied to functions, a logical set
of functions can be created that shares the same prefixed pattern. By prefixing
a series of patterns it is possible to create subsets. A naming convention is an
agreement, its fulfillment is not verified by for instance a syntax checker. Therefore
it cannot be expected that naming conventions are applied without mistakes [45].
However, when naming conventions are applied with care, it can divide a program
into unique sets of functions.

Annotation
An annotation is meta-information bounded to a program element that does not
influence the execution process. Annotations can add multiple properties to pro-
gram elements, and they are separated from the program elements, unlike naming
conventions. Annotations can be used to create a set of functions, by adding an
annotation with a specific property to the functions. It is possible to create sets
that overlap and to create subsets, because an element can have multiple proper-
ties. This is very similar to naming conventions that need to be applied to the
identifier of every function in the set. Nevertheless, annotations are not supported

by C.

Table 5.1 summarizes the analysis of the techniques to group functions. We examined
which kind of sets of functions can be created with the techniques: sets, subsets, and
overlapping sets, because they have a positive effect to the generality of selecting join
points. Also is the support of the techniques for C evaluated, because it is important
that the techniques can be applied in existing projects, otherwise the tool is not able to
re-engineer a program.

Table 5.1 shows that files can only create a set of functions, and not a sub- or overlap-
ping set. The pointcut model of files is therefore the most limited of the techniques.
A directory also supports subsets of functions, however normal use of directories result
in large sets. Annotations can create the widest range of sets of functions, and there-
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Set | Subsets | Overlapping | Language
sets support
File + - - +
Directory + + - +
Naming Convention | + + - +
Annotation + + + -

Table 5.1: Supported properties function set techniques

fore offers the most extensive pointcut model. However, annotations are not supported
by current C-compilers, so it is unwise to define modules with annotations. The most
logical technique for creating a set of functions are naming conventions. Naming con-
ventions support sets and subsets of functions and are commonly applied in projects.
So in this case naming conventions are the best technique for creating sets of functions.
In Listing 5.4 a filter module is superimposed to the STpush and STpop functions of
Figure 5.2.

superimposition {
selectors
setFunctions = { C | isModuleWithName(C, °’ST’) };
filtermodules
setFunctions <- fm;

Listing 5.4: Superimposing a set of functions defined by a naming convention

However, in C projects it is rather common to use a combination of the above techniques
to define modules. For instance, in the paper of [4] naming conventions are used to
create subsystems with one task based on file naming conventions. ASML uses naming
conventions and directories to define modules from functions, where one file in the module
serves as an interface to the other modules in the program. Because of this, we want to
offer support for all the described techniques.

To apply composition filters to C, the concept of a module is not required. In C, function
names are unique and because messages in C are functions calls, it is already possible to
intercept all messages. However, for the generality of superimposing functions, select-
ing a set of functions is convenient. The most suitable technique for creating a set of
functions is based on naming conventions. But there are more techniques that are used
in existing systems. For composition filters we see a module in C as a set of functions
defined by a file, directory, naming convention, annotation, or a combination of these
techniques.
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5.2.2 Superimposition of the concern specification

The three most important elements of the superimposition part of composition filters
concerns are the selectors, filter modules, and annotations. These elements and what
they mean in C will be explained here.

Selectors

The selector is a query over program elements that results in a set of modules. In
the selector all possible program elements of a language can be used. A C program
is a combination of external variables and functions, which may have parameters
and local variables. These elements all have a type. It is also possible to select
modules that contain elements with specific annotations. Because modules are
a particular set of functions, it is possible to select a set of functions that all
share the same program element or are combined by the techniques file, directory,
annotation, naming convention, or a combination of these techniques.

However, selecting a program element based on a part of its name requires an
extension to the selector with a general way to select names, so modules created
with a naming convention can be selected as seen in Listing 5.5. Nevertheless,
this is error sensitive. A better way to create a module is to extend the language
model with a module element. In this way a module can be selected with a module
query, Listing 5.6. Nevertheless a manner to parse naming conventions is needed.

selectors
moduleCALC = { C | isFunctionWithName (C, ’CALC*’) };

Listing 5.5: Selector with general way for name matching

selectors
moduleCALC = { C | isModuleWithName (C, ’CALC’) };

Listing 5.6: Selector with module selection

Filter modules

In the filter modules element, filter modules are bound to the selectors in order
to superimpose them. With this element specific filter modules are added to the
selected modules.

Annotations

An annotation is meta-information bounded to a program element which does not
influence the execution process. Composition filters have the ability to select mod-
ules to superimpose on, based on program elements that have specific annotations,
and to introduce annotations to a set of selected modules. Introducing annotations
is done with this element, which makes it possible to bind annotations to selectors.
Using the selector language for superimposing annotations to modules prevents the
scattering of annotations, and reduces the inconsistencies of adding annotations
manually [45].

Annotations are not supported by C, but they are a welcome extension because C
lacks design information. At the moment C only supports comments and naming
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Figure 5.3: Filter Module

conventions as manners to add meta-data to a program. But comments are ignored
by the compiler and therefore not usable to superimpose on. Naming conventions
are agreements over information that has to be added to names of program ele-
ments. Program element identifiers are often used in existing programs to define a
module, so it is unwise to use it for adding extra design information. As an exam-
ple, in the Dynamic Execution Tracing concern of the crosscutting examples from
ASML Section 3.2 design information is needed that describes if the parameters
are written, read, or both in the function, in order to know which checks need
to be performed. This information requires data-analysis of the code. By adding
annotations this information is made available to the compiler.

Nevertheless, the selector query results in a set of modules. Therefore annota-
tions can only be introduced into a module, and not for instance to add design
information to parameters of functions. Also selecting a set of modules requires
the manual addition of design information for defining modules. Therefore, we
do not think that superimposing annotations to modules will address the prob-
lems, reusability, changeability and understandability of programming code in C.
Because we do think annotations are a desirable extension to C, we will create
support for annotations, but not for superimposing them.

5.3 Filter module

A filter module is similar to a set of filters. With a filter it is possible to intercept
messages and manipulate them. The filter module and filter itself can best be explained
by the elements it contains. Figure 5.3 shows a filter module with its elements.

5.3.1 Filter module of the concern specification

Internals
By declaring an internal element, state can be added to the superimposed module.
An internal is fully encapsulated and therefore its state can only be used by one
instance of a filter module. In practice using an internal means that intercepted
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messages can be redirected toward functions of these elements, or functions of these
elements can serve as conditions. Therefore these elements are a function or have
the ability to encapsulate functions.
In C, functions are always declared external and therefore shared with other func-
tions in the same scope, just as they share the external declared variables with
these other functions. An internal element only has meaning as its state, used
function plus the used external variables and functions, belongs to one filter mod-
ule. This is only possible if only one instance of a filter module may be added to
a scope, which is an unwanted constraint.
Furthermore, C does not support the instantiation of elements. Making internals
work with C requires a unique identifier of the redirected function, the used exter-
nal variables, and the used functions, for every instantiation of the filter module,
because function and external variable identifiers always point to the same object.
This is the only way to make sure that external variables and static local variables
of used functions are not updated by other instances of the filter module. Making
a copy of all the used elements and changing the right calls to the elements, in the
advice which has to be woven as well as in the copied functions, is probably hard
to implement.
Internals do not really fit the concept of C, which is that every element is declared
external except for local variables, and making internals work with C will probably
be very hard. For these reasons we do not offer support for internals in the the
concept of composition filters in C.

Externals
Just as an internal, an external element adds state to the superimposed module,
and therefore offers the possibility to redirect messages and use conditions from
it. The difference between an internal and an external is that an internal is fully
encapsulated, in contrast to an external that shares the state with all the instances.
Unlike internals, externals do fit the concept of composition filters, because con-
ditions and functions used from an external are only defined once in the program.
So every filter module uses the same condition or function to redirect to.
Using conditions or functions of an external in a superimposed function, requires
that they are declared in the same scope as the function. The used external vari-
ables and functions should be in the same scope as the definition of the function.
This is possible by including a header file with the declarations of the used func-
tions.
In Section 5.2 is presented that a set of functions can be defined by use of several
techniques. These techniques can be used to create an external. By including the
headers of the files this external covers, the state of the external is added to the
superimposed module.

Conditions
Conditions need to be fulfilled in order to apply a filter. Conditions are therefore
methods that return a boolean, which in C normally is implemented as a function
that returns a 1 or not 1. Conditions may be declared in the external, in this case
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the condition identifier will be preceded with the external name. A condition can
also be a function that is local to the superimposition unit, so in the same scope.
Input filters and output filters

Composition filters support input and output filters. An input filter intercepts the
incoming messages, whereas output filters intercept outgoing messages. This is a
difference between a function execution and a function call. To intercept messages
input filters need to be placed before the first statement of the function is executed
and output filters before the actual call is done. It is important for the behavior
of composition filters that the order of the filters at a join point stays preserved.
As seen in Section 2.2 a filter contains a name, a type, and an ordered set of filter
elements. A filter element has a condition, matching and substitution part. The
matching and substitution part is used to intercept messages and redirect them.
They both contain two elements: a target which is the intended object, and a
selector which is the called method. In C a target is the set of functions that can
be seen as a module. It is optional for use but not required, because a function
name, the selector, is already unique and therefore the message is unique. When
we want to intercept messages from more than one function, the target has to be
used.

5.4 Example composition filters in C

In Listing 5.7 error handling is added to the STpush and STpop functions of the stack
example, Figure 5.2.

The naming convention, “ST”, creates a module that controls the stack and is used in
the selector, line 16. The filter applied to module ST makes sure that the function
STpop is not carried out when the STstack is empty, and no value will be pushed when
the STstack is full.

concern ErrorConcern{
filtermodule error {
externals
error : ER;
conditions
emptyStack : error.ERemptyStack();
fullStack: error.ERfullStack();
inputfilters
error_filter : Dispatch = {
emptyStack=>[*.STpop] error.ERprintErrorMessage,
fullStack=>[*.STpush] error.ERprintErrorMessage
}
}
superimposition {
selectors
stackFunctions = { C | isModuleWithName(C, ’ST’) };
filtermodules
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Figure 5.4: ErrorConcern applied to C program

stackFunctions <- error;

Listing 5.7: Error Concern

int ERemptyStack ();

int ERfullStack();

int ERprintErrorMessage ();
extern int SP;

int ERemptyStack(){ if (SP==0) return 1; return 0; }
int ERfullStack (){ if (SP==STACKSIZE) return 1; return O; }
void ERprintErrorMessage (){printf (¢‘Stack out of bounds exception’’);}

Listing 5.8: Error Concern implementation

This Error concern is also applied to the program seen in Figure 5.2, the new program
is seen in Figure 5.4. This is a conceptual figure that shows how composition filters can
be applied to C. In the program the module ST is superimposed with the filter module
error. This filter module intercepts messages to STpop and STpush. When a message to
STpop is intercepted the condition ERemptyStack is evaluated, for STpush the condition
ERfullStack. These functions are declared in the external ER. If one of these conditions
is true, the filter dispatches to ERprintErrorMessage.
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5.5 ASML concerns with composition filters

In section Section 3.2 four crosscutting concerns from a legacy system of ASML are
explained. The code belonging to these crosscutting concerns is placed at the following
join points:

e Before and after function execution;
e Insert variable declaration in function;
e Globally insert field declaration into a structure.

However, the Composition Filters approach is based on intercepting messages and ma-
nipulating them by use of filters, with a message defined as a function call. Compose*
shall therefore not regenerate the original code, but it can create a program with the
same functionality.

Composition filters supports input and output filters, therefore messages can be manip-
ulated at the beginning of a function execution or before a function call. The way a
message is manipulated is specified by the semantics of a filter. In Section 2.2 the filters
that are supported by Compose* at the moment are described. It is possible to extend
this set of filters in Compose*, by creating a custom filter.

The meta filter is very expressive and can be seen as around advice, which is com-
mon in the AspectJ approach. The meta filter increases the number of positions where
Compose* can manipulate messages with after function execution and after function
call.

To show how composition filters can implement the crosscutting concerns from ASML,
implementations of the Timing and Parameter Checking concerns are given. The Dy-
namic Fxecution Tracing and Function Naming concern are not worked out. The Timing
and Parameter Checking concerns cover the problems of the Dynamic Execution Trac-
ing concern, therefore this shall not show anything new. The Function Naming concern
is only used by the other concerns, and because the function name is available in the
message this concern is not needed anymore.

5.5.1 Timing concern

The Timing concern measures the execution time of a function. It starts timing at the
beginning of a function with a call of function TIMING_in and stops at the end of the
function with a call of function TIMING_out. These functions use a global and local
TIMING_handle. These four pieces of code characterize this concern in the system.

Defining a global or local does not fit the concept of composition filters. Therefore
another manner to weave this piece of code into the base code needs to be found, which
preserves the functionality of the system.
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For usability reasons the external variables of the CALC module are all grouped in one
element, a struct. These variables are shared between all the functions in CALC, just
as the global TIMING handle variable. When the Timing concern is separated from
CALC, the global needs to be defined in the Timing concern, and is not needed anymore
in CALC.

The local TIMING_handle variable is specific for a TIMING_in and TIMING_out call in
a function. Therefore this variable should be defined in the same scope as the functions.
The TIMING_in and TIMING_out functions are called at the beginning and end of a
function. Because the functions, the variable and the arguments of the functions are for
every function the same, it is possible to create a custom filter that adds the three pieces
of code to every function.

In Listing 5.9 the implementation of the Timing concern is seen. The custom filter weaves
the code at every function found in module CALC, line 6 and 10. The global ti_handle is
externally declared in Listing 5.10 and therefore shared with the superimposed module
CALC.

concern Timing{
filtermodule timing {
externals
time : TIMING;
inputfilters
timing_filter : timing = { [*.x] }
}
superimposition {
selectors
calcFunctions = { C | isModuleWithName(C, ’CALC’) };
filtermodules
calcFunctions <- timing;

Listing 5.9: Timing concern with composition filters

TIMING_handle ti_handle;

Listing 5.10: Timing concern implementation

5.5.2 Parameter Checking

The implementation of the Parameter Checking concern in composition filters is seen
in Listing 5.11. It is originally implemented as an if-statement where a parameter is
checked if it is NULL. If this is the case an error function is called and the function
returns with an error value. This is done for all the in-, out-, inout- parameters.

This is similar as the functionality of a dispatch filter, which redirects a message to
another function, if a condition is true. However, a condition is a function declared in an
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external. This condition does not know the parameter values, and if they are annotated
as in, inout, or out. When a dispatch filter is used, every superimposed function, with
different parameters, should have its own condition. This reduces the general applicabil-
ity of the concern and therefore the effectiveness of using aspect-oriented programming.

At compile time the annotation information, parameter names and function name are
available. So it should be possible to create a custom filter that checks the parameters
values, calls the right error message and returns.

concern ParamCheck{
filtermodule paramcheck {
inputfilters
paramcheck_filter: Paramcheck= { [*.*] }
}
superimposition {
selectors
calcFunctions = { C | isModuleWithName(C, ’CALC’) };
filtermodules
calcFunctions <- ParamCheck;

Listing 5.11: Tracing concern with composition filters

5.6 Summary

In this chapter the concept of composition filters in C is worked out. The Composition
Filters approach is developed for object-based programming languages, and uses concepts
from these languages that do not exist in C.

There are three important elements in composition filters: messages, filters, and super-
imposition. Messages in composition filters are method calls, which are very similar to
function calls in C. Filters can intercept messages and manipulate them, an input filter
can do this before function execution, an output filter before function call. With super-
imposition a set of functions can be selected, where a filter module can be put on. The
set of functions can be defined by a file, directory, naming convention, or annotation.

A composition filters concern is constructed from elements. A mapping of these elements
to C is made in this chapter. Externals can be used to add state to a concern. It is a
module, however to prevent missing global variables, in practice the header files these
modules overlap are added to the concern. Conditions are functions that return a 1 or
not 1 and are defined in the external or in the scope of the superimposed functions. With
the selector language it is possible to select a set of modules, based on its name, global or
function it encapsulates, or a parameter or local variable of a function. Annotations are
a useful extension to C, because extra information can be added to program elements
without performance loss. This information can be used to superimpose on.
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Our proposed design of composition filters in C is applied to an example, and the cross-
cutting concerns of ASML. It was possible to transform both into an aspect-oriented
design.
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Chapter 6

Weaving technology

Weaving is the process of composing core functionality modules with aspects, thereby
yielding a complete system [32].

The concept of composition filters is language independent, just as a large part of
Compose*. One of the functions of Compose* which is platform specific is the
weaving process. Compose*x.NET uses a runtime weaver that changes Intermediate
Language(IL)-code. This implementation was chosen, because the most important re-
quirement at the time was: flexibility. This weaver can be used by all .NET languages,
because they all use IL, and it can change the behavior of the advice during execution.
Flexibility is also the most important requirement for the Compose*.Java implementa-
tion, therefore it also supports a runtime weaver.

For Compose* C other requirements apply. Some requirements are already explained
in Section 3.4. In this chapter the set of requirements shall be extended or adapted to
make the concept of composition filters work in C, which is described in Chapter 5.

These requirements are used to find a suitable aspect-oriented weaver for C that can
handle the weaving process. We favor an existing weaver instead of developing our own,
because of the limited time available for this project.

6.1 Requirements for the weaver

In the previous chapter we proposed the concept of composition filters in C. To implement
this, weaving technology is needed that can realize this concept. In this section functional
requirements are derived from the proposed concept of composition filters in C. The the
quality requirements, which are explained in the problem identification chapter, are also
analyzed and adapted, if needed.
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Functional requirements

In Compose*x C a message is a function call. For intercepting messages, Compose*
C needs to have the ability to superimpose filters at one function or a named set of
functions. Filters are divided in input and output filters, with the difference that input
filters intercept messages at the execution of the function and output filters intercept
messages when a function is called. An input filter should therefore be placed before
the first statement of a function is executed and an output filter before a function call.
A meta filter is an exception to this, because it is defined as around advice, so it can
also place advice after a function call or execution. This means that the weaver needs to
support a pointcut that can select one or more functions based on a name, an execution
and call join point, and before and after or around advice.

Using externals in C requires that a function, or set of functions, and their used external
objects, need to be introduced into the same translation unit as the superimposed func-
tion. It is possible to achieve this, by weaving an #include statement with the file where
the function and objects are declared, or by declaring all the external objects extern in
this file. The latter has the advantage that the preprocessor does not have to be called
again, but it is probably harder to realize. So the weaver should support a way to add
global declarations or an #include statement to a translation unit.

The weaver does not have to support a manner to weave advice in a generic manner,
because the compile-time of Compose* offers all the superimposed functions and the
filter modules belonging to them. In a composition filters concern it is possible to use a
general manner for selecting functions. If naming conventions are applied in a project
Compose* makes it possible to use them.

Filter-sets are a sequential composition of filters. In object-oriented languages every
incoming message will travel through the composition of the input filters, and outgoing
messages through the composition of output filters. In C filters are woven inside the
functions and therefore only messages that match the matching part of a filter are
traveled. It is possible that there are filters with the same matching part that need to
be in a specific order. Therefore, it is important that the weaver supports ordering at
join points. In Listing 3.1 is seen that there is a dependency between the concerns. The
func_name variable that is set by the Function Naming concern, is used by all the other
crosscutting concerns. Because of this, the concern has to be woven before the others.
This is another reason why ordering at a join point is needed.

In C there are no alternatives for annotations. Annotations are a welcome addition to
C, so it would be convenient, if the weaver could support this in some kind of way.

The functional requirements are:
1. Pointcut that selects a function;

2. Execution join point;
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3. Call join point;

4. Before and after, or around advice;

5. Possibility to introduce defined objects;
6. Manner to specify ordering of advice;
7. Interface to implement the aspects;

8. Annotations.

Quality requirements

The intention to develop the weaver is originated from problems with existing systems.
C is still often used because of its efficiency. The effect of the interference of the weaver
to the efficiency of the program should be as little as possible. It is not uncommon that
the existing systems are big, such as in the case of ASML. Increasing compilation-time
is therefore not desirable, so we prefer the prototype to be fast. It also is preferable
to keep using the same C compiler. Therefore the weaver cannot be dependent of new
language features, for instance variable length arrays that are supported by C99, but
not by C89 and of course the new libraries. Restrictions to the working of the weaver by
naming conventions or programming style are also not desirable. Furthermore, it should
be possible to manage the weaver with Compose*. This means that it must be possible
to generate the aspect with Compose* and to automatically invoke the weaver.

The quality requirements are:
9. Implemented tool;
10. Fast weaving process;
11. Wide acceptance for existing C code;

12. Delivers an efficient program.

Discussion

For the development of Compose* C some requirements are more important than others.
An implemented tool is needed to use the weaver in Composex C. If there is no weaver,
requirements 10, 11, and 12 are also automatically not available. Requirements 10, 11,
12, are desirable, just as the support for annotations, requirement 8, but they are not
obliged for creating Compose* C. However, we prefer support for all these requirements.

o7 Johan te Winkel



6.2. ASPECT-ORIENTED WEAVERS FOR C University Twente

6.2 Aspect-oriented weavers for C

In the preliminary section, twelve requirements are proposed that should be fulfilled
by the aspect-oriented weaver, in order to be suitable for integrating in Composex C.
In this section we examine if an existing aspect-oriented weaver for C satisfies these
requirements.

Most of the current weavers are briefly described in [1], where a similar research is
performed. However, the requirements of that project do not cover ours. The weavers
are split up in source code, and intermediate language weavers, because there are specific
characteristics attributable to it. These approaches of weaving aspects are explained in
Section 1.3.2. This section also shows that some weavers adapt the virtual machine, but
we did not find such a weaver for C. The aspect-oriented weavers for C that we know of
and we will discuss in this chapter are:

Source code Intermediate language
AspectC uDiner

AspectC(06)  TinyC2

AspectC++ Arachne

Aspicere TOSKANA
C4 TOSKANA-VM
WeaveC

Table 6.1: C Weavers

We discuss these languages one by one and judge them by the fulfillment of the require-
ments. However, this is not so easy. Aspect-oriented software development for C is a
relatively new research. To evaluate the requirements, information of some weavers had
to be extracted from papers, because the weavers do not exist yet, or are not ready
for use. Some requirements are probably not yet considered by the developers of a few
weavers, because they are not mentioned anywhere. Because it is likely that there is no
support for the unmentioned requirements, we negatively judge them.

6.2.1 Source code weavers

Source code weavers combine the base code of the program with aspect code. Source
code weavers generate regular C code, which is interpretable with a normal C compiler.
This approach of weaving has the advantages that, high-level sources are modified, op-
timization of the code by the C compiler is still supported, and it is possible to use
different C compilers. Nevertheless, source code weaving also has some drawbacks, a
source code weaver is language dependent, and its expressiveness is limited to the ex-
pressive power of the source language. A more extensive explanation of these advantages
and drawbacks can be found in Section 1.3.2.
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AspectC

AspectC is based on the AspectJ approach. AspectC supports a function join point, call,
execution, cflow and within pointcuts, and before, after and around advice [21]. Aspects
in AspectC can be declared in a separate file, and are singletons [2]. This means that
the requirements 1 till 5 and 7 are all supported by AspectC.

AspectC does not provide a general way to select functions to superimpose on. The
precise name of the function has to be used in every pointcut. It also does not support
information about the joinpoint that can be used in the advice.[1]

Also, AspectC does not offer support for annotations or other manners for adding or
using meta-information, and no option to define an order is found. So requirement 6
and 8 are not fulfilled by AspectC.

Furthermore, there is no tool available of AspectC. It seems like the AspectC project
stopped in 2003. This project never resulted in a release, therefore requirements 9 till
12 are not available.

AspectC

July this year, a new aspect-oriented weaver for C is released. This new weaver also
caries the name AspectC [8], to avoid misunderstanding, in this thesis we shall refer to
the new version with AspectC(06). AspectC(06) is based on the original AspectC ideas,
but it is created by the developers of TinyC2. Because this weaver was not available
at the time we selected a weaver for integration with Compose* C, this weaver is not
used. However, we do want this research to be complete, and that it will show a clear
overview of the current weavers, so we added AspectC(06) to this chapter.

As we said, AspectC(06) is an implementation of the original AspectC idea. This idea
included a function join point, call, execution, clow and within pointcuts, before, after
and around advice, and aspects as separate files. These features are all implemented in
the latest release. Furthermore, AspectC(06) supports additional features, such as an
infunc and infile pointcut, and it also has a general manner to select join points based on
their name. So we can conclude that requirements 1 till 4, and 7 are fulfilled. However,
the current version AspectC(06) does not support a way to introduce global objects, or
to include header files, therefore requirement 5 is not supported.

Nevertheless, this AspectC(06) version does not offer support for annotations or other
manners for adding or using meta-information, and there is no option to define a weaving
order supported. So the requirements 6 and 8 are not fulfilled by AspectC(06).

Just as WeaveC, AspectC(06) creates an abstract syntax tree from the preprocessed
source code. In this tree the advice is woven. After this, C-code is generated from the
trees. The generated code is still efficient and the compile process is fast. AspectC(06)

99 Johan te Winkel



6.2. ASPECT-ORIENTED WEAVERS FOR C University Twente

can compile sources that are pre-processed by many different C compilers. This means
that AspectC fulfills requirements 9 till 12.

AspectC++

AspectC++ is an aspect-oriented extension to C+4. It is conceptually very similar
to AspectJ. An aspect is declared in a separate file and is woven into the base code
as a class. Because a C++ compiler can also compile C code, it is possible to build a
working program. The intention of the developers is to create support for C. AspectC+-+
supports requirements 7,9,10, and 12, but it does not fulfill number 11.

AspectC++ is very extensive. It supports the pointcuts call, execution, cflow, base, de-
rived and within. Also the pointcut-functions that, target, result, and args are available,
these functions use runtime join point information. An ordering of pointcuts can be
defined with a special advice, order. A join point can refer to a function, an attribute,
a type (struct or union), or a point from which a join point is accessed. AspectC++
supports before, after and around advice and has the ability to introduce new elements
in structs or unions. General weaving is supported by AspectC++, by use of match
expressions to create pointcut expressions. These expressions can match type names as
well as attribute and method signatures. A wildcard character is supported that matches
any string. Nevertheless, AspectC++ does not offer a possibility for using annotations.
So it fulfills requirements 1 till 6, however requirement 8 is not fulfilled. [56] [7]

Aspicere

An aspect in Aspicere is a C compilation unit extended with the possibility to contain
advice. Aspicere defines pointcuts with prolog queries, which is a very expressive mech-
anism. It is possible to create generic advice, change the parameters of a superimposed
function and it supports “weave-time metadata” [9], so it supports requirement 8.

Advice can be executed around a join point, nevertheless Aspicere only supports just
one, being the function call. It does offer join point information by use of a thisJoinPoint-
struct. The declared ordering of aspects and advice is also the order it is executed [1].
This means that it fulfills requirements 1, and 3 till 7, but not 2.

Aspicere even works on non-ANSI C code, nevertheless applying Aspicere to a test case
showed that compilation is very slow [1]. Therefore it fulfills requirements 9,11, and 12,
nevertheless 11 is not fulfilled.

C4(CrossCutting C Code)

C4 is a toolkit containing three source-to-source transformation tools, being a C4 weaver,
C4 unweaver and a C4-to-C compiler. With C4 it is possible to define aspects in the
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source code. With the unweaver the sources are split up into C4 aspects and base code.
With the weaver and compiler the source code can be re-generated. Nevertheless, C4’s
unweaver and weaver are still under construction [20]. So requirements 9 till 12 are not
available.

The intermediate C4 aspects are very similar as AspectC aspects. Advice can be invoked
before, after, and around a join point. It supports the pointcuts, function execution,
introduction of elements in structs and unions, and introduction of global variables. A
call pointcut is however not supported. C4 does not support any join point information,
a generic manner to weave advice, or possible support for annotations, just as AspectC
[33]. So C4 does fulfill requirements 1,2,4, and 5.

When aspects are annotated in the source code, the problem of ordering is not a problem,
however automatically annotating source code Compose* C is not possible and therefore
not usable. So we do not focus on annotating the source. Therefore we state that it is
not possible to specify ordering, because the aspect language does not have an element
for it. Requirement 7 is fulfilled by C4, but 6 and 8 are not.

WeaveC

Aspects in WeaveC can be defined with XML. These aspects make a clear distinction
between pointcuts and advice. In this way multiple pieces of advice can be woven at one
pointcut. A priority can be added to advice to guarantee that the advice is executed in
the right order. WeaveC also offers support for annotations. This means that WeaveC
supports requirements 6, 7, and 8.

WeaveC supports the pointcuts function call and execution, global and local field intro-
duction, and element introduction in structures. Advice can be placed before or after a
join point. It is possible to weave advice in a general manner. So the requirements 1 till
5 are all fulfilled.

WeaveC creates an abstract syntax tree from the preprocessed C code. Advice is added
by transforming the tree, which is a very fast process. Therefore, WeaveC also fulfills
requirements 9 till 12.

6.2.2 Intermediate language weavers

Intermediate language weavers can add behavior to a program, by directly weaving
aspects in a target language. This target language can for instance be the Common
Intermediate Language, or machine code. Weaving in an intermediate language offers
more control over the executable program. The main advantages that intermediate
language weavers have over source code weavers are, that they are, often programming
language independent, more expressive, and source code independent, and also they
can add aspects on load-, or runtime. However, intermediate language weavers also
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have some drawbacks over source code weavers, the intermediate language is harder
to understand, and it is more error-prone. For a more extensive explanation of these
advantages and drawbacks we refer to Section 1.3.2.

pDiner

pDiner compiles code into shared libraries, which are loaded at runtime in the advised
base application. With pDiner it is possible to weave around functions and global
variables, as they are annotated as hookable. Ordering should not be a problem in this
way. pDiner also supports a cflow-like pointcut that examines the nested call hierarchy
[51]. uDiner is superseded by Arachne [1], therefore no tool is available. pDiner fulfilles
the requirements 1, and 3 till 6, but it does not fulfill requirements 2, 7, and 8, and
because it does not exist we state that 9 till 12 are not available.

TinyC2

TinyC2 uses a Dyninst library to enable runtime weaving. It does not work with aspects,
but a similar construct that describes a join point and advice, called a “snippet”. A
snippet can contain the pointcuts onentry and onexit of a function. It is possible to
select a function with its name, or to select all functions in the program with a wildcard
character. In the snippets globals, argument and return values can be used. There is no
option for creating an ordering [63]. Therefore TinyC2 supports requirements 1, and 3
till 6, but not requirements 2 and 7.

The TinyC2 snippets are translated to C+4 code that invokes the Dyninst library.
With a C++ compiler a binary executable is generated, which is linked to the Dyninst
instrumentation library. TinyC2 is very slow because of Dynlnst [63]. Also TinyC2 is
not freely available [1]. Because of these reasons we state that requirement 8 is not
fulfilled and 9 till 12 are not available.

Arachne

Arachne is an improvement of the yDiner framework. Annotating the source code for
specifying aspects is not necessary in Arachne. At weaving-time Arachne executes a
specific rewriting strategy depending on a pointcut. For instance a function call, shall
be rewritten with a jmp instruction to a hook. Depending on the evaluation of the hook,
the hook executes the advice code, which is a function in Arachne, or calls the original
function. [25]

Arachne supports the pointcuts function call, read and write of global variables, and
cflow. Nevertheless, no execution join point is available and no join point information
can be used, only arguments can be passed [25]. Specifying an ordering seems impossible,
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and also annotations are not supported. So Arachne offers support for requirements 1,
and 3 till 6, but not for requirements 2,7, and 8.

Arachne uses code splicing to call the hooks at runtime. Code splicing is fast, but it
only works on computers that have an IA32 processor and a Linux kernel that supports
anonymous memory mapping [6]. This means that requirements 9, 10, and 12 are fulfilled
by Arachne and 11 is not.

TOSKANA (Toolkit for Operating System Kernel Aspects)

TOSKANA is a dynamic weaver that uses code splicing, just as Arachne, to jump
to the address of the advice, which results in an execution of the advice. An aspect
in TOSKANA is a C function with the returntype “ASPECT”. TOSKANA can add
advice before, after, or around in-kernel functions, at the execution pointcut. Selecting
a pointcut is done with an “aspect_init” function, that combines the pointcut and the
advice. TOSKANA therefore fulfills requirements 1, 3, 4, and 6, nevertheless 25,7,
and 8 are not fulfilled. TOSKANA does not work with older Unix-like systems, because
applications that are not executing in kernel context, do not have access to kernel memory
space, which is a requirement for using TOSKANA [30]. There is no implementation
known of TOSKANA, so requirements 9-12 are not available.

TOSKANA-VM(Toolkit for Operating System Kernel Aspects-Virtual Ma-
chine)

The inventors of TOSKANA also thought of an implementation using a low level vir-
tual machine[31]. The intermediate code of this virtual machine is of higher level than
binary code, which offers a possibility for more advanced join points, such as call, ex-
ecution, variable assignment, and access. Also, no release of TOSKANA-VM is found.
TOSKANA-VM offers support for the requirements 1 till 5, and 7, does not fulfill re-
quirements 6 and 8, and because no tool is available, requirements 9 till 12 are also not
available.

Overview

Table 6.2 briefly shows which requirements are fulfilled and which are not by the weavers.

6.3 Selecting a weaver

In the last two sections requirements for a weaver are described and existing weavers are
analyzed. In this section we select a weaver that shall be integrated with Compose* C.
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AspectC + |+ - + | - | NA|NA|NA|NA
AspectC(06) + |+ + ]+ - -+ -]+ + + +
AspectC++ + |+ |+ |+ |-+ ]+ - +
Aspicere + -1+l + |+ +][+|+] + ] - +
C4 +|+ |- |+ |+|-]+]|-|NA|NA|NA|NA
WeaveC +l+ |+ [+ +[+[+][+][+ [+ ]+ ]+
pDiner +|-|+|+|+|+]|-]-|NA|NA|NA NA
TinyC2 +| -]+ +|+|-]-1]-|NA|NA|NA NA
Arachne + |- |+ |+ ]|+ |- +]-] + + - +
TOSKANA +| -]+ +|-|-]+]-|NA|NA|NA NA
TOSKANA-VM | + | + | + | + |+ | - | +| - | NA|NA | NA | NA

Table 6.2: Fulfilled requirements by the weavers

Table 6.2 shows that there are only five weavers that are implemented and available,
being: AspectC(06),AspectC++, Arachne, Aspicere, and WeaveC. Nevertheless, at the
moment the weaver was selected, AspectC(06) did not exist, so it was not an option for
use and therefore not discussed in this section.

AspectC++ is probably the most extensive aspect-oriented language for C. However it
generates C++ code. It should be possible to compile C code with a C++ compiler,
however there are many incompatibilities. For instance C90 does not support “//”
comments, and both C90 and C99 do not support booleans, C++ does. To apply
AspectC++ to a C-system, it is likely that adjustments to the source code are needed.
This is not desirable and therefore AspectC++ is not an option for use in Compose*
C. AspectC++ also does not support any annotation manners. This was not really a
requirement, but more a preference.

Arachne is a runtime weaver. A runtime weaver is normally more flexible, but slower
than a compile-time weaver. However Arachne is not slow, because it uses code splicing.
Unfortunately using code splicing makes Arachne dependable of a specific processor
architecture, TA32, and a Linux kernel that supports anonymous memory mapping.
This is unacceptable for Compose*x C, because we want to make it general applicable.
Furthermore, Arachne does not support a execution join point. An execution join point
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is needed for creating input filters, an important element of composition filters. Also
Arachne does not supports any form of annotations. Because of these reasons Arachne
is not suitable for use in Compose* C.

Aspicere only comes short at two requirements. It does not support an execution join
point, needed for input filters, and the compilation process is very time consuming.
Building a case program with Aspicere required 17 hours and 38 minutes, instead of
the original 15 minutes without Aspicere [3]. No support for input filters and a very
slow building process, is not preferable. Therefore Aspicere is not the right weaver for
Compose*x C.

The last weaver is WeaveC. WeaveC supports all formulated requirements and therefore
selected for use in Compose*x C. WeaveC supports the right join points, an option for
annotations, and a manner to prioritize advice. It uses GCC to preprocess the C-code,
and only delays the compilation process 1,5 times. The generated code can be compiled
with GCC and therefore compiler optimization is still applied, so the program’s efficiency
is preserved. Nevertheless, the included GCC compiler is an older version, which does
not support all the current options of C.

6.4 Summary

The weaving process of ComposeX is platform dependent. Adapting the current im-
plementation is not an option. Developing the weaving technology our own is time
consuming, therefore the current aspect-oriented weavers for C are evaluated. This eval-
uation is based on a set of requirements derived from the concept of composition filters
in C, and some characteristics that Compose* C should fulfill.

We examined eleven weavers, unfortunately only four were ready for use at the time,
being: AspectC++4, Arachne, Aspicere, and WeaveC. AspectC++ and Arachne are not
general applicable in the C environment and therefore not suited to apply in Compose*
C. Aspicere lacks an execution join point, so input filters cannot be implemented, and
its building process is very slow. WeaveC fulfills all the requirements, therefore WeaveC
shall be integrated with Compose* C in order to realize the weaving.
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Chapter 7

Composex C

Compose* is build from several components. The components can be divided in two
groups, platform independent and dependent. Platform independent modules do not
need to be adapted if a new language will be integrated. However, the platform de-
pendent modules do need to be adapted or replaced. In Figure 2.3 the architecture
of Compose*x.NET is shown. This figure shows that only the compile-time is language
independent.

In this chapter we explain the implementation and design decisions of the language de-
pendent components for C. The main functions that are adapted, created, or extended
are: creating a C language model, the collection of program-information, adding a source
weaver, implementing the filters, and adding an IDE-plugin. These functions are dis-
cussed in the next sections.

7.1 Language Model

Selecting static join points in a program requires information about the static structure
of the program. The static structure of a program is a combination of program elements
belonging to the implementation language. With the selector of a composition filters
concern it is possible to query the elements in order to select the right join point. [37]

In the architecture of Compose*, Section 2.4, is seen that the design of Compose* is build
around a repository. This repository contains information about the program created
with Compose*. It is possible to extend the repository with a language model of the
implementation language. The language independent part of Compose* contains a meta-
model that already defines program elements seen in most programming languages, as
well as their properties and their relations. The elements in this model can be extended
to create a language model for the programming language to which we want to port
Compose*, in this case: C.
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This section presents the proposed language model for C, explains how this model is
implemented in Compose*, what problems it caused, and how these problems are ad-
dressed.

7.1.1 C Language Model

In Chapter 4 most of the program elements of C are already explained. The chapter
concludes that C has a limited type-system consisting of only a few basic-types, and
the possibility to create derived types, being: function, pointer, array, struct, union, or
enum. Running a C-program is an execution of a series of functions that call each other.
They can use external, or local variables, or parameters, but always have a return-type.

Chapter 5 explained the concept of composition filters in C. This chapter discusses that
C does not support a program element that groups functions, but that there are some
techniques that can be used to create a set. The availability of such a set enhances the
generality of selecting join points, which is a function call or execution. Sets of functions
can be created by using one of the following techniques:

e Files;

e Directories;

e Naming conventions;
e Annotations.

Furthermore, we saw that annotations are not only useful for defining a set of functions,
but also to add extra design information to programs. It would be convenient to add
annotations to most program elements.

The language model for C, which supports all the elements, properties and relations,
and makes all the features that are discussed in Chapter 5 possible, is seen in Figure 7.1.

As we can see in the figure there are some inconsistencies in the model which probably
need some explanation. These inconsistencies are:

ProgramElement
Only the elements available during execution are program elements, being variable,
parameter, type, and function. The other elements are derivable from the file-
system, or identifier names. Annotations are available at compile-time, but not
during execution and therefore not defined as a program element.

Type
In the language model no distinction is made between basic-types and derived-
types. By generalizing a struct, array, pointer, enum, and union as special kind
of type, it is possible to derive more structure information of the program. In
Compose* C we only want to query the program based on the return-type or type
of parameter of a function, or the type of an external in the program. We do
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not want to query how the derived-types are constructed. Therefore, basic and
derived-types are not split up, and both can be queried based on their name;
Variable
Variables can be declared local or external, which results in a different parent.
Because, other properties match they are defined as one program element.
Annotations
Are only applied to the elements that exist during computation, the actual program
elements. Annotations can not be added to types, but they do have a type;
Subsets
With directories, naming conventions, and annotations it is possible to create sub-
sets of functions. With directories and naming conventions this is done by creating
a parent-child structure of the same elements. With annotations this can be done
by applying multiple attributes.
Overlapping sets
With annotations it is also possible to create sets of functions that overlap, again
by using multiple attributes.
Sets of multiple techniques
Creating a set of functions can be done by combining techniques. It is possible to
create a set of functions, for instance based on files in directories, or by combining
naming conventions and files.

7.1.2 Abstract language model

The language independent part of Compose* holds an abstract language model. This
model is extendable to other programming languages. This model is seen in Figure 7.2.

This model supports program elements which are not supported by C, being: class,
interface and namespace. The elements field and method are object-oriented, but very
similar to the variable and function elements in C. In the abstract language model is
seen that a type has the same connections to a method, parameter, and variable, but
it is extended with the elements class and interface, which are not supported in C. As
we see from this model, it covers elements of most object-oriented languages, because it
supports classes and objects that are first class values.

Extending this model to create the model of Figure 7.1 is impossible. For instance the
element file in C should extend the element type in the abstract language model, because
this is the only element that contains functions and variables. However, this makes it
possible to have a file as a return-type of a function, which is not possible in C.

Nevertheless, the working of Compose* is dependent of the implementation of this ab-
stract language model. It is mandatory that the elements type and method are derived
from the program.

Type
In Compose* it is only possible to superimpose on elements which are an instance
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of type.

Method
A method is the element used in the filters of the Compose* concern. Because the
signature of the method is evaluated, also the return-type of the method has to be
a type and the parameters need to be an instance of parameter.

7.1.3 C language model in Compose*x C

For adding the program structure information to the repository, we considered not ex-
tending the abstract language model, because it was impossible to fit the C language
model to this model. This was however not an option, because the relationships between
the abstract language model elements that are used by the selector element, need to be
defined in the extensions of these elements. Because of this reason we have implemented
a C language model.

The implemented C language model is very straight forward:
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File is an extension of Type;

Function is an extension of Method;
Parameter is an extension of Parameter;
Directory is an extension of Namespace;
Type is an extension of Type;

Variable is an extension of Field;
Annotation is an extension of Annotation.

The relations between the extended elements are the same as shown in Figure 7.2.

One of our requirements for Compose* C was that the composition filters concerns should
be compatible with the other Compose* implementations. In the selector element of
other implementations, object-oriented elements are used which do not have a meaning
in C, being: class, method, and namespace. Because the implemented language model
is an extension of the object-oriented abstract language model there is a clear mapping
possible. This mapping is specified in a prolog query definition file that comes with the
Eclipse-plugin.

In the implemented C language model there is no place for the Naming Convention el-
ement, of Figure 7.1. A naming convention is a specific set of characters that prefixes
the identifier of elements. If we want to create a concern based on naming conventions,
it would be possible to add such an element and let it extend the element Type. In
this way it is a set of functions and it is possible to superimpose Naming Conventions.
However, the patterns of the naming conventions should be specified somewhere, and
every time a function is added to the language model, it should be evaluated to which
naming convention it belongs. This is a laborious manner for adding naming conven-
tions to Compose*x C. There is a much easier way. The selector language makes use
of a prolog engine, which supports a query that checks strings for character patterns:
matchingpattern(string, pattern). By using this query it is possible to select files that
contain functions with a specific query in the composition filters concern self. Using this
query does not require any alterations to Compose* C and therefore is chosen to use it.

Nevertheless, there is one major problem with this implementation. It is only possible to
superimpose on files, instead of sets of functions that are created based on annotations,
naming conventions, directories and files. Solving this problem required a way to specify
a super imposition unit. This is explained in the next subsection.

7.1.4 Superimposition unit

In the implementation described in the last subsection, it is only possible to superimpose
on files. However, we identified that it should be possible to create sets of functions with
files, annotations, naming conventions, and directories.

Creating a superimposition unit from a set of functions requires a manner to select
functions, and add them to a concern. For realizing this we used a XML-file that
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contains modules, with the properties: name, and a selector query, which results in a set
of functions. This query can use all the prolog functions that can be used in the selector
query of a composition filters concern.

In Listing 7.1 an example of such a XML-file is seen, where a superimposition unit
CalcFunctions is created. The query selects all functions that start with the naming
convention “CALC”.

<modules>
<module name="CALC"
query="Func|isFunction (Func), isFunctionWithName (Func, Name),
matchPattern (Name,’ CALC.*x’)"
/>

</modules>

Listing 7.1: CConcern.xml with description of concern:ClientFunctions

By defining these superimposition units, they can be used in the composition filters
concerns, just as a file. We can select them with the selector element based on the
functions they contain and/or its name, and use them as an external. With this exten-
sion to Compose* C, it becomes possible to select sets of functions based on naming
conventions, directories, and annotations. How to select the module with the selector is
presented in Listing 7.2. This is the same as we proposed in Section 5.2.

selectors
moduleCALC = { C | isModuleWithName (C, ’CALC’) 1};

Listing 7.2: ModuleSelection Selector with module selection

7.2 Collecting Program-Information

The static structure of the program is stored in the repository, which is a component of
the language independent part of Compose*. The repository is a Very Abstract Syntax
Tree(VAST), implemented as an object-oriented Database. In the repository not only
program-information is stored, but also the information from the composition filters
concerns. Storing the information from the composition filters concerns is done by the
language independent part of Compose*, but retrieving the static structure information
of the program is not.

In Compose*x.NET type and method signatures are extracted from the input files in
order to collect the program information. However, WeaveC contains a C parser that
generates an Abstract Syntax Tree(AST) from the program. This AST is used for the
weaving process that is done in WeaveC by adapting the AST and reconstructing a C-
file from it. It offers all the static structure information needed for selecting join points.
Because WeaveC and Compose* are build in Java, the AST that is constructed from
the source code, can be used to fill the repository.
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The AST is constructed using ANother Tool for Language Recognition(ANTLR).
ANTLR is a tool that can create recognizers, compilers, and translators from gram-
matical descriptions that may contain Java, C#, C++, or Python actions [47]. An
ANTLR-program contains three elements:

e Lexer that contains the tokens of the language;
e Parser that contains the EBNF of the language to construct a tree;
e One or more treewalkers, which evaluate the tree.

To extract information from the program, the treewalker from WeaveC is adapted. In
the treewalker actions are added, which add elements from the language-model to the
repository, when they are visited in the tree.

Because annotations are not supported by C, they had to be added. This required
adjustments to the parser and the treewalker. Annotations are first class entities, which
can have arguments [45]. This is very similar to the structure element of C, by using
typedef we can declare an annotation type. In this way we can control if the arguments
of the used annotation are similar to the declared annotation type, which can reduce
errors. In order to avoid problems with the current C syntax, an annotation starts with
a ‘$’token, and is between ‘(” and ¢)’. An example of the possible programming elements
where an annotation can be added is seen in Listing 7.3. There were only a few problems
with the implementation of annotations:

File annotations
In the listing one oddity is seen, $(file(“annotated_file”)). File is here a specific
annotation type that is required because a file itself is not in the grammar of C.
The program element to which an annotation is coupled is identified based on its
position in the tree, but this is impossible for a file;

Composestar core
Annotations in the language independent part of Compose* only support one
argument, which has to be of type String. Therefore, this is also only possible in
Composex C.

$(file("annotated_file"))

typedef struct annotation_structure{
char*x x;
} annotation;

$ (annotation("annotated_global"))int man=3;

$ (annotation("annotated_function")) void clientReceiveData
($(annotation("annotated_parameter")) char* data)
{
printf ("Client receiveData: %s \n", data);

}

Listing 7.3: Possible annotations
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7.3 WeaveC

WeaveC is the aspect-oriented weaver that we selected for integration with Compose*
C, Chapter 6. WeaveC uses XML-files to specify the aspects. However, this is an
unnecessary overhead, because WeaveC and Compose* are both build in Java. WeaveC
has a clear Java interface to specify the aspects in the program, which is used.

In Figure 7.3 the interface of an aspect is seen. This interface contains the following
elements:

Aspect
An aspect has an id and a series of pointcuts and advices.

Pointcut
Consists of a name, a file, data, which makes it possible to select a specific element
based on its name, a type, which is a function or struct, and an adviceapplication.
With this information the join points can be selected.

AdviceApplication
Is an element of pointcut, that is used to bind the advices and pointcuts, by using
the same id’s. It is also possible to declare the type of advice here, which can be
before or after the pointcut.

Advice
With its id it is possible to retrieve the adviceapplication, and therefore the point-
cut, it also contains a type, a place where it should be woven, and a priority that
indicates the order of the weaving of the advices. Advice also contains an element:
code, which contains the actual behavior that needs to woven at the specific join

point.
Aspect 1
Id
® 1 -

Polmtcut Advice
(d [id
L File -Type
_Data FPricrity
-Type +Code
-AdviceApplication

" AdviceApplication

-Id
FType

Figure 7.3: WeaveC aspect interface
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This interface can be used to weave code in the base code. For this we need a mapping
from the composition filters concern to this interface.

In Listing 7.4 a filter module is shown. On basis of this example we try to explain the
mapping we implemented:

Aspect
A filter module self can be seen as an aspect, because it may contain a set of
pointcuts where advice has to be added.

Pointcut
A pointcut is described with composition filters, by the matching part of the filter in
combination with the selector of the superimposition. In this example the selector
selects concern ST, the matching part of the filters selects [*.STpop], so function
pop from concern ST is selected, [ST.*], all functions in file Stack are selected,
and [*.*], all functions of concern ST are selected. Because WeaveC only supports
weaving on the set of functions defined by a file, we need to retrieve the functions
belonging to a concern and create a pointcut for every function separately.

AdviceApplication
The advice application needs to have an unique id for matching pointcut and
advice, the id that is used is a combination of the filtername, matching function
and advice application type. The advice application type depends on the filtertype
used, for instance a prepend filter adds advice before a pointcut and an append
filter after.

Advice
With its id it is possible to retrieve the adviceapplication and therefore this is the
same combination of elements. The type of the advice depends if the filter is an
input- or output filter. With an input filter the type is execution, while the type is
call with an output filter. The priority is calculated by using the filtermoduleorder
number. The code is dependent of the type of the filter in combination with a
possible condition and substitution function.

concern ErrorConcern{
filtermodule error {
externals
st : Stack;
inputfilters
error_filter : Dispatch = {[*.STpop] *.ERprintErrorMessage,
[ST.*] *.ERprintErrorMessage,
[*.*] x.ERprintErrorMessagel}
}
superimposition {
selectors
stackFunctions = { C | isModuleWithName(C, ’ST’) 1};
filtermodules
stackFunctions <- error;
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Listing 7.4: Error filter module for C

For matching part *.STpop, this example filter can be mapped to the aspect interface
of WeaveC, this is shown in figure Figure 7.4.

arror ;. Aspect
Id = arvar
ST@_E : Pointout emor filterpopbefore © Advice
Id = STpop Id = error_fillerpopbefore
Flle = Stack.c Type = exacution
Data = 5Tpop Friority = 1
Type = function Code = "retun ERprintErrorMessage )"
AdviceApplication

FilterMarme @ Advicedoplication

Id = error_fillerpopbefore
Type = hafore

Figure 7.4: Filter module Error as a WeaveC aspect

In composition filters it is possible to redirect messages to methods in other files, or use
conditions from files other than the matching function. In C this is only possible if there
is a function declaration available in the file. Therefore, we implemented Composex C
in such a way that when this is the case, an include statement is woven with the header
file in which the function is declared. This means that it is required to create such a
header. Preventing the include cycle problem can be done by using an #ifndef.

7.4 Filters

A filter is the element that is used to manipulate the behavior of a program. In Section 2.2
filters are explained. Here is seen that there are four built-in filter types, and that there
is an option to create custom filters. In this section we explain the implementation of
the four built-in filters: dispatch, send, error, and meta, and the custom filter.

7.4.1 Built-in filters

The implementation of the filters is the advice that has to be woven. In composition
filters we can make a distinction between the built-in filters: dispatch, send, and error,
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which are well defined and therefore possible to reason about. This is not possible for
Meta filters, because they are not well defined. However, meta filters offer a lot of
functionality. Therefore Compose* C offers support for both.

7.4.1.1 Dispatch filter

The dispatch filter redirects an accepted message to a specified target. Otherwise the
message continues to the subsequent filter.

Because, we proposed that a message is a function call, it is possible to redirect messages
by calling the substitution function from inside the matching function. And returning the
value of the substitution function, when control is given back to the matching function.
In 7.5 an example of a dispatch filter, Listing 7.5, and the generated code, Listing 7.6,
is presented.

inputfilter
dispatch_filter : dispatch = { condition => [*.foo] *.bar }

Listing 7.5: Dispatch input filter

int foo (){
if (condition ()==1){ return bar();}

Listing 7.6: Dispatch input filter advice

Dispatch filters do not have an output filter implementation.

7.4.1.2 Error filter
The error filter raises an exception if the filter rejects the message, otherwise the message
continues to the next filter in the set.

In C there is not a standard way for handling exceptions as for instance in Java. How-
ever, the standard C library offers a view approaches that manage exceptions. These
approaches all handle a set of stages in the exception’s lifetime. These exception stages
are:

1. A software error occurs;

2. Capturing an error’s cause and nature in an exception object;
3. Detecting the exception object;

4. Handling the exception;

5. After handling the exception, the program recovers and continues. execution.[53]
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=

The approaches are [53]:

stdlib.h
Provides the functions that halt the program: abort, abnormal program destruc-
tion, and exit, civilized program destruction by calling registered handlers. Abort
and exit cause an absolute termination of the program. These functions implement
exception lifetime Stages 4 and 5.

assert.h
The assertion macro is an abort function with a preceding condition check and
generated feedback that shows the source file and line number. It implements
exception Stages 3 through 5. Assertions are mainly used for debugging conditions
that can never arise in a program.

setjmp.h
Longjmp in combination with setjmp implement exception lifetime Stages 2 and 3.
Setjmp(j) sets a jump-point by filling j with the program context. When setjmp is
called it returns 0, therefore it can be used in a condition-expression. By calling
longjmp(j, r) a non-local goto to jump-point j is invoked. The setjmp function now
returns value of r, or when not set 1. Now the condition-expression can invoke an
exception.

signal.h
Contains a signal and raise function. With these functions it is possible to intercept
signals and pass them on to a manually defined handler, which for instance can
implement an abort function or longjmp for handling the exception. However,
there are only a few conditions in a C program that may rise a signal, for instance
division by zero, and memory access violations. Handling exceptions with signal
and raise implements all stages of an exception’s lifetime, nevertheless it only
intercepts a few exceptions.

errno.h
This header files declares a errno external and several values, that identify the type
of error, it may take. The value of errno has to be initialized to 0 at the beginning
of a program. Errno is set by some standard libraries when an error occurred. It
is also possible to change the errno value in your own functions. If after such a
function call the value of errno has one of the defined values a specific exception
has to be raised. Errno.h implements exception stages 1 to 3.

In composition filters an error has to be raised when a condition in combination with the
condition operator is false. This means that it does not have to intercept software errors,
and to detect its cause and nature, stages 1 and 2. It only has to handle the exception
and recover the program, and possibly notify where the error is raised. Therefore the best
approach for composition filters is, to use assertions, because it evaluates a condition,
if false it generates information about the file and line number, and terminates the
program.

The advice that has to be generated for an input and output error filter is simple,
Listing 7.8. An assertion call requires a condition as argument and it automatically
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returns from the program when the condition is false. Therefore an assert call for an
input error filter can be woven at the execution of the function, line 4, and for the output
error filter for all calls from this function, line 6. Because the assert function is defined
in a header, the header should be included in the file the advice is added, line 1.

inputfilter

error_execution_filter : error = { conditionInput => [*.foo] }
outputfilter

error_calling_filter : error = { conditionOuput => [*.bar] }

Listing 7.7: Error filter

#include <assert.h>

int foo (){
assert (conditionInput ());
assert (conditionOutput ());
bar () ;

Listing 7.8: Error filter advice

7.4.1.3 Send filter

If the message is accepted, it is send to the specified target of the message, otherwise the
message continues to the subsequent filter.

The send filter can only be used as an output filter. Output filters intercept messages
at the call join point of a function. In the example presented in Listing 7.9 the behavior
of the send filter is shown. The woven code at lines 3 and 4, shows that after the
if-statement the foo() call has to be caught within an else-statement.

outputfilter
send_filter : send = { comndition => [*.foo] *.bar }

Listing 7.9: Send filter

int afunction{

if (condition ()==1){bar ();}
else{
foo();

Listing 7.10: Send filter advice

Nevertheless, generating this code offers some problems:
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Does not pass the treeparser
All the code that has to be woven is checked if it is perform the C syntax. This
is done by generating an AST of the advice, adding it to the tree of the file and
parsing the new subtree. Weaving a not closed else-statement is not allowed by
the parser, lines 3, and 4, of Listing 7.10.

Return value
If the return value of the matching function is used, for instance to update a
variable, this also shall not pass the parser. This is seen in Listing 7.11, line 3,
where the behavior is added between store= and the foo() call.

int afunction{
int store;
store=if (condition()==1) bar(); else foo();

Listing 7.11: Return value problem

Because of these reasons, generating this code for a send filter is not optionally. Gen-
erating the same advice as the input dispatch filter, solves these problems. However,
every time the function is called the advice is executed, instead of only the times when
the function is called from the selected concern. This problem can be solved by setting
a boolean value before the actual call from the right functions, as in Listing 7.12.

int fooCalled=0;
int afunction (){

fooCalled=1;

foo ();
}
int foo(){
if (fooCalled==1){
if (condition()==1){ fooCalled=0; return bar();}
}
}

Listing 7.12: Send filter with control flow information

This implementation solves the problems. However generating this code, requires three
weaving operations instead of one, lines 1, 5, 11, and an extra delay of the program every
time the function is called, line 11. In the current version of Compose*x C send filters
are not implemented in this way. Therefore send filters do not work in combination with
a condition, and also not if the calling function is used inside an expression.

81 Johan te Winkel



7.4. FILTERS University Twente

7.4.1.4 Meta filter

If the message is accepted, the reified message is sent as a parameter of another -meta
message- to a named object, otherwise the message just continues to the next filter. The
object that receives the meta message can observe and manipulate the message, then
re-activate its execution.

A reified message may contain diverse information about the message, for instance ar-
guments, target, selector, and sender. For Compose* C we have chosen for a minimal
reified message that passes argument information, the type as well as its value, and the
matching function’s name. Grouping arguments in a reified message makes it possible
to redirect messages from functions with different arguments toward the same function.
This can be convenient with Logging or Tracing concerns.

In Compose*x.NET also sender information is stored in the reified message. Sender in-
formation offers runtime information, which is seen in other aspect-oriented languages in
the form of join points, such as ControlFlow and Within. However, retrieving the sender
at compile time is only possible by using a global variable that saves the information be-
fore every function call. This is similar to the principle from example Listing 7.12, only
we have to do this for every function call in the program and save sender information
instead of setting a boolean.

The reified message should be passed as an argument to the function where the message
is redirected to. We have chosen to implement the message as a struct, with a character
pointer type that uses the same characters as printf to define the type, an int with the
number of arguments, and a void pointer to an array, which saves the argument values.
Type and arguments are pointers, because the struct always has to have the same size.
We also used a fixed size array, because in the older GCC version this was mandatory.
The message struct is declared in the file message.h that comes with the Eclipse-plugin
and is automatically added to the file, in which the matching function of the filter is
declared. Message.h is presented in Listing 7.13, the combination of type and argument
is clarified in Figure 7.5.

language

#ifndef COMPOSESTARC_MESSAGE_H
#define COMPOSESTARC_MESSAGE_H

struct messageq
charx type;
int argumentNumber;
void#* argument [100];
}s;

#endif

Listing 7.13: Message.h
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Figure 7.5: Storing argument information

A characteristic of the meta filter is that it supports different reactivation actions. These
actions determine the manner of returning to the matching function. The possible
actions are proceed, resume, and return. An example of the proceed action call is
seen in Listing 2.3. The implementation of these actions is based on multiple threads.
There are different threads for target, filterset, sender, ACT, where the return stops the
filterset, and returns to the target, the proceed goes to the target function and later
resumes the ACT, and the resume stops the ACT and goes to the next filter [57]. We
do not prefer the multiple thread implementation for Compose* C, because it reduces
the efficiency of the program.

With a little difference in behavior, it is possible to implement the reactivation actions
as in Listing 7.14, Listing 7.15, and Listing 7.16. Nevertheless, it is impossible to select
one of these different behaviors at compile-time. Furthermore, the proceed meta filter
implementation is not without errors. We have chosen to implement the resume meta
filter behavior in Compose* C, because this behavior is needed for Tracing and Logging
concerns. It is possible to create the same behavior as the proceed and return meta filter
by using custom filters.

int firstTime=1;

int bar(message msg){
firstTime=0;
int returnvalue = foo();

return returnvalue

int foo(){
if (firstTime==1){
struct message msg;
msg . argumentNumber = O;
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msg . type = "e"
if (condition ()==1){bar (&msg);}
}
}
Listing 7.14: Proceed action of a meta filter
int foo(){
struct message msg;
msg . argumentNumber = 0;
msg . type = "e"
if (condition()==1){ bar(&msg);}
}
Listing 7.15: Resume action of a meta filter
int foo (){
struct message msg;
msg . argumentNumber = O0O;
msg . type = "e"
if (condition ()==1){return bar (&msg);}
}

Listing 7.16: Return action of a meta filter

7.4.2 Custom filter

With custom filters it is possible to create specific behavior that should be added to the
base program. In order to use custom filters, there should be a manner to flexibly add
them to Compose*, and a simple way to create a custom filter; for defining it, as well
as making use of base program information.

A way to flexibly load classes in Java, is by using Java’s class loader. The class loader
makes it possible to look for compiled Java classes with a specific name, which are not
in the project. In this way we are able to define the custom filters in Java and to use
information from the repository. By letting this custom filter class extend an abstract
class, Semantic, it is possible to create a specific interface for the custom filter classes
and create some syntactic sugar for easily retrieving program information. There is one
drawback to this implementation, which is that the C-programmer needs to have some
knowledge of Java in order to create custom filters.

As we have seen with the built-in filters, the filters all have their own behavior and
specific characteristics. These characteristics are:

Type
The name of the filter as it is used in the composition filters concern. This name
should be the same as the name of the class, because it is used by the class loader;
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Before advice
The advice that has to be woven before the join point;

After advice
The advice that has to be woven after a join point;

Redirect messages
Some filters make use of a substitution target, while others do not;

Header file
By specifying a header file name here, this header will be included in the file of the
matching function. This is sometimes needed, for instance when a message should
be redirected.

More information about the custom filter is described in Appendix C, where is shown
how to make one, and as an example a decrypt custom filter is presented.

7.5 Integrated Development Environment

An Integrated Development Environment(IDE) is a combination of several tools that
are used in a software development process. Early IDE’s connected an editor, compiler
and debugger to expedite program development. Nowadays, the supported features of
an IDE are very widespread [13]. IDE’s improve overall ease-of-use and performance of
developing new programs.

In Section 3.4 we stated that the usability of the Compose* C is important, because
we want it to be applicable. Integrating it with an IDE will improve Compose* C’s
usability. Extensive IDE’s offer for instance a user-interface, filebrowser, text-editor,
compilers, debugger and are expendable. When such IDE is extended with Compose*
C, Compose* C can use these features.

Compose*.NET is an extension of Microsoft Visual Studio .NET which is probably the
most popular IDE, because it is used for developing applications for Microsoft Windows.
In Figure 2.3 is seen that the IDE creates a build configuration that is used by the
compile-time of Compose*. The build configuration is generated by Visual Studio that
automatically derives most of the settings from the project. For settings which cannot
be generated an interface is supported. It is also possible to run a Compose* application
from inside Visual Studio.

Unfortunately, Visual Studio only runs on Windows, while C is very popular among
other platform users, such as Linux. Therefore a plug-in for another IDE is developed,
being Eclipse. Eclipse is a free IDE, built in Java and therefore platform independent,
and it is easy to extend. There are many plug-ins developed for Eclipse, such as support
for C, which is not hard-coded in Eclipse. Eclipse is probably the second most popular
IDE.

The Eclipse-plugin solves two issues that make Compose* C unpractical for use, being:
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e Complex build configuration file;
e Intermediate steps in the building process of the program.

These issues are explained more extend in the next paragraphs, just as the implementa-
tion of the plug-in. The plug-in is also designed to work with Compose* Java, therefore it
includes some useless functions for Compose* C. The plug-in is presented in Appendix F.

7.5.1 Build configuration

Compose* requires a build-configuration file in order to compile a project. This build-
configuration is an XML-file that defines the sources, concerns, paths, settings and
compiler information. A build-configuration file is shown in Appendix A.

Every project we want to create with Compose* C needs a build-configuration. Never-
theless, the build-configuration file is not:

Reusable

It is project-dependent, except for the platform part;
Adaptable

It is easy to make mistakes when this file is manually changed.

However, reusing the file and trying to adapt it is probably easier then rewriting it in
total. Also the build-configuration needs to be changed sometimes, for instance when
the debuglevel has to be changed or a new file is added to the project.

Creating or adapting a build-configuration file manually is error-sensitive and time-
consuming. This negatively affects the usability of Compose* C, therefore automatic
generation of such a file is implemented.

The sources, concernsources, composestar-path and classpath, and the language found in
the buildconfiguration file can be derived from a project as it is created in Eclipse. The
debuglevels, applicationStart, basepath, buildpath, outputpath, and Compose* module
properties cannot be retrieved, therefore a possibility to set them from inside Eclipse is
created.

7.5.2 Building process

For building a C-program a series of actions need to be executed. First the source-files
are preprocessed, then compiled, assembled and finally linked with the other source files
in the program. Normally, a C-compiler automatically executes these steps sequentially.
However, creating a program with Compose* C requires changes to this building process.

We selected WeaveC for realizing the weaving. WeaveC requires preprocessed source-files
and aspects in order to apply the weaving. Redirecting messages with a composition
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filters concern requires weaving of an #include statement. This is a preprocessing direc-
tive, therefore after weaving the preprocessor has to be called again. The included files
should still be available to the preprocessor, so when the Compose* C output is placed
in another folder, these files should be copied to the folder as well. By using WeaveC
intermediate steps are needed in the building process of the program.

A program build with Compose* C requires a library where the reified message is defined
and some functions that use this message. This library has to be added to the project
when a meta filter, or custom filter is used.

For building a C-program the program make is often used. Make interprets various rules
defined in a makefile that for instance specify options for the compiler, files that need
to be compiled, dependencies between files, or other programs that need to be called.
Such a makefile can also be created to carry out the building process of Compose* C as
seen in Listing 7.17. Calling the target build from the makefile, 48, will successively per-
form the actions: copyMessageFromPlugin, preprocess, weave, copymessage, copyhfiles,
changeextensions, compile, clean, run.

The output of the preprocessor and Compose* C changes the extensions of the files,
otherwise it is possible that the original files are overwritten. However GCC does not
accept files with an extension: .ccc.out. Therefore target changeextensions, 30, is added.

Just as the build-configuration file, creating a makefile manually is error-sensitive and
time-consuming, which reduces the usability of Compose* C. Therefore, automatic gen-
eration of the makefile is supported.

This is possible, because all information is retrievable. The paths and concerns are
available in the build-configuration file and the execution sequence is always the same.

copyMessageFromPlugin:
$(fileCopy)
c:\Eclipse\plugins\CstarEP\message .*
H:\EncryptionExample\

preprocess:
gcc -dD -E Server.c -o Server.ccc
gcc -dD -E Encryptor.c -o Encryptor.ccc
gcc -dD -E message.c -o message.ccc
gcc -dD -E Logger.c -o Logger.ccc
gcc -dD -E Protocol.c -o Protocol.ccc
gcc -dD -E ExampleRunner.c -o ExampleRunner.ccc
gcc -dD -E Client.c -o Client.ccc
del message.ccc
weave:
java.exe -cp
"c:\Eclipse\plugins\CstarEP\binaries\antlr. jar$ (SEP)
c:\Eclipse\plugins\CstarEP\binaries\prolog. jar$ (SEP)
c:\Eclipse\plugins\CstarEP\binaries\ComposestarC. jar$ (SEP)
c:\Eclipse\plugins\CstarEP\binaries\ComposestarCORE. jar$ (SEP)"
Composestar .C.MASTER.CMaster
"H:\EncryptionExample\BuildConfiguration.xml"
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copymessage:
$(fileCopy) message.c H:\EncryptionExample\bin\

copyhfiles:
$(fileCopy) *.h H:\EncryptionExample\bin\

changeextensions:
$(fileCopy)
H:\EncryptionExample\bin\*.cccout H:\EncryptionExample\bin\*.c

compile:

gcc -oH:\EncryptionExample\bin\ExampleRunner.exe
:\EncryptionExample\bin\Server.c
:\EncryptionExample\bin\Encryptor.c
:\EncryptionExample\bin\Logger.c
:\EncryptionExample\bin\Protocol.c
:\EncryptionExample\bin\ExampleRunner.c
:\EncryptionExample\bin\Client.c
:\EncryptionExample\bin\message.c

=== ===l = = = =i« o}

run:
H:\EncryptionExample\bin\ExampleRunner

build: copyMessageFromPlugin preprocess weave
copymessage copyhfiles changeextensions compile clean run

Listing 7.17: makefile for Compose* C

7.6 Summary

During the design phase of Compose*, the possibility that Compose* would be ported
to other platforms was already taken into account, which resulted in a clear separation
of the platform independent and dependent part of Compose*. The independent part
is usable for all the platforms, while the platform dependent part should be replaced by
a specific implementation for the language to which Compose* is ported.

In this chapter we discussed the Compose* implementation for C, or more specifically the
implementation of its platform dependent part. The platform dependent part consists
of five important elements, being:

Language Model
We used the abstract language model of the language independent part of Com-
pose*, where we implemented a file as a class, a function as a method, and a
directory as a namespace. We furthermore created a possibility for defining con-
cerns in a specific file, as a set of functions, specified by a selector querys;
Collecting program-information
WeaveC creates an AST from the source code. Because the repository is a VAST,
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which resembles an AST, we used a treewalker to extract the information from the
AST and store it in the repository. The original grammar supported by WeaveC
did not include annotations, so we extended the grammar with them:;
WeaveC
For defining aspects WeaveC uses XML. However, WeaveC and Compose* are both
developed in Java, therefore it is possible to directly instantiate aspect objects and
skip creating intermediate-files. We defined a mapping from the filters to the
interface of the aspects. The aspects are automatically created by Composex;
Filters
This is the actual advice that is added to the base program. We described the
behavior of the built-in filters of Compose* in C, and created a possibility for
implementing custom filters. We changed the behavior of meta filters slightly,
because we did not like the original implementation that used multiple threads;
Integrated Development Environment
To enhance the usability of Compose* C an Eclipse plug-in is created. This plug-
in generates a build-configuration file, and simplifies the building process of the
application under construction.

The architecture of Compose* C is seen in Figure 7.6.
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Figure 7.6: Compose* C Architecture
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Chapter 8

Conclusion

In this thesis we have shown that composition filters can be applied to C. We proved
this by implementing our idea, how composition filters should be applied to C, with as
a result Compose* C. In this final chapter we summarize our findings, evaluate if the
design fulfills the requirements we formulated, show some points of improvement, and
briefly compare the design with existing aspect-oriented weavers for C.

8.1 Summary

Compose* C is an aspect-oriented weaver for C based on the composition filters ap-
proach. It is developed as a solution to crosscutting problems in C applications. Central
to this research were the problems found in the system of ASML. The code of this system
is difficult to change, harder to reuse, and harder to understand, because of four major
crosscutting concerns: reflection, dynamic execution tracing, parameter checking, and
timing. Making it possible to weave these crosscutting concerns back into the base code
can be seen as the functional requirement of Compose* C. We also formulated some
quality requirements, which we deduced from the characteristics of C and the inten-
tion of composition filters. We would like to see that Compose* C becomes generally
applicable, efficient, and compatible with other Compose* concerns.

Because composition filters is an extension to the object-based model, and C is a pro-
cedural language, which does not support all the object-based program elements, a
mapping of composition filters in C has been made. This mapping describes that a mes-
sage can be seen as a function call, or an update of an external variable. Updating an
external variable is nevertheless not implemented. Messages are intercepted by input-
and output-filters, where input filters intercept messages at the execution join point,
and output filters intercept them at the call join point. The superimposition unit of
composition filters, is a class in the object-based languages, is in C a function, or set of
functions that can be defined by a file, directory, naming convention, and/or annotation.
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Compose* is an aspect-oriented weaver based on the composition filters approach for
Java and .NET. The design of Compose* is partly language dependent, and partly lan-
guage independent. Porting Compose* to a new programming language requires a new
implementation of the platform dependent part. For Compose*x C we needed to im-
plement a language-weaver, the C language model, a component that collects program
information, filters, and IDE support. However, implementing a weaver is a time con-
suming job, so we selected an existing weaver, WeaveC, and integrated it in Compose*

C.

8.2 Evaluation

In this research the crosscutting concerns of the ASML system were central. Separating
these concerns is therefore considered as the functional requirement for Compose* C.
Furthermore, we proposed a few quality requirements. In this section we shall evaluate
if these requirements are met by Compose* C.

8.2.1 ASML concerns

The crosscutting concerns in ASML’s system are reflection, dynamic execution tracing,
parameter checking, and timing. Listing 8.1 presents the example without the cross-
cutting concerns. The example with the crosscutting code is shown in Listing 3.1. In
this function annotations are used for specifying parameters. In Listing 8.2 the example
function is shown again, after the concerns are woven with Compose*x C.

In the calcDivide function of Listing 8.2 all crosscutting concerns are present. For testing
purposes the actual advice is slightly adjusted, but the join points at which the advice
is added are the same. The dynamic execution tracing advice is shown in lines 28 and
55. The parameter checking code is found at line 46. And the timing advice is shown
in lines 24 and 59. The advice for the reflection concern, the function_name variable, is
now directly used by other concerns, such as in line 20 for the timing concern.

In the original code the concerns also used some global variables which are available after
preprocessing. The timing concern variables are declared in the include file “Timing.h”
line 11.

From this example we can see that Compose* C is able to separate the concerns from the
base code. So we may conclude that Compose* C fulfills the functional requirements
and addresses the problems caused by crosscutting concerns. Because, Composex C
enhances the reusability of the original functions, since they do not contain crosscutting
code anymore. It improves the changeability of the code, because the concerns are not
scattered or tangled anymore. And it also improves the understandability of the system,
which becomes clear when Listing 8.1 and Listing 8.2 are compared. Furthermore, it
seems that the size of the program can be reduced, because there are only three small
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concerns needed to weave the crosscutting code back into the base-code. Nevertheless,
we did not have the complete source and therefore we did not test the actual code
reduction.

#include "Calc.h"

struct annotatief{
char* x;

};

typedef struct annotatie in;
typedef struct annotatie out;
typedef struct annotatie inout;

int calcDivide ($(inout(""))double* answer,
$(in(""))double opl, $(in(""))double op2)

{
int result=0K;
if (op2 != 0)
*answer = opl / op2;
else
result =ERROR;
return result;
}

Listing 8.1: Original code calcDivide

struct annotatie {
char * x ;

typedef struct annotatie imn ;
typedef struct annotatie out ;
typedef struct annotatie inout ;

#include "Error.h"
#include "message.h"
#include "Timing.h"
#include <assert.h>

int calcDivide ( double * answer , double opl , double op2 )
{

int result = 2 ;
#line 16 "Calc.c"

{
time_t timel ; char * function_name = "calcDivide" ;
( void ) time ( & timel ) ;
printf ( "\n Timing Concern:%s \n" , function_name ) ;
TIMING_in ( function_name , timel ) ;
}
{
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printf ( "\n Tracing Concern:calcDivide \n"

TRACE_in ( "calcDivide" ) ;

}
{
printf ( "ParameterChecking Concern:calcDivide "
if ( answer == 0 )
{
printf ( "InOut parameter in function =
NULL function: calcDivide parameterName= answer \n");
}
if ( opl == 0 )
{
printf ( "Input parameter in function = NULL
calcDivide parameterName= opl \n" 3
}
if ( op2 == 0 )
{
printf ( "Input parameter in function = NULL
calcDivide parameterName= op2 \n" ) ;
}
}
if ( op2 != 0 )
* answer = opl / op2 ;
else
result = 3 ;
#line 21 "Calc.c"
{
printf ( "\n Tracing Concern:calcDivide \n" ) ;
TRACE_out ( "calcDivide" ) ;
{
time_t time2 ; ( void ) time ( & time2 ) ;
printf ( "\n Timing Concern:calcDivide \n" )
TIMING_out ( "calcDivide" , time2 ) ;
return result ;
}
}

Listing 8.2: Woven code calcDivide

8.2.2 Quality requirements

) 8

function:

function:

’

In Section 3.4 we stated three requirements that we want to see fulfilled by Compose*

C. In this section we evaluate if this is the case.
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General applicable

Compose* C can be used to add concerns to existing C applications. However, we used
the C compiler of WeaveC, which works on preprocessed source code. Preprocessed
code is dependent of the C compiler used, for instance newer C compilers generate
more compiler optimization commands. Because other compilers do not know these
commands, the preprocessed code cannot be parsed with every C compiler. This is also
the case for Compose* C that works with the compiler GCC-2.95. In principle, this
is not a big problem, because most C programs can also be compiled with an older
C version. However, there are some options in the newer GCC versions that are not
supported by GCC-2.95, for instance variable sized arrays. If such options are used,
using Compose* C requires some adjustments to the application.

Another part of this requirement was that we did not want to make Compose*x C de-
pendent from naming conventions. With Compose* C there are several ways to define
a concern. It can be a single function, but it can also be based on naming conventions,
annotations, files, and directories.

Efficient

The woven advice of Compose* C is normal C code, so the woven program can still be
compiled with a normal C compiler. We have seen in Listing 8.2 that the original code
can be reconstructed, and even the C compiler optimization is still possible. Because of
this the application preserves its efficiency. Nevertheless, using Compose* C increases
the compilation time of an application. In Table 8.1 some statistics of Compose* C
are presented, which are acquired by testing the programs HelloWorld, a small program
existing of two files and one filter, and EncryptionExample, a program consisting of
six files and four filters. In the table a row Weave is added that shows the actual
performance of Compose*x C, so without preprocessing and compiling with GCC, and
the renaming and copying of files. The timing results of GCC are presented in Table 8.2.
From the testing results we can conclude that the total time that Compose* C requires
to compile and run a program is approximately 4x slower than only using GCC.

HelloWorld | EncryptionExample
Built + run 2.8 9,2
Weave 1,7 3,3
Run 0,1 0,1

Table 8.1: Timing results of Compose* C
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HelloWorld | EncryptionExample
Built + run 0,7 1,3
Run 0,1 0,1

Table 8.2: Timing results of GCC

Compatibility of Compose* concerns

Nevertheless, not all the elements of a composition filters concern are still usable, there-
fore not all concerns of Compose*x.NET and Compose* Java are applicable to Compose*
C. The internal element of the filter module part and the annotations element of the
superimposition part are not implemented, because they do not really fit the concept of
C. Maybe this requirement was not really realistic, because in the external and internal
elements constructors of the objects are called. Calling a constructor does not exist in
a procedural programming language. However, we tried to make the concerns of the
different ports as compatible as possible, therefore the selector language of Compose*
C does support object-based elements as well as C elements, for instance files.

8.3 Future work

For this research, the implemented functionality of Compose* C is sufficient. However,
there are some possible extensions which could be useful. These extensions are:

Composition filters elements
Composition filters is an extensive paradigm, because some features are not very
useful for this research, we did not implement them. These features are: introduc-
tion of annotations, and constraints.

WeaveC
At the moment only the needed features of WeaveC are used in the implementation
of Compose* C. However, WeaveC does support more functionality that can be
useful, such as introducing local variables and elements in structures. This exten-
sion will make it possible to add a local variable before the function execution join
point, and use it in the advice that is added before and after a function execution.
At the moment variables that are declared in the advice, which is woven before a
function execution, is added between brackets, and therefore in a separate scope.

Composition filters in C
In our design of composition filters in C we identified that updating a global vari-
able can be viewed as a message. Nevertheless, we did not implement the inter-
ception of these messages, so we cannot add filter modules to it. Furthermore, it is
sometimes impossible to weave output filters at a specific join point, because the
function call is for instance inside an expression. With some changes to the weaver
of Compose* C this problem can be solved.
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When creating an application with Compose* C, there are some features that should be
accounted for. These features can possibly be improved:

Header files
Conditions or functions, to which we want to redirect messages, should be declared
in a header file that has the same name of the file they are defined in. In this way,
the header can automatically be included in the woven file.

Annotations
Using annotations in the base code means that a normal C compiler cannot parse
it anymore, only Compose* C can. You possibly can rename annotations by using
the -D$(..)="" flag when calling GCC, but this option is not supported in the
makefile, because we are not sure if there are any side effects.

8.4 Related work

In Chapter 6 we already evaluated the current C weavers based on the requirements
needed for implementing composition filters. In that chapter we saw that there are only
five weavers which actually work. Nevertheless these weavers all have their shortcomings,
being:

AspectC(06)
is a very complete weaver with many pointcuts. Nevertheless, it does not have any
support for introducing globals or including headers, ordering advice, and using
annotations.

Arachne
does not fulfill the requirement of general applicability, because it only works on a
computer with an TA32 processor and a Linux distribution that supports anony-
mous memory mapping;

AspectC++
does not fulfill the requirement of general applicability, because it only works on
C++ instead of C;

Aspicere
its compilation process is very slow, it does not support an execution join point,
and also has no IDE support, but it can be used on different C versions;

WeaveC
fulfills the requirements for the weaver, and therefore it is integrated in Compose*
C. Nevertheless, in WeaveC aspects are defined in XML, which is not user-friendly.

As we already saw in Chapter 6, only WeaveC fulfilled all the requirements stated in
our research. Compose* C improves the usability of WeaveC, but this also has a con-
sequence for the compilation time. In our opinion the increased usability results in a
bigger saving of time than the extra compilation time, which is needed for one extra pre-
processor run and the evaluation of Compose*. Because of this we believe Compose*
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C to be an improvement over WeaveC, and the other aspect-oriented weavers for C.
Furthermore, the reasons for choosing the Composition Filters approach instead of the
AspectJ approach were the high-level of semantics and the analyzable aspect description
language, which enhances the usability of the program. These features still apply, which
is another improvement over the current aspect-oriented weavers for C.

8.5 Concluding

With Compose* C it is possible to reduce the problems that are caused by crosscutting
concerns. Compose*x C fulfills all the requirements needed to weave the ASML cross-
cutting concerns back into the base code. Nevertheless, not all the quality requirements
are fully met, and there still are some enhancements possible for Compose* C. But we
can conclude that Compose* C already is a very usable tool and an improvement over
the current aspect-oriented weavers for C.
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Build Configuration

This appendix shows a buildconfiguration file that is used by Compose*. This file is
automatically generated by the Eclipse-plugin.

<?xml version="1.0"7>
<BuildConfiguration version="1.00">
<Projects applicationStart="EncryptionExampleTest.ExampleRunner"
runDebuglevel="5" outputPath="H:\EncryptionExample\bin">
<Project outputPath="H:\EncryptionExample\bin"
buildPath="H:\EncryptionExample"
basePath="H:\EncryptionExample" language="C" >
<Sources>
<Source fileName="H:\EncryptionExample\Server.c" />
<Source fileName="H:\EncryptionExample\Encryptor.c" />
<Source fileName="H:\EncryptionExample\Logger.c" />
<Source fileName="H:\EncryptionExample\Protocol.c" />
<Source fileName="H:\EncryptionExample\Client.c" />
<Source fileName="H:\EncryptionExample\ExampleRunner.c"/>
</Sources>
<Dependencies>
</Dependencies>
<TypeSources>
</TypeSources>
</Project>
<ConcernSources>
<ConcernSource fileName=
"H:\EncryptionExample\EncryptionConcern.cps" />
<ConcernSource fileName=
"H:\EncryptionExample\Logging.cps" />
</ConcernSources>
</Projects>
<Settings composestarIni="C:/local/Johan/ComposeStar/Composestar.ini"
buildDebuglLevel="5" compilePhase="one" platform="c">
<Modules>

<Module name="INCRE" enabled="" />
<Module name="SECRET" mode="" />
<Module name="FILTH" input="" />

Johan te Winkel 105



University Twente

<Module name="ILICIT" verifyAssemblies="" />
</Modules>
<Paths>
<Path name="Qutput" pathName="H:\EncryptionExample\bin"/>
<Path name="Base" pathName="H:\EncryptionExample"/>
<Path name="Build" pathName="H:\EncryptionExample"/>
<Path name="Composestar" pathName=
"c:\Eclipse\plugins\CstarEP\"/>
<Path name="EmbeddedSources" pathName="embedded/" />
</Paths>
</Settings>
<Platforms>
<Platform name="C" mainClass="Composestar.C.MASTER.CMaster"
classPath=
"c:\Eclipse\plugins\CstarEP\binaries\ComposestarC. jar;
c:\Eclipse\plugins\CstarEP\binaries\ComposestarCORE. jar;
c:\Eclipse\plugins\CstarEP\binaries\antlr. jar;
c:\Eclipse\plugins\CstarEP\binaries\prolog. jar"
options="">
<Languages defaultLanguage="C">
<Language name="C">
<Compiler name="CCompiler" executable="gcc" options="/Wall"
implementedBy="Composestar.C.COMP.GCC">
<Actions>
<Action name="Compile" argument="{OPTIONS} {SOURCES}" />
</Actions>
<Converters />
</Compiler>
<FileExtensions>
<FileExtension extension=".c" />
</FileExtensions>
</Language>
</Languages>
</Platform>
</Platforms>
</BuildConfiguration>

Listing A.1: BuildConfiguration xml-file
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Compose*C components

Compose* C is an implementation of the language dependent part of Compose*. In this
appendix the components that are contained by Compose* C, are described briefly.

MASTER

Is an extension of the Compose* Core component MASTER, and is responsible for
initiating and running the different components in the right order.

WRAPPER

WRAPPER is the treeparser component coming from WeaveC. The original WRAPPER
is extended for filling the repository with the right elements. WRAPPER has replaced
TYM which is a component of Compose* Core.

REXREF

The REXREF component is a small extension to the one in the Core. In Compose*
C REXREF also checks if there are internals or externals declared in the composition
filters concerns that are specified in the CConcern.xml file. If this is the case REXREF
creates concerns for these elements.

LAMA

In LAMA the C program elements are declared. These elements are instantiated from
WRAPPER and added to the repository.
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LOLA

LOLA describes the connections between the program elements of C. These connections
can be used in the selector query. LOLA also evaluates the selector queries, and it
creates a signature for the concerns defined in CConcern.xml.

CONE

The CONE component of Compose* Core was used to generate a repository file and
the weave instructions. In Compose* C it is the component where the actual weaving
is performed. It first generates the aspects from the composition filters concerns, and
then executes the weaving.

SPECIFICATION

Is also a component originally belonging to WeaveC and contains the aspects and the
belonging elements which are used for the weaving.
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Creating a custom filter

A custom filter can be created by extending the Semantic class from Compose* C. The
Semantic class, described in Listing C.1, defines functions that offer concern information
which can be used to specify source code, define the filter properties, and the source
code that has to be woven.

public abstract class Semantic {

/% *
* @return Code that creates the reified message struct
* for the matching function
*/
protected String reifiedMessageCode ();

/**
* @return The mname of the condition function
*/

protected String conditionCode ();

VEZ:
* @return ! 4if the operator used in the
* conditionexzpression of the filter s 7>
*/

protected String disableOperatorCode ();

VEZ:
* @return The name of the parameter of the matching function
* @param offset of the parameter from the function
*/

protected String parameterName (int index);

/o *

* @return The type of the annotation of

* the parameter of the matching function

* @param offset of the parameter from the function
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*/

protected CAnnotation parameterAnnotation(int index){

VEZ:
* @return The annotation of a file
*/

protected CAnnotation fileAnnotation();

J k%
* @return The Annotation of a method
*/

protected CAnnotation methodAnnotation();

/% *
* @return The type of an annotation
*/

protected String annotationType (CAnnotation anno);

/**
* @return Value of the annotation
*/

protected String annotationValue(CAnnotation anno);

/% %
* @return The type of the parameter of the matching function
* @param offset of the parameter from the function
*/

protected String parameterTypeMF (int index);

/% %
* @return The number of parameters of the matching function
*

*/
protected int numberOfParametersMF ();

/% %
* @return The type of the parameter of the substitution function
* @param offset of the parameter from the function
*/

protected String parameterTypeSF (int index);

VAT
* @return The number of parameters of the substitution function
*/

protected int numberOfParametersSF ();

/% %
* @return Name of the matching function
*/
protected String matchingFunction();
VAT
* @return Name of the substitution function

*/
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protected String substitutionFunction();

/% %
* @return advice that has to be woven before the pointcut
*/

public String getBeforeAdvice ();
/%
* @return advice that has to be woven after the pointcut
*/

public String getAfterAdvice ();

J k%
* Q@return returns the name of the filter
*/

public abstract String getType();

/**
* @return true if advice has to be woven after pointuct
*/

public abstract boolean afterAdvice();

VEZ:
* O@return true 2f advice has to be wowven before pointuct
*/

public abstract boolean beforeAdvice();

J k%
* @return true tf the filter redirects a message to another
* function
*/

public abstract boolean redirectMessage ();

J k%
* @return returns a name of a header file (including .h) as a
* string that contains a header where function or global
* definitions of elements used in the advice are specified
*/
public abstract String headerFile ();

VAT
* @return true 1f there are other headers needed
* to make this filter work
*/

public abstract boolean needsHeaderFiles();

Listing C.1: Decrypt custom filter

Creating a new custom filter requires to start a new Java project in Eclipse. The pro-
jectname needs to be the same as the filter name. The fully qualified name of the filter
has to be used in the composition filters concern, therefore we propose not to define
packages, only to create a class with the filter’s name. This class is dependent of several
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packages in Compose* C and Compose* Core, the easiest way to compile this is to add
the jar files of these programs found in the ComposestarEclipsePlugin/binaries dir to the
classpath. The variables in the Listing C.2 class define the properties of the filter. The
decrypt filter only weaves before a pointcut, redirects a message to another function and
does not use variables defined in another translation unit. The function getBeforeAdvice
creates source code that shall be added before the pointcut.

import Composestar.C.CONE.Semantic;

public class Decryption extends Semantic{
private String type="Decryption";
private String advice="";
private boolean afterAdvice=false;
private boolean beforeAdvice=true;
private boolean redirectMessage=false;
private boolean needsHeaderFiles=false;

/**Does not use parameter functions yet**/
public String getBeforeAdvice (){
String advice="";

advice+= "char* x;";

advice+= "x = "+ this.parameterName (0)+";";

advice+= "printf (\"Decrypt message with filter:"
+this.parameterName (0)+" \n\");";

advice+= "while (*xx != \’\\0O\’){";

advice+= "*xx -= 20;";

advice+= "x++;";

advice+= "}";

return advice;

public String getAfterAdvice (O{
return advice;

}

public boolean afterAdvice (){
return afterAdvice;

}

public boolean beforeAdvice (){
return beforeAdvice;

}

public boolean redirectMessage (){
return redirectMessage;

}

public String headerFile (){
return "";

}

public boolean needsHeaderFiles (){
return needsHeaderFiles;

}
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public String getType O){
return type;

}

Listing C.2: Decrypt custom filter

This class can be exported with eclipse to a jar-file. When the project is compiled with
the Compose*-plugin, this jar-file can be selected. The plugin automatically adds this
file to the classpath.
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Appendix D

Installing Composex C and
creating your first program

D.1 Installation

Using Compose* C requires some specific configurations, these are:

Compose* C
Can be downloaded as a zip file. This zip file needs to be extracted in the plugin
directory of the Eclipse installation;

Java
Running Compose* C requires an Java Runtime Environment 1.4 or higher, and
its executables directory should be in the classpath;

GCC 2.95
Just as Compose* C the GCC version for Windows can be downloaded as a zip
file. It does not bother where it is extracted, but the executables gcc and make
should be in the classpath;

CDT-plugin
Should be downloaded and installed. This is the standard C-plugin for Eclipse.

D.2 HelloWorld

When Compose* C is installed a new application can be created. As an example we
show here how to build HelloWorld with Compose* C (the files are shown below). This
requires the following steps:

1. Create a new standard make C project in Eclipse and name it HelloWorld;

2. Create the files HelloWorld.c and HelloWorld.h;
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3. Create a concern for instance Lodewijk, with a .c .h .cps file;

4. Run it with Compose*x C from Eclipse. Here may occur some minor problems.
When no output directory is created yet, Eclipse makes a mistake when you make
it with the Compose* C plugin. It says new folder in the input box instead of the
folder name. This is an error of Eclipse self. Also the first time you run the project,
a buildconfiguration file will be created, but it is not yet in the project. Therefore,
the build process will return an error. Before running it again the project should

be refreshed, than it will work.

#include "HelloWorld.h"
int main(){
printf ("Hello World");
worldsAnswer () ;
return O0;
¥

void worldsAnswer (){
printf ("Hello Pascal");
}

Listing D.1: HelloWorld.c

#include <stdio.h>
int main();
void worldsAnswer ();

Listing D.2: HelloWorld.h

#include "Lodewijk.h"
void lodewijksAnswer ()

{
printf ("Hello Lodewijk");
}
int isItLodewijk ()
{
return 1;
}

Listing D.3: Lodewijk.c

#include <stdio.h>
int main ();
void worldsAnswer ();

Listing D.4: Lodewijk.h calcDivide

concern LodewijksAnswer
{
filtermodule LAnswer
{
externals
lodewijk : Lodewijk;
conditions
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isItLodewijk: lodewijk.isItLodewijk();
inputfilters
answer : Dispatch = {isItLodewijk=>
[*.worldsAnswer] *.lodewijksAnswer}

}
superimposition
{
selectors
HelloworldFile = { File | isFileWithName (File,’HelloWorld’)};
filtermodules
HelloworldFile <- LAnswer;
}

Listing D.5: Lodewijk.cps

117 Johan te Winkel



D.2. HELLOWORLD University Twente

Johan te Winkel 118



Appendix E

Demonstrating example

In this appendix we show the base code, applied concerns, and a part of the woven
code, as well as the command-line output of the PolishCalculator. This example is used
throughout this thesis.

Original program

#include "main.h"

int main(void)

{

int type;

double op2;

char s[MAXOP];
int flag = TRUE;
double answer;

printf ("\nWelcome to the reverse polish calculator\n");
printf ("Calculating (1-2) * (4+5),
requires an input of the form:\n");
printf("1 2 - 4 5 + *x (enter)\n");
printf ("The program can be terminated by using the letter: q \n");
while ((type = Getop(s)) != EOF)
{
switch(type)
{
case NUMBER:
ST_push (atof (s));
break;
case ’+°:
if (calcAdd (&answer ,ST_pop () ,ST_pop (D))
ST_push (answer);
break;
case ’*’:
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if (calcTimes (&answer ,ST_pop () ,ST_pop ())==
ST_push (answer) ;
break;
case ’-7:

0K)

if (calcMinus (&answer ,ST_pop () ,ST_pop ())==0K)

ST_push (answer) ;
break;
case ’/’:
op2 = ST_pop();

if (calcDivide (¥answer, ST_pop(), op2)==0K)

ST_push (answer) ;
else
printf ("\nError: division by zero!");
break;
case ’%’:
op2 = ST_pop ();

if (calcModulo (&answer, ST_pop(), op2)==0K)

ST_push (answer) ;
else
printf ("\nError: modulo by zero!");
break;
case ’\n’:
printf ("\n\t%.8g\n", ST_pop());
break;
case ’q’:
printf ("\nQuitted the polish calculator\n

ByBy please return soon\n");

return O;
break;
default:
printf ("\nError: unknown command %s.\n",
return -1;
break;

}
return EXIT_SUCCESS;

Listing E.1: Main.c

#include<stdlib.h>
#include<stdio.h>
#include<ctype.h>
#include <math.h>

#define MAXOP 100
#define NUMBER O
#define TRUE 1
#define FALSE O
#define 0K 2
#define ERROR 3

int Getop(char s[]);
void ST_push(double val);

s);
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double ST_pop(void);

Listing E.2: Main.h

#include <time.h>

#include "Calc.h"

struct annotatie{
char* x;

};

typedef struct annotatie in;

typedef struct annotatie out;

typedef struct annotatie inout;

int calcDivide($(inout ("Semantic"))double* answer,
$(in("Semantic"))double opl, $(in("Semantic"))double op2)

{
int result=0K;
if (op2 !'= 0)
*answer = opl / op2;
else
result =ERROR;
return result;
}

int calcMinus ($(inout ("Semantic"))double* answer,
$(in("Semantic"))double opl, $(in("Semantic"))double op2)

{
int result=0K;
*answer = opl - op2;
return result;

}

int calcTimes ($(inout ("Semantic"))double* answer,
$(in("Semantic"))double opl, $(in("Semantic"))double op2)

{
int result=0K;
*answer = opl*op2;
return result;

}

int calcAdd($(inout ("Semantic"))double* answer,
$(in("Semantic"))double opl, $(in("Semantic"))double op2)

{
int result=0K;
*answer = opl+op2;
return result;

}

int calcModulo ($(inout ("Semantic"))double* answer,
$(in("Semantic"))double opl, $(in("Semantic"))double op2)

int result=0K;
if (op2 !'= 0)
*answer = (int)opl%(int)op2;
else
result =ERROR;
return result;
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Listing E.3: Calc.c

#include "main.h"
int calcDivide (double * answer , double opl , double op2 );

int calcMinus (double * answer , double opl , double op2 );
int calcAdd(double * answer , double opl , double op2 );
int calcTimes (double * answer , double opl , double op2 );

int calcModulo (double * answer , double opl , double op2 );
Listing E.4: Calc.h

#include "main.h"
#define BUFSIZE 100
int getch(void);
void unGetch(int c);
char buf [BUFSIZE];
int bufp = 0;
/% Getop: get next operator or numeric operand. */
int Getop(char s[])
{
int i = 0;
int c;
int next;
/* Skip whitespace */
while ((s[0] = ¢ = getch()) == > > || c == ’\t?)

s[1] = ’\o0’;
/* Not a number but may contain a unary minus. */
if (lisdigit(c) && c != *.° && c != ’-?)
return c;
if(c == ’-?)
{
next = getch();
if (!isdigit (next) && next != ’.7)
{

return c;

c = next;
}

else

@ getch () ;
while (isdigit (s [++i] = c))
c = getch();
if(c == 2.?) /% Collect fraction part. */
while (isdigit (s [++i] = ¢ = getch()))
s[i]l = ’\0’;
if (¢ !'= EOF)
unGetch (c);
return NUMBER;
}
/% Getch: get a ( possibly pushed back) character. */
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int getch(void)
{

return (bufp > 0) ? buf[--bufpl: getchar();
}
/% unGetch: push character back on input. */
void unGetch(int c)

{
if (bufp >= BUFSIZE)
printf ("\nUnGetch: too many characters\n");
else
buf [bufp++] = c;
}

Listing E.5: GetOperand.c

#include "main.h"
#define MAXVAL 100
double val[MAXVALI]; /* walue stack. */
int sp = 0;
/* push: push f onto stack. */
void ST_push(double f)
{
val[sp++] = £;
}
/*pop: pop and return top wvalue from stack.*/
double ST_pop(void)

{
return val[--spl;
}
Listing E.6: Stack.c
Concerns

concern ErrorConcern {
filtermodule error {
externals
error : Error;
st: StackFunctions;
conditions
stackEmpty : error.stackEmpty ();
stackFull : error.stackFull();
inputfilters
error_filter : Error = { stackEmpty =>[*.ST_popl,
stackFull =>[*.ST_pushl}
}
superimposition {
selectors
stackFunctions = { C | isClassWithName (C, ’StackFunctions’) 1};
filtermodules
stackFunctions <- error ;
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Listing E.7: ErrorConcern.cps

#include<stdio.h>
#include "Error.h"
extern int sp;
extern int bufp;
#define true O0;
#define false 1;

int

int

int

int

stackFull (){

if (sp==100){
printf ("Error:
return true;

}

else return false;

stackEmpty () {
if (sp==0){

Stack full");

printf ("Error: Stack empty");

return true;
}

else return false;

secondOpZero () {
double op2;
op2 = ST_pop();
if (op2==0.0)1
printf ("Error:
return false;

bufferFull (){
if (bufp==100){

second Operand zero");

printf ("Error: Buffer full");

return true;

return false;

#ifndef ERROR_H
#define ERROR_H
#include "main.h"

int
int
int

stackFull ();
stackEmpty () ;
secondOpZero ();

#endif

Listing E.8: Error.c

Listing E.9: Error.h

concern ParameterCheckConcern {
filtermodule Paramcheck {
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}

externals
calc:CalculateFunctions;
inputfilters
paramcheck_filter : Parametercheck = { [calc.x*] }

superimposition {

selectors
calcFunctions = { C | isClassWithName(C, ’CalculateF

filtermodules
calcFunctions <- Paramcheck ;

Listing E.10: ParameterCheck.cps

import Composestar.C.CONE.Semantic;

public class Parametercheck extends Semantic{
String type="Parametercheck";
String advice="";

private
private
private
private
private
private

boolean
boolean
boolean
boolean

afterAdvice=false;
beforeAdvice=true;
redirectMessage=false;
needsHeaderFiles=false;

public String getBeforeAdvice (){

String advice="";

advice+= "printf (\"ParameterChecking Concern:"
+this.matchingFunction ()+" \");";

for (int i=0;

i<this.numberOfParametersMF (); i++){

unctions’) };

if (this.parameterAnnotation (i) !=null)
{
if (this.annotationType (parameterAnnotation(i)).
equals ("in"))
{
advice+= "if ("+this.parameterName(i)+ "== 0 ){";
advice+= "printf (\"Input parameter in function = NULL
function:"+this.matchingFunction ()+"
parameterName= "+this.parameterName (i)
+" \\n\");";
advice+= "}";
}
if (this.annotationType (parameterAnnotation(i)).
equals ("inout"))
{
advice+= "if ("+this.parameterName(i)+ "== 0 ){";
advice+= "printf (\"InOut parameter in function = NULL
function:"+this.matchingFunction ()+"
parameterName= "+this.parameterName (i)
+" \\n\");";
advice+= "}";
}
if (this.annotationType (parameterAnnotation(i)).
equals ("out"))
{
advice+= "if ("+this.parameterName(i)+ "== 0 ){"
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advice+= "printf (\"Out parameter in function

function:"+this.matchingFunction ()+

" parameterName= "+this.parameterName (i)

+" \\Il\") 2 u;

advice+= "}";

}
return advice;

}

public String getAfterAdvice (){
return advice;

}

public boolean afterAdvice (){
return afterAdvice;

}

public boolean beforeAdvice (){
return beforeAdvice;

}

public boolean redirectMessage (){
return redirectMessage;

}

public String headerFile (){
return "";

}

public boolean needsHeaderFiles (){
return needsHeaderFiles;

}

public String getType OO{
return type;

b
Listing E.11: ParameterCheck. java

concern Timing {
filtermodule timing {
inputfilters
timing_filter : Timing = { [*.x] }
}
superimposition {
selectors

allFunctions = { File | isFileWithName (File,’Calc’) };

filtermodules
allFunctions <- timing ;

Listing E.12: Timing.cps

#include "Timing.h"
void TIMING_in(char* functionName, time_t timel)
{

printf ("Time 1 function: %s = %i\n", functionName, timel);

NULL
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}
void TIMING_out (char* functionName, time_t time?2){

printf ("Time 2 function: %s = %i\n", functionName, time2);
}

Listing E.13: Timing.c

import Composestar.C.CONE.Semantic;

public class Timing extends Semanticq
private String type="Timing";
private String advice="";
private boolean afterAdvice=true;
private boolean beforeAdvice=true;
private boolean redirectMessage=false;
private boolean needsHeaderFiles=true;
public String getBeforeAdvice (){

String advice="";

advice+= "time_t timel;";
advice+= "char * function_name = \""
+ this.matchingFunction() +"\";";
advice+= "(void)time (&timel);";
advice+= "printf (\"\\n Timing Concern:
%s \\n\", function_name);";

advice+="TIMING_in(function_name, timel);";
return advice;

}
public String getAfterAdvice (){
String advice= "time_t time2;";
advice+="(void)time (&time2);";
advice+= "printf (\"\\n Timing Concern:"
+this.matchingFunction ()+" \\n\");";
advice+="TIMING_out (\""
+this.matchingFunction ()+"\", time2);";
return advice;
}

public boolean afterAdvice (){
return afterAdvice;

}

public boolean beforeAdvice (){
return beforeAdvice;

}

public boolean redirectMessage (){
return redirectMessage;

}

public String headerFile (){
return "Timing.h";

}

public boolean needsHeaderFiles (){
return needsHeaderFiles;

}

public String getType (O{
return type;

}
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Listing E.14: Timing. java

#ifndef TIMING_H

#define TIMING_H

#include <time.h>

#include <stdio.h>

void TIMING_in(char* functionName, time_t timel);
void TIMING_out (char* functionName, time_t time2);
#endif

Listing E.15: Timing.h

concern Tracing {
filtermodule tracing {
inputfilters
tracing_filter : Tracing = { [*.x*] }
}
superimposition {
selectors
allFunctions
filtermodules
allFunctions <- tracing ;

{ File | isFileWithName (File,’Calc’) 1};

Listing E.16: Trace.cps

import Composestar.C.CONE.Semantic;
public class Tracing extends Semantic{

private String type="Tracing";

private String advice="";

private boolean afterAdvice=true;

private boolean beforeAdvice=true;

private boolean redirectMessage=false;

private boolean needsHeaderFiles=false;

public String getBeforeAdvice (0{
String advice="";
advice+= "printf (\"\\n Tracing Concern:"

+this.matchingFunction (O+" \\n\");";

advice+="TRACE_in(\""+this.matchingFunction ()+"\");";
return advice;

}

public String getAfterAdvice (){
String advice="";
advice+= "printf (\"\\n Tracing Concern:"

+this.matchingFunction()+" \\n\");";

advice+="TRACE_out (\""+this.matchingFunction (D+"\");";
return advice;

X

public boolean afterAdvice (){
return afterAdvice;

}
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public boolean beforeAdvice (){
return beforeAdvice;

}

public boolean redirectMessage (){
return redirectMessage;

}

public String headerFile (){
return "Trace.h";

}

public boolean needsHeaderFiles (){
return needsHeaderFiles;

}

public String getType (){
return type;

}
Listing E.17: Tracing.java

#include "Trace.h"
void TRACE_in(char* functionName)

{

printf ("Trace In function: %s", functionName) ;
}
void TRACE_out (char* functionName){

printf ("Trace Out function: %s", functionName);
}

Listing E.18: Trace.c

#ifndef TRACE_H

#define TRACE_H

#include <stdio.h>

void TRACE_in(char* functionName);
void TRACE_out (char* functionName);
#endif

Listing E.19: Trace.h

Result

struct annotatie {

char * x ;
L
typedef struct annotatie imn ;
typedef struct annotatie out ;
typedef struct annotatie inout ;
#include "Error.h"
#include "message.h"
#include "Timing.h"
#include <assert.h>

int calcDivide ( double * answer , double opl , double op2
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int result = 2 ;
#line 16 "Calc.c"

answer \n");

function:

function:

{
time_t timel ; char * function_name = "calcDivide"
( void ) time ( & timel ) ;
printf ( "\n Timing Concern:%s \n" , function_name ) ;
TIMING_in ( function_name , timel ) ;
3
{
printf ( "\n Tracing Concern:calcDivide \n" ) ;
TRACE_in ( "calcDivide" ) ;
X
{
printf ( "ParameterChecking Concern:calcDivide " ) ;
if ( answer == 0 )
{
printf ( "InOut parameter in function =
NULL function: calcDivide parameterName=
}
if ( opl == 0 )
{
printf ( "Input parameter in function = NULL
calcDivide parameterName= opl \n" ) ;
}
if ( op2 == 0 )
{
printf ( "Input parameter in function = NULL
calcDivide parameterName= op2 \n" ) ;
3
X
if ( op2 != 0 )
* answer = opl / op2 ;
else

result = 3 ;
#line 21 "Calc.c"

{
printf ( "\n Tracing Concern:calcDivide \n" ) ;
TRACE_out ( "calcDivide" ) ;
{
time_t time2 ; ( void ) time ( & time2 ) ;
printf ( "\n Timing Concern:calcDivide \n" )
TIMING_out ( "calcDivide" , time2 ) ;
return result ;
}
}

Listing E.20: Part of Calc.c after weaving

s
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| C:\WI.NI.JO“JS\systemIiilcmd.exe ﬂﬂﬂ

BYelcome to the reversze poliszsh calculator

=Calcu1at1ng (1-2> = (445>, requires an input of the form:
i 2 4 5 + % (enterd

;he program can be terminated by using the letter: g

R Timing Concern:calcMinus

BTime 1 function: calcMinus = 1163216688

gParameterChecking Concern:calcMinus
Tracing Concern:calcMinus

Trace In function: calcMinus

B Tracing Concern:calcMinus

Trace Out function: calcMinus
Timing Concern:calcMinus

Time 2 function: calcMinus = 1163216688

-1

QError: Stack emptyfizsertion failed: stackEmpty ¢ >, file Stack.c. line 16

Thiz application has requested the Buntime to terminate it in an uwnusual way.
Please contact the application’s support team for more information.
ake: #xx [runl Error 3

sUtwentesAf studerensjwtewinke INExamplesChPolishCalculatorsPolishCalculator>

Figure E.1: PolishCalculator with concerns output
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Appendix F

Eclipse-plugin

For usability reasons, Compose* C is extended with an Eclipse-plugin. This plugin
offers a user-interface, for compiling the project with Compose* C and generates the
build configuration-file as well as the makefile.

In Figure F.1 the added menu option in the Eclipse taskbar is seen. This menu has two
implemented options, build and settings.

The build menu, Figure F.2, show the input-boxes mainclass, basepath, buildpath, out-
putpath, and custom filters. The mainclass is in principle not needed for Compose*
C, but is an option for Compose* Java. The basepath is the position of the project,
the build and outputpath, the position where it should be compiled, and where the
executable should be placed. In the custom filter-box used filters can be selected.

The settings menu, Figure F.3, is only used for configuring the builddebuglevel and the
classpath. The other options are for Compose* Java.

The console window of Figure F.4 show the result of the EncryptionExample project
which is build and run with Compose* C from inside Eclipse.
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Figure F.1: Compose* C menu in Eclipse
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Figure F.4: Result of the EncryptionExample compiled with Compose* C
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