
Thesis for the masters degree Computer Science.
Department of Computer Science, University of Twente, the Netherlands

Author: Daniël van ’t Oever

Title: CoNSoLe: A Domain Specific Language for Network Services

Author: Daniël van ’t Oever
Student number s0107980
Date May 14, 2008

MSc program: Computer Science
Track: Software Engineering
Institute: University of Twente, the Netherlands
Faculty: Electrical Engineering, Mathematics and Computer Science

Company: TNO
Department: Information and Communication Technology
Address Eemsgolaan 3

9727 DW Groningen

Committee: dr. I. Kurtev (First supervisor)
University of Twente

dr.ir. K.G. van den Berg
University of Twente

prof.dr.ir. M. Akşit
University of Twente

prof.dr R.J. Meijer
University of Amsterdam
TNO ICT, Delft

Preface

The start of my graduation was also the start of a new period in my life. I moved from
Enschede to Groningen, from the University of Twente to the office of TNO, from my
old room to my new room. I also decided to join a student union: the Navigators. The
best of all these new things were all the new people that I got to know.

I would like to thank Robert Meijer, my supervisor at TNO for his patience, sup-
port and the interesting – sometimes almost philosophical – conversations. Also Rudolf
Strijkers for the discussions and all the other people at TNO.

Ivan Kurtev, was my supervisor at the University of Twente. I would like to thank
him for the pleasant and positive way of guiding me through the graduation process.
The use of Skype and Video conferencing programs was a good way to confer our views,
which makes him a rather modern teacher in my opinion. I would also like to thank
Klaas van den Berg for reading my work.

Finally I am grateful for all my good friends and my family for always being there.

Groningen, Daniël van ’t Oever
May 2008

i

Abstract

A network provides a service to its users. Most modern networks are based upon the
TCP/IP protocol. The main service provided by this protocol are best-effort, end-to-
end connections. The behavior of this protocol is standardized and there are no default
mechanisms to change the default behavior or to introduce new behavior. to improve this
situation, programmable networks were developed, that allow the user to program how
the network should behave. Examples are Active Networks and User Programmable
Virtualized Networks (UPVN). This opens the door for application-specific network
services; an application can optimize the service provided by the network for its own
use.

With a General Purpose Language (GPL), every technically possible network service
can be programmed. But since the language is general, it requires every detail to be
specified. On the other hand there are Domain Specific Languages (DSL) that address
problems in a small domain. Because the domain is known, a solution for a problem
in that domain can be short and efficient. A drawback is that problems that are only
slightly outside of the domain can not be solved by the DSL.

In this research we want to reveal the mechanisms or statements that are common
for creating network services. We do this by creating a network service programming
language. We chose to develop a DSL, since every addition to a DSL can be considered
domain knowledge. This domain knowledge could be mixed up with knowledge from
other domains if we would develop a GPL. We only investigate network services that
require the cooperation of multiple network elements. Network services that can be
provided a single Network Element (NE) are not considered.

We selected five case studies that introduced a list of problems that the DSL was
expected to solve. Each case study introduced new statements in the DSL or reused
statements from other case studies. When all case studies were solved, a domain analysis
was performed from which a domain model was built. This domain model is reflected
in the meta-model of the DSL.

We conclude that the main activities of a network service DSL are the retrieval of
information from the network, the management of the topology of the network, the
management of routes in the network (manage packet processing) and to support third-
party applications with the distribution and deployment in the network. The latter is

iii

iv ABSTRACT

done because network services easily enter another domain in which the DSL can not
be of much assistance. Therefore we included support for third party applications to
support them as much as possible.

Compiling a network service specification can be difficult if it depends on the topology
of the network, for example a shortest path between two NEs. The appearance of new
NEs can cause the shortest path to become invalid. We developed a strategy in which
topology related feedback from the network is used as a trigger to recompile the network
service specification, hereby repairing the possibly invalid network service.

Parts of this thesis will be published as:

Robert J. Meijer, Daniël van ’t Oever, Rudolf Strijkers, Ivan Kurtev, “Creating
Network Services with a Domain Specific Language”.

Table of Contents

Preface i

Abstract iii

List of Abbreviations ix

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Questions . 2
1.4 Approach . 3
1.5 Contributions . 3
1.6 Thesis outline . 4

2 Programming Network Services 5
2.1 The notion of a network service . 5

2.1.1 Definition of network service . 5
2.1.2 Programming a network service 6

2.2 Network models . 6
2.2.1 IP-based Networks . 7
2.2.2 Active Networks . 7
2.2.3 User Programmable Virtualized Networks 7

2.3 Existing network service programming languages 7
2.3.1 Network Management Language(NML) 8
2.3.2 Packet Language for Active Networks (PLAN) 9
2.3.3 TinyDB . 9
2.3.4 MOB . 10

v

vi TABLE OF CONTENTS

2.4 Rationale for a new language . 10
2.5 Conclusions . 11

3 Model Driven Engineering and Domain Specific Languages 13
3.1 Models . 13
3.2 Model Driven Engineering . 14
3.3 Meta-models . 14
3.4 Model Transformations . 15
3.5 Domain Specific Languages . 17
3.6 MDE based DSL development . 18
3.7 Conclusions . 19

4 Case studies 21
4.1 Introduction . 21
4.2 Case 1: Topology changing applications 22

4.2.1 Topology management as a CNS 23
4.3 Case 2: No destination address . 23

4.3.1 Selecting the involved Network Elements 24
4.3.2 Creating an application-specific route 25

4.4 Case 3: Network filesystem . 25
4.4.1 Storing a file on multiple Network Elements 26
4.4.2 Retrieving a stored file . 27

4.5 Case 4: Self positioning code . 27
4.5.1 Awareness of the environment . 28

4.6 Case 5: Feedback driven recompilation 28
4.6.1 Compiling for a dynamic target 29

4.7 Analysis of the network service domain 29
4.7.1 A model of the Network Service domain 31

4.8 Conclusions . 32

5 CoNSoLe: A Network Service DSL 33
5.1 Introduction . 33
5.2 The Architecture of the CoNSoLe language 34
5.3 Collective Network Service Language . 34

5.3.1 The structure of CoNSoLe specifications 35
5.3.2 Network Information Retrieval 35
5.3.3 Configuring Network Topologies 37
5.3.4 Application Specific Routing . 39
5.3.5 Supporting Distributed Applications 40
5.3.6 Recompilation to handle dynamic topologies 42

5.4 A Virtual Machine for Application Components 43
5.4.1 The Architecture of the Virtual Machine 43
5.4.2 The Structure of an Application Component 43
5.4.3 Concurrency and Scheduling . 45

TABLE OF CONTENTS vii

5.4.4 Event Handling . 45
5.4.5 Complementing the limited DSL functionality by using Modules 45
5.4.6 Control flow . 46

5.5 The statements of the Virtual Machine 46
5.5.1 Network Information Retrieval 46
5.5.2 Configuring Network Topologies 47
5.5.3 Application Specific Routing . 47
5.5.4 Supporting Distributed Applications 48
5.5.5 Basic statements . 49

5.6 Compiler . 51
5.6.1 The Architecture of the Compiler 51
5.6.2 Compiling CoNSoLe statements 51
5.6.3 Central and Decentral Network discovery 52
5.6.4 Possible compiler strategies . 52
5.6.5 Dealing with the dynamics of the network 55
5.6.6 Implementing the Compiler as a Model Transformation 55

5.7 Comparison with existing work . 55
5.8 Conclusions . 57

6 Conclusion 59
6.1 Introduction . 59
6.2 Answering the research questions . 60
6.3 Future work . 62

6.3.1 ATL model transformations . 62
6.3.2 Compiling to a dynamic target 62

Bibliography 63

A CoNSoLe Textual Concrete Syntax 67

B Solution to Case Study 1 69

C Solution to Case Study 2 71

D Solution to Case Study 3 75

E Solution to Case Study 4 77

F Solution to Case Study 5 79

G Implementation of the Virtual Machine 81

List of Abbreviations

AC Application Component

ATL Atlas Transformation Language

ATL Atlas Transformation Language

CNS Collective Network Service

DSL Domain Specific Language

EMOF Essential MOF

GPL General Purpose Language

HQL Hibernate Query Language

KM3 Kernel meta-meta-model

MDA Model Driven Architecture

MDE Model Driven Engineering

MOF Meta-Object Facility

NC Network Component

NE Network Element

OMG Object Management Group

OSPF Open Shortest Path First

SQL Structured Query Language

TCP/IP Transport Control Protocol/Internet Protocol

TCS Textual Concrete Syntax

UPVN User Programmable Virtualized Networks

VM Virtual Machine

ix

List of Tables

2.1 Different network service aspects and how they are addressed by various
existing languages, ranging from domain specific to general purpose. . . 6

4.1 Overview of the case studies that are presented in this chapter, as well
as the area to which the case study contributes. 22

5.1 Collective Network Service - Network information retrieval instructions . 47
5.2 Collective Network Service - Topology instructions 47
5.3 Collective Network Service - Routing instructions 48
5.4 Collective Network Service - Application and AC related instructions . . 49
5.5 Basic instructions . 50
5.6 An overview of how CoNSoLE statements are translated to AC statements. 53
5.7 The advantages and disadvantages of the three compiler strategies. . . . 54

xi

List of Figures

1.1 Thesis outline . 4

2.1 The UPVN model in which the network elements (NEs) are virtualized
inside the application. This can be done by embedding one or more
network components (NCs) which are the software interfaces to the NE. 8

2.2 One or more application units (AU) form a Network Manager. AUs issue
NML statements that get compiled to low level protocol instructions . . 8

2.3 Scotty is a domain specific library. Network Management Applications
(NMA) use Scotty high-level functions that ’compile’ to low level protocol
instructions. 9

2.4 A PLAN application is put on the network as an Active Packet. On every
NE the Active Packet is executed which results in the sending of an ’ack’
packet to the start NE as well as the sending of itself as an Active Packet
to other NEs. 10

2.5 A MOB application contains instructions to will cause the host layer
to serialize the application and send it to another NE. The agent layer
implements the services that are used by MOB applications. Services
itself are MOB applications as well. 10

3.1 The relations between a system and a model according to [13] The figure
is called DDI account: Denotation, Demonstration and Interpretation. . 14

3.2 The meta-modeling stack. 15
3.3 An example of the relations between models and systems at the various

model levels.) . 16
3.4 The Model Transformation Pattern. 17
3.5 The TCS mapping between the MyLanguage meta-model and a textual

meta-model. The TCS meta-model itself is also an instance-of the KM3
model. 19

4.1 Case 1: An ApplicationComponent can instruct Network Elements to
create or remove connections with other Network Elements. 23

xiii

xiv LIST OF FIGURES

4.2 Network Element C and D receive unknown data from old NEs that were
built in the wall. The network provides a service to collect this data. . . 24

4.3 Case 2: An application issues a query statement. This statement is com-
piled to an AC that queries the NE and returns the result to a destination. 25

4.4 Case 2: Packets travel over a designated route which is implemented by
multiple ACs that are deployed on multiple NEs. 26

4.5 Case 3: A file is split into multiple fragments that are encapsulated in
packets. The packets are continuously forwarded over designated routes. 27

4.6 Most applications let the environment manage their context information
(program counter and memory). Unless there is support from the envi-
ronment, an application can not resume execution after it was moved to
another environment. 28

4.7 Case 4: ACs can instruct other applications or other ACs (or themselves)
to move to another Network Element. 29

4.8 Case 5: An AC can receive feedback from the Network Elements it runs
on and as a reaction it can ask the compiler to recompile itself using its
internal sourcecode. 30

4.9 A route can be regarded as a virtual topology. A route exists between A
and D and between D and B. The gray NEs depict the virtual topology
that is created by the routes. 30

4.10 The overlap of different domains with the networking domain. A CNS
language can only be of limited support to applications in the interestion
of the Application Domain with the Network Domain. For the rest,
functionality is provided by applications created for ’Other domains’. . . 31

4.11 The structure of the domain model. 32

5.1 Overall architecture of the CoNSoLe language 34
5.2 A CoNSoLe specification consists of a collection of abstract statements. 35
5.3 The structure of the Select statement . 36
5.4 The structure of the Send statement . 37
5.5 The structure of the Create and the Delete statement. Both statements

rely on the abstract Where statement. 38
5.6 The structure of the Where statement. 39
5.7 The structure of the Store statement. 40
5.8 The structure of the Install, Uninstall, Start, Stop and Move statements. 41
5.9 Moving an application from A to D. Changing the entire topology is

a primitive – but equal – way to move the application. From the ap-
plication’s perspective the same result is obtained after the operation.
Assumed is that the network elements are equal and that NEs contain at
most one application. 42

5.10 The structure of the Compile statement. 43
5.11 The architecture of the Virtual Machine 44
5.12 The meta-model of an Application Component (AC). 44
5.13 Modules can be implemented in Java so they can complement the limited

functionality of the CoNSoLe language. A module can use a dedicated
memory area (moduleMemory) in the AC for its administration purposes. 46

5.14 Overall architecture of the compiler. 51

LIST OF FIGURES xv

5.15 The compiler can use three strategies – or a hybrid variant thereof – to
distribute ACs in the network. The first shows two agents that commu-
nicate with each other. The second shows an agent that travels to the
NE of interest. The third shows a situation in which every NE contains
an agent. 54

5.16 An AC maintains a copy of its own source code. When it detects a change
in the network it instructs the compiler to recompile itself. 55

C.1 The network topology used for case study 2 72

E.1 Structure of the DepthFirstSearch Module 77

F.1 The network topology used for case study 5 79

G.1 Implementation of the Virtual Machine, the compiler, and the virtual
network elements . 82

Chapter 1
Introduction

Consistency is the enemy of enterprise, just as symmetry is the enemy of art

George Bernard Shaw

1.1 Background
As the majority of internet routers are unaware of the service demands of applications
that send their data through them, applications are restricted to the service that is
offered by the network. Many networks of which the internet is the biggest example, are
built upon the Transport Control Protocol/Internet Protocol (TCP/IP) . The service
provided by the TCP/IP protocol are best-effort, end-to-end connections. For most
applications this service is good enough.

Adapting and introducing network services is an activity primarily for network op-
erators such as Internet Service Providers. A network operator can only optimize the
network when the service demands of the end users are understood and when the oper-
ator can react in time.

Currently, applications have very limited possibilities of adapting a network service
themselves. One of the reasons is that the socket interface – the most popular interface
to services in TCP/IP based networks – is limited by design. A socket offers end-to-end
connections which are abstracted as a file with support for read and write operations,
hereby hiding the underlying details of the connection. Also, most internet routers are
configured in such a way that they collectively provide a best effort shortest path routing
service.

In sensor networks for example, applications that transfer data over the network need
to take information about the battery lifetime and the topology of the sensor nodes into
account. A socket interface does not expose this information. To satisfy the demand
of such applications nonetheless, alternative protocols are created or amendments to
existing protocols are proposed. Indeed, it is not possible to make application specific
optimizations in TCP/IP based networks.

Alternative programmable network models such as Active Networks [35] are devel-
oped to provide applications with the mechanisms to adapt or introduce network ser-

1

2 INTRODUCTION 1.3

vices. Now that programmable networks have shifted the attention from who programs
the network to how to program the network, the research community started devel-
oping programming languages that are optimized for the domain of network services
[12][28][20]. These languages are either General Purpose Languages (GPL) and require
much effort to solve any particular problem or they are Domain Specific Languages
(DSL) which are more efficient, but can only solve problems in a small domain.

Further efforts are required to investigate the constructs that are common for network
services and what is common in programming network services so reusable solutions can
be created.

1.2 Problem Statement
The focus of this thesis is on introducing network services rather than using or adapting
existing network services. Introducing network services is no new activity, this can
already be done with a GPL. But since every technically possible problem can be solved
with a GPL, there is no clear notion of the mechanisms that are required to introduce
network services. It is expected that by developing a DSL, it will become clear which
mechanisms are essential or common to introduce network services.

1.3 Research Questions
The question that will be investigated in this research is: “Can the design of a domain
specific language reveal the constructs that are common to network services?”. This
research question is further refined with the following sub questions:

What is programming a network service? There is no clear definition of the term
’network service’. A clear definition is essential before a language can be designed
that can specify network services.

What is the architecture of a network service language? With the architecture
we mean the concepts that are included in the language, the syntax, the semantics,
the runtime environment and the compiler.

What are common instructions to compose network services? Just like any com-
puter program can be reduced to a few assembler instructions, we study if there
are instructions that are common or even essential for network services.

Is there an instruction set that can support all network services? If there hap-
pens to be a common set of instructions for composing network services, is it
complete?

How to cope with the dynamics of the network? In networks, topologies change,
traffic varies, and so does the content that travels over the network. Since the com-
pilation target of the DSL is the network, there is a dynamic compilation target.
How can applications remain valid if the target changes?

How can DSL design help understand the concepts of the application domain?
Designing a new language requires a good understanding of the problem domain

1.5 APPROACH 3

[22]. Since these findings are explicitly recorded in artifacts like the language and
supporting tools, the concepts of the application domain should be recognizable
in these artifacts.

1.4 Approach

To program the service of a network, we had to choose between two strategies: enrich the
instruction set of a General Purpose Language (GPL) with network specific instructions
or to design a new language. The risk of taking the first approach is that it is likely
to start thinking in the terms and principles that come with the existing language.
The second approach was taken and this allows to carefully select the domain concepts
that will make up the language without getting distracted by existing programming
principles. This approach also ensures that only explicit domain knowledge is added to
the language, the compiler or the runtime environment. This knowledge could be lost if
the first strategy was adopted.

To deal with the problem of finding the right domain concepts, we adopted the
following strategy: (1) Only the absolute minimum of statements necessary to program
a network service are included in the DSL. (2) Everything else that does not belong
to this domain should be programmed using an existing GPL. A consequence of this
decision is that not every network service can be expressed with the DSL. A GPL
can complement this limited functionality of the DSL. The runtime environment in
which the (compiled) DSL programs run, was designed using the same philosophy: no
statements are implemented unless they are absolutely necessary. This approach should
help discovering the minimal set of statements that are essential or common to network
services. The DSL will be implemented using Model Driven Engineering techniques
(MDE) [16], which allows us to capture the domain knowledge explicitly into models
and meta-models.

To support the analysis and design process in this research, five case studies were
selected, each with an application that has a different demand of the network’s service.
Also, analysis is based on the past work and experience of domain experts; the authors
of [21].

1.5 Contributions

This research provides a contribution to the domain of DSL engineering as well as to
the domain of Network engineering. Besides giving a definition of the term ’Network
Service’, this thesis provides the following contributions:

1. A language whose statements are common for network services

By creating a language that was created to solve the problems presented in five case
studies, a list of statements was revealed that is common to network services.

2. An (example) architecture for compilers that must deal with dynamic targets

4 INTRODUCTION 1.6

Figure 1.1: Thesis outline

The combination of the network domain with the domain of language design yielded
an interesting case: compiling applications to a dynamic target. This is different from
traditional compilers that compile to a target that is static. Although we used a rel-
atively simple solution of recompilation to handle the problem, further research can
provide more insights that can contribute to more robust applications in the distributed
computing domain.

3. A virtual machine that reflects the primitive statements that are needed to create
network services

Because we developed a DSL, only the statements that are essential to the problem
domain (network services) end up in the virtual machine. This allows for careful inves-
tigation of these statements.

4. Employment of a DSL to solve relevant case studies for the network domain

The DSL developed in this research is used to solve case studies that go beyond the
typical toy examples of programming a robot with a DSL.

1.6 Thesis outline
Figure 1.1 is an outline of the structure of this thesis. Chapter 2 gives a definition of
a network service and reviews existing programming languages targeted at the network
domain as well as the network types on which they operate. This chapter also gives
reasons for the design of a new DSL. Chapter 3 introduces Model Driven Engineering
and its relation to Domain Specific Languages. The tools and techniques that support
DSL development and the techniques that were used in this research, are explained as
well. Chapter 4 describes the case studies that were selected and implemented to drive
the domain analysis. From the domain analysis, a domain model is derived. Chapter
5 takes the domain model and incorporates this in the meta-model of the language. It
presents the developed domain specific language, the architecture of the Virtual Machine
(VM) in which the compiled DSL executes, as well as the instructions of the VM. In
the end of this chapter, the compiler is presented. Chapter 6 concludes this thesis by
discussing the presented work and by answering the research questions.

Chapter 2
Programming Network Services

Everything is a file

UNIX philosophy

This chapter gives an overview of the programming of network services. First the
definition of a network service will be given in section 2.1. Some networks, like the
internet, require special privileges to change their behavior and therefore introducing
new network services is an exclusive activity. There are alternative kind of networks that
allow the end-user to program its behavior and therefore allow for easier introduction
of network services. The different types of networks will be presented in section 2.2. In
section 2.3 several languages are discussed that are created to use, adapt or introduce
network services. Section 2.4 gives rationale for developing a new language to program
network services. Section 2.5 concludes this chapter.

2.1 The notion of a network service
In section 2.1.1 the concept of a network service is defined. Section 2.1.2 presents an
overview of the programming languages that already exist to program network services.
Each of these languages has a different purpose and is presented in more detail in section
2.3. Some languages are only created to obtain information from the network, whilst
others are more general and targeted at a wider domain. Table 2.1 gives an overview of
these languages and groups them by purpose.

2.1.1 Definition of network service
A service is an act of work to support another. In a network, a service can support
an end-user or another network service. Typical services found in current networks are
information exchange, authentication and storage. Some of these services require the
cooperation of multiple NEs, whilst other services can simply be provided by an indi-
vidual NE (e.g. storing a file). Since we want to investigate the mechanisms of network
services, we will only focus on services that can only be provided by multiple NEs and

5

6 PROGRAMMING NETWORK SERVICES 2.2

we do not investigate the mechanisms for programming individual NEs. From now on,
the following definition will be used:

A Collective Network Service (CNS) is an act of work that requires the participation
of applications on multiple NEs, that in concert produce a service for the end-user.

2.1.2 Programming a network service

Programming languages for network services support a developer in different ways. Table
2.1 gives an overview of the different purposes of a programming language when it comes
to network services.

Language Language purpose Description
NML (section 2.3.1),
TinyDB (section
2.3.3)

Service utilization Utilize existing services in the net-
work e.g. obtain information, upload
a file or perform distributed calcula-
tions.

NML (section 2.3.1) Service adaptation Change existing network behavior
e.g. changing routing rules or in-
creasing the maximum size of an
email message

PLAN (section 2.3.2),
MOB (section 2.3.4)

Service introduction Introduce new functionality on indi-
vidual NEs that will produce a new
network service e.g. new protocols

Table 2.1: Different network service aspects and how they are addressed by various existing
languages, ranging from domain specific to general purpose.

Network service utilization is an activity that uses existing network services in a
read-only fashion; the behavior of the service is not modified. Using existing services
is done mostly by end-users and is the main activity in current networks of which the
internet is the biggest example.

Network service adaptation is an activity that changes the behavior of a network
service and requires the right permissions to do so. A programming language – possibly
as simple as being a configuration file – is used to change the behavior of the network
service. This activity is primarily for users in the domain of network maintainers such
as Internet Service Providers.

Finally, programming languages are used to create new networks services, either by
combining existing functionality or by completely creating the new functionality from
scratch. From now on we call this programming activity network service introduction.

2.2 Network models

This section presents three network types and how well they support the network man-
agement activities outlined in table 2.1. It is difficult to adapt or introduce new network
services in IP-based networks. IP-based networks are discussed in section 2.2.1. As a

2.3 EXISTING NETWORK SERVICE PROGRAMMING LANGUAGES 7

reaction, alternative network models are developed, of which two models are discussed
in section 2.2.2 and 2.2.3.

2.2.1 IP-based Networks
Currently, most networks are based on the IP-protocol of which the internet is the best
known example. Inherent to this network model are the characteristics of its connec-
tions, which are end-to-end connections over which the data is transported in a best-
effort fashion. All the services provided by IP-based networks are built upon this kind
of connections. Changing the best-effort behavior of the connections requires drastic
changes to the IP-protocol. The process of getting new protocols introduced or exist-
ing protocols adapted can take several years. For example, it took 21 year before the
TCP/IP protocol became standardized [30].

In IP-based networks there are no default mechanisms to let anyone but the network
administrator introduce or change the behavior of the network. As a consequence all
the services in this kind of network are based upon best-effort end-to-end connections.

2.2.2 Active Networks
The Active Networks [35] approach breaks open the predetermined behavior of IP-based
networks by making routers programmable. A router can be programmed by executing
program code that can be encapsulated in the packets that travel over the router or
via some off line method. Both methods allow the introduction of new routing services
that can deliver more than best-effort end-to-end connections. Active Networks is a step
forward toward application-specific routing and with this also toward application-specific
network services.

2.2.3 User Programmable Virtualized Networks
User Programmable Virtualized Networks (UPVN) [21] is a conceptual programmable
network model that allows developers to interact with network elements by providing
them with a software handle – or proxy – to a Network Element (NE). This handle is
called a Network Component (NC) . An application that embeds a NC gains access to
the resources of the corresponding NE, opening the door for applications to add new
functionality; the network is virtualized in the application. This is illustrated by figure
2.1. A piece of software that was put on a NE in favor of the application is called an
Application Component (AC) . Applications that embed multiple NCs can now compose
new network services by deploying and facilitating ACs that in concert produce a network
service. Now applications can not only program the network layer (routing) of a NE –
as is the main focus of Active Networks – but applications can also program every other
aspect of a NE that is exposed to the application.

2.3 Existing network service programming languages
This section gives an overview of domain specific and general purpose programming
languages that are created for the network domain. Languages developed for standard
IP-based network models are usually created to use existing network services. These

8 PROGRAMMING NETWORK SERVICES 2.3

Figure 2.1: The UPVN model in which the network elements (NEs) are virtualized inside the
application. This can be done by embedding one or more network components (NCs) which are
the software interfaces to the NE.

Figure 2.2: One or more application units (AU) form a Network Manager. AUs issue NML
statements that get compiled to low level protocol instructions

are described in section 2.3.1. The languages that are created for alternative network
models, or modified IP-based networks also facilitate the adaptation or introduction of
network services. These are discussed in section 2.3.2, 2.3.3 and 2.3.4.

2.3.1 Network Management Language(NML)
In [36] a Network Management Language (NML) is proposed and is used as an inter-
mediate language between network management applications and network management
protocols1, this is illustrated by figure 2.2. This DSL provides mechanisms for both
monitoring and controlling the network. Network management applications are called
Application Units (AU) that provide an interface between the network and the (human)
administrator. An AU can for example display a topographical map of the network by
issuing NML commands to the NML interpreter.

The interpreter translates high-level NML commands to a collection of low-level
instructions for the Management Information Exchange Protocol (MIXP). This protocol
is used to query management data of a NE using get and set operations. This protocol
is no longer in use, but it can be compared to the Simple Network Management Protocol

1A protocol can be regarded a domain specific language that defines the rules governing the syntax,
semantics, and synchronization of communication

2.3 EXISTING NETWORK SERVICE PROGRAMMING LANGUAGES 9

Figure 2.3: Scotty is a domain specific library. Network Management Applications (NMA)
use Scotty high-level functions that ’compile’ to low level protocol instructions.

(SNMP) [5] that is still widely being used in IP-based networks.
A similar language is presented in the work of [32] named Scotty. This language

compiles to instructions for a collection of protocols than can be used to manage and
obtain information about the network. Scotty is an extension to the Tool Command
Language (TCL) and is more a network management library than a language. Supported
protocols are HyperText Transfer Protocol (HTTP), Domain Name Server (DNS), netdb
(to query local network databases) and SNMP. Figure 2.2 outlines the architecture of
Scotty.

2.3.2 Packet Language for Active Networks (PLAN)

This language is built upon the concept of Active Networking, which addresses the
problem that current networks are hard to change, by defining a programming interface.
New functionality can be introduced by wrapping programs into packets, called active
packets that are executed on every NE that processes the packet. Functionality can also
be added by downloadable router extensions called switchlets [12].

The PLAN language was designed to perform functions such as network diagnostics,
network service management and configuration as well as distributed and programmable
communication between applications and network elements. It is not a general purpose
language, as general purpose expressibility can be provided by switchlets. The language
is based upon the simple typed lambda calculus and contains a subset of the features
found in common functional programming languages. PLAN contains some domain
specific statements such as OnRemote which allows active packets to be sent to a given
destination and defaultRoute which specifies to use the default IP routing policy.

Figure 2.4 is an example of a PLAN application that represent the well known tracer-
oute application. The application sends itself as an active packet over the network. In
case a NE does not contain the necessary extension, it can be dynamically downloaded
from the previous NE. In case of the traceroute program no special extensions are needed.

2.3.3 TinyDB

TinyDB [20] abstracts the network as a virtual database. NEs have sensors attached
to them that can be queried. For this purpose the Structured Query Language (SQL)
has been extended with timing conditions that allow the user to express the duration
and the interval of a query. It frees the developer from having to write complicated C
programs that must be distributed on all the NEs in the network. Queries are optimized
by power-efficient in-network processing algorithms. Queries that result in a true or false

10 PROGRAMMING NETWORK SERVICES 2.4

Figure 2.4: A PLAN application is put on the network as an Active Packet. On every NE
the Active Packet is executed which results in the sending of an ’ack’ packet to the start NE as
well as the sending of itself as an Active Packet to other NEs.

Figure 2.5: A MOB application contains instructions to will cause the host layer to serialize
the application and send it to another NE. The agent layer implements the services that are
used by MOB applications. Services itself are MOB applications as well.

value can be used to trigger a signal that will be fired over the network. To transport the
requested information, the operating system on the NEs uses an ad-hoc routing protocol
that forms a spanning tree. Information flows to the root of the spanning tree (the sink)
where it can be collected and processed by a computer.

2.3.4 MOB
MOB is a high-level language build upon the π-calculus [24]. Its purpose is to provide
a formal framework for network agents. The MOB language is best used for formal
experiments that need constructs that are at a higher level than the constructs provided
by the π-calculus itself. Figure 2.5 illustrates the MOB architecture.

Agents and services are the primary building blocks. Services are always imple-
mented by agents. Agents thus provide and require services. Agents are multithreaded,
supported by the join and fork instruction. Moving an agent is implemented by the go
instruction. Incorporation of external applications is done by an exec instruction. Most
likely this instruction assumes some default communication mechanism with an external
application. It is not specified how this is implemented.

2.4 Rationale for a new language
A DSL can be used to solve problems that occur over and over again in a particular
domain (e.g. routing). There are aspects that are the same every time the problem
occurs. If these are the only aspects, a solution can be created once and for all and no

2.5 CONCLUSIONS 11

DSL is needed. When there are aspects that are different everytime the problem occurs,
the solution needs to be adapted. A DSL allows a programmer to express the parts of
an existing solution that needs adaptation.

A network service can be regarded a solution that may need adaptation in certain
situations. All the DSLs that are described in this chapter allow the user to fill in
the variable part of a solution: a network service. The desire for new network services
is reflected in the large number of proposed languages for networks [19][26][12][20][28].
Sensor networks have pushed the desire for new network services, by having more ex-
treme demands on the service of a network (e.g. access to the battery lifetime of a NE).
These services can not be easily implemented or provided by IP-based networks, hence
alternative network types (Active Networks, UPVN) and languages for these networks
are being developed.

If we assume that every network element can be programmed, it is obvious that a
GPL can be used to program every technically possible network service. This also comes
at the expense of having to program every detail of the problem. A DSL improves the
ease of use to specify solutions for problems in the domain for which it was developed.
Although a GPL can solve the same problem, it requires significantly more effort and
technical knowledge of the domain compared to using a DSL for the same task.

Instead of developing a solution for a particular network problem, we want to reveal
the mechanisms that are common for network services. In the languages described in
the previous sections, we have seen that these mechanisms appear in both DSLs and
GPLs, however it is not clear for what exact purpose these mechanisms are included.
In these languages, solving the problem is superior to the mechanisms that contribute
to the solution. In this thesis we take an opposite approach and instead of solving a
particular problem, we select five different cases, each with different problems, and from
there we develop a DSL. By doing this, we focus on the mechanisms common to all the
different problems, rather than solving a particular problem.

2.5 Conclusions
New network services require changes to the NEs as we currently know them. To achieve
this, alternative network models such as Active Networks and UPVN are being devel-
oped. Most current network DSLs are focused on making the use of one specific network
service easier. Current GPLs specially created for networks, are similar to ’normal’ GPLs
but are enhanced with dedicated constructs such as built-in distribution mechanisms or
formal properties. Since the current network programming languages are more focused
on particular problems rather than on the underlying concept of network services, a new
language will be developed to investigate the mechanisms that are common for network
services.

Chapter 3
Model Driven Engineering and Domain
Specific Languages

Nothing is lost, nothing is created, all is transformed

Antoine-Laurent de Lavoisier

This chapter gives on overview of the concepts that are used to implement the lan-
guage and the compiler. First explain what we consider a model in section 3.1, then we
explain the notion of Model Driven Engineering (MDE) and Model Driven Architecture
(MDA) in section 3.2. Then we explain what a meta-model is in section 3.3. Then the
concept of a model transformation, which is a basic operation in MDE, is explained in
section 3.4. Section 3.5 is devoted to domain specific languages. Now that these defi-
nitions are clear, we show the overlap between Domain Specific Language development
and Model Driven Engineering in section 3.6. Section 3.7 concludes this chapter.

3.1 Models
There are many definitions of the term model. In this thesis we adapt the following
definition by Kleppe et al [17]:

“A model is a description of a system written in a well-defined language”

This definition underlines the relation between a model and a system. Figure 3.1
illustrates this relation. The figure is called the DDI account : Denotation, Demon-
stration, Interpretation and is introduced by Hughes[13]. Elements of the system are
denotated by elements of the model. A model is expressed using a modeling language.
The process of asking questions to the model is called demonstration and happens ”en-
tirely within the model”. Finally the answer to a question is interpreted in the context
of the system. For example, the answer to a question to the database (model) about the
salary of the youngest employee is related back to a real person (system).

13

14 MODEL DRIVEN ENGINEERING AND DOMAIN SPECIFIC LANGUAGES 3.3

Figure 3.1: The relations between a system and a model according to [13] The figure is called
DDI account: Denotation, Demonstration and Interpretation.

3.2 Model Driven Engineering
Model Driven Engineering (MDE) [16] is a software development paradigm that con-
siders models as the primary building blocks of software engineering. MDE is a term
that unifies all development approaches that use models as the primary form of expres-
sion. The Model Driven Architecture (MDA) [23] approach, proposed by the Object
Management Group (OMG) was an initial idea from which MDE practices evolved.

MDA tries to abstract from any particular technology by the use of models. It is
model-driven because it provides a means for using models to direct the course of un-
derstanding, design, construction, deployment, operation, maintenance and modification
[23].

System development by MDA is done by creating a Platform Independent Model
(PIM), which is “a view of a system from a platform-independent viewpoint”. Then this
PIM is transformed to one or more Platform Specific Models (PSM) which is “a view
of a system from a platform-specific viewpoint”. Finally the PSM is transformed to
code. The transformation operation is implemented by a model transformation. Model
transformations are explained in more detail in section 3.4.

3.3 Meta-models
There are models that define the allowed elements of another class of models. Such a
model is called a meta-model. A good definition is given by Seidewitz [33]:

“a meta-model is a model of models expressed in a given modeling language”

So a meta-model is also a model, expressed in a (well-defined) language and contains
the concepts and rules that determine the set of possible models that can be denotated
by the meta-model.

Figure 3.2 shows that a model can reside at different levels. The different levels are
numbered. At the bottom of the stack, model-level m1, are models that are specified
by a modeling language, possibly a meta-model residing one level higher in the stack
at meta-model level m2. A meta-model can also be an instance of another model: a
meta-meta-model. Meta-meta-models reside at the top of the stack at meta-meta-model
level m3. Although it is possible to expand this stack even further, this is usually not
necessary since most meta-meta-models can be expressed in terms of themselves.

3.4 MODEL TRANSFORMATIONS 15

Figure 3.2: The meta-modeling stack.

If we subject a meta-model to the DDI account of Hughes, what is the system that
is denotated by the meta-model? Clearly the system is the collection of every possible
model that can be expressed by the meta-model. Figure 3.3 is an example of systems and
models at different modeling levels. The weather system is represented by two different
models at model-level m1 in the same language, the employees system is represented by
a similar model in different languages. The Java language meta-model and the C++
language meta-model are at model-level m2 and have the same meta-meta-model: the
Extended Backus-Naur Form (EBNF) model, at model-level m3. This model can be
expressed in itself and is used to formally and unambiguously specify the grammar – or
allowed sentences – of a language.

ECore models
Modeling in MDA is done on models which are an instance of the Meta-Object Facility
(MOF). Just like EBNF plays the role for defining programming language grammars,
MOF plays this role for defining meta-models. A popular implementation of MOF is
ECore. Actually, ECore is an implementation of a subset of MOF, called Essential
MOF – which is a subset of MOF 2.0. – and is targeted at Java development. The
ECore meta-meta-model is the core model for applications developed for the Eclipse
Modeling Framework (EMF) [4]. In this research we will use ECore models for defining
the meta-models of the DSL and for the compiled DSL.

3.4 Model Transformations
As stated before, in MDA a model transformation is the basic operation to go from one
model to another model. In this thesis we will use the following definition by Kleppe et
al. [17]:

16 MODEL DRIVEN ENGINEERING AND DOMAIN SPECIFIC LANGUAGES 3.5

Figure 3.3: An example of the relations between models and systems at the various model
levels.)

“The automatic generation of a target model from a source model, according to a
transformation definition. A transformation definition is a set of transformation rules
that together describe how a model in the source language can be transformed into a
model in the target language. A transformation rule is a description of how one or more
constructs in the source language can be transformed into one or more constructs in the
target language”

Figure 3.4 shows the model transformation pattern that illustrates the above defi-
nition. The transformation takes as input both the meta-model of the source language
and the meta-model of the target language. The transformation is written in a transfor-
mation language and specifies how elements of meta-model A should be transformation
to elements of meta-model B. Now the transformation can take a model A that conforms
to meta-model A and according to the transformation specification, this model will be
transformed to a model B that conforms to Meta-model B.

Atlas Transformation Language (ATL)

An implementation of the concept of a model transformation is the Atlas Transformation
Language (ATL) [2]. In ATL it is possible to transform an ECore model into another
ECore model, provided that their meta-models are given as well. An ATL transformation
definition describes (either declaratively or imperatively) how elements in the source
meta-model should be created – and possible manipulated – in the target model. In
this thesis we will use ATL to implement the compiler. For more details on how this is
implemented, see section 5.6.6.

3.6 DOMAIN SPECIFIC LANGUAGES 17

Figure 3.4: The Model Transformation Pattern.

3.5 Domain Specific Languages

The primary activity of this research is the development of a domain specific language.
We will use the following definition by Deursen et al. [8]:

A domain-specific language (DSL) is a programming language or executable specifi-
cation language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain.

In this thesis, the domain is indeed restricted to network services. Finding the
appropriate expressive power is a trade-off that every language designer has to make,
consider the following quote of Alan J. Perlis: “Beware of the Turing tar-pit in which
everything is possible but nothing of interest is easy” A Turing tar-pit [29] is the place
where a programming language has become so minimal and general that any program
can be created, but writing any specific program has become a very difficult and user
unfriendly task. This underlines the trade-off between a generality and specificness; the
wider the class of problems that must be solved by a language, the less efficient the
language is for solving any particular problem. On the other hand, the smaller the class
of problems, the more efficient a language can tackle the problem, but the language is
of no use for anything else. So a decision must be made about the size of the problem
domain that will be targeted by the DSL.

A DSL and its compiler or interpreter can be seen as a big parametrization mecha-
nism. Consider a DSL for the relatively small domain of string formatting. The DSL
provides the mechanisms to identify substrings and mechanisms to make string con-
versions. The user that enters a formatting definition is filling in parameters in these
mechanisms. Finally the compiler is often used to fill in platform specific parameters,
e.g. locale-specific information such as date and currency formatting.

18 MODEL DRIVEN ENGINEERING AND DOMAIN SPECIFIC LANGUAGES 3.6

3.6 MDE based DSL development

Both MDE and DSL engineering share the idea that language engineering may help
in domain modeling, in fact there is a convergence of MDE and DSL engineering [18].
Another definition in [18] states: “A DSL is a set of coordinated models”. The following
similarities are indicated: programs in a DSL represent a state of affairs in the domain
for which the DSL has been developed, i.e. such a program is a model. A DSL that
has an explicit representation of all the possible state of affairs in this domain it said
to have a meta-model. Furthermore, the meta-model of both a DSL and a model can
have different notations, for example a boxes and lines diagram or an XML document.
Finally, a DSL may have an execution semantics definition, captured in a transformation
to another language that already has a precise execution definition. E.g. a DSL can be
transformed to Java program code.

The definition of a DSL by Kleppe [17] states that a model is written in a well-defined
language, for example a DSL. So if we consider a DSL as a model, the principles and
tools provided by MDE can be applied. For example we can create DSL by defining
a meta-model in ECore that defines the valid relations between model elements. An
instance of this meta-model represents a program written in this DSL. Assume we also
have an ECore meta-model of the Java language. Now a compiler can be implemented
using a model transformation. This transformation specifies how elements in the DSL
program are mapped to elements in a Java model. Now the Java compiler can be used to
transform this model into bytecode that can be executed by the Java Virtual Machine.

Abstract syntax and Concrete syntax

To store a model on a computer, a binary or textual notation is needed. This can also
be the directly editable format. For example, ECore models are usually stored as XML
files, but they can be edited in many different representations, ranging from various
textual notations to graphical notations. All these notations describe the same model
elements and their relations. The notation that describes the allows model elements as
well as their relations is called the abstract sytnax. The notations that can be used to
describe these elements and relations is called the concrete syntax.

KM3

A domain-specific language for specifying abstract meta-models is the kernel meta-meta-
model (KM3) [14]. It is intended to be a lightweight textual language to define meta-
models. Meta-models expressed with KM3 can be easily converted – or transformed –
to a concrete model having a different notation, for example an ECore model.

TCS

The Textual Concrete Syntax (TCS)[15] domain specific language was designed to
rapidly attach a concrete (textual) syntax to meta-models (expressed by KM3). From
the TCS mapping, a parser can be generated automatically. This parser accepts all
textual instances of the meta-model and parses this to a model with a different repre-
sentation. This process is called injection and is illustrated in figure 3.5. At the moment,

3.7 CONCLUSIONS 19

Figure 3.5: The TCS mapping between the MyLanguage meta-model and a textual meta-model.
The TCS meta-model itself is also an instance-of the KM3 model.

the textual meta-model is used as the grammar definition for the parser-generator ap-
plication named ANTLR [27]. Because the TCS mapping is bi-directional this process
can also go the other way around and then it is called extraction.

3.7 Conclusions
In this chapter we have seen that a model can be used to represent a system with a
certain purpose. Furthermore there are meta-models which are models of a class of
models that conform to this meta-model. Models and DSLs have many similarities.
In fact a model can represent the abstract syntax as well as the concrete syntax of a
language. Therefore it is possible to apply techniques and principles from the field of
MDE to these models. Model transformations are the basic operations that are used to
go from one model to another.

Chapter 4
Case studies

Things should be made as simple as possible – but no simpler

Albert Einstein

This chapter presents five case studies that are implemented on a UPVN network.
The case studies serve two purposes, (1) serve as input to the analysis and design process
of the language presented in chapter 5 and (2) the language that resulted from the case
studies was directly applied in the prototypes that implement the case studies.

The studies led to a DSL that covers four areas that are of importance for a network
service language: (1) obtaining information from the network, (2) managing topology,
(3) performing application specific routing and (4) supporting distributed applications.
This is reflected in table 4.1 which also shows which case study contributes to which
area. The case studies are described in section 4.2 to section 4.6. Section 4.7 analyses
the case studies. From this analysis, a domain model is derived which is presented in
section 4.7.1. This domain model will be used to define the meta-model of the language
presented in the next chapter. Section 4.8 concludes this chapter.

4.1 Introduction

The first four case studies all have a different demand of the network’s service. The fifth
case study investigates the issues that arise when there is a dynamic compilation target
(the network). All case studies have in common that the network service can only be
provided by the network as a whole, and not by a single NE. As a consequence, the DSL
that specifies network services contains no mechanisms that allow for the manipulation
of individual NEs, but only networks as a whole or subnetworks.

Individual NEs contain facilities that ACs use to contribute to the global network
service. To investigate the essential constructs for deploying network services, these
facilities are implemented as instructions in a Virtual Machine (VM). This VM is de-
scribed in section 5.4 and is used by the prototypes for the case studies described in this
chapter.

21

22 CASE STUDIES 4.2

Title Description Area
Topology changing
applications (section
4.2)

An application creates and removes links
between NEs that satisfy a given condi-
tion.

Network topol-
ogy

No destination ad-
dress (section 4.3)

This case deals with NEs (e.g. sensors)
that transmit data without a destination
address. A network service assists in the
collection of this unaddressed data

Application spe-
cific routing

Network File system
(section 4.4)

Distribute a file or other data in pieces
over NEs. NEs multicast data to neigh-
bors. The pieces are always in transition,
hence the file is in the network. A network
services assists to distribute and collect
these files.

Application spe-
cific routing

Self positioning code
(section 4.5)

In this case an application uses the DSL
to move itself to another NE. The quality
of this service depends on ability of the
application and its runtime environment
to move a running application.

Managing appli-
cations

Feedback driven re-
compilation (section
4.6)

In case the network model changes, a CNS
may no longer be valid. This case inves-
tigates feedback as a mechanism to de-
tect and react to changes in the network
model.

Dealing with the
dynamics of the
network

Table 4.1: Overview of the case studies that are presented in this chapter, as well as the area
to which the case study contributes.

For every case study, a part of the domain model is identified and outlined in a
model. We also identify candidate instructions for the language. In section 4.7.1 all
these separate domain model parts will be assembled into a complete domain model as
well as a summary of the candidate instructions.

4.2 Case 1: Topology changing applications

At the moment there are few network applications that depend on the topology of the
network. Having wireless connections between NEs opens the door to programmatically
determine which NEs should be connected to each other. A network can use simpler
routing protocols for example if its topology is a tree structure and therefore contains no
loops. Also, a network may contain links whose disconnection may lead to separation of
the network. In graph theory such a link is called a bridge. A network language should
assist in finding this bridge and provide a way to remove the bridge from the network.
This can be done by creating additional, redundant connections

4.3 CASE 2: NO DESTINATION ADDRESS 23

Figure 4.1: Case 1: An ApplicationComponent can instruct Network Elements to create or
remove connections with other Network Elements.

4.2.1 Topology management as a CNS
There are only two instructions needed to manipulate a topology of a network. This
can be done with a connect(A, B) and a disconnect(A, B) instruction, performed by
an AC, where A and B are different NEs. These are the most primitive instructions
that can provide a solution for topology management and are used as the basis for a
more high-level instruction. A possible high-level topology instruction can take a graph
and use it as a prescription for a desired topology. This requires the introduction of
graph concepts into the language. Since this complicates the language, we decided to
implement an instruction that is still at a higher level than a single (dis)connect(A, B),
but does not require the notion of a graph:

1 CREATE Link FROM <select> TO <select>
2

3 DELETE Link FROM <select> TO <select>

With the above instructions, new connections can be easily created between col-
lections of NEs that satisfy the constraints in the select clause. This clause obtains a
collection of NEs and is explained in more detail in section 4.3.1. The above code is
compiled to an AC that issues the low-level instructions to the NEs. This is illustrated
in figure 4.1. We deviate from the standard UML class-diagram notation here by using
a dashed line to indicate a method invocation.

4.3 Case 2: No destination address
Imagine multiple NEs with an attached sensor that are built into a wall and transmit
data to a wireless network. At a certain moment, the protocols on the wireless network
have changed and the data from the NEs in the wall can no longer be processed. It is
assumed that the wireless signals (or data) can still be received by neighboring NEs, but
that the destination of the data is unknown. The data is wrapped into a packet, marked
with a token unknown and stored locally on the neighboring NEs. All this is illustrated
in figure 4.2.

A programmer wants to create an application called LegacySensor that processes the
packets from the sensor-equipped NEs in the wall. Now the programmer needs a way

24 CASE STUDIES 4.3

Figure 4.2: Network Element C and D receive unknown data from old NEs that were built in
the wall. The network provides a service to collect this data.

to transfer all the packets marked with the unknown token to his application. Since it
is a typical network service to collect all packets satisfying some condition – even the
unknown packets – the DSL should be equipped with mechanisms to do so.

4.3.1 Selecting the involved Network Elements

By embedding the NC corresponding to NE A (NCA) in the LegacySensor application,
the developer has gained access to some resources in the network. For the sake of
simplicity we assume that the developer already knows the NEs that contain the packets
with the unknown token. Now the DSL needs to provide a mechanism to select NEC

and NED. This is implemented with the following SQL-like mechanism:

1 SELECT *
2 FROM NetworkElement ne
3 WHERE ne.identifier = "C"
4 OR ne.identifier = "D"

The above statement can be issued to any NC and after execution it will result in a
collection of NEs. The select instruction can also be used to obtain other information
from the network such as the number of connected neighbors. However it is not obvious
that this result of this query will be automatically returned to NC that issued the
select statement. Therefore, a select statement must always be embedded into another
instruction that can process the information returned by the select statement. An
example is the send instruction which will send the result to a specified destination:

1 SEND <select>
2 TO <destination>

The destination part can be a select statement that results in a collection of appli-
cations or NEs that are able to process the information that is returned by the select
part. Figure 4.3 shows the involved concepts for performing queries on a network.

4.4 CASE 3: NETWORK FILESYSTEM 25

Figure 4.3: Case 2: An application issues a query statement. This statement is compiled to
an AC that queries the NE and returns the result to a destination.

4.3.2 Creating an application-specific route

The LegacySensor application needs a way to obtain the packets with the unknown token
from NEC and NED to itself. This can be done by creating a Route from these NEs to
the application:

1 CREATE ROUTE
2 FROM <select>
3 TO <select>
4 USING "DijkstraShortestPath"

The above statement creates a route from NEC and NED to the LegacySensor ap-
plication that exclusively allows packets marked with the token unknown. Since there
can be multiple routes possible from NEC and NED to the application, an algorithm
must be specified that determines how the route will be created; in this case the Dijkstra
shortest path algorithm is used to calculate the NEs that will be involved in the route.

When a NE contains packets with a token that match a route, the AC on it will
automatically start forwarding the packets to the neighboring NE, indicated by the
routing rules. So when the route is created, the packets will be transferred to the
LegacySensor application. Figure 4.4 illustrates the involved concepts for creating a
route.

4.4 Case 3: Network filesystem

Just like the Open Shortest Path First (OSPF) routing protocol [25] depends on routing
tables, a CNS can depend on configuration files that are somewhere on the network.
This case study investigates a CNS that can store files in the network. Following the
definition of CNS in section 2.1.1, it should not be possible for an individual NE to
provide the service. It is the aim to implement the storage mechanism by using existing
instructions as much as possible.

26 CASE STUDIES 4.4

Figure 4.4: Case 2: Packets travel over a designated route which is implemented by multiple
ACs that are deployed on multiple NEs.

4.4.1 Storing a file on multiple Network Elements

Storing a file in current networks primarily involves end-systems, such as webservers,
backup systems or computers of end-users. Numerous protocols exist that can transfer
files to the remote location of which the best known protocol is probably the File Transfer
Protocol (FTP) [31]. Intermediate systems such as routers are usually not used for
storing the files of end-users

In this case study we use the routing capabilities of NEs to store a file. To achieve
this, we take a file and split it into several fragments. Each fragment is encapsulated in a
packet and marked with a token to recognize it later on. The network keeps forwarding
the packets from NE to NE over designated routes. Figure 4.4 from the previous case
study already contains the concept of routes. Figure 4.5 shows the additional involved
concepts of this case study.

So now that the file is in constant transition, traveling as separate packets with no
specific destination; it is in the network and hence we call it an in-network file. Only
the network as a whole can distribute and retrieve files. The following command will
store a file:

1 STORE <select>
2 AS "my-in-network-filename"
3 ON <select>
4 PARAMETERS (param1=value1, param2=value2, ...)

The first select part indicates which file(s) will be stored in the network. The string
that follows the AS clause assigns a name to the distributed file(s) that can be used as
an identifier to retrieve the file in the future. The on clause indicates which NEs are
selected to perform the forwarding of the fragments. Finally the using clause takes a
collection of parameters that determine how the network handles the in-network file.

When a store command is issued, the involved NEs are configured to keep forwarding
fragments of the file(s). To prevent flooding of the network, a forwarder can hold a
fragment for some time and then forward it. Another option is to immediately forward
the packet, but store a copy of it. When a copy of the same fragment is received again,
it will be dropped. Obviously the memory that stores these fragment copies needs to be
flushed regularly.

4.5 CASE 4: SELF POSITIONING CODE 27

Figure 4.5: Case 3: A file is split into multiple fragments that are encapsulated in packets.
The packets are continuously forwarded over designated routes.

4.4.2 Retrieving a stored file

There are a few ways for a NE to retrieve an in-network file. A NE can just wait
and gather all the fragments of the file that travel over it. This is the most inefficient
approach and will only be feasible in very small networks. Another way to retrieve all
fragments is to send out an agent that ’catches’ the fragments. This approach is a slight
improvement to the first one, but still it is likely that not all fragments will be caught.
Finally the best way is to use the mechanism from case study 4.3 that sets up routes
from all involved NEs (or a sufficiently large subset) and directs all the fragments to the
NE that is interested in the entire file.

Collecting the fragments of an in-network file is to the user just as obtaining any
other information about the network. Case study 2 already presented the concepts of
performing a query. We reuse the query concept to obtain the fragments of a file:

1 SELECT *
2 FROM NetworkFiles nf
3 WHERE nf.identifier = "my-in-network-filename"

4.5 Case 4: Self positioning code

This case study investigates the mobility of applications and ACs in a network. Consider
the following scenario: a network management application monitors several systems in
a network. When one of the systems is about to get overloaded, the application needs
to take action and change the configuration of the systems. Assume the management
application is similar to the one discussed in section 2.3.1 and uses the SNMP protocol
[5] to monitor and control the systems.

If the network is heavily congested, the monitoring information will be delayed and
the network management application may be no longer able to react in time, also because
the instructions to change the configuration of the systems will be delayed as well. In
such a situation, mobile applications are preferred. A mobile application can ’travel’ to
the area of interest and autonomously perform the monitoring and controlling of systems.
Because the application is closeby, traffic between the systems and the application can
be reduced to a minimum and the application is more likely to respond in time.

28 CASE STUDIES 4.6

Figure 4.6: Most applications let the environment manage their context information (program
counter and memory). Unless there is support from the environment, an application can not
resume execution after it was moved to another environment.

4.5.1 Awareness of the environment
Taking and moving an application to another NE and resuming it from there, requires
that its context information (memory and programcounter) is moved as well. Figure
4.6 shows an application whose runtime environment does not support resume of a
suspended application, thus the context information is lost. This is the case with most
applications at the moment. In such a situation, an application can only resume after
moving when it manages the context information by itself, instead of the environment.

There are environments that do support the resuming of moved applications. VMware
is an example of an environment that supports the moving of an entire operating sys-
tem1. In the network service language, moving an application can be done as follows:

1 MOVE <select>
2 TO <select>

The select clause in the move statement expects a collection of applications. These
will be moved and resumed on the locations that are indicated by the second select part
in the to statement. If it is not possible to resume the applications, they will just be
restarted. Figure 4.7 shows that the move statement is issued by ACs to other applica-
tions or to ACs. Again, we deviate from the standard UML class-diagram notation by
using a dashed line to indicate a method invocation.

4.6 Case 5: Feedback driven recompilation
Because network topologies change, an existing CNS can break. Take for example the
application described in section 4.3.2 that creates a shortest path between A and B. This
application can become invalid when there appear new NEs in the network, introducing
a shorter path between A and B, hereby rendering the shortest path invalid. An analogy
of this situation is a PC application that is optimally compiled for the instruction set
of a processor. Changing the instruction set requires recompilation so the application
again fits the new hardware. A change in network topology may require recompilation.

1Provided that the operating system was installed on VMware

4.7 ANALYSIS OF THE NETWORK SERVICE DOMAIN 29

Figure 4.7: Case 4: ACs can instruct other applications or other ACs (or themselves) to move
to another Network Element.

Several kinds of changes are possible. In this case study we only investigate topological
changes.

4.6.1 Compiling for a dynamic target
In this case study, a NE creates or removes a connection and broadcasts the event to the
ACs that are in the network. An AC can react to the change and ask the compiler to
recompile itself or another AC. To achieve this, an AC is equiped with the source code
of the CNS. The AC can issue the following statement to compile an AC:

1 COMPILE <select>

The select clause should return a collection of ACs. Every AC contains an ID that
is unique to the CNS it belongs to, as well as a revision number that is incremented
every compilation. Imagine a route that is realized by multiple ACs. One AC asks the
compiler for recompilation. Now the compiler puts multiple new ACs on the network
that have the same ID as the previous ACs, but a different revision number. A NE that
receives an AC with a higher revision number will replace the old one. So the first AC
that detects the change initiates the recompilation that will replace itself as well as the
other ACs that contribute to the CNS. The involved concepts are illustrated in figure
4.8.

4.7 Analysis of the network service domain
The network topology describes the physical locations and the connections between the
NEs. Sensor networks for example take advantage of the different locations of NEs by
obtaining information from the region in which the NE resides. Case study 1 assumes
that the topology is programmable which requires instructions to (dis)connect links
between NEs.

Packets that travel from a source NE to one or more target NEs follow a path that is
made up of intermediate NEs. Such a path is usually called a route and can be seen as a
virtualization of the topology concept. A virtual topology can be created by setting up

30 CASE STUDIES 4.7

Figure 4.8: Case 5: An AC can receive feedback from the Network Elements it runs on and
as a reaction it can ask the compiler to recompile itself using its internal sourcecode.

Figure 4.9: A route can be regarded as a virtual topology. A route exists between A and D and
between D and B. The gray NEs depict the virtual topology that is created by the routes.

routes, this is illustrated by figure 4.9. Case study 2 introduces the notion of a route and
because a route is the virtual representation of a physical topology, similar high-level
instructions (create, delete) can be used to create or remove a route. Case study 3 uses
the properties of a route to store a file in the network.

Since managing topologies and routes is only a small – but common – part of a CNS,
managing (third party) applications is very useful when deploying network services. If
the application is not known, it can only be installed, removed, started, stopped and
if supported, it can be moved and resumed elsewhere. These applications can do very
specific tasks that can not be programmed by a CNS language. This is illustrated by
figure 4.10 which shows the overlap of the Network Domain (ND) and the Application
Domain (AD).

There are many applications in the AD/ND intersection that can not be expressed
with a CNS language. These applications reside in the intersection with ’Other domains’.
As an example, consider an application in the audio processing domain. This application
introduces a network service in which ACs start downsampling an audio file contained
in a stream of packets when the network is reaching its maximum capacity2. In such a
case, the CNS language can only be of assistance by distrubuting the ACs, or maybe to
manage the topology or the routes over which the audio packets travel.

Finally we looked at the issue of compiling code to a dynamic target. This requires

2This example was taken from the IJkdijk project [37]

4.8 ANALYSIS OF THE NETWORK SERVICE DOMAIN 31

Figure 4.10: The overlap of different domains with the networking domain. A CNS language
can only be of limited support to applications in the interestion of the Application Domain with
the Network Domain. For the rest, functionality is provided by applications created for ’Other
domains’.

mechanisms to detect changes as well as a way to restore applications that became
invalid because of this change. Recompilation is a solution that requires few knowledge
about the details of the change and can be easily implemented.

In all the case studies there is a need for a mechanism that obtains information
from the network. Since routing packets is a rather obvious network service that should
definitely be included in the CNS language, managing a topology should also be included
since a route is just a virtual representation of a topology. For the rest, a CNS rapidly
enters the ’Other domain’ and a CNS language can only provide limited support by
distributing and deploying the applications that contribute to this CNS.

4.7.1 A model of the Network Service domain

From the domain analysis in the previous section we conclude the the most common
activities in a network are obtaining information from the network, managing topologies
and routes and be of assistance to applications that are distributed in the network.

Figure 4.11 groups together the concepts of the case studies in this chapter. All the
concepts in this figure are reflected in the meta-model of the language that is presented
in the next chapter.

Summary of the candidate statements

In every case study there is a need for information retrieval, for this we use a select
statement, similar to the SQL select statement. This statement can be used in combi-
nation with a send statement that specifies where the result of the selection should be
sent. To create and remove links and routes, we use a create and a delete statement
that can make use of the select statement. For storing information in the network, we
use the store statement. To recompile a possibly broken CNS we include the compile
statement.

32 CASE STUDIES 4.8

Figure 4.11: The structure of the domain model.

4.8 Conclusions
In this chapter we presented five case studies, each with a different demand on the
network. The problem that occurs in all studies, is the retrieval of information from
the network. So a statement to retrieve information is an obvious candidate. For
the other problems, it is more difficult to draw the line between a CNS language and
’other domain’. By consulting with domain experts we decided to include statements for
managing topologies and routes and for the rest we included statements that support
third-party applications. Since these third-party applications are unknown, they are
treated as black boxes that can be installed, removed, started and stopped and when
supported they can be moved and resumed on another NE.

Chapter 5
CoNSoLe: A Network Service DSL

Every configuration file eventually becomes a programming language

James Gosling

This chapter presents the architecture of a programming language that can be used
by applications to compose new network services. The first step in designing a language
is to map important domain concepts to first class language constructs in the language
meta-model. Section 5.2 presents the architecture of the language. Section 5.3 elaborates
on the different areas of the architecture. Section 5.4 presents a virtual machine which is
the environment in which the compiled language executes. The statements of the virtual
machine are explained in section 5.5. Section 5.6 presents the compiler that translates
CoNSoLe programs to statements for Application Components. The solutions provided
by the language are compared with other existing solutions to similar problems in section
5.7. Section 5.8 concludes this chapter.

5.1 Introduction

This chapter and chapter 4 are the result of an iterative process and directly depend on
each other. The case studies assisted in making design decisions and helped shaping the
language. The developed language in turn was used to implement prototypes for the
case studies. The MDE concepts from chapter 3 were used to implement the language,
the virtual machine and the compiler.

A major side effect of creating a DSL is that it also serves as a methodology to
explore and describe the research domain. This somewhat bold statement is supported
by the fact that designing a domain specific language forces the developer to carefully
investigate the concepts of the application domain, their relations and the environment
to which the language gets translated. All these findings are explicitly recorded in
models: the source language, its meta-model, the compiler and the list of statements of
the virtual machine.

33

34 CONSOLE: A NETWORK SERVICE DSL 5.3

Figure 5.1: Overall architecture of the CoNSoLe language

5.2 The Architecture of the CoNSoLe language
A helicopter view of the architecture of the CoNSoLe language is shown in figure 5.1. An
application uses the language to create or adapt a network service, for example a route
between two network elements. This language serves as input to the compiler which
knows the network through one or more network components (NC). From the input
specification, the compiler generates one or more application components (AC) that
need to be put on the network in order to actually create or adapt the network service.
The compiler uses NCs to deploy the ACs to the NEs. Once the ACs are deployed, they
will run in the virtual machine that is present on every NE that is prepared to work with
the CoNSoLe language. In concert, the ACs will create or adapt the network service
that was specified.

A network service specification is the result of the collaboration between code frag-
ments in the CoNSoLe language and the embedding application. For example an appli-
cation can use the CoNSoLe language to obtain information about the network topology
before it decides whether it will create one or two routes. For the creation of these routes,
it can again use CoNSoLe statements. The next section explains the structure and the
meaning of the CoNSoLe language.

5.3 Collective Network Service Language
This section describes a language that reflects the essence of a CNS as defined in section
2.1.1; it must not be possible to program individual NEs using the language. This is
an activity for which a GPL is a better candidate. To summarize the domain analysis

5.3 COLLECTIVE NETWORK SERVICE LANGUAGE 35

Figure 5.2: A CoNSoLe specification consists of a collection of abstract statements.

of section 4.7, a CNS language can be used to obtain information from the network
(section 5.3.2), configure the network topology (section 5.3.3), facilitates application-
specific routing (section 5.3.4) and it assists distributed applications with mechanisms to
install and run the distributed components (section 5.3.5). NEs must contain facilities
to contribute to the CNS. These facilities were captured in a Virtual Machine (VM)
which is described in section 5.4.

5.3.1 The structure of CoNSoLe specifications
Figure 5.2 shows the structure of CoNSoLe programs. Since in most situations the
language will be embedded inside another application, the syntax is simple: a program
is just a collection of statements. There is no such thing as a program name, variable
or constant declarations or other typical initialization constructs.

The following code fragment gives the concrete syntax of a CoNSoLe program using
the TCS notation as described in section 3.6:

1 template Program main
2 : statements
3 ;
4

5 template Statement abstract;

5.3.2 Network Information Retrieval
An application that is about to change or introduce a network service, will most probably
first obtain information about the network. By doing this, the application can build a
model of the network upon which it can base decisions that will cause changes to the
network.

There are several ways to obtain information from the network. In a broad sense,
there are two options: the first option is to let NEs periodically publish their data to a
central location that can be queried (push). The second option is to directly ask (pull)
all NEs. The select mechanism from the Structured Query Language (SQL)[6] that
has been developed to obtain information from databases, is a DSL that is a perfect
candidate for this job. SQL uses the pull approach. An alternative to SQL is to obtain
information like the approach taken by the NML language described in section 2.3.1.

Which network information can be obtained depends on what information is made
accessible by the NE. Figure 5.3 shows the structure of the select statement. The
following code listing shows the corresponding concrete syntax:

36 CONSOLE: A NETWORK SERVICE DSL 5.3

Figure 5.3: The structure of the Select statement

1 template Select
2 : "SELECT" functionName "(" arguments{separator = ","} ")"
3 ;
4

5 template Argument
6 : value
7 ;

The following listing shows some example usages of the select statement:
1 SELECT numberOfNetworkElements("timeout=3min")

The select statement is followed by a function that can take zero or more arguments.
These are built-in functions that are implemented by the compiler. At the moment
only the query function is implemented. This function delegates the actual query to
an existing library that actually performs the query. For more details on how this is
implemented see section 5.5.1.

Embedding the Select statement in other statements

The information that is returned by the select statement can be used by the application
that issued the statement or it can be used by other statements that require additional
information. The first can be done by using the send statement whose structure is shown
in figure 5.4. The following listing shows the concrete syntax:
1 template Send
2 : "SEND" statement "TO" destination
3 ;
4

5 template Destination
6 : ipAddress":"ipPort
7 ;

The following listing is an example of the select statement in combination with the
send statement:
1 SEND
2 SELECT numberOfNetworkElements("timeout=10sec")
3 TO
4 "192.168.0.101":1204

5.3 COLLECTIVE NETWORK SERVICE LANGUAGE 37

Figure 5.4: The structure of the Send statement

The information that is returned by the select statement will be passed to the send
statement which sends the results as a collection to a specific port at a specific IP-
address. The send can be followed by any statement that returns information. This
is done because in a distributed environment like a network it is not trivial that the
returned information should always be delivered back to the application that issued the
statement.Alternatively, the send statement can also take a packet as an argument.

Since there is no default addressing mechanisms specified in the UPVN model, IP
addresses were used instead to test the implementation of this statement. When a
default addressing mechanism is defined, the destination part in the to clause can best
be replaced by a select statement that returns a collection of network elements or a
collection of applications.

5.3.3 Configuring Network Topologies

In sensor networks, topologies do matter, for example to perform localization of objects
that are in the detection range of the network [11]. The initial UPVN paper [21] also
contains an example in which an application finds links in a network whose disconnection
will lead to a split of the network. With the ability to create additional connections, the
network can be made more robust.

By using the select statement that is described in the previous section, collections
of network elements can be rapidly indicated. With the addition of the create and
the delete statement, connections can be created and removed. The structure of these
statements is shown in figure 5.5. The following listing gives the concrete syntax of the
create and the delete statement:

1 template Delete
2 : "DELETE" type where using
3 ;
4

5 template Create
6 : "CREATE" type where using
7 ;

38 CONSOLE: A NETWORK SERVICE DSL 5.3

Figure 5.5: The structure of the Create and the Delete statement. Both statements rely on
the abstract Where statement.

8

9 template Where abstract;
10 template LinkWhere
11 : (isDefined(from) ? "FROM" from)
12 "TO" to
13 ;
14

15 template LocationWhere
16 : "AT" to
17 ;
18

19 template Using
20 : "USING" moduleName
21 ;

The following example will create additional links between all NEs that have only
one neighbor, to the NEs that have more than 90% battery power. Replacement of the
create statement by the delete statement will remove these links:
1 CREATE Link
2 FROM
3 SELECT query(
4 SELECT * FROM NetworkElement neListA WHERE ne.neighbors.size = 1
5)
6 TO
7 SELECT query(
8 SELECT * FROM NetworkElement neListB WHERE ne.batteryPercentage > 90
9)

The type argument of the create statement is a Link. Other types like Route are
possible as well. The create statement is followed by an instance of the abstract where
statement, which is either a relation between network elements (LinkWhere) or a col-
lection of network elements (LocationWhere). This is illustrated by figure 5.6. In the
above example, the LinkWhere instance is used, because the links need to be created
between network elements.

5.3 COLLECTIVE NETWORK SERVICE LANGUAGE 39

Figure 5.6: The structure of the Where statement.

The from clause uses the query function to pass a query to a library that can pro-
cess it. Instead of sending the information returned by the select statement back to
the application using the send statement, it is used as input for the from and the to
statement. From the concrete syntax listing and figure 5.5, it can be seen that the from
clause is optional. If it is left out, the links will be created from the network element
that receives the CoNSoLe statement.

5.3.4 Application Specific Routing
Applications that have control over how a network routes its information, can make more
efficient use of the networks’ resources. For example, once an application that distributes
video streams has discovered the network topology well enough, it can create an efficient
multicasting tree to deliver the video content. Another example of application-specific
routing is the p4p protocol [38] that is being developed to support p2p networks with
application-specific routing. To spare the backbone connections in the network, clients
can ask for peers that are physically nearby or in the same sub network.

The syntax to create a route is similar to the syntax to create a connection. The
only difference is that we do not pass Link to the create statement, but Route:
1 CREATE Route
2 FROM
3 SELECT query(
4 SELECT * FROM NetworkElement ne1 WHERE ne1.identifier = 3
5)
6 TO
7 SELECT query(
8 SELECT * FROM NetworkElement ne2 WHERE ne2.identifier = 15
9)

10 USING "DijkstraShortestPath"

The using clause is new in this example. Since it is not trivial how the route between
the network elements should be created, a module can be referenced that will calculate
the path. By doing this, the CoNSoLe language does not need graph algorithms that

40 CONSOLE: A NETWORK SERVICE DSL 5.3

Figure 5.7: The structure of the Store statement.

can calculate routes between collections of network elements. In the above example the
module will calculate the shortest path using the Dijkstra [9] shortest path algorithm.
If the using clause is left out, the Dijkstra module will be used by default. For more
information about modules, see section 5.4.5.

To store a file in the network, the store statement can be used. This statement
takes a select clause to indicate the file that must be stored. The where clause indicates
which NEs will be involved in storing the file. Between these NEs, special routes will be
created to forward the fragments of the file. The using clause can be used to adjust to
parameters of the store statement. Figure 5.7 shows the structure of the store statement.
The following listing shows the concrete syntax:

1 template STORE
2 : "STORE" select
3 "AS" filename
4 where "(" parameters{separator = ","} ")"
5 ;

5.3.5 Supporting Distributed Applications

Section 4.7 underlines the fact that applications in a network (including protocol imple-
mentations) in a great deal determine its characteristics. The most basic way to deploy
applications on the network is to broadcast it to every network element. This requires no
knowledge of the network, which is an advantage because obtaining information costs
time and the information may be incomplete. A broadcast is rather robust and will
usually not fail because of the disconnection or the failure of some NEs. A drawback of
broadcasting is, that it will flood the network if there are no protections against flooding.

A better way to distribute applications is to use the capabilities of the where state-
ment that in turn uses the select statement to narrow down the number of network
elements that should receive the application. Figure 5.8 shows five mechanisms to han-
dle application deployment: install, uninstall, start, stop and move. The following listing
shows the concrete syntax:

5.3 COLLECTIVE NETWORK SERVICE LANGUAGE 41

Figure 5.8: The structure of the Install, Uninstall, Start, Stop and Move statements.

1 template ApplicationStatement abstract;
2

3 template Install
4 : "INSTALL" select where using
5 ;
6

7 template Uninstall
8 : "UNINSTALL" select where using
9 ;

10

11 template Start
12 : "START" select where using
13 ;
14

15 template Stop
16 : "STOP" select where using
17 ;
18

19 template Move
20 : "MOVE" select where using
21 ;

The following listing is an example that installs an application called HelloWorld
onto all the NEs that have more than 300 kB of disk space using the FtpInstall module:
1 INSTALL
2 SELECT query(
3 SELECT * FROM Applications a WHERE a.name = "HelloWorld"
4)
5 AT
6 SELECT query(
7 SELECT * FROM NetworkElements ne where ne.diskSpace > 300
8)
9 USING "FtpInstallModule"

The install statement is followed by a select that must return a collection of appli-
cations. These application can reside on the NE from which the statement was issued,
or on other NEs in the network. This example uses the LocationWhere to indicate the
network elements on which the application should be installed.

42 CONSOLE: A NETWORK SERVICE DSL 5.4

Figure 5.9: Moving an application from A to D. Changing the entire topology is a primitive
– but equal – way to move the application. From the application’s perspective the same result
is obtained after the operation. Assumed is that the network elements are equal and that NEs
contain at most one application.

Most applications that run on a NE can not be known in advance. As such, they
must be treated as a black box. If we know a bit more about the application, for
example that it can run in an environment that supports the suspending and resuming
of applications, we can use the optional using clause to involve a module that can
handle the communication with this environment. The uninstall, start, stop and move
statement have the same structure as the install statement.

The move statement can only use the LinkWhere to indicate from which NEs the
applications will be be moved to which other NEs. Moving an application from one NE
to another is not a very common activity in current network management. However, we
argue that a move statement is indeed a natural statement: it can be implemented by
performing a series of connect and disconnect statements. Figure 5.9 shows how moving
an application is essentially the same as changing the topology of the network, under
the assumption that NEs are equal or contain at most one application. Since it is not
very efficient to move applications this way, the move statement is implemented in an
alternative way that is described in more detail in section 5.5.

For every AC, the compile statement issues a compile statement to the VM. The
source code of the original CNS specification is passed as an argument.

5.3.6 Recompilation to handle dynamic topologies

From case study five (section 4.6.1) we used feedback to detect a topological change.
When new NEs appear in the network, they broadcast a message with this event. A
NE that loses a neighboring NE also broadcasts this event as a message contained in a
packet. Every AC can use a handler to respond to this kinds of events. If necessary,
an AC can issue a compile statement to the virtual machine which will result in the
recompilation of the original CNS specification. Figure 5.10 shows the structure of this
statement. The following listing shows the concrete syntax:

1 template COMPILE
2 : "COMPILE" select
3 ;

The select clause should return a collection of ACs. Every AC contains the original
source code of the CNS. The virtual machine invokes the compiler and the compiler
creates new ACs. Because the new ACs have a higher revision number than the old
ACs, the old ACs will be replaced.

5.4 A VIRTUAL MACHINE FOR APPLICATION COMPONENTS 43

Figure 5.10: The structure of the Compile statement.

5.4 A Virtual Machine for Application Components
There are two major reasons to implement the runtime environment as a Virtual Machine
(VM). First is the fact that the developer is forced to think about which statements to
implement. Second, a VM handles the context information of applications (memory and
program counter) itself. This makes implementing a feature such as code mobility a lot
easier. Had we decided to generate C++ output and let an existing operating system
be the runtime environment, code mobility would have been very difficult to implement.

5.4.1 The Architecture of the Virtual Machine
The architecture is shown in figure 5.11, each component of the archicture will be ex-
plained in the next sections. The Virtual Machine (VM) is implemented in Java. See
appendix G for more details regarding the implementation of the VM. The main activity
of the VM is executing ACs, the order of execution is determined by the AcScheduler.
An AC contains statements that are executed by the VM and when necessary, it uses
the NetworkElement to complete the statement.

5.4.2 The Structure of an Application Component
A compiled CoNSoLe program results in one or more Application Components (AC).
Figure 5.12 shows the structure of an AC. The first part of a AC is the initialization
part that declares an identifier and a revision. When a CoNSoLe program is recompiled,
a new AC replaces the old one. The old AC can be found using the identifier (that
remains the same over all the compilations). The revision number will be incremented.
ACs with a lower revision number will be replaced by newer ones.

The next part declares the handlers. A handler assigns an event type to a function.
Events can be the arrival of a packet, the disconnection of a neighbor or the notification
of a clock tick. This is described in more detail in section 5.4.4. The main part of an
AC is made up of functions. A function is a collection of statements. A statement can
contain zero or more arguments.

The abstract syntax of ACs is specified in the KM3 language [14]. This specification
can be converted to an Ecore model. Ecore models can be serialized to an XML file.

44 CONSOLE: A NETWORK SERVICE DSL 5.4

Figure 5.11: The architecture of the Virtual Machine

Figure 5.12: The meta-model of an Application Component (AC).

5.4 A VIRTUAL MACHINE FOR APPLICATION COMPONENTS 45

This XML format is used as the concrete syntax for ACs. The big advantage of this
decision, is the good tool support for Ecore models by the Eclipse [3] environment. These
tools allow for displaying and easy manipulation of Ecore models. Furthermore a code
generator can create all the Java classes that are needed for loading, manipulating and
saving Ecore models. A large part of the virtual machine is made up of this generated
code.

5.4.3 Concurrency and Scheduling
One of the design decisions is whether or not to provide concurrency support for ACs.
Introducing concurrency requires scheduling which opens the door for deadlock situa-
tions or conflicting operations on network traffic. Just like most runtime environments,
there is no true concurrency, but it is simulated by time-sharing. This is done by allow-
ing each thread a short period of execution time, so that it looks as if the threads are
served simultaneously.

Not allowing concurrency puts a requirement on ACs to release resources in time.
One AC that contains a blocking message handler should not prevent other ACs from
handling other network traffic. To avoid complexity when designing ACs, we have de-
cided to implement a simple scheduler that allows for the concurrent execution of ACs.

By choosing to support concurrency, we could push the idea a bit further and allow
one AC to start multiple threads. But since all ACs are generated, there is no need for
this. If there are multiple tasks, we just generate as much ACs as needed.

5.4.4 Event Handling
When an event occurs on the NE, it notifies the VM. The VM in turn puts the event
in the EventQueue. This queue is continuously read by the EventHandler thread. For
example, a packet arrives in the queue of the NE. Now a MSG RECEIVED event will
be put in the EventQueue by the VM. The EventHandler thread searches all the ACs
that run in the VM for handlers that are registered to take care of MSG RECEIVED
events. The following code listing shows how a handler can be created:

1 <handlers eventType="MSG_RECEIVED"
2 functionName="handleMessage"
3 priority="6"/>

In the above code listing, the handleMessage function will handle the event. When
there are multiple handlers – either in one AC or in multiple ACs – the AC with the high-
est priority handler will be scheduled for immediate execution. This program counter
will be changed to the handler function. This process is repeated until all handlers have
had a change to process the event.

5.4.5 Complementing the limited DSL functionality by using Modules
Since the CoNSoLe language does not implement enough statements to act as a GPL,
there must be some other way to complement the limited functionality of the ACs that
run inside the VM. This was done by the use of modules. A module can be programmed
in Java. The functionality of a module is referred to by the using statement, see section
5.3.4 for an example.

46 CONSOLE: A NETWORK SERVICE DSL 5.5

Figure 5.13: Modules can be implemented in Java so they can complement the limited function-
ality of the CoNSoLe language. A module can use a dedicated memory area (moduleMemory)
in the AC for its administration purposes.

When an AC references a function from a module, it allows the module to manipulate
its contents and its memory. This is illustrated by figure 5.13 which is a refinement to
the simplified architecture presented in figure 5.11.

5.4.6 Control flow
A program with no loops is guaranteed to terminate. Suppose we have a compiler
somewhere in the network and an AC somewhere else. We could create an AC that will
be activated by an event, and just before termination it requests for recompilation. Now
there is no need for a loop, because everytime something happens, the program will just
be recompiled and ready for the next event.

However, when an AC must be able to respond in time, recompilation may take too
long. This requires local autonomy of the AC, so that it is able to manage its own local
problems and does not depend on the recompilation arranged by a compiler somewhere
else in the network. For this reason, we conclude that a loop is essential for locally
autonomous ACs.

5.5 The statements of the Virtual Machine
This section presents all the statements that are implemented by the VM. The statements
are presented in the same order as the categories of the CoNSoLe language: information
retrieval, topologies, routing and distributed applications.

5.5.1 Network Information Retrieval
Implementing a complete query language takes much time. Because of this, we decided
to implement this using an existing library named: Hibernate Query Language (HQL)[1].
HQL can perform queries over the contents of any collection of objects. This is done by

5.5 THE STATEMENTS OF THE VIRTUAL MACHINE 47

mapping these objects to a relational database and transforming the HQL query into an
SQL query. Since all experiments were applied to a virtual network, every network was
represented by an object, and therefore every detail about the network can be queried.
Table 5.1 shows the only statement that was needed to perform a query.

Instruction Parameters Return
value

Description

select query
Set<value>

Rich instruction that can
obtain all accessible data
from the NE and sends the
result to a set of NEs

Table 5.1: Collective Network Service - Network information retrieval instructions

5.5.2 Configuring Network Topologies

Table 5.2 shows that there are only three statements necessary to configure a network
topology. All three statements are delegated to functions of the network element. The
connect and disconnect statements only work in wireless networks whose NEs support
the creation and deletion of wireless links. The get neighbors statement can be used
both on wired and wireless networks.

Instruction Parameters Return
value

Description

connect Set<NE> - Establish links to all NEs in
the given set

disconnect Set<NE> - Disconnect the links to all
NEs in the given set.

get neighbors
- Set<NE> Obtains a set of neighbors

that have a link to the NE
that executes this instruction

Table 5.2: Collective Network Service - Topology instructions

5.5.3 Application Specific Routing

Table 5.3 shows the statements that are directly related to packet processing. The send
statement takes a packet and a collection of NEs to which the packet will be send. If the
given collection is empty, the packet will be broadcasted to all neighbor NEs. The packet
can contain additional information that will impact the behavior of the send statement.

48 CONSOLE: A NETWORK SERVICE DSL 5.5

Instruction Parameters Return
value

Description

send packet,
Set<NE>

- Send a packet to a set of NEs

store packet - Store a packet that in the
packet memory

contains packet boolean Check if the packet memory
already contains a copy of
the given packet

reset mem - - Clear the memory that was
filled by store instructions.

route Set<NE>,
module

- Create a part of a route to
every neighboring NE in the
set, using a module that
calculates the route

Table 5.3: Collective Network Service - Routing instructions

The store and contains statements are directly from the case-study in section 4.4.
We believe these statements belong to a basic CNS statement set because they allow to
implement a basic, but controlled way of broadcasting. With these statements a router
can remember and check for recently received packets. This can prevent a broadcast
from flooding the network, because once a router receives a packet it already broadcasted
before, it can safely drop the packet.

The route statement creates a route between two collections of NEs. In the most
basic case, both collections contain only one NE. If there are more NEs in the second
collection, routes will be created from one NE to all the others, forming a tree. If both
collections contain more than one NE, the first NE from the first collection is taken and
routes will be created to all the NEs in the second collection. Now the second NE from
the first collection is taken and again routes will be created to all the NEs in the second
collection etc. The module argument largely determines how the route will be created.

5.5.4 Supporting Distributed Applications

Table 5.4 shows how a NE can provide support for hosting applications. Since most
applications can not be moved while they are running, the move statement will just
stop the application, move it to another NE, where it can be started with the start
statement. There is an exception for CoNSoLe applications, because we know they can
be moved while they are running. In this case the move statement will invoke the serialize
statement, move the frozen application to other NEs where it will be deserialize’d and
started.

5.5 THE STATEMENTS OF THE VIRTUAL MACHINE 49

Instruction Parameters Return
value

Description

install Applica-
tion/AC,
Module

- Installs the Application/AC
on this NE using the given
module.

uninstall Applica-
tion/AC,
Module

- Uninstalls the
Application/AC from this
NE using the given module.

start Applica-
tion/AC,
Module

- Starts the Application/AC
on this NE using the given
module.

stop Applica-
tion/AC,
Module

- Stops the Application/AC on
this NE using the given
module.

move Applica-
tion/AC,
Set<NE>,
Module

- Moves the Application/AC
from this NE to the NEs in
the given set using the given
module.

serialize AC - Serializes an (running) AC to
a textual representation.

deserialize AC - Deserializes an AC from a
textual representation.

compile AC Set<AC> Compiles the sourcecode
contained in the given AC to
a new collection of ACs

Table 5.4: Collective Network Service - Application and AC related instructions

Most statements can use a module. For example a module for the VMware runtime
environment can implement the install, start, stop, suspend or resume statements. Now
an application that runs inside VMWare can issue a CoNSoLe statement that will move
the operating system in which it runs to another VMWare application on another NE.

5.5.5 Basic statements

With only the statements of the previous sections, an AC would be no much more than a
configuration file. Table 5.5 presents some basic statements that allow for the creation of
autonomous applications by providing control-flow and some simple arithmetic functions.
The statements can be found in almost any virtual machine and are therefore only
explained in the table.

50 CONSOLE: A NETWORK SERVICE DSL 5.5

Instruction Parameters Return
value

Description

create packet - - Creates a packet from the
contents on the stack

push Value or
Variable

- Pushes the given value on the
stack. If the argument is a
variable name, the value of
that variable will be pushed
on the stack

pop Variablename
(optional)

- Pops the top value from the
stack. If a variablename
argument is given, the value
will be assigned to this name.

print - - Pops the top value of the
stack and prints the contens
(For debugging purposes)

add Result Pops and adds the two top
values of the stack. The
result of the addition will be
put back on the stack.

eq - Result Pops and compares the two
top values of the stack. If
they are equal, 1 will be put
on the stack, otherwise 0.

label Label name - An instruction that marks a
location in the code. Allows
for jumps in the code.

if true goto Label - Pops the top value from the
stack, if it is non-zero
performs a jump to the given
label.

fragment File Packets Pushes the file from the
strack and fragments it into
packets which are pushed
back on the stack.

Table 5.5: Basic instructions

5.6 COMPILER 51

Figure 5.14: Overall architecture of the compiler.

5.6 Compiler

5.6.1 The Architecture of the Compiler

Figure 5.14 shows the architecture of the compiler. The compiler takes as input a
program expressed in the CoNSoLe language. This language can refer to external appli-
cations, which is explained in section 5.3.5 and in section 5.5.4. The CoNSoLe program
will be compiled to one or more ACs. The AC meta-model is also depicted in figure
5.12. The compiler uses a NC to obtain information about the network as well as to
deploy ACs and applications to the individual NEs.

5.6.2 Compiling CoNSoLe statements

Table 5.6 shows an overview of how CoNSoLE statements are translated to AC state-
ments.

select The select statement is compiled to a HQL query. In our prototype, all the virtual
NEs are Java objects that run in the same Java Virtual Machine. Therefore every
NE can answer queries about the network. This is explained in more detail in
appendix G.

send The send statement is compiled to a set of statements outlined in table 5.6, that
create a packet that contains the return values of another statement. First the
statement argument is evaluated. This statement may leave values on the stack.
These values will be encapsulated in a User Datagram Protocol (UDP) packet and
send it to some port on an IP-address.

create The create statement compiles to a series of connect instructions, for every
involved NE, except for the last NE. This is similar with routes, but instead of
compiling to a connect instruction, an AC is deployed that forward packets to the
next NE in the path.

52 CONSOLE: A NETWORK SERVICE DSL 5.6

When the create statement is not issued to the NE that maintains the connection,
or is the beginning of the route, additional work has to be done. This is described
in section 5.6.4. Creating a route requires a model of the network, otherwise it
is impossible to calculate the shortest path between the source and target NEs.
Discovering this network model is explained in section 5.6.3.

store The store statement compiles to the fragment statement and a series of send
statements. The first statement fragments the file(s) into packets. Then it creates
a number of routes dedicated to transport these packets. It relies on the create
statement to create the routes. Then it uses the send instruction to put the packets
on these routes.

install, uninstall, start, stop The install statement is similar to the uninstall, start
and stop statement and is compiled to equally named statements – install in this
case – for every involved NE. Then the select clause is evaluated to a collection
of applications that must be installed. Then the second select clause is evaluated
which is part of the where statement. If the AC would be an agent, then for every
application, the code in the second column would created and executed at every
NE of the where clause.

move The move statement is compiled to a series of statements that stop and uninstall
the application and then install and start the application on another NE. Moving
running code is only possible with ACs. This is shown in Appendix E.

5.6.3 Central and Decentral Network discovery
Given a network service specification, the compiler calculates the behavior (or state-
ments) for the individual NEs. This requires knowledge about the network. There are
two ways to discover the network: central and decentral. A central approach puts a
demand on the compiler to (partially) discover the network. This can be done by per-
forming a depth-first or a breadth-first search on a NC. The only requirement is that
a NC can return the NCs of its neighbors. A decentral approach frees the compiler
from having to obtain a (partial) model of the network. This can be done by generating
ACs that have to ability to autonomously discover the network. Such an application
is usually called an agent. The algoritm for autonomous discovery is contained in the
modules as described in section 5.4.5. We use decentral network discovery in the imple-
mentations of the case studies. The next section explains which method is preferred in
which situation.

5.6.4 Possible compiler strategies
Depending on the circumstances of the network, the compiler can decide to generate
different output, given the same input. This relates to the initialization part of the AC
that finds the right NE before it starts executing. Imagine an application where infor-
mation about Network Element A (NEA) needs to be communicated to an application
on NED. Figure 5.15 shows three strategies how the compiler can address this problem.
The first strategy is to put an application on NEA and on NED that communicate with
each other. The second strategy shows an agent on NEA that travels to NED. The

5.6 COMPILER 53

CoNSoLe statement Application Component Instruc-
tions

SELECT PUSH (hqlQuery)
query(hqlQuery) QUERY

SEND statement PUSH port
TO ip:port PUSH ipAddress

CREATE PACKET
PUSH udp
SEND

CREATE Link PUSH where
where using CONNECT using

CREATE Route PUSH where
where using ROUTE using

STORE selectResult FRAGMENT file
CREATE route
SEND

DELETE Link PUSH where
where using DISCONNECT using

INSTALL PUSH selectResult
select where using INSTALL using

MOVE PUSH application
select where using STOP

PUSH application
UNINSTALL

PUSH application
INSTALL
PUSH application
START

COMPILE select COMPILE selectResult

Table 5.6: An overview of how CoNSoLE statements are translated to AC statements.

54 CONSOLE: A NETWORK SERVICE DSL 5.6

Figure 5.15: The compiler can use three strategies – or a hybrid variant thereof – to distribute
ACs in the network. The first shows two agents that communicate with each other. The second
shows an agent that travels to the NE of interest. The third shows a situation in which every
NE contains an agent.

third strategy shows a brute-force solution where every NE contains the application.
Table 5.7 shows the main advantages and disadvantages of each strategy. This list is
not complete but only contains the main concerns.

1 DELETE Link
2 FROM
3 SELECT query(
4 SELECT * FROM NetworkElement ne1 WHERE ne1.identifier = A
5)
6 TO
7 SELECT query(
8 SELECT * FROM NetworkElement ne2 WHERE ne2.identifier = C
9)

Consider the network topology of figure 5.15. Now imagine that we issue the above
CoNSoLe program to NCA. This code would simply compile to “PUSH C; DISCON-
NECT”. However, additional effort is required if the same program was issued to NCD,
since it can not remove the link between A and C. To solve this issue, the compiler
can apply one of the three strategies depicted in figure 5.15. Appendix D describes a
solution for case study 4.2 by putting additional code in the AC that causes it to explore
the network until it finds the NE on which it can perform the disconnection of the link.

Strategy Advantage Disadvantage
1. Communicate Reduced bandwidth. E.g. an

statement to disconnect a link costs
less bandwidth than uploading an
AC that will disconnect the link.

Can get isolated when
links disappear

2. Agent Can perform tasks autonomously.
E.g. network discovery

Traveling takes time.
Not efficient when
agents grow large.

3. Everywhere Quick response, fail safe because of
redundancy.

Wasted storage space
because of the redun-
dancy.

Table 5.7: The advantages and disadvantages of the three compiler strategies.

5.7 COMPARISON WITH EXISTING WORK 55

Figure 5.16: An AC maintains a copy of its own source code. When it detects a change in
the network it instructs the compiler to recompile itself.

5.6.5 Dealing with the dynamics of the network

Case study 4.6.1 illustrates an application that creates a shortest path (route) between
two NEs which becomes invalid when a new NE appears in the network. To deal with
this issue, we had to extend the architecture of the compiler. Figure 5.16 shows how this
problem can be addressed. The NE broadcasts feedback signals that can be detected by
ACs. ACs that can respond to feedback contain a copy of their own source code. In the
case of a change in the network an AC can instruct the compiler to recompile itself.

5.6.6 Implementing the Compiler as a Model Transformation

The compiler has been implemented using the Atlas Transformation Language (ATL),
described in section 3.4. The model transformation takes as input the meta-model of
the CoNSoLe language as well as the meta-model for an AC. Then it transforms the
elements of a given CoNSoLe program into one or more ACs. When the network is
discovered centrally, the compiler also needs a model of the network as input. In our
implementation we implemented a decentral approach and generated agent ACs. As
stated before this frees the compiler from having to know the network. For a broader
view of the implementation, see appendix G.

5.7 Comparison with existing work

In this section we will compare the solution: the CoNSoLe language, with existing work
that solves similar problems. We will compare the following areas of the CoNSoLe lan-
guage with existing work: obtaining network information, manage topologies and routes,
supporting distributed applications and using recompilation to recover from errors in the
CNS specification.

56 CONSOLE: A NETWORK SERVICE DSL 5.8

Obtaining information from the network is the most important aspect of the solution.
TinyDB (section 2.3.3) is a DSL entirely created to obtain information from the network.
If CoNSoLe would be implemented in a real network, TinyDB would be a good candidate
to replace the HQL library that is currently used to obtain information. All the other
languages in chapter 2 also contain mechanisms to obtain network information. In our
prototype, we can not use triggers and timing intervals like in TinyDB.

Changing the topology of a wireless network is no new activity. For example, when
necessary the routing protocols in TinyDB networks can automatically establish connec-
tions to NEs that are nearby. These routing protocols try to establish a tree structure
in which messages are always send to the root of the tree. There are also other protocols
that manage network topologies, for example in this article by Frey [10]. We are not
aware of any languages that allow the end-users to change the wireless network topology
for themselves, however this will not be a technical problem. On the other hand, the
CoNSoLe language can create tree routing structures like TinyDB, unless a module is
created that takes care of this task.

Creating application specific routes can be done with Active Networks [35] (section
2.2.2). The route can be determined by the executable code that is contained in a
packet or by the switchlets that are installed on the routers. Our approach is different
with regard to the executable code. We use a global statement from which the compiler
calculates the NEs that should receive their – possible customized for that NE – code.
In active networks, this code must be specified in detail by the user, also the distribution
of this code must be programmed. Configuration routes is in general a manual activity,
also because it is an activity primarily for network maintainers. Our approach would be
a step towards creating routes in an algoritmic fashion.

Distributing and deploying third-party applications is currently hard to do, since it
requires a generic runtime environment on every NE. A possible generic environment
could be VMWare [40], which already supports installing, starting, stopping and moving
of operating systems. These commands can be issued by an external application to the
VMWare Application Programming Interface (API), hereby coordinating the location of
operating systems in the network. Where the VMWare API only contains the low-level
instructions to move operating systems, the CoNSoLe language contains the high-level
instructions to obtain information as well as instructions to move collections of operating
systems, given a set of constraints.

In this research we use recompilation to recover from an invalid CNS, caused by the
modification of the network topology. A similar solution is found in [39], where faults
detected in networked Field Programmable Gate Arrays (FPGA) are automatically re-
stored by reconfiguring the FPGAs. Using recompilation is a simple and interesting
strategy since it does not require detailed knowledge about the kind of error or compli-
cated recovery procedures. In our approach, the change detection is different. In [39],
recompilation takes places after a fault has occured. We can react a bit earlier because
of the feedback signals that are broadcasted before possible faults can occur.

In general we can say that the individual aspects of the solution are not new, however
putting these solutions together in one network language has not been done before to
the best of our knowledge.

5.8 CONCLUSIONS 57

5.8 Conclusions
In this chapter we presented a language for adapting and creating network services.
The select statement turned out to be the most used statement in the language. We
implemented this statement, so that every NE could respond to the query. This is
a major advantage since it abstracts from the problem of distributing a query in the
network and gathering the results.

We presented a VM in which ACs can be executed. The limited expressiveness of
the DSL is compensated by introducing modules that can be programmed in a GPL.
The statement set of the VM is described and besides the basic statements, it reflects
the essentials of most network services.

The main activity of the compiler is translating statements that were issued to mul-
tiple NEs to the statements for each individual NE. For the rest the translation is rather
straightforward. By the introduction of feedback from the network we made an initial
approach for dealing with the problems of compiling to a dynamic target.

Chapter 6
Conclusion

Reasoning draws a conclusion, but does not make the conclusion certain, un-
less the mind discovers it by the path of experience.

Roger Bacon

In this chapter we will have a meta-discussion regarding this work in section 6.1. In
section 6.2 the answers to the research questions will be presented.

6.1 Introduction
In this thesis we have approached network programming from an entirely different per-
spective. Where normal network development starts working from individual network
elements, we approach the network and its services as a whole. The CoNSoLe language
has many similarities with SQL. We think the reason is, because both languages are
developed to retrieve or change the collective properties of a set; e.g. updating the
salaries of all employees in a database is similar to instructing every NE to install some
application.

We have also seen that the select statement as the basic operation for obtaining in-
formation, is of much importance for other statements as well as for the end-application.
This statement can be constrained, which allows to create a (small) model represent-
ing a (small) part of the network. Another statement or an end-application can make
subsequent decisions based upon this model.

When we look back at the case studies, CoNSoLe can are already perform many
collective actions to the network with only a few instructions. This list of instructions
may be expanded to improve or extend the language in certain areas, possible to perform
other network related tasks. But when it comes to information retrieval, topologies,
routes and distributed applications we have the set of necessary instructions.

Judging by the cooperation between Cisco and VMWare to improve the migration
of virtual machines [7], the part of the language that manages third-party applications
on NEs is indeed relevant. It can be expected that new applications will arise that
automatically coordinate the deployment of operating systems that run in environments

59

60 CONCLUSION 6.2

like VMWare. There can be several reasons for moving operating systems, e.g. disaster
recovery or lower electricity costs in another virtual datacenter.

We recognize that there are network related problems in which a network DSL can
not provide any assistance. To overcome a part of this problem, we introduced modules
that allow external developers to implement their own ideas. Also, a module is not a
collective network service, but rather a local system library that contains often required
functionality.

6.2 Answering the research questions
In this section we give an overview of the research questions. First we will give a short
answer in quotes (“...”) followed by a more detailed explanation. The first four research
questions will be related to the domain of network engineering. The final two research
questions are related to the domain of DSL engineering.

Network engineering related research questions
What is programming a network service? “Creating and distributing applications

that make use of the capabilities of a NE and in concert produce a service for the
end-user.”

Changing a network’s behavior requires a programmable network, for this reason
IP-based networks are not suitable since their behavior is predetermined. Alterna-
tive programmable network models are for example Active Networks and UPVN.
We picked the latter because it allows us to determine our own runtime environ-
ment for our applications.

What is the architecture of a network service language? “There are four major
activities when dealing with network services: topology configuration, application
specific routing, supporting distributed applications and network information re-
trieval”

The primary interest of this research are the primitive instructions that are re-
quired for composing a CNS. The first decision was to choose between a GPL and
a DSL. By developing a DSL instead of a GPL we avoided inconsciously putting
network service knowledge into a GPL, whereas with a network service DSL, every
detail related to a network service explicitly ends up in the language, the compiler
or the runtime environment. Therefore we can make a clear analysis of the instruc-
tions that are common for programming network services. More details regarding
the architecture can be found in chapter 5.

What are the essential/common instructions to compose network services?
“See section 5.5 for an overview of the instructions that are relates to obtaining
information, manipulating topologies and routes and to support distributed appli-
cations.”

The main activity of a CoNSoLe program turns out to be providing information
about the network to the end-user, so the end-user is able to create a model of
the network upon which it can base subsequent decisions. Obtaining information
requires constraints, because in the extreme case of an infinitely large network,

6.3 ANSWERING THE RESEARCH QUESTIONS 61

the model of the network will grow infinitely large. For this reason the select
instruction that acts similar to the SQL select statement was included in the
language because it can constrain the amount of desired information.

If we regard a network simply as a collection of connected NEs, the concept of a
topology arises, as well as the virtual representation of a topology: routes. Besides
obtaining information a CNS language should be able to manipulate topologies
and routes. All the other behavior of a network is determined by applications that
are too specific and reside in an other domain, to which a CNS language can not
be of any assistance, except for deploying the application to the required NEs.

Is there an instruction set that can support all network services? “This answer
relates to the instruction set of the CoNSoLe language: yes, if we consider topolo-
gies and routes and packets. No, if we include operating on the contents of pack-
ets.”

This question is concerned with the completeness of the discovered instruction
set. If we consider topologies, routes and applications as the entire domain of
network services, the CoNSoLe language contains all the essential instructions. If
we widen this domain, additional instructions are required. Widening the domain
also involves the risk of gradually turning the DSL into a GPL.

DSL engineering related research questions

How to cope with the dynamics of the network? “Applications do not need knowl-
edge about the network topology. When the topology changes the compiler recom-
piles the application for the new topology. The change-detection can be done by
the application itself or by the compiler. (This is possible because the compiler is
domain specific, e.g. the Java compiler will never be able to do this)”

This is an interesting contribution to the field of DSL development. Because of the
overlap with the network domain, the compiler faces the challenge of compiling to
a dynamic target. We only addressed the issue of a dynamic topology by detecting
the changes and recompiling the applications. Recompilation allows the compiler
to restore possible topology related defects that were caused by the changes in the
network.

How can DSL design help understand the concepts of the application domain?
“The virtual machine will reflect all essential service elements”

The sixth sub question is concerned with DSL development as a method for doing
domain analysis. Developing a DSL from scratch requires a careful investigation of
the problem domain. Every statement that is included in the DSL, reflects a piece
of knowledge about the domain. Note that the language is best implemented as a
prototype, because creating a fully functional and stable DSL requires too much
time when the DSL development process is only used for performing a domain
analysis.

62 CONCLUSION 6.3

6.3 Future work

6.3.1 ATL model transformations
The compiler was the most difficult part to implement. ATL model transformations
assume that all knowledge is contained in the input models and that the transformation
rules and the Object Constraint Language (OCL) are sufficient to perform the model
transformation. For example, ATL can not generate a timestamp that can be used as
an identifier. There are model transformations that support third party libraries for
these purposes, but ATL does not support this. A workaround is to shift this problem
to the input model(s). For example, an element that contains the random identifier can
be added to the input model. Better cooperation between ATL and other programming
languages would be a big improvement.

Another problem is the refactoring of models. At the moment, renaming an ele-
ment in a meta-model renders all its instances invalid. This and similar change-related
problems can be improved by better tool support.

6.3.2 Compiling to a dynamic target
In this research we only focused on the dynamics of the network topology. There are more
dynamic aspects to a network that may cause errors in a CNS. Similar issues occur in
the field of self-healing operating systems [34] where the operating system automatically
detects and tries to recover from errors. Further research is needed in which situations
the solution of recompilation is feasible.

Bibliography

[1] C. Bauer and G. King. Java Persistence with Hibernate. Manning Publications
Co., Greenwich, CT, USA, 2006.

[2] J. Bézivin, E. Breton, P. Valduriez, and G. Dupé. The atl transformation-based
model management framework. Research Report 03.08, IRIN, University of Nantes,
2003.

[3] F. Bott, editor. ECLIPSE an integrated project support environment. Peter Pere-
grinus, Hitchin, Herts., UK, UK, 1989.

[4] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling Framework. Pearson
Education, 2003.

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple network management
protocol (snmp).

[6] D. D. Chamberlin and R. F. Boyce. Sequel: A structured english query language. In
FIDET ’74: Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop
on Data description, access and control, pages 249–264, New York, NY, USA, 1974.
ACM.

[7] Cisco Systems, Inc. Network Implications of Server Virtualization in the DataCen-
ter, 2007.

[8] A. v. Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated
bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

[9] E. W. Dijkstra. The problem of the shortest subspanning tree., chapter 22. Prentice-
Hall, 1976.

[10] H. Frey. Scalable geographic routing algorithms for wireless ad hoc networks. Net-
work, IEEE, 18(4):18–22, 2004.

[11] S. Gangadharpalli, U. Golwelkar, and S. Varadarajan. A topology based localization
in ad hoc mobile sensor networks. In R. Battiti, M. Conti, and R. L. Cigno, editors,
Wireless On-Demand Network Systems, volume 2928 of Lecture Notes in Computer
Science, pages 16–28. Springer, 2004.

63

64 BIBLIOGRAPHY 6.3

[12] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. Network program-
ming using PLAN. Lecture Notes in Computer Science, 1686:127–??, 1999.

[13] R. I. G. Hughes. The ising model, computer simulation, and universal physics,
1999.

[14] F. Jouault and J. Bézivin. Km3: a dsl for metamodel specification. In Proceedings
of 8th IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems, LNCS 4037, pages 171–185, Bologna, Italy, 2006.

[15] F. Jouault, J. Bézivin, and I. Kurtev. Tcs:: a dsl for the specification of textual
concrete syntaxes in model engineering. In GPCE ’06: Proceedings of the 5th
international conference on Generative programming and component engineering,
pages 249–254, New York, NY, USA, 2006. ACM.

[16] S. Kent. Model Driven Engineering. In Proceedings of IFM 2002, LNCS 2335, pages
286–298. Springer-Verlag, unknown 2002.

[17] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003.

[18] I. Kurtev, J. Bézivin, F. Jouault, and P. Vulduriez. Model-based DSL Frameworks,
Oct. 2006.

[19] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In
International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, Oct. 2002.

[20] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In SIGMOD, June 2003.

[21] R. J. Meijer, R. J. Strijkers, L. Gommans, and C. de Laat. User Programmable
Virtualized Networks, 2006.

[22] M. Mernik, J. Heering, and A. M. Sloane. When and How to Develop Domain-
Specific Languages, 2005.

[23] J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object Man-
agement Group (OMG), 2003.

[24] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge Univer-
sity Press, New York, NY, USA, 1999.

[25] J. Moy. The OSPF specification, 1989.

[26] R. Müller, G. Alonso, and D. Kossmann. A virtual machine for sensor networks.
SIGOPS Oper. Syst. Rev., 41(3):145–158, 2007.

[27] T. Parr and R. Quong. ANTLR: A predicatedLL (k) parser generator, 1995.

6.3 BIBLIOGRAPHY 65

[28] H. Paulino and L. Lopes. A service-oriented language for programming mobile
agents. In P. Stone and G. Weiss, editors, Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 1294–1296.
ACM Press, 05 2006.

[29] A. Perlis. Epigrams on Programming. SIGPLAN Notices, 17(9):7–13, September
1982.

[30] D. M. Piscitello and A. L. Chapin. Open Systems Networking: TCP/IP and OSI.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1993.

[31] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), Oct. 1985.
Updated by RFCs 2228, 2640, 2773, 3659.

[32] J. Schonwalder and H. Langendorfer. Tcl extensions for network management ap-
plications, 1995.

[33] E. Seidewitz. What models mean. IEEE Softw., 20(5):26–32, 2003.

[34] M. W. Shapiro. Self-healing in modern operating systems. Queue, 2(9):66–75, 2005.

[35] D. L. Tennenhouse and D. J. Wetherall. Towards an active network architecture.
Computer Communication Review, 26(2), 1996.

[36] U. Warrier and P. Relan and O. Berry and J. Bannister. A network management
language for osi networks. SIGCOMM Comput. Commun. Rev., 18(4):98–105, 1988.

[37] Wikipedia. IJkdijk — Wikipedia, The Free Encyclopedia, 2008. [Online; accessed
22-April-2008].

[38] H. Xie, A. Krishnamurthy, A. Silberschatz, and Y. R. Yang. P4P: Explicit Com-
munications for Cooperative Control Between P2P and Network Providers , 2008.

[39] W. Xu, R. Ramanarayanan, and R. Tessier. Adaptive fault recovery for networked
reconfigurable systems. In FCCM ’03: Proceedings of the 11th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, page 143, Washington,
DC, USA, 2003. IEEE Computer Society.

[40] D. Zimmer. VMware Server and VMware Player. The way forward for Virtualiza-
tion. BoD, 2006.

Appendix A
CoNSoLe Textual Concrete Syntax

This appendix presents the syntax of the CoNSoLe language. The Textual Concrete
Syntax notation is used to describe the syntax [15].

1 syntax nql {
2

3 primitiveTemplate identifier for String default using NAME:
4 value = "%token%";
5

6 primitiveTemplate stringSymbol for String using STRING:
7 value = "%token%",
8 serializer="’\’’ + %value%.toCString() + ’\’’";
9

10 primitiveTemplate integerSymbol for Integer default using INT:
11 value = "Integer.valueOf(%token%)";
12

13 primitiveTemplate floatSymbol for Double default using FLOAT:
14 value = "Double.valueOf(%token%)";
15

16 -- BEGIN Class templates
17

18 template Program main
19 : statements
20 ;
21

22 template Statement abstract;
23

24 template Select
25 : "SELECT" functionName "(" arguments{separator = ","} ")"
26 ;
27

28 template Argument
29 : value
30 ;
31

32 template Send
33 : "SEND" statement "TO" destination
34 ;
35

36 template Destination

67

68 APPENDIX A

37 : ipAddress":"ipPort
38 ;
39

40 template Delete
41 : "DELETE" type where using
42 ;
43

44 template Create
45 : "CREATE" type where using
46 ;
47

48 template STORE
49 : "STORE" select
50 "AS" filename
51 where "(" parameters{separator = ","} ")"
52 ;
53

54 template Where abstract;
55

56 template LinkWhere
57 : (isDefined(from) ? "FROM" from)
58 "TO" to
59 ;
60

61 template LocationWhere
62 : "AT" to
63 ;
64

65 template Using
66 : "USING" moduleName
67 ;
68

69 template ApplicationStatement abstract;
70

71 template Install
72 : "INSTALL" select where using
73 ;
74

75 template Uninstall
76 : "UNINSTALL" select where using
77 ;
78

79 template Start
80 : "START" select where using
81 ;
82

83 template Stop
84 : "STOP" select where using
85 ;
86

87 template Move
88 : "MOVE" select where using
89 ;
90

91 template COMPILE
92 : "COMPILE" select
93 ;
94

95 -- END Class templates

Appendix B
Solution to Case Study 1

This case study was implemented using the Agent strategy, described in section 5.6.4.
The following code was issued to the compiled and tries to disconnect NE 5 from NE 6:

1 DELETE Link
2 FROM
3 SELECT query(
4 SELECT * FROM NetworkElement ne1 WHERE ne1.identifier = 5
5)
6 TO
7 SELECT query(
8 SELECT * FROM NetworkElement ne2 WHERE ne2.identifier = 6
9)

10 USING "DepthFirstSearch"

The generated output is an Agent AC that can be put on every NE in the network,
because it starts traveling the network in a Depth-first fashion until it finds NE 5. Once
arrived at NE 5, it will try to disconnect the link to NE 6 and terminate.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
3 xmlns:ac="ac">
4 <ac:ApplicationComponent identifier="travelTest" revision="1">
5

6 <functions name="main">
7

8 <!-- Put some objects on the stack, the QUERY
9 instruction marks the end with "NULL"

10 -->
11 <statements name="LABEL">
12 <arguments type="String" value="loop" />
13 </statements>
14

15 <!-- After the next statement we are on
16 another NE and have its ID on the stack
17 -->
18 <statements name="VISIT_NEXT" />
19 <statements name="PUSH">
20 <arguments type="Integer" value="5" />
21 </statements>

69

70 APPENDIX B

22 <statements name="EQ" />
23

24 <!-- If the result of VISIT_NEXT equals -1
25 we are done traveling
26 -->
27 <statements name="IF_TRUE_GOTO">
28 <arguments type="String" value="end" />
29 </statements>
30

31 <statements name="JUMP">
32 <arguments type="String" value="loop" />
33 </statements>
34

35 <statements name="LABEL">
36 <arguments type="String" value="end" />
37 </statements>
38 <statements name="PUSH">
39 <arguments type="String" value="NE found, disconnecting" />
40 </statements>
41 <statements name="PRINT" />
42 <statements name="PUSH">
43 <arguments type="String" value="NULL" />
44 </statements>
45 <statements name="PUSH">
46 <arguments type="Integer" value="6" />
47 </statements>
48 <statements name="DISCONNECT" />
49 </functions>
50

51 </ac:ApplicationComponent>
52

53 </xmi:XMI>

The code on the lines 10-30 keeps looping until NE 5 is found. The VISIT NEXT
instruction groups the serialize, move, deserialize and start instructions, which together
cause the AC to be suspended, moved to the next NE, determined by the DepthFirst-
Search module. From there the loop starts over again. The lines 32-46 print some
information and disconnect the link to NE 6.

Appendix C
Solution to Case Study 2

This case study was performed on a network topology as depicted in figure C.1. A route
was created from NE F to NE A and NE B. To do this, the following CoNSoLe program
was compiled:

1 CREATE Route
2 FROM
3 SELECT query(
4 SELECT * FROM NetworkElement ne1 WHERE ne1.identifier = F
5)
6 TO
7 SELECT query(
8 SELECT * FROM NetworkElement ne2 WHERE ne2.neighbors.size = 1
9)

10 USING "DijkstraShortestPath"

In this case study, the compiler obtains a complete model of the network and calcu-
lates the shortesth path between NE F and NE A and NE B using the Dijkstra shortest
path algorithm. Now it puts the following AC code on NE F:

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
3 xmlns:ac="ac">
4 <ac:ApplicationComponent identifier="forwarder" revision="1">
5

6 <handlers handlerType="MSG_RECEIVED"
7 functionName="handleMessage" priority="5" />
8

9 <functions name="main">
10 <statements name="LABEL">
11 <arguments type="String" value="loop" />
12 </statements>
13 <statements name="SLEEP" />
14 <statements name="JUMP">
15 <arguments type="String" value="loop" />
16 </statements>
17 </functions>
18

19 <functions name="handleMessage">
20 <statements name="POP">

71

72 APPENDIX C

Figure C.1: The network topology used for case study 2

21 <arguments type="String" value="packetDestination" />
22 </statements>
23 <statements name="POP">
24 <arguments type="String" value="packetToken" />
25 </statements>
26 <statements name="POP">
27 <arguments type="String" value="packetType" />
28 </statements>
29

30 <statements name="PUSH">
31 <arguments type="String" value="packetToken" />
32 </statements>
33 <statements name="PUSH">
34 <arguments type="String" value="1209804020" />
35 </statements>
36 <statements name="EQ" />
37

38 <statements name="IF_TRUE_GOTO">
39 <arguments type="String" value="match" />
40 </statements>
41 <statements name="RETURN" />
42

43 <statements name="LABEL">
44 <arguments type="String" value="match" />
45 </statements>
46 <statements name="PUSH">
47 <arguments type="String" value="packetType" />
48 </statements>
49 <statements name="PUSH">
50 <arguments type="String" value="packetToken" />
51 </statements>
52 <statements name="PUSH">
53 <arguments type="String" value="C" />
54 </statements>
55 <statements name="PUSH">
56 <arguments type="String" value="upvn" />
57 </statements>
58 <statements name="SEND" />
59 <statements name="RETURN" />

SOLUTION TO CASE STUDY 2 73

60

61 </functions>
62

63 </ac:ApplicationComponent>
64 </xmi:XMI>

The above AC will be deployed on NE F. The lines 9-17 are the main loop, the AC is
removed from the pool of active threads (SLEEP on line 13) if nothing happens. In case
of an event, the AC will wake up and jump to line 19. At this point it will check if the
packet contains the token 1209804020, which is a uniquely generated ID when the AC
is compiled. This token is used to determine if a packet matches this particular route.
If there is a match, the packet will be forwarded to NE C (line 43-58). Two similar ACs
will be put on NE C. One forwards packets to NE A and the other forwards packets to
NE B. This causes the stream of packets to be split into two streams at NE C.

Appendix D
Solution to Case Study 3

To implement this case study, we first checked if it was possible to create an AC. First
we created a handler that responds to incoming packets (line 6-7 and 24-77). A second
handler was created to flush the packet memory every 500 milliseconds (line 9-12 and
77-85). The handleMessage function assigns the different parts of the packet to variables
using the pop instruction. Then it checks if the token of the packet is already in the
packet memory, if so, the packet is discarded. Otherwise it is broadcasted. Because of
time constraints, this case study was only implemented as ACs. We did not create rules
in the compiler to map CoNSoLe statements to these kind of ACs.
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
3 xmlns:ac="ac">
4 <ac:ApplicationComponent identifier="forwardHold" revision="1">
5

6 <handlers handlerType="MSG_RECEIVED"
7 functionName="handleMessage" priority="5" />
8

9 <handlers handlerType="CLOCK_TICK" functionName="handleTick"
10 priority="5">
11 <arguments type="Integer" value="500" />
12 </handlers>
13

14 <functions name="main">
15 <statements name="LABEL">
16 <arguments type="String" value="loop" />
17 </statements>
18 <statements name="SLEEP" />
19 <statements name="JUMP">
20 <arguments type="String" value="loop" />
21 </statements>
22 </functions>
23

24 <functions name="handleMessage">
25 <statements name="POP">
26 <arguments type="String" value="packetDestination" />
27 </statements>
28 <statements name="POP">
29 <arguments type="String" value="packetToken" />

75

76 APPENDIX D

30 </statements>
31 <statements name="POP">
32 <arguments type="String" value="packetType" />
33 </statements>
34

35 <statements name="PUSH">
36 <arguments type="String" value="packetToken" />
37 </statements>
38 <statements name="CONTAINS" />
39

40 <!-- If this token is new, store it and broadcast packet. Otherwise discard -->
41 <statements name="IF_TRUE_GOTO">
42 <arguments type="String" value="discard" />
43 </statements>
44 <statements name="PUSH">
45 <arguments type="String"
46 value="Token is new, storing..." />
47 </statements>
48 <statements name="PRINT" />
49

50 <statements name="PUSH">
51 <arguments type="String" value="packetToken" />
52 </statements>
53 <statements name="STORE">
54 <arguments type="String" value="5" />
55 </statements>
56

57 <statements name="PUSH">
58 <arguments type="String" value="packetType" />
59 </statements>
60 <statements name="PUSH">
61 <arguments type="String" value="packetToken" />
62 </statements>
63 <statements name="PUSH">
64 <arguments type="Integer" value="-1" />
65 </statements>
66 <statements name="PUSH">
67 <arguments type="String" value="upvn" />
68 </statements>
69 <statements name="SEND" />
70

71 <statements name="LABEL">
72 <arguments type="String" value="discard" />
73 </statements>
74 <statements name="RETURN" />
75 </functions>
76

77 <functions name="handleTick">
78 <statements name="PUSH">
79 <arguments type="String"
80 value="Resetting packet memory" />
81 </statements>
82 <statements name="PRINT" />
83 <statements name="RESET_PACKETMEM" />
84 <statements name="RETURN" />
85 </functions>
86

87 </ac:ApplicationComponent>
88 </xmi:XMI>

Appendix E
Solution to Case Study 4

Moving an Application Component
In the previous case studies we already used AC agents that travel over the network. In
this appendix we will explain how the modules work that calculate which NE should be
visited next by the Agent. Consider the following code fragment, taken from the Agent
described in B:

1 <statements name="VISIT_NEXT" />
2 <statements name="PUSH">
3 <arguments type="Integer" value="5" />
4 </statements>
5 <statements name="EQ" />

The VISIT NEXT instruction is redirected to the DepthFirstSearch (DFS) module.
This instructions invokes the getNextDestination() method in the module. The DFS
module knows the AC and checks if it already stored some calculations in the module-
Memory of the AC. If this is not the case, it initializes the collections toVisit, visitedGray
and visitedBlack. Then it performs the normal DFS steps, discovering new neighbors,
put them in the toVisit list and mark neighbors that have already been visited etc. After
the DFS module has determed which NE should be visited next, it returns the identifier
of this NE. Figure E.1 shows the structure of this explanation.

Figure E.1: Structure of the DepthFirstSearch Module

77

78 APPENDIX E

When the virtual machine receives the identifier of the NE that will be visited next,
it pushes this value on the stack of the AC. Then it creates a packet, containing the
thread of the AC and the AC itself. Before sending this packet to the next NE, it termi-
nates the thread in which the AC was running. When the next NE receives the packet,
another Agent recognizes the packet as being an agent and resumes the thread with the
AC. From there the procedure starts over again.

Moving a Java Application
We also experimented to move and resume a normal Java application. This was possible,
but the major drawback is the fact that the Java applications needs to manage its own
memory and program counter. The following pseudo-code shows how this is done:

1 public static void main()
2 {
3 if(resumeState())
4 restoreVariables(); // Restore previous state
5 jumpToPreviousMethod();
6 }
7 else {
8 initialize(); // This was the first time the application started
9 }

10 }

The variables and program counter information were stored in an external XML file.
A major drawback of this approach is the tedious work of doing your own administration
of context information. Also, if this Java program would issue a CoNSoLe statement to a
Network Component (NC) to move itself, something (either the NE, or an AC that runs
in the Virtual Machine) must know of the existance of this type of Java applications.
Also this ’something’ must move the XML file that contains the context information of
the Java application. A better solution would be support from the Java Virtual Machine
to move suspended Java applications. Because of this, we only developed support for
moving ACs.

Appendix F
Solution to Case Study 5

For this case study we used the scenario from case study 3 (Appendix C). We equipped
every AC with the original source code. Then we introduced two new NEs: G and H.
This is illustrated in figure F.1. Since a NE can only forward packets to its neighbors, the
route between F and A and B has become invalid. We extended the ACs in the network
with a handler and an additional function to detect and handle feedback packets:

1 <handlers handlerType="FEEDBACK"
2 functionName="handleFeedback" priority="5" />
3

4 <functions name="handleFeedback">
5 <statements name="PUSH">
6 <arguments type="String" value="sourceCode" />
7 </statements>
8 <statements name="COMPILE"/>
9 </functions>

The sourceCode variable (line 6) is a reserved variable that refers to the original CNS
specification. The compile instruction will invoke the compiler. The compiler obtains a

Figure F.1: The network topology used for case study 5

79

80 APPENDIX F

new model from the network, performs a new shortest path calculation and puts new
ACs on NE F, E and C, replacing the old ACs.

Appendix G
Implementation of the Virtual Machine

Figure G.1 shows how the virtual machine, the compiler and the virtual network are im-
plemented. All objects that reside in the “Java Virtual Machine” area are Java objects.
The following scenario is depicted: A ’normal’ Java application called “HelloWorld”
contains zero or more CoNSoLe statements. The application also contains a NC (im-
plemented using Java’s Remote Method Invocation (RMI)). The CoNSoLe program is
passed onto the NC which in turn passes it to the virtual network element. The Vir-
tual Network Element passes it on to the compiler. The compiler is a Java object that
acts as a bridge to the ATL transformation. The transformation receives the CoNSoLe
program and returns one or more (textual) ACs. These textual ACs are wrapped into a
Java object called “Ac” and are executed in the virtual machine.

Implementing support for Queries
Implementing support for queries has been done using the Hibernate Query Language
(HQL) library. This library knows all instances of every Java object. Now the vir-
tual machine can perform a query over the (virtual) network, because every (virtual)
NetworkElement is actually a Java object.

81

82 APPENDIX G

Figure G.1: Implementation of the Virtual Machine, the compiler, and the virtual network
elements

