

ISSUES OF ITERATIVE MDA-BASED

SOFTWARE DEVELOPMENT

PROCESSES

MASTER THESIS

Author: Geert Vos

Thesis for the masters degree Computer Science.

Department of Computer Science, University of Twente, the Netherlands.

Getronics PinkRoccade

Apeldoorn, 5-4-2008

Supervising committee:

dr. I. Kurtev (first supervisor)

prof. dr. ir. M. Akşit

dr. ir. K. G. van den Berg

A. Goknil, MSc.

ir. J.W. van Veen

drs. H. Nieboer

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 2/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 3/103

I TITLE PAGE

Title: Issues of iterative MDA-based software development processes

Author: Geert Vos BSc.

Student number: S0107670

MSc program: Computer Science

Track: Software Engineering

Institute: University of Twente, the Netherlands

Faculty: Electrical Engineering, Mathematics and Computer Science

Company: Getronics PinkRoccade

 Fauststraat 3

 7323 BA Apeldoorn

 The Netherlands

 http://www.getronicspinkroccade.nl

Date: 5-4-2008

Supervising committee:

dr. I. Kurtev (first supervisor)

University of Twente

prof. dr. ir. M. Akşit

University of Twente

dr. ir. K. G. van den Berg

University of Twente

A. Goknil, MSc.

University of Twente

ir. J.W. van Veen

Getronics PinkRoccade

drs. H. Nieboer

Getronics PinkRoccade

Copyright 2008 G. Vos

http://www.getronicspinkroccade.nl/

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 4/103

II ABSTRACT

Since the beginning of computer programming people have been raising the level of abstraction. The

latest step in raising the level is probably Model Driven Engineering (MDE). In MDE, models are not

only used to assist in the development process, instead they are the primary artifacts. Model Driven

Architecture(MDA) is a specific form of MDE in which industry standards are adopted. MDA is based

on the following standards: Unified Modeling Language (UML), XML Meta Interchange (XMI),

Query/View/Transformation (QVT), Object Constraint Language (OCL) and Meta Object Facility (MOF).

Currently, there is a lack of knowledge and experience in applying MDA in an iterative development

process. With this project we try to obtain that knowledge and experience by conducting a case study.

In this case study an existing software system is rebuilt using the MDA approach and the Rational

Unified Process (RUP). By rebuilding this system we tried to answer two questions, what are the

critical issues of an iterative MDA-based development process and what are the critical issues with

respect to maintenance of an MDA-based product.

The major parts of the case study are the rebuilding of a small-sized software system using RUP and

MDA, and applying maintenance to that system. The first part of the case study consists of four

phases: the inception phase, elaboration phase, construction phase and the transition phase. In the

inception phase we developed an architecture for the system and an architecture for the MDA

approach. Both architectures were tested in the elaboration phase. In this phase the first use-case

was implemented. Two meta-models were created to implement this use-case, an ASP and a C# meta-

model. We also created two UML profiles. A profile for the domain models and a profile for user-

experience models. The meta-models and profiles were developed in the elaboration phase. Based on

the UML profiles, two models were made. A domain model, modeling the business objects of our

system and an user-experience model which models the user interface and navigation of our system.

The UML models were transformed into C# and ASP models using model transformations written in

QVT. In the construction phase the second use-case was implemented. The implementation required

adaption of the meta-models and transformations. Also a new meta-model was introduced: Sitemap.

This meta-model is used to model the main menu of the system at platform specific level. The last

phase of this project, the transition phase, consisted of two iterations. In the first iteration the rebuilt

system was tested and deployed. In the second iteration we applied maintenance to the system. We

implemented four change requests to observe the impact of the MDA approach with respect to

maintenance.

During the evaluation of this case study a number of issues were observed. The following issues were

identified: “Model and meta-model co-evolution is difficult”, “Structural incongruence increases

transformation complexity”, “Lack of object orientation in QVT”, “Transformation composition”, and

“Model composition is difficult”. A description and a solution (if known) is provided for each issue.

We concluded that the current state of the practice is that MDA is certainly possible and can be

applied in combination with an iterative development process. We concluded that current tools and

languages support the basic features needed for MDA, but that problems can be expected when

complexity of the models and transformations increases.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 5/103

III ACKNOWLEDGEMENTS

During this project a number of people have been very helpful to me. One of them is Ivan Kurtev. He

introduced me in the field of Model Driven Engineering, which lead to this assignment. As my first

supervisor he also helped me during my project, during the process of writing and especially finding

the structure for my thesis. I would also like to thank Harry Nieboer for the daily supervision at

Getronics PinkRoccade. Thanks to Harry the scope of the project was kept narrow. He also helped me

with details of the Rational Unified Process, one if his key expertise areas. I would also like to thank

Jan Willem van Veen from Getronics PinkRoccade. Jan Willem was the person that arranged my

internship at Getronics PinkRoccade and he helped me setting up my project. Of course I would also

like to thank the other people from Getronics PinkRoccade who discussed the topic of MDA with me

or who helped me with my project: Ad van Klaveren, Tim Abeln, Arash Nezami, Gert Veldhuizen van

Zanten en Kees van Sighem. I would like to thank Klaas van den Berg and Arda Goknil from the

University of Twente for their work on my thesis and for the support during my project. The last

person I would like to thank is my girlfriend Suzanne Snellenberg for the patience, the understanding

and for reading my work.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 6/103

IV LIST OF ABBREVIATIONS

Abbreviation Meaning
ASP Active Server Pages
CIM Computational Independent Model
CMOF Complete MOF
CR Change Request
DSL Domain Specific Language
EBNF Extended Backus Naur Form
EMF Eclipse Modeling Framework
EMOF Essential MOF
EPF Eclipse Process Framework
GPL General Purpose Language
MDA Model Driven Architecture
MDE Model Driven Engineering
MOF Meta Object Facility
OCL Object Constraint Language
OMG Object Management Group
OPENUP Open Unified Process
OpenUP Open Unified Process
ORM Object Relational Mapper
PIM Platform Independent Model
POC Proof of Concept
PSM Platform Specific Model
QVT Query/View/Transformation
RUP Rational Unified Process
SQL Structured Query Language
UC Use Case
UML Unified Modeling Language
UX User Experience
XMI XML Metadata Interchange

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 7/103

V LIST OF FIGURES

Figure 1: Thesis outline .. 16

Figure 2: Meta-level example ... 19

Figure 3: Meta-level architecture ... 19

Figure 4: Meta-model transformation pattern (Kurtev & van den Berg, Building Adaptable and

Reusable XML Applications with Model Transformations, 2005). ... 20

Figure 5: MDA layered model structure ... 24

Figure 6: Simplified MOF structure .. 24

Figure 7: QVT layered architecture .. 27

Figure 8: Software life cycle ... 29

Figure 9: Simplified schema of the waterfall model ... 30

Figure 10:Schema of the Iterative model ... 31

Figure 11: Phases and iterations of RUP .. 33

Figure 12: OpenUP Structure (Balduino, 2007) .. 36

Figure 13: Project phases ... 42

Figure 14: Project plan ... 42

Figure 15: Three tier architecture of Arend ... 44

Figure 16: Schematic application structure .. 45

Figure 17: Schematic view of models and transformations ... 46

Figure 18: Modeling layers ... 46

Figure 19: Domain model snippet .. 47

Figure 20: Examples of the persistency profile .. 48

Figure 21: User experience diagram of a form ... 49

Figure 22:Single form example screen ... 49

Figure 23: User experience diagram of a content bundle .. 49

Figure 24: Example of a content bundle .. 49

Figure 25: User experience diagram of a multiple input form ... 50

Figure 26: Multiple form example screen .. 50

Figure 27: Navigation example ... 50

Figure 28: Snippet of the menu structure .. 51

Figure 29: The modeled menu structure .. 51

Figure 30: A part of the C# meta-model ... 52

Figure 31: A part of the ASP meta-model .. 53

Figure 32: Sitemap meta-model ... 54

Figure 33: Transformation overview .. 55

Figure 34: Pattern for the user experience to asp transformation .. 55

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 8/103

Figure 35: Pattern for the user experience to C# transformation .. 56

Figure 36: Pattern for the user experience to Sitemap transformation ... 56

Figure 37: Pattern for the domain model to C# transformation .. 57

Figure 38: Evaluation map .. 62

Figure 39: Transformation package elaboration phase .. 65

Figure 40: Transformation package construction phase .. 66

Figure 41: Transformation pattern with changes in meta-model A ... 71

Figure 42: Transformation pattern for poor inheritance issue .. 75

Figure 43: Pattern for the issue of transformation composition .. 76

Figure 44: Model composition pattern ... 78

Figure 45:Pattern for the issue of model composition ... 78

Figure 46: Full domain model ... 95

Figure 47: User Experience model for Use-case 1 .. 97

Figure 48: User experience model for Use-case 2, part 1 ... 99

Figure 49: User experience model for Use-case 2, part 2 ... 100

Figure 50: Extra user experience model for testing purposes .. 100

Figure 51: User experience model to model menu structure ... 101

file:///D:\Projecten\Afstudeerders\Iteratief_MDA\81%20Thesis\Specification\Arend%20MDA%20-%20Master%20Thesis.docx%23_Toc195081181
file:///D:\Projecten\Afstudeerders\Iteratief_MDA\81%20Thesis\Specification\Arend%20MDA%20-%20Master%20Thesis.docx%23_Toc195081183
file:///D:\Projecten\Afstudeerders\Iteratief_MDA\81%20Thesis\Specification\Arend%20MDA%20-%20Master%20Thesis.docx%23_Toc195081184
file:///D:\Projecten\Afstudeerders\Iteratief_MDA\81%20Thesis\Specification\Arend%20MDA%20-%20Master%20Thesis.docx%23_Toc195081185

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 9/103

VI LIST OF CODE FRAGMENTS

Code section 1: A sample of OCL .. 26

Code section 2: A sample of QVT Operational Mappings .. 27

Code section 3: Example C# property .. 57

Code section 4: Example C# collection property .. 58

Code section 5: Illustration of the QVT Operational Mappings language .. 58

Code section 6: Illustration of the Xpand template language .. 59

Code section 7: Hierarchical complexity in QVT ... 73

Code section 8: QVT increased number of mappings .. 73

Code section 9: Polymorphism in QVT ... 74

Code section 10: Hardcoded polymorphism in QVT .. 74

Code section 11: Poor inheritance in QVT ... 75

Code section 12: Transformation composition (Object Management Group, 2007)............................. 76

Code section 13: QVT Invoke statement .. 77

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 10/103

TABLE OF CONTENTS

I Title page ... 3

II Abstract ... 4

III Acknowledgements .. 5

IV List of Abbreviations .. 6

V List of figures .. 7

VI List of code fragments .. 9

Table of Contents .. 10

1 Introduction ... 13

1.1 Background ... 13

1.2 Problem statement ... 14

1.3 Research questions ... 14

1.4 Approach ... 15

1.5 Contributions ... 15

1.6 Thesis outline .. 16

2 Model Driven Engineering .. 17

2.1 Models and modeling .. 17

2.2 Model Driven Engineering ... 18

2.3 Meta-modeling .. 18

2.4 Model Transformation .. 20

2.5 Domain Specific Languages ... 22

2.6 Model Driven Architecture .. 23

2.7 Meta Object Facility .. 24

2.8 Unified Modeling Language .. 25

2.9 Object Constraint Language .. 26

2.10 Query View Transformation .. 26

2.11 Conclusion ... 27

3 Software development processes .. 29

3.1 Software Life Cycle .. 29

3.2 Waterfall model .. 30

3.3 Iterative Model .. 30

3.4 Rational Unified Process.. 31

3.4.1 Background ... 31

3.4.2 Phases ... 32

3.4.3 Roles .. 34

3.4.4 RUP and MDA.. 34

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 11/103

3.5 Open Unified PRocess ... 35

3.5.1 Description ... 35

3.5.2 Phases ... 36

3.5.3 Roles ... 36

3.5.4 OpenUP and MDA .. 37

3.6 Customization of RUP and OpenUP .. 37

3.7 Maintenance and Evolution .. 38

3.8 Conclusion... 38

4 Case study .. 41

4.1 Description .. 41

4.2 Development plan .. 41

4.3 Development Environment ... 43

4.4 Application Architecture ... 44

4.5 Model Architecture ... 45

4.6 Platform Independent Models.. 46

4.6.1 Domain Model .. 47

4.6.2 User Experience Model .. 48

4.7 Platform Specific models .. 51

4.7.1 C# Meta-Model ... 52

4.7.2 ASP Meta-Model .. 53

4.7.3 Sitemap Meta-Model ... 53

4.8 PIM to PSM Transformations .. 54

4.8.1 Transformation Architecture .. 54

4.8.2 User Experience Model Transformations ... 55

4.8.3 Domain Model Transformations .. 56

4.8.4 QVT Transformations ... 58

4.9 Code Generation ... 58

4.10 Conclusion... 59

5 Evaluation... 61

5.1 Software Development Process .. 61

5.1.1 Inception phase .. 62

5.1.2 Elaboration phase ... 63

5.1.3 Construction phase ... 64

5.1.4 Transition phase Iteration 1 ... 67

5.1.5 Transition phase Iteration 2 ... 67

5.2 Summarized evaluation .. 69

5.3 Discussion of observed Issues ... 71

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 12/103

5.3.1 Model and Meta-model co-evolution is difficult .. 71

5.3.2 Structural incongruence increases transformation complexity .. 72

5.3.3 Lack of object orientation in QVT ... 74

5.3.4 Transformation composition .. 75

5.3.5 Composing models is difficult ... 77

5.4 Conclusion ... 79

6 Conclusions and Future Work .. 81

6.1 Project summary ... 81

6.2 Iterative MDA-based development ... 82

6.3 MDA and Maintenance ... 82

6.4 Immaturity of tools ... 83

6.5 Future Work .. 83

6.5.1 Model composition ... 83

6.5.2 Transformation composition .. 84

6.5.3 Model Meta-model co-evolution .. 84

6.5.4 Model Driven Development Process .. 84

Bibliography .. 85

Appendix A Problem analysis results ... 89

Appendix B Transformation patterns... 91

Appendix C Domain Model .. 95

Appendix D User Experience UC1 ... 97

Appendix E User Experience UC2 ... 99

Appendix F CD-ROM .. 103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 13/103

Chapter 1
1 INTRODUCTION

This chapter provides an introduction to the thesis and the backgrounds of the project. This chapter

creates a context for the project and states the problem statement and research questions.

1.1 BACKGROUND

Since the beginning of computer programming people have been raising the level of abstraction. The

first assembler languages we used to simplify computer programming. Instead of directly

programming in machine language, assembler raised the level of abstraction to instructions and

mnemonics. The next big step in raising the level of abstraction was taken by John Backus in 1954. He

and his team invented Fortran, which was the first high level programming language. In the 1960’s the

first Object Oriented programming languages appeared. Object orientation was again a new level of

abstraction to simplify computer programming.

The latest step to raise the level of abstraction is probably Model Driven Engineering (MDE) (Kent,

2002). This is currently a topic that has the interest of researchers and companies. The promise of

MDE to raise the level of abstraction in software development makes it an interesting topic. It is a

common practice to create models to assist developers with the implementation of an application.

These models are often used as documentation and as guidelines for development but are not

directly involved in the production of an application. In MDE the models are not only used to assist

development, but the models form the backbone of the development process. In the view of MDE

everything is a model including the source code.

Many companies are currently interested in Model Driven Architecture (MDA) (Object Management

Group, 2003) as an approach for applying MDE principles. MDA is proposed by the Object

Management Group (OMG) and is supported by industry standards like UML (Object Management

Group, 2007), MOF (Object Management Group, 2006), OCL (Object Management Group, 2003) and

XMI (Object Management Group, 2007). MDA, as described by the OMG, is one of the methods to

apply MDE.

This study is carried out in the context of the QuadRead project (Project Quadread, 2008). This project

is a joint research project from the University of Twente and industrial partners. The aim of the

project is a better alignment of analysts and architects. The academic partners provide the project

with research questions and the industrial partners provide case studies to strengthen practical

applicability. Getronics PinkRoccade is one of the industrial partners of this project.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 14/103

Getronics PinkRoccade is one of the larger players on the software market and provides services

ranging from workplace management to the development, installation and maintenance of software

systems. This project is carried out within the business unit Microsoft Application Services. This

business unit is specialized in the development and maintenance of software systems based on

Microsoft products and technology.

1.2 PROBLEM STATEMENT

Getronics PinkRoccade is interested in applying MDA in practice, but there are many problems that

needs to be solved before MDA can be put to practice. Getronics PinkRoccade has done research on

MDA in the past and also has a department working on model driven engineering. Companies like

Getronics PinkRoccade often use iterative software development processes to minimize the risk in

software development. At the start of this project we held a problem analysis session for the

following problem: “MDA is not applied on a large scale in the software industry”. Starting from this

general problem the stakeholders of this project identified a number of causes for this problem. The

results from the session were send to all stakeholders. Each of the stakeholders was asked to divide

10 points over the different causes. The highest ranked causes were selected as input for this project:

 MDA is not iterative

 Lack of experience with MDA and maintenance

 It is unclear whether models are easier to maintain than source code

These problems are the motivation for this master project. The results of the problem analysis session

are available in Appendix A.

1.3 RESEARCH QUESTIONS

There is currently no commonly accepted software development process to apply model driven

development. Some effort has been made to create a development process (Eclipse Process

Framework OpenUP/MDD, 2006). There is also some work done on combining MDA with the Rational

Unified Process (Brown & Conallen, 2005). Still there is no common agreement on what development

process to use. A development process like RUP is an iterative development process and nowadays

considered a best practice by many companies. Combining MDA with RUP seems a logical step, but it

is unclear if this works in practice. A closer look on MDA reveals a more classic waterfall software

development process (Wegener, 2002). This contradicts with the iterative approaches we use today.

Another interesting question is related to maintenance. The promise of MDA is to raise the level of

abstraction. This would both lead to faster software development as an increase in maintainability.

The general idea is that models are easier to maintain then code. Instead of changing 10 scattered

lines of code, changing a single property in a model seems easier. But what are the issues regarding to

MDA and maintenance?

The following two research questions forms the basis for this study:

 “What are the critical issues in an iterative MDA-based software development process?”

 “What are the critical issues with maintenance activities in MDA-based software development?”

With critical issues we mean issues that will lead to the failure of this project. In this sense, issues can

be considered non-critical for this project but they may pose a threat to other projects.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 15/103

1.4 APPROACH

There is currently little knowledge about how MDA can be applied in practice and what issues will be

encountered if one combines an iterative development process with MDA-based development. With

this thesis we want to obtain both operational knowledge and contribute to science. The operational

knowledge is recorded in the form of this thesis and our case study. We provide an example of how

MDA can be applied in an practical environment instead of a lab experiment. Our contribution to

science is an overview of the issues that at least must be solved before MDA can be considered a

mature technology.

This study has the following structure. The main part of our study is a case study. In the case study we

will investigate how MDA can be applied in practice in an iterative software development process.

The case study is based on a development project carried out by Getronics PinkRoccade. We will

rebuild a part of the system they built in the Arend project. This system is a data centric web-

application. In this study we rebuild the system using RUP as the development process and MDA to

implement the system. The case study is documented in the form of plans and evaluations. The

evaluations from the project are used in the second part of the study. In the second part we analyze

the issues we have observed during our case study. For each of the issues we will provide a clear

description of the problems, examples to illustrate the problems and a possible solution if there is a

known solution.

1.5 CONTRIBUTIONS

The contributions can be summarized as follows:

Operational knowledge of MDA

An important part of this study is to provide knowledge and experience with MDA and iterative

software development. We provide this knowledge in multiple forms. The most important form is this

thesis. It describes our work and provides an evaluation of the project.

An overview of issues in the field of MDA

Because we carried out our project in an industrial setting we provide a different view of MDA.

Researchers tend to focus on small problem areas and use laboratory experiments to verify

hypothesis. During this case study we encounter practical problems that may not have been occurred

in laboratory experiments.

More specific knowledge about MDA and iterative development

There is currently a lack of knowledge in applying MDA in an iterative fashion. With this case study we

investigate what the implications are of combining MDA with an iterative development process. We

use RUP as our iterative development process because it is an commonly accepted development

process.

An example case of how MDA can be applied

This case study provides both the University of Twente and Getronics PinkRoccade with an example of

how MDA can be applied in a practical situation. The project we selected for the case study is a

project that is carried out by Getronics PinkRoccade for a customer. We took the requirements and

illustrated how the same system can be built with MDA.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 16/103

1.6 THESIS OUTLINE

The structure of this thesis is as follows. In chapter two the most important concepts and theoretical

backgrounds of model driven engineering are laid out. The basics of the Rational Unified Process and

the Open Unified Process are explained in chapter three. We used RUP as the software development

method to develop our case. In chapter four the case study itself is described. In this chapter the

architecture and design of the system are described in detail. All meta-models, models and

transformations used to develop the system are part of it. In chapter five the development process is

described. This chapter is like a log book of the project and contains the evaluations for each of the

phases in the development process and a list of issues. In the last chapter, chapter six we write down

our conclusions, recommendations and future work.

Chapter 1: Introduction

Chapter 2: Model Driven Engineering

Chapter 3: Software Development Processes

Chapter 4: Case study

Chapter 5: Evaluation

Chapter 6: Conclusion

Readers with MDA

experience may skip

chapter 2
Readers with experience

on RUP and OpenUP may

skip chapter 3

Figure 1: Thesis outline

Readers that have some experience with MDA may skip chapter two. We recommend reading chapter

two because the definitions of important concepts are given and explained in this chapter. Chapter

three is about iterative development processes. Readers with experience on RUP and OpenUP may

skip this chapter (see Figure 1).

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 17/103

Chapter 2
2 MODEL DRIVEN ENGINEERING

This chapter gives an overview of the important concepts of model driven engineering. We explain

these concepts and provide a theoretical background for model driven engineering. For most of the

concepts we describe in this chapter there are no common accepted definitions. In this chapter we will

define the concepts as they are used in this thesis.

2.1 MODELS AND MODELING

Models are used for various purposes. We can enumerate many different models: miniature models,

weather models, mathematical models, economic models and of course UML models. The word

model has its roots in Latin. The Latin word modulus means “a small measure” but there is no single

definition of the word model. Actually, the dictionary (Mariam Webster) gives over 15 different

meanings of the word model. The OMG defines a model with the following statement:

“A model of a system is a description or specification of that system and its environment for some

certain purpose. A model is often presented as a combination of drawings and text. The text may be in

a modeling language or in a natural language.” (Object Management Group, 2003)

The definition from OMG describes a model as it is used in the context of MDA but it does not capture

the fundamental concept of a model. For people with knowledge about modeling software systems,

the definition from OMG describes how we often look at models. However, we need a more precise

definition of a model. The following definition provides a more fundamental definition of a model:

 “A model is a simplification of a system built with an intended goal in mind. The model should be able

to answer questions in place of the actual system.” (Bézivin & Gerbé, 2001)

There is no general definition for the word model. In this thesis we use the definition from (Bézivin &

Gerbé, 2001) because it defines a model in a broad sense. The models we are interested in are models

that can be expressed in a modeling language.

Throughout this thesis we use the word modeling. With modeling we mean the act of creating or

modifying models. We use the following definition for modeling:

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 18/103

“The process of construction or modification of a model.” (American Institute of Aeronautics &

Astronautics, 1998)

2.2 MODEL DRIVEN ENGINEERING

The term Model Driven Engineering (MDE) was introduced by Stuart Kent (Kent, 2002) and is used to

refer to the general idea to use models as first class entities in software development. In MDE, models

play a central role in the development process. Models provide both an abstract description of the

system under development as they can represent the source code. In the literature one may find

other terms such as Model Driven Software Development or Model Driven Development. All terms

refer to the general idea of MDE. In this study we use the term MDE. The key aspect of MDE is that

models no longer play a role as design tool or as reference. Instead, models form the basis of the

development process. Different models can be used to describe a system and model transformations

can be used to provide the semantics for these models.

One advantage of MDE is that it raises the level of abstraction in software development. By defining a

system on a more abstract level, the complexity of designing systems can be reduced. The higher level

of abstraction enables developers to concentrate on the important aspects of a system and forget

about implementation details. Another advantage of MDE is that MDE forces developers to explicitly

specify the system. If a model is used as an image to help designing the system, not all details have to

be modeled. If a models is used to generate the code, the model should be complete.

2.3 META-MODELING

In MDE models are based on a meta-model. For example there is a UML meta-model that expresses

UML class diagrams. The definition of meta-model used in this thesis comes from (Seidewitz, 2003):

 “a meta-model is a model of models expressed in a given modeling language”.

A meta-model is a model that defines the constructs which can be used to express models. A meta-

model defines the structure of a model and the possible relations between the model elements. To be

more precise, a meta-model defines the abstract syntax of a modeling language. Every model has a

meta-model. Java programs have the Java grammar as their meta-model, and the Java grammar has a

EBNF description as its meta-model (see Figure 2). Models and meta-models have a class-instance

relationship.

Every model is an instance of a meta-model. If a meta-model is a model, the meta-model itself must

have a meta-model. Conceptually, if every model has a meta-model we can visualize a stack of models

where each layer is the meta-model of the layer below (see Figure 3). This stack of layers is called a

meta-level architecture.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 19/103

Figure 2: Meta-level example

In Figure 3, the levels are numbered. Level M0 refers to the domain that is being modeled. Level M1

refers to the model of the domain where level M2 is the meta-model and level M3 is the meta-meta-

model. Every layer is an instance of layer M+1.

In theory the number of levels can be infinite, but a four level architecture is enough in practice. In

this case, level M3 is self-descriptive. Level M3 can be specified using M3. In the example above (see

Figure 2), EBNF is used to describe the abstract syntax (and in this case also the concrete syntax) of

EBNF. The intuition behind the self-descriptive layer is quite elegant. In level M0 we have our domain

which we model in M1. M2 is the language we use to give the abstract syntax to the modeling

language and we have a language to describe the abstract syntax in M3. If this language is designed to

describe the abstract syntax of a language it should be possible to describe itself (Kurtev, 2005).

Meta-meta-model

Meta-model

Model

Domain

Instanceof

Instanceof

Instanceof

Instanceof

Model of

Model of

Model of

Model of

Level M0

Level M1

Level M2

Level M3

Figure 3: Meta-level architecture

EBNF

JAVA GRAMMAR

JAVA SOURCE

describes

describes

describes

Level M3:
Meta-meta-model

Level M2:
Meta-model

Level M1:
model

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 20/103

The abstract syntax of a modeling language plays an important role in MDE. Tools, transformation

languages and code generators can benefit from the fact that they are based on the same abstract

syntax. The concrete syntax, the actual representation of a model, plays a less important role. It is

considered a good practice to decouple the concrete syntax from the abstract syntax. This makes it

possible to provide multiple concrete representations of the same model, for instance both a

graphical and a textual representation. The concrete syntax is of course of great importance for the

people who work with the models. A good concrete syntax is easier to work with and has a better

readability and will improve the usage of the models (Object Management Group, 2003) .

2.4 MODEL TRANSFORMATION

Model transformations form a large part of MDE. The transformations are the main driver in the

development process. Transformations can be used to convert one model into another model or to

combine models. The term model transformation is a broad term. In this thesis we define a

transformation as:

“the automatic generation of a target model from a source model, according to a transformation

definition. A transformation definition is a set of transformation rules that together describe how a

model in the source language can be transformed into a model in the target language. A

transformation rule is a description of how one or more constructs in the source language can be

transformed into one or more constructs in the target language” (Kleppe, Warmer, & Bast, 2003).

This definition, however, states that we transform one model into one other model. As discussed in

(Mens, Czarnecki, & Gorp, 2005) it should be possible to define transformations that transform

multiple models into one model, multiple models into multiple models and one model into multiple

models.

Meta-model A
Transformation

Specification
Meta-model B

Transformation

Language

Model A Model B
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Figure 4: Meta-model transformation pattern (Kurtev & van den Berg, Building Adaptable and Reusable XML Applications

with Model Transformations, 2005).

A model transformation can be described using the transformation pattern (see Figure 4). The

transformation pattern shows how the transformation engine executes a transformation

specification. This transformation specification is written in a transformation language and uses both

the meta-model of the target model and the meta-model of the source model. The transformation

specification specifies how elements of meta-model A can be transformed into elements of meta-

model B. Using this specification the transformation engine can transform the input model (Model A)

into the target model (Model B).

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 21/103

In the literature different types of transformations are identified (Mens, Czarnecki, & Gorp, 2005)

(Czarnecki & Helsen, 2003). These includes transformations between models with the same meta-

model called endogenous transformations and transformations with different meta-models called

exogenous transformations. In the literature one can find a difference between model to model

(m2m) and model to text(m2t) transformations. There is a small difference between those types of

transformations. The difference can be identified when we look to the nature of the transformation.

In a model to model transformation a mapping between the meta-models is defined while

transformation templates are used for m2t. The output produced by m2t transformations can be seen

as a model with an implicit meta-model while the output of the m2m transformation has an explicit

meta-model. Most m2t transformations are exogenous transformations. In this case the generated

text is on a more concrete abstraction level than the source model. However, endogenous m2t

transformations also exist. Generating Java source code from a Java abstract syntax tree is an example

of this. In this thesis we will make the distinction between m2t and m2m transformations for the sake

of readability but conceptually difference is minimal.

Another distinction between types of transformations is the distinction between horizontal and

vertical transformations. A horizontal transformation is a transformation where the input and output

models have the same level of abstraction. An example of a horizontal transformation can be

refactoring. With refactoring we only change the structure of the code. Vertical transformations

transform a model to a model of a higher or lower abstraction level. An example of a vertical

transformation is a refinement.

 Horizontal Vertical

endogenous Refactoring Formal refinement
exogenous Language migration Code generation

Table 1: Dimensions of model transformations1

Transformation languages come in many forms. Just like programming languages can be classified, we

can classify transformation languages based on how they allow the programmer to express the

transformation. The two most distinct types are operational and declarative languages. Declarative

languages focus on what must be transformed into what. Declarative languages seem to be the most

promising and there is a solid formal basis for these languages. It is easier to implement bi-

directionality. These languages are easier to use because the engine that executes the transformation

determines the execution ordering and model traversal. An operational (also called imperative)

language focuses on how the transformation must be applied, giving the programmer a tool to

precisely define the execution order and fine grained control over the transformation. As a result of

this, transformations expressed in an operational language are often larger and more complex. Other

types of languages could also be interesting to use, like graph transformations and logical languages

(Mens, Czarnecki, & Gorp, 2005). A special type of language is the hybrid language. Hybrid languages

are a mix of different types, usually with imperative and declarative constructs.

Examples of transformation languages are Stratego (Visser, 2004), KerMeta (Chauvel & Fleurey, 2007),

Tefkat (Lawley), ATL (Allilaire, Bézivin, Jouault, & Kurtev, 2006) and QVT (Object Management Group,

2007). Stratego is a transformation language that is used in combination with XT. This bundle is called

Stratego/XT. Stratego is a transformation language based on term rewriting. KerMeta is an

abbreviation of “Kernel Metamodeling” and is a combination of a modeling and transformation

1 It is not my intention to provide a complete taxonomy of transformation languages in this thesis. For further reading see

(Mens, Czarnecki, & Gorp, 2005) (Czarnecki & Helsen, 2003).

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 22/103

language. The language can be used to create models, to put restrictions on models and to transform

models. Tefkat, ATL and QVT are all implementations of OMG's MOF Query/Views/Transformations

RFP. QVT was finally adopted as the standard by the OMG.

A special type of transformation is currently gaining the interest from the research community: model

composition. When we want to combine multiple source models into one target model this is called

model composition. Model composition is a special form of transformation because it does not

transform a model. However, it combines multiple models into one (Kurtev & Didonet Del Fabro,

2006) (Pastor, 2006).

2.5 DOMAIN SPECIFIC LANGUAGES

Computer scientists have always been working on languages. Even before the first computers were

build, scientists were thinking of a way to program the hypothetical machines
2
. Currently a large

variety of programming languages exist. Some of them such as Java, C# and C++ are more generic;

some of them such as Cobol and Fortran are more specific. This section gives an introduction to

domain specific languages. With domain specific languages we mean languages that are built to solve

problems in a small problem domain. Their counterparts, generic programming languages, are built to

solve problems in a larger problem domain. Of course, the terms generic and specific are relative.

One language is more specific than another language. DSLs are not a new concept in computer

science. Many engineers already use DSLs in their daily work without referring to them as a DSL. SQL

is a nice example of such a DSL. It is a limited language which can only be used to query databases.

Therefore, it is impossible to use SQL to create a socket connection and transfer a file. Since SQL has a

specific domain it can provide a simple syntax which enables the programmer to specify complex

queries with low overhead. Another example of a DSL is a configuration file or an EBNF grammar

(Kurtev, Bézivin, Jouault, & Valduriez, 2006).

In this thesis we will use the following definition for DSLs:

“A domain-specific language is a programming language or executable specification language that

offers, through appropriate notations and abstractions, expressive power focused on, and usually

restricted to, a particular problem domain” (Deursen, Klint, & Visser, 2000).

DSLs can be implemented in a number of ways. One could use standard language engineering tools

like ANTLR to build an interpreter or compiler and generate a large part of the implementation. The

advantage of this approach is that you can actually implement the language without having to do any

concessions on the language. With complete power over the language you can implement a complex

type system, type checker, error checking and optimizations. The drawbacks on the other hand are

the costs of the implementation and less reusability. Another approach could be to implement the

DSL using special language constructs. Some general purpose programming languages like Ruby allow

the programmer to implement a DSL on top of the base language. When you build a DSL based on an

existing base language, one could use macros which are fed to a preprocessor. The preprocessor then

translates the macros into constructs of the base language. One advantage of this approach is that the

compiler is able to detect errors but the disadvantage is that error messages are given at the level of

the base language. Sometimes even an existing compiler or interpreter can be extended to support a

DSL. The Tcl interpreter is an example of this approach (Mernik, Heering, & Sloane, 2005) (Deursen,

Klint, & Visser, 2000).

2 Charles Babbage designed a mechanical computer called “The Analytical Engine” in 1837, but the machine was never build.

Ada Lovelance came up with an algorithm to compute Bernoulli numbers on the mechanical computer and she is considered

the first computer programmer. The programming language Ada is later named after her.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 23/103

A modern approach is to use aspect oriented programming (Elrad, Filman, & Bader, 2001) to weave

the DSL code into the base code. An example of this approach can be found in (Oever & Vos, 2007)

where a DSL is described to specify user profiles for applications. The profiles are then woven into the

code by using an aspect oriented approach.

2.6 MODEL DRIVEN ARCHITECTURE

The Object Management Group developed MDA as an approach for MDE based on industry standards

and with the main focus on platform independence. According to OMG, MDA provides an approach

for specifying the system and its behavior independently of the platform that supports it and for

specifying the platform itself (Object Management Group, 2003).

OMG describes a system as:

“We present the MDA concepts in terms of some existing or planned system. That system may include

anything: a program, a single computer system, some combination of parts of different systems, a

federation of systems, each under separate control, people, an enterprise, a federation of

enterprises…”

OMG describes a platform as:

“A platform is a set of subsystems and technologies that provide a coherent set of functionality

through interfaces and specified usage patterns, which any application supported by that platform can

use without concern for the details of how the functionality provided by the platform is implemented”

The main purpose of MDA is to provide platform independence and the different models used in MDA

reflect this thought. In MDA there are three types of models: the Computational Independent Model

(CIM), the Platform Independent Model (PIM) and the Platform Specific Model (PSM).

The CIM is the model that describes the systems requirements without any references to a particular

technology or technique and it does not show how the system is implemented. The CIM shows the

systems in its environment and helps presenting what the system should do. The CIM is not widely

used because of the vague definition of what it actually should be. The model is also not directly used

to create a PIM. However, there must be a clear relation between CIM and PIM.

The PIM is an important part of MDA. It describes the system without referring to the platform and

thus gives a platform independent representation of a system. This model is the first step to create a

system. The PIM can be transformed into a PSM using model transformations.

The PSM models provide information about how the system is implemented and its relation to the

platform. A PSM contains the information from the PIM with specific details about the target

platform. For example, a PIM may contain a concept with properties and one of the properties is

whether it should be persistent or not. The PIM does not contain information about how the concept

should be persisted but when the PIM is transformed to the PSM for a J2EE platform, the concept will

be mapped to a Java Bean with the proper annotation for the persistence API
3
.

3 As earlier stated, code can be regarded as a model. In the case of MDA code can be considered a very detailed PSM. However,

code has a very low level of abstraction and therefore it is preferred to make the distinction between a PSM and the code.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 24/103

Computational Independent Model

Platform Independent Model

Platform Specific Model

Refinement

Refinement

Abstraction

Abstraction

Figure 5: MDA layered model structure

Figure 5 shows the types of models and the relations between them. Each level represents a type of

models, not one model. The refinement arrows indicate that a CIM can be refined to a PIM and that a

PIM can be refined to a PSM. This refinement step is not necessarily one transformation step but it

can be specified in multiple transformation steps. The abstraction arrows indicate that a PIM is more

abstract than the PSM and the CIM is more abstract than the PIM.

2.7 META OBJECT FACILITY

Modeling in MDA is based on standards like UML 2.0 and MOF. MDA uses a four level architecture

(see Figure 3) and the meta-meta-model is the Meta Object Facility (MOF). For historical reasons the

original UML model had no explicit meta-model. MOF was later on defined as the meta-model of

UML. MOF was directly derived from the UML standard and reflects the structure of UML. The origin

of MOF can be seen in the MOF concrete syntax, it uses the UML notation. The syntax is similar to the

UML class diagram notation. MOF forms the basis for OMG’s MDA. Figure 6 shows a simplified MOF

structure that contains the basic elements to describe modeling languages like UML 2.0 (Object

Management Group, 2006).

Figure 6: Simplified MOF structure4

4 Copyright Detlef Burkhardt

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 25/103

A common mistake is to think that UML is the only meta-model supported by MDA but that is not the

case. UML is supported because it is now formally defined in MOF. All languages defined in MOF can

be used in the MDA approach and tooling. Examples of other languages based on MOF are SPEM

(Object Management Group, 2005), CWM (Object Management Group, 2003) and QVT (Object

Management Group, 2007). However, for the UML models advanced editors are available which is not

always the case for other meta-models. Generic editors, generators, repositories and tools can be

implemented because MDA is based on MOF.

At the time of writing this thesis a number of MOF implementations exist. Probably the most well

known implementation is the EMF (Eclipse Modeling Framework) with the eCore meta-meta-model.

eCore is not a full implementation of MOF. Only the most important parts of it were implemented.

This smaller subset is enough for the major part of the meta-modeling. This subset even made it into

the latest MOF standard. It is called Essential MOF (EMOF). OMG positions EMOF as the meta-meta-

model to define simple models while supporting extension. For more sophisticated models, the CMOF

(Complete MOF) (Object Management Group, 2006) can be used.

2.8 UNIFIED MODELING LANGUAGE

The Unified Modeling Language (UML) is the unification of three modeling languages. UML was

originally created by Grady Booch, Jim Rumbaugh, and Ivar Jacobson. UML was created to provide a

standard visual modeling language for modeling object oriented software systems. In 1996 the OMG

issued a request for proposal for a standard object oriented modeling language. Booch, Rumbaugh

and Jacobson began preparing a proposal based on UML. In 1997 the UML 1.0 standard was accepted

by the OMG (Rumbauch, Jacobson, & Booch, 1999).

UML offers five views of a system: logical, process, physical, development and use-case view. These

views together are called the “4+1” view (Kruchten, 1995). The logical view is the object oriented

model. In UML this can be described using class diagrams. The process view captures synchronization

and concurrency aspects. Activity diagrams are often used to describe this view. The physical view

describes how the software can be mapped to the hardware. It shows the distributed aspects. In

UML, deployment diagrams can be used to document this view. The development view describes the

static organization of the software. In UML packages can be used to organize the static structure of

software. The “plus one” view is the scenario view. This view is represented with use-cases in UML.

The UML 2.0 standard is one of the foundations of MDA but UML 2.0 is a general purpose modeling

language. In some cases more specific models are needed and MDA provides two ways to create a

more specific modeling language. The first method is to create a modeling language based on the

MOF. The second method is to use UML Profiles. UML Profiles were invented to make specific flavors

of UML, tailored for one purpose. In the early specifications it consisted of stereotypes and tagged

values. These were no more than textual annotations. In the UML 2.0 standard the stereotypes and

tagged values still exist but also constraints are added. In UML profiles one can specify a flavor of

UML. However, the semantics of UML cannot be changed. It is possible to add semantics that are left

unspecified in the UML specification. Using the constraints it is also possible to limit the ways to use

the meta-model. UML Profiles also add some syntactic sugar like custom graphical representations.

This can be used to show a computer in a network as a computer icon instead of a rectangular box

(Object Management Group, 2007) (Fuentes-Fernández & Vallecillo-Moreno, 2004).

Nowadays many UML profiles exist. An example of an UML profile is a profile for aspect oriented

programming (Aldawud, Elrad, & Bader, 2003) or a profile for business modeling (Rational, 2004) .

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 26/103

2.9 OBJECT CONSTRAINT LANGUAGE

In general, a UML model is not refined enough to specify all details of a software system. Some

aspects, like pre and post conditions, queries and conditions are hard to specify. In early UML

standards the only way to specify these details was to use textual notes in the model. But these notes

are not machine readable and can lead to ambiguities. The Object Constraint Language (OCL) was

developed to fill that gap (Object Management Group, 2003).

OCL is a small language and not a real programming language. OCL is more like a specification

language and control flow cannot be specified. In OCL only expressions without side effects can be

described. These expressions can be evaluated over a model and a value is returned but OCL

expressions cannot change the model. OCL is a typed language and has a set of predefined types. OCL

can be used with any MOF based model and every classifier can be used as a type.

1 Class.allInstances()->collect(e | e.name)

Code section 1: A sample of OCL

Code section 1 shows a simple OCL expression. This expression can be evaluated over a UML model

and will then return a bag with all the names of the classes in this model. This expression calls the

“allInstances()” operations on the type “Class”. This operation returns a bag with all instances of the

type “Class” in a particular model. The “collect” operation collects the results of the expressions for

each element in the returned bag of classes. The expression “e.name” returns the name of a class.

2.10 QUERY VIEW TRANSFORMATION

MDA prescribes the use of model transformations between different models. A PIM can be

transformed into a PSM using a model transformation. Such transformations between models are

defined in a transformation language. MDA uses the Query/View/Transformation (QVT) language

(Object Management Group, 2007). This transformation language acts on models. It defines how a

model M
A
 with meta-model M

MA
 is transformed into a model M

B
 with meta-model M

MB
. Model M

A

and M
B

may share the same meta-model but this is not necessary. In MDA, all meta-models and

languages that operate on them must be based on MOF. QVT is also based on MOF.

As the name suggest this language has multiple purposes. The language can be used to specify

queries, views and transformations. In (Gardner, Griffin, Koehler, & Hauser, 2003) the following

definitions are given for the terms view, query and transformation:

view: “A view is a model which is completely derived from another model”.

query: “A query is an expression that is evaluated over a model”.

transformation: “A transformation generates a target model from a source model”.

QVT is not a single language. It actually implements OCL as the query language and has two

transformation languages. These language can also be used to specify views, as a view is the result of

a transformation. The two languages are: QVT Relations and QVT Operational Mappings. A third

language forms the foundation for Relations and Operational Mappings: QVT Core. In general QVT is a

hybrid transformation language with a declarative and imperative nature. The declarative part is split

in Relations and Core. The imperative part is Operational Mappings. Relations is a language in which

the relationships between MOF meta-models can be declaratively specified. The relations language

provides a graphical and textual concrete syntax and can be transformed to Core using model

transformations. Relations supports object pattern matching and implicitly creates trace classes.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 27/103

Operational Mappings is an imperative language that extends both Relations and Core. It provides

control flow elements and a textual concrete syntax.

Relations

Core

Black box
Operational

Mappings

R
e

la
ti
o

n
s
 t
o

C
o

re

T
ra

n
s
fo

rm
a

ti
o

n

Figure 7: QVT layered architecture

Figure 7 shows the layered structure of the three QVT languages. Operational Mappings is based on

both Relations and Core, Relations can be transformed to Core. The black box in the figure is a

mechanism to invoke transformations specified in other languages. For instance, a complex algorithm

can be specified in a general purpose programming language that has a MOF binding.

In general, QVT can only be used for model to model transformations. Model to text transformations

are not included in the specification.

1 --generate an overview page for this node (using the nodename)

2 mapping createOverviewPage(in element : diagram::Node) : applicationmodel::Page {

3 name := 'Overview of '+element.name+'s';

4 }

Code section 2: A sample of QVT Operational Mappings

Code section 2 shows a mapping operation in QVT Operational Mappings. A mapping operation

describes how an element from the source model is mapped to an element from the target model. In

this example a Node is mapped to a Page and the operation determines how the name of the node is

mapped to the name of the page.

2.11 CONCLUSION

In this chapter, we presented the backgrounds and theory behind MDE. The definitions for the

concepts used throughout this thesis were defined and explained. The terms model, meta-model,

transformation and domain specific language were defined. Models can have a abstract and a

concrete syntax. The concrete syntax can be textual or graphical. We explained the meta-level

architecture and the fact that level M3 is self descriptive. We also discussed MDA as a form of MDE

and the technological foundation of MDA. MDA is based on MOF, UML, OCL and QVT. Each of these

techniques is described in a separate section.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 28/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 29/103

Chapter 3
3 SOFTWARE DEVELOPMENT PROCESSES

In this chapter we will describe the Rational Unified Process as an example of an iterative software

development process. As we are interested in the problems that occur when MDA is applied with an

iterative development process we need to have a common understanding of such a process. In our

case study we will apply the Rational Unified Process because it is currently a de facto standard

(Kruchten, 2000).

3.1 SOFTWARE LIFE CYCLE

One of the most fundamental concepts in software engineering is the software life cycle (Glenn

Brookshear, 2000). Figure 8 shows the software life cycle. This figure illustrates how the software

cycles trough its life from being produced, used and modified. Like other manufactured products

software needs modification once the product is in use. In contrast with other products, part of the

software do not wear out. Software requires changes because the it contains errors, the environment

changes or the demands of the users change.

Development Use

Modification

Figure 8: Software life cycle

The phases of the software lifecycle that we are interested in are the development phase and the

modification phase. Software development processes like the waterfall model describe the structure

of the development phase of a software product. Many different models exist to describe this phase.

For instance the spiral model, the V-model, the incremental model and the prototyping model

(Pfleeger & Atlee, 2005). In this study we describe the waterfall model because it is argued that MDA

follows a waterfall process (Wegener, 2002). We the describe the iterative process because we use an

iterative development process in our case study.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 30/103

3.2 WATERFALL MODEL

The software development process can have many forms. The ordering in which different activities

are executed determine what type of process we have. The traditional waterfall model has six phases

of development. Only if a phase is completed one may start working on the next phase. The model

was first described by (Royce, 1987).

Requirements

Design

Implementation

Verification

Maintenance

Figure 9: Simplified schema of the waterfall model

The above figure (Figure 9) illustrates why it is called the waterfall model. First the requirements for a

system are gathered and documented. Once this is done the requirements are fixed and the next step

can be done: the design. Once the design of the system is completely finished one can start

implementing it. After the implementation phase the test phase starts. Problems detected in this

phase can be fixed and once the system is considered finished the maintenance phase starts.

This software development is considered a risky model because it is impossible to go back to an

earlier phase. Once the system is implemented completely testing may begin. If major problems are

detected in this phase, maybe design flaws, the whole system is already build. Changing the design at

that stage of development is very expensive (Royce, 1987)

3.3 ITERATIVE MODEL

The iterative software development model is a model that was developed as a response to the

harmful waterfall models (Kruchten, The Rational Unified Process: An Introduction, 2000). One of the

problems of the waterfall model is that testing at the end of the development cycle may reveal

problems that could have been solved in earlier stages of the project.

In an iterative development process the development of the system is small steps called iterations. In

every iteration a part of the system is designed, implemented and tested. Due to the small steps,

problems can be detected in early stages and developers can learn from previous iterations. It is not

necessary that every iteration contains a part of requirements, design, implementation and

verification. In the early stages of a project more time can be spend on requirements and in later

stages more time can be spend on verification (Basili & Larman, 2003).

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 31/103

Requirements Design Implementation Verification

Next iteration

finishedstart

Figure 10:Schema of the Iterative model

There is a difference between incremental software development and iterative development. Both

models divide the project in smaller pieces of work but in an incremental model the software system

can only be extended in each iteration. In an iterative development model it is possible to build a

piece in the first iteration and discard the work in the second iteration.

3.4 RATIONAL UNIFIED PROCESS

The Rational Unified Process (RUP) is an iterative software development process. The goal of RUP is to

ensure the production of high quality software that meets the needs of its end users, on schedule and

within budget. RUP provides a very systematic approach that defines roles and tasks for the

organization of the project. RUP has been used for both small and large teams and long and short

projects (Kruchten, The Rational Unified Process: An Introduction, 2000) (Rational Corporation, 1998).

3.4.1 BACKGROUND

The Rational Unified Process has a long history and was originally developed by Rational Corporation

in the 1980’s and 1990’s. In 1995 Rational Corporation bought a Swedish company called Objectory

AB. Their process, called Objectory process is combined with the knowledge of Rational at that time

and Rational releases the Rational Objectory Process (ROP) in 1996. In 1998 it is renamed Rational

Unified Process. The architect of RUP was Philippe Kruchten. In 2003 IBM acquired Rational and

became the division IBM Rational (Amber, 2007).

The authors of RUP found that many of the software projects in the 80’s and 90’s were failing. They

tried to find the main cause for the problems and tried to diagnose what went wrong. They diagnosed

different characteristics of software projects and came up with a number of causes for software

project failures:

 Ad hoc requirements management

 Ambiguous and imprecise communication

 Brittle architecture

 Overwhelming complexity

 Undetected inconsistencies in requirements, designs, and implementations

 Insufficient testing

 Subjective assessment of project status

 Failure to attack risks

 Uncontrolled change propagation

 Insufficient automation

Each failed software project that was investigated had failed because one or more of these failures

had occurred. Rational Corporation used this knowledge to come up with a structured system of best

practices to cope with the listed problems. These best practices cannot be easily quantified, but are

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 32/103

used in RUP because it is observed that these are commonly used in the industry by successful

organizations. RUP focuses on the following six best practices (Rational Corporation, 1998):

 Develop software iteratively: The software systems that are developed today are complex

systems. It is no longer possible to sequentially design, implement and test these systems in

the end. In an iterative development process, understanding of the system is developed in

small steps of refinement called iterations. In RUP, each of the iterations delivers a working

product. The iterative nature of the project helps project management to identify and

mitigate risks in early stages of the project. Because each iteration ends with a working

product, it is also easier for customers to get involved in the project and to correct

misunderstandings in early stages of the project.

 Manage requirements: RUP describes precisely how to elicit, organize and document

required functionality and constraints. RUP describes functionality in terms of use-cases and

scenario’s. This will help communication with the business and is considered a good practice

to capture functional requirements.

 Use component-based architectures: In the early phases of development, RUP focuses on

developing a baseline architecture that provides a solid base to develop the entire system.

RUP helps designers to create a flexible, reusable and easy to understand architecture. RUP

also provides the means to document the architecture trough UML models.

 Visually model software: An important aspect of RUP is the use of UML throughout the

design of a system. It prescribes different views for different stakeholder documenting the

structures of the system in diagrams. The UML standard was originally developed by Rational

Corporation.

 Verify software quality: Today’s ever increasing complex software systems play an important

role in our everyday lives. Software quality is becoming an important aspect and RUP helps

developer creating high quality software. Quality assessments are part of the process, in all

activities and phases.

 Control changes to software: Managing changes in the software is part of the process. RUP

describes how changes must be controlled, checked and monitored. It provides guidelines on

how to setup the environments for developers so they are only allowed to change their own

code.

3.4.2 PHASES

The overall architecture of RUP is illustrated in Figure 11. The horizontal axis represents time and

shows the phases of a RUP project. Every phase in a project contains a number of iterations. The

vertical axis represents the different disciplines grouped logically and shows the static aspects of the

process. Activities from different disciplines are overlapping and the shaded areas indicates the effort

for that particular discipline at that time.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 33/103

Figure 11: Phases and iterations of RUP5

From a project management perspective, RUP consists of four sequential phases: the inception,

elaboration, construction and transition phase. Each of these phases can contain multiple iterations as

shown in Figure 11 and ends with a milestone (dashed line). At the end of a phase, there is an

assessment to verify if the goals for that phase are met. If the evaluation shows all goals are met, the

project is allowed to proceed with the next phase.

 Inception: The project starts with the inception phase. The goal for this phase is to reach

agreement among different stakeholders of the project. Before the project can start, some

business risks should be addressed and the initial requirements should be known. The focus

of this phase is finding out if the project is worth taking the risk and whether the project is

feasible. The assessment at the end of this phase is to evaluate if the project can continue.

 Elaboration: In the elaboration phase, the baseline architecture of the system must be built.

This baseline will be used in the next phase to build the major part of the system. In this

phase, an executable system will be built that contains the most important requirements and

shows the viability of the architecture. The exercise of building this baseline architecture

should identify the risks in the project.

 Construction: During the construction phase the remaining part of the requirements are

clarified and the baselined architecture is completed. The construction phase can be

considered the manufacturing phase of the system. In the previous phases, the focus was

the intellectual challenge, but in the construction phase the focus is managing resources and

developing the major part of the system. At the end of the construction phase, the system is

tested and is ready for acceptance testing.

 Transition: The goal of the transition phase is prepare the system for its end users. It includes

testing in preparation for release. Only minor adjustments and tweaks are done to the

5 Copyright IBM

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 34/103

system at this stage. This phase also contains configuration, installation and addressing

usability issues. The assessment at the end of the phase is to decide if the system meets the

objectives.

3.4.3 ROLES

In RUP there are 24 roles defined. There are two or more roles for each of the nine disciplines.

Essentially, there is division between two types of roles. A role for a person that focuses on breadth

and a role for a person that focuses on depth. The following roles are defined:

 Business Process Architect: Discovers all business use-cases.

 Business Designer: Details a single set of business use-cases.

 System Analyst: Discovers all requirement use-cases.

 Requirements Specifier: Details a single set of requirements.

 Software Architect: Decides on technologies for the whole solution.

 Designer: Details the analysis and design of a single set of use-cases.

 Integrator: Owns the build plan that shows what classes will integrate with one another.

 Implementer: Codes a single set of classes or a single set of class operations

 Test Manager: Ensures that testing is complete and conducted for the right motivators.

 Test Analyst: Selects what to test based on the motivators.

 Test Designer: Decides what tests should be automated and creates automations.

 Test Designer: Implements automated portions of the test design for the iteration.

 Tester: Runs a specific test.

 Deployment Manager: Oversees deployment for all deployment units.

 Tech writer, course developer, graphic artist: Create detailed materials to ensure

successful deployment.

 Project Manager: Creates a business case and a course-grained plan.

 Project Manager: Plans, tracks and manages risk for a single iteration.

 Process Engineer: Owns the process for the project.

 Tool Specialist: Creates guidelines for using a specific tool.

 Configuration Manager: Sets up the CM environment, policies and plan.

 Change Control Manager: Establishes a change control process

 Configuration Manager: Creates a deployment unit, reports on configuration status, etc.

 Change Control Manager: Reviews and manages change requests.

3.4.4 RUP AND MDA

The application of MDA in a RUP project requires some changes in the software development process.

New artifacts need to be introduced to the development process as RUP does not consider model

transformations. Also, new roles can be introduced. An IBM article describes a number of changes in

RUP, based on their experience with MDA and RUP.

According to (Brown & Conallen, 2005), one new role can be added to the development process. This

new role is a specialization of the architect called the MDA architect. This person is responsible for

designing the main meta-models, transformations and mapping documents.

Other roles remain unchanged as the nature of the work remains the same. There is, however, a

change in perspective. The level of abstraction for many roles will shift from concrete to more

abstract. An example of this is that programmers in an MDA project are creating detailed models and

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 35/103

transformations instead of writing code based on UML diagrams provided by the designers. The focus

of designers is more in the business level then in technical level.

The article also describes some changes in the phases. The phase that changes most is the elaboration

phase. In this phase, a large part of the MDA work needs to be done. The meta-models and basic

transformations need to built to see if the approach is feasible. Work in the construction phase will

shift to modeling and writing transformations instead of working with source code.

One of the best practices of RUP is to use a component based architecture. MDA augments the use of

component based architectures by providing the means to automate a large part of the work on

integrating the components.

3.5 OPEN UNIFIED PROCESS

This section describes the Open Unified Process (Balduino, 2007) and the Model Driven Development

plug-in for this development process. The Open Unified Process (OpenUP) is an open source version

of the Rational Unified Process. It has been developed as a part of the Eclipse Process Framework

project. This project provides an open and extensible framework for developing and maintaining

processes and tools.

3.5.1 DESCRIPTION

The OpenUP is a family of software development processes built on top of the OpenUP/Basic. The

OpenUP/Basic is an iterative software development process that claims to be minimal, extensible and

complete. With a minimal process, the developers mean a process that contains only fundamental

content. Extensible means a process that can be used as a basis for other processes and complete

indicates that the process covers all aspects of software development (Lyons, 2007).

The OpenUP/Basic is a development processes that follows an agile philosophy (Ambler, 2007). The

development process focuses on collaboration and delivering working products rather than focusing

on formality.

OpenUP focuses on the following four principles:

 Collaborate to align interests and share understanding.

 Balance competing priorities to maximize stakeholder value.

 Focus on the architecture early to minimize risks and organize development.

 Evolve to continuously obtain feedback and improve

Agile software development is an incremental and iterative approach which is performed in a highly

collaborative way using self organizing teams with low overhead and the focus on high quality

software, delivered on time and cost effective (Ambler, 2007). Agile software development is based

on the Agile manifesto (Beck, et al., 2001). This manifesto describes the core values of the agile

philosophy: Individuals and interactions over processes and tools, working software over

comprehensive documentation, customer collaboration over contract negotiation, responding to

change over following a plan.

Each of the principles of OpenUP is related to a statement in the agile manifesto. OpenUP is

lightweight and an agile process but an agile process is more than lightweight. The OpenUP combines

agile aspects like the focus on team collaboration and less formality then RUP. The OpenUP has the

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 36/103

characteristic of a light weight RUP; it is based on use-cases, iterations, risk management and an

architectural centered approach.

OpenUP addresses the organization of work at three levels: personal, team and stakeholder levels. At

the personal level, the work is organized in micro increments. Small units of work that span several

hours or days. Team members share their progress at all three levels to monitor project progress.

3.5.2 PHASES

The division in phases and iterations reflects the origins of OpenUP. The project contains the same

four phases as RUP: inception, elaboration, construction and transition. Each phase can contain

multiple iterations and each iteration contains micro increments. At the end of each iteration, the

project team delivers a testable demo or shippable build. This helps the team focus on it goals and

offers the stakeholders a predictable lifecycle.

Figure 12: OpenUP Structure (Balduino, 2007)

3.5.3 ROLES

In the OpenUP, the following roles are defined for team members (Balduino, 2007):

 Stakeholder: A person or interest group whose needs must be satisfied by the project. Can be

represented by anyone who is or will be materially influenced by the project.

 Analyst: Represents customer and end-user concerns by gathering input from the

stakeholders to understand the problem to be solved.

 Architect: Responsible for designing the software architecture and for making key technical

decisions.

 Developer: Responsible for designing, implementing, testing and integrating parts of the

solution to fit in the architecture.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 37/103

 Tester: Responsible for all the core testing activities. This includes identifying, implementing,

and conducting tests as well as logging and analyzing the results.

 Project manager: Leads the planning of the project and handles communication with

stakeholders. Keeps the team focused on the project goals.

3.5.4 OPENUP AND MDA

The OpenUP/Basic has been developed to form the basis for other development processes. In 2006,

the development of a Model Driven Plug-in for the OpenUP started based on OpenUP/Basic. This

plug-in provides new process elements that are specific for a model driven development project.

The OpenUP/MDD plug-in redefines a number of roles and provides a number of new roles that

extend the existing roles of OpenUP:

 Analyst: The role of the analyst changes. The analyst should be aware of the fact that

problems should be analyzed at model level.

 Application designer: Designs the transformations from PSM to code.

 Business expert: Designs profiles for specific business domains

 Domain expert: Has a detailed understanding of certain domains.

 Language engineer: Is an expert in modeling languages.

 Platform expert: Is responsible for defining platforms. These platform specifications can be

used to create the models at PSM level.

 Requirements specifier: Specifies the requirements.

 Test designers: The person responsible for defining the test approach.

 Transformation specifier: Responsible for the specification of the PIM to PSM model

transformations.

The OpenUP/MDD plug-in is created as part of the Eclipse project and can be found here: (Eclipse

Process Framework OpenUP/MDD, 2006).

3.6 CUSTOMIZATION OF RUP AND OPENUP

Both RUP and OpenUP are complete software development processes that contain detailed

descriptions of each step in the process. However, not every company uses exactly the same process

and therefore these processes must be adaptable to their environment.

RUP provides a development kit which contains guidelines, templates and even a tool to adapt the

process. Using the guidelines, templates and tools a complete documented and customized version of

RUP can be generated and maintained (Rational Corporation, 1998). OpenUP is based on the Eclipse

Process Framework (EPF). This framework is created to support the development of customized

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 38/103

software development processes. The EPF provides the EPF Composer as a tool to define and adapt

software development processes (Eclipse Process Framework Project).

3.7 MAINTENANCE AND EVOLUTION

Two very important and related aspects of software engineering are software maintenance and

evolution. After the software has been delivered (See Figure 8) and the software is in use the

maintenance phase begins. Software maintenance is defined as:

“The modification of a software product after delivery to correct faults, to improve performance or

other attributes, or to adapt the product to a modified environment.” (Bennett & Rajlich, 2000)

Maintenance can be applied for a number of reasons, but in the literature one often finds the

following types of maintenance activities (IEEE, 1990):

 Adaptive maintenance: changes in the software environment

 Perfective: new user requirements

 Corrective maintenance: fixing errors

 Preventive: prevent problems in the future

These types of maintenance are defined based on the nature of the change. An adaptive change is a

change in the environment of the system. Therefore, the system must be adapted to fit in the

changed environment. An example of such a change is an update of an underlying system. If a

software product is depending on another system and this underlying system changes, the software

must be adapted. Perfective changes are modifications on the software because the requirements of

the users change. An example of such a change is a helpdesk system for an internet provider and the

internet provider starts delivering new services. The software system should then be adapted to

support the helpdesk with these new services. Corrective maintenance activities are related to errors

in the system. Every software system contains errors and these should be fixed if they are detected

and pose a problem for the users. Preventive maintenance activities focus on preventing future

problems. An example of preventive maintenance is the addition of a stronger encryption algorithm in

a banking system. The current encryption algorithm may be strong enough, but once an algorithm is

broken it is too late to repair the system.

The term software evolution is used to indicate the phase of the software after it has been developed.

Once the system is developed it starts evolving. Any successful software product will be used and

maintained. During these cycles of maintenance the software evolves.

More detailed descriptions of maintenance activities and software evolution can be found in (Chapin

et al., 2000). A more in depth characterization of maintenance activities and MDA is explained in

(Seifert & Beneken, 2005)

3.8 CONCLUSION

In this chapter we described two parts of the software life cycle: the development phase and the

maintenance phase. For the development phase many different models exist, we described two of

them. We explained the waterfall model and the iterative model. Both processes we described: RUP

and OpenUP are examples of an iterative process. Both RUP and OpenUP are not adapted to MDA but

provide the means to extend the process to suit MDA. For instance, for MDA we described how a new

role can be added that is responsible for meta-modeling and transformations. For OpenUP has been

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 39/103

an effort to implement an extension to support MDA. This extension includes new roles and activities.

For both development processes tools are available that help customizing the process.

The second phase in the software life cycle is the maintenance phase. After a software system is

delivered it enters the cycle of use and modification (See Figure 8). Four types of maintenance

activities can be identified: adaptive, perfective, corrective and preventive. The overall process that

starts after the system is delivered is called software evolution. All maintenance activities make

evolve the system.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 40/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 41/103

Chapter 4
4 CASE STUDY

This chapter describes the case study in which we rebuild an application using MDA. The first two

sections of this chapter are devoted to the plans of the case study and the development environment

we used. The other sections describe the architecture of the system and the architecture of the models

and transformations..

4.1 DESCRIPTION

As a case for this study, we will use an existing business application developed at Getronics

PinkRoccade. The application we rebuild is a simple business application that was originally designed

to support the back office of the NEa (Dutch Emission authority). This organization controls the trade

in CO2 and NOX emissions in the Netherlands. The system called Arend is used to administer CO2

emission permits, complaints, objections, sanctions, external audits and NOX trade. Besides the

primary functions it also contains functions to administer incoming and outgoing mail, manage

processes, manage users and maintenance of the archive.

The system is currently in use at the NEa and is maintained by Getronics PinkRoccade. Arend is a web

application built on the Microsoft .NET platform and written in C# and ASP.NET. All documentation

and source code of the system is available which can be used to speed up the development process. It

was originally developed using the RUP and the developers did not apply any form of model driven

development.

In the first stage of the case study, two use-cases from the original Arend are selected and

implemented. In the second stage of the case study four changes are made to the implemented

system to simulate maintenance activities.

4.2 DEVELOPMENT PLAN

The software development process that is used for this case study is the RUP. This process is used

because we think it is currently the most widely used and accepted iterative software development

process.

The case study contains two major components. The first component is the development of a system

using MDA techniques. The second component is maintenance of the same system.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 42/103

Inception phase

Elaboration phase

Construction phase

Transition phase #1

Transition phase #2

Development Maintenance

Figure 13: Project phases

Figure 13 provides an overview of the different phases and iterations of the case study. There are five

iterations in total, divided among four phases. The inception, elaboration and construction phase all

contain one iteration. The transition phase has two iterations. The first iteration will be used to finish

the system and to deploy it. The second transition iteration is used to carry out some maintenance to

the system.

Inception Elaboration Construction Transition #1 Transition #2

Application architecture

Model architecture

Domain model UC1

User experience model UC2

C# meta-model

ASP meta-model

Transformation architecture

User experience transformations

Domain model transformations

ASP to text transformation

C# to text transformation

Sitemap meta-model

Sitemap to text transformation

Installation guide

Change request #1

Change request #2

Change request #3

Change request #4

Domain model UC2

User experience model UC1

User experience model menu

Activities

Phases

Figure 14: Project plan

The first phase of the project is the inception phase. In Figure 14 provides an overview of the larger

activities per phase. In the inception phase the scope of the project is determined and the preparation

for the next phases are made. For this project the inception phase is used to establish agreement on

the scope of the project. In this project by selecting the use-cases to implement. The inception phase

is also used to come up with an architecture and to setup the development environment. The

architecture for the system is based on a reference architecture. The architecture for the models and

transformations is derived from the system architecture. The reference architecture for the system is

the existing implementation of Arend. Based on this three components are created: the application

architecture, the model architecture and the transformation architecture. The application

architecture describes the global structure of the application. The model and transformation

architectures provide an overview of the models and transformations that are used to construct the

application.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 43/103

The purpose of the elaboration phase is to reduce risks. The largest risk in this stage of the project is

related to the MDA approach. It is unclear whether it is possible to deliver a working system at the

end of this phase. The creation of two UML profiles, two meta-models, two models and the

transformations needed to generate the code seems too much work for one iteration. To ensure that

the MDA approach is working for this project, a small use-case is selected and implemented in the

elaboration phase. Only a minimal set of meta-models, models and transformations are built to

implement the selected use-case. The set should be minimal but large enough to deliver a working

system at the end of the phase.

Figure 14 shows the activities for the elaboration phase. In this phase the UML profile for the domain

and user experience models and the C# and ASP meta-model are created. Based on the UML profiles

a domain model and a user-experience model are created. These two models model the selected use-

case. The transformations from UML to C# and ASP are created to implement the use-case. The

transformation adds semantics to the models. The last step is to create the model to text

transformation for the ASP and C# meta-models. This step implements code generation.

The third phase is the construction phase. In RUP projects, this is the phase where most of the work is

done. Once the scope is established and the major risks mitigated, the bulk of the implementation is

done in this phase. In this project the meta-models, models and transformations are extended to

meet the requirements for the second use-case.

Figure 14 shows the activities for this phase. The ASP and C# meta-models are extended to support

the second use-case. A new user-experience model is created to model the second use-case and the

domain model is extended. The transformations are adapted to add semantics to the new models.

The last step is to add a main menu to the system by implementing the sitemap meta-model and

extending the user-experience UML profile and related transformations.

The fourth and last phase of the project is the transition phase. This phase contains two iterations. In

the first transition iteration, the system is tested and deployed for use in production. In this case

study we test the system and deploy it on a server to verify if it is not depending on the development

environment. The second iteration of the transition phase is used to carry out the maintenance we

planned. Four change requests will be implemented in this iteration.

Figure 14 shows the activities for this phase. In the first iteration a installation guide is created and

tested. This is done to ensure the system can be deployed as a standalone system. In the second

iterations four change request are handled to apply maintenance to the system. The nature of these

changes remains unknown until this iteration starts.

4.3 DEVELOPMENT ENVIRONMENT

The application is built using a combination of Borland Together 2007 and Microsoft Visual Studio

2005. All models, meta-models and transformations are implemented using Together. Together has a

solid foundation in the Eclipse framework. A large part of the tool is based on Eclipse and uses

underlying EMF components to drive the modeling and transformation tools. Borland Together

generates a plug-in that holds the meta-models and transformations for our project. This allows us to

integrate our meta-models and transformations in the development environment.

Microsoft Visual Studio 2005 is used to build and test the generated source code. All generated code

is imported in a project. Visual Studio was chosen due to the feature rich .NET platform. The .NET

platform contains a number of ready-to-use components that reduce the amount of generated code.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 44/103

4.4 APPLICATION ARCHITECTURE

The design of the system is based on a three tier architecture (see Figure 15). In this architecture

three separate layers are responsible for separated tasks. The top layer is called the presentation

layer. This layer is responsible for the user interface. This layer communicates with the layer in the

middle, the business layer. The business layer contains the business and application logic. It checks

the data against the business rules and contains the functionality of the application. The business

layer communicates with the data layer. The data layer is responsible for storing and retrieving the

data. This layer also allows to do some simple checks. The idea of this architecture is to separate

concerns. Therefore, there is only communication between layers that are directly above or below

each other. This architecture follows the layers pattern as described by (Buschman, Meunier, Rohnert,

Sommerlad, & Stal, 1996).

Presentation Layer

Business Layer

Data Layer

Communication

Communication

Figure 15: Three tier architecture of Arend

The application is built using the .NET platform. Therefore, ASP and C# are used for the

implementation of the presentation layer. Each ‘page’ of the application is represented by a class. This

class is split into two partial classes: a C# and an ASP class. The partial classes are written in different

languages, but once compiled they form one class representing the page. The ASP code contains most

of the layout information while the C# code contains most of the application logic. The presentation

layer communicates with the business layer to display information on the screen. For a consistent

look and feel, one master-page is used for the entire application. This master-page contains a menu

that is used for navigation and a content panel. This content panel is filled with page specific content.

The menu displays the contents of the sitemap. The sitemap is an XML format that contains a tree

structure representing the application.

The business layer contains the classes that represent the objects from the domain of the system. In

this case it contains entities like a document and a person. The business rules are also specified on

this particular layer. In this application, the business layer is implemented in C#.

The data layer in this application is implemented by an object relational mapper. The object relational

mapper is a library that handles all communication with the database. To add a class to the database

it is enough to change their inheritance hierarchy and to add attributes to the fields of the class that

must be stored.

Figure 16 shows a schematic representation of the structure of the application . This scheme shows

how different components of the system are related with respect to implementation. The application

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 45/103

pages form the presentation layer. The business object are the business layer and DevExpress XPO is

used to implement the data layer
6
.

.NET 2 Platform

DevExpress XPO

Business ObjectsApplication Pages

C#ASPSitemap (XML)

Figure 16: Schematic application structure

The schema (Figure 16) shows that the entire application is built on top of the .NET 2 platform.

Sitemap is an XML format that is defined in the .NET 2 Platform. DevExpress XPO is the Object

Relational Mapper (ORM) we used. ASP and C# are both languages from the .NET platform. The

application pages are built using the Sitemap, ASP and C#. The business objects are implemented

using C# and DevExpress XPO.

4.5 MODEL ARCHITECTURE

This section describes the model architecture of our system. With the model architecture we mean

the overall organization and structure of the models and transformations that we use to build the

system.

Based on the architecture of the system we can define a number of models that we need to build the

system. At PIM level there are two models: the user experience model and the domain model. These

models describe the three layers of the system. The user experience model describes the

presentation layer. The domain model describes both the business and the data layer. Figure 17

provides an overview of all the models needed. The domain and user experience model are PIM

models. At PSM level there are four models. The sitemap model, the ASP model for the user interface,

the C# model for the user interface and the C# model for the domain. These models can be

automatically derived from the user experience and domain model through QVT model

transformations. There is a model transformation for each of these models. To transform the PSM

models into code there are four model to text transformations. These transform the PSM into

sitemap, asp and C# code. The transformations from PSM to code are implemented using a template

engine called Xpand. This language provides the means to define a model to text mapping based on

the meta-model. There are four transformation steps in Figure 17, but there are three Xpand

transformations. There is a transformation from ASP to ASP code, from C# to C# code and from

sitemap model to sitemap xml. The C# to code transformation is used twice. Once to transform the C#

UX model to code and once to transform the C# domain model to code.

6 It may seem strange that a library implemented in C# is actually schematically at the same level as C#. We think this is true in

this case because the library exposes itself as a set of custom attributes. We interpret these attributes as a form of language

extension.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 46/103

PIM

PSM

Code

Xpand template

User Experience Model Domain Model

ASP UX Model C# UX Model C# Domain Model

QVTQVT

ASP UX Code C# UX Code C# Domain Code

Xpand templateXpand template

Presentation Layer Business & Data Layer

Sitemap XML

Sitemap Model

Xpand template

QVT QVT

QVT: QVT Model Transformation

Figure 17: Schematic view of models and transformations

The two models at PIM level are modeled in UML 2.0, which is supported in Borland Together by

default. To be able to model the PSM’s we need meta-models for C#, ASP and Sitemap. Figure 18

provides an schematic overview of the model layer architecture. This picture shows the meta-meta-

model, eCore, at level M3. At level M2 are the meta-models we use for this system. The UML 2.0

meta-model is included with Borland Together. The C# meta-model was partially included with the

tool. The ASP and Sitemap meta-models were specifically build for this project. At Level M1, six

models are shown with their instanceof relation to the meta-models. The user experience and domain

model are instances of UML 2.0. The C# UX and Domain model are both C# models. The ASP UX model

is based on the ASP meta-model and the Sitemap model is based on the sitemap meta-model.

eCore

meta-meta-model

UML 2.0

meta-model

C#

meta-model

ASP

meta-model

Sitemap

meta-model

User Experience

Model
Domain Model C# UX Model ASP UX Model Sitemap Model

Instanceof

Instanceof

Level M3

Level M2

Level M1
C# Domain

Model

Figure 18: Modeling layers

The PIM’s are represented using UML 2.0 and stereotypes. A User Experience model describes the

pages in terms of structure, navigation and content. The domain model describes the business objects

and their relations. In the domain model, stereotypes are used to determine which data is persistent.

The PSM’s are represented using custom meta-models, a C# meta-model for C# code, an ASP meta-

model for ASP code and a Sitemap meta-model for Sitemap xml files. All meta-models, UML 2.0,

C#,ASP and Sitemap are instances of the eCore meta-meta-model.

4.6 PLATFORM INDEPENDENT MODELS

The platform independent models are the most important models of the system. These models

provide the input for the model transformations that will refine the PIMs into PSMs. The platform

independent models describe the entire system on an abstract level. In this section we describe how

and what we modeled at PIM level.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 47/103

4.6.1 DOMAIN MODEL

One of the platform independent models for Arend MDA is the domain model. The domain model

describes the business entities that play a role in the system. It describes the entities, their relations

and how they are mapped to a database system.

The domain model is an UML 2.0 class diagram with an UML profile that can be used to handle

persistency. The classes represent business objects with their properties. Associations can be used to

define relations among different objects. Each of the classes modeled in the domain model will be

transformed into a C# class representing the business object. The persistency profile determines

what fields of the class are mapped to the database. The business layer is described by the domain

model as well as the data layer. The business layer is directly modeled in terms of classes and the

associations. The data layer is indirectly modeled trough the persistency UML profile.

Figure 19: Domain model snippet

Figure 19 is a snippet of the full domain model. In this snippet the archive directory and subdirectory

are modeled. These business entities are modeled as classes in the UML 2.0 class diagram. Based on

this model the transformation can create a C# representation of this model. The associations in the

domain model have both client and supplier role names. These names can be used in the

transformation to create a variable name.

The UML profile that is used is created specifically for this project. This profile can be used to describe

what classes or parts of classes must be mapped to a database. To do this the profile contains two

stereotypes: “persistent” and “non persistent”. The first one indicates that a class must be mapped to

the database; the second one indicates it should not be mapped. Because mapping complete classes

may be too coarse grained, the stereotypes can also be used for attributes of classes. An attribute can

have both stereotypes. If the class has the “persistent” stereotype, a single attribute can be removed

from the database mapping by applying the “non persistent” stereotype for that attribute. If a class

has the stereotype “non persistent” but one of the attributes has the stereotype “persistent” the class

will be mapped to the database, but only the “persistent” attributes will be stored.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 48/103

Figure 20: Examples of the persistency profile

Figure 20 provides an example of the persistency profile. The person class is marked with the

“persistent” profile. Therefore the QVT transformation is able to create a C# class with attributes for

the object relational mapper that indicate that the entire class except the age field must be stored in

the database. The Car class demonstrates the “non persistent” stereotype. None of the fields of this

class will be mapped to the database, except the speed field.

The full domain model can be found in Appendix C.

4.6.2 USER EXPERIENCE MODEL

The second model that forms the basis for Arend MDA is the user experience model. The user

experience model is one of the two PIMs. A user experience diagram can be used to model the user-

interface of a system. In this project, we used an user experience diagram to model the screens, the

content of the screens, the navigation among screens and the menu structure. User experience

models are modeled in UML 2.0 class diagrams with an user experience profile. This profile contains

three stereotypes to model screens and the content of screens. The following stereotypes can be

used: “screen” , “input form” and “content bundle”. This profile is based on the user experience

profile as described by (Kozaczynski & Thario, 2002).

The main components of a user experience diagram are screens. A screen is modeled as a UML class

with the stereotype “screen”. Screens represent the user interface of the application. A screen has a

title, content and operations. The name of the class represents the title of the page. The content can

be modeled by adding fields to the class or by associating the screen with a “input form” or “content

bundle” class.

A screen can have two types of content: input forms or content bundles. Input forms are meant for

data entry, content bundles for display. An input form is modeled as a UML class with the “input

form” stereotype. The attributes of the class represent inputs on the form. The type of the attribute

determines what kind of input is modeled. For example, an attribute “Name:String” is the model for a

text input. Figure 21 is an example user experience diagram in which a screen is associated with an

input form. Figure 22 represents the screen that is modeled by Figure 21. The class “Add archivetype”

models a screen with the title “Add archivetype”. The operations of the screen class become buttons

on the screen and the associated input form is displayed on the screen. The “Archive” class models a

form with the title “Archive”. Each of the attributes models an input on the form.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 49/103

Figure 21: User experience diagram of a form

Figure 22:Single form example screen

The second type of content that can be added to a screen is a content bundle. A content bundle is a

class with the “content bundle” stereotype associated with the screen class. Classes with the

stereotype “content bundle” model screen content that displays information. A content bundle is a

region on the screen with a title and text that displays information. The attributes of a content bundle

class represent the labels. For instance, an attribute called “name” will represent a label with the text

“Name: <value>”. Figure 24 provides an example of a screen with a content bundle.

Figure 23: User experience diagram of a content bundle

Figure 24: Example of a content bundle

Modeling the content of a screen is done by associating content with a screen class. The multiplicity

of the association between a screen and an input-form or content-bundle models the type of content.

A one-to-one association models a single instance of the content. Figure 23 is an example of a one-to-

one association. If the association is one-to-many, it models a table of content. If a content bundle is

associated to a screen with a one-to-many association it models a table. The attributes of the content

bundle class represent columns of the table. If an input form is associated to a screen with a one-to-

many association it models a table with input capabilities. The attributes of the input-form class

represent the columns of this tables and the operations model operations on the table.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 50/103

An example model of a table with input capabilities can be found in Figure 25. It models a page like

the page in Figure 26. The columns “Name” and “Show” are modeled by the attributes of the input

form. The operations of the input form result in two extra columns. An “Edit” column that can be used

to toggle an editor. The “Delete” column can be used te remove a record from the table. The “Add”

operation results in a small form below the table. This small form can be used to add a record to the

table.

Figure 25: User experience diagram of a multiple input

form

Figure 26: Multiple form example screen

Operations on screen classes have stereotypes that determine what type of action must be executed

when the button is activated. The simplest stereotype is no stereotype. This means the operation

represents a navigation action. A directed association with the name of the operations indicates to

what screen this action navigates. Other stereotypes include “add”, “edit” ,”update” and “delete”

actions. The semantics of these actions are defined in the model transformation.

If an operation is a navigation operation it will search for a directed association with another screen

that carries the name of the operation as button. This directed association indicates to what screen

the system must navigate. Figure 27 provides an example of navigation operations. The first screen

“start” contains an operation “Start”. There is a directed association between the first screen and the

screen in the middle “A screen”. Pressing the “Start” button will navigate to the screen in the middle.

Figure 27: Navigation example

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 51/103

The user experience model can also be used to model the menu structure of a system. The stereotype

“menu” and “submenu” can be used to model a menu structure. A menu is a UML class with the

stereotype “menu”. A menu can have submenus. These are modeled with UML classes that have the

“submenu” stereotype. Directed associations are used to add a submenu to a menu. The submenus

can contain operations. Each operations corresponds with a directed association between the menu

structure and one of the screens. Operations in a menu class are always navigational operations (at

least for this project). Figure 28 is a snippet of our menu model. It defines one menu with one

submenu. This submenu contains operations that navigate to a screen.

Figure 28: Snippet of the menu structure

Figure 29 is a screenshot of the menu that is modeled with the structure from Figure 28. The “menu”

and “submenu” classes are mapped to a tree structure that contains the operations. In this project we

choose to use a tree. Other menu structures can also be modeled.

Figure 29: The modeled menu structure

The full user experience models can be found in Appendix D and Appendix E.

4.7 PLATFORM SPECIFIC MODELS

To develop the Arend system we used three meta-models to model the platform specific models. We

used the C#, ASP and Sitemap meta-model. In this section we introduce each of the meta-models and

discuss their usage and their structure.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 52/103

4.7.1 C# META-MODEL

To model the PSM level of our system we need a meta-model of our platform. Our platform consist of

four different domains. The platform contains ASP, C#, Sitemap and the attributes for the ORM tool.

The C# meta-model is used to model the C# code of our system.

For Arend MDA we adopted a partially built C# meta-model. This meta-model is provided by Borland

as an example meta-model for Borland Together. We extended this meta-model to a more detailed

meta-model. The meta-model supports most of the structural aspects of C#. It is able to model

namespaces which can contain other namespaces and classifiers. Classifiers can be enumerations,

classes, structures, interfaces and delegates. The meta-model does support structural aspects of C#

like methods, fields, attributes and properties with getters and setters but it does not support

statements and expressions. To be able to specify the implementation of methods, getters and setters

a special meta-model element is introduced. This element can hold plain text to allow generation of

statements and expressions in the C# meta-model.

Figure 30: A part of the C# meta-model

Figure 30 is a diagram of a part of the C# meta-model. This diagram provides a coarse grained picture

of the meta-model. It shows the model with namespaces and classifiers. A namespace itself can

contain namespaces and classifiers. A classifier can be an enumeration or class. In the full meta-model

other classifiers are modeled. A classifier can have members. In this diagram only the abstract type

member is shown. A possible specialization of a member is a method. All classifiers and members are

generalized as named element. This named element contains annotations. These annotations are

called attributes in C#, but this term is often confused with C# fields. Therefore, we stick to the name

annotation. A C# annotation is a declarative piece of text that can be added to all named elements.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 53/103

4.7.2 ASP META-MODEL

As described in the previous section, the platform for our system contains multiple domains. One of

these is ASP. The ASP meta-model is used to model the ASP code of our system.

To support modeling ASP.NET code in Borland Together an ASP meta-model is created. The basis for

the ASP meta-model is a simple structure of two abstract types: pages and tags. Both types have

multiple specializations. There are two page types: a normal page and a master page. A master page is

a concept from the .NET platform and represents a template page for normal pages. A normal page

fits inside a master page and provides the content for the template.

Both page types have a body that can contain tags. Tags represent ASP and HTML tags that can be

used to model web pages. Many html tags are supported to provide layout and style. The ASP tags

represent controls that can be placed on pages and reflect the ASP controls available in .NET.

Figure 31: A part of the ASP meta-model

Figure 31 provides a part of the ASP meta-model in UML notation. This picture shows the design of

the ASP meta-model. The root model element is the ASPModel. This element contains pages. Each

page represents an ASP page. Pages have a body. A body is always a tag. Tags are modeled trough a

system of specialization. The most abstract type is the abstract tag. Simple HTML tags are modeled

directly as a specialization of the abstract tag. An example is the horizontal rule tag: “<HR/>”.

4.7.3 SITEMAP META-MODEL

The simplest model used in the development of Arend MDA is the sitemap meta-model. The meta-

model is based on the structure that the .NET platform uses to specify sitemaps. Sitemaps in .NET are

XML files with a sitemap schema. In the simplest form a sitemap contains just two types of nodes.

Both are modeled in the sitemap meta-model.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 54/103

Figure 32: Sitemap meta-model

Figure 32 provides the full Sitemap meta-model in UML notation. This model is a very simple model.

The root element is a Sitemap element. This element can contain multiple SitemapNode elements.

Each SitemapNode element has a collection of nested SitemapNode elements. This can be used to

create a tree structure of nodes.

4.8 PIM TO PSM TRANSFORMATIONS

This section describes the model transformations from PIM to PSM. The first subsections contains an

overview of the structure of the transformations and meta-models. In the section that follow we

introduce the transformations from user experience to ASP and C#, and we introduce the

transformations from domain model to C#. The last section describes the language we used to

implement the model transformations.

4.8.1 TRANSFORMATION ARCHITECTURE

The transformation architecture gives an overview of the transformations needed to refine the

abstract models into more concrete models of the application code. Figure 33 provides an overview of

all models and transformations. The white boxes represent models and the white ovals represent

transformations. These are directed transformations from the source to the target model. The two

source models, the user experience and domain model, are transformed into four different models.

The user experience model is transformed into the ASP code, the C# code behind files and a sitemap

for the main menu. The Domain model is also transformed into a C# model, but using a different

transformation than the user experience model. This is due to the difference in semantics of both

models. All m2m transformations are implemented using QVT operational mappings. The m2m

transformations are documented using the transformation pattern in 0.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 55/103

User Experience Model Domain Model

ASP UX Model C# UX Model C# Domain Model

ASP Code C# CodeSitemap XML

Sitemap Model

QVT

UML 2.0 to

Sitemap

QVT

UML 2.0 to

ASP

QVT

UML 2.0 to

C# 1

QVT

UML 2.0 to

C# 2

Xpand

Sitemap

Xpand

ASP
Xpand C#

M
o

d
e

l to
 M

o
d

e
l

M
o

d
e

l to
 T

e
x
t

PIMs

PSMs

Code

Figure 33: Transformation overview

The target models of the first series of transformations, the PIM to PSM transformations, become the

source models for the second series of transformations. In the second transformation step, the PSM

to Code transformation, these models are transformed into a textual representation. This is

implemented using Xpand templates.

4.8.2 USER EXPERIENCE MODEL TRANSFORMATIONS

In total there are seven transformation steps needed to transform the models into working code. The

four most important transformations are the transformations from user-experience and domain

models to ASP and C# models. The transformations contain the semantics for the models. All model

transformations can be described using the transformation pattern (see section 2.4).

The transformation of the user-experience models is split up in two parts. One part is responsible for

transforming the model into an ASP model describing the structure and layout of the user interface.

The transformation follows the pattern as illustrated in Figure 34. The user experience model is an

instance of the UML 2.0 meta-model and is transformed by a QVT transformation. The target model is

an instance of the ASP meta-model. The transformation creates a set of pages, a page for every class

with stereotype “screen” in the source model.

UML 2.0
UX to ASP

Transformation
ASP

QVT Operational

Mappings

UX Model ASP Model
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Figure 34: Pattern for the user experience to asp transformation

The second part of the user-experience model transformation is responsible for the C# code that runs

server side and that implements the application logic behind the ASP pages. The C# files contain the

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 56/103

code that loads the data and fills the input forms, handles events from the user interface and

implements the actions. The user-experience to C#-model transformation creates a C# class for each

class with the stereotype “screen” in the user-experience model. The transformation adds event

handlers for each operation and the code that implements the operations. The event handler that is

hooked to the load page event handles data retrieval. The pattern for this transformation is illustrated

in Figure 35.

UML 2.0
UX to C#

Transformation
C#

QVT Operational

Mappings

UX Model C# Model
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Figure 35: Pattern for the user experience to C# transformation

The last and smallest step in the transformation process is the creation of the sitemap. The sitemap is

a model that is used to model the sitemap file. The sitemap file is used to drive the main menu of the

application. The sitemap model is created by a transformation that transforms all classes with the

“menu” and “submenu” stereotypes into a sitemap model. This transformation is illustrated in Figure

36.

UML 2.0
UX to Sitemap

transformation
Sitemap

QVT Operational

Mappings

UX Model Sitemap Model
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Figure 36: Pattern for the user experience to Sitemap transformation

4.8.3 DOMAIN MODEL TRANSFORMATIONS

The transformation from domain model to C# model is the transformation that is responsible for

creating the business layer (see Figure 15). The business layer contains classes that represent the

domain model and handle storage and retrieval of the data. The business layer should also contain

the business rules. In this case business rules are not included in the transformation. Business rules

can be specified using OCL constraints in the UML 2.0 models, but transforming the OCL constraints to

C# code is beyond the scope of this project. OCL support for C# is available (Arnold, 2004) but need to

be adapted to work with our transformations. The transformation from UML 2.0 to C# is also

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 57/103

responsible for naming all the variables. If the transformation renames a variable from A to A’ the OCL

expressions should also be parsed and adapted to these changes. Therefore implementation is

possible but not within the scope of this project.

UML 2.0
Domain to C#

Transformation
C#

QVT Operational

Mappings

Domain Model C# Model
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Figure 37: Pattern for the domain model to C# transformation

The Domain to C# transformation contains two parts. The first part is the structural transformation

which is a one-to-one mapping of UML 2.0 classes to C# classes. For every package a namespace is

created and the content of the package is transformed into content for the namespace. Each UML 2.0

class is transformed into a C# class, and UML 2.0 enumerations are transformed into C#

enumerations. The pattern for this transformation is illustrated in Figure 37.

The interesting part is the part of the transformation that handles the persistency stereotypes. When

the transformation transforms UML properties into C# properties, it checks the stereotypes.

Depending on the type of the property and persistency stereotypes of the property and the

containing class, it transforms the property into a C# property with the needed attributes. If a

containing class is marked “persistent” or the property itself carries this stereotype the

transformation will add a “persistent” attribute to the C# property. An example of such an attribute

can be found in Code section 3. In this code section a persistent property archiveCode is illustrated.

The persistent attribute can be found on line 3.

1 private string _archiveCode;

2

3 [Persistent("archiveCode")] //This is the attribute

4 public string archiveCode{

5 get {

6 return _archiveCode;

7 }

8

9 set {

10 _archiveCode = value;

11 }

12 }

Code section 3: Example C# property

The transformation of associations is the most complex part of the transformation. Two important

properties of the source model determine what will be created in the target model. For each UML 2.0

class in the source model the transformation looks up all incoming and outgoing transformations
7
.

7 Not all incoming associations can be found due to a bug in the QVT interpreter shipped with Borland together 2007. The

‘allinstances’ statement should return all instances of the specified type, in Borland Together the output depends on the

context of the call. Therefore, the implementation of the transformation might not include all incoming associations. Outgoing

associations are accessible from the owner and therefore not a problem in the transformation.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 58/103

Depending on the multiplicity a single value or a collection property is created. The type of the

association is encoded in an attribute for the property. If the association has the aggregate type an

attribute “Aggregated” for the property is added. This is illustrated in Code section 4 at line 1.

1 [Association("AssociationsubDirectories",typeof(ArchiveSubDirectory)),Aggregated]

2 public XPCollection<ArchiveSubDirectory> subDirectories{

3 get {

4 return GetCollection<ArchiveSubDirectory>("subDirectories");

5 }

6 }

Code section 4: Example C# collection property

4.8.4 QVT TRANSFORMATIONS

The domain and user experience models are transformed to C# and ASP models by three QVT

transformations. All three transformations are written in QVT Operational Mappings. There is one

transformation that transforms the domain model to a C# model and two transformations that handle

the user experience model. The user experience model is transformed to two separate pieces, the

ASP part that contains the layout information and a C# part that contains the logic for the user

interface.

Besides the three transformations there are a number of QVT libraries. These libraries contain a

number of queries that are used throughout all three transformations. One of the libraries contains

the naming conventions. The naming conventions are queries that provide names for all kind of types

in the models. For instance, a textbox or a dropdown identifier must be mapped based on a UML

property. Another library contains extra queries that extend the UML meta-models with extra

functions. One library defines persistency. When this library is included in QVT it adds a method

isPersistent() to the UML class model element. This makes development of the transformations easier

and simplifies changes. Code section 5 contains an example piece of QVT code to illustrate the

language.

1 mapping uml20::kernel::Enumeration::toCsharpEnumeration() : csharp2::CSEnumeration

2 {

3 Name:=self.name;

4 Visibility:=self.visibility.oclAsType(uml::kernel::VisibilityKind).toCsharp();

5 Members:=self.ownedLiterals->collect(liter | liter.toCsharp())->asOrderedSet();

6 }

Code section 5: Illustration of the QVT Operational Mappings language

4.9 CODE GENERATION

Both the ASP model and the C# models can be transformed to text using a model to text

transformation. For Arend MDA we implemented two Xpand templates that convert the C# and ASP

models to text files. The templates are wrapped in a Borland Together plug-in which enables us to call

the template for each ASP page and C# class. Every template call results in a generated text file which

is saved to the file system. The filename is determined using an Xtend expression
8
. Xpand is a very

simple language to define model to text transformations. It contains a very limited but sufficient

number of constructions that allow the programmer to write transformations rules for each type

defined in the source meta-model.

8 Xtend is the expression language that can be used inside Xpand templates.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 59/103

The following example code shows a transformation rule named “buildTag” for model elements of

type “ASPLabelTag”. The definition contains plain text, which will be outputted by the transformation

engine and an expand call. The expand recursively calls the “buildTag” rule for all contained tags. All

text between ‘«’ and ‘»’ are Xpand constructs. Code section 6 provides a sample of Xpand to illustrate

the Xpand language.

1 «DEFINE buildTag FOR ASPLabelTag»

2 <asp:label«EXPAND buildAspArguments FOR this»>

3 «EXPAND buildTag FOREACH this.tags»

4 </asp:label>

5 «ENDDEFINE»

Code section 6: Illustration of the Xpand template language

4.10 CONCLUSION

In this chapter we described the plan for our case study and how we executed the plan. The case

study contained two different overall parts: a part to construct the system and a part to apply some

maintenance to the same system. For this case study we used RUP to structure our project and MDA

to build the system. The combination of these two resulted in a project with four phases. An inception

phase in which we determined the scope, architecture for both our system and the tools to build our

system. In the elaboration phase the MDA approach was used to implement the first use-case. To

implement this use-case we had to build two meta-models: ASP and C#. We also created the UML

profiles for the domain model and the user experience model. We defined the transformations

between the phases and created the model to text transformations. In the third phase, the

construction phase we implemented another use-case. To implement this we had to extend our

existing meta-models and implemented another meta-model: Sitemap. The transition phase was

divided into two iterations. The first iteration was used to deploy the existing system and to see how

it performed. In the second iteration of the transition phase we applied some maintenance. Four

change request were created by a third party. These were implemented to see how maintenance can

be applied in a project that has been developed using model driven techniques.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 60/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 61/103

Chapter 5
5 EVALUATION

The evaluation of the case study contains two parts. The first part is the evaluation of the software

development process. In this part each of the phases of the software development process are

discussed. We start with the inception phase and evaluate each of the goals for this phase. Besides the

goals we also describe our observations. The issues that are observed are described in the next part of

the evaluation. In the second part of the evaluation we enumerate all the issues. For each issue we

provide a description of the problem and if necessary examples to clarify the problem. We also

provided a possible solution if the solution was known to us.

5.1 SOFTWARE DEVELOPMENT PROCESS

The evaluation of the software development process is based on the phases of the RUP. For each

phase a subsection describes the goals and the results. For all phases the goals are evaluated. The

goals come from the iteration plans we created during the project.

Figure 38 provides an overview of the evaluation. Each of the phases of the software development

process is defined in a separate section. The transition phase is split in two sections. The first section

describes the evaluation of the deployment of the system. The second iteration describes the

evaluation of the maintenance activities.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 62/103

Inception Elaboration Construction Transition #1 Transition #2

Application architecture

Model architecture

Domain model UC1

User experience model UC2

C# meta-model

ASP meta-model

Transformation architecture

User experience transformations

Domain model transformations

ASP to text transformation

C# to text transformation

Sitemap meta-model

Sitemap to text transformation

Installation guide

Change request #1

Change request #2

Change request #3

Change request #4

Domain model UC2

User experience model UC1

User experience model menu

Activities

Phases

Section 5.1.1

Section 5.1.2

Section 5.1.3

Section 5.1.4

Section 5.1.5

Evaluated in:

Figure 38: Evaluation map

5.1.1 INCEPTION PHASE

The inception phase of our project is used to setup the initial project and to find out how the project

should be carried out. For this phase we had four goals. The most important goal was determining the

scope of the project. The other goals are related the architecture of the system, the approach to use

and the development environment.

Goal: Determine scope of the project

The scope for this project was based on the original Arend project. Due to the amount of time

available a small selection of use-cases was made. Two use-cases were selected, one simple use-case

for the elaboration phase and a more complex use-case for the construction phase. The following two

use-cases were selected:

UC1: Archive maintenance. Adding, editing and removing archives.

UC2: Archive mail items. Putting incoming and outgoing mail items in one of the archives.

Goal: Determine architecture

Based on the selected use-cases it was now important to come up with an architecture and an

approach to implement the use-cases using MDA. Because the existing system was available it was

possible use this as a reference architecture. The MDA approach was defined using the reference

architecture as guide.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 63/103

Goal: Determine approach

To build the system using MDA we needed to find out what models we needed and how the

transformations would transform the models. In the inception phase we determined that we needed

the user experience and domain model at PIM level and the ASP and C# models at PSM level.

Goal: Setup development environment

We wanted to use Borland Together 2007 and Visual Studio 2005 as our development environment.

Observations

In the early stages of a project it is important to select the proper tools and think about the

technologies one may need during development. Tools may claim they support MDA or at least that

they implement some of the technologies, the question is what parts of the standard are

implemented. In the case of Borland Together the major part of the QVT specification is implemented

and some tools are provided to create custom meta-models. The problem is that not all parts of the

tool are well documented and sometimes contains bugs.

Another observation we made during this phase is that in fact two architectures need to be build. One

for the system under development and an architecture for the tools that develop the system. The

architecture for the tools to develop is needed because MDA only provides the techniques to apply

model driven engineering. MDA does not specify what meta-models are needed and what model

transformations are going to be used to build the system. One of the goals for the inception phase is

the setup of the working environment. Part of this setup includes documenting the MDA approach:

what meta-models, models and transformations are needed to build the system.

5.1.2 ELABORATION PHASE

According to RUP the elaboration phase is the phase to mitigate the risks and to find out if the project

is feasible. In this case study we used the elaboration phase to make sure that our approach was

working and that we were able to create a working system. In this section we evaluate the goals for

the elaboration phase.

Goal: Stabilize scope and architecture

The architecture created in the inception phase was tested in practice in the elaboration phase. The

implementation of the first use-case (UC1) was a test for both the architecture of the system and for

the MDA approach. The architecture for the system was based on the reference architecture provided

by the original Arend project. There were no problems building the system according to the

architecture. We did have some minor problems with the ORM tool. Creating persistent classes in C#

was more work than expected but worked fine in the end.

Goal: Implement models and transformations for first use-case

The major part of the work in the elaboration phase was creating the meta-models and

transformations. Borland Together provided a basic C# meta-model and an Xpand template as

demonstration of the DSL toolkit. We used the Borland DSL toolkit to create a plug-in that contained

our ASP and C# meta-model and the Xpand templates to transform the models into text. The meta-

models were designed as minimal implementations of their domain. With a minimal implementation

of a meta-model we mean that the scope of the meta-models was our project and not the complete

domain. The meta-models contained the model elements we needed to model our system. The ASP

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 64/103

meta-model only contained the tags that we needed for the implementation of the use-case, and the

C# meta-model only contained the structural elements of C#. Expressions and statements were not

supported.

The next thing we did was building the UML models. Based on the use-case descriptions two models

were created. Both models are UML models contained class diagrams, a diagram for the domain

model and a diagram for the user-experience model.

The transformations from UML 2.0 models to the ASP and C# models are implemented in QVT

Operational Mappings. Creating these transformations showed all flaws in both the source as the

target meta-models. It was clear that not all features for the C# and ASP meta-model were available.

This meant changing the meta-model, rebuilding the plug-in and reinstalling the plug-in before the

new features became available in Together. Creating the meta-models was a time consuming process.

The main cause for this was the poor quality of Borland Together. Many bugs frustrated our work.

The model transformations created ASP and C# code for the domain model and the user experience

model. The transformations were based on small proof of concept implementations of the model

elements. Once the transformations finished, the generated models were transformed to code using

the Xpand templates. The generated code was imported in Visual Studio 2005 and compiled.

Goal: Deliver working system

Compiling the system using Visual Studio 2005 was very successful. The first time a Visual Studio

project was created and the files were imported by hand. The output directory for the Xpand engine

was set to the project directory. This way Visual Studio imported the generated files automatically

once the files changed. The system was compiled and debugged in Visual Studio.

Observations

We developed our own meta-models as we needed additional features. We started with a very basic

meta-model for ASP and while developing the transformations to ASP we added model elements.

Adding model elements was not a problem, removing model elements or changing elements resulted

in problems. We will refer to this problem as “Model and Meta-model co-evolution is difficult”.

One of the problems we encountered during this phase is that the complexity of model

transformation increases as the structural difference between source and target meta-models

increases. We will refer to this problem as “Structural incongruence increases transformation

complexity”.

During the implementation of the QVT transformations it became clear the some of the object

oriented techniques we used in the meta-models were not supported by the QVT language. For

instance, a mapping that has a abstract return type in the signature is not allowed. Even if the

implementation of the mapping does return concrete types. We will refer to this problem as “Lack of

object orientation in QVT”.

A detailed discussion of these issues can be found in section 5.3.

5.1.3 CONSTRUCTION PHASE

In the construction phase a larger and more complex use-case was selected for implementation. In

this section we evaluate the goals we set for this phase of the project.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 65/103

Goal: Analyze, design and implement functionality for the complete system

To implement the second use-case we extended the domain model and added a user-experience

diagram to the user experience model. That made it possible to transform the use-cases

independently. With the implementation of the second use-case the number of screens in the system

increased. To cope with the larger number of screens we added a menu to the system. A new diagram

was added to the user experience diagram to model this main menu.

The basis for the menu is formed by a separate user-experience diagram. This diagram contains

classes with the menu stereotype and associations between menu classes and screens. A QVT

transformation transforms this model into a sitemap model. The sitemap model is a very simple eCore

model that can be transformed to XML by an Xpand template. This XML file is read by a special

sitemap component on the web pages.

Implementing the sitemap component on every page seemed like a simple solution. Some changes in

the user experience to ASP transformation resulted in a sitemap on each page. However, the .NET

platform also offered a solution that enabled us to create a master page for each page containing the

menu. The master page contains the menu and a content holder that can be filled with page specific

content. Because we think it is a good thing to take full advantage of the frameworks we use we

choose to implement the master page. This made the generated code smaller, but the meta-models

larger. The ASP meta-model was adapted to support master pages and content holders.

Domain2CSharp

NamingConventions

Persistence

UXHelpers

UXPackage2ASP

UXPackage2CSharp

Transformation Package

Figure 39: Transformation package elaboration phase

Due to the implementation of the second use-case the number of transformations increased. New

transformations were added for the sitemap, the menu and the creation of the master page. The

complexity of the transformations themselves also increased due to new features required to

implement the second use-case. This resulted in the need for a better structured set of

transformations. The package of transformations from the elaboration phase is shown in Figure 39.

We decided to put our transformations in a structured set of QVT packages. Packages for the user

experience, domain model and sitemap transformations were created to separate concerns. Global

mappings, like mappings to handle naming conventions, were put in a separate package called

common. The new structure of the packages is shown in Figure 40.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 66/103

Common

NamingConventions

Domain Model

User Experience

Sitemap

UxPackage2Sitemap

CSharp

MasterPage

Utils

UxPackage2CSharp

ASP

MasterPage

Utils

UxPackage2ASP

Common

Common Queries

CSharp

Domain2CSharp

Common

Common Queries

Persistence

PersistenceQueries

Figure 40: Transformation package construction phase

Goal: Obtain experience with the MDA approach

During the project we gained a lot of experience with the MDA approach. Not only did we implement

a use-case using our MDA approach, we also developed our meta-models, models and

transformations using an iterative development process. Because we used an iterative development

process certain aspects of the MDA approach are different. For instance the development of our

meta-models. We choose to built a part in the elaboration phase and a part in the construction

phase. This caused problems when the meta-model changed to much. The models needed to be kept

synchronized with the changed meta-model. We also gained experience with managing complexity of

a MDA based development project. In general purpose programming language there are well known

techniques to keep the source code maintainable. For instance the use of namespaces, packages and

separation of concerns makes it easier to maintain and reuse code. In this project we gained some

insights in how to manage complexity in MDA based development projects. For instance packaging

QVT transformations and separating concerns in QVT.

Observations

During the development of UC2 we had to refactor the existing meta-models and restructure the

model transformations. Because the menu structure was added and the master pages were

introduced in this phase of the project the complexity of all the transformations increased. For

building a system with general purpose programming language a build script can be used to control

the building process. In our case the number of transformations increases and the ordering became

important the need for a build script for transformations became evident. Such a script can be used to

compose transformations into a building process. We will refer to this problem as “No transformation

composition”.

A second observation we made during this phase is that combining models is very hard at this

moment. The user-experience models contain stereotypes that specify the type of action. In an ideal

situation the implementation of an action should be modeled in a separate model. Once the user

experience model is transformed, it is combined with the implementation of the specified action. We

will refer to this problem as “Composing models is difficult”. Composing models in QVT was difficult

for two reasons. The first is reason is tool support. The tool we used has a QVT engine that is capable

of handling multiple input models however, the user interface of the tool did not supported multiple

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 67/103

input models. The second reason is that a transformation language like QVT is focused on

transforming model and not focused on merging models. QVT is to generic to define model

compositions. (Kurtev & Didonet Del Fabro, A DSL for Definition of Model Composition Operators,

2006).

A detailed discussion of these issues can be found in section 5.3.

5.1.4 TRANSITION PHASE ITERATION 1

The transition phase is the only phase of the project that contained multiple iterations. In this section

we evaluate the goals for the first iteration of the transition phase.

Goal: Deploy the system in a clean environment

In the first iteration of the transition phase the system was prepared for deployment in a clean

environment. To make sure the system was installable and the installation manual was up to date we

installed the system on a virtual machine with a fresh installation of Windows XP.

The installation on a separate machine showed that parts of the system are depended on XPO library

and that this library must be installed on the host machine. Only delivering the XPO library in binary

form seems inadequate.

Using a virtual machine with .NET 2.2 installed and a copy of IIS running we were able to demonstrate

that our system compiled, ran and that is was possible to deploy the system.

5.1.5 TRANSITION PHASE ITERATION 2

The second transition phase was used to implement four selected changes. These changes are made

to the product to find out what difficulties we could encounter if we need to make changes to a

model driven created product. This section we evaluate the four change requests.

The following changes are evaluated:

 CR1 A perfective change: Incoming and outgoing mail items lists should be paginated.

CR2 A corrective change: Aggregated input forms should have edit functionality.

CR3 A preventive change: A log file should be kept that logs the identifiers of objects, the time and

the type of the object each time an object is changed.

CR4 An adaptive change: It should be possible to configure the database to be used in a configuration

file.

We planned two weeks to implement the, at that time, unknown change requests. The change

request were submitted by a senior application programmer. However, implementing the changes

took two days. Much less than expected, this is what we changed to implement the changes:

Perfective change: Incoming and outgoing mail items lists should be paginated.

Pagination is build-in behavior of the .NET GridView component. To make pagination available in the

ASP meta-model we had to add 2 attributes. A Boolean attribute to specify whether pagination must

be used and an integer attribute to specify the number of rows per page. Two extra if-blocks were

added to the Xpand template so the new options are written to the ASP files. The last thing that

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 68/103

needed to be done was the addition of a piece of QVT code. This QVT code sets the right properties in

the ASP model if pagination is needed.

Corrective change: Aggregated input forms should have edit functionality.

The edit functionality is default available in the .NET GridView component, except when dynamic

binding is used. In Arend MDA the datasource is dynamically bound to the gridview. To add the editor

functionality to the gridview, three extra event handlers are needed. Two simple handlers that

set/unset the current editable row when edit or cancel is clicked. The third event handler is slightly

more complex. This event handler reads the changes and stores the new values. However, due to a

bug in .NET reading the new values was hardly possible. Using a work-around the values could be

read, but this meant adding a large block of code to each event handler. Therefore, the large part of

this code was implemented as a library and a small block of code was added to each event handler.

The addition of the event handlers also meant adding three attributes to the asp gridview tag in the

ASP meta-model and the Xpand template for the ASP meta-model. The QVT transformation from user

experience model to C# model was also modified. Three extra rules were added to create the event

handlers in C#. A little QVT code was changed in the user experience to ASP transformation to set the

event handlers in the ASP model.

A preventive change: A log file should be kept that logs the identifiers of objects, the time and the
type of the object each time an object is changed.

The implementation of an audit trail meant changing the current implementation of the data layer.

The C# domain model that was created from the UML model did not add any code for storing data.

This is default behavior of the persistency library. If an object inherits XPObject, it will have a save

method that stores the object. However, if we want to track changes in a log file we need to log all

changes. And, we need transactions for this. We only want to write a record to the log if the

transaction succeeded. If a transaction fails, nothing is changed and therefore no log record is

needed. To implement CR3 we changed the save method for all persistent object to a save method

with a transaction. The logging itself is implemented in a separated library. The QVT code that

transforms the domain model into a C# model needed some changes, the save method is only added

if the object inherits directly from XPObject and the save method implementation was added to the

QVT code.

An adaptive change: It should be possible to configure the database to be used in a configuration
file.

The configuration file for the database did not require any changes to the models or transformations.

Inclusion of a special C# file containing one event handler and the code to set the database location

variable for the persistency library was enough to implement it.

Observations

If changes are made to a product that is being developed with MDA techniques, some changes

require modifications of the meta-models, models and transformations and some changes can be

implemented separate. Our idea is that generic functionality should be implemented in the

framework on which the application is build. Examples of such functionality are the editor and

pagination. Other changes, that require extra code, should be implemented as a separate library. This

improves reuse and makes it simpler to include it in the transformations and meta-models. The only

code you add in the transformations should be the glue code that enables the application to use the

library.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 69/103

Changing the meta-models can be simple. Adding attributes to a model element is not a problem.

Changing the name of an element or worse, removing an element resulted in our case in enormous

problems, the models became unreadable for the tool. Therefore we think tool support is needed for

model refactoring.

5.2 SUMMARIZED EVALUATION

The following table contains the goals for each of the iterations of the software development project.

For each a goal a summary of the evaluation is given to provide a quick overview of the project

evaluation. The names of the goals have been shortened to fit the table.

Evaluation of the goals

Phase Iter. Goal Summary

Inception 1 Determine scope Scope was determined by selecting two use-cases
from the original project.

 Determine architecture The architecture was defined using the original
project as reference architecture.

 Determine approach Based on the reference architecture models, meta-
models and transformations were determined.

 Setup development
environment

Borland Together 2007 and Visual Studio 2005 were
selected and installed as the development
environment.

Elaboration 1 Stabilize architecture The architecture as defined in the inception phase
was used to implement the first use-case without
any problems.

 Implement first use-
case

An ASP and C# meta-model were created as PSM.
The use-case was modeled at PIM level by a user-
experience and a domain model.

 Deliver working system The system was imported in Visual Studio to
compile it. The debugger of Visual Studio was used
for testing.

Construction 1 Implement complete
system

The second use-case was implemented. To do so
new meta-models were needed and existing meta-
models were adapted. Extra user-experience
diagrams modeled the second use-case, while the
domain model was extended. A new structure was
created to package the transformations.

 Obtain MDA
experience

Extending existing meta-models and added new
meta-models and transformations increased the
complexity of the system. It showed some
weaknesses in our approach and in the current
tools and languages.

Transition 1 Deploy the system The system was successfully deployed on a clean
windows XP installation which acted as web server.

Transition 2 Add pagination to
tables

Pagination is a feature supported by the .NET
platform but was not supported by our models.
Added a Boolean property to the ASP meta-model
added support for pagination. Inserting an
expression to the property in the transformation
completed the implementation of the change
request.

 Edit functionality for
aggregated input
forms.

This functionality was not available in the .NET
platform in combination with our persistency
library. Therefore we had to implement this
function ourselves. The functionality was

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 70/103

implemented as a library and on a number of places
in the transformation. The user experience to C#
transformation was adapted to work with the
library.

 Log file The log file was also implemented as a library or
component. The domain to C# transformation was
adapted to implement the new logging component.
To make sure the log file reflects reality we also
implemented transactions.

 Database configuration A database configuration file was added using a
.NET function. Including a special file in the project
is enough to implement this change request.

We also provide a summary of the observations we made during this project. These observations are

described in more detail in the next section.

Observations per phase

Phase Iter. Observation Summary

Inception 1 Selection of tools In an MDA-based software development project
selection of the right tools is important. Depending
on the exact approach a selection must be made.

 Architecture of the
approach

In an MDA-based software development project
two architectures are created. An architecture for
the system under development and an architecture
for the tools to build that system.

Elaboration 1 Model and meta-
model co evolution is
difficult

All models must be adapted if the meta-model
changes. Changes in the meta-models also need to
be reflected in the transformations that use the
meta-model.

 Structural
incongruence increases
transformation
complexity

If the source and target meta-model are structural
incongruent the transformation becomes more
complex than a transformation from a source and
target meta-model that are structural congruent.

 Lack of object
orientation in QVT

Object orientation plays an important role in
modern programming languages. MOF based meta-
models use object oriented features like
inheritance and abstract classes. These are however
not supported by QVT.

Construction 1 Transformation
composition

Building a complex system requires a number of
transformations that work together to transform
the models into a working system. To transform the
system a build script is needed to execute the
transformation in the proper order with the proper
arguments.

 Model composition is
hard

A development process like RUP incorporates the
“4+1” view. This indicates that different models
together model the system. The composition of this
models is hard to describe using QVT operational
mappings.

Transition 2 Implementation as
library or component

Implementing new functionality in a MDA-based
project forces the developer to create libraries or
components that contain the functionality. The
component as a whole is added to the project and
the model transformations are adapted to include
the component in the product.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 71/103

5.3 DISCUSSION OF OBSERVED ISSUES

This section contains a discussion of the issues we observed during the project. For each of the issues

one or more examples are given to provide a quick explanation of the issue. We also included more

detailed description of the nature of the problems and provided possible solutions.

5.3.1 MODEL AND META-MODEL CO-EVOLUTION IS DIFFICULT

In our case study we used three meta-models, two UML 2.0 profiles and multiple instances of these

meta-models. Changes made to the meta-model are not reflected in the instances of the meta-model.

The same problem holds for the generated system once deployed. If the models change, the data

currently stored in the production system does not reflect the changes in the system. A third problem

is that transformations are depending on meta-models. In some cases if the meta-model changes,

these changes ripple through the transformations.

The problem is that the model and meta-model do not co-evolve. The evolution of meta-models,

models and also the transformations should be synchronized. Changes in the meta-model should be

reflected by changes in the models and transformations. The problems of co-evolution are addressed

in this paper (Wachsmuth, 2007)

Meta-model A
Transformation

Specification
Meta-model B

Transformation

Language

Model A Model B
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Changed since last iteration Affected by the issue

Figure 41: Transformation pattern with changes in meta-model A

Figure 41 illustrates the relation of this issue with the iterative approach. Since the meta-models used

in the development of the system are developed in an iterative fashion this issue is a common

problem. The delta in the figure illustrates that meta-model A has changed since the last iteration.

This affects the models that are instances of meta-model A and the transformations based on this

meta-model.

Refactoring is defined as “changing a system to improve its internal structure without altering its

external behavior” (Fowler, Beck, Brant, Opdyke, & Roberts, 1999). The definition says nothing about

what kind of system is improved, but in general the term refactoring is used in the context of source

code. Changing source code without changing the behavior of the code. Nowadays many tools exist

to help programmers refactor source code. Instead of modifying source code by hand, modern tools

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 72/103

understand the structure of programs and can change the code for the programmer, relieving him

from the tedious task to locate and update all pieces of code that must be changed. To be sure that

source code is still behaving correct after refactoring, the tool that helps refactoring must have

knowledge about the code (Tichelaar, Ducasse, Demeyer, & Nierstrasz, 2000).

Refactoring tools can be build using a small number of primitive refactoring activities. These activities,

called low-level refactorings, can be combined to form larger groups of refactorings, for instance to

apply a design pattern, called high level refactorings. Examples of low-level refactorings are adding,

renaming and deleting an element. All of these are supported by transformation languages like QVT

(Wachsmuth, 2007).

Therefore we think that a solution to the problem of model and meta-model co-evolution might be

model refactoring tools. If a meta-model is changed, the changes in the meta-model must propagate

trough the transformations, models and further. Therefore, to enable model refactoring the system

must know what models, transformations and other artifacts to refactor. This can be done by using a

repository holding all artifacts.

Not all changes to models and meta-models are strictly refactorings. Evolution of models also includes

creation and destruction of new model elements. Since creating/destructing new elements is not

strictly refactoring, model refactoring might not be the proper term. However, both destruction and

creation of new model elements can be seen as primitive activity and can also be described using

transformations. We use the term model refactoring because programmers have are used to this

term.

5.3.2 STRUCTURAL INCONGRUENCE INCREASES TRANSFORMATION COMPLEXITY

One of the key issues we found while implementing model transformations was that the complexity

of the transformation increases if the source meta-model is not structural congruent with the target

meta-model. The more incongruent the meta-models are the harder it is to bridge the structural gap.

This problem arises for instance when a transformation from a ‘flat’ model to a very ‘hierarchical’

model is written. With a ‘flat’ model we mean models with a meta-model that does not contain many

nested element; with a ‘hierarchical’ model we mean a model with a meta-model that does contain

much nested elements. An example of a ‘flat’ model is a UML class diagram. A class diagram contains

packages, packages contain classes and classes contain attributes. Attributes do not contain other

elements. In this example we can go three steps deep. An example of a ‘hierarchical’ meta-model is

the ASP meta-model we created. To display a table with a title on a page one needs many tag

elements. A page element, a body element, a form element, a panel element, a bold element, a text

element, a table element etc. This meta-model is more hierarchical from structure and in this case we

can go up to seven steps or more deep.

Bridging the structural gap between two meta-models requires extra rules in the transformation step

that increase the complexity of the transformation. The following QVT code sample illustrates this:

1 mapping transformToPanel(screen: uml20::classes::Class): aspx::ASPPanelTag

2 {

3 init {

4 --Generate the table with a row for each property

5 var table : aspx::TableTag := generateTable('','table');

6 table.tags+= screen.ownedAttributes->

7 collect(prop | property2field(prop))->asOrderedSet();

8 }

9 runat:=aspx::runatEnumeration::server;

10 id:=toPanelId('fields');

11 tags+=table;

12 }

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 73/103

13 mapping transformToCells (prop : uml20::kernel::Property) : aspx::TableRowTag

14 {

15 init {

16 var cell1 : aspx::TableColumnTag := tableCell();

17 var cell2 : aspx::TableColumnTag := tableCell();

18 cell1.tags+=generateCData(toNiceLabel(prop.name));

19 cell2.tags+=aspLabel(prop.name);

20 cell2.tags+=generateComment(prop.getPropertyValue('field'));

21 }

22 tags+= cell1;

23 tags+= cell2;

24 }

Code section 7: Hierarchical complexity in QVT

In Code section 7, a class and the properties it contains are mapped to a asp panel containing a table

(line 5), containing rows (line 13), containing cells (line 16,17) and the label and text (line 19,20). The

source structure has depth two, while the target structure has depth four. In this example this is

solved in the init sections of the mappings. The extra model elements are created and the output of

the mappings is added to these model elements.

Code section 8 shows the same transformation as described in Code section 7, but without increasing

the complexity of the mappings. Instead of more complex mappings, more mappings are needed to

bridge the structural gap. Many very simple mappings are introduced just to create all the model

elements needed.

1 mapping transformToFields(screen: uml20::classes::Class) : aspx::ASPPanelTag

2 {

3 runat:=aspx::runatEnumeration::server;

4 id:=toPanelId('fields');

5 tags+=transformToFieldsTable(screen);

6 }

7

8 mapping transformToFieldsTable(screen: uml20::classes::Class) : aspx::TableTag

9 {

10 class:= 'ta ble';

11 tags+=screen.ownedAttributes->collect(prop | transformToFieldRows(prop));

12 }

13

14 mapping transformToFieldRows(prop : uml20::kernel::Property) : aspx::TableRowTag

15 {

16 tags+=transformToTextCell(prop);

17 tags+=transformToLabelCell(prop);

18 }

19

20 mapping transformToTextCell(prop : uml20::kernel::Property) : aspx::TableCellTag

21 {

22 tags+=generateCData(toNiceLabel(prop.name));

23 }

24

25 mapping transformToLabelCell(prop : uml20::kernel::Property) : aspx::TableCellTag

26 {

27 tags+=aspLabel(prop);

28 }

29

Code section 8: QVT increased number of mappings

The code in Code section 8 looks readable and maintainable code at first sight. But, instead of two

mapping rules it now contains five mapping rules. This is not a problem for such a small example, but

this may become problematic for larger transformations.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 74/103

5.3.3 LACK OF OBJECT ORIENTATION IN QVT

Currently the specification of QVT contains no polymorphism for mappings. This polymorphism is very

useful in the case that properties of the source element determine the type of the target element.

Consider the following example in which a UML property is mapped to an ASP input. Depending on

the type field of this UML property it maps it to a ASP text input or a ASP checkbox. The QVT code to

implement this mapping would look like:

1 query transformToInput(property : uml20::kernel::Property):aspx::AbstractInputTag

2 {

3 if property.type.name = 'String' then object aspx::TextInputTag { … } else

4 if property.type.name = 'Boolean' then object aspx::CheckboxTag { … } else

5 undefined endif endif;

6 }

Code section 9: Polymorphism in QVT

The problem is that Code section 9 is not valid according to the QVT engine of Borland Together. Both

types may be descendants of the AbstractInputTag, but the QVT engine considers them different

types and a mapping that may return two different types is not allowed.

According to the specification of QVT it is possible to implement the transformations as specified in

Code section 9. With the use of disjunct mapping operations. With a disjunct mapping operations we

can define an ordered list of mappings with guards. The engine loops trough the list of mappings to

find the first mapping operation that is available. Using this mechanism we could implement the

example:

1 mapping transformToInput(property: uml20::kernel::Property) :

2 aspx::AbstractInputTag disjuncts transformToText, transformToCheckbox(){}

3

4 mapping transformToText(property: uml20::kernel::Property) :aspx::TextInputTag

5 when{ property.type.name = 'String'}

6 {

7 …

8 }

9 mapping transformToCheckbox(property: uml20::kernel::Property) :aspx::CheckboxTag

10 when{ property.type.name = 'Boolean'}

11 {

12 …

13 }

Code section 10: Hardcoded polymorphism in QVT

Code section 10 illustrates how the mechanism can be implemented using disjunct mappings. If the

transformToInput mapping is called, the engine looks for the first mapping that is available.

Depending on the type the transformToText or the transformToCheckbox becomes available. Other

types can be supported by adding transformations to the list. This mechanism is quite nice but does

require more attention than a single mapping that has an abstract return value. If other types are

added to the model, the list of disjunct mappings must be updated to support the new type. Disjunct

mappings are in the QVT specification but not supported by the QVT engine of Borland Together

2007.

In general purpose programming languages it is a good practice to use object-oriented mechanisms to

cope with complexity. In eCore meta-models it is possible to specify inheritance for model elements.

In our case study the ASP meta-model was based on the principles of specialization. The core model

element defined in the ASP meta-model is the abstract tag. This model element is forms the basis for

all tags used in the ASP meta-model. All other tags are specializations of this one model element. The

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 75/103

idea is that tags can always be nested in tags. This mechanism is built in the abstract tag. It contains a

set of other abstract tags to support nesting.

In the QVT transformations the support for OO mechanisms in the meta-models like specialization of

model elements is poor. Consider the following example in which we would like to map one source

element into a sequence of target elements. Each target element of the same super type, but

different sub types. For instance, a UML class is mapped to a textual title and a html table. The

obvious QVT code would look like:

1 query transformClassToTitledTable(table : uml20::classes::Class) : Set(aspx::Tag)

2 {

3 Set {

4 object aspx::CDataTag{ data:='Table: '+table.name;},

5 object aspx::TableTag{ class:='table'; }

6 }

7 }

Code section 11: Poor inheritance in QVT

The idea behind Code section 11 is that the query returns a set of tags. Each tags contains such a set

of abstract tags. Using the '+=' operator it is possible to add elements and sets of elements to this set.

However, the construction as shown in Code section 11 is not allowed. The QVT engine complains

that the CDataTag and the TableTag are not of the same type. The QVT engine is wrong, they both

descent from Tag.

Object oriented mechanisms like inheritance can be used to support software evolution. In this case,

the QVT language does not support the mechanisms to implement maintainable mappings. If the

meta-models change all mappings must be adapted. Even simple changes like the introduction of a

new specialized type lead to changes in the transformations. Figure 42 illustrates the relation

between the iterative development process we used to develop our system and the issues.

Meta-model A
Transformation

Specification
Meta-model B

Transformation

Language

Model A Model B
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Changed since last iteration Affected by the issue

Figure 42: Transformation pattern for poor inheritance issue

5.3.4 TRANSFORMATION COMPOSITION

If model transformations are used in the development of a software system the number of

transformations involved grows with the size of the system. In our case study we had a very small

system with a limited domain, but still seven transformations working together to transform the

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 76/103

source models into a finished product. The composition of these transformations becomes

increasingly complex. The ordering, interaction and execution parameters all need to be controlled to

make sure the overall transformation from models to product is successful.

Automation of the transformations becomes necessary when the complexity of all transformations

becomes hard to manage. For general purpose programming languages build scripts are used to

handle the transformation from source code to binary code. These build script have become more

powerful and sometimes have become DSL’s for specifying the build process. For model

transformations such languages do not exist yet. Ant script can be used to drive the transformation

engine, but these Ant scripts lack the semantics of the QVT code. Therefore Ant cannot make

decisions based on the results of a transformation. Ant is not capable of reading the models.

The relation to the iterative development process for this issue is that execution of the

transformations is a repeating process. After each iteration the transformations must be executed to

deliver a working system. In Figure 43 the transformation specification is both affected and changed.

This is because the lack of transformation composition can lead to a hard to maintain transformation

process.

Meta-model A
Transformation

Specification
Meta-model B

Transformation

Language

Model A Model B
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Changed since last iteration Affected by the issue

Figure 43: Pattern for the issue of transformation composition

The QVT specification (Object Management Group, 2007) contains a short section about composing

transformations. In the section is explained how transformations as a whole can be extended and

how other transformations can be invoked. The following example demonstrates how an existing

transformation can be extended by first calling another transformation and then executing the

inherited transformation:

1 transformation CompleteUml2Rdbms(in uml:UML,out rdbms:RDBMS)

2 access transformation UmlCleaning(inout UML),

3 extends transformation Uml2Rdbms(in UML,out RDBMS);

4 main() {

5 var tmp: UML = uml.copy();

6 var retcode := (new UmlCleaning(tmp))->transform(); // performs the "cleaning"

7 if (not retcode.failed())

8 uml.objectsOfType(Package)->map packageToSchema()

9 else raise "UmlModelTransformationFailed";

10 }

Code section 12: Transformation composition (Object Management Group, 2007)

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 77/103

The high level constructions as described in the specification allow the programmer to specify a global

transformation that coordinates the execution of all other QVT transformations. One problem is that

QVT itself is limited to QVT. In practice Ant should still be used to perform other steps of the

development process like invoking the model to text transformations and the build process.

Currently this part of the specification is not implemented in Borland Together 2007.

5.3.5 COMPOSING MODELS IS DIFFICULT

In our case study the user experience models contained stereotypes that indicated the type of action

for operations on a screen class. The semantics of the stereotypes is defined in the transformation

that transforms the user experience model into a C# model. However, the semantics of the

operations are hard coded in the transformation and not very easy to extend. To make this more easy

to extend we thought of implementing the template for the actions as a separate model. One model

corresponds with one stereotype in the user experience model. For instance, a UML sequence

diagram can be used to model actions or a UML state chart. However, combining the model of the

action with another model with QVT Operational Mappings is very difficult.

We think there are three possible methods to use models as a template. One idea is that

transformation languages should enable the programmer to invoke the execution of another

transformation and supply the parameters. The output of that transformation can then be processed

in the running transformation.

An example of how this hypothetically could be implemented in QVT:

1 mapping transformToAction(op : uml20::kernel::Operation) : CSharp2::CSMethod

2 {

3 name:='Operation';

4 implementation:=invoke('createOperation.qvt' , 'toAction', 'param');

5 }

Code section 13: QVT Invoke statement

The idea of the above QVT code is that the invoke statement can be used to invoke other

transformations and obtain the results. In this example three parameters are given. The name of the

transformations, the mapping rule to call and the parameters for this mapping rule. If this

hypothetical invoke statement would exist it would be possible to model actions as a sequence

diagram and a transformation that combines the parameters and the sequence diagram to implement

the action.

A second method is to use a model composition language. A model composition language can be used

to describe how models are related and how models can be merged. The primary element of a model

composition language is the composition operator. A composition operator describes how two or

more models can be combined into a new model. Composition operators can be described in general

purpose transformation languages or a domain specific language can be used (Kurtev & Didonet Del

Fabro, A DSL for Definition of Model Composition Operators, 2006).

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 78/103

Left Model

Left Meta-Model

Right Model

Right Meta-Model

Transformation

Engine

Target Model

Target Meta-Model

Composition

Operator

Model Composition

Language

uses uses

written in Instanceof

input

Instanceof

output

Instanceof

input

executed by

Figure 44: Model composition pattern

The last idea is to use model weaving to weave in the actions. Weaving is a term related to Aspect

Oriented Programming (AOP). In AOP a system can be described from different views using aspects.

Using an aspect language a programmer can specify how a certain aspect can be woven in to an

application. For instance, a system is build with very specific security needs. These needs can be

specified as a separate concern. The system itself is implemented without security needs, but an

aspect weaver is able to weave in the security aspect to add the needs to the system. Current AOP

solutions like AspectJ (Kiczales, Hilsdale, Hugunin, Kersten, Palm, & Griswold, 2001) or Compose*

(Bergmans) focus on general purpose programming languages. Model weavers apply the AOP

principles on model level. The Atlas Model Weaver is one system that can do this (Didonet Del Fabro,

Bézivin, & Valduriez, 2006).

Meta-model A
Transformation

Specification
Meta-model B

Transformation

Language

Model A Model B
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Changed since last iteration Affected by the issue

Figure 45:Pattern for the issue of model composition

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 79/103

The issues with model composition in general can be related to the iterative development process in

two ways. RUP, the development process we used in this project is based on the “4+1” view. The

system is modeled from different views in different models instead. Each model has a specific concern

to model. The second relation between this issue and iterative development processes is that a the

implementation of a system is spread over multiple iterations. An example is security. In one iteration

the basic system is constructed, while in another iteration the security aspects are added. In model

driven engineering this can be done using model composition. Figure 45 provides an illustration of the

relation between the issue of model composition and iterative development process.

5.4 CONCLUSION

In this chapter we evaluated the project and discussed the issues we observed. For each of the phases

of the project we listed the goals and evaluation per goal. At the end of each phase we also described

our observations. Using these observations we capture our operational knowledge of iterative MDA-

based software development. For instance, the iterative aspect of this project showed us that models

need to be adapted when meta-models change. In this project the meta-models changed because we

implemented only that part of the meta-model that we needed. In the next iteration the meta-models

was adapted to meet the new use-case. Changing meta-models is however not a simple operation.

Removing properties from our meta-models resulted in errors when opening models that were still

based on the previous version of the meta-model.

For each of the issues that we observed during the project we described the issue, we provided

examples to illustrate the problem and we even provided solutions for the problems if there was a

known solution.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 80/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 81/103

Chapter 6
6 CONCLUSIONS AND FUTURE WORK

In this chapter we present our results and conclusions. Based on the conclusions we also have some

recommendations for future work.

6.1 PROJECT SUMMARY

This study began with two questions. We wanted to know what the critical issues were if MDA-based

software development is applied in an iterative development process and we also wanted to know

what the issues were with respect to maintenance activities and MDA. To answer the research

questions we first defined MDE in general, MDA and the basic concepts we used throughout this

thesis. Besides the theories behind model driven engineering we also introduced iterative software

development and two examples of an iterative development process.

Besides the research questions there was a more general problem that resulted in this study. Both

the University of Twente and Getronics PinkRoccade wanted more operational knowledge about

MDA. Therefore we chose to conduct a case study to both answer our research questions as to obtain

operational knowledge about how MDA can be applied in an iterative development process.

During the case study we built a small sized application. This application was based on an existing

application developed at Getronics PinkRoccade. Therefore requirements and a good reference

architecture were available to us which saved time. For the case study we used the Rational Unified

Process as our software development process. Our project contained four phases. In the inception

phase, an architecture for the application was created and we also created an architecture for our

MDA approach. We defined the models to use and how the transformations would transform the

source models into a working application. We used the elaboration phase to test our approach and to

build the major part of the meta-models, transformations and models. As we expected, building the

meta-models and transformations requires a larger part of the time. Therefore we selected only a

small use-case to implement in this phase. The meta-models, transformations and models were not

complete, but complete enough to test our approach and to implement the single use-case. This

worked very well. During the construction phase a larger and more complex use-case was selected

and implemented. The meta-models, transformations and models were extended to support the

selected use-case.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 82/103

6.2 ITERATIVE MDA-BASED DEVELOPMENT

Applying MDA-based software development in an iterative development process is possible. We did

not encounter any critical issues, issues that halted our progress. However some caution is needed. In

our project we developed three meta-models and seven transformations just to implement two use-

cases. We recognized some problems with our approach: model and meta-model co-evolution,

structural incongruence increases transformation complexity, lack of object-orientation in QVT, no

transformation composition and composition of models is difficult. We expect that developing a more

complex application requires model driven techniques that are currently still a topic of research. For

instance model composition and transformation composition are needed to cope with the complexity

of combining and transforming multiple models into an application. Model evolution tools are needed

to cope with changes in the future. Changing meta-models requires too much time without proper

tooling (van Deursen, Visser, & Warmer, 2007).

One major problem that people expect when applying MDA is that development of meta-models for

applications and specific problem domains is very time consuming and that this does not fit in the

iterative development process. We showed that it is possible to develop the meta-models needed.

We created an architecture for our approach in the inception phase and implemented the meta-

models, models and transformations in the elaboration and construction phase. We think that

developing the meta-models needed can be part of the project. Specific meta-models are developed

in the project itself and more general meta-models can be reused or bought. The same holds for

transformations. Currently a large number of meta-models and model transformations is available on

the internet (The Atlantic Zoo) (ATL Transformations).

Modern software development processes provide mechanisms to tailor the process. Both RUP and

OpenUP provide tooling to generate a customized and fully documented software development

process. These tools can be used to develop a process that incorporates MDA. Some work has already

been done on this topic (Brown & Conallen, 2005) (Eclipse Process Framework OpenUP/MDD, 2006),

but there is currently not a software development process for MDA.

6.3 MDA AND MAINTENANCE

During the maintenance phase of this project we did not encounter critical issues. We can conclude

that in this project the implementation of the change request finished earlier than expected and that

we did not encounter critical issues. We did however make a number of observations that are related

to some of the problems we encountered during the construction of the system. The first observation

we made was that new functionality can be best implemented as a component. The model

transformations can be adapted to incorporate the new component in the system. We illustrated this

by implementing the log functionality and the editor for the aggregated input forms. A second

observation we made is that maintenance may require models to be changed or even meta-models.

Changing meta-models is currently a problems and the change made to a meta-model propagate

trough the system. If an element changes, the models and transformations based on the meta-model

must also change. We described this problem as “model and meta-model co-evolution is difficult”.

The overall conclusion with respect to maintenance and MDA is that maintenance can be applied at

another level. Instead of adapting multiple lines of code scattered through the system we were able

to modify the transformations to include the change. Running al the model transformations was

enough to adapt the system to the change request. A second advantage of the MDA approach is that

it forces the use of components. The disadvantage of MDA with respect to maintenance is that the

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 83/103

problem of model evolution is currently not solved by tools. At least, Borland Together 2007 does not

provide the functionality to keep meta-models, models and transformations in sync.

6.4 IMMATURITY OF TOOLS

An important aspect of MDA is that it heavily relies on tools. During the case study it became clear

that the tools we selected contained all the features we needed for our study. However, a problem

was that many of the features were undocumented, contained bugs or didn’t work at all. The tool

vendor worked hard to support us with our problems and promised to solve some of the problems in

a newer version. In the end all features we needed were working or work-around’s were available,

but we lost valuable time.

Another indication that tools are not mature enough is that QVT transformations became complex

and harder to maintain. The QVT engine shipped with our tool did not implement the full QVT

specification. It was clear that the tool focuses on implementing the basics of QVT and therefore

supports only simple transformations. This did not introduce any critical problems to our case study,

but showed us that execution and maintenance of QVT transformations becomes more complex as

the size of the project grows. In the QVT specification some features are specified to cope with this

growing complexity.

We think that the current state of the practice is that MDA is certainly possible and that MDA can be

applied in combination with an iterative development process. We can conclude that current tools

and languages support the basic features needed to apply MDA, but that problems can be expected

when complexity of the models and transformations increases. The last conclusion, with respect to

maintenance is that maintaining models instead of source code is easier. Changing a single property

results in changes all over the source code. Evolution of MDA-based systems is still a problem.

6.5 FUTURE WORK

In this section we propose some topics that need further attention. We think providing solutions to

the following problems will increase the productivity of MDA and the acceptance by the software

industry.

6.5.1 MODEL COMPOSITION

Modern software system cannot be specified in a single model. A modeling language like UML uses

the “4+1” view model (Kruchten, Architectural Blueprints—The “4+1” View Model of Software

Architecture, 1995). This indicates the multiple models are used to describe a single system. In our

case study we encountered the problem that we would like to be able to specify actions in separate

models (section 5.3.5). These actions should than be composed on the model of the system to form a

complete model of the system.

Current transformation languages have very limited support to compose models. We think that more

research on this topic is necessary to cope with the complexity of today’s software systems. Some

work has been done to easy model composition: (Baudry, Fleurey, France, & Reddy, 2005), (Pastor,

2006).

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 84/103

6.5.2 TRANSFORMATION COMPOSITION

One of the issues we encountered during our project was that the composition of the transformations

cannot be specified in Borland Together 2007. The QVT specification (Object Management Group,

2007) contains a short section about how transformations may be specified on a higher level.

We think that in an ideal situation there should be multiple levels of abstraction in a transformation

language. A low level transformation language for model elements and a high level transformation

language for models. This would allow transformation programmers to specify the transformation

process like build scripts can specify the build process for general purpose programming languages. In

general we call for a language that allows us to specify the workflow of the transformation process.

6.5.3 MODEL META-MODEL CO-EVOLUTION

Modern integrated development environments like the Eclipse Platform provide refactoring tools to

change the structure of the code without changing behavior nor breaking the code. Refactoring is

based on small refactoring steps called refactorings. It should be possible to implement refactoring

tools for models based on the principle of these small refactorings. Refactoring meta-models may be

even more interesting. The transformations for the instances of a meta-model may be generated

based on the refactorings. The techniques that were originally developed for general programming

languages should be adapted to models. It should even be possible to extend the mechanism to not

only support refactoring, but also construction and destruction of model elements. These tools should

be able to provide automated support for model and meta-model co-evolution. Some work on this

field has already been done: (Tichelaar, Ducasse, Demeyer, & Nierstrasz, 2000) (Wachsmuth, 2007).

6.5.4 MODEL DRIVEN DEVELOPMENT PROCESS

Currently there are is no software development process that is tailored to model driven development.

MDA and MDE in general can fit in an iterative development process but do require some changes to

the process. Some of these changes are described in this thesis (Section 3.4.4 & 3.5.4) , but do not

provide a complete model driven development process. We think that OpenUP or RUP can be

extended with activities, roles and artifacts to support model driven development.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 85/103

Bibliography

Aldawud, O., Elrad, T., & Bader, A. (2003). Uml Profile For Aspect-Oriented Software Development.

Proceedings of Third International Workshop on Aspect-Oriented Modeling. Boston, USA.

Allilaire, F., Bézivin, J., Jouault, F., & Kurtev, I. (2006). ATL: Eclipse Support for Model Transformation.

Eclipse Technology eXchange workshop. Nantes, France.

Amber, S. W. (2007, 3 3). History of the Unified Process. (Ambysoft) Retrieved 12 10, 2007, from

Enterprise Unified Process: http://www.enterpriseunifiedprocess.com/essays/history.html

Ambler, S. W. (2007, July 15). Agile Software Development: Definition. Retrieved April 2, 2008, from

Agile Modeling: http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm

American Institute of Aeronautics & Astronautics. (1998). AIAA Guide for the Verification and

Validation of Computational Fluid Dynamics Simulations. American Institute of Aeronautics &

Astronautics.

Arnold, D. (2004). C# Compiler Extension to Support the Object Constraint Language Version 2.0.

Ontario, USA: Carleton University.

ATL Transformations. (n.d.). ATL Transformations. (The Eclipse Foundation) Retrieved March 28, 2008,

from Eclipse Home: http://www.eclipse.org/m2m/atl/atlTransformations/

Balduino, R. (2007, August). Introduction to OpenUP.

Basili, V. R., & Larman, C. (2003). Iterative and Incremental Development: A brief history. Computer ,

36 (6), 47-56.

Baudry, B., Fleurey, F., France, R., & Reddy, R. (2005). Exploring the Relationship between Model

Composition and Model Transformation. Aspect Oriented Modeling (AOM) Workshop. Montego Bay,

Jamaica.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et al. (2001).

Manifesto for Agile Software Development. Retrieved April 2, 2008, from Agile Manifesto:

http://agilemanifesto.org/

Bennett, K., & Rajlich, V. T. (2000). Software Maintenance and Evolution: a Roadmap. Proceedings of

the Conference on The Future of Software Engineering, (pp. 73 - 87). Limerick, Ireland.

Bergmans, L. (n.d.). ComposeStar. (University of Twente) Retrieved March 13, 2008, from

ComposeStar: http://janus.cs.utwente.nl:8000/twiki/bin/view/Composer/WebHome

Bézivin, J., & Gerbé, O. (2001). Towards a precise definition of the OMG/MDA framework. Proceedings

of the 16th IEEE international conference on Automated software engineering, (p. 273). USA.

Brown, A., & Conallen, J. (2005, May). An introduction to model-driven architecture. (IBM) Retrieved

12 6, 2007, from IBM Developerworks:

http://www.ibm.com/developerworks/rational/library/may05/brown/index.html

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-Oriented Software

Architecture: A System Of Patterns. West Sussex: Wiley.

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 86/103

Chapin et al. (2000). Types of Software Evolution and Software Maintenance. Journal of Software

Maintenance and Evolution: Research and Practice (13), 3-30.

Chauvel, F., & Fleurey, F. (2007). Kermeta Language Overview. Retrieved April 02, 2008, from

http://www.kermeta.org

Czarnecki, K., & Helsen, S. (2003). Classification of Model Transformation Approaches. Proceedings of

the OOPSLA'03 Workshop on the Generative Techniques in the Context Of Model-Driven Architecture.

Anaheim, USA: ACM.

Deursen, A. v., Klint, P., & Visser, J. (2000). Domain-Specific Languages: An Annotated Bibliography.

SIGPLAN Notices , 35 (6), 26-36.

Didonet Del Fabro, M., Bézivin, J., & Valduriez, P. (2006). Weaving Models with the Eclipse AMW

plugin. Eclipse Summit Europe. Nantes, France: University of Nantes.

Eclipse Foundation. (n.d.). Eclipse Process Framework Project. Retrieved April 2, 2008, from Eclipse :

http://www.eclipse.org/epf/

Eclipse Process Framework OpenUP/MDD. (2006, October 3). Retrieved April 2, 2008, from Eclipse:

https://bugs.eclipse.org/bugs/show_bug.cgi?id=138867

Elrad, T., Filman, R. ,., & Bader, A. (2001). Aspect oriented programming. Communications of the ACM

, 44 (10).

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring: Improving the Design of

Existing Code,. Addison-Wesley.

Fuentes-Fernández, L., & Vallecillo-Moreno, A. (2004, April). An Introduction to UML Profiles. Upgrade

, V (2), pp. 6-13.

Gardner, T., Griffin, C., Koehler, J., & Hauser, R. (2003). A review of OMG MOF 2.0 Query / Views /

Transformations Submissions and Recommendations towards the final Standard. Object Management

Group.

Glenn Brookshear, J. (2000). Computer Science an Overview. Addison Wesley.

IBM. (2003). Rational Unified Process.

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology. New York: IEEE.

Kent, S. (2002). Model Driven Engineering. Lecture Notes In Computer Science , 2335, 286 - 298.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. G. (2001). An overview of

AspectJ. ECOOP. Budapest: Springer.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven Architecture: Practice

and Promise. Addison Wesley Professional.

Kozaczynski, W., & Thario, J. (2002). Transforming User Experience Model To Presentation Layer

Implementations. OOPSLA 2002.

Kruchten, P. (1995). Architectural Blueprints—The “4+1” View Model of Software Architecture. IEEE

Software , 12 (6), 42-50.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 87/103

Kruchten, P. (2000). The Rational Unified Process: An Introduction (Vol. 2). Addison Wesley

Professional.

Kurtev, I. (2005). Adaptability of Model Transformations PhD Thesis. Enschede: University of Twente.

Kurtev, I., & Didonet Del Fabro, M. (2006). A DSL for Definition of Model Composition Operators.

Lecture Notes in Computer Science , 4379, 21-25.

Kurtev, I., & van den Berg, K. (2005). Building Adaptable and Reusable XML Applications with Model

Transformations. Proceedings of the 14th international conference on World Wide Web (pp. 160 -

169). Chiba, Japan: IW3C2.

Kurtev, I., Bézivin, J., Jouault, F., & Valduriez, P. (2006). Model-Based DSL Frameworks. OOPSLA (pp.

602 - 616). New York, USA: ACM.

Lawley, M. J. (n.d.). Retrieved March 10, 2008, from Tefkat - The EMF Transformation Engine.:

http://sourceforge.net/projects/tefkat

Lyons, B. (2007). The Open Unified Process. (Number Six Software) Retrieved February 27, 2008, from

Numbersix: http://www.numbersix.com/news/n6articles/openUp.html

Mariam Webster. (n.d.). Mariam Webster Online Dictionary. Retrieved September 26, 2007, from

Mariam Webster: http://www.m-w.com/

Mens, T., Czarnecki, K., & Gorp, P. v. (2005). Discussion -- A Taxonomy of Model Transformations.

Dagstuhl Seminar on Language Engineering for Model-Driven Software. Dagstuhl, Germany:

Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI).

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and How to Develop Domain-Specific

Languages. ACM Computing Surveys , 37 (4), pp. 316 - 344.

Object Management Group. (2003). Common Warehouse Metamodel (CWM) Specification. Object

Management Group.

Object Management Group. (2003). MDA Guide version 1.0.1.

Object Management Group. (2006). Meta Object Facility (MOF) Core Specification.

Object Management Group. (2007). MOF 2.0/XMI Mapping, Version 2.1.1.

Object Management Group. (2007). MOF QVT Final Adopted Specification.

Object Management Group. (2005). Software Process Engineering Metamodel.

Object Management Group. (2003). UML 2.0 OCL Specification. Object Management Group.

Object Management Group. (2007). Unified Modeling Language: Superstructure.

Oever, D. v., & Vos, G. (2007). Aspect Oriented User Restriction Language.

Pastor, R. (2006). Model Composition: Definition of Model Composition Properties. University of York.

Pfleeger, S. L., & Atlee, J. M. (2005). Software Engineering. Prentice Hall.

Project Quadread. (2008). Retrieved April 03, 2008, from Quadread : http://quadread.ewi.utwente.nl/

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 88/103

Rational Corporation. (1998). Rational Unified Process: Best Practices for Software Development

Teams. Retrieved April 3, 2008, from IBM Developerworks:

http://www.ibm.com/developerworks/rational/library/253.html

Rational. (2004). Rational® UML Profile for Business Modeling. Retrieved April 3, 2008, from IBM

Developer works: http://www.ibm.com/developerworks/rational/library/5167.html

Royce, D. W. (1987). Managing the development of large software systems: concepts and techniques.

International Conference on Software Engineering (pp. 328 - 338). Monterey, California, United States:

IEEE.

Rumbauch, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language Reference Manual.

Addison-Wesley.

Seidewitz, E. (2003). What Models Mean. IEEE Software , 20 (5), 26-32.

Seifert, T., & Beneken, G. (2005). Evolution and Maintenance of MDA applications. In S. Beydeda, M.

Book, & V. Gruhn, Model-Driven Software Development (pp. 269-286). Berlin Heidelberg: Springer.

The Atlantic Zoo. (n.d.). The Atlantic Zoo. (The Eclipse Foundation) Retrieved March 28, 2008, from

Eclipse Project: http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/

Tichelaar, S., Ducasse, S., Demeyer, S., & Nierstrasz, O. (2000). A Meta-model for Language-

Independent Refactoring. ISPSE (pp. 154-164). IEEE.

van Deursen, A., Visser, E., & Warmer, J. (2007). Model-Driven Software Evolution: A Research

Agenda. Proceedings 1st International Workshop on Model-Driven Software Evolution (pp. 41-49).

Delft: Technical University of Delft.

Visser, E. (2004). Program Transformation with Stratego/XT: Rules, Strategies, Tools, and Systems in

StrategoXT-0.9. Lecture Notes in Computer Science , 3016 (June).

Wachsmuth, G. (2007). Metamodel Adaption and Model Co-adaption. (E. Ernst, Ed.) Lecture Notes in

Computer Science (4609), pp. 600-624.

Wegener, H. (2002). Agility in Model-Driven Software Development Implications for Organization,

Process, and Architecture. OOPSLA. ACM.

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 89/103

APPENDIX A PROBLEM ANALYSIS RESULTS

The last appendix contains the results of the problem analysis session we held during at the beginning

of this project. The list contains a number of possible causes for the following problem: “MDA is not

applied on a large scale”. All stakeholders of this project were asked to come up with possible causes.

After the first session the possible causes were send to the stakeholders and we asked them to rank

each of the possible causes. The problems with the highest rank were selected as a starting point for

this project. The following list contains the results of the problem analysis sessions:

 Score

MDA is not iterative 9

Lack of experience with MDA and maintenance 8

It is unclear whether models are easier to maintain than source code 5

Can we use MDA for prototyping? 5

Tools cannot model dynamic behavior 4

There are lots of solutions, but a lack of integration 4

It is unclear how different models can be kept consistent 3

Unclear whether tools support debugging at model level 2

Special personnel is needed 2

It is unclear how to compose different models into one 1

Not clear how to mix generated and custom code 1

OCL is badly supported 1

MDA models are hard to maintain 1

It is not clear if MDA can help making development faster 1

It is not clear if MDA can help making development better 1

What about the transition between versions of a system?
(can we generate database migration scripts?)

1

It is not clear if MDA can help making development cheaper 1

Is there support for version control on models 0

Code generation cannot be better than code written by smart people 0

Lack of positive experience with MDA 0

How to cope with inconsistency in models (example: contradicting laws in real life) 0

Bad experiences with MDA 0

100% generation is hard 0

Do we model schema’s? 0

Is layout modeled? 0

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 90/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 91/103

APPENDIX B TRANSFORMATION PATTERNS

This appendix provides the transformations patterns for all the m2m and m2t transformations we

used during this project. Some of these patterns already have been discussed in the thesis. The

patterns that are listed here and not discussed in the thesis follow the same pattern as those that

were discussed.

UML 2.0
UX to ASP

Transformation
ASP

QVT Operational

Mappings

UX Model ASP Model
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

User Experience to ASP transformation pattern

UML 2.0
UX to C#

Transformation
C#

QVT Operational

Mappings

UX Model C# Model
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

User Experience to C# transformation pattern

UML 2.0
UX to Sitemap

transformation
Sitemap

QVT Operational

Mappings

UX Model Sitemap Model
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 92/103

User Experience to Sitemap transformation pattern

UML 2.0
Domain to C#

Transformatino
C#

QVT Operational

Mappings

Domain Model C# Model
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Domain to C# transformation pattern

C# C# to Text Plain text

Xpand

C# Domain

Model
C# Code

Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

C# to text transformation pattern

ASP ASP to Text Plain text

Xpand

ASP Model ASP Code
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

ASP to text transformation pattern

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 93/103

Sitemap Sitemap to XML Plain text

Xpand

Sitemap Model Sitemap XML
Transformation

Engine

written in

InstanceofInstanceof

input output

executed by

usesuses

source target

Sitemap to xml transformation pattern

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 94/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 95/103

APPENDIX C DOMAIN MODEL

This appendix contains an image of the domain model diagrams we created during this project. In this

project one large domain model was created for both use-cases. The model is drawn in Borland

Together 2007 and uses the domain model profile we developed during this project.

Figure 46: Full domain model

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 96/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 97/103

APPENDIX D USER EXPERIENCE UC1

This appendix contains the user experience models we developed during the elaboration phase of this

project. The images are created with Borland Together 2007. The models are drawn as UML class

diagrams with the user experience profile we developed during this project.

Figure 47: User Experience model for Use-case 1

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 98/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 99/103

APPENDIX E USER EXPERIENCE UC2

This appendix contains the user experience models we developed during the construction phase of

this project. The images are created with Borland Together 2007. The models are drawn as UML class

diagrams with the user experience profile we developed during this project.

Figure 48: User experience model for Use-case 2, part 1

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 100/103

Figure 49: User experience model for Use-case 2, part 2

Figure 50: Extra user experience model for testing purposes

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 101/103

Figure 51: User experience model to model menu structure

Issues of iterative MDA-based software development processes

Date: 5-4-2008 Page: 102/103

Geert Vos – University of Twente – Getronics PinkRoccade

Master Thesis Page: 103/103

APPENDIX F CD-ROM

All documents, plans, illustrations, sources and binaries we used in this project are available on CD-

ROM. This CD contains a directory structure that reflects RUP, which we used to structure the overall

project.

