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Abstract

The behavior of computer programs can be hard to understand because of the execu-
tion complexity of a program. Because of the composition of programs with composi-
tion filters and/or other aspect oriented languages the execution in computer programs
can be even more complex and therefore even more difficult to understand. Besides
the increased difficulty we also found that the conventional debugging tools and tech-
niques are less suitable for use within aspect oriented programming. This report will
concentrate on improving the representation, editing, compiling, and debugging of
composition filter programs while remaining extensible and programming language
independent. The primary focus will be on the debugging of composition filter pro-
grams within the Compose? framework.

We approached the breakpoint issue by allowing the programmer to set breakpoints on
the behavior of a program, to allow the programmer to see how the execution of the
implementation behaves. This behavior of the program can be specified with use of
the proposed LTL breakpoints.

We approached the comprehensibility problem by a proposed Composition Filter rep-
resentation. Because of the sound conceptual model of Composition Filters, if the
side effects of a filter are limited to a message, the behavior becomes stutter equiva-
lent. This stutter equivalent behavior can be used to reduce validations and allows a
representation of a complete filters evaluation at a joinpoint.
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Chapter 1
Introduction to AOSD

“Many people see AOSD as a solution.
Others see it as a research subject.”

Rolf Huisman

The first two chapters have originally been written by seven M. Sc. students [Hol04;
Dür04; Vin04; Bos04; Sta05; Hav05; Bos06] at the University of Twente. The chap-
ters have been rewritten for use in the following theses [vO06; Con06; tW06; Hut06;
Doo06; Hui07; Spe06]. They serve as a general introduction into Aspect-Oriented
Software Development and Compose? in particular.

1.1 Introduction

The goal of software engineering is to solve a problem by implementing a software
system. The things of interest are called concerns. They exist at every level of the en-
gineering process. A recurrent theme in engineering is that of modularization: separa-
tion and localization of concerns. The goal of modularization is to create maintainable
and reusable software. A programming language is used to implement concerns.

Fifteen years ago the dominant programming language paradigm was procedural pro-
gramming. This paradigm is characterized by the use of statements that update state
variables. Examples are Algol-like languages such as Pascal, C, and Fortran.

Other programming paradigms are the functional, logic, object-oriented, and aspect-
oriented paradigms. Figure 1.1 summarizes the dates and ancestry of several important
languages [Wat90]. Every paradigm uses a different modularization mechanism for
separating concerns into modules.

Functional languages try to solve problems without resorting to variables. These lan-

Rolf Huisman 1
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Figure 1.1: Dates and ancestry of several important languages

guages are entirely based on functions over lists and trees. Lisp and Miranda are
examples of functional languages.

A logic language is based on a subset of mathematical logic. The computer is pro-
grammed to infer relationships between values, rather than to compute output values
from input values. Prolog is currently the most used logic language [Wat90].

A shortcoming of procedural programming is that global variables can potentially be
accessed and updated by any part of the program. This can result in unmanageable
programs because no module that accesses a global variable can be understood inde-
pendently from other modules that also access that global variable.

The Object-Oriented Programming (OOP) paradigm improves modularity by encap-
sulating data with methods inside objects. The data may only be accessed indirectly,
by calling the associated methods. Although the concept appeared in the seventies, it
took twenty years to become popular [Wat90]. The most well known object-oriented
languages are C++, Java, C#, and Smalltalk.

The hard part about object-oriented design is decomposing a system into objects. The
task is difficult because many factors come into play: encapsulation, granularity, de-
pendency, adaptability, reusability, and others. They all influence the decomposition,
often in conflicting ways [GHJV95].

Existing modularization mechanisms typically support only a small set of decompo-
sitions and usually only a single dominant modularization at a time. This is known
as the tyranny of the dominant decomposition [TOSH05]. A specific decomposition
limits the ability to implement other concerns in a modular way. For example, OOP
modularizes concerns in classes and only fixed relations are possible. Implementing a
concern in a class might prevent another concern from being implemented as a class.

2 Rolf Huisman



University Twente 1.2 Traditional Approach

1 public class Add extends Calculation{
2
3 private int result;
4 private CalcDisplay calcDisplay;
5 private Tracer trace;
6
7 Add() {
8 result = 0;
9 calcDisplay = new CalcDisplay();

10 trace = new Tracer();
11 }
12
13 public void execute(int a, int b) {
14 trace.write("void Add.execute(int, int

)");
15 result = a + b;
16 calcDisplay.update(result);
17 }
18
19 public int getLastResult() {
20 trace.write("int Add.getLastResult()")

;
21 return result;
22 }
23 }

(a) Addition

1 public class CalcDisplay {
2 private Tracer trace;
3
4 public CalcDisplay() {
5 trace = new Tracer();
6 }
7
8 public void update(int value){
9 trace.write("void CalcDisplay.update(

int)");
10 System.out.println("Printing new value

of calculation: "+value);
11 }
12 }

(b) CalcDisplay

Listing 1.1: Modeling addition, display, and logging without using aspects

Aspect-Oriented Programming (AOP) is a paradigm that solves this problem.

AOP is commonly used in combination with OOP but can be applied to other
paradigms as well. The following sections introduce an example to demonstrate the
problems that may arise with OOP and show how AOP can solve this. Finally, we
look at three particular AOP methodologies in more detail.

1.2 Traditional Approach

Consider an application containing an object Add and an object CalcDisplay. Add
inherits from the abstract class Calculation and implements its method execute

(a, b). It performs the addition of two integers. CalcDisplay receives an update
from Add if a calculation is finished and prints the result to screen. Suppose all method
calls need to be traced. The objects use a Tracer object to write messages about the
program execution to screen. This is implemented by a method called write. Three
concerns can be recognized: addition, display, and tracing. The implementation might
look something like Listing 1.1.

Rolf Huisman 3
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From our example, we recognize two forms of crosscutting: code tangling and code
scattering.

The addition and display concerns are implemented in classes Add and CalcDisplay
respectively. Tracing is implemented in the class Tracer, but also contains code in
the other two classes (lines 5, 10, 14, and 20 in (a) and 2, 5, and 9 in (b)). If a concern
is implemented across several classes it is said to be scattered. In the example of
Listing 1.1 the tracing concern is scattered.

Usually a scattered concern involves code replication. That is, the same code is imple-
mented a number of times. In our example the classes Add and CalcDisplay contain
similar tracing code.

In class Add the code for the addition and tracing concerns are intermixed. In class
CalcDisplay the code for the display and tracing concerns are intermixed. If more
then one concern is implemented in a single class they are said to be tangled. In
our example the addition and tracing concerns are tangled. Also display and tracing
concerns are tangled. Crosscutting code has the following consequences:

Code is difficult to change
Changing a scattered concern requires us to modify the code in several places.
Making modifications to a tangled concern class requires checking for side-
effects with all existing crosscutting concerns;

Code is harder to reuse
To reuse an object in another system, it is necessary to either remove the tracing
code or reuse the (same) tracer object in the new system;

Code is harder to understand
Tangled code makes it difficult to see which code belongs to which concern.

1.3 AOP Approach

To solve the problems with crosscutting, several techniques are being researched that
attempt to increase the expressiveness of the OO paradigm. Aspect-Oriented Pro-
gramming (AOP) introduces a modular structure, the aspect, to capture the location
and behavior of crosscutting concerns. Examples of Aspect-Oriented languages are
Sina, AspectJ, Hyper/J, and Compose?. A special syntax is used to specify aspects
and the way in which they are combined with regular objects. The fundamental goals
of AOP are twofold [GL03]: first to provide a mechanism to express concerns that
crosscut other components. Second to use this description to allow for the separation
of concerns.

Joinpoints are well-defined places in the structure or execution flow of a program
where additional behavior can be attached. The most common joinpoints are method
calls. Pointcuts describe a set of joinpoints. This allows us to execute behavior at many
places in a program by one expression. Advice is the behavior executed at a joinpoint.

4 Rolf Huisman
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1 public class Add extends Calculation{
2 private int result;
3 private CalcDisplay calcDisplay;
4
5 Add() {
6 result = 0;
7 calcDisplay = new CalcDisplay();
8 }
9

10 public void execute(int a, int b) {
11 result = a + b;
12 calcDisplay.update(result);
13 }
14
15 public int getLastResult() {
16 return result;
17 }
18 }

(a) Addition concern

1 aspect Tracing {
2 Tracer trace = new Tracer();
3
4 pointcut tracedCalls():
5 call(* (Calculation+).*(..)) ||
6 call(* CalcDisplay.*(..));
7
8 before(): tracedCalls() {
9 trace.write(thisJoinPoint.getSignature()

.toString());
10 }
11 }

(b) Tracing concern

Listing 1.2: Modeling addition, display, and logging with aspects

In the example of Listing 1.2 the class Add does not contain any tracing code and only
implements the addition concern. Class CalcDisplay also does not contain tracing
code. In our example the tracing aspect contains all the tracing code. The pointcut
tracedCalls specifies at which locations tracing code is executed.

The crosscutting concern is explicitly captured in aspects instead of being embedded
within the code of other objects. This has several advantages over the previous code.

Aspect code can be changed
Changing aspect code does not influence other concerns;

Aspect code can be reused
The coupling of aspects is done by defining pointcuts. In theory, this low cou-
pling allows for reuse. In practice reuse is still difficult;

Aspect code is easier to understand
A concern can be understood independent of other concerns;

Aspect pluggability
Enabling or disabling concerns becomes possible.

1.3.1 AOP Composition

AOP composition can be either symmetric or asymmetric. In the symmetric approach
every component can be composed with any other component. This approach is fol-
lowed by e.g. Hyper/J.

In the asymmetric approach, the base program and aspects are distinguished. The base

Rolf Huisman 5



1.3 Aspect Weaving University Twente

program is composed with the aspects. This approach is followed by e.g. AspectJ
(covered in more detail in the next section).

1.3.2 Aspect Weaving

The integration of components and aspects is called aspect weaving. There are three
approaches to aspect weaving. The first and second approach rely on adding behavior
in the program, either by weaving the aspect in the source code, or by weaving directly
in the target language. The target language can be intermediate language (IL) or ma-
chine code. Examples of IL are Java byte code and Common Intermediate Language
(CIL). The remainder of this chapter considers only intermediate language targets. The
third approach relies on adapting the virtual machine. Each method is explained briefly
in the following sections.

1.3.2.1 Source Code Weaving

The source code weaver combines the original source with aspect code. It interprets
the defined aspects and combines them with the original source, generating input for
the native compiler. For the native compiler there is no difference between source code
with and without aspects. Hereafter the compiler generates an intermediate or machine
language output (depending on the compiler-type).

The advantages of using source code weaving are:

High-level source modification
Since all modifications are done at source code level, there is no need to know
the target (output) language of the native compiler;

Aspect and original source optimization
First the aspects are woven into the source code and hereafter compiled by the
native compiler. The produced target language has all the benefits of the native
compiler optimization passes. However, optimizations specific to exploiting as-
pect knowledge are not possible;

Native compiler portability
The native compiler can be replaced by any other compiler as long as it has the
same input language. Replacing the compiler with a newer version or another
target language can be done with little or no modification to the aspect weaver.

However, the drawbacks of source code weaving are:

Language dependency
Source code weaving is written explicitly for the syntax of the input language;

Limited expressiveness
Aspects are limited to the expressive power of the source language. For example,

6 Rolf Huisman



University Twente 1.3 Aspect Weaving

when using source code weaving, it is not possible to add multiple inheritance
to a single inheritance language.

1.3.2.2 Intermediate Language Weaving

Weaving aspects through an intermediate language gives more control over the exe-
cutable program and solves some issues as identified in Section 1.3.2.1 on source code
weaving. Weaving at this level allows for creating combinations of intermediate lan-
guage constructs that can not be expressed at the source code level. Although IL can
be hard to understand, IL weaving has several advantages over source code weaving:

Programming language independence
All compilers generating the target IL output can be used;

More expressiveness
It is possible to create IL constructs that are not possible in the original program-
ming language;

Source code independence
Can add aspects to programs and libraries without using the source code (which
may not be available);

Adding aspects at load- or runtime
A special class loader or runtime environment can decide and do dynamic weav-
ing. The aspect weaver adds a runtime environment into the program. How and
when aspects can be added to the program depend on the implementation of the
runtime environment.

However, IL weaving also has drawbacks that do not exist for source code weaving:

Hard to understand
Specific knowledge about the IL is needed;

More error-prone
Compiler optimization may cause unexpected results. Compiler can remove
code that breaks the attached aspect (e .g., inlining of methods).

1.3.2.3 Adapting the Virtual Machine

Adapting the virtual machine (VM) removes the need to weave aspects. This technique
has the same advantages as intermediate language weaving and can also overcome
some of its disadvantages as mentioned in Section 1.3.2.2. Aspects can be added
without recompilation, redeployment, and restart of the application [PGA02; PAG03].

Modifying the virtual machine also has its disadvantages:
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Dependency on adapted virtual machines
Using an adapted virtual machine requires that every system should be upgraded
to that version;

Virtual machine optimization
People have spend a lot of time optimizing virtual machines. By modifying the
virtual machine these optimizations should be revisited. Reintegrating changes
introduced by newer versions of the original virtual machine, might have sub-
stantial impact.

1.4 AOP Solutions

As the concept of AOP has been embraced as a useful extension to classic program-
ming, different AOP solutions have been developed. Each solution has one or more im-
plementations to demonstrate how the solution is to be used. As described by [EFB01]
these differ primarily in:

How aspects are specified
Each technique uses its own aspect language to describe the concerns;

Composition mechanism
Each technique provides its own composition mechanisms;

Implementation mechanism
Whether components are determined statically at compile time or dynamically at
run time, the support for verification of compositions, and the type of weaving.

Use of decoupling
Should the writer of the main code be aware that aspects are applied to his code;

Supported software processes
The overall process, techniques for reusability, analyzing aspect performance of
aspects, is it possible to monitor performance, and is it possible to debug the
aspects.

This section will give a short introduction to AspectJ [KHH+01] and Hyper-
spaces [OT01], which together with Composition Filters [BA01] are three main
AOP approaches.

1.4.1 AspectJ Approach

AspectJ [KHH+01] is an aspect-oriented extension to the Java programming language.
It is probably the most popular approach to AOP at the moment, and it is finding its
way into the industrial software development. AspectJ has been developed by Gregor
Kiczales at Xerox’s PARC (Palo Alto Research Center). To encourage the growth of
the AspectJ technology and community, PARC transferred AspectJ to an open Eclipse
project. The popularity of AspectJ comes partly from the various extensions based on

8 Rolf Huisman



University Twente 1.4 AspectJ Approach

1 aspect DynamicCrosscuttingExample {
2 Log log = new Log();
3
4 pointcut traceMethods():
5 execution(edu.utwente.trese.*.*(..));
6
7 before() : traceMethods {
8 log.write("Entering " + thisJointPoint.getSignature());
9 }

10
11 after() : traceMethods {
12 log.write("Exiting " + thisJointPoint.getSignature());
13 }
14 }

Listing 1.3: Example of dynamic crosscutting in AspectJ

it, build by several research groups. There are various projects that are porting AspectJ
to other languages, resulting in tools such as AspectR and AspectC.

One of the main goals in the design of AspectJ is to make it a compatible extension to
Java. AspectJ tries to be compatible in four ways:

Upward compatibility
All legal Java programs must be legal AspectJ programs;

Platform compatibility
All legal AspectJ programs must run on standard Java virtual machines;

Tool compatibility
It must be possible to extend existing tools to support AspectJ in a natural way;
this includes IDEs, documentation tools and design tools;

Programmer compatibility
Programming with AspectJ must feel like a natural extension of programming
with Java.

AspectJ extends Java with support for two kinds of crosscutting functionality. The first
allows defining additional behavior to run at certain well-defined points in the execu-
tion of the program and is called the dynamic crosscutting mechanism. The other is
called the static crosscutting mechanism and allows modifying the static structure of
classes (methods and relationships between classes). The units of crosscutting imple-
mentation are called aspects. An example of an aspect specified in AspectJ is shown
in Listing 1.3.

The points in the execution of a program where the crosscutting behavior is inserted are
called joinpoints. A pointcut has a set of joinpoints. In Listing 1.3 is traceMethods
an example of a pointcut definition. The pointcut includes all executions of any method
that is in a class contained by package edu.utwente.trese.

The code that should execute at a given joinpoint is declared in an advice. Advice is
a method-like code body associated with a certain pointcut. AspectJ supports before,
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1 aspect StaticCrosscuttingExample {
2 private int Log.trace(String traceMsg) {
3 Log.write(" --- MARK --- " + traceMsg);
4 }
5 }

Listing 1.4: Example of static crosscutting in AspectJ

after and around advice that specifies where the additional code is to be inserted. In
the example both before and after advice are declared to run at the joinpoints specified
by the traceMethods pointcut.

Aspects can contain anything permitted in class declarations including definitions of
pointcuts, advice and static crosscutting. For example, static crosscutting allows a
programmer to add fields and methods to certain classes as shown in Listing 1.4.

The shown construct is called inter-type member declaration and adds a method trace
to class Log. Other forms of inter-type declarations allow developers to declare the

parents of classes (superclasses and realized interfaces), declare where exceptions need
to be thrown, and allow a developer to define the precedence among aspects.

With its variety of possibilities AspectJ can be considered a useful approach for real-
izing software requirements.

1.4.2 Hyperspaces Approach

The Hyperspaces approach is developed by H. Ossher and P. Tarr at the IBM T.J. Wat-
son Research Center. The Hyperspaces approach adopts the principle of multi-
dimensional separation of concerns [OT01], which involves:

• Multiple, arbitrary dimensions of concerns;
• Simultaneous separation along these dimensions;
• Ability to dynamically handle new concerns and new dimensions of concern as

they arise throughout the software life cycle;
• Overlapping and interacting concerns. It is appealing to think of many concerns

as independent or orthogonal, but they rarely are in practice.

We explain the Hyperspaces approach by an example written in the Hyper/J language.
Hyper/J is an implementation of the Hyperspaces approach for Java. It provides the
ability to identify concerns, specify modules in terms of those concerns, and synthesize
systems and components by integrating those modules. Hyper/J uses bytecode weav-
ing on binary Java class files and generates new class files to be used for execution.
Although the Hyper/J project seems abandoned and there has not been any update in
the code or documentation for a while, we still mention it because the Hyperspaces
approach offers a unique AOP solution.
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1 Hyperspace Pacman
2 class edu.utwente.trese.pacman.*;

Listing 1.5: Creation of a hyperspace

1 package edu.utwente.trese.pacman: Feature.Kernel
2 operation trace: Feature.Logging
3 operation debug: Feature.Debugging

Listing 1.6: Specification of concern mappings

1 hypermodule Pacman_Without_Debugging
2 hyperslices: Feature.Kernel, Feature.Logging;
3 relationships: mergeByName;
4 end hypermodule;

Listing 1.7: Defining a hypermodule

As a first step, developers create hyperspaces by specifying a set of Java class files
that contain the code units that populate the hyperspace. To do this is, you create a
hyperspace specification, as demonstrated in Listing 1.5.

Hyper/J will automatically create a hyperspace with one dimension—the class file di-
mension. A dimension of concern is a set of concerns that are disjoint. The initial
hyperspace will contain all units within the specified package. To create a new di-
mension you can specify concern mappings, which describe how existing units in the
hyperspace relate to concerns in that dimension, as demonstrated in Listing 1.6.

The first line indicates that, by default, all of the units contained within the package
edu.utwente.trese.pacman address the kernel concern of the feature dimension.
The other mappings specify that any method named trace or debug address the
logging and debugging concern respectively. These later mappings override the first
one.

Hypermodules are based on concerns and consist of two parts. The first part specifies a
set of hyperslices in terms of the concerns identified in the concern matrix. The second
part specifies the integration relationships between the hyperslices. A hyperspace can
contain several hypermodules realizing different modularizations of the same units.
Systems can be composed in many ways from these hypermodules.

Listing 1.7 shows a hypermodule with two concerns, kernel and logging. They are re-
lated by a mergeByName integration relationship. This means that units in the different
concerns correspond if they have the same name (ByName) and that these correspond-
ing units are to be combined (merge). For example, all members of the corresponding
classes are brought together into the composed class. The hypermodule results in a
hyperslice that contains all the classes without the debugging feature; thus no debug

methods will be present.
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The most important feature of the hyperspaces approach is the support for on-demand
remodularisation: the ability to extract hyperslices to encapsulate concerns that were
not separated in the original code. Which makes hyperspaces especially useful for
evolution of existing software.

1.4.3 Composition Filters

Composition Filters is developed by M. Akşit and L. Bergmans at the TRESE group,
which is a part of the Department of Computer Science of the University of Twente,
The Netherlands. The composition filters (CF) model predates aspect-oriented pro-
gramming. It started out as an extension to the object-oriented model and evolved into
an aspect-oriented model. The current implementation of CF is Compose?, which
covers .NET, Java, and C.

One of the key elements of CF is the message, a message is the interaction between
objects, for instance a method call. In object-oriented programming the message is
considered an abstract concept. In the implementations of CF it is therefore necessary
to reify the message. This reified message contains properties, like where it is send to
and where it came from.

The concept of CF is that messages that enter and exit an object can be intercepted
and manipulated, modifying the original flow of the message. To do so, a layer called
the interface part is introduced in the CF model, this layer can have several properties.
The interface part can be placed on an object, which behavior needs to be altered, and
this object is referred to as inner.

There are three key elements in CF: messages, filters, and superimposition. Messages
are sent from one object to another, if there is an interface part placed on the receiver,
then the message that is sent goes through the input filters. In the filters the message
can be manipulated before it reaches the inner part, the message can even be sent to
another object. How the message will be handled depends on the filter type. An output
filter is similar to an input filter, the only difference is that it manipulates messages
that originate from the inner part. The latest addition to CF is superimposition, which
is used to specify which interfaces needs to be superimposed on which inner objects.
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Chapter 2
Compose?

“The difficult part of composition filters
is understanding its simplicity.”

Lodewijk Bergmans

Compose? is an implementation of the composition filters approach. There are three
target environments: the .NET, Java, and C. This chapter is organized as follows, first
the evolution of Composition Filters and its implementations are described, followed
by an explanation of the Compose? language and a demonstrating example. In the
third section, the Compose? architecture is explained, followed by a description of the
features specific to Compose?.

2.1 Evolution of Composition Filters

Compose? is the result of many years of research and experimentation. The following
time line gives an overview of what has been done in the years before and during the
Compose? project.

1985 The first version of Sina is developed by Mehmet Akşit. This version of
Sina contains a preliminary version of the composition filters concept called
semantic networks. The semantic network construction serves as an exten-
sion to objects, such as classes, messages, or instances. These objects can
be configured to form other objects such as classes from which instances can
be created. The object manager takes care of synchronization and message
processing of an object. The semantic network construction can express key
concepts like delegation, reflection, and synchronization [Koo95].

1987 Together with Anand Tripathi of the University of Minnesota the Sina lan-
guage is further developed. The semantic network approach is replaced by
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declarative specifications and the interface predicate construct is added.
1991 The interface predicates are replaced by the dispatch filter, and the wait fil-

ter manages the synchronization functions of the object manager. Message
reflection and real-time specifications are handled by the meta filter and the
real-time filter [Ber94].

1995 The Sina language with Composition Filters is implemented using Small-
talk [Koo95]. The implementation supports most of the filter types. In the
same year, a preprocessor providing C++ with support for Composition Fil-
ters is implemented [Gla95].

1999 The composition filters language ComposeJ [Wic99] is developed and im-
plemented. The implementation consists of a preprocessor capable of trans-
lating composition filter specifications into the Java language.

2001 ConcernJ is implemented as part of a M. Sc. thesis [Sal01]. ConcernJ adds
the notion of superimposition to Composition Filters. This allows for reuse
of the filter modules and to facilitate crosscutting concerns.

2003 The start of the Compose? project, the project is described in further detail
in this chapter.

2004 The first release of Compose?, based on .NET.
2005 The start of the Java port of Compose?.
2006 Porting Compose? to C is started.

2.2 Composition Filters in Compose?

1 concern {
2 filtermodule {
3 internals
4 externals
5 conditions
6 inputfilters
7 outputfilters
8 }
9

10 superimposition {
11 selectors
12 filtermodules
13 annotations
14 constraints
15 }
16
17 implementation
18 }

Listing 2.1: Abstract concern template

A Compose? application consists of concerns that can be divided in three parts: filter
module specifications, superimposition, and implementation. A filter module contains
the filter logic to filter on incoming or outgoing messages on superimposed objects.
Messages have a target, which is an object reference, and a selector, which is a method
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name. A superimposition part specifies which filter modules, annotations, conditions,
and methods are superimposed on which objects. An implementation part contains the
class implementation of a concern. How these parts are placed in a concern is shown
in Listing 2.1.

Figure 2.1: Components of the composition filters model

The working of a filter module is depicted in Figure 2.1. A filter module can contain
input and output filters. The difference between these two sets of filters is that the first
is used to filter on incoming messages, while the second is used to filter on outgoing
messages. The return of a method is not considered an outgoing message. A filter has
three parts: a filter identifier, a filter type, and one or more filter elements. A filter
element exists out of an optional condition part, a matching part, and a substitution
part. These parts are shown below:

identifier︷ ︸︸ ︷
stalker filter :

filter type︷ ︸︸ ︷
Dispatch = {

condition part︷ ︸︸ ︷
!pacmanIsEvil =>

matching part︷ ︸︸ ︷
[∗.getNextMove]

substitution part︷ ︸︸ ︷
stalk strategy.getNextMove }

A filter identifier is a unique name for a filter in a filter module. Filters match when
both the condition part and the matching part evaluate to true. In the demonstrated
filter, every message where the selector is getNextMove matches. If an asterisk (*) is
used in the target, every target will match. When the condition part and the matching
part are true, the message is substituted with the values provided in the substitution
part. How these values are substituted, and how the message continues, depends on
the type of filter used.
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At the moment there are four basic filter types defined in Compose?. It is, however,
possible to write custom filter types.

Dispatch If the message is accepted, it is dispatched to the specified target of the
message, otherwise the message continues to the subsequent filter. This
filter type can only be used for input filters;

Send If the message is accepted, it is sent to the specified target of the message,
otherwise the message continues to the subsequent filter. This filter type
can only be used for output filters;

Error If the filter rejects the message, it raises an exception, otherwise the mes-
sage continues to the next filter in the set;

Meta If the message is accepted, the message is sent as a parameter of another
meta message to an internal or external object, otherwise the message just
continues to the next filter. The object that receives the meta message can
observe and manipulate the message and can re-activate the execution of
the message.

The identifier pacmanIsEvil, used in the condition part, must be declared in the
conditions section of a filter module. Targets that are used in a filter can be declared as
internal or external. An internal is an object that is unique for each instance of a filter
module, while an external is an object that is shared between filter modules.

Filter modules are superimposed on classes using filter module binding, which spec-
ifies a selection of objects on the one side, and a filter module on the other side. The
selection is specified in a selector definition. This selector definition uses predicates
to select objects, such as isClassWithNameInList, isNamespaceWithName, and
namespaceHasClass. In addition to filter modules, it is possible to bind conditions,
methods, and annotations to classes using superimposition.

The last part of the concern is the implementation part, which can be used to define the
behavior of a concern. For a logging concern, for example, we can define specific log
functions and use them as internal.
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2.3 Demonstrating Example

To illustrate the Compose? toolset, this section introduces a Pacman example. The
Pacman game is a classic arcade game in which the user, represented by pacman,
moves in a maze to eat vitamins. Meanwhile, a number of ghosts try to catch and eat
pacman. There are, however, four mega vitamins in the maze that make pacman evil.
In its evil state, pacman can eat ghosts. A simple list of requirements for the Pacman
game is briefly discussed here:

• The number of lives taken from pacman when eaten by a ghost;
• A game should end when pacman has no more lives;
• The score of a game should increase when pacman eats a vitamin or a ghost;
• A user should be able to use a keyboard to move pacman around the maze;
• Ghosts should know whether pacman is evil or not;
• Ghosts should know where pacman is located;
• Ghosts should, depending on the state of pacman, hunt or flee from pacman.

2.3.1 Initial Object-Oriented Design

Figure 2.2 shows an initial object-oriented design for the Pacman game. Note that this
UML class diagram does not show the trivial accessors. The classes in this diagram
are:

Game This class encapsulates the control flow and controls the state of
a game;

Ghost This class is a representation of a ghost chasing pacman. Its main
attribute is a property that indicates whether it is scared or not
(depending on the evil state of pacman);

GhostView This class is responsible for painting ghosts;
Glyph This is the superclass of all mobile objects (pacman and ghosts).

It contains common information like direction and speed;
Keyboard This class accepts all keyboard input and makes it available to

pacman;
Main This is the entry point of a game;
Pacman This is a representation of the user controlled element in the game.

Its main attribute is a property that indicates whether pacman is
evil or not;

PacmanView This class is responsible for painting pacman;
RandomStrategy By using this strategy, ghosts move in random directions;
View This class is responsible for painting a maze;
World This class has all the information about a maze. It knows where

the vitamins, mega vitamins and most importantly the walls are.
Every class derived from class Glyph checks whether movement
in the desired direction is possible.
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Figure 2.2: Class diagram of the object-oriented Pacman game
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1 concern DynamicScoring in Pacman {
2 filtermodule dynamicscoring {
3 externals
4 score : pacman.Score = pacman.Score.instance();
5 inputfilters
6 score_filter : Meta = {[*.eatFood] score.eatFood,
7 [*.eatGhost] score.eatGhost,
8 [*.eatVitamin] score.eatVitamin,
9 [*.gameInit] score.initScore,

10 [*.setForeground] score.setupLabel}
11 }
12 superimposition {
13 selectors
14 scoring = { C | isClassWithNameInList(C, [’pacman.World’,
15 ’pacman.Game’, ’pacman.Main’]) };
16 filtermodules
17 scoring <- dynamicscoring;
18 }
19 }

Listing 2.2: DynamicScoring concern in Compose?

2.3.2 Completing the Pacman Example

The initial object-oriented design, described in the previous section, does not imple-
ment all the stated system requirements. The missing requirements are:

• The application does not maintain a score for the user;
• Ghosts move in random directions instead of chasing or fleeing from pacman.

In the next sections, we describe why and how to implement these requirements in the
Compose? language.

2.3.2.1 Implementation of Scoring

The first system requirement that we need to add to the existing Pacman game is scor-
ing. This concern involves a number of events. First, the score should be set to zero
when a game starts. Second, the score should be updated whenever pacman eats a vita-
min, mega vitamin or ghost. And finally, the score itself has to be painted on the maze
canvas to relay it back to the user. These events scatter over multiple classes: Game
(initializing score), World (updating score), Main (painting score). Thus scoring is an
example of a crosscutting concern.

To implement scoring in the Compose? language, we divide the implementation into
two parts. The first part is a Compose? concern definition stating which filter mod-
ules to superimpose. Listing 2.2 shows an example Compose? concern definition of
scoring.
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This concern definition is called DynamicScoring (line 1) and contains two parts.
The first part is the declaration of a filter module called dynamicscoring (lines 2–
11). This filter module contains one meta filter called score_filter (line 6). This
filter intercepts five relevant calls and sends the message in a reified form to an in-
stance of class Score. The final part of the concern definition is the superimposition
part (lines 12–18). This part defines that the filter module dynamicscoring is to be
superimposed on the classes World, Game and Main.

The final part of the scoring concern is the so-called implementation part. This part
is defined by a class Score. Listing 2.3 shows an example implementation of class
Score. Instances of this class receive the messages sent by score_filter and sub-
sequently perform the events related to the scoring concern. In this way, all scoring
events are encapsulated in one class and one Compose? concern definition.

2.3.2.2 Implementation of Dynamic Strategy

The last system requirement that we need to implement is the dynamic strategy of
ghosts. This means that a ghost should, depending on the state of pacman, hunt or flee
from pacman. We can implement this concern by using the strategy design pattern.
However, in this way, we need to modify the existing code. This is not the case when
we use Compose? dispatch filters. Listing 2.4 demonstrates this.

This concern uses dispatch filters to intercept calls to method getNextMove of the
class RandomStrategy. These calls are redirected to either StalkerStrategy.
getNextMove or FleeStrategy.getNextMove. If pacman is not evil, the inter-
cepted call matches the first filter, which dispatches the intercepted call to method
StalkerStrategy.getNextMove (line 9). Otherwise, the intercepted call matches
the second filter, which dispatches the intercepted call to method FleeStrategy.

getNextMove (line 11).

2.4 Compose? Architecture

An overview of the Compose? architecture is illustrated in Figure 2.3. The Compose?
architecture can be divided in four layers [Nag06]: IDE, compile time, adaptation, and
runtime.

2.4.1 Integrated Development Environment

Some of the purposes of the Integrated Development Environment (IDE) layer are to
interface with the native IDE and to create a build configuration. In the build configu-
ration it is specified which source files and settings are required to build a Compose?
application. After creating the build configuration the compile time is started.
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1 public class Score
2 {
3 private int score = -100;
4 private static Score theScore = null;
5 private Label label = new java.awt.Label("Score: 0");
6
7 private Score() {}
8
9 public static Score instance() {

10 if(theScore == null) {
11 theScore = new Score();
12 }
13 return theScore;
14 }
15
16 public void initScore(ReifiedMessage rm) {
17 this.score = 0;
18 label.setText("Score: "+score);
19 }
20
21 public void eatGhost(ReifiedMessage rm) {
22 score += 25;
23 label.setText("Score: "+score);
24 }
25
26 public void eatVitamin(ReifiedMessage rm) {
27 score += 15;
28 label.setText("Score: "+score);
29 }
30
31 public void eatFood(ReifiedMessage rm) {
32 score += 5;
33 label.setText("Score: "+score);
34 }
35
36 public void setupLabel(ReifiedMessage rm) {
37 rm.proceed();
38 label = new Label("Score: 0");
39 label.setSize(15*View.BLOCKSIZE+20,15*View.BLOCKSIZE);
40 Main main = (Main)Composestar.Runtime.FLIRT.message.MessageInfo.

getMessageInfo().getTarget();
41 main.add(label,BorderLayout.SOUTH);
42 }
43 }

Listing 2.3: Implementation of class Score
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1 concern DynamicStrategy in Pacman {
2 filtermodule dynamicstrategy {
3 internals
4 stalk_strategy : pacman.Strategies.StalkerStrategy;
5 flee_strategy : pacman.Strategies.FleeStrategy;
6 conditions
7 pacmanIsEvil : pacman.Pacman.isEvil();
8 inputfilters
9 stalker_filter : Dispatch = {!pacmanIsEvil =>

10 [*.getNextMove] stalk_strategy.getNextMove};
11 flee_filter : Dispatch = {
12 [*.getNextMove] flee_strategy.getNextMove}
13 }
14 superimposition {
15 selectors
16 random = { C | isClassWithName(C,
17 ’pacman.Strategies.RandomStrategy’) };
18 filtermodules
19 random <- dynamicstrategy;
20 }
21 }

Listing 2.4: DynamicStrategy concern in Compose?

Figure 2.3: Overview of the Compose? architecture
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The creation of a build configuration can be done manually or by using a plug-in.
Examples of these plug-ins are the Visual Studio add-in for Compose?/.NET and the
Eclipse plug-in for Compose?/J and Compose?/C.

2.4.2 Compile Time

The compile time layer is platform independent and reasons about the correctness of
the composition filter implementation with respect to the program which allows the
target program to be build by the adaptation.

The compile time ‘pre-processes’ the composition filter specifications by parsing the
specification, resolving the references, and checking its consistency. To provide an ex-
tensible architecture to facilitate this process a blackboard architecture is chosen. This
means that the compile time uses a general knowledgebase that is called the ‘reposi-
tory’. This knowledgebase contains the structure and metadata of the program which
different modules can execute their activities on. Examples of modules within analysis
and validation are the three modules SANE, LOLA and FILTH. These three modules
are responsible for (some) of the analysis and validation of the super imposition and
its selectors.

2.4.3 Adaptation

The adaptation layer consists of the program manipulation, harvester, and code gen-
erator. These components connect the platform independent compile time to the tar-
get platform. The harvester is responsible for gathering the structure and the anno-
tations within the source program and adding this information to the knowledgebase.
The code generation generates a reduced copy of the knowledgebase and the weaving
specification. This weaving specification is then used by the weaver contained by the
program manipulation to weave in the calls to the runtime into the target program. The
end result of the adaptation the target program which interfaces wit the runtime.

2.4.4 Runtime

The runtime layer is responsible for executing the concern code at the joinpoints. It is
activated at the joinpoints by function calls that are woven in by the weaver. A reduced
copy of the knowledgebase containing the necessary information for filter evaluation
and execution is enclosed with the runtime. When the function is filtered the filter is
evaluated. Depending on if the the condition part evaluates to true, and the matching
part matches the accept or reject behavior of the filter is executed. The runtime also
facilitates the debugging of the composition filter implementations.
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2.5 Platforms

The composition filters concept of Compose? can be applied to any programming
language, given that certain assumptions are met. Currently, Compose? supports three
platforms: .NET, Java and C. For each platform different tools are used for compilation
and weaving. They all share the same platform independent compile-time.

Compose?/.NET targets the .NET platform and is the oldest implementation of
Compose?. Its weaver operates on CIL byte code. Compose?/.NET is program-
ming language independent as long as the programming language can be compiled
to CIL code. An add-in for Visual Studio is provided for ease of development.
Compose?/J targets the Java platform and provides a plug-in for integration with
Eclipse. Compose?/C contains support for the C programming language. The im-
plementation is different from the Java and .NET counterparts, because it does not
have a run-time environment. The filter logic is woven directly in the source code.
Because the language C is not based on objects, filters are woven on functions based
on membership of sets of functions. Like the Java platform, Compose?/C provides a
plug-in for Eclipse.

2.6 Features Specific to Compose?

The Composition Filters approach uses a restricted (pattern matching) language to
define filters. This language makes it possible to reason about the semantics of the
concern. Compose? offers three features that use this possibility, which originate in
more control and correctness over an application under construction. These features
are:

Ordering of filter modules
It is possible to specify how the superimposition of filter modules should be or-
dered. Ordering constraints can be specified in a fixed, conditional, or partial
manner. A fixed ordering can be calculated exactly, whereas a conditional or-
dering is dependent on the result of filter execution and therefore evaluated at
runtime. When there are multiple valid orderings of filtermodules on a join-
point, partial ordering constraints can be applied to reduce this number. These
constraints can be declared in the concern definition;

Filter consistency checking
When superimposition is applied, Compose? is able to detect if the ordering
and conjunction of filters creates a conflict. For example, imagine a set of filters
where the first filter only evaluates method m and another filter only evaluates
methods a and b. In this case the latter filter is only reached with method m;
this is consequently rejected and as a result the superimposition may never be
executed. There are different scenarios that lead to these kinds of problems, e .g.,
conditions that exclude each other;
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Reason about semantic problems
When multiple pieces of advice are added to the same joinpoint, Compose? can
reason about problems that may occur. An example of such a conflict is the
situation where a real-time filter is followed by a wait filter. Because the wait
filter can wait indefinitely, the real-time property imposed by the real-time filter
may be violated.

The above mentioned conflict analyzers all work on the assumption that the behavior
of every filter is well-defined. This is not the case for the meta filter, its user-undefined,
and therefore unpredictable, behavior poses a problem to the analysis tools.

Furthermore, Compose? is extended with features that enhance the usability. These
features are briefly described below:

Integrated Development Environment support
The Compose? implementations all have a IDE plug-in; Compose?/.NET for
Visual Studio, Compose?/J and Compose?/C for Eclipse;

Debugging support
The debugger shows the flow of messages through the filters. It is possible to
place breakpoints to view the state of the filters;

Incremental building process
When a project is build and not all the modules are changed, incremental build-
ing saves time.

Some language properties of Compose? can also be seen as features, being:

Language independent concerns
A Compose? concern can be used for all the Compose? platforms, because the
composition filters approach is language independent;

Reusable concerns
The concerns are easy to reuse, through the dynamic filter modules and the se-
lector language;

Expressive selector language
Program elements of an implementation language can be used to select a set of
objects to superimpose on;

Support for annotations
Using the selector, annotations can be woven at program elements. At the mo-
ment annotations can be used for superimposition.

Rolf Huisman 25



2.6 Features Specific to Compose? University Twente

26 Rolf Huisman



Chapter 3
Introduction to the .NET Framework

“The best way to prepare [to be a programmer] is to write programs,
and to study great programs that other people have written.

In my case, I went to the garbage cans at the Computer Science Center
and fished out listings of their operating system.”

William Henry Gates III

This chapter gives an introduction to the .NET Framework of Microsoft. First, the
architecture of the .NET Framework is introduced. This section includes terms like
the Common Language Runtime, the .NET Class Library, the Common Language In-
frastructure and the Intermediate Language. These are discussed in more detail in the
sections following the architecture.

3.1 Introduction

Microsoft defines [Mic05] .NET as follows; “.NET is the Microsoft Web services strat-
egy to connect information, people, systems, and devices through software.”. There are
different .NET technologies in various Microsoft products providing the capabilities
to create solutions using web services. Web services are small, reusable applications
that help computers from many different operating system platforms work together
by exchanging messages. Based on industry standards like XML (Extensible Markup
Language), SOAP (Simple Object Access Protocol), and WSDL (Web Services De-
scription Language) they provide a platform and language independent way to com-
municate.

Microsoft products, such as Windows Server System (providing web services) or Of-
fice System (using web services) are some of the .NET technologies. The technology
described in this chapter is the .NET Framework. Together with Visual Studio, an inte-
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grated development environment, they provide the developer tools to create programs
for .NET.

Many companies are largely dependent on the .NET Framework, but need or want
to use AOP. Currently there is no direct support for this in the Framework. The
Compose?/.NET project is addressing these needs with its implementation of the
Composition Filters approach for the .NET Framework.

This specific Compose? version for .NET has two main goals. First, it combines the
.NET Framework with AOP through Composition Filters. Second, Compose? offers
superimposition in a language independent manner. The .NET Framework supports
multiple languages and is, as such, suitable for this purpose. Composition Filters are
an extension of the object-oriented mechanism as offered by .NET, hence the imple-
mentation is not restricted to any specific object-oriented language.

3.2 Architecture of the .NET Framework

The .NET Framework is Microsoft’s platform for building, deploying, and running
Web Services and applications. It is designed from scratch and has a consistent API
providing support for component-based programs and Internet programming. This
new Application Programming Interface (API) has become an integral component
of Windows. The .NET Framework was designed to fulfill the following objec-
tives [Mic03b]:

Consistency
Allow object code to be stored and executed locally, executed locally but
Internet-distributed, or executed remotely and to make the developer experience
consistent across a wide variety of types of applications, such as Windows-based
applications and Web-based applications;

Operability
The ease of operation is enhanced by minimizing version conflicts and providing
better software deployment support;

Security
All the code is executed safely, including code created by an unknown or semi-
trusted third party;

Efficiency
The .NET Framework compiles applications to machine code before running
thus eliminating the performance problems of scripted or interpreted environ-
ments;

Interoperability
Code based on the .NET Framework can integrate with other code because all
communication is built on industry standards.
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Figure 3.1: Context of the .NET Framework (Modified) [Mic03b]

The .NET Framework consists of two main components [Mic03b]: the Common Lan-
guage Runtime (CLR, simply called the .NET Runtime or Runtime for short) and
the .NET Framework Class Library (FCL). The CLR is the foundation of the .NET
Framework, executing the code and providing the core services such as memory man-
agement, thread management and exception handling. The CLR is described in more
detail in Section 3.3. The class library, the other main component of the .NET Frame-
work, is a comprehensive, object-oriented collection of reusable types that can be used
to develop applications ranging from traditional command-line or graphical user inter-
face (GUI) applications to applications such as Web Forms and XML Web services.
Section 3.5 describes the class libraries in more detail.

The code run by the runtime is in a format called Common Intermediate Language
(CIL), further explained in Section 3.6. The Common Language Infrastructure (CLI)
is an open specification that describes the executable code and runtime environment
that form the core of the Microsoft .NET Framework. Section 3.4 tells more about this
specification.

Figure 3.1 shows the relationship of the .NET Framework to other applications and to
the complete system. The two parts, the class library and the runtime, are managed,
i .e., applications managed during execution. The operating system is in the core,
managed and unmanaged applications operate on the hardware. The runtime can us
other object libraries and the class library, but the other libraries can use the same class
library them self.

Besides the Framework, Microsoft also provides a developer tool called the Visual Stu-
dio. This is an IDE with functionality across a wide range of areas allowing developers
to build applications with decreased development time in comparison with developing
applications using command line compilers.
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3.2.1 Version 2.0 of .NET

In November 2005, Microsoft released a successor of the .NET Framework. Major
changes are the support for generics, the addition of nullable types, 64 bit support,
improvements in the garbage collector, new security features and more network func-
tionality.

Generics make it possible to declare and define classes, structures, interfaces, methods
and delegates with unspecified or generic type parameters instead of specific types.
When the generic is used, the actual type is specified. This allows for type-safety at
compile-time. Without generics, the use of casting or boxing and unboxing decreases
performance. By using a generic type, the risks and costs of these operations is re-
duced.

Nullable types allow a value type to have a normal value or a null value. This null
value can be useful for indicating that a variable has no defined value because the
information is not currently available.

Besides changes in the Framework, there are also improvements in the four main Mi-
crosoft .NET programming languages (C#, VB.NET, J# and C++). The language el-
ements are now almost equal for all languages. For instance, additions to the Visual
Basic language are the support for unsigned values and new operators and additions to
the C# language include the ability to define anonymous methods thus eliminating the
need to create a separate method.

A new Visual Studio 2005 edition was released to support the new Framework and
functionalities to create various types of applications.

3.3 Common Language Runtime

The Common Language Runtime executes code and provides core services. These
core services are memory management, thread execution, code safety verification and
compilation. Apart from providing services, the CLR also enforces code access se-
curity and code robustness. Code access security is enforced by providing varying
degrees of trust to components, based on a number of factors, e .g., the origin of a
component. This way, a managed component might or might not be able to perform
sensitive functions, like file-access or registry-access. By implementing a strict type-
and-code-verification infrastructure, called the Common Type System (CTS), the CLR
enforces code robustness. Basically there are two types of code;

Managed
Managed code is code, which has its memory handled and its types validated
at execution by the CLR. It has to conform to the Common Type Specifica-
tion (CTS Section 3.4). If interoperability with components written in other
languages is required, managed code has to conform to an even more strict set
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of specifications, the Common Language Specification (CLS). The code is run
by the CLR and is typically stored in an intermediate language format. This
platform independent intermediate language is officially known as Common In-
termediate Language (CIL Section 3.6) [Wat00].

Unmanaged
Unmanaged code is not managed by the CLR. It is stored in the native machine
language and is not run by the runtime but directly by the processor.

All language compilers (targeting the CLR) generate managed code (CIL) that con-
forms to the CTS.

At runtime, the CLR is responsible for generating platform specific code, which can
actually be executed on the target platform. Compiling from CIL to the native ma-
chine language of the platform is executed by the just-in-time (JIT) compiler. Be-
cause of this language independent layer it allows the development of CLRs for any
platform, creating a true interoperability infrastructure [Wat00]. The .NET Runtime
from Microsoft is actually a specific CLR implementation for the Windows platform.
Microsoft has released the .NET Compact Framework especially for devices such as
personal digital assistants (PDAs) and mobile phones. The .NET Compact Framework
contains a subset of the normal .NET Framework and allows .NET developer to write
mobile applications. Components can be exchanged and web services can be used
so an easier interoperability between mobile devices and workstations/servers can be
implemented [Mic03a].

At the time of writing, the .NET Framework is the only advanced Common Language
Infrastructure (CLI) implementation available. A shared-source1 implementation of
the CLI for research and teaching purposes was made available by Microsoft in 2002
under the name Rotor [Stu02]. In 2006 Microsoft released an updated version of Rotor
for the .NET platform version two. Also Ximian is working on an open source imple-
mentation of the CLI under the name Mono2, targeting both Unix/Linux and Windows
platforms. Another, somewhat different approach, is called Plataforma.NET3 and aims
to be a hardware implementation of the CLR, so that CIL code can be run natively.

3.3.1 Java VM vs .NET CLR

There are many similarities between Java and .NET technology. This is not strange,
because both products serve the same market.

Both Java and .NET are based on a runtime environment and an extensive development
framework. These development frameworks provide largely the same functionality for
both Java and .NET. The most obvious difference between them is lack of language
independence in Java. While Java’s strategy is ‘One language for all platforms’ the

1Only non-commercial purposes are allowed.
2http://www.go-mono.com/
3http://personals.ac.upc.edu/enric/PFC/Plataforma.NET/p.net.html
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.NET philosophy is ‘All languages on one platform’. However these philosophies are
not as strict as they seem. As noted in Section 3.5 there is no technical obstacle for
other platforms to implement the .NET Framework. There are compilers for non-Java
languages like Jython (Python) [Jyt] and WebADA [Ada96] available for the JVM.
Thus, the JVM in its current state, has difficulties supporting such a vast array of
languages as the CLR. However, the multiple language support in .NET is not optimal
and has been the target of some criticism.

Although the JVM and the CLR provide the same basic features they differ in some
ways. While both CLR and the modern JVM use JIT (Just In Time) compilation the
CLR can directly access native functions. This means that with the JVM an indirect
mapping is needed to interface directly with the operating system.

3.4 Common Language Infrastructure

The entire CLI has been documented, standardized and approved [Int02] by the Eu-
ropean association for standardizing information and communication systems, Ecma
International1. Benefits of this CLI for developers and end-users are:

• Most high level programming languages can easily be mapped onto the Com-
mon Type System (CTS);

• The same application will run on different CLI implementations;
• Cross-programming language integration, if the code strictly conforms to the

Common Language Specification (CLS);
• Different CLI implementations can communicate with each other, providing ap-

plications with easy cross-platform communication means.

This interoperability and portability is, for instance, achieved by using a standardized
meta data and intermediate language (CIL) scheme as the storage and distribution
format for applications. In other words, (almost) any programming language can be
mapped to CIL, which in turn can be mapped to any native machine language.

The Common Language Specification is a subset of the Common Type System, and
defines the basic set of language features that all .NET languages should adhere to. In
this way, the CLS helps to enhance and ensure language interoperability by defining a
set of features that are available in a wide variety of languages. The CLS was designed
to include all the language constructs that are commonly needed by developers (e .g.,
naming conventions, common primitive types), but no more than most languages are
able to support [Mic03c]. Figure 3.2 shows the relationships between the CTS, the
CLS, and the types available in C++ and C#. In this way the standardized CLI pro-

1An European industry association founded in 1961 and dedicated to the standardization of In-
formation and Communication Technology (ICT) Systems. Their website can be found at http:
//www.ecma-international.org/.
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Figure 3.2: Relationships in the CTS

vides, in theory1, a true cross-language and cross-platform development and runtime
environment.

To attract a large number of developers for the .NET Framework, Microsoft has re-
leased CIL compilers for C++, C#, J#, and VB.NET. In addition, third-party vendors
and open-source projects also released compilers targeting the .NET Framework, such
as Delphi.NET, Perl.NET, IronPython, and Eiffel.NET. These programming languages
cover a wide-range of different programming paradigms, such as classic imperative,
object-oriented, scripting, and declarative languages. This wide coverage demonstrates
the power of the standardized CLI.

Figure 3.3 shows the relationships between all the main components of the CLI. The
top of the figure shows the different programming languages with compiler support for
the CLI. Because the compiled code is stored and distributed in the Common Interme-
diate Language format, the code can run on any CLR. For cross-language usage this
code has to comply with the CLS. Any application can use the class library (the FCL)
for common and specialized programming tasks.

3.5 Framework Class Library

The .NET Framework class library is a comprehensive collection of object-oriented
reusable types for the CLR. This library is the foundation on which all the .NET ap-
plications are built. It is object oriented and provides integration of third-party com-
ponents with the classes in the .NET Framework. Developers can use components
provided by the .NET Framework, other developers and their own components. A
wide range of common programming tasks (e .g., string management, data collection,
reflection, graphics, database connectivity or file access) can be accomplished easily

1Unfortunately Microsoft did not submit all the framework classes for approval and at the time of
writing only the .NET Framework implementation is stable.
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Figure 3.3: Main components of the CLI and their relationships. The right hand side
of the figure shows the difference between managed code and unmanaged code.

by using the class library. Also a great number of specialized development tasks are
extensively supported, like:

• Console applications;
• Windows GUI applications (Windows Forms);
• Web applications (Web Forms);
• XML Web services;
• Windows services.

All the types in this framework are CLS compliant and can therefore be used from any
programming language whose compiler conforms to the Common Language Specifi-
cation (CLS).

3.6 Common Intermediate Language

The Common Intermediate Language (CIL) has already been mentioned briefly in the
sections before, but this section will describe the IL in more detail. All the languages
targeting the .NET Framework compile to this CIL (see Figure 3.4).
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Figure 3.4: From source code to machine code

A .NET compiler generates a managed module which is an executable designed to be
run by the CLR [Pro02]. There are four main elements inside a managed module:

• A Windows Portable Executable (PE) file header;
• A CLR header containing important information about the module, such as the

location of its CIL and metadata;
• Metadata describing everything inside the module and its external dependencies;
• The CIL instructions generated from the source code.

The Portable Executable file header allows the user to start the executable. This small
piece of code will initiate the just-in-time compiler which compiles the CIL instruc-
tions to native code when needed, while using the metadata for extra information about
the program. This native code is machine dependent while the original IL code is still
machine independent. This way the same IL code can be JIT-compiled and executed
on any supported architecture. The CLR cannot use the managed module directly but
needs an assembly.

An assembly is the fundamental unit of security, versioning, and deployment in the
.NET Framework and is a collection of one or more files grouped together to form a
logical unit [Pro02]. Besides managed modules inside an assembly, it is also possible
to include resources like images or text. A manifest file is contained in the assem-
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bly describing not only the name, culture and version of the assembly but also the
references to other files in the assembly and security requests.

The CIL is an object oriented assembly language with around 100 different instructions
called OpCodes. It is stack-based, meaning objects are placed on an evaluation stack
before the execution of an operation, and when applicable, the result can be found
on the stack after the operation. For instance, when adding two numbers, first those
numbers have to be placed onto the stack, second the add operation is called and finally
the result can be retrieved from the stack.

1 .assembly AddExample {}
2
3 .method static public void main() il managed
4 {
5 .entrypoint // entry point of the application
6 .maxstack 2
7
8 ldc.i4 3 // Place a 32-bit (i4) 3 onto the stack
9 ldc.i4 7 // Place a 32-bit (i4) 7 onto the stack

10
11 add // Add the two and
12 // leave the sum on the stack
13
14 // Call static System.Console.Writeline function
15 // (function pops integer from the stack)
16 call void [mscorlib]System.Console::WriteLine(int32)
17
18 ret
19 }

Listing 3.1: Adding example in IL code

To illustrate how to create a .NET program in IL code we use the previous example of
adding two numbers and show the result. In Listing 3.1 a new assembly is created with
the name AddExample. In this assembly a function main is declared as the starting
point (entrypoint) of this assembly. The maxstack command indicates there can
be a maximum of two objects on the stack and this is enough for the example method.
Next, the values 3 and 7 are placed onto the stack. The add operation is called and the
results stays on the stack. The method WriteLine from the .NET Framework Class
Library is called. This method resides inside the Console class placed in the System
assembly. It expects one parameter with a int32 as its type that will be retrieved from
the stack. The call operation will transfer the control flow to this method passing
along the parameters as objects on the stack. The WriteLine method does not return
a value. The ret operation returns the control flow from the main method to the calling
method, in this case the runtime. This will exit the program.

To be able to run this example, we need to compile the IL code to bytecode where
each OpCode is represented as one byte. To compile this example, save it as a text
file and run the ILASM compiler with as parameter the filename. This will produce an
executable runnable on all the platforms where the .NET Framework is installed.

This example was written directly in IL code, but we could have used a higher level
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language such as C# or VB.NET. For instance, the same example in C# code is shown
in Listing 3.2 and the VB.NET version is listed in Listing 3.3. When this code is
compiled to IL, it will look like the code in Listing 3.1.

1 public static void main()
2 {
3 Console.WriteLine((int) (3 + 7));
4 }

Listing 3.2: Adding example in the C# language

1 Public Shared Sub main()
2 Console.WriteLine(CType((3 + 7), Integer))
3 End Sub

Listing 3.3: Adding example in the VB.NET language
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Chapter 4
Problem Statement

“If debugging is the process of removing bugs,
then programming must be the process of putting them in.”

Edsger Dijkstra

This chapter explains the problems associated with the debugging of Aspect-oriented
programs which this thesis addresses. First, the concept of debugging is introduced,
which includes terms like bug, fault and failure. Second, the difficulties and ap-
proaches in debugging software programs are addressed. Third, the difficulties in de-
bugging Aspect-oriented programs are highlighted. Finally, the problem addressed in
this thesis is formulated.

4.1 Bug Anatomy

Computer programs are build by compilers, from source code into a target program.
This target program is then deployed and executed. Because computer programs are
complex, developers make programming errors in the source code, called bugs. We
distinguish two kinds of bugs; syntactic and semantic.

Syntactic bugs are a violation of the syntax of a language. An example of a syntactic
bug in the English language would be;

I are going to my mother.

The meaning of such a sentence can be understood by an English speaker, but it is not
grammatically correct and thus violates the syntax of the English language. Because
computer languages are strict in their syntax, compilers will not compile source files
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containing syntactic bugs. This means that detection of syntactic bugs can be done by
using the compiler.

A semantic bug is an incorrect or unintended meaning of the specification. An example
of a semantic bug in the English language is;

My hamster just drove a car to Jupiter.

While most English speakers would agree that the sentence is syntactical correct, its
meaning could be questioned. Since a semantic bug does not violate the syntax of a
language it can therefore not be found by just validating the syntax. Therefore a more
detailed analysis called type checking is commonly used. Type checking validates the
type system used in a program. Many semantic bugs however do not invalidate the
type system and can therefore not be found using type checking. When a program
has a correct syntax and a correct type system, the compiler can not recognize that the
source code is incorrect and compiles the source files into a target program.

When a piece of code which contains a semantic bug is executed, it causes an incor-
rectness in the execution called a fault [Org02]. This fault could then cause the target
program to misbehave which is then called a failure [Org02]. A fault which does not
result in the program misbehaving therefore does not lead to a failure. This happens in
fault tolerant systems.

Because a failure is unintended behavior caused by an incorrect implementation, a
program which behaves correctly does not have failures during execution. Since bugs
are the cause of the faults which are responsible for the failures, we want to remove
the bugs from the source code to get the intended implementation.

4.2 Difficulties in debugging software programs

The process of removing bugs is called debugging which generally consists of five
steps [ARF02]:

Recognize the failure
Determine what the misbehavior of the computer program is;

Isolation of the fault
Determine which fault is causing the failure;

Identify the bug
Determine what bug is causing the fault;

Repair the bug
Replacing the incorrect pieces of source code by the correct ones;

Validation
Check if the modification of the source code resulted in the desired behavior and
whether it did not result in the same or different misbehavior.
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The main difficulty of debugging is the isolation of the fault. One reason of this is the
delay between the failure and the causing fault, called the fault delay. Another reason
is that the complexity of a program increases when it is executed. An example of this

Figure 4.1: UML model of the Doctor example

increase in complexity is the small program which purpose it is to print the relations
between doctors and their patients. The model of this program seen in Figure 4.1 is
not complex. It consists of two classes representing the doctor and its patient. There is
one reference from the doctor to the patient. The implementation of this model can be
seen in Listing 4.1.

1 public class Person{
2 protected string _name;
3
4 public Person(string name){
5 this._name = name;
6 }
7
8 public override string ToString(){
9 return "Patient: " + this._name;

10 }
11 }
12
13 public class Doctor : Person{
14 public Doctor(string name) : base(name){}
15
16 public override string ToString(){
17 string result = "Doctor: "+this._name+"\nPatients:\n";
18 foreach (Person patient in patients){
19 result += patient.ToString() + ’\n’;
20 }
21 return result;
22 }
23
24 private List<Person> patients = new List<Person>();
25
26 public void addPatient(Person patient){
27 patients.Add(patient);
28 }
29 }

Listing 4.1: Implementation of the doctor class in the C# language

When the program is executed by using the bootstrap code as can be seen in Listing 4.2,
two objects are created; a doctor called piet and his patient hans.
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1 Doctor piet = new Doctor("Piet");
2 Person hans = new Person("Hans");
3 piet.addPatient(hans);
4 Console.WriteLine(piet.ToString());

Listing 4.2: Bootstrap code in the C# language

As can be seen in Figure 4.2, during execution the ToString function of the piet
object will be executed which in its turn calls the ToString function of its patient
hans because of the patient reference.

Figure 4.2: Execution of the ToString of Listing 4.2

While this small execution is not that complex, other executions are possible which
were not intended. In Listing 4.3 can be seen an example of where hans is also a doctor
with piet as his patient. This situation results in an endless loop as shown in Figure 4.3
and will eventually lead to a stack overflow. This execution is the result of both piet
and hans being doctors which are cross-referenced to each other. This cross-reference
makes a call to the method ToString of the object piet result in a call from object
piet to the ToString method object hans. This call to ToString method of object
hans results in a call from the object hans back to the method ToString of the object
piet again.

1 Doctor piet = new Doctor("Piet");
2 Person hans = new Doctor("Hans");
3 piet.addPatient(hans);
4 hans.addPatient(piet);
5 Console.WriteLine(piet.ToString());

Listing 4.3: Bug revealing bootstrap code in the C# language

While the model and the static source file are not so complex, the execution can create
complex situations. The more complex the relations are, the more difficult the isolation
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Figure 4.3: Execution of the ToString of Listing 4.3

of the fault becomes. In this example the number of instances is lower and the model
was smaller compared to a real system which also has references that change during
executing and concurrency. In a real system the increase of the complexity at execution
is therefore bigger than in this example.

Because most programming languages in use today are Turing complete, the halting
theorem implies that it is impossible to find all bugs using automated analysis. Since
computer programs are still unable to grasp what we intended and automated analysis
are insufficient it is required to provide the developer the insight into the implemented
behavior and how that behavior is related to the source code. To achieve this kind
of insight a computer program called a debugger is used. The most commonly used
debuggers today are execution steppers. These allow stepping through the executing
operations of the system that is being debugged. This gives the developer insight in
the implemented behavior of the system. By using this insight a developer can isolate
the fault and then fix the bug.

4.2.1 Breakpoints

Since stepping through all the operations of a program is too much for a programmer,
debuggers commonly use breakpoints. Breakpoints limit the amount of operations to
be stepped through by specifying limitations on the operations. At such an operation
the execution of the program is suspended which is called breaking.

The most commonly used breakpoints are Statement breakpoints. Statement break-
points are annotations on a statement of the programming source code. They break
when the annotated statement is executed and are the usual type of breakpoints found
in today’s Integrated Development Environment (IDE). An example of this kind of
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breakpoint can be seen in Figure 4.4. The biggest issue with Statement breakpoints

Figure 4.4: A conventional breakpoint in Visual Studio 2005

is that when an statement is executed too many times it overloads the developer. To
improve it usefulness, programmer’s insert a condition as can be seen in Listing 4.4.

1 if(this._name == null)){
2 Console.WriteLine(); //statement breakpoint
3 }

Listing 4.4: Emulating a conditional breakpoint using a conventional one in the C#
language

In this case if the this._name variable contains the value null the Console.

WriteLine is executed which triggers the breakpoint. This use of an if-statement
evolved in the Conditional breakpoint as can be seen in Figure 4.5.

Figure 4.5: A conditional breakpoint in Visual Studio 2005
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4.3 Added difficulties in debugging Aspect-oriented pro-
grams

In Figure 4.6 can be seen the relation between the instantiation an the implementation.
This relation between the instance and its implementation is the implementation rela-
tion. In object-orientation a function is implemented in one class and multiple objects
can be an instance of that class. In the case of object-orientation the implementation
relation is therefore a one to many relation.

Figure 4.6: Difference between OO definitions and AOP definitions

Because crosscutting consist of spreading and tangling, isolation of crosscutted advice
therefore always results in a many to many implementation relation. Because aspect-
orientation allows for modularization of the crosscutting concerns, by default it also
has a many to many implementation relation. This many to many relation enlarges
the increase in complexity at runtime even more because the influence of the advice
becomes another factor to take into account. When dynamic weaving is used, the dy-
namic behavior is another factor and thus the execution becomes even more complex.

Because advice can be executed in many places within the program, using a conven-
tional breakpoint on advice, causes the amount of breaks to increase dramatically. This
increase in breaks, overloads the developer The added complexity of aspect-oriented
programs and reduced usefulness of the conventional breakpoint at runtime, make
aspect-oriented programs hard to debug.

Composition filters are not that different from other aspect oriented languages in this
facet. In Listing 4.5 it can be seen that both the logAddingPatient and rights

filtermodules are superimposed on the same class Doctor. This means that composi-
tion filters can add multiple advices to a single class. In the same example the rights
filtermodule is sumperimposed onto multiple classes. Composition filters therefore
have the same many to many implementation relation, which result in a high execution
complexity. This complexity makes it more difficult to debug then when not using
aspect oriented source code. While the Compose? compiler does some static semantic
analysis which allow reasoning about the target program and composition filter inter-
ferences, the detection of semantic bugs is limited.
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1 concern Logging{
2 filtermodule logAddingPatient {
3 inputfilters
4 logging : Meta = {[*.Add] logger.LogAdd}
5 }
6 superimposition {
7 selectors
8 persons = { C | isClassWithName(C, ’Doctor’)};
9 filtermodules

10 persons <- recursion_fix;
11 }
12 }
13
14 concern Rights{
15 filtermodule rights {
16 conditions
17 access : Context.Access()
18 inputfilters
19 rights : Error = {!access -> [*.*]}
20 }
21 superimposition {
22 selectors
23 persons = { C | isClassWithNameInList(C, [’Doctor’,’

AdminConsole’])};
24 filtermodules
25 persons <- rights;
26 }
27 }

Listing 4.5: Concerns in on Doctor Compose?

This report will concentrate on improving the representation, editing, compiling, and
debugging of composition filter programs while remaining extensible and program-
ming language independent. The primary focus will be on the debugging of composi-
tion filter programs within the Compose? framework.
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Chapter 5
Conceptual Solution

“Everything should be made as simple as possible,
but no simpler.”
Albert Einstein

To assist the developer in debugging applications using Composition Filters, we need
to know what kinds of bugs are made. To identify these bugs, we observed the bugs
commonly made in Compose? programs. At the time of writing the Compose?/.NET
was the commonly used implementation of Compose?. We observed which bugs are
commonly made by a total of 14 MSc. students while using Compose?/.NET. We
conclude that if a program that uses Composition Filters has a fault, the bug which
caused the fault is located in or caused by:

The original class
The implementation or use of the class is incorrect;

One of the filters
The filter is used or implemented incorrectly;

Combination of filters
The filters interfere with each other or with other non-composition filter source
code;

Incorrect Superimposition
The wrong joinpoints are selected;

Combination of all
Combination of all problems mentioned above.

Other effects
The system may experience problems beyond the programs control e .g., hard-
ware malfunction, bugs in the framework implementation.

These bugs except the latter are caused by insufficient comprehension of the program’s
execution behavior by the programmer. The programmer did not anticipate the unin-
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tended behavior of the program when he/she developed the source code. These bugs
are semantic bugs; they are not a violation of the syntax, but a violation of the pro-
gram’s meaning or intention. In essence the programmer intended to write a different
program.

5.1 Execution behavior

When describing a program by a Deterministic Finite Automata (DFA), the execution
behavior of an implemented program is all the possible paths in the automata. One of
these paths is one possible execution path, of a program, for a given input.

The intended path is an execution path that the programmer originally envisioned for
a given input. When a failure occurs, the execution path of the implemented program
differs from the intended path. Isolating the fault is finding the first fault in the path
where the implemented execution path deviates from the intended execution path. The
transition pointing to the first fault is related to a transition in the implemented au-
tomata, which is the bug we are looking for.

Figure 5.1: Intended Path

Figure 5.2: Implemented Path Figure 5.3: Failure

Figure 5.4: Faults Figure 5.5: Bug

In the case of the example as shown in Listing 4.1 a possible execution path of the
implemented automata is as shown in Figure 5.2. This execution path of toString,
toString, .., StackOverflow is not the intended behavior. The programmer expe-
riences this as the program having a different output1 then what he expected. The
expected behavior is toString, toString, return, return which is our intended ex-
ecution path as shown in Figure 5.1. As can be seen in Figure 5.3 the failure is the

1This includes the absence of output in case of e.g. a deadlock
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difference in accepting state between the intended and implemented path. Because the
implemented path ends with a StackOverflow instead of a return the last state is a
failure.

As can be seen in Figure 5.4, the faults are the differences in states between the in-
tended and implemented path. While debugging, the programmer will try to find out
where the program starts to behave differently. The programmer is searching for the
first occurrence of a fault in the execution path. As can be seen in Figure 5.5 the bug
is defined as a transition going from the correct state to a faulty state. In this example
the bug is therefore the call of another toString.

Besides the situation that toString is considered the bug, another possibility is that the
developer is of the opinion, that the incorrect use of these classes is the bug causing
the fault. The failure in this case, is the state which caused the third toString to
occur. Therefore the state before the first fault, the state between the second and third
toString, has now become our failure, as can be seen in Figure 5.7. The programmer
then tries to isolate the fault again.

Figure 5.6: Intended path with the correct use

Figure 5.7: Implemented path incorrect use

This difference in opinion between toString being the bug or the addPerson being
the bug, is a difference in the intended path, which results in a different transition being
a bug. In practice, the intended path is implicit in the programmer’s brain. While de-
bugging, the programmer thinks the intended path is like the one shown in Figure 5.1.
The programmer will generally restate the isolated fault as a failure, and perform the
whole procedure again. This restating of the failure result in the programmer gaining
the insight that the intended path is as shown in Figure 5.6.

This recursive isolation of the failure therefore refines the intended path to resemble
what the programmer really intended. This is a recursive step of refining the intended
behavior of a system which is fundamental to fault isolation. Essentially the program-
mer will recognize incorrect behavior when the programmer notices it, but does not
know exactly how it should be. This is different from the common opinion. The cur-
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rent common opinion is that the programmer always knows how its program should
behave.

5.2 Breakpoints

Conventional breakpoints are used to assist the programmer in isolating the fault. The
breakpoints are placed on the (line number of the) instruction. Because the instructions
of the system are represented by a DFA as transitions, in this model conventional
breakpoints are therefore placed on a transition. This means that the debugger will
break the program, if that transition is about to be executed. Because conventional
breakpoints are less suitable to gain insight in aspect oriented programs, our solution
is to provide better suited breakpoints.

The specification of the location of a breakpoint can be seen as a fine-grained join-
point specification where the advice results in a break. Since the specification of con-
ventional breakpoint, is not expressive enough to specify a fine grained joinpoint in
an aspect oriented program, we need to increase the expressiveness of the breakpoint
specification. This is accomplished by moving from a structural to a behavioral join-
point specification. Since we are specifying the location of a breakpoint, it is essential
that the specification that we use is suitable for the finding bugs.

With a behavioral specification we can better describe invariants over the behavior of
a program. It is then possible to validate the execution behavior of the program to this
behavioral specification and find the misconceptions between the implemented pro-
gram and what the programmer intended. This helps the programmer to comprehend
the execution behavior of the implemented program with respect to its source code.
Because we do not know where the bug is, we need a joinpoint specification that does
not require specifying the bug itself. This is necessary because if we know where the
bug is, we usually do not need to debug.

This requirement for the specification language may be obvious, but it results in many
commonly used specification formalisms like; regular expressions, push down au-
tomata, and the specification language proposed by Conradi [Con06] for specifying
within a Fine-grained Joinpoint Model, to be unpractical. They rely on the program-
mer, specifying an exact location within the program or behavior.

The join point specification language, we therefore propose to use, is Linear Temporal
Logic (LTL) because of its describing power based on behavior instead of the structure
of the implemented program. LTL was published by Pnueli [Pnu77] as a modal logic
over infinite sequences. It is typically used in model checking. Model checking is an
automatic verification technique for finite state systems. Specifications are written in
propositional temporal logic as a formula, and verification is done by an exhaustive
search of all states in the model.

LTL breakpoints contain such a LTL formula. This LTL formula is an invariant over the
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execution behavior. When the LTL formula does not hold, the breakpoint is activated
and the program breaks. With the use of an LTL breakpoint, the programmer can
describe the intended behavior. The breakpoint will then halt when the behavior is
about to deviate.

In the case of the doctor example as shown in Listing 4.1 the LTL formula the failure
could be describing as 2(!StackOverflow). This means that in the whole execu-
tion we do not want the StackOverflow to occur. The breakpoint will then cause
the program to break when StackOverflow is about to occur. This will allow the
programmer to inspect the state which resulted in the formula not to hold.

Because the evaluation of an LTL formula, depends on the propositions used, the for-
mula needs to be checked if it holds for every transition. LTL breakpoints are there-
fore more expensive in computation then normal statement or conditional breakpoints.
When using LTL breakpoints for all instructions of a system, the overhead can reduce
its usefulness. It is therefore advised to only validate the propositions for each advice
and use conventional means to find bugs in non-aspect oriented code.

Because composition filters only have side effects on the message when the compo-
sition filters are evaluated, composition filters can be considered stuttering equiva-
lent [MCBG88]. This means that while propositions that are based on the message can
influence the holding of a formula, other propositions do not need to be evaluated. By
using the stutter equivalent behavior of the filter evaluation we can reduce the amount
the overhead of evaluating LTL breakpoints.

5.3 Behavior prediction

Since the most commonly used debuggers today are execution steppers, a naive de-
bugger would step through the filter evaluation as shown in Figure 5.8. In this repre-
sentation, the evaluation at a joinpoint would span multiple screens, because it only
represents one moment in the complete filter evaluation. The programmer would then
step through the filter evaluation, one filter at the time.

If the side effects of a filter evaluation is isolated to the messages, it is possible to
evaluate a full filter evaluation on a joinpoint as shown in Figure 5.9. This representa-
tion provides the programmer with more insight into the filter evaluation than stepping
through the evaluation of the individual filters, because he can directly see the influ-
ences between the filters within the filter set.

When dealing with evaluations that have side effects, beyond the messages, a simula-
tion of the evaluation of the filter set can be done. This simulation uses the assumption
that the side-effect, do not result in any effects on the filter evaluation. By using this
simulation, a prediction of the behavior can be represented as shown on the left side
in Figure 5.10.

After this prediction, the side effect can really be executed as is shown on the right side
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Figure 5.8: Stepping through filters at a joinpoint

Figure 5.9: Representing the full joinpoint

Figure 5.10: Predicting the rest of the execution behavior

in Figure 5.10. If this side effect results in an effect on the filter evaluation, the real
behavior would be different then the predicted behavior. By representing the predicted
and the real behavior, the programmer can comprehend the result of the side effects.

52 Rolf Huisman



Chapter 6
Conceptual Design

“Part of the inhumanity of the computer is that,
once it is competently programmed and working smoothly,

it is completely honest.”
Isaac Asimov

In this chapter we will make the conceptual solution more concrete. Firstly, we de-
scribe the LTL formula of the LTL breakpoint. This is used for expressing the moment
in the execution we want to inspect. Secondly, we describe the different representa-
tions for the Composition Filters. Thirdly, we describe the different navigations for
Composition Filters to advance to another moment in the execution when the program
is breaked. Fourthly, we show how to use this approach to debug an example program.

6.1 LTL Propositions

An LTL breakpoint consists of two elements: a LTL formula and the break behavior.
Linear temporal logic (LTL) is a modal linear time logic over infinite traces. It was
introduced by Pneli [Pnu77]. The syntax of a LTL formula is as follows:

φ ::= p | ¬φ | φ ∨ ψ | #φ | φ U ψ

• p is an atomic proposition. This proposition can hold or not hold.

• ¬φ is the negation. A negation holds, if φ does not hold. A negation is com-
monly written as !φ.

• φ ∨ ψ is the disjunction. A disjunction holds, if either φ holds or ψ holds. The
disjunction is commonly written as φ|ψ.
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• #φ is the next. The next holds in a state, if φ holds in the successive state. It is
commonly written as Xφ.

• φ U ψ is the until. The until holds if ψ eventually will hold for some state and φ
continuously holds until that state. The until is commonly written as φUψ

By using these elements the following operators can be derived:

true ≡ p ∨ ¬p φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)
false ≡ ¬true 3φ ≡ true U φ
φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ) 2φ ≡ ¬3(¬φ)
φ⇒ ψ ≡ ¬φ ∨ ψ Wφ ≡ 2φ ∨ (φ U ψ)

The first five definitions (true, false, conjunction, implication, and equivalence) are
standard propositional logic. The conjunction is commonly written as φ&ψ and the
implication as φ-¿ψ The last three operators are future (eventually φ), globally (always
φ), and unless (weak until φ).

• Formula 3φ holds if either φ is true now, or it will become true in some state in
the future. This formula is commonly written as Fφ.

• Formula 2φ holds if φ holds in the current state and it holds in every state in
the future. This formula is commonly written as Gφ.

• Formula Wφ holds if φ U ψ holds, without guarantee that ψ will ever hold,
meaning that φ continuously holds if ψ never holds. This formula is commonly
written as Wφ.

Because the expressiveness of a LTL formula is based on the expressiveness of the
atomic proposition, we are going to define what propositions can be used. In order
to find the necessary expressiveness of the proposition, we need to analyze the basic
elements within the composition filter model. By being able to express these basic
elements, a suitable expressive specification can be found.

As noted in Section 2.2 within Compose? we filter on messages. According to the
language analysis of Doornenbal [Doo06], concerns are the distinctive building blocks
of a Compose? application. For these basic model elements we now are going to
determine what the expressiveness is, that we need.

6.1.1 Concerns

A concern has a name and an optional namespace. A concern consists of three ele-
ments: zero or more filter modules, an optional superimposition part, and an optional
implementation part. The filter modules are superimposed on joinpoints by the fil-
ter module binding field of the superimposition. The implementation part contains
language dependent code of the concern.
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The statements which therefore can be used to address a concern are:

Concern.Name
Concern.Name is a String which is the name of the concern. This name can
then be used in an evaluation.

Concern.NameSpace
Concern.Namespace is a String which is the namespace the concern belongs
to. The name of the namespace can then be used in an evaluation.

6.1.2 Superimposition

Superimposition is a pointcut specification. Because the pointcut specification applies
filter modules onto joinpoints, a breakpoint specification which allows to specify fil-
termodules has enough expressive power.

6.1.3 FilterModules

A filter module has a name. A filter module can contain conditions, internals, externals,
and two sets of filters: the input filters and the output filters.

The statements which therefore can be used to address a filtermodule are:

FilterModule.Name
FilterModule.Name is a String which is the name of the filtermodule. This
name can be used in evaluations.

FilterModule.Condition
FilterModule.Condition is a list of conditions the filtermodule contains. We ad-
dress individual conditions by their references. When addressing one condition,
it’s evaluation can be used as a Propositions.

FilterModule.Internal
FilterModule.Internal is a list of internals the filtermodule contains. We address
individual internals by their references. When addressing a particular internal,
the internal can be used in an evaluation.

FilterModule.External
FilterModule.External is a list of externals the filtermodule contains. We address
individual externals by their references. When addressing a particular external,
the external can be used in an evaluation.

6.1.4 Filters

A filter has three parts: a filter identifier, a filter type, and one or more filter elements. A
filter element exists out of an optional condition part, a matching part, and an optional
substitution part.
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If the condition part is true and the matching part matches, the accept action of a
filter is executed. Otherwise the reject action of a filter is executed. The type of the
filter determines which kind of accept or reject action is executed. Since the matching
part matches on the selector, the matching part itself can be described by allowing the
description of the message. The behavior of the matching itself is something we like
to describe at the filter. The condition part is a condition which can hold, or not hold.
We therefore allow the usage of the condition within the proposition. Since a filter can
accept or reject, we are interested when this happens, combined with the kind of filter
action that is executed.

The statements which therefore can be used to address a filter are:

Filter.Name
Filter.Name is a String which is the name of the filter. This name can be used
in evaluations.

Filter.Type
Filter.Type is a Type which is the type of a filter. Examples of such types are:
Meta, Dispatch, Error, Send, Substitute. This type can then be used in an evalu-
ation.

Filter.Action
Filter.Action is the filteraction a filter executes. Examples of such a filteraction
are: ContinueAction, ErrorAction, DispatchAction. The filteraction can then be
used in an evaluation.

Filter.Accept
Filter.Accept is a proposition which holds if the a filter accepts a message.

Filter.Reject
Filter.Reject is a proposition which holds if the a filter rejects a message.

6.1.5 Message

Since the messages are the most atomic communication within the composition filter
model, matching a unique message should be expressible within the atomic proposi-
tion. A message contains five elements of data; Sender, Selector, Server, Target, and
Arguments.

The statements which therefore can be used to address a message are:

Message.Sender
Message.Sender is the sender of the message. The sender can be used in evalu-
ations.

Message.Selector
Message.Selector is a String which is the selector of the message. This selec-
tor can then be used in an evaluation.

Message.Arguments
Message.Arguments is a list of arguments the message contains. We address
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individual arguments by their order. When addressing a particular argument, the
argument can be used in an evaluation.

Message.Target
Message.Target is the target of the message. The target can be used in evalua-
tions.

6.1.6 Operations

Because many of the data elements within the Composition Filter model are not propo-
sitions or conditions, we need to compare the data to a given value. An example of
this is “the selector of the message is ToString”. This approach however does not
work for the sender and target, since these can be objects and thus are very difficult to
specify by a value. We therefore also allow the comparison of types. A proposition
like: “the sender of the message is of a certain type” should therefore be possible.

The statements which therefore can be used to compare to are:

Basic Values
Basic values are values which a String, Type, or other value can be compared
to. Examples of basic values are: 1, 2, 3, .., ””, ”a”, ”aa”, .., ‘a’,‘b’,.., etc.

Value Operators
Value operators are operators to compare values. Examples of value operators
are: Equals, Not Equals, Bigger Then, Smaller Then, etc.

Type Operators
Type Operators are operators which compare types. examples of type operators
are: instanceof, .class, .type, etc.

6.1.7 Implementation Part And Other Language Dependent Source
Code

The implementation part and the source code the Composition Filters are applied on,
are both language dependent. If we would allow the specification of the basic elements
within these language dependend source code, the expressive power of the breakpoint
specification would be very large. The problem however would be, that by specify-
ing elements beyond the compositional model within a proposition, we need to put
restrictions on the programming language that the breakpoint specification is applied
on. Since Composition Filters are (and need to be) language independent we cannot
do that.

However, in the implementation the programming language is much more restricted.
It is therefore possible to add these elements as propositions. It is however paramount,
that the propositions do not have any side effects on the system itself.
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6.2 Filter Representation

If an LTL breakpoint breaks a system at a joinpoint, the system is in a state which
we want to inspect. We therefore need to focus on how to represent what we want
to inspect. Since we want to inspect Composition Filters, we look at the different
representations of Composition Filters. These representations are then compared to
each other, in order to find the representation best suited for debugging.

6.2.1 8Ball representation

The 8Ball representation, as shown in Figure 6.1, shows a joinpoint of the non-
compositional filter part of the source code on a sphere. By rotating the sphere different
filters get superimposed on the shown joinpoint. By rotating in a different direction,
combinations of filters can be tried on the model. If the programmer rotates the sphere
to the top-right: Filter A gets superimposed as shown in Figure 6.2.1. If the program-
mer would rotate the sphere down: Filter B gets superimposed instead of Filter A. If
the programmer would rotate the sphere to the down-right both Filter A and Filter B
will be superimposed.

This sphere can be in a larger sphere which rotation select Filter Modules. This larger
sphere can then be part of an even larger sphere. The rotation of this largest sphere
selects Concerns.

By using this representation, the programmer can see the different behavior of the stat-
icly defined superimposition when using different filters, filter modules, and concerns.

Figure 6.1: The 8Ball representation Figure 6.2: The 8Ball rotated view
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6.2.2 3DBox representation

The 3DBox representation shown in Figure 6.2.2 is a filter representation based on the
hyper slice approach [OT01]. In this representation the front of the cube displays the
source model. This cube is intersected with filters represented as cards. In this cube an
individual card can be selected. If a card is select, the affected classes by the associated
filter will be highlighted as shown in Figure 6.4. The cube can also be rotated. In the
case of a rotated cube, the front will show the filter modules as shown in Figure 6.2.2.
One can then select a class and then the filter modules that are superimposed on that
class will be highlighted.

By using this representation, the programmer can see the different associations be-
tween the filter model elements and the non-composition filter elements.

Figure 6.3: Default view

Figure 6.4: Selected view Figure 6.5: Rotated view
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6.2.3 Source iterator representation

Since the most commonly used debuggers today are execution steppers, a nave de-
bugger would therefore step through the source code. As shown in Figure 6.6, the
source iterator approach is a source iterator which steps through the functions being
executed. It consists of an accent or current execution point to show which function
will be executed. Combined with the options to go down into the stack, up in the stack,
pause/resume execution and terminate; it is a very low level tool.

Figure 6.6: The source iterator representation showing non-Composition Filter code

Composition filters on this level could be supported by treating them like the func-
tions in non-composition filter source code. At a joinpoint the evaluating filters source
code would be stepped trough as shown in Figure 6.7. The highlighted line is in this
representation, the currently evaluating filter.

Figure 6.7: The source iterator representation showing Composition Filter code

The source iteration representation is commonly used in combination with a stack
trace as shown in Figure 6.8. The stack trace consists of the functions which are on the
execution stack. Because we treat a Composition Filter as we would treat a function,
Composition Filter evaluations are just execution stack elements like the functions on
the call stack.

By using this representation, the programmer can see the behavior of the composition
filters and the source code.
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Figure 6.8: The call stack

6.2.4 Visual Composition Filters representation

The visual composition filter representation shown in Figure 6.9, is a visual language
for Composition Filters as proposed by Binnema [Bin98]. The language focuses on
visualizing the class interface and the effects Composition Filters have on the interface.
Because of the language focus, according to Binnema, object instantiations are not
supported.

Figure 6.9: The visual composition filter representation from Binnema

By changing the symbol of a class to a square, an object to a circle, and a message to
an arrow, as can bee seen in Figure 6.10, we can reuse the representation in a language
which does support instances. In this representation the sender object is left and the
target is right. The sent messages are represented by arrows. The filters are represented
by boxes.

Figure 6.10: The modified visual composition filter representation
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If a filter changes a message, different evaluation paths can be displayed as can be seen
in Figure 6.11. This way, filter evaluation behavior can be visualized in an intuitive
way.

By using this representation, the programmer can see the behavior of the composition
filters evaluations.

Figure 6.11: Dispatch action in visual composition filter representation

6.2.5 Tree representation

The tree representation as shown in Figure 6.12, uses a single root with the concerns
as child elements. The child elements of the concern are filter modules. The child
elements of he filter modules are the; internals, externals, and filter elements. When
executing, the highlighted node, is the filter which is being evaluated.

By using this representation, the programmer can see how the filters are composed.

Figure 6.12: The tree representation
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6.2.6 Vortex representation

The vortex representation as shown in Figure 6.13 is inspired on the whirling of the
wind. The path of a message is represented by the line, with the boxes being filters.
The partition the filters are in, represent the concerns the filter belong to.

To aid the programmer, to better comprehend the behavior, we use color. Green is
an accepting filter within the filter module. A red filter is a rejecting one for a given
message. The currently evaluating message is represented by a black dot. The ordering
of the filters is represented by where they are on the line.

By using this representation, the programmer can see the behavior of the composition
filters.

Figure 6.13: The vortex representation
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6.2.7 Message box representation

The message box representation as shown in Figure 6.14, represents a joinpoint. The
screen is divided in two sides.

The left side is the source code side. It contains the written source code with the sender
at the top, the target at the bottom, and the superimposed filters in between.

The right side is the message side. It contains the values of the messages. The message
at the top is the original message sent by the sender. The message below the top is the
message which resulted by the behavior of the filter actions belonging to the filter left
of it. With this representation it is therefore very clear, what the behavior of a filter is,
and how it relates to the source code. By using this representation, the programmer
can see the behavior of the composition filters in combination with the source code.

Figure 6.14: The message box representation

6.2.8 Action list representation

The action list representation shown in Figure 6.15 focuses on the execution of filter
actions. The top box is the source of the sender. The box under the sender source
code is is divided in two sides, with the left side for the accept actions and the right
for reject actions. The actions which are executed by the message from the sender are
highlighted. The final target is then shown in the bottom box.

By using this representation, the programmer can see the actions of the filters being
executed.
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Figure 6.15: The action list representation

6.2.9 Face the music representation

The Face the music representation as shown in Figure 6.16, is based on Tablature
music notation. On the left, all filters of the program represent one line (or note) in the
Tablature. The left represents the sender and the right the target. Individual filters are
represented as notes. The current location of the execution is a line which is moving
from left to right.

By using this representation, the programmer can see the behavior of the composition
filters over an amount of time.

Figure 6.16: The face the music representation
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6.2.10 Conclusion

Our opinion is, that considering the program size of many projects, most of the rep-
resentations are unpractical. The program size causes those representation to be too
large for a computer screen. However, not all the representations that are cheap in
screen real estate are usable. We want the programmer to not only understand what
the behavior is, but also comprehend why this behavior is as it is. This means, that
the representation needs to reflect the behavior of the program back to the programs
source code.

The commonly used source iteration is suited as a debugging representation. Because
the representation is cheap in screen real estate, reflects the behavior back to the source
code, and is commonly used in other programming languages. But we found that the
Message Box representation is, in our opinion, a much more suitable representation.
This is because the Message Box representation represents a complete filter evaluation
at a joinpoint, while the source iterator only represents one moment in the filter evalu-
ation. While the source iterator only shows the executing location in the source code,
the message box representation shows the message changes in combination with the
source code. Therefore in our opinion the Message Box representation is best suited
for the programmer to comprehend the behavior.

Figure 6.17: The message box representation with added colour

To make this representation more concrete, we add additional aids to assist the pro-
grammer within this representation. As described previously, the screen represents a
single joinpoint and is divided in two sides. The left side is the source code side, the
right side is the message side. It contains the written source code with the sender of
the message at the top, the target of the message at the bottom, and the superimposed
filters in between. To further assist the programmer in comprehending the behavior,
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we annotate the individual parts of the filter elements with color. Green for accepting,
red for rejecting as shown in Figure 6.17. We also annotate the changed properties of
a message. This way, a programmer can see the behavior at a joinpoint in one blink of
an eye.

Because this representation does not give information about the internal state of the
language dependent elements, we allow the inspection of those elements, using lan-
guage dependent inspectors.

6.3 Break Navigation

Figure 6.18: The effects of different navigations on the execution flow

If the program is breaked, the state is represented. Because the represented state is
a snapshot in the execution and the state might not be the state we are interested in,
we want to navigate through the execution. As can be seen in Figure 6.18, within a
debugger there are four basic navigations: continue, step over, step into, and step out.
We need to validate if Composition Filters and the LTL breakpoints are suitable for
using these navigations.

6.3.1 Continue

Continue resumes the execution till another break occurs. Since the continue just waits
for a new break to occur, it does not conflict with the composition filters model. How-
ever, it is likely that when a LTL formula does not hold for a state, it does not hold
for the next state. This next state is then breaked as well, causing an overload to the
programmer.

A solution to fix this problem, would be to invert the holding of the LTL formula for
the next state. This would mean that the LTL breakpoint will hold in the next state if
the LTL formula holds in that state. This solution however has the drawback, that if
the breaking of the next state was intended, it becomes difficult to describe.

An in our opinion better solution, is to leave it to the programmer to specify a correct
LTL formula. The programmer can easily solve this issue by specifying a fairness
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like: 2 3φ⇒ 32φ. Such a fairness would result in a halt when the proposition fails
the next time. Since the programmer can easily make a mistake in specifying an LTL
formula, we need to allow the modification of the LTL formula while debugging.

6.3.2 Step Over

Figure 6.19: Stepping Over

Step over resumes the execution and inspects the next instruction or function. Within
the representation of the complete joinpoint evaluation at once, there is not something
like a next operation or function. Essentially a step over is to continue execution using
the same calling context. As can be seen in Figure 6.19, because the calling context in
the composition filter model is the sender, the next message from the same sender will
halt the system. This means that when there is a return message, the return message
will be halted.

6.3.3 Step Into

Figure 6.20: Stepping Into

Step into results in an inspection of the same state in a more fine grained execution
flow. Essentially a step into is to continue execution using the called context. The
step into when using custom and Meta filters can therefore be used to see the behavior
within those filters showing the source code. As can be seen in Figure 6.20, because
the called context in the composition filter model is the target, the step into navigates
to executing code of the target.
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6.3.4 Step Outside

Figure 6.21: Stepping Outside

Step outside, results in an inspection of the same state in a less fine grained execu-
tion flow. Essentially a step outside is to continue execution using the context of the
callers caller. As can be seen in Figure 6.21, because the callers caller context in the
composition filter model is the joinpoint resulting in the sender sending a message, the
step outside navigates, to the joinpoint later in the execution, where the target is what
currently is the sender.

6.4 Debugging Example

We are now going to use the LTL breakpoints on an example. In this section we
disclose the details of the example as they would be found when the programmer is
debugging. The full source code of the example can be found in Appendix A.

6.4.1 Non-Compositional Filter Behavior

The example we are going to use is about a man proposing to a woman to marry him.
The model consist of just one class; Person. This class has two instances; the male
called Linus Gates, and the Female called Belinda Torvalts.

As can be seen in Listing 6.1, the execution without Composition Filters applied is;
the man proposes to the woman, the woman accepts his proposal, and they then they
are married.

1 Linus Gates
2 Belinda Torvalts
3 Linus Gates asks Belinda Torvalts: "Will you marry me?".
4 Belinda Torvalts answers: "I do".
5 So in the end
6 They are married

Listing 6.1: Execution wedding without Composition Filters
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1 private Person partner = null;
2 public bool IsMarried()
3 {
4 return partner != null;
5 }

Listing 6.3: Source code responsible for checking for marriage

6.4.2 Compositional Filter Behavior

We now implement some concerns that could happen in the real world by using the
Composition Filter language. After the implementation of these concerns the behavior
has changed as can be seen in Listing 6.2. In this case; the man proposes to the woman,
the woman accepts his proposal, but they are not married. So why are they not married?

1 Linus Gates
2 Belinda Torvalts
3 Linus Gates asks Belinda Torvalts: "Will you marry me?".
4 Belinda Torvalts answers: "I do".
5 So in the end
6 They are not married

Listing 6.2: Execution wedding with Composition Filters

The source code which is responsible for the marriage is in the Person class as shown
in Listing 6.3. As can be seen, the marriage status dependent on the partner variable.

Because the partner variable resides outside composition filters, we use a conven-
tional conditional breakpoint on the Person class which triggers when the partner
variable is changed. This results in a break, when the Divorce function is called as
shown in Figure 6.22. Because there is no reference within the Person class to the
divorce function, it is unclear why the divorce function is called.

6.4.3 Origin Of The Divorce Function Call

By using conventional techniques we isolated the problem to the Divorce function.
We now are going to use the composition filter debugging techniques to find out why
this happens. In this manner we can use conventional techniques to debug and locate
the responsible code within the non-composition filter source code and the composition
filter techniques for the compositional filter source code.

To find out why the Divorce function is called, we formulate the LTL formula:

2Message.Selector ! = ”Divorce”

This LTL formula means: “Divorce should not be the selector of the message”. We
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Figure 6.22: A conventional debuger inspecting the divorce function

use this LTL formula as a breakpoint. The breakpoint results in the program breaking
at the joinpoint shown in Figure 6.23.

But, the debugger displays source code within the TownHall class. As we stated previ-
ously, the model only consisted out of one class Person. So where did this class come
from?

The class itself belongs to the classes used by the implemented filters. So therefore it
does not belong to the original model, and does the model consists of just one class.
But which filter is causing the usage of the TownHall class ?

In order to find this filter we formulate the LTL formula:

2!(Message.Target instanceof TownHall)

This LTL formula means informally: “The TownHall class should not be used”. We
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Figure 6.23: Composition Debugger inspecting the Divorce joinpoint

use this LTL formula as a new breakpoint. In this manner we can use the LTL break-
points to find out which filters are responsible for certain behavior.

This breakpoint results in the program breaking at the joinpoint shown in Figure 6.24.
As can be seen, the law requires to have a wedding license before you get married. We
therefore need to find out, why Linus does not get a wedding license.

6.4.4 Arranging a marriage license

Because the rest of the filter evaluation is simulated, we see on closer inspection that
while a wedding deserves a party, the party is before the wedding itself. This illustrates
the added value of being able to see the complete filter evaluation.

Because we find this strange, we want to see what kind of consequences this has. We
therefore use the navigation step into, to see what happens in the execution. This
results in the program breaking at the joinpoint shown in Figure 6.25. As can be seen,
this results in a band playing, and after that Linus pays the band. We wonder if this
has any consequences so we change the LTL formula to;

2Message.Selector ! = ”Pay”

The we resume the execution. This results in the system breaking at the joinpoint
shown in Figure 6.26.

We can see that this behavior probably happens because Linus does not have enough
money. We now change the implementation of the Pocket, to sell his car when he does
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Figure 6.24: Composition Debugger inspecting the PreformWedding joinpoint

not have enough money. This results in the behavior as shown in Listing 6.4; So now
he is married again.

1 Linus Gates
2 Belinda Torvalts
3 Linus Gates asks Belinda Torvalts: "Will you marry me?".
4 Belinda Torvalts answers: "I do".
5 Linus does not have enough money.
6 So he sells his car.
7 So in the end
8 They are married

Listing 6.4: Execution wedding with Selling car
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Figure 6.25: Step Into by the Composition Debugger

Figure 6.26: Break after the modified breakpoint Composition Debugger
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Chapter 7
Implementation Design

“You can put the combustion chamber of a car in the tire,
but that kind of car would be very difficult to build.”

Mehmet Akşit

In this chapter we implement the in Chapter 6 described debugger into a software de-
sign which can be integrated into the Compose? framework. This chapter uses the
Not Yet Another Method(NYAM) design method as described in ‘Design Methods for
Reactive Systems’ by J.R.Wieringa [Wie03]. This method begins with the description
of the business context of the project. This context consists of the business goals and
the functional decomposition. The functional decomposition is followed by the speci-
fication of the functional requirements. The method then continues by classifying the
type of the project as a reactive system. Depending on the type of the project, differ-
ent analysis and specification methods need to be used. By using these specification
methods, the technical requirements are specified. Then an information analysis of the
environment is performed. The information analysis is supported by the designed ar-
chitecture. This architecture is then implemented into a software design. This software
design is finally implemented into a real debugger.

7.1 Business Context

The debugger is called CODER (COmposition filters DebuggER).

The general goal of the debugger is, to assist in the debugging process of composition
filter programs within the Compose? framework. The responsibilities of the debugger
include:

• Debugging the behavior of the composition filter source code.
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• Debugging the behavior at the joinpoint where composition filter code and non-
composition filter code connect.

The responsibilities of the debugger exclude:

• Debugging the behavior of non-composition filter source code.

• Debugging the behavior of the Compose? framework.

According to the insights described in this thesis, the goal can be achieved by support-
ing halting the execution and filter representations. As can be seen in Figure 7.1, for
supporting execution halting we require LTL Breakpoints, where the LTL Breakpoints
require the validation of LTL formulas and the halting of the program execution. For
the representation of the filters we need to be able to inspect the halted state. In order
to able to validate LTL formulas, we need to be able to evaluate the propositions. To
be able to halt a program, we need to be able to stop and to resume a program.

Figure 7.1: Goal tree of the CODER business context.

7.2 Functional Requirements

Because of the business context, the debugger needs to comply to the following func-
tional requirements:

• The debugger needs to support the specification and handling of LTL break-
points

• The debugger needs to support the execution navigation of filters as described
in Section 6.3

The debugger needs to support the halting of a programs execution

The debugger needs to support for resuming the programs execution

• The debugger needs to support the represent of filters as described in Sec-
tion 6.2.10
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7.3 Project Classification

We are now going to classify the debugger as a reactive or transformational system.
This classification is important because reactive systems differ from transformational
systems in terms of complexity and behavior and thus require different design method-
ologies. Examples of reactive systems are: Real-time, embedded and control systems,
ERP, and informational systems. In these kinds of systems the environment is ana-
lyzed. Examples of transformational systems are: Compilers, translators, generators,
and Routines in mathematical libraries.

7.3.1 Interaction with the environment

Reactive systems are systems which are in constant interaction with its environment.
Transformational systems interact with its environment, but they just acquire suffi-
cient information to execute its tasks. A transformational system would therefore not
maintain a state of affairs in its environments while a reactive system would

A debuggers job is represent the state of the subject. This means that the debugger
needs to monitor the state of affairs within the subject. The classification of the inter-
action with the environment is therefore defined as transformational system like.

7.3.2 Termination of the process

The process of a reactive system is normally nonterminating. If a reactive system
terminates it is considered a failure. A transformational system should produce its
output and then terminate. If it does not terminate it is considered a failure.

The debugger should terminate after the client program terminates. A debugger should
not keep on running. The classification of the process termination is therefore defined
as transformational system like.

7.3.3 Interrupt driven

Reactive systems are systems which are in constant interaction with its environment.
It therefore needs to act on stimuli regardless of what it’s doing. Transformational
systems react on sequential oriented input. Transformational systems, therefore allow
the queuing of the input.

The hitting of a breakpoint could be seen as a stimuli. Such a stimuli however does
not require an action regardless of what the debugger is doing.

The classification of the behavior being interrupt driven is therefore defined as trans-
formational system like.
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7.3.4 State-dependent response

The response of a reactive system depends on the internal state and the external event
that it reacts to. This response can leave the system in another state than it was. A
transitional system has no state that is dependent on external entities. And thus a
transitional system will just deliver output that depends on the input given.

LTL is evaluated in computer programs by converting it to a buchi automata and then
check if the final state is excepting. the behavior of this automata can be seen as a
response depending on the internal state like a reactive system. The classification of
the state-depended response is therefore defined as reactive system like.

7.3.5 Environment-oriented response

The response of a reactive system, results is the modification of the behavior of the
environment. The output of a transformational systems does not have direct influence
on it’s environment.

A goal within the implementation of a debugger is not to influence the observed behav-
ior of the subject, unless the programmer wants it to. If the subjects observed behavior
is influenced by side effects of the debugger, the results can be contaminated. This
would make the results less valuable for debugging.

The programmer may also chose to intentionally change the behavior of the subject
during debugging. This change can be the breaking of a program or even changing its
source code during execution. The classification of the environment-oriented response
is therefore defined as reactive system like.

7.3.6 Parallel processes

Reactive systems usually have many parallel processing interactions. Transformational
systems usually have sequential processing interactions.

The behavior of many filter actions are sequential interactions. There are however
also Meta and custom filters which require parallel interaction and the client programs
could be parallel as well. The classification of the behavior as having parallel processes
is therefore defined as reactive system like.

7.3.7 Real-Time constraints

Reactive systems usually have real-time constraints. Transformational systems usually
do not have real-time constraints.
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The program is needed to perform within human acceptable time limits but it has
not got “hard” real-time constraints. The classification of the real-time constraints is
therefore defined as transformational system like.

7.3.8 Conclusion

The debugger has many characteristics of a reactive system. It is therefore wise to treat
it as a reactive system.

Because the debugger is classified as a reactive system it is needed to use strict data
analyzing and design methodologies instead of agile ones to achieve quality of the end
product. Functional decomposition in these kinds of systems is not the only important
design approach; also the structure of the environment in conjunction with the end
product must be taken into account because a reactive system is highly dependent on
its environment.

It should however be noted that the compile time of the Compose? framework is a
transformational system and should be treated as such. The methods that are being
used in this thesis can possibly therefore not be suitable for the compile time.

7.4 Technical Requirements

The debugger needs to comply to the following technical requirements:

• The debugger should run on the Microsoft .NET CLR and Sun Java VM. The
debugger should be able to run on most .NET CLR’s (Mono) and Java Virtual
Machines (IBM, BlackRock).

• The debugger should integrate with Compose?

• The debugger should be able to later integrate with StarLight

7.5 Information Analysis

For the information analysis of the environment we use the Nijssens Informatie Anal-
yse Methode(FCO-NIAM) method. FCO-NIAM is a method based on the structuring
of natural language. It is a method best suited for analyzing the static structure of dy-
namic and static information. It is therefore used for the analysis of the structure that
make up the internal state.
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7.5.1 Step 1: Assumptions

This step is to document any assumptions which the domain expert can validate. Be-
cause the derived model is based on these assumptions, they need to be correct.

We use the assumption; that the concepts used in the system are the same as the con-
cepts of Compose?, as described in Section 2.2.

7.5.2 Step 2: Describing

This step is to describe the domain in a language which is natural for the domain
expert. Since this text is written by a domain expert it can be deemed correct. Read
Section 2.2 for a description of composition filters in Compose?.

7.5.3 Step 3: Generalization

This step is the transformation of the natural language in generic sentences which allow
for a generic representation of the information.

• Application A has Concern C

• Concern C is identified by Name N

• Concern C has Filter module FM

• Concern C has Implementation I

• Thread T send Message M to Joinpoint JP

• Message List ML contains Message M

• Object O is sender Message M

• Message M target Object O

• Message M has Selector S

• Filter Module is Name N

• Filter Module FM contains Filter F

• Filter F is Name N

• Filter F is of Filter Type FT

• Filter F contains FilterElement FE

• Filter Type FT has RejectAction AC
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• Filter Type FT has AcceptAction AC

• Filter Element FE has ConditionPart CP

• Filter Element FE has MatchingPart MP

• Filter Element FE is composed with Filter Element FE1

• ConditionPart CP has a Condition CO

• ConditionPart CP has a ConditionLiteral CL

• Super Imposition SI superimposes FilterModule FM

• Super Imposition SI superimposes on Joinpoint JP

7.5.4 Step 4: Cardinality

This step is done to analyse the relations and cardinality of those relations. Because
this step is in natural language, these cardenalities can be checked by the domain ex-
pert.

• an Application can have multiple Concerns

• multiple Applications can have the same Concern

• a Concern is identified by one Name

• multiple Concerns cannot be identified by the same Name

• a Concern can have multiple Filter modules

• multiple Concerns can have the same Filter module

• a Concern can have multiple Implementations

• multiple Concerns can have the same Implementation

• a Thread contains multiple Joinpoints

• multiple Threads contain the same Joinpoint

• a Thread cannot send the same Message to multiple Joinpoints

• a Thread can send multiple Messages to the same Joinpoint

• multiple Threads cannot send the same Message to the same Joinpoint

• multiple Threads cannot send the same Message to multiple Joinpoints

• multiple Threads can send multiple Messages to the same Joinpoint

• multiple Threads can send multiple Messages to multiple Joinpoint
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• a Message List contains multiple Messages

• multiple Message Lists cannot contain the same Message

• an Object is sender multiple Messages

• multiple Objects cannot be the sender of the same Message

• a Message cannot target multiple Objects

• multiple Messages can target the same Object

• a Message cannot have multiple Selectors

• multiple messages can have the same Selector

• a Filter Module cannot have multiple Names

• multiple Filter Modules cannot have the same Name

• a Filter Module contains multiple Filters

• multiple Filter Modules cannot contain the same Filter

• a Filter cannot have multiple Names

• multiple Filters cannot have the same Name

• a Filter contains multiple FilterElements

• multiple Filters cannot contain the same FilterElement

• a Filter cannot have multiple FilterTypes

• multiple Filters can be of the same Type

• a FilterType cannot have multiple RejectActions

• multiple FilterTypes can have the same RejectAction

• a FilterType cannot have multiple AcceptActions

• multiple FilterTypes can have the same AcceptAction

• a Filter Element accepts multiple Message Lists

• multiple Filter Elements accept the same Message List

• a Filter Element cannot have multiple ConditionParts

• multiple Filter Elements can have the same ConditionPart

• a Filter Element cannot have multiple MatchingParts

• multiple Filter Elements can have the same MatchingPart

• a Filter Element cannot be composed with multiple Filter Elements
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• multiple Filter elements cannot be composed with the same Filter Element

• a Filter Element is not composed with itself

• a ConditionPart cannot have multiple Conditions

• many ConditionParts can have the same Condition

• a ConditionPart cannot have multiple ConditionLiterals

• many ConditionParts has the same ConditionLiteral

• a Super Imposition can superimpose multiple FilterModules

• multiple Super Imposition can superimpose the same FilterModule

• a Super Imposition can superimpose on multiple Joinpoints

• multiple Super Impositions can superimpose the same Joinpoint

7.5.5 Step 5: Transformations

This step is a model transformation of the NIAM generic model to the intented target
model to allow the representation of the information. In this case we define the NIAM

Figure 7.2: Components of the composition filters model

language elements as classes. We define the rules composed of the language elements
as the associations between the classes. The end nodes will become the properties
of the classes. Since the runtime is running the application to which the concerns
are referenced the concept of multiple Applications is dropped in the transformation.
The result of this transformation is a class diagram of the model structure as seen
in Figure 7.2.
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7.6 Use Cases

The use cases are divided in two perspectives; the use cases from the programmers and
the programs perspective.

7.6.1 Programmers perspective

Figure 7.3: Use Cases of the debugger from the programmers perspective

From the perspective of the programmer the debugger has, as can be seen in Figure 7.3,
five actions from the functional requirements:

Define LTL Breakpoint
Is the action which is performed when changing the LTL formula of the break-
point.

Continue
Is the action which is performed when the programmer wants to continue to a
next break in the execution.

Step Over
Is the action which is performed when the programmer wants to continue to the
next message from the same sender

Step Into
Is the action which is performed when the programmer wants to continue to the
inspection of executing code of the target

Step Out
Is the action which is performed when the programmer wants to continue to the
joinpoint where the target is currently the sender
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7.6.2 Program perspective

Figure 7.4: Use Cases of the debugger from the program perspective

From the perspective of the program the filter evaluation, as can be seen in Figure 7.4,
the use cases it consists of ten actions;

Sending Message
Is the action the sender preforms to send a message to the target.

Filter Evaluation
Is the action where the filter evaluates its condition and matching part.

Filter Accepts Message
Is the action where the filter has accepted the message and now executes his
accept filter action.

Filter Rejects Message
Is the action where the filter has accepted the message and now executes his
reject filter action.

Message delivered
The message finally gets to its target.

Returning Message
Is the action the target (implicit) return of the message to the sender.

Filter Evaluation Returning
Is the action where the filter evaluates its condition and matching part.

Filter Accepts Returning Message
Is the action where the filter has accepted the (implicit) returning message and
now executes his accept filter action.

Filter Rejects Message
Is the action where the filter has accepted the (implicit) message and now exe-
cutes his reject filter action.

Message returned
The message has finally returned to its sender.
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7.7 Architecture

Figure 7.5: General architecture of a debugger

As can be seen in Figure 7.5, the general architecture of a debugger consists of 6
elements [ARF02]. These elements work together to provide the representation of the
current system state and the state transitions.

Subject
The system in which the insight of its execution is desired is called the subject.
In most software development cases the subject is the program being debugged.

Runtime
The runtime facilitates the execution of the subject. In most software develop-
ment cases the runtime subject is usually the operating system or virtual ma-
chine. The runtime offers a debugging interface which can be used to monitor
and influence the subject.

Profiler
The profiler monitors the subject for changes of the internal state of the subject.
This monitoring is done with the use of the runtime. The most common repre-
sentation in use today for a state in computer programs, is the current execution
location and the current values of the stack within the software program. These
changes in the programs state are combined to form an execution trace. Exe-
cution traces can be built up on the fly, in case of real time monitoring, or at
once, in the case of execution signature dumping. The most important criterion
of the profiler is, that it monitors the subject without changing its behavior. If
a profiler would change the behavior of the subject, the insight of the subjects
behavior with respect to the source code will be reduced.

Symbol manager
The execution traces produced by the profiler contain states. These states are
based on executing code. Often the executing code is not the source code but
the compiled code. Because the compiled code is a translation of the source
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code there is a relation between them. The relation between the lines of the
compiled code and the corresponding lines within the source code is called a
symbol. Multiple lines of source code can be compiled into one line of compiled
code, and one line of source code can compile to multiple lines of compiled
code. Therefore a symbol is an many to many relation. A compiler usually
creates creates more then one symbol. these symbols are managed by the symbol
manager.

Design Time
The design time combines the execution state with the symbols from the symbols
manager to provide reasoning about a state. The design time can then use the
information from the reasoning to influence the subject by using the runtime.
Possibilities of such an influence are to halt the execution of the subject, modify
the subject’s current state (variable editing), and to modify the subject’s source
code (“stop, change and go”).

The Publisher
The publisher is the user interface for the developer. This interface displays a
representation of the system state by using information from the design time.

7.8 Sequences

We no are going to highlight how the architecture components interact with each other.

7.8.1 Define LTL Breakpoint

Figure 7.6: Sequence diagram of the LTL breakpoint change

As can be seen in Figure 7.6, when the programmer defines a LTL breakpoint the
publisher notifies the design time. The design time will then notify the runtime to halt
the execution of the subject. The design time will then parse the specification to build
a breakpoint. The design time will then notify the runtime to resume the execution.
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7.8.2 Program actions

Figure 7.7: Sequence diagram of the filter evaluation actions

As can be seen in Figure 7.7, the ten actions of the programs filter evaluation are
treated equally. They all are raise an event on the runtime, where the runtime notifies
the profiler of a model change. This model change raises an event at the design time.
In the design time the breakpoint conditions are evaluated. If the evaluation of the
breakpoint condition prompt a halt, the design time notifies the runtime to halt the
subject. After the subject is halted, the publisher is activated to represent the state of
the subject.

7.8.3 Continue, Step Over, Step Into, Step Out

Figure 7.8: Sequence diagram of the execution navigation actions
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The four execution navigations: Continue, Step Over, Step Into, and Step Out, get
treated the same way. As can be seen in Figure 7.8, when the programmer selects a
navigation, the publisher notifies the design time. The design time will then change
the conditions to reflect the navigation. The design time then will notify the runtime
to resume the execution.

7.9 Component Design

We now are going to implement the 6 components of the architecture into a design.
The Compose? framework has a version with a filter interpreting runtime and a version
which inlines filters.

The Compose? version that uses an interpreting runtime to execute the filter behavior
is the oldest implementation of the framework. During the compilation of a Compose?
program, function calls to the runtime are weaved into the target program. These
function calls are called hooks. The runtime then executes the filter behavior at the
appropriate moments.

7.9.1 Subject

The subject is the system in which the insight of its execution is wanted. Since we do
not have any control over the subject we do not have a design for it.

7.9.2 Runtime

The runtime facilitates the execution of the subject. In the case of Compose?/.NET and
Compose?/Java the execution is within a virtual machine. We can use the reflection
API from the virtual machine to inspect and influence the subject.

To halt the execution of the subject is a different matter. While it is technically possible
to halt a virtual machine, there are however some practical issues. Because the tech-
nical requirements requires a software design which does not require a specific virtual
machine debugging interface, the debugger runs in the same virtual machine as the
subject. If the virtual machine would be halted, the debugger would halt as well. We
therefore halt the program by halting the threads of the program. Because we can only
influence the program at the joinpoints, we halt the program by halting the threads that
hit a joinpoint.

The halting behavior is done by the Halter class. This class contains a mutex which
can be set or unset by the debugger and only read by the program under debug. Every
time the program hits a join point the halting function is called. If the mutex is not
set, the program then continues. When the debugger sets the mutex, the program waits
until the mutex is unset.
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7.9.3 Profiler

The profiler monitors the subject for changes of the internal state of the subject. Pro-
filing is done by the DebugInterface class. This class is a facade for the model. The
functions of this class are the possible changes within the evaluation of the messages.

Figure 7.9: Components of the composition filters model

Shown in Figure 7.9 is the model which is already described in the information analy-
sis. Because the evaluation is a change over an amount of time we add history sensi-
tivity to the model. As can be seen in Figure 7.10 this is done by using the memento
patern.

7.9.4 Symbol manager

As written earlier, the symbol manager manages symbols. However within
Compose?/.NET and Compose?/Java the virtual machine already maps the sym-
bols for us. We therefore do not need a symbol manager to read the symbols.

However in the case of aspect oriented software the compiler weaves advice into the
target program. Because the weaver Compose?/.NET uses IL manipulation the sym-
bols need to be updated within the weaving process.
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Figure 7.10: Memento applied on the components of the composition filters model

In the runtime version of Compose?, only hooks to a runtime are woven into the
compiled code. The hooks in the compiled code therefore need to be translated back
to the source code. This translation is then performed by a symbol manager.

In 2006 a filter inlining version of Compose? was build with the codename StarLight.
Filter inlining means that the code needed for the filter behavior is weaved into the
program instead of hooks which call a runtime. The advantage of inlining filters is
mostly speed because it does not have the overhead of a runtime.

In the inlined filter version of Compose?, when the filters are inlined, in the resulted
compiled code lines need to correspond to the correct source code lines in the symbols.
For the inlined filter version we therefore do not need a special symbol manager.

7.9.5 Design Time

The design time combines the execution state with the symbols from the symbols man-
ager to provide reasoning about a state. Because our LTL breakpoints are behavioral
breakpoints, we need the reasoning of the design time to validate them.
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The way we support LTL breakpoints is by interpreting them as a buchi automata.
The behavior of the program is then executed on the automata to see if a final state
is reached. If a final state is reached, the subject is halted. The buchi automata is
encapsulated by the Breakpoint class. By using the composite pattern the different
kinds of breakpoints can be implemented. Every time the program hits a joinpoint the
checkBreak function is called on the breakpoint. If the breakpoint is in a state that
the subject needs to be halted, the function returns true. The design time will then halt
the subject by using the runtime as described in Section 7.9.2.

7.9.6 The Publisher

The publisher is the user interface for the developer. The publisher uses the Model
View Controller architecture.

Model
The model within the publisher is the design time.

View
The view within the publisher displays the representation of the filter evaluation.

Controller
The controller within the publisher are the buttons for going into the filter eval-
uation or to the next break. The controller uses the runtime to achieve this.
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Chapter 8
Conclusion and Future Work

“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”

Alan Turing

This chapter concludes this thesis. It discusses related work, contains conclusions, and
suggests directions for future work.

8.1 Related work

In this section we discus certain projects and implementations that are related to the
subject of this thesis. While there is much more work which can be related, there is
not enough space and time to discuss them all. Therefore we only discuss a selection.

8.1.1 Aspect Slicing

Aspect slicing is a debugging technique devised by Takashi Ishio, Shinji Kusumoto,
and Katsuro Inoue [IKI04]. It makes use of call graphs to isolate incorrect behavior in
aspect oriented programs. By limiting the debugging to the isolated behavior the bugs
can easier be found. Aspect slicing is related, because it is about debugging aspects.

It is different from the technologies discussed in our approach because aspect slicing
is a debugging technique using a static analysis. Because the program being debugged
is a Turing complete program, slicing aspects may help in the isolation of the fault,
but it is not able to find all faults. This is a limitation on any static analysis posed
by the halting theorem. Also the question of discriminating intended from unintended
behavior is not answered. Aspect slicing however can be used in conjunction with
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LTL breakpoints to reduce the amount of overhead caused by the LTL breakpoints.
This would make LTL breakpoints more usable for aspect and non-aspect oriented
languages.

8.1.2 NAspect

NAspect [NAs05] is an aspect oriented framework that uses dynamic proxies. The
debugging functionality of NAspect is the visualization of the dynamic proxies. Its
visualization is based on abstract aspect representations. NAspect is related, because
instead of a source iterator it has, like the composition filters debugger, an abstract
aspect representation.

The difference is that the focus of debugging within NAspect is on the values within the
objects instead of the evaluation behavior. They focus on the values, because NAspect
uses a different conceptual model which only has proxy redirects on the basis of these
values. Within the debugging of NASpects they therefore only represent the internal
values. This representation makes it difficult to see why the source code has the dy-
namic behavior. Because NAspects are not stutter equivalent, as defined by Browne et
al [MCBG88], debugging needs to be on a statement for statement basis, which can
cause an overload to the programmer.

8.1.3 SPIN

SPIN [Hol03] is an open-source model checker that can be used for the formal ver-
ification of distributed software systems. It is in use today by thousands of people
worldwide. The tool was developed in 1980 at Bell Labs in the original UNIX group
of the Computing Sciences Research Center and has been supported ever since.

SPIN is related because it also uses LTL for the specification of intended behavior.
SPIN uses state pruning to verify that the program complies with this intended behav-
ior. SPIN also makes use of stutter equivalence to reduce the amount of states to be
validated.

The difference with the composition debugger is that the LTL formula is used for
isolating a fault in a given execution, while model checkers validate all paths, thus
validating all possible executions. Because real programs are bigger than models of
the software, validation of real source code is difficult and time consuming. This makes
model validation good for debugging models and in a lesser extent the debugging of
the real source code. Since the debugger uses LTL formulas, the formulas can be
reused to validate an execution of the implementation against a model. By validating
the differences between the model and the implementation, an incorrectness within the
model or implementation can be found.
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8.1.4 AspectJ Debugger

AspectJ [CC05] is an aspect-oriented programming language based on the Java pro-
gramming language. AspectJ(tm), which is part of the eclipse project, is the most re-
sent implementation of the AspectJ language. AspectJ(tm) includes a compiler (ajc),
a debugger (ajdb), a documentation generator (ajdoc), a program structure browser
(ajbrowser), and integration with Eclipse, Sun-ONE/Netbeans, GNU Emacs/XEmacs,
JBuilder, and Ant. The debugger of AspectJ(tm) is related because it is, like our de-
bugger, a debugger for an aspect oriented language.

The difference is that the AspectJ language is not stutter equivalent, as defined by
Browne et al [MCBG88]. Because the language is not stutter equivalent debugging
needs to be on a statement for statement basis. The ajdb of AspectJ(tm) is therefore
a source iterator debugger like the representation shown in Section 6.2.3. LTL break-
points could be used to debug AspectJ programs. When using LTL breakpoints to
debug AspectJ programs, the elements used in the LTL formula need to be adapted to
support the AspectJ language.

8.1.5 Control-flow Breakpoints

Control-flow Breakpoints [CV07] is another method for setting breakpoints on the
behavior of a program. Control-flow breakpoints are related because LTL Breakpoints
are a type of Control-flow breakpoints.

The difference is that the proposed breakpoint specification language by Rick Chern
and De Volder is based on the sequence of joinpoints. When a certain sequence occurs
in the execution the breakpoint is halted. The drawback of defining a breakpoint in
such a manner, is that you already need to know the source location where you want to
stop. Essentially you already suspect where your bug is which reduces its usefulness
as described in Chapter 5. By using use cases they come to the conclusion, that their
specification languages needs to be modified. LTL breakpoints are devised from the
conception that the programmer does not know where to stop in the program. LTL
breakpoints are therefore a sequence of propositions instead of specified joinpoints.
This results in more usable joinponts.

8.2 Conclusion

In this thesis we searched for ways to debug programs which are implemented using
Composition Filters. In Chapter 4, we described debugging as the process of removing
bugs. While debugging, the difficulty in removing the bugs, was caused by an insuffi-
cient comprehension of the programs incorrect execution behavior by the programmer.
In essence, the programmer does not understand why the program behaves in a incor-
rect way, because its behavior at execution is too complex in reflection with the source
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code.

It is quite interesting that by specifying the crosscutting concerns in an isolated manner,
the execution behavior becomes more difficult to understand. In essence, the most im-
portant reason aspect-oriented programs are harder to debug then non-aspect-oriented
programs, is a direct consequence of solving crosscutting by using aspect-orientation.

Besides the increased difficulty we also found that the conventional debugging tools
and techniques are less suitable for use within aspect oriented programming. An ex-
ample is the use of a conventional breakpoint. When using a conventional breakpoint
within advice, the scattering of the advice may cause the breakpoint to hit very often,
thereby causing an overload to the programmer.

In Chapter 5 we stated that not only does the programmer not know why his program
behaves in an incorrect way, the programmer also does not even know how his program
should be implemented to behave correctly. This view is different from the common
opinion that the programmer always knows how his program should be implemented
to behave certain way.

We approached this issue by allowing the programmer to set breakpoints on the be-
havior of a program, to allow the programmer to see how the execution of the im-
plementation behaves. This behavior of the program can be specified with use of the
proposed LTL breakpoints. By using LTL breakpoints the amount of program halts
can be reduced.

Because of the sound conceptual model of Composition Filters, if the side effects of
a filter are limited to a message, the behavior becomes stutter equivalent. This stutter
equivalent behavior can be used to reduce validations and allows a representation of
a complete filters evaluation at a joinpoint. This representation of the complete filter
evaluation, is a representation over an amount of time instead of a just snapshot. This
increased time window of the representation improves comprehensiveness of the filter
executions, because it allows the programmer to instantly see the effects of the filter
actions. When a side effect is not limited to the message, the difference between
the simulation and the real filter evaluation can help the programmer comprehend the
behavior.

It must however be concluded that being stutter equivalent is a property not many
other aspect oriented languages hold. This implies that the debugging representation
of other aspect oriented languages probably is limited to step by step debugging. This
step by step debugging is also known as the conventional, source iteration trace de-
bugging. These aspect oriented languages however can make use of the proposed LTL
breakpoints to reduce breaks and isolate the fault.

While much money is spent on debugging, it is strange that there is not so much re-
search concentrated on debugging. Most research is concentrated on making the pro-
gramming languages consistent and easier to express certain solutions. Only in the
field of model validation and testing is the avoidance of bugs the ultimate goal. Most
debuggers are therefore based on the experience of developers using the programming
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languages. While it can be concluded that with the usage of good breakpoints and
representations the debugging of aspect oriented programs becomes easier. However,
debugging is still limited by the capabilities of the developer using them. Since the
developer only knows how he intended the program to behave, this limitation is im-
possible to circumvent.

8.3 Future Research

Because the side effects of some filter actions remain limited to the message, the be-
havior of the filter actions can therefore be described as being stutter equivalent. This
stutter equivalent behavior can be used to reduce the overhead in the reasoning FIRE
does within Compose? about filter evaluations. For instance, the method of partial
ordering reduction can be used. This reduction of reasoning overhead, may allow us
to do more reasoning about the program and therefore find more semantic bugs. It can
also be used in model validations of applications where filters have been superimposed.

Because of the added value of LTL breakpoints it is advisable to see if the usage of
LTL breakpoints can also have positive debugging capabilities in other aspect and non-
aspect oriented programming languages. Since the evaluation of the LTL breakpoints
can be seen as a crosscutting concern it may be possible to enhance the debugging
capabilities by implementing these invariants as filters. In this way debugging filters
can be used to debug composition filters and non-composition filter source code.

Even with the most advanced debuggers today, the isolation of the fault is still the most
daunting task. More fundamental research needs to be done on ways to easier isolate
a fault. The focus of such research, can be on debuggers which represent why certain
behavior is happing, instead of what is happening. While the technologies we propose,
are a step in the right direction, much more research needs to be done in order to create
the perfect debugger.
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Source Code Wedding Example
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Appendix B
Non serious representations

Pacman representation

Since the most used example to illustrate features in Compose* was the Pacman ex-
ample we tried this as a representation of filters (Figure:B.1). Things like meta filters
were hard to represent in this way so we dropped it.

Figure B.1: The pacman representation

Coffee representation

When we asked some software engineers: ”What is the first thing that comes up into
your mind when you say filters?”. The answer was short and powerful: ”Coffee”!
Therefore this coffee representation (Figure:B.2) was noted, but it was dropped be-
cause it lacked expression power.
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Figure B.2: The Compose* coffee filter representation
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