
Design of a Lightweight Real-Time Streaming Kernel

Bas van Sisseren

Distributed and Embedded Systems,
University of Twente.

Date:
August 13, 2007

Committee:
ir. P.G. Jansen
prof. dr. ir. G.J.M. Smit
ir. M.H. Wiggers
ir. T. Hofmeijer

Abstract
This report describes a
exible real-time kernel, which is optimised for data-streams, to be
used for multi-processor environments.

Currently, two processors are used: the MSP430 and the ARM 946E-S. For the �rst
architecture, an in-house kernel has been developed by Tjerk Hofmeijer. For the ARM ar-
chitecture, the currently available kernel implementations either lack support for dynamic
real-time scheduling or are not available.

This document describes the kernel BasOS, which was developed within this project.
BasOS is a
exible real-time kernel with low memory usage, e�cient interrupt handling, both
real-time and non-real-time scheduling. The kernel has a programmer-friendly interface and
supports several peripherals, like the USART (serial port), USB and the Montium processors.

Also, several tools, which support the use of BasOS: a stack usage predictor, a loader of
dynamic tasks and a second stage boot loader.

Preface
In this report, I have described the aspects of my assignment to extend and implement a
real-time kernel for the Basic Concept Veri�cation Platform (BCVP) and Highly integrated
Concept Veri�cation Platform (HiCVP). Unfortunately, the HiCVP is still under development.
Therefore all development has been done on the BCVP, the predecessor of the HiCVP.

This document is mainly written for people interested in the kernel mechanisms of BasOS
and for those who would like to write device drivers and applications for the kernel.

The reasons why I have chosen to implement a kernel is because I've always wanted to
write a system without being dependent on other software. The other reason is that I like to
bind optimal solutions to complex environments.

I hereby would like to thank my committee for supporting me in various ways in the
process of designing the kernel and writing this report. I would also like to thank Pascal
Wolkotte and Lodewijk Smit for helping me �nd my way on the BCVP platform and the
extensive support they have given me. I would like to thank Albert Molderink and Marcel
Hamer for putting various parts of the kernel into discussion. Last but not least, I would like
to thank the many proofreaders of this document.

1

Contents

1 Introduction 4
1.1 Problem description . 4
1.2 Document overview . 5

2 State of the Art 6
2.1 Current implementations . 6

2.1.1 DCOS . 6
2.1.2 eCos . 7
2.1.3 TinyOS . 7
2.1.4 RTlinux . 7
2.1.5 Summary . 7

2.2 The Basic Concept Veri�cation Platform . 7
2.2.1 The ARM Architecture . 10
2.2.2 Memory Layout . 12

2.3 Impulse handling . 12
2.4 Real-time Scheduling . 13

2.4.1 Earliest Deadline First with deadline Inheritance (EDFI) 14
2.4.2 EDFI Feasibility Analysis . 14

3 Kernel Design 17
3.1 Application Interface . 17

3.1.1 Tasks . 17
3.1.2 Signals and conditions . 18
3.1.3 Pipes . 19

3.2 Interrupts . 20
3.3 Streaming-oriented Scheduling . 20

3.3.1 Delaying the task release . 20
3.3.2 Aperiodic tasks . 21
3.3.3 The scheduling model . 21
3.3.4 The scheduler impulse handlers . 21

4 Implementation 23
4.1 Memory Management . 23

4.1.1 Heap Memory . 23
4.2 Tasks . 24

4.2.1 Scheduling . 27

2

4.2.2 Signalling . 29
4.2.3 Feasibility Analysis . 29

4.3 Interrupt Handling . 31
4.3.1 Race-condition risks . 31

5 Device Drivers 34
5.1 USART . 34

5.1.1 Code example . 34
5.2 Universal Serial Bus . 35

5.2.1 Code example . 35
5.3 The routing network and Montium processors 36

5.3.1 Con�guration of the montium lanes 36
5.3.2 Code example . 37

6 Examples 39
6.1 Writing Applications . 39

6.1.1 Tasks, Signals, Pipes, Resources . 39
6.1.2 System Calls . 43

6.2 Tools . 43
6.2.1 Stack usage prediction . 43
6.2.2 Dynamic Application Loading . 44
6.2.3 Second Stage USB Boot-loader . 45

7 Recommendations 47
7.1 Memory management . 47

7.1.1 Memory Allocation Algorithm . 47
7.1.2 Splitting memory in kernel-memory and application-memory 47

7.2 Scheduler . 47
7.2.1 Other scheduling algorithms . 47

7.3 Drivers . 48
7.3.1 Usage of PDCs . 48
7.3.2 Montium . 48
7.3.3 Implement more drivers . 48

7.4 Usage of Cyclic Asynchronous Bu�ers . 49
8 Conclusions 50

Bibliography 51
A Acronyms 53
B GCC Cross-compiler build script 55
C Kernel API 57
D Example Code 63

3

Chapter 1

Introduction

A kernel is the basis for every operating system of a computing platform. It is a program that
acts as an intermediary between between a user of a computer and the computer hardware.
It supports basic functions such as memory management, hardware interrupt handling and
task-switching. Furthermore, it gives an application an environment in which it can run, has
support for inter-task communications, divides resources between the running applications
and handles the communication with hardware.

Compared to generic kernels (e.g. in Windows, Linux), real-time kernels not only just
divide the available resources between the running applications, but can also guarantee that
the application will run with timely guarantees, under the assumption that the application
respects its real-time constraints.

In a real-time system, an application is split in one or more tasks. Each task can have a
set of runtime constraints, such as task duration, task deadline and task resource usage.

There are two most common types of real-time systems. Hard real-time systems, where
missing such a deadline can result in disaster, and soft real-time systems, where missing a
deadline only results in a performance loss.

1.1 Problem description
Within the Embedded Systems group at the University of Twente, there is a need for such a
soft real-time kernel. Most projects currently use the Dimitri or eCos kernels. These kernels
o�er too restricted scheduling possibilities or have a large memory footprint (more than 100
KB) and unnecessary overhead due to their supported features like a runtime recon�gurable
hardware abstraction layer with excessive use of callback functions and in-kernel debugging.

The aim for this project is to have a lightweight real-time kernel for the platform that is
currently used most at the Embedded Systems group, that is the Basic Concept Veri�cation
Platform (BCVP). The BCVP board has two ARM9 processors, several timers, a serial port,
an USB device-port and several more peripherals. The BCVP also has an FPGA board,
which can be used for emulating a Montium processor [6].

4

The kernel we are designing will be used for streaming real-time applications, such as
MPEG4 decoding, and test-applications for the Montium environment. The kernel needs
to be able to control the serial port, the USB device-port and the Montium processor, while
keeping a low memory footprint (less than 50 KB). Features which this kernel should have are
memory allocation, advanced interrupt handling,
exible real-time Quality of Service (QoS)
scheduling (preferably EDFI) and dynamic task insertion and deletion.

1.2 Document overview
Chapter 2 will describe existing work. Current kernel implementations will be discussed.
An introduction in the BCVP architecture is given. Furthermore, fast interrupt handling by
using impulse handlers and the EDFI scheduling algorithm is described.

In Chapter 3, the design of the kernel itself will be described. What does the application
interface, that we have in mind, look like. Which adaptations do we have to make to the
given theories and which problems do we expect to have.

Chapter 4 describes implementation issues. What are the trade-o�s between the possible
choices. Why did we choose for a speci�c implementation.

Chapter 5 gives an overview of the currently available device drivers in BasOS. It also
describes how these devices can be accessed from an application.

In Chapter 6, the interaction with the kernel is described. What should an application
implement. How is a dynamic task speci�ed and how is it activated within a running kernel.

Chapter 7 will give a list of all recommendations.
Finally, the conclusions can be found in Chapter 8.

5

Chapter 2

State of the Art

This chapter gives an overview of previous work. It describes existing kernel implementations,
the Basic Concept Veri�cation Platform, scheduling techniques and interrupt handling.

2.1 Current implementations
There are many existing real-time and non-real-time kernels available. As stated in Chapter 1,
every kernel has its own characteristics. Most kernels are not written with few memory in
mind and often do not have support for real-time tasks. Others are, but are often optimised
for one or several pre-de�ned task-sets.

Within the 4S-project [11] a long list of kernels have been evaluated. From this list, the
most interesting kernels have been selected. The criteria we used for selecting these kernels
were:

� Is the source available.
� Does the kernel have support for the ARM architecture.
� Are there drivers available for the BCVP peripherals.
� Does it have a low memory footprint. (less than 50 KB)
� Does it have support for real-time scheduling.
None of the selected kernels matched all criteria, but four kernels were close enough. We

will have a closer look at these four kernels.

2.1.1 DCOS

DCOS [4] is a lightweight kernel, written for the MSP430 processor. It has been developed by
Tjerk Hofmeijer at the University of Twente. The kernel uses EDFI scheduling [5] and �rst-�t
memory heap allocation. It has a low memory footprint. It uses impulses [7] for fast interrupt
handling. Unfortunately, the only implementation available is for the 16-bit MSP430 and it
only has support for the EDFI scheduling algorithm. (see Section 2.4.1 for a description of
EDFI scheduling)

6

2.1.2 eCos

eCos [14] is a rather complete kernel. It is developed within the open source community and
there is an implementation available for the BCVP platform. The kernel has USB, ethernet,
serial and
ash support. Unfortunately, the kernel does not have support for real-time tasks.
Also, the kernel is not very memory e�cient.

2.1.3 TinyOS

TinyOS [17] is a very lightweight kernel developed for wireless embedded sensor networks. It
was initially developed by the U.C. Berkeley EECS Department. Currently, numerous groups
are actively contributing code to the project. TinyOS uses a pre-compiled set of tasks, which
makes it less suitable for dynamic task loading and task migrations. There is no ARM support
for TinyOS.

2.1.4 RTlinux

RTlinux is one of the more familiar real-time kernels. It is built on top of (or actually
below) Linux. Therefore, when using this kernel, running Linux is also necessary, which
needs many resources. An advantage is that interaction with Linux facilitates writing tasks
for this platform. Due to its large footprint, this kernel is less interesting than the previously
discussed kernels.

2.1.5 Summary

None of the described kernels is
exible enough to suit as a basis for our kernel. Adapting
one of these already existing kernels would take more time than partially redesigning and re-
implementing it. When we would choose to adapt such a kernel, this would lead to matching
ideas that are not well suited to live together.

Instead, we prefer to re-use only parts of the code of the existing kernels. For example, the
EDFI scheduling and heap management from the DCOS kernel and the eCos BCVP driver
implementations are interesting enough to be used in our own kernel.

2.2 The Basic Concept Veri�cation Platform
We are using the BCVP (seen in Figure 2.1) as the development platform for our kernel. In
the 4S-project [11], it is used for building applications in the �eld of Digital Radio Mondiale
(DRM) and MPEG4 decoding. The 4S-project mission statement is:

4S will realize
exible and recon�gurable building blocks to pave the way for new
consumer devices and applications like digital information broadcasting, ambient
intelligence devices and 3G/4G multimedia terminals.

Eventually, the BCVP will be replaced by the Highly integrated Concept Veri�cation
Platform (HiCVP), but since the HiCVP is not available yet, the BCVP is the best alternative.
There are only a few small changes between the BCVP and HiCVP. On the BCVP there are
two ARM processors available. On the HiCVP there is just one ARM processor. Furthermore,
peripherals use di�erent memory addresses and interrupt vectors.

7

Figure 2.1: The Basic Concept Veri�cation Platform (BCVP)

Figure 2.2: Schematic overview of the BCVP

A simpli�ed schematic overview of the BCVP is given in Figure 2.2. The BCVP has two
ARM processors, the ARM920T (on the BCVP known as ARM0) and the ARM946E-S (on
the BCVP known as ARM1). Both processors can access all peripherals by using the memory
bus. Only the currently used peripherals are shown. We will give a description of all given
blocks.

8

ARM0
The ARM0 (ARM920T) processor is one of the two processors available on the BCVP.
On boot, the ARM0 processor is disabled.

ARM1
The ARM1 (ARM946E-S) processor is the second processor available. On boot, this
processor starts the RedBoot application, found in
ash memory. RedBoot [15] provides
a simple command-line interface for loading other applications.

ITCM
Instruction Tightly-coupled Memory. The ITCM is only accessible from ARM1 and has
a size of 32 KB.

DTCM
Data Tightly-coupled Memory. The DTCM is only accessible from ARM1 and has a
size of 64 KB.

External memory
The BCVP has 3 MB of external memory. One block of 1 MB is available for ARM0,
but can also be accessed by ARM1 and one block of 2 MB is available for ARM1 (ARM0
cannot access this memory).

USART0
Universal Synchronous Asynchronous Receiver Transmitter. In total, three USARTS are
available. The BCVP has one serial port available, which can be controlled via USART0.
(the other two USARTs are used for communications inside the BCVP board)

USB
USB Device Peripheral. This peripheral acts as a USB device on the USB bus.

FPGA
There are two variants of the BCVP. One has an FPGA Virtex-II 3000 and the other
an FPGA Virtex-II 8000. An FPGA is con�gurable hardware; it emulates one or more
Montium processors, its Hydra CCU and a routing network. (see the descriptions below)
The Virtex-II 3000 can only emulate one router and one Montium, while the Virtex-II
8000 can emulate two routers and three Montiums.

Routers
The routing network routes all communication between the BCVP and Montiums and
between the Montiums itself. The routing network is a connection oriented switch for
Montium processors. [6]

Montium
The Montium processor [6] is an energy-e�cient, recon�gurable processor, which has
been developed at the University of Twente. It is optimised for highly regular compu-
tations.
The BCVP emulates the Montium tiles by using an FPGA, the planned HiCVP will
have four Montium tiles.

9

Hydra CCU
The Hydra CCU (Hydra Communication and Control Unit) [6] is the interface which
communicates with the Montium processors. It can load new code into the Montium
chips, read and write parameter blocks, and start and stop the Montium processor.

The BCVP also has a MultiICE debugging interface available, but this interface caused
huge system call overhead and is therefore not used anymore.

2.2.1 The ARM Architecture

On the BCVP, the ARM946E-S (in BCVP documentation often referred to as ARM1) is
always online. It can be debugged via the JTAG interface. Therefore development has
mainly taken place using this CPU.

Compared to the ARM946E-S, the ARM926EJ-S (the ARM processor that is available
on the HiCVP) is quite similar. In addition to the ARM946E-S, it has support for running
Java byte-code and has support for virtual memory.

A short introduction in the ARM architecture will now be given. (see the ARM reference
documentation [12] for a more complete speci�cation)

ARM CPU-Modes and Exceptions
The ARM architecture has 7 CPU-modes and 16 general-purpose registers, including the
program counter register. Some registers are \banked", which means that these registers are
masked by a CPU-mode speci�c register. Every CPU-mode has its own stack pointer. (see
Table 2.1 for all registers and CPU-modes)

10

System Fast Interrupt Supervisor Abort Interrupt Unde�ned
/ User (FIQ) (SVC) (ABT) (IRQ) (UND)
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
r6 r6 r6 r6 r6 r6
r7 r7 r7 r7 r7 r7
r8 r8 �q r8 r8 r8 r8
r9 r9 �q r9 r9 r9 r9
r10 r10 �q r10 r10 r10 r10
r11 r11 �q r11 r11 r11 r11
r12 r12 �q r12 r12 r12 r12
r13 r13 �q r13 svc r13 abt r13 irq r13 und
r14 r14 �q r14 svc r14 abt r14 irq r14 und
r15 r15 r15 r15 r15 r15
CPSR CPSR CPSR CPSR CPSR CPSR

SPSR �q SPSR svc SPSR abt SPSR irq SPSR und
Table 2.1: Available ARM registers

All CPU-modes except for the user mode are privileged CPU-modes. In these modes, the
task can access CPU-speci�c registers (e.g. for con�guring memory protection or changing
the CPU-mode).

The ARM architecture also speci�es seven exception vectors, normally placed at memory
o�set 0. These exceptions are used for handling a soft reset, an error or an interrupt. When
such an exception is called, the processor switches to the exception's CPU-mode to keep the
user's registers intact. In Table 2.2 an overview is given of all exceptions and their CPU-mode.
Address Exception CPU-mode Description
0x00000000 Reset Supervisor (SVC)
0x00000004 Unde�ned instruction Unde�ned (UND)
0x00000008 Software interrupt Supervisor (SVC) System calls
0x0000000c Instruction abort Abort (ABT) Read-error on instruction-fetch
0x00000010 Data abort Abort (ABT) Read- or write-error
0x00000018 Interrupt IRQ
0x0000001c Fast interrupt FIQ

Table 2.2: ARM Architecture Exception Vectors

11

2.2.2 Memory Layout

The BCVP has a total of 3 MB RAM available. The ARM920T (ARM0) can only access 1
MB, the ARM946E-S (ARM1) can access all memory. All peripherals use memory-mapped
IO, as is common on ARM architectures. Most are available above address 0xf0000000. See
Table 2.3 for the BCVP memory layout.

Interesting to note is that the internal memory block contains two Tightly-coupled Memory
(TCM) blocks. These blocks can be accessed more quickly than the external memory. One
block with a size of 32 KB is optimised for instructions (the ITCM) and the other, which has
a size of 64 KB, is optimised for data (the DTCM). If the kernel is small enough, placing the
code in TCM will yield an interesting performance gain.
Address Description
0x00000000 Internal memory
0x30000000 Montium Hydra
0x40000000 1 MB RAM (ARM0)
0x50000000 Flash memory
0x80000000 2 MB RAM (ARM1)
0xf0000000 Peripherals

Table 2.3: BCVP physical memory layout

2.3 Impulse handling
In a single processor environment, it is in general preferred to handle interrupts in an interrupt
disabled state. When updating various kernel variables from an interrupt handler, it should be
guaranteed this variable cannot be changed by another interrupt handler. On the other hand,
interrupts could be left in a disabled state, but this might be a risk for interrupt handlers
that need to react quickly.

A way to solve this problem is by using impulse handling [7]. The interrupt handler is then
split in two halves. The �rst half, directly called on interrupt and still in interrupt-disabled
state, can acknowledge the interrupt and check whether the second half should be run. If the
second half should run, a
ag is set.

When the �rst half has �nished processing, it checks whether there are pending interrupts.
If there are interrupts waiting and the impulse handler is not already active, the impulse
handler is
agged as active, the processor is set in interrupt-enabled state and the delayed
second half handlers will be processed with a speci�c priority. By handling the pending
interrupts sequentially, only one handler can be active at a time. A handler can then safely
update internal kernel variables without the risk of a second handler reading or updating the
same resource.

Since the processor is in interrupt-enabled state while handling the second half handlers,
it is possible that a new pending interrupt will arrive. The already running impulse handler
will pick this up and the handling works as expected.

After all second half handlers have been handled, the impulse handler is
agged as inactive,
the processor is set in interrupt-disabled state and the interrupt handler will return.

12

The interrupt-handler pseudo-code is as follows:
interrupt:

handle_interrupt_first_half();

if (impulse_bits_set && ! impulse_handler_running)

{

/* run impulse handler */

impulse_handler_running = true;

enable_interrupts();

while(delayed_interrupt_waiting())

{

handle_delayed_interrupts();

}

disable_interrupts();

impulse_handler_running = false;

}

interrupt_return; // enable interrupts, restore CPU-mode and return

2.4 Real-time Scheduling
Assume an application with a task-set
 as given in Table 2.4. There are four tasks (a task
has symbol �i, with 1 � i � 4) and each task has its own relative deadline (Di), period (Ti),
runtime (Ci) and shared resources. Every Ti time units, the task �i is released, after which it
has Di time units to complete its task. The release time of a task of invocation j of �i is rji .
Then the absolute deadline of this release is rji +Di = d

j
i .The de�nition of a resource, given by Butazzo [3, page 181]: \A resource is any software

structure that can be used by a process to advance its execution. Typically, a resource can
be a data structure, a set of variables, a main memory area, a �le, or a set of registers of a
peripheral device."

In our example, there are two resources, A and B. When a task needs exclusive use of a
resource, the resource is denoted in uppercase. When a task allows sharing of the resource,
the resource is denoted in lowercase. For instance, reading from a memory block can be
shared between tasks, but writing to this memory block should be done exclusively by one
task at a time.

The inherited deadline �i is the smallest deadline interval of a task with which �i shares
an exclusive resource. For instance, task 3 shares resource A with task 1 and 2. Both task 1
and 2 need exclusive use of the resource. Task 3 inherits the smallest deadline interval, which
is the deadline of task 1.

 Di Ti Ci �i Shared resources
�1 11 19 2 11 f A g
�2 19 23 5 11 f A B g
�3 25 31 7 11 f a g
�4 30 37 11 19 f B g

Table 2.4: A task-set

13

2.4.1 Earliest Deadline First with deadline Inheritance (EDFI)

There are various real-time scheduling algorithms, di�ering in performance, complexity and
applicability. The most common algorithms are compared in [3] on pages 75 and 107. One of
the more interesting scheduling algorithms is Earliest Deadline First with deadline Inheritance
(EDFI), described in [5]. EDFI is an extension on Earliest Deadline First (EDF), which gives
us the possibility to control shared resource locking from within the scheduler itself (this form
of real-time tasks is also known as real-time transactions). The EDFI algorithm is, just as
the EDF algorithm, lightweight and gives good results on generic tasks.

We give a short introduction on how EDFI scheduling works. A task-set example can be
found in Table 2.4:

The EDFI scheduler (see Figure 2.3) has two queues, the wait and released queue, and one
run stack, all ordered to absolute deadline (earliest deadline �rst). Every task is periodically
released (every Ti time units) from the wait queue into the released queue.

When a task at the head of the released queue (�h) has an earlier deadline than the
currently running task (�r) and the absolute deadline (Dh) is smaller than the inherited
deadline of the currently running task (�r), �h will preempt �r and become the new running
task. (In short, preemption will take place when dh < dr ^Dh < �r)

When a task �nishes or reaches its deadline, the task is removed from the run stack (or
released queue) and inserted back into the wait queue, waiting for its next release.

2.4.2 EDFI Feasibility Analysis

For determining whether a given task-set is feasible, we have to examine the processor demand
H(t), the workload W (t) and the blocking load CB(t). H(t) represents the total amount of
CPU time that must be available between 0 and t for
 to be schedulable to make all deadlines
met so far. W (t) represents the cumulative amount of CPU time that is consumable by all
task releases between time 0 and t. [5, page 3]

CB(t) is the possible blocking load, caused by the shared resources. L is the point where
W (t) = t. (the point where the CPU �rst becomes idle)

The task-set
 is feasible [5] if
8t 2 h0; L] : H(t) + CB(t) � t:

The feasibility analysis of a task-set can be represented in a �gure. Figure 2.4 shows an
analysis of the task-set given in Table 2.4. The diagonal in the graph represents the amount of
work done. The vertical distance between theW (t) and the diagonal represents the amount of
work still to do in released tasks. At point L, which is the point where the diagonal touches
the W (t) function, there is no more work to do and the system becomes idle. The H(t)
function represents the amount of work that must be �nished. If H(t) crosses the diagonal,
then more work would have to be �nished than there is time available. The CB(t) represents
the maximum potential blocking load, which is given by CB(t) = max
fC� j�� � t < D�g.
The schedulability analysis tracks W (t) and H(t) until either W (t) touches the diagonal or
H(t) +CB(t) crosses it. If H(t) +CB(t) crosses the diagonal, the task set is not schedulable.
If W (t) touches before H(t) + CB(t) could cross, the task set is feasible.

14

Figure 2.3: EDFI Scheduler: wait queue, release queue and the run stack

Below the graph, the task bars are shown with a possible scheduling. An upward arrow
represents the release of the task. A downward arrow represents the deadline of the task. A
small downward arrow represents the inherited deadline of the task. The blocks represent a
possible scheduling of the given task-set.

15

Figure 2.4: EDFI feasibility analysis of the task-set in Table 2.4

16

Chapter 3

Kernel Design

The emphasis of this chapter is on the design of the kernel. Questions are: what interface
should a kernel o�er to its applications. Which design decisions have been made.

3.1 Application Interface
A processor should run applications. The interaction with the kernel should be simple and
minimal. The kernel is to provide a convenient interface between the computer hardware
and the applications. The main tasks of the kernel are scheduling, memory management,
interrupt handling and communication with devices.

3.1.1 Tasks

Every application consists of a number of tasks. Every real-time task has its own set of
real-time constraints, which we already mentioned in Section 2.4 (relative deadline, used
processor time, the period between two consecutive task instances, shared resources, etc.).
A task often responds to a certain input, after which it produces an output. Especially in
streaming applications, this can result in data-
ows as given in Figure 3.1. One task receives
input from an external input. When the task is released, it processes this input and sends
the result to one or more other tasks.

One of the ideas of BasOS is to optimise this process by partially moving the data streams
into the kernel and let the scheduler use this knowledge to minimise delays. These techniques
will be described further on in this section.

Figure 3.1: Tasks: an application can be seen as a number of tasks

17

Non real-time tasks
For our target applications, we in general prefer real-time tasks. However, for management
and con�guration we can also use non-real-time tasks. Reasons for using non-real-time tasks
are:

� Non-real-time tasks will not be terminated when they miss their deadline, because there
is no deadline.

� In a non-real-time task, we can wait for events to take place. (e.g. wait until data is
available in a pipe)

� Using dynamic memory allocation cannot give us real-time guarantees at the moment.
If we use dynamic memory allocation in a real-time task, a deadline could result in
memory leakage.

� When con�guring a new set of real-time tasks, the kernel needs to dynamically allocate
new task-structures, pipe-structures, etc. This depends on dynamic memory allocation,
which cannot be done real-time.

For these tasks, the kernel uses a simple TDMA scheduling algorithm, which runs in the
slack time of the real-time scheduler. With this scheduling model, the scheduler sequentially
gives every non-real-time task a time-slice of a prede�ned amount of time. When a real-
time task is activated, the non-real-time task is preempted. On return, the non-real-time
scheduler continues with the preempted task, which then runs for the time left over in its
current time-slice.

3.1.2 Signals and conditions

In conventional EDFI scheduling a task is periodically released. When dealing with input that
is not always immediately available, as in a streaming-oriented environment, it is preferable
to activate a task when all conditions for activating are met.

A condition is met when the kernel has received a signal for a speci�c task. A signal can
be received from other tasks, external events or by kernel logic like pipes and timers. (see
Figure 3.2)

Every task-structure has a bitmask, which keeps track of the currently active conditions.
When a task receives a signal, the kernel updates the bitmask in the task-structure and when
all de�ned conditions have been met, the task can be released from the condition-wait set1.
A signal can be sent to a task at any given moment. When a task is released, the set of met
conditions is cleared. This gives the kernel the ability only to start a task when there is input
available and there is space available to write its output.

Figure 3.2: Signals: activating a task
1The condition-wait set will be described in Section 3.3.

18

Instance-independent conditions
When one task has written data into a pipe and the kernel has activated the second task by
sending a signal, it does not necessarily mean that the pipe is empty after the second task is
�nished.

As described before, the conditions are met per task instance. To solve this problem, we
introduce instance-independent conditions. When a task is released, all conditions except for
the instance-independent conditions are cleared. The instance-independent conditions will
stay active until someone sends a signal-clear.

3.1.3 Pipes

There are various ways to send data from one task to another. You can use shared memory
and implement your own communications channel or use pipes. (see Figure 3.3)

Pipes internally have a circular bu�er of which the size is speci�ed on creation. Tasks
can send data to another task (or device) by writing into a pipe. The pipe-object itself then
takes care of signalling other tasks when su�cient data has been written into the pipe. In
the pipe-object two signals are available: the not-full signal and the not-empty signal. The
not-full signal is sent when data is read from the pipe and the amount of free space becomes
more than wr threshold bytes. The not-empty signal is sent when data is written to the pipe
and the amount of used space becomes more than rd threshold bytes. These thresholds can
be con�gured dynamically by updating the rd threshold and wr threshold �elds2.

Figure 3.3: Pipes: data transfer from one task to another
To keep the kernel interface as generic as possible, all data-streams from and to the

hardware have been implemented as pipes. This gives us the same
exibility as we have when
using a pipe for sending data between tasks. Also, if we are switching between a software
implementation of a task and a hardware implementation or Montium implementation, the
task sending data to this task and the task receiving data from this task do not need another
interface.

For example, Figure 3.4 shows an implementation switch. If one would dynamically switch
over to the hardware implementation of task 2, one could remove task 2 from the scheduler
and reconnect the pipes to and from this task to the hardware implementation.

Switching between two implementations can be done by giving the �rst task a pointer to
the new input pipe. When all data has been read from the old pipes, these structures can be
deleted. The application itself is responsible for cleaning up the old structure of pipes and
tasks. The application also needs to solve the timing di�erence (glitch) between the old and
new implementations.

2Changing the pipe-structure �elds is discussed more in-depth in Chapter 6.

19

Figure 3.4: Rerouting pipes to an alternative implementation

3.2 Interrupts
When an interrupt is received by the ARM processor, the kernel starts the interrupt handler,
which will handle the �rst part of the interrupt. Depending on what should be done by the
interrupt handler, the handler can handle the complete interrupt, send a signal to one or more
tasks or activate an impulse handler3 to handle the second part of the interrupt.

3.3 Streaming-oriented Scheduling
The EDFI real-time scheduler [5] from Section 2.4.1 works with two queues and a stack. Every
task is released periodically, independent of whether it has anything to do. We have based
our model on this periodic task model and adapted it in such a way it can also be used for
aperiodic tasks.

3.3.1 Delaying the task release

As described in Section 3.1.2, whether a task has anything to do is encoded in its conditions.
While not all conditions have been met, it is a waste of time to release the task, only to �nd
out that the task cannot do anything yet.

We can however delay the scheduling when not all conditions for the task to release have
been met. Where a task should be released in the normal EDFI scheduler, it is now put on
hold while not all conditions have been met. For example, the �rst task-bar in Figure 3.5
describes a task that is scheduled with EDFI. The second task-bar describes a task which is
delayed at its third release.

Figure 3.5: EDFI scheduling without signal-delaying and with signal-delaying
Baruah et al.[1] proved the following theorem:
\If for any interval with length L, all work load o�ered during [0; L] can be resolved
before or at L, then this can be concluded for any arbitrary time interval [t; t+L]."

3See Section 2.3 for a discussion of the impulse handler.

20

Jansen et al.[5, page 3] commented on this:
\Therefore all tasks in
 are released simultaneously at t = 0, in which case they
will produce the largest response time. If the tasks in
 can make their deadlines
from t = 0, they can make their deadlines from any point in time."

This means that tasks can be delayed without a�ecting the result of the EDFI schedula-
bility analysis described in Section 2.4.2.

3.3.2 Aperiodic tasks

With this same technique, we can also implement aperiodic tasks. (Figure 3.6) An aperiodic
task is scheduled as if it is a periodic task, whereby the task's period is the minimum time
between two instances of the task, and the trigger to activate the task is modelled as a
condition for the task to run. The worst scenario for such an aperiodic task, the scenario
wherein the task is continuously activated, then resembles the scheduling of a periodic task.

Figure 3.6: EDFI scheduling on aperiodic task

3.3.3 The scheduling model

In the scheduling algorithm, this delay is implemented by introducing a fourth group, the
condition-wait set (see Figure 3.7). This set is inserted between the wait queue and the
release queue. When a task starts a new period, the task is removed from the wait queue and
inserted in the condition-wait set. When all conditions have been met, the task is released
and inserted into the release queue.

3.3.4 The scheduler impulse handlers

The scheduler currently uses four impulse handlers. A brief description will be given for every
impulse handler. The handlers are discussed from high priority to low priority.

\Task received signal"
This impulse handler checks the condition-wait set for tasks which have all their conditions
met. These tasks will be removed from the condition-wait set and inserted into the released
queue. The impulse handler will then activate the \Schedule" impulse handler.

\Task exit"
The currently running task called the SYS exit() system-call. The current task is removed
from the run stack and inserted into the wait queue. The impulse handler will then activate
the \Schedule" impulse handler.

21

Figure 3.7: EDFI Scheduler, extended with a condition-wait set

\Received timer interrupt"
This handler is called when a task can be released from the wait queue or when a deadline has
been met. The timers within the scheduler are updated. When a task in the release queue or
run stack reaches its deadline, the task is moved to the wait queue. When a task from the
wait queue reaches the end of its current period, the task moves to the condition-wait set or
released queue. When the impulse handler is �nished, it will activate the \Schedule" impulse
handler.

\Schedule"
This impulse handler checks whether the currently running task (if any) should be preempted
by the task on the head of the release queue.

If there are no real-time tasks available, the �rst task on the tdma queue is activated if it
still has time left in its time-slice. When the end of the time-slice is reached, the task will be
placed at the end of the tdma queue with a new time-slice.

22

Chapter 4

Implementation

This chapter describes the decisions and optimisations made in the implementation of the
kernel.

4.1 Memory Management
As described in Section 2.2.2, the BCVP has 2 MB at 0x80000000 available for application
code running on ARM1. We only can use it from approx. address 0x80008000, because the
RedBoot boot-loader uses the memory in between. If we are using the USB ELF-loader that
is described in Section 6.2.3, we can use the full 2 MB.

4.1.1 Heap Memory

All memory that initially is not in use by the kernel itself is de�ned as heap memory. The
kernel can use the heap to dynamically allocate and de-allocate memory.

A widely used heap memory algorithm is the �rst free shrink algorithm [10] [4, pg. 59-61].
On initialisation, the heap is one big free memory block, but when time passes, it becomes
fragmented. The kernel keeps a linked list of free memory blocks, and when memory is needed,
it searches this list for the �rst block that �ts the size request.

A memory block header starts with a word specifying the size of the block, including the
size of the header. When the memory block is free, this word is followed by a pointer to the
next free memory block. The last free memory block header contains a NULL-pointer. (see
Figure 4.1)

Figure 4.1: Heap memory: free memory blocks and allocated memory blocks

23

The algorithm used for allocating a block (Figure 4.2):
� Enlarge the requested size to a word-boundary and make sure that the re-
quired memory block can contain a free memory block header. (guarantee
that there is enough space when we free this block)

� Start searching for a free memory block that is large enough to hold the
requested memory.

� Split the block in two parts. The �rst part is the new free block and the
second part is the allocated block. Only the size of the memory blocks needs
to be updated, the linked list of free memory blocks doesn't change.

� Return the pointer to the data-part of the newly allocated memory block.

Figure 4.2: Allocating memory: two memory allocations

The algorithm used for freeing a block (Figure 4.3):
� Search the free memory blocks chain for the last free block before the given
pointer. Since the �rst block in memory is always a free block, such a block
is always available.

� Copy the next free pointer from the previous free block header to the current
block header. The size the the current block header does not change when it
becomes a free block.

� If the previous free block and the new free block are adjacent, merge them
to prevent fragmentation of free blocks.

� If the new free block and the next free block are adjacent, also merge them.
As an optimisation on the DCOS implementation [4, pg. 59-61], the block size of a memory

block in BasOS always includes the block header structures. When converting allocated
memory block to a free memory block, only the linked list of free memory blocks needs to be
updated.

4.2 Tasks
As mentioned before, there are two types of tasks: real-time tasks (currently scheduled with
the EDFI algorithm) and non-real-time tasks (scheduled with the TDMA algorithm). Both
types of tasks use the same task structure, but some �elds are used di�erently.

24

Figure 4.3: Freeing memory: two memory deallocations. on second free, two free blocks are
merged

Every task in BasOS needs a task speci�cation and a task context. The task speci�cation
(see Listing 4.1 and Table 4.1) speci�es the entry-point, needed stack size, maximum runtime,
the initial
ags, its deadline, shared resources, etc..

For tasks with a private stack, the stack size is used for allocating enough space on the
heap. For tasks with a shared stack, the value is used for guaranteeing that enough stack is
available for the task to run.

Note that for non-real-time tasks, the deadline, period and resources �elds are ignored.
The cputime �eld is used for a di�erent purpose. It speci�es the length of the time- slice for
the TDMA scheduler.
struct task_specification {

funcptr entry;

u32 stack_size;

u32 deadline;

u32 period;

u32 cputime;

u32 flags;

char *name;

task_resource_ptr *resource_sh;

task_resource_ptr *resource_ex;

};

Listing 4.1: The task speci�cation struct
The task context (see Listing 4.2 and Table 4.2) is used for storing the current state of the

task. Every task that is not using the shared context object should have a private context.
When entering the impulse queue runner, the current task state is stored into the task context
and when leaving the impulse queue runner, a new task state is retrieved from the currently
active task context.

25

entry The entry-point of the task
stack size The max. stack size (in bytes) used by the task
deadline The task deadline (in 1/32768 seconds)
period The interval at which the task is released (in 1/32768 seconds)
cputime The max. time the task will run (in 1/32768 seconds).

For non-real-time tasks, this value speci�es the length of the time-slice

ags Speci�es the task's type and state:

- TASK FLAG RT:
The task is a real-time task

- TASK FLAG CTXT SHARED:
The task will share the global task context (global stack)

- TASK FLAG IDLING:
When set, the task is initially inserted in the condition-wait set.
Otherwise, the task is initially inserted in the released queue

name The name of the task. Used for debugging
resource sh The shared and exclusive resources needed by this task,
resource ex speci�ed as a pointer to a NULL terminated list

Table 4.1: Description of all �elds in the task speci�cation structure

When a task is started that shares its context with already running tasks, the scheduler
pushes the task state of the preempted task onto the shared stack and recycles the context
object to use it for the new task. After the task has �nished, the original context data is
recovered from the shared stack.
struct task_context {

u32 cpsr;

u32 pc;

u32 r[15];

#ifdef CONTEXT_MEASURE_RUNTIME

u32 rt_runtime;

u32 rt_lstart;

#endif // CONTEXT_MEASURE_RUNTIME

void *heap_stack;

};

Listing 4.2: The task context struct
The task object itself (see Listing 4.3 and Table 4.3) contains information about its current

state in the scheduler, the used condition bits (see Section 4.2.2 for more detailed information
about these bits) and the tasks arguments.

26

cpsr Saved state of the CPSRa register
pc Saved state of the program counter (r15) register
r[15] Saved state of the r0 . . . r14 registers
rt runtime The total time this context is running (in 1/32768 seconds)
rt lstart The time when this context was last restarted
heap stack Pointer to the allocated memory for the stack

a The Current Program Status Register (CPSR)

Table 4.2: Description of all �elds in the task context structure

struct task {

struct task_context *context;

u32 stack_base;

struct task *shared_next;

u32 flags;

int use_count;

int absolute;

u32 delta;

const struct task_specification *spec;

u32 cond_bits;

u32 cond_bitmask_in_use;

u32 cond_bitmask_nonsticky;

u32 cond_bitmask_wake;

#ifdef CONTEXT_MEASURE_RUNTIME

u32 rt_runtime;

#endif // CONTEXT_MEASURE_RUNTIME

void *args;

struct task *next;

};

Listing 4.3: The task struct

4.2.1 Scheduling

static struct task * task_rt_wait_queue;

static struct task * task_rt_cond_wait_set;

static struct task * task_rt_release_queue;

static struct task * task_rt_running_stack;

Listing 4.4: The four EDFI-scheduler queues
As described in Section 3.3, our EDFI scheduler has three queues and one stack. They

are implemented as four linked lists. (see Listing 4.4)

27

context Pointer to the context object
stack base The stack pointer on task release
shared next Pointer to the preempted task with the same context object,

when sharing contexts

ags Speci�es the task's type and state:

- TASK FLAG EXIT:
The task has ended

- TASK FLAG RT:
The task is a real-time task

- TASK FLAG DESTROY:
The task needs to be destroyed (waiting for use count to reach 0)

- TASK FLAG CTXT SHARED:
The task will share the global context

- TASK FLAG IDLING:
The task is waiting in the condition-wait set

- TASK FLAG WAITING:
The task is blocked. Waiting for a condition

- TASK FLAG ACTIVE:
The task is added to the scheduler

- TASK FLAG TO BE REMOVED:
The task should be removed from the scheduler

use count The number of references to this task object
absolute The activation time relative to the previous task in the

linked list or when on the head of the linked list
to the time last updated variable.

delta The inherited deadline
spec A pointer to the task speci�cation structure
cond bits The currently triggered conditions (stored as bitmask)
cond bitmask in use Bitmask of all used bits
cond bitmask nonsticky Bitmask of all bits that have to be reset on task release
cond bitmask wake Bitmask of all bits that wake a task from its blocking wait state
rt runtime The total time this task is running (in 1/32768 seconds)
args The argument given to the entry point
next Pointer to the next task in the queue or stack

Table 4.3: Description of all �elds in the task structure

The wait queue
The wait queue is the queue in which all tasks wait for the moment they can be released.
The queue is sorted on earliest release �rst. The release time can be determined by looking
at the left over deadline of the task (rji + 1 = r

j
i + Ti = d

j
i + Ti �Di). From here, a task will

move to the condition-wait set.
The time the task can be removed is stored as a cumulative value (over the task ! next

linked list) in the task ! absolute �eld. The advantage of only storing the incremental value
in the linked list is that we only have to update the �rst task-�elds.

28

The condition-wait set
In the condition-wait set, a task will wait until all the task's de�ned conditions have been
met. The set is implemented as a queue, which is not sorted. When all conditions have been
met, the internal condition state is cleared, the deadline is activated and the task is inserted
into the release queue. If no conditions have been de�ned for this task, the task will behave
strict periodic and skip the condition-wait set.

The release queue
Just like the wait queue, tasks in the release queue are sorted, but now by their deadline. The
same �eld task ! absolute is used, but now for the cumulative deadline. On every change
in the release queue and run stack, the scheduler checks if the head of the release queue (the
task with the �rst deadline) can preempt the task at the head of the run stack. If so, the task
will move from the release queue to the run stack.

If a deadline is met before the end of a task, the task immediately moves to the wait
queue.

The run stack
The run stack contains the currently running real-time task on top and below it all the
preempted tasks. Similar to the wait queue and release queue, the �eld task ! absolute is
stored as an incremental value. When a task ends or when its deadline is met, the task is
removed from the run stack and inserted into the wait queue.

4.2.2 Signalling

Every task (see Listing 4.3) has four variables for storing the signals it is listening to and
whether they have been triggered already. Due to the limited length of these �eld, we can
only attach 32 signals to one task.

The cond bitmask in use keeps track of which bits have been used and which haven't. The
cond bits contain which of these bits have been triggered, cond bitmask nonsticky tells us
which bits need to be reset when a task is inserted into the release queue. The cond bitmask wake
tells us on which bit we are waiting if the task is blocking (only possible in a non-real-time
task).

Since the task itself doesn't keep track of the signals it is waiting for, the signal object keeps
a list of tasks and its assigned bitmasks. When a signal is triggered, the kernel will loop over
the task-list in the signal object and sets and resets the corresponding bits in the cond bits
in the task object. If all conditions have been met, which is when the cond bitmask in use
is equal to the cond bits, the `check task condition' impulse handler (which is a part of the
scheduler) is triggered that will insert the task into the release queue. (see Figure 4.4)

Adding a task as a recipient for a signal is done by �nding a free bit in the task's sig-
nal bitmask in use bitmask, mark this bit as `used' and adding the task to the list of tasks
and bitmask pairs in the signal structure.

4.2.3 Feasibility Analysis

Every time a task is added to the scheduler, the scheduler checks whether the new task-set
is feasible. In case of a feasible task-set, the new inherited deadlines are copied to the actual

29

Figure 4.4: Releasing a task: Signal is triggered, task releases impulse handler

tasks and the new task is added to the scheduler.
For testing the feasibility of the new task-set, an abstract task structure is used, see

Listing 4.5. The feasibility analyser replays the tasks from time t = 0 to t = L. On every
task release, W (t) is checked, and on every task deadline, H(t) + CB(t) is checked.
struct task_abs {

const struct task_specification *spec;

struct task_abs *next;

struct task *task;

int absolute;

u32 delta;

};

Listing 4.5: The abstract task struct, used for testing the feasibility
Feasibility-analysis pseudo-code (actually, this code just calculates the H(t), W (t) and CB(t)
functions as seen in Section 2.4.2):
feasibility_analysis(tasks):

H=0; // workload to be resolved

W=0; // workload offered

queue_wait = ();

queue_release = tasks;

t=0; // t_now

loop {

switch (task_next(queue_wait, queue_release, t, C)) {

30

case TASK_RELEASE:

// check offered load before the release

if ((t > 0) && (W <= t)) return FEASIBLE;

W += C;

break;

case TASK_DEADLINE:

H += C;

B = blocking_load(queue_wait, queue_release, t);

// check to be resolved load after the deadline

if (H + B > t) return NOT_FEASIBLE;

}

}

4.3 Interrupt Handling
The kernel can be in one of the four states user, syscall, irq, impulse. Normally, the processor
is handling a task, thus the kernel resides in user state. When a hardware interrupt arrives at
the processor or when the task uses a syscall, the state changes to respectively irq or syscall.
When the interrupt or syscall is handled, but there is no need to run an impulse handler,
control is returned to the same task.

When there is a need to run an impulse handler, the context of the currently running
task is saved and the impulse queue runner is called. When running the impulse handlers,
interrupts are in the enabled state. New hardware interrupts thus might interrupt an impulse
handler, but the new hardware interrupt will not start a second impulse queue runner. When
all impulses have been handled, the context of the newly running task is restored (a task
switch might have occurred), and the task will continue.

All these states and transitions between the states can be found in Figure 4.5. Note that
hardware interrupts can only occur when the processor is in an interrupt enabled state, which
is in the user and impulse state.

4.3.1 Race-condition risks

These kernel states introduce one problem. Since the impulse handlers can be interrupted by
a hardware interrupt, it is possible that both the impulse handler and the interrupt handler
need to update the same kernel variables.

Normally, one would introduce semaphores or blocking mutexes in the kernel, but we
wanted to keep our kernel lightweight, preferably without any possible blocking in the kernel.
There are two solutions to this problem. One is to guarantee that none of the variables are
accessed by both handlers simultaneously. The other option is to use atomic operations and
(if necessary) disable the interrupts to update a variable.

To show what can and cannot be done, a few examples are given in Table 4.4.
When handling a system call or interrupt, only a few processor registers are saved to keep

the overhead low. Only when needed, a full task state is saved. An interrupt handler can
both interrupt a task and the impulse handler. In the �rst situation, the task state is not
saved. In the second situation it is.

For allocating memory on the heap, we need to guarantee that we are the only process
altering the heap control blocks. A task cannot give us these guarantees. In a system call

31

Figure 4.5: Kernel states and transitions

handler or impulse handler, we know we are the only process doing a malloc(). An interrupt
handler can interrupt an impulse handler processing a malloc().

To move tasks between the task scheduling queues, we also need this guarantee. Because
the current task is still active when handling a system call, we cannot change the run stack.

We must be able to update the
ags �eld in the task structure when handling an interrupt.
As a result, we have to guarantee we are updating the
ags �eld atomically, when handling
an interrupt handler. This is described in Section 4.3.1.

task
state interrupts safe to use move tasks in update

state active enabled malloc() RT queuesa task
ags
user yes yes via syscall no no
syscall yes no yes partiallyc yes
irq dependsb no no no yes

impulse no yes yes yes atomicd
a Moving tasks between the wait queue, condition-wait set, release queue and run stack
b Which actually just means we cannot make any assumptions about it
c The current task state is not saved yet. Therefore, the run stack cannot be changed.
d We don't like updating the
ags �eld, but sometimes we just have to.
The only possibility here is to disable the interrupts temporarily.

Table 4.4: All kernel states with some characteristics

In BasOS there are two activities where we may expect race-condition problems. These
are task scheduling and in-kernel debugging.

32

Task Scheduling
When the kernel is handling an interrupt, the task send signal() and task clear signal() func-
tions can be called. When that happens, the
ags and cond bits will be updated and
cond bitmask in use and cond bitmask wake will be read.

Since interrupts can occur while handling impulse handlers, the impulse handler should
take care that these variables are not overwritten. When we take a close look of these four
�elds in the task structure, we notice that only two of them,
ags and cond bits, are actually
updated from the impulse handler.

The best way to update these two variables would be by using one assembler instruction
which atomically sets or resets bits in memory. Unfortunately, the ARM architecture doesn't
have such an instruction, so we have to disable the interrupts, update variable, and re-enable
the interrupts:
ATOMIC(temp_variable);

task_ptr->flags |= TASK_FLAG_IDLING;

ATOMIC_END(temp_variable);

Note that when we are using a multi-processor environment, we probably also need to
lock the bus and memory.

In-Kernel Debugging
In-kernel debugging is only used when testing or debugging a task-set or when something
went wrong. We did not develop a full-blown debugger but are informed by using the printk()
function. printk() writes a message to the console pipe. During the whole call, the processor
is kept in an interrupt disabled state.

33

Chapter 5

Device Drivers

The implemented device drivers and how they are used.

5.1 USART
The BCVP has 3 USARTs. Currently, only USART0 is supported (the physical serial con-
nection), with a bit-rate of 115200, 8 bits data, no parity and one stop bit. The task for this
driver is to provide a channel which can be used for sending debugging output, without the
need to run a full blown debugger.

Communication with the serial port is done via two pipes:
struct pipe *PIPE_usart0_in;

struct pipe *PIPE_usart0_out;

The implementation of the driver is very straightforward. When data is available in the
PIPE usart0 out, the interrupt handler that tells us we can write to the USART is unmasked.
When the interrupt handler is activated, it will write one byte to the USART. When there is
no more data available, the interrupt handler is masked.

The same holds for PIPE usart0 in. When data can be written into the pipe, the interrupt
handler that tells us we can read from the USART is unmasked. When the interrupt handler
is activated, it will read one byte from the USART and writes it into the pipe. When the
pipe is full, the handler is masked.

Since the USART only allows us to read or write only one character at a time, using an
impulse handler would cause too much overhead.

The USART driver is initialised on boot. Messages can be sent and received immediately.

5.1.1 Code example

// send a message to USART0

char *msg = "Hello world!\r\n";

SYS_write(PIPE_usart0_out, msg, strlen(msg));

// receive a message from USART0

char buf[2];

SYS_read(PIPE_usart0_in, buf, 1);

34

// and send the character to the console

buf[1] = 0;

SYS_printf("Received character '%s'.\r\n", buf);

5.2 Universal Serial Bus
For faster communication with the PC, the USB driver is implemented. The driver is based
on the eCos USB implementation written by one of the partners in the 4S-project, however
large parts have been rewritten to better support streaming communication.

Within USB, there are 6 communication channels available. The BasOS implementation
uses only 3 of them. The �rst channel (endpoint 0) is used for controlling the USB connection.
The second channel (endpoint 1) is used for communication from the BCVP to the PC and
the third channel (endpoint 2) is used for communication from the PC to the BCVP. When
needed, it is possible to use endpoints 4 and 5 as extra send and receive channels.

The USB connection is con�gured as a full speed device (12 Mbit/sec) and for com-
municating via endpoint 1 and 2, bulk packets are used. The BCVP is visible as device
0x4242:0x0100, with manufacturer \4S" and product name \BCVP DiMITRI USB link". For
further information about the USB protocol speci�cation, see [18].

Both the receiving channel and the sending channel are available as pipes in BasOS:
struct pipe *PIPE_usb_in;

struct pipe *PIPE_usb_out;

BasOS uses the same signalling technique as described for the USART0, except that it
now reads and writes blocks of 64 bytes (the max. amount of bytes in a frame). We use the
peripheral double bu�ering if the last frame was exactly 64 bytes. If the last frame had fewer
bytes, using the double bu�er may cause the controller to get confused.

The USB driver is initialised on boot. Messages can be sent and received when the USB
device is con�gured. The kernel will notify the the task with the SIG usb con�gured signal.

On the PC side, libusb [16] can be used for sending to and receiving from the BCVP
device.

5.2.1 Code example

// wait until the USB device is configured

SYS_signal_wait(&SIG_usb_configured);

// send a message to USB

char *msg = "Hello world!\r\n";

SYS_write(PIPE_usb_out, msg, strlen(msg));

// receive a message from USB

char buf[2];

SYS_read(PIPE_usb_in, buf, 1);

// and send the character to the console

35

buf[1] = 0;

SYS_printf("Received character '%s'.\r\n", buf);

5.3 The routing network and Montium processors
The implementation of the driver for con�guring the routing network and Montium processors
started with the blocking implementation from Erik van der Sluis (see [9]). The code is
rewritten into a stateful non-blocking form, which is suitable for being used in interrupt
handling. There are four input pipes and four output pipes available:
struct pipe *PIPE_montium_in[4];

struct pipe *PIPE_montium_out[4];

These pipes initially are not connected in the routing network. Each pipe �rst needs to be
connected with several calls to SYS router con�gure(). See Figure 5.1 for the routing network
to the montium processors. Currently, the montiums and their network are emulated on an
FPGA. The Xilinx Virtex-II 3000 can hold one router and one montium, while the Virtex-II
8000 can hold two routers and three montiums.

Figure 5.1: The Montium routing network

5.3.1 Con�guration of the montium lanes

The montium pipes internally use 16 bits values, combined with a 2 bit
it, which speci�es
the packet type. This is not the most convenient message format to be used for sending data.
To this aim, we need to con�gure the pipes �rst for their data formats.

One can choose to send the data with or without a
it type. When sending without a
it
type, the type should be speci�ed in the con�g. It is also possible to combine two lanes.

The pipes can be con�gured with the SYS conf lane in(lane, con�g) and SYS conf lane out(lane,
con�g) system calls.

36

The lane number matches the index in the PIPE montium in[] and PIPE montium out[].
On boot, all lanes are con�gured as disabled (LANE CONF DISABLED).
There are four data-formats available:
LANE CONF 16 BIT

The pipe uses a single lane, which has a width of 16 bits. data is sent with one prede�ned

it type.

LANE CONF 16 AND FLIT
The pipe uses a single lane, which has a width of 16 bits. The data within the pipe is
32 bits wide. The data is encoded in bits 0..15. Bits 16 and 17 specify the
it type.

LANE CONF 32 BIT
The pipe uses two lanes, which combined have a width of 32 bits. data is sent with one
prede�ned
it type.

LANE CONF 32 AND FLIT
The pipe uses two lanes, which combined have a width of 32 bits. The data within the
pipe is 64 bits wide. The data is encoded in bits 0..31. Bits 32 and 33 specify the
it
type.

When we need to prede�ne a
it type, the type is added to the con�g value. The four
it
types are:

� LANE CONF FLIT DATA
� LANE CONF FLIT ADDR
� LANE CONF FLIT TAIL
� LANE CONF FLIT CMD

There are only four lane combinations possible. These are:
� Lane 0 with lane 1 (speci�ed with LANE CONF DUAL LANE H)
� Lane 2 with lane 3 (speci�ed with LANE CONF DUAL LANE H)
� Lane 0 with lane 2 (speci�ed with LANE CONF DUAL LANE V)
� Lane 1 with lane 3 (speci�ed with LANE CONF DUAL LANE V)
The driver uses only the �rst pipe when reading or writing. The second pipe is ignored

while being con�gured in dual mode.
For con�guring the montium processors itself, see [2].

5.3.2 Code example

// configure the routing network

// - connect montium 0 lane 0 to bcvp lane 0

SYS_router_config(0, 1, 0,0, 2,0);

// - connect montium 0 lane 1 to bcvp lane 1

SYS_router_config(0, 1, 0,1, 2,1);

37

// - connect bcvp lane 0 to montium 0 lane 0

SYS_router_config(0, 1, 2,0, 0,0);

// - connect bcvp lane 1 to montium 0 lane 1

SYS_router_config(0, 1, 2,1, 0,1);

// prepare lane 0 for uploading the montium configuration data

SYS_conf_lane_out(0, LANE_CONF_16_AND_FLIT);

// send configuration data

SYS_write(PIPE_montium_out[0], montium_code, sizeof(montium_code));

// send 'run' command

unsigned int cmd = 0x30000 | HYDRA_CMD_RUN;

SYS_write(PIPE_montium_out[0], &cmd, 4);

// prepare lane 0+1 for sending and receiving data

// - configure input lanes

SYS_conf_lane_in(0, LANE_CONF_32_BIT | LANE_CONF_FLIT_DATA | LANE_CONF_DUAL_LANE_H);

// - configure output lanes

SYS_conf_lane_out(0, LANE_CONF_32_BIT | LANE_CONF_FLIT_DATA | LANE_CONF_DUAL_LANE_H);

// send a message via lane 0+1 to Montium 0

unsigned int msg = 0x12345678;

SYS_write(PIPE_montium_out[0], &msg, 4);

// receive data from Montium 0

unsigned int buf;

SYS_read(PIPE_montium_in[0], &buf, 4);

// and send the character to the console

SYS_printf("Received data-word 0x%x.\r\n", buf);

38

Chapter 6

Examples

This chapter gives an overview of how to write applications for BasOS.

6.1 Writing Applications
6.1.1 Tasks, Signals, Pipes, Resources

A task
This chapter focuses on how to write a simple application in BasOS. The �rst task, a non-
real-time task, is started by the kernel. The task's name is start . A task is represented in
a C function and when this function returns, SYS exit() is automatically called.

In Listing 6.1, a simple message is sent to the standard output channel (normally the
serial port), and then exits.
void __start__(void)

{

/* task implementation */

SYS_strprint("Hello world!\n");

}

Listing 6.1: A simple implementation of a task

Creating our own task
To create a task, we need a �lled-in task speci�cation struct. For real-time tasks, a deadline,
period and cputime should be given, so the kernel can check whether the new task-set is
feasible. For non-real-time tasks only the time-slice length is needed, which is �lled in in the
cputime �eld. (see Listing 6.2)

The creation and activation of the task is split in two system calls, so we can attach the
task to certain signals before activating the task.
void task_1(void)

{

/* task implementation */

39

SYS_strprint("Another second has passed..\n");

}

static const struct task_specification task_1_spec = {

.entry = &task_1,

.stack_size = 256, // the needed stack size in bytes

.deadline = 0x2000, // 250 ms

.period = 0x8000, // 1 second

.cputime = 0x1000, // 125 ms

.name = "task 1",

.flags = TASK_FLAG_RT | TASK_FLAG_IDLING,

// mark the task as a real-time task,

// starting in the condition-wait state.

/* no shared resources */

.resource_sh = NULL,

.resource_ex = NULL,

};

void

__start__(void)

{

struct task *task_1 = SYS_task_create(&task_1_spec);

SYS_scheduler_add_task(task_1);

}

Listing 6.2: Creating a task

Adding a shared resource
A list of shared resources can be given. The scheduler guarantees that a task with an exclusive
lock to a speci�c resource will not be preempted by another task that uses the same resource.

In this example (see Listing 6.3), both tasks are activated at the same moment and since
both tasks have the same deadline, it is possible that on one cycle task 1 is called �rst and
on the other task 2.
int current_time = 0;

struct task_resource shared_resource_1 = { .ptr = ¤t_time };

void task_1(void)

{

current_time++;

}

void task_2(void)

{

SYS_printf("%d seconds have elapsed..\n", current_time);

}

40

static const struct task_specification task_1_spec = {

.entry = &task_1,

.stack_size = 256,

.deadline = 0x2000, // 250 ms

.period = 0x8000, // 1 second

.cputime = 0x1000, // 125 ms

.name = "task 1",

.flags = TASK_FLAG_RT | TASK_FLAG_IDLING,

.resource_sh = NULL,

.resource_ex = (task_resource_ptr[]){ &shared_resource_1, NULL },

// list of exclusive resources. When the task is running, only this

// task is allowed to use these resources.

// the list is terminated with a NULL value.

};

static const struct task_specification task_2_spec = {

.entry = &task_2,

.stack_size = 256,

.deadline = 0x2000, // 250 ms

.period = 0x8000, // 1 second

.cputime = 0x1000, // 125 ms

.name = "task 2",

.flags = TASK_FLAG_RT | TASK_FLAG_IDLING,

.resource_sh = (task_resource_ptr[]){ &shared_resource_1, NULL },

// list of shared resources. When the task is running, the resource

// can be shared with other real-time tasks.

// the list is terminated with a NULL value.

.resource_ex = NULL,

};

void

__start__(void)

{

struct task *task_1 = SYS_task_create(&task_1_spec);

struct task *task_2 = SYS_task_create(&task_2_spec);

SYS_scheduler_add_task(task_1);

SYS_scheduler_add_task(task_2);

}

Listing 6.3: Two tasks with a shared resource

Signals
When we de�ne a condition for task 2, this task will stay in the condition-wait scheduling set
until it receives signal sig from task 1 (see Listing 6.4). Tasks can be dynamically attached

41

to a signal with the SYS signal add listener() call.
struct signal *sig;

void task_1(void)

{

/* task 1 implementation */

...

/* send signal to task_2 */

SYS_signal_set(sig);

}

void

__start__(void)

{

/* create tasks */

...

/* create signal */

sig = SYS_signal_create();

SYS_signal_add_listener(sig, task_2);

/* add tasks to scheduler */

...

}

Listing 6.4: Sending a signal from task 1 to task 2

Pipes
Instead of using shared memory, one can use a pipe (see Listing 6.5 and Appendix D). When
there are four or more bytes available in the pipe, task 1 is signalled, and when there are four
or more bytes to be read, task 2 is signalled. The signals stay enabled until the pipe is too
full or too empty.
struct pipe *pipe;

void task_1(void)

{

static int current_time = 0;

current_time++;

SYS_write_nb(pipe, ¤t_time, sizeof(int));

}

void task_2(void)

{

42

int time;

SYS_read_nb(pipe, &time, sizeof(int));

SYS_printf("%d seconds have elapsed..\n", time);

}

void

__start__(void)

{

/* create tasks */

...

/* create pipe */

pipe = SYS_pipe_create(7); // create a 7 byte pipe

pipe->rd_threshold = 4;

pipe->wr_threshold = 4;

SYS_signal_add_listener(&(pipe->sig_wr), task_1);

SYS_signal_add_listener(&(pipe->sig_rd), task_2);

/* add tasks to scheduler */

...

}

Listing 6.5: Using pipes instead of shared memory

6.1.2 System Calls

System calls are called with the ARM swi instruction. Due to the ARM architecture, this
instruction provides us a fast and reliable method for system call handling. The system call
handler is run in the interrupt disabled state. When the system call triggers an impulse
handler (e.g. SYS exit()), a task switch can occur. (see also Figure 4.5)

There are 26 system calls available. They are all described in Appendix C.

6.2 Tools
For better con�guration and utilisation of the kernel, several tools have been written. These
tools are described in this section.

6.2.1 Stack usage prediction

When we would like to make optimal use of the kernel, we would probably put the stack in
the DTCM (see Section 2.2.2). Since there is not much space, we would like to minimise the
needed stack size.

By following the
ow of an application and counting all stack operations (also described
in [8]), we can determine in most cases the needed stack size. Because a snippet of C code
is not always compiled the same way, we are not analysing the C code, but the generated
assembly code.

43

The simulation starts at the task's entry point. Every instruction is then simulated, and
the lowest value of the stack register (r13) is stored (the stack grows downward). When a
conditional instruction is found, both code paths are simulated. After all possible code paths
have been processed, the lowest value of the stack register is known. The initial stack value
minus the lowest stack value gives us the maximum needed stack.

Unfortunately, using this simulation method doesn't work in all situations. Sometimes the
simulation will take in�nite time in case of recursive functions. Also, the simulator may not
know where the application continues. For example when using function pointers or optimised
switch statements.
A list of known problems:

� alloca(size)
The alloca function allocates size bytes of space in the stack frame of the caller. If
size is a constant, we can easily determine the needed amount of stack. But often, the
size depends on other variables, which makes determination of the stack size impossible
without the use of backtracking techniques.

� indirect calls (e.g. using variables for function pointers)
We normally do not keep track of read-writable memory. Therefore we don't know
which pointer was written to a speci�c memory location. Again, we probably need
back-tracking techniques to determine where the program continues.

� recursive functions
Since we follow all possible task
ows, a recursive function will be call in�nitely. This
would result in an in�nite stack size. The only way to solve this problem is to know
which conditional expression should be watched to know the max. amount of recursions.

� jump-tables (often created by compiler optimisations)
Jump-tables use a register as index into the table. We know the o�set of the jump-
table, but we don't know the length. Previous instructions have to be analysed further
to know which values the register can have.

6.2.2 Dynamic Application Loading

When loading multiple applications into the system and we are not using virtual memory,
all tasks (the code itself) should be loaded on disjoint memory addresses. Even when the
memory address is speci�ed at compile-time, it is possible that the given memory address
range is no longer free.

Therefore we would like to be able to load an application at any given location at runtime,
so we can just malloc() some memory, load the image into this memory and start the task.

When looking at an ELF object �le [13], we actually �nd all information which is necessary
to build such an image. In an ELF �le, every .text section contains one or more functions
and each section has a list of relocation records.
A relocation record contains the following information:

� The type of relocation record.
� The o�set in the current section.
� The symbolic name.

44

A dynamic image in BasOS is normally started with the start function. If we look at
the relocation records for this function, we notice other sections we have to include. These
sections include yet another sections, etc.. Finally, a list of all needed sections is known and
an image can be built by concatenating these speci�c sections.

Now, only the relocation records need to be �xed. All the symbols are known, so we know
their o�set in the produced image. For ARM binaries, usually only the R ARM ABS32
and R ARM PC24 are used:

� R ARM ABS32 relocations (absolute address, 32 bit)
These relocations point to a given symbol. The symbol points to a section and an o�set.
The o�set relative to the start of the new dynamic image is then the o�set of the section
in the new image plus the o�set of the symbol itself.
We can update the new image itself at the o�set the relocation record is pointing to.
Then only the base address of the image itself should be added at loading.

� R ARM PC24 relocations (program counter, 24 bit)
Program counter relocations are relative to their callers o�set and not relative to the
absolute address the image is loaded on. We can just calculate the di�erence in o�set
and add this to the o�set the relocation points to. After updating the new image, no
further processing has to be done.

Image Format
We now have an image containing all needed sections and we have a list of all o�sets within
the image to which the base o�set has to be added. With this information we can produce a
dynamic image object, which can easily be loaded on any given o�set in memory.

o�set type description
0 word signature (always 1889875327)
4 word version (always 0x00010002)
8 word total size in memory
12 word total size in image (n)
16 byte[n] image data
16 + n word reloc size (m)
20 + n word[m] reloc pointers
24 + n + m word entry point
28 + n + m word stack size

6.2.3 Second Stage USB Boot-loader

Loading an image by using RedBoot had several problems:
� Uploading with a max. speed of 115200 bits/sec is really slow.
� We cannot use the �rst 30 KB of memory for our image. The RedBoot loader uses this
space.

� The RedBoot loader doesn't seem to check where we are writing and if we are allowed
to write there.

45

� Most compilers assume that the .bcc section is zeroed by the ELF-loader. The RedBoot
loader doesn't do this.

� Occasionally, the uploading via RedBoot stops and we have to restart uploading the
image.

Therefore a new boot-loader was written which doesn't have these problems. By using
the tightly-coupled memory (32 KB code, 64 KB data), the complete 2 MB (ARM1 memory)
and 1 MB (ARM0 memory) can be used for loading an ELF image. [13]

The loader uses the USB driver described in Section 5.2. After loading the USB boot-
loader, the PC �rst sends the �le size, then sends the ELF �le. The loader parses this, loads
the image in memory and starts the execution.

46

Chapter 7

Recommendations

In this chapter we would like to emphasise the parts of the kernel that are not yet fully
developed. Some parts have a partly working implementation, other do not. We have listed
the recommendations for a future kernel implementation, as well as some recommendations
for next revisions of the currently used hardware.

7.1 Memory management
7.1.1 Memory Allocation Algorithm

Most kernel structures are allocated on the heap.
When using the �rst free �t and shrink heap memory algorithm, the allocate function will

probably exhaust the �rst free block when random block allocations are done. This may result
in high memory fragmentation. The longer the kernel runs, the slower the memory allocation
function will be. There is no maximum time de�ned of how long a memory allocation may
take.

The chosen algorithm is simple, we did not spend much time on improvements.

7.1.2 Splitting memory in kernel-memory and application-memory

The BCVP both has tightly-coupled memory and normal memory. The latter one is of-course
slower than the �rst. Since kernel overhead is inevitable (e.g. hardware interrupt handling),
it might be interesting to minimise this overhead by using the faster tightly-coupled memory
for kernel tasks.

7.2 Scheduler
7.2.1 Other scheduling algorithms

The currently used scheduler can both schedule real-time tasks as non-real-time tasks. Real-
time tasks are scheduled with a variant on the EDFI algorithm [5] and in its slack time
non-real-time with TDMA (Time-Division Multiple Access).

47

Rate Monotonic, Deadline Monotonic
Other real-time schedulers of interest are the static priority Rate Monotonic and Deadline
Monotonic schedulers. They are a good alternative to the Earliest Deadline First algorithm.

Sporadic Server, Total Bandwidth Server
Another thing is that we are combining the EDFI algorithm with the TDMA algorithm.
The currently implemented non-real-time tasks are to be considered as asynchronous tasks
without any real-time requirements. In general, they are used for additional system support
such as initialisation.

There are other scheduling algorithms that can deal with these and other asynchronous
tasks, which introduces new interesting scheduling possibilities which are not deployed so far
in BasOS. (e.g. Sporadic Server, Total Bandwidth Server)

7.3 Drivers
7.3.1 Usage of PDCs

Some peripherals have implemented a Peripheral Data Controller (PDC). This helps the
processor with sending data from memory to this device and vice versa. The pipe mechanism
can be extended to have support for these PDCs.

Of the currently implemented drivers, the USART0 has a PDC. It is so far unclear whether
the USB device is also equipped with a PDC.

7.3.2 Montium

16 bit circular bu�er access
The current memory-mapped interface gives us a circular bu�er with 16-bits values, but it
is addressed at 32-bits o�sets. As a result, the ARM cannot use optimised block-reads and
writes. A 16-bit wide circular bu�er data would improve this.

Peripheral Data Controller
As described in Section 7.3.1, some peripherals have a PDC, which helps the kernel in moving
data between memory and a peripheral. The routing lanes to the Montiums do not have such
an interface. Adding a PDC controller to the Montium lanes would improve the data transfer
to and from the Montiums.

7.3.3 Implement more drivers

The BCVP has a long list of devices. Currently, only a few drivers have been implemented.
Other peripherals lack driver support. Here follows a list of peripherals without drivers.

� Real Time Clock
� Triple DES
� Serial Synchronous Controller

48

� Serial Peripheral Controller
� Digital Down Converter
� Two-wire Interface
� Ethernet MAC
� Multimedia Card Interface
� Viterbi Decoder
� LCD Controller

7.4 Usage of Cyclic Asynchronous Bu�ers
Although this is probably more something for a task itself to arrange, it would still be nice
to have a standardised library for accessing Cyclic Asynchronous Bu�ers (CABs). With the
combination of CABs and shared memory, tasks can probably communicate much faster than
using the currently deployed pipe system calls.

49

Chapter 8

Conclusions

A real-time EDFI kernel has been developed and the design goals are met. reached. The
kernel uses a minimal amount of memory. The kernel �ts in the Tight Coupled Memory and
has dynamic memory management. For interrupts, impulse handling is used, which results
in e�cient interrupt handling with considerable improvement of interrupt disable times.

The kernel uses EDFI scheduling for real-time tasks, with an optimisation for streaming
applications. Non-real-time tasks are scheduled with the TDMA scheduling algorithm. The
kernel is able to dynamically add and remove tasks, which makes dynamic application loading
possible. For this dynamic task loading, a tool has been written, which makes it possible to
load the application at any given memory o�set.

For fast kernel loading, an USB boot-loader has been written, which makes it possible to
upload new kernel images with a speed of 1 MB/sec.

For interaction with the kernel, a user-friendly API is chosen. We use pipes and signals
for communication between tasks and peripherals. We expect the kernel to give good support
for streaming applications. In particular we currently provide a well appreciated support for
the Montium processor.

50

Bibliography

[1] S.K. Baruah, A.K. Mok and L. Rosier, `Preemptively scheduling hard-real-time spo-
radic tasks on one processor', Proceedings of the Real-Time Systems Symposium, Dec
1990, pp. 182-190

[2] M.D. van de Burgwal, `Hydra Protocol Speci�cation', Design document for implement-
ing of the Hydra CCU, August 21, 2005, University of Twente. (not published)

[3] Giorgio C. Buttazzo, `Hard Real-Time Computing Systems', Predictable Schedul-
ing Algorithms and Applications, 3rd printing, Kluwer Academic Publishers,
ISBN 0-7923-9994-3

[4] Tjerk J. Hofmeijer, `The development of system software to support a data centric
real-time architecture for sensor networks', Master Thesis, July 2004, University of
Twente.

[5] P.G. Jansen, S.J. Mullender, P.J.M. Havinga, H. Scholten, `Lightweight EDF Schedul-
ing with Deadline Inheritance', http://doc.utwente.nl/fid/1145.

[6] P.M. Heysters, G.J.M. Smit, E. Molenkamp, `A Flexible and Energy-E�cient Coarse-
Grained Recon�gurable Architecture for Mobile Systems', The Journal of Supercom-
puting, Volume 26, Number 3, November 2003, pages 283-308, ISSN 0920-8542

[7] Maurice L.M. Luttmer, Han Ribbers, Pierre G. Jansen, `Getting short interrupt disable
times by Impulses', Memoranda Informatica 89-28, April 1989, University of Twente,
ISSN 0923-1714

[8] John Regehr, `Say no to stack over
ow', Embedded Systems Design,
http://www.embedded.com/showArticle.jhtml?articleID=47101892.

[9] Erik van der Sluis, `Communication and control on a tiled architecture', November 23,
2006, University of Twente.

[10] Nick Barnes, Richard Brooksby, David Jones, Tony Mann,
Gavin Matthews, et al., `The Memory Management Reference ',
http://www.memorymanagement.org/articles/alloc.html .

[11] Smart Chips for Smart Surroundings, http://www.smart-chips.org/.
[12] ARM Documentation, http://www.arm.com/documentation/.

51

[13] `ARM ELF', SWS ESPC 0003 A-08, 22 september 1999, Engi-
neering Software Group, Development Systems Business Unit,
http://netwinder.osuosl.org/pub/netwinder/docs/arm/ARMELFA08.pdf.

[14] eCos embedded operating system, http://ecos.sourceware.org/.
[15] eCos RedBoot bootstrapping environment, http://ecos.sourceware.org/redboot/.
[16] libusb Documentation, http://libusb.sourceforge.net/.
[17] TinyOS { An open-source OS for sensor networks, http://www.tinyos.net/.
[18] USB 2.0 Reference, http://www.usb.org/developers/docs/.

52

Appendix A

Acronyms

AHB Advanced High-Speed Bus
AIC Advanced Interrupt Controller
API Application Programming Interface

APMC Advanced Power Management Controller
BCVP Basic Concept Veri�cation Platform
CAB Cyclic Asynchronous Bu�ers
CCU Communication and Con�guration Unit
CPSR Current Program Status Register
CPU Central Processing Unit

DBGU Debug Unit
EDF Earliest Deadline First
EDFI Earliest Deadline First with deadline Inheritance
ELF Executable and Linkable Format
FIQ Fast Interrupt Request

FPGA Field-Programmable Gate Array
FPU Floating Point Unit

HiCVP Highly integrated Concept Veri�cation Platform
IRQ Interrupt Request
MC Memory Controller
PDC Peripheral Data Controller
PIO Programmable IO Controller

53

RAM Random Access Memory
ROM Read Only Memory
RTC Real-Time Clock

RTOS Real-Time Operating System
SPSR Saved Program Status Register

ST System Timer
SWI Software Interrupt
TC Timer Counter

TCM Tightly-coupled Memory
TDMA Time Division Multiple Access
USART Universal Synchronous/Asynchronous Receiver/Transmitter

USB Universal Serial Bus

54

Appendix B

GCC Cross-compiler build script

#!/ bin / bash

ha l t on error
set �e

5
#download l o c a t i o n
lynx ' h t t p ://www. gnuarm . com/ '

mkdir tmp
10 cd tmp

PREFIX="$HOME/gnu�arm/ too l cha in "
mkdir �p "$PREFIX"

15 CONF ARGS="��t a r g e t=arm�e l f ��enable�interwork ��enable�mu l t i l i b "
CONF ARGS="$CONF ARGS ��with�cpu=arm9 ��without�fp "
GCC VER=3.4.3
BINUTILS VER=2.15
NEWLIB VER=1.12.0

20
export PATH="$PREFIX/bin :$PATH"

Bui ld b i n u t i l s
ta r j x f . . / b i nu t i l s�$BINUTILS VER . ta r . bz2

25 (
patch r e a d e l f b inary :
r e a d e l f w i l l d i s p l a y f u l l s e c t i on names when verbose f l a g i s s e t .
Newer v e r s i on s o f r e a d e l f can show f u l l s e c t i on names wi th the
��sec t i on�d e t a i l s parameter .

30 cd b i nu t i l s�$BINUTILS VER
patch �p1 < . . / . . / b i n u t i l s r e a d e l f h a c k . d i f f

)

mkdir b i nu t i l s�bu i ld
35 cd b i nu t i l s�bu i ld

. . / b i nu t i l s�$BINUTILS VER/ con f i gu r e ��p r e f i x="$PREFIX" $CONF ARGS
make a l l

55

make i n s t a l l
cd . .

40
Bui ld gcc (wi th new l i b suppor t)
ta r j x f . . / gcc�$GCC VER. ta r . bz2
ta r zx f . . / newlib�$NEWLIB VER. ta r . gz
mkdir gcc�bu i ld

45 cd gcc�bu i ld
. . / gcc�$GCC VER/ con f i gu r e ��p r e f i x="$PREFIX" $CONF ARGS n

��enable�l anguages="c , c++" n
��with�newl ib ��with�headers =. ./ newlib�$NEWLIB VER/newl ib / l i b c / inc lude

make a l l�gcc
50 make i n s t a l l �gcc

cd . .

Bui ld new l i b
mkdir newlib�bu i ld

55 cd newlib�bu i ld
. . / newlib�$NEWLIB VER/ con f i gu r e ��p r e f i x="$PREFIX" $CONF ARGS
make a l l
make i n s t a l l
cd . .

60
cd gcc�bu i ld
make a l l
make i n s t a l l
cd . .

56

Appendix C

Kernel API

task control
SYS task create

Synopsis:

struct task * SYS task create(const struct task speci�cation * spec)
Description:

Dynamically allocates and initialises a task structure. In case the task has its own stack,
a context structure will also be initialised and attached to the task structure.

Return value:

On success, a new task structure is returned. The task is completely initialised and can
be added to the scheduler directly.
On error, NULL is returned. In this case, there was not enough heap memory available.

SYS task destroy

Synopsis:

void SYS task destroy(struct task * task)
Description:

Marks the task as `to be destroyed'. When there are no more references to the task
structure, the task is freed (implemented with a use-counter). If a context structure is
allocated for this task, the context structure is also freed.

SYS scheduler add task

Synopsis:

int SYS scheduler add task(struct task * task)
Description:

Adds the given task structure to the currently active task-set. If the task is a real-time
task, a feasibility analysis is done. If the task is
agged as not being idle, the task will
be activated.

57

Return value:

On success, 0 is returned. On error, -1 is returned. In this case, the feasibility analysis
failed.

SYS scheduler remove task

Synopsis:

void SYS scheduler remove task(struct task * task)
Description:

Marks the given task as `to be removed from the scheduler'. The scheduler will remove
the task from the scheduler when it stumbles upon the task.

SYS exit

Synopsis:

void SYS exit()
Description:

Stops the currently running task. If the currently running task is a periodic real-time
task, the task will move to the wait queue. Otherwise, the task will automatically be
destroyed on exit.
If the main task-function returns, SYS exit is automatically called.

memory management
SYS malloc

Synopsis:

void * SYS malloc(int size)
Description:

Allocates size bytes of memory and returns a pointer to the allocated memory. The
memory is not cleared.

Return value:

On success, a pointer to the allocated memory is returned.
On error, NULL is returned. In this case, the requested memory size was 0 bytes or
there was not enough heap memory available.

SYS realloc

Synopsis:

void * SYS realloc(void * ptr, int size)
Description:

Attempts to resize the ptr to size bytes. If that fails, a new memory block is allocated,
all data is moved to the new memory, and a pointer to the allocated memory is returned.

58

Calling SYS realloc with NULL as ptr is equal to calling SYS malloc(size). Calling
SYS realloc with 0 as size is equal to calling SYS free(ptr).

Return value:

On success, a pointer to the allocated memory is returned. If the address has changed,
the old memory location is freed.
On error, NULL is returned. In this case, there was not enough heap memory available.
(if the newly requested size is 0, it is actually not an error. The old memory location is
freed)

SYS free

Synopsis:

void SYS free(void * ptr)
Description:

Frees the previously with SYS malloc or SYS realloc allocated memory. When given
a NULL-pointer, nothing is done.

signal handling
SYS signal create

Synopsis:

struct signal * SYS signal create()
Description:

Dynamically allocates and initialises a signal structure.
Return value:

On success, a new signal structure is returned.
On error, NULL is returned. In this case, there was not enough heap memory available.

SYS signal destroy

Synopsis:

void SYS signal destroy(struct signal * signal)
Description:

Unregisters all registered tasks in this signal and frees the signal structure.

SYS signal add listener

Synopsis:

void SYS signal add listener(struct signal * signal, struct task * task)
Description:

Adds a signal to a task. When all conditions, that are set by receiving such a signal,
on this task have been met, the task is released.

59

SYS signal remove listener

Synopsis:

void SYS signal remove listener(struct signal * signal, struct task * task)
Description:

Unregisters the task in the signal structure.

SYS signal set

Synopsis:

void SYS signal set(struct signal * signal)
Description:

Trigger a signal. All tasks in the signal structure are noti�ed, and when one of these
tasks was in the condition-wait state, whereby this signal is the last signal to trigger
the task, the task is released.

SYS signal reset

Synopsis:

void SYS signal reset(struct signal * signal)
Description:

\Untrigger" a signal. Only works on stateful signals.

SYS signal wait

Synopsis:

void SYS signal wait(struct signal * signal)
Description:

Wait until a signal is triggered. This should only be used in non-real-time tasks.

pipes
SYS pipe create

Synopsis:

struct pipe * SYS pipe create(int size)
Description:

Dynamically allocates an initialises a pipe with a bu�er of size bytes.
Return value:

On success, a pointer to the pipe structure is returned.
On error, NULL is returned. In this case, there was not enough heap memory available.

60

SYS pipe destroy

Synopsis:

void SYS pipe destroy(struct pipe * pipe)
Description:

The signals de�ned in the pipe will be unregistered and freed. The bu�er in the pipe
structure is freed, and �nally the pipe structure itself is freed.

SYS read nb

Synopsis:

int SYS read nb(struct pipe * pipe, char * bu�er, int bu�er length)
Description:

Reads from a pipe. The system call will not block and return immediately. When there
are fewer bytes available than bu�er length, the available bytes are read.
When there is enough space available that another task can write into this pipe, the
`not-full' signal is triggered.

Return value:

Returns the number of bytes read from the pipe.

SYS write nb

Synopsis:

int SYS write nb(struct pipe * pipe, const char * bu�er, int bu�er length)
Description:

Writes to a pipe. The system call will not block and return immediately. When less
bytes than bu�er length can be written to the pipe, only these bytes are written to the
pipe.
When there is enough data available that another task can read from this pipe, the
`not-empty' signal is triggered.

Return value:

Returns the number of bytes written to the pipe.

montium speci�c system-calls
SYS router con�gure

Synopsis:

void SYS router con�gure(short router, short status, short port in, short lane in,
short port out, short lane out)

Description:

With this command a connection within a router can be made or broken. To commu-
nicate with a montium processor, a path through the router should �rst be planned
before one can reach the montium. For more information, see Section 5.3.

61

Notes:

The SYS router con�gure is actually not a syscall, but a wrapper for the syscall
SYS router cfg. The only di�erence is that the status, port in, lane in, port out and
lane out are packed in one integer.

SYS conf lane in

Synopsis:

void SYS conf lane in(int lane, int con�g)
Description:

The PIPE montium in pipes can be con�gured for di�erent data formats. Currently,
there are four formats de�ned. For more information, see Section 5.3.

SYS conf lane out

Synopsis:

void SYS conf lane out(int lane, int con�g)
Description:

The PIPE montium out pipes can be con�gured for di�erent data formats. Currently,
there are four formats de�ned. For more information, see Section 5.3.

debugging
SYS strprint

Synopsis:

void SYS strprint(const char * msg)
Description:

The SYS strprint prints a message to the device that is con�gured as \stdout". Nor-
mally, this is the serial port.

SYS printf

Synopsis:

void SYS printf(const char * format, ...)
Description:

The SYS printf is a wrapper for SYS strprint, which prints a message with format
format. There are only three special format characters de�ned:
%x inserts a 8-character hexadecimal representation of the next argument.
%d inserts a 1 to 11-character decimal representation of the next argument.
%s inserts the next argument as a literal string.
Other characters are copied without interpretation.

62

Appendix D

Example Code

#include <c on f i g . h>
#include <s chedu l e r / task . h>
#include < l i b / swi . h>

5 /� the p ipe s t r u c t u r e �/
struct pipe �pipe ;

// implementat ion o f t a s k 1
void ta sk 1 (void)

10 f
// curren t t ime i s incremented on every c a l l to t a s k 1
stat ic int cur r ent t ime = 0 ;
cur r ent t ime++;

15 // wr i t e the current time to the p ipe
SYS write nb (pipe , ¤t t ime , s izeof (int)) ;

g

// implementat ion o f t a s k 2
20 void ta sk 2 (void)

f
// read the current time from the p ipe
int time ;
SYS read nb (pipe , &time , s izeof (int)) ;

25
// and p r i n t i t on the conso l e
SYS pr int f ("%d seconds have e lapsed . . n n" , time) ;

g

30 stat ic const struct t a s k s p e c i f i c a t i o n t a s k 1 sp e c = f
. entry = &task 1 ,
. s t a c k s i z e = 256 ,
. dead l ine = 0x2000 , // 250 ms
. pe r iod = 0x8000 , // r e l e a s e the t a s k every second

35 . cputime = 0x1000 , // 125 ms
. name = " task 1" ,
. f l a g s = TASK FLAG RT j TASK FLAG IDLING,

63

// ta s k i s a rea l�t ime task , s t a r t wa i t ing

40 // shared re source s : none
. r e s ou r c e sh = NULL,
. r e s ou r c e ex = NULL,

g ;

45 stat ic const struct t a s k s p e c i f i c a t i o n t a s k 2 sp e c = f
. entry = &task 2 ,
. s t a c k s i z e = 256 ,
. dead l ine = 0x2000 , // 250 ms
. pe r iod = 0x8000 , // 1 second

50 . cputime = 0x1000 , // 125 ms
. name = " task 2" ,
. f l a g s = TASK FLAG RT j TASK FLAG IDLING,

// ta s k i s a rea l�t ime task , s t a r t wa i t ing

55 // shared re source s : none
. r e s ou r c e sh = NULL,
. r e s ou r c e ex = NULL,

g ;

60 void
s t a r t (void)

f
/� c r ea t e t a s k s �/
struct task � ta sk 1 = SYS task create (&ta sk 1 sp e c) ;

65 struct task � ta sk 2 = SYS task create (&ta sk 2 sp e c) ;

/� c r ea t e p ipe �/
pipe = SYS pipe create (7) ;
// crea t e a 7 by t e p ipe . the s i z e shou ld at l e a s t

70 // be 4 by t e s . i t doesn ' t have to be a mu l t i p l e o f 4 .

// s e t s i g n a l t h r e s h o l d s
pipe�>rd th r e sho ld = 4 ; // s i g n a l when 4 by t e s can be read
pipe�>wr thre sho ld = 4 ; // s i g n a l when 4 by t e s can be wr i t t en

75
// no t i f y t a s k 1 when data can be wr i t t en to the p ipe
SYS s i gna l add l i s t e n e r (&(pipe�>s i g wr) , t a sk 1) ;

// no t i f y t a s k 2 when data can be read from the p ipe
80 SYS s i gna l add l i s t e n e r (&(pipe�>s i g r d) , t a sk 2) ;

/� add t a s k s to the s chedu l e r �/
SYS scheduler add task (ta sk 1) ;
SYS scheduler add task (ta sk 2) ;

85 g

64

