University of Twente

EEMCS / Electrical Engineering
Control Engineering

‘
@

Simulation with Hamiltonian mechanics

Creating a module for 20-sim

Eric Staal

MSc Report

Supervisors:

prof.dr.ir. J. van Amerongen
dr.ir. P.C. Breedveld

dr. N. Ligterink

ir. B.P.T. Weustink

January 2007

Report nr. 002CE2007
Control Engineering
EE-Math-CS
University of Twente
P.O.Box 217

7500 AE Enschede
The Netherlands

Summary

The simulation program used and developed at the university of Twente, 20-sim, is using simple
spatial models for simulation. The spatial models used in 20-sim do not allow simulation of realistic
effects, like resonating frames, bending and breaking of beams. To model these structures 20-sim need
to be extended to simulate these effects.

This can be realized by making a module for 20-sim which is able to model these effects. Modeling
these structures and effects can easily be modeled using Hamiltonian mechanics. Hamiltonian
mechanics have a different approach in comparison to classical, Newtonian mechanics. How
Hamiltonian mechanics are used is described in this report.

The assignment is to create a module for the simulation program 20-sim which is able to model
realistic effects using a continuous spatial description with Hamiltonian mechanics. This module
consists of two parts. The main application is necessary to input models, change models and to draw
the model. This application is used to set up the simulation parameters. The actual simulation is done
by second part of the program. This part is called by 20-sim to do the simulation with the model made
with the main application.

Several models are tested to see if the add-on module could simulate Hamiltonian models correctly.
The results gave useful information. Most of the testing results are as expected and most results could
be explained. However some results are unexpected. Further testing has to be done to see where these
unexpected effects come from.

The assignment has several recommendations. The interface which is used in the main application is
only able to model simple Hamiltonian models, models which consist of point masses and stiffnesses.
To make the application work with other types of Hamiltonian models some changes need to be made.
Secondly the integration method used is quite simple. This resulted in simulations becoming quickly
unstable. This can be solved with small integration steps to stop the model from getting unstable.

Samenvatting

Het simulatie programma wat de universiteit van Twente gebruikt, 20-sim, gebruikt eenvoudige
ruimtelijke modellen om de werkelijkheid te simuleren. Deze modellen zijn vaak voldoende om alles
correct te simuleren. Echter zijn er sommige aspecten die wel in werkelijkheid voorkomen maar dan
niet gemodelleerd kunnen worden. Hierbij kan gedacht worden aan resonerende frames, doorbuigende
balken, et cetera. Dit is met 20-sim moeilijk te modelleren. Om dit soort realistische effecten wel te
kunnen modeleren moet 20-sim uitgebreid worden zodat deze realistische elementen wel gebruikt
kunnen worden.

Dit kan gerealiseerd worden door het simulatieprogramma uit te breiden met een module om deze
ruimtelijke modellen te simuleren. Dit kan eenvoudig worden opgelost door Hamiltoniaanse
mechanica te gebruiken. Hamiltoniaanse mechanica heeft een andere aanpak dan klassieke,
Newtoniaanse mechanica. De Hamiltoniaanse mechanica zal worden uitgelegd in dit verslag.

De opdracht is een module te maken om het simulatieprogramma 20-sim te laten werken met deze
Hamiltoniaanse mechanica. De module moet in staat zijn om modellen te laden en te simuleren op
basis van Hamiltoniaanse mechanica. Deze module bestaat uit een tweedelige applicatie. Het
hoofdprogramma wat noodzakelijk is om modellen in te voeren, te wijzigen en te tekenen. Het andere
deel wordt gebruikt om de simulatie uit te voeren met 20-sim.

Enkele modellen zijn getest om te kijken of het resultaat voldoende was. Het resultaat bleek veel
aspecten te hebben zoals deze ook in de realiteit voorkomen, echter waren er ook dingen die
onverklaarbaar waren. Deze onverklaarbare aspecten moeten nog nader onderzocht worden om te
kijken waar deze vandaan komen en of ze te verklaren zijn. Hieruit kan dan de conclusie getrokken
worden of het een simulatie- of modelfout is.

Het programma bevat nog een redelijk simpele interface, er zijn maar een aantal basis Hamiltoniaanse
modellen die gebruikt kunnen worden. Om het programma met meer modellen te laten werken zal het
programma aangepast moeten worden zodat ook andere soorten modellen, dan modellen met
puntmassa’s en stijfheden, gebruikt kunnen worden. Verder wordt er momenteel gebruikt gemaakt van
een simpele integratiemethode. Dit heeft als gevolg dat het model snel onstabiel wordt, waardoor de
simulatie met een kleinere stapgrote gedaan moet worden.

Control Engineering

Table of contents

R [011 0T L1 4 o] o OSSPSR 1
11] [0 0] 1] L USSP 1

P o LA AT 1o g {11 T o SR 1
3 Creating a plug-in fOr 20-SiMooiiiicce e 8
3.1 L0 T o0t (0] g (oo 1 oo ST 9
3.1.1 Connecting Hamiltonian mechanics t0 20-SIM..........cccooieiiiiiiiree e 9
3.1.2 Communication between the DLL and the host applicationccccoveveriiiiiiinencicne 11
3.1.3 The integration MEtNOM..........c.coiiiiiii e e re e 14

3.2 T2 [S EPR 15
T R 0 | SRS 15

K 1 0 | I S SPRSSS 15
B TS 1 11 PR PRSP 15
Bi2.4 IMIUEEX .ttt R R Rt Rt nbe e nr e nre e nreennns 16
K S |V - Y a1 o] o] 17 4 o] o SR 16
B0 TV TV o] T Vo R 16

3.3 IMPIEMENTATION ...ttt bt 16
3.3.1 Storing the HamIItONooviiice e 16
3.3.2 The derivative of the Hamiltonian............occooiiiiiiei e 17
3.3.3 Synchronizing the draWing ..o e e 19
3.3.4 StOring the MOGENcooiiiii s 19

3.4 RESUIES ... bbbt h bbb bbbt bbbt ene s 20

N Y/ oo =] 11 11 T TSR 25
4.1 RS LA o 0 0T 1= TSR 26
I R = T 130 IS Lo TSP 26
4.1.2 Clamped beam With @ FOICEccviieie e 29

4.2 DYNAMIC MOUEIS ..o e e e te e steesreesreesneesneeeneeenreens 39
o R T S0 = W] o] 1 Vo OSSPSR 39
4,22 MaSS 0N @ CHAIN ..ottt st e te e et e steeneesaesreenaenre s 42
4.2.3 MASS ON @ DBAM ... et bt e et 49
4.2.4 Wave conducting iN @ DEAMcciviiii i 56

5 Conclusion and reCOMMENTALIONScueiiiieiiiieie ettt et e e esbesreeeesreaneeseenees 59
5.1 L0 o [1E5] o] TSP 61
5.2 RECOMMENUALIONS. ... ettt bbbttt b bbbt et ane s 61

F AN o] 01T Lo | b A] (0157 Y PSP 63
Appendix B: EXaMPIE StALIC DLLcooiiiie ettt nee e 63
AppendiX C: DYNAMIC DLL STIUCTc.oiuiiiieicicieesee e 64
APPENTIX D: SFUNCHION CASES....eeutiiiieiiitiitie ettt e ettt sttt e s re e e st e se et e s ta e besbeeraesbesneesee e 64
Appendix E: Example dynamiC DLLccooviiii et 65
FAN o] o =T o To | bl e O F- TS0 L= To = o PR 67
Appendix G: Shared MEMOIY SIFUCEc.eieiie ettt neesee e e e 68
Appendix H: Calculating total ENEIGYc.ooiiiiiiiiiieeie e 68
RETEIENCES ...ttt bbb R Rk R bbb e e R bRt b bbb e bt nes 73

Control Engineering

Introduction 1

1 Introduction

When trying to model a real world spatial situation, restrictions are made to get a simplified version of
the real world. However, sometimes the restrictions which are made have a bad influence on the model
so it does not match the real world sufficient enough. To make a more realistic spatial model, the
model will become more complex. Models with a continuous spatial description are therefore harder
to simulate.

With conventional simulation techniques it is hard to simulate when a piece of material goes from
bending to folding or even breaking. When a piece of material is modeled as a linear model it only
works for a maximum deflection, when the force and so the deflection gets too big the linear model is
not sufficient enough and another model have to be chosen. Therefore a solution needs to be found
which makes it possible to simulate these non linear effects and not only the linear effects for small
deflection.

A solution can be found in the form of models based on Hamiltonian mechanics. These mechanics
allow creating non linear models. 20-sim, a simulation program developed by the University of
Twente, does not have an out of the box solution for creating more realistic models for spatial
situations with non linear effects, as bending, stretch and shear, therefore a module needs to be written
to make these more realistic models for spatial situations work with 20-sim.

1.1 Assignment

The assignment is to write a module for 20-sim which describes a non-linear Hamilton function. A
Hamiltonian describes the energy function of a system. This system can have single or multiple in-
and outputs. Each input and output is connected to other parts of the model without generating or
wasting energy, this is called power continuity. The transportation of energy to and from the
Hamiltonian model is realized with two power ports. Each power port is described by an effort and a
flow. The total transferred energy per port is the product of these two terms.

The begin situation is the code written by N.E. Ligterink. This code is written without an user interface
as a stand alone application. The assignment is to make this code work with 20-sim and to give it an
user interface. To solve this assignment some background information about Hamiltonian mechanics
is needed, this is described in chapter 2.

The assignment consists of several subparts:

The construction of the Hamiltonian should be done automatically. The Hamiltonian must be
constructed for several basic parts, these parts are a bar, a plate and a block. These parts can have
different kinds of energy: bending, stretch, and shear.

Constructing the state vector. The state vector must be initialized at the beginning of the simulation
and it must be possible to read this state vector in and out. This makes it possible to change the state
vector to a desired position and to read out the current states.

An interface with 20-sim is also necessary. This interface must set down the port variables and the
causality, so other models can be connected to the Hamiltonian model. The interface influences the
state vector, so it is possible to change the state vector while it is operating.

The last part is the simulation of the system dynamics. The system dynamics are shown by doing a
time integration which cooperates with the 20-sim simulation. The system dynamics have to be shown
in a graphical interface which has to be time dependent.

The module itself has to be a very general module, so it must be possible to use this module which
several kinds of dynamical systems: fluid dynamics, electrodynamics and etcetera. So each different
dynamical system can be modeled with the module.

Control Engineering

2 Hamilton function

In this section some background information is given about Hamiltonian mechanics. This information
is needed to understand the assignment.

Each system has a specific energy function which describes its dynamic behavior. The energy of a
system can be described with a Hamiltonian. First some explanation about the Lagrangian is given to
understand the Hamiltonian. The Lagrangian describes the equations of motion of a system. The
Lagrange equations are a reformulation of classical, Newtonian mechanics. The Lagrange equations
are introduced in 1788 by Joseph Louis Lagrange. The trajectory of an object is derived by finding the
path which minimizes the action, a quantity which is the integral of the Lagrangian over time. The
Lagrangian for classical mechanics is taken by the difference between the kinetic co-energy and the
potential energy.

The Lagrange equations simplifies many physical problems, because there are less equations since it is
not directly calculating all the forces but only the force which minimizes the action. Therefore it would
be possible to calculate more complex systems with less calculation.

Two examples of dynamic systems are shown below. The first system is a simple pendulum. The
pendulum swings until all mechanical energy is disappeared due to friction. This pendulum is used in
many mechanical systems, i.e. a clock and it easily can be modeled with Hamiltonian mechanics. The
second picture, of a crane, must handle large masses without bending or breaking. The machine must
be that strong to hold a heavy load. Bending of the crane can be modeled to test if the crane is strong
enough to hold a certain load. Dynamic effects like a vibrating frame also can be modeled.

Figure 1: Pendulum

University of Twente

Creating a plug-in for 20-sim

Figure 2: Drawing of a crane

When these systems are modeled with Lagrange mechanics the results can be obtained with less
calculation than with classical mechanics, therefore the results are obtained quicker. Lagrange
mechanics are used to calculate the path which minimizes the action.

The independent variables of a Lagrangian are ¢ and ¢ . g are the generalized coordinates and ¢ the
generalized velocities. The Lagrangian is a function of g, g and the time which can be written as

L=T"-V

Where L is de Lagrangian, 7" is the kinetic co-energy and V' is the potential energy, the latter two
expressed in the generalized coordinates. In order to express the kinetic co-energy and potential energy
in generalized coordinates, commonly a coordinate transformation is required that reduces the number
of generalized coordinates to the number of degrees of freedom. If this cannot be done
straightforwardly, for instance by means of symmetry considerations, additional constraints have to be
added by means of the so-called Lagrange multiplier.

If not all the forces acting on the system are derivable from a potential, then Lagrange's equations can

be written in the form
d| oL oL
— == |-=-=0,,
dt\ oq; | 0q;

where the first term represents the rate of change of momentum, the second term the conservative
forces and the last term the non-conservative forces.

The generalized coordinates used in the Lagrangian can be useful, below an example is described
where the use of these generalized coordinates is made clear. When a point mass is moving in a plane,
it has two degrees of freedom, X and Y in Cartesian coordinates or angle and radius in polar
coordinates. When the particle has a fixed radius, only one degree of freedom remains with polar
coordinates, which is the angle of rotation. If this particle, with fixed radius, is described in Cartesian

Control Engineering

coordinates, there are still two degrees of freedom, X and Y. This is a rather simple example where the
use of generalized coordinates is useful. When a model gets more complex the generalized coordinates
may have even more advantage.

Lagrangian mechanics result in a set of second order differential equations of which numerical
integration is difficult. In a bond graph representation this is demonstrated by the fact that all kinetic
storage ports are written in differentiated causality. This means that the equations are not written in a
form that can be numerically integrated in straightforward manner. This will require additional
processing power.

Another way to obtain the equations of motion of a model is with Hamiltonian mechanics.
Hamiltonian mechanics look a lot like the Lagrangian mechanics but has a few differences. In a bond
graph representation all kinetic ports remain their preferred, integral causality, which means that the
true energy, i.e. the sum of kinetic and potential energy called Hamiltonian is a function of the
generalized momenta and generalized coordinates. The Hamilton is thus defined as

H=T+V,

where H the Hamiltonian, 7 the kinetic energy and ¥ the potential energy. Note that this is the
expression for the total energy, 7+V. This is no accident, but a general property of natural systems.
The generalized momentum is related to the Lagrangian as follows:

oL

pj ==

aq,
This means that a Legendre transformation is required to change the generalized velocities as
independent arguments of the Lagrangian into the conjugate generalized momenta as the independent
arguments of the Hamiltonian:

H(q/’pj't)=zqipi—L(qj,q'j,t)=T+V

In the example of the point mass in a plane mentioned earlier both the Lagrangian and the Hamiltonian
are calculated and the role of the generalized coordinates is shown. First the model is described in
Cartesian coordinates. The figure of this model is shown in Figure 3.

ﬁiﬁhhﬂi'
.

Y

Figure 3: Moving particle in Cartesian coordinates

The particle is represented by the point p and has a mass m. Point p has an X and Y coordinate to
represent to location of the point is the plane. The momentum of this particle is described with

p,=mx and p =my . The velocities are described by
_ P P

X Yy y=—.
m m

The Lagrangian for this system is

1 ., 1
L=—mx"+—my" —V{(x,
> ™ (x,)

University of Twente

Creating a plug-in for 20-sim

Thus the Hamiltonian

oo (1o, 1 > P
H:(pxx+pyy)—(§mx2+Emy2—V(x,y)j:§—;1+$+V(x,y)

The Hamiltonian and Lagrangian are for an unconstrained model. When the radius is fixed, so
x* + y* = r* with r a constant, and no potential energy (/) is stored, the Lagrangian will be

L =1me Jrlmj/2
2 2

and the Hamiltonian
2

2
H=2y 2y .
2m 2m
Both functions still have two terms. The constraint has not resulted in a function with fewer terms. If
the same model is described with generalized coordinates, polar coordinates in this case, it can be seen
that the function will only have one term left, instead of two.

In Figure 4 the same model is shown with polar coordinates.

Figure 4: Moving particle described with polar coordinates

The polar coordinates are described by an angle, 8, and a radius, . When using polar coordinates the
generalized momenta are given by

P Y

> -
m mr
The Lagrangian for the unconstrained motion of p in the plane is

L =£mf”2 +lmr292 —V(r,@).
2 2

Thus the Hamiltonian for this motion is
. 1 1)
H=(pr+p0)-|=mr*+=mr*6* -V (r,0) |.
This can be simplified into

2 2
H :p—’+ﬁz+V(r,0).
2m 2mr

When the particle only rotates around the center with a fixed radius, the momentum in the » direction,
P., will be 0 and the velocity in the r direction also will be 0. r itself will be a constant. So the
Lagrangian will look like:

L= lmr26"
2

Control Engineering

And the Hamiltonian

o P
2mr?
The constraint resulted in a Lagrangian and Hamiltonian with only one term. Both functions became
simpler because of the generalized coordinates. So when the generalized coordinates are chosen
correctly it can result in fewer terms in the Lagrangian and Hamiltonian.

The Hamiltonian is used to describe the Hamilton’s equations. These equations are a set of 2n first-
order equations. Lagrange’s equations are a set of n second-order equations. n is the number of
variables in a model.

The first pair of Hamilton’s equations for the model described in polar coordinates is

. OH p . OH p,
r:—:—, 0:—:—2_
op, m op, mr
They simply reproduce the relations between velocities and moment. The second pair, is
_OoH _ p, dV . _OH dv

= — +—, - = -
P or mr dr Po 060 do

These relations combine Newton's second law with the fact that the conservative forces are the partial
derivatives of the total energy with respect to the displacements. Because the Hamilton’s equations
correspond to an integral causality in a bond graph representation, these equations can be solved
numerically in a more straightforward manner than Lagrange’s equations.

In the constrained model where the radius is fixed and the potential energy is zero, so P, is 0 and the
velocity in the » direction also is 0, the Hamilton’s equations are

=0, 6= _ Py
op, mr
. OH Pl . OH
— = =—, - :—:0
=% mr® Po="0

The generalized coordinates caused Hamilton’s equations to be simplified. The term p_ is not zero
because there is still centrifugal force working on the rotating mass.

With this example the advantage of generalized coordinates is given. The module which is written for
20-sim, must model all kinds of models. One set of coordinates is used, because it is very hard to
change the coordinate system for each model. Cartesian coordinates are the most common type of
coordinates and therefore they will be used in the module. This can result in large equations, but this
should not be a problem because the equations are solved with a computer.

Another example is a girder modeled with several nodes. A normal girder will look like the picture
shown below.

Figure 5: Girder

University of Twente

Creating a plug-in for 20-sim

This girder can be modeled in a 2-dimensional way by making several pieces with a mass and a
stiffness between each other. If this girder is modeled as point masses with stiffnesses between them a
model as shown in Figure 6 is obtained.

OO

Figure 6: Girder modeled with nodes

Each node is on a fixed position and is held together with the stiffnesses. This girder is modeled as a
2-dimensional model, therefore it is a simple model of a girder.

Each dot is modeled as a node and each line as a stiffness. In this configuration the Hamiltonian
(without gravity) looks like:

N]32
H= —+ > V.
i=1 2m,~ <%‘:> /
And the Lagrangian looks like
N
1 ;2
i=. <i,j>

with N the number of nodes, m the mass of each node and, 7 the potential energy.

V'is defined as

Each X represents the coordinates of each node, % is the stiffness between the nodes and d is the rest
distance for the stiffness. Each node has 2n states, where # is the dimension. » of them are for the
position and the other » for the momenta. With these 2n states it is possible to calculate the
Hamiltonian.

This kind of model is the point of departure for further models. Each model will be described as point
masses and virtual stiffnesses. This makes it easy to create models which are sufficiently competent
within the problem context.

The model is not a stand-alone model but has connections to other parts. All the parts make one
complete dynamic system, e.g. a crane, a printer or a car. To connect a subpart of a model with other
parts of the model the so-called port concept is used. The port concept uses a connection between
energy storage elements which has power continuity. This means that no energy is generated or wasted
in the connection. Each connection, power port, transfers an energy P. P is represented by the product
of effort and flow.

Every subpart of the model is an energy storage element which can be filled or drawn. Each storage
element can be classified in 2 types of storage elements, a p-type storage element or a g-type storage
element. The p-type storage element is a storage element which stores momentum, a mass, and g-type
storage element stores a movement, a spring.

Control Engineering

Both types of storage elements have another definition of effort and flow. For a g-type buffer these
definitions are:

fIOW:v=ﬁ effort=F =kx .

dt
A p-type of storage element has the effort and flow defined as:
flow =v=2 effort:F:d—p.
m dt

With the effort and flow defined the energy for both storage elements can be defined:
2
p-type: E = IPdt Ip dp -P

m dt 2m
) dx 1,
g-type: E =det :IkxEdt :Ekx

The Hamiltonian model can be defined as a p-type or g-type storage element. This depends on if a
force or velocity is applied to the model. When an effort (force) is applied to the system a velocity is
returned. The force or velocity can be practiced on one separate node or on the whole system. This can
be seen as a bowl where the model is lying in. This bowl is represented by a mass less point which has
a stiffness connected to each point mass in the system. So when this bowl, the mass less point, is
moved all other nodes undergo a force or a velocity.

More about the coupling of the Hamiltonian to other parts can be found in section 4.

All the information about the Hamiltonian and Hamilton’s equations is necessary to understand the
problem context and to make correct design decisions. In the next chapter the design of the module is
given.

More information about the Lagrangian and Hamiltonian can be found in (Lagrange, 2006),
(Hamilton, 2006) and (Fundamentals of multi-body dynamics, 2006) and (Classical mechanics, 2004).
More about port concepts can be read in (Dynamical systems, 2003).

University of Twente

Creating a plug-in for 20-sim

3 Creating a plug-in for 20-sim

To make 20-sim (20-sim, 2006) work with models with a continuous spatial description a plug-in
needs to be written. This plug-in makes it possible to model these spatial models within 20-sim. This
chapter describes all steps which are taken to make 20-sim work with Hamiltonian mechanics and how
the module is designed and created.

3.1 Choices for tooling

This part describes several choices which led to the actual program. Each step is described carefully
and all decisions are explained.

3.1.1 Connecting the module to 20-sim

There are two ways to connect an external simulation module to 20-sim. Both methods are described
and the conclusion is mentioned below.

3.1.1.1 Static DLL

The first method of connecting a third party simulation application to 20-sim is by using the ‘static
DLL’ functionality of 20-sim. The static DLL (Dynamic Link Library) functionality uses an external
DLL, written in any source code, to obtain a result from a given value. The DLL can be written in any
programming language if there is a simply input-output function in it.

An example of the static DLL functionality is shown below:

parameters

string filename

string function
variables

real x[2],y[2];
equations

x = [ramp(1);ramp(2)];

y di1(filename,function,x);

"example.dll”;
"myFunction®;

In this example it can be seen that the external DLL has the name ‘example.dll’. The function which is
called every integration step is “‘myFunction’. So the DLL should have a method which has the name
‘myFunction’ which must return a value when two variables are given. The input in this example is a
one-dimensional array with two values, ramp(1) and ramp(2).

The user-function in the DLL must have certain arguments. The function prototype is like this:

int myFunction(double *inarr, int inputs, double *outarr, int outputs, int major)

where:

inarr pointer to an input array of doubles. The size of this array is given by the second argument.

inputs size of the input array of doubles.

outarr pointer to an output array of doubles. The size of this array is given by the fourth argument.

outputs size of the output array of doubles.

major boolean which is 1 if the integration method is performing a major integration step, and 0 in
the other cases. For example Runge-Kutta 4 method only has one in four model evaluations
a major step.

When a simulation starts with an external DLL several functions are called, if they exist, to do the
initialization and termination of the DLL.

Control Engineering

10

The first function 20-sim searches for is the ‘int Initialize()’. This function is to initialize the DLL and
it must return a 1 for success and a 0 for an error. After the DLL has been initialized, 20-sim will look
for the function “int InitializeRun()’. This function is for initializing a simulation run. This function
also must return a 1 for success and a 0 for an error.

When the simulation is done, 20-sim will look for the function ‘int TerminateRun()’. This function is
called to do some cleaning after a simulation. At last 20-sim searches for “int Terminate()’. This
function is called when the DLL is unlinked. Both of the termination functions must return a 1 for
success and a 0 for an error.

An example of a static DLL can be found in appendix B. More information about writing static DLLS
can be found in (20-sim help, 2006) or in the help function of 20-sim.

3.1.1.2 Dynamic DLL

The dynamic DLL, or dlldynamic as 20-sim names it, looks a lot like the static DLL mentioned in
section 3.1.1.1. The major difference between those two is the fact that the dynamic DLL uses 20-sim
to store all states. In case a component described with different nodes, as in the example of the girder,
the number of states depends on the number of nodes which are used for the model. If the model is
tetrahedron you only have four nodes as shown in Figure 7: Tetrahedron.

NV

Figure 7: Tetrahedron

So two times the number of dimensions, times the number of nodes, 4 in this case is the number of
states which need to be stored. In case of the tetrahedron the number of states are 2x3x4, 24. Each
different model has a different number of states which needs to be stored. The advantage when storing
the states in 20-sim itself, is that 20-sim uses its own integration method and the DLL does not have to
do this.

Because the dynamic DLL stores the states it also has a different function prototype than the static
DLL. This function prototype uses a simulating struct. This struct contains information about the
simulation, start and stops times and the number of states. The complete struct is shown in appendix C.

The struct is used to give the correct information for initialization and simulation. The dynamic DLL
has the function ‘int initialize()’ as the static DLL has. Further is has the function ‘int
SFunctionInit(SimulatorSFunctionStruct *s)” which is used to initialize the simulation run. Next there
is a function to set the initial values, ‘int SFunctionGetlInitialStates(double *initialindepStates, double
*initialDepRates, double *initialAlgloopln, SimulatorSFunctionStruct *simStruct)’. A return value of
0 means an error, every other value means success. The initial value for the independent states,
dependent rates and algebraic loop variables can be specified by the DLL in this function. This
function is just called before the initial output calculation function. If all the initial values are zero,
nothing has to be specified.

The function which is called every simulation step is the SFunction. This function has several cases
which each case representing different situation. All the situations are described in appendix D. After
the simulation the DLL is terminated with the function ‘int Teminate()’. A working example of the
dynamic DLL can be found in appendix E.

University of Twente

11
Creating a plug-in for 20-sim

3.1.1.3 The choice
Both ways of connecting a DLL to 20-sim has their advantages and disadvantages. In Table 1 all the
advantages and disadvantages of each method are mentioned.

Static DLL Dynamic DLL

+ Easy to implement + 20-sim does the integration

+ Integration method can be different than 20-sim | + 20-sim can use the states for plotting, etc.

- Integration must be done by the DLL - All states are stored in 20-sim

- 20-sim cannot read the states and cannot - Implementation is slightly more difficult than
interpret the states the static DLL

Table 1: Comparison table between different DLL writing methods

The dynamic DLL is very useful when an integration method is used, which is also used in 20-sim. It
is not possible to use an integration method which is not available in 20-sim. The dynamic DLL also
stores each state. Most of the time only several states of the model are useful to the user, therefore a lot
of results may be stored unnecessary which results in unnecessary memory usage.

The static DLL is sufficient enough to work with Hamiltonian mechanics and has as advantage that
better integration methods can be used which are not available in 20-sim, therefore the static DLL is
chosen. The drawing however must be done by the DLL or another application because 20-sim cannot
reach the states.

3.1.2 Communication between the DLL and the host application

The DLL, written for 20-sim, can only simulate; drawing and changing of the model is not possible
within 20-sim. Therefore a host application needs to be written which can change the Hamiltonian and
model which is used and draw the current states of the model. This section describes the
communication method which is chosen to let the main application work with the DLL and the other
way around.

3.1.2.1 Data copy

Data copy is an IPC (Interprocess Communications) which uses the ‘WM_COPYDATA’ message to
send information to another process. This method requires cooperation between the sending process
and the receiving process. The receiving process must know the format of the information and must be
able to identify the sender. The sending process cannot modify the memory referenced by any
pointers. This method is a single way communication, if the other process wants to send data back it
must make a new message. The advantage of this system is that it can quickly send information to
other processes using Windows messaging. More information about data copy can be found in
(Interprocess communications, 2006).

3.1.2.2 DDE for IPC

DDE (Dynamic Data Exchange) makes it possible to exchange information in different formats. DDE
use shared memory to exchange the information. Several messages are send between processes that
share this data. These messages handle which process has which rights. This is for synchronization, so
that only a single process can write at the time.

The data formats are the same as those used by the clipboard in Microsoft Windows. DDE can
exchange data between processes on different computers in a network. The disadvantage of DDE is
that it is not as efficient as the newer technologies. More information about DDE can be found in
(Interprocess communications, 2006).

Control Engineering

12

3.1.2.3 File mapping for IPC

File mapping creates a file which is treated as a block of memory in the process itself. The process
gets a pointer where simple pointer operations can be used on to examine and modify information. If
more processes want to access this shared memory each process gets its own different pointer. With
this pointer each process can independently read and write in this memory space.

File mapping is efficient system which can only be used on a single computer. The only problem with
file mapping that there is no synchronization between multiple processes. Therefore separate
synchronization functionality must be added. More information about file mapping can be found in
(Interprocess communications, 2006).

3.1.2.4 Pipes for IPC

There are two types of pipes for two-way communication. The first is an anonymous pipe and the
second a named pipe. The anonymous pipe is used to broadcast information to other processes.
Anonymous pipes are for one-way communication, if two-way communication is required a second
anonymous pipe must be created.

The named pipe is to read and write information strictly to another process. This process can even be
on other a computer on the network. The first process creates a pipe with a known name. The second
process opens this pipe using this same name, then there is a connection and data can be exchanged.
The anonymous pipes are an efficient way to redirect in- and output to child processes on the same
computer. Named pipes provide a simply communication method for two different processes on the
same computer or over a network. More information about pipes can be found in (Interprocess
communications,2006).

3.1.2.5 RPCforIPC

RPC (Remote Procedure Calls) makes it possible to call remote functions directly. IPC with RPC is
therefore just as easy as calling a regular function. Data can easily be transfer with this method.
RPC is an interface which supports automatic data conversion with other operating systems than
Windows. Therefore RPC is extremely useful for communications between different operating
systems.

More information about RPC can be found in (Interprocess communications, 2006).

University of Twente

13
Creating a plug-in for 20-sim

3.1.2.6 The choice

The biggest problem with the communication between the two processes is that they must operate
independently of each other. So when only one process is active the simulation must run as it should
be. So 20-sim must be able to run a simulation without the host application to be active. This
requirement makes it possible to run a pre-defined simulation without the need of starting the host
application. The host application is not needed because the model does not need to be changed during
the simulation.

This requirement causes lots of IPCs to drop out. The only one which did not drop out is the file
mapping.

The advantage of the file mapping is that all the information about the model is stored in a piece of
memory which is available to more processes and therefore storing a model is just as easy as storing
this shared memory in a file.

Because there is no synchronization with the file mapping method a mutex is introduced to do the
synchronization. A mutex is an object which is used for synchronization of a shared object between
several threads. The mutex keeps track which process has the write access to the shared memory, so
only one process can write at the time.

This is shown in Figure 8: Schematic of shared memory with mutex.

File mapping
(Shared memory)

20-si Proces 1 Proces 2
-sim (DLL) (Host application)

‘ Mutex, “'
’ To keep track |
» of the write [
access

Figure 8: Schematic of shared memory with mutex

Control Engineering

14

3.1.3 Theintegration method

The Hamiltonian needs to be integrated to calculate the next step. This can be done in several ways.
Some ways are quite complex and other quite simple. This section describes a few first-order
integration methods and which one is used. The simpler the integration method, the larger the error
will be.

3.1.3.1 Euler
The easiest way is with the Euler integration method, shown below.

(e)= x(1) 1 V)

This method only requires a first derivative and only one past value of the derivative.

3.1.3.2 Adams-Bashforth, 2" order
This is a 2™ order integration method with uses Euler for the first step. This method has a much better
results than Euler and does not require much more processor power.

. 3dx(t) 1ldx(t—h)
x(t+h)= (t)+h[2 2 4 J

This method uses two steps and requires the derivative of a step earlier.

3.1.3.3 Adams-Bashforth, 3" order
This method uses three steps to obtain the result and gives a little better result than the 2" order
Adams-Bashforth method.

x(t+h)=x(t)+h(

23dx(1) 16 dx(t=h) 5 dx(t-2h)
12 dt 12 dt 12 ar

3.1.3.4 Leapfrog
The Leapfrog integration method does not use the velocity of the current time to get the next step, but
uses the velocity of a half time period further. This can be seen in the figure below.

) >

to t» t ta ts tar t; t7i

Figure 9: Leapfrog integration method

The integration steps are defined as:

x(t+h) :x(t)+hM.

dt
Because the Hamiltonian has different state vectors for position and velocity (generalized momentum)
this method can easily be used. The velocities are calculated each half step and the position will be
calculated each whole step. This integration method is time-reversible therefore good results are
obtained.

University of Twente

15
Creating a plug-in for 20-sim

3.1.3.5 The choice

The Euler method is very unstable but has as advantage that is very easy to implement. The 2™ order
Adams-Bashforth method also uses only the first derivative but because it also uses the derivative of a
step earlier it has much better results. The 3" order Adams-Bashforth method has no significant
improvement in comparison to the 2" order Adams-Bashforth method. The leapfrog method has the
best results but is a bit harder to implement than a method which does not uses half time periods.

The 2™ order Adams-Bashforth method is chosen because this is an easy method which is sufficient to
see if the module is working correctly. More information about integration methods can be found
(Integration methods, 2006) and (Leapfrog, 2006).

3.2 Design

This section describes the design of the module to make 20-sim work continuous spatial models. In the
schematic below the software design is drawn. This design is made before the implementation was
started.

==Zhared memary==
Smo

N

==Static di== rAain ==thread==
-7—[:} DLL — application = “iewThread
¥

Figure 10: Schematic design

This schematic is finally worked out to a class diagram which can be found in appendix F. Each part is
described in the section below.

20-sim

The 20-sim block represents the 20-sim simulation program. This block already exists and therefore it
has been drawn darker than the other blocks. The 20-sim program is using the DLL block to
communicate with the external module. This module simulates models with a continuous spatial
description based on Hamiltonian mechanics.

DLL

The DLL block communicates with 20-sim by DLL calls. These calls are predefined as mentioned in
section 3.1.1.1. The DLL gets its information of the model from the shared memory which can be
altered by the “‘Main application’. When a simulation is running the DLL will block writing to the
shared memory. The shared memory only can be changed if the simulation is stopped.

Because static DLL functionality is used, is the integration done by the DLL itself.

Smo

The ‘Smo’ represents a struct which is the shared memory. The contents of this struct can be found in
appendix G. The struct contains all information which is needed for the DLL to simulate a model and
all information to create a model with the ‘Main application’. Some information is stored two times in
a different way. First the information is stored to create a model and secondly it is stored to simulate
the model. By storing this information two times the simulation and model creation are much quicker
than when storing it in one way.

Control Engineering

16

Mutex

The mutex block represents the mutex between both processes to keep track of which process has
write access to the shared memory. This prevents that two different processes write data at the same
time.

Main application

The “Main application’ is the program which can change the model and create a Hamiltonian which is
used by the DLL for simulation. This application is necessary to create a working model for 20-sim.
The application shows how the model will behave during a simulation. The ‘Main application’ can
also store and load existing models.

ViewThread

Drawing a model real time takes as much processing power as available, therefore a second thread is
created to stop the process from locking. The ‘ViewThread’ handles the drawing of the model during a
simulation. When the user disables the drawing, this thread will be suspended.

3.3 Implementation

The implementation went as described in the design part. Some parts are lift out because they require
some special attention. These parts are described in this section.

3.3.1 Storing the Hamilton
A Hamiltonian used in the module looks like

N p?
H=Y Lti_ g
;Zmi + z Vl]

<i,j>

This can be written out to a function which looks like

Helopp oty ot
om P.Dy om p,p, om PP

This is a simple Hamiltonian which represents a moving mass without potential energy. When more
nodes are added and potential energy is added the Hamiltonian can become very large. This also can
be written out. Each term of the Hamiltonian has the same layout: first a coefficient and secondly a
number of states. In the Hamiltonian shown above the coefficient is 0.5, if the mass is 1, and than
there a two terms, the impulses in the x, y or z direction.

This can easily be stored in three arrays. The first array is an array of doubles which contains the
coefficient of each term. The second array is an array with integers of how many variables there will
come. The third array is the offset to obtain the correct state.

For example there are 6 states, position and impulses in 3-dimensional. The state array is described as
double dStates={‘x’,’y’,’z’,’px’,’py’,’pz’}. So dStates[0] is the x coordinate of the mass.

The first array of the coefficients looks like: double dCoefficient={0.5,0.5,0.5}. The second array is int
iNumberOfVariables={2,2,2} because each term has 2 variables. The third array is int
iVariable={3,3,4,4,5,5}. The numbers in the third array are the offset for the states ‘3’ represents the
third offset and dStates[3] equals “px’.

The dCoefficient and iNumberOfVariables array have a size which matches the number of terms. The
size of iVariables is the sum of the iNumberOfVariables array and is a lot bigger.

So you can store the Hamiltonian with three arrays and one state array. When using this method the
Hamiltonian can easy be extended with more terms, just add the terms in the arrays.

University of Twente

17
Creating a plug-in for 20-sim

To calculate the whole energy of the system, the Hamiltonian itself, only the three arrays need to be
walked through. An example of how it is done can be found in appendix H.

The advantage of calculating the Hamiltonian, when it is stored in this way is that only a few floating
point operations are needed and therefore the calculating can be done very quickly.

When the Hamiltonian is stored in this way it is very hard to see what the model does look like.
Therefore the model is also stored as a matrix of nodes, masses and stiffnesses. With this matrix is
easier to see how the model looks like. The values in the matrix are used to create the Hamiltonian and
store it in the way described above.

An example of this matrix is shown below.
ko 1 [z [z |

1 1 2 0

2 1 2 5

3 0 10 3

Figure 11: An example matrix

This matrix represents 3 nodes with a mass of 1, 2 and 3 shown in the diagonal. In the bottom left part
the stiffnesses are shown. The stiffness between node 1 and 2 is INm and between node 2 and 3 is
10Nm. In the top right part are the lengths of the stiffnesses in rest. The length of the stiffness between
node 1 and 2 is 2m and between node 2 and 3 is 5m.

The matrix represents the model shown below.

- & 9

Figure 12: The representation of the matrix

So the actual Hamiltonian is stored in two ways. The first way is for the program and the calculation.
The second way is for the user so he can easily see how the model looks like and change it quickly.

3.3.2 The derivative of the Hamiltonian

When using the integration method as described in 3.1.3, the derivative of the Hamiltonian is required
to calculate the next step. The derivative of a Hamiltonian is:

o

iE
p)7| on
Oox

So the partial derivates of the Hamiltonian are required to obtain the derivative. Because the
Hamiltonian is stored in three arrays the partial derivates are easily obtained. This is shown in the
following example.

Suppose the Hamiltonian is H = 0.5x* +2xy +x’y°+ p, +10p . This can be written as

H =0.5xxxx +2xy + xxyyy + p, +10p, and can be stored in three arrays as follows:

dCoefficient={0.5,2,1,1,10}
iNumberOfVariables={4,2,5,1,1}
ivariables={1,1,1,1,1,2,1,1,2,2,2,3,4}

Control Engineering

18

The partial derivatives of H are:

OH _ 4*0.5xxx + 2y + 2xpyy
Ox

% = 2x + 3xxyy

y

OH _4

p,

OH 49

8py

. . OH .
This is calculated as follows, as example the first term of 8_ is taken.
P
Each term is searched for a term which contains p,. If a term is found the term is calculated with one
term p, less. So the term 1p, is calculated to 1. The result is added to an array which contain all the

partial derivates under the %
op,

. . OH . . .
The integration of 0.5xxxx to 8_ will take 4 steps. Each term is calculated separately. The first step
X

is differentiating to x this results in 0.5xxx. The next three steps do exactly the same thing for the other
terms and also return a 0.5xxx. When added together you get 4*0.5xxx.

Integration of a term with more kinds of variables, like 2xy, will work in the same way. First the
variable x is found. When removing the x from the term, 2y is the result. So this is added to array

. . i . OH
which contains the partial derivates under 8_ . Second variable found is the y variable. Removing
X

this from the term results in a 2x. So 2x is added to the termaaﬁ .
Y

The program walks thru the iVariables array and calculates the partial derivate on the fly. Instead of
storing the variables in the array, the actual data is stored. The result is a partial derivate array
containing only doubles, which are the partial derivates at the current time.

These partial derivates are used to obtain the derivative mentioned above and the derivative is used to
calculate the next step with the integration method described in section 3.1.3.

University of Twente

19
Creating a plug-in for 20-sim

3.3.3 Synchronizing the drawing

The program is able to draw the current states of the model in a simple plot. To draw the model a
thread is used because the drawing takes as much processing power as available. The thread will
prevent the system from locking.

The simulation does not take as much processing power as the drawing. Therefore synchronizing is
needed. When there is no synchronizing it can be possible that an interchange between two states is
drawn, during a simulation step. The synchronizing must also take care of this problem.

Every time a simulation step is taken a flag is set in the shared memory. This flag is the boolean bSync
in the shared memory struct, the struct is described in appendix G. The thread waits until the flag is
set, when it detects the flag it will copy the contents of the states and unsets the flag. Then the copied
data is used to draw the model.

When simulation steps gets very small the changes can be minimal in the drawing. Therefore in can be
chosen not to draw each step but after a predefined number of steps, for example after 100 steps. The
simulation program will set the flag after 100 steps instead after each step. This will speed up the
simulation, because the drawing is not required to do a proper simulation.

3.3.4 Storing the model

When a complex model is created it is useful to make it possible to store it, so it can be reused. As
mention in section 3.3.1 the Hamiltonian is stored in two ways. One method is needed to simulate and
the other to see how the Hamilton is made. It is impossible to create the matrix as shown in Figure 11
from the Hamiltonian describes in section 3.3.1. On the other hand it would be unnecessary to
calculate the Hamiltonian from the matrix each time a simulation is started. Therefore the model and
Hamiltonian are both stored.

The Hamiltonian has also other parameters which are not stored in the three arrays. The parameters are
fixation of a point and if gravity is enabled. These extra parameters are also needed for the model and
are stored in the struct. All the data in the struct is stored in a file.

This file can be reopened and copied to the shared memory. When the file is copied the whole model,
Hamiltonian and settings are restored.

Control Engineering

20

3.4 Results

As mentioned before the program consists of two parts, the main application and the DLL. A
screenshot of the main application is shown in Figure 13: Screenshot of main application (1).

=% Main application . L’JEI = IDI_E‘
MNumber of nodes [3
i Save. . | Ghmwibegin states e hegnstates | Shoyy states |
Friction %] ID— Change settings d
_ Bpen | States
imension |3 vi Get
Modes 1 2 I3 IH I
*
ko [1 [z |z | &
! =
2 P
3 Py
Beqinstates > D | Pz
[~ Gravity [¥]
Shiows Hamilborian |
Spring constant for extemnal power |1
i R = | with [V [flow) in, F [effort] out = |F| vi
Coupled in to node I _J W|lh| [flow] in, F [effort] ou _J Coupled out to node
second part IH ':l IH :'j
rDraw settings Getlnfo |
[~ Enable drawing
Diraw eveny |‘IDD steps H Begin I
Werault | H I
St I
[raty slates| [raw Begihstates .
RunTime I
Reset scale | S lensi I—
[Scale ERSIEE
[~ Zero-point ™ Caleulate H
[Axis [Iritizlized
[~ DrawZ
[~ Scale maszzes

Figure 13: Screenshot of main application (1)

The main application makes it possible to create a model and with this model a Hamiltonian which is
used for the simulation. The main application uses nodes and stiffnesses to create a model. This is
shown in the upper left table of the main application. With this matrix a model can be created and this
model is used to create the Hamiltonian. The variables in the upper left corner are used to change the
basics of the model, number of nodes, friction and dimension. The button ‘change settings’ is used to
create the model and the Hamiltonian. When the program is started it is also able to read the
information from the shared memory if the shared memory exists with the button ‘Get’.

The buttons ‘Open...” and ‘Save...” are used to open and save a model. The button below *Beginstates
-> D’ is used to calculate the distances for the stiffnesses in rest when the begin states are given. So
when a node is created at location (0,0,0) and a second node at location (1,1,1) with a stiffness

between them, this button will calculate the rest distance. In this case this is \/§ This value is
changed in the matrix so you do not have to calculate this by hand. Below this button a checkbox is

shown to allow the user to enable or disable the gravity force. If this box is unchecked no gravity force
is added and the model will not “fall’ in the Y-direction.

University of Twente

21
Creating a plug-in for 20-sim

The upper right table shows the begin states and states when the buttons above are pressed. With the
button *Set beginstates’ the beginstates of the model can be altered. The states of ‘R’ are the states of a
zero mass node which has a spring connected to each node. This can be seen as a ‘bowl” where the
whole model is lying in. The stiffness of each node to this bowl is shown in *Spring constant for
external power’.

Below the table of the states a textbox is shown to show the Hamiltonian when the ‘Show
Hamiltonian’ button is pressed.

The lower left corner is used to draw the model. The Y-direction is vertical, the X-direction is
horizontal and the Z-direction is in depth of the screen. On the right of the drawing the draw settings
can be altered. The buttons ‘Default’, ‘Draw states’ and ‘Draw Beginstates’ are used to change the
model which will be drawn. ‘Default’ draws only when simulating. ‘Draw states’ will draw the current
states and ‘Draw Beginstates’ is used to draw the initial states. When the checkbox ‘Enable drawing’
is unchecked the viewthread is suspended and nothing is drawn. If checked the viewthread is resumed
and the drawing will continue.

Above the drawing and below the matrix to change the model, the settings are shown for power
coupling. The power is coupled to other 20-sim parts with two ports, each port is defined with an
effort and a flow. The effort is the force and the flow is the velocity, as mentioned in chapter 2. The
model has two ports. Each input is connected to a separate node or to the ‘bowl!’, R. The R is a zero
mass node which has a stiffness attached to each node. So when as force is applied on R all the nodes
receive a force.

The way the inputs are used is shown in the pull down menu on the left. Two options can be chosen.
The flow in and effort out or the effort in and flow out. The outputs are defined next to it. The outputs
are also represented by a node or R.

So when effort in, flow out is selected the inputs are forces which acts on the nodes. The output is the
velocity of the nodes when simulating. More information about the models can be found in the chapter
4.

The last part is in the bottom right corner. This shows all common information about the simulation.
The checkbox “Calculate H’ is used to calculate the H each simulation step and can be disabled to
speed up the simulation.

Control Engineering

22

If the main application has a model loaded it will looks like Figure 14: Screenshot of main application

).

ait application

Mumber of nodes Igg
Friction [%] ID

Ehange settings

Dimension m Get
Modes
k D z Ja J¢ s [[z s il
1 2 1] a a 0 0 0
2 100 02 2 a 0 0 0 0
3 1} 100 0.2 2 a 0 0 0
4 0 1] 10 02 2 a 0 0
i) 0 1] 0 10 02 2 0 0
5} 1} 1] 0 0 10602 2 0
7 1} 1] 1] 0 0 a0 o, 2
8 n] 0]]] 100 02
g I 0] 0]]] 100
1m0 0 0 0] 0] 0
11 a 0 0 0]]]] -
4 | L|_J

Spring conztant for extermnal pover IU

Coupled in to node |1]

second part I-I-I :lv

A= = £
Save. . | Showbegmstate& Set beqginztates | Show states |
et | States
1 2 |2 |4 |s B
* 2 4 B g 10
Y a a a a a a
= a a a a a a
Fx a a a a a a
Fy a a a0 a0 a0 a0
Beginstates -» O | Fz 0 0 0 0 0 0
4] | 3

[~ Gravity [1]

Shiows Hamilbarian |

_VJ itk IV (o] i, F [effort] out _VJ Coupled out ta node |1EI vi

rDrawsettngs
¥ Enable drawing

Diraw eveny |‘| oo steps

Default |

Drraw slates| Draw Beginstates

Reset scale |
[~ Scale

[~ Zero-point
[Axis

[~ DrawZ

[~ Scale maszzes

Getlnfa |

H Beagin I—
T
Steps I—
RunTirme I—
Stepsize I—

™ Caleulate H
[Iritizlized

Figure 14: Screenshot of main application (2)

In this figure the node parameters are shown in the matrix upper left. The first node has another color.
This color represents the fact that this is a fixed node. The node cannot move. The first node has a
mass of 0.1kg, the nodes 2 till 8 have a mass of 0.2kg. There are two powers coupled to the system,
one to node 10 and one to node 11. These are the two most right nodes shown in the figure on the
lower left. The table top right shows the begin states.

University of Twente

23
Creating a plug-in for 20-sim

53 Main application :J & =10/
Murber of nodes |2|j

B = Save.. Show begin states Set beginstates Show states
Friction [%) ID— [Eiarme SEHinmE | | | |
o Bipee: | States
imension |3 vi Get
Modes 1 2 I3 I"“ I5 IE
* 2 4 B a 10
ko [s [HOWN(ENz [z [[15 [ie il Y 0 0 0 0 0 0
1 1} 1} I} 1} 1] 1] 0 0 B 0 0 0 0 0 0
2 0 1} I} 1} 1] 1] 0 0 Pa 0 0 0 0 0 0
3 I} I} I} I}] 1] 0 0 Py 0 0 0 0 0 0
4 |0 0 o o o 0 |0 2828 HlEcqinstatess D | Pz 0 0 0 0 0 0
] I} I} I} 1] 1] I} 282842 P I I _’I
B |0 0 0 0 0 282842 288 [Gravigl)
7 o o o 0 |zmem4z 282940 Shaw Hamitonian |
8 2 1] 1] 2.8204 2 282840 0 He
9 01 2 2.8284 2 282340 0 0 B[AF[A+ 5 4] 4]+ 555 B2 B A A2 5 01 0+ 2 B[[[111+2.5
T8F15]+2 51 BF[1B+2 51 71 P+ 2 B2 T2 1+ 2 B 22 (22]+ 2 5
i L 2 ik L : d 0 [231 23]+ 2 B 27271+ 2 D28 28]+ 2 B {29 {29]+ 2 B[3333+ 2.5
11 o0 100 02 2 a a 0 1] - AP 34]+2 530 (30 2. B [39]39]+ 2. 5[40 [40]+2 B[4 {41]+ 2574
ﬂ _I » B [45]+2. 5 46] [46]+2 D47 147+ 251 (91 [+o (B2 [52]+5 (93] [53]
5[A7 A7+ BR 58]+ B (9] B9+ 2 BB 3B 3]+ 2. E (B4 [(B4]+ 2.5

Spring conztant for external power IU
i 10 = | with [V [flow) in, F (effort] out = |1I:I vi
Coupled in to node I _J with I [flow] in, F [effort] ou _J Coupled out to node
second part I-I-I j' I-I-I :'j

167 rDraw settings——— Getnfo |
¥ Enable drawing

Diraw avery |1UD steps H Begin ID
D efault | H IU
Steps |4033

RurTirne |4,U?999399999991
Ml Stepsize |D,nm 00000000000033

-'|'30int ¥ Calculate H
[| [ritialized

Diraw states| Draw Beginstates

Figure 15: Screenshot of main application (3)

The same model is shown in Figure 15: Screenshot of main application (3). But this screenshot shows
the nodes 9 till 16. Node 10 and 11 are fixed in the Y-direction. So they can only move horizontally.
The Hamiltonian is also shown. The values between de braces ([,]) is the offset in the state array, so
[3] represents the momentum in the X-direction and [6] represent the x position of the second node.
The model which has been drawn in the lower leftalso has the scale, zero-point and axis drawn. This is
useful to make the drawing clearer.

Control Engineering

Model testing 25

4 Model testing

To test the module and its functionality several models where tested to see if the whole idea worked.
All models which where tested are described in this section.

4.1 Preferred causality

This section is used to explain what kind of storage element the written module is, and how it can be
used in a natural way.

As mentioned before the written module uses the port concept to transfer energy to and from the
system. Each energy storage element has a preferred causality. For example, a mass is a p-type storage
element, which has the integral of effort (force), i.e. momentum as preserved quantity. The p-type
storage element uses the integral of flow (velocity) to define the equilibrium and the effort to adjust
the equilibrium. The preferred causality is effort in and flow out. The g-type storage element has flow
as preserved quantity, effort to define the equilibrium and flow to adjust the equilibrium. This
preferred causality is flow in and effort out. An example of a g-type storage element is a spring. More
information about the port concept can be found in (Dynamical systems, 2003).

Each storage element is a p-type of g-type storage element, the preferred causality is the type of buffer
the storage element wants to be. So a mass storage element prefers effort in and flow out because it is

a p-type storage element. The module for 20-sim, which calculates the Hamiltonian models for 20-sim
consists of springs and masses, because the springs are g-type storage elements and masses are p-type

storage elements it is hard to determine if the module is a p-type or g-type storage element. Therefore

some analyzing must be done to determine this.

Each Hamiltonian model consists of masses and stiffnesses. The masses are always at the end of the
model. The energy, which is coupled to the model, is always attached to a node. For example if a
simple model is taken with 3 masses and 2 springs, as shown in Figure 12. When energy is coupled to
this system, it is applied on one of the masses. If the energy is applied on the most right mass, the
other two masses will interact with the first mass which has the energy applied to it. Because the
energy is always coupled to a mass the Hamiltonian acts as a p-type storage element, but there is an
exception. If the energy is coupled to the R the energy is applied straight to a stiffness, to a spring. So
when energy is applied on the R the module acts as a g-type storage element.

When the module is used as a g-type storage element it can be seen how a model responds when it is
shaken. It is more natural to use the module as a p-type storage element. This is when a beam is
modeled and the user wants to know how it will react when a force is applied on the beam. So the user
can see how strong the beam is and when it starts to bend or fold.

It is very useless to define a velocity of a node and to see which force is required to obtain this
velocity, this is not a natural way. The natural causality of the module is as a p-type buffer, with force
in and velocity out.

Control Engineering

26

4.2 Static modelsl

4.2.1 Poisson’s ratio

This model is to test how the stiffnesses of a model influences the Poisson ratio. The Poisson ratio is
the ratio between the contraction strain divided by the relative extension strain. So the ratio between of
bar shortens by a force and the ticker it will become. This is shown in the picture below.

> ‘<

> X
Figure 16: Poisson ratio example

The bar gets shorter and thicker when a uniform force is applied on the bar. The Poisson formula for a
3-dimensional bar is given by:

&, is the transverse strain and & is the axial strain.

The model which is used to test the relation between the stiffnesses and the Poisson ratio is shown in
Figure 17: The model for testing the Poisson's ratio.

Figure 17: The model for testing the Poisson's ratio

The model represents a beam. The two left nodes are fixed and the two right nodes have a fixed Y
position, so they only can move horizontally. The model is a 2-dimensional model. Therefore the

Poisson ratio formula shown above cannot be used. The strain in z-direction, ¢_,is fixed to 0 when a

2-dimensional model is used. The Poisson ratio formula for a 2-dimensional situation is:

_ 14
Sy = —ESX .

The strain in the y-direction is bigger due to the fact that the strain in z-direction is fixed to zero. This
formula is used to determine the Poisson ratio, v. More information about theory of plates and the 2-
dimensional Poisson ratio can be found in (Theory of plates and shells, 1959).

Each node has a mass of 0.2kg. The mass of the four corner nodes is 0.1kg. All the stiffnesses are
100Nm. A force of 300N per node is applied on the two right nodes to the right. The model is tested
with the Euler integration method in 20-sim and the results are after 8 seconds of simulation, when the
model was stable.

University of Twente

Model testing 27

The first test is how the vertical stiffness influences the Poisson ratio. Results are shown in Table 2.

(=] =
\Gﬁ\' n R \é\é\% t\é\é\% oéé@o
%?.3"-’{\ Q\@é\\,@% 6 L —US'J e +>53 +>f\ Q@ﬁg\ \fa(\& Q'a‘?’é
1 o0 2 418 0,110 0130 i1 97 199 1663 {1653 105% H929% 0,39
2 200 2 18 0046 0049 202 202 1678 677 103% 93% 0,33
3 260 2 418 0027 0026 203 203 1682 16,83 103% H93% 0,30
4 300 2 18 0011 0008 204 204 1685 16AR 102% 94% 028
<] 3|00 2 418 0001 op07 205 205 1688 16,09 102% 949% 0,27
4] 400 2 18 oo ion2o 206 205 1689 1692 102% 94% 024
7 450 2 418 Qo020 :@op31 207 206 16591 1694 102% 949% 0,25
a A00 2 18 0oz oo4n 207 206 1692 1694 102% 94% o2
<] 550 2 18 0034 0047 208 206 1693 1697 101% 94% 020
10 w00 2 18 003s o054 208 207 1694 1698 101% 94% 020
11 700 2 18 Qo4 00s4 209 207 1695 1700 101% 94% 017
12 800 2 18 0os4 0072 209 208 B9 17,01 101% 94% 0,16
13 900 2 18 ooss o0/a 210 208 1B97 1702 101% 94% 0,16
14 000 2 18 00E3 0083 2,10 208 1698 17,03 101% 94% 0,13

Table 2: Results when changing K vertical

The Y5 and Y6 column represents the Y value of point 5 and 6 and Y75 and Y16 the Y value of point 15
and 16. These are the four points in the middle of the model and they are used to determine the height
of the model. The X70 and X711 represents the X value of the most right nodes, they are used to
determine the length of the model.

Poisson ratios above 0.5 are not realistic, because these materials do not exist. Rubber has the highest
Poisson ratio of 0.5 and cork the lowest of 0. Materials like metal have a Poisson ratio around 0.3 and
concrete about 0.2. A Poisson ratio of 0 is hard to model because the stiffness is infinite in vertical
direction, all other materials can be modeled.

There are also materials with a negative Poisson ratio. This means when a bar is compressed is gets
thicker instead of thinner. These materials are known as auxetics and they cannot be modeled with the
written module.

A graph of the Poisson ratio as function of K vertical is shown in Figure 18.

0.35 \\\
0,30

2 \k\
Eozs -
2 \
%o .
[
ke _’ﬂ
0,15
e
0,10
0,05
0,00 , ' ' ; .
] 200 400 B00 800 1000 1200

K vertical

Figure 18: Graph when changing K vertically

Control Engineering

28

The model is also tested when changing K diagonally. All other stiffnesses remained 100Nm. These
results are shown below.

& {\QE o
\da\r N ,ﬁ‘é\ o Q@%
E o R O 85 0¥
*:h.@ %@Qs Vé:@’ L o 43\% 7 +:® +\’\ o £ Qrﬁ’

1 40: 2 18; 0068 § 0,102 218 2141 16839 1647 104% 91%:¢ 0,30

1 a0 2 18; 00148 0006 207 207 1547 ¢ 16,49 104%: 92%: 032

1 BO: 2 18; 00585 0,059-0 203 2030 168521 1641 104% 92%¢ 035

1 70 2 18; 0079 00891 200 201 1556 1653 104%: 92%: 036

1 B0: 2 18: 0095 0,107- 1,599 200 1658 1655 105%; 92%: 0,38

1 100 2 18; 0,110-¢ 0,130-i 197 199 16563 ¢ 1658 105%: 92%: 0,39

Table 3: Results when changing K diagonal

0,35 / f
0,30

Passionratio

40 an &0 70 an 100

K diagonal

Figure 19: Graph when changing K diagonal

In the second test the model became unstable when the stiffness in diagonal direction was smaller than
40Nm, the result of this simulation is shown in Figure 20. It can be seen that the beam is not as it
should be, and therefore it is unstable. Then most right nodes starts to move further left than the
second most right nodes. This is impossible with a normal beam, therefore it can be concluded that the
model is unsuitable for this situation.

Figure 20: Unstable model

The model only has values for K which are useful and K’s which causes the Poisson ratio to be smaller
than 0.5.

From this test it can be concluded that the Poisson ratio can be altered when changing the vertical or
diagonal stiffness of the model. The vertical stiffness has a greater influence on the Poisson ratio but
has an unwanted result, the stiffness in y-direction will also change. If the diagonal stiffness is
changed the stiffness in y-direction stays more constant because the vertical stiffness maintains the
same value.

University of Twente

Model testing 29

4.2.2 Clamped beam with a force

When a beam is clamped and a force is applied on the beam the beam starts to bend. Bending of a
beam is tested in two ways, the first situation is a single clamped beam and the second situation is a
beam with both sides supported. The first situation is shown in the figure below.

P

Figure 21: Single clamped beam

The single clamped beam has a formula to calculate the deflection of a beam. This formula is taken
from (Mechanics of materials, 2001).

This formula is:

P 2
V= —L(BL —x)
6El
with v the deflection in the y (vertical) direction (positive upward), P the applied force, L the length of
the beam, x the position of deflection and ET7 the material constant. This formula applies only for small

deflections.

So when a model is made with the written module, the E7 variable must remain constant at every
position of the beam even when the force is changed. The model used is shown in Figure 22: Single
clamped beam.

Figure 22: Single clamped beam model

The model has the two left nodes clamped. A force is pressing on the top-right node. Each stiffness is
200Nm and each point mass is 0.2kg, the length between the nodes is 2m. So when a force is applied
the beam should bend. The total deflection is depended of the force, so for each force and each
position the same material constant E7 must be obtained. ET is defined as
2
P 3r-y)
6
El=————.
v

The deflection is measured at 4m, 8m, 12m and 16m. Each measure point is used to calculate the
material constant E7, with the formula shown above. The model is simulated with an Euler integration
method with a step time of 0.001 second. The results are obtained after 60seconds of simulation, so the
model has a steady state. A friction of 10% is used to stabilize to model. There is no gravity force
working on the model, so only the applied force is working on the model. The results of the first test
are shown in Table 4.

Control Engineering

Force (M) Deflection at (mtr) El at (mtr) El difference
4 g 12 16 4 g 12 16 between 4m and 16m

1 0,009 0,034 0,063 0,107 13037 12549 12706 12760 -2%

2 0,019 0,067 0,136 0z14 12351 12736 12706 12760 3%

4 0,037 0,135 0271 0,428 12685 12642 12753 12760 1%

5] 0,074 0,266 0537 0,549 12685 12632 12672 12865 1%

) 0,053 0,299 0,503 0953 12723 12843 12096 12694 1%

10 0,052 0,331 0563 1,056 12754 12850 12915 12929 1%

20 0,179 0,646 1,304 2058 13110 13209 13252 13269 1%

40 0,335 1,211 2438 3,540 13886 14053 14176 14222 2%

B0 0473 1 685 3377 5299 14654 15166 15351 15460 4%

50 0555 2082 4,139 5 465 15964 16354 16700 16895 6%

100 0,655 2,409 4757 7,394 17129 17711 18163 18465 3%

120 0,769 2 654 5262 8,141 18309 19076 19704 20125 10%

150 0,576 3,021 5565 801 20091 21185 22097 22728 13%

200 1,017 3447 6593 10,031 23074 24756 26210 72 168%

Table 4: Results from first measurement

The comparison of EI at 4 meter and El at 16 meter is shown below.

30000

23000

20000

w 15000

10000

2000

/

/

.r—f//'

—FE| at 4mtr
El at 16mtr

a0

100

150

Force M)

200

250

Figure 23: Graph of EI at 4 meter and at 16 meter

The ET should be constant for each force and at both positions. The results should be a horizontal line
instead of a curve. When the force is rather small, less than 40N, the model is sufficient because it
does not differ a lot from the results obtained by the formula. If the force gets larger this formula is not
sufficient enough and the results differ a lot.
Secondly it can be seen that the E7 constant is different at the beginning of the beam compared to the
one at the end. The difference between the first point, at 4m, and the last point, at 16m, is shown in the
last column. The difference is small, less than 5%, when the force is less than 80N. If the force gets
too large the difference between the two material constants gets very big, a difference of 18% is
obtained.

University of Twente

Model testing 31

In the next plot the difference in terms of percentage between ET at 4m is compared to the E7 at 16m.

5%

D% T T T T
50 100 1a0 A0 25

[

-5%

\
- \
-15%

N

Difference (%)

-20%

Force{N)

Figure 24: EI difference between 4m and 16m

In this graph it clearly can be seen that the formula is sufficient for small forces, less than 40N,
because the difference between EI is less than 5%. There are two common reasons why the ET
difference in terms of percentage increases while the force increases. The most likely reason for this is
that the formula used to calculate the ET constant only works for small deflections, when the
deflections are too big the formula cannot be used which results in incorrect results. The second reason
is that the model is not good enough to represent a beam. The model only uses point masses and
stiffnesses. And a real beam has more aspects than point masses and stiffnesses.

In Figure 25 the model is shown after 60seconds when 200N of force is applied. It can be seen that the
beam has a large deflection, therefore the formula from (Mechanics of materials, 2001) is not
sufficient enough for this kind model with 200N of force.

Figure 25: Single clamped beam with 200N of force

The bending mostly occurs in the beginning of the beam. At the end the beam is more stretched than
bended. Therefore the beam looks stronger at the end than at the beginning. A beam is stronger when

stretched than bended. This explains the large differences of the EI constant between the point at 4m
and at 16m, shown in Figure 24.

The same test is done with another model. This model is the same except the diagonal stiffnesses are
300Nm and the horizontal and vertical stiffnesses are 100Nm. Results are shown in Table 5.

Control Engineering

Force (M) Deflection at (mtr) El at (mtr) El difference
4 g 12 16 4 g 12 16 |between 4m and 16m
1 0018 00T 0134 0212 E519 45 448 5440]-1%
2l 003k 01328 07 0422 F&13 F4E5 Fd72 G471]-1%
400720 02637 0530 0839 519 Ba1d a1 B509|0%
B O 0514 1041 1 547 BG5S/ BG4 BG40 BE32 0%
o 0153 0A&75 1,166 1,842 hbad Rb7a Bb75 07 1]0%
0] ai7a 0B 1287 209 G705 5719 713 G706 |0%
20 0329 1192 " Ja07: 3798 7133 7159 7179 7190[1%
40 0ARS 20424 e 5 390 8243 8358 B4E9 BE47 4%
BO| 0741 2524 A1791 B39 a1 9756 1010 10192|7 %
B0 OgRs 3033 58290 93 10802 11232 11658 12119]12%
00| 0963 3382 G470 9488 12121 12729 13354 13808]14%
120 1080 3597 BAA0; 10 451 13410 14234 150700 15677 [17%
150 10480 3gms] 73447 11069 15331 16474 17647 18502 21%
200 12740 4237 7EEEL 11770 184200 20140; 219120 23200[26%
Table 5: Results from second measurement
A graph of the EI difference between 4m and 16m is shown below.
25000
20000
1000 /
re
10000
/ —FEl &t 4mtr
El st 16mtr
S000
D T T T T
a0 100 150 200 250
Force (H)

Figure 26: Graph of EI difference between 4 and 16 meter from second measurement

This model has the same kind of results as the first measurement, only it can be seen that the E7
constant overall is smaller than the first model. It also can be seen that the EI constant increases when
more force is applied. E7 should be the same for each force, which is not the case. This beam is also

weaker than the first model.

University of Twente

Model testing 33

The difference in terms of percentage is also plotted, shown below.

2%
0% i : : : :
\sn 100 150 200 250
A% \
= 0%
< —E| diference
5
- \
=
- \
-25% oy
-30%

Force M}

Figure 27: EI difference at 4m compared to El at 16m from second measurement

This graph shows also that the linear formula is sufficient for a small force, less than 40N. When this
force gets larger the differences of the ET constants become larger. This happens because the beam
bends in the beginning and is only stretched at the end.

At the end the difference in terms of percentage is larger because the beam is weaker than the beam
used in the first measurement, so the difference is also greater.

The conclusion for this test is that the model is not sufficient to model a beam, because the E7 constant
is not the same at each point of the beam and the ET constant changes when the force changes. The
linear formula is sufficient when small forces are used but for larger forces the formula is not
sufficient enough. For small deflections the E7 should be constant using the deflection formula, this is
not the case, therefore the model is not sufficient enough. When a weaker beam is modeled the
differences between EI become even larger with large forces. With a stiffer beam these differences are
not that large. So the model works for stiff, strong beams with a small force. The difference of the E/
constant between the beginning of the beam and the end is caused by a large force. The bend point is
in the beginning of the beam, the end is therefore more stretched than bended and this causes the E1
constant to become smaller at the beginning of the beam than at the end of the beam, this effect cannot
be described with the deflection formula.

The overall conclusion is that the model is too simple to model a real beam. A beam therefore cannot
be modeled with simple point masses and stiffhesses, but has other aspects. This model is also a 2-
dimensional model for a 3-dimensional beam. This also could lead to differences in the E7 constant for
larger forces.

Control Engineering

34

4.2.3 Dual supported beam

Secondly a model is tested with both sides supported. One side is supported and the other side can
only move in horizontal direction. A figure of this situation is shown below.

P
y

- =
i

Figure 28: Dual supported beam

It can be seen that the left side can move horizontally. The model is carried on the bottom right node
and the bottom left node. The model which is used is the same as the test with a single clamped beam,
shown in Figure 22: Single clamped beam model.
The deflection for this situation can be calculated with:

Px

" 48EI
with v the deflection in the y (vertical) direction (positive upward), P the applied force, L the length of
the beam, x the position of the deflection and EI the material constant. The formula only works for
small deflections. This formula can be rewritten to calculate the material constant, E7, to

z(sﬁ —4x2)
EIl =

(3L2—4x2) Ostg

1%

v
With this formula the ET is calculated at several points of the beam. The figure below shows the points
where ET is calculated.

1 3

2 4
Figure 29: Points where ET is calculated

The force is applied downwards on point 4 of the beam. At point 1,2,3 and 4 the EI constants are
determined. The results of the measurement are shown in Table 6. In this table the relative difference
between point 3 and 4 is shown. This difference represents the £ difference between those points
which is caused by the force which is applied on point 4. In the table the relative difference between
point 1 and 3 is also shown. This difference represents the uniformity of the beam.

University of Twente

Model testing 35
Force (M) Deflection at (mtr) El at (mtr) El difference betwean
1 3 2 4 1 3 2 4 Jandd |1and3
5 o024 0,034 0,024 0,035 12222 12649 12222 12190 3% -3%
10 0,048 0,059 0047 0,070 122202 12367 12482 12190 1% -1%
20 0,055 0,138 0,095 0,140 12351 12367 12351 12190 1% 0%
40 0,192 0,278 0,191 0,282 12222 12278 127086 12104 1% 0%
G0 0,291 0419 0,235 0,425 12096 12220 12222 12047 1% 1%
a0 o352 0,561 0,386 0 555 11973 12169 12159 11993 1% -2%
100 0493 0,705 0,484 o715 11900 12104 12121 11935 1% 2%
120 0,595 0,849 0583 0,861 11812 12061 12075 11893 1% -2%
150 0752 1,066 0,731 1,081 11702 12008 12038 11841 1% -3%
200 1015 1,424 0578 1,448 11560 11985 11997 11786 2% -4%
s00 2511 3425 22095 3 AR5 11682 12457 127E5 12314 1% %
1000 4 159 5 E53 3580 5513 14106 15367 16387 15203 1% -8%
1500 5011 B BG57 4,152 5,729 17561 19139 21195 19022 1% 9%

Table 6: Dual clamped beam results (1)

The graph of these results are shown below.

El

23000 4

20000

15000

—

————

10000

—E| 2t pairt 1
El at pairt 2

S000

—_El t poirt 3
El &t pairt 4

200 400

G500

T
oo 1000 1200

Force {H)

1400 1600

Figure 30: Graph of first results

Second the EI differences between point 2 compared to point 1 and point 3 compared to point 4 are
plotted. The difference between these values should be zero.

Difference (%)

259 4
—El diference of 2 compared to 1
0%, El difierence of 4 compared ta 3 e
15% J#"f""#,f’f”;aaﬂdﬂﬂﬂﬁa#pppfr
10% J”””’ffr
5%
0% T T T T T T
200 400 B00 ann 1000 1200 1400
5oy,
Force (H)

1600

Figure 31: EI Difference between 1 & 2 and 3 & 4

Control Engineering

36

The difference of EI between point 4 and 3 is minimal, therefore the force is not deforming the beam
much in vertical direction. The difference of EI between point 1 and point 2 gets larger while the force
gets larger. This happens because point 1 and point 2 do not only down but they also rotate around the
most left point, where the beam is supported. This is shown in Figure 33. The difference is caused by
this rotation.

Next the EI difference between point 1 and point 3 is plotted.

0%

AN

200 400 E00 00 1000 1200 1400 1600

2 3 %
L
Vv

= — - .- 1
b —E | difference
E 5% \
=
- \
T \
% \'_"——u_._,_
8%

Force (H)

Figure 32: EI difference between point 1 and 3

The EI difference between point 1 and point 3 gets larger when the force gets larger. This is the same
as what happened to the single clamped beam. The model is also stronger when it is stretched than
bended, therefore the EI constant is larger at point 3 than at point 1. The bending happens mostly at
point 1, point 3 is not bended that much. This is shown below.

o,

Figure 33: dual clamped beam with 1500N force

Point 1 is the weakest point of the beam due to the bending, therefore the material constant E7 will
relatively decrease compared to the ET constant at point 3.

University of Twente

Model testing 37

This model is also tested with the force applied to point 3 instead point 4. These results are shown
below.

Force (M) Deflection at (mtr) El at (mtr) El difference between
1 3 2 4 1 3 2 4 Jandd |1and3

5 o024 0,035 0,024 0,034 12222 121490 12222 12549 -3% 0%

10 0,047 0,070 0047 0,059 12482 121490 12482 12367 -1% 2%

20 0,095 0,140 0,095 0,138 12351 12190 12351 12367 -1% 1%

40 0,193 0,252 0,191 0,278 12159 12104 12286 12278 -1% 0%

51| 0292 0425 0,285 0419 12055 12019 12077 12220 -2% 0%

an 0302 0571 0,335 0 552 11973 11956 12159 12147 -2% 0%

100 0494 o717 0,434 0,705 11876 11901 12121 12104 -2% 0%
120 0557 0,864 0533 0,544 11792 11852 12075 12061 2% 1%
150 0,753 1,086 0,731 1,068 11687 11786 12038 11985 2% -1%
200 1017 1,457 0475 1,431 11637 11714 11997 11926 2% 2%
500 253 3533 2308 3447 11594 12077 12709 12378 2% -4%
1000 4 200 5,155 3 FA7 5778 13647 13864 16042 14769 -E% 2%
1500 INSTABLE

Table 7: Dual supported beam results (2)

The graph of the second measurement results is shown below.

18000
16000
14000
10000
o

8000 —E| at poirt 1

BO0O0 El &t point 2

—_Elat poirt 3

4000 El at point 4
2000

a T T T T T
0 200 400 G600 a00 1000 1200
Force (N}

Figure 34: Results of second measurement

The beam responds more or less the same. The applied force on node 3 causes that point 3 deflects
more than point 4. If the force gets too large, point 3 will pushed thru point 4, the model will become
unstable. The difference between point 1 and point 3 is not as large as in the first test because the force
is applied on point 3, therefore the beam will change a bit.

Control Engineering

38

Next the EI difference between point 2 and point 1 and the difference between point 4 and point 3 is
plotted. This is shown below.

20%

15% 44— —E! difierence of 2 com pared to 1

El diference of 4 com pared to 3

16%

14%

- 12% /
3 10% /

T

g 0%

E / “

= B%

4%
2% -’/
0% "‘r

-2%

200 400 500 800 1000 12p0

Force {(H)

Figure 35: EI Difference between 1 & 2 and 3 & 4 for second measurement

The difference between point 4 and point 3 is increasing because the force is not applied on point 4 but
on point 3. Therefore the EI difference between those points gets larger compared to the first
measurement. The difference between point 2 and point 1 looks the same compared to the first
measurement. This difference has also the same explanation.

The difference between point 1 and point 3 is also drawn.

3%

2%

—E| difference

1%

0%

\

500

Difference (%)

1%

\ 200 400

800

1000

12p0

2%

N

e

/

- A\
" ~

A%

Force {H})

Figure 36 EI difference between point 1 and 3 for second measurement

This figure shows that the E7 difference gets larger when the force gets larger. After 500N the
difference decreases again. This happens because the force is applies on point 3 instead of point 4. The
first part is the same as the first measurement. Because the force is applies on point 3 is pushed further
down than in the first measurement. When point 3 is pushed further down the calculated E7 will
become smaller, therefore the difference become smaller after 500N. With a force less than 500N this
difference cannot be seen because the beam is stiff enough to compensate this.

The result is that the model is useful as a real model. The EI constant changes about 11% from 5N till
1000N. The model however is not prefect and need to be altered to obtain more competent results.

University of Twente

Model testing 39

4.3 Dynamic models

4.3.1 Mass on aspring
The first dynamic model is a simple mass on a spring, shown in the picture below.

Figure 37: Mass on a spring

The model has gravity enabled and the spring is in rest. So when the simulation starts the mass must
start to resonate and at the end it stops resonating with the spring stretched out.
The results are shown in the graph below.

madel

z
1
N AAW NN
-1
-2
0.4
03
02
0.1
1]
a g 10 15 20
time {z}

Figure 38: Results of mass-spring

The main application shows that the spring is stretched by 0.189m. To see if the results are correct the
model can be calculated.

The force on the mass is

F=ma=9.81*10=98.1

The force on the spring is defined as

F =2k(x* —d*)x = 200(x* =1)x

So the stand at ease is

100(x* —1)x =98.1

x=1.89
The spring force is not the force as expected, ' = kx , because the spring used has rest length. So if the

spring gets smaller it also requires a force. Therefore the 4™ order spring force is used. This function is
plotted Figure 39.

Control Engineering

40

400

100

o
L L L L L L DL L O L L L L

-2 -1 0 1 2
Figure 39: Graph of 4™ order spring energy, d=1
The plot has horizontal the length of the spring, with 1 as rest length. The ‘spring constant’ k is

100Nm. The function plotted therefore is V' = %k(l2 ~-d°)2 = 50(12 —1)2. This clearly shows energy

is needed to push the spring in. Because the energy function is a 4" order function, the function
changes a lot which results in a much higher *spring constant’. This is shown in the plot below where

the d is increased to 2 and the function become: V' = 50(12 —4)2
7,000
6,000
5,000
4,000
3,000

2,000

1,000

o
[T T T T 1T T T 1T %[1T 1T 1T T [T T T 1]

4 2 0 2 4

Figure 40: Graph of 4™ order spring energy, d=2

There is much more energy required so the spring will not stretch 2 times more than a spring with
length 1 but only a little bit. The result when using the spring with 4 is 2 is shown in Figure 41: results
when d is 2.

University of Twente

Model testing 41

mocle|

0.5

0 t = —
VARG

—D.SU

i

0.1

0.0s

a 2 4 53 a
time {=}

Figure 41: results when d is 2

The spring is lengthened by 0.059m and therefore the actual spring constant is much higher.

This can be shown with the following equation ¥ = %k(l2 —d?)2 = %k(l + al)2 (I—d)?. The actual

spring constant will increase by a factor (l + d)2 in comparison with a one dimensional model, the
spring will not lengthen more but less. So the results are as the model would expect.

Control Engineering

42

4.3.2 Mass on achain

The next model which is tested is a mass on a chain. The chain consists of 11 nodes, the space
between each node is 2m. Each node has a mass of 0.2kg and at the end a mass of 10kg is mounted.
The chain gets a momentum by a force of 1000N which is applied to the left side for 0.3seconds at the
end mass. The model of the beam is shown below. The top node is located at the location (x,y) (0,22)
and is fixed. The model is simulated with the Euler integration method with a step size of 0.001
second.

Figure 42: Begin state of mass of a chain
Due to the gravity force the chain will extend a little, this rest position is the begin position when the
force is applied. The chain is lengthened by 0.33m, so the total length will be 20.33m.

After the momentum was applied on the beam the states of the bottom mass, kinetic and potential
energy where measured at a several time intervals. A lot of results were obtained, because there are
many results, these are shown in appendix I.

First the path of the moving mass is plotted. This is shown below.

Ea ¥
ZJ

\ 20 Ref

| — 1

\ 2

‘ 15 —3

—4

>
; 10
\ 5
T T 0 T T
-30 -20 -10 0 10 20 30
X

Figure 43: Chained mass, path

University of Twente

Model testing 43

The thick white line is a reference path. This reference path is part of a circle with a center at (0,22)
with a radius of 20.33.

The thin black line is the first half swing, from bottom to top. The measurement is started right after
the force has stopped. The mass gets of course between x is -5 and 15. This happens because the force
is applied in x-direction. The momentum causes the chain to stretch a bit and starts to resonate in axial
direction. After a while it will shorten due to the stiffnesses in the chain. This result is shown between
x is 15 and 18. A picture was also taken at this part. This picture was taken after 1.475 seconds of
simulation and is shown below.

-

Figure 44: Chained mass during simulation

This picture shows that the chain is shortened due to momentum it was given at the beginning. The
chain in this figure does not have the same kinetic energy as the end mass and it is a little slower than
the end mass, therefore the chain is curved.

The second swing, from far left to far right, starts with a slightly shortened chain due to the first swing.
Some resonating can be seen in axial direction around x is 18 and x is 14. At x is 0 it can be seen that
the chain is a bit longer than the reference path. This happened due to the centrifugal force. The Kinetic
energy of the mass causes the chain to stretch at x is 0. When the energy is decreased the reference
path is followed correctly.

The forth swing has so less energy that the chain will not deform anymore and the reference path is
followed precisely. The forth swing stops at x is 0 and is slightly thicker than the third swing.

Next the radius of the chain is plotted during simulation. This is shown in Figure 45.

22

M5

2:5 H A . —

Radius (mj)
=
M

]
NN,

a0 20 4.0 E0 g0 10,0 120 14,0 16,0
Time (s}

Figure 45: Radius of chain

The reference signal is the radius in rest, 20.33m. In the first period the resonation can be seen clearly.
The resonation does not have a steady frequency. The frequency changes with the time. This is mainly
caused by the dynamics of the chain and by the resonating of the nodes between themselves.

Control Engineering

44

After 8 seconds the major resonation has stopped. The little vibrations after 8seconds are caused by a
resonating between the nodes themselves which has not been damped by friction yet.

To determine the period of the swing the angle over time is plotted.

40,0

0,0 . : / : \

] i 2,0 40 /E,IZI 80 1ul,u 12I,|:| I,D 16,0
20,0 \'

40,0 \ /
£0,0 \ /
0,0 _,//

00,0

Angle fdegrees)

Time (s

Figure 46: Angle over time

With this figure the swing period can be determined. The swing period is the period from the
minimum at 2.6seconds and the minimum at 12.3seconds. This period is 9.7seconds. This period can
also be determined by plotting the kinetic energy over time. This is shown below.

4500

4000

3500 Il
\

3000
2500 \
2000 \
1500 \
1000 \
S00 \

L NS N

2,0 40 5,0 g,

-a00

Kinetic energy

] 10,0 120 14,0 16,0

Time (s}

Figure 47: Kinetic energy over time

The period of a swing is the time between the first zero point and the third. These are located at
2.6seconds and 12.3seconds. This also gives a period of 9.7seconds. Both graphs gave the same result,
as they should be. The second graph is only to check if this is the case.

Next the kinetic energy is plotted as function of the angle velocity. The velocity is calculated with the
measured values of dx/dt and dy/dt. The velocity should be with squared onto the radius. But this is
not the case due resonating in axial direction. So the actual velocity is measured and projected on a
component squared on the radius. The difference between the original velocity and the one projected
squared onto the radius is plotted in Figure 48.

University of Twente

Model testing

45

Uncorrected

20800
i — Corrected

Kinetic energy

Fa¥alal
\ oy /
=

-30,0 -20,0

oan
!ﬁ /
1= T

-10,0 0,0 10,0 20,0
Angle velocity (degrees/s)

Figure 48: Corrected angle velocity

The angle velocity is positive when moving to the right and negative when moving to the left. There is
a slightly difference between the corrected and uncorrected velocity around x is 0 and between x is -20
and -15. The corrected angle velocity is used for the next plot, which shows the kinetic energy for all

swings.
4500
4000
A 200 Ref
[eru e
—1
3066 —2
> \ —3
> 2500
=5}
C \
< 2000
[X FAv vLu)
k) \
= 1566
X
14000
| RA"A")
T T T o T T
-40 -30 -20 -10 (10 20
-500
Angle velocity (degrees/s)

Figure 49: Kinetic energy versus angle velocity

The plot also shows a reference signal. This reference signal is defined as: £, = %1092.

Control Engineering

46

The results were expected to be a parabola as the reference signal, which is the kinetic energy of a
pendulum with a mass on 10kg. The kinetic energy is the largest when the angle velocity is the
highest. The reference signal is the signal which was expected.

The plot shows a little bump in the first swing between the angle velocity of -20 and -27. This bump
can be explained by the chain. When the angle velocity is high in the first swing, the whole chain
starts to move. The whole chain has a mass greater than 10kg due to the nodes. This results in a kinetic
energy which is larger than the reference signal at a high velocity. When the angle velocity is less this
effect can be neglected. On the other side between the angle velocity from 5 till 12 the same effect can
be seen.

The second swing is steadier than the first swing and follows the reference signal almost correctly.
The last swing shows a decreasing kinetic energy. This is the straight piece between the angle velocity
0 and 5. This happens due the friction of 1% in the model. At the end when the chain stops swinging,
is the kinetic energy 0. This is shown after three swings. After three swings the model does not swing
any more, the kinetic energy is gone due friction.

The reference signal represents the kinetic energy quite well. This model has a mass of 10kg. The sum
of all masses in the system is 12kg. The dynamics of the chain has caused the mass will look a bit
different than the reference model.

When the kinetic energy and angle velocity are known the mass also can be calculated by
2E,
m= 7

The result of calculating the mass is shown in Figure 50.

14,0

12,0

o0 LA A ™ fapih

: | [y

=

2 a0

: | |

E G0

: J

= 40

=

i
2.0
oo T T T T T T T

oo 20 4.0 6.0 g0 10,0 120 14,0 16,0

=20

Time (s}

Figure 50: Mass calculated from the kinetic energy

The peaks down are caused by a kinetic energy which is 0 or almost 0, therefore the mass is not
calculated correctly. The calculated mass should be a constant value, which must lie between 10kg and
12kg. The 12kg is the total mass of the system and the 10kg is only the end mass. Because not all mass
is located at the end of the chain, the calculated mass must have a value between 10kg and 12kg.

The vibrations of the calculated mass are caused by the dynamics of the chain and the friction. The
vibrations do not have a clear frequency and therefore they cannot be calculated.

The mass is calculated with the corrected velocity, the one squared on the radius, and therefore some
extra wiggling can occur.

University of Twente

Model testing 47

Next the potential energy is plotted as function of the angle.

Potential energy

(==}

-100 -80 -60 -40 -20 0 20 40 60 30
Angle (degrees)

Figure 51: Potential energy versus angle

This plot has a reference signal plotted which is represented by: £, = 0.36% +450. The potential

energy of the model depends on the height of each node and the tension in the stiffnesses. If the
tension is neglected the potential energy as function of the angle must be a parabola. The reference
signal drawn is the parabola which matches the potential energy the most. The reference signal has a
constant of 450 added because the chain contains potential energy in steady state due gravity force.
The bottom is at zero degrees, top left at -90 degrees and top right at 90 degrees.

The first half swing, from bottom to top, is a bit wiggly in the beginning. The most common reason for
this is because the momentum is given in negative x-direction which causes a wiggle in the beginning.
After a while it stabilizes itself. But is does not follow the reference signal. At the end, the potential
energy is less than expected. This can be explained by the chain. If the mass is at its highest point the
chain will bend al little, so the potential energy is a bit less as expected. The chain will also shorten a
bit due centrifugal forces. When the angle is small the chain is lengthened a little due the centrifugal
force and therefore more potential energy is stored when is angle is small, from -40 till 40 degrees.
The second swing, from top left to top right, starts to follow the reference signal. The third swing also
follows the reference signal correctly.

The second swing does not follow the reference signal precisely; it is wider at the top and smaller at
the bottom. A cause for this can be found in the chain itself, but the exact cause remains unknown.

Control Engineering

48

4.3.2.1 Conclusion

The model which is used represents a mass on a chain quite good. Most of the results were as
expected. However the model is not tested in more situations so it cannot be concluded if the model
will work in other situations.

The bump in the kinetic energy plot was not expected, but because the chain had several nodes it could
be explained. Some further testing have to be done to see how this effects exactly works. The
calculated mass shows a wiggle which cannot be explained easily. To understand where this wiggle
come form some further testing has to be done.

The potential energy is a bit wiggly in the beginning. A precise reason was not found. The starting
impulse could have something to do with this. It could be an option to apply a ramp function on the
mass instead of a step function. The ramp will smoothly increase the force and therefore the result
should be smoother.

University of Twente

Model testing 49

4.3.3 Mass on a beam

Next a beam is modeled with a mass at the end. The beam is build of segments with 4 nodes and 6
stiffnesses. All these segments are put together and at the end a big mass is mounted. All the
stiffnesses between the nodes are 200Nm. The point masses are 0.2kg. The triangle, where the big
mass is, is made with 400Nm stiffnesses. The mass at the bottom is 25kg. The model used is shown in
Figure 52.

Figure 52: Mass on a beam, begin state

The top left node is located at (0, 22) and the top right at (2, 22). This model also works with gravity
force. Therefore the model will lengthen a little due to the gravity force. The states of the lengthened
model were taken as begin states for testing. The gravity force caused the end mass to be at (1, 1.7)
instead of (1, 2), so the model is lengthened by 0.3meter.

A force of 2000N is applied on the model from 0.1 till 0.4seconds. This force is applied on the bottom
mass in the left direction. After 0.4seconds the measurement is started. The simulation is done with an
Euler integration method with a step size of 0.001seconds and a friction of 4% to stabilize the model
and to reduce instabilities.

The results of the measurement which were taken are shown in appendix J, because a lot of results
were obtained.

Control Engineering

50

First the path of the end mass is plotted. This is shown below.

=
(=n)

w

o

| —""
]
=
|
bl 1
@

=
7
A

-20 -15 -10 -5 X 0 5 10 15

Figure 53: Path of moving mass onto a beam

The white line is a reference signal which is a circle with a radius of 20.30 and a center at

(1, 22). The thin black line represents the first half swing, when the mass swings up. The radius will
lengthen a bit, between x is -4 and -10. This happens because the mass gets a momentum in the
negative x-direction and due to the inertia the radius gets a bit longer and the mass moves in x-
direction instead of following the reference signal.

After a while the radius shortens a bit and starts to resonate in axial direction. This resonation is
caused by the starting momentum. The resonating will stop on the swing back at x is -7. It also can be
seen that the radius will shorten a lot in the highest point, at x is -12. This happens because the beam
bends and this bending causes the radius to shorten.

The jerky plot on the left half of the figure is caused by big step between the measurement results,
when the interval between the measuring was smaller this would be a smooth line.

The second swing, from left to right, has also some resonation in axial direction, this stops at x is -7.
After x is -7 the swing will follow the reference signal. The beam is lengthened a little at the bottom,
this is caused by the centrifugal force. A picture was taken at this moment.

R AT AR

e T T T e e ——

I
Figure 54: Mass on a beam after 4.137seconds

University of Twente

Model testing 51

A little bending can be seen in the picture. The radius is also shortened at the most right, this happens
due to the bending. This effect also occurred in the first swing.

The last two swings follow the reference signal well and the bending of the beam has only little effect
on the radius of the beam.

Next the radius over time is plotted, this shows how the beam is resonating axially. This is shown
below.

al

2
o
| — —

Radlius {myp

o

[43]
I
K".

T .

18,5 T T T T T T
0 2 4 g g 10 12 14

Time (s

Figure 55: Radius over time

The reference is the radius of the mass of the beam in steady state. This reference signal must be
reached when the model stops swinging. The beam is stretched a bit due to the momentum given at the
beginning. After the second swing the beam will shorten and starts to resonate in axial direction.
Between 3 and 8seconds the beam wiggles a little, this is caused by the dynamics of the beam. After
8seconds the beam has stabilized itself and the radius remains constant, the steady state has reached.
The axial resonating is damped quickly because the model has a friction of 4%.

Next the angle over time is plotted to determine the swing period. This is shown in Figure 56.

20,0

20,0

Angle {degrees)
=R
=

,-'—'—"'_'-F_’_'_ﬂ_'__'“

Time (5

Figure 56: Angle over time for the mass on a beam

Control Engineering

52

The swing period of the mass on a beam is determined from the zero crossing at 4.4seconds and at
12seconds. The swing period therefore is 7.6seconds. The damping has caused the beam to stop
swinging after 12seconds.

Next a plot of the kinetic energy versus the angle velocity is made. This model has the same problem
as the chained mass model, the velocity was not always in the same direction as the one squared onto
the radius. Therefore the velocity was projected on a vector squared to the radius to get the correct

angle velocity. The difference between the corrected and uncorrected angle velocity is shown below.

fatalal
oy

Uncorrected
— — Corrected 6666

Kinetic energy
o
D
D
D

fatatal
\M‘IU

o
T T T T L= T

-25,0 -20,0 -15,0 -10,0 -5,0 0,0 50 10,0
Angle velocity (degrees/s)

Figure 57: Corrected angle velocity with a mass on a beam

Both signals are most of the time the same. This happens because the velocity is most of the time
squared on the radius. The corrected angle velocity is used to make a plot of the kinetic energy versus
the angle velocity, which is shown in Figure 58.

University of Twente

Model testing 53

Kinetic energy
(48]
]
]
]

-25 -20 -15 -10 -5 0 5 10 15

1000
Angle velocity (degrees/s)

Figure 58: Kinetic energy of the mass on a beam

A parabola is expected and the result also shows a parabola. The reference signal is defined as

E, = %250'2 , which represents the kinetic energy of a pendulum with a mass of 25kg.

The first half swing, the thin black line from an angle velocity of -20 till 0 degrees/s, shows some
similarities with the mass on a chain. First the kinetic energy will increase while the mass slows down.
It does not follow the reference signal clearly due the dynamics of the beam. The beam resonates
axially a little, therefore it does not follow the line correctly.

At an angle velocity of 2 degrees/s a wiggle occurs. The exact reason for this wiggle is hard to
understand. A common reason for this wiggle is the axial resonation. The axial resonation can be
caused by the velocity, which it not the actual velocity, but the velocity which is projected squared on
the radius. These velocities are a little different which can cause the resonation. This resonation can
also be caused by the dynamics of the beam. This effect must be tested further to see where these
results come from.

The second swing shows what is expected; the kinetic energy increases when the angle velocity
increases.

When the kinetic energy and the angle velocity are known the mass also can be calculated with:
2E,

m=—

92

This is plotted in Figure 59.

Control Engineering

54

X]
h

o)
=

>
>

<
R
RN

i

<]

-
o =

-
—
L —

-
o

Calculated] mass (kg)

[I] 2 4 G 8 10 12 14
5

Time (s

Figure 59: Mass calculated from Kkinetic energy

The peaks down are caused by the kinetic energy which is 0 or almost 0, therefore the wrong mass is
calculated. After 9seconds the kinetic energy remains 0, the beam has stopped swinging. Between 0.4
and 0.8seconds a periodic resonation seems to appear. At 0.8seconds this resonation frequency is
increased. This effect is caused by the dynamics of the beam. The momentum, which is given at the
beginning, caused an axial resonation. The resonation causes the kinetic energy to change a little
which result in a vibration in the calculated mass.

The vibrations after 2seconds are caused by the dynamics of the model, the friction and the projection
of the actual velocity squared onto the radius. This corrected velocity, which is used to calculate the
mass, also has some influences in these vibrations.

Finally the mass should reach a value between 25kg and 29kg. 25kg is only the mass at the end of the
beam and 29kg is the sum of all point masses in the beam.

The small vibrations must be investigated further to understand where these came from.

University of Twente

Model testing 55

Next the potential energy versus the angle is plotted. This plot is shown below.

T
n
o
(a0}

I
[an]
@D
[an]

w
n
D
D
—_—

v
@
D
Q
@

Potential energy
P M M
an [an] an
@D @D @D
[an] [an] [an]
w

-60 -50 -40 -30 -20 -10 0 10 20 30 40
Angle (degrees)

Figure 60: Potential energy of a mass on a beam

The expected result is a parabola. The parabola which matches the potential energy the best is
described by the function £, = 1.16% +950. The constant of 950 is added due to the gravity force,

which causes a potential which is height depended. The potential energy is depended of the height of
each node and the tension between the nodes. In this case the tension plays a much larger role than
with the mass on a chain, because the beam is bending which causes the tension between the nodes.

The first swing does not follow the reference signal clearly. The potential energy is higher than the
reference signal. This happens because a momentum is given to the mass at the bottom in the
beginning. The mass starts to swing, which causes the beam to swing with the mass. This swing cause
the beam to bend and this bending will increase the potential energy.

After the first swing the model will follow the reference signal well.

4.3.3.1 Conclusion

It can be concluded that the model works when a momentum is applied on a mass which is mounted to
the beam. The reference signal is followed almost correctly, some differences occur due to the beam
dynamics.

The other plots show results which also can be expected only the wiggle in the calculated mass and the
potential energy must be investigated further to understand where the effects come from. The model
also must be tested further to see if the whole model is corrected, even with another mass of
stiffnesses.

Control Engineering

56

4.3.4 Wave conducting in a beam

In this section a momentum is applied on a beam to obtain the wave conductance of the material. The
model which is used is shown below.

AP

Figure 61: Wave conducting model

This model has two fixed nodes at the bottom. The two top nodes can only move vertically. Each
stiffness is 200Nm and each point mass is 2kg except for the four corners, they have a point mass of
1kg. In the beginning a force is applied for 50ms. This results in a longitudinal wave. A picture of the
model after a force is applied is shown in Figure 62: Wave conducting model with a wave.

B

]

S
=

A

Figure 62: Wave conducting model with a wave

The wave is going downward. At the end it returns and goes back to the beginning. The model is
tested by applying a force of 2200N for 50ms downwards, this force is applied after 0.01second. The
speed and the distance in the y-direction of the two top nodes are monitored. The top-left node is node
15 and the top-right is node 16.

University of Twente

Model testing 57

m oclel

= Y15 speed

= %15 distance

= Y16 speed

ﬂhnﬂﬂﬂﬂ{\ﬁﬂ ﬁuﬁnﬂn ﬁnf\ﬂf\\&.n‘,ﬂv ey PNV, PN j\/\f\nnnn\’nvnn
AT AT AR Yo ay vy

fe

1 W
y \,/\-\/—‘\r/\/f,

a 05 1 SR 2 25 g
time {=}

Figure 63: Wave conducting results

The result shows a high frequent resonation. These are the smaller waves in the distance curve. These
are caused by two nodes that are resonating at a higher frequency with each other. This is not the
longitudinal wave and this resonation must be ignored. The low frequent part is the longitudinal wave
which has returned. The model is also tested with point masses of 4kg and the corners with 2kg. This
result is shown in Figure 64.

Control Engineering

58

m ol

30

= %15 speed

20

2 Y158 distance

= 16 speed

Df\‘u’ [\ﬂﬂ[\ﬂf\u TR AVAUN Uf\;\ AN M\/\-\Unh f\f\vvf\nwn WAV,
\JUUUUU UVV\N VV Y V. Y

2 m 16 distance

| aanaaaas e

a 05 1 SR 2 Uy =
time {=}

Figure 64: Results with 4kg masses

The frequency is much lower and the wave velocity is slower as expected. The wave velocity is
calculated by dividing the length of the beam, which is 14m, by a half period. The results which where
obtained from the model where compared to the wave equation:

EA
c=,—.
m

c is the wave propagation velocity, £A4 is a material constant and m the mass of the beam per meter.
With all terms known, except the material constant EA, the formula can be rewritten as:

EA=mc*.
So when the mass of the nodes changes, the wave propagation velocity will change but the E4 term
must remain the same. The results are shown in the table below. The £4 column is calculated with the
formula shown above.

Foint massikg) iTotal mass (kg) iMass per lenath (Period{s) iFreguency(Hz) Wave velocity (mis) (EA
1 28 1 0,955 1,047 293 860
2 56 2 1,31 0,763 214 914
4 112 4 1,82 0549 15,4 947
3] 168 3] 2. 0452 127 963

Table 8: Wave conducting results

It can be seen that the E£4 term changes a little bit. The changes can be caused by friction or a fault in
the model. However the E4 term does not change a lot, the model is sufficient enough.

University of Twente

Model testing 59

When the point mass is less than 1kg the longitudinal wave cannot be seen and the wave is not
conducted but damped. The results are as expected, when the mass of the beam increases, the inertia
increases and the wave propagation velocity decreases, and therefore the frequency decreases.

The wave propagation velocities are very low. Rubber has a wave velocity of 50m/s, which has a very
low wave propagation velocity, therefore this model cannot be used to model real materials. The
stiffnesses of the model are too low in comparison to a real, existing material, but due to simulation
instabilities the model could not be tested with much higher stiffnesses.

Control Engineering

Conclusion and recommendations 61

5 Conclusion and recommendations

5.1 Conclusion

The module works are required. The module makes it possible to simulate models based on
Hamiltonian mechanics. Each model can be made with the main application. When the model is made
it can be saved for reusing it.

The connection between 20-sim and the written module works without errors. 20-sim can use the
module as an ordinary part in simulations. The model can draw during the simulation to see how it
changes during simulation. The models which were tested do not match real world materials because
real materials are too stiff which causes instability. To test real materials another integration method
must be used or smaller steps have to be taken. Basic models are tested and the results gave a good
first impression. The models need to test further to see if the model is also able to test real materials.
The conclusion therefore is that the assignment is done successfully.

5.2 Recommendations

Integration method

The module uses a simple integration method. This method has as advantage that is very quick but as
disadvantage that the system can quickly become unstable. To solve this problem a different
integration method must be used. Other integration methods were not implemented due complexity.

It is useful to make use of more kinds of integration methods to get better results. It must be tested
which method has the best results compare to processor time. A better integration method can result in
more accurate results and less instabilities.

Model testing

The models which are tested are showing useful results, but some models also have results which
cannot be explained easily. The models need to be tested further to see if model is correct, so the
dynamic effects can be explained. The used models are a simple way to model a piece of material.
This can have as results the dynamics of the model are not correctly modeled. Some further testing
must be done with different kinds of models.

The models also need to be changed so they match a real material and not only a non-existing material.
To make this possible the integration method needs to be changed first or the integration must be doen
with very small steps.

Models which can be used

The current module only supports Hamiltonian models which are made of stiffnesses and point
masses. With this kind of model only several kinds of spatial structures can be modeled. Several more
options need to be added. Options like surface tension, which is needed for blowing balloons.

With point masses and stiffnesses a lot of models can be made but sometimes this is not sufficient
enough. To extend the program with this functionality the user interface which is currently used is not
sufficient enough. It is very hard to create a model with point masses, stiffnesses en surface tension
without losing track on what you are doing. Therefore a whole new user interface needs must be
designed.

Control Engineering

62

The user interface of the main application

The user interface is a non-user-friendly interface. The user can change each node and stiffness
manually, but when there are too many nodes it will be quite difficult to keep track of the model. If a
lot nodes are used the user must work very neat to make the model without mistakes. If a mistake
occurs, it is very hard to correct this, because it is hard to see where the mistake is.

An alternative user interface is to use pre-made models which can be used to create a big model. For
example the user selects a girder and a pre-made girder will shown. Only some variables of this girder
must be changed. With this method complex models can easily made with pre-made models.

The user interface currently used is very useful to test new models and materials properties, because
each value can be altered but it cannot work with pre-made models.

Data exchange between DLL and main application

The data between the DLL and the main application is exchanged with shared memory and a mutex to
keep track of which process may write to the shared memory. This method is very easy to implement
but has as disadvantage that the shared memory easily can be altered by a 3" party software program,
so simulation errors may occur.

The data exchange can be much saver. Alternative ways are described in section 3.1.2. These methods
are harder too implement but can assure the data is transmitted without another program to corrupt it.

Model storage

The storage works in an easy way. The whole shared memory is copied in a file. This method assures
all the data which is needed is saved, but saves too much. The shared memory can hold up to 1000
nodes. If only 10 nodes are used, 990 other nodes are saved without reason. This has as result that the
files are quite large. Each model, no matter how complex they are, has the same size. And most
models can be a lot smaller without losing data.

The data stored must only contain useful information. Only the nodes which are used must be stored,
not all nodes.

Integration in 20-sim

If this extension is used often in 20-sim, it can be chosen to integrate this module in 20-sim itself, so
no external program is required. The only disadvantage about this, is that a part of the 20-sim program
needs to be rewritten which requires a lot of work. The big advantage is that the communication with
20-sim and the DLL can be made more efficient which has as result that the simulations can be done
quicker. On the other hand a lot of testing has to be done to create a flawless integration between those
two parts.

University of Twente

Appendices 63

Appendix A: Glossary

Several abbreviations and technical jargon is used in this report. The description of these is mentioned
in this section.

DLL Dynamic Link Library. A library y with functions which can be used by several
applications.

DDE Dynamic Data Exchange.

IPC Interprocess Communications. Communications between different processes

RPC Remote Procedure Calls.

Appendix B: Example static DLL

The following example is a static DLL written in Visual C++, which takes the cosinus of each input.
This DLL can be used in the example on page 9.

#include <windows.h>

#include <math.h>

#include <fstream.h>

#define DIIExport __declspec(dllexport)
ofstream outputStream;

extern "'C"

{

DIIExport int myFunction(double *inarr, int inputs, double *outarr, int outputs,
int major)

{
if(inputs != outputs)
return 1;
for(int i = 0; i1 < inputs; i++)
{
outarr[i] = cos(inarr[i]);
outputStream << inarr[i] << "™ " << outarr[i] << " ";
}
outputStream << endl;
return O;
¥
DIIExport int Initialize()
{

outputStream.open(*'c:\\data.log");
return 1; // Indicate that the dlIl was initialized successfully.

}

DIIExport int Terminate()

outputStream.close();
return 1; // Indicate that the dIl was terminated successfully.

}

Control Engineering

64

Appendix C: Dynamic DLL struct

The struct shown below is the struct which is used to send information to the DLL. The struct is used
for initialization and the simulation itself.

struct SimulatorSFunctionStruct

{

double versionNumber; // Version number of 20-sim

int nrinputs; // Number of inputs which are required for the DLL
int nroutputs; // Number of outputs given to 20-sim

int nrindepStates; // Number of independent states

int nrDepStates; // Number of dependent states

int nrAlgLoops; // Number of algebraic loops

double simulationStartTime; // Start time of the simulation

double simulationFinishTime; // Finish time of the simulation

double simulationCurrentTime; // Current time, actually the start time at the
moment of initialization

bool major; // Major step?

bool initialOutputCalculation; // Can the DLL give an initial output

¥

Appendix D: SFunction cases

Because the SFunction has several cases for each different situation, each situation has its own case as
shown below.

case: no dependent states, no algebraic loop variables
int sFunctionName(double *inputArray,

double *stateArray,

double *outputArray,

double *rateArray,

SimulatorSFunctionStruct *simStruct);

case: dependent states, no algebraic loop variables
int sFunctionName(double *inputArray,

double *stateArray,

double *dependentRateArray,

double *outputArray,

double *rateArray,

double *dependentStateArray,
SimulatorSFunctionStruct *simStruct);

case: no dependent states, algebraic loop variables
int sFunctionName(double *inputArray,

double *stateArray,

double *algLooplnArray,

double *outputArray,

double *rateArray,

double *alglLoopOutrray,

SimulatorSFunctionStruct *simStruct);

case: dependent states, algebraic loop variables
int sFunctionName(double *inputArray,

double *stateArray,

double *dependentRateArray,

double *algLooplnArray,

double *outputArray,

double *rateArray,

double *dependentStateArray,

double *alglLoopOutrray,

SimulatorSFunctionStruct *simStruct);

University of Twente

Appendices

65

Appendix E: Example dynamic DLL

Below is the source code for a dynamic DLL, written in Visual C++

#include <windows.h>
#include "SimulatorSFunctionStruct.h"

/ nnnnnnn
* in this source file we are gonna describe a linear system which is defined by
* the following transfer function description:

sN2 + 6s + 34
or A, B, C, D system:

A=1[0O0, -3.4;
10, -6];
-3.4;

has two poles on (-3 + 5i) and (-3 -5i)

steady state = 1

**/

#define DIIExport __declspec(dllexport)

extern ""C"

{

// called at begin of the simulation run
DIIExport int Initialize()
{

// you can perform your own initialization here.

// success
return TRUE;

}

// called at end of the simulation run
DIIExport int Terminate()

// do some cleaning here

// success
return TRUE;
}

DIIExport int SFunctionlnit (SimulatorSFunctionStruct *s)
{

// tell our caller what kind of dlIl we are
s->nrindepStates = 2;

s->nrDepStates = 0;

s->nrAlgLoops = 0;

// dubious information, since 20-sim itself does not check and need this info
s->nrinputs = 1;
s->nrOutputs = 1;

// return 1, which means TRUE
return 1;

}

Control Engineering

66

DIIExport int SFunctionGetlnitialStates (double *x0, double *xdO, double *xaO0,
SimulatorSFunctionStruct *s)

// fill in the x0 array here. Since we specified no Dependent states, and No
algebraic loop variables
// the xdO and xa0 may not be used.

// init
x0[0]
x0[1]

ial value is zero.
0
0

// return 1, which means TRUE
return 1;

}

DIIExport int SFunctionCalculate(double *u, double *x, double *y, double *dx,
SimulatorSFunctionStruct *s)

{

// we could check the SimulatorSFunctionStruct here if we are in an initialization
state and/or we are

// in a major integration step.

#if O

if(s->initialialOutputCalculation)

; // do something

// possibly do some explicit action when we are in a major step.
if(s->major == TRUE)

; // do something

#endif

dx[0] = -3.4 * x[1] -3.4 * u[O0];

dx[1] = 10 * x[0] -6 * x[1];

y[0] = -x[1];

// return 1, which means TRUE
return 1;

}

}// extern ''C"

BOOL APIENTRY DIIMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID IpReserved

))

return TRUE;
T

This example can be run from 20-sim with the following code:

parameters

string dlIIName = “"demoDynamicDIl.dll";

string functionName = "SFunctionCalculate®;
equations

output = dlldynamic (dlIIName, functionName, input);

University of Twente

Appendices

67

Appendix F:

Class diagram

This class diagram contains all the attributes and method for each object. All the graphical functions in
the main application are left behind due to the complexity of this part.

==Static dil==
DLL

20sim

o=

&= =HAMDLE == hMapfie
&= =HANDLE == hMutex
&= =P vOID== pBuf
=Smo*== pSmao
Q>==:double"}} dStatesDot
&= =double®== dStatesDot2
Q>==:double"}} dstatesTemp
= =int== Step
&= zint== iMaxTemms

==Shared memory=>=
Smo

g==hool== bOpened
g==hool== binit

g =double[]== dStates
g==double[]== dStatesBeqin
g==double[]== dCoefiicient
g==int[J== iMum berd fariabeles
g==int[]== iVariabeles
g==dauble== dFriction
gh=<int== iDimension
g==double== dDeltaT
g==double== dTime
g==int== iSteps

g =double== dH
gre=doublex= dHBegin
g==hool== hEnableHCalculation
g==int== iMumberdfodes
g==double[][]== di atrix
@e=int== iStepsToDraw
gre=hool== bSync

g =cloubles= dKR

g =int== iCoupledTolodeln
g =int== iCoupledTolodeCut
g==int== iCoupledType

g =int== iCoupledF law
gr=bool[]== bSalid

g =hool== hGranity

==thread=>=

e THread

t

Ml ain applic ation

So==hool== blxis
&= <bool== bMass
Q}:{bnnl:} bScale
Q}:{bnnl:} bZ
Q}:{bnnl:} bZem
&}={dnuble=} ol ek
B =doubles= dhaxy2
Bz <double== dMins2
B <double== dMiny2
Q}:{dnuble:} dMinZ2
Q}«:dnuble*}: dTempStates
Q}«:irrt}: iDrarey
B =zint== Height
B=<int== ilntenal
B=<int== WWidth
g==TBitmap*== pBitmap
Q}:{Tlm age*=>= plm age
=Smo*== pSmao

&= <HANDLE=> hMapFile
mﬂ}«HANDLE:} bt ez

S yFunction()
nitislize
nitislizeRunn
*Terminateo
STerminateRun(

Mutex

Figure 65: Class diagram

&= <P wOID== pBuf
=Smo*== pSmao
%{VieWThread*:} pThread

% alculateHamilton)
.0

e hreadr)
- iewThread)
’ChangeSettings()
E‘Displayﬂo
‘Dravt@tateso
E‘E xecutel]
esetScale)

Control Engineering

68

Appendix G:

Shared memory struct

Below the shared memory struct ‘Smo’ is described. This struct is used to exchange information
between the DLL and the application.

#ifndef SmoStruct
#define SmoStruct

str

for

¥

uct Smo {

bool bOpened;

bool blnit;

double dStates[6000];
double dStatesBegin[6000];
the begin

double dCoefficient[6000];

int iNumberOfVariabeles[6000];

int iVariabeles[24000];
double dFriction;

int iDimension;

double dDeltaT;

double dTime;

int iSteps;

double dH;

double dHBegin;

bool bEnableHCalculation;
int iNumberOfNodes;
double dMatrix[1000][1000];
int iStepsToDraw;

bool bSync;

double dKR;

int iCoupledToNodeln;

int iCoupledToNodeOut;
int iCoupledType;

int iCoupledFlow;

bool bSolid[1000];

bool bGravity;

#endi

Ap

pendix H:

//
//
/7

/7/
//
//

//

//

//
/7/
//
//
/7/
/7/

//
/77
//
//
//
/7

//
//

Is not used anymore (replaced by mutex)

true if smo is ready for use; hamilton is ok
2*dimension*(nodes+1) +1 is for the R state
2*dimension*(nodes+1l) +1 is for the R state

Number of coeffiencts for the Hamilton
number of varabeles per term

which states;

Friction per iIntegration step

Number of dimension (1,2,3)

stepsize

runtime

number of steps taken

current H

H when it starts

Calculate H each step?

Number of nodes (ex. R)

start matrix

number of steps

true=draw, false=calculate

Spring constant for R term

which node is used for connection IN
which node is used for connection Out
0: Add, 1 desired

1=F in, v out; O=v in,
solid node?

Gravity in the Hamilton

figit
O O

F out

Calculating total energy

Calculating the total energy of a Hamiltonian can be done by

while (iWhichCoeff<iMaxTerms){
dTemp=pSmo->dCoefficient[iWhichCoeff];
for (int iLoop=0;iLoop<iNumberOfVariabeles[iWhichCoeff];iLoop++){
dTemp=dTemp*dStates[iVariabeles[iWhichVar+iLoop]];

}

dH+=dTemp;

iWhichVar+= iNumberOfVariabeles[iWhichCoeff];
iWhichCoeff++;

}

In this example iWhichCoeff is an integer with references to the place in the dCoefficient array.
iWhichVar is a reference to the place in the iVariables array. First dTemp will be filled with the
coefficient and then it will be multiplied by each state. After each term this dTemp is added to the total
energy (dH).

University of Twente

Appendices

Appendix I Results for chained mass measurement
Time(s) X Y dhidt dy/dt Ekinetic Epotential H (total energy)
0.4 -4.3 139 -2F 2 243 3907 G43 4550
05 59 22 -4 4 a1 3438 T84 4223
06 872 28 -2 .5 7.8 2967 a26 3783
o7 “11,2 38 18,7 10,3 2488 a76 3464
058 130 50 157 129 2167 1100 3267
04 144 64 125 151 1950 11748 3154
1,0 155 &0 94 16,2 1818 1244 3062
11 16,3 9B RN 16,2 1636 1318 2954
1,2 700 112 -85 155 1424 1437 2861
1,3 7S 127 =501 145 1210 1556 2796
1.4 150 142 -4.4 13,4 1014 1735 2749
15 154 154 S35 121 825 1674 2699
16 187 166 25 10,5 653 1993 2646
17 158 176 -5 95 501 2096 2597
18 -190 185 13 83 373 2180 2563
149 19,2 183 05 7.1 265 2273 2541
20 19,2 200 -0.4 54 183 2343 2526
21 19,2 205 0,0 45 116 2395 2514
22 19,2 208 02 35 66 2441 2507
23 19,2 212 0.4 24 il 2473 2504
24 191 214 05 1.4 11 2492 2503
25 191 215 05 03 2 2501 2503
256 190 215 05 0,7 4 2495 2502
27 190 214 05 -16 16 2485 2501
258 188 211 0.4 -26 37 2452 2499
24 188 208 0.4 -35 g5 2429 24594
30 158 204 03 -4.4 102 23587 2489
31 188 194 02 53 147 2335 2482
32 188 194 02 5,3 200 2274 2474
33 188 167 0,3 72 264 2205 2489
34 188 174 0.4 -8,1 330 227 2457
35 187 AT0 06 -39 4n4 2041 2445
36 186 161 04 87 481 1947 2428
37 185 151 1,3 =103 557 1847 2404
358 184 140 1,8 -104 £29 1743 2372
34 181 128 25 =111 GE6 1645 2331
40 A5 118 358 =110 713 1571 2254
4.1 A7 S 107 a7 =103 732 1501 2233
472 S67F 897 75 483 77a 1387 2166
45 155 &8 9.0 -85 833 1254 2087
4.4 148 &0 10,0 -8,1 883 1126 2011
45 135 72 106 -8,1 27 1022 19449
4.6 S127 0 B3 11,0 -5,2 967 93 1895
47 -6 55 11,2 -5,2 995 851 15449
4.5 -l05s 47 115 78 1010 T 1791
44 83 39 117 Rl 1000 715 1715
50 -5/1 33 119 5,2 976 B50 1626
a1 68 27 121 501 942 592 1534
5.2 56 22 123 -4 q01 545 1447
23 -4.4 19 123 -28 ga5 510 1365
55 -3,2 1.6 123 -1.8 818 453 1301
55 -1.9 15 12,2 0,7 e 464 1243
a7 0,7 1.4 1149 02 741 453 1194
558 05 15 115 1.0 595 449 1147
54 16 1.7 11,0 1.6 549 452 1101
g0 27 1.8 105 149 596 464 1060
6,1 37 21 94 21 340 41 1021
5,2 47 23 9.3 23 452 a04 956
6,3 3G 253 g6 24 424 228 953
G4 5,4 28 74 243 367 236 923
E5 72 30 T2 25 31 583 G894
B 7a 33 64 27 258 B11 a70
BT 85 36 a7 27 211 B35 a49
65 a0 358 50 25 169 BG4 833
64 95 41 475 25 13 (i) a20
7.0 94 43 36 23 a5 712 10
71 103 45 31 20 71 733 a04
72 105 47 25 17 45 751 799
73 105 449 20 13 29 TEE 795
74 109 5.0 15 o4 16 T 793
75 111 a1 1,0 05 7 TE6 793
7.5 111 a1 05 o1 1 790 7

Control Engineering

70

Time{s} X Y /it chy /et Ekinetic Epotential H (total energy)
T 1M1 a1 o 02 a T 7
T 111 a1 -05 05 2 Tas 740
A 11,0 = -1,0 -0 g TE3 EEs)
an 109 44 15 -1.,0 16 T4 790
g1 108 448 -19 1.2 26 TE3 7eg
g2 105 4.6 24 1.4 38 749 TET
8.3 103 45 -28 -1 B 52 T34 TEE
g4 100 4.3 =301 A7 G5 TG 7a2
g5 96 41 =35 149 &1 697 b=
g 9.3 4.0 -38 =20 95 677 773
ar a4 348 -4 221 110 B57 7EY
g8 24 35 -4 21 124 B35 74
a4 a0 33 -4.7 221 136 B14 =0
an Ta 31 -49 =20 148 293 TH
91 Ta 28 -5, =20 137 ar2 728
92 6,5 27 -53 1.8 163 52 Fak
93 54 26 55 A7 172 534 7OE
94 o4 24 -5E 5 177 216 B93
a5 448 22 5.7 1.4 179 a0 B20
9k 42 21 5.7 1.2 180 486 BEE
a7 36 20 -5, -1.0 180 474 G54
95 31 14 -5, -049 177 464 G
a4 24 1,8 57 07 173 456 E29
10,0 14 1.8 -5E 05 167 445 B15
10,1 14 1,7 55 04 160 443 B03
102 04 1,7 -54 0z 152 440 292
103 03 1,7 -5,2 -0 142 435 480
104 -02 1,7 -50 01 132 4357 ZE9
105 -ar 1,7 -45 0z 122 4355 ZE0
106 -1.2 1,7 -45 03 111 440 551
107 A7 1,7 4.3 04 100 444 Sd4
108 =21 148 -4 04 a8 447 535
1049 25 148 -38 s 7 452 529
11,0 -258 14 -35 05 67 437 224
111 =532 14 =532 05 a7 452 2148
112 S35 20 -239 ns 47 467 514
11,3 -38 20 -2E 05 38 472 =10
114 -40 21 -23 s H 477 08
115 -43 21 -20 04 23 452 S05
116 -4.4 21 -7 04 17 436 03
1.7 -4 B 22 15 03 12 490 02
118 47 22 -1,2 03 7 493 500
1149 -4 23 -0g9 0z 4 496 s00
120 -49 23 -0E 01 2 495 S0a
121 -50 23 -03 01 a 499 499
122 -50 23 -0 oo a 499 495
123 -50 23 02 01 a 499 495
124 -50 23 04 01 a 499 495
125 -49 23 0 =20 2 497 499
126 -45 23 o4 02 4 495 499
127 47 22 11 03 g 493 499
128 -4 5 22 1,3 03 g 490 495
128 -45 22 1.4 03 11 457 495
130 -4.3 21 16 -0.4 14 453 497
131 -4 21 1,8 -04 17 479 496
132 -40 21 14 -0.4 19 476 495
133 -38 20 20 -0.4 22 472 494
134 -3E 20 22 -0.4 25 468 493
135 -33 20 23 -0.4 27 453 490
136 =301 14 23 -0.4 29 450 459
137 -29 14 24 0.3 30 456 456
138 -2E 1.8 245 03 32 453 485
1349 -24 148 25 03 33 449 452
14,0 =21 148 25 03 34 447 431
141 149 148 25 02 34 444 475
142 -1 6 1,7 25 0.2 G4 444 475
143 -13 1,7 25 0.2 33 439 472
144 -1 1,7 24 01 33 435 4
145 -0s 1,7 24 -0 H 436 467
146 -0E 1,7 24 -0 30 435 4ES
147 -0.4 1,7 23 oo 29 435 454
145 -0 1,7 23 oo 27 434 461
14489 01 1,7 22 oo 25 4354 459

University of Twente

Appendices

Appendix J: Results for mass on a beam
Time(s) X Y it dyidt Ekinetic Epotential H (total energy)
04 24 18 21,1 15 5719 1282 7001
05 43 21 182 35 4523 1584 B107
05 6,0 25 -5, a7 3418 1727 51445
o7 P 32 241 73 26817 1848 4465
03 &5 40 a5 83 2066 1967 4033
03 893 48 74 85 1634 2106 3740
1.0 00 57 -a8 an 1252 2288 Jo40
11 05 B4 A7 7.0 ao4 2446 3405
1.2 03 7 -39 58 617 2697 3314
13 M3 7B 32 4.4 383 2867 3250
14 116 80 25 31 204 2947 3206
15 113 82 13 18 94 3033 37T
15 120 83 R 05 1l 128 3159
17 21 84 08 04 13 3135 3148
1.8 121 82 -0.2 A5 30 310 340
19 121 81 (il 24 74 3059 3133
20 21 7.8 11 30 136 2936 3122
21 118 T4 1,8 -36 204 26495 o7
22 17 70 25 -4.0 287 2796 3083
23 114 EBE 33 42 366 2634 3050
24 110 B2 41 43 443 2561 3004
25 06 58 47 -4.2 14 2430 29445
2E 01 5.3 53 -4 574 2290 28649
27 95 43 5.8 40 633 2147 2780
25 53 45 6,1 38 675 2004 2674
29 -3,3 42 64 =37 705 1866 2571
30 T E 38 EE S35 722 1735 2457
31 £3 35 67 34 727 1613 2340
32 £33 6,5 30 720 1502 2222
33 -5,6 25 i -28 703 1402 2105
34 -4.9 25 B3 24 E7A 1313 1991
35 42 23 6,5 20 645 1234 1879
3f 35 272 67 Af 607 1165 1772
37 -2.8 20 B35 1.2 465 1106 1671
38 2,2 19 E3 048 %14 1057 1576
39 A5 18 6,0 0f 472 1018 1490
40 A0 18 57 05 423 953 1411
41 -0.4 1.8 5.4 03 74 966 1340
42 01 17 50 -0z 326 951 1277
473 0f 17 45 -0, 280 942 1222
44 10 17 43 0.0 237 937 1174
45 14 1.7 34 01 197 036 1133
45 13 17 35 032 161 933 1099
47 22 17 31 03 129 942 1071
458 25 1.8 25 03 10 947 1044
49 27 1.8 24 03 77 053 1030
50 23 13 21 03 57 9E0 1017
51 31 19 17 032 40 966 1008
5.2 33 139 14 0z 27 972 999
53 34 19 11 01 17 977 Q04
55 35 19 02 01 9 931 990
56 3f 13 05 0.0 4 954 935
a7 36 139 03 on 1 986 g7
58 a7 19 01 on 0 a7 g7
58 37 19 01 0o 0 937 937
60 3f 13 05 0.0 2 954 936
62 35 139 05 -0 7 978 Q55
E4 33 19 -0 -0,2 12 970 ag2
65 31 15 -2 02 17 96 a7a
63 25 15 A3 -0 el 952 973
7.0 25 1.8 13 -0 22 944 a66
732 23 13 13 -0 23 936 959
78 20 17 73 -0, pal 930 951
77 17 17 132 -0 18 923 941
a0 13 1.7 -0 on 13 920 33
8.3 11 17 03 0o a8 919 927
B 03 17 0E 00 5 919 a24
&9 07 17 04 0.0 2 919 a1
92 0E 1.7 03 on 0 920 20
95 03 17 01 0o 0 920 920
93 05 17 0,0 00 0 920 az0
1001 0s 1.7 01 on 0 920 az0

Control Engineering

72

Time{s) X Y dxicht dyidt Ekinetic Epotential H (total energy)
105 05 1,7 0z 0,0 0 914 914
1049 o7 1,7 0z 0,0 0 914 914
11,3 05 1,7 0z 0,0 0 918 918
117 09 1,7 0z 0,0 0 918 918
12,0 09 1,7 0z 0,0 0 918 918

University of Twente

References 73

References

Dynamical systems (2003), dr.ir. P.C. Breedveld, prof.dr.ir. J. van Amerongen, Dynamische systemen:
modelvorming en simulatie met bondgrafen

Lagrange (2006), Lagrangian — Wikipedia, the free encyclopedia, http://len.wikipedia.org/wiki/Lagrangian

Hamilton (2006), Hamiltonian mechanices — Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Hamiltonian_mechanics

Fundamentals of multibody dynamics (2006), Farid Amirouche, Fundamentals of multibody dynamics —
Theory and applications, 0-8176-4236-6

Applied dynamics (1998), Francis C. Moon, Applied dynamics. With applications to multibody and
mechatronic systems, 0-471-13828-2

Classical mechanics (2004), Tom W.B. Kibble, Frank H. Berkshire, Classical mechanics, 1-86094-
435-3

Mechanics of materials (2001), James M. Gere, Mechanics of materials 5th SI edition, 0-7487-6675-8

Technisch handboek werktuigbouw (1997), G. Groenedijk, Technisch handboek werktuigbouw,
90-5576-072-2

20-sim (2006), Welcome to 20-sim, the software for modeling dynamic systems,
http://www.20sim.com/

20-sim help (2006), 20-sim Help, http://www.20sim.com/webhelp4/20sim/index20sim.htm

Interprocess communications (2006), Interprocess Communications,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/ipc/base/interprocess_communications.asp

Integration methods (2006), Methodes voor het oplossen van beginwaardeproblemen,
http://www.cs.kuleuven.ac.be/~ade/WWW/NW/NW/wagenslinger/methodes/index.html

Leapfrog (2006), Leapfirog integrator,
http://einstein.drexel.edu/courses/CompPhys/Integrators/leapfrog/

Theory of plates and shells (1959), Stephen P. Timoshenko, S. Woinowsky-Krieger, Theory of plates
and shells, 2™ edition, 0-07-085820-9

Fundamentals of vibrations (2001), Leonard Meirovitch, Fundamentals of vibrations, 0-07-118174-1

Control Engineering

	002CE2007_EricStaal.pdf
	leeg.pdf
	verslag v7.2.pdf

