
The Concern-Oriented Software

Architecture Analysis Method

Author: Frank Scholten
E-mail: f.b.scholten@cs.utwente.nl
Student number: s0002550
Supervisor: Dr. ir. Bedir Tekinerdoǧan
Graduation committee members: Prof. Dr. ir. Mehmet Akşit

Dr. ir. Bedir Tekinerdoǧan
Dipl.-Ing. Christian Hofmann

Abstract

Software architecture evaluation methods aim to predict the quality of a software
system before it is built. Depending on the results of these evaluations, the
software architecture can be transformed to improve its quality. In general,
processes of transformation of software architecture designs are implicitly
defined in existing software architecture evaluation methods. Additionally, these
methods use scenarios and do not treat concerns as first-class entities. The
explicit representation of concerns enables explicit reasoning and identification
of crosscutting concerns. Crosscutting concerns may cause scattering and
tangling of code fragments, which have a negative impact on the maintainability
and complexity of software implementations.

The Concern-Oriented Software Architecture Analysis Method (COSAAM) is
an iterative method for evaluating and transforming software architectures.
COSAAM uses and extends various existing approaches to create a method
to systematically transform software architectures. COSAAM inspired by
the Aspectual Software Architecture Analysis Method (ASAAM), which is a
scenario-based analysis method for identifying architectural aspects. Additionally,
it uses Design Structure Matrices (DSMs) for concern identification and
dependency analysis of architectural modules and Domain Mapping Matrices
(DMMs) to measure scattering and tangling. DSMs and DMMs are general
purpose system analysis tools that have been applied in project management,
product design and more recently, software architecture design.

COSAAM provides transformation rules to systematically transform a candidate
software architecture. COSAAM is demonstrated by a case study of a window
manager software architecture. The window manager software architecture is
transformed in eight iterations and is extended with several aspects. After
the end of the evaluation, the scattering and tangling in the window manager
software architecture is eliminated. However, this is offset with added
complexity due to interacting aspects. This thesis is concluded with an overview
of lessons learned during the development of COSAAM and provides suggestions
for further work and tool support.

Acknowledgments

I would like to thank the members of my graduation committee, Bedir
Tekinerdoǧan, Mehmet Akşit and Christian Hoffman for their time and
comments they have given to during my graduation project. I would especially
like to thank Bedir, who has been my supervisor on several occasions, during
the development of ASAAM-T, my internship and my graduation. During
many meetings I have learned a lot from him about many things in software
engineering.

My parents have always been very supportive in everything I have done,
especially during in my final year at University. I want thank them for
everything. Additionally, I want to acknowledge my best friends Rikke, Simon
and Rik. We always have a great time whatever we do and wherever we go. I
also want to acknowledge my housemates at Calslaan 12 for the good times in
all the years living on campus.

Contents

1 Introduction 3

1.1 Software Architecture Evaluation 3
1.2 Problem Statement . 3
1.3 The Design Structure Matrix and Domain Mapping Matrix . . . 4
1.4 Contributions . 4
1.5 Outline of this thesis . 5

2 Problem Statement 6

2.1 Software Architecture Evaluation Methods 6
2.1.1 Introduction . 6
2.1.2 SAAM . 7

2.2 Separation of Concerns and Crosscutting Concerns 8
2.2.1 Aspectual Software Architecture Analysis Method 8

2.3 Window Manager Case Study . 9
2.3.1 ASAAM Example . 10

2.4 Problems with existing software architecture evaluation methods 12
2.5 Requirements for a new evaluation method 13

3 Design Structure Matrices and Domain Mapping Matrices 15

3.1 Design Structure Matrices . 15
3.2 Domain Mapping Matrices . 16
3.3 DSMs and Software Architecture Design 17
3.4 DSMs and Aspect-Oriented Software Architecture Development . 18

4 The Concern-Oriented Software Architecture Analysis Method 19

4.1 Overview of COSAAM . 19
4.2 Preparation Phase Overview . 22

4.2.1 Activity: Define Concerns 23
4.2.2 Activity: Describe Candidate Software Architecture . . . 31

5 COSAAM Analysis Phase 32

5.1 Analysis Phase Overview . 32
5.1.1 Activity: Initialize Concern-Module DMM 33
5.1.2 Activity: Characterize Concern and Module Mapping . . 35

1

5.1.3 Activity: Measure Scattering and Tangling 50
5.1.4 Concern Metrics . 50

6 COSAAM Transformation Phase 54

6.1 Software Architecture Transformation 54
6.2 Transformation Phase Overview 55
6.3 Activity: Initialize and Sequence Architecture DSM 56

6.3.1 DSM Representation of Module Relationships 56
6.3.2 Window Manager Architecture DSM 59

6.4 Activity: Select Transformation Rule 61
6.4.1 Primitive DMM and DSM Transformations 61
6.4.2 Transformation Rules . 62
6.4.3 Transformations rules and primitives 69
6.4.4 Heuristics for applying transformation rules 69
6.4.5 Transforming the Window Manager Software Architecture 70

6.5 Activity: Apply Transformation Rule 71
6.6 Stopping Criteria . 74

7 Evolution of the Window Manager Software Architecture 75

7.1 Localizing the Process Management concern 75
7.2 Generalizing Process Termination and Process Management . . . 76

7.2.1 Analysis & Transformation 76
7.3 Decomposing the Window Manager 77
7.4 Defining the Event Management Concern 80

7.4.1 Decomposing the Event Manager 82
7.5 Designing an Operating System Bridge Aspect 84
7.6 Designing a Failure Management Aspect 86
7.7 Designing a new Monitoring aspect 88

8 Discussion and conclusions 92

8.1 Summary . 92
8.2 Discussion . 92
8.3 Conclusions . 94
8.4 Future Work . 95

2

Chapter 1

Introduction

This chapter provides an overview of this thesis. Section 1.1 provides a short
introduction to software architecture evaluation. Section 1.2 describes the
problem statement of this thesis. Section 1.3 provides an introduction to Design
Structure Matrix (DSM) and the Domain Mapping Matrix (DMM), which are
tools that are used in our approach. Section 1.4 describes the main contributions
of this thesis.

1.1 Software Architecture Evaluation

Software architectures are used to manage the inherent risks in the development
of complex software systems. A software architecture communicates early design
decisions among stakeholders, and it is used to derive a schedule for software
development. Software architectures can be evaluated with software architecture
evaluation methods to predict the quality of a design before it is implemented.
By evaluating the quality of software architecture designs, stakeholders can
further reduce risks and identify trade-offs in the current design.

1.2 Problem Statement

In the past decades, several software architecture evaluation methods have been
developed. We identify several problems with existing software architecture
evaluation methods. In general, software architecture evaluation methods
use scenarios defined by stakeholders to evaluate the quality of software
architectures. However, it is generally agreed that the explicit identification
and modeling of concerns contribute the design of software architectures.
Furthermore, the identification of concerns helps to identify crosscutting
concerns. To cope with crosscutting at the architectural level, concerns
should be treated as first-class entities, both during design and evaluation.
Existing software architecture evaluation methods provide implicit support for

3

transformation and refactoring of software architecture designs. As a result, it
becomes difficult to control the evolution of software architecture designs.

1.3 The Design Structure Matrix and Domain

Mapping Matrix

The Design Structure Matrix (DSM) and Domain Mapping Matrix (DMM)
are general purpose tools for analyzing complex systems, such as processes,
projects, product architectures and software architectures. These tools enable
explicit reasoning about the dependencies in and among the elements of complex
systems. DSMs show the dependencies among elements in a system, while
DMMs show mappings between elements of different domains or systems.
Complex systems such as processes can be optimized by Sequencing activities
in a DSM representation. DSMs have been invented by Steward [38] DSMs have
been applied in many domains for all kinds of purposes. The main applications of
DSMs are project management, product architecture design and organizational
design.

1.4 Contributions

This thesis provides the following contributions to the ongoing research on
software architecture evaluation:

1. Method for evaluating and transforming software architectures

COSAAM is an iterative method for evaluating and transforming software
architecture designs based on DSM and DMM. COSAAM provides
a simple concern identification process based on clustering of similar
scenarios. Additionally, several heuristics are provided to transform
software architectures. architectures .

2. Concern identification process based on clustering of scenarios

It is generally agreed that a knowledge of stakeholders’ concerns is
beneficial to defining software architecture designs. COSAAM provides
an algorithm for identifying concerns based on DSM clusters of similar
scenarios.

3. Characterization of concerns and modules mapping and measurement of
scattering and tangling

COSAAM provides a characterization of the mappings of concerns and
modules and measures of scattering and tangling, based on a DMM.
Several method rules are defined to perform this characterization.

4. COSAAM shows evolution of software architectures

The DSM and DMM approaches used by COSAAM provide useful ways
to monitor the evolution of software architectures.

4

1.5 Outline of this thesis

In chapter 2 we elaborate on these problems in the context of a comparison
between existing software architecture evaluation methods. Additionally, we
illustrate these problems by the use of a case study of a software architecture of
a window manager system. Based on this analysis we determine requirements
for an improvement software architecture evaluation method.

Chapter 3 provides background information on DSMs and DMMs, which are
general purpose analysis tools that have been applied in software architecture
design. We explain the use of these tools and provide an overview of related
work on the application of DSMs to software architecture design. During the
last few years, this field has been actively researched.

Chapter 4 introduces the Concern-Oriented Software Architecture Analysis
Method. This is a iterative method for evaluating and transforming software
architectures. The method consists of the three phases: preparation, analysis
and transformation. This chapter introduces the preparation phase and applies
its activities to the window manager software architecture.

Chapter 5 introduces the analysis phase that is uses a DMM of mappings
between concerns and modules. The analysis performed in this phase consists
of a characterization of the mappings between concerns and modules and
measurements of scattering and tangling of concerns and modules. The activities
of the analysis phase are applied to the window manager software architecture.

Chapter 6 describes the transformation phase that provides several transformation
rules to systematically transform the software architecture, and reduce scattering
and tangling during the process. A DSM representation of the software
architecture is used for dependency analysis of modules. Additionally, several
heuristics are defined to help decide between the application of alternative
transformation rules. This chapter applies the activities of the transformation
phase to the window manager software architecture.

Chapter 7 describes eight additional iterations of COSAAM, which consists
of the activities of the analysis and transformation phase. In every iteration
we show how the DMM and DSM are updated. At the end of this chapter,
we show the final software architecture design of the window manager software
architecture design.

Chapter 8 concludes this thesis with a discussion of the development and
application of COSAAM. In addition it describes interesting observations about
the evolution process of the window manager software architecture.

5

Chapter 2

Problem Statement

This chapter describes the problem statement of this thesis. Section 2.1 provides
in introduction to software architecture evaluation methods and introduces
SAAM, one of the earliest methods [21]. Section 2.2 discusses the principle
of separation of concerns and crosscutting concerns. In addition, it explains
ASAAM, a software architecture evaluation method for identifying aspects
at the architecture level. Section 2.3 describes the window manager case
study that is used to demonstrate ASAAM and is also used later in the
thesis. Section 2.4 discusses several problems of existing software architecture
evaluation methods, based on the ASAAM evaluation, comparisons of methods
in literature, an evaluation of early aspect approaches and lessons learned during
the development of ASAAM-T [4], the tool environment of ASAAM. Section
2.5 defines the requirements for a new software architecture evaluation method
based on the analysis the problems that were identified.

2.1 Software Architecture Evaluation Methods

2.1.1 Introduction

The development of a complex software system carries a large initial investment
and considerable risk. This situation increases the need for the development
of software architectures. Software architectures are important artifacts that
embody the early design decisions which impact the later phases of software
development. These early decisions can reduce risk and guide the software
development process.

The importance of software architecture designs lead to the need for ways
to predict the quality of a design before it is implemented. These kind
of evaluations can be performed by using a software architecture evaluation
method. In the past decades, several software architecture evaluation methods
have been developed. Kazman and others have developed SAAM and ATAM
[21] [33]. SAAM is a widely applied scenario-based evaluation methods. SAAM

6

evaluates the modifiability of software architectures. ATAM is a similar method
that is used to identify trade-offs between quality factors in architectural designs.
These methods have evolved into more elaborate methods, such as SAAMCS
and SAAMER which evaluate complex scenarios, or use evaluate software
architectures with respect to different quality attributes, such as evolution and
reuse, respectively [5].

2.1.2 SAAM

SAAM is one of the earliest software architecture evaluation methods and is
the foundation of many existing scenario-based methods that are used today.
Many of its activities are in some way represented in other methods. Therefore,
this section introduces the activities of SAAM to get an understand of scenario-
based software architecture evaluation methods. Figure 2.1 provides a diagram
with the activities of SAAM. There are four activities. The two preliminary
activities are Scenario Development and Architecture Description in which the
main artifacts of the methods are derived. The scenarios are then evaluated
with respect to the software architecture in the activity Individual Scenario
Evaluation. Finally, scenario interactions are analyzed in the Assess Scenario
Interactions activity. SAAM can be used to evaluate a single architecture or to
compare different alternative designs.

Figure 2.1: Activities of SAAM

7

2.2 Separation of Concerns and Crosscutting

Concerns

Separation of concerns is a fundamental principle in software engineering and
other problem-solving activities [32]. This principle states that each concern or
problem should be addressed separately by designing a corresponding solution
that is relatively independent from solutions for other concerns. The resulting
software system designed as a composition of these solutions. By addressing each
concern separately, the complexity of the design is reduced and it is becomes
adaptable.

Crosscutting concerns, such as logging, persistence and error handling, can
complicate the separation of concerns in software systems. Crosscutting
concerns are difficult to separate from other concerns and may introduce
scattered code fragments, which are are problematic, as they complicate explicit
reasoning about individual concerns [29]. As a result, crosscutting may have a
negative impact on the modifiability and maintenance of software systems [44].

Aspect-oriented approaches, such as AspectJ and Composition Filters have
been introduced to define modular representations for such concerns. Aspect-
Oriented Software Development (AOSD) is a broad field of research on
crosscutting concerns and involves methods, tools, languages and other means to
deal with crosscutting at the implementation, detailed design and architecture
levels [16] [1]. The identification of crosscutting has been incorporated in
software architecture evaluation with the development of ASAAM [43]. This
is a method for identifying aspects at the architecture level, which is discussed
in the next section.

2.2.1 Aspectual Software Architecture Analysis Method

The Aspectual Software Architecture Analysis Method (ASAAM) is a software
architecture evaluation method for identifying aspects at the architecture level,
[43]. Figure 2.2 shows the activities for ASAAM, which are described briefly.

8

Architecture
Description

 Scenario
Development

Scenario Interaction
Assesment and Tangled
Component Identification

 Individual Scenario
evaluation and Aspect
 Identification

 Refactoring of
 Architecture

 Aspectual
Refactoring of
 Architecture

Figure 2.2: Activities of ASAAM

1. Architecture Description

A candidate software architecture design is provided that will be evaluated.

2. Scenario Development

Scenarios are developed by various stakeholders.

3. Individual scenario evaluation and aspect identification

Scenarios are categorized into direct or indirect scenarios. Additionally,
aspectual scenarios are identified that indicate possible crosscutting
concerns.

4. Scenario interaction assessment and component classification

The goal of this step is to determine whether the architecture has an
appropriate separation of concerns. Components are classified as Cohesive,
Composite, Tangled or Ill-defined components.

5. Refactoring of the architecture

Based on the previous activity, several refactorings are proposed. These
can be conventional refactorings or aspectual refactorings.

The following section introduces the window manager cases study from that is
used to demonstrate ASAAM.

2.3 Window Manager Case Study

This section describes the window manager software architecture from the
original ASAAM publication [4]. Figure 2.3 shows a UML diagram of the
window manager software architecture design.

9

Figure 2.3: Software architecture design of a window management system

The window manager software architecture consists of four modules, the Event
Manager, Window Manager, Screen Manager and Process Manager. The
software architecture works in the following manner: when a user interacts
with the system by, for example moving an opened window, system events are
generated. The Event Manager captures these events and communicates with
the Window Manager to determine required changes. The Window Manager is
responsible for performing changes related to windows. Meanwhile, it notifies
the Process Manager that is responsible for starting, stopping and interrupting
processes associated with the windows. When all necessary changes have been
performed, the Window Manager commands the Screen Manager to update the
screen.

2.3.1 ASAAM Evaluation of the Window Manager Software

Architecture

The following subsections apply all activities of ASAAM to the window manager
software architecture.

Activity: Develop Scenarios

In this subsection the scenarios for the window manager software architecture
are described. Scenarios can be developed along with other requirements
through group activities such as requirements sessions. We use the existing
selection of scenarios for the window manager software architecture from the
ASAAM publication [43]. Figure 2.4 shows the collection of direct and indirect

10

scenarios for the window manager software architecture. Direct scenarios can be
performed by the current software architecture design, while indirect scenarios
require changes to the design in order to be performed.

Direct Scenarios

S1. Start multiple processes at the same time.
S2. Change color of widgets in a window.
S3. Close all open windows.
S4. Change screen resolution.
S5. Enter a command to start an application process.
S6. Move the main window.
S7. Screen saver is activated.
S8. Resize a window.
S9. Terminate a process.
S10. Interrupt a process.

Indirect Scenarios

S11. Change look-and-feel style on run-time.
S12. Add voice control.
S13. A failure occurs and the system shuts down.
S14. Provide dual display screen.
S15. Use multiple desktops.
S16. Monitor activities of the user.
S17. Provide touch screen and light pen as input.
S18. A memory overflow due to many opened windows.
S19. Port system to command-based operating system.
S20. Minimize windows after idle time.

Figure 2.4: Scenarios for the window manager software architecture

Activity: Individual scenario evaluation and aspect identification

Figure 2.5 shows the individual evaluation of scenarios with respect to the
modules of the window manager software architecture.

Module Direct Scenarios Indirect Scenarios

Event Manager S3,S5 S12,S13,S16,S17,S18,S19
Screen Manager S4,S7 S16,S18,S19,S20

Window Manager S2,S3,S6,S8 S11,S14,S15,S16,S19
Process Manager S1,S3,S9,S10 S13,S16,S19

Figure 2.5: Scenario interactions for the window manager software
architecture

11

ASAAM provides method rules for identifying aspectual scenarios, based on
scattering of scenarios across multiple components. Figure 2.6 shows aspectual
scenarios of the window manager software architecture.

S13. A failure occurs and the system shuts down
S16. Monitor activities of the user
S19. Port system to command-based operating system

Figure 2.6: Aspectual scenarios for the window manager software architecture

Activity: Component classification

Figure 2.7 shows the classification of the modules of the window manager
software architecture. The classification is based on the ASAAM method rules
for component classification and distinguishes components in the categories
Cohesive, Tangled, Composite and Ill-defined.

Module Cohesive Tangled Composite Ill-defined

Event Manager S5 S13,S16,S19 S12,S17 -
Screen Manager S14 S16,S19 S4,S7 -

Window Manager S2,S3,S6,S8 S16,S19 S11,S18,S15 -
Process Manager S1,S9,S10 S16,S19 - -

Figure 2.7: Classification of the modules of the window manager software
architecture

2.4 Problems with existing software architecture

evaluation methods

In the previous section we have provided an example of an ASAAM evaluation.
In this section we define several problems of existing software architecture
evaluation methods based on a comparison of existing methods [5], combined
with lessons learned from the development of the ASAAM-T tool environment
[4].

1. Concerns are implicitly defined

Scenario-based evaluation methods use scenarios to evaluate software
architectures. In general, these methods do not describe stakeholders’
concerns explicitly. Concerns are implicitly defined in scenario descriptions.
The explicit description of concerns can help to reduce complexity, increase
the goal-directness of the development process and provide explicit
reasoning [3]. Knowledge of concerns is required to be able to refactor
and modify software architectures and we want to answer questions such
as: Which concerns are addressed by each individual module?, Which
concerns are not yet solved?, Are there any crosscutting concerns? These

12

questions can be answered when we have identified the stakeholders’
concerns for the software architecture.

2. Reusable knowledge is not sufficiently captured

A software architecture evaluation is an effective way to share knowledge
about the concerns of stakeholders. However, in the above mentioned
evaluation methods, the knowledge gained during the evaluation is not
sufficiently captured and modeled for reuse [5]. It is generally agreed that
the use of reusable knowledge can reduce development costs and reduce
faults in software implementations.

3. Software architecture refactoring and modification is described

implicitly

In ASAAM, the process of refactoring and modification of software
architectures is described implicitly. Software architecture refactoring is
important to improve the separation of concerns and achieve high cohesion
in and low coupling between modules. It is generally agreed that these
qualities reduce complexity and eases the adaptability of resulting software
implementation. However, the refactoring and modification is a complex
subject and requires a systematic approach.

4. Limited traceability of concerns

In general, scenario-based software architecture analysis methods like
SAAM and ASAAM do not use concerns as first-class entities. As a result,
it becomes difficult to establish traceability of concerns through different
phases in the software development life-cycle. Traceability of concerns
across the software life-cycle, among other factors, improves the ease of
evolution of software systems [?]. Traceability of concerns is required in
order to refactor and modify software systems. When we can trace earlier
design decisions, we may determine how to improve the current design.
The problem of limited traceability was identified in an evaluation of early
aspect approaches [20]. Recently there has been considerable interest in
research on traceability of concerns across the software development life-
cycle [6] [22] [44]. We can investigate current research findings to learn
how to establish traceability in software architecture evaluation methods.

2.5 Requirements for a software architecture

evaluation and transformation method

To cope with the above stated problems a new software architecture evaluation
and refactoring method needs to be designed that has the following requirements:

• The method is a concern-oriented process

Concern-oriented processes are problem solving processes that use concerns
as first-class entities [3]. Concern-oriented processes have several benefits

13

over ordinary processes such as goal-directness and explicit reasoning [3].
In existing scenario-based analysis methods, explicit reasoning about the
evaluation is more difficult due to the absence of concerns as first-class
entities.

• The method supports identification of crosscutting concerns

ASAAM identifies architectural aspects with aspectual scenarios. Our
method should define a process for identification of crosscutting concerns
at the architecture level. This is requires to make accurate refactoring
decisions and decide when to apply aspect-oriented approaches.

• The method supports conventional and aspect-oriented refactoring

The method should define a software architecture refactoring process. In
this process, the evaluation team can choose between several refactoring
strategies. Additionally, heuristics should be defined for selecting an
appropriate refactoring strategy for the given situation.

• The method supports traceability of concerns

The stakeholders’ concerns should be traceable to the software architecture
design. This is an example of forward traceability. Additionally we would
like to have backwards traceability as well. With backwards traceability
we can identify which concerns are supported by modules in the software
architecture [6]

14

Chapter 3

Design Structure Matrices

and Domain Mapping

Matrices

This chapter introduces the general purpose analysis tools Design Structure
Matrix and Domain Mapping Matrix. In section 3.1 we provide a general
introduction to the Design Structure Matrix (DSM). Section 3.2 discusses the
Domain Mapping Matrix (DMM), a tool that complements a DSM. Section
3.3 discusses related work on the application of DSMs to software architecture
design. Section 3.4 discusses recent work on the DSMs in the context of Aspect-
Oriented Software Development.

3.1 Design Structure Matrices

A DSM is a matrix representation of the dependencies between elements of a
complex system, introduced by Steward [38] in 1981. DSMs are used to represent
and analyze complex systems. Figure 3.1 shows an example of a simple DSM
of a fictional system. The rows and columns represent subsystems and the
X marks represent binary dependencies between subsystems. Reading across
the columns we can see which subsystem depends on other subsystems. For
example, we can see that subsystem A depends on subsystem B and vice versa
and that subsystem B depends on subsystem C. Reading across the rows we see
which subsystems provide services for other subsystems. We see that subsystem
D is not used by any subsystem.

15

Figure 3.1: Example DSM showing subsystem dependencies

The compact representation of a DSM is useful in and of itself to represent
complex systems. The main benefit of DSMs, however, is that they can
be manipulated to optimize the system it represents. For example, if the
system is a process of interdependent activities, the DSM can be sequenced
to determine a more efficient sequencing of activities. Sequencing is used to
optimize product development schedules and reduce cycle-time [10], [46] Various
sequencing algorithms have been defined in literature to sequence DSMs.

Another application of DSMs is clustering. The rows and columns are re-
arranged in a way that clusters of tightly coupled elements are shown. Clustering
is used to reduce the complexity of a system. Clustering is applied in the
development of product architectures from interdependent components [10] [36].
DSMs have been applied in many different application domains, such as project
management [37], product design [36] and more recently, software architecture
design [40], [27] and [39].

DSMs are classified as either static or dynamic. Static DSMs show structural
dependencies between elements of a complex system, while dynamic DSMs
indicate time-flows between elements. Static DSMs are component-based or
team-based show dependencies between components and teams [10]. Examples
of dynamic DSMs are task-based and parameter-based DSMs, that are used to
depict the ordering of activities and design decisions, respectively.

3.2 Domain Mapping Matrices

A DMM is a matrix representation of a mapping between elements from different
domains. DMMs complement DSMs, which show dependencies of a system in
a single domain, while DMMs show the mapping of elements of two domains.
Danilovic introduced the concept of DMM and investigated its application to
management of multiple project situations with shared resources [14]. Figure
3.2 shows an example DMM with the mappings of the domains A and B. Each
domain has its own elements. Domain A consists of elements A1 up to and
including A5. Domain B has four elements, B1 up to and including B4. The
cells in the DMM denote mappings between elements of these domains. The
semantics of these mappings depends on the context and the meaning of the
domains.

16

B

A

B1 B2 B3 B4

A1 •

A2 • •

A3 • •

A4 • • •

A5 •

Figure 3.2: Example Domain Mapping Matrix showing mappings from
elements of domain A to domain B

In [22], a traceability matrix is used to identify crosscutting between elements of
different phases of the software life-cycle. A traceability matrix can be seen as
an instance of a DMM. As far as we know, there are little documented examples
of applications of DMMs in literature. Clustering of DMMs has been described,
but not made explicit [14]. Further research on DMMs may lead to better
understanding on analysis techniques, the same way as was done in research on
DSMs.

3.3 DSMs and Software Architecture Design

Recently, DSMs have been used to analyze and manage software architectures
[35] [40]. Lattix inc. has developed a tool called LDM, which can manage a
DSM derived from structural dependencies in a Java or C/C++ implementation
[24]. Figure 3.3 shows an example of LDM with a DSM of the dependencies of
the packages of Apache ant.

17

Figure 3.3: Lattix LDM tool with a DSM of the dependencies between the
packages of Apache Ant

In the past few years, there has also been a growing interest in using DSMs and
Net Option Value to determine the value of competing software architecture
designs. Net Option Value is a economic model of real options that is used
to analyze the modularity of design structures. Lopes and Bajracharya and
Sullivan et. al. have focused on determining the value of conventional software
architecture designs [27] [40].

3.4 DSMs and Aspect-Oriented Software Architecture

Development

The application of Design Structure Matrices to aspect-oriented software
architecture design is relatively new research area and is discussed in [27] and
[39]. Lopes and Bajracharya also demonstrate that aspects can make software
architecture designs more valuable. However, in [26] they show that aspects can
however provide a negative contribution to the value of a software architecture
design. These conclusions are supported by applying the Net Option Value
and DSM techniques to a set of conventional and aspect oriented software
architecture designs. In this work, the authors also introduce preliminary design
guidelines for aspects.

18

Chapter 4

The Concern-Oriented

Software Architecture

Analysis Method

In this chapter we provide an overview of the Concern-Oriented Software
Architecture Analysis Method (COSAAM). Section 4.1 describes the preparation,
analysis and transformation phases of COSAAM. Section 4.2 provides a detailed
description of the activities that are performed in the preparation phase. In the
sections 4.2.1 and 4.2.2 we explain and perform the activities of the preparation
phase to prepare the window manager software architecture for a COSAAM
evaluation.

4.1 Overview of COSAAM

COSAAM is an iterative software architecture evaluation and transformation
method. A software architecture evaluation is usually performed by an
evaluation team, which consists of stakeholders, software architects and possibly
other people involved in a software development project [12]. Figure 4.1 shows
the UML activity diagram [18] of the phases of COSAAM. COSAAM consists
of the three phases: the Preparation Phase, Analysis Phase and Transformation
Phase.

The preparation phase establishes the artifacts used in the COSAAM evaluation:
a candidate software architecture design and a collection of concerns of
stakeholders. The analysis phase involves a characterization and measurement
of scattering and tangling of concerns and modules. The information provided
during this analysis is used in the transformation phase, in which the candidate
software architecture is transformed. An iteration of COSAAM consists of
all the activities of the analysis and transformation phases. The evaluation

19

team can decide to perform a new iteration, or stop the evaluation process.
We describe several stopping criteria in the transformation phase to guide this
decision making.

[new iteration]

[stop]

Preparation Phase

Analysis Phase

Refactoring Phase

Figure 4.1: UML activity diagram of the phases of COSAAM

In the following paragraph we explain the preparation, analysis and transformation
phases of COSAAM based on their goals, inputs and outputs.

20

1. Preparation Phase

• Goal

The goal of the preparation phase is to define the concerns of
stakeholders and deliver a candidate software architecture design.
The candidate software architecture will be evaluated in the analysis
and transformation phases.

• Inputs

The inputs for this phase are existing concerns or a reused software
architecture design.

• Outputs

The outputs for this phase are a collection of concerns of stakeholders
and a candidate software architecture design.

2. Analysis Phase

• Goal

The goal of the analysis phase is to determine how the candidate
software architecture addresses the concerns of stakeholders. Additionally,
scattering and tangling of concerns and modules is measured. The
results of this analysis is used for decision making in the consecutive
transformation phase.

• Inputs

The inputs of the analysis phase are a collection of concerns and a
candidate software architecture design.

• Outputs

The analysis phase delivers a concern-module DMM representation of
the mapping of concerns to the modules of the software architecture.
The DMM is enhanced with a characterization of concerns and
modules and a collection of metrics that measure scattering and
tangling of concerns and modules in the candidate software architecture.

3. Transformation Phase

• Goal

The goal of the transformation phase is to address the concerns of
stakeholders by transforming the candidate software architecture. At
the same time, scattering and tangling of concerns and modules is
reduced.

• Inputs

The inputs of the transformation phase are the candidate software
architecture design and the concern-module DMM enhanced with a
characterization of concerns and modules and the measurements of
scattering and tangling of concerns and modules.

21

• Outputs

The outputs of the transformation phase are a DSM representation
of the candidate software architecture and an updated DMM with
the mapping of concerns to modules.

4.2 Preparation Phase Overview

The preparation phase aims to derive concerns and deliver a candidate software
architecture design. Figure 4.2 shows the five activities of the preparation phase.
In the following subsections we will explain all the goals, inputs and outputs of
these activities. We apply each activity to the window manager case study from
the ASAAM publication [43]. Subsection 4.2.1 describes the Define Concerns
activity that consists of the sub-activities Reuse Concerns, Develop Scenarios,
Initialize and Cluster Scenario DSM and Derive Concerns. Finally, section
4.2.2 describes the Describe Candidate Software Architecture activity, where we
deliver as candidate software architecture. In this case it is the window manager
software architecture from chapter 2.

22

Identify Concerns

Identify ConcernsIdentify ConcernsIdentify ConcernsIdentify ConcernsIdentify ConcernsCluster Scenario DSM

Develop Scenarios

Identify ConcernsIdentify ConcernsIdentify ConcernsIdentify ConcernsIdentify ConcernsDerive Concerns

Identify ConcernsIdentify ConcernsIdentify ConcernsIdentify ConcernsIdentify ConcernsReuse Concerns

Describe Candidate

Software Architecture

Figure 4.2: UML activity diagram of the preparation phase of COSAAM

4.2.1 Activity: Define Concerns

• Goal

The goal of this activity is to define a collection of concerns of the
stakeholders.

• Inputs

There are no inputs for this activity.

• Outputs

The output of this activity is a collection of stakeholders’ concerns.

The goal of this activity is to define a set of concerns that have to be solved by the
software architecture. This activity is decomposed into several sub-activities.
Concerns can be reused from existing projects, requirements specifications or

23

domain models in the sub-activity Reuse Concerns. They can be also be derived
from scenarios developed by stakeholders through the use of similarity analysis
and DSM clustering techniques. This process consists of the three sub-activities
Develop Scenarios, Initialize and Cluster Scenario DSM and Derive Concerns,
that are explained below.

Sub-activity: Reuse Concerns

• Goal

The goal of this activity is to reuse concerns.

• Inputs

The input of this activity is the documentation of past projects or
literature.

• Outputs

The outputs of this activity are reused concerns.

Sub-activity: Develop Scenarios

Scenarios are short descriptions of interactions with the software system to be
developed [12]. The evaluation team develops or reuses a collection of scenarios
that indicate important usage or change situations in the software.

• Goal

The goal of this activity is to develop scenarios that describe relevant
interactions with the software system.

• Inputs

The optional inputs for this activity are reused scenarios.

• Outputs

The output of this activity is a collection of scenarios.

The scenarios of the window manager system have been described in chapter 2.

Sub-activity: Initialize and Cluster Scenario Design Structure Matrix

Before we describe the goal, inputs and outputs of this sub-activity we provide
a vocabulary of concepts that which refer to:

• Similarity Relationship

A similarity relationship is a relationship between two scenarios. Scenarios
that are in this relationship share similar features in their descriptions or
in semantics.

24

• Number of similar scenarios

The number of similarity relationships a scenario is in.

• Cluster

A cluster is a set of scenarios.

• Overlapping Cluster

An overlapping cluster is a cluster that includes at least one scenario that
is part of another cluster.

• Concern

There are many definitions for concerns. We use the definition from
Bakker [6], which states: “A concern is a concept that refers to a problem
that is of interest to one or more stakeholders”. Concerns are derived from
the analysis of clusters of scenarios.

To understand the concerns that are important for developing the software
architecture, we need a way to identify concerns from the scenarios. We do
this by entering scenarios into a DSM. The evaluation team identifies scenarios
that share a common domain concept or that describe similar problems. The
similarity relationships are documented in the DSM. We then apply clustering
to identify clusters of similar scenarios. Based on the analysis of clusters we
derive concerns. Our algorithm produces overlapping clusters of scenarios with
simple heuristics. A mark in a cell indicates similarity between two scenarios in
the corresponding row and column. An empty cell in the DSM indicates that
two scenarios are not similar to each other.

• Goal

The goal of this activity is to analyze and cluster scenarios in a DSM.

• Inputs

The input of this activity is a collection of scenarios.

• Outputs

The output of this activity is a collection of clusters of scenarios.

We apply this activity to the scenarios of the window manager software
architecture. The evaluation team enters the scenarios in the scenario DSM.
Scenarios that seem to address the same concern or share the same domain
concepts are linked to each other by marking the appropriate cell in the DSM,
shown in figure 4.2.1.

25

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

S1 • • •

S2 •

S3 •

S4 • • • •

S5 • • •

S6 •

S7 • • •

S8 • •

S9 • • •

S10 • • • •

S11 • • • •

S12 • • • •

S13 •

S14 • • •

S15 • • •

S16 • •

S17 • •

S18 •

S19

S20 • • •

Figure 4.3: Scenario DSM for the Window Manager Software Architecture

The DSM depicted in figure 4.2.1 now needs to be clustered in order to derive
concerns. We have developed a heuristics-based clustering algorithm to define
clusters of scenarios. Existing DSM clustering algorithms were not appropriate
to use because most of them are based on dependencies, instead of similarity.
Dependency is an asymmetrical relationship, while similarity is a symmetric
relationship. When element A is dependent on element B, element B does not
necessarily depend on B. However, when element A is similar to element B,
element B is also similar to element A. Before we explain the details of our
algorithm we present two heuristics for defining clusters.

1. Similarity Heuristic Scenarios that are similar to many other scenarios are
likely related to the same concern or similar concerns and are put into a
cluster with all scenarios in its similarity relationship

2. Dissimilarity Heuristic Scenarios that are not similar to any other scenario
probably describe a separate concern and are put into a separate cluster

The similarity heuristic states that scenarios that have a similar description,
for example by using the same domain concepts, describe the same concern.
The following example shows that this heuristic can be useful. The scenarios
S1: Start multiple processes at the same time, S5: Enter a command to
start an application process and S10: Interrupt a process all describe process

26

management actions: starting, stopping and interrupting processes. The
scenarios are descriptions of a group of related process management activities.

The second heuristic is the dissimilarity heuristic, which is the counterpart of
the similarity heuristic. This heuristics states that scenarios that describe very
different system interactions probably describe a different concern. We provide
an example for the window manager case study. Scenario S19: Port system to
command-based operating system is very different from all other scenarios, as it
is the only one that describes porting of the window manager.

These heuristics form the basis of our clustering algorithm. The algorithm
proceeds by creating a list of scenarios that is ordered by decreasing degree,
i.e. the number of scenarios its is related to. The first elements of the list
are elements with the highest degree. The end of the list contains scenarios
that are isolated or related to a single other scenario. The algorithm iterates
through the list and clusters the scenarios according to the heuristics described
above. A scenario is clustered by putting it together with all its neighbors in a
cluster. The algorithm performs this procedure for all elements that are not yet
in a cluster. Scenarios with a single neighboring scenario are clustered together.
Finally, an isolated element is clustered by putting the scenario in its own cluster.

Note that if the evaluation team does not define any similarity relationships,
each scenario is put in its own cluster. In that case, each scenario is a separate
concern. This algorithm is implemented in ruby [2]. The source code for our
algorithm is added as an appendix to this thesis 8.4. We illustrate clustering
by providing a graph representation of the scenario DSM in figure 4.4. The
graph consists of two large graphs of scenarios, an individual scenario that is
not connected to other scenarios, (S19), and a pair of scenarios, (S13 and S18).

27

S16

S7

S4 S11

S15S14

S2

S20
S17

S12

S6

S5

S8
S10

S1 S9

S3

S19

S13 S18

Figure 4.4: Graph representation of the scenario DSM

After applying the algorithm, the DSM is clustered. Figure 4.5 shows the
scenario graph with added clusters, delivered by our algorithm.

S16

S7

S4 S11

S15S14

S2

S20
S17

S12

S6

S5

S8
S10

S1 S9

S3

S19

S13 S18

Figure 4.5: Clustered graph representation of the scenario DSM

28

The graph representation of the clustered DSM can be represented in its original
DSM form. The clustered DSM is shown in figure 4.6. The algorithm identified
9 overlapping clusters of scenarios.

S16 S20 S7 S4 S14 S15 S11 S2 S19 S13 S18 S6 S8 S12 S17 S5 S10 S1 S9 S3

S16 • •

S20 • •

S7 • • •

S4 • • • •

S14 • •

S15 • • •

S11 • • •

S2 •

S19

S13 •

S18 •

S6 •

S8 • •

S12 • • • •

S17 •

S5 • •

S10 • •

S1 • • •

S9 • •

S3 •

Figure 4.6: Clustered DSM of scenarios for the Window Manager Software
Architecture

Sub-activity: Derive Concerns

• Goal

The goal of this activity is to derive concerns from clusters of scenarios.

• Inputs

The input of this activity is a collection of clusters of scenarios.

• Outputs

The outputs of this activity is a collection of concerns.

Our clustering algorithm has delivered 9 clusters of scenarios. In this activity,
we identify which concerns these clusters represent. Figure 4.7 shows the graph
representation of the clustered scenario DSM with added names of concerns.

29

Figure 4.7: Concerns derived from the graph representation of the clustered
scenario DSM

Figure 4.8 shows the 9 concerns that we have identified.

Concerns Scenarios
Monitoring S16, S20, S7
Screen Management S7, S4, S14, S15, S11
Window Appearance Configuration S11, S2
OS Portability S19
Failure Management S13, S18
Window Management S6, S8
Input Device Management S8, S12, S17, S5, S10
Process Management S5, S10, S1, S9
Process Termination S9, S3

Figure 4.8: Derived concerns for the Window Manager Software Architecture

The concerns Screen Management and Process Management cluster many
scenarios. These concerns are well-defined since the scenarios clustered by
them clearly indicate specific actions and events that belong to these concerns.
In contrast to these concerns, the concern Process Termination clusters fewer
scenarios. Generally, the more concrete scenarios one can analyze, the easier it
is to define a concept.

30

4.2.2 Activity: Describe Candidate Software Architecture

In this activity, the software architects describe a candidate software architecture.
The candidate software architecture will be transformed several times during
the evaluation, so it is acceptable if the software architecture is still an initial
version. The ambiguity in the design and the definition of concerns will be
reduced during several iterations of COSAAM. As a result, the evaluation team
will gain more problem and solution domain knowledge, that allows them to
improve the candidate software architecture.

• Goal

The goal of this activity is to describe a candidate software architecture.

• Inputs

The optional inputs of this activity are a reusable software architecture
design

• Outputs

The output of this activity is a candidate software architecture design.

The candidate software architecture is described in this activity. Software
architecture designs usually consist of several views that each show different
parts of the total design [11]. COSAAM is in principle agnostic with respect
to any kind of architectural view-type. However, in this thesis we use the term
module when we refer to architectural elements. Figure 4.9 shows the window
manager software architecture described earlier in chapter 2.

Figure 4.9: Software architecture of a window manager system

31

Chapter 5

COSAAM Analysis Phase

This section discusses the activities of the COSAAM analysis phase. The goal
of the analysis phase is to provide the evaluation team with a characterization
of the mapping between concerns and modules and measures of scattering
and tangling. This analysis is used in the following transformation phase to
make judgments regarding the selection of transformation rules to transform
the software architecture.The following section describes the activities of the
analysis phase and the details of the analysis that is performed.

5.1 Analysis Phase Overview

Figure 5.1 describes the three activities of the analysis phase. These are the
activities Initialize Concern-Module DMM, Characterize Concern and Module
Mapping and Measure Scattering and Tangling. Sections 5.1.1, 5.1.2, 5.1.3
explain the goals, inputs and outputs of each activity and provide a detailed
description of their application to the window manager software architecture.

32

Figure 5.1: UML activity diagram of the activities of the COSAAM analysis
phase

5.1.1 Activity: Initialize Concern-Module DMM

• Goal

The goal of this activity is to initialize the concern-module DMM. This
DMM shows the mapping of concerns to architectural modules. The
resulting DMM representation is used in later activities to measure
scattering and tangling and guide the activities in the transformation
phase.

• Inputs

The inputs of this activity are the candidate software architecture and a
collection of concerns.

• Outputs

The output of this activity is a DMM with the mappings of concerns to
modules. The DMM shows which concerns are currently addressed by the
software architecture, represented by direct mappings, and concerns that
require changes in order to be addressed. This situation is represented by
indirect mappings from concerns to modules.

33

The evaluation methods SAAM and ASAAM use mappings of scenarios to
modules and distinguish between a direct scenario and an indirect scenario [21],
[43]. A direct scenario can be performed by the candidate software architecture,
while an indirect scenario requires changes to existing design. COSAAM uses
a similar distinction for the mapping of concerns to modules and introduces
a direct mapping and an indirect mapping between concerns and modules. If
a direct mapping exists between a concern and a module, it means that the
module is responsible for solving this concern. If an indirect mapping exists
between a concern and a module, this means that this module requires changes
in order to solve this concern. When there is no mapping between a concern
and a module then that module is not responsible for solving that concern.

To demonstrate this activity the concern-module DMM is created for the window
manager software architecture, shown in figure 5.2. The rows represent the
stakeholders’ concerns. The columns represent the modules of the window
manager software architecture. The cells contain either a direct mapping,
identified by the letter ’D’, an indirect mapping, identified by the letter ’I’,
or they do not contain anything. To simplify our analysis some of the concern-
to-module mappings have been derived from the existing individual scenario
evaluation performed in the ASAAM publication [43]. Note that this is not
required, the initialization of the concern-module DMM can be performed
without any previous evaluation of scenarios.

34

Modules
C

o
n

ce
rn

s

Monitoring (MO) I I I I

I I I I

I I I I

D D D

D D

I

D

D

D

Legend

D Direct Mapping

I Indirect Mapping

Event

Manager

(EM)

Window

Manager

(WM)

Process

Manager

(PM)

Screen

Manager

(SM)

Operating Systems

Portability (OP)

Failure Management

(FM)

Process Termination

(PT)

Process Management

(PM)

Input Device

Management (IDM)

Window Management

(WM)

Window Appearance

Configuration (WAC)

Screen Management

(SM)

Figure 5.2: Concern-module DMM for the window manager software
architecture

5.1.2 Activity: Characterize Concern and Module Mapping

• Goal

The goal of this activity is to characterize the mapping between concerns
and modules based on the concern-module DMM.

• Inputs

The input of this activity is the concern-module DMM.

• Outputs

35

The output of this activity is a characterization of the concerns and
modules based on the mappings in DMM.

In this activity the mapping between concerns and the modules of the
candidate software architecture is characterized. Scattering, tangling and
crosscutting are identified and whether concerns are directly and indirectly
addressed by modules. This characterization enables explicit reasoning about
the transformation of concerns and modules in the transformation phase.
Concern and modules can be characterized by a combination of mappings in
the concern-module DMM. There are 7 categories for concerns and 4 categories
of modules.

Concern Artifact Diagram

Artifact diagrams are used in method engineering to define the categories of
artifacts that are used by a method [41]. Figure 5.3 shows the artifact diagram
with the categories and associated method rules used for the characterization of
concerns. The boxes printed in bold are the categories used in COSAAM. The
other boxes are intermediate categories.

36

Figure 5.3: Concern artifact diagram

The analysis rules from figure 5.3 are defined in the following format:

IF <condition> THEN <consequent>

Whenever the condition of an analysis rule is met, concern is categorized into
a specific category. This representation for method rules was also used for the
method rules of ASAAM [43]. The following figure describes the analysis rules
of concerns.

37

C1: SELECT concern from preparation phase

C2: IF concern is directly addressed by a module

C3: IF concern is not addressed by any module

C4: IF concern is indirectly addressed by a module

C5: IF DIRECT CONCERN is addressed by multiple modules

C6: IF DIRECT CONCERN is addressed by a single module

C7: IF INDIRECT CONCERN is addressed by a single module

C8: IF INDIRECT CONCERN is addressed by multiple modules

C9: IF DIRECT SCATTERED CONCERN is addressed by at least one TANGLED MODULE

C10: IF INDIRECT SCATTERED CONCERN is addressed by at least one TANGLED MODULE

C11: IF DIRECT CROSSCUTTING CONCERN is not an inherent crosscutting concern

C12: IF INDIRECT CROSSCUTTING CONCERN is not an inherent crosscutting concern

THEN concern is a DIRECT CONCERN

THEN concern is a NEW CONCERN

THEN concern is an INDIRECT CONCERN

THEN concern is a DIRECT SCATTERED CONCERN

THEN concern is a DIRECT LOCAL CONCERN

THEN concern is an INDIRECT LOCAL CONCERN

THEN concern is a INDIRECT SCATTERED CONCERN

THEN concern is a DIRECT CROSSCUTTING CONCERN

THEN concern is an INDIRECT CROSSCUTTING CONCERN

THEN concern is a DIRECT SCATTERED CONCERN

THEN concern is an INDIRECT SCATTERED CONCERN

Figure 5.4: Concern analysis rules

• New Concern (N)

A New Concern is not mapped to any module in the candidate software
architecture. Figure 5.5 shows a DMM example of a new concern.

38

DMM Mapping Category

New Concern (N)

M1 M2 M3 cat

C1 N

Figure 5.5: DMM mapping of a New Concern (N)

• Direct Local Concern (DL)

A Direct Local Concern is directly mapped to exactly one module. Figure
5.6 shows a DMM example of the direct local concern.

DMM Mapping Category

M1 M2 M3 cat

C1 D DL Direct Local

Concern (DL)

Figure 5.6: DMM mapping of a Direct Local Concern (DL)

39

• Indirect Local Concern (IL)

An Indirect Local Concern is indirectly mapped to exactly one module.
Figure 5.7 shows a DMM example of the Indirect Local Concern.

DMM Mapping Category

M1 M2 M3 cat

C1 I IL Indirect Local

Concern (IL)

Figure 5.7: DMM mapping of a Indirect Local Concern (IL)

• Direct Scattered Concern (DS)

A Direct Scattered Concern is directly mapped to multiple modules.
Figure 5.8 shows a DMM mapping of the Direct Scattered Concern.

DMM Mapping Category

M1 M2 M3 cat

C1 D D D DS
Direct

Scattered

Concern (DS)

Figure 5.8: DMM mapping of a Direct Scattered Concern (DS)

• Indirect Scattered Concern (IS)

An Indirect Scattered Concern is mapped to multiple modules, of which
at least one is an indirect mapping. Figure 5.9 shows a DMM mapping of
the Indirect Scattered Concern.

40

DMM Mapping Category

M1 M2 M3 cat

C1 I I I IS
Indirect

Scattered

Concern (IS)

Figure 5.9: DMM mapping of a Indirect Scattered Concern (IS)

• Direct Crosscutting Concern (DX) or Direct Scattered Concern (DS)

A Direct Crosscutting Concern is scattered over several modules, of which
at least one is tangled. If after evaluation the concern does not seem to
be inherently crosscutting, it becomes a Direct Scattered Concern. The
same DMM mapping corresponds to these categories. Figure 5.10 shows
the DMM mapping of a Direct Crosscutting Concern or Direct Scattered
Concern.

DMM Mapping Category

M1 M2 M3 cat

C1 D D D DX, DS

C2 D/I DL/IL

Direct

Crosscutting

Concern (DX)

or Direct

Scattered

Concern (DS)

Figure 5.10: DMM mapping of a Direct Crosscutting Concern (DX) or Direct
Scattered Concern (DS)

• Indirect Crosscutting Concern (IX) or Indirect Scattered Concern (IS)

An Indirect Crosscutting Concern is scattered over several modules, of
which at least one is tangled. If after evaluation the concern does not seem
to be inherently crosscutting, it becomes a Indirect Scattered Concern.
The same DMM mapping corresponds to these categories. Figure 5.10
shows the DMM mapping of a Indirect Crosscutting Concern or Indirect
Scattered Concern.

41

DMM Mapping Category

M1 M2 M3 cat

C1 I I I IX, IS

C2 D/I DL/IL

Indirect

Crosscutting

Concern (IX) or

Indirect

Scattered

Concern (IS)

Figure 5.11: DMM mapping of a Indirect Crosscutting Concern (IX) or
Indirect Scattered Concern (IS)

Knowledge of crosscutting concerns is important for the transformation phase,
since it can influence the ordering of transformations. The formal definition of
crosscutting by van den Berg et. al [22] is used to identify crosscutting concerns.
The crosscutting definition by van den Berg et al. states: ”Crosscutting occurs,
then in a mapping between source and target, a source elements is scattered over
target elements and where in at least one of these target elements, on or more
source elements are tangled.” Their crosscutting definition is based on scattering
and tangling in traceability matrices. Because our DMM is an instance of a
traceability matrix, we can use this definition to identify crosscutting concerns.

The identification of crosscutting based on the above definition may not
necessarily indicate crosscutting concerns that need for aspect-oriented composition
techniques in order to be solved. We distinguish between inherent and
accidental crosscutting. Inherent crosscutting very likely requires aspect-
oriented composition mechanisms. Accidental crosscutting however, is likely
the result of problems that can be prevented without using aspect-oriented
composition mechanisms. We mention three causes of accidental crosscutting in
that can be identified with the DMM: Additionally, we evaluate the crosscutting
concerns to identify whether they are inherently crosscutting or accidentally
crosscutting. This removes any false positives from the set of crosscutting
concerns. If a concerns is accidentally crosscutting it becomes a Direct Scattered
Concern or Indirect Scattered Concern, if it was a Direct Crosscutting Concern
or a Indirect Crosscutting Concern respectively.

1. Incorrect identification of concerns (Concerns)

2. Faults or constraints in the architectural design (Modules)

3. Faults in the evaluations (Mappings)

The first problem is the incorrect or incomplete definition of concerns in
the software architecture. If a definition of a concern remains vague, it is

42

hard to determine if, and how it is addressed by modules in the software
architecture. Nominalization is ‘the conversion of a set of activities into a single
universal noun, such as “measurement”, “efficiency”, or “security”.’ [45].
Nominalization is unavoidable in software development, since nominalization
it is used for abstraction. We use nouns to label concerns, modules, processes,
classes and so on. If this nominalization is too ambiguous however, this can
give problems. The semantics of words depends on the context. However, due
to the iterative nature of COSAAM, the evaluation team learns more about
the software architecture and the context and ambiguity in both concerns and
modules is reduced.

The second class of problems that can cause accidental crosscutting are faults
in the software implementation or software architecture design. Examples
of these problems are the well-known collection of anti-patterns in software
development [9]. An example anti-pattern is The Blob, a module that has
too much responsibilities which results in a highly tangled code fragments.
However, accidental crosscutting may also be caused by design constraints or
carefully made design decisions and trade-offs. Another cause of accidental
crosscutting is the use of code generators. Code generators may generate code
that provides useful features such as persistence or notification. The code
fragments however may be scattered across several classes which seems to be
the result of crosscutting, but are not necessarily.

Finally, the third possible cause of accidental crosscutting is the existence
of faults in the evaluation. This problem can occur when there is little
architectural design information. This can happen during the early stages of
software architecture design, when there is still some ambiguity in the problem
description and software architecture design. Another cause is the lack of quality
solution domain knowledge, which makes it difficult to derive relevant solution
domain models for architectural modules [3]. When we are aware of the causes
for accidental crosscutting it will be easier to identify inherent crosscutting.
Additionally, we can recognize inherent crosscutting concerns from our own
experience or experience of others.

Module Artifact Diagram

Figure 5.12 shows the module artifact diagram with the categories of modules
used in COSAAM.

43

Figure 5.12: Module artifact diagram

Figure 5.13 shows the analysis rules for modules.

44

M1: SELECT module from preparation phase

M2: IF module addresses a concern directly

THEN module becomes a DIRECT MODULE

M3: IF module addresses a concern indirectly

THEN module becomes an INDIRECT MODULE

M4: IF DIRECT MODULE addresses multiple concerns

THEN module becomes a DIRECT TANGLED MODULE

M5: IF DIRECT MODULE addresses a single concern

THEN module becomes a DIRECT COHESIVE MODULE

M6: IF INDIRECT MODULE addresses a single concern

THEN module becomes an INDIRECT COHESIVE MODULE

M7: IF INDIRECT MODULE addresses multiple concerns

THEN module becomes an INDIRECT TANGLED MODULE

Figure 5.13: Module analysis rules

• Direct Cohesive Module (DC)

A Direct Cohesive Module is a module that addresses a single concern
directly. Figure 5.14 shows the DMM mapping that corresponds to the
Direct Cohesive Module.

DMM Mapping Category

M1

C1 D

C2

C3

cat DC

Direct

Cohesive

Module (DC)

Figure 5.14: DMM mapping of Direct Cohesive Module (DC)

45

• Indirect Cohesive Module (IC)

An Indirect Cohesive Module is a module that addresses a single concern
indirectly. Figure 5.15 shows a DMM mapping of the Indirect Cohesive
Module.

DMM Mapping Category

M1

C1 I

C2

C3

cat IC

Indirect

Cohesive

Module (IC)

Figure 5.15: DMM mapping of Indirect Cohesive Module (IC)

• Direct Tangled Module (DT)

An Direct Tangled Module is a module that addresses multiple concerns
directly. Figure 5.16 shows a DMM mapping of the Direct Tangled
Module.

DMM Mapping Category

M1

C1 D

C2 D

C3 D

cat DT

Direct

Tangled

Module (DT)

Figure 5.16: DMM mapping of Direct Tangled Module (DT)

• Indirect Tangled Module (IT)

46

An Indirect Tangled Module is a module that addresses multiple concerns,
of which at least one indirectly. Figure 5.17 shows a DMM mapping of
the Indirect Tangled Module.

DMM Mapping Category

M1

C1 I

C2 I

C3 I

cat IT

Indirect

Tangled

Module (IT)

Figure 5.17: DMM mapping of Indirect Tangled Module (IT)

Category Summary

Figure 5.18 summarizes all categories of concerns.

ID Category
N New Concern
DL Direct Local Concern
IL Indirect Local Concern
DS Direct Scattered Concern
IS Indirect Scattered Concern
DX Direct Crosscutting Concern
IX Indirect Crosscutting Concern

Figure 5.18: Concern categories for the characterization of the mapping
between concerns and modules

Figure 5.19 provides a summary of all module categories of the characterization
of the mapping between concerns and modules.

47

ID Category
DC Direct Cohesive Module
I Indirect Cohesive Module
DT Direct Tangled Module
IT Indirect Tangled Module

Figure 5.19: Module categories for the characterization of the mapping
between concerns and modules

In the next section, the mappings between concerns and modules of the window
manager software architecture are characterized. Figure 5.20 shows the concern-
module DMM with additional columns and rows for the category of each concern
and module.

EM WM PM SM cat

MO I I I I IX

OP I I I I IX

FM I I I I IX

PT D D D DS

PM D D DS

IDM I IL

WM D DL

WAC D DL

SM D DL

cat IT IT IT IT

Figure 5.20: DMM of window manager software architecture with the
characterization of concerns and modules

We demonstrate the reasoning behind the characterization of concerns and
modules for each of the categories. We mention which analysis rules are applied

48

and why.

Direct Local Concerns

The three concerns Screen Management, Window Management and Window
Appearance Configuration are Direct Local Concerns. Screen Management is
addressed by the Screen Manager. The Window Management and Window
Appearance Management concerns all involve manipulation of windows and are
addressed by the Window Manager (C2).

Indirect Local Concerns

The only Indirect Local Concern is Input Device Management. This concern
originates from the requirement to use new devices for interacting with the
window manager, such as touch screens and light pens. This concern requires
changes to the Event Manager module, since the input devices have to be
detected by the Event Manager. Because of these changes, Input Device
Management is an Indirect Local Concern (C3).

Direct Scattered Concerns and Indirect Crosscutting Concerns

The concerns Monitoring, Operating Systems Portability, Process Termination,
Failure Management and Process Management are Indirect Crosscutting Concerns,
(C4,C8 and C10). However, we need to investigate if they are inherent
crosscutting concerns. Monitoring is a well-known example of a crosscutting
concern in literature [16], [25], [22]. Failure Management represents the
management of failures of individual modules. Coordination of system-wide
failure policies is an inherently crosscutting problem. Operating Systems
Portability represents the selection of platform-specific components. This
concern is relevant for every module that uses platform-specific components.
Because of these reasons, we identify these three concerns as actual Indirect
Crosscutting Concerns (C10). The concerns Process Termination and Process
Management are not inherently crosscutting because process related activities
are relatively isolated from other activities in the window manager. As a result,
they are Direct Scattered Concerns (C11).

Indirect Tangled Modules

All modules in the window manager software architecture are Indirect Tangled
Modules because they address multiple concerns and because the existence of
Indirect Crosscutting Concerns. Note that the number of concerns is more than
the double the number of modules. Whenever there are more concerns than
modules in a DMM, and they are all directly or indirectly mapped to these
modules, there will be tangling.

49

5.1.3 Activity: Measure Scattering and Tangling

• Goal

The goal of this activity is to measure scattering of concerns and tangling
of modules, based on the concern-module DMM.

• Inputs

The input of this activity is the concern-module DMM.

• Outputs

The output of this activity is a collection of metrics for scattering and
tangling calculated from the concern-module DMM.

In the previous activity we have characterized the mapping between the concerns
and modules of the window manager software architecture. In this activity
we measure scattering of concerns and tangling of modules, based on the
mappings in the concern-module DMM. These metrics are used to show the
severity of problems in the existing software architecture design. Additionally,
scattering and tangling are used to control the evaluation process. The goal
of the transformation is to systematically reduce scattering and tangling in
the software architecture, while addressing the concerns of stakeholders by the
modules in the software architecture. This explicit reasoning is applied during
the transformation phase to determine when and how the software architecture
should be transformed.

We present three metrics to measure scattering and tangling of concerns and
modules in the concern-module DMM. These metrics represent the severity
of scattering and tangling in the software architecture. In existing literature
on aspect-oriented refactoring, a scattering degree metric has been used to
quantify aspects in middleware [47]. Figueiredo et. al. present a way
towards a quantitative method for assessing aspect-oriented artifacts based
on implementation metrics [15]. COSAAM adopts a similar approach and
applies measures of scattering and tangling degrees at the architecture level.
The measure of scattering and tangling is less precise at the architecture
level, since architectural concerns and modules are conceptual in nature, as
opposed to implementation units. Nevertheless, these metrics are still useful
to determine the severity of scattering and tangling in software architectures.
These approaches can be combined to investigate software architectures in
combination with round-trip engineering, which connects software architecture
metrics with implementation metrics. We distinguish between direct and
indirect scattering and tangling degrees for concerns and modules, because this
distinction influences the transformation process.

5.1.4 Concern Metrics

The concern-module DMM consists of n concerns and m modules, C0 up to
including Cn and M0 up to including Mm. Figure 5.21 shows three concern

50

metrics for the concern-module DMM.

• Direct Scattering Degree - dsd

– Measure

The direct scattering degree measures how many modules in the
current candidate software architecture are responsible for addressing
this concern.

– Definition

Number of direct mappings concern Ci is part of.

– Symbol

dsd(Ci)

• Indirect Scattering Degree - isd

– Measure

The indirect scattering degree measures how many modules in the
candidate software architecture have to be modified in order to
address this concern.

– Definition

Number of indirect mappings concern Ci is part of.

– Symbol

isd(Ci)

• Scattering Degree - sd

– Measure

The scattering degree measures how many modules directly or
indirectly address this concern. It is the sum of the values of the
direct and indirect scattering degree.

– Definition

Number of direct and indirect mappings concern Ci is part of.

– Symbol

sd(Ci) = dsd(Ci) + isd(Ci)

Figure 5.21: Scattering metrics for concerns

There are also three tangling metrics for modules. These are similar as the three
metrics above. Figure 5.22 shows the tangling metrics of modules based on the
concern-module DMM.

51

• Direct Tangling Degree - dtd

– Measure

The direct tangling degree measures how many concerns are directly
addressed by this module.

– Definition

Number of direct mappings module Mj is part of.

– Symbol

dtd(Mj)

• Indirect Tangling Degree - itd

– Measure

The indirect tangling degree measures how many concerns are
indirectly addressed by this module in the candidate software
architecture.

– Definition

Number of indirect mappings module Mj is part of.

– Symbol

itd(Mj)

• Tangling Degree - td

– Measure

The tangling degree measures how many concerns are directly or
indirectly addressed by this module.

– Definition

Number of direct and indirect mappings module Mj is part of.

– Symbol

td(Mj) = dtd(Mj) + itd(Mj)

Figure 5.22: Tangling metrics for modules

We will determine the values of these metrics for the window manager software
architecture. Figure 5.23 shows the DMM and all metrics values.

52

EM WM PM SM cat

MO I I I I 0 4 4 IX

OP I I I I 0 4 4 IX

FM I I I I 0 4 4 IX

PT D D D 3 0 3 DS

PM D D 2 0 2 DS

IDM I 0 1 1 IL

WM D 1 0 1 DL

WAC D 1 0 1 DL

SM D 1 0 1 DL

1 4 2 1

4 3 3 3

5 7 5 4

cat IT IT IT IT

dsd isd sd

dtd

itd

td

Figure 5.23: Concern-module DMM with concern and module categories and
scattering and tangling metrics

The concern-module DMM shows that the Monitoring, OS Portability and
Failure Management concerns have the highest isd and sd values of 4.
Additionally, the Window Manager module has the highest tmd value of 6. This
means that the Window Manager is the least cohesive module, with respect to
the number of concerns has to address. This high value denotes that explicit
reasoning about its responsibilities will be relatively difficult. The evolution of
this module can be problematic, since all of the concerns it should address can
evolve individually. Note that there are more metrics that could be defined for
the concern-module DMM. For example, for prioritization of concerns, we could
define the weight of each concern by counting the number of scenarios that are
in the cluster that corresponds to that concern. This metric is not a part of
COSAAM but this could be applied in future work in this area.

53

Chapter 6

COSAAM Transformation

Phase

This chapter describes the activities of the COSAAM transformation phase.
Section 6.1 provides a short introduction to the concept of software architecture
transformation. Section 6.2 provides an overview of the activities of the
transformation phase. Sections 6.3, 6.4 and 6.5 describe the Initialize and
Sequence Architecture DSM, Select Transformation Rule and Apply Transformation
Rule activities respectively.

6.1 Software Architecture Transformation

Software transformation can be broadly defined as the process of changing
software architectures. Any time the software architecture is changed from
one version to the next, it has been transformed. Software architecture
transformation is a combination of modification, refactoring and design. In
the following paragraphs we provide a background for each of these elements.

Architecture modification is changing the externally observable behavior of the
software architecture design. This includes defining or expanding new features
or an increase of the scope of requirements. Modification changes the behavior of
the software architecture and consists of minor changes of its internal structure.

Refactoring is a programming technique that is used to increase the quality
of source code without changing its externally observable behavior [17]. Since
several years, the concept of refactoring has been applied at the level of software
architectures. Refactoring reduces scattering and tangling of code fragments and
as a result, the implementation becomes easier to modify and maintain.

Research on refactoring indicates that it is important to determining where
and when to refactor [8]. In code refactoring, software metrics are used to

54

locate areas that require refactoring. These metrics measure size, complexity,
cohesion, coupling [8]. COSAAM adopts a similar approach to measure and
reduce scattering and tangling, based on metrics for the concern-module DMM.
A benefit of these metrics is that we can measure progress during the evaluation.
Other existing refactoring approaches are based on visualization of underlying
structure of the software. To determine when to refactor, we need to choose
a sequence of individual refactorings. This prevents conflicts and the so-called
”ripple-effect” that may result from change propagation [8]. To cope with these
problems, COSAAM should provide heuristics to sequence transformations of
the software architecture.

6.2 Transformation Phase Overview

The COSAAM transformation phase aims to address the problems associated
with architecture transformation, described in the previous section. Figure
6.1 shows an UML activity diagram for the activities in the COSAAM
transformation phase. The transformation phase consists of the activities
Initialize and Sequence Architecture DSM, Select Transformation Rule and
Apply Transformation Rule that are performed sequentially. For each activity
we describe its goal, inputs and outputs and apply the activity on the window
manager software architecture.

Figure 6.1: UML activity diagram of the activities of the COSAAM
transformation phase

55

6.3 Activity: Initialize and Sequence Architecture

DSM

• Goal

The goal of this activity is to sequence the architecture DSM to help define
an ordering of possible transformations.

• Inputs

The input of this activity is the candidate software architecture.

• Outputs

The output of this activity is a DSM of the modules and the relationships
of the candidate software architecture. The elements of the DSM are the
modules of the architecture and the cells contain module relationships.
The DSM is sequenced with respect to the dependencies caused by module
relationships.

Rework is caused by changes in information that is required to perform an
activity [10]. Since software architecture transformation changes the modules of
a software architecture, there is the possibility of rework of designing modules
during the process. The transformation of a module requires information about
interfaces of the modules it depends on. When these interfaces change, the
module that uses these interfaces may have to be design or transformed again.
To cope with this problem, a DSM representation of the software architecture
is used to view dependencies between modules. By examining the dependencies
we can prevent unnecessary work during the transformation of the candidate
software architecture. The following sections explain how to create this DSM
representation.

6.3.1 DSM Representation of Module Relationships

This section shows how modules and their relationships are represented in
the DSM. While there may be many types of module relationships, only
four specific relationships are examined. These are the Usage, Composition,
Specialization and Advice relationships. All of these relationships have a unique
representation in the DSM. After we have described the representation of each
module relationship in the DSM we show how to initialize the architecture DSM
for the window manager software architecture. The following subsections show
how each module relationship is represented in both the software architecture
and the DSM:

Usage Relationships

A usage relationship between module M1 and module M2 means that M1 uses
the services of M2. Because of this, module M1 is dependent on module M2,
since a change in the interface or services of module M2 can affect module

56

M1. Figure 6.2 shows the representation of the usage relationship in both the
software architecture and the DSM. The DSM in this figure is read as follows: a
module on a column is dependent on a module on a row if there is an icon of a
module relationship in the corresponding cell. The DSM shows all dependencies
downwards, in a uniform manner.

Software Architecture Representation DSM Representation

M1 M2

M1

M2

Figure 6.2: Representation of a usage relationship in a software architecture
design and DSM

Composition Relationship

A composition relationship is similar to a usage relationship, but the main
difference is that module M2 is a part of module M1. Because of this, module
M1 is dependent on module M2. Figure 6.3 shows the representation of the
composition relationship in both the software architecture and the DSM.

Software Architecture Representation DSM Representation

M1 M2

M1

M2

Figure 6.3: Representation of a composition relationship in a software
architecture design and DSM

Specialization Relationship

A specialization relationship between module M1 and module M2 means that
module M1 is a special instance of the generic module M2. Because the
specialized module M1 is dependent on the interface or services of a generic
module M2, a change in M2 changes module M1. For this reason, the

57

specialization arrow is pointing downwards in the DSM, instead of upwards
— the way it is often represented in UML diagrams [18]. Figure 6.4 shows the
representation of the specialization relationship in both the software architecture
and the DSM.

Software Architecture Representation DSM Representation

M1 M2

M1

M2

Figure 6.4: Representation of a specialization relationships in a software
architecture design and DSM

Advice Relationship

An advice relationship between module M1 and M2 means that module M1
influences the behavior of module M2 through aspect-oriented composition
techniques. Module M2 is, in theory, oblivious to the influence of module M1.
Module M1, on the other hand is dependent on the interface of module M2. If
this module would be implemented, aspect-oriented composition mechanisms
would have to be defined, based on the interface of M2. Examples of
aspect-oriented composition mechanisms are AspectJ pointcut specifications or
composition filters declarations in Compose* [1], [16]. Figure 6.5 shows the
representation of the advice relationship in both the software architecture and
the DSM.

58

Software Architecture Representation DSM Representation

M1 M2

M1

M2

Figure 6.5: Representation of an advice relationship in a software architecture
design and DSM

6.3.2 Architecture DSM for the Window Manager Software

Architecture

Figure 6.6 shows the module view of the window manager software architecture.
The figure contains modules and their relationships. The window manager
software architecture has four modules and three usage relationships between
modules.

Figure 6.6: Window Manager Software Architecture

The DSM is initialized using the examples provided by previous figures. The
architecture diagram shows that the Event Manager has a usage relationship
with the Window Manager. The Event Manager sends updates from user and
system events to the Window Manager. This relationship is represented in the
DSM by putting a usage icon in the cell that corresponds to the Event Manager
(EM) column and Window Manager (WM) row. The window manager itself
uses the Process Manager (PM) and Screen Manager (SM) and two usage icons

59

have been added in appropriate cells. Figure 6.7 shows the complete DSM
representation of the window manager software architecture.

EM PM WM SM

EM

PM

WM

SM

Figure 6.7: DSM representation of window manager software architecture

A sequenced DSM provides useful information for managing processes and
dependencies between activities. In COSAAM a sequenced architecture DSM
is used to help to determine the ordering in which modules and concerns
are transformed. Additionally, the DSM is used minimize rework caused by
dependencies between modules. The architecture DSM is transformed into a
lower-triangular form by topologically sorting its graph representation. The
topological sorting algorithm is well-known graph algorithm [13]. The algorithm
is used to sort the modules according to the sequence of dependencies with other
modules. The lower-triangular form helps to reason about dependencies between
modules and dependencies between transformations. Figure 6.8 shows the DSM
of the window manager software architecture in lower-triangular form.

EM WM PM SM

EM

WM

PM

SM

Figure 6.8: DSM representation of window manager software architecture in
lower-triangular form after sequencing

60

6.4 Activity: Select Transformation Rule

• Goal

The goal of this activity is to select an appropriate transformation rule to
transform the software architecture.

• Inputs

The inputs of this activity are a sequenced architecture DSM, a characterization
of concerns and modules in the concern-module DMM and measures of
scattering and tangling.

• Outputs

The output of this activity is the selected transformation rule.

The activities of the analysis phase provide a characterization of concerns and
modules and measures of scattering and tangling of concerns and modules.
Additionally, a sequenced architecture DSM is provided that shows dependencies
between modules. In this activity, these elements are combined with a set of
heuristics to select an appropriate transformation rule. Before transformation
rules are discussed several primitive transformations of the DMM and DSM are
defined. Then the transformation rules are expressed in terms of primitive
matrix transformations. Furthermore, heuristics are defined for selecting a
particular transformation rule to transform the software architecture. Finally,
a transformation rule is selected that will be applied to the window manager
software architecture in the next activity, Apply Transformation Rule.

6.4.1 Primitive DMM and DSM Transformations

At the start of this activity, the DMM and DSM are both initialized. We define
a collection of primitive transformations for both the DMM and DSM. These
primitive transformation form the basis of more complex transformation rules
that we define in the next section.
Figure 6.9 shows the transformation for the concern-module DMM and their
effects.

Primitive DMM Transformation Effect on DMM

Add concern Add concern in a new row

Remove concern Remove concern in a row

Add module Add module in new column

Remove module Remove module in a column

Remove Direct Mapping

Add Indirect Mapping

Remove Indirect Mapping

Add Direct Mapping Add D to a cell

Remove D from a cell

Add I to a cell

Remove I from a cell

Figure 6.9: Primitive concern-module DMM transformations and their effects

61

Similar transformations are defined for the architecture DSM. Figure 6.10 shows
each primitive transformation for the architecture DSM and their effects. Note
that some transformations have an effect on both the concern-module DMM
and the architecture DSM.

Primitive DSM Transformation Effect on DSM

Add module Add module in new row and column

Remove module Remove module in row and column

Add usage relationship Add usage relationship in cell

Remove usage relationship Remove usage relationship from a cell

Add specialization relationship Add specialization relationship in a cell

Remove specialization relationship Remove specialization relationship from a cell

Add composition relationship Add composition relationship in a cell

Remove composition relationship Remove usage relationship from a cell

Add advice relationship Add specialization relationship in a cell

Remove advice relationship Remove usage relationship from a cell

Figure 6.10: Primitive architecture DSM transformations and their effects

With these primitive transformations, any kind of configuration in the DMM
and DSM can be made. For the purpose of transforming software architectures,
the transformations that reduce scattering and tangling in the candidate
architecture and are interesting. In the next section several transformation
rules are defined for this purpose, which can be expressed as a composition of
primitive DMM and DSM transformations.

6.4.2 Transformation Rules

This section defines transformation rules which improve the software architecture
and reduce or eliminate scattering and tangling of concerns and modules. To
reduce scattering and tangling the number of Direct Local Concerns and the
number of Direct Cohesive Modules has to increase. During this process the
amount of rework due to module dependencies has to be minimized.

Concern Transformation Rules

Figure 6.11 shows the concern artifact diagram from the analysis phase in
chapter 5 with added transformation rules. The transformation rules transform
a concern of a certain category to another concern category, reducing scattering
or tangling in the process. The ultimate goal is to transform every concern into
a Direct Local Concern

62

Figure 6.11: Concern artifact diagram with added transformation rules

Figure 6.12 shows the transformation rules for concerns.

63

ID Transformation Rule Predicate

CT1: Design Module IF NEW CONCEN can be addressed by newly designed module

CT2: Refine Concern IF DIRECT SCATTERED CONCERN can be split into distinct concerns

from which at least one concern is directly addressed by a single module

CT3: Localize Concern IF DIRECT SCATTERED CONCERN can be localized in a single module

CT4: Decompose Concern IF DIRECT SCATTERED CONCERN can be decomposed into distinct concerns

which can all be directly addressed by separate modules

CT5: Update Module IF INDIRECT LOCAL CONCERN can be directly addressed

after updating the responsibilities of the module

CT6: Localize Concern IF INDIRECT SCATTERED CONCERN can be indirectly addressed

by a single module

CT7: Decompose Concern IF INDIRECT SCATTERED CONCERN can be decomposed into distinct concerns

which can all be indirectly addressed by separate modules

CT8: Refine Concern IF INDIRECT SCATTERED CONCERN can be decomposed into distinct concerns

from which one least one is indirectly addressed by a single module

CT9: Design Aspect IF DIRECT CROSSCUTTING CONCERN can be directly addressed

by an aspect

CT10: Design Aspect IF INDIRECT CROSSCUTTING CONCERN can be directly addressed

by an aspect

THEN concern becomes a DIRECT LOCAL CONCERN

 THEN concern becomes a DIRECT SCATTERED CONCERN

THEN concern becomes a DIRECT LOCAL CONCERN

 THEN concern becomes a DIRECT LOCAL CONCERN

THEN concern becomes a DIRECT LOCAL CONCERN

THEN concern becomes an INDIRECT LOCAL CONCERN

THEN concern becomes an INDIRECT LOCAL CONCERN

 THEN concern becomes an INDIRECT LOCAL CONCERN

THEN concern becomes a DIRECT LOCAL CONCERN

THEN concern becomes a DIRECT LOCAL CONCERN

Figure 6.12: Concern transformation rules

The following sections discuss the transformation rules for concerns. In the
application of rule CT1, a new module is design to address a New Concern. It is
a rule that requires software architecture design activities. Accordingly, software
architects may proceed through several or all stages of a software architecture
design method of choice. For example, one can apply Synbad, the synthesis
based software architecture design method, to design an architectural module
through synthesis of relevant solution domain models [42].

Rules CT2, CT3 and CT4 are transformation rules for Direct Scattered
Concerns. In rule CT2, the concern is partially decomposed and it remains
Direct Scattered Concern. However, a part of the concern is now addressed by a
Direct Local Concern. The other two rules eliminate scattering and tangling and
transform the Direct Scattered Concern into a Direct Local Concern. The rules
CT6, CT7 and CT8 apply similar transformations, that transform Indirect
Scattered Concerns into Indirect Local Concerns.

64

In the application of rule CT5, the module that indirectly addresses the Indirect
Local Concern is updated. Its responsibilities are updated or extended to
address the concern and the concern becomes a Direct Local Concern. This
transformation is a modification and not a refactoring, because it changes the
externally observable behavior of the software architecture design. We can see
that several rules can be applied sequentially to transform a concern into a Direct
Local Concern. For example, rule CT7 can transform an Indirect Scattered
Concern into an Indirect Local Concern. Rule CT5 can then be applied to
transform the Indirect Local Concern to a Direct Local Concern.

The remaining two rules CT9 and CT10 transformation rules transform
Direct Crosscutting Concerns and Indirect Crosscutting Concerns into Direct
Local Concerns. This involves the design of an architectural aspect. This
transformation involves changing existing module relationships, such as usage,
composition and specialization into to aspect-oriented composition mechanisms.

Concern Transformation Rules and Primitive DMM and DSM Transformations

We can express these transformation rules in terms of primitive DMM and DSM
transformations. Figure 6.13 shows how the concern transformation rules are
expressed in terms of primitive DMM and DSM transformations.

65

ID Transformation Rule Primitive DMM and DSM Transformations

CT1: Design Module Add Module, Add Direct Mapping

Add/Remove Module Relationships

CT2: Refine Concern Remove Direct Mapping, Add Concern, Add Module, Add Direct Mapping

Add/Remove Module Relationships

CT3: Localize Concern Remove Direct Mapping

Add/Remove Module Relationships

CT4: Decompose Concern Remove Direct Mapping, Add Concern, Add Module, Add Direct Mapping

Add/Remove Module Relationships

CT5: Update Module Remove Indirect Mapping, Add Direct Mapping

Add/Remove Module Relationships

CT6: Localize Concern Remove Indirect Mapping

Add/Remove Module Relationships

CT7: Decompose Concern Remove Indirect Mapping, Add Concern, Add Module, Add Indirect Mapping

Add/Remove Module Relationships

CT8: Refine Concern Remove Indirect Mapping, Add Concern, Add Module, Add Indirect Mapping

Add/Remove Module Relationships

CT9: Design Aspect Remove Direct Mapping, Add Module

Add/Remove Module Relationships

CT10: Design Aspect Remove Indirect Mapping, Add Module

Add/Remove Module Relationships

Figure 6.13: Concern transformation rules with associated primitive DMM
and DSM transformations

Module Transformation Rules

We define similar transformation rules for modules. The transformation rules
transform a module of a module category to a representation that results in less
scattering or tangling. Figure 6.14 shows the module artifact diagram from the
analysis phase in chapter 5 with added transformation rules.

66

Figure 6.14: Module artifact diagram with added transformation rules

Figure 6.15 shows the transformation rules for modules.

67

ID Transformation Rule Predicate

MT1: Refine Module IF DIRECT TANGLED MODULE can be decomposed into distinct modules

from which at least one module directly addresses a single concern

MT4: Generalize Concerns IF DIRECT TANGLED MODULE addresses concerns

from which some can be generalized into a single concern

MT3: Decompose Module IF DIRECT TANGLED MODULE can be decomposed into distinct modules

which all directly addresses a separate concern

MT4: Generalize Concerns IF DIRECT TANGLED MODULE addresses concerns

which all of them can be generalized into a single concern

MT5: Update Module IF INDIRECT COHESIVE MODULE can be updated to directly address

a single concern

MT6: Decompose Module IF INDIRECT TANGLED MODULE can be decomposed into distinct modules

which all indirectly address a separate concern

MT7: Generalize Concerns IF INDIRECT TANGLED MODULE addresses concerns

from which all of them can be generalized into a single concern

MT8: Refine Module IF INDIRECT TANGLED MODULE can be decomposed into distinct modules

from which at least one module indirectly addresses a single concern

MT9: Generalize Concerns IF INDIRECT TANGLED MODULE addresses concerns

for which some can be generalized into a single concern

THEN module becomes a DIRECT TANGLED MODULE

THEN module becomes a DIRECT TANGLED MODULE

THEN module becomes a DIRECT COHESIVE MODULE

THEN module becomes a DIRECT COHESIVE MODULE

THEN concern becomes a DIRECT COHESIVE MODULE

THEN module becomes an INDIRECT COHESIVE MODULE

THEN module becomes an INDIRECT COHESIVE MODULE

THEN module becomes an INDIRECT TANGLED MODULE

THEN module becomes an INDIRECT TANGLED MODULE

Figure 6.15: Module transformation rules

The following sections elaborate on the transformation rules for modules. Rules
MT1 and MT2 are transformation rules for Direct Tangled Modules. In
rule MT1, the module is partially decomposed and it remains Direct Tangled
Module. However, a part of original module now addresses a Direct Local
Concern. The other two rules eliminate tangling and transform the Direct
Tangled Module into a Direct Cohesive Module. The rules MT4 and MT5

apply similar transformations, that transform Indirect Tangled Modules into
Indirect Tangled Modules.

In the application of rule MT3, the Indirect Cohesive Module is updated. Its
responsibilities are updated or extended to address a single concern directly
and becomes a Direct Cohesive Module. This transformation is the same as
transformation rule CT5 for concerns. We can also see that several rules can
be applied sequentially to transform a concern into a Direct Local Concern. For
example, rule MT4 can transform an Indirect Tangled Module into an Indirect
Cohesive Module. Rule MT3 can then be applied to transform the Indirect

68

Cohesive Module into a Direct Cohesive Module.

6.4.3 Module Transformation Rules and Primitive DMM

and DSM Transformations

We can express the module transformation rules in terms of primitive DMM
and DMM transformations, like we did with the concern transformation rules.
Figure 6.16 shows how the module transformation rules are expressed in terms
of primitive DSM and DMM transformations.

ID Transformation Rule Predicate

MT1: Refine Module Remove Direct Mapping, Add Module, Add Direct Mapping

Add/Remove Module Relationships

MT4: Generalize Concerns Remove Concern

MT3: Decompose Module Remove Indirect Mapping, Add Module

Add Indirect Mapping

MT4: Generalize Concerns Remove Concern

MT5: Update Module Remove Indirect Mapping, Add Direct Mapping

Add/Remove Module Relationships

MT6: Decompose Module Remove Indirect Mapping, Add Module, Add Direct Mapping

Add/Remove Module Relationships

MT7: Generalize Concerns Remove Concern

MT8: Refine Module Remove Indirect Mapping, Add Module, Add Direct Mapping

Add/Remove Module Relationships

MT9: Generalize Concerns Remove Concern

Figure 6.16: Module transformation rules with associated primitive DMM
and DSM transformations

6.4.4 Heuristics for applying transformation rules

In the previous section we have defined how we can transform the software
architecture. In this section we discuss when to apply the right transformations.
We provide three heuristics that the evaluation team can use to select
transformation rules. The evaluation team decides which transformation rule is
most appropriate to apply.

1. Defer the design of aspects

The design of aspects introduces a phenomenon called Dependency
Inversion [31]. When using object-oriented composition mechanisms, the
dependencies of modules are aligned with the calling structure. With

69

aspect-oriented composition mechanisms, however, the aspect will depend
on base modules. The dependency is inverted. The stable dependency
principle states: ‘Depend in the direction of stability’ [28]. However,
if these base modules are not direct modules, the aspect depends on
an unstable basis. This can be problematic for modules that may be
transformed later. Changes in base modules can propagate to aspects
because of dependencies between aspect and base modules. This creates
rework for redefining the aspect. Therefore, the design of aspects should be
deferred to the point where the modules it cuts across are Direct Cohesive
Modules. In case of multiple aspects, the evaluation team can decide which
aspect to design first.

2. Remove unnecessary mappings first

The evaluation team should try to remove unnecessary mappings first.
This can be done by applying the transformation rules CT3: Localize
Concern and MT3: Generalize Concerns. This clears up the concern-
module DMM and eases further transformation. This improves the
knowledge of the software architecture to all people in the evaluation
team. This is because participants discuss module responsibilities and
the differences between concerns.

3. Give priority to concerns and modules that are highly scattered or tangled

The concerns and modules that exhibit the most scattering and tangling
provide the greatest ambiguity in the software architecture design. As a
result, the transforming these concerns or modules can have large impact
on the architecture. These are concerns and modules with high tcd and
tmd values. The uncertainty of this instability must be removed early
to reduce ambiguity in the software architecture design and improve the
accuracy of future transformation decisions.

6.4.5 Transforming the Window Manager Software Architecture

In this section we apply the activities we described in earlier sections to the
window manager software architecture. Figure 6.17 shows the DMM at the start
of the transformation phase. We now have several heuristics to help us select
a transformation rule to transform the window manager software architecture.
The sequenced architecture DSM shows that the Process Manager and Screen
Manager do not depend on any other modules. They are located in the rightmost
columns and lowest rows of the architecture DSM. The cells in these rows and
columns do not contain any module relationships.

We choose to transform one of the concerns addressed by these modules. The
Screen Manager has a dcd of 1, and is only in a mapping with crosscutting
concerns. Therefore it requires no further transformation. We choose to
transform the Process Manager. From the collection of concerns that are
mapped to the Process Manager, we defer the transformation of the Indirect

70

Crosscutting Concerns (Heuristic 1). Instead, we choose to to remove
unnecessary mappings (Heuristic 2). This leaves us with a choice between two
concerns: the Process Management and Process Termination Concern. We
select the Process Termination concern first, since it has a high dcd degree
value of 3 (Heuristic 3). Now that we have selected the concern to transform
we decide to select transformation rule CT3: Localize Concern, to localize
the Process Termination concern. In the next section we describe the activity
of applying this transformation rule.

6.5 Activity: Apply Transformation Rule

During this activity, the selected transformation rule is performed and the DMM
and DSMs are changed accordingly. The transformation is performed as an
atomic operation. When the transformation is performed, a new iteration of
the COSAAM activities can be done if necessary. Alternatively, stakeholders
may decide to stop the process if scattering and tangling is eliminated or reduced
to acceptable levels.

• Goal

The goal of this activity is to address concerns by the software architecture,
reduce scattering and tangling of concerns and modules and minimize
rework in future iterations.

• Inputs

The input of this activity is a transformation rule selected in the previous
activity.

• Outputs

The output of this activity is a transformed software architecture.

71

EM WM PM SM cat

MO I I I I 0 4 4 IX

OP I I I I 0 4 4 IX

FM I I I I 0 4 4 IX

PT D D D 3 0 3 DS

PM D D 2 0 2 DS

IDM I 0 1 1 IL

WP D 1 0 1 DL

WAC D 1 0 1 DL

SM D 1 0 1 DL

1 4 2 1

4 3 3 3

5 7 5 4

cat T T T T

dsd isd sd

dtd

itd

td

Figure 6.17: DMM before localizing the Process Termination concern

The Process Termination concern is addressed by modules Event Manager,
Process Manager and Window Manager. When we analyze how these modules
cooperate we can conclude that terminating processes is actually a responsibility
of the Process Manager only. The Event Manager provides events through the
Window Manager, the Window Manager in turn communicates with the Process
Manager to terminate a process. However, the actual act of terminating a
process is the responsibility of the Process Manager. Therefore, we apply the
selected transformation rule CT3: Localize Concern to transform the concern
into a Direct Local Concern that is addressed by the Process Manager.

Figure 6.18 shows the DMM after the application of the transformation rule.
We have shaded the row that has changed. The DSM has not been changed
because we have not introduced any new modules or changed any module
relationships. We have removed two direct mappings between the Process
Termination Concern to the Event Manager and Window Manager. The

72

Process Termination concern is now addressed only by the Process Manager
module. In the next iteration, the scattering and tangling degrees are calculated.
However, to improve the readability of the case study, we combine the result
of the application of the transformation rule with the characterization and
calculation of metrics in the analysis phase that follows it. Figure 6.18 shows
that dsd value of the Process Termination is now equal to 1.

EM WM PM SM cat

MO I I I I 0 4 4 X

OP I I I I 0 4 4 X

FM I I I I 0 4 4 X

PM D D 2 0 2 S

IDM I 0 1 1 I

WP D 1 0 1 D

WAC D 1 0 1 D

PT D 1 0 1 D

SM D 1 0 1 D

0 3 2 1

4 3 3 3

4 6 5 4

cat T T T T

dmd imd tmd

dmd

imd

tmd

Figure 6.18: DMM after localizing the Process Termination concern

We have described the goals, inputs and outputs of each activity in the
transformation phase. At the end of this phase, the evaluation team has
sequenced the architecture DSM, selected a transformation rule and applied
it to the window manager software architecture and the DMM and DSM.
The evaluation team can now performs another iteration, in which they select
and apply a new transformation rule. After any iteration they decide to stop
the evaluation, based on several stopping criteria, which are explained in the
following section.

73

6.6 Stopping Criteria

At the end of the transformation phase, the evaluation team can decide to
perform another iteration of COSAAM. Alternatively, they can stop further
evaluation. We identify several stopping criteria that define when it may be
better to stop analysis. These criteria can be situations of reaching a goal or
meeting a problem that prevents the completion of the evaluation.

1. Elimination of scattering and tangling

This situation of elimination of scattering and tangling is characterized by
the following necessary or sufficient conditions:

• All concerns are Direct Local Concerns. (necessary condition)

• All modules are Direct Cohesive Modules. (necessary condition)

• All sd and td values for concerns and modules are equal to 1. In this
case, the DMM mapping is a bijection and there all scattering and
tangling is eliminated. (sufficient condition)

2. Acceptable reduction of scattering and tangling

Alternatively, the levels of scattering and tangling may be acceptable and
the evaluation is stopped. This depends on the prioritization of concerns
and the opinions of the evaluation team.

3. Insufficient Domain Knowledge

Many transformation rules require appropriate problem- and solution
domain knowledge, for defining concerns or decomposing and composing
modules, respectively. If there is insufficient domain knowledge, it is
difficult to proceed with the evaluation. A COSAAM evaluation may
be stopped to start a search for domain knowledge. After appropriate
knowledge is modeled the evaluation can proceed or restarted.

74

Chapter 7

Evolution of the Window

Manager Software

Architecture

In this chapter the transformation of the window manager software architecture
in continued in eight iterations. After a transformation, the DMM and DSM
are updated and during the activities of the analysis phase in the consecutive
iteration the concern and modules categories and metrics are updated. To
improve the readability of the description of these iterations, the changes in the
transformation phase and the consecutive analysis phase are discussed together.
The next section describes the second iteration of COSAAM.

7.1 Localizing the Process Management concern

Figure 7.1 shows the state of the DMM at the start of this iteration. The
Process Management concern has the highest dsd of 3 and therefore needs to
be transformed. The Process Management concern is transformed in the same
way as in the previous iteration. The transformation rule CT3: Localize

Concern is selected to make Process Management should be the responsibility
of the Process Manager only. Figure 7.1 shows the result of the application of
this transformation rule.

75

EM WM PM SM cat

MO I I I I 0 4 4 IX

OP I I I I 0 4 4 IX

FM I I I I 0 4 4 IX

IDM I 0 1 1 IL

WM D 1 0 1 DL

WAC D 1 0 1 DL

PM D 1 0 1 DL

PT D 1 0 1 DL

SM D 1 0 1 DL

0 2 2 1

4 3 3 3

4 5 5 4

cat IT IT IT IT

dsd isd sd

dtd

itd

td

Figure 7.1: DMM after localizing the Process Management (PM) concern

7.2 Generalizing Process Termination and Process

Management

7.2.1 Analysis & Transformation

The Process Manager addresses the concerns Process Management and Process
Termination and has a dtd value of 2. There are two possible choices to reduce
tangling in this module. The module can be decomposed (MT6) or its concerns
can be generalized (MT7). If it is decomposed, two modules address each
concern. In this case each module would address concerns that represent process

76

management activities, such as terminating, starting and interrupting processes.
If its concerns are generalized however, the two concerns are merged into one
concern. Generalizing the concerns maintains the simplicity of the design and is
selected as a transformation. The choice between several transformation rules is
based on background knowledge and experience of the evaluation team. Figure
7.2 shows the DMM after generalizing the concerns Process Management and
Process Termination.

EM WM PM SM cat

MO I I I I 0 4 4 IX

OP I I I I 0 4 4 IX

FM I I I I 0 4 4 IX

IDM I 0 1 1 IL

WM D 1 0 1 DL

WAC D 1 0 1 DL

PM D 1 0 1 DL

SM D 1 0 1 DL

0 2 1 1

4 3 3 3

4 5 4 4

cat IT IT IT IT

dsd isd sd

dtd

itd

td

Figure 7.2: DMM after generalizing the concerns Process Management and
Process Termination

7.3 Decomposing the Window Manager

The DMM from the previous iteration in figure 7.2 shows that the Screen
Manager and the Process Manager have a direct tangling degree (dtd) value

77

of 1 and are tangled only due to the effect of crosscutting concerns. Since the
design of aspects is deferred and they have a dtd value of 1 these modules do
not require further transformation. The DSM shows that the next module to
be transformed is the Window Manager, because it depends on the Process
Manager and Screen Manager. The Window Manager has a direct tangling
degree value of of 2, because it addresses the two concerns Window Appearance
Management and Window Management and therefore has to be transformed.

Similar to the previous iteration, there are two ways to reduce the tangling. The
Window Manager can be decomposed (MT6) or its concerns can be generalized
(MT7). Generalizing concerns would not be appropriate in this situation,
since Window Management is a distinctively different concern than Window
Appearance Management, which is the management of the visual appearance
of windows. Therefore, the Window Manager is decomposed into two separate
modules by applying transformation rule MT6. Figure 7.3 shows the effect
of decomposing the Window Manager into a Window Manager and a Window
Appearance Manager (WAM) on the DMM.

78

EM WM WAM PM SM cat

MO I I I I I 0 5 5 IX

OP I I I I I 0 5 5 IX

FM I I I I I 0 5 5 IX

IDM I 0 1 1 IL

WM D 1 0 1 DL

WAC D 1 0 1 DL

PM D 1 0 1 DL

SM D 1 0 1 DL

0 1 1 1 1

4 3 3 3 3

4 4 4 4 4

cat IT IT IT IT IT

dsd isd sd

dtd

itd

td

Figure 7.3: DMM after decomposing the Window Manager

Notice that new mappings have been defined between the crosscutting concerns
and the Window Appearance Manager. The concerns Operating Systems
Portability, Monitoring and Failure Management have to be addressed by the
new Window Appearance Manager as well. The Window Appearance Manager
may use platform-specific components, such as specific window themes or plug-
ins. In addition, activities of the Window Manager have to be monitored as
well. Finally, failures that occur during its activities have to be managed. The
definition of new mappings for these concerns indicates that these concerns are
inherently crosscutting. Their scope evolves along with the introduction of new
modules. The tangling caused by these crosscutting concerns turn the Window
Appearance Manager an into an Indirect Tangled Module. The reduction is
tangling in one part of the software architecture leads to additional tangling, due

79

to the evolution of the scope of crosscutting concerns. This is a demonstration
of the established notion that transformation with conventional composition
mechanisms is not enough to deal with crosscutting [43].

This transformation affects the DSM, since we have introduced a new module.
Figure 7.4 shows the DSM with the new Window Appearance Manager module.
The Window Manager is composed the Window Appearance Manager through
a composition relationship.

EM WM WAM PM SM

EM

WM

WAM

PM

SM

Figure 7.4: DSM with the new Window Appearance Manager module

The Window Appearance Manager is responsible for updating and loading
settings for the visual appearance of windows. Examples of these are font
settings, icons, themes, plug-ins et cetera. The Window Manager delegates
changes to the appearance of windows to the Window Appearance Manager.
The Window Manager’s main concern is the management of windows. The
Window Manager is in theory oblivious to the appearance of the windows,
which means that the appearance settings can be changed without affecting
the Window Manager.

7.4 Defining the Event Management Concern

The DMM from figure 7.3 shows that the direct tangling degree of the Event
Manager is 0 and indirectly addresses the Input Device Management concern.
This means that it is currently not made explicit which concern is directly
addressed by the Event Manager. Before the Indirect Local Concern Input
Device Management can be addressed, the concern that is directly addressed
by the Event Manager has to be made explicit. The mean responsibilities of

80

the Event Manager are capturing and transmitting events from the system or
user to the Window Manager. Therefore a new concern is defined which is,
unoriginally, called Event Management (EM). This small transformation might
seem obvious. However, as the Window Manager evolves, the evaluation team
gains more knowledge about the stakeholders’ concerns and the responsibilities
of modules. Even the obvious concern definitions need to be made explicit so
that they can be changed or refined later, if necessary. Figure 7.5 shows the
effect of the newly defined concern and mapping.

EM WM WAM PM SM cat

MO I I I I I 0 5 5 IX

OP I I I I I 0 5 5 IX

FM I I I I I 0 5 5 IX

IDM I 0 1 1 IL

EM D 1 0 1 DL

WM D 1 0 1 DL

WAC D 1 0 1 DL

PM D 1 0 1 DL

SM D 1 0 1 DL

1 1 1 1 1

4 3 3 3 3

5 4 4 4 4

cat IT IT IT IT IT

dsd isd sd

dtd

itd

td

Figure 7.5: DMM after defining an Event Management concern

81

7.4.1 Decomposing the Event Manager

As a result of the newly defined Event Management concern, the Event Manager
now addresses the Event Management and Input Device Management concerns.
There are again two transformation rules to reduce tangling of concerns in the
Event Manager. The Event Manager can be decomposed (MT6) or its concerns
can be generalized (MT7). Input Device Management involves registering input
devices and assuring that events from different devices can be captures. Event
Management on the other hand, involves communicating events, regardless
of their source. Because these concerns are distinct and are likely to evolve
separately, generalizing them would not be an option. Therefore, the Event
Manager is decomposed into an Event Manager and an Input Device Manager
(IDM). Figure 7.6 shows the effect of this transformation in the DMM.

82

EM IDM WM WAM PM SM cat

MO I I I I I I 0 6 6 IX

OP I I I I I I 0 6 6 IX

FM I I I I I I 0 6 6 IX

EM D 1 0 1 DL

IDM D 1 0 1 IL

WM D 1 0 1 DL

WAC D 1 0 1 DL

PM D 1 0 1 DL

SM D 1 0 1 DL

1 1 1 1 1 1

3 3 3 3 3 3

4 4 4 4 4 4

cat IT IT IT IT IT IT

dsd isd sd

dtd

itd

td

Figure 7.6: DMM after decomposing the Event Manager with new Input
Device Manager

Figure 7.7 shows the DSM with the new Input Device Manager module. A
composition relationship has been defined between the Event Manager and the
Input Device Manager.

83

EM IDM WM WAM PM SM

EM

IDM

WM

WAM

PM

SM

Figure 7.7: DSM with the new Input Device Manager (IDM)

7.5 Designing an Operating System Bridge Aspect

In this iteration, only only the crosscutting concerns require transformation.
There is a choice between the crosscutting concerns Monitoring, Failure
Management and Operating Systems Portability. It is decided to address the
Operating Systems Portability concern by a newly defined Operating Systems
Bridge aspect. The Operating Systems Bridge is an application of the Bridge
design pattern, which helps to separate interface from implementation [19]. The
Operating Systems Bridge aspect allows other modules to depend on platform
independent components. To reduce the dependency on platform dependent
components, the OS Bridge transparently redirects calls to virtual platform
independent components to the appropriate platform dependent components.
Examples of platform dependent components are program plug-ins, fonts, icons,
windows, themes and so on. This way, the window manager can become portable
throughout different operating systems. The Operating Systems Bridge can
be configured centrally by determining how certain calls should be redirected,
without changing other modules in the architecture. Figure 7.8 shows the effect
of this transformation on the DMM.

84

OB EM IDM WM WAM PM SM cat

MO I I I I I I I 0 7 7 IX

FM I I I I I I I 0 7 7 IX

OP D 1 0 1 DL

EM D 1 0 1 DL

IDM D 1 0 1 DL

WM D 1 0 1 DL

WAC D 1 0 1 DL

PM D 1 0 1 DL

SM D 1 0 1 DL

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

cat IT IT IT IT IT IT IT

dsd isd sd

dtd

itd

td

Figure 7.8: DMM after the design of the Operating Systems Bridge aspect

Figure 7.11 shows the DSM with the new Operating Systems Bridge aspect.

85

OB EM IDM WM WAM PM SM

OB

EM

IDM

WM

WAM

PM

SM

Figure 7.9: DSM after iteration seven - Map Operating Systems Portability
concern to the Operating Systems Bridge Aspect

7.6 Designing a Failure Management Aspect

There are two remaining crosscutting concerns that have to be solved by the
software architecture: the Monitoring and the Failure Management concern.
In this iteration a Failure Management aspect is designed, which addresses
the Failure Management concern. The Failure Manager provides a recovery
mechanism to recover from failures in several modules. A detailed investigation
of this concern should define detailed advice definitions and compositions. This
is however beyond the scope of the case study. Figure 7.10 shows the DMM
after this transformation.

86

FM OB EM IDM WM WAM PM SM cat

MO I I I I I I I I 8 0 8 IX

FM D 1 0 1 DL

OP D 1 0 1 DL

EM D 1 0 1 DL

IDM D 1 0 1 DL

WM D 1 0 1 DL

WAC D 1 0 1 DL

PM D 1 0 1 DL

SM D 1 0 1 DL

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

cat IT IT IT IT IT IT IT IT

dsd isd sd

dtd

itd

td

Figure 7.10: DMM after the design of the Failure Management Aspect

Figure 7.11 shows the DSM with the new Failure Management Aspect.

87

FM OB EM IDM WM WAM PM SM

FM

OB

EM

IDM

WM

WAM

PM

SM

Figure 7.11: DSM after the design of the Failure Management Aspect

7.7 Designing a new Monitoring aspect

The final crosscutting concern to be addressed is the Monitoring concern. This
iteration describes the design of a Monitoring aspect for this purpose. The
monitor aspect monitors the activities of the user. For this reason we have to
make sure to define advice relationships on all modules, so that each module
activity can be logged. The exact workings and nuances of the monitor aspect
should be defined during detailed design and implementation. Examples of
things to consider are the definition of filters on the monitor log and detection
of patterns of activity instead of single activities. Figure 7.12 shows DMM
after iteration nine. The leftmost column shows the monitoring aspect. These
requirements may lead to the definition of new concerns that can be used in a
new iteration of COSAAM.

88

MO FM OB EM IDM WM WAM PM SM cat

MO D 1 0 1 DL

FM D 1 0 1 DL

OP D 1 0 1 DL

EM D 1 0 1 DL

IDM D 1 0 1 DL

WM D 1 0 1 DL

WAC D 1 0 1 DL

PM D 1 0 1 DL

SM D 1 0 1 DL

1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

cat DC DC DC DC DC DC DC DC DC

dsd isd sd

dtd

itd

td

Figure 7.12: DMM after the design of the Monitoring Aspect

The DSM has also changed in this iteration. Figure 7.13 shows the DSM with the
new monitoring module. The module is an upper layer since no other modules
depend on it. Additionally, it advices all other modules. This can be seen in
the first column.

89

MO FM OB EM IDM WM WAM PM SM

MO

FM

OB

EM

IDM

WM

WAM

PM

SM

Figure 7.13: The new Monitoring module, (MO), advices all other modules

Figure 7.14 shows the UML representation of the transformed window manager
software architecture. Like in the DSM the top of the figure shows the
aspects and the bottom of the figure shows the modules. The modules are
composed with conventional usage and composition relationships. The aspects
are composed with each other with advice relationships. Additionally, the
aspects advice all modules below. We have not drawn all individual advice
relationships, as this would clutter the diagram with crossed lines from the
advice relationships. Instead, we have created a box around all the module and
attached the advice relationships from the aspects to the box.

90

Figure 7.14: Transformed window manager software architecture

91

Chapter 8

Discussion and conclusions

8.1 Summary

This section provides a short summary of the entire thesis. The problem
statement for was described in chapter 2. Several problems of existing software
architecture evaluation methods were identified requirements for a new method
have been defined. Chapter 3 have discusses background on DSMs, DMMs
and their application to software architecture design. This overview of the
background of DSMs and DMMs provided a context for an introduction to
the Concern-Oriented Software Architecture Analysis Method, described in
chapter 4. In that chapter, the phases of COSAAM are explained and the
method is demonstrated with a window manager software architecture case
study. The individual phases are described separately in the chapters 4, 5
and 6. These three chapters described a complete iteration of COSAAM. The
remaining iterations of the COSAAM evaluation for the window manager were
discussed in chapter 7. This chapter discusses our experiences and lessons
learned during the the development and application of COSAAM and presents
the main conclusions. Furthermore, we elaborate on opportunities for future
research on the development and application of the method.

8.2 Discussion

The application of COSAAM to the window manager case study has delivered
useful observations. The following sections describe some general prerequisites
for an effective COSAAM evaluation. After these have been described the
discussion assesses interesting findings identified during the evolution of the
window manager software architecture. Finally, various opportunities for future
research are discussed.

The application of COSAAM transformation rules requires access to problem-
and solution domain knowledge. COSAAM can guide the evaluation team

92

during the evaluation process, but it cannot provide available domain knowledge
that is necessary to design modules and define problems. Domain knowledge
is important in software architecture design and remains important when using
an evaluation method such as COSAAM [3]. The evaluation team can perform
domain analysis and derive domain models or use existing knowledge, such as
architectural patterns or design patterns.

COSAAM has not yet been applied in a actual project. As a result, guidelines for
building effective evaluation teams have not been established. When COSAAM
is validated by future case studies it should be possible to determine such
guidelines. However, several general observations can be identified, based
on the application of COSAAM to the window manager case study. Since
COSAAM requires the perspectives of both concerns and the architecture,
it is likely that a mixed group of stakeholders and software architects are
necessary for an effective evaluation. The stakeholders continually clarify and
refine the problem definition and the concerns that need to be addressed by
the software architecture. The software architects, on the other hand, make
technical decisions in order to transform the software architecture so it meets
the concerns of stakeholders. Both the problem and solution perspectives are
required for effective software architecture evaluation.

At the time of writing, COSAAM is not supported by a tool environment. A
tool environment for COSAAM would be useful for the following reasons. First,
without a tool environment, the manual updating of the DMM and DSM is
time-consuming and error-prone. Tool support can fully automate the activities
Measure Scattering and Tangling, Initialize and Sequence Architecture DSM and
Apply Transformation Rule. In addition, the activities Characterize Concerns
and Modules Mapping and Select Transformation Rule may be partially
automated in a tool environment. Automation increases the productivity of
the evaluation team and the quality of the evaluation. Chapter 6 provides a set
of primitive DMM and DSM transformations with closure properties, which can
help the development of tool support for COSAAM.

A second reason for tool support is manageability of the process. In all but
the most trivial cases, the DMM and DSM can become quite large. A tool
environment can provide options for filtering, compressing and sorting the
matrices, which increases their readability and clarity. Tool support can also
provide ways to reuse concerns or software architecture designs from a repository
of previous evaluations.

A third benefit of tool support is that it creates a more responsive evaluation
process. With a tool environment, the effect of a transformation rule is almost
immediately visible. Version control of the DMM and DSM can provide an even
greater flexibility during the evaluation. The evaluation team may branch and
merge different versions of the DMM and DSM. In this way, the evaluation
team can try different transformations and revert back to previous designs

93

and compare design alternatives during the transformation of the software
architecture. The analysis of design alternatives is an implicit process in
COSAAM, but is explicit in synthesis based software architecture design, which
can be used as a compliment to COSAAM [42].

At the end of the evaluation and transformation of the window manager
software architecture, scattering and tangling of concerns and modules has been
eliminated. Especially in the last three iterations, scattering of concerns has
been reduced considerably with the design of the Operating Systems Bridge,
Failure Manager, and the Monitor aspects. During these three iterations, the
architecture DSM showed an increase in the number of advice relationships.
The increased amount and scope of advice relationships can cause problems,
because aspects may interact at the same modules. This is shown in the DSM
when there are multiple advice relationships in a row. If the window manager
software architecture were to be implemented, the developers would have to
specify exact ordering of execution of each aspect. The interaction of aspects is
a complex problem and has been actively researched [7], [34], [30]. The evolution
of the DMM and DSM show that an increase of the cohesion of modules, due to
the lack of scattering and tangling, is contrasted with an increase in complexity
caused by aspect interactions. Future research may investigate this trade-off
between the cohesion of modules and the complexity of interacting aspects more
thoroughly.

COSAAM demonstrates that the identification of crosscutting concerns at the
architecture level is important for the development of software architectures.
There are two reasons to support this statement. The first reason is based on our
dependency analysis of the software architecture design and the transformation
rules. Crosscutting concerns are identified early in the process but aspects are
designed as late as possible, when the modules they cut across are cohesive
and stable. The second reason is that identification of crosscutting concerns
helps the transformation activity as a whole. We distinguish between candidate
crosscutting concerns and inherent crosscutting concerns. This will help us in
our analysis during the transformation activity. COSAAM shows the benefits
of identifying crosscutting concerns at the software architecture level. However
COSAAM does not provide heuristics to determine the ordering of the design
of multiple aspects.

8.3 Conclusions

This section provides the main conclusions of the development of COSAAM and
its application to the window manager case study.

• The application of COSAAM has eliminated scattering and tangling for
the given set of concerns through the identification and design of the
Operating Systems Bridge, Failure Manager, and the Monitor aspects for
the window manager software architecture.

94

• COSAAM provides heuristics to identify crosscutting concerns early and
defer the design of aspects. This separation between aspect identification
and aspect design is important to minimize rework during architecture
transformation

• The DMM and DSM show a possible trade-off between module cohesion
and the complexity of module compositions from interacting aspects. High
cohesion is an important quality for software architectures. However, the
COSAAM application indicates that high cohesion can be contrasted with
interacting aspects, which increase the complexity of the design.

• The ordering of the design of aspects is implicitly defined in COSAAM.
Even though COSAAM uses a DSM to identify dependencies between
existing modules, it is not clear how to identify future dependencies
between aspects that have not yet been designed.

• The quality of a COSAAM evaluations depends on the quality of available
domain knowledge.

• Tool support is required to validate COSAAM. Additionally, a more
automated process provides greater flexibility during the evaluation.

• The analysis of design alternatives is an implicit process in COSAAM

8.4 Future Work

During transformation and software architecture design it is necessary to
balance various quality factors, such as adaptability and performance. Design
alternatives based on different quality factors have been represented by design
spaces [42]. Design spaces can also be represented by a DMM that maps
generic representations of modules to different design alternatives with respect
to distinct quality factors. This extension would would make the analysis of
design alternatives more explicit during an evaluation.

In practice, software architecture design involves the definition of several
architectural views to specify distinct qualities of a design [11] [23]. COSAAM
investigates the mapping of concerns to elements of a specific architectural view.
Further research may investigate the application of DMMs to the evaluation of
multiple architectural views or mappings between architectural views. The DSM
and DMM are general purpose tools and could be used in many situations.

95

Bibliography

[1] Aspectj - http://www.eclipse.org/aspectj.

[2] The ruby programming language.

[3] M. Akşit. The 7 Cs for Creating Living Software: A Research Perspective
for Quality-Oriented Software Engineering. Turkish Journal of Electrical
Engineering & Computer Sciences, 12(2):61–95, 2004.

[4] B. Tekinerdoĝan & F. Scholten. Asaam-t: A tool environment for
identifying architectural aspects. demo at aosd 2005 conference, chicago,
2005.

[5] M. Ali Babar, L. Zhu, and R. Jeffery. A framework for classifying and
comparing software architecture evaluation methods. aswec, 00:309, 2004.

[6] J. Bakker. Traceability of concerns. Master’s thesis, University of Twente,
2005.

[7] L. Bergmans. Towards detection of semantic conflicts between crosscutting
concerns. In Jan Hannemann, Ruzanna Chitchyan, and Awais Rashid,
editors, Workshop on Analysis of Aspect-Oriented Software, ECOOP 2003,
2003.

[8] B. Bois, P. Van Gorp, A. Amsel, N. Van Eetvelde, H. Stenten, S. Demeyer,
and T. Mens. A discussion of refactoring in research and practice, 2004.

[9] William J. Brown, Raphael C. Malveau, III Hays W. McCormick, and
Thomas J. Mowbray. AntiPatterns: refactoring software, architectures,
and projects in crisis. John Wiley & Sons, Inc., New York, NY, USA,
1998.

[10] T. Browning. Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New Directions.
volume 48, pages 292–306, New York, NY, USA, 2001. ACM Press.

[11] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and
R. Little. Documenting Software Architectures: Views and Beyond. Pearson
Education, 2002.

96

[12] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley Professional,
January 2002.

[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Second Edition. The MIT Press,
September 2001.

[14] Sandkull B. Danilovic M. The use of dependence structure matrix and
domain mapping matrix in managing uncertainty in mulitple project
situations. International Journal on Project Management, 3:193–203, 2005.

[15] E. Figueiredo et al. Assessing Aspect-Oriented Artifacts: Towards a Tool-
Supported Quantitative Method. 2005.

[16] Robert Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit. Aspect-
Oriented Software Development. Addison-Wesley, 2004. ISBN 0-32-121976-.

[17] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999. FOW m 01:1 1.Ex.

[18] J. Rumbaugh G. Booch and I. Jacobson. The Unified Modeling Language
user guide. Addison Wesley Longman Publishing Co., Inc., 1998.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[20] J. Bakker, B. Tekinerdoğan and M. Akşit. Characterization of Early
Aspects Approaches. 2005.

[21] Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. SAAM: a
method for analyzing the properties of software architectures. In ICSE
’94: Proceedings of the 16th national conference on Software engineering,
pages 81–90, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[22] Jos Mara Conejero Klaas van den Berg and Juan Hernndez. Analysis of
crosscutting across software development phases based on traceability. In
EA ’06: Proceedings of the 2006 international workshop on Early aspects
at ICSE, pages 43–50, New York, NY, USA, 2006. ACM Press.

[23] Philippe Kruchten. Architectural blueprints—The “4+1” view model of
software architecture. IEEE Software, 12(6):42–50, nov 1995.

[24] Lattix Inc. http://www.lattix.com.

[25] Karl J. Lieberherr. Controlling the complexity of software designs. icse,
0:2–11, 2004.

97

[26] Cristina Videira Lopes and Sushil Bajracharya. Assessing Aspect
Modularizations Using Design Structure Matrix and Net Option Value.
In T. Aspect-Oriented Software Development I, pages 1–35, 2006.

[27] Cristina Videira Lopes and Sushil Krishna Bajracharya. An Analysis of
Modularity in Aspect Oriented Design. In AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software development, pages
15–26, New York, NY, USA, 2005. ACM Press.

[28] R. C. Martin. Agile Software Development: Principles, Patterns and
Practices. Prentice-Hall, 2002.

[29] Mattia Monga. On aspect-oriented approaches. In Proceedings of
the European Interactive Workshop on Aspects in Software (EIWAS’04),
Berlin, Germany, sep 2004. German Informatics Society.

[30] I. Nagy. On the Design of Aspect-Oriented Composition Models for Software
Evolution. http://trese.cs.utwente.nl/˜nagyist/nagy2006.pdf, IPA, May
2006. ISBN 90-365-2368-0.

[31] Martin E. Nordberg and III. Aspect-oriented dependency inversion, 2001.

[32] David L. Parnas. On the criteria to be used in decomposing systems into
modules. pages 411–427, 2002.

[33] R. Kazman and M. Klein and P. Clements. ATAM: Method for Architecture
Evaluation, 2000.

[34] Frans Sanen, Neil Loughran, Awais Rashid, Andronikos Nedos, Andrew
Jackson, Siobhn Clarke, Eddy Truyen, and Wouter Joosen. Classifying
and documenting aspect interactions. In 5th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (ACP4IS) at AOSD
2006, Bonn, Germany, 2006.

[35] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using
Dependency Models to Manage Complex Software Architecture. In
OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference
on Object oriented programming systems languages and applications, pages
167–176, New York, NY, USA, 2005. ACM Press.

[36] D. Sharman and A. Yassine. Characterizing Complex Product
Architectures. Systems Engineering Journal, 7(1), 2004.

[37] Donald Steward, Stephen Denker, and Tyson Browning. Planning
Concurrency and Managing Iteration in Projects. Center for Quality of
Management Journal, 8(2):55–62, 1999.

[38] Donald V. Steward. The Design Structure System, A Method for Managing
the Design of Complex Systems. IEEE Transactions on Engineering
Management, 28(3):71–74, 1981.

98

[39] Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Cai,
Macneil Shonle, Nishit Tewari, and Hridesh Rajan. Information hiding
interfaces for aspect-oriented design. In ESEC/FSE-13: Proceedings
of the 10th European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 166–175, New York, NY, USA, 2005. ACM Press.

[40] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen.
The Structure and Value of Modularity in Software Design. SIGSOFT
Softw. Eng. Notes, 26(5):99–108, 2001.

[41] B. Tekinerdoğan and M. Akşit. Providing automatic support for heuristic
rules of methods, in object-oriented technology. In S. Demeyer and J. Bosch,
editors, ECOOP98 Workshop Reader, pages 496–498. Springer Verlag, Jul
1998.

[42] Bedir Tekinerdogan. Synthesis-Based Software Architecture Design. PhD
thesis, University of Twente, Mar 2000.

[43] Bedir Tekinerdoĝan. ASAAM: Aspectual Sofware Architecture Analysis
Method. In Working IEEE/IFIP Conference on Software Architecture,
2004.

[44] Klaas van den Berg, Bedir Tekinerdogan, and Hoa Nguyen. Analysis
of crosscutting in model transformations. In J. Oldevik J. Aagedal,
T. Neple, editor, ECMDA-TW Traceability Workshop Proceedings 2006,
number A219 in SINTEF Report, pages 51–64, 2006. ISBN 82-14-04030.

[45] Gerald M. Weinberg. Quality Software Management (Vol. 2): First-Order
Measurement. Dorset House Publishing Co., Inc., New York, NY, USA,
1993.

[46] A. Yassine. An Introduction to Modeling and Analyzing Complex Product
Development Processes Using the Design Structure Matrix (DSM) Method.
2002.

[47] C. Zhang and H. Jacobsen. Re-factoring middleware with aspects, 2003.

99

Appendix A

DSM clustering algorithm source code

The following pages contain the source code for the clustering algorithm used
during the case study. Since a DSM is graph, we have used RGL, the ruby
graph library to model DSMs.
File: DSM.rb

require ’rgl/adjacency’

require ’Cluster’

class DSM < RGL::AdjacencyGraph

attr_accessor :clusters

def initialize

super

@clusters = Array.new()

@weights = Hash.new()

self.to_undirected

end

def cell(i,j)

if has_edge?(i,j) or has_edge?(j,i)

return 1

else

return 0

end

end

def getClustersForItem(i)

clusters = Array.new()

@clusters.each{ |c|

if c.include?(i)

clusters << c

end

100

}

return clusters

end

def to_s

s = ""

@clusters.each{ |c|

s += "Cluster #{c.id}:"

c.each{ |i|

s += " #{i}"

}

s += "\n"

}

return s

end

def get(id)

element = self.detect{ |e| e.id == id }

return element

end

end

101

File: Cluster.rb

class Cluster < Array

attr_accessor :id

def initialize()

super()

end

def <<(e)

if !self.include?(e)

self.push e

end

end

def id

@id

end

def to_s

string = "Cluster:\n"

self.each{ |v| string += " #{v.to_s}\n" }

return string

end

end

102

File: Scenario.rb

class Scenario

attr_accessor :id, :description

def initialize(id,description)

@id = id

@description = description

end

def id

@id

end

def description

@description

end

def to_s

return "#{@id}"

end

end

103

File: DegreeBasedClusteringAlgorithm.rb

require ’DSM’

require ’Cluster’

class DegreeBasedClusteringAlgorithm

attr_accessor :dsm, :queue, :passed

def initialize(dsm)

@dsm = dsm

@queue = Array.new(@dsm.vertices)

@passed = Array.new()

end

def sortOnDegree

@queue = @queue.sort{ |i,j| @dsm.out_degree(j) <=> @dsm.out_degree(i) }

end

def queue

@queue

end

def clusterElement(v)

c = Cluster.new()

c << v

@dsm.each_adjacent(v) { |w|

c << w

@passed << w

}

@dsm.clusters << c

end

def run

sortOnDegree()

@passed = Array.new()

@queue.each{ |v|

if @passed.include?(v)

next

end

clusterElement(v)

@passed << v

}

end

104

end

105

File: TestDegreeBasedClusteringAlgorithm.rb

require ’test/unit’

require ’DegreeBasedClusteringAlgorithm’

require ’DSM’

require ’Cluster’

require ’Scenario’

class TestDegreeBasedClusteringAlgorithm < Test::Unit::TestCase

attr_accessor :algo, :dsm, :s1, :s2, :s3, :s4, :s5, :s6, :s7, :s8, :s9, :s10,

:s11, :s12, :s13, :s14, :s15, :s16, :s17, :s18, :s19, :s20, :cluster

def setup

@s1 = Scenario.new("S1","Start multiple processes at the same time")

@s2 = Scenario.new("S2","change color of widgets in a window")

@s3 = Scenario.new("S3","Close all open windows")

@s4 = Scenario.new("S4","Change screen resolution")

@s5 = Scenario.new("S5","Enter a command to start an application process")

@s6 = Scenario.new("S6","Move the main window")

@s7 = Scenario.new("S7","Screen saver is activated")

@s8 = Scenario.new("S8","Resize a window")

@s9 = Scenario.new("S9","Terminate a process")

@s10 = Scenario.new("S10","Interrupt a process")

@s11 = Scenario.new("S11","Change look-and-feel style at run time")

@s12 = Scenario.new("S12","Add voice control")

@s13 = Scenario.new("S13","A failure occurs and the system shuts down")

@s14 = Scenario.new("S14","Provide dual display screen")

@s15 = Scenario.new("S15","Use multiple desktops")

@s16 = Scenario.new("S16","Monitor activities of the user")

@s17 = Scenario.new("S17","Provide touch screen and light pen as input")

@s18 = Scenario.new("S18","A memory overflow due to too many opened windows")

@s19 = Scenario.new("S19","Port system to command based operating system")

@s20 = Scenario.new("S20","Minimize windows after idle time")

end

def simpleDSM

@dsm = DSM.new()

@dsm.to_undirected

@s1 = Scenario.new("S1","Start multiple processes at the same time")

@dsm.add_vertex(s1)

@s2 = Scenario.new("S2","change color of widgets in a window")

106

@dsm.add_vertex(s2)

@s3 = Scenario.new("S3","Close all open windows")

@dsm.add_vertex(s3)

@s4 = Scenario.new("S4","Change screen resolution")

@dsm.add_vertex(s4)

@s5 = Scenario.new("S5","Add voice control")

@dsm.add_vertex(s5)

@s6 = Scenario.new("S6","Change color of widget in a window")

@dsm.add_vertex(s6)

@dsm.add_edge @s1, @s2

@dsm.add_edge @s1, @s3

@dsm.add_edge @s1, @s4

@dsm.add_edge @s1, @s5

@dsm.add_edge @s2, @s6

@dsm.add_edge @s3, @s4

@dsm.add_edge @s3, @s5

@dsm.add_edge @s4, @s5

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

end

def teardown

@dsm = nil

@algo = nil

end

def testDSMNotNil

simpleDSM()

assert_not_nil(@dsm)

end

def testAlgoNotNil

simpleDSM()

assert_not_nil(@algo)

end

def testAlgoDSMNotNil

simpleDSM()

assert_not_nil(@algo.dsm)

end

107

def testSortOnDegree

simpleDSM()

@algo.sortOnDegree()

max = 0

@algo.queue.each { |s|

if @dsm.out_degree(s) >= max

max = @dsm.out_degree(s)

end

}

assert_equal(max,@dsm.out_degree(@algo.queue.first))

assert_equal(@dsm.size,@algo.queue.size)

end

def testGet

simpleDSM()

scenario = @dsm.get("S1")

assert_equal(@s1,scenario)

end

def testDegree(n,v)

assert_equal(n,v)

end

def clusterDSMWithIslandNode

@dsm = DSM.new()

@s1 = Scenario.new("S1","Start multiple processes at the same time")

@dsm.add_vertex @s1

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

@algo.run()

end

def clusterDSMWithSpikeNode

@dsm = DSM.new()

@s13 = Scenario.new("S13","A failure occurs and the system shuts down")

@dsm.add_vertex @s13

@s18 = Scenario.new("S18","A memory overflow due to too many opened windows")

@dsm.add_vertex @s18

@dsm.add_edge @s13, @s18

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

@algo.run()

end

108

def testIslandNodeClustering

@dsm = DSM.new()

@s1 = Scenario.new("S19","Port system to command-based operating system")

@dsm.add_vertex @s1

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

@algo.run()

assert_equal(1,@dsm.clusters.size) # One cluster is created

assert_equal(true,@dsm.clusters.first.include?(@s1)) # S1 is in the cluster

end

def testSpikeNodeClustering

@dsm = DSM.new()

s13 = Scenario.new("S13","A failure occurs and the system shuts down")

@dsm.add_vertex s13

s18 = Scenario.new("S18","A memory overflow due to too many opened windows")

@dsm.add_vertex s18

@dsm.add_edge s13, s18

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

@algo.run()

assert_equal(1,@dsm.clusters.size) # One cluster is created

assert_equal(2,@dsm.clusters.first.size) # Two scenarios in the cluster

end

def testMultipleSpikeNodeClusterings

@dsm = DSM.new()

s13 = Scenario.new("S13","A failure occurs and the system shuts down")

@dsm.add_vertex s13

s18 = Scenario.new("S18","A memory overflow due to too many opened windows")

@dsm.add_vertex s18

@dsm.add_edge s13, s18

s6 = Scenario.new("S6","Move the main window")

@dsm.add_vertex s6

s8 = Scenario.new("S8","Resize a window")

@dsm.add_vertex s8

@dsm.add_edge s6, s8

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

109

@algo.run()

assert_equal(2,@dsm.clusters.size) # Two cluster are created

assert_equal(2,@dsm.clusters.first.size) # Two scenarios in the first cluster

assert_equal(2,@dsm.clusters[1].size) # Two scenarios in the second cluster

end

Queue

def testElementQueueInit

@dsm = DSM.new()

@s1 = Scenario.new("S1","Start multiple processes at the same time")

@dsm.add_vertex @s1

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

assert_equal(@dsm.vertices,@algo.queue) # Queue is equal to the vertice set

end

def testElementQueueAfterIslandNodeClustering

clusterDSMWithIslandNode()

assert_equal(true,@algo.passed.include?(@s1)) # Scenario is visited from the queue

end

def testElementQueueAfterSpikeNodeClustering

clusterDSMWithSpikeNode()

assert_equal(true,@algo.passed.include?(@s13)) # Scenarios is marked as visited after

assert_equal(true,@algo.passed.include?(@s18))

end

def testTriadClustering

@dsm = DSM.new()

@dsm.add_vertex @s7

@dsm.add_vertex @s16

@dsm.add_vertex @s20

@dsm.add_edge @s7, @s20

@dsm.add_edge @s7, @s16

@dsm.add_edge @s16, @s20

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

@algo.run()

110

assert_equal(1,@dsm.clusters.size)

assert_equal(3,@dsm.clusters.first.size)

end

def testOverlappingClusters

@dsm = DSM.new()

@dsm.add_vertex @s17

@dsm.add_vertex @s12

@dsm.add_vertex @s5

@dsm.add_vertex @s10

@dsm.add_vertex @s1

@dsm.add_vertex @s8

@dsm.add_vertex @s6

@dsm.add_vertex @s9

@dsm.add_vertex @s3

@dsm.add_edge @s6, @s8

@dsm.add_edge @s8, @s12

@dsm.add_edge @s12, @s17

@dsm.add_edge @s12, @s5

@dsm.add_edge @s12, @s10

@dsm.add_edge @s10, @s1

@dsm.add_edge @s5, @s1

@dsm.add_edge @s1, @s9

@dsm.add_edge @s9, @s3

@dsm.add_vertex @s13

@dsm.add_vertex @s18

@dsm.add_edge @s13, @s18

@dsm.add_vertex @s16

@dsm.add_vertex @s20

@dsm.add_vertex @s7

@dsm.add_vertex @s4

@dsm.add_vertex @s11

@dsm.add_vertex @s15

@dsm.add_vertex @s14

@dsm.add_edge @s16, @s20

@dsm.add_edge @s7, @s20

@dsm.add_edge @s7, @s16

@dsm.add_edge @s7, @s4

@dsm.add_edge @s4, @s14

111

@dsm.add_edge @s14, @s15

@dsm.add_edge @s4, @s15

@dsm.add_edge @s4, @s11

@dsm.add_edge @s15, @s11

@dsm.add_edge @s2, @s11

@dsm.add_vertex @s19

@algo = DegreeBasedClusteringAlgorithm.new(@dsm)

@algo.run()

Cluster 1

c = @dsm.getClustersForItem(@s12).first

assert_equal(true,c.include?(@s17))

assert_equal(true,c.include?(@s5))

assert_equal(true,c.include?(@s10))

assert_equal(true,c.include?(@s8))

Cluster 2

c = @dsm.getClustersForItem(@s6).first

assert_equal(true,c.include?(@s8))

Cluster 3

c = @dsm.getClustersForItem(@s1).first

assert_equal(true,c.include?(@s5))

assert_equal(true,c.include?(@s10))

assert_equal(true,c.include?(@s9))

Cluster 4

c = @dsm.getClustersForItem(@s3).first

assert_equal(true,c.include?(@s9))

Cluster 5

c = @dsm.getClustersForItem(@s19).first

assert_equal(1,c.size)

Cluster 6

c = @dsm.getClustersForItem(@s2).first

assert_equal(true,c.include?(@s11))

Cluster 7

c = @dsm.getClustersForItem(@s13).first

assert_equal(true,c.include?(@s18))

Cluster 8

c = @dsm.getClustersForItem(@s4).first

112

assert_equal(true,c.include?(@s14))

assert_equal(true,c.include?(@s15))

assert_equal(true,c.include?(@s11))

assert_equal(true,c.include?(@s7))

Cluster 9

c = @dsm.getClustersForItem(@s20).first

assert_equal(true,c.include?(@s16))

assert_equal(true,c.include?(@s7))

Test overlapping elements

assert_equal(2,@dsm.getClustersForItem(@s8).size)

assert_equal(2,@dsm.getClustersForItem(@s10).size)

assert_equal(2,@dsm.getClustersForItem(@s5).size)

assert_equal(2,@dsm.getClustersForItem(@s9).size)

end

end

113

	Introduction
	Software Architecture Evaluation
	Problem Statement
	The Design Structure Matrix and Domain Mapping Matrix
	Contributions
	Outline of this thesis

	Problem Statement
	Software Architecture Evaluation Methods
	Introduction
	SAAM

	Separation of Concerns and Crosscutting Concerns
	Aspectual Software Architecture Analysis Method

	Window Manager Case Study
	ASAAM Example

	Problems with existing software architecture evaluation methods
	Requirements for a new evaluation method

	Design Structure Matrices and Domain Mapping Matrices
	Design Structure Matrices
	Domain Mapping Matrices
	DSMs and Software Architecture Design
	DSMs and Aspect-Oriented Software Architecture Development

	The Concern-Oriented Software Architecture Analysis Method
	Overview of COSAAM
	Preparation Phase Overview
	Activity: Define Concerns
	Activity: Describe Candidate Software Architecture

	COSAAM Analysis Phase
	Analysis Phase Overview
	Activity: Initialize Concern-Module DMM
	Activity: Characterize Concern and Module Mapping
	Activity: Measure Scattering and Tangling
	Concern Metrics

	COSAAM Transformation Phase
	Software Architecture Transformation
	Transformation Phase Overview
	Activity: Initialize and Sequence Architecture DSM
	DSM Representation of Module Relationships
	Window Manager Architecture DSM

	Activity: Select Transformation Rule
	Primitive DMM and DSM Transformations
	Transformation Rules
	Transformations rules and primitives
	Heuristics for applying transformation rules
	Transforming the Window Manager Software Architecture

	Activity: Apply Transformation Rule
	Stopping Criteria

	Evolution of the Window Manager Software Architecture
	Localizing the Process Management concern
	Generalizing Process Termination and Process Management
	Analysis & Transformation

	Decomposing the Window Manager
	Defining the Event Management Concern
	Decomposing the Event Manager

	Designing an Operating System Bridge Aspect
	Designing a Failure Management Aspect
	Designing a new Monitoring aspect

	Discussion and conclusions
	Summary
	Discussion
	Conclusions
	Future Work

