
University of Twente

EEMCS / Electrical Engineering
Control Engineering

 An integrated embedded control software
design case study using Ptolemy II

 Kees Verhaar

MSc report

 Supervisors:
prof.dr.ir. J. van Amerongen

dr.ir. J.F. Broenink
ir. M.A. Groothuis

 May 2008

Report nr. 011CE2008
Control Engineering

EE-Math-CS
University of Twente

P.O.Box 217
7500 AE Enschede

The Netherlands

iii

Summary
The heterogeneous nature, together with the increasing complexity of embedded systems raises
the need for design tools that support integrated functional verification. Current design tools
focus on one specific step in the design process (e.g. system dynamics modeling, control law
design or software design), making integrated verification difficult. Also, manual model trans-
formations need to be performed when moving to the next design phase, which takes a lot of
time and can introduce errors. This makes iterative design difficult and error prone.

Instead of using different tools for each design step, an integrated approach, using a single
modeling framework, can be used. This approach solves the problems of integrated verification
and iterative design. In this project a case study on this integrated approach is performed using
Ptolemy II as an integrated development platform and the Production Cell setup as a practical
test case.

First, a feasibility study is conducted to explore the possibilities and limitations of Ptolemy II. A
simple version of embedded control software for the Production Cell setup is developed. This
shows that Ptolemy II has limited facilities for system dynamics modeling and control law de-
sign. Also, automatic code generation is still experimental and cannot be used for all models.
However, when taking these limitations into account, correctly working embedded control soft-
ware for the Production Cell can be created.

Next, a well-structured model of the Production Cell setup is created, in order to further ex-
plore the Ptolemy approach. This model uses the communication structure proposed in van
Zuijlen (2008). Everything essential for integrated functional verification of the behavior of the
system is included in this model: a plant dynamics model, a controller model, a kinematic
model of the aluminum blocks in the system and a 3D graphical animation. Loop controller
performance is evaluated by means of simulation plots. The 3D graphical animation is used to
verify correct sequence control and controller synchronization. The final result is a complete
integrated model of the Production Cell setup, showing correct behavior. Automatic code gen-
eration is used to produce C code which is compiled and run on the target PC/104 platform,
resulting in a completely functional real setup.

Using an integrated approach for embedded control software solves the problems of integrated
testing and iterative design, but requires a generic tool which cannot offer all specific features
required for each design step. Therefore, the Ptolemy method (the integrated approach) is
compared to four other methodologies used in embedded control software design: the co-
simulation approach, the CE-method, the Matlab/Simulink approach and the POOSL approach.
Focussing on embedded control software development for mechatronic systems, the CE-method
is a good choice, although it still needs improvement. These improvements can be made by us-
ing techniques found in Ptolemy II. 20-Sim should be extended to support more models of
computation, starting with Finite State Machines (FSM) and Discrete Event (DE), to support
the modeling of a broader range of systems. Ptolemy II techniques can be used to ensure for-
mal correctness when combining multiple models of computation in a single model. Incor-
porating the Ptolemy II code generation framework in 20-Sim and gCSP will allow automatic
code generation for a wide range of target languages and language variants. Finally, including
object-oriented techniques in modeling and improving the extendability of the CE-toolchain
will enhance the usability.

Models of computation for closely related tasks should be integrated in a single tool. Integrated
verification between tools can then be performed by using co-simulation. Ultimately, tool in-
tegration should be transparent to the user. This can be achieved by creating well-defined tool
interfaces and a graphical user interface combining these tools. Well-defined tool interfaces
also facilitate in-the-loop simulation, further reducing the gap between model and realization.

Control Engineering

iv An integrated embedded control software design case study using Ptolemy II

Samenvatting
De heterogene aard, in combinatie met de toenemende complexiteit van embedded systemen
leidt tot de behoefte aan ontwerpsoftware die geïntegreerd functioneel testen ondersteunt. De
huidige pakketten concentreren zich op een specifieke stap in het ontwerp proces (b.v. mod-
elleren van dynamica, ontwerp van de regelaar of software ontwerp). Dit maakt geïntegreerd
testen moeilijk. De overgang tussen ontwerpfasen vereist handmatige model transformaties,
wat veel tijd kost en fouten introduceert. Dit bemoeilijkt iteratief ontwerpen.

In plaats van verschillende ontwerppakketten voor de diverse ontwerpfasen te gebruiken, kan
een geïntegreerde aanpak, ondersteund door een geïntegreerd software framework gebruikt
worden. Deze aanpak lost de problemen van geïntegreerd testen en iteratief ontwerpen op.
Dit rapport presenteert een case study naar deze geïntegreerde aanpak, gebruik makend van
Ptolemy II als ontwerp software en van de Production Cell opstelling als praktische test case.

Er is een haalbaarheidsstudie gedaan naar de mogelijkheden en beperkingen van Ptolemy II.
Hiervoor is een eenvoudige versie van de software voor de Production Cell ontwikkeld. Hieruit
worden de beperkingen van Ptolemy II op het gebied van modelleren van dynamica en voor het
ontwerpen van regelalgoritmen duidelijk. Automatische codegeneratie is nog experimenteel
en is niet bruikbaar voor alle modellen. Echter, wanneer rekening wordt gehouden met deze
beperkingen kan werkende embedded software voor de Production Cell gemaakt worden.

Vervolgens wordt een gestructureerd model van de Production Cell gemaakt om de mogelijk-
heden van de Ptolemy aanpak verder te onderzoeken. Dit model maakt gebruik van de com-
municatiestructuur zoals gepresenteerd in (van Zuijlen, 2008). Relevante aspecten, nodig voor
verificatie van het systeem zijn opgenomen. De prestaties van de PID regelaars worden beo-
ordeeld aan de hand van simulatieplots. Een 3D animatie wordt gebruikt om correct gedrag van
de sequence controllers en de synchronisatie te beoordelen. Het eindresultaat is een compleet
geïntegreerd model van de Production Cell opstelling dat correct gedrag vertoond. Automatis-
che codegeneratie wordt gebruikt om C code te genereren die gecompileerd en vervolgens op
de opstelling gedraaid wordt. Dit resulteert in een correct werkende opstelling.

Een geïntegreerde aanpak voor de ontwikkeling van software voor embedded systemen lost de
problemen van geïntegreerd testen en iteratief ontwerpen op. Echter, een dergelijke aanpak
vereist generieke ontwerpsoftware die niet alle specifieke opties nodig voor elke ontwerpstap
kan bieden. Daarom wordt de Ptolemy methode (de geïntegreerde aanpak) vergeleken met vier
andere ontwerpmethoden: de co-simulatie aanpak, de CE-methode, de Matlab/Simulink aan-
pak en de POOSL aanpak. Voor mechatronische systemen is de CE-methode een goede keuze,
hoewel deze wel verbeterd moet worden. Verbeteringen kunnen worden gemaakt door gebruik
te maken van technieken uit Ptolemy II. 20-Sim moet uitgebreid worden met ondersteuning
voor meer rekenmodellen, beginnend met Finite State Machines (FSM) en Discrete Event (DE),
zodat een breder scala aan systemen gemodelleerd kan worden. Technieken uit Ptolemy II kun-
nen gebruikt worden om formele correctheid van modellen die meerdere rekenmodellen com-
bineren te garanderen. Automatische codegeneratie voor een breed scala aan programmeer-
talen wordt mogelijk door het gebruik van het Ptolemy II codegeneratie systeem in 20-Sim en
gCSP. Tenslotte kan de gebruikersvriendelijkheid van de CE-methode verbeterd worden door
object oriëntatie in modellen en door de het uitbreiden van de software eenvoudig te maken.

Rekenmodellen voor sterk gerelateerde taken moeten in één pakket geïntegreerd worden. Voor
geïntegreerde verificatie tussen pakketten kan gebruik gemaakt worden van co-simulatie. Uitein-
delijk moet de integratie van ontwerpsoftware transparant voor de gebruiker zijn. Dit kan
bereikt worden door goede interfaces tussen ontwerppakketten te definiëren en een overkoe-
pelende gebruikersinterface te maken. Goede interfaces tussen ontwerppakketten maakt ook
‘in-the-loop’ simulatie mogelijk, wat het gat tussen model en realisatie verder verkleint.

University of Twente

v

Preface
This report marks the final step in my life as an Electrical Engineering student at the University
of Twente. It has been a great learning experience for me, both on an academic as well as a
personal level. Being able to take part in projects outside of the Electrical Engineering curricu-
lum, such as the board of E.T.S.V. Scintilla, the media project of the ‘Introductie Kommissie’ and
running my own business together with a good friend have certainly contributed to this.

I am thankful for all the opportunities I had, and the people who supported me. First of all,
I would like to thank Marcel Groothuis for his dedicated support during my MSc project as
well as his useful comments. Special thanks also to Jan Broenink who provided me with this
assignment and allowed me to develop my own research ideas. Also, I would also like to thank
the rest of the people at the Control Engineering group, especially my fellow MSc students, for
providing a pleasant working atmosphere and lively discussions that helped me to improve my
work.

I would also like to thank my family. Without their continuing support I would not have made
it to where I am now. Last, but certainly not least, my thanks go out to all my friends, especially
those that started their studies at the ‘Vestiging Friesland’ in 2001. You have certainly made my
time here more enjoyable.

Now that my time as a student has come to an end, new challenges lie ahead. Having success-
fully completed my MSc assignment, I feel ready and am looking forward to facing them.

Kees Verhaar
Enschede, May 2008

Control Engineering

vii

Contents

Preface v

Contents vii

1 Introduction 1

1.1 Problem statement . 1

1.2 Project context . 2

1.3 Assignment approach . 3

1.4 Report outline . 4

2 Background 5

2.1 Ptolemy II . 5

2.2 The production cell setup . 9

2.3 Conclusions . 10

3 Feasibility analysis of Ptolemy II as an ECS development platform 11

3.1 Dynamic plant modeling . 11

3.2 Control law design . 11

3.3 Embedded system implementation . 12

3.4 Realization . 13

3.5 Results . 13

3.6 Conclusions . 13

4 Design of the Production Cell model in Ptolemy II 15

4.1 Design considerations . 15

4.2 Top-level model structure . 15

4.3 Controller model . 16

4.4 Plant model . 19

4.5 Block model . 19

4.6 Conclusions . 20

5 Results 21

5.1 Loop controller verification . 21

5.2 Functional verification . 21

5.3 Realization . 22

6 Discussion 23

6.1 Integrated approach . 23

6.2 Other methods and tools . 23

Control Engineering

viii An integrated embedded control software design case study using Ptolemy II

6.3 Improving the CE-toolchain . 30

6.4 Conclusions . 31

7 Conclusions and recommendations 33

7.1 Conclusions . 33

7.2 Recommendations . 33

A Creating a custom actor 35

A.1 A custom actor for simulation . 35

A.2 A code generation helper for a custom actor . 36

B Simulation results 38

C Creating an AVI file from a 3D animation 39

Bibliography 41

University of Twente

1

1 Introduction

This chapter starts by presenting the problem dealt with in this project. Next, the project con-
text is given. The chapter concludes by presenting the approach followed in this project and an
outline of the rest of this report.

1.1 Problem statement
In general, the process of system design can be described by the pyramid in figure 1.1. By ex-
ploring alternatives and making design choices at decreasing abstraction level (and increasing
detail level) an idea is translated into a final product.

FIGURE 1.1 - Generic system design process (Corporaal, 2006)

For embedded control system design the generic design process translates into the design pro-
cess in figure 1.2. The process of developing embedded control software can be divided into
four steps: Physical System Modeling, Control Law Design, Embedded System Implementa-
tion and Realization. In general, there is no one-to-one relation between the design steps and
the tools used in the design process.

Physical
System

Modeling
Control Law

Design
Embedded

System
Implementation

Realization

Verification
by

Simulation

Verification
by

Simulation

Verification
by

Simulation

Validation
and

Testing

FIGURE 1.2 - Embedded Control Software design process (Broenink and Hilderink, 2001)

Ideally, the result of each design step is verified by simulation, which requires the results of
previous design steps. For example, in order to verify the control law design a model of the
physical system (the plant) is required. The usage of different tools for each design step in-
troduces the problem of integrated testing. For example: how can we verify the control law
designed using one tool (e.g. Matlab) using the physical system model designed using another
tool (e.g. 20-Sim)? As the design process progresses more tools are involved and this problem
gets worse. A solution should be found, so that integrated testing is possible at all stages of the
design process.

Control Engineering

2 An integrated embedded control software design case study using Ptolemy II

A second issue arises when an iterative design cycle is used in the design process. In iterative
design, short design cycles are made where the design is refined at each cycle. In order to eval-
uate the consequences of changes in one design step in the complete design, tight integration
of the four design steps (and thus the corresponding tools) is required. Current tools, designed
for a specific part of the design trajectory, cannot offer such integration. The transition of one
design step to another will now require a lot of effort, as well as introduce errors, because of the
manual model transformations that need to be performed. These transformations should be
taken care of by the design toolchain to overcome these issues.

Several approaches can be taken to overcome the problems identified here. One approach is to
couple the design tools used by a co-simulation interface (Damstra, 2008). Another approach
is to integrate the models used at the various design stages into a single modeling framework.
This last approach is explored in this project, using the Ptolemy II modeling framework.

1.2 Project context

1.2.1 ViewCorrect
This project is part of the ViewCorrect research project. The purpose of the ViewCorrect re-
search project is to provide methodological support, including (prototype) tools, for the pre-
dictable design of distributed hard real-time embedded control systems for mechatronic prod-
ucts. The methodology consists of three major components: views, multidisciplinary core
models and correctness-preserving code generation. The views allow designers from differ-
ent engineering disciplines to interactively and concurrently work on the design of the com-
plete system, while each team member can observe and understand the impact of design de-
cisions of others through his own, well-known view. Views representing software components
are mapped onto the target hardware platform automatically, in a correctness-preserving way.
This methodology aims to relax the tension between design cost and design time on the one
hand and quality (in particular reliability and robustness) on the other hand. Figure 1.3 illus-
trates the ViewCorrect approach, as opposed to the traditional approach (Broenink et al., 2005).

Requirements

Final test & integration

Realization:
reliable & robust

de
sig

n

de
sig

n
tim

e

tensiondisciplines

(a) Traditional approach

Requirements

Final test & integration

Realization:
reliable & robust

disciplines

Integrated models

de
sig

n

(b) ViewCorrect approach

FIGURE 1.3 - ECS design approaches

1.2.2 Ptolemy II
Ptolemy II is a software framework developed as part of the Ptolemy Project (Eker et al., 2008)
at the University of California, Berkeley. The Ptolemy project studies modeling, simulation,
and design of concurrent, real-time, embedded systems. The key underlying principle in the
project is the use of well-defined models of computation that govern the interactions between
components. A major problem area being addressed is the use of heterogeneous mixtures of
models of computation.

University of Twente

Introduction 3

Ptolemy II is a Java-based component assembly framework with a graphical user interface
called Vergil. It includes a growing suite of domains, each of which realizes a model of com-
putation. Figure 1.4 gives an impression of the Ptolemy II design environment.

FIGURE 1.4 - An impression of the Ptolemy II design environment

1.2.3 The production cell setup
As a practical case study the production cell setup is used. This setup was developed by Bert
van den Berg to serve as a test platform for embedded control software development and as a
demonstration setup (van den Berg, 2006). Figure 1.5 shows an image of the production cell
setup. The six units in the setup can operate independently, but do need synchronization to
achieve desirable behavior of the complete system.

FIGURE 1.5 - The production cell setup

1.3 Assignment approach
As mentioned in section 1.1, this project aims to explore a design approach where all design
steps are supported by a single modeling framework. The modeling framework used is Ptolemy II.
The goal is to see whether or not such an integrated approach is useful for embedded control
software development.

Control Engineering

4 An integrated embedded control software design case study using Ptolemy II

The assignment is structured as follows:
• The research starts with a feasibility analysis of Ptolemy II as an Embedded Control Software

development platform for mechatronic systems. Simple controller software for the produc-
tion cell setup is developed to evaluate required features for embedded control software de-
sign, such as continuous time modeling, discrete time modeling and code generation;

• The second phase of the project focuses on developing a model of the production cell sys-
tem. The knowledge gained in the feasibility analysis will be used to create a well-structured
hierarchical model which employs the right model of computation at each hierarchical level.
From this practical test-case it should become clear whether the Ptolemy approach is useful
for embedded control software development for mechatronic systems;

• This project is concluded with a discussion on the Ptolemy method and its corresponding
tool (Ptolemy II). This includes a comparison of the Ptolemy method to other methods and
their corresponding tools. The methods and tools used for this comparison and the reasons
for choosing them are elucidated in section 1.3.1.

1.3.1 Methods & tools to compare
The four methods that will be used in the comparison with the Ptolemy method are:
• Co-simulation: as mentioned in paragraph 1.1, using co-simulation can be used to overcome

the problems of integrated testing and model transformation in iterative design. Therefore,
the co-simulation approach is included in the comparison. A co-simulation backplane ap-
proach using CosiMate as a co-simulation tool, as described in (Damstra, 2008) is used;

• CE-toolchain: the CE-toolchain consists of 20-Sim (Controllab Products B.V., 2008), a tool for
physical system modeling and controller design, gCSP (Jovanovic et al., 2004), a tool for the
graphical design of embedded software using the CSP process algebra (Hoare, 1985) and the
CTC++ library that supports multithreaded real-time programming in C++. This toolchain is
developed at the Control Engineering laboratory at the University of Twente and is an alter-
native to Ptolemy II;

• POOSL: a high-level approach of embedded software development is supported by the POOSL
language (Huang et al., 2007). POOSL is a system-level description language that is used for
complex systems. It is developed at the University of Eindhoven and is also used in the View-
Correct project, which is why it is included in this comparison;

• Matlab/Simulink: The industry standard for modeling and control software development is
Matlab/Simulink by The MathWorks (The Mathworks, 2008). It is included in the comparison
to give an idea how the aforementioned (experimental) methods and tools relate to the main
approach used in the industry today.

1.4 Report outline
Chapter 2 presents background information on Ptolemy II and the Production Cell setup. In
chapter 3 the results from the feasibility analysis are shown. Next, chapter 4 shows the design
of the integrated Production Cell model. Results of loop controller verification, functional ver-
ification and realization are presented in chapter 5. Chapter 6 discusses the integrated design
approach which leads to an overview of other commonly used methodologies and tools and
suggestions for improving the CE-method and toolchain. Finally, chapter 7 presents the con-
clusions from this project and some recommendations for future work.

Additional information is given in three appendices. Appendix A describes how to create a
custom actor for use in the Ptolemy II modeling environment. Also, the process of creating a
so-called helper for code generation is explained. Appendix B shows some simulation results,
in addition to those found in chapter 5. Appendix C describes how to create an AVI file from the
3D graphics animation in Ptolemy II.

University of Twente

5

2 Background

This chapter provides more background information on the modeling framework used in this
project, Ptolemy II, and on the production cell setup, which is used as a practical test case.

2.1 Ptolemy II
In this section the essential features of Ptolemy II are described in more detail. First, the struc-
ture of a Ptolemy II model is described. Next, the mechanism which makes it possible to use
multiple models of computation in a single model is explained. Then the framework for auto-
matic code generation is explained and finally some examples of applications using Ptolemy II
are shown.

2.1.1 Model structure
A model in Ptolemy II is built up through a hierarchical ordering of actors. A Ptolemy II ac-
tor is comparable with a 20-Sim submodel. Actor-oriented design contrasts with (and com-
plements) object-oriented design by emphasizing concurrency and communication between
components (actors). Like objects, actors have well defined interfaces that consist of ports and
parameters. Ports represent a point of communication with other actors, while a parameter is
part of the configuration of an actor. Figure 2.1 gives an example of a Ptolemy II model gener-
ating a sine wave.

director annotation

external portrelation

parameters

atomic
actor

port

model

composite actor

FIGURE 2.1 - Illustration of an actor-oriented model in Ptolemy II

In an actor-oriented design components (actors) communicate by sending messages through
channels, connected to their ports. This is in contrast with object-oriented design, where com-
ponents interact primarily through method calls. Channels can also be bi-directional. A chan-
nel can be split by using a relation. The use of channels for communication implies that actors
interact only with the channels they are connected to and not directly with other actors.

Similar to an actor a model may also define an external interface. This interface is made up
of external ports and parameters, which are different from the ports and parameters of actors
inside the model. This interface is called the model’s hierarchical abstraction. The hierarchical
abstraction can be used in the same way as an actor, on a higher hierarchical level.

Control Engineering

6 An integrated embedded control software design case study using Ptolemy II

Actors can either be atomic or composite. An atomic actor is at the lowest level, comparable
to a 20-Sim equation submodel. A composite actor contains other actors, either atomic or
composite and is comparable to a 20-Sim graphical submodel. Model hierarchy is realized
through the use of composite actors.

In Ptolemy II actors (both atomic and composite) can be converted to a model class. Such a
model class provides advantages similar to classes known from object-oriented design; model
classes can be instantiated as many times as desired and model subclasses can be defined
which inherit from a parent model class (actor). This feature relates only to modeling, not
to code generation.

The Ptolemy II modeling framework supports data and domain polymorphism. Data polymor-
phism allows the design of actors that can operate on any of a number of input data types. For
example, the AddSubtract actor can accept any numeric type of input. Domain polymorphism
allows the design of actors that can operate in several models of computation. The method for
communicating across channels is the main issue here. For example, in the CSP domain chan-
nel communication is rendezvous based while in the SDF (Synchronous Data Flow) domain
sending and receiving data is synchronized (i.e. all actors send a data token simultaneously).

It is important to note that the syntactic structure of a model as discussed here says very little
about the semantics, i.e. the meaning, of a model. A channel connecting two actors means
that these two actors interact in some way. The exact semantics are determined by the model
of computation, which might give operational rules for executing a model, determining when
actors perform internal computations, update their state, perform external communication,
etc. Which model of computation is used at which hierarchical model level is indicated by the
director. Each hierarchical level in the model can have a different director.

2.1.2 Heterogeneous modeling
One of the key concepts in Ptolemy II is that of heterogeneous modeling, meaning that a single
model can contain multiple models of computation. This is implemented by using a hierar-
chical model structure in which a director determines which model of computation to use at
each hierarchical level. Figure 2.2 depicts a typical model structure. In this case, E1, E4 and
E3 are atomic actors, while E2 is a composite actor. A composite actor introduces a deeper
hierarchical level and can therefore be governed by a different model of computation. This is
denoted by the local director D2, which may be different from D1. A composite actor may or
may not have its own local director. If it has a local director, then it is defined to be opaque.
An opaque composite actor is directed by its local director while a non-opaque composite ac-
tor is directed by the director of its parent (its executive director). When any action method is
called on an opaque composite actor, the composite actor will generally call the correspond-
ing method in its local director. This interaction is crucial, since it is domain independent and
allows for communication between different models of computation.

P1 P2 P3 P4P5 P6

E0

E1
E2

E4 E3

M: Manager

D1: local director

D2: local director

FIGURE 2.2 - Example showing a typical arrangement of actors, directors and managers

University of Twente

Background 7

Communication among actors can only take place via channels, connected to ports (P1, P2,
P3, etc. in figure 2.2). Each port uses a receiver, according to the domain it is in (determined
by the director). This receiver determines the communication protocol to be used. Examples
of receivers are a mailbox receiver, which has capacity for a single data token, a FIFOQueue
which implements a first-in, first-out queue or a CSPReceiver which implements rendezvous
behavior.

One execution of an actor consists of the execution of three actor methods: prefire(), fire()
and postfire(). These methods are called by the director according to a schedule appropriate
for its model of computation. The execution of a complete model will now be illustrated by
using the model in figure 2.2 as an example. A visual representation of the execution in the
form of a sequence diagram is shown in figure 2.3.
1 D1 invokes prefire(), fire() and postfire() of E1, E2 and E3;
2 The fire() method of E2 transfers a token from P2 to P5 by delegating to the local director

D2 and invoking its transferInputs() method;
3 E2 then invokes fire() of D2, which in turn invokes prefire(), fire() and postfire()

on E4;
4 E4 sends its resulting token to P3 (not to P4, because E2 is an opaque composite actor);
5 Finally, the fire()method of E2 delegates to its executive director (which is D1) and invokes

its transferOutputs() method which transfers the token from P3 to P4.

D1 E1 E2 D2 E4 E3

prefire()
prefire()

prefire()

fire()
fire()

fire()

fire()

transfer
Inputs()

prefire()
fire()

postfire()
transferOutputs()

postfire()
postfire()

postfire()

FIGURE 2.3 - Sequence diagram of the execution of the model in figure 2.2

A composite actor delegates transfer of its inputs to its local director, and transfer of its outputs
to its executive director. This is the correct organization, because in each case, the director ap-
propriate to the model of computation of the destination port is the one handling the transfer.
It can therefore handle it in a manner appropriate to the receiver in that port.

It should be noted that no automatic data conversion takes place at ports on the boundary
between two domains. As an example assume that D1 is a continuous time director while D2
is a discrete time director. At P2 this would require a sampler while at P3 a reconstructor is
required. These should be inserted manually, which leaves these design choices open for the
user, who may want to investigate the effects of using a first order hold instead of a zero order
hold as a reconstructor. Failure to take appropriate measures at domain transitions may yield
unexpected results.

The current version of Ptolemy II (6.0.2) supports a broad range of domains and their corre-
sponding models of computation. Domains that are reasonably mature:
• CT: continuous-time modeling;
• DDF: dynamic dataflow;
• DE: discrete-event modeling;

Control Engineering

8 An integrated embedded control software design case study using Ptolemy II

• FSM: finite state machines and modal model;
• PN: Kahn process networks;
• Rendezvous: synchronous message passing;
• SDF: synchronous dataflow;
• SR: synchronous reactive;
• Wireless: wireless modeling.
Domains that are still experimental:
• CI: component interaction (push/pull);
• Continuous: continuous-time modeling (improved version);
• CSP: Communicating Sequential Processes;
• DDE: distributed discrete events;
• DT: discrete time;
• Giotto: periodic time-driven;
• GR: 3D graphics;
• HDF: heterochronous dataflow;
• PetriNet: Petri Net modeling;
• PSDF: parameterized synchronous dataflow;
• TM: timed multitasking.
Due to the experimental nature of Ptolemy II, multiple implementations for a single model of
computation may exist (e.g. CT and Continuous for continuous-time modeling). For an in-
depth description of these domains, refer to (Brooks et al., 2007).

2.1.3 Code generation
Automatic code generation is an essential part of the ViewCorrect methodology. The code gen-
eration framework in Ptolemy II uses a helper based mechanism. A helper is responsible for
generating target code for a Ptolemy II actor. Each actor has one helper for each target lan-
guage that is supported (C, VHDL, etc.). A helper consists of two files: a Java class file which
determines which code blocks to insert based on actor instance-specific information (e.g. port
datatype, parameter value) and a code template file which includes the target code blocks for
the various actor methods.

The code generator kernel uses the directors in the model to compute an order of execution of
the actors in the model and then uses the helper Java classes to harvest code blocks from the
code template files. A macro language is used to allow the usage of instance-specific informa-
tion in the code template files.

The Ptolemy II code generation framework is based on partial evaluation (Jones et al., 1993).
Partial evaluation is used as a code generation technique for transforming an actor-oriented
model into target code while preserving the models semantics.

A schematic overview of the code generation process is shown in figure 2.4.

In the current Ptolemy II version (6.0.2) the code generation framework supports the Syn-
chronous Dataflow (SDF), Finite State Machine (FSM) and the Heterogeneous Dataflow (HDF)
domains. An extensive set of actors have corresponding helpers for the C target language and
some even for VHDL. However, a large set of actors remains for which no helpers exist.

2.1.4 Current usage
Ptolemy II has been under development since 1996 and has been used in many applications.
In (Baldwin et al., 2004) Ptolemy II has been used as a basis for a modeling and simulation
framework for wireless sensor networks, called VisualSense. Here, Ptolemy II has been ex-
tended with wireless channel models, sensor node models and a wireless director based on
the Discrete Event model of computation. In (Kienhuis et al., 2000) a tool is developed to trans-
form a Matlab program into a process network specification in order to reveal parallelism and

University of Twente

Background 9

model analysis execution context
(parameters, structure, etc)

model
(actor-oriented program)

partial evaluator
(code generator)

optimized target
code blocks

executableinput output

code generation

target code execution

data

program

execution flow

data flow

FIGURE 2.4 - Schematic overview of the code generation process in Ptolemy II

facilitate the mapping onto a hardware architecture. Ptolemy II is used as a verification tool, as
it allows the simulation of process network specifications.

In (Dumont and Boulet, 2005) a multi-dimensional version of SDF, called Array-OL, is pro-
posed. In order to have a simple, yet efficient simulation tool Ptolemy II is extended with spe-
cific actors and a director for Array-OL.

As a final example the work in (Martin et al., 2003) is mentioned. Here a design framework
for wearable electronic textiles is proposed. Ptolemy II is used as a simulation framework to
integrate models of the physical environment, human locomotion, sensor behavior, network
communication, power consumption and software execution.

2.2 The production cell setup
The production cell setup resembles a Stork plastics molding machine, together with units that
feed raw materials into it and units that extract the finished products, forming a total of six
actuated units. A schematic overview of the production cell setup is depicted in figure 2.5.

FIGURE 2.5 - Schematic overview of the production cell setup (van den Berg, 2006)

Control Engineering

10 An integrated embedded control software design case study using Ptolemy II

When in operation, the system feeds raw materials (represented by aluminum blocks) via the
feeder belt and the feeder into the molding machine. When the door of the molding machine
opens, the extraction unit will extract the finished product (represented by the same aluminum
blocks) onto the extraction belt. In order to create a useful demonstrator the rotation unit is
introduced, which moves the aluminum blocks from the extraction belt to the feeder belt so
that the setup can run for an infinite amount of time.

The six units in the system all have individual controllers. However, in order to achieve de-
sirable behavior, these controllers do need to synchronize their actions with each other. This
means that some form of communication will need to take place among the six controllers.

Previous efforts for controlling the production cell have been undertaken. In (Maljaars, 2006)
the CE-toolchain was used for this purpose. First, a dynamic model of each individual unit in
the system is created and validated using 20-Sim. Next, 20-Sim is used to design PID control
laws and finally the embedded control software design is done using gCSP. C code can then be
generated that is compiled and run on the target machine, a PC/104 embedded PC running
Linux with the RTAI real-time extensions.

A different approach is taken in (van Zuijlen, 2008). Here, the goal is to implement the embed-
ded control software on an FPGA, instead of on a PC. This poses new challenges, such as the
lack of a floating point unit on an FPGA and true parallel execution. Furthermore this research
proposes a controller structure inspired by the structure of the real setup, depicted in figure 2.6.

Molding
machine

Extraction
unit

Extraction
belt

Rotation
unit

Feeder

Feeder
belt

(a) Top level controller structure

Loop
controller

Motion
profiles

State
machine

From previous unit

To next unit

setpoint
ready

request

sensors

Encoder

PWM

(b) Structure of a single controller

FIGURE 2.6 - Production cell controller structure as proposed in (van Zuijlen, 2008)

In this project the models of plant dynamics developed in (Maljaars, 2006), as well as a simpli-
fied version of the controller structure proposed in (van Zuijlen, 2008) will be reused.

2.3 Conclusions
In this chapter background information on both Ptolemy II and the production cell setup has
been given. The Ptolemy II model structure is explained, as well as the mechanisms by which
heterogeneous modeling and code generation are implemented. Choosing the right model of
computation at each hierarchical model level is crucial, as this choice determines the seman-
tics (i.e. the meaning) of the model.

Previous work done on the production cell setup will be reused in this project. This includes
the models of the plant dynamics developed by (Maljaars, 2006) and the controller structure
proposed by (van Zuijlen, 2008).

The next chapter presents a feasibility analysis in which the theory on Ptolemy II explained in
this chapter is tested in practice.

University of Twente

11

3 Feasibility analysis of Ptolemy II as an ECS
development platform

In this chapter a feasibility analysis of Ptolemy II as an embedded control software develop-
ment platform is presented. This feasibility analysis is performed by developing controller soft-
ware for one unit of the production cell setup: the rotation robot. A simple controller is used,
which can be adapted to control the other units in the setup. Each of the following sections
deals with one step in the design process from figure 1.2.

3.1 Dynamic plant modeling
Dynamic plant models for the production cell setup were developed in (Maljaars, 2006). 20-Sim
was used as a modeling tool. These models are used as a basis for the models of the dynamic
plant behavior used in this project.

The Ptolemy II continuous time (CT) model of computation is used for the modeling of the
plant dynamics. Models in the CT domain are described in the form of ordinary differential
equations (ODEs):

dx

d t
= f (x,u, t) (3.1)

y = g (x,u, t) (3.2)

The simulation of a continuous time system boils down to numerically solving the ODEs of the
system. Ptolemy II implements some of the known methods for doing this, such as the forward
Euler method, the backward Euler method and the 2(3) order Runge-Kutta method.

By default, Ptolemy II allows the modeling of a dynamic system through the following mecha-
nisms:
• Building a block diagram using integrators, multipliers, adders, etc;
• Entering a transfer function of the form H(s) = b(s)

a(s) ;
• Using a linear state space description of the form ẋ = Ax+Bu,y =C x+Du;
• Any combination of the above methods.
This list can be extended by implementing custom actors and directors to include for example
Ideal Physical Model (IPM) iconic diagrams and even bond graphs.

The models presented in (Maljaars, 2006) are in the form of IPM iconic diagrams and there-
fore cannot be used in a Ptolemy II model directly. Using 20-Sim, a model linearization was
performed to obtain a transfer function (H(s)) that can be used in Ptolemy II. As long as the
system operates in its normal working area, no significant non-linear effects are present and
this model linearization is allowed.

3.2 Control law design
The next step in control software development is control law design. In (Maljaars, 2006, page
4) a standard PID control law is used in conjunction with feed-forward of acceleration and
velocity signals. A similar controller structure with the same settings will be used in this project.
Figure 3.1 shows this controller in 20-Sim and Ptolemy II.

In the actual setup, the controller will run on a standard PC/104 computer, which means it
will run in the digital domain. The model of computation corresponding to this situation, Syn-
chronous Dataflow (SDF), is used for the controller model. Another reason for choosing this
model of computation at this stage is that the SDF domain is best supported by the Ptolemy II
code generator.

No standard PID controller actor is available in Ptolemy II. A custom actor was developed which

Control Engineering

12 An integrated embedded control software design case study using Ptolemy II

(a) 20-Sim (Maljaars, 2006) (b) Ptolemy II

FIGURE 3.1 - Loop controller design in 20-Sim and Ptolemy II

implements a PID control law. Developing a custom actor involves writing Java code that in-
teracts with the Ptolemy II framework. More on developing custom actors can be found in
appendix A.

This custom PID actor is used together with feed-forward signals for acceleration and velocity
(figure 3.1(b)). In order to verify the control law design a simulation was performed. The result-
ing graphs, showing the generated controller setpoint, the actual arm position and the position
error can be found in figure 3.2(b). Loop controller verification results from 20-Sim, obtained
from the model by Maljaars (2006), are shown in figure 3.2(a). The difference in the results ob-
tained from 20-Sim and Ptolemy II can be explained by the usage of a different motion profile
generator (the 20-Sim motion profile generator is not available in Ptolemy II). In both cases the
error does not exceed the maximum allowed error.

(a) 20-Sim (b) Ptolemy II

FIGURE 3.2 - Rotation robot control law verification in 20-Sim and Ptolemy II

3.3 Embedded system implementation
The control law for the loop controller, developed in the previous section, is used in conjunc-
tion with a sequence controller. Sequence control can best be described using a finite state
machine (FSM). Ptolemy II includes a FSM director for modeling finite state machines, which
is used here. Sequence control for the rotation robot is implemented according to the state ma-
chine in figure 3.3. The initial state is the ‘Homing’ state, which brings the rotation arm to the
position at the extraction belt. The arm initiates its motion when there is an aluminum block
at the extraction platform and the drop off position at the feeder belt is empty.

University of Twente

Feasibility analysis of Ptolemy II as an ECS development platform 13

Each state in the finite state machine in figure 3.3(a) contains a refinement. An example of a
refinement, for the ‘MovingToFeeder’ state is shown in figure 3.3(b). This refinement is an SDF
model that determines the relation between input (shown on the left) and output (shown on
the right) ports. In this case each refinement consists of the controller described in the previous
section and a motion profile generator appropriate for each state.

(a) Finite state machine (b) Refinement for ‘MovingToFeeder’ state

FIGURE 3.3 - Rotation robot sequence controller

3.4 Realization
The first step in preparing the model for code generation is to connect model variables to I/O
pins on the target hardware. Ptolemy II LinkDrivers were written for this purpose, compara-
ble to the LinkDrivers found in gCSP. A LinkDriver is an actor that is inserted in the model in
each channel that connects the controller and the plant. When the model is simulated the
LinkDriver plays no role. However, when code is generated the LinkDriver code generation
helper inserts the C code for performing I/O actions. Settings for LinkDriver type (PWM, en-
coder, etc.) and I/O channel can be made in the Ptolemy II graphical user interface.

The controller will run on a standard PC/104 stack running Linux with the RTAI real-time ex-
tensions enabled. The generated C code should include RTAI system calls to initialize real-time
behavior, set up timers and to ensure a fixed control frequency. For this purpose the standard
Ptolemy II C code generator was extended with a version that includes these RTAI specific sys-
tem calls in the generated code.

The final step is to create a new model which contains only the controller. This is necessary
because Ptolemy II can only generate code for an entire model, not for a selected submodel
only. The generated code can then be compiled and run on the PC/104 target platform.

3.5 Results
First tests, which include only the rotation robot, look promising. The generated code runs on
the PC/104 stack connected to the production cell setup and the system behaves as expected.
The procedure for developing a controller for the rotation robot is repeated for the other five
units in the system. The end result is a model that contains six controllers, for all six units. The
code generated from this model can be compiled and run on the target platform, which results
in a completely running Production Cell setup. There is no explicit synchronization between
the six units. Essentially, synchronization of the controllers is now performed implicitly by
the aluminum blocks triggering the sensor signals. The sensor signals are read using a polling
mechanism running at the sampling frequency: 1.0 kHz. State transitions in the sequence con-
trollers are triggered by these sensor signals.

3.6 Conclusions
The following conclusions can be drawn from this feasibility analysis. First of all: it is possible to
use Ptolemy II as a embedded control software development platform. For the production cell
setup all stages in the design process are completed successfully, resulting in controller soft-
ware that behaves as desired. However, some remarks should be made. Dynamic plant mod-

Control Engineering

14 An integrated embedded control software design case study using Ptolemy II

eling in Ptolemy II is a difficult task. Transfer functions (either in H(s) or in state-space form)
have to be calculated by hand, which can be a lot of work and introduces errors. Furthermore,
it is not a flexible method, as small changes in the system can require the transfer functions to
be re-calculated. A graphical modeling method, like Ideal Physical Modeling iconic diagrams
or bond graphs are more user friendly.

The controller structure used here uses only SDF and FSM models of computation, mainly
because of limitations in code generation. Also, the controller structure is kept very simple. No
explicit synchronization is performed, no safety features are included, all six controllers run
in a single timed loop, etc. In order to further explore the Ptolemy method, particularly with
respect to combining multiple models of computation, a better Ptolemy II model, including
controllers, of the Production Cell system should be developed. This is done in the next chapter,
where the controller structure proposed in (van Zuijlen, 2008) is used as a basis.

The code generation framework is found to still be experimental. It requires a separate model
for code generation that contains only the parts for which code should be generated. At this
stage, LinkDrivers are used for hardware I/O. This causes the model to become dependent on
the target platform, which limits model reuse and this can therefore be considered to be an
undesired way of working. A solution is to separate the generic model from the target specific
code by creating stubs in the generic model which are filled in later, for example by using the
4C toolchain (Visser et al., 2007).

University of Twente

15

4 Design of the Production Cell model in Ptolemy II

In this chapter the design of a complete production cell model, based on the results obtained
from the feasibility analysis in chapter 3 is presented. Section 4.1 discusses some design con-
siderations that are the basis for the design. Next the actual design is presented, starting with
the top-level model structure in section 4.2. The controller, plant and aluminum block models
are discussed in the following sections. Finally, some conclusions on the design are drawn.

4.1 Design considerations
The model design discussed in this chapter incorporates the dynamic behavior of the plant and
the discrete time controller in a single heterogeneous model. The design of the model is created
with the possibilities and limitations of the used method and tooling in mind. For example, the
model is strongly hierarchical which enables the use of multiple models of computation and
the CSP domain is not used, as its Ptolemy II implementation is insufficient.

The goal of creating a model of the complete system is to support the design of the embed-
ded control software. The design of the model should allow the functional verification of the
controller design. With this goal in mind, certain assumptions have been made:
• Linear models of plant dynamics: when operating in its normal working area the plant be-

haves like a linear system. Therefore, non-linear effects like limitations on the motor current
have been left out of the model;

• Aluminum block insertion only at extraction belt: for reasons of simplicity, the aluminum
blocks are assumed to be positioned on the extraction belt when execution of the model
starts;

• Kinematic model of aluminum blocks: for the aluminum blocks in the setup it is decided to
only model their kinematics and to neglect their dynamic behavior. Most of the dynamic be-
havior is irrelevant for the verification of the functional behavior of the embedded controller;

• Safety: safety features have not been included in this model, as they are not essential for the
correct behavior of the system;

• Elasticity of belts: the elasticity of the extraction belt and the feeder belt can cause undesired
effects, such as bouncing of the aluminum blocks. However, as for the dynamics of the alu-
minum blocks, the elasticity of the belts is irrelevant for the controller design and therefore
neglected.

4.2 Top-level model structure
The top-level structure of the production cell model in Ptolemy II is depicted in figure 4.1. At
top-level, the model is governed by a Continuous Time director. This corresponds to the phys-
ical world, where the system operates in a continuous time environment.

The main control loop consists of four composite actors: a controller, which includes setpoint
generators (top left), digital to analog conversion (DA), the plant and analog to digital conver-
sion (DA). Because there are six units in the system, the main control loop is realized six times,
which results in six channels connecting the composite actors in the main control loop. The
CT director is capable of handling the mixed signal model (i.e. continuous and discrete time
signals).

Besides the main control loop there are three more composite actors present. The 3D visualiza-
tion (middle right) uses encoder values from the plant together with sensor status and position
information from the aluminum block model to create a 3D animation of the system. This ani-
mation is used as an intuitive way of verifying the kinematic behavior. The Ptolemy II graphics
actor library, in conjunction with a GR director, is used for the 3D animation.

Control Engineering

16 An integrated embedded control software design case study using Ptolemy II

FIGURE 4.1 - Top-level structure of the production cell model

The block model (middle left) describes the kinematic behavior of the aluminum blocks in the
production cell setup and will be explained in section 4.5.

4.3 Controller model

4.3.1 Hierarchical controller
The controller in the Ptolemy II model is built using the controller structure proposed by (van
Zuijlen, 2008), see figure 2.6, as a basis. This structure is translated to a hierarchical Ptolemy II
model. At each hierarchical level the correct model of computation is chosen. The controller
hierarchy and the models of computation used at each level are visualized in figure 4.2.

Top-level
Discrete Event

Feeder
SDF

Molding machine
SDF

Rotation
SDF.....

Loop Control
SDF

Motion Profiles
SDF

State Machine
FSM

Open
SDF

Closing
SDF

Opening
SDF.....

Hi
er

ar
ch

y
le

ve
l

Top-level

Unit
controllers

Unit controller
subsystems

Sequence
control states

FIGURE 4.2 - Controller hierarchy and used models of computation (for the molding machine)

4.3.2 Controller top-level
The Ptolemy II implementation of the top-level controller is depicted in figure 4.3. Communi-
cation among the six unit controllers is directed by a Discrete Event (DE) director. When a unit
controller finishes its task, it sends a message (an event) to the next unit controller indicating

University of Twente

Design of the Production Cell model in Ptolemy II 17

that it can start its task. This is a more robust structure than the one used in chapter 3 because
the system will now only run if all six unit controllers operate as expected. In the configuration
used in chapter 3, the sensors are not used for synchronization, only for verification of correct
behavior by the individual unit controllers. The Starter block is used to initiate the motion of

FIGURE 4.3 - Controller structure

the system. It models the signal that the first aluminum block inserted into the system would
generate. The SampleDelay block provides a starting point for calculation of the execution
schedule by the DE director, thus avoiding deadlock.

4.3.3 Unit controller
The controller for a single unit (the unit controller), as proposed by (van Zuijlen, 2008) (see
figure 2.6(b)) is implemented in the Ptolemy II model as shown in figure 4.4. The state ma-

FIGURE 4.4 - Unit controller structure

chine (shown at the bottom) determines which motion profile to execute, based on the events
received from the controller of the previous unit and sensor statuses. The number of the se-
lected motion profile is sent to the Motion Profiles composite actor (shown in the middle)
which generates appropriate signals for position, velocity and acceleration setpoints. The Loop

Control Engineering

18 An integrated embedded control software design case study using Ptolemy II

Controller then generates the PWM value which ensures a minimal tracking error, using the
setpoint values and the encoder value received from the plant. As soon as the selected motion
profile is finished, the State Machine is signaled. The State Machine can then perform the ap-
propriate actions, such as selecting the next motion profile and sending an event to the next
unit controller.

4.3.4 State machine
Sequence control for a single unit is modeled in the form of a state machine. The state machine
for the rotation robot is shown in figure 4.5(a). State transitions are triggered either by an event
from the previous unit controller, a sensor signal or a message indicating that a motion profile
is finished. Each state implements a refinement, which determines the input/output relation.
The refinement for the ‘AtFB’ state (an SDF model) is shown in figure 4.5(b).

(a) State machine for sequence control of one unit (b) State refinement

FIGURE 4.5 - State machine and refinement for one state

4.3.5 Motion profiles
The implementation of the Motion Profiles block is depicted in figure 4.6.

(a) Motion profile generator structure (b) State machine for ‘FromEBtoFB’

(c) State refinement for ‘mp’ state

FIGURE 4.6 - Motion profile generator

University of Twente

Design of the Production Cell model in Ptolemy II 19

The req_in port (bottom left in figure 4.6(a)) receives the number of the desired motion profile
(0 through 3 in this case). The selection is made by four multiplexers at the right. Whenever
the req_in signal changes (detected by the Differential actor) the motion profiles are reset.
Actual motion profile generation is performed by the four composite actors in the center. The
transitional motion profiles use a state machine with two states for this, see figure 4.6(b). In the
‘idle’ state a constant setpoint value is used. In the ‘mp’ state a constant acceleration profile is
used which is integrated twice (see figure 4.6(c) and 4.7). The signal indicating that a motion
profile is finished is sent through the ready_out port.

O T 2T 3T t

V

Vmax

O T 2T 3T

A

Amax

-Amax O T 2T 3T t

X
Xmax

FIGURE 4.7 - Motion profiles

4.3.6 Loop controller
The loop controller here is exactly the same as the one used in chapter 3. As the functionality
of the PID controller block proved to be sufficient, there is no need to change it for this model.

4.4 Plant model
For the modeling of the plant dynamics the same method as in the feasibility analysis (refer to
section 3.1) is used. For each unit a model linearization in 20-Sim is performed, resulting in six
transfer functions. Each transfer function describes the relation between a PWM signal input
and its corresponding encoder output value. The plant models are not coupled, therefore six
uncoupled actors are used, see figure 4.8.

FIGURE 4.8 - Plant models for all six units
4.5 Block model
The aluminum blocks in the production cell setup are modeled by the composite actor shown
in the middle left of figure 4.1. The implementation of the aluminum block model is shown in
figure 4.9.

As mentioned in section 4.1 only the kinematic behavior of the blocks is taken into account.
Dynamic behavior is ignored, as it is mostly irrelevant for the design of the embedded control
software.

The actor in the middle of figure 4.9(a) is a MultiInstanceCompositeActor. It is an example
of the object-oriented features available in Ptolemy II modeling. The model contained in the

Control Engineering

20 An integrated embedded control software design case study using Ptolemy II

(a) Structure as drawn in Ptolemy II (b) Automatic expansion at runtime

FIGURE 4.9 - Structure of the aluminum block model

MultiInstanceCompositeActor is instantiated nBlocks (a parameter at top-level) times when
running the model, as illustrated in figure 4.9(b) (for three ports). This means that the ac-
tual model for the aluminum blocks is designed only once. By setting the value of the nBlocks
parameter, the actual number of blocks used in the simulation is determined. In the current
version of Ptolemy II (6.0.2) the MultiInstanceCompositeActor does not work properly, which
causes unexpected behavior if the model is run more than once. This bug has been fixed in
Ptolemy II 7.0 beta.

The block model uses the angular velocity (hence the differential actors) to update its own po-
sition, measured along the trajectory traveled by each block. This position information is used
to trigger the sensors in the setup. A boolean OR is used to trigger the sensors for all blocks.
The same position information is converted into x, y and z coordinates that are used in the 3D
graphical representation of the block.

4.6 Conclusions
A complete model of the production cell setup, including both the plant dynamics and the dis-
crete time controller, has been designed using Ptolemy II as a design environment. Aspects rel-
evant to the design of the embedded control software have been incorporated into the model,
while less relevant aspects (such as the dynamics of the aluminum blocks) have been disre-
garded. In future work, the model can be refined to include these aspects to predict effects
like the bouncing of an aluminum block on a belt or against the molder door, which can affect
functional behavior in extreme cases. A safety layer can be implemented by checking whether
hardware control signals (PWM and encoder signals) stay within limits for a certain state of the
sequence controller. A finite state machine can be used for this.

Strong use was made of the Ptolemy method: the model contains many hierarchical levels,
each using the proper model of computation (realized by means of the directors). The model
allows for full functional testing. Correct behavior can be verified by using the 3D graphics ani-
mation and classical graphing techniques. Changes to the controller parameters, PID settings,
sequence control, etc. can be made in a straightforward manner because of the clear controller
structure. Also, each loop controller can run at a different frequency by changing the appropri-
ate parameter in the AD block in figure 4.1.

The next chapter presents more on the results obtained using this model, with regard to con-
troller design and realization. Chapter 6 discusses the Ptolemy approach used in the design of
this model.

University of Twente

21

5 Results

This chapter presents the results obtained from simulations of the Production Cell model in
Ptolemy II. After loop controller verification (section 5.1), functional verification is performed
using a 3D animation (section 5.2). Finally, deployment of the generated code to the target
platform is discussed in section 5.3.

5.1 Loop controller verification
Simulations were performed to verify loop controller behavior. Simulation results for two units
in the system are presented in figure 5.1. Simulation results for the other four units are in ap-
pendix B.

(a) Extraction belt (b) Rotation robot

FIGURE 5.1 - Controller verification results

According to Maljaars (2006), the steady-state error of the position controlled units (rotation
robot, feeder, molder and extraction robot) should not exceed 0.5 mm = 5 × 10−4 m. These
demands are satisfied, although the maximum error is exceeded when moving from one po-
sition to the other. For the velocity controlled units (extraction belt and feeder belt), no error
constraints are mentioned in (Maljaars, 2006). A maximum error of 1% of the maximum belt
velocity is chosen, which corresponds to 0.13×10−2 m/s. This maximum error is not exceeded.
However, there is a lot of noise on the belt velocity signal. This is due to the differentiation of
the encoder signals, which is used in velocity control. To reduce the amount of noise, a state
variable filter can be used to obtain the velocity signal, instead of a true differentiator. Another
option is to remove the differentiator on the encoder signal, use an extra integrator on the ve-
locity setpoint and then use position control.

5.2 Functional verification
One of the main goals of developing an integrated model of the Production Cell setup is to
allow for integrated functional verification. This is facilitated by a 3D graphical representation
of the complete system, as shown in figure 5.2. The 3D animation provides an intuitive way
of verifying correct behavior. It includes a basic representations of all six actuated units, the

Control Engineering

22 An integrated embedded control software design case study using Ptolemy II

FIGURE 5.2 - Ptolemy II 3D animation of the Production Cell model

sensors in the system and the aluminum blocks. The 3D animation was used extensively while
designing the sequence controllers, resulting in a design showing functionally correct behavior.

5.3 Realization
The final step in the embedded control software design trajectory is the realization of the sys-
tem. In the Ptolemy approach, this step is implemented by means of automatic code gener-
ation. Currently, the Discrete Event (DE) domain, used at the controller top-level (figure 4.3),
is not supported in code-generation. Implementing code generation for the DE domain is not
feasible in the timeframe available for this project.

In order to allow code generation the model is adapted to eliminate the Discrete Event model of
computation. The DE director at the controller top-level is replaced by a Synchronous Dataflow
(SDF) director. This implies that communication between controllers will now have to take
place at each timestep. Therefore, the unit controllers are adapted to produce a token at each
timestep, according to the scheme of table 5.1.

TABLE 5.1 - Tokens sent at controller top-level in DE and SDF domains

Unit controller finished Discrete Event Synchronous Dataflow

Task not finished none 0
Task finished arbitrary value 1

The controller will now put a higher computational load on the target PC/104 computer, be-
cause communication takes place at each timestep, instead of only at those timesteps where
communication is required. Furthermore, the current code generator does not allow multiple
timed loops. Therefore, the entire controller will run in a single timed loop at 1.0 kHz on the
target PC/104 computer.

Similar to the steps taken in section 3.4, a separate model is created which includes only the
controller model and LinkDrivers for I/O. Code is generated, compiled and run on the target
PC/104 computer. Qualitative analysis (by visual inspection) on the running Production Cell
system shows that it behaves as expected.

University of Twente

23

6 Discussion

This chapter discusses the Ptolemy method, based on the results obtained from the practical
case study using the Production Cell setup. Evaluation of the integrated approach leads to an
overview of other methodologies and their tools. Next, some suggestions on improving the
CE-toolchain are given and finally conclusions are drawn.

6.1 Integrated approach
In this project an integrated approach was used to create embedded control software for the
Production Cell setup. A single modeling framework (Ptolemy II) was used for all aspects of
system modeling and embedded control software design. Results show that the problems iden-
tified in section 1.1 can be overcome by using an integrated approach:
• Integrated testing: because all relevant aspects of the system have been modeled in a single

modeling framework, integrated verification proved to be a relatively easy task. Control law
designs were verified, followed by the verification of correct functional behavior (sequence
control).

• Iterative design: as all steps of the embedded control software design process are supported
by one software package, no manual model transformations need to be performed. This
reduces the probability of introducing errors, as well as the time required for each iteration.

Code can be generated directly from the integrated model. This code can be compiled and run
on the actual target platform, without any additional intermediate steps.

However, using an integrated approach does introduce a problem. All design steps are per-
formed using a single design tool, which means that this tool should support all involved disci-
plines. This requires a very generic tool, which (by definition) means that domain-specific re-
quirements can not always be met. The modeling of the Production Cell system in this project
illustrates this. A generic tool (Ptolemy II) was used, in which system dynamics modeling is
very limited and no specific features for control law design are implemented (e.g. a pole-zero
analysis wizard). Domain-specific tools can accommodate these needs much better.

To provide some more context, the next section gives an overview of other commonly used
methodologies and tools for embedded control software development.

6.2 Other methods and tools
Focusing on embedded control software development for mechatronic systems, several impor-
tant points can be identified:
• Integration: the gap between each phase in the development process should be as small as

possible, allowing for fast design iterations. Also, integrated verification should be possible;
• Trajectory coverage: a methodology and its supporting tools should cover all phases in the

design trajectory of figure 1.2. Important practical issues are modeling (for system dynamics,
control law design and software design), simulation and code generation;

• Economics: the cost of using a certain toolchain, its maturity and the time-to-market that can
be realized are important economic factors in choosing a certain methodology / toolchain.

With these points in mind, a comparison of the Ptolemy method with four other methods (Co-
simulation, CE-method, Matlab/Simulink and POOSL, refer to section 1.3.1) is made. This
comparison is split into three parts:
• Methodology properties: the ways of thinking and working in each methodology, as well as

typical application areas;
• Methodology implementations: the implementation of each methodology is described, us-

ing the Boderc methodology description, which will be explained in section 6.2.2 (Heemels
and Muller, 2006);

• Operational features: some important issues in the tooling that supports each methodology.

Control Engineering

24 An integrated embedded control software design case study using Ptolemy II

6.2.1 Methodology properties
These properties describe the methodologies at the highest abstraction level. The first issue
here is the Way of thinking, i.e. the basic idea of a methodology. For Ptolemy II, this is the
concept of an integrated approach; use a generic modeling language to model all relevant as-
pects of a system in one integrated model, enabling integrated verification. Choosing the right
model of computation is very important. On the other hand, the co-simulation approach tries
to use the ‘best’ tool for modeling each part of the system and couples these tools to perform
integrated verification. The CE-method uses specific tools for each design step in a process of
stepwise refinement. At each transition to a next design step, automatic model transformations
are used to transform the model to a new view. In Matlab/Simulink rapid prototyping is used.
The POOSL method focuses on concurrent engineering (software is developed in parallel with
the design in other disciplines), local refinement (each design step should focus on partial in-
formation, which reduces complexity) and predictable refinement (properties of parts should
be preserved when integration is performed) with a focus on scheduling and timing.

The second issue concerns the Way of working, i.e. the workflow for creating the system design.
Designers using the CE-method tend to use a bottom-up approach. An example is the Produc-
tion Cell setup, for which a motor model is created first, then a plant model for one unit, next a
loop controller for one unit, then sequence control for one unit and finally the synchronization
and concurrency between all units is taken into account. In the POOSL method this order is
reversed: a C-model describes the concurrency in the system, the M-model is used to describe
the interactions between high-level and low-level control and finally the R-model incorporates
timing and continuous time behavior. Ptolemy and co-simulation combine these two meth-
ods. In Ptolemy, the low-level behavior is analyzed first (e.g. motor control). Next, the top-level
design is created and refined until all relevant aspects have been modeled. A single design
tool (Ptolemy II) is used for this. In co-simulation one starts with the top-level model design.
Implementation is done bottom-up, starting in seperate design tools and finally combining
these submodels in the top-level model in the co-simulation package. Matlab/Simulink uses
a simulation based approach, making extensive use of Hardware-, Software- and Processor-in-
the-loop simulations.

Finally, each method targets specific domains. Although it is possible to use all methods for
almost any design application, specific methods address specific domains (e.g. it is possible to
create a wireless network model in 20-Sim, but Ptolemy II would be a better choice).

Table 6.1 summarizes the results from this section.

University of Twente

Discussion 25

T
A

B
L

E
6

.1
-

M
et

h
o

d
o

lo
gy

p
ro

p
er

ti
es

P
to

le
m

y
C

o
-s

im
u

la
ti

o
n

C
E

-m
et

h
o

d
M

at
la

b
/S

im
u

li
n

k
P

O
O

SL

W
ay

of
th

in
ki

n
g

In
te

gr
at

ed
ap

p
ro

ac
h

.
C

h
o

o
se

ri
gh

tM
o

d
el

o
f

C
o

m
p

u
ta

ti
o

n
.

U
se

b
es

tt
o

o
lf

o
r

ea
ch

vi
ew

.U
se

co
-s

im
u

la
ti

o
n

o
n

ly
w

h
en

lo
o

p
am

o
n

g
su

b
m

o
d

el
s

ex
is

ts
(f

ee
d

b
ac

k)
.

Sp
ec

ifi
c

to
o

ls
fo

r
ea

ch
d

es
ig

n
st

ep
.U

se
st

ep
w

is
e

re
fi

n
em

en
t.

R
ap

id
p

ro
to

ty
p

in
g.

C
o

n
cu

rr
en

t
en

gi
n

ee
ri

n
g,

lo
ca

l
re

fi
n

em
en

t,
p

re
d

ic
ta

b
le

re
fi

n
em

en
t.

Fo
cu

s
o

n
sc

h
ed

u
li

n
g

an
d

ti
m

in
g.

W
ay

of
w

or
ki

n
g

‘M
id

d
le

o
u

t’
:v

er
if

y
lo

w
-l

ev
el

fu
n

ct
io

n
al

it
y,

th
en

to
p

-l
ev

el
d

es
ig

n
.

A
ll

in
o

n
e

so
ft

w
ar

e
p

ac
ka

ge
.

To
p

-d
ow

n
d

es
ig

n
:

to
p

-l
ev

el
m

o
d

el
an

d
in

te
rf

ac
es

.B
o

tt
o

m
-u

p
im

p
le

m
en

ta
ti

o
n

:c
re

at
e

su
b

m
o

d
el

s
in

ex
te

rn
al

to
o

ls
,c

o
n

n
ec

ti
n

co
-s

im
u

la
ti

o
n

p
ac

ka
ge

.

B
o

tt
o

m
-u

p.
M

o
d

el
b

as
ed

:p
la

n
td

yn
am

ic
s

(2
0-

Si
m

),
co

n
tr

o
lle

r
(2

0-
Si

m
),

E
C

S
d

es
ig

n
(g

C
SP

),
re

al
iz

at
io

n
(C

T
C

++
).

H
ea

vy
u

se
o

f
H

ar
d

w
ar

e-
,P

ro
ce

ss
o

r-
an

d
So

ft
w

ar
e-

In
-t

h
e-

Lo
o

p
si

m
u

la
ti

o
n

s.

To
p

-d
ow

n
.S

o
ft

w
ar

e
(m

o
d

el
)

ap
p

ro
ac

h
u

si
n

g
C

,M
an

d
R

m
o

d
el

s.

Ty
p

ic
al

d
om

ai
n

s
R

ea
l-

ti
m

e
em

b
ed

d
ed

so
ft

w
ar

e
d

es
ig

n
an

d
an

al
ys

is
.

H
ar

d
w

ar
e/

so
ft

w
ar

e
co

-d
es

ig
n

,
m

ec
h

at
ro

n
ic

s.

M
ec

h
at

ro
n

ic
s.

Si
gn

al
p

ro
ce

ss
in

g,
co

n
tr

o
lle

r
d

es
ig

n
.

E
m

b
ed

d
ed

so
ft

w
ar

e
d

es
ig

n
an

d
an

al
ys

is
.N

o
m

o
d

el
in

g
o

fp
la

n
t

d
yn

am
ic

s
an

d
co

n
tr

o
lle

r
d

es
ig

n
.

Control Engineering

26 An integrated embedded control software design case study using Ptolemy II

6.2.2 Methodology implementations
From the basic idea of each methodology follows an implementation. This implementation is
described using four terms, also used in the Boderc project (Heemels and Muller, 2006):
• Formalisms: languages / syntax used for system modeling. Formalisms exist for modeling be-

havior, but also to formalize system requirements. Instances of formalisms are called Models.
Examples of formalisms are differential equations, finite state machines, temporal logic and
queuing formalisms;

• Techniques: used to retrieve information from models or to transform models. Examples of
analysis techniques are model checking, performance analysis and program analysis tech-
niques. Examples of transformation techniques are high-level synthesis and software com-
pilation;

• Methods: in other words: a reasoning framework. Provides guidelines and can be seen as a
‘recipe book’ how and in which order to apply certain Formalisms, Techniques, Submethods
and Tools to solve the design problem at hand;

• Tools: Software Tools support the efficient application of Formalisms, Techniques and Sub-
methods.

Table 6.2 summarizes the results of the comparison on methodology implementations. All
methodologies use graphical formalisms to describe a model at top-level. In Ptolemy the se-
mantics (‘meaning’) of the model depends on the model of computation (i.e. formalism) used.
In co-simulation, each simulation package uses its own formalism, coupled via a co-simulation
package. The CE-method uses various formalisms for plant modeling, including Ideal Physical
Modeling and bondgraph theory. CSP is used for embedded software design. Matlab/Simulink
is completely actor-oriented. POOSL is a timed and probabilistic extension of CCS (Calcu-
lus of Communicating Systems) which uses a diagram of processes and channels at top-level
and POOSL code at lower levels. Each formalism is supported by an underlying language.
Ptolemy uses Java, various languages are used in co-simulation, the CE-method uses port-
based SIDOPS code in conjunction with C++ and CSP, Matlab/Simulink uses Matlab code and
in the POOSL method POOSL code is used.

All methodologies use executable models to allow simulation to analyze the model. In Ptolemy,
co-simulation, the CE-method and Matlab/Simulink the traditional method of 2D graphs is
used. Additionally, Ptolemy and the CE-method (more specifically, 20-Sim) support 3D an-
imations. Further analysis methods include wizards (e.g. pole-zero analysis in 20-Sim) and
diagram animation (gCSP and POOSL). Supported transformation techniques include code
generation (Ptolemy, CE-method, Matlab/Simulink and POOSL) and automated compilation
(CE-method).

The methods and tools used in these five methodologies can be found in table 6.2.

University of Twente

Discussion 27

T
A

B
L

E
6

.2
-

M
et

h
o

d
o

lo
gy

im
p

le
m

en
ta

ti
o

n
s

P
to

le
m

y
C

o
-s

im
u

la
ti

o
n

C
E

-m
et

h
o

d
M

at
la

b
/S

im
u

li
n

k
P

O
O

SL

Fo
rm

al
is

m
s

A
ct

o
r-

o
ri

en
te

d
m

o
d

el
s,

se
m

an
ti

cs
o

fa
ct

o
r

b
as

ed
o

n
M

o
d

el
o

f
C

o
m

p
u

ta
ti

o
n

.L
an

gu
ag

e:
Ja

va
.

A
n

yt
h

in
g,

as
lo

n
g

as
ex

te
rn

al
to

o
lin

g
u

se
s

ex
ec

u
ta

b
le

m
o

d
el

s
an

d
su

p
p

o
rt

s
ex

te
rn

al
co

m
m

u
n

ic
at

io
n

.
Sy

n
ch

ro
n

iz
at

io
n

vi
a

co
-s

im
u

la
ti

o
n

to
o

l.
La

n
gu

ag
es

:v
ar

io
u

s.

A
ct

o
r-

o
ri

en
te

d
b

lo
ck

-d
ia

gr
am

s,
IP

M
,

b
o

n
d

gr
ap

h
,C

SP
.

La
n

gu
ag

es
:p

o
rt

-b
as

ed
SI

D
O

P
S,

C
++

,C
SP

.

A
ct

o
r-

o
ri

en
te

d
b

lo
ck

-d
ia

gr
am

s
fo

r
si

gn
al

fl
ow

.L
an

gu
ag

e:
M

at
la

b
co

d
e.

T
im

ed
an

d
p

ro
b

ab
il

is
ti

c
ex

te
n

si
o

n
o

fC
C

S;
To

p
-l

ev
el

:d
ia

gr
am

o
f

p
ro

ce
ss

es
an

d
ch

an
n

el
s;

lo
w

er
le

ve
ls

:P
O

O
SL

co
d

e.
La

n
gu

ag
e:

P
O

O
SL

.

Te
ch

n
iq

u
es

Si
m

u
la

ti
o

n
(g

ra
p

h
s

an
d

3D
an

im
at

io
n

),
co

d
e

ge
n

er
at

io
n

(C
,V

H
D

L)
.

C
o

-s
im

u
la

ti
o

n
to

o
lt

o
an

al
yz

e
in

te
r-

si
m

u
la

to
r

si
gn

al
s.

E
xt

er
n

al
si

m
u

la
to

rs
an

d
an

al
ys

is
to

o
ls

to
ch

ec
k

b
eh

av
io

r
o

fs
p

ec
ifi

c
m

o
d

el
p

ar
ts

.

20
-S

im
:S

im
u

la
ti

o
n

,
w

iz
ar

d
s,

co
d

e-
ge

n
er

at
io

n
(C

++
,

H
an

d
el

-C
);

gC
SP

an
d

C
T

C
++

:a
n

im
at

io
n

an
d

tr
ac

in
g,

co
d

e
ge

n
er

at
io

n
;

4C
:c

o
m

p
il

at
io

n
.

Si
m

u
la

ti
o

n
,c

o
d

e
ge

n
er

at
io

n
(C

,C
+

+
,

V
H

D
L)

th
ro

u
gh

re
al

-t
im

e
to

o
lb

ox
.

Si
m

u
la

ti
o

n
th

ro
u

gh
d

ia
gr

am
an

im
at

io
n

,
in

te
ra

ct
io

n
d

ia
gr

am
(s

eq
u

en
ce

d
ia

gr
am

).

M
et

h
od

s
H

ie
ra

rc
h

ic
al

b
lo

ck
-d

ia
gr

am
s,

fi
n

it
e

st
at

e
m

ac
h

in
es

.

C
o

-s
im

u
la

ti
o

n
co

n
n

ec
ti

o
n

d
ia

gr
am

an
d

vi
ew

s
u

se
d

in
ex

te
rn

al
to

o
ls

.

20
-S

im
:h

ie
ra

rc
h

ic
al

b
lo

ck
-d

ia
gr

am
s

(s
ig

n
al

fl
ow

),
IP

M
,b

o
n

d
gr

ap
h

;
gC

SP
:G

M
L;

C
T

C
+

+:
C

++
co

d
e.

H
ie

ra
rc

h
ic

al
b

lo
ck

-d
ia

gr
am

s.
To

p
-l

ev
el

:
b

lo
ck

-d
ia

gr
am

;l
ow

er
le

ve
ls

:P
O

O
SL

co
d

e;
C

,M
an

d
R

m
o

d
el

s.

To
ol

s
P

to
le

m
y

II
.

C
o

si
M

at
e

an
d

su
p

p
o

rt
ed

ex
te

rn
al

si
m

u
la

to
rs

.
20

-S
im

,g
C

SP
,C

T
C

++
,

4C
,R

TA
I.

M
at

la
b

/S
im

u
li

n
k,

p
ro

p
ri

et
ar

y
R

T
O

S.
SH

E
Si

m
,R

o
ta

lu
m

is
,

20
-S

im
.

Control Engineering

28 An integrated embedded control software design case study using Ptolemy II

6.2.3 Operational features
A key factor for success of a methodology is the usability of the tooling that supports the method-
ology. This section identifies some important operational features of the tools supporting each
methodology. Table 6.3 shows the results, which are explained in the remainder of this section.

Model structuring is important. A tool should allow the creation of a clear and well structured
model. Essential are the use of hierarchical modeling and easy drawing and routing of signals.

Next, object orientation, known from object oriented programming, can be useful in model-
ing. Ptolemy II allows the creation of model classes. These model classes can be instantiated
as many times as desired, or they can be used as a base class so that model classes can be de-
rived from them. POOSL uses object oriented techniques through its Data, Process and Cluster
classes. No object orientation is used in the other tools, although 20-Sim allows parameter
coupling between submodel copies, mimicking object-oriented behavior.

Another key feature in a modeling tool is extendability. A user should be able to create custom
submodels or even additions to the tool, to accommodate modeling needs not natively covered
by it. All tools allow some form of extensions, but Ptolemy II takes this the furthest by allowing
custom Java classes to be written that can extend both the actor library as well as the modeling
environment itself. However, this is not a user friendly method, as knowledge of the Ptolemy II
architecture and the Java programming language is required.

Code generation is an essential feature in all five methodologies and thus is supported in all
tools. However, different mechanisms are used: Ptolemy II uses a helper based mechanism,
template based code generation is used in the CE toolchain, Simulink uses the Real-Time Work-
shop (helper based) and POOSL generates code based on Process Execution Trees. All these
mechanisms produce executable code. However, the Ptolemy II code generation framework is
still experimental and therefore only usable in certain situations (only static scheduling, not all
actors have an associated helper).

Model reuse should allow a designer to reuse previous work. Next to model libraries, present in
all tools, Ptolemy II adds the possibility of writing domain and data polymorphic actors. This
ensures that an actor can be used in multiple domains, using multiple data types.

The use of signal busses allows a designer to group similar signals into a single bus. This can
greatly enhance the readability of a model. Only Simulink natively supports signal busses in a
user friendly way. In co-simulation and POOSL signal busses can be created by using a ‘vector’
data type. Ptolemy II and the CE-toolchain support signal busses, but the order of the signals
inside the bus depends on the order of connecting these signals, which can become confusing.

Next, the mathematical features of the tools are examined, in particular with respect to matrix
calculations and complex numbers, as these are widely used in embedded control applications.

Design speed, including simulation time and time required for model construction, is another
key factor. Graphical modeling allows for fast model construction, while code-based model de-
sign takes more time. For simulations, Ptolemy II is relatively slow due to its Java background.
Co-simulation introduces only a small overhead on top of the used simulators, but can cause
high computational load and thus long simulations due to running multiple simulators on a
single computer. Simulations in the CE-toolchain (20-Sim) are very fast due to heavy optimiza-
tion. Simulink is in between Ptolemy and the CE-toolchain; it has a Java back-end but it has
also been heavily optimized. Finally, simulations in POOSL are also relatively slow, but can be
sped up (up to 100×) by using Rotalumis, at the cost of possibilities for analysis.

As the variety of target platforms grows, it becomes more important for tools to run on various
platforms. In this sense choosing Java, though slow, is a good choice (Ptolemy II, gCSP). Most
tools are available for various platforms. Currently, only CosiMate (co-simulation) and 20-Sim
(CE-toolchain) run only on Windows, although Linux versions are under development.

University of Twente

Discussion 29

T
A

B
L

E
6

.3
-

O
p

er
at

io
n

al
fe

at
u

re
s

P
to

le
m

y
II

C
o

-s
im

u
la

ti
o

n
C

E
-t

o
o

lc
h

ai
n

Si
m

u
li

n
k

P
O

O
SL

M
od

el
st

ru
ct

u
ri

n
g

St
ro

n
gl

y
h

ie
ra

rc
h

ic
al

,
p

o
o

r
ch

an
n

el
ro

u
ti

n
g

To
p

-l
ev

el
:c

o
-s

im
u

la
ti

o
n

co
n

n
ec

ti
o

n
d

ia
gr

am
.

Lo
w

er
le

ve
ls

:d
ep

en
d

s
o

n
sp

ec
ifi

c
to

o
li

n
g.

20
-S

im
:a

llo
w

s
h

ie
ra

rc
h

y.
E

as
y

si
gn

al
ro

u
ti

n
g.

gC
SP

:h
ie

ra
rc

h
y

in
p

ro
ce

ss
es

.

H
ie

ra
rc

h
ic

al
m

o
d

el
in

g
su

p
p

o
rt

ed
.

To
p

-l
ev

el
:b

lo
ck

d
ia

gr
am

sh
ow

in
g

p
ro

ce
ss

es
an

d
d

at
a

ch
an

n
el

s.
Lo

w
er

le
ve

ls
:P

O
O

SL
co

d
e.

O
bj

ec
t

or
ie

n
ta

ti
on

Su
p

p
o

rt
s

ac
to

r
cl

as
se

s
w

h
ic

h
ar

e
in

st
an

ti
at

ed
o

r
su

b
cl

as
se

d
.

N
o

ta
p

p
lic

ab
le

.
N

o
o

b
je

ct
o

ri
en

te
d

te
ch

n
iq

u
es

in
m

o
d

el
in

g.
Pa

ra
m

et
er

co
u

p
li

n
g

in
su

b
m

o
d

el
co

p
ie

s.

N
o

o
b

je
ct

o
ri

en
te

d
te

ch
n

iq
u

es
in

m
o

d
el

in
g.

U
se

s
D

at
a,

P
ro

ce
ss

an
d

C
lu

st
er

cl
as

se
s.

E
xt

en
d

ab
il

it
y

O
p

en
so

u
rc

e,
ex

te
n

si
o

n
s

(b
o

th
ex

tr
a

ac
to

rs
an

d
to

o
le

xt
en

si
o

n
s)

th
ro

u
gh

ex
tr

a
Ja

va
cl

as
se

s.

Su
p

p
o

rt
ad

d
it

io
n

al
ex

te
rn

al
si

m
u

la
to

rs
b

y
w

ri
ti

n
g

n
ew

in
te

rf
ac

es
to

co
-s

im
u

la
ti

o
n

b
u

s.

20
-S

im
:c

u
st

o
m

su
b

m
o

d
el

s,
D

LL
s;

gC
SP

:
co

d
e

b
lo

ck
s;

C
T

C
+

+:
n

o
t

ex
te

n
d

ab
le

.

C
u

st
o

m
su

b
m

o
d

el
s,

M
at

la
b

fu
n

ct
io

n
s,

ex
te

rn
al

D
LL

s.

E
xt

en
d

ab
le

th
ro

u
gh

cu
st

o
m

d
at

a,
p

ro
ce

ss
an

d
cl

u
st

er
cl

as
se

s.

C
od

e
ge

n
er

at
io

n
H

el
p

er
b

as
ed

,f
o

r
m

an
y

la
n

gu
ag

es
.C

u
rr

en
tl

y
C

an
d

V
H

D
L.

C
o

d
e

ge
n

er
at

io
n

th
ro

u
gh

ex
te

rn
al

d
es

ig
n

p
ac

ka
ge

s.

20
-S

im
:t

em
p

la
te

b
as

ed
C

co
d

e;
gC

SP
:C

+
+

fo
r

C
T

C
++

,H
an

d
el

-C
.

G
en

er
at

e
C

,C
+

+
o

r
V

H
D

L
co

d
e

u
si

n
g

R
ea

l-
T

im
e

W
o

rk
sh

o
p.

R
o

ta
lu

m
is

:P
ro

ce
ss

E
xe

cu
ti

o
n

Tr
ee

s
in

C
++

.

M
od

el
re

u
se

D
o

m
ai

n
an

d
d

at
a

p
o

ly
m

o
rp

h
ic

ac
to

rs
.

R
eu

se
ex

is
ti

n
g

m
o

d
el

s
in

su
p

p
o

rt
ed

to
o

ls
.

R
eu

se
o

fs
u

b
m

o
d

el
s.

M
o

d
el

li
b

ra
ri

es
.

R
eu

se
o

fc
la

ss
es

.

Si
gn

al
bu

ss
es

Su
p

p
o

rt
ed

,b
u

tc
an

re
su

lt
in

lo
ss

o
fo

ve
rv

ie
w

.
Su

p
p

o
rt

ed
th

ro
u

gh
u

se
o

fv
ec

to
rs

.
Su

p
p

o
rt

ed
in

20
-S

im
,

n
o

ti
n

gC
SP

.
Su

p
p

o
rt

ed
.

Su
p

p
o

rt
ed

th
ro

u
gh

u
se

o
fc

u
st

o
m

d
at

at
yp

es
.

M
at

h
em

at
ic

al
fe

at
u

re
s

P
to

le
m

y
ex

p
re

ss
io

n
la

n
gu

ag
e

su
p

p
o

rt
s

co
m

p
le

x
n

u
m

b
er

s
an

d
m

at
ri

x
ca

lc
u

la
ti

o
n

s.

O
n

ly
ve

ct
o

rs
(n

o
m

at
ri

ce
s)

,n
o

n
at

iv
e

co
m

p
le

x
n

u
m

b
er

s.

Fu
ll

m
at

ri
x

su
p

p
o

rt
.N

o
co

m
p

le
x

n
u

m
b

er
s.

M
at

h
su

p
p

o
rt

th
ro

u
gh

M
at

la
b

en
gi

n
e,

in
cl

u
d

es
m

at
ri

ce
s

an
d

co
m

p
le

x
n

u
m

b
er

s.

D
at

a
cl

as
se

s
im

p
le

m
en

t
d

at
a

ty
p

es
;s

u
p

p
o

rt
s

m
at

ri
ce

s,
cu

st
o

m
d

at
at

yp
es

p
o

ss
ib

le
.

D
es

ig
n

sp
ee

d
R

el
at

iv
el

y
sl

ow
si

m
u

la
ti

o
n

s
(J

av
a)

.
Sm

al
lo

ve
rh

ea
d

o
n

to
p

o
f

u
se

d
si

m
u

la
to

rs
.

Fa
st

m
o

d
el

co
n

st
ru

ct
io

n
an

d
si

m
u

la
ti

o
n

.
Fa

st
m

o
d

el
co

n
st

ru
ct

io
n

,
go

o
d

si
m

u
la

ti
o

n
sp

ee
d

.
SH

E
Si

m
:s

lo
w

si
m

u
la

ti
o

n
an

d
m

o
d

el
co

n
st

ru
ct

io
n

;R
o

ta
lu

m
is

:
10

0×
fa

st
er

si
m

u
la

ti
o

n
.

P
la

tf
or

m
s

R
u

n
s

o
n

al
lp

la
tf

o
rm

s
fo

r
w

h
ic

h
a

JV
M

is
av

ai
la

b
le

.
W

in
d

ow
s

o
n

ly
.

20
-S

im
:W

in
d

ow
s;

gC
SP

:
al

lp
la

tf
o

rm
s

fo
r

w
h

ic
h

a
JV

M
is

av
ai

la
b

le
;C

T
C

+
+:

Li
n

u
x

an
d

W
in

d
ow

s;
4C

:
W

in
d

ow
s

o
n

ly
.

W
in

d
ow

s,
Li

n
u

x,
M

ac
O

S
X

,S
o

la
ri

s.
SH

E
Si

m
:W

in
d

ow
s,

Li
n

u
x,

Po
w

er
M

ac
,

H
P

U
X

,S
u

n
So

la
ri

s;
R

o
ta

lu
m

is
:W

in
d

ow
s,

Li
n

u
x;

20
-S

im
:W

in
d

ow
s.

Control Engineering

30 An integrated embedded control software design case study using Ptolemy II

6.2.4 Conclusions
From the previous section it has become clear that a wide range of methodologies for embed-
ded control software development exist, each with its own characteristics. Which methodology
and tool to choose depends heavily on the application at hand. For example, if the system un-
der development involves a lot of signal processing, Matlab/Simulink seems a good choice. If
a lot of mechatronics is involved, Matlab/Simulink is less suited and the CE-method is a bet-
ter choice because of its more extensive dynamics modeling features (e.g. bond graphs). Also,
methodology choice may depend heavily on user preference and experience with certain tool-
ing. If a designer is used to using the CE-method with 20-Sim, gCSP and CTC++, it will require
significant effort to switch to the Ptolemy method using Ptolemy II. In multi-disciplinary de-
sign projects, where each discipline is supported by its own tool(s), this will be an even greater
issue. In such a situation co-simulation becomes an attractive option.

With regard to integration, Ptolemy II, co-simulation and Matlab/Simulink show the best re-
sults. Ptolemy II and Matlab/Simulink allow the designer to perform the entire embedded
control software trajectory in a single tool (although using Matlab/Simulink might require pur-
chasing a lot of toolboxes). In co-simulation different tools are integrated by means of a co-
simulation package. The CE-toolchain and Matlab/Simulink provide the best coverage of the
complete design trajectory. In the CE-toolchain the focus in modeling is towards mechatronic
systems, while in Matlab/Simulink signal processing is more important. Ptolemy II also cov-
ers the entire design trajectory, but lacks valuable features for system dynamics modeling and
control law design. POOSL focuses on embedded software analysis and design and does not
include features for system dynamics modeling and control law design. Therefore, it is not
complete for software design for mechatronic systems. All methods use executable models for
simulation and allow automatic code generation. When taking economic factors into account,
the CE-toolchain seems an attractive option as it is low-cost, relatively mature (especially when
compared to Ptolemy and POOSL) and results in a short time-to-market. Matlab/Simulink is
the most mature method, but it is also expensive. Ptolemy II and POOSL are still very experi-
mental, which limits their use in an industrial environment. These methods should be viewed
as research projects; experiences gained there can be used to improve other embedded control
software development methods. Success of the co-simulation approach relies heavily on the
external design tools used and their interface to the co-simulation environment.

In conclusion, it can be said that there is no single methodology or tool that can be considered
superior to other methodologies and tools. Methodology and tool selection depends on many
factors including, among others, application area, user preference, user experience, maturity
and cost. However, when focusing on embedded control software development for mecha-
tronic systems, the CE-method with its corresponding toolchain is a good choice. It is a rel-
atively low-cost solution, it covers all steps in the design process and it allows a short time-
to-market. However, the CE-toolchain can still be improved, as will be discussed in the next
section. Integration between the tools in the CE-toolchain remains an issue, for which co-
simulation can provide a solution. Ultimately, tool integration should be transparent to the
user. This can be achieved by creating well-defined interfaces between tools and a graphical
user interface that combines these seperate tools. Well-defined tool interfaces also allow for
in-the-loop simulations, which can reduce the gap between model and realization.

6.3 Improving the CE-toolchain
In theory, Ptolemy II includes the essential features needed for successful embedded control
software development. However, as discussed in the previous section, using a generic tool
causes practical problems. A better design can be created when using tooling specific to the
design task at hand. However, Ptolemy II techniques can be used to improve these specific
tools. For the CE-toolchain, the following points are identified:
• Multiple Models of Computation: currently, 20-Sim supports continuous time and discrete

University of Twente

Discussion 31

time modeling. However, for efficient modeling of dynamics and controller design, more
models of computation are desirable, starting with the Finite State Machine (FSM) and Dis-
crete Event (DE) domains. In order to ensure the formal correctness of the resulting het-
erogeneous models, the Ptolemy method for combining multiple models of computation
in a single model can be used (Eker et al., 2003). Models of computation that require spe-
cialistic tools (e.g. gCSP for CSP or Modelsim for VHDL) should not be integrated. Here,
co-simulation is a better choice.

• Code generation: the code generation framework in Ptolemy II is very generic and flexible.
Its helper-based mechanism allows easy implementation of code generation for new target
languages or language variants. For example, integer-based code generation can be imple-
mented by creating an integer-based director and its corresponding code generation helper.
Currently, 20-Sim supports only floating point code generation. This is a limitation if, for
example, an FPGA-based controller is designed, as an FPGA does not support floating point
calculations natively. Using the Ptolemy II code generation framework in 20-Sim will solve
this issue and allow for future extensions.

The code generation system in gCSP can also be improved by using Ptolemy II techniques.
A gCSP model consists of an hierarchical ordering of processes, similar to the hierarchical
ordering of actors in a Ptolemy II model. For gCSP models it is also desirable to have the
capability of generating code for multiple target languages (C++ for use with the CTC++ li-
brary, CSPm for formal checking, Handel-C for FPGAs, etc.). These two properties lead to the
conclusion that the Ptolemy II code generation framework can be used in gCSP, and would
improve its code generation capabilities.

The current code generation framework in Ptolemy II supports only statically scheduled do-
mains (execution schedule determined at time of code generation). For successful code gen-
eration from all heterogeneous models the code generation framework should be extended
to include non-statically scheduled domains (domains for which the execution schedule is
determined at runtime, like CSP and DE). Helpers for all directors, as well as for remaining
actors, should be developed. This is not a straightforward task and will require extensive
testing, especially if real-time behavior is desired.

• Object orientation: Ptolemy II uses object oriented techniques in modeling. Actors can be
converted to a model class. These model classes can then be instantiated as many times as
desired or used as a base class from which other model classes are derived. This allows a de-
signer to create well-structured models in which the amount of repetitive work is minimized.
Generic model classes can also be reused easily. Incorporating object oriented modeling
techniques in the CE-toolchain will allow for a more efficient workflow.

• Extendability: Ptolemy II can easily be extended with additional functionality, because of its
object oriented software design and open source nature. Users can extend the framework to
allow modeling of systems that are not supported natively, while still gaining from the ben-
efits offered by a general modeling framework. An example of an extension to Ptolemy II for
modeling sensor networks is VisualSense (Baldwin et al., 2004). The CE-toolchain, especially
20-Sim, can also benefit from supporting these kind of extensions, as it generates a larger
userbase. 20-Sim currently supports extensions through the use of external DLLs. This fea-
ture should be extended and the documentation should be improved, so that it is easier to
use. Furthermore, the sharing of extensions for both Ptolemy II and 20-Sim should be pro-
moted by creating an online repository where users can share their work.

6.4 Conclusions
An integrated approach, tested by using Ptolemy II, solves the problems of integrated testing
and iterative design. However, a generic tool can never fully support all disciplines, which can
be a problem for specialized engineers. While there are various other methodologies and ac-
companying tool chains available, none of them can be considered superior. Optimal method-

Control Engineering

32 An integrated embedded control software design case study using Ptolemy II

ology and tool choice depends heavily on many factors, including the application domain, user
preference, user experience, maturity and cost.

A compromise between the integrated approach and the approach using a seperate tool for
each design task should be found: integrate domains used in closely related design tasks in a
single tool and use co-simulation when simulation in conjunction with other domains is re-
quired. When focusing on embedded control software development for mechatronics, the CE-
method, together with co-simulation, is a good choice. Ultimately, the integration of the tools
in the CE-toolchain should be transparent to the user. This requires well-defined tool inter-
faces, which also allow for in-the-loop simulations to further decrease the gap between model
and realization.

The CE-toolchain can be improved by using Ptolemy II techniques. More models of compu-
tation should be integrated into 20-Sim (especially FSM and DE). The Ptolemy II mechanism
for combining multiple models of computation can be used to ensure formal correctness. The
generic and flexible Ptolemy II code generation framework can be used as a basis for the 20-
Sim and gCSP code generation systems. Object oriented techniques can be incorporated into
the CE-toolchain to facilitate more efficient modeling. Finally, the Ptolemy philosophy of al-
lowing extensions made by users should be adopted by the CE-toolchain. All this will increase
the range of application areas for the CE-toolchain.

University of Twente

33

7 Conclusions and recommendations

7.1 Conclusions
Embedded systems are inherently heterogeneous. Their design involves various disciplines,
e.g. mechanics design, dynamics modeling, control engineering and software design. Increas-
ing complexity of these systems requires design tools that support these heterogeneous sys-
tems. The main issues here are integrated verification and enabling short design iterations
without manual model transformations. Both of these issues are addressed by the Ptolemy
approach.

In this project Ptolemy II was used to create embedded control software for the Production Cell
setup. Previous work on modeling system dynamics (Maljaars, 2006) and controller structure
design (van Zuijlen, 2008) was reused. The Ptolemy II model of the Production Cell setup allows
for integrated functional verification. Short design iterations can be made, as the use of a single
design tool requires no manual model transformations. The automatically generated C code
from the model can be compiled and run on the target PC/104 computer, resulting in a correctly
working Production Cell setup.

Although it is shown that correctly working embedded control software can be developed by
using a single design tool, this approach does show practical problems. A general design tool
can not satisfy all specialistic needs for each involved discipline. For example, while designing
the control software for the Production Cell setup, this became clear by the limited possibilities
for system dynamics modeling and control law design. For this reason, a compromise between
using a single tool for the entire design process and using separate tools for each design task
should be found. Integrating closely related models of computation for a design step in a single
tool (e.g. the continuous time, discrete time, finite state machine and discrete event models of
computation for control law design in 20-Sim) and using co-simulation for integrated verifica-
tion between tools is a good compromise. Ultimately, tool integration should be transparent
to the model designer. This requires well-defined interfaces between these tools and a single
graphical user interface to combine the separate tools. Well-defined tool interfaces also facili-
tate in-the-loop simulations, further decreasing the gap between model and realization.

No methodology or tool for embedded control software development can be considered supe-
rior. Methodology and tool selection depends on many factors including, among others, ap-
plication area, user preference, user experience, maturity and cost. When focusing on mecha-
tronics the CE-method with its toolchain is a good choice, although it still needs improvement.

The CE-toolchain can be improved by using Ptolemy II key features. Extending 20-Sim with
support for the Finite State Machine and Discrete Event models of computation allows the
modeling of a wider range of systems. Ptolemy techniques can be used to ensure formal cor-
rectness of the resulting heterogeneous models. Both 20-Sim and gCSP can support a wide
range of target languages and language variants by incorporating the Ptolemy II code gener-
ation framework. Object orientation principles and user extensions can further improve the
usability of the CE-toolchain.

7.2 Recommendations
At the end of this project there still remains work to be done.

First of all, the Ptolemy II Production Cell model should be extended to include the aspects
ignored in this project (e.g. dynamics of the aluminum blocks, non-linearity’s in the models
of the plant dynamics) Also, safety features, error handling and a user interface should be in-
cluded. This will result in the first truly complete model of the Production Cell system, allowing
for full integrated verification.

Control Engineering

34 An integrated embedded control software design case study using Ptolemy II

The Ptolemy II code generation framework should be extended to allow code generation for
non-statically scheduled domains. Helpers should be defined for all actors and code generation
for a specific submodel should be made possible, eliminating the need for a separate model for
code generation. These extensions will create the possibility to generate code directly from the
model used for verification, making the step from model to realization as small as possible.

Currently, physical I/O in Ptolemy II is implemented through LinkDriver actors. This makes
the model dependent on the target platform, which is undesired. This hardware dependency
can be removed by using a target connector, for example the 4C toolchain.

Finally, the suggested improvements to the CE-toolchain should be implemented. This in-
cludes implementing the Finite State Machine and Discrete Event models of computation in
20-Sim, using a Ptolemy II style code generation framework in 20-Sim and gCSP, using ob-
ject oriented techniques in modeling in 20-Sim and improving the extendability of 20-Sim and
gCSP.

University of Twente

35

A Creating a custom actor

One of the key features of Ptolemy II is its extendability. This appendix shows an example of
how to create a custom actor, both for simulation and code generation.

The instructions below assume that you have installed the Java Development Kit (JDK), which
includes the javac binary, that you have make and other tools installed, that Ptolemy II has
been installed, and that the environment variable $PTII has been set to the Ptolemy II root
directory.

A.1 A custom actor for simulation
For this example, we are going to take the Scale actor and change the default factor from one to
two. Note that this example commits a cardinal sin of software design: it copies code and makes
small changes. It would be far better to subclass the actor and make the necessary changes
using object-oriented techniques such as overriding.

1 Create a directory in which to put the new actor. It is most convenient if that directory is in
the classpath, which is most easily accomplished by putting it somewhere inside the $PTII
directory. For this example, we will assume you do:� �

cd $PTII
mkdir myActors� �

2 Create the new .java file that implements the new actor. For this example, just copy Scale.java:� �
cd myActors
cp $PTII /ptolemy/ actor / l i b / Scale . java . / Scale . java� �

3 Edit myActors/Scale.java and change:� �
package ptolemy . actor . l i b ;� �

to� �
package myActors ;� �

Finally, change the default factor from one to two. This is accomplished by changing:� �
f a c t o r . setExpression ("1") ;� �

to� �
f a c t o r . setExpression ("2") ;� �

4 Compile the actor:� �
cd $PTII /myActors
javac −classpath $PTII Scale . java� �

5 The new actor is now ready for use in Vergil (The graphical user interface for Ptolemy II). Start
Vergil:� �

" $PTII /bin/ v e r g i l "� �
6 In Vergil, click on File ⇒ New ⇒ Graph Editor
7 In the graph editor window, select from the Graph menu ‘Instantiate Entity’. In the dialog

that pops up, enter the classname for the new actor, which is ‘myActors.Scale’. An instance of
the actor will be created in the graph editor and can be used in a model.

Control Engineering

36 An integrated embedded control software design case study using Ptolemy II

More information on designing Ptolemy II actors can be found in (Bhattacharyya et al., 2007,
chapter 5).

A.2 A code generation helper for a custom actor
In order to allow code generation for the custom Scale actor created in the previous section, a
helper needs to be created. In this case a helper for the C target language is created. This helper
consists of two files: a Java file Scale.java and a C file Scale.c. Both files are located in:� �

$PTII /ptolemy/codegen/c/myActors/� �
First, create the Scale.java file:� �

1 package ptolemy . codegen . c . myActors ;
2

3 import ptolemy . codegen . c . kernel . CCodeGeneratorHelper ;
4 import ptolemy . kernel . u t i l . I l legalActionException ;
5

6 public class Scale extends CCodeGeneratorHelper {
7 public Scale (ptolemy . actor . l i b . Scale actor) {
8 super (actor) ;
9 }

10

11 public String generateFireCode () throws I l legalActionException {
12 super . generateFireCode () ;
13 ptolemy . actor . l i b . Scale actor =
14 (ptolemy . actor . l i b . Scale) getComponent () ;
15 String type = i s P r i m i t i v e (actor . input . getType ()) ? " " : "Token" ;
16 _codeStream . appendCodeBlock (type + " FireBlock " , f a l s e) ;
17 return processCode (_codeStream . toStr ing ()) ;
18 }
19 }� �

In lines 13 and 14 the specific instance of the Scale actor in the Ptolemy II model is retrieved.
This instance is used in line 15 to determine whether the operands are primitives (i.e. scalar
instead of matrix). This information is then used in line 16 to retrieve the appropriate C code for
the Scale actor. In line 17 the generated code is processed (macro’s are evaluated) and returned
to the code generation kernel.

The Scale.c file implements C code for primitive and matrix multiplication. For primitives:� �
/ * ** FireBlock ** * /
/ / primitive i s commutative .
$ref (output) = $val (f a c t o r) * $ref (input) ;
/ * * /� �

For matrices:� �
/ * ** TokenFireBlock ** * /
i f ($ref (scaleOnLeft)) {

$ref (output) = Scale_scaleOnLeft ($ref (input) , (double) $val (f a c t o r)) ;
} else {

$ref (output) = Scale_scaleOnRight ($ref (input) , (double) $val (f a c t o r)) ;
}
/ * * /� �

University of Twente

Creating a custom actor 37

The $ref macro refers to the value of a port or a parameter in the model. The $val macro
does essentially the same, but is used for ports or parameters that do not change during model
execution, and thus requires less memory. These macro’s are processed by the Ptolemy II code
generation kernel. The Scale_scaleOnLeft and Scale_scaleOnRight functions take care of
matrix multiplications:� �

1 / * ** sharedScaleOnLeftBlock ** * /
2 Token Scale_scaleOnLeft (Token input , double f a c t o r) {
3 int i ;
4 Token r e s u l t ;
5

6 i f (input . type == TYPE_Array) {
7 r e s u l t = $new(Array (input . payload . Array−>size , 0)) ;
8 for (i = 0 ; i < input . payload . Array−>s i z e ; i ++) {
9 r e s u l t . payload . Array−>elements [i] =

10 Scale_scaleOnLeft (Array_get (input , i) , f a c t o r) ;
11 }
12 return r e s u l t ;
13 } else {
14 return $tokenFunc ($new(Double (f a c t o r)) : : multiply (input)) ;
15 }
16 }
17 / * * /
18

19 / * ** sharedScaleOnRightBlock ** * /
20 Token Scale_scaleOnRight (Token input , double f a c t o r) {
21 int i ;
22 Token r e s u l t ;
23

24 i f (input . type == TYPE_Array) {
25 r e s u l t = $new(Array (input . payload . Array−>size , 0)) ;
26 for (i = 0 ; i < input . payload . Array−>s i z e ; i ++) {
27 r e s u l t . payload . Array−>elements [i] =
28 Scale_scaleOnRight (Array_get (input , i) , f a c t o r) ;
29 }
30 return r e s u l t ;
31 } else {
32 return $tokenFunc (input : : multiply ($new(Double (f a c t o r)))) ;
33 }
34 }
35 / * * /� �

After creation of both the Scale.java and Scale.c files the helper can be compiled:� �
cd $PTII /ptolemy/codegen/c/myActors/
javac −classpath $PTII Scale . java� �

C code can now be generated for the custom Scale actor.

Control Engineering

38 An integrated embedded control software design case study using Ptolemy II

B Simulation results

This appendix shows the simulation results obtained in loop controller verification for the
feeder belt, the feeder, the molder and the extraction robot.

(a) Feeder belt (b) Feeder

(c) Molder (d) Extraction robot

University of Twente

39

C Creating an AVI file from a 3D animation

Ptolemy II does not support the playback of an animation at a speed corresponding to reality.
For this reason, and for archiving and presentations, a feature for exporting animations from
Ptolemy II is desirable. In this project a simple version of such a feature is implemented. It
works by saving each nth frame to a jpeg file. An external utility, mencoder, is then used to
combine these jpeg files into an avi file.

In Ptolemy II the ViewScreen3D actor is used to display a window with the 3D animation. This
actor was modified to save the jpeg files. The code for the ViewScreen3D actor can be found in:� �
$PTII /ptolemy/domains/ gr / l i b /ViewScreen3D . java� �
The environment variable $PTII should be set to the directory of your Ptolemy II installation.

The following code is added at the end of the fire() function of the ViewScreen3D actor:� �
1 i f (_counter % 40 == 0) / / export every nth frame
2 {
3 GraphicsContext3D context = _canvas . getGraphicsContext3D () ;
4 Raster r a s t e r = new Raster (
5 new Point3f (0 f , 0 f , 0 f) ,
6 javax . media . j3d . Raster .RASTER_COLOR,
7 0 ,
8 0 ,
9 _getHorizontalPixels () ,

10 _ g e t V e r t i c a l P i x e l s () ,
11 new ImageComponent2D(
12 javax . media . j3d . ImageComponent2D .FORMAT_RGB,
13 getHorizontalPixels () , _ g e t V e r t i c a l P i x e l s ()) ,
14 null) ;
15 context . readRaster (r a s t e r) ;
16 BufferedImage image = r a s t e r . getImage () . getImage () ;
17 try {
18 / / Create filenames of 8 numbers , f o r e a s i e r use with mencoder
19 String number = Integer . toStr ing (_framecounter) ;
20 String zero = new String ("0") ;
21 int s t r l e n = number . length () ;
22 int desiredlength = 8 ;
23 for (int length = s t r l e n ; length <=desiredlength ; length ++)
24 {
25 number = zero . concat (number) ;
26 }
27 / / Path to save the jpeg f i l e s to
28 ImageIO . write (
29 image ,
30 " jpg " ,
31 new F i l e (" /Users/ kees / ProductionCell / jpegs / "+number+" . jpg ")) ;
32 _framecounter = _framecounter + 1 ;
33 } catch (Exception e) { }
34 }
35 _counter = _counter + 1 ;� �

Control Engineering

40 An integrated embedded control software design case study using Ptolemy II

Two important parameters are hardcoded in this file:
• line 1: this number should be set to the ratio of the sampling frequency and the desired fram-

erate of the AVI file. In this example the sampling frequency is 1000Hz and the desired fram-
erate of the AVI file is 25 frames per second: 1000

25 = 40;
• line 31: the path to where the jpeg files are saved. The jpeg files are sequentially numbered

with eight digit numbers, e.g. 00000001.jpg, 00000002.jpg, 00000003.jpg, etc.
After modifying the ViewScreen3D.java file, it should be recompiled:� �
cd $PTII /ptolemy/domains/ gr / l i b /ViewScreen3D . java
javac −classpath $PTII ViewScreen3D . java� �
Now, when running a Ptolemy II model with a ViewScreen3D actor, jpeg files will be saved to
the directory specified in the ViewScreen3D.java file. These files can then be combined into
an AVI file by using mencoder, an open source video utility:� �
mencoder "mf : / / * . jpg " −mf fps =25 −o animation . avi −ovc lavc \

−lavcopts vcodec=msmpeg4v2 : v b i t r a t e =1600� �
The fps parameter indicates the framerate of the target AVI file. This framerate should be set
according to the ratio calculated for the ViewScreen3D.java file. In this case animation.avi
is used as an output file.

University of Twente

41

Bibliography

Baldwin, P., S. Hohli, E. A. Lee, X. Liu and Y. Zhao (2004), Modeling of sensor nets in Ptolemy II,
in Proceedings of the third international symposium on information processing in sensor net-
works, ACM, New York, USA, pp. 359–368.

van den Berg, L. (2006), Design of a Production Cell Setup, Technical Report 016CE2006, Uni-
versity of Twente.

Bhattacharyya, S. S., C. Brooks, E. Cheong, J. Davis, M. Goel, B. Kienhuis, E. A. Lee, M.-K. Leung,
J. Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, B. Vogel, W. Williams,
Y. Xiong, Y. Zhao, H. Zheng and G. Zhou (2007), Heterogeneous Concurrent Modeling and
Design in Java (Volume 1: Introduction to Ptolemy II), Electrical Engineering and Computer
Sciences, University of California at Berkeley.

Broenink, J. F. and G. H. Hilderink (2001), A structured approach to embedded control systems
implementation, in IEEE International Conference on Control Applications, Eds. M. Spong,
D. Repperger and J. Zannatha, México City, México, pp. 761–766.

Broenink, J. F., J. Voeten, J. van Amerongen and H. Corporaal (2005), ViewCorrect: Predictable
Co-Design for distributed embedded mechatronic control systems, URL http://www.ce.
utwente.nl/ViewCorrect/.

Brooks, C., E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao and H. Zheng (2007), Heterogeneous Con-
current Modeling and Design in Java (Volume 3: Ptolemy II Domains), Electrical Engineering
and Computer Sciences, University of California at Berkeley.

Controllab Products B.V. (2008), 20-Sim, URL http://www.20sim.com/.

Corporaal, H. (2006), Embedded system design, in PROGRESS White Papers 2006, Ed. F. Karelse,
Technologiestichting STW, pp. 7–27.

Damstra, A. (2008), Virtual prototyping through co-simulation in hardware/software and
mechatronics co-design, Technical Report 005CE2008, University of Twente.

Dumont, P. and P. Boulet (2005), Another Multidimensional Synchronous Dataflow: Simulating
Array-OL in Ptolemy II, Technical report, Université des Sciences et Technologies de Lille.

Eker, J., J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs and Y. Xiong
(2008), The Ptolemy Project, URL http://ptolemy.eecs.berkeley.edu/index.html.

Eker, J., J. W. Janneck, E. A. Lee, J. Lui, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs and Y. Xiong
(2003), Taming Heterogeneity - The Ptolemy Approach, in Proceedings of the IEEE, volume 91,
volume 91, pp. 127–144.

Heemels, M. and G. Muller (Eds.) (2006), Boderc: Model-based design of high-tech systems, Em-
bedded Systems Institute, Eindhoven, The Netherlands.

Hoare, C. (1985), Communicating Sequential Processes, Prentice Hall International.

Huang, J., J. Voeten, M. Groothuis, J. Broenink and H. Corporaal (2007), A model-driven design
approach for mechatronic systems, in Seventh International Conference on Application of
Concurrency to System Design, pp. 127–136.

Jones, N. D., C. K. Gomard and P. Sestoft (1993), Partial evaluation and automatic program
generation, Prentice Hall International.

Control Engineering

http://www.ce.utwente.nl/ViewCorrect/
http://www.ce.utwente.nl/ViewCorrect/
http://www.20sim.com/
http://ptolemy.eecs.berkeley.edu/index.html

42 An integrated embedded control software design case study using Ptolemy II

Jovanovic, D. S., B. Orlic, G. K. Liet and J. F. Broenink (2004), gCSP: A graphical tool for design-
ing CSP systems, in Communicating Process Architectures, Eds. I. East, J. Martin, P. Welch,
D. Duce and M. Green.

Kienhuis, B., E. Rijpkema and E. Deprettere (2000), Compaan: Deriving Process Networks from
Matlab for Embedded Signal Processing Architectures, in Hardware/Software co-design, Pro-
ceedings of the Eighth International Workshop on, pp. 13–17.

Maljaars, P. (2006), Controllers for the Production Cell Set Up, Technical Report 039CE2006,
University of Twente.

Martin, T., M. Jones, J. Edmison and R. Shenoy (2003), Towards a design framework for wear-
able electronic textiles, in Wearable computers, Proceedings of the Seventh IEEE International
Symposium on, Virginia Tech, pp. 190–199.

The Mathworks (2008), Matlab/Simulink, URL http://www.mathworks.com/.

Visser, P., M. Groothuis and J. Broenink (2007), Multi-purpose toolchain for embedded control
system code on a variety of targets, Technical report, University of Twente.

van Zuijlen, J. (2008), Control of the Production cell using Handel-C, Technical Report
008CE2008, University of Twente.

University of Twente

http://www.mathworks.com/

	Preface
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Project context
	1.3 Assignment approach
	1.4 Report outline

	2 Background
	2.1 Ptolemy II
	2.2 The production cell setup
	2.3 Conclusions

	3 Feasibility analysis of Ptolemy II as an ECS development platform
	3.1 Dynamic plant modeling
	3.2 Control law design
	3.3 Embedded system implementation
	3.4 Realization
	3.5 Results
	3.6 Conclusions

	4 Design of the Production Cell model in Ptolemy II
	4.1 Design considerations
	4.2 Top-level model structure
	4.3 Controller model
	4.4 Plant model
	4.5 Block model
	4.6 Conclusions

	5 Results
	5.1 Loop controller verification
	5.2 Functional verification
	5.3 Realization

	6 Discussion
	6.1 Integrated approach
	6.2 Other methods and tools
	6.3 Improving the CE-toolchain
	6.4 Conclusions

	7 Conclusions and recommendations
	7.1 Conclusions
	7.2 Recommendations

	A Creating a custom actor
	A.1 A custom actor for simulation
	A.2 A code generation helper for a custom actor

	B Simulation results
	C Creating an AVI file from a 3D animation
	Bibliography

