EXPLORING SOFTWARE SCALABILITY

“®)
° *ﬁf‘ University of Twe:.t}e
toplcus e Enschede - ?ge Netheriands

Cover

The mouitain on the fraet is the Store Apstaehorative o well knover roartoin in Mocwoy, With o
fittle phove 2290 metars itis one of the highest miountain peoks of NMorway. | choose this tover
becausa it caprasent hwa Inportant suhjects of my thesis, scating ond oxplodng. Toving to cinvh &
razetain (5 25 ouch shout soertal as physical proparotion. & goed clindber will combine bath and
thos successfuly explore ord scole o srourtaie. This thesis ofso aints to coembine off necessory steoy
gried preporctions o be able create ond eroirrtaln scolofde softwore.

Exploring software scalahility

And o method for evaluating and imgroving saftware scalghility

Thests subatitrad for Hre degroe
of Minskar af Solesne ot
the [inlversity 0f Tisenta

Thijs Pieter Munsterman

Enschede, Febiruany 2008

Grachsaticn Cornemeion

Or. b Daneva (UT = B'WI facnlty)
C.Aamrit MEne [UT — B faculby)
Ir. b, Krans (Tozcus)

Ing. R de Megro (Topicus)

f‘
e &,

: University of Twente
tOpICUS e Enschede - gze Netheriands

Exploring software scalability - Mamape nient Sommary

Management Summary

Scalubility is an imporkant research zop cir the corrent ape of Internet enabled applicatione.
From dn acaderic viewpoint there is rok much research aboot scalability, &s 3 consequence it i a
practical problem for organizations to megsure o- predict the scalability of {parts of! their systams.
This research focoses on scalability on the software side of o systerm.

Corrent scalability literature is cheractenzed by two things. One, there is no widzly sccepted
defiqition of scalabdlity. Alrost every resecrcker vses hisfher cwn defivition and orly looks at
scalakility from a sinale parspective. Twe, t1is parspective is mostly ahout tha relationship batwaen
Fardwsra and scalability. This lack of axisting knowledoe about software scalzbility generates twe
poils For this thesis. The first being a definitiot of software scalability. What is software scalability
dand when car it be vsed? The secord being o cose study abont analyzing and improving softeare
sralamlity.

Software scalubility is defined gs the eaye with wioch the softwore of o svetern corn be gxonnded
to serve more Usees ardsfar work. This dafinition is the overall goal of softwara scalakility. Tae main
advantage of softuare scalability, in contrast to hardware, is that the solutions is rasssble during
differant sitwations. This definition can 2e further divided into twe dimensions;

I Software scafability @ the abifity to kordle increnses worklosd By chaogieg ports of the fode
{scerlphility agtimize tion verticol scolabilite)

2. Eiftwenre scodobuliy has the ability to bre gsed rmadtiple Hemes in oo cost-effective neay
(erdiranmental flosioilityFovizon el scalzbiling)

The twer dimensians are animpotant part of software scalability and shoold 2e both be
considerad when amalyzing software scalability. Botlk are 2goa ly importart becaase both sre
imaartans for crasting scalable softwara. Both m gt raquira diffarant things of an applicaticn a
trada-off dacision has o ba made about which aspect is more mpotant in a specific situazion.

To assist an orgdanization in dchieving saoftware scalability an evaluation method is prososed. The
method is auild around three key steps, freding bottlene ks, analvaing o Bottlenecs and scfving a
berttleneck, During the different szeps o namber of well-known and easy usable tools, methods and
metrics #re used to erther find or analyze software scakasility. & ceve stady wits done ot Topicos to
evaluata tha mathod. Az a daveloper of web applications Topicos has 3 vested interast in creating
scalable software. The case study was successful in “inding and aqalyzirg a hottlanack in a Topicos
applicaticn.

Mt all the selected tools, rmethad and steps were asabilz to analyss the scalabality dirmensions.
Ezpecially horizental scaling 2roved to ba difficult to measura. The ability to ranse codein many
differant situations is dependent on a lat of diffarent zspacts. Five differant matr cs weare chosen to
quantify the harizonzal scaling ability. However the results of the matries ramained incore usive
about wattar ar not they ware truly indicative of scalabi ity Future horizontal scaling nesds a battar
metric that better fits the gonal of horizontal scaling.

In -ha end seftware scalability is only one side of scalability, Troe scalzhility is 2 synergy betweae
Fardware and software. Both 1awve their own place aqd affer different thirgs and should be
considerad s such. Improving a system a cng all sides and dirmenszions makas a systam futura poof
from weveral angles.

Paga 5

Explor ne software scalability

Explor ne software scalability

Acknowledgements

This thesis is the fiqal resn t of a savan ronth research aroject. The research projzct is the finil
step of my aniversity gradoation but glso entire edocation part of oy Life, Sfter my gradoation Dwill
take my first steps irto he T sector as a fall time employee.

| wiant tor thank a lot of people who belped iy durig oy gradmation ghase in different wiayes.
First [wow d like to thank my supene sors from both the waiversity, biaya Daneva aad Chintan Amrit,
and Topicus, Martin K-ans en Rob de MNeg o for their continwal inpot and feedback on my research
and for answering all my quastions. | alsowant to thank Tozicus in genaral and the Finance
dapartment in particular for creating the appertunity for this resaarch. During my time in your offica
I leaned g lot about their unigue approcch o building good software but aleo creating a goad wors
environment. | had o lot of “un duritg all the social activit as.

& s want to -hank Hidde, Johan, Jonathan, Wirjam and Ted in person for all the additional 1elp
they pave during these months.

Thijs Fietar Munstarman
Thurstay, 07 Febroary 2008
Ceventar

Paga 7

Explor ne software scalability

Explor ne software scalability

Tahle nf comtent

1.1

1.2

13

14

1.5

16

1.7

18

11

1.2

13

3.1
3.1
3.1

3.2

13

3.4

3.5

4.

4.1

4.2

d.2.1
d.2.2

d.2.4
d.2.5

ProBlem Back ar Ol e B EETETART R fm e nmmem e e e e e e et s s e mnenn
L1 L 1T o L g 1 N

Ly . | PSPPSR

Research model .. e cssmesaesnn s s s

.13
13
14
15

wilb

B P B I Lo e ettt ittt st e AR $43 08§ 2mm e £ o e mmmmemennmn s n e

LT Tt T T T T O PO

L L= - = = TSP

Software develapmient 2% TOPICUS. . v o cimsiasnsimn s e e e ssraesas 1999300 120 119997 10 1144101 mmn

The FORCE Framawork e

16

16

17

17

.18

14

EXPLORING SCALABILITY: ALITERATURE REVIEW
a1 T T PP
1 Defining scalab’ ity o
2 The scalability prablem o
Laftware scalability ... e e s
Differences between hardware and softwars SealaBilty. e s mamsamaaesias s e e e

Inwesting in software scalabilily o e e

Currant software scalabllity svaluation methosds oo

12

... 12
.. 24

25

SOFTWARE SCALABILITY EVALUATION MODEL. e e s s e ¢

A new softweare sealabillty evaluation mebRod e e —————_———— oo

The awaluation method explainBd. . e et e e e
Finding softwara scalabilicy bottlaserks o L
fnalyzing safoware scalability aatzlenecks.. .o
d.2.3 Software sralability Eottleneck snolutior sErATEEY ...,
Iriwledze and SOMWArE FELISRE ..o e e,
Evaluation modal nverdiaw . s

34

35

.. AL
... 38

.. d1
... 43

Page 3

Explor ne software scalability

5. TOPICLS CASE STUIDY oo icins sonns s snsm smsmsc s ceeme cmecee ceme s soeens sesemes smemes s seesen scemes s stms 1 spansns 44
L B TR L=] T PO . |
5.2 Finding software scalability battlenechs o e A
53 Anahgls softwane scalahbillty Bobtlamecks ..o e e e T

5.4 Software scalahility bottlenedh solutiom strabeEy . oo e e e T

B.1 Sofbware SCalabilllioy oot me e e e e EEAETAAT R 17 1 s e s s me mmmmmmmmmmn s am e e e e e PR

6.2 ‘Goftware scalahbility evaluation medel e B

7. CONCLUSION AND RECOMBMEMDATIONS........ oo cevese emen s sme s emesns sremems s s s 546
0 T - T T PP -
7.2 RMecommendations OO PUP PO -+.

7.2 L b Ll w1 00 T L L YT Lot SRR 5A
722 Rermmimendabions: FUEIIR resrarmh . e e &N

DL A R e e s s v e s s anme smsees £aes m e uesee s seems £unmar Srms wmnnS s e o e fid

Appendix A: Preliminary investigation Into Non-functicnal requivement.. . e i ceveeevveee BE
Whak are Hnn-tunchiaona]l remUine TIRITER . e e e Fé
Non-functional raguirament iendels L.
MNon-Funetional reguirament forwie b Apnliramions o s s e 7]

Appendix B: Topicus Case Study IRFarmabiom o cer e e em e s e ss s mmmeme e e e e e e e ee B
Appendie BT Lagfila In0rmatiin o o e e e e e T2
Appendiz D2: _op st inTarmmation (o i i e 73
Fi TRy T = R s 1 T T4

BT Tyt Ll e i L= U 1o PP 75
Appendis BS: Dependenor shructurs WEbmin £ Graph v i s 78

Page 10

Explor ne software scalability

List of fipures

FIGLIRF 1.71: RF5LIT FRCh SLIEUFY (OF RISK OF ak [T ak 2 F-BUSINFRS PROUFCT {FRO [21]) .
FIGLIRF 1. 27 PREIRIF R RSEKE RIL R T oo eeeiiitis et et oeesaeeseeeseeeeeetee e seeesaeeeeeteeeeeeseersssts s ens s en e e ame e e e e e aeataeeteeeeneeateetaaneaans
FIGLIRF 1. 31 RFSFARDH BIEFL Lo coiieee ettt ot et s eie e s e e s ee s s eeaaeeeee —eeeenee amstns saees oe eeeeses senreans hnaenaeeenenaes
FIniLie 2.7 CIGARLAR IR 5 BLETTLIEE £ TEIFILLIS L et oot e eee ettt e e e e e ettt e e eee e e eeemee e e e eenenaeaees T8
FIGLIRF 5.7: EML: Te1 PRI OWFRUIFA CIF 2 WIFR SPFTEIIT TR Lottt ot e e ees e oo e e+ easeeree e e e e e e mree s e e e eemree e e eee enaaaees
FIGURF %.2: TRARF DFF CRECISICN RFTWEFR S0 2RI CRTIMIFAT Ch NG FRYIROMMERTASL FIFYI R TS
Ficiune 5.5: Seaannn v e

FIGLIRF 3.4 D%~ 0F BLAE FINING FFR OFWFLEPR FRTETIF L it e i s e i et siee s oesimneminsae s seeaesaneanneas
FIGLIRF 3.5: HARD'WMRF UFRS LS BOFTIMARF INUFATTAF BT Lot ii et et et e eees oeens seneees caseeee e e 30
FIGLIRF 5.6 MISHRL'S SCalafll 17y COPRRISIN FLOW CHART [39] L i o e e s iz
MELRF 5.7 S0al AR FRak PATIRE OF DURCC FT A 9] 0 i e

MEUREC 4.1 QLABAL CaallIATIEh STORFS. o svennmrereees
Fioine &2 Wialodl BEPHESER AT R 00 SCAABI 8 Fal LD

LI = e O o T T < =y = T
TIGUREC 4 KM IS - B AMAGLRIDNT COHCEPTS SR0R [4 3] i v i s s o i 42
Fioivme &8 LSRG D0 FRER S0 S08EE SLA AT P ALLATICA LU ‘i,l"MI— ITHANE IR HE THEEE- B LAT SR ST -FPeea, 43
[T = T e T e = I R o N

MEURE A, 1: BT CALL AMG W ATSL W DTS SUALT KDDL &50FR2W [11]]
FIGLINE @20 B HR S LA 109 B (i b o ans [171]) .
FIGURF A3 S IEC 11 28-K Qs UT KODLLIMARE FRCRA [T s e e e 1
MEURE A4 TRADL-TFF ODCEIINE ECTWITR TATRS it i csiees ciiries s s e s rns s ssrees sinrrees senreees sereees sres w70
.73

List of tahles

TaRIF 3.7 Bl 2RI 17 ROTTIFR TR DA TFRIIRIFR Lot ciies ot ciies ceit e e ere it e e ceatem e e eem e e aee eanee fiaeaeee eeeaaee feeennnnen 27
TeBLE 3.2 €00 FARISOM OF HARDWARF-SIIF S8 3F SCALARI T IR WFRTRFR ™
TeBlr 3,1: EXAlPLE GATA FRTR SCRWER OF TOST LOWGS, .
TaRIF d.2; EXANFI F IRFORE AT Ok FROR 1DANDR ™RSS TRSTIR S

TRALE .3 D5 RA CRIPLE B RIE cot v oovreess ceesvesrssnsimnenssesinesseers setsesreessessssnssnss sonsinss seneesne sebrssns braseeeenne sass s mennes LN
TeBlr 5,10 LoE INFORKMATION FRZ R The(FAOMNTHS AYCRAEE0 PLR RN TH oo v vrnrsiniie e coessimnnnnnnnns T 1

..d5

TaRIF 5.2: BILG "RACKING 10 .
LA

TeBLE 5.3: CiN7 MFTRICE CAFRYIFA CIF SACDLIFS SF APFIHIZATION & ahD B

TarF 5.4: Con7 METRICS CyFRLIFA CIF SWEIDLEFS SF APFTIZATIOH & A0 B USFRRY FIAT FRIRSG. o
TaRIF 5.0 GIORA S BT I D TRUIFI o it ciiiiiees ceeeiieeeies e teteeeeteeemaees oeetbaes teeeeas beeesan eeateeeenaans Gl
Iy I - T Lo g o | Tl W AT =L | PP il

TaRIF . 1:
TarIF 1
Tal e A2
TarIF
TaRIF .4
TaBIL .5: HIGHFST 308~ (3F “HF £l TRFF ~AKFM F2R THF BICFIFR BUIM CIF AFRHICATIOH Bl s cenvsnenmnsssenss .74
TaRIF ML SOFTWARF MFTRICK CAFRYIPA (IF APFIICATICH &
TeBLL A7 SOFTWERD MCTRICS 2YWERYIDA (F APPUCATICH B,
Tl b AGE: SOFTWAIF W FRICS (IR FARISE

Page 11

Explor ne software scalability

Page 12

Explaring seftwarae scalahility - Intreduction

1. Introductiim

This chapter discusses the central problemn of this thesis. The following sedtions explain the
problem, its haclhground and the way this preblam is currertly tackled. The chapter continuas with
secting out the research goal of this mastar projact, cutlining the research method, and farmalat ng
the rasaarch questions.

1.1 Froblom brolkground

The gquality of software s 3 hot topic in the software industry, The growth of the T industry
brought fort many diferent iritictives proposed to gassess gaadimprave tie guality of software 28]
In today™ competitive market, the sbility to deliver high quality software, while keeping the
resaurce dermand w thin budpet has become an important competitive advanteee [149]. Especially i1
e-Business the quality of the application is believed to be of high irportance tc its competitive
dovantupe [13], [21], [43].

A paper from 2031 yuked an organization —oidentify and cateporize potential riskes fo- o
traditional IT project and for an e-Bosiness project [21]. For traditional IT projects most risls weara
linked to furctionality. For the e-Business project the functiotality of -he application wias no longer
the rrost important risk. Different goality re ated risks were ident fied to be just g, sometimes
morz, irmpartant s functionality, The resalks are shown i Figure 1.1,

Typical, Recent IT projects {28 risks])

25
20 - '
15 | {
10
5 4
i - | e — ————
£ So 17 Ay o
"0%. %, <y, R Wy Pey,,
N, N Y % ity 7
9//2‘ ’)CG (g2

Recent E-business project (63 risks)

I

10 4

B
i
d -
2
a4
é@ o“e (@ & ;\\o(‘ & . &@ S & < RS
& NG & & < & > Y v
N 5 % 5 N 3 AN N
& QY N\ & 2 S 3°©
& & &0 & o W@)
« () Q\’b A\ ,go
[
QP

Figure 1.1: Result from survey of vlsk of an ITand e-Buslnass project [from [21]]

Exploring softwars sca ability - Introdoction

The research project started with a shart preliminary study abaut the most critical 1on-
functional requiremants for web applicat on [se2 Appendiz & Pralininary investigation inte Non-
functional requirermant]. Wken davelopirg software for the web, one of the eqvironmens variablas
that has to be taken inze scceunt s the nomber of expected vsers and the oad they 3ot on the
applicatian. The akility of an application to handle the increased load is detined as sca ahbility. 4
pefertly soa gz spplication should be able to handle anincraased lkad with reinimal e -essa in
rescu-e damand =nd a mivtimal decreasa of parformance. While sca ability is used to describie a
ce-tain quality aspact of tha softwaqa itis often poorly nnderstood and defined [26]. The reason
scalahility is poarly undarstood is its inherant complexity. Scalaaility is a multi-facated problem taat.
Fasz bagq poarly researched.

The danger of this gap in know edge is that it makes it herd o predict the scalability. Tae
scalakil ty of an application is hard to prac sely predict before it = actoal y created. An organization
cun imperove its knowledpz about scalability by reusing (2arts of the] code that has been
implemented and ested for scalability in the past, There s howaver no redl research about the
implermentation of software scalability and its -guse.

Reusing implarmented code can cause difficulties bacause the previous anvirenment may not.
match tha new anvirenment. Differances in the anvironmens can causs undesirable effects in the
software code, which caq lead to faults ard arrors, Components Aare made more generic to enable
implermentation in multiple ervironments. I a comporens has been designed without sca ability in
rind it is hard to predict the scalability of the result. This problem is shosan in Figore 1.2,

Limztear acalabiliy
resiui rarme Abs
Requirements 1 3LEnal er e rmn ek)
E:gineering — e — — — ¥ Architecture
A
. Reusable
- components)
Linkngusn consequencas 1 204G GEvEbpme Ungraciciabis
far acalability Sod Abilily Bbuns

Figure 1.2: Froblem background

The ma n issue of sefzware scalahil ty is the lac o of coharant and directly applicable knowladge
ahout the subject. Gaining knowladge Aazout seftvrara scalability and develzping implemantable
practices can halp an argan zation in success ully improving scalabi ity of its application and
improving the competizive sdvantape of the prodoct and the organization.

1.2 Mrohlem skatement

The carmplexity of the scalab oy issae s an mportant starting po nt “or the issoe of evalwsting
sralability. The desire to have a better irsght into scalability 129ds to -he following problem
stAatarnant:

“How oo e sofhware soolehifity of v opplication be analvzed for the godd of improving the
scalrrhility of e opplicotion and goimiog knowledie gbrout the scalobulity Jssue £

Page 14

Exploring softuwars scalability - Introdoction

1.3 Research goal

The goal of this research is to investigate oions “or improving the current scalabiity analysis
practice as part of wah application davaloamant projacts. The first geal is te defire and explora the
concapt of software scalahility and how itis related to the broader conce st of scalability, and othear
guality requ remerts. This goal is motivated by the Sact that ir literature soffwars scalability is
owershadowsad by the research and applicetion of hardwara scalability.

The second goal is te craate a roadmap that provides the ability to mprove the sofzwere
scalakility of applicatinas and gathar knowledge about scalability. This is motivated by the
experiences of taam members at Tapicus, whe obseread that the ahbility o assess the scalability of
an application increqses the chance that the rasaling scalability s aceeptabla.

Tao achiava thase research goals an axplorazory study on the subject of saftware scalability Fas
beer dore. The used resasrct mazbod s dascr zed 11 more detaillin sobsection 1.7

14 Researeh model

The research consists of a numaer of steps that cormbina both theo-etical and practical
dpprodehes. The different research goals are depicted inore or nore steps, that combired provide
an answar tothe largar goa - Tha thearetical part is the creation of an evaluation nedeal far softuara
scalahbil ty. The newly created modelis applied and analyzed in a case study using software prov dad
by Tosicus. Infor mation gatharad <his way is used for the evaloation of the model.

The firal szep i the implementation and evaloation of the rrodzl inan organizat onal contesxt.
The exploration of software scalability can only be roly spccessfulif it s sopaorted over o larper
period of £ me. The resesrch modz] s depicked in Fipare 1301 was developed by applying
Yarscauran's and Docrewaard’s mathod for —omposing a research model [55]. T1is -esearch model
comhb nes all thesa steps and puts therm in alogizal order.

Lt shie

Enllwairez siz abiilily

Fleure 1.3: Research model

The What The How
L SRy
Neo-uncrinnal - |] DOraft evaliatio *

resquinezneanls ler [T TE [RRATH Caxe sy
ek A plivatins Ev”h'"’.h.m'; hiss M el evaluadicn

i ilaalailile 1l ! L

Lo and revisicn

Topitus v Imnproecd scalshilit
Liben cilenr salule: Topicus wok apiplivsalinan . pas.:aa.:s:srrk:rll !
Sralahiline issie eIppelivalivn

Applicetion of
thr mndal

Prage 15

Exploring softwars sca ability - Introdoction

1.5 Rescarch questions

The research modal in Figure 3 is oparationalized by resaarch questions. The separata steps of
the rasaar-h modsal can be viewed as questions to be answared. Four questions were identified that
wera arswa el during the projact, in erder to satisfy tha maia goal. The following quastions are of
impartance for prov ding an answer to the central question of the preject:

1. Whetis soolability, hew is it defined in literoture end whior are bypical seolahility issues?
Diffarant auzho-s talk aboot the maaning of scalability, the importance of scalability and
typical scalabilizy issues. A litaratura survey is reedad to provide insight the currant
state-of-the-art of scalability.

2. How can soffware scalokility be definad?
Sralability in saftware has no raal unifying definiticn. A new nsable definition is needed
tor cupture the mmedning of scalability fo- software.

1. Whot cae Bre done for Hie cortinued evaivation snd irnprovermerst of software scolatolitp?
Threte: hasic steps are praposed to ansure a contineas improvament of scalability:
[1] bottleneck idantification, (2) hottlanecl analysis and (3} bottleneck solution stratagy.
For scalahility this mesns tha first step is findiag and idantifying the most importent
scalahility issua. The sacand step is atalyzing the problem in order to be able to link
cause and efect. The thi-d step is choosing an effective solotion stratzey to tackle the
prrublerr.

4. v the eveluotion mmedchod usakble?
The evieluation and improvement of scalability s not o onctime event or practicc.
Continues dssessment ad information gathering can provide valuable cnowledee for
the arganization. Which knowledpe is usable and waat should an organization do with
this knowlzdge

1.6 Roscarch scape

The focus of this research is on software sealability

Whila szalahility is influanced by a g-gat numbe- of factors from both hardware and scftwara,
this research focuses o7 the wealability of softwara, Within sofbwere the foons s or the
applicatior code. Othar software parts, such as datahasas and the cparating systems, are not
evaluated.

The impact of the environment is assumead to ba minimal

The focus is on software, the influence of hardware or other software parts on the scalability of
an application is assumad to be minimal. This resaarch anly propeses -0 maka changes to the
application, and not ot1er factors a5 the Fardwere or the operating syszem.

Only a small numbers of evaluation methods is investigated

The pu-pose of this researc s to investigate the desirability and owtline for the evalwstion of
software scalability. For differant situations, different mathiods and too = may be mora
applicable. ~his rasearch is not intarasted in craating an ovarview or a survay o” applicable
methads and tools. Instaad it meraly focusas an tha gnal of the evaluation, not the pracise
rrieatheed.

Page 14

Exploring softuwars scalability - Introdoction

Interaction hetwean non-functional requirements iz assumed to be minimzal
In a real- ife eavironment thera is interaction between differant nen-functioral raguirameants.

This interdependency requires a trade-off decision. Mor the sake of simplicity the irteraction
hetweaen scalability and other non-functional raguairaments is assumead te ba minimal.

1.7 Research method

This researca projec is divided nta threa stages. The first stage is gathering information about
the concept of [saftware) scalability and related areus. & iteratore stody is done to define scalability
in zenerdl and software scalabiity in particolar, Woaich factors are of importance fo-ach eving
softwiare scalability, snd what are the potentiz] berefits for improving software scelability?

The second stage s creabing ard us ng the new road mae fo- evaloating, anabyvsing and improving
software scelability. & case stody is done with an actoalweb application. For this research the web
dpplicazion s prov ded by Topicos. The zoal of the scalability anslysis s twofold. The firsk goal s
evalmating -he corrent scalability and identifying the scalability bottlenscks of the application. The
second goal is generagting knowledee abowt scalability, Which parts work well and which showa
[2otential] problems?

The [zy7 stuge is the evaluation and analysis of the rosdmap and its aaphcatality inthe larper
context. |5 the roadmup vsade for continual evaluoation of scalability? Does the rogdmap imarove
sralability and 1s it usable in practice? One of the subjects of the evieluation will therefore be the
usdhility of the model in different environments. To truly creste a1 emvironment where there s
focus on quality preposing a single methed is not anough. Quality has to become an important issue
during the entire development cyvele, To furthe- increase knowledee sbout scalability in the
predmzation, the aware1ess of scalability bies to becorme part of the organization. Sca akality is o
mowving target which can alwiays be i proved.

1.8 Theziz structire

The thesis is structured as follaws: The next che pter | chapter 2) provides a backeround
tescr ption of the case study company. Topicus. The godl of the chapteris to give insight in the
predmization and its strazegy. Topicws is a non-traditional development organization, the chaster
gxplains how Tosicus differs from other crganizatiors. Chapzar 3 is a | terazure study of szalability
and software scalability. Tha ooal of chaptar A is te spacify the draft model that is used “or
evialuation at “opicas. The draft model s credted from existing and adopted 2valmation models.

Chupter 3 is o sumimary of the reszarch done during the project. [Estarts with the application of
the proposed draft mode #nd dz2sc-ibes how it aas teszed. Aside from the pract cal adoption of the
model, its impact on the organization s @lso evaldated. Chapter & discosses the key resolts of te
research. It gives a structured overview of the firdines and or tically evaluates t1e lessons that can
ke learned. Th s chapter w I dlso discoss the adoption of the roadmap i1 the orzanization. The
predmzational adoption s more than just irtrodocing the roadmap. 1t has to be sceepted and
implermenzed by the organization. Last, in Chapter 7, & surnmary of the project results and the
dpplicability is given. Mext to this, recommendatiors gre give for ose, sdaption and foture research
and extensions. “he goal is to create a final overview of the project. References and appendices are
placed gt t1e end of the thesis.

Prage 17

Exploring softaane scalability - "opicos

2. Topicus

Topicos i o developer of web based solutions for within the Doteh mar<etlace [54]. What
makes Topicus unigoe is their stratepy for entering and growing 17 8 specific market, and their
predn Zational grow strazegy. Tae beginning of this chapter explains the unigae growth stratepy of
Topicos with respect to their competitors. The later s2otions describe the software developrment
dpprogch at Topicys.

21 Corporale slralegy

The mzin diferenca betwaen Tosicos and other software developars is their stratesy.
Traditional develapers gpprosch e market from a single organization and try to cazer diffe-ent
markets and costorers. Topicus approdehes the market differeetly, They os2 o ‘'multi-tiche’
stratepy. Instedd of being one big orgamzation for rmultiple markets -hey cregte malbiple
predmzations for separate markets [62].

Edutopics

FET Holding

~_

Topicus
Onderwijs

P&A ‘
Belanings |
Magt.)

~ —~

Tapicus
Finance

Topicus
Core

~_

Gitkikker

Topicus
Zorg

Protapics

\/
Figure 2.1: Organizational structure of Togpicus

The advantage of this is that tha saparate crganizations can specialize themsalvas in a specifiz
market. This maans that they can craate = hattar 5it between their organizazion ard precessas, and
their target markat. Topicus has thrae bhosiness units for separate markets. Topicos Finance for the
financizl sector, Topicus Cnderwijs for the educationa sector ard Toaicus Zo-g far the healthczre
sector. The arganizations zlse brarc off more specific ivdapendent or collaborative spin-offs.

Besides the developrment organizations with the narme Topices the holding 9 3 number of non-
developrnent spin-offs and collaborazive bos nesses for varoos non-developrment tasks. For example
Protopics is o collaborative spin-off of "op cos, Fromedico and PPRMO [Participatiemaatschappij
Cost-MNederland). The goal of Pretopics isto be 2 dedicazed maintanance orianted crgenisatiors to
retnava this aurden from zhe othar parties. This enables the origiral organisations to focus on thair
original mission. Another liind of spit-off is Topics' own spacial braw of bheer callad Gitkiklear.

Page 18

Exploring software scalability - "opicos

W 1ila tha specific predocts are differant for each marliet the cuarall vis ons of Topicus can be
found in all their prodocts. Tapicus has an overall vision that is builz an theee important pillars:

e Infarmaticn irtegration;
e Lnftware asa service [SAAS);

o drpanizational structure amd procsss improvernant;

The rise ef the Interet allaws commuonicazien betwaen organizatians that were traditionally
molgted. O panizations that in thez past could rot share information, because of orpanizational and
technological irmitations, dre now able to exchange cnowledpe. Connectitg campanies enables
Topicos to expiend their products and services throaghouot the sector, Boilding o good reputation is o
ke wspeet for doegquiring new cusTamers,

Topicws develops products based or the “softwgre as o sereice” (S885] concept. Inthe past SAAS
was k1own as App ication Service Provider [A5P). SAAS pffers the wse of programs as ¢ service,
where costormers pay to wse the program, 1ot to own it This concept s implere nted with the ose of
different web aapl cations wh chin turm are psed to link different parties and osers, who do nos have
tir share & locaticen.

This mew way “or shating information and working dependent of locason bas an impact on the
orean zational structura, and crn be used to aptimiza processes. Activities that in tha past would
take too long, becduse of complzxty and nor-ef<icient cammunication processes, can now bz linked
togeter by integrating parts of the chain w th web applicctions. The results of this strategy zre
encanraging. Topicus was dt the top of the fastest prowing business in the Dutch marketplace for the
last couple of y2ars. Topicos won tie Deloitte fast 50 award in 2004, #nd has been part of the list 7
every consecutive vear. [t placed 21™ in the Deloitte Fast 53 2007 awiard lst with 2 1028% prowth.

42 Softweare develapmoent at Topicus

Topicus usas tha Agile software devalopment principlas th-ougheut the orzanization [6]. Agile
software devaloprant is not a singla strict mathod but a concaptua framawn-le Many dif*erant
methods and approaches claim to ha Agilg, soma of the hes: known are:

herum

eAtreme Programming (XP)

Adaptive software development [A50]
Agile madelling (AW)]

Topicos hys adapted an Agile software development method becy ose of dgile’s focus on
customer callaboration and it iy based on best-practices of software development. Boehirn and
Turmer wroate the ook “Belarciog Agiity ond Disciedine: 4 Guide for the Perplexed” (0] describing
both Agile and traditional davalopment mathod and their respective streagths and waaknassas.
They identified five characteristics that they call the kame grousd of Agila development. Thasa five
furtors ara:

Loww criticality of the application
Sanio- developars
Requiremeants charge wary often
Small development taams

A cultura that thrives onchaos

Page 1%

Exploring softaane scalability - "opicos

Almast all of these characteristics can ba found within Topizus. Topicus nses developmeant taams
of five to alaven mambears. Ern aloweas 1ava a high educaticnal lewel [all have 7 bachelor or master
dagras. This enabiles unior emplayaes 1 gan a lot of 2xperience and grow to a senior position in a
couplz of vears. Using smdll development tesms enables saork communication channels and redoces
maragement overhead. Each zeam vsually consists of a project manager, one or two business
dnilysts and between thee to epight developers -anging from jurior to seeior level. The soall tearns
are zat up to work in Zlose col Azaraticn with costomer.

This meaans during davelopmant -equireriants ara subject to c1anga. Changing regquiremants
means the corparate culture has to ba flexibla, but flaxibility breads chacs. The low crit cal tyis a
pont of irterest. While the corrent produocts are alreddy considered im porkent, future procects will
becomea mara complex: and critical. Taerafore during future projacts thare iz a higher nead “or
ruuality assurance. The main reason Tapicus is sble toowarlo efficiently with the agile pregramming
method is thiat the cormpany wias designed to inco-porate this method from the start. Othear
predmzations often have great difficulty changing to an Azile methodalopy because their
oreanization, culture ard amployvess ara stucl in the traditional davaloament methadalogias.

23 The FOTCE Framewaork

Topicos Finance uses d component based framework called FORCE to assist and simplify the
davalopment of their setwara. Tha framawerk consists of diffarant components wkich togathar are
all potential parts of a systam for tha financial sector [16]. The FORCE fremework was designad in
2005 It was a joint effort betweaen Topizus and an indepandent financial servica prov der. Topicus
and this financial sewvica providar wanted to combine t1eir exparience and knowladge of tha
financidl rrarket and web applications into an ASF based platform which provides ostimgl support
for both the firancial intermediary and the fingnoial arodwct sppplier. For the development on the
A5P pletform different essential componznts wers identified waich waoald farm the FORCE
framawork.

The cormponents are bBuilt a-ound the six phases an irtermediary goes throogh from acguisition
of customers to t1e acceptation of a aroduct and maragement o tha cortracts. The six stagas are:

Arguisition

Advire

Propos tienfsala
Administratian/Tile creation
Financial adrminstration
Contract managament,

R

During thesa stagas savaral steps and connections have te be supportad by the sotwara. The
compenents are divided irto three catagorias: primary process compoensnts, support components
and monitaring- and control componerts {see lgure 2.2).

Page 10

Exploring software scalability - "opicos

honitoring snd contrel components

A5 T Al
RITRERERIERTE

Sanll-lre
e Fanrne e
AdizEare

EEN
& nort
AT

[AT
T T

=z izl
sl riniglialcn

!

'

Pri-nary process camponents

Al s &
FAFent catizn

1 wilp TaricLize

M s iz
“2: Alrahnr £ Laabrars b " .
sy . s Zil8 =1 e IR @
B W) (USRI = qItatis 1 IR A aplzaddae
oroliles
SiLippart conmpone nis
Srdac
ke W BETALE ol inalioe are
RRTHSE
TEARIETIENT | | TEIEDE TR A)
TR R TEAEDE TR

Figure 2.2: Functional decompeosition of the FORCE framework

The different componznts are at the core of -ke Topicus eusable softarare library. The

dvantupe of vsing the framewark s having implemented and tested code for ose -hroughowt
mulipla pojects. New projects ard custoners are ased to explore and enhance tha d fferant

possibilities of -k framawark. One of tha growiag concarns for Tosicus is the ability of thair

Applications ter handle 2 growing wsar base over 5 largar amount of time. This is why scalability is a9

impartant subject for Todicus.

Page 21

Exploring software scalability - Exploring scalability: a literature review

a. Ixploring scalability: a literature review

This chapter forms the theoretical foundation for the projzct research. The zoel s to provide an
pverviaw of Ehe current state-of-tha-art of scalatal ity reseas reh. Scalability is a rultidisciplinagry
research area disciplines like web engineering, reqoirements engineering, snchitecture des gn aad
ron-functiondl requirererts each influence scalability research. Previous work is used to better
tefite the prablem ared and provide t1e foondation for the 2ealmation of sca aklity, The first
section discusses scalability and the overall scalabil ty 1ssoe. The secand section diseosses software
sralability in gregter detisil. The last sections talk gbous the spplication, the differences snd benefit
of saftware sra ability.

3.1 Soealahility

Scalubil ty is @ crtical, but very difficult noa-functional regquirement for a web application to
predict and measure. Th = means it is ar important suaject for web applicatioq developars like
Tepicus. The ability to facilitate a large and grewing number of usars is o° great impertanca in a
competitive rmarket. As foture projects become bigger and more cormples scalabil ity will heve o
preater focus. The next section describzy scalability in literdzare nogreater dezail.

311 Defining scalahility

The woard scalabilizy 15 vsed throophoat 1T literatarz. Terms as size scalabality, sofbwars system
sralability, hurdware scalability, spplication scalability, technology scalab lizy, generation (time)
scalability, space scalability, heterogeneity scalakility, databaze scalahbility, interface scalability and
more wers @ncountered during the hterature survey [24]. All these different definitions only make it
mora d fficult to talk aboot scalzbility. Current research feciuses an this definition proeblam and

wrnts te biring strocture to tae scalability subject [15].

In seientific itergture scelability is handled inconsistetly and defined differently a mong authors.
The diffarent wigws can eoftan be hieled to tha different ervirenment of the suthor, Weinstock a1
Goodenough define scalabiity as [G8]:

“I. Scolobility as the chilty to fiondle increosed worklood Seithout co'ding resouross to o systerr)
2. Scatobiity is the ahility tohondle incrensed workinad by repeatedly opaling o cost-e fective
stredegy for exterdirng o systerss copacity”

Bondi describes scalability as [8]:

“Seofubility conrotes the ability of o yestern o ocrormmogote oo increasing rember of eferrents
or oiects, to process grodog volueres of wors gra-efully, anddor to be susceptible to
erlargerent”

W lliams and Smith describe scalahility differantly ‘60
“Sroladdity v O errecsare of o opplication swskem’s oinity fo—without modiioation—coost-

effestively prowide increased throvghput, reduced response time ond/or suppoet
e Lveery ket v e resea ey e ooelend™

And Dubec et al. describa scalability as [15]:
W define scefobality oy o guahity of software systerny charocterized By die caswo! ienpact Hhiot

sraling aspects f the system anvironmients ond desior hove or cort@io measuned sustem
Gualities a5 thesa nspeees are vadied aver expected operctiono ronges”

Page 12

Exploring software scalability - Exploring scalatlity: & itersture review

All these differant views are typical far the way scalability is handled threughoot literatora. &l
dafiqitiong seem roughly the same, but differ whan raadin nere detail. Commaon is the dasire to
increasea the ability to handle 3 greatar werdoadf fumber of usars. Most iteratura deals wizh the
imsue of scalability from e hardwire serspective, and define scalabilizy socordingly. This Partwisre
oriented view on the measurement af scalability is often described in te -ms of the gain when
charging the number of 2PUs or awailzkle memony [33]. [623]. This sasearch s interasted inthe
scalakility of the soffwara o a systam.

In tha praliminzry -esearch scalability was daf ned as:
“Sealobility i+ the ease with witich o systert cont be expanded o sarve morg Users and/or work”

The carrent lewel of scalability is often exprassed in tarms of Heoughget, Throoghpot s
medsured ir the numbier of uyer tronsociions per second (tas). Inthis case a t-ansaction iz @ user
reguest from the browser to the server. The total qombe - of transactions an appl cation can handle
iz usad to indicats tha maximuom Ioadfnsers a syaters can handle. In that situation tha applicasionis
sealable to that maximur load /users.

In 1950 M.D. Hill w-ote a critical articla ramed “Whet is scalebefins ™ about the use of the ferm
scalahil ty fo- software systems [26]. Racognizing that withous a good definitior tha term scalability
Fas o redal meaning, Hill called on e zechnics] commuonity to either rigoroowshy defite scalability or
stop using it At the tirme of writing this thesis 1owever, 17 years later, there s still no real unifying
defititiaon of scalability. &1 o poirg PhD project by L Ooboc is focused on credting s comarehensne
framework that encarmpaszses the entire scalability subjer:. Her goa isto contribute to the reasoning
and application, onderstardirg and optirmzat on of scalakelity, Bot a7 the sme of wre ting this thesis
Fer research is still in pragrass which means it is not knowa if this new definition will be supported
by tha research cormunity.

W th the rise of the Interne:, web gpplications and web services, scalability has become a more
important issue. Big corr parizs gy Ebay and Google who serve millions of users o day both regoire
thei- zarvices to be highly sca asle. Googls found it be to soimpotant it oreanized & ane day
convenkion dboat sealability 0 July 2007 [23].

Corrent litzratore about scalabil ty for software systermrs can be characterized as followed:

- There is o clegr defimtion of scolatclite Mooy of Ehe outhors give o wese on soolablity
refuted fo thelr erevirorrnient o desired oo

- Scafedlity 1y often defined gno anobeeed o specific cortext (e poroffef cormputing or
Jeor specific applicotion ns video streaning).

- Scatzhiliny s facused on Ravdware (or esomple in reteocks or distrdnetion aroong
different servars and Nrocessars,.

- Scatzhility for wel applications is aften dascribed for large seale publicly nooessible
sitesfopplications ns Chaw/Gangle. The foous is an the Business-to-Consumen§20)

ket

In tha end a more unified definiticn o” scalakility is neaded to bring the scalahility research to
the next level The goul of this thesis s to furt1er explore 3 s mall pars of this issoe.

Prage 23

Exploring software scalability - Exploring scalability: a literature review

3.12 The scalrhility problem

The reason scalahi ity is intarpreted diffarantly by se many differert authors i becaose o” the
inharant com alagity of scalabilizy. “ha scalability of a system is influencad by & lot of different forces
and on a lot of d fferent lewels, of both Fardwsre and software. In case of a2 wab aaplication thers
dre TRy points betweasn the servar hosting a site or apzlication, and the compotear running the aeb
Browser, that imprct tha scalzhility. In Figure 2.1 every lina and box has an impact on tha scalability
of the application.

F reraadl F rawsl Appligation Fost
‘ ‘ ‘ ‘ Application
Hesting __Sewar
Er;]DBT:H? JF parmer Fressntation
. l Metwork Layer
browsar | | i —
browsar | | ! ‘
Lagie layar
I — —— Flreraall
A
Data layer
PG running
browsar Metwork
Databece layer
. Estarnal
P running | | Systems L N
L broswsar

Figure 3.1: End-to-end overview of a web applicatian

O the aapl catioe server alone thers are many 2oiats that, fimplametted incorract y, can
cuuse sralability issues, Ina d-tier srchitectare the scalability of the application can be eva uazed as
doomplete entity, bot aleo on the different levels. & bott 2qeck in the logic layer can calse the entire
dpplication to perform badly. This makes evaloating ke scalability on o softwire [2eel not gs
straig htfaraard gy evaloating the hardware scalability Woer evaluating sca azility it s alawdys
impartant to keep the bigeer picture 07 mind, because scelability is @ molti-faceted concept. Parts
like -he 05, the network and Internet connection speed and the prograrmrming langoaee all influence
sralamlity.

The aaility to increasa stalability is divided into ~wo main appreaches 601, Scating wp fverbica!
sraling) and scatling aut thorizonto! scaling). Scaling up is the improverren: of Fardwere of 3 single
server toirmprove the load capacioy. Scaling out s zhe addition of serers to spread the load among
mulziple servers. The limitation of increasing scalability throoegh herdwisre s that the scalabilizy is
rot doub ed just becduse g second server i+ added. Softws e is often not desipned to rmake efficient
use of the more posrerful hardware or sdditional services.

Most o-ganizations choosa to improve the scalability of existing applications by addirg or
improving hardware. Hardware ravision is considered -z ba less razource consumiag than rav siting
the codz or boilding 4 new apsication from scrate. There is hawever a practical imit to hardware
scaling. Adding servars also adds cvarkead for controlling all tha servers. At a certain point efficiant
control o o large nomber of servers s 3 most impossite e, Inefficant control leads to decrsased
sralabil ty pain per added server. Vertical scaling is limited by the capabilit es of the berdwsre
companents of the singla sarver.

Page 24

Exploring software scalability - Exploring scalatlity: & itersture review

A rnore expansive, but on the loag run poss bly mora afficient way is preparing the software for
scalahility. Orly after the software iz as optimized as possible, or the cost for further improve nants
iz deemad tao vigh, an arganization shoold considar hardware scaling. & pra-active organization will
use all the differant levals oo current andd futore gpplications to achieve the highest possible
sralabil ty wn orzanmization s willing o invest 170 &An organization should glso apply lessons learned
during the design stape of future projects to improve scalability of rew implementations.

Annother impeortant aspact of scalability is that it is never parfact or finisked. It can only be
dearmed acceptahle far tae correat situation and expected growth. In essanca scalahility is a
waalkest-link prablem. Tha part of 18 chain that has the bigoest negetive influence on the scalability
pf the dpp ication & the weakest-link. When taat link is emoved or optimized there will always be
anocher aart of tha chair that bacormes the “most negrtive ivfluence™ on t1e cha n. Az a result there
are always (potential] bottlenacls to be found, in both the hardwara and softwsre. Once again the
guestion becornes how mach an arganization s willing toioeest in rerow ng these bottlenecke.
Wehat makes the issue eved more camplexs iy the fact that scalability 15 rot a fiked target. Acceptable
scalability is niot a stat © leval. An application can never have too much scalability, only anoagk. This
makes scalability a moving target issua.

3.2 Doftware scalability

The ability ta improve scalability through optimization of code is often neg ected. The faw
articlas that talk about the scalahility of software oftan auplicithy linl it to s2ecific hardware
configurat en like in parallel prograrmming. This research iz intarested in improving scalability
without censidering tha hardware sspects. While softwa-e scalability car ba improved or diminished
with certain hardware components there are also practices and patterns that mprove or hinder
sralabil ty indepedent of the used hardwire. For example minimizing the exchange of data
betwee T the separste perts of the application. This s helpul secamse it decregses the transaction
time and steraga cost i1 every situation. Or using quic ¢ sort, waizh has an running fima &f O (n log
r]. instead of ingertion sart, waich has a running t ma of G {n®n).

Softwa-s scalahi ity is creating scalability by craating scalable code. T this end a new definition
i givan:

“Soffwaire scedobility s the ease with which the software of o system can be exponded o sevve
frore users artdfor work”

O oahigh level d software solution bas ta incresse the scalatility but also be reosable muoltiple
timea. Weainstock ard Geodenougk zlso racognized these two saparate characteristics of scalability
on A abstract leval during their litaratura study ard stazed them as follows [58]:

1. Scalability is the akility to handle incraased wor doad {wit1out adding resources toa systam)
2. Scalability is the ability to handle increased wor <load by -epeatedly applying a cost-effect ve
strategy for extending a systam's capacity

This resaarca attempts to give a mera dafired and practical appreach <o software scalability. The
improvament and the applicability of the sclution is expressed along two dimensions. & good
software scalakility solution has increase sca ability and be reusable. This is wery impo-tant becausa
one of the defining characzerist cs of soffwere scalability is the reusability of the saluticn. To this end
software scalability is divided inta two defining dimansions:

Prage 25

Exploring software scalability - Exploring scalability: a literature review

1. Softwore scalobility is the abilify fo handle increosed waorklood By changing parls of the
rode

2. Softwore scalability hos the abilily to be used molbiple imes in o cost-gffective wey

The first dimension describes the ability of 3 systam to accerrmodazs mors usars without a
charpe in resource demand. How can the highes: possible throoghpot be realized withouot using
Fa~dwaqa specific abiities? This is described 75 tha scalnbility optinvizotion of a systert, The second
dimensien is the ahility to extand the scalability of a system with a cost-effective and repaatable
strategy. Stalable soffware should not only work well ona single servar, bt it should also be
prrtable <o a distributed server satup or multiple prejects. This is described as the enviranmental
Fexibiine, When lpo<dng at software scalability both dimensions shoeald be censidersd. And whils the
twrer dimmersions sre not motually exclusice, i wi | Be very hard to magemze optimizetion along beth
dimears s At the samea time. & practical approach to software scalability is a trade-off batwear the
twecr dirmieares o, Differert & tarnatives will be eitaer more or enced to opt mization, while ather aill
ke maore flexible (seeligure 3.2|. T1e terms softiuere opdiriza tion and exnronerental Rexibilty are
nzed to explain the two idantified dimansions of software scalaaility

Thesa twao parts of the definition can be linkad to the idaa of scaling up (vertica scaling] and
scaling aut [Forizantal scaling] from the last section. Scalability optimization is the increase of
scalakility inar axisting system through replacemant. This can be sean as vartical scaling. The ability
tor entznd the solution to multiple 2mvironments can be seenas hor zontal sealing.

Trade-off desicion

Lo
A0
AL B Frwirnn et
LA [enibi by
G
T Dl G-alanlicg
a0% nat mratina
ICH
20%,
10%

O

Trade -off

1 2 3 4 L k

Design alternatives

Flgure 3, 2 Trade-off declslon betwrean scalablllity optlmization and envivonmantal flexiblity

3.3 Differences hetween harchware and sofbware scalahility

Scalubility is an issue that spans bot1 hardware and softwara. DifFerent situations have diffe-snt
w0 utions. Some vreanizetions have better opportonities for software revision where athers prefer
Fadwaqa uporades. As previcusly renticned, most organizations choese 3 hardwaqa approach
Becuwse it is un approach tiat is fast ard simple. Softwsre revision s often believed to be diffcult
dand castly.

Page 14

Exploring software scalability - Exploring scalatlity: & itersture review

Hardwarsa iszues can be sclvad by replacing a part with a newar medal that has a higher
perfo-manca, forexample replacing a CPU that is not fast ancugh with a fastar version. A differant
approach is adding hardware resources to improve scalability, like adding wiralass iqternat access
ponts for better Intermet coverage which mproves the aerfarmance of the Internet connection. On
the software side there is a larger distinctian hetween differant anvironmants. Tha softweare
enviconment is not just the application itsel” bot glvo the operatiag systern (05), drivers and the
datahbasza. Gealabiity prable ns in the envircnmeant are often aut of the davalope-'s control.
Limitatinns in an 05 like Witdows or Linug canrot be removad diraczly but oftan nesd a
warlarourd.

Alrmost every business application works with o database Bad waile databases are alko sofbesre
they are 1ot builk from scratch or rasdatory for every application. This maans the software
daveloper has a zreatar area o control ovar 3 databiase While 2 deatabuasa and a1 application have
an over aa3ping field they are considered to be different specialtizs. Database bottlenecks requ re
specialized expertize different from general software knowlzdge. Databases can be implemented in
differant ways, such as <elaticnal a 1d dimansional, aach mare suitasla for a specific usage scanarico
or anvironment. Optimizaticn and customization of a databasae is only possible within the cinsan
struntura.

The last araa is t1e coda of the davelopad application. An arror made during desizn amd
implermenzation can creat2 scalability bottlenecks. The advantage of assessing part o the code is
thit & softwis e develoser Fas the required knowledze fo- maki g changes to the code, and
comp ete contral over the code. This makes bottlenecks found in zhis ares are within the develoaers
area of ~antral and can be resolved aasier.

An overdew of tha strergt s and wealinasses of the different bottlenecks giva an indication
which sreas are more suitabla for change (* = depands if the source cada is cpan-source

Table 3.1]. This overview is made from the perspective of 4 softurare developer. "his overview
shiwars the potential for improverment of scalability by changing parts o the application cod =

Bottleneck area Changaahility Knowledge required | Ownership of coda
Hardware High Low Yes
Software Cnvironment Lo High Mo
Application cods High High Yiag
Catabase Meadiurn High Yes

* = depands i the source cede |s open-source
Takle 3.1: Scalabllity bottlenack cateporles

The e dre advantages for choosing software over of hardware scalability. In contriast to
Fardwizre, software opkimization s usable smong moltiple applications. &dding @ server for a single
dpplication does nothing for oter applications, waile optimizing o componegnt that is used in
multiple pro‘ects car banafit all of tham. Knowladge gained from using diffarant solut ons can be
nzed reactively ard proactivaly in the futura. The know edge can be uzed to optimize the application
during tha design whic has a greate- impact on scalahility. This makes invasting in seftware
sralubil ty o valid optian for any organization. Oreanizations that ose g lot of servers (like
Chay Googlad er A ninimam aneunt of sarvers |like Topicas), the zain from software cptimization is
pa-ticularly interestirg.

Page 27

Exploring software scalability - Exploring scalability: a literature review

A disadvantage is the potentizl complaxity and resourca demand of changing code. Assassing
and osimizing the scalahilizy of 2 complax application is not an easy undertaling. The more complax
the envirarment and tha apslication, the mora difficult it wil ba to optimize the softwarae. Thiz also
medns that the cost for imaroviag scalability per server s high, especially if it is only caloulated for a
single or small amownt of servers. If the code andfor knowledze is reusable, then the cost per server
decreases. The other disadvantage is that the maxicioem load incregse s typical v larger wher sdding
a sarve- then when optimizing the software usirg the same amooat of resoarees. & small ovensias
of the different pro- and cons is givenin Table 3.2,

Bottleneck arsa Chaneeability Imitial costs Reusable Kncnarle e Complexity
gcencration

Hardware High Low Mo Low Low

Softwara High Figh Wias High High

Tahle 5.2: Comparlson of hardwara-software scalabllity investmant

Testing software scalability also differs from hardware scalability in zhe information gained from
the tasting. If a specific hardware component is dalivering unacceptasla parformarce a simple
so ution is replaci1g tha component with 7 faszer ard Bette- ane. If 2 performance issoe is identified
in the software the answer is not that straigbtforward. The limit with testing s that aehile it s osablea
for findirg isswes it does not give amny real information saoot the canse of the ssue.

34 Investing in soffware scalahility

The econarmic side of o sealability solution is 0 impartant part for choosing an spproach. When
evalwatiry diferent ostions for the associated cost are animpotant fackor for most organ zations
[60]. Tha complexity of decisions abaut szalability is that its payoff lias inthe futore, and futore
sralabil ty is hard to predict. Sarme organizations will choose for najor investrnents inoscalability, for
example radasizn of the antire infrastructura, while ot1aers w ll chocse “or a more gradual approach,
adding one sarve- at a time. The most cost-affective soluzion =t the prasant may not be the best
w0 ution “or the fotwre. mproving angpplication slong the two dimensions might not be cost
effective in short term, but it can be 3 searthwhile long term investment

Qptimizirg for szalability during dasign increasas imp-oves tha chancas for sealab lity inthe later
stpes. An apslicazion that s boilt with scalability as inimportant characteristic inom nd improves
soulability of the mplementation. As with many issues, problems a-e best handled at the core {cg.
earl est possible apportunity]. The earlier scalability i “implemented” the bigper the impact on the
putcorne, The rmpact on the diferent levels of optimization for scalab oy can be shown in a pyreeicd
chape (Figure 3.3].

Hardware Tuning
Product Tuning
Code Tuning
Deasign

Flgura 3.3 Scalabllioy pyraimlid

Lilee bruig Fixing tha aarlier tha scalab lity is taker into account the lowar the cost of fiking
sralahbility issues [47]. Imdlementing scalability durine design s cheaper then revising code during
pperdbior (Fizore 3.4).

Page 18

Exploring software scalability - Exploring scalatlity: & itersture review

Cost of fixing errors / scalahility

a0

0

140 M Cratoof tisirz
srrunsdsealakilivg
1n0

Inwestt ment
in € (Eura)] -»

Ll

Coftware cycle phase =

Figure 3.4: Cost of bug fiking per development cycle

Assume that a given investment ir software scalability increases the loed cupacity with %,
When an organization mses onae server, with & no-mal capacity of 100 concurrant users, can now
Fandle 195 4sers, so the need for a second server is dalayed. fad waen tha second servar is sed,
and the additiznal cvarhead panalzy is assumed to be minimal, both of ther can handle 210 u=ers,
Instead of the 200 if the original server was duplicazed. 11 June 2006 the Mew York Tirmes estimated
thut Goople hay gt leyst foor huadred fifty thowsad (A50.000) sarvers to ba able —o offar all of its
services [34]. IFthey con d increase the scalability of the rsoftaare with 5% they wowld only need
A28.572 servers to handle the same oad while being able be sustain the same losd e oreanization
could remees 24 A28 e rvars, Th s wiew o also raducaes the main-anance effart and costs and the
ERREZY CeNS LT pLicn.

These savings mey also ke important for the growing interest in green compuoting [59]. Across all
industries and borders there is o growing dermand for energy efficiency in both the home and work
envirohrment. More effective use of the avrilabla hardware is n1e of tha goals of this rend. &nd in a
tirme were environmental friend ¥ energy consumption s becoming snd hot issoe zhe aknlity to
Fandle a larger load per energy consuming sewer is dn advantape.

Software aptinization is not recommandabla in evary situation. An organization should always
check which approach is the most resaard ngs & sitoation in which an ogamzation can rewse the
software solution multiple times increases the chaace of a qigh returq of investment. & revsable
software solution has a Figh chance of genarating a higgar return of investmant than a hardwara
saution. A hardwisre nvestmant will ramain the same for every ite~ation, while reosing high gquality
code becomes more efficient (see Mgure 3.5 1.

Prage 1%

Exploring software scalability - Exploring scalability: a literature review

Investing in scalability

SO0
d5000 °
40000 ®
35000 °
30000 S NP OPEOPE v [RETA RS
25000 S
0000 ®
L3000 *
10000 Se., ®
GO0
o

Investmentin € [Eurg) -»

| 2 3 q 5

Number of project for 8 solution -=

Figure 3.5 Hardwave versus Software investment

The lzrge scale and complexity of scalability make it hierd o approdch scalabilizy without o
structured approach. To simplify the scalability easironment this resedarch approaches scalability
from g software perspective | To measore the scalability of software and idetify potentiz|
borttlanecks an eva wation meaethod for software scalability is needed. The rext section gives an
pverdiew of currently dvdilable evalostion methods.

akh Current sotbware sealability evealuation mothods

Cualuation is the assessmant or statament of valus [9]. This assaszment and generation of
explicit infarmation about software scalahility is recassary for the furt1er improvernant of sofzwera
scalakility. This sectien is about currant mathods that mey be applizzhla for the svaluation of
v lability

ana of the most common approaches for the evaluatior of software is through the use of
metrics. The existing quality models af Bozhr, MeoCall and 150 9126 propose different metrics “or
the eviluation of non-functionsl requirermnents. None of thesz models were designed for the
evialwation of web applications and Jone of therm use sea azility. Alrmost all metrics inscalability
literatura revnlye sround t1e measurament of tarcugbpat i1 specifiz scenarios [28], [31]. Spacifiz
metrics exist for parallel compoating [31] and distributed compoting [28]. In these scenarios the
Fa-dwae is ofzen the most impartant factor for the chunge in scalakdlity. This thesis is interested in
the sca Aaility of seftware or which hardware is not a direct influanca. Te this end a few aveilabla
serlability evaluation methoeds Are cormpare:d.

Stress/Lood testing

Perbaps the rmost spplied evialuation method for scalability s stress aad load testing [19], 53]
Hirwever, testing to see if an application adheres to the functional dermands, is only part of the
entire test ng process. Another xart s testing varnows non-functional aspe dts such as performance,
security, scalabiliby and usability. Tasting scalability is done to aralyze the scalability of a systam.
Scalahility testing is often dividad i1 load and stress testing. Lead testing is zasting the system against
an expercted load for thz systerm. Tae goal s to dentify the optirom nomber of users for the
dpplication while he periornance requirererts are still met.

Page 30

Exploring software scalability - Exploring scalatlity: & itersture review

Strass testiag iz testing an application under strass conditions. Whare load testing iz used for
finding the cu-rently achisvable optimmm, stress tasting is abous pushing the application bayaend this
print. The goal of the strass test is to find tha maximum |oad a systam can haadle befere it becomras
unusikle. The objective of this kind of testing is to gaantify scalakility and identify [patertial]
sealability problers. Knowing whiat the corrent scalability limit is gives the developer the
ppportunizy to comsdre it to corrent and future projects.

The Pretobility aof Mon-scolobhiity Livelihond (ML) meatric

ana of the faw scalzhility matrics thatis not lineed to 1ardware is the Frobabhility of Mon-
scalakil ty Likelihoed [PNL) metric of Weynlier and Awvritzar [53]. The PRL metric is used to pradict
whether or not the software syutem will be able to handle significant more [oad than it corrently
does. Taa metric is calealated with the formuola

PNLLP.O) — Z Pe(s) CFy)

Pri=] iz he probability of a given state < and C[s) is tha accaptability of a cetain peformanca,
C[z] is 0 whan the parformance is accaptabla and 1 when it is unaceeptzbla. The problem with using
the PML matric is that in order to make a valid prediction 3 huge amount of field data is required.
Gathar ng this data for a project o° reasonabla size caq take up fo sevaral menths. This mMaleas the
PHL metric difficolt to ose in praczice. The guthors themselves propose daily extensive data
collections to gathar ercugh information.

The Quantitotive Scolnbility Evaiotion Method (O5ER)

Beasides the methods that directly messure or compare scalability othaer approaches g ve an
evalation framework for scalability. One of these frameweor e is tha Juantitative Scalability
Evaluation Mathod (OSE] by Williams and Smith [61]. Q5EM avaluates measurerments to quantify
the svalabrility capacity of a syszam. They define scalability gs o system property, encompassing both
Fardwizra and software. The software architecture and the execuszion environmeant are dentifiad a4
ke factors for achieving sca ability. 5EM provides a short roadrap for tainking ahout, preparation
of und measarement of sealability. QS5EM evaluates scalability with the help of seven steps:

1. Idertify critical Usa Cases: Identify tha axtarnally visible bakaviour of the software that rre
critical to raspensivanass or scalability

2. Se ect representative scalahbility seenarios: For edck critical Use Case, identity the
scenArios that are important o scalabality

ES Datermine scalability resquiremeants: Ida atify precise, quantitative, measurab e scalability
reguiremcnts

A Plan measurement studies: [dentify the bottleneck resowrce, plan measurements, develop

|l generator seripts, determine what pardrmetzrs to measore, identify messarement
touols, and document the tast plans

5. Perform maasuremants: Condoct the messurement exper ments, collect diata, @nd
docurent the resolts

b Curluate data: Cvaluate the measaramant data to detarmina whathar <he scalability
reguirerments cen be met and select the best scaling strateogy

7. Prasent results: Present rasults and recommeandatioas toe stakabeldars

Page 31

Exploring software scalability - Exploring scalability: a literature review

The authors of O5E dafine scalakility as a system property, their axamples focus on evaluation
of diffarent exacution envirenmants. Tha for.as of this thasis is on optimizing the seftware for
scalakility. It is net =0 evaluation metaod for differant alfernative ervironments. While the twe
shars cerzain simikarities, te goal for each evalaation method s diffe-ent Ao eveluation rmodeal for
dltermatives s used as o decision-support rmethod where en evaluation madel for aptimization is
used toideqtify (potential) protlems and strocturieg solotion approaches. Megsurement only
indicates A prebleam but does not 2ive specific information abous possibla causas and solutiors to
t1is problem.

Aishne's seainbility comparison arethad

Mishrd approgches scalability from o campanson perspective [39]. The paper proposes d
method for avaluzting tha scalahility of a changed systam given a specific perdormarce ohjective.
The method usas 3 conpla of equations that enable the comparisaon beswaen the axisting and the
proposed systern . If the onteome s acceptable the changes can e implemented. Wher the
perfosmanee objectives are not met the first sugpestian is to make changes in the hardaere
arckitecture. Inthe tesa changes in the hardware do not produce tha required res.alts, changes in
the software architacture should ba studied. Only when, even with the changas, the desired
requirarients are still oot met shoald & user revise zka aarlier stated requicemeants. Like GSERM this
method is aimed at evaluating the usafulress of an alternative and not for identifying and =alving
scalakility bottlamacks.

Start

'

—= Compute the scaling factor

Compute Lambda frem MAGH
Model o the system

i L
Complte M forthe system

Y
Compute M for the proposed
| _system
Y

CoampLte the oycle time

~ e

Mo
G N e
ehange reguirsmeants

Figure 3.5¢ Mishra's scalability comparizon flow chart [29]

Page 32

Exploring software scalability - Exploring scalatlity: & itersture review

Duiho ot 2_softvenre systen scolofility frzmewank

A framewerk that is mora tailored to scalability i the soffware system scalahility framawark of
Dubor et al. [15]. The framewaork iz dasigred to reveal tha uaderlying causal ralationshiz betwean
certain fuctors and cartain dependent vonoiles. Tae “actors sre dividzd along two dimensions. The
factors are identified as either scaling or non-scaling. The other d mension is the source o~ the
furtors, it be ne from the machine daomain thardware) or zbe appl cation do-main [softwas-e)]. The
factors that cam ba manipulated during the scalahbility analysis are called independent varizbles. The
factors thet ara static and cannot be manipulated are cal ed nuisance var ablas. Factars that cheange
when independant variables ara manipulatad ara depandant factors.

Aosr lability anelysis is the dnalysis of & dependent variablz in presence of @ warigtion o the
sealabil ty dirmznsions. This meaans that one should not refer to the scalability of an entire systam
becanse this braeds ambiguities -0 what the "systam™ means in this context. & more precise
dpprodch would ke the question what the "scalability with respect 2o the CPU wser™ or the
“sralability of Jsers with respect to the current disk space”

The framawark is driven by the 1ead of 4 stakehaldar. Tha framewerk is guesticn-based becausa
the anwwer waetter or not tha scalability is aceeptable comes from e rasults of the dependant
wariable gralysis.

Chjectively describe as _ - \de-tify a1d bound
deify a+d bound —{ Scalability guestion }7 -

Mern-
78::aling |y =caling

Application
dornain ind Hert Syst
ndependen stom ﬂ System
 varables m% behavior ||[CetEMINe > o e
Machine
dormain

Muisance variables

Faw
data

A

Preferences and otility functions

4

Unweil relationship

Lﬁesult
—— - Scalability answer fcla imJ

Flgmre 3.7: Scalab Iy framework of Duboc et al [3]

Cugtuation methad avensdew

lust like tha definition of scalability thare is a brerd range of evaluation metheds for scalability.
The models focus on the comparison of altematives or g wing A roadmep for the evsluation process.
Thew are qowever not usabile for dent fying and solving sctoal scalability problemes. This resedrch s
intereszed in Cinding and solving softwdre scalaklity problems. Tobe aalz to achiewve this, softaare
bottlenecks have to be identified and analyzed. The cur-ent evalwation methods are not directly
uszahle forth s, so a new evaluation is needed.

Prage 33

Exploring sofzaware scalability - Software scalasility evalugtion model

4. Software scalahility evaluaticn model

In -his chaptar, a naw, more precise mathod for evaluat ng softwere scalability is proposed. This
rew methad combines aspects from existing mathods ard int-oduces new conzepts which are
tailered to saftware scalability. The I=tar sectio s axplain the differen: toals and measuremeant than
can be used in fae neww svaluation method and demoanstrate them wita tha halp of an exampla.

4.1 A new softwrare scalability evaluation merhod

Monz of t1e previously mentioned evaluation methods are osable for messuring and evaloating
softwiare scalability. Let alone in g simple and effective sy, The reasan for this s the inhe-ent
complexity of scalability, Scalability i dependent on moltiple critery and 15 ofzen linked to
chargctzristics such s infrastructure, programiming langoage and 95, Bwaloating the scalability ower
that meny charactenstios and emvironments & sirkually immposs ale.

Software scrlzbility is focused on the executable code of an aaplication. Ir the caze of web
dpplicdzions this cade is located on the application serve - The scalability of the aperatite system,
drivers and the databasa are not talen into aceount. Likz any berdware these software sarts cre
considered szatic and unckatgeable in this cantext. The model for evaloating software scalatslity
shizuld be usibile in different situations as well as usable for the piven problem stietement. The
pwerdll podls for the evaluation model o re the following:

1. The model mus: be usable -0 evaluatz the szzlability of softwara

2 It muost incorporate te tao dirnersions of softacre scalabality, scalability
ppkim zat on and emvironmental flexibility

3. It must guide the usar n steps to identify patential scalabil ty bottlanacls and
solution g pproaches

A It mast promote awareness of scalatklity and scalability problems in the organization
It m.st ba practical o use in 3 bosinass environmeant

To evalmate software sezlability for improve nent, instesd of campanson, 8 new ard more
tallored model i» needed. This part of the thesis is primarily inte-eszed in finding and solving
software scalability hottlanacks. The svaliiation methods for scalabi ity from the pravious chaster
focus on diffarent goals. To this 2nd 3 new model is proposed taat fulfils <ha ahowe menticnad goals.

The first step of axploring software scalability is evaluating the current scalahility. Of inferest are
whether or not there is an actual scalability protlem and what the potential bottlenecks are. The
secand soep is finding the cause of the bottleneck(s). It is eazier tc solve & problem waen the cause
and affect of the problem are understood. Tha fiqal stepis apalviag some kind of change —athe
software that imp-oves ar ramowves the hottlenack. In summary tha model guides the userin
answearing the thrae following guesticns about softwara scalahility

I Whatare Hhe Battlerecks Pt et the scolobility of the cpalicaiion ?

[cg. WWhich perts of the code ivfluence =oftware scalahility)
2. Whoris the couse and sfiect of the hottierecks 2

[cg. How a-e software scalability characteristics 1andled inthe code)
3. How con the ottereck be removed aid the scalability improued ?

[cg. How sqould the saftware scalabilizy characteristics be handlad in the
codea)

Page 34

Exploring sofware scalability - Software scalamlity evalugtion model

Software scalability on a code level is not directly maasurable. The twa dirensions of software
scalakility, scalahility aptimization and environmeartal flexitility can be linked -2 othar aspactsin
Software Enginesring. Sca azility optimization cat be seen as coda tuning. Environmeantal flaxibility
ran be linked to cancepts s effective implermzntation, modolarity and maintainability of the code.
Ay concept that belps o developer to better understand and modify code is nseful “or
environmental flex bility. By osirg code met-ics to indirectly indicete scalability <he corrent
scalakility car be avaliated. Combining the test data and tha code metrics should give information
ahout the owerall scalahbility, where potential battlenecks are located = nd what seme of the mora
lilealy causas are. Guidalines for creating scalahility within a cartain programmiag eny ronment;
shauld halp with improving certain scalability peformance bottlenzcks, A visualizazion of this
proflern s given in Figure 4.1,

| 1.Finding Bottlenecks |

Lz. Analyzing Botlanecks ‘

3. Bottleneck Solution Strategy |
Figure 4.1: Global avaluation staps

4.2 The evaluation method cxplained

Each stap has its cwn s2ecific goal and applicable teals ar methods. To explain these staps in
preater detail example data s osed. This diaza = orely placehalder and not from actudl tests. The daty
im used to pive a comprehbensive example of bhow the gahered data s wsable in the scalabi ity
ewvaluation.

421 Finding sofoware scalahility battlenecks

Hiw can softwiae scalability bottlenzcks be identified? Bottlenecks car be found by using
wariows methods. A& good starting point is the performance and osape daty of the web app ication.
Sedrching s doe by actively gathering informaation. Gathering nformation about scalability of an
dpplication can be done by test nz. Testing for traoditioenal sotaware systems s well known and
undarszzod throughout Software Engineariag [11]. Tha test ng of wab apslications diffars somewhat
fresm the treditional methods, because more factors influence web applications (especially from an
end-uzer perspective). Mor traditional systems the testing evironrment can bz made as ¢ regsonable
sirmlation of the actudl envionment. b aking the same reasonabla simalation for 8 web
environment with lats of different sspects 15 extremeby difficale. To this end more tailored testing
methods for web aaplication are proposed |52].

Just as impartant us deciding wh ch method and tool -0 use for the evaluation (the fa, is
deciding what informaticn is desired [t whiat). The first couple of steps of the Q5EM method
represant a structure by which to gathe- and prepare a performance test. It is impertant to know
which information is imaartant and what it represeats, for 3 good analysis of the application (Wt
dete do you want need for ¢ good eaolysis?). The seeond part is preparing relevant applications sod
penerating test scendrio’s [How oo veu gother the dite?]. And the last part s interpretation and
analysis of data [What does the goouired doto aean?).

Page 35

Exploring sofzaware scalability - Software scalasility evalugtion model

Log files

Informztien about the currert scalability of a application can ba found in the lead and
perfo-manca data of tha systern. One of the twe dimarsions of software scalahbility is the throughput
pptirmzation. Knowing how long certain iz takes & web apphcation to exzenke certain use cases gives
anindication of waich parts influence performance. These are candidates for scalahility bottlenacke.
Usiablz irformiation is the number of wsers of an application, the total number of pagzs reguested,
the dfime speat creatiag and sending thase pages and the ameount of data send.

This info-matien can be ganarated en demand by using peformanca testing tools or from log
filas. Sralability tasting tools zre available for differant asplications and programm ng languages.
Thew exist both as stand-alone commercial oropen-soorce programes and g plug-in for developrment
applicatien as Visual Stodia and Edlipsae. Almost all of thasa test toals al ow tha usar ta program or
record A set of activities of aweb application which can be later used as a parformarce tast. Load
testing tools use these recordings to simuolate moltiple users execoting these scenario’s. Doring
exscutio infarmation s cellected that is used to search for pozential bottlenecks, Uswally the same
info-ration can also be obtained from the oz fi es of the applicatio sarver. Tha advanzage of the
leg files is <hat tha infermation is not from ene or a couple of trials and therefore s mere realistic
becanse af the greatar nurmber of tests. The drewback is that they carnot genarate 1aw information
ondemand and nften alse contain infermation tha user mright not be intarasted in. &1 sxamp e of
potential irformation is given in "akla 1.1

URL Avg. Page Time {(sec] Ave. Page size {byte) Count
Exampla Page 1 0.02 28 21
Exuriplz Page 2 .5 TR ES
Exuriplz Poge 2 1 110.3417 11

Takla 4.1; Example data from server of test lops

Stress ond fond fosting
For scalahility the mest impo tant aspact is the gareratad amount of worle (throughput] andar a
cetain conditien, like the armauet oo wsas, Lead testing is measoriag an application under g specific

workluad. Evaluating load can be done by loeling at the mazimm nombar o usars thaz ean ha
serviced while checkiap if the perfo-mance does not drop below 3 certain perfornmance threshold.
(e couold also fix the number of users and measore the maxirmom workload that car s
suzseguently generated. The first stratepy is best used wher tha workload itsel= s fixad and an
oreanization wants 1 maximize the number of usars par sarvar. The sacond is usaful if tha soalability
for variable worklouds s rmore important than the qumber of psers.

Scalubility testing var alko be done positively and negatively. Fositive test ng is checking to sze if
an application bahaves as expercted. Load testing is 2art of this category. The opposite s nagative
testing. Magative testing is secing what it taces to break a1 applicrtion. Strass festing is trying to
bredk toe seuterr, What does it take to make an application Fail and how loqp does it take to
recover?

During stress testing the perfarmarce of g single test is not very important bot the averall
perfo-mancez of the server is. The web application is targetzd by moltiple instances of one or more
sCenaria’s and tries to handle them as fast as possible. The dagres w th which tha servar can hardla
concurrent users raflacss t1e scalahility of the system and its scalability bottleveclks. Importent
info-mat on fram a loadfstress test is the load the usars are ganerating (requasyfsec) and the laad of

the server and Ary connacted database.

Page 34

Exploring sofware scalability - Software scalamlity evalugtion model

Numhbar of users

Reguest f Sec

Avz. Rasponse Tima [sec)

Server CPU load [%)

Database load (%)

10 21 2 Al il
20 A4 5 ah i
Afl 76 1% HE o

Table 4.2: Example information from load or stress testing

The information fram the scalability zest can also be depicted visually to give d goick oversiew of
the scalability of a system/module. The advantage of the visual re sresentation is that it gives o
sirple overview of the result.

100
=11]
BO
#l
Rl
a0
dr]
an
20
14

Humear of tests >

M.amber o* usR-=

Rorguaesly Sec

A3 Besa0nse
Timc (sec)

Sprve- ML oA
1)

Datasase ocad (%)

Figure 4.2 ¥isual reprasentation of scalakility test result

Bug tracking sustem

Bug tracking systems are dluo @ sowrce for bottleneck identification. Bug tracking systerms allow
the adrministratior and trackitg of issues. Insidz the tracking systen bogs are recorded along with

inforration that may ba needed for analyzing and solving the arcblem. Different information

reelizete] tir the bug can e cracked Ay wall as the importance o tha bug, where and when it was
disceverad and who is warking on the issus. Like the [og filas the bug tracking database is full of
possibilities “or bottlaneck identificat on. The chvicus sourca of nformation are performance issuas.
Depanding on whathar parfarmance requiraments were stated doring devalopment thase bugs
range from crizical to optional. The less obvious soorce 15 loaking gt the nomber of bugs certain parts
pf the dpplication have. & 7igh nomber of bups can mp cate a very complexs or unstable part of the
applicazion. Both reasons canowasrant & mome detailed inspection of the appl cation.

Exprct Kteadpdge
The experience of the people invelead with thae application is also # =ouree of informration.

Ezpec a ly if the prefessionzls are directly and active y invo wved in the design atd mplemertation of
the ypplication, they possess o wealth of infor nation. The g advantage is that this sppoack is
gasily i plernentabla. IT professicnals should ba abile to use thair IT experience and reasaning sk lls
ter analyze the spplication. This arabysis can b usad not only o idantify potantial risks bot alse to
redson aaout their solution. Creating an opportunity to discoss scalability aod sca lability issozs, like s
meeting or questionndire, cdan generdte understanding of the scalability of the spplication and
identificetion of wedk points in the implemen-ation. Brainstor sessions or gskirg the mermbers of
the develoament tedr to each Make a top five of potential bottlenecks i not only pseful for finding
bottlenecks but a so for encoaraging the development team to think about the scalability of their

dpplicat arns.

Page 37

Exploring sofzaware scalability - Software scalasility evalugtion model

Battleneck Ranking

If multiple a2ottleracks are found it is ir portart to raal the bottlenecks on priority and pradict
the rasources naedad to fix the hottlanack. The radling and resource predicticn makas it easiar to
discuss the diffarent altarnatives snd decide whica bottlzneck to approach first. While muoltiple
bottlenecks v be tackled simuoltaneously, the rermoval of ane bottlaneck can affact othars bath
powitively and negatively. For simplicity this paper approaches eech bottlzneck indiv doal y and
assumeas the depa 1dancy hatween bottlenecks is m nimal.

422 Analyzing zoftwnre sealahility bottlonockes

Aftar bottlenacks are idantifiad aad ranked the next s-ap iz analyzing the cause and effact of
each bettlanacl. Dif*erant battlenacks raguire differant salutions. To analyza the cruse and effect of
a bottleneck the first distinction made is between the two dimansicns for software scalability
introduced earlier: throughput opéieizotion and enviroornetal fexibioty.

Code Anaipsis
Sralakility optimization is part of performance optimization of an application. Parfermance gzin

iz defined in a braad sense, 1ot only tima but also memory and storaga space ara important. Time
can be gained from a faster execoticn of 3 mathod bot alse from shorter communicstion ines. For
example i proposition centaining 4 narme, address, cuszomearlD and 20 other variables s exchanged
batween a database and a methed. The 2wy solution s the exchangea the antirs proposition withoot,
lzoking whica infor mation is actually needed. In casa of alarge record a lot of infermation neads to
ke retrieved snd evaluated, A more efficient, sut more corples, method is only salecting the
appropriate information from the databasa.

Atoo toanalvze the performance demand of an application is 3 profiler. & profiler s o tool that
measures the behaviour of an application du-ing ruatime. | can ke used to meaasure CPU and
meriary lead but alse function call duration and coart. A profilar goes furthar than A test tocl and
gives information about which part or call of a1 applizat on takes up the most resourcas.
Applicatios that heve o high resource demand, like menory, leave [ess of that resoorce “or ozber
methods which has an influence on the performance. The profiler sleo gives insight into how a
specific call is hendled. Same program ming rulas car hava univtended side effects that take up
wystern resources. For excmple the wrong 2xe of locks on threads in CF can degrade the
performance severaly.

Ceda W atrics

Erwirammental flexibility is 1ot an existing goality attr bute. Being flexib e s the o sility to easily
change parts of application code to fit new needs and wishes. MNexible software reguires no ar only a
miniral amount of change o taka full advantage of changes n the @nvirconment. Characteristics as
comp exity, testabilizy and modularity are part of sotwara rense [32]. The main goal of reusability is
tor prowids code that s not only of high guality bt also easily implementable throoghoot diffe-ent
environmenss. These goals can be linked to modolaty, meintainability, reussility and portability.
Whila scalability cannet ba directly measurad from code, scalahility facto-s as modularity and
maintainability are more establiched. & number of facoors are expected to be impartant for scalable
softwara:

Coapling
Cuhesion
Complexity
Instability

Page 38

Exploring sofware scalability - Software scalamlity evalugtion model

Cousling and cohesion were first proposed by Staveas, Myers and Conszantinag in 1874 '51].
Coupling is the ameunt of irterdepandency betwae 1 software parts. & modula that dapands on
info-r1at an from other modules is callad dependent. Chargas in one can #ffect tha cther. Tha
tdependetoy becomes 2ven greater if the other modules are once dgdin dependen: on another
module(or the first module). This way all kinds of dependencies betwesn modoles arise. & high
amount of coupling result in comples a7d potent ally onstable code becaose Chanpes are hand to
make a1d it is ewer hardar t¢ predict the effect. To have flaxibla ceda that can be scaled to diffaraqt.
environmenzs, A low coupling is des rable. Cohasion is the dagres of which a the part of asingls
module cansist of clesely ralatad cparatichs. A model needs a clear and apparent tascand should is
relazad t tha function of tha module. & high cobesion is linked to desirable flaxibility traits as
reusability, understandability and robustiness.

Complasity can be axprassad in different ways. Code complasity can be judged chjectively,
based or rmedsurements, or sub ectively, bused on user pereeption. Oqe of the best known
complexity metrics s MoeCabe's ecyclomatic camplexity, In 1976 MoCabe proposed o metric that
measures tha complaxity bazad en linearly indapendart paths through the application [35]. The
mora paths thera are, the mora comples tha coda is: a higaer valua depicts a g-aatar complesdty.

Instahility of a medula is a ratio hatween 0 and 1 indicating the stability of your class. Zara
means complately stable and one iz unstabla. Instability is caloulated from the numbear of cutgaing
dependencies [efferent coapling(EC) #nd the number of incoming dependencies (af*erent
coupling[2C]. The formula for tis calculatior is

Instabitity — EC @ (AC | EC)

Armodule becornzs urszable if the majo-ity of dependencies gre ootgoing. & majority of
putgoing dependencies s, like the coupling metric, indicative o fragile cade. 17 a3 change in one part
B an effect on o preat number of other connected modala that code s considerad to be anstabila.

Degegancy sSoichire Motrik snd Groph

Another method to visually rapresant the dependarcy of an application is the nse of
Dependency Structure Matr ces [DSR). C5M are also known as Problem Structure Matric (PSM] ar
Design Structure Matrix [sae Tabla A.3). The matrix rapresents dependanc a5 batwaen parts of an
dpplication. The matrix hes horizontal and vertical dirmeansions that 1wz methods or modoles af an
dpplicazion. f & part desends onanother part it is marked as 5 dependency either as a more
traditional ¥ or as o number representing the amooat of dependencies. Dependencies are eizber
direct or indirect. A direct dependency is if modole A calls or modole B, &n 2xample of indirect
dapandenzy iz a mad.ala Cthat is directly dependent on modula B, whareas madule B is directly
dependett on module Al Inthis case, madale Cis indirectly dependent on A.

Different information can be gained “ram anabyzing and manmipulating the matris. First the
rumber and spread of the dependencies g ves insight into the complexity o the application.
Aralyzing the rmatrix gives more specific inforrratior about whick part is most dependent on other
ot ules. The matris can bz wsed to validate certain architectara decisions like using a [strictly]
layered systemes, I o layvered system no dependency above the grey ling may oocor. Ina strickly
layered systern @ part may anly aceess the part directly above it. The dependencies can also be
vicmalized in & depende1cy graph (D5C) The graph sk ows the same infermation as the matrix but
represants it visua |y [sea Table 1.3 and Figure 1.3).

Page 3%

Exploring sofzaware scalability - Software scalasility evalugtion model

Modula A Modula B Module C Medula D Module E

Medule A
Medule B
Madule €
KMedula O
Medule E X

Takle 4,3: 50 example matrin

- - >
/Madule C

Module B \i ,a
.

&
@udule D ‘

Figure 4.2: I}epenaaﬁ:f maph of Table 4.3

Saftware reusopiity

Bezides metrics about tha anvircnmantal flaxibility, there are factors that give information about
the rauszability of code. The ability to reuse code i an important advantags of softwara scalability
compared to vardwiare scalability, If pats of the code ae modular, szable and simple there s high
potantial for rausa. ha actual rense of —ode can ba measured by Iocking at ratio of reusa. The
armount of cammentany lines that halp othar developars in reusing the code is t1e docomeantation
rate. For soma bas ¢ insight inte tha reusabil ty of code two metrics are proposed:

e PRause of coda
o Documentation rate

The reuse of cada mat -ic gives insight in whick parts of the code are build for rensa among
multiple projects. The documantation rate is an imporzant factor in promoting reuss bacause
inforrat on akout the purpose and implementat on of the code help developers to simplify and
speed up code reuse.

The documertaticn rate is the parcantage of lines dadicazad ta documentation comparad to the
tirzal lines of code. & high percentage of docurmentation makes reoss easier beoaosa functions and
modules are clesrly docomented. Code that s sufficiently docwrrented is easier to ewrite or reuse
bracamse thare s axtra information onowhat the code does. The optirnal amownt of docarrentation
differys per application. & low document rake by o Figh chance of explain g to | ttle, but g high
documentaticn rate has a chanca of explaining to mach. Both decraase the easea wizk whick code
ran be saused. One of the tools usad to measura the docarmantation rate recommends o ratea
Betwaen 20 % and AC% [12]. The problen with tha decumentation rateis that it doas not measure
the guality of the documentazion, t only looks at guantity, While the metricis o good glob:l
rreasremat the sotoal usefulness remains unclear. Clear docormentation gwidelines can i nprove
the docormenzation quality, Rewse of code is an importsnt schen code needs to be considered
flexible. Code that Fas o be rewritte 1 extensively o geoorr modate s changed environment s not
considerad Hlexibla,

Page Al

Exploring sofware scalability - Software scalamlity evalugtion model

In tha end thars ara = lot of possible maasurernents and tasts that can 22 done to analyza the
preblar. This thesis does not proposs to be corrplete or have only t1e bas: opticns. The metrics aqd
measurerr ens chosan ara only a small fraction of all possible oprions. The current proposed
methods were chosen because they represent well understood and well defined values, or because
of applicakility or interest. Other methods and measuermrents that provide insight in to o bottlenec«
dre just gy applicable. [t does not matter bow you gain undestanding of the problem, just that you
gain ennugh of it, to solve the prob em.

423 Baftware sealahility bottlonoeck solution strotegy

When the bottleneck is understood tha final step is -o use the knowledge shout the hottlanece
t solve the problem. The main problem with all tha diffareqt scalability issues is that the solution
Fasto be tailorad -z tha situation. The specific solution has to take the environment, the
infrastructure, the programm ng language and the arch tectore into account. & more preferable
dpprodch is sedrching for perfarmance and flexibility solations related to o specific sspect of the
applicaticn. This lknowledoe can ba gained from whitepapers, community forums and best pract cas.
Panple who work extensivaly with a certain technelogy gain a useful irsight intoe the proper
applicaticn of tha technology.

Topicus Finance davaleps wab applicatiors based on the MET framewark developed by
Microsoft. Micresoft warts to halp deve cpers gettirg the rmost cut of the creating white papars
with insight into their languaga. Thay published wiita papers on “Parformance Testirg Guidance for
Web applications" ard “Im preving .WET Application Performance and Scalabil ty® to help davaloaars
improwve thair MET applicaticns [%7], [38]. Additional insight is availabla throogh community sites
and dizcussion boards. Sun bas similar guides for lava developmant 1 both books and arline
rescurces o], [L0].

To help craate scalability dur ng design a number of “seoloble” dasion may be usaul. Ahlalia
preposed A serias of ten pattarns that describe differant des g1 choices for creating a scalabla
dpplication [2]. Sorme of these talk aboot softwiere chargcteristics, suc ay algorithm optirmization
dand uther about hardware dand hardware related, like addire parallel prograrmming and the
dsinciated hardwark reguairements.

424 HKnowledge and softwars rouse

lust as imparzant as fixing the actual hottlenecles iz the reusebiity of the new code and ef the
acquirad lenowladge. Both aspects are done whan bottlenacks a-e solved bit each iz usablein a
differant way. The concept softwara rense was introduced in 1968 [18], [30], [50]. It enzail= the
reusa of existing soffware in new situsticns or applications instaad of rebailding it from scratch.
Reusing axisting safbware has the advantzge that it decreases implamantation ima and improwes
guality beciuse it was a recsdy exarmined after its initizl implementation. Woile many organizations
strive for efficient and effective reuse, o lot off arganizatioes strogele with its implementation |17],
[12]. Krowladge reusa is 4 more abstract approsch fo the reuse of information [27], wheraas
software reuse is a mare explicit and codified typa of knowladza.

Enawledge is roughly divided into fwo sidas, tacit fnnwlenge and explici/implicit knowladge
[13]. Cxalicitfimplicit knowledg s is knowladgs that a person is awsra of and which can be easily
transferred to other parsons or recordad. Tae knowladge s irm alict whean it caa b recosdad or
transferred and explicit when it already has bae recardad or transferred. Recorded bast pract ces,
manuals ard online rescuarces are axamples of axplicit knowladga. Explicit cnowledge often
describes infermation ir facts and methods.

Page 41

Exploring sofzaware scalability - Software scalasility evalugtion model

Tacit knowladga is lenowledge that a parsen is not activaly aware of and is often regarded
intuitiva, tharafera this kind if knowladge is not gasily recorded. Tacit knowledge is more precedural
in that it is a ~epresentation of wkazis being doqa. Transferring tacit knowladgae is usually dona by
phbservation and imitation instead of declared forms of knowledge. This makes tacit knowledge o (ot
Farder to share and commonicate which poses o problem for knowledge rewse. An overview of
these concepts is given in Figure 4.4,

Hu Lt IFARICH
I
YL NI:.:
\ \/
Explicit TacH

H 'R V {

weramel DA e DGC ALY cmm—- P G LFH] " D]

T 'n —

Fleure 3.3; Knowladee management concepts from [43]

Diffarent suthors racooniza tha importance of tacit knowladge in creating innovation [25], [19].
The improvemant of software scalability requires the introdoction of new and chaaged parts of
code. Rasearching and trying new ways toomprove scalability can be sean as innovation and this
makes tatit knowledge an imaartant par: of scalability. Improvemeant can be achieved by prodocing
reusable software compenants and best practices (axplicit inocwledee) bat also by gerarzting
Aawaraness of the scalability issue (tacit knowladga).

Ideally most of tha scalability know edge will hrve 2 ba made explicit for easy rausa. Explicit
know edpe is easier to share amongst the crganization than taot knowledge. Bowill however be
difficult to codify all knowledge from -Acit to explicit. Writ ng bast practicas, guidelines and
orean z n2 workshops will halp an arganization in skariag information about sca ability.

App ving these steps in multiple zerestions can nerease the effect of knowledee peneration. Each
oycle identifies arother aottleneck and each individwa solution adds to the knowledge base and
quality of the softwara.

Page A2

Exploring sofware scalability - Software scalamlity evalugtion model

425 Ewvalnation model nverview

Adding the diffarant tocls and mathods to glebal evaluation steps (Figure 4.1) now gives a mora
comp ete Appoach for analysis of software scalability (see Figure 4.5). In practice diffarert methods
and tools can ba insarted in A spacific step. &2 martioned earliar, how the insights is gained is of
lassivr irmportance. Tae abjactive is to gain ussble and reliable infermation for finding, analyzing and
solving scalakility bottlanacks.

1. Finding Bottlenecks

nvironment flexibility
calability testin

2. Analyzing Bottlenecks

Scalability optimization
Code analysisiProfiler)
Dependency Structure Matrix
and Graph

nvironmental flexibility
ode metric

3. Bottleneck sclution strategy

Applying bottleneck solution
Knowledge generation

~~

Start again at 1

Figuve 4.5: Using different software scalahbility evaluatlon tac sfmethods In the three evaluatlon steps

Page 13

Exploring softuiae scalability - Topicus case study

5 Tnpicus case study

The following crupter is o case study of the scalability ot Topicus, As mentioned ir chapter 2,
Topicos s 8 deve opment organization based onthe ggile developmeaents ne-hod. For the financial
market t1ey bave o set of modoles skat represent stakehaldar darmands In the next secticon the
three evidluation mode goestions will e gnswered Jwing & real-life Topicos spplhcatior. This chaster
pives the highlight of the resolts and an nterpretation. Tae full aned tad results are seailablea in
Appendix B.

5 Caso study settings

The a3pl caticn under inspaction is a mertgaze broker systam, hencefarth called applicat on A.
The syster s osed by intermediaries to sel and repister mortgages, 2n the mortpdpe provider side
it iz usad for differen: administrative functicns. The mein use case is the registration and acceptance
of a new mortgrze sreduct. The application is built in the .NCT framewnrk and ases d ffe-ent
languagas and methods like C#, ALAX and Javascript. Inthe past this applicrticn has not bean
specifically optimized for sca aknlity. Ths means it should still heve opportun ties for bottleneck
identificat on, analysis and solution.

To be able to cormpare the soorce code d 5im larapplication is wsed. The secoqd applicatior s a
rewer iteration of the mortgage broker application, hencaforth called asplication B. During the
implernen-ation of this applicatior a large part of code of apalication 4 was reusad. The diffarence is
that the naw prograr had to ba able towarlowith maltiple products. Te achiewe chis parts of the
code were rewrizten and des gned to be more modalare & lot of onnecessary code wis removed
from the prigingl soaree code.

L2 Finding sotbware scalahility hattlenoclks

The prablem ident ficat on starts wit7 ideatifeing already available resourees. The application
Fas zone tareuch multiple releases ard has bean in use for somea time. &l of the potential mathods
frewn the pravious chaptar 7re available for use. Taare are server log files, bug tracking logs available,
developer exper ence ard perfo-mance test available on request. Forintial identification the log
files und developer experience are used. ldentified bottlenecks are then reprod acedfverified with
perfo-mance testing.

Lng fila anatysis

From the server lops o top ten of bottlenecks are identified. The server logs provides an
owarsicw of the number o times 7 pazga is requested and tha average time the server spent building
the paez. The multipl cation of these varables s the zotal tirme & server spent on zenerating a
cetuin pape. From these lops different rankings car be created, for example:

1. &list of the pages with the highest nunbear of reg.easts
& list of the sages with the highast average rasponse time

4. Aranking of the pages with the highest multiplication (number of reques: * awe-age
creation time). Th s is shown in Tahla 5.1.

The taps of alllists are impertant to conside - for additional resea-ch. For this resaarchthe
multiplicotian timefmin) row is used s source for scalab lizy bottlenecks. The nomber one problem
from the logs i< the Flattaring. The page with tha Fighest averaga is alse a peint of interest. In this
case this is YptoadscanDocsment. Tis page is not considersed as a scalabil ty preblem in this
situation. Tha lim ting Factor of this paga is the cornection speed of the user, rot the coda of the
applicatian. A completa overview can be found in Appendic BL

Page 44

Exploring softwiare scalability - Topicus case study

Average # Average response Multiplication

request time (sec) time (min)
SNTAATiattering. aspy 14580 252 G160
ST A8 DocTypen_aspx 41693 11,85 SAT
PNFfR P arsonalData.aspx A76R34 0,68 557
SN RS CustomerSearch.aspx 455015 0,71 551
SNTATP Aanv aagsnelTaets. aspy 25R52 .96 112
SNTFTP Resultaatalzernati=f aspy 180265 0,86 a0n
PNFIA W orkspace. aspr 054110 0,38 188
SNTITR AanvraagdnderpardS eenDepot_as ax 13150 1.65 73
SN A Offer aspx 32018 {1,483 M
ANFfR UplnadScanDonumeant.aspx 702 6,32 283
ST R /BERtoets aspx 14582 1.21 284

Tahle 5.1: Log Informathon from two months averagad per month

By brevcking syskerm

The bug -racking logs srovided insight into zhe bug histony of the applicetion. When assessing
the bug logs it is impertant to understand the contest of tha bugs. Topicus usas differant catezorias
ter gromp bhugs. Thass catagorias are linked to functions of tha application, net the actual pages (| ke
the server lops]. This mredns the norm zer of baps per catepory is inked to functionality, not to
specific pages. Tha miscallananus catagory has the largast share but is hard to link to spacific parts of
an application. The othe- four categaries are more spacific. &n intaresting observation is that =1l four
razegories represent functions that are at the top of the serezr log informat on. The highest non-
peneral ared i once again the fotterng.

Category Percentage [%])

M iscallaneous 1,82
F atteing 12,30
Requested Documents 7,89
Regaest rasult 6,82
Offers 6,82

Table 5.2: Bug tracking log

Expedd Krowledge
Three interviews we e held with developers of the welr applicat on. Two of them with software

desizners that recently worked on -he applicatio and one with @ software designer that workzd on
the original code. The inters ews consisted of three main tepics, possible scalab lity bottlanecls of
the application, the modularity of t1e application and tha reuszahbi ity of the application. Possikle
scalakility bottlaracks were mantiened to seve-al different areas. The most mentioned part was the
fiattaring mile erging. ~his rule engina is = combinatien of a lot of different database calls, a lot of
differznt comparison operations and execution logic. Any of these three parts is o potential coorce of
sralability problems. The aroblem is thiat all developers mention this ray be herd in the corrent
implernentation. WMost of the problems mertioned @re glwo found inthe top bottlenecks from the
server [ngs (sae Takla 5.1).

Page A5

Exploring softuiae scalability - Topicus case study

Annther bottlanecls mantioned was tha dependanoy oq third-paty sof wsra. At some points
the application needs information from third-party software. f that third party is urabla to sustain
the information at the rata of tha Tapic.as application a sottlenack if fonTad. Tre preblar with this
bottleneck is that it cannot be solved by Topicus directly (unless they are willing and able to provide
the sarvica in-hose]. Other mentioned bottlenec ¢ were points in the software that either require a
lat af CPU power and/or a lot of databaze infor mation. Both are ar impotant soorce of bottlenecke.

The medularty of the good s perceivad to ba guite good. Top cos dasizrs their application to ba
reusable. To actieve a high reusabil ty tha code is made modular. Breakirg dif*erant functions down
inte saparate medules craatas a flexible code hasa. The FORCE framawark is an asample of t1is
rewsabile code base. For fo-ure projects Topicws is always trying to see which parts can be reosed and
whick parts of the code cen be trensfermed into a new module. This expansion is an important part
of he developmant strataoy.

The modularizy is lirkzd to the reusatility of the code. Modo ar parts of the code can easily be
nzed innew projacts. Inorder to he able to rause the coda the davelopers all mantioned potentizl
prablars. To be able o effactively rense coda iz 1as to have a clear and identifiable name and has to
ke documantad. If 2 mathod cannot ba found whan saarching ta tha code for a spec fic methoed a
devaloper will create & new one. This means the code base grows onnecessary. And if parts of the
code are reused -hat are not used a lot o legeey code is created in the naw apalication. During the
implermentation of o new applicetion based on the before mentioned web g aplication a lot of legacy
code wias removed. This can be verified when loo<ing at tae lines of code of she two spp ication,
thousands of | ne of code weare rerowved. The results wias 3 moch clagner and easier te raad code

bramiea.

In order te improve -ke modalarity and reusability of the code all develepars ment en the naed
for a mo-a structurad approach to cods implemantation. Design guidalines provide a check list that
a developer can use to verify if visfher code agrees to the set standard. Naming ard commentiig
puidelines in particoldr car ensure o better code qual ty.

Secalataliy teshig
From the presious infarmation sources a couple of bottlenaclks wers dantified. The tarae
identifind scrnario’s wera:

1. Oaitg @ custivner search: Search ng through all the custemers records fora top 15 ara
specific custorrer by name

2. Oaing g finttering: The execut on o the rule engine ard logic using all kind of nformation
frarn tha mortgage to calculata which motgages ara available to the costoemer

A, Lloading the Worksergee: After o lop na overy ew of available propositions s geterated

The three different sceaarios were combined inte & web test, & wzbh test is 3 -ecording of 3 uvser
exacuting diffareqt actiens. Durng the wehb test t1& followings steps are takan:

Thz wserlpgsin

Sedrches for g specific custo mer usirg the customer search and open 8 propos tion
Dopes o figttering on the proposition

The users logs aont

e e

Page A4

Exploring softwiare scalability - Topicus case study

The seenario was recordad with Visual Stodio 2008, From che web test 2 load tast was
sanarated. The load tast is a ke cution of the web test using 1, 23, 50 a1d 100 concurrant usears
duriig twao itarations. One lasting 10 minotes and ore lasting 15 minutes. Fifty percent o tha usars
Fiad @ sirmulated 72 connection and other fifty percect used & T connection. ~his wies done inorder
toy avenidd pushing the LAN cannection speed to its lirmit and make & moere realistic simulstion. The
lorddd teet wis done on o local aceeptation server of skat specific applicatian.

In all tha oad tests, the fizttaring was the greates: bottlanack when increasiag the namber of
concurrent nsers. This is shown in Figure 5.1, The average paga time increase of t1e “iatzaring paga is
large and the CPLU t me on the sarvess is extramealy high. There are ne page results from tha 1000
concurrent users test bacause withie the zirne imit anly “reguest timed aut’” Messeges where
returned from the sarver. The full results can be found in Appendis B2

1]
100 = = AuorzgapIgc tme Acthering
Ragr sac|
] = = =dof time fzttering page czllcd
7 during lazd 2zt
Rl z \, Avcrage ok time dmind
an awverzga CP nedanservan Xl
o s . e T # Bequest Failed

Humbeorof users -

Flgura 5.1; Result of the load tasts

Beattlererck rireking

The muost rnentioned scalability issoe identified by the differant methods and teols is the
fiotterngg. Tae figttering is an irm portant part o the application and used throaghoot t7is ard other
dpplicabtions. It s also already part of the reusable FORCE framework. This makes this sart of the
applicatian an intarasting subject for further analysis.

L3 Analysis wofbware sealnhility bottlonocks

The differant hottlanack identification steps lead te the idantification of several diferant
bottlenecks. The fiattering was identified as the current weakest part of tha application. In this
section this part of the applicazion will be furthar evaluated. It is difficu t to look st environmental
flexibility frorm only & small part of the cod= In this case t1e ent re application is evaloated. Inthe
rext parts different proaosad mathods ard toels results are discussed.

Page AT

Exploring softuiae scalability - Topicus case study

Code Anaipsis
The fiatter ng o~ beth applications were analyzed with 7 profilar. The prefiler coeatas 3 zall tree

of the exacusion of tha f attering of application & and B. Both cal trees consist of two bigger
methods and sorme smaller oaes. The twa big methods are GererateAlIDocumeants and
Mattering/Tiatteer. In application A GensrateAllDocumets tool arcund 76% of the thread time. In
contrast Fiattering uses only 17% of the tirre. Application B s moere balanced. Fiattaar takeas around
AR of the time ard GeraratefllDocuments arcund 52%. & more detailed overview of the profilar is

giveri in Appeandix B3

The profile of applicaticn A paints aut more interasting points. & nunbar of metheds is called
more tham one time, when only one call i expected [inthe caze of data ret<iawal). The mathod
seams to ba callad four times witheut an ehvinus reasan. And moltiple unnecessary calls takae up
tima and sprce that decrease the scalabiity of the spplication. Multizle execatiors can also have
pther unintended =ffects. Incase of application & it incregses the chances of an e wcoflush. Doring
the interviews one of the developzrs mentioned the autoflushoshizh s reload of <he information
fram tha databasza. Tha lass cal = baing made the lowear the changa of ar autoflush. The fiattaring of
applicaticn B has lass mulziple calls which impreves its scalabilizy. From this test the fiattering of

dpplication B can be considered more scalable.

Corder Metriy

The ewvironmental flexibility of the code was expressed in terms of different softws e metrios.
The first four metrics couphng, cohesion, complexity and instabilizy are elated to the nodolarity of
the code. The imvestipated code consist=2d of all the code that wias specifically written for the
application. any supporting f-amework code was not evaluated in this step. “he full meric results
ran be found in Appendix B

Application B has lowear ameunt of afferent coupling fincoming depandency) and a higher
efferent coupling [outgoing dependency) than application. The averape relational cohesion of
dpplication A is lower than that of appl cation B, A% mentioned i1 the previous chapter the opt mel
range for cohesion is between 1,5 and 4. Both are aithin this range so can be considered cohesive
enough. But on averaga the modulas of application B ara mare cohesive than those of apalication A.
The instability of apalication B s shghtly lower which medns chey are on averdge o it more stable
than modules of application &, Instability occors when there s o difference between the affersnt
dand effers=nt couplite of a1 application. Instability s an indicator of resiliece to change. The
Cyclematic Complexity of zpp ication B s a lot lower the nthat of application A. Du-ing tha redesign
of ypplication B a lot off urosed code wis removed. This also removed g lot of different pathe
through the application which translates inzo s lower compleasxity.

Tatal Total Average
Affarent Efferent Relaticnal Averaer Cyclomatic Cornplexity
Coupling | Coupling Cohesinn Imstability per elass

Dirference -19
Tahle 5.3: Coda metrlcs avervlew of modules of applleatisn A and B

Page A8

Exploring softwiare scalability - Topicus case study

Mayhe mora interasting is the difference in betweeq ke modules used by the fiattering of both
applicaticns. The profiler dentifiad the modo es ased by botq fiatterings. The modules of application
& that use tha faittering hawa a higher nunber of afferant coupling =nd a lowar qaumber of affarent
coupling than those of application B. The relational cobesion applicatian Bis alse higher, bot s still
within the oatimal range of 1,5 and 4. This means that the modwles that are wsed by the fiattering of
dpplication B arz more cohesive than those o applicazion &, Application B hay a shebthy higher
instahility. This means tha modulas used by fiattering of application & are s ightly more resilient o
change than those of application B. The cemplaxity pe- class of application B is lower waich mezsns
the ceda is less complax.

Tatal Total Average
Affarent Efferant Relationzl Average Cyclomatic Complexity
Coupling Coupling Cohesion Instability per class

Meodules of goplication A

used by fiattering

Modules aof aoplication &

used by flattering

Oifference 0,08
Tahle &.4: Code metrics averview of modules of application A and B used by fiattaving

Dependetoy Strecture Motrs and Groph

The Dependency Structure Matrix (05K of t1e applicatiod gives information about the
dependencies between different parts of the apslication. & complete oveniew of the depedencies
o dssermbly level is ziver in the DSM appendic B, When investigating the dependencies of o web
dapplication the dependant modules can be dividad 111e T categorias:

1. Applivoton mooules: Modulzs that dre “omigue” to the applicat on a1d encormpass the
dpplication code

2. Framework modoles: Lizray modules that are reusable among moltiple application without
change. Within this category there are generic MET “rarmesark modulas and the rensable
Top cos modules gs the FORCE cormponents and Topicus Likrary

The FORCE and Topicus modulas are the spurces of gareric and rensabla code. Tha FRS modulas
FrA5, FIA5 Iohs and FRS. Termplates only have cutgoing dependancias (they are on tha left side of tha
D5G). Thiz makes modules unstable because they ere dependent on a number of othe- modules. &
charge in ore of these gwsembly can have an uninte1ded effect or the highe- level mmodules. The
modules with mostly incoming dependecies are seen as stabla, The muost stable modales of the
weh application are the more g2ner o reused Topicus ramawork modoles a5 cheir FORCC
companents and their brary. This is clso shown in che dependency grapk of appendiz BS.

Softungnn reued ity

The gverage docurmentation of apphcatian & s almost 16% [see Table 5.5). This amount of code
docurmertation is considered low by industry standards. As mentioned in chapter 4 optimel
perceatage of docurmentation is basween 20% and A0%. This is consistent with rerrarks frem the
intensgws. Different developers already cormmented on the neczssity for more and guoalite tively
bratteer documentation of the code. This metric howeaver dogs not give any insight in the quality of
the docirmenzation. The decumentztion doas net anly reed —e be availabla but alse oF good quality.
Thes is howevar ne good autonated tocl o- mathod to measure these metrics,

Page 1%

Exploring softuiae scalability - Topicus case study

Comments Comments %]
189823 37 580 15, 81%
1A8.0710 28300 15,07%
von A -» B -51.558

Table 5.5 Glabal sauvce code srerwiswr

The rewse metrics give information aboot the corre 1t reuse and revsability of the code between
dpplicazion A and B. Almost 39% of the code qas been maintained betuaan the b wersion. The
pther 615 percent of the code has been crangzd. Alrmost 50% of the code s complezely new and the
other 11% are inline changas [see Table 5.6]. The complete overview can be found in Appendiz B4

Applicetion A -= Apnlication B Comment

ives of code in ggyication B 732640 16.063

{ i -124.A18 -25.283

B 002 10.113

feline changes 17.80AR 2181
Total for Application B 118070 28360
Oirect revse i Application o) IR.50% 45,66%
Percentrge chorged H1,500 a4,31%

Table 5.6 Detailed reuse metric mrarview

Bottleneck araiyss

The fiaztering is 3 complex part of the gpplication thas s coupled to a lot of other modules of the
dpplication. & camparison of the application code of £ two application shows that application B
ran be considared more medular bacause of its highar cohes on. “he reusa metrics are alse more
favourable for apalication B. This is not a surprise bazzuse the old cede of application A was
rewrittento lre nore flexible, The remowal of unnecassary cede in application B incraases the ahbility
ter read and rause tha code in different situations. This alse lowers the avarage complexity ser class.

Annther side affect of the chatged tode is the increase in deperdancias withir the application in
applicatien B. Tae “iatzaring 1eadead to be mora flaxible new lirks ware neadad to be able to dalivar
that flexibility. In th = case tha inc-gased dapandancies are not necassarily a bad thing hacaase this
prarticular function = more easier the rause whan it is flex ble and not static as it was in the old
situation.

5.4 Loftware scalability battlenecle soluticn stratemy

The fiattering s an importact bot difficult part of the application. It execotes a lerege number of
business rules against 3 let of iv1format on from t1e databasa and is used mulsiple zimes throughout
the important ose cases o the gpplication. The softaare scalability can be improved oe two points:

1. The databiase connection

2. The axecuticen of the code

The first selution is not considered becauwse this researzh does not focus an the datzlrase. The
docurnent peneration part of the fiattering i« the Mmore obsioos choice for revision bacaosz i takes
uprthe Largest part of the fiattering. As previoasly mentioned the multiple execotion of data -etrieval
i% o performance bottleneck. Different daty s reused throoghoot the fiattering bot retrieved
multiple tirmes. Caching of this data remowves the databaze cal s and improvas the load of the
application and tha databaza.

Page 5l

Exploring softwiare scalability - Topicus case study

A rnore radical selution wonld be the ramoval of tha “iattariqg from zhe a splication. If the
fiattaring code is highly madulzr with high cehasion and low coupling it could be transfermed info a
separata wah sarvice. This saparate weh sarvica has zhe advantage that the spacific neads o” the
figttering can be met withowt comprises to other parts of -he code. The fisttering 1as o high CPU
dermand and o high database load. Separating it medns the service can potentially be used by one or
mnlziplz servers and can be scaled for zrester dermand.

This saparation is not withouot t1e creation of additicnal cverhead. Exchang ng data betwaen
machines raguires mara contrel than sha<ing data locally. If the web application can be sharad by
multiple servers tha additional overhaad is expectad to be lowesr than the overhaad regu red far
using maltiple servers edach running the eqtire application.

Diaring the interviaws tha axparts mantionsd thet eptimizing the code of the fiattering of
dpplication A migat be difficalt inits carrent implementatioe. The corrent i plementation cannot be
considerad flexible[this is alzo shawn from the code analysis). For app ication B the fiattering was
implernentad to be mora f axibla. “ha difficulty of a fiatte-ing imp amentation is that tha exact
implernen-ation may differ par application. While ganeral idea of the fiattaring is tha ssme among
multiple projects, the saacific busiress rales are different. & truly scalable solotion might be a more
abstract reeats-engire wizh rmeta-roles that can be easily adapted to the specific app ications.

Page 51

Exploring sofware scalability - Discussion

fr. Discussion

This chapter it g discussiog gboot zhe contributions and resalts of this thesis so far. The first part
pf this chaptzris g discossion of the ided and osability of sotaare scalability. Whist are the
ddvdntapes and differences of softwiare sce lakaility, gnd bow can it be osed doring developrmet? The
second parkis o o scwssion of the evaloation nodel. During the case stody dif*erent methods and
toroals weerre uszel. Sorne of thasae metaods workad and some did not. The discassion waill talk aboot
the findings in greater detuail.

i1 Saftwore zealahility

Software salability is a wersatile concept and this thesis furthar refines the concept. Scalakility
can be improved along two dimensions. The first dimensioqs is the wvertical =calability of an
application. Cresting wartical seftware scalability is the ability to cptimize a single application to be
ahle toserve more users and arwork, Th s is defitad as tha scalehiiity nptinvizotion of an
applicaticn. The secend d mansions is the hor zontal softuwars scalahility of an applicatien.
Harizortal stalaknlity 15 the ability to create an application thatis usable in different ernvironments
dnd mu tiple syszems. Ths s defired gy the enviecnrnesstol Sesibint .

Traditionally resedrchers anly focus on ore of these dimensions of scalability, This means most
of the resaarch cnly tallis abaut the optimization of a single application ar the distributicn among
systarns. One of the kay points of this thesis is focusing on scalability aleng both dirmensions.
Thinlking about scalahility of software means thinking abaut both dirmensions. Soma application will
Fave a3 zreater focus on the optimication of the application, where others applicat ons focos on
being flexible. "his does not rmesn one should only focus on one dimension and forget the other.
Both ara important n creating scalable software, Optirmizing & singla applicazion werks as loag the
erpected number af wsers can ke supporked by single application. Whean the workload grows larper
than the application can handle, 3 second application 15 needed. If the application is not flexible
enoJleh the cost for porting the application to g distriboted setup will 2e very high 1f an application
in focused onosath dirnensions it will ke beth usable gs a sinels spplication bot also usable ina
distribozed setup.

To oreate software scalability changas have to ba made to the application coda. Application cede
is changeaklz if a company haz koth the resowrces (man hours and expertise) and the intellectual
ownership [IF) of the code. Having both enables sormeone to make chiznzes to code. Which chanpes
tor mmakz 15 dependent on waich dimensions of sealability one wants to improve.

The return of investrmient frorm software scalabdlity comes from creating scalable [parts of)
software. This remse can be inthe form of both application code and/ar knowledge. This in zurn
means invastrments in softwara scalability ara usable smong different iteraticns and nstances, which
medns the gain in goality and decredse ininvestrme 1t increases the atility for return on investment.
A previously said penerating knowlzdee and awareness of guality s also an imsorzant part of
exploring software scalability. Sorretimes specific code s not directly usable, bot the ideys bahind £1e
crode s An example of this could be incempatibility between Jawa @ nd OF code. They canrot be
intercranged directly but the fuaction of t1e code can be rewritten 0 another lanpuage.

It is aluo mportat to not see scalability swaloation as & onetime investrient. Scalability s o
waalkest link problem that is not com alately so wed in ane iteration. Scalahility bettlanecks can be
found in both softwara and hardware and hoth require differant solutions. & long term continual
investriient gy toa larger knowledee snd code base abious sealability. Especially if the investiments
ared revinlts are saarad betweasn nultipls ergarizatiors a goed nvastmentfreturn ratio can be
achigved.

Page 52

Exploring softuware scalability - Discussion

In tha end scalability is both = hardware and software issua. Troe scalab lity can be created by
creating a synergy betwaen bath sides. &n organization that wants to improve scalability should
consider both cptiens. Both are asable in different sicuations and beth have their own advantagas
dnd d sadvantages. [Fthe two are used in salance they can improve scalabsility beyond what only one
of them could.

6.2 Loftware scalability evzluation model

The goal of the evalaation method is to find and solve scala bility bottlenecks in softaare. This s
differant than most of the existing methods for scalability. Mast of the existing methods are a
comparison for two sitaations. The proposed method s ghioat find nz and o ving problemes. The
main godl of the evalwation model i goiding the user in obtaining informration abawut the scalability
of the software. This inforroation s neaded to sae which part o the code can be improved. By using
the different taals snd methods more insight in the application can be ganerated which cat halp to
select rew and different tools and methods to gather even more prec se data.

The threa steps of the evaluatien method are generic and widaly aaplicable in d fferent forms.
During the case study the evalwation method was used to identify scalability bottlenecks in g corrent
dpplication of Topicos and use an snalysis to give recommendations for g solutio. The firs: stepis
the identification of bottlenecks in the application. Using diff2rens tools @nd technigoes a numbe - of
bottlenecks wers identified. \What worked was tha ability of the differant methods to find scalability
bottlenacks using differevt sources. Beth tha oo files and the axpert interviews identified similar
preblams. And load tasting was = method -z validate these preblams by act va testing. The
limitations of these staps ara that thay ara primarily usable to identify scz =bility bett enecks in
dpplication [scalability opkim zation).

The second s the danalysis of t1e bottlenecks identified in the first szep. Inits cur-ent
im a3 ernantation the analysis is semewhat limited. The tools, methods and merics that were chosen
represant a smal portion of what is 2ossible. Both dimensions of softwara scalahil ty hava thair own
chargcteristics. Scalabil ty optimization is mostly measured vsing only the application under
inspacticn. The prafiler tool, the dependancy metriz and the cyclumatic complasty and cehesion
metrics ware chosen to rapresent P intarnal structure of the code. Environmantal flexibility is rot
gnasily rraasu-ed on its own. It neads a similar applicaticn te provide the necessary insight into which
charactaristics works well and which does not. The meduo arity and -euse metrics weare chosan to
reprasant this ahility.

The godl wias to, sirmilar to the first step, bz able to combine the different sources intooa fitting
owersiew of the applicatian. The ma n problem is that the different metbed and tocls wara not
meant for evaluating software scalability as a whele. Some too = and metheds are usab e for the
scalability evaluation and other for the flexibility and modularity of the code. Mot all the results of
the metkeds and tools could be linked to scalability or fo ancther metric that dees link te scalability.

Especially tha so twara metrizs ware not as nsable as hoped. The bipgast problam is that neta |
metrics could be linked to scalability. The metncs were chosen to represent certain elerments of both
Forizanzal ard vertical scaling. Appicatior B is 1ewer and mora flaxibla and modular vars on of
application &. In this sense it was axpected to Fave better results for scalakil ty than A, Howeawar, this
could net been distilled from the resulzs. While the better resulzs for the reuse metrizz and less
complaxity of application B ndicate that it is indeed more modular and flexizle the evidenca was rot
strezng enaug 1 ta indicate o real irpact on scalability. For futo-e evaluation perhaps other merics
are miera suitabla for avaluatiag hor zontal scalability. This is further discussad in the
recommendations section of chapter 7.

Page 53

Exploring sofware scalability - Discussion

The camparisoa of the fiaztaring was hard to evaluate becanse of the di<ferencas inappication
things ara no: always direttly corr parable. The changes in canplitg are alse difficult to avaluata.
Applicatior B was build to ba flexible, one way to accomplisk this was by a graater saparation of
concerrn. This incredsed the nomber af modules of spplicetion B, And the greatzr numbe - of modules
increased tha total numbear of rratrics [see Tahle 5.3). The idea was that mare coupling meant lesser
sralability. In this case application B is considered morz scalable bt the greate- amount of coupling
does net seam to be t1at bad or have a big impact on scalabil ty. The instahil fy matric is dependant
onthe amount of coupling. IF coupling cannct be lirked to scalability the instability matric =7 50 not
nzabla in this situation.

The third step is the salution stretepy for the bottleneck. Dependant on which dirnension is of
mora interest to the solution, the specific solution may chiaage. This thasis is not nterasted intae
spacifics of the solutions these a5 not evaluated. Just ws imparzant as the actusl solot onis the
reuse of he salution. Dptimized codz can, if flexible enowgh, be reased among sirilar
implermentations. Expecially is the rewsable code s aart of genernc components, for example fram a
library conponent tha code is easily distributed arong projects. In casa the code is not directly
reusable, knowladga from tha selution can be raused. In case ahe program is build in Cé and snotkear
in Java the code cannot 2e reused directhy. Evanif the cods s not directly ressable tha dasizn and
legic of the selution is, a |it naeds is somebody whe can implament the solutios inJava.

The case stody at Topicus showed that we luable informazion can be gaired from using a
structured aaproach for the entification and improvement of scalability. An overview of which
methods and tools worked and whict did nos are given i Takle 5010 The bigpest problem areas cre
the metrics shat measure horizortal flexibility. While the metrics a-e usakle for measuring portability
dand code flexib lizy, zkis does not mean it messores Forzontal scalability.

Test tool fmethod

Usable for evaluating Measures vertical/harizontal
sralability? sraling ability?

Y ag Veartical
Yas Vertical/Harizontal
Yes Yertical/Horizontal
Yas Yartical/Horizontal
Y ag Veartical
Yag Veartical
Mo Horizontal

Undetearminad

Hezrizontal

Undetearminad

Hezrizontal

Mi Herrizontal
Yes Yertical/Horizontal
¥an Vertical/Harizantal

Table 6.1: Softwave evaluatlon method o erlew

Page 54

Exploring softuware scalability - Discussion

Further imprevaments can be achiewad by us ng hattar giited mathods and teols. This specific
rase study focusad on the scalahility of we2 applications. While scalahility can ba censide-sd more
imaartans for weh applications tha traditional application, traditioral applicatioqs can a so banefit
from being more scalable. Different tools and methods mey be aspropriate or the evaloation of
mors traditiora app icatiors. Tools and rmethods can ba added or removad sacause of two reasons:

1. Thegoal o°tha mathod is gatharing in“ormation about software scalability. This
info-ration is neaded for daciding further acticns. Withoot this informatien no furthar
actiens can be taleen. How thiz information is gathared is not impartant far the future
actiens. The pracisa method and teal used are of lassar impartanca. This rasea<th has
not nvestigated every possible method and too - The poal wiss to give some options “or
incrassing soffwara scalabi ity bt is by no means complete overvicw,

2. At the marment therw are ne tocls and methods that are completely compatitle with the
newly proposed defirition of software scalabil ty of this thesis This msans tooels and
methods can ke improved for better nformation gathering.

The evaluatio 1 metkod can also ke used for evaluating other charactaristics. Tae three step
model is ganeric enough fer answering diffarent quastions. In that case other meathods ard toels can
ke used to gather the requested information. Some axistiag methads as the expart knowledge can
be used in ewary situation.

Page 55

Exploring softuare sca ability - Cone usion and Becommeadations

7. Conclusion and Recommendations

This final chapter discusses the conclusion and the “utwre of this research. The ©irst partis a
suimary of the entire eweerch ard its moss important and interesting contribotions to the
know edee abowt sealability. The second part consists of recormendations for both Topicus and
future resedrch. This -esearch s only an exploration and there are sl many interesting directioss.

7.1 Conclusion

In this thesis scalability s defined gs the eose of eapendimg e ooplication to sere ore
Lsersfand ar work. Far web applications scalabilizy is animportent facter. A wab application is a
ceqtrally hosted application on which peeple from varions locazions login te use tha apalicaticn. A
weh application has to handle a dynamic amount of Jsers its ahility to handle & variable workload s
imprezrtant.

The first part of this thes = was abouat t1e noticn of software scalability and how it relazes to the
largerissue of general scalability, The bigpest problem of scalability currenthy bas s that it s a large
and complex subject withowot o good scientific basis. It bas no clear and geeepted definition and this
mukey the esearch fractured. Different papers talk sboot different aspects of scalasility and moszly
tefite soalamlity @y o hardware issue, or g syster ssue. This makes the research fractured and
difficult ter usa.

W 1at makas scalability so complex is that izis a somathing that is influencad by a lot of othar
characteristics/ circumstances. Th s is further complicated av the beheviour of scalabil ty, Scelakility
i%d problem that cannot be “sofeed™. Like other quality characterisbios itis improved unhil iE becormes
acceptab e or maets stated criteria but in thaery it coald potantially be imp-oved furthar. Onthe
practicdl side there is often a trede-off betareen the sdvantages of the improvement and its costes.
Scalability improvement can be seer gs g weakest-link i srovemeet f yoo want to imarove
srdlability you start w th the weaskest wart of the chain. After thet part is improved snotber part
bacormes the weakest link.

The focus on setwara scalability mzleas this thesis stand out suainst tha corrent litaratura,
Instead of anly hirking in adding servers or replacing hardwara, scalabil ty can alsa be creatad in
strftware. This thesis further divides sofware scalability into b dimensions:

1. Softreare scalednity i the oDty to Gonole increcsed weorkloao by clhoanaing pockys of the code
{(scerlphility aptimizetionAertizols softwore scalebility]

2. Eiftweire scodobuliy has the ability to bre gsed rmadtiple Hemes in oo cost-effective neay
{erwiranmental fexibilityhorizanto) software scalofility)

These two dirmensions explain the two most impartant characteristics of achieving softwere
sralability. Tae main advantaege of analyzing and improving scala bility on the sofbwere side, irstead
of the: hardware sids. is that the solution s regsable. TAis chanees the way the scalabil ty of software
shiould be amalyzed. This medns scalable software s7onld not only be able to handle an incregsed
wokload (scalalnty optirnzotion) ot alzo be reosable i1 different environments Gsasrcaemen ol
Pexibiling. Cambiring these aspects results in scalability optirmizations t1at are osable in muoltiple
wituations ard iterations.

This deas not mmean an organization shoold only foous on software. A truly scalable systerr is
tependet on both hardware and software. This author does not be ieve one s more important
than the ather. Beth have thair own strangths and waaknessas and both are usahle in differant
situatios. A organizazion that s wants to imeest noa scalable systerr will need to create a synergy
of the best elarments on both sidas.

Page 54

Exploring softwdre sca d wlity - Cone usion and Becommeadations

An iterative asproach that coqsidar hoth bardware ard setwara also fits with the waakest line
beaaviour of scalability, If an ergarization bFas 3 wide range of possibilities it can fix the weakast link
with the most appropriate so mtion. An exarmpla of this is improving the systam iterativaly along the
different d mansiars. & first iteration would be improvieg vertical softwarz scalakility, the second
iteration would be improving horizortal software scalability and the third would ke adding and,or
replacing hardware, and o on.

The secoad pert of tha this is an avaluatioh method 1 halp a1 organization inidentifying and
analyzing bottle1ecks on the software side. To increase software scalability an evaluation method is
preposed which can ba fillad with various tocls and nathod. Tha avaluation mathod proposas a
three step rmodel:

1. Theidantification of software scalability bott anecls
2. Andnalysis of software scalability bottlenz=cks
2. A solution stretepy for software scalability bottlenacks

The first 7we steps consistad of 2 number of diffarent tools that were chosen to measurs
differant aspects of the horizantal and vart cal scaling ability of software. Tha three step modal was
evalumatad by applying it to 8 Tepicus web spphcation. For somea methods and tools 3 secoend
applicatien was introducad as a comparison for the first application.

The first step cotsisted of using informration from log files, bugtrac<ing systems, expert
know edee and load testing to indentity scalakility sottlenecks, The four methodstosls identified
several, both similar and different, bottlenecks, The different methodstools complemented eech
other und the load -esting offered o way to verify problems identified by the other methads/toals.

The secoqd stap consisted of code analysis and coda metrics. & profilar was used to analyze the
exzrutiod of the code and & dependency andlysis wias 1sed to andlyze the dependznoies between
different parts of the code. The code metrics conpling, cohesions, camplexity and instakdlity are part
of the vode structure amilysis, the reuse of code ard documentazion tal care indicators o the
reusahilizy of the cede.

The prafiler, dependercy structure rmat-ix and reuse netrics 3l showead infermation that cauld
be usable for better undestanding the scalability of an application. These metricsftools all showed,
mostly, information abows the vertical scalability of =noapplication. Evaluation of horizontal scaliag
proved to be mare difficult. The cose study results of coopling and instability did not match the
expectations Inthis case they coold met be inled e scalability. The aothar metrics s complaesity and
eohericn showed proemse indicating scalability. This hovacewer could net be proved ampinics lly

during this ~esearch.

The final szep i thinking abowot zhe soluzion to £1e bottleneck and how the improved code can
gither ke raused directly or reused as knowledzge. The rause isimportant because ctharwise it will ba
Fard tor jostify the invest nient in code chiatges.

Alrnast sirmilar skeps were also msed dy Topious 7 drother sizogtion. During this ressarch one of
the ypplications had o performance issue. For g solotion xarts of the code and logs were used to
identify the mosws pressing problem. Knowing the bigpest point of concern showld lead to furkker
dnalysis, [n this particolar case tae datebase was the aoint of fa lure. During runtime the load on the
database was anoommonly high, Farther investigation showead that the databiasz had o hard time
executing 1 the different goeries or the records. The solation in this case came fom revalosting
the indexes placed on the dietabase. This resolzed i 8 moch ower deatabese load.

Page 57

Exploring softuare sca ability - Cone usion and Becommeadations

This situation al pwed Topicus e g2ain lknowledza about this kind of bottlanack. Tapicus is 10w
able to idantify and optimize this kind of hoztlanack in tha futura. Tha bettlereck selotien was alsn
sharad intarnal y and can now ba used by all Tapicas organizations. & similar scena-iois
recarmmended for scalability isswes.

These steps can be divided into the three steps of the sveluation method. In this case the
preblam was performance related and because of this the implamanted tools and methods zra
differant but tha hasic steps ramzin the samea. This makes integration of teals and methods that.
indicate scalakility easy in an organization as Topicus. Othar organizations migkt hava other needs of
possitilities. Organizatioas are encouraged to tailor tha avaliat onmethod to their ow spacifiz
tesiras.

Mext all rnethads seamed to indicats scalability claarky. For futura usa new 7ad disferant mathods
ran be used during the first two steps. [0 cese an orgdanization wants different informatios d ffeent
methods can be used, BEspecially metrics that are morz tailored for software scalability ard the
evaluation of horizental and vertical scaing of softwara will i1craase the guality of the infarmation
gatharad durirg the evaluation steps. Future steps are further considered in the next section,

7.2 Recommendations

The recemmendations are separatad for Tepicus and for future research. Topicus is interested in
a practical approach for evaluating and improving scalabilizy. Q49 tha research side there is still 7 lot
of additional research opticns. This thesis is =0 irtroducticn into the field of software scalability.
More research is needad for furthar invastigation and validation of this fiald.

721 Pocommondations: Topicus

Topicos gy o softwi e developer has 3 zood position “or improving scalability on the sofoaere
side, Ay o software deve oper they bave the experts and knowledge in-hoose za fird and solve
bottlenecks in sof-ware. Az creators, and owners i1 ceee of 4 S8A5 application, they have access to
the sanrece coda. If the application is weh based the software can ba easily updated becanse thars is
ror need to redistribute or patch the application on the clignt side.

The Topicus developrment method glsa fits the softwiare scalzbility approach. Th s method is
dlready orientzd on software reose and modolarity. This propased approach to softeidre scalabiality
dlew recoznises these points ard marks them as imporkan = IF scalablity swareness and ostirmizzstion
ran becoma part of the development cycle —ode 71d knowladge can be effectivaly rausad in other
projects and iterations.

Thiv legds tote primary racormendation for Topous:

Cragte owareness of fsoftwore) scolability end promote the rewrse of code ard koowledge
throuwafiour the orgarization

The importance of gquality 15 growing w thin Topicus and scalability shoold 2e one of the
impartant quelity fackors. The ability to handle scalability effectively and cost-efective cia be a
competitive adventage in the web application rarket.

Page 58

Exploring softwdre sca d wlity - Cone usion and Becommeadations

Knowledge sharing cam ba prometed by creating placas and avants for informatior exchanga.
This can be done by writing bast practices and zuidalines abast scalability, hosting discussion avants
and freaing up resources for additional scalakility -asearch. This research is dore at a high leveal and
toes not give dany concrete salotions. An opportunity for further research, without taking too mruch
time away from employees, would be internships that nvestizate more specific scalability solutions.
For example research into database optimization, load alancirg and method complexity.

Sralakil tyis met only an issue for Topicus Finsnca bot is of mportance ta all Topicus
oregan zations. Thiz rmeans sharing know edge beowaen arganizatiors creates additional
opporturities. &5 menticned before, scalab lity caq 3e improved an many differant levels ard places.
Cregting 4 larze knowledge base of solutions for different langoapes, architectures and
grvironments can imzrowve applications across all ergamzations. Within a single erganization reusing
vode thiat i soaleble can spasd up develaopment tims and sssure 3 certain leval of (software)
sralability. Being able to share information between the different Topicus organizations provides
even better opportonities knowledee seneration and knowledpe sharing.

7.22 HRecommendarions: Fumre resasrch

Sralahkiity is anarea that haz a lot of research potential laft. Espacially in tha area of softwsre
sealability shera 44 lot additional reses ch te be dene. This thesis s an axpleration it the
dafinizion snd use of softwa e stalability =nd enly scratckes the surface of the subject. Future
research is naeded hoth in detail and across multiple discislines.

The propesed definition of saftware scalability is still sormewhat broad, The definitionis a
statement of the goal buf laawes its implemeantation 2o the user, While this resezrch has tried to
tefite eveny dgspect o software scalability sorne points magy bave been missed or reguoire more
deta led investigation.

The overall structura of the evaluation framewerk is adaptable for diferent and mora analyses
methods and tools. The corrent implerertation s based on @ small collection of available mathods
and tools, As mentionzd n the previous chapter not all results are easily comb ned into o clear end
rexsult. Fro- s big part thisis becawsa thare s ne raal previous ressarch into soffwara scalability as 3
sepdrate darea. This mezans there are no metods and tools proposed or validated that cormpletely fit
the definiticn of sofrware scala aility. Mavba currant tocls aad mathod can be adapzed for use but
this is bayond tha scope of this taesis. & bettar urdarszanding of this area of scalability and a better
suapott by tools and methods will malea it easier to idantify, snalyze and solve sca ahbility isswas.

ane of the more interasting points is the evaluation of software scalability wsirg metrics. For the
evaluation of tha environmmental flexisility a numbar of metrics are preposed. More asezrchis
raadad to validate this thaory behind the link bebwean these cods metrics and <he presence of
softwiare scalabil ty. Besearch into other, mare direct methods and -ools for software scalatslity
evalmation is also encouraged.

Especially rieds aring horizantal scalaslity proved to be difficolt, new insig s into this
charactaristic can grestly improve the maasorement and improvemeant of software scalability. The
dafinition of horizontal scaling is simrilar to that of portobifity, code anderstard atdlity and ressabilite
The gonal 2f thasa methods is the same as harizental scaling, craating flaxible software that can be
ddjuszed to g new or chienged environment. New metrics and tools “or honzontal scelability caa be
sedrched in that research area. A nurnbier of articles aboot the rewsability define metr cs for
evialwating the reosability of software. Portability and vnderstandable code are often o part of tis
resedare dared. More extensive rewsa bility metrics will hopefully prov de g better insight irto
Forizortal scaling [49],[57].

Prge 5%

Exploring softuare sca ability - Cone usion and Becommeadations

The resu ts of the ampirical test on vertical and horizortal sca Agility test have skown it is still
Fard to guantify sca ability 55 3 whaole. The curret evaluatio metkod approaches s=zlahility from a
rumber of different anglas for a breadar oversiaw. &nd as ment ened some angles A+ batter
guantifiable ss others. All the metrics showed quaatif able information azoot the application code,
the problem was linking that information to scalability. Some metrics, as cpclomatic complexity and
cohesion, showed promise in meassaring softwa e scalab ity "his however could not be coafirmed
during thiz rasearch. Future research mright be able <2 ident fy a batter and stranger link betwaen
complexity, cohesiog and scalability.

Az mentioned bafore, software scalability is anly 2 2art of szalahility in general. Te further
improve software scalability the greater idey of sealability also nzeds more resedarch. One of the
biggest problems is for future resezrchis the absarce of 2 well acceptad definition for scalab ity
Withoust an acceptad definition fut.are research is likely to focas on small incidental rasearch araas
without an ides of how th s relates to this g picture, or whiat is missing in that pictore. Another risk
i% tha - o change in of defimition may rermove or changs the applicakblity and svalidity of certain
scrl=hility rasearch.

Fu-ure raseach shouo d not only furthar explore the definiticn and application of sofwere
sealubility bt zlse: its lialo to e greater scalability issus. Scalability is both soffuere and hardware
iz5.1a. &1 application is dependant on both, and botk are asahkla for diffarent situations. &n
interesting point o research s whick situation regoires which appragch. The investrment needed for
the salability improvernent is also g fackor in the decision. A direc: comparsan and calculation
method for hardwiare versos softas e gy lead to o decsion suppors method.

Page bil

Explaring software scalabi ity - References

References

[1] A Abran, WKL James, P Bourgoe, and R, Dupuais. Guwioe o the Softwore Ergireering Bod y
of Kroefedge 2004 version, ICCC Press., 2004,

[2] K5 Ahluwal &, Scalability desigr patte-ns. 17 24th Conferen-e On Pottern Cooguages COF
Arogroms, 2007,

[3] k. Ahrmad, fhang L, aad FoArdam. Web engineering: o new emerging discipline. In Emernging
Techinologies, 2005, Proceedingy of the JEEE Sprripoesnm on, pages 445-450, 17-18 Sept.
2005,

[4] . al-Kilidar, K. Cox, and B. Kitchenham. T1e a5se and usafuliess of the isofiec 3126 guality
szandard, In Empirien! Seftware Engineering, 2005, 2005 Ieternatiorn! Swmposiane on, page
7pp., 17 18 Now. 2005,

[5] Wicens Beltran, David Carrara, Jordi Torres, sd Eduward Ayguade. Evaloating the sca ability of
Java event-driven web servers. In (CPP D4 Proceedings of Hre 2004 Internationel Conference
ot Porollel Processing ('CPP'02), pages 134142 Whashington, DC, USA, 2004, [EEE Com puter
Socicty.

[E] B. Boekm znd R. Turner, Batoncing Agility ond Oiscipline: & Guide for the Perplosed. Addison-
Weslay Langir an Publishing Co., Inc., Boston, RS, LS4, 2003,

[7] B.\W. Boehm. Characteristics of Saftware Quality, Morth Holland, Amsterdam, 1978,

[8] AB. Bondi. Characteristics of scalab lity and their irrpact on performancz. In WAO5P Y0
Proeeadings of the 2rd intemotional work<hon on Saftwane and pedformonce, pages 135-
203, Mew York, WY, L&A, 2000, AW,

[9] Encyclopedia Brittaticy, 2207,

[10] Dov Bulka. frve Bedformence qrd Scalatilite: 1/ The Sun Microsystems Press fava Series),
addison Waslay, 200C.

[11] E. Burris. Propramrming dree website by eddy burris, 2007,

[12] L. Chung, B.A. Mison, ¥. Eric, and 1. by opoulos. Non-Fenctionol e guirernen by in Softwcre
Enginearing (THE KLWER WTERNATIONAL SERIES MW SOFTIVFARE ENGINEERING Yiolume T)
fnternationnl Series In Seffware Engineering). Saringer, Octohar 1399

[13]1 F. Deshpands, 5 Murugesan, A Ginige, 5. Hensen, D, Schwabe, V. Saedke, ard B. Whita,
Web engineering. fournal of Welr Engineenng, 1(1):%, 2002,

[14] T.1. Douglas and WO, Jodge jr. Total quality mardeement implementation and cormpetitive
ddvantupe: The ro e of structura control and exploration. Acodemy of Moriogerment foorsel,
11(1]:158-149, 2001.

[15] L. Dubog, 0. Rosenblum, and T, Wicks, & framework for cha-acterization and analysis of
software systam scalability. In E5FC-FSE 07 Procesdings of the Gtk joint mesting of the
Eurzpean seftwore angineening conference and the ACK SIGSOFT spmpnsiom on The
Jouadations af saftwere ergineering, pages 375 384, Mew Yorl, MY, LS8, 2007 ACK.

[14] Topitus Financa. Fo-ne framawork whitepapar, 2006,

[17] W.B.Trakes and 5. Isoda. Success factors of systematic rausea. (EFE Softwe., 11(51:111-19, 13941

[18] W.B. Frakes and K. Kang. Software reuse research: Status ard future. (EEE Trans. Saftw. Eag.,
21(7):529-536, 20005.

[19] H. Faaman. Software testing. festrormentotion & Meosurerment Magozine, ICEE, 53850,
Septembar 2002.

[20] D Garvin. What does "prodoct quaality” really mean? Slhoan Monogernernt Beview, 25(10:25-
43,1954,

[21] P.Gerrard. Risle-bazed e-business testing: Part 1 — risks and test strategy. Published on
WY By Systarie Evolusif Lid., 2001.

[22] A Ginige and 3.0 oarugesan. The essence of web engingering - managing the diversity and
comp exity of wes application develapment. Mul¥ieredio, (EEE, B12):22-25, April-lune 2001.

[23] Gooels Google seattle conference on scalability
Frtpe faeew gongle. comfavantsys calabil ty_seattlef, 2007,

Prage 61

Exploring sotuiane scalabil ty - Refersnoes

[241 D.B. Gustawson. The meny dimensiors of scalability. In COMPCON, pagas BO-G3, 13541

[25] F.D. Farlow and 5. lmam, The effect of tacit knowladge maragemeant on innovation:
Matching tachnology —o strategies. In Technadogy WMovwogenreat for the Global Future, 2006.
PIChAT 20k, 2000,

[2a] b0 Hill. Whit is scalability? S0GARCH Cornerot Archit. News, 18(411:18—21, 130C.

[27] Il and & Hers, Knowledpe reose — insights frem software rease In Procesdings of the
1998 Americos Confereree of the Associotion aof Informatios Spsieme (405), 1998,

[28] P_lezalekar and M. Wnodside. Evaluatiag tha scalahility of distributed systams. (FCC Trions.
Paraliel Distrib. Spst, 11(6):580-603, Z00C.

[29] B Kitchenham and 5.L. Pflagger. Software guality: The elusive targat. (EFE Software,
13(1]:12-21, 1996.

[360] CW. Kriegar. Software ranse. ACM Compor. Sure, 2(21:131-183, 1952,

[321] . Kumar and A. Gupta. &Analyz ng scalahility of parallel algorithms and architacturas. &
Perroffal Distritr Cornpat., 22(31:579-391, 19941,

[32] S Lt and C. Yane. A softudre metric combination medel for softwara reuss. In ABSEC '54:
Proceadings of the Fifth asin Pacific Saftware Erginesring Conferoroe, paga 70, Weshington,
DC, USA, 1953, [EEE Camputer Society.

[32] E.A. Lule. Dafining and measur ng scalahbility. In Procesdings af the Scofzhle Paratlel Libraries
Conference, pagas 183-1R6, 1352,

[3] 1 Markoff and 1. Hanszall. Hiding in plain 5 g4t, google saeks mora powear. Naw Yorle Times,
Janea 20065,

[35] T. McCabe. & software complesity measure. (EEE TTons. Softwore Eng., 2111:208-32C,
Decarnber 13710

[26] LA mcCall and M.T. Matsumoto. Softwa-e guality megsarement manual, vol, i "echnical
repors, Rorme Air Development Center, 1980.

[37] L.D.Meier, C. Farre, P. Bansode, 5. Barber, ard 0. Rea. Pefarmance testing suidance for wab
applications: patterns and practices. Microsoft Corpoeration, 2007,

[38] 1.0 Weier, 5. Wasireddy, & Babbar, B Meriaain and & Mackenan, ferorosareg et Aopdication
Perfirmonce aod Soalobity. Mircosoft Corporation, 2004,

[38] A Mishra, Performance wcalahility in switching system software. Cormmunications, 1955, 100
‘05, 1939 IEFE interngtinmm Confereace on, 1:250-2235 ol 1, 1359,

[4a] 1.0, Vooney. Portability and rewsaslity: cammon issues and diffsrances. In C5C '80:
Froceedingy of the T885 A0 2300 ennol conference on Computor seieknco, poges 150-15G,
Mew York, MY, LUSA, 1955, ACK,

[11] Glanford 1. Myers. A af Software Testing. lebn W ey & Sons, 11c., Maw ¥ork, NY, USA, 1370

[42] MO=pend. hdepend rretr ¢ definitions - http: s nde pe nd_comfmetrics.aspx, 2007,

[131 F. Miclols. The krovdedae monagerment yearbook 2000-20600 - The drowiedie v koenaele e
raerigernent, ciapter Part Ona - The Natare of Knewledze And Its Management, pages 12—
21, Butterwarzh Heinermann, Bosten, 2000,

[4£] 1. Offutt. Ouality attribotes of web software apalications. ieEF Soffwere: Speciof lssue on
Software Engineering of Interret Software, 19(2 12552, 27002

[15] L affutt. web sotware apalicatiens quality attributes, In Procesdings of the Corquest 2002
corference, 2002,

[4a] [Reifer. Ten deadly ricks in interne: and intranzt woftware developrrent. Softoeore, (EEE,
19{2]:12-14, March-April 2002

[17 RTI. The Ecorrorrie tnposts of ncoeguate frostroctere for Softwore Testing. Flanning
Feport 02-3. Mational Instituse of Stunderds and Technology, Research Triangle Park, NC,
Moy 20032 .

[18] Armdreas Rudol snd Bainer Picker. E-boasiness testing: User perceptions and performance
issaes. In APAQYS O Provceedirgs of the The Fiest Asia-Pacific Confererice on Quality Softucre
fAPADTON), page 315, Washingzon, DC, USa, 2000 [EEE Computer Socioty.

Page b2

Explaring software scalabi ity - References

[49]

(50]

(51]

[52]

(53]
[54]
1551
(55]

(57]

(58]

(53]

(0]
[61]

(B3]

R. Seidler de Abwis, E. Hartmann, 31d H.C. Cemiinden. The rele of tac t lonowledgs in
innaovation maragemeant. 12tk IAE Conference, Logann, Switzeriangd, 1,23, 2003,

5.5, Shiva and LA Shala, Software reuse: Researck and practica. In (TRNG ‘07 Procesdings of
the fnteracticnal Corference on Inforcmeioon Techrolfogy, paees 03—003, Washington, DC,
USA, 2007 ICCC Compater Socicky.

W Stewens, G Myers, and L. Constantine. Strvchured design, pages 200-232. Yourdon Press,
Upper Saddle Rivar, M1, USA, 1973,

B. M. Subraya snd 5. V. Subrahmanya. Objact driven perfermance tasting in web
applicetions. In APALS 00 Proceadings of the The First Asia-Padific Conferance or Quality
Software (ARAQS'IG), page 17, Waskingtor, OC, UsA, 2000, IEEE Cormputar Seciety.

B.Iv1. Subrawy. fotegrated Approach to Web Performeince Testing: A Procteteness Guide. ldaa
Group Inc., 2006,

Topicus. Topicus homepags - hitp:ffwwea tepicus.nlf, 2007,

[Marschuren and H. Decrawasard. Het ontwerpen von een onderzoes, Lemma, 2000,
D.owWane. Meeting green computing challenges. |n Sigle Densiy packoging ard Microsyystern
tategration, 2007, HOP OF Ietareationm! Spmpesion an, 2007,

H. Washizaki, H. Yamzmeto, and Y. Tukazawa, A metrics snite for measuring rensability of
software camponents. In METRICE 113: Praceadings of the Oth interngtional Sympasiue on
Software Metrics, pags 211, Whashington, DE, USA, 2003, IEEE Camputar Sociaty.

r B Weinstock and 1B, Geoderough. On systam scalability. Technical report, Carnegis
Mlellon University, 200&.

Bl Wewuker and A Av-itzer. & metric to predict software scalability, In MCTRICE 12
Procesdirgy of the Sth irternotiona Syenposidrm o Sofoeare Metaos, pape 152, Wasbington,
DC, USA, 2002, ICCL Computor Socicty.

L. Williarms and C.U. 3mith. Web spp ication scalability: & model-based approgck. Technicsl
report, Software Enginear nz Rasaarch and Parformaice Chginaaring Sarvices, 2004

L.G. Williams and C.U, Smith, Qsem: Quantitative szalabil ty evaluation mathod. In fer. O G
Conference, pages 241-3532 2005,

I te Winkel Growing larpe whilz stayitg small: Spinting-off as a1 organizational strategs.
Mlaster's thesis, University of Twente, 2007,

Prage 63

Exploring software scalability - Glossary

Glnssary

The glossany contaits a shortl st of abbrevigtions, Topicws specific concepts and important

concepts of the thesis.

Apgile deve lopment methodalogy

ASP (Application Service Provider)

Call tree

Coupling

Cohesion

Dependenty Structure Watrix

Dependancy Structure Graph

Explicit l:nowladge

e-Business

FORCE frameworl

Hardware scalability

Irmplicit know|edge

Intallactual property [IP}

Men-functional requirement {NFR)

Ouality requirement

Scalability

& collection of software deve opment processes thiat
put ermphdsis on iterative software development.
This in contrast to plan-driven development

& provider that is capable of providing an application
A5 3 sarvice [sea SALS)

Atrez sheped overview of the different function calls
of (parts of1 ¢n applicetion

The arnount of dependency between diffe-ent
saftwara mrodulas

Intarnal amount o° dapendency in 3 single softwara
rroule

A metrik overview of the dependencies of an
dpplication

& graph averview of the dependencies of an
dpplication

& rollection of racorded krowladge that is easily
transfarable to otke- paopla

Conduct o business on or with help of the Interet

A collection of reusable components wsed by Topicus
tor develo s their web applications

Achieving scalability or the hardware =ide

Acol edticn of knowladgs that could be recordad if
needad

The legal rights fo- creations of the mind as text,
music, software code and such,

& mandatary part of an application that is 1ot relatad
to functional bahav our

sep Mnn-functionnt requirement

The edse with which g system can be exsanded to
SEFYS TIGFE SEers andfor work

Page B4

Exploring software scalability - Glossary

SAAS [Softwara as a Service]

Software Metrics

Software scalability
Tacit knowladpe

Throughput

Woarlload

& roct madal 3azed on usage of the software not on
its pwnership

Quurntizative measurament of cartain sof oeere

characteristics
Achieving scalab lity onthe software side
Intuitiva knowladge a persoq is not actively avwara off

Murnber of transaction per second an applicatior can
handla

Totd | grnownt of trunsactions an application can
handle doring o specific time period

Page 65

Exploring software scalability - Apzendices

Appendices

Appendiz A Praliminary invesdgaton inke Non-functional requiremoent

What are Mon-tunctional regquirements?

Mon-functioml reguirement are an e portant inf uence on the sofzware development cyele.
Weher =as functional reqairements specify what an application shoeuld do, non-functionsl
reguirerients specify how an application shooald perform and give specific sroject and development
const-aints. Non-functicnal raguiremant are also khownnin the softwere ang nearing lizarstura by
differant terms. Tarrs as quolity attnbates, exoro-functional reguicements, non-behoviours!
requirements, constraints and gools are fraquently usad throughout tha literature “or the zama
retion. This thesis usas tha term non-functioral requirements because itis the commaon tarn in
industry.

Ta help expla n the term non-functional requicements in tha software domain battar a clear and
formzl definition is needed. The Softwiare Engineerng Body of Knowledpe (SWEBOE) def nes a
software reguirerient as "o peoperty tRot st be exiabited o solve peodfeens e the reof workd ™ 1)
Trans ating this te nen-funct enal requirements waoald make it a nen-functional property that an
dpplication should have.

Spenific non-funciiora reguirements are defined as sspects of the softwiaqe. Most (T
prefessionals know these assacts as the —ilities of soffuwara. “ha —ilities ara a list of aspacts like
dvailability, scalability and the like, rmost of which end 2 =ity While there s no coniplete list o” -
ilities, many of zhencan be found -hroughouot non-functioral requirements standards, for example
150 9126 [/]. The extansivaness af the list, it coatains more t1an fifty -ilities, makes it nosable asa
res | puide ine in pracice.

Enimpartant 3aparin the area of nen-functional reguirameants is the papar oa quality
perceHion by Ga~in. Garvin [20] dafired five views on softwara quality from diffarent domains. He
shites that, becaose quality is o comp ex and moltifaceted coqcept, moltiple wiewpoints are needed
tir analyze it. The tramvcendental view sees quality as someshing that can be recognized bt
impossible to be defined objectively for everybody. The weer view defines goality as the fit to the
user's needs. Thae monufacbinng view defines guality as gdherence to specicication. The proguwot
view defines quality from tae internal characteristics of g prodoct. The eoluesbased view defines
guality a5 a zrade-of” betwesr quia ity and cast. Taisthesis s moest interasted i1 the characteristios of
the product tself. This corresponds to the produoct @iz of Garvin.

Kon-tunckional requiremoent models

Different cuthors and orgarizations have ~efined nor-functional requi-errent into more practizal
models. The most prorm nent are the classifications by MeCal & Matsumoto, Boehm and the 1S3/CC
G420 standard.

MlcCall and Matsumoso [36] started by identifyirg £ thraa main views on ron-functional
recjuirernent: product revision, product fransition and prodect aperaticns. Evary view is associated
with & couple of requirements that irfluence the behaviour of the system. Product revisioe i linkezd
ter rnovrnitoirabalty, fexibility and testobifity. Prodoct trarsbian s linked to poreobiity, reosobility and
irferoperchiity. Product operations is linked to correctoess, refiobalty, efficiarcy, integrity and
wibifity. The raguirements are =fined into quality criteria. The criteria are used as in indicator of
cetuin reguireme 1ts. & hizh craced sility, com pleteress and consistercy are indicators thas the
software hay a high degree of correctness. 3ome critery are indicators of moltiple requiremente.
Mlodularity is an important factor for all the reguirsrents that have to do with maintenancas and

Page bf

Exploring software scalability - Apzendices

davalopment barausa mod.alarity impacts tha implemantation. To be abla o tast an application for
the criteria MeCall and Matsumoto dafined metrics for maasurerant of aach specdific criteria [san

Figure A.1].

Fradct Gparatian

Qualily Factors

Fraducl Ravisior

Effitiancy ’i
[vonanaeiy

Frogifct Transinan

Teslability

ey

T ey
— .

Rejisablily =

In{eraparabiily o~

Quslity Critgria

Meiricz

Traceabll

Completancses

Cansiszncoy

AnCUrEsy

Errer Toleranca

Execulion Tolerancs

Storege EMcency

Focess Coniral

Sy A

operabiliny

T-alning

ComMrnlcativase

Tirmalicity

Congaenesy

Inetrurmantatio

Sef-degciplveness

Expancsblity

Cieraralty

Toeularthy

Enfmare Sysen Irdependenz= —
Machie Irdesandance — |

Caommunicasicn comminality ——
itk corimioeiality —————

Figure 4.1: McCall and Matsumeate™ quality madel |image from [11]]

Boehm [7] d vided non-funct onal requirements an a Figh lave in thrae basic mses: as-is otility,
maintainability and portability. This high lewal divisicn matches closely with the three viaws by
McCall and Matsumoto. The tarea high-lavels are rafined inte seven non-functional requiremants:
portobifity, reliokbiity, efficiercy, humon engineeding (usobifity), testability, understind ability and
rnocifiobility. On g lower level, the reguirerments dre refined inte characteristios. Cartain
characteristics are used “or multiple requirements. These cheracteristios are inked to cartain metrics

that #re used to reedsure and Analyze the charactenstizs.

b= LT [

—Euice| 117 |0z e

—zranicy S0 nplabeets
ACCL AT
Helahl =
CIMEIRErCY
ELELER L — EAc a1y Sauice EMzleacy

HIr=1End. nazrm
il zabiliy)

Ancecslal b

S ATACHE

Urde=k wzaily <
Wz Ralr ey

Flgure &.2: Bochm's quallty model (maga from [111)

’ Ealf Cesrlnbenass

Agretal by

\\

Rkedrca

The International drganization for Standardization [150) creatad a1 irternatioral standard far
software guality the 1500C 31256 standard [4]. It was originally published as I53ICC 3126:19%1 in
1991, It consisted of six quality characte-istics aed informazion shoot how to apply them. it was
criticized for kzing incamplete and incomprehensive and revised in later years. The orig nal mode s
row splitin two parts. The IROAEC 9216-X series docurmerts ISE stardard. The qaality model is
documented in 190/1EC 9126-1: 2001, The external metrics of the model are handled 1580F1EC 0126-
2;2003, and intarnal meatrizs are handled in ISO/IES 9126-3:2003. The last pa-t, 150/0C 9126-4:2004,
docurnents quzlity i1 usa. The guality avaluat on procass is new part of 1ISGAICES 11598-X% sarias.

Page 67

Exploring software scalability - Apzendices

Similar to the quality classification by Boehm and McoCall, the 150 standard is divided in different
lewals. Tha main lawal consists of functionelity, relicBility, psabitity, sfficiency, moistaieability and
partahitity. Taese aspects are furthe- refined into sub charactaristics and both internal and extarnz|
metrics. & key difference between the 150 standdard and the Boaben and MeCall inadeal s that the 150
stundard is completely hiergrehical becaose sub-character stics are linked o only one goality
characterist o The other two modals alloaw sab characteristios to indicate muoltiple guoa lity
charactaristic. An averviaw of this standard is given in Figure A3

JB0 9104, Lyima s
Cuality Charschar B Sub-chamcheristics

RAHIGT2G 5 dnlama! wenies
Suilsbilily I

LTI R

e
Sedurily 0|

Fundiormlily Compliaqme |

Matr by |

Fault bdeyariem |
e e
Feeliakiliy compliame —

Urdesrsheridabiliy
Lemmabdir |
AHracereEs
mteenslend | Usatilily Carnp are s
Evremal Guaily Tin'e behaaom 5'1_
Fificiks 1oy R Estunce utlizeticn =
E Tesierizy Campliane |
Anzlyzbiibe
Changs abiliy |
Teeapiy —
Rairila nabilily Complianss —
Adupbablity
(LT T:T 1] —
Reslacsublity
Fairlabilily Coinpianca
g

Figurs A.3; 1S0f1EC 9126-X quality mod el (image from [111

W aen the thrae main quality ¢ assifications are compa -ad, a rumber of similzrities and
differances appear. &ll tha maodels define diffarant levals and link metrics te specifiz quality critaria.
They alsc share qual ty characteristics. Al modals include raliab lity, afficiency, usahility,
mainta nahility and portability. Tha athar guality characteristics are often named differantly or put
on g different lewvel, MzCall has mora characteristics o1 tha primary [2wval but they can be sraced to
the rafinemant of characteristics of the othar modals. Ir the snd sl three mmodels talk about the
sAame caaractaristics in more er less specified way. This iz also part of the tronble whan comparing
the classifi-ations becanse they somet mes namea a cartain caaracteristic differently or split the
explunatiod over multiple critera. For clear and effaczive communication about a nen-functional
reuirerient i iy important to have o clear defintion of ity meaning and applicakslity.

om-tunctional requiremont for wobapplications

Wieb applications are o special categony of [T software. Traditional IT softws-e s foonsed on
Applicatiens -unning an A stard-alens camputer, Witk the development of advarced netweorks like
the Werld Wide Web a parad g moshift has ocourrad. Distributed web applications in all kiqds of
shapes and sizes have appearad. From Amazon.com te shared madizal infermation betwaen
Fospita = and general practizienars, the networks open up new possibilities for communication. To
be abla to address the spac fic nzeds for developrant for tha wahb, a new discipline n Software
Engineering has emerged, marmely Web Enrgineering.

Differant authors advacate that dewelepment for the web is substantially different from
traditional softwara davelopmens and needs tzilored processes, medels and techniques [3],[13].

Page bE

Exploring software scalability - Apzendices

[22]. [16]. Development for the we s also has animpac: on the noa-functienal -equirarents. The
technology, architactura and u=ar intaractior requira focus an different raguirements than those
duriig traditional software deve cpment. ~ha definirg features of the Werld Wida Web are thatizis
dvailable tare 1ty-four hours @ day a7d seven hours o week and sceessible by g great nonber of
people from different gecgraphical locations on derand. Te make it accassibla far all usars the
interdczion has to se made genenic to suit all these differant wsars, The Intarnet s usad far both
formal and infermal communication. Usars axpact the communication to 2e secure and rel able. An
applicatian that uses tha Inte-net as madiurm is expectad te sha-e the same characteristics. Thare is
a dist nction to ha made betwaen public and private applications. Rast-icted private applications zra
mora restricted in terms of users and usahility bt <ke important qaality requiraments remain the
SAME.

Traditional non-functioaal requirements modeals anly partial v dascribe the contaxtin which web
dpplications should function. Moreowver, it is not cleasr to what extent these models ae applicable to
modern web applicazions. Authors have therefore tried to define more web application specific
models, Offut [44],[45] identified the seven most important noa-functicnal requiremeant for web
applicatians, 1amaly rebicfifity, penbility, sconty, ovobobility, scolabifity, moinioinobitity and tiere-
t-rarket. He idantifias the fisst three as most important. These requiremeants corrsspond o the
impartant characteristics of t1e World Wida Wi'eh. Ona requiremeant that is net on the list of Offut
but is im portant is pediormionce. People expact the application to be safa and available but they alss
tlo mat wint to be kept waititp whio e performing their task. Ine late-arbicle he doss a:dd
perfo-mance bat groups it with time-to-rearket. Time-to-markzt s not g software regquirermznt bok a
project requiremert sa this one will not be taken irte account. Radalf and Bicksr [18] dascribe
sealability/perfor maqce, security, usability and relighility as important non-fanctional requirements
for e-Bus ness. These requirerments share the regairameans froem Ot

The naxt part will give a definitin of the seveq ramaining requiremeants. Diffarant authors and
classifications give their own differert definitions of these non-functional requirernents. This thesws
uses # distilled defin tion fron tie perspective of web applications:

o Reliability is the ability of 4 systerm to work correctly when expected. A religble system
toes what the users expect it to do, limited withia zhe functionahty of the system. To
serve the ciastemers on demand wab applications requaire high reliability,.

o Usability =the sase of use from a user parspective. kFow lorg does it zalee for a usarto
bie abile to undeaerstand qmd use basic and advanced features? The users come from a
wide ~dnge of backe-oonds usabi ity 15 an issoe for web apalications.

o Speurity it the safety of the network, computer and data. e webr applications private
data prsses through a number of computers, mediums and interfacas and must be
protected on diffarant levals. To ensure t1e safety of data security considerations =ra
needed,

o Availahility is the accassibility of zn application for use. The Internet is available 24/7
and wsers erpect web applications to alvo be osable 2807 Web applications also showld
he accassible f-omr diffarent browsars, platferms and tachnelogy from which asars
arcess the applicatior. The variety of computers aqd time-indepandant accass make
Avai azility critical for wab applications.

o Scalability is the arse with which a system can be axpanded to serve more users and or
work. Ay wek application can sotentially be linked 0 g very laree numbe- of users. To
he able to cope with a g-owing number of nsers and/or work @ scalable web application
im neaded in today’s emvironment.

Prage 6%

Exploring software scalability - Apzendices

o Maintainability is the easve with which pats of the software can be added, removed and
charged. Web applications typically have & freguent updiate rate. The need for high
raliahility and availaility make good susport for maintanance eritical for suceess.

o Performance is rmost aften usad b dascrize the tirne it takes to fulfi | o speciic task or a
set of related tasks. 17is also used to describe other rezources used like mamosy and
storgpe space. Especial v in o web smwronmant whers custoemers can choose betwaen
suapl ers a low parformance will decreasa competitive advattage.

REeliability and awailability are closely related. 1f an application is rel akble, it reans i£aill cot f=il
dand thus is gvaikable. Usatality is animportant part of e software but s oen not part of the
component framework. The presentation layer i ofter independert fronthe other layers and s
custom made for every iteration of the components, This leeves reliability, availability, security,
sealability, maintainability and perfarrmance gy important non-functional requirerments for web
dpplicat arns.

Mot gl mon-functional regquirements are evenly importznt doring design and implemettation.
Sorre applicatiors will need & greater focus on secarity while other focos on osability. Joline
banking wystems bieve o high dermand for secority becduse they want 2o mimirmize the risk of fraud
and misuse. Digital stores like Amazon.corm wiant to he accessible even for Sirst-time users sa they
will “oeus on wsability. During product development there are muoltiple trade-off dec sions needed
between the non-functional requirements. This medans doring developnent & trade—off decisions
betwee 1 different ron-functiomal reguirernznts hes to be medze. And the more requirgments bhave to
be takeq into account tha greater the comalaxity of the application. Tha spidar-diagram shows twe
differ2nt imple nentations of an application, red and yellow. For each axis 3 decision has to be made
dhout how irmportant that specif o non-functional regqoirements is. The red one focuses on
pe-formance, scalability and maintaiaahility and availabi ity and less on the ofqer three, The yallow
pre has a different focus on wsakility, availability and reliakility and & mediom focas on the others.
The: size of the surface can be seen as a reflection of its corm plexity. The vellow one wants to focus
on dlrmost all the oe-fuactional requirements snd this is something that is hard to accomplish (0.
comp ex). Tha red has a smaller surfaze which means ess focus o al the diffarent reguiremants
dand will ke easier implerment.

Lsasiry Zuslaulily

B laiil by Lanaily

. Rilarenakal gy
Fianistilly * ¥

Fig Trade—off deciziens hetwe...

ana of these ways is to medel these different cheicas is using the Nen-fuctiona requirament
framawnrl.

Page 7l

Exploring software scalability - Apzendices

The WER fromewnnk

A framework for avaluation of differant non-functioral requiramants is the NFR framework [12].
The MNFR framewerl is 1sed to express NFRs puplicitly which helps in dealiag with karr in a more
ratioral rmanner. The poal isto he pdevelopers zhink azout the impect different NFRs have on the
design and helpin evaluating different implementation aptions and trade-affs. The MIR framewor ¢
im composed of several, not necessarly segquential, steps:

1. Acquiring or accessivg knowladge about
a. The part cular domain and the system whizh is haing developed
b, Functionz| requirermants for the particular system
r. Particular kinds of NFRs and associated development technigues
Idantifying particular NFRs for t1e domain
Decompaosing MFRs
A, Identifying “operationzlizations” (possible design alte-ratives far meeting MFRY in the target
system]
5. Dgaling with:
a. Arrbiguitias
b, Tradanffs and prioritias
C. Interdependencies among MER: and aparationalizztions
5. Galacting ope-ationa izations
Supporting decisions with design rationale
8. Eviluating -he impact of decisions

-

The resu ts of these steps are visualized in softeoal nterdependency eraphs (515). The visual
representation helps inguick v cormmunicating different design choices and alternatives. The
framawan-k iz usafu inhelping to © ear up amhbiguities and promeze the notion and importaace of
MFRs in software davelopmeant. The problem with the MFR framawaork is that it worles best for seal
prajects. Fora bip projzet the nurr ber of choices ard alternatives tiat wowld have to be mapped s
sirnply too big, & graph with too mary lites becormes unreddable, which in torns removes the poal of
credting unambignities. Anotter problem is that the chaices and alternatives are lirmited by the
imaginat an of the creator. Thara are no hast practicas o- standardized alternatives and if tha uzars
of the frarmework do not model certain choices they are not cons dered in the pealustion.

Page 71

Exploring software scalability - Apzendices

Appendix B: Topicus Case Study Tnformation

Thix appendix shows an example of diferent code retrizs that can se extracted from seurce

code. Inthe folloawing seckion more detailed info-ration from @ nomber of test is given:
1. Server lops

Cxpart intarsias
Load tasts
Frofiler
Softurare mat-ics
Dependancy Stucture Matris/Graph

R

Appendix BT Loghile informationm

The follewing takle is tha information gained from the servar lngs of application A

Count Awvg. time Total Min. time May time Standard

(#] {sec) [min) {sec) [sec] dewiation |sec)

FNESAFRTTRrinG. AR 112R0 2,42 16 (.00 1223,83 17,12
SMNTEADocType 1 aspx 41693 (0,85 L&) Q.01 892,73 562
SMNTFAPersonalData.aspx 47539 .68 857 Q.02 f41,30 3,08
FWESACustarrerSearch.aspy ARE02 0,71 5851 0,03 B25.57 3,03
MMTITR Aanvraagsnel Taets.as p 25R52 (1,36 A1z Q.00 1175,57 9,31
MNTSTP Resultaatalternatief. aspx 28027 1.A6 A0 0,01 11841,57 817
MNTIAMY orkspace.aspy S0E40 (.38 AEE Q.02 f11.51 4,11
FNETR AanvraagndearpardGearDepot.aspx | 13150 1.65 vz 001 R07 .69 &89
SMMTIASOHer as ox 32018 LN A 0402 289,63 247
SMTAA UploadS can Darcwm e nt_ as px 70z 6,32 283 0,27 18787 8,53
MNTSASBERtoets aspx 14582 1,21 284 .02 21,78 2,46
SMMTATR Resultaat.aspx 18506 (.84 256 Q.00 653,26 7k
FNESTP Default.aspx TS5 .16 213 (.00 292,50 1.08
MMTIA B arvraagdnde pa1dGeenDepot.as o 2627 2,58 126 Q.02 B2,£9 14,64
SMNTIAAr comes. aspy 3409 0,67 107 0.0z 428,37 5,31
MM fLagin asps 43553 0,14 106 Q.00 1120,50 5,97
SMMTATR AanvraagklantGegevens. aspy J3RA3 0,18 106 Q.00 89,75 1,11
MNTSARealEstate aspx 11195 {156 105 .01 14552 1.85
SMTATR f ResultaatGrijs.aspx 2508 1.45 87 LIEN | 473,50 11,32
FWESAMCUStOmarActinn.Aspy T1RG 1,65 86 .01 35,26 1.80
SMMTITR AanvraagOnderpandDe pot. aspx 3212 1,56 26 LIEN | 4457 a.B8
SMNTIAS B anvraaglening. aspx 6154 0,83 B5 0,20 32,30 0,70
JWESTR Afwi 'z ng.aspy FA7A 0,63 g2 0.01 77.19 157
ST AA Documentyfiews - aspy 1333 4,00 67 Q.02 46,87 5,07
FNESA A anvraagKlantGegeven s aspy 11757 0,32 63 001 43,62 1.00

Tahle 8.1: Complets top 25 from the server logs of application A

Page 72

Exploring software scalability - Apzendices

Appendix B2: Tog teskinformation

The load test was done with 1, 25, 50, 75 and 100 concurrent users. Tha scanarios was racordad
with Wisual 3tudio 2008, Each |oad test was done bwo times. Ine lasting 10 miqutes and ore lasting
15 minutes. Fifty parcant of the users 1ad a simnulated T2 connacticn and ather fifty percent nsed a
T1 connection. This wias done not the push tha LAN connzetion speead to its limit aed make a moere
reqalistic simulation. he Ioad test was done en a local acceptation servar of that specific application.

Max User Load 1 25 5D 75 100
i 1,255 FO75 891 10,17 10,615
evt Fifed axI0) 1 1 1 s 2.7
iests Coched Percer 0,283 5,35 4,963 4,57 4,085
0,29 2,83 3,145 6,660 8,213
12,7495 | 10,1875 | S.4843 | 90065 9,53065
1.2 9,15 7.15 5.3]
{ { { 110 {
4,24 2,495 4,75 7123 1
{ { { { {
{1,373 1,76 9,75 15]
Table 4_F: Load test recult
15
14 —
12 —
17
I m5
a |]
3 N 75
s - =10n
0
© N N (3 N N >
CAS A GNP g
Ng P <& ‘7\\ il & &
F & & e & <& « \&
S & & ‘0* & 3
090 bqe &o %\\ AS <&
X
Q@ 5\@ Q:ga \’Q?do ,\0‘7 ,\(b(\
& © & & &
& & v ¥
& &
« S

Figure 4.5 Load test summary

Prage 73

r: =feg

g uoizeanpdd e g una J3poid Syl oy U3NE] 3301 ||BT 243 40 Hed 353y @ H i5ow Apqe)

ST ca NYAUIZE US43y

SEL L 18apE 4

%E9 14 SIJFUNIO]| PRI BIFUR T [WOE'TE >33 BUNZ1IC 43R dap oo u1g Bulanzy
22} 2de1uaa.19y

spoURN-ans () e¥njuaalag ROy

vy dde jo una soposd ayy doy uaey sy || o3 sy o ped gsog S cpy apqep

WLET 2S00 IUE] 10421005 HF32 T
15} BNS0dCIIUE [SO SESE Y 0[S 120
Wl SESE| YOS Y53 ja
ML T Lada e
WLESE SILFLUNICO|IPS1RIEU2T | MO8 L »3 |3 BUlTLEI42F A oonulg Bul 2112

(32] adejuniuzg

SROLIIA-GNG

%5} eFnuaasag

POy

LIS §] 234 |8 AUl o doy Y1 Ao AL DS a4 sa|qe] SUaol (0] U1 J1 UMoys 5 g pue g ez dde yaog 4o 3uanie) 293 o sund J2pgoid sy

3

1

3

v

(0T} s13sn

£ 3
UNG3 3BE-

[235) sd3En

Sf Yym awag
ased a3elaay

loTx) s4o5n

05 s
W nos 35ed

[23s) ss1asEn

05 Yypam 2wy
a3ed afeiany

loTx) sio8n

5€ Y
UNDD ITEH

{235] sJ4asn

g€ Yyum o auag
=2ded a3elsay

foT™)

J35N T 1M
UNO3 33E4

5'7H ELD'T Fa SO ug'rE S50F i} 5oL LTI
i 59T’ S56°6T SELD 'L SHTL ST LTI
= BE'E £'s ST T's 'y 5T 5091
| A LT'g g5t SELE £'1T 6T 5k S5E97
= ge's £'s SFY'E T's Cge'y 5T LTI
= CE'E z's 585 T's PE'E 9T GETD
55T 9zl Z'BIL SE9'R L'BLT LoLE S5TE SET
=] ! ST6T 5'G LT Faghl § 508 £ B2

51 LEES 51 SHUg Fln 55T £ CO0'T
5'TY P g'51 SEER £77 a'pg g'g CTH'E

[335) J4asn

T Y aug
=2ded a3eiaay

Japou] reg xrpuaddy

afed Jad 3jnsu pRag pooy iy 9|geL

30 pUaCcy - A1) EXs 2BM0s BUlod]

c; afeyg

¥ U dde Jo ana1LIEno 51U 13U AR OS SOy J)qe]
510 : . 3 FAE s T : FoUII2EI
SE7 T 9] 1o T ale FH £ TE r 7 Apquizsse Ag pasn 3npow Jad SSe1any

orn or z . . 003 7T Tl anpow 13d aFesany |

1] T T B8 1} it} BTL T4T QiTT 1} i
£ET £l Eiard (1 Zh ug'l Sek ESE'T TH"& T cr
ITD 800 LTl Zl Dik | LED FLLE IH8LST | TEEZOL | 25 | ESl
LT'D T BZ'T En SET | 9E'D 554 ZEE'L =T 1 £
1] SET £S5 BT I Ll ZrE SEF 056'ZF] £
T’ TED Tu1 =t £ A BADT OL7¢ TOE'ST T arI
' SL g2 £t FI LD 0is EL =1 il I 0t
] T T E 0 g29°0 (x4 B it 0 T
i} uo’n LB B0k £6 g L5 (L 1 HYLE AN IT |EBSL
TET |[&TD =H BE'T t ¥ BS1 =1 LEE j=1= P £ =] | L A R
1} TEEGT S

v uoenddy

ing

1on

lines of comment

Relatianal Coha
Efferant Coupl
Afferent Caupling
T comment

lines of cade
HIL instruct

Abstract Types

& o
E £
o =

=
= m
£ -
10 L)
o £

Dixtarnce

‘oo dde s TAURIIRY 3L AQ PAST AIE TRYTRALUO ST R1R 5|[E3 paIno)os A1) PaIUNGD WU 0P 85alj) 0F Ae.qrsnadog
FUR I3Y04 2111 10) S| E|IEAR LD IIEILH UALLLLOD G S2M 2050] 3 NRoU USRI 211 A DS 26 1EUL SIUC 2UT 2UE 52| NP0LM Pauro|od Sy)

SAR AITMOE (R XrRddy

Sazipuacy - ALIGR|EXS sleMLICS FULoid]

o =ded

8 umeadde jo AaILIEN0 51U W 3R OS S 0 SqE]
FUMILI

Fllain

LA 2 Gl

ol ofolo|olalal e o] ol o

q uvonenddy

Relational Cahesion
Efferent Coupling
Afferent Coupling
B camment

lines of cormmment
lines of ende

¥ IL instruction

Alvstract Types

m .
£z
a =

s
= m
i)
s 1]
< £

Distance

saopuacty - ALIGE|EXS 2EM0s 2D

44 afeg

uDkFl o LIOJ JURaW apaz pajicEg sy a
B0 | WTE'ED Yalet 05T 15 L3 ADUILI 22
WHTEBE | s ey g OGS HE a3 A ol £3A AN LT ASA) 3R]
LT A) =T CETERT LOISJaA WD L J0y (B30

oz fEEET BT HOELT
£05 1T i3 EIT 0L i £5
ads EEF AL 85 SL2FCL

Lega0r
Ea Ul

£o091
FTTETTTT %)

COTEL

s LH DLl Ty el O HHT 59

T | WLELE IS TE Der B e
Inira £51 To8' TS METDH a7 25515
EL9ET OEET BES E6T EPLIR]) COE 8T CL BT ooy
OBL° 6T LEFL 06 Fe7 EARERN GBS LE 59661 ooy
Apsapdwing 3EWQIPAY 53| {og} UMWDY | SIUBIILOY

"BESNR B RR0T ST SR% 0 A]RE0 A RIOR055 2R S2UI3W P9I A2UN0SE 53U L SISAYL LS) pasodosd
SAIA M JUAIFP 3 31R|NIED 1B 1 P3SN 3lam 5001 3|1 N g PUE g uoiies|dde J0 9pos 300 os 343 ING0E LUOIEUIogU) MoLs S3[qe1 Sulwmojod Sy

Sazipuacy - ALIGR|EXS sleMLICS FULoid]

g2 ey

¥ uoiezdde o [pysg) wiaew 3ananis Aruapuadag ry 2qeL

IR o g e T

SUOlSUe IH0

AWEEARORE | UATL2E

DHE URT LR

= &M o= W M~ Wl

IT 0T & %2

ANPOW [EZILIR6 242 WIS SPOL a0 A PET SU120 [IU0Z00 U1 LWed) SEOU1SW O A3 3y1 5] A3quwnu sy
PUROIE AR JSLI0 AU SRS SO PINOUE KW 311 JC JIFY 1310110 341

A[NPON [PAHEA S W0 S POUTRLU ST 3P R0 | RRU0ZI00 S17 100y SPOyLS I o Jadquint aig} s1Jaquun sy
(SR |0} SR PRAL A0 OO ¥R RUT 40 J ey F-dog)

ydrrn fwanep aanianas ionmapuadag igq xmuaddy

30 pUaCcy - A1) EXs 2BM0s BUlod]

54 afed

suaiepdde unasmioeq uosacd wos A wapuadag (LT AqeL

T- T 1] 1 o £ L 8- cl- 8- TE-
0 Q 0 I- I, Q a } 0 T ®E-
1)] L,] a 0 0 Q a Q _“_.
o 0 a C B 0 a E- 0s- a o-
1] o a il 2 o 1 a St 1] - U B T IE0
a 1 ¥ 1] a 1] T- 1] Es SUOlSUe IH0
a 0 0 T- 0 I- o cl- a 0
a i 5 | T- a 9E- | BE- | S4T- [T2L | 955
T a C a Q a Q a
G- a o|g-| 0 1] a o
Ly 1] Q 0 a 1] £
¥ a 0 I 0 Q 0
0 0 i} et | 5l T ?
B T- 4 0 0 a C
BIC- | 951- | O T- (I (0
&

f <- v uonenckly

Sazipuacy - ALIGR|EXS sleMLICS FULoid]

Exploring software scalability - Apzendices

FORCE Kappal ngan.Logilink. W5

/S »| FORCE Kappsl ngen.LugiLinkJ
FrS Koppel ngen ~,
SN N\

FORGE KUFPE"'}QEII‘I Ll:lglLlnk =

FS.

FORC E Failieran

FORZE. Constants

Y
> TapicusLibrary

FI'L']S_TcmpIatl:sJ

FMZ.Ooject=s

FMES.Barakarigan

FMZ. Eappslingan. Tazatisdanyraay ‘

~

5. Producten

TagicusLibrary \Webcontrols

Fha E:H DNJ

FMS. Eappslingan. NHG
Flgure A6 DaL_.. .2 2 .. . thof appleation A

Page 80

