
University of Twente

EEMCS / Electrical Engineering
Control Engineering

 Design of animation
and debug facilities for gCSP

 Hans van der Steen

MSc report

 Supervisors:
prof.dr.ir. J. van Amerongen

dr.ir. J.F. Broenink
ir. M.A. Groothuis

 June 2008

Report nr. 020CE2008
Control Engineering

EE-Math-CS
University of Twente

P.O.Box 217
7500 AE Enschede

The Netherlands

i

Summary

Communicating Sequential Processes (CSP), is a notation for describing concurrent systems,
which can be analyzed algebraically. To use the theory of CSP for designing embedded soft-
ware, the gCSP (graphical CSP) tool was created. gCSP is capable of creating CSP models by
drawing diagrams (gCSP diagrams) according to the CSP language. By using the CSP algebra,
the FDR2 (Failure Divergence Refinement) tool can check a gCSP model on deadlocks or live-
locks. gCSP is capable of generating C++ code of its diagrams. Combining this code with the CT
(Communicating Threads) execution framework, an executable (CT program) can be created.
The CT program can be executed on a PC or (real-time) hardware platform, for testing its exe-
cution behavior. Because the CT execution framework only supports textual debug output as
feedback on the execution of a CT program, it is hard to test and validate its execution behavior.

The goal of this project is to improve this feedback, to give the user more insight about the
execution behavior of a CT program. To achieve this, animation is chosen to be appropriate for
this purpose. By animation of a CT program, the execution of the program will be graphically
shown. Animation can be used to analyze or debug the execution behavior of a CT program.
To make this possible, an animation framework was designed and implemented.

Analysis is performed on the way the animation framework should be designed and imple-
mented. Both gCSP and the CT execution framework are extended to be usable in the anima-
tion framework. gCSP is used to graphically show the execution of a CT program in its diagrams.
The CT execution framework is used to generate information on the execution of a CT program.
This information is used by gCSP for animation purposes.

A TCP / IP connection is used to connect a CT program to gCSP. A CT program uses this con-
nection to send the state of its CT processes, CT constructs and CT channels; and the contents
of its CT channels and the ready-queue of the CT kernel, to gCSP.

To support a user friendly way of analyzing a CT program while it is executing, the CT execution
framework is extended with debug functionality. A CT program can be started and stopped, it
can be paused by setting breakpoints and it can be executed step by step (stepper).

To animate the states of processes, constructs and channels color-based animation is used. A
different color represents a different state. To animate the contents of channels and the ready-
queue of the CT kernel, textual based animation is used. The content of a channel is shown in a
tooltip window, when the user hovers the mouse over the channel. To be able to use animation
for later analysis, a textual-based history can be saved as a text file on hard-disk.

All the specifications are designed and implemented. Tests were performed on the practical
use of animation, the execution behavior of gCSP models and the C++ code generator of gCSP.
These tests were discussed shortly and a conclusion was given. From these tests it was con-
cluded that animation in gCSP is useful. Animation can be used to analyze the execution be-
havior of a CT program, and it can be used to find the cause of strange execution behavior.
Without animation it would be probably harder, to analyze and "debug" the execution behav-
ior of a CT program. The goal of the project has been met.

Recommendations for future work are to redesign the internal database and to improve the
C++ code generator of gCSP. The user should be given the choice to enable or disable the opti-
mizations of the CT execution framework. A real-time logger should be implemented in the CT
execution framework for off-line analysis of the execution behavior of a CT program. A simu-
lator should be added to the animation framework, which can use the data from the real-time
logger as input for simulating a previous executed CT program.

Control Engineering

ii The design of animation and debug facilities for gCSP

Samenvatting

Communicating Sequential Processes (CSP), is een notatie voor het beschrijven van concurrent
systemen, dat algebraïsch geanalyseerd kan worden. Om de CSP theorie te gebruiken bij het
ontwerpen van embedded software, is de gCSP (grafisch CSP) tool gemaakt. gCSP kan grafis-
che CSP diagrammen (gCSP diagrammen) tekenen. Gebruikma_kend van de CSP algebra, kan
de FDR2 (Failure Divergence Refinement) tool een gCSP model controleren op deadlocks of
livelocks. gCSP kan C++ code van zijn diagrammen genereren. Door deze te combineren met
het CT (Communicating Threads) execution framework, kan een executabel (CT programma)
gemaakt worden. Deze kan dan op een PC of een (real-time) hardware platform gedraaid wor-
den, om het gedrag te testen. Omdat alleen textuele debug informatie ondersteund wordt door
het CT execution framework, is het lastig om het gedrag van een CT programma te testen.

Het doel van dit project is om betere informatie te geven, zodat de gebruiker meer inzicht krijgt
over het gedrag van een CT programma. Het gebruik van animatie is geschikt bevonden om
dit doel te bereiken. Door het animeren van een CT programma, wordt het gedrag grafisch
getoond. Dit kan gebruikt worden voor het analyseren en debuggen van zijn gedrag. Om dit
mogelijk te maken is een animatie framework ontworpen en geïmplementeerd.

Er is geanalyseerd hoe het animatie framework ontworpen en geïmplementeerd moet worden.
gCSP en het CT execution framework zijn uitgebreid, om gebruikt te kunnen worden in het
animatie framework. gCSP wordt gebruikt om de uitvoering van een CT programma grafisch
te tonen in zijn diagrammen. Het CT execution framework wordt gebruikt voor het genereren
van informatie over het gedrag van een CT programma, om deze vervolgens te delen met gCSP.

Een TCP / IP verbinding wordt gebruikt om een CT programma te verbinden met gCSP. Een CT
programma gebruikt deze verbinding om de status van zijn processen, constructies en kanalen;
en de inhoud van zijn kanalen en ready-queue van de CT kernel, te versturen naar gCSP

Om een gebruiksvriendelijke manier voor het analyseren van een draaiend CT programma te
ondersteunen, is het CT execution framework met debug functionaliteit uitgebreid. Dit maakt
het mogelijk om een CT programma te starten of stoppen, op pauze te zetten door middel van
breakpoints en het stap voor stap te doorlopen van het programma.

Voor het animeren van de status van een proces, construct en kanaal worden verschillende
kleuren gebruikt. Textuele animatie wordt gebruikt voor het animeren van de inhoud van
kanalen en de ready-queue van de CT kernel. Als de gebruiker met zijn muis over een kanaal
beweegt, wordt de inhoud van het kanaal getoond als tooltip. Om animatie te gebruiken voor
analyse achteraf, kan een textuele historie als tekst bestand worden opgeslagen op harde schijf.

Alle specificaties zijn ontworpen en geïmplementeerd. Tests zijn uitgevoerd op het praktisch
gebruik van de animatie, op het gedrag van gCSP modellen en de C++ code generator van
gCSP. Een korte discussie is gehouden over deze tests en een conclusie is gegeven. Er is gecon-
cludeerd dat animatie in gCSP handig is. Animatie kan voor analyse op het gedrag van een
CT programma gebruikt worden, en voor het vinden van de oorzaak van ongewenst gedrag.
Zonder animatie zou het waarschijnlijk lastiger zijn om het gedrag van een CT programma te
debuggen of te analyseren. Het doel van het project is bereikt.

Aanbevelingen voor de toekomst zijn om de interne database van gCSP te herontwerpen en
om de C++ code generator van gCSP te verbeteren. De gebruiker moet de mogelijkheid krijgen
om de optimalisaties van het CT execution framework in of uit te kunnen schakelen. De imple-
mentatie van een real-time logger in het CT execution framework, om offline het gedrag van
een CT programma te kunnen analyseren. Een simulator in de animatie framework, die data
van de real-time logger als invoer kan gebruiken om een CT programma te simuleren.

University of Twente

iii

Preface

This report marks the final step in my life as an Electrical Engineering student. After the four
years I spend getting my Bachelor degree in Electrical Engineering at the Hogeschool Utrecht,
I decided to study at the University of Twente trying to get a Master of Science degree. After a
half year of pre-master classes, one and a half year of master classes and almost nine months
of working at my MSc project, I have reached the end of my life as an Electrical Engineering
student. I enjoyed these last three years, especially the specialization course Embedded System
Design and my MSc project at the Control Engineering group.

I am thankful for all the support I received during my study. I would like to thank my direct
supervisor Marcel Groothuis for his support and comments during my MSc project. My special
thanks go to Jan Broenink, who provided me with this assignment and gave me the opportunity
to work after my graduation at the Control Engineering group. I would also like to thank the rest
of the people at the Control Engineering group, especially my fellow MSc students. I enjoyed
the working atmosphere and the discussions at the coffee machine or during lunch and the
’MSc-weekly’ meetings.

I would also like to thank my family, who were of great support for me throughout the years.
Without them, I would not have made it to the point where I am now. Last but certainly not
least, my thanks go to all my friends and fellow students. They certainly have given me an
enjoyable time here.

T.T.J. van der Steen Enschede, June 2008

Control Engineering

iv The design of animation and debug facilities for gCSP

Contents

Contents iv

1 Introduction 1

1.1 Problem statement . 1

1.2 Goal of the project . 1

1.3 Motivation of the project . 1

1.4 Assignment approach . 2

1.5 Report outline . 2

2 Background 3

2.1 The software design trajectory of the CE group . 3

2.2 The CSP language . 5

2.3 The CT execution framework . 5

2.4 The gCSP tool . 7

2.5 Conclusions . 9

3 Analysis 10

3.1 Real-time animation . 10

3.2 The animation framework . 10

3.3 The connection between a CT program and gCSP 11

3.4 The execution feedback of a CT program . 11

3.5 Debug functionality . 12

3.6 Animation in gCSP . 13

3.7 Specifications . 13

3.8 Conclusions . 13

4 The design and implementation of the animation framework 14

4.1 The connection between gCSP and a CT program 14

4.2 The extended graphical user interface of gCSP . 15

4.3 Animated gCSP diagrams . 18

4.4 Animated C-tree . 23

4.5 Conclusions . 23

5 Testing and discussion 24

5.1 Testing . 24

5.2 Discussion . 25

5.3 Conclusions . 25

University of Twente

CONTENTS v

6 Conclusions and Recommendations 26

6.1 Conclusions . 26

6.2 Recommendations . 26

A The CT execution framework 27

A.1 CT processes . 27

A.2 CT constructs . 28

A.3 CT channels . 28

B The animation framework 31

B.1 The CT execution framework . 31

B.2 Animation macros (AnimMacros.h) . 32

B.3 The gCSP tool . 34

B.4 Animation messages . 36

C User manual of the animation framework 37

C.1 Code generation . 37

C.2 Compiling in gCSP . 37

C.3 Use animation in gCSP . 38

C.4 Animation options . 40

C.5 Output windows . 40

Bibliography 43

Control Engineering T.T.J. van der Steen

1

1 Introduction

This chapter starts by presenting the problem dealt within this project. Next, the project goal
and motivation are given. This chapter concludes by presenting the approach followed in this
project and the outline of the rest of this report.

1.1 Problem statement
Nowadays many machines are controlled by embedded systems. Because the complexity of
embedded systems increases every year, methods are needed to structure the design of these
systems. Defining a hierarchy and properly structuring the concurrency within this hierarchy
can help dealing with the problem of this complexity. Concurrent programming provides such
a hierarchy and therefore results in high quality software for complex embedded systems.

In concurrent programming, single tasks of the system are divided into a number of subtasks,
which can for example be executed in parallel or in sequential. Describing the relationships
between these tasks in a concurrency structure, it can be analyzed by means of formal methods
like using a process algebra.

CSP (Communicating Sequential Processes) (Hoare, 1985) is a formal language for describing
patterns of interaction in concurrent systems, which can be analyzed algebraically. To be able
to use CSP in concurrent programming, the gCSP (graphical CSP) tool has been created. This
tool is used at the Control Engineering group and the MSc course Real-Time Software Devel-
opment (RTSD), to design embedded (control) software using the CSP theory.

gCSP is capable of creating CSP models by drawing graphical CSP diagrams. Different kinds of
code can be generated from these diagrams. CSP machine code (CSPm) can be used by the FDR
(Failure Divergence Refinement) tool, to formally check a CSP model on deadlocks or livelocks.
C++ code can be used by the CT (Communicating Threads) execution framework for creating an
executable (CT Program), which can be executed on a PC or a (real-time) hardware platform.

Verification and validation of an executing CT program is done by analyzing its execution be-
havior. It will be tested whether the program behaves like it is supposed to do. Because the
CT execution framework only supports textual debug output, it is currently hard to get a clear
view about the execution behavior of a CT program. To make it easier analyzing the execution
behavior of a CT program, a more effective way of giving feedback on the execution of a CT
program should be supported.

1.2 Goal of the project
The goal of this project is to improve the feedback on the execution of a gCSP-generated CT
program. The intention is to give the user an effective way to get insight in the execution be-
havior of the CT program. The goal of this project is accomplished, if it can be demonstrated
that the improved feedback provides people with better insight in the execution behavior of CT
program than before.

1.3 Motivation of the project
Maljaars (2006), used gCSP to design and implement the control software of a production cell
setup (ten Berge, 2005). During the execution of his CT program, some undesired execution
behavior was observed, which could not be explained. Because only textual debug output as
feedback on the execution of the CT program was available, it was difficult finding the cause of
this behavior.

gCSP is also used for education purposes, during the MSc course Real-Time Software Devel-
opment (RTSD). This course is used to get the students familiar with concurrent programming
and the problems which can occur using it. The students will learn how they can deal with

Control Engineering

2 The design of animation and debug facilities for gCSP

these problems by using the gCSP tool. During the assignments, the students had some dif-
ficulties understanding the way of using the CSP language. The CSP concepts were hard to
understand, because they could not get a clear view about the execution behavior of their CT
programs, using the textual debug output of the CT execution framework.

Because improvement of the MSC course RTSD and the development of embedded software at
the CE department is desired, this project was stared.

1.4 Assignment approach
As mentioned in section 1.2, this project aims at improving the feedback on the execution of a
gCSP-generated CT program. The use of animation was selected to be appropriate for achiev-
ing this, because "A picture is worth a 1000 words" and "An animation is worth a 1000 pictures".

To see what animation has to offer and in which way animation can be used, the programs
Rhapsody (Telelogic, 2008), Ptolemy II (Eker et al., 2008) and 20-sim (Controllab Products, 2008)
will be analyzed on their animation facilities. Analysis will be performed on the CT execution
framework and the gCSP tool. What kind of feedback on the execution of a CT program is useful
for animation? And in which way this should be animated in gCSP? From this analysis, a speci-
fication list will be created and will be used as a guideline for the design and implementation of
the animation framework. After the implementation of the animation framework, tests will be
performed to evaluate the animation and to demonstrate the advantages of having animation
in gCSP. The practical use of animation and the execution behavior of CT programs with the
use of animation will be tested. The results of the tests will be used to give a conclusion on this
project and to give some recommendations for future work.

1.5 Report outline
Chapter 2 describes the theoretical and practical background information about the software
design trajectory, CSP, the CT execution framework and the gCSP tool. In chapter 3 the analy-
sis of the project is given. The results of the analysis are used to create a list of specifications.
The specification list is used as a guideline for the design and implementation of the animation
framework, which is described in chapter 4. Chapter 5 describes the performed tests to evalu-
ate the animation framework and to demonstrate the advantages of having animation in gCSP.
The results of these tests are discussed and a conclusion is given. Finally, chapter 6 presents
the conclusions of this project and the recommendations for future work.

Additional information is given in three appendices. Appendix A gives a detailed description of
the CT execution framework. Appendix B gives a detailed description of the design and imple-
mentation of the animation framework from chapter 4. Appendix C gives a user manual of how
to use the animation framework, for the animation of a gCSP-generated CT program.

T.T.J. van der Steen University of Twente

3

2 Background

This chapter describes the theoretical and practical background information of this project.
The first section describes the software design trajectory of the CE group. The last sections
introduce the concepts of CSP, the CT execution framework and the gCSP tool.

2.1 The software design trajectory of the CE group
The Control Engineering group has divided the design trajectory of embedded (control) soft-
ware into four different steps (Broenink and Hilderink, 2001). Each step consists of one or mul-
tiple iterations and is verified by simulation or validated by testing. A graphical representation
of this design trajectory is shown in figure 2.1

Figure 2.1: The software design trajectory of the CE group

A short description of each step is given below.

Physical System Modeling . The physical system is modeled by describing its dynamics. The
model is verified by comparing the simulation results and the desired behavior of the model.

Control Law Design. The control law(s) are developed using the physical system model of step
one. They are verified by simulation to check whether the desired control system behavior is
achieved.

Embedded System Implementation. By stepwise refinement, the control law(s) of step two are
converted to software. Also the control algorithms are integrated with user interfaces and sys-
tem specific functionality (i.e. command structures). Each refinement step is verified through
simulation.

Realization (Hardware). The software of step three is used to create an executable which can
be executed on the real hardware or a target. The software behavior is validated by testing,
whether the desired behavior is achieved.

This project focuses on the last two steps, because they are part of the software design trajectory
of gCSP. The next sub-section describes these two steps in more detail.

Control Engineering

4 The design of animation and debug facilities for gCSP

2.1.1 The software design trajectory of gCSP
Figure 2.2 illustrates the software design trajectory of gCSP. It shows the work flow from creating
a CSP model in gCSP, to the creation and testing of a gCSP-generated CT program.

Figure 2.2: The software design workflow by using the gCSP tool

gCSP is capable of generating different kinds of code from its gCSP diagrams. CSPm code can
be used by the FDR2 tool, to formally check the gCSP model on deadlocks or livelocks (see (1)
in figure 2.2). C++ code together with the CT execution framework can be used for the creation
of a CT program (2). The program can be tested by evaluating its execution behavior on a PC or
hardware platform (target) (3).

To decrease the amount of iterations from a gCSP model to testing the execution behavior of
a CT program on hardware (2, 3, 4), it is important to have good testing or analysis methods
before the actual on-target test. Because this project focuses on improving "Validation and
Testing", the next sub-sections give some methods to accomplish this.

2.1.2 Testing and analysis methods
To test or analyze the execution behavior of a CT program, detailed information about its ex-
ecution is needed. To obtain this information, several methods can be used which are intro-
duced here shortly.

Testing
"Testing is the process which is used to asses the quality of software. It starts with known con-
ditions, uses predefined procedures, and has predictable outcomes. Software testing is the
trajectory to verify the functionality of the software, and is therefore used in association with
verification and validation." (Wikipedia, b)

Debugging
"Debugging is a methodical process of finding and reducing the number of bugs or defects in
a program, thus making it behave as expected. Most of the times, debugging starts from an
unpredicted outcome of a test, with the purpose to find the cause of it. Debugging of software

T.T.J. van der Steen University of Twente

Background 5

often comes with: starting and stopping the program, setting breakpoints and walking step by
step (stepping) through the program." (Wikipedia, a)

Data logging
"Data logging is the retrieval of data for a certain period of time. It is a passive process which
is not supposed to change the behavior of a program or react at certain events. The data for all
timestamps is stored and is available for post-processing after data logging has been finished.
This data can then be used for further analysis." (Posthumus, 2007)

Monitoring
"Monitoring is the process of retrieving data at run-time, which can directly be used for post-
processing. It is an active process which can react on certain events for example to prevent a
system from damaging itself. Monitoring can be compared with sampling; only data at the
sampled timestamps is available (snapshots). Monitoring is used for diagnosis or mainte-
nance." (Posthumus, 2007)

Tracing
"Tracing is a specialized form of data logging, which is used to record information about the
execution of a program. This information is typically used by programmers for debugging pur-
poses, to diagnose where problems occur within their software." (Wikipedia, c) Trace informa-
tion can be used, for example in:
• later analysis of the execution behavior of a program.
• the animation or debugging of a program during its execution.

2.2 The CSP language
"CSP (Communicating Sequential Processes) is a notation for describing concurrent systems
(i.e., ones where there is more than one process existing at a time) whose component processes
interact with each other by communication." (Roscoe, 1997)

CSP is a calculus for studying processes, which can be analyzed algebraically. It offers a process-
oriented design of concurrent systems, a fundamental architectural vocabulary of building
blocks: processes for capturing functional software components, synchronous (waiting ren-
dezvous) channels for communication between processes and operators for composing order
of execution among the processes.

2.2.1 CSP diagrams
A CSP diagram is a graphical notation of CSP, based on the GML language proposed by Hilderink
(2002, 2003, 2005). The communication and composition aspects of CSP are described by the
use of graphical representations. Section 2.4 gives an introduction how CSP is graphically rep-
resented within gCSP.

2.3 The CT execution framework
The CT execution framework from the University of Twente (Jovanovic et al., 2003; Hilderink,
2005), provides a C++ implementation of a process-oriented framework based on CSP. The next
sub-sections give a short introduction of the most important parts of the CT execution frame-
work. Detailed information about these parts can be found in Appendix A.

2.3.1 CT processes
CT processes are independent objects performing a specific task. Processes only interact with
their environment through their communication interfaces which means that they do not know
about the existence of other processes. Processes communicate with each other via channels
(section 2.3.2) which are connected to the communication interfaces. A process can be com-
posed of other processes and / or constructs which makes it a complex or parent process. Child
processes communicate with each other using internal channels. If a child process wants to

Control Engineering T.T.J. van der Steen

6 The design of animation and debug facilities for gCSP

communicate to another process, the interface of its parent is used. Figure 2.3 shows how pro-
cesses communicate with each other by using their communication interfaces.

P1

P1_1

P1_2

P2

P2_1

P2_2

Figure 2.3: The way CT processes communicate with each other

The processes are represented as squares with their name in it. The small squares at the side
of a process are representing the communication interfaces of a process. Processes P1_1 and
P1_2 are using an internal channel of process P1 (1), to communicate with each other. To let
process P1_1 communicate with process P2_1, the communication interface of process P1 (2)
and P2 (3) are used.

2.3.2 CT channels
CT Channels are passive objects which are used by processes for rendezvous data communica-
tion. Parallel processes connected to a rendezvous channel, are synchronized (and scheduled)
on channel communication. Channel communication is usually read- or write-only, making
channel communication unidirectional. A channel can carry various data types like integers,
doubles or floats, but just one type at the time. To support that a channel can be used by more
then two processes at the same time, channels can be shared (one-to-any) or joined (any-to-
one), but basically channels are used for one-to-one communication.

2.3.3 CT constructs
CT constructs are special processes, which execute their child processes in a specific order. A
construct does not have communication interfaces. Its child processes are directly connected
to a channel. Constructs together with the synchronization on channels are responsible for
scheduling their child processes. The constructs are implementations of the CSP operators,
sequential, (pri)alternative and (pri)parallel.

2.3.4 CT kernel
The CT kernel provides the low level means of supporting scheduling, ruled by the composi-
tional constructs and channels. Because this kernel is integrated in the CT execution frame-
work, the scheduling behavior is independent of the operating system it is executing on.

2.3.5 Textual debug output
The CT execution framework supports textual debug output, which can be used for debugging
purposes. This output shows for example: Context switches, blocked processes and scheduler
events. Figure 2.4 shows the debug output of a simple producer-consumer example.

T.T.J. van der Steen University of Twente

Background 7

Figure 2.4: The textual debug output of a simple producer-consumer model

2.4 The gCSP tool
This section introduces the elements and features of the gCSP tool relevant to this project. De-
tailed information on using the tool is described in the PhD thesis of Jovanovic (2006) and the
user manual of gCSP (Maljaars, 2007). The gCSP tool is a standard window SDI (Single Doc-
ument Interface) application and programmed in Java (Sun, 2008), permitting availability on
different platforms. Figure 2.5 shows the main window of gCSP.

Figure 2.5: The user interface of gCSP, displayed in hybrid view

The two most important areas are the right pane with the CSP diagrams editor (1) and the left
pane where the composition tree (C-tree) is shown (2). The next sub-sections introduce the
different elements in the CSP diagrams editor and the last sub-section introduces the C-tree.

Control Engineering T.T.J. van der Steen

8 The design of animation and debug facilities for gCSP

2.4.1 gCSP Processes
A gCSP process is the graphical representation of a CT process. All processes in gCSP are di-
vided into two main groups: primitive processes and complex processes. Primitive processes
can not contain children and their functionality is predefined. For example a writer is only
writing on a channel and a reader only reads from a channel. A complex process on the other
hand is composed of one or multiple processes (its children). An overview of the way processes
are used in gCSP is described in the user-manual of gCSP (Maljaars, 2007).

2.4.2 gCSP data-channels
A data-channel is the graphical representation of a CT channel. Data-channels are also known
as communication relationships within gCSP, and are represented as an arrow connected be-
tween processes. They are used to synchronize the processes connected to it. Since gCSP pro-
cesses access data-channels through unidirectional communication interfaces (ports), data-
channels are only used for unidirectional communication. This is the reason why in gCSP
channels are drawn as a one way arrow with only one arrow head (figure 2.6).

Process1 Process2

Figure 2.6: Two processes communicating via a unidirectional data-channel

To enable the use of bidirectional communication, a second data-channel can be drawn. This
data-channel can be connected in opposite direction from Process2 to Process1. An example
can be seen in figure 2.5 between the processes Fork1 and Philosopher1.

2.4.3 Compositional relationships
In gCSP, compositional relationships between processes are used to specify in which kind of CT
construct processes needs to be placed. Each process has to be placed in a compositional re-
lationship with another process. Compositional relationships are represented as straight lines
adorned with a symbol of a CSP/CT operator. Figure 2.7 shows an example of three processes
connected with compositional relationship using a parallel construct.

Process1 Process2

Figure 2.7: Two processes executing in parallel

Process1 and Process2 will be executed in parallel. If more then two processes need to be exe-
cuted in parallel, multiple compositional relationships needs to be drawn. Figure 2.8 shows an
example of a parallel construct, containing three processes.

Process1 Process2 Process3

Figure 2.8: Three processes executing in parallel

One compositional relationship with a parallel CSP operator is drawn between Process1 and
Processe2 and a second one is drawn between Process2 and Process3. The number of compo-
sitional relationships need to be drawn, is equal to the amount of processes composed in a CT
construct, minus one.

T.T.J. van der Steen University of Twente

Background 9

2.4.4 Grouping
Grouping shows how CT constructs will be composed, and therefore which execution behavior
is desired by the user. If different compositional relationships are used at the same hierarchy
level, the desired execution order of the processes can be interpreted differently. Figure 2.9
shows an example of a gCSP diagram where it is not clear which execution behavior is desired.

Process1 Process2 Process3

Figure 2.9: Compositional ambiguity

Two different compositional relationships are connected to Process2. It is not clear if Process2
should execute in sequence with Process3 and then in parallel with Process1, or the other way
around. Grouping is used to solve this problem. A group is drawn as a green rectangle around
processes and is used the same way as parenthesis in formulas. This is illustrated in figure 2.10.

Process1 Process2 Process3

(a) Parallel-sequential processes

Process1 Process2 Process3

(b) Sequential-parallel processes

Figure 2.10: Different ways of grouping

In CSP, figure 2.10(a) can be written as: ((Pr ocess1||Pr ocess2) → Pr ocess3). Process1 and
Process2 will first be executed in parallel and then in sequence with Process3. Figure 2.10(b)
can be written as: (Pr ocess1||(Pr ocess2 → Pr ocess3)). Process2 and Process3 will first be
executed in sequential order and then in parallel with Process1.

2.4.5 The Composition tree
The Composition tree (C-tree) is a tree-based representation of the hierarchy of a gCSP model.
Different ways of grouping will result in different C-trees. Figure 2.11 shows the C-trees which
were created of the gCSP models of 2.10.

(a) Parallel-sequential (b) Sequential-parallel

Figure 2.11: Different ways of grouping

Differences between these C-trees can clearly be seen. In figure 2.11(a), Process1 executes in
parallel (Par1) with the sequential (Seq1), containing Process2 and Process3. In 2.11(b), Process
3 executes in sequence (Seq2) with the parallel (Par2), containing Process1 and Process3. The
execution behavior will differ if from both gCSP models the CT program is executed.

2.5 Conclusions
In this chapter the theoretical and practical background information of the software design
trajectory of the CE group, the concepts of CSP, the CT execution framework and the gCSP tool
has been given. The next chapter presents the analysis of this project, where the background
information from this chapter is used.

Control Engineering T.T.J. van der Steen

10 The design of animation and debug facilities for gCSP

3 Analysis

Animation can improve the feedback on the execution of a CT program. To make this possi-
ble, an animation framework needs to be designed and implemented. This chapter discusses
the analysis of the parts which are useful for the design and implementation of the animation
framework. This analysis is used to create a list with specifications, which is used as a guideline
for the design and implementation of the animation framework.

3.1 Real-time animation
In this report, real-time animation is defined as the animation of a CT program, which is run-
ning at full speed. Because animation should be usable for analysis on the execution behavior
of a CT program, it is important that all information is shown and that it is shown in the same
order the program executes. A problem is that a CT program can execute faster than the human
eyes and mind can process. This means that animating at full speed is not efficient to be used
for the analysis of the execution behavior of a CT program while it executes. Maljaars (2006)
has experienced the same kind of problem. The textual debug output of his CT program was
printed faster to the screen then he could analyze. This is the reason why real-time animation
should not be used in this project. Instead, the ability to real-time record (log) the execution
of a CT program is desired. The logged data can then be used for later analysis after the CT
program is finished or stopped its execution.

3.2 The animation framework
In the software design trajectory of gCSP, the generated C++ code of the gCSP-diagrams is used
together with the CT execution framework for the creation of a CT program. To be able to ani-
mate the execution of a CT program, the animation framework should support the following:

• A graphical user interface to show animation in a graphical way.
• The simulation of a CT program, where its output can be used for animation purposes.

The most effective way is to use gCSP as the graphical user interface for the animation frame-
work. For the simulation of a CT program, two options are possible:

1 A CT simulator in gCSP itself.
2 An external CT simulator.

In the first option, the animation framework can be implemented completely in gCSP. Because
gCSP is written in java, a java version of the CT execution framework is needed for the simula-
tion. A CT execution framework written in Java (CTJ) does exist, but it is not updated since the
year 2003-2004. A lot of work is needed to get it back up to date again. Another issue is that the
behavior of the Java version is difficult to compare with the behavior of the C++ version. A lot
of testing should be done to verify that both execution frameworks do behave the same.

In the second option an external CT simulator is used. Making use of the C++ version of the CT
execution framework is the most effective way. To let the CT execution framework function as
a CT simulator for gCSP, it needs to be extended with:

1 A communication protocol to send information on the execution of a CT program to gCSP.
2 The ability to generate information on the execution of a CT program.

3.2.1 Conclusion
The most effective way is to make use of gCSP and the CT execution framework for designing
and implementing the animation framework. The CT execution framework should be able to
connect a CT program to gCSP, generate information about the execution of the CT program
and send this information to gCSP. gCSP should be able to use this information for animation
purposes.

University of Twente

Analysis 11

3.3 The connection between a CT program and gCSP
To enable communication between a CT program and gCSP, a connection between them is
needed. For choosing an appropriate communication protocol used for this connection, the
communication protocol should meet the following communication requirements:

• The arrival of messages has to be guaranteed, using them for logging or analysis purposes.
• Messages needs to be received in order, which makes it usable for animation purposes.
• Remote connection should be possible, enabling animation of a CT program running on a

real target, which does not support a graphical user interface.

The TCP/IP and UDP communication protocols are already supported by the CT execution
framework and gCSP (java). They are analyzed to check whether they are appropriate to be
used in the animation framework. They support remote connects, are relatively fast and easy
to implement and are supported by a lot of platforms and operation systems.

3.3.1 TCP/IP versus UDP
The primary difference between TCP/IP and UDP lies, in their respective implementations of
reliable messaging. TCP/IP includes support for guaranteed delivery, meaning that the recipi-
ent automatically acknowledges the sender when a message is received, and the sender waits
and retries in cases where the receiver does not respond in a timely way.

UDP, on the other hand, does not implement guaranteed message delivery. A UDP datagram
can get "lost" on the way from sender to receiver, and the protocol itself does nothing to detect
or report this condition. UDP is sometimes called an unreliable transport for this reason.

UDP also works unreliably in the receipt of a burst of multiple datagram’s. Unlike TCP/IP, UDP
provides no guarantees that the order of delivery is preserved. In practice, UDP datagram’s
arrive out-of-order relatively infrequently, generally only under heavy traffic conditions.

3.3.2 Conclusion
The receiving order of messages should be guaranteed and all messages should be received.
TCP/IP is chosen as communication protocol used for the connection between a CT program
and gCSP. TCP/IP meets the communication requirements and UDP does not.

3.4 The execution feedback of a CT program
Feedback on the execution of a CT program should be created and used by gCSP for animation
purposes. A selection has to be made of the information which is useful to know, for analysis
on the execution behavior of a CT program. The next sub-sections describe which parts of the
CT execution framework are important and can be used for this analysis.

3.4.1 CT Processes
The main task of a CT program can be divided into sub tasks, which can be executed by one or
multiple processes. To know which task a CT program is executing at a specific time, the status
of all processes of that CT program is needed. This information can be obtained by transferring
the process-state of all processes. For example, the state of a process shows whether the process
is running or blocked? To know which task is executing, the current running process should be
known. Therefore it is important to be able to have access to the state of a process.

3.4.2 CT Channels
In CT, scheduling of the processes is performed on channel communication events. Depending
on the state of a channel, a process which tries to use a channel may continue executing or
will be blocked. What happens to the process can be predicted by observing the state of the
channel. For example, a process will be blocked if it tries to write on a channel which is ’not
ready’. The process which is ’ready to run’ and listed at the top of the ready-queue, may use the
CPU instead.

Control Engineering T.T.J. van der Steen

12 The design of animation and debug facilities for gCSP

Besides the state of a channel, written data on a channel (contents) can also influence the way
processes are scheduled. For example, the alternative compositional relationship reacts on
process guards which can be set to monitor and react on the data written on a channel. If data
is read from a channel and the value is put into a variable, depending on the guards of the
alternative and this value, the alternative may execute a certain guarded process.

Another way a channel can influence the scheduling of processes, is when buffered channels
are used. For example, if the buffer of a channel is full and a process tries to write data on the
channel, the process will be blocked until there is free space in the buffer again.

Both the state and the contents of a channel can be used for analysis and prediction of the
behavior of the processes, which makes it useful information while analyzing the execution
behavior of a CT program.

3.4.3 CT Compositions
As described in section 2.4.4, different ways of grouping or using different kinds of composi-
tional relationships can result in different execution order among processes. If the state of a
composition is known, it is also known which processes may execute and in which order they
will be executed. This information can be used to predict the way processes will be executed,
making it useful information during analysis on the execution behavior of a CT program.

3.4.4 CT kernel
An important part of the CT kernel is the ready-queue of its scheduler. The ready-queue holds
the list in which order the processes may execute on the CPU. This list will change during the
execution of the CT program. Knowledge about the contents of the ready-queue can be used to
validate the execution behavior of a CT program and also the scheduling of the CT execution
framework. Another way it can be used is for prediction of the next running process if the
current running process will be blocked.

3.5 Debug functionality
A CT program can execute faster then the human eyes or mind can process (section 3.1), which
makes it hard to analyze a CT program while it is executing at full speed. To make it easier for
the user, methods are needed which can deal with this problem. The next sub-sections will
introduce some methods / functionality to accomplish this.

3.5.1 Selecting a part of interest
A simple way of making it easier for the user to analyze the execution behavior of a CT program
is to decrease the amount of feedback information used for the animation. The information
which is not of interest to the user should be filtered out. Not every part of a CSP model is
relevant. For example, one part can be more critical than the other, which makes it more inter-
esting for analysis. Because a CSP model is divided into processes, the user should be able to
select which processes should be animated.

3.5.2 Setting breakpoints
In software development, a breakpoint is an intentional stop or pause location in a program,
put in place for debugging purposes. During the interruption, the user has time to obtain the
state of a program, to find out whether the program functions as expected.

3.5.3 Stepping
Stepping refers to the common debugging method of executing code, one line at a time. The
state of a program can be examined, and related to the data before and after execution of a
particular line of code. This allows evaluation of the effects of that instruction in isolation and
thereby gaining insight in the behavior (or misbehavior) of the program.

T.T.J. van der Steen University of Twente

Analysis 13

3.6 Animation in gCSP
As already mentioned in section 1.4, animation will be used to graphically show the execution
of CT program in a user friendly way. Because gCSP is already a graphical tool, it is obvious to
design and implement animation in the gCSP diagrams of gCSP.

3.6.1 Animated gCSP diagrams
Different ways of animation can be used. Analysis is carried out to see which one fits for using
it within gCSP. The following tools are used to get an indication of how animation can be used.
• Rhapsody (Telelogic, 2008)
• Ptolemy II (Eker et al., 2008)
• 20-sim (Controllab Products, 2008)
These tools all use colors to show the state of a program or model. In Rhapsody, a state of a
state-chart will be colored purple if the state is activated and colored brown if it was stopped.
Ptolemy II is using the same concept in its state-charts; a state will be colored red if it is acti-
vated. In 20-sim, colors are used to show the activity (state) of bondgraphs. The use of different
colors at different states is giving a clear view of what a program or model is doing. Therefore
this method will be prototyped for animation in the gCSP diagrams.

Besides the state of a program, the contents of channels and the ready-queue should also be
available for animation. These do not have a finite number of states, which makes the use of
colors not an option. Instead, they should be ’animated’ in a textual way.

3.6.2 Execution history
The states of processes, channels and constructs are changing during the execution of a CT
program. The previous state can not be seen if only color based animation is used. For analysis
on the execution behavior of a CT program, it could be useful to look back in the history of the
program. It should be possible to store the feedback on the execution of a CT program in gCSP
and save it on hard-disk, which then can be used for later analysis.

3.7 Specifications
This section gives the list of the specifications, created on the basis of the previous sections.

1 Communication requirements
• The TCP/IP protocol should be used for the connection between gCSP and a CT program.

2 Color based animation in the gCSP diagrams and the C-tree
• State of processes, constructs and both ends of channels.

3 Textual based animation in gCSP
• The contents of a channel
• The contents of the ready-queue of the CT kernel

4 Debug functions of the CT execution framework
• Usable in a user friendly way.
• Selection of the part of the gCSP model which needs to be animated
• Setting breakpoints to pause the execution of a CT program
• Stepping through the execution of a CT program

5 Textual representation of the execution history of a CT program
• Save to hard-disk

3.8 Conclusions
Analysis is performed on how the animation framework should be designed and implemented
and which communication protocol should be used for the connection between a CT program
and gCSP. Which information about a CT program is useful for analysis on its execution be-
havior and in which way this should be animated in gCSP. On the basis of this analysis, a list
of specifications is created (section 3.7). This list is used as a guideline for chapter 4, for the
design and implementation of the animation framework.

Control Engineering T.T.J. van der Steen

14 The design of animation and debug facilities for gCSP

4 The design and implementation of the animation
framework

To design and implement the animation framework, both gCSP and the CT execution frame-
work are extended to be used for animation. A CT program is also part of the animation frame-
work, because the feedback on its execution is used for the animation in gCSP. Figure 4.1 illus-
trates where the animation framework is located in the design trajectory of gCSP.

Figure 4.1: Animation framework in the design trajectory of gCSP

The next sections give a global description about the way the animation is designed and imple-
mented. A more detailed description is given in Appendix B.

4.1 The connection between gCSP and a CT program
To let gCSP and a CT program communicate with each other, a TCP/IP connection (section 3.3)
is created. Figure 4.2 illustrates the way this connection is used.

gCSP CT program

Commands (1)

Animation feedback (2)

TCP/IP

Figure 4.2: The connection between gCSP and a CT program

The connection is used for bidirectional communication. The CT execution framework sends
information (animation feedback) on the execution of the CT program to gCSP (2), used for the

University of Twente

The design and implementation of the animation framework 15

animation in the gCSP diagrams. gCSP calls the debug functions of the CT execution frame-
work (section 3.5) by sending command messages (1) to the CT program. Before the actual
animation can be started, some initialization is needed first. This is illustrated in Figure 4.3.

gCSP CT program

Connect (2)

Connected (3)

Init address (4)

Init animated (5)

Wait for connection (1)

Init breakpoint (6)

Figure 4.3: Initialization of the animation

First, the CT program needs to be started. The CT execution framework starts a TCP/IP server,
to connect gCSP (the TCP/IP client) to the CT program. The CT program will then pause itself
(1) and wait until gCSP is connected (2 and 3). After the connection is created successfully,
the CT program and gCSP will exchange initialization data. To identify processes, constructs
and channels within the animation framework, their object pointers (addresses) within the CT
program are used. Because gCSP has no knowledge about these addresses, this information is
sent first as initialization data by the CT program to gCSP (4). If an object with the same name
exists in gCSP, the address is taken as valid. gCSP will then notify the CT program if the object
needs to be animated (5) and if a breakpoint (6) is set in gCSP. If all objects are initialized, the
CT program is ready to be executed and animated.

4.2 The extended graphical user interface of gCSP
The graphical user interface of gCSP is extended with new tools and windows, for using the
animation framework in a user friendly way. The following sub-sections will describe them
shortly.

4.2.1 The animation toolbar
To use the debug functionality 3.5 of the CT execution framework, the gCSP toolbar is extended
with new tools. Figure 4.4 shows the extended toolbar, where the new tools are marked by red
ellipses.

Figure 4.4: The animation toolbar in gCSP

Certain animation tools can be accessed by keyboard shortcuts, which mean the mouse pointer
can be used for other purposes. The animation tools together with their keyboard shortcuts are
described in table 4.1.

Control Engineering T.T.J. van der Steen

16 The design of animation and debug facilities for gCSP

Table 4.1: gCSP animation toolbar

Tool Description

Build Option release: create a CT program which will finally run on the target
debug: create a CT program with debugging support. Textual debug
information will be printed to the screen.
animation: create a CT program usable by the animation framework.

Start the animation by trying to connect to a CT program which is waiting
for gCSP [F 5]. If animation is already started it will be stopped [SHIFT-F5].

Step to the next running process of the CT program [F 11].

/ Start or stop periodic stepping with the frequency given in milliseconds.

4.2.2 The animation drop-down menu
To select a process to be animated and to configure breakpoints in gCSP, the drop-down menu
of processes and constructs is extended with two new options: animate and breakpoint. This
drop-down menu is shown in Figure 4.5, where the new options are marked by a red ellipse.

Figure 4.5: The animation drop-down menu in gCSP

Setting breakpoints
A breakpoint can be set on any kind of process or construct. By using the animation drop-
down menu option "insert breakpoint" or pushing [F 9] on the keyboard, a breakpoint will be
set on the selected process or construct. In the C-tree, breakpoints are marked with a symbol in
front of the process or the construct its name. Placed breakpoints can be enabled or disabled
like other debuggers. A breakpoint which is enabled, is marked by an asterisk (*). A single
quotation mark (’) is used when a breakpoint is disabled. Figure 4.6 shows an example of two
breakpoints, one enabled and the other one disabled.

Figure 4.6: An example of two breakpoints, one enabled and one disabled

T.T.J. van der Steen University of Twente

The design and implementation of the animation framework 17

Both on Process1 and Process2 a breakpoint is set. The breakpoint on Process1 is enabled and
the breakpoint on Process2 is disabled. The CT program will be notified by gCSP if a breakpoint
is set or removed. The CT program will then set a breakpoint using the breakpoint function of
the CT execution framework. Detailed information about the implementation of breakpoints
in the animation framework can be found in Appendix B.

Enable or disable animation
Processes or constructs can be selected to be animated or not. If a process or construct is dis-
abled for animation, it will be colored in the default color of the gCSP model during the anima-
tion. Default, all the processes and constructs are enabled for animation. Disabling or enabling
animation of a complex process, will also disable or enable the animation if its children. This
makes it faster for the user to select a process including all its children to be animated or not.

4.2.3 Output windows
The right lower pane of the gCSP user interface is extended with four tabbed windows, next
to the existing warning tab (see figure 2.5). They give the user extra information during the
animation of a CT program. Table 4.2 describes the windows which are available now.

Table 4.2: Output windows of gCSP

Output Window Description

Warnings Displays all warnings that occur during the design of a gCSP model. For
example, if a process is not grouped (section 2.4.4) in a construct.

BreakPoints A list of all the breakpoints is shown. Breakpoints can also be
configured (enabled / disabled) and removed here.

Execution history Displays the execution history of processes and construct. Channel
communication is also shown here. The data can be saved as a text file
on hard-disk, which can be used for later analysis.

Watch The contents of the channels and the ready-queue of the CT kernel are
shown here.

Debug Log If a debug version of a CT program is created (section 4.2.1) it normally
prints debug information to the screen. Now this information will be
fetched by gCSP and displayed in this window. This information can
than be saved on hard-disk so it can be used for later analysis.

4.2.4 Animation feedback
To animate the execution of a CT program in gCSP, information about its execution is needed.
Animation macros are added to the CT execution framework, which are capable of generating
information about the execution of a CT program. An advantage of using macros is that they all
can be enabled or disabled at compile time, using just one define. A release and an animation
version of the CT execution framework can be created in a straightforward way.

Different kinds of macros are placed on specific locations in the CT execution framework, like
state changes of a process or communication of a channel. For example, if the state of a process
changes, a macro notifies it by sending the new state of the process to gCSP. gCSP will fetch this
information and use it for the animation of the process in the gCSP diagrams. Appendix B.2
gives a description off all animation macros added to the CT execution framework.

Control Engineering T.T.J. van der Steen

18 The design of animation and debug facilities for gCSP

4.3 Animated gCSP diagrams
The animation feedback received from the CT program is used for color based animation in the
gCSP diagrams. The next sections will describe the way the gCSP diagrams are animated.

Note: Because in grayscale the differences between several colors can be hard to see, the state of
processes, constructs and channels are displayed as text between brackets near them. In the real
case only colors are used!

Note: In the next sections the default colors are used. If the user wants to use other colors for the
states of processes and channels, they can be configured via the menu of gCSP: Tools -> Options
and then go to the animation section (see Appendix C.4).

4.3.1 Animated processes
Depending on the state of a process, a process is drawn with a different color in the gCSP di-
agrams. The states which are less important are drawn with a less intensive color. To detect
discrepancies between a gCSP model and a CT program, an extra process state is introduced in
gCSP, namely the ’undefined’ state. For example, if the state of a gCSP process is ’undefined’,
it means that the process is not initialized by the CT program (see section 4.1). This occurs if
there is a mismatch between a gCSP model and a CT program. Table 4.3 shows the colors used
for the different states of a gCSP process.

Table 4.3: The colors of an animated gCSP process

Process state Color Description

new light-grey initialized correctly by the CT program
ready light-blue ready to be executed on the CPU
running green currently running on the CPU
blocked light-grey blocked while it was running
finished light-grey finished its execution
undefined red not initialized by the CT program

To be able to see clearly which process is ’running’, the colors used for different states should
be well chosen. Because the ’blocked’ and ’finished’ state are used a lot and are less important
than the ’running’ state, they are colored in light-grey (less intensive than green). This should
make it clear to see the ’running’ process while animating. Figure 4.7 illustrates the way pro-
cesses are colored in the gCSP diagrams by using a simple gCSP model. The animation flow is
shown by a red arrow between the models.

T.T.J. van der Steen University of Twente

The design and implementation of the animation framework 19

Process1 Process2

*

[true]

REPETITION1

(finished) (running)

(running)

Process1

*

[true]

REPETITION1

Process2

(running) (ready)

(running)

Process1 Process2

*

[true]

REPETITION1

(finished) (finished)

(running)

Process1 Process2

*

[true]

REPETITION1

(new) (new)

(running)

Init (1)

Repetition starting (2)

Process1 running (3) Process2 running (4)

Repetition restart (5)

Process1 Process2

*

[true]

REPETITION1

(new) (new)

(new)

Figure 4.7: Animated processes example

Two processes are executed in parallel and will be repeated forever because of the repetition. If
the CT program is started for the first time, the processes will be colored grey (1), which means
that they are initialized successfully. The repetition will start (2) the parallel construct, which
will execute Process1 (3) and Process2 (4) in parallel. If both processes are finished (5) the
parallel construct is also finished with its execution which makes the program go back to its
repetition. The repetition restarts the parallel construct and a new iteration is started (5 ⇒ 3).

Control Engineering T.T.J. van der Steen

20 The design of animation and debug facilities for gCSP

4.3.2 Animated Compositional relationships
Compositional relationships (the straight lines between the processes) are animated using the
same colors as animated processes, because both go through the same states (Appendix A).
The main difference is that multiple compositional relationships in gCSP can be grouped into
one CT construct (section 2.4.4). For example, if one sequential CT construct containing four
processes is activated, it means that three compositional relationships need to be animated.
Figure 4.8 shows an example of three processes executing in sequence.

Process1 Process2

*

[true]

REPETITION1

Process3

(running)

(active) (active)

(finished) (blocked)

Process2 running (3)

Process1 Process2

*

[true]

REPETITION1

Process3

(running)

(active) (active)

(finished)(finished)

Process3 running (4)

Process1 Process2

*

[true]

REPETITION1

Process3

(finished)(finished)(finished)

(inactive) (inactive)

Repetition restart (5)

Process1 Process2

*

[true]

REPETITION1

Process3

(running)

(active) (active)

(blocked) (blocked)

Process1 running (2)

Process1 Process2

*

[true]

REPETITION1

Process3

(new) (new) (new)

(inactive) (inactive)

Repetition starting (1)

Figure 4.8: Animated compositional relationship example

Process1, Process2 and Process3 are grouped in one sequential construct (see group rectangle),
and therefore they are executed in sequence (2 to 4). If the last process (Process3) has finished
its execution the sequence construct is finished also and the construct will be deactivated (5).
The repetition will restart the sequential construct which will start the processes to be executed
in sequence again (5 ⇒ 2). It can be clearly seen that if one of the processes is running (2 to
4) the sequential construct is active. This means that the construct is "running" too, so both
sequential compositional relationships will be colored green.

4.3.3 Animated Channels
In gCSP, a channel is drawn as a unidirectional arrow with an arrow shaft and an arrow head.
The arrow shaft is defined as the writing-end and the arrow head is defined as the reading-end
of the channel. Both ends of a channel can go through two different states (Appendix A.3.2); the
state of a channel can be defined in four ways. To detect discrepancies between a gCSP model
and a CT program, two extra channel states are introduced in gCSP. A ’new’ state if a channel
is created for the first time, and an ’undefined’ state if the channel is not initialized by the CT
program (section 4.1). Therefore, a channel can be colored in six different ways, see table 4.4.

T.T.J. van der Steen University of Twente

The design and implementation of the animation framework 21

Table 4.4: The states and colors of a channel

Channel state w-end r-end Description

new grey grey Initialized correctly by the CT program.
ready green green Both writing and reading ends may be used.
written orange green The channel has been written, the writing end is set to

be ’not ready’. if a process to write on the channel, it
will be ’blocked’.

read green orange The channel has been read, the reading send is set to
be ’not ready’. if a process tries to read from the
channel, it will be ’blocked’.

rendezvous orange orange The channel has been written and read, which means
rendezvous can occur.

undefined red red Not initialized by the CT program, because the CT
program is out of sync.

If a channel is initialized, both channel-ends will be colored grey. If an error occurs between
a gCSP model and a CT program, such that a channel will not be initialized, both ends of the
channel will be colored in red. Furthermore, a channel-end which is colored green means that
a process (reader or writer) may use the channel-end without being blocked. If a channel-end
is colored orange, it means that it is already used by another process. If a process tries to use
this channel-end, the process will be blocked until the channel-end is free again.

The contents of a channel
A channel is normally connected (directly or via communication interfaces (section 2.3.1)) be-
tween a writer and a reader. To know what data should be written to a channel and where
data read from a channel should be stored, both the writer and the reader are connected to a
variable. This is illustrated in figure 4.9.

!

WRITER

?

READER

W:Integer R:Integer

[BUF]

Figure 4.9: Channel connected between a writer and a reader

The value of the variable which is connected to the writer (W) will be written on the channel.
The reader will read data from the channel and put it into the variable connected to it (R).
In case of a buffered channel, a channel contains a buffer ([BUF]) where data written on the
channel can be stored.

To know which data is written to a channel or which data will be read from a channel, it should
be possible to obtain the contents of these variables and buffer (in case of a buffered channel).
While animating a CT program the mouse cursor can be hovered over a channel, which will
show the contents in a tooltip window near the channel. The text shown in the tooltip window
is formatted as: "W [BUF] R". The ’W’ represents the data which is ready to be written on the
channel. In case of a buffered channel, ’[Buf]’ represents the contents of the channel buffer.
The ’R’ represents the data ready to be read from the channel which than can be stored in the
variable connected to the reader.

Control Engineering T.T.J. van der Steen

22 The design of animation and debug facilities for gCSP

Example of animated channels
Figure 4.10 shows an example of a animated non-buffered rendezvous channel used in a producer-
consumer gCSP model.

- [] -

Producer Consumer

(running) (blocked)

(read)

2.000000 [] -

Producer Consumer

(blocked) (running)

(written)

- [] 1.000000

Producer Consumer

(running) (blocked)

(rendezvous)

2.000000 [] 1.000000

Producer Consumer

(blocked) (running)

(written)

- [] -

Producer Consumer

(blocked) (running)

(ready)

- [] -

Producer Consumer

(running) (ready)

(new)

- [] -

Producer Consumer

(blocked) (running)

(rendezvous)

new (1)

write (2)

read (3)

ready (4) read (5)

Write (6)

written (7)

Figure 4.10: Animated channels example

Before the Producer can write to the channel, the channel is initialized (1). Next the Producer
tries to write data on the channel, but because the Consumer is not ready yet, the data will be
placed in ’W’ (2). The state of the channel is changed ’written’, the Producer is blocked and
the Consumer may run. The Consumer will then read the data from the channel and remove
it from ’W’ again (3). Rendezvous occurred and both sides are freed again, which results that
the channel will be set to be ’ready’ (4). Because the Consumer is not blocked, it tries to read
another time from the channel. The channel will set to be ’read’ (5) and the Consumer will be
blocked because there is no data available. Next the Producer may write twice. One so that
rendezvous occurs (6) and one to set data ready to be written (7). The Consumer then may read
this data (2) and a new iteration will be started again.

T.T.J. van der Steen University of Twente

The design and implementation of the animation framework 23

4.4 Animated C-tree
To be able to show the state of child processes without the user letting to look directly into their
parent process, animation is used in the C-tree. The C-tree is animated just like the processes
and the constructs. This creates the possibility to show the state of every process and construct
in one view. An example of an animated C-tree is given in figure 4.11.

(a) Animated C-tree

- [] -

Producer Consumer

(blocked) (running)

(ready)

(b) Model of the C-tree

Figure 4.11: Animation of the C-tree

In figure 4.11(b) it can only be seen that the Consumer process is ’running’. It can not be seen
in this view, which child process of the Consumer is running. Figure 4.11(a) represents the
animated C-tree of figure 4.11(b). The state of the child processes (’Reader’ and ’Consume’) are
shown in the C-tree. The Reader process is ’finished’ and the Consume process is ’running’. By
using animation in the C-tree, the state of all the processes and constructs in the gCSP model
are shown in one view.

4.5 Conclusions
Both gCSP and the CT execution framework are extended to create an animation framework for
animating the execution of a CT program in gCSP. The specifications of section 3.7 are used as a
guideline to accomplish this. A CT program is capable to share information about its execution
with gCSP. gCSP uses this information to create color- and textual- based animation in the gCSP
diagrams. The CT execution framework is extended with some debug functionality, which can
be used by the user from within gCSP. This creates a user friendly way of debugging or analyzing
a CT program while it is executing. All specifications have been met.

To be able to conclude that animation indeed improves the feedback of an executing CT pro-
gram and that it is useful while developing CSP models some tests needed to be done. The next
chapter describes the results of some tests and tries to demonstrate the advantages to be able
to animate the execution of a CT program in gCSP.

Control Engineering T.T.J. van der Steen

24 The design of animation and debug facilities for gCSP

5 Testing and discussion

This chapter presents the results obtained from the tests performed during this project. Next,
the results of these tests are discussed and a conclusion about them is given.

5.1 Testing
Tests are performed on the:
1 pratical use of animation, to validate the correctness of the animation.
2 execution behavior of gCSP models, to test and validate their behavior by using animation.

While creating models to be tested on these two points, for certain models, gCSP failed to gen-
erate correct C++ code. The C++ code generator of gCSP is tested, to find the cause of this.

5.1.1 Practical use of animation
All the parts of the CT execution framework (section 3.4) are tested on their animation, by using
small gCSP models. First processes, constructs etc., are tested separately, followed by combin-
ing them in different ways. Combinations like, processes executing in parallel, multiple pro-
cesses using shared channels; and complex processes containing multiple children. Also more
complex models, like the production cell ((Maljaars, 2006)) and a model of the "‘philosopher
problem" (see figure 2.5) are tested on their animation.

Another way the practical use of animation is tested is to experience with some functionality
of the CT execution framework. The yield() function and the two different schedulers of the
CT kernel (compositional and occam) are tested. The actual context switching causes by the
yield() function and the context switch methods of the two different schedulers, can now be
seen by animating the execution of a CT program.

5.1.2 Execution behavior
Certain constructions in the gCSP models caused undesired execution behavior of their gen-
erated CT programs. To find the cause of these behaviors, small gCSP models were created
containing these constructions. They were analyzed by animating the execution of their gen-
erated CT programs. The following constructions are analyzed:
1 processes communicating via rendezvous channels.
2 multiple processes communicating via shared or joined channels.
3 processes executing in parallel.

Processes communicating via rendezvous channels
The producer-consumer model of figure 4.10 was used. Each repetition cycle, the channel was
written and read twice in stead of one. While using animation for searching the cause of this
behavior, it was noticed that the producer and the consumer was not always blocked directly
after using the channel. This behavior is caused by an optimization in the CT execution frame-
work to decrease the amount of context switches (Hilderink, 2005, p203-205). If rendezvous on
a channel occur, the process which is using the channel may continue its execution.

Processes communicating via shared or joined channels
The Fair policy first-come, first-served (FCFS), is used for shared and joined channels. The pro-
cess which first tries to write or read the channel may use it first. Other processes need to wait
until the channel is free again. During the animation of processes communicating via shared
or joined channels, it is observed that only the first process was using the channel without
letting the other processes through. An error is found in the CT execution framework on the
implementation of shared and joined channels. This error was fixed during this project, which
resulted in the correct behavior of shared and joined channels.

University of Twente

Testing and discussion 25

processes executing in parallel
The gCSP model of figure 4.7 was used. Each repetition cycle, the first process (Process1) of the
parallel construct was executed first. The processes are running in parallel, so they are given
the same priority. It should not matter which parallel process executes first. An optimization in
the scheduler of the CT execution framework causes this static execution order. If the execution
order does not matter, why not always execute the first process of a parallel construct first?

5.1.3 C++ code generator of gCSP
Certain structures which can be drawn in gCSP, fails to generate C++ code. This gave a few
unintended limitations, which resulted that not every gCSP model could be tested. By testing
the C++ code generation with different gCSP model, the following limitations were found:

1 A shared or joined channel can not be used by its parent via their (ports).
2 A channel may only be shared or joined by using just one splitter.
3 A var-channel can not go through the ports of a process.

Figure 5.1 illustrates these structures.

P1

P1_1

P2_1 var

(1)

(2)(2)

(3)

(1)

Figure 5.1: gCSP code generation failures

5.2 Discussion

5.2.1 Practical use of animation
Animation is used in the MSc course Real-Time Software Development, which was started at
the end of this project. In comparison with previous years, the students had fewer questions
about CSP and the way their CT programs were executing. In my opinion, animation is an
effective way of giving feedback on the execution of a CT program. It gave more insight in
the execution behavior of a CT program, because it is graphically shown now. This resulted in
better understanding of the CSP concepts and the way processes are communicating with each
other by using rendezvous channels.

5.2.2 Optimizations in the CT execution framework
The optimizations in the CT execution framework were implemented for practical purposes. It
is a point of discussion if it should be able to set these off, because the CT execution framework
is also used for education purposes, like in the MSc course Real-Time Software Development.

5.2.3 C++ code generator of gCSP
The C++ code generator of gCSP should be capable to generate correct C++ code of all the
structures drawn in gCSP. Should these structures be disabled for drawing? Or should the user
be notices that the C++ code generator fails if one of these structures is drawn?

5.3 Conclusions
From the previous sections it has become clear that animation is useful. Animation can be
used to analyze the execution behavior of a CT program, and it can be used to find the cause
of undesired execution behavior. Without animation it would be probably harder, to "debug"
and analyze the execution behavior of a CT program.

Control Engineering T.T.J. van der Steen

26 The design of animation and debug facilities for gCSP

6 Conclusions and Recommendations

6.1 Conclusions
The goal of the project is to design and implement supporting tools to improve the feedback
on the execution of a CT program. The use of animation was selected as an appropriate way to
do this. To achieve this goal, an animation framework has been created by extending gCSP and
the CT execution framework for animation purposes. The diagrams of gCSP are used to create
animation in a graphical way. The execution framework generates feedback on the execution
of a CT program, which is used by gCSP for its animation.

Analysis was performed on the way the animation framework should be designed and imple-
mented. A list of specifications was created and was used as a guideline to design and imple-
ment the animation framework. The animation framework makes the following possible:

• A CT program can share information about its execution with gCSP.
• gCSP uses this information for color and textual based animation in the gCSP diagrams.
• a CT program can be debugged and analyzed during its execution.
• The execution history of a CT program can be saved to hard-disk.

To demonstrate the advantages of the animation framework for analyzing the execution behav-
ior of a CT program, several gCSP models were tested and analyzed with the use of animation.
From these tests it can be concluded that animation:
• is appropriate for giving feedback on the execution of a CT program.
• can be used for validating the execution behavior of CT program.
• can be used to find the cause of undesired execution behavior of a CT program.

Animation is successful for testing, validating and analyzing the execution behavior of a CT
program. It was demonstrated that animation gives better insight in the execution behavior of
a CT program, which concludes that the goal of this project is achieved.

6.2 Recommendations
It is recommended that the internal database of gCSP will be redesigned. During implementa-
tion of the animation framework in gCSP, a lot of preparation world was needed to get familiar
with gCSP. The documentation about the implementation of gCSP is bad or even not available.
Also the internal database of gCSP is designed badly and therefore is hard to use. Because of
the poor database design and the bad documentation, new extensions are hard to implement
and bugs are hard to solve. If the CE-department continues with gCSP and wants to extend it
more in the future, it is recommended that the internal database of gCSP will be redesigned.
Because gCSP depends a lot on this database, this results in redesigning gCSP. Re-use the good
parts and redesign the bad parts, for getting a better and more stable gCSP.

During the tests performed in chapter 5, some disadvantages were observed in the CT execu-
tion framework and gCSP. To solve these problems future work is needed:
• Let the user choose to disable or enable the context switch optimization, to give more insight

in context switch methods of the CT execution framework.
• The implementation of parallel CT constructs which starts its processes in random order.
• Let the user choose which scheduler of the CT kernel should be used.
• Improve the C++ code generator of gCSP.

Improvements for the animation framework are:
• The simulation of a previous executed CT program by using the history of its execution.
• Real-time logger in the CT execution framework for off-line analysis (logged data can be used

as input data for the simulator).

University of Twente

27

A The CT execution framework

A.1 CT processes
A.1.1 Process types

Table A.1: Process types

Process state Description

Process object performing a specific task, which is defined by its children
Writer reads the value from a variable and writes it on a channel
Reader reads data from a channel and put the value into a variable

Recursion repeats its child processes if they are all finished
Code special process with user defined source code

A.1.2 Process states
A process can be in one of the states given in table A.2

Table A.2: The state of a process

Process state Description

new if a process is created it will start in this state
ready a process is ready to run on the CPU

running the process is running on the CPU
blocked the process is blocked, probably because a source is not available.
finished the process is finished with its task and set to idle

terminated the process is removed from the memory

Changing the state of a process is mostly done by an external resource. For example a scheduler
can decide that a process may run by setting its state to ’running’ and gives the CPU to the
process. Although a process is in one state at the time, there are some connections between
them. For example, a process can not be blocked if it was not running before. The way the state
of a process changes, is illustrated with a state-diagram shown in figure A.1.

new

blocked

terminatedready

running

finished

dis
pa
tch

wait

re
n
d
e
z
v
o
u
s

restart terminate

tim
eo
ut

create

Figure A.1: The various states of a CT process displayed in a state diagram

Control Engineering

28 The design of animation and debug facilities for gCSP

If a process is created (’new’), it needs to wait for the scheduler to set its status to ’ready’ and
load it into the main memory. Once the process has been assigned to the CPU, a context
switch is performed and the process state is set to ’running’. If a process needs to wait for a
source (data-channel) to get ready, it is moved into the ’blocked’ state until no longer waiting
is needed, and then moved back into the ’ready’ state. Once the process finished execution it
is moved to the ’finished’ state. If a process is terminated the state is moved to the ’terminated’
state and the process is removed form the main memory.

A.2 CT constructs

A.2.1 Construct types

Table A.3: Constructs used by compositional relationships in gCSP

Symbol Construct Description

Process5 Process6

Process7 Process8

Process11 Process12

Process9

[]

Process10

[]

Process13

[]

Process14

[]

Process15 Process16

Sequential (SEQ) The processes will be executed sequentially in the
order the arrow indicates.

Process5 Process6

Process7 Process8

Process11 Process12

Process9

[]

Process10

[]

Process13

[]

Process14

[]

Process15 Process16

Parallel (PAR) The processes are executed in parallel (concurrently).
Each process has an equal chance (priority) to
execute.

Process5 Process6

Process7 Process8

Process11 Process12

Process9

[]

Process10

[]

Process13

[]

Process14

[]

Process15 Process16

Alternative (ALT) Works on guards instead of processes. Each guard has
a process associated with it. If a guard is ready the
associated process will run. If multiple guards are
ready at the same time only one process may run.

Process5 Process6

Process7 Process8

Process11 Process12

Process9

[]

Process10

[]

Process13

[]

Process14

[]

Process15 Process16

PriParallel (PRIPAR) A prioritized version of the parallel. The process the
arrow is pointing at is given a higher priority.

Process5 Process6

Process7 Process8

Process11 Process12

Process9

[]

Process10

[]

Process13

[]

Process14

[]

Process15 Process16

PriAlternative (PRIALT) A prioritized version of the alternative. The guard the
arrow is pointing at is given a higher priority.

Process5 Process6

Process7 Process8

Process11 Process12

Process9

[]

Process10

[]

Process13

[]

Process14

[]

Process15 Process16
Exception (EXCEPTION) Handle exceptions thrown in another process. The

arrow is pointing to the exception handling process.

A.2.2 Construct states
Constructs are special processes, which go through the same states as normal processes (sec-
tion A.1.2). If two processes are created in a sequential construct and one of the two processes
is running, it automatically means that the sequential construct is running too.

A.3 CT channels

A.3.1 Channel types

Table A.4: Channel types

Channel Type Description

One2One single writer to single readers.
Any2One extension of the One2One channel to support multiple writers
One2Any extension of the One2One channel to support multiple readers
Any2Any extension of the One2One channel to support multiple writers and readers
Buffered extension of the channels above, which is capable of buffering data

T.T.J. van der Steen University of Twente

The CT execution framework 29

Buffered channels
A buffered channel can be configured in three ways which are given in Table A.5.

Table A.5: Buffered Channel Properties

Property Description

Buffer-size the amount of data to be buffered
Overwrite if true, the oldest data will be overwritten if the buffer is full, else the

writer will be blocked and wait till there is free space in the buffer
again.

Non-blocking read if true, always return from its reading action (’null’ will be returned if
no data is available), else the reader will be blocked if the buffer is
empty

A.3.2 Channel states
A channel is divided into two channel ends, a reading and a writing end. Both ends can go
through two states which are given in A.6.

Table A.6: Channel States

Channel-end state Description

ready channel-end is ready to be used by a process
not-ready channel-end is already in use, so a process which tries to use it will be

blocked

If the process is using a channel, the state of the channel-ends will determine if the process
may continue or will be blocked. If the writing-end of a channel is already used by another
process, the process will be blocked. If a channel-end is free (ready), the process may use it
and depending on the channel type (rendezvous, buffered), the process may continue or will
be blocked.

Channel communication
The ends of a channel are normally connected between a writer and a reader process which is
illustrated in figure A.2

! ?

WRITER

W

READER

*B

R

readyready

Figure A.2: Channel connected between a writer and a reader

The value of ’W’ will be used to write on a channel, ’R’ will be used to store the data read from
a channel. ’*B’ is the pointer of a channel, which can point to ’W’ or ’R’.

In case of a rendezvous channel, it can be used in 2 different ways:
• the writer will write data to a channel before a reader has read it
• the reader tries to read a channel before a writer has written data on it

Control Engineering T.T.J. van der Steen

30 The design of animation and debug facilities for gCSP

The following two figures, figure A.3 and figure A.4, illustrate what happens with the data inter-
nally.

! ?

WRITER

W

READER

*B

R

(ready)(not ready)

(1)

(2)

(a) Point to writer variable

! ?

WRITER

W

READER

*B

R

(not ready)(not ready)

copy

(3)

(4)

(b) copy buffer

Figure A.3: Writer comes first

In case the writer comes first (figure A.3(a)), the writing channel-end will be set to ’not ready’
(1) and ’*B’ will be pointed to ’W’ (2). Next, the writer will be blocked. If the reader tries to
read the channel (figure A.3(b)), the reading channel-end will be set to ’not ready’ (3) and the
data pointed by ’*B’ will be copied to ’R’ (4). After the data has been copied, the writer will be
unblocked and both channel-ends will be set to be ’ready’ again (figure A.2).

! ?

WRITER

W

READER

*B

R

(not ready)(ready)

(1)

(2)

(a) Point to writer variable

! ?

WRITER

W

READER

*B
copy

(not ready)(not ready)

(3)

(4)

R
(b) copy buffer

Figure A.4: Reader comes first

In case the reader comes first (figure A.4(a)), the reading channel-end will be set to ’not ready’
(1) and ’*B’ will be pointed to ’R’ (2). Next, the reader will be blocked. If the writer writes on the
channel (figure A.4(b)), the writing channel-end will be set to ’not ready’ (3) and the data of ’W’
will be copied to the variable where ’*B’ is pointing to (4). After the data has been copied, the
reader will be unblocked and both channel-ends will be set to be ’ready’ again (figure A.2).

In case of a buffered channel, ’*B’ is a buffer with a predefined size. Written data will be stored
in this buffer. If a reader reads from a buffered channel, the first written data will be read and
will be removed from the buffer.

T.T.J. van der Steen University of Twente

31

B The animation framework

B.1 The CT execution framework
B.1.1 Animation framework classes in the CT execution framework
The CT execution framework is extended with four classes which are added to the directory
’/ctcpp/anim’. The following sub-sections describe these classes shortly.

Figure B.1: UML diagram about the extension of the CT execution framework

Socket Handler (SocketHandler.h, SocketHandler.cpp)
A native thread polling the animation socket server (section B.1.1) for incoming messages. If
a message is received, it is passed to the message handler for encoding. If the connection to
gCSP is lost, the socket handler will terminate the CT program.

Animation socket server (AnimSocket.h, AnimSocket.cpp)
A TCP / IP socket server, which is used to communicate with gCSP to write and read animation
messages (section B.4).

Message handler (MsgHandler.h, MsgHandler.cpp)
The message handler decodes and encodes animation messages. If a message is valid and de-
coded correctly, action will be taken depending on the type of the message (section B.4). If a
message needs to be send to gCSP, the encode functions can be used which is able to encode a
message according the format given in section B.4. If the message is encoded correctly, it will
be send to gCSP by using the animation socket server.

Breakpoint manager (BreakPointManager.h, BreakPointManager.cpp)
The breakpoint manager contains the list of all breakpoints set by gCSP. The breakpoint man-
ager is capable to check if a breakpoint is placed on a process or construct and pause the CT
programs execution if needed (breakpoint is set).

If the state of a process changes, the function checkBreakPoint() of the breakpoint manager is
called to see if a breakpoint is set on the process. If a breakpoint is found, the program will be
pause its execution. This function is implemented as given in listing B.1.

Control Engineering

32 The design of animation and debug facilities for gCSP

Listing B.1: Implementation of the checkBreakPoint function� �
1 void BreakPointManager : : checkBreakPoint (void * brk , int s t a t e)
2 {
3 i f (stepper && s t a t e == RUNNING) {
4 breakPointSem−>p () ; / / get the semaphore
5 }
6 else i f (brk == NULL) {
7 msgHandler−>NotifyBreakPoint (brk , s t a t e) ;
8 breakPointSem−>p () ; / / get the semaphore
9 }

10 else {
11 breakPoint = breakPoints−>find (brk) ;
12 i f (breakPoint != breakPoints−>end ()) {
13 s t a t e s = breakPoint−>second ;
14 s t = states−>find (s t a t e) ;
15 i f (s t != states−>end ()) {
16 msgHandler−>NotifyBreakPoint (brk , s t a t e) ;
17 breakPointSem−>p () ; / / get the semaphore
18 }
19 }
20 }
21 }� �

The CT program will be paused if one of the following is true:
• The stepper is active and the process is in its ’running’ state.
• ’brk’ is a ’null’ address.
• A breakpoint is found in the breakpoint-list.
To pause the CT program, this function uses a native Semaphore (line 4, 8, 17). Because this
semaphore is always taken, taking this semaphore with the function p(), will pause the pro-
gram. If the semaphore is released again, because for example gCSP wants to continue, the CT
program will continue its execution again.

B.2 Animation macros (AnimMacros.h)
To create animation messages to send them to gCSP for animation purposes, the CT execu-
tion framework is extended with some animation macros. To enable the animation macros,
CT_CONFIG_ANIM in config.h should be defined as ’1’. Table B.1 gives the list of all the ani-
mation macros added to the CT execution framework. The words in the description printed in
bold, are used as arguments in the macros.

T.T.J. van der Steen University of Twente

The animation framework 33

Table B.1: The animation macros of the CT execution framework

Functions Description

ANIM_NEW create objects needed for animation
ANIM_INIT initialize the objects needed for animation
ANIM_DELETE delete the animation objects
ANIM_SET_BREAKPOINT set a breakpoint on address with the state
ANIM_REM_BREAKPOINT remove a breakpoint from address
ANIM_CHECK_BREAKPOINT check if a breakpoint with the state is set on address -

if a breakpoint is found the program will paused
ANIM_SET_ANIM_PROCESS enable/disable animation of a process
ANIM_GET_ANIM_PROCESS check if a process is animated - return true if

animated is enabled
ANIM_NOTIFY_ADDRESS notify the address of the this pointer of an object and

the name of the object
ANIM_NOTIFY_PROCESS_STATE notify the state of a process
ANIM_NOTIFY_CHANNEL_WRITE notifies that a writer has written data to a channel
ANIM_NOTIFY_CHANNEL_READ notifies that a process has read data from a channel
ANIM_NOTIFY_CHANNEL_STATE notifies both states of the channel-ends
ANIM_WAIT wait with the execution of the CT program till a next

step is set
ANIM_SEND_LOG_MESSAGE send a log message
ANIM_NOTIFY_READY_QUEUE notify the contents of the ready-queue

B.2.1 Using the animation macros
To use the animation macros, they need to be placed on specific locations in the source code
of the CT execution framework. Two examples are given below which illustrate the way these
macros can be used.

1 A small section of the source code of a process is shown.

Process.cpp� �
1 i f (s t a t e ! =ABORT_SIGNALLED)
2 {
3 ANIM_NOTIFY_PROCESS_STATE(this , RUNNING) ;
4 s t a t e = RUNNING;
5 run () ;
6 ANIM_NOTIFY_PROCESS_STATE(this , FINISHED) ;
7 s t a t e = FINISHED ;
8 }� �

Right before the state of a process changes (line 4, 7), an animation macros is added (line 3,
6). If one of these macros is executed, it will send an animation messages to gCSP about the
state (’running’ and ’finished’) change of the process (this pointer).

2 A small section of the source code of a one-to-one channel is shown.

One2OneChannel.cpp� �
1 bReaderReady = true ;
2 ANIM_NOTIFY_CHANNEL_STATE((ChannelImpl *) this , CHANNEL_READY,
3 CHANNEL_NOT_READY) ;� �
Control Engineering T.T.J. van der Steen

34 The design of animation and debug facilities for gCSP

After the state of a channel changes (line 1), an animation macro is added (line 2, 3). If these
macros are executed, an animation message is send to gCSP about the state change of the
channel. The first argument is the ’this pointer’ of the current channel. The second argument
is the state (’ready’) of the writing channel-end. The third argument is the state (’not ready’)
of the reading channel-end.

B.3 The gCSP tool

B.3.1 Animated objects
In gCSP, processes, channels, compositional relationships etc. are created as objects. To use
these objects for animation in the animation framework, three new variables were added to
their class files. These variables are described in table B.2.

Table B.2: The animation variables of the gCSP objects

Name Type Description

animated Boolean determines if the object is selected to be animated
animColor Color the color in which the object should be drawn if the animation is

running
animState Integer the state a object is in, for example ’running’ or ’blocked’

For example, if the animation is running and a process object needs to be drawn, color given
by ’animColor’ if ’animated’ is set to true is used. If ’animated’ is set to false, the process will be
drawn in its default color.

B.3.2 Animation framework classes in gCSP
gCSP is extended with nine classes, which are placed in a debug package (gml.debug) of the
gCSP project. The following sub-sections describe each class shortly.

Figure B.2: UML diagram of the top level of gCSP

Edit area (EditArea.java)
Data can be written to this window, which is enabled to be saved on hard-disk. This class is
used by the tracing and logging windows in gCSP.

Animator (Animator.java)
The animator is the main class of the animation framework. It contains the functions to start
and stop the animation and to animate all the objects of the gCSP diagrams (process, channels
etc.).

T.T.J. van der Steen University of Twente

The animation framework 35

Breakpoint manager (BreakPointManager.java)
Manages the breakpoints set in gCSP. It contains a list of all the breakpoints which are set. The
breakpoint manager provides the functions to set / remove breakpoints and to check if a break-
point is set.

Breakpoint area (BreakPointArea.java)
This window displays a list of the breakpoints. The breakpoints can be configured to be en-
abled/disabled or to be removed.

Figure B.3: UML diagram of the Animator

Simulator (Simulator.java)
This class provides the functionality for automatic stepping. The step time is defined in mil-
liseconds.

Data collector (DataCollector.java)
The data collector collects all the data / references which are used by the animator. It collects
process, contents of channels, addresses of processes within the CT execution framework etc.

Message handler (MessageHandler.java)
This class provides the encoding and decoding of animation messages, and take action de-
pending on the type of animation message (messageID). It polls the MessageQueue for new
incoming messages and uses the socketClient to send command messages to a CT program.

Message identities (MessageID.java)
Contains a list of all identities (IDs) used to encode or decode animation messages.

Notifying queue (NotifyingQueue.java)
A message queue to enable event based receiving of animation messages. If a java thread uses
the notifying queue and tries to get a message from it, it will be blocked until a message is
available.

Socket client (SocketClient.java)
This class provides a socket client to communicate with a CT program.

Control Engineering T.T.J. van der Steen

36 The design of animation and debug facilities for gCSP

B.4 Animation messages
Animation messages are devided into three fields which are illustrated in figure B.4 and de-
scribed in table B.3.

Figure B.4: Animation message

Table B.3: The fields of an animation message

Field Description

msgID 1 = process state has been changed
2 = channel state has been changed
3 = channel is written
4 = channel is read
5 = the contents ready-queue has been changed
6 = breakpoint is found
7 = initialization of an address and name
8 = message
9 = log massage
10 = a breakpoint is set
11 = breakpoint is removed
12 = enable / disable animation of a process
13 = enable / disable animation of a channel

time the time of the send message since system startup in micro-seconds formatted as
a 32 bits number

data comma separated string which contains the data belonging to the type of message
(msgID)

Each field consists of ASCII formatted data, where each field is separated by a comma. For
example: "7,1232132,0XBD12EDFF,Process1". This means that after 1232132 micro-seconds
since system startup, a process object, named ’Process1’, is created on address ’0XBD12EDFF’.

T.T.J. van der Steen University of Twente

37

C User manual of the animation framework

C.1 Code generation
Different kind of code can be generated from a gCSP model, using the code generation toolbar
(marked by a red ellipse) shown in figure C.1.

Figure C.1: Code generation toolbar of gCSP

Table C.1: Code generation

code Description

C++ (CT) generate C++ code, usable for creating an executable
CSPm (CSP) generate CSPm code, which can be used by FDR to check the gCSP model

on deadlocks or livelocks
Occam (OCC) generate occam code

Note: Generated code will be saved on hard-disk in a sub-directory with the same name as the
gCSP model.

To build a CT program ((C++ code) which is used for different purposes, different kind of builds
can be chosen by selecting it in the dropdown box near the C++ code generation button. Table
C.2 describes the build options.

Table C.2: Build option

build option Description

release create a CT program which will finally run on the target
debug create a CT program with debugging support. Textual debug information

will be printed to the screen.
animation create a CT program usable by the animation framework.

C.2 Compiling in gCSP
gCSP is to compile and run an executable automatically after C++ code is generated. This op-
tion can be accessed via the menu Tools->Options and then go to the third tab of the code
generation section.

Note: These options are still in development, so they probably will not work 100% correctly.

Generate shell script
This will generate a bash script for Linux and windows to compile the generated sources. The
script will get the name compile.sh or compile.bat. To get a properly working script, at least the
directory (CT path) to the CT-library has to be filled in.

Name of the executable
An executable will be created with the name given in this field.

Control Engineering

38 The design of animation and debug facilities for gCSP

Postprocess command
This option can be used under Linux as well as under windows, to compile the generated C++
code automatically. The following needs to be filled in:
• Windows older than vista: cmd /c compile.bat
• Linux: ./compile.sh

Run the executable after post process command
The executable will be started, after the compiler has been finished.

C.3 Use animation in gCSP

C.3.1 Start the animation
Before the animation can be started, the CT program needs to be started first. The CT program
will then wait till gCSP tries to connect to it. To start the animation the following button
should be pressed. Note: Animation can only be used if the build option (section C.1) is set to
animation.

Figure C.2: Animation toolbar of gCSP

If the gCSP diagram changes color, the animator has successfully started. If no colors were
changed and no error message has occurred you need to select the model part you want to
enable for animation (see section C.3.2).

C.3.2 Select the part of the model (not) to be animated
In the Compositional tree (C-tree) at the left of the screen a selection can be made of which
part of the model needs to be animated. This can easily be selected by clicking the right mouse
button on the CTree or on a process and enable animate from the drop down menu (see figure
C.3).

Figure C.3: Dropdown menu of gCSP

All underlying child processes will then be selected to be animated as well. By default all pro-
cesses are selected to be animated, but can be set off by selection as mentioned above.

T.T.J. van der Steen University of Twente

User manual of the animation framework 39

C.3.3 Setting breakpoints
A breakpoint can be set on any kind of process or construct, by using the right mouse menu of a
process or construct (see figure C.3. In the C-tree, breakpoints are marked with a extra symbol
in front of the process or the construct its name. Breakpoints are marked in two different ways,
with an asterisk (*) or a single quotation mark (’). An asterisk means that the breakpoint is
enabled and a single quotation mark means that the breakpoint is disabled. Figure C.4 shows
an example of two breakpoints, where one is enabled and the other one is disabled.

Figure C.4: An example of two breakpoints, one enabled and one disabled

The breakpoint on Process1 is enabled and the breakpoint on Process2 is disabled.

C.3.4 Start or continue the animation
If the gCSP is successfully connected to the CT program, using [F5] will start the CT program to
be animated. If your model is paused at a breakpoint it can be continued with [F5] again.

C.3.5 Stepping through the animation
To step to the next current running process without setting a breakpoint on each process, a
stepper is available. By pushing the step button from the button bar of gCSP or the [F11]
button of the keyboard, a step is set to the next current running process.

To prevent pushing the [F11] button all the time, a period timer can be set which will enable to
step automatically. The time between steps is set in milliseconds and is by default set to 1000
milliseconds (1 second). By pushing the play button the periodic stepper will be activated
and the button changes to . If this button is pushed again the periodic stepper will be stopped.

A periodic time of larger than 100 ms is preferred.

C.3.6 Stop the animation
To stop the animation the same button used to start (section C.3.1) the animation can be used.
If a CT program will be killed, the animation will also be stopped.

Control Engineering T.T.J. van der Steen

40 The design of animation and debug facilities for gCSP

C.4 Animation options
This section deals with the adaptable options of the animation. The option window for the
animation, as shown in figure C.5, can be accessed via the menu Tools -> Options and then go
to the animation section.

Figure C.5: Animation options

C.4.1 Colors
The colors used for the animation can be selected here.

Processes
Select the colors used for the different states of a process:
• running (default: green)
• blocked (default: grey)
• finished (default: grey)

Channels
Select the colors used for the different states of a channel
• idle (default: grey)
• ready (default: green)
• not ready (default: orange)

C.4.2 Connection
Select where gCSP needs to connect to for the animation of a CT program.

• Hostname - the hostname of where the CT program is going to be executed (default: local-
host)

• Port - the used socket port (default: 10580)

C.5 Output windows
To get other feedback about the animation besides colors, some output windows are added to
the lower screen of gCSP. The following sub-sections describe each output window shortly.

C.5.1 Warnings
This window displays the warnings which occur during the design of a gCSP model. For exam-
ple, if a process is not grouped in a construct.

T.T.J. van der Steen University of Twente

User manual of the animation framework 41

C.5.2 Breakpoints
A list off all breakpoints set in the model. Breakpoints can be enabled/disabled by selecting
the check boxes or can be removed using the right mouse click menu. Figure C.6 shows the
breakpoint output window.

Figure C.6: Trace window

C.5.3 Execution history
Displays the execution order of processes and construct. Channel communication is also shown
here.

Figure C.7: Execuction history window

Execution messages
A description about the messages shown in the execution history window is given in table C.3

Filtering
To be able to search for current data in the execution history, a filter is added to the window of
the execution history. The following options are possible:

• filter: shows the execution messages which contains the string
• not: hides the execution messages containing the string

If the execution history should be filter on multiple strings, the strings should be separated by
a ’;’.

Save the execution history to a text file
The execution history can be saved on hard-disk, by right clicking the mouse on the window of
the execution history. A popup menu will appear giving the following choices:
• Clear - clear the screen
• Save - save the displayed history to hard-disk
• Add to filter - add the selected string to the filter field

C.5.4 Watch

Control Engineering T.T.J. van der Steen

42 The design of animation and debug facilities for gCSP

Table C.3: Execution Messages

Trace Description

Process −> the process is created on this address
new the process is initialized to its new state
running the process is executing on the CPU
blocked the process is blocked
finished the process has finished its task

Channel ready the channel is ready to be used for writing and reading
writer side occupied the channel has been written
reader side occupied the channel has been read
rendezvous occurred both channel sides are in use, rendezvous can occurred
ready to write in case of a buffered channel, the channel buffer is empty
ready to read in case of a buffered channel, the channel buffer is full
<−− data is written to the channel
−−> data is read from the channel

While the animation is running, this window shows a list of variables. This list includes the
ready-queue of the running CT program and the contents of all the channels in the model.

Figure C.8: Trace window

C.5.5 Debug log
(Not used at the moment)

T.T.J. van der Steen University of Twente

43

Bibliography

ten Berge, M. H. (2005), Design Space Exploration for Fieldbus-based Distributed Control Sys-
tems, MSc Report 029CE2005, University of Twente.

Broenink, J. F. and G. H. Hilderink (2001), A structured approach to embedded control sys-
tems implementation, in 2001 IEEE International Conference on Control Applications, Eds.
M. Spong, D. Repperger and J. Zannatha, IEEE, México City, México, pp. 761–766.

Controllab Products (2008), 20-Sim, URL http://www.20sim.com/.

Eker, J., J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs and Y. Xiong
(2008), The Ptolemy Project, URL http://ptolemy.eecs.berkeley.edu/index.html.

Hilderink, G. (2002), A graphical Specification Language for Modeling Concurrency based on
CSP, pp. 255–284.

Hilderink, G. (2003), Graphical modelling language for specifying concurrency based on CSP,
pp. 108–120.

Hilderink, G. H. (2005), Managing Complexity of Control Software through Concurrency, Phd
thesis, University of Twente, Netherlands.

Hoare, C. (1985), Communicating Sequential Processes, Prentice Hall International.

Jovanovic, D. (2006), Designing dependable process-oriented software, a CSP approach, Phd the-
sis, University of Twente, Enschede, NL.

Jovanovic, D., B. Orlic and J. F. Broenink (2003), An automated transformation trajectory from a
model of a controlling system to the control code, in XLVII Conference ETRAN, XLVII Confer-
ence ETRAN, volume I, Herceg Novi, Serbia and Montenegro, p. 4.

Maljaars, P. (2006), Control of the Production Cell Setup, MSc Thesis 039CE2006, University of
Twente.

Maljaars, P. (2007), gCSP documentation, Electrical Engineering, University of Twente in the
Netherlands.

Posthumus, R. (2007), Data logging and monitoring for real-time systems), Technical report.

Roscoe, A. (1997), The Theory and Practice of Concurrency, ISBN 0-13-674409-5.

Sun (2008), Java, URL http://java.sun.com/.

Telelogic (2008), Rhapsody, URL http://modeling.telelogic.com/products/rhapsody/
index.cfm.

Wikipedia (a), Debugging, URL http://en.wikipedia.org/wiki/Debugging.

Wikipedia (b), Software Testing, URL http://en.wikipedia.org/wiki/Software_testing.

Wikipedia (c), Tracing, URL http://en.wikipedia.org/wiki/Tracing_%28software%29.

Control Engineering

http://www.20sim.com/
http://ptolemy.eecs.berkeley.edu/index.html
http://java.sun.com/
http://modeling.telelogic.com/products/rhapsody/index.cfm
http://modeling.telelogic.com/products/rhapsody/index.cfm
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Tracing_%28software%29

	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Goal of the project
	1.3 Motivation of the project
	1.4 Assignment approach
	1.5 Report outline

	2 Background
	2.1 The software design trajectory of the CE group
	2.2 The CSP language
	2.3 The CT execution framework
	2.4 The gCSP tool
	2.5 Conclusions

	3 Analysis
	3.1 Real-time animation
	3.2 The animation framework
	3.3 The connection between a CT program and gCSP
	3.4 The execution feedback of a CT program
	3.5 Debug functionality
	3.6 Animation in gCSP
	3.7 Specifications
	3.8 Conclusions

	4 The design and implementation of the animation framework
	4.1 The connection between gCSP and a CT program
	4.2 The extended graphical user interface of gCSP
	4.3 Animated gCSP diagrams
	4.4 Animated C-tree
	4.5 Conclusions

	5 Testing and discussion
	5.1 Testing
	5.2 Discussion
	5.3 Conclusions

	6 Conclusions and Recommendations
	6.1 Conclusions
	6.2 Recommendations

	A The CT execution framework
	A.1 CT processes
	A.2 CT constructs
	A.3 CT channels

	B The animation framework
	B.1 The CT execution framework
	B.2 Animation macros (AnimMacros.h)
	B.3 The gCSP tool
	B.4 Animation messages

	C User manual of the animation framework
	C.1 Code generation
	C.2 Compiling in gCSP
	C.3 Use animation in gCSP
	C.4 Animation options
	C.5 Output windows

	Bibliography

