
Faculty of Electrical Engineering, Mathematics and Computer Science,
Formal Methods and Tools (fmt),

University of Twente

Master’s thesis

Optimising Techniques for
Model Checkers

by
Viet Yen Nguyen

December, 2007

Committee:
dr. ir. T.C. Ruys (Principal supervisor)
dr. ir. A. Rensink
prof. dr. ir. J.P. Katoen

Abstract

The Mono Model Checker (MMC) is a software model checker that can
verify whether a .NET program contains assertion violations or deadlocks.
It was developed as part of a Master’s project by [1]. Much of its design was
inspired by Java PathFinder, a software model checker for Java programs.
This thesis is the result of the follow-up Master’s project on MMC. The
goal during this project was to improve MMC’s ability to verify models
with larger state spaces.

Enhancements have been added in all areas. For improving MMC’s per-
formance, both partial order reduction (POR) using object escape analysis
and stateful dynamic POR have been added. These techniques reduce the
size of a model’s state space, and hence reduce the time and memory needed
for its verification. For improving MMC’s usefulness, .NET’s exception han-
dling has been fully implemented, more instructions have been added for in-
creased .NET compliance and a comprehensive testing framework has been
created. The latter employs Microsoft’s own .NET virtual machine testing
suite and has revealed numerous bugs. For improving MMC’s usability, an
error tracer has been added. It shows the sequence of instructions leading to
the assertion violation or deadlock. This improves the user’s understanding
of detected errors.

Besides improving MMC with known techniques, during the course of
this Master’s project, three new techniques were developed that effectively
decrease both time and memory needed for verifying a model. To decrease
memory use, a collapsing scheme has been developed for collapsing the meta-
data used by a stateful dynamic POR. The reduction of memory is more
than a factor of two. To decrease the verification time, a Memoised Garbage
Collector has been developed. It has a lower time-complexity than the of-
ten used Mark & Sweep garbage collector. Its main idea is that it only
traverses changed parts of the heap instead of the full heap. The average
time reduction is between 9% and 26%, depending on the model that is
verified. The third technique is called incremental hashing, which also has
a lower time-complexity. The key notion in this hashing scheme is that a
hashcode of an array is recalculated using the old hashcode and the changes
to the array. Though this technique was originally developed for MMC, we
implemented in Spin, because the stake of hashing in MMC is near zero.

i

ii

Experiments with the BEEM benchmarks showed up to 20% reduction in
time when compared against Jenkins’s hash function, which is an often used
hash function in model checking due to its good uniformity.

We also benchmarked MMC against JPF and Bandera using the Java
Grande Benchmark models. The results indicate that MMC is faster in
terms of states per second, but JPF is more effective in reducing the state
space. Bandera is on all fronts no match for MMC and JPF, as it is outper-
formed in every benchmark.

Preface

My interest in model checking began during the course “Concurrent and Dis-
tributed Programming”, where I learnt about formal modal logic. I found its
application in model checking fascinating, because the act of model check-
ing forces one to resort to such logic. The enormous size of a model’s state
space is just not comprehensible without it. Besides this, model checking
is also interesting for its usefulness. It helps us to spot errors in systems
on which we are dependent for our well-being, like flight-controllers, energy-
transportation, etc. It is important that these systems never malfunction,
especially not from errors that are preventable, like design or implementa-
tion errors.

I learnt most of the principles of model checking from Theo Ruys. His en-
thusiasm for it is infectious. Theo also lectured me on many other computer
science topics. His attitude for valuing technical merit has always suited
me. Theo also showed me the value of good external support. Around the
beginning of this project, a heavy injury deprived me of my drive. Theo
nonetheless forced me to make initial progress on MMC. The hopeful re-
sults from it gave me the energy to speed up my recovery and to make more
progress on MMC. I am grateful for his support and stimulating guidance
at a time I needed it most.

I also thank Boudewijn Haverkort and Matthias Kuntz from the DACS
research group for providing me access to their Linux cluster, which speeded
up my experiments greatly. I also thank Henk van de Zandschulp from the
EWI system administration group for his flexibility of running a second
batch of experiments on a Windows cluster too many times. Also, I thank
YourKit and Red Gate Software, for providing academic licenses of their
.NET profilers, which helped me improve the speed of MMC a lot. I also
thank Niels Aan de Brugh for sparring initial ideas on MMC. Last, but not
least, I also thank Choong Wei Tjeng for the little moral support during our
daily early morning chats.

Viet Yen Nguyen
Enschede, December 2007

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Model Checking . 2

1.2.1 Classical Model Checking 3
1.2.2 Techniques for Effective Model Checking 5
1.2.3 Software Model Checking 7

1.3 Mono Model Checker . 8
1.4 Java Grande Benchmarks . 9
1.5 Organisation of this Thesis 11

2 Concurrent Software Semantics 13
2.1 Model Definition . 13
2.2 Model Semantics . 14
2.3 Object Graph Semantics . 15

3 Improving the Mono Model Checker 17
3.1 Overview of Improvements . 17
3.2 Redesigned Explorer . 18

3.2.1 Definitions . 18
3.2.2 Algorithm . 18

3.3 Partial Order Reduction . 20
3.3.1 Definitions . 21
3.3.2 Object Escape Analysis 22
3.3.3 Dynamically Tracked Dependencies 25
3.3.4 Combining the two POR techniques 27
3.3.5 Experimental Evaluation 27

3.4 Filter-based Exception Handling 31
3.4.1 Structured Exception Handling 31
3.4.2 Architecture . 33

3.5 Testing Framework . 36
3.6 Error Tracing . 38
3.7 Faster ChangingIntVector . 39
3.8 Resource Optimisation and Limitation 40

v

vi CONTENTS

3.9 Future Work . 41
3.10 Conclusions . 44

4 Collapsing Interleaving Information 45
4.1 Related Work . 45

4.1.1 Stateful Dynamic Partial Order Reduction 45
4.1.2 Structured State Collapsion 46

4.2 Implementation . 46
4.2.1 Statefulness Extension 47
4.2.2 SII organisation . 48
4.2.3 SII collapsion scheme 49

4.3 Experimental Evaluation . 50
4.4 Future Work . 52
4.5 Conclusions . 53

5 Memoised Garbage Collection 55
5.1 Purpose of Garbage Collection 55
5.2 Related Work . 56
5.3 Algorithm . 59
5.4 Implementation Details . 59
5.5 Experimental Evaluation . 61
5.6 Future Work . 63
5.7 Conclusions . 66

6 Incremental Hashing 67
6.1 Use of Hashcodes in Model Checking 67
6.2 Related Work . 68
6.3 Incremental Hashing Function 70
6.4 Implementation . 71
6.5 Experimental Method . 72

6.5.1 Mono Model Checker 72
6.5.2 Spin . 72

6.6 Results and Discussion . 74
6.7 Future Work . 80
6.8 Conclusions . 82

7 Comparative Analysis 83
7.1 Competition . 83
7.2 Benchmark Setup . 84
7.3 Results . 85
7.4 Future Work . 88
7.5 Conclusions . 89

CONTENTS vii

8 Conclusions 91
8.1 Summary . 91
8.2 Future Work . 93
8.3 Development Process . 94

A Tactics for Debugging Model Checkers 101
A.1 Slice the Model . 101
A.2 Debugging Facilities . 101
A.3 Tactics . 103
A.4 Profiling . 105
A.5 Conclusions . 106

List of Figures

3.1 Expressing filter-handlers in VisualBasic.NET. 32
3.2 Expressing filter-handlers in Java. 32
3.3 Global overview of structured exception handling. 33
3.4 Flow diagram of exception handling mode. 35
3.5 Flow diagram of finalising mode. 36
3.6 Modelling inherited fields. 38
3.7 Trace snippet to an assertion violation. 39
3.8 Improved ChangingIntVector. 40

4.1 SII organisation and collapsion. 49

6.1 Profiler data of BEEM benchmarks compiled with -O0. . . . 78
6.2 Profiler data of BEEM benchmarks compiled with -O3. . . . 79
6.3 Performance gain plotted against state vector size. 80

A.1 Setting a breakpoint. 102
A.2 Watch window upon a breakpoint. 102
A.3 An example state space visualised by GraphViz’s dot. 104

ix

List of Tables

1.1 Metrics of the MolDyn en RayTracer benchmarks. 10

3.1 Metrics of MMC 0.5 set against MMC 1.0. 17
3.2 Partial order reduction results with MolDyn. 29
3.3 Partial order reduction results with RayTracer. 30

4.1 SII collapser results with MolDyn. 50
4.2 SII collapser results with RayTracer. 51

5.1 Mark & Sweep against Memoised with MolDyn. 62
5.2 Mark & Sweep against Memoised with Raytracer. 62

6.1 BEEM results with Jenkins versus incremental hash function. 77

7.1 MMC against JPF and Bandera with MolDyn benchmark. . . 85
7.2 MMC against JPF and Bandera with RayTracer benchmark. 86

xi

List of Algorithms

1 Explore(s0) . 4
2 Explorer() . 19
3 MarkThreadSharedObjects . 23
4 SetAttribute(o, p) . 23
5 OnNewState(s) . 26
6 ExpandSelectedSet(F , tid) . 26
7 ThreadPicked(s, t) . 26
8 Backtracked(s) . 27
9 OnSeenState(s) . 27
10 HandlerLookup() . 34
11 FinallyOrFaultLookup(m) . 34
12 OnSeenState(s) . 47
13 Backtracked(s) . 48
14 RamalingamReps() . 57
15 MemoisedGC(s, s′) . 59
16 CheckConsistency(U , s′) . 60

xiii

List of Abbreviations

abbreviation word or phrase
API Application Programming Interface
BEEM BEnchmarks for Explicit Model checkers
BVT Base Verification Tests
CIL Common Instruction Language
CLI Common Language Infrastructure
coll. collision
collrate. collision rate
config. configuration
GC Garbage Collecter
GF Galois Field
II Interleaving Information
inc. incremental
Jen. Jenkins
JGF Java Grande Forum
JPF Java PathFinder
LFCS Labelled Formal Concurrent System
LTS Labelled Transition System
MMC Mono Model Checker
MolDyn Molecular Dynamics
POR Partial Order Reduction
P-E Partial Order Reduction using object Escape analysis
P-D Dynamic Partial Order Reduction
P-C Combined Partial Order Reduction
OBDD Ordered Binary Decision Diagram
obj. object
rhs-value right hand side value
SEH Structured Exception Handling
SII Summarised Interleaving Information
sv. state vector
VM Virtual Machine
VS2005 Microsoft Visual Studio 2005

xv

Chapter 1

Introduction

1.1 Motivation

We heavily depend on automated systems for our most basic needs, like the
energy-supply, monetary infrastructures and transportation safety systems.
It is of great importance to ensure these systems keep running correctly. Any
failure should be prevented beforehand. This requires extensive testing. Tra-
ditionally, systems are tested using sample testing. A sample test describes
a scenario and then the system is checked whether it behaves correctly in
that scenario. This kind of testing is simple, but is often incomplete. This
is especially true for complex systems which may have many behaviours in
many scenario’s. Creating tests for them all is tedious. That is why software
verification methods are preferred.

Contrary to sample testing, software verification methods are employed
to verify whether a system works under all specified circumstances. This
is especially challenging with concurrent systems, which prevalence is in-
creasing as the current trend is to increase computer power by increasing
concurrency. However, concurrent systems are also notoriously difficult to
design well. The difficulty lies in the amount of behaviours of a concurrent
system. Processes that comprise a concurrent program occur in parallel,
and these processes influence and interact with each other. This causes a
combinatorial explosion of its possible behaviours. For concurrent programs
performing crucial functions, we want to be sure that all possible behaviours
are those we desire.

An important part of the verification process is to express what is de-
sired behaviour. This is captured by defining its correctness properties. An
example property is that the program should never crash, or that it is al-
ways operational within 10 seconds after a power-failure. The collection of
correctness properties is called the specification. To ensure that a concur-
rent program lives up to its specification, we want to verify each possible
behaviour against the specification.

1

2 CHAPTER 1. INTRODUCTION

There are two approaches to do this, namely theorem proving and model
checking. Theorem proving expresses both the specification and the con-
current program in formula. Logic is then applied to deduce whether the
formula of the concurrent program are always equivalent to the formula in
the specification. Theorem proving is often done manually and is therefore
prone to errors. Furthermore, the process is slow and does not scale well
with increasing system complexity.

Model checking on the other hand systematically explores all states a
concurrent program can be in. This is often implemented as an automated
process. The behaviour is defined as the whole of reachable states, called
the state space. The model checker then verifies each state against the
specification for correctness. Model checkers have been successfully used for
the verification of industrial sized systems. For example, the Spin model
checker has been used to verify the correctness of an important Dutch flood
control barrier [59]. The same model checker has also been used for the ver-
ification of an enterprise-scaled phone switch by Lucent Technologies [34].
Another model checker, Java PathFinder, has been used to verify a pro-
totype of NASA’s Mars Rover [62]. In all these cases, errors have been
uncovered which were unnoticed by traditional testing methods. The main
limit of model checking is the size of the state space, which correlates with
the complexity of the program to be verified. The complexity of a program
increases with the amount of components in a concurrent program and the
size of each component. It is this increasing complexity that makes effective
model checking challenging.

This challenge is the main motivation for this Master’s thesis. Con-
cretely, the research goal as set during this Master’s final project is as fol-
lows:

Research goal: Engineer techniques that make model checkers
significantly more effective in verifying larger concurrent systems

The result are three new techniques, namely Memoised Garbage Collec-
tion (see §5), Collapsion of Interleaving Information (see §4) and Incremen-
tal Hashing (see §6). Experiments conducted with these techniques support
our findings and their usefulness. Besides these techniques, several existing
techniques were implemented for improving our testbed model checker, the
Mono Model Checker (see §3).

1.2 Model Checking

This section introduces the background of model checking. It first starts
with the classical model checking approach, followed by a list of techniques
for effective model checking and concludes with an introduction to software
model checking.

1.2. MODEL CHECKING 3

1.2.1 Classical Model Checking

The practise of classic model checking is a three-phased process consisting
of modelling, specification and verification:

Modelling Traditionally, systems have been difficult to verify due to lim-
itations on time and memory. Therefore a model is derived from the system
as a representative that is verified instead. The derivation can be done au-
tomatically or manually. A good model abstracts from irrelevant or unim-
portant details of the system.

A variety of model specification languages have been created that all
have mutual advantages and disadvantages. It is out of the scope of this
thesis to further discuss this in detail. In general, all existing model speci-
fication languages support a form of composition of concurrent components
and means for interaction between those components. Yet, the expressive-
ness of a model specification language is limited when compared to ordinary
programming languages because their semantics are closely tied to the math-
ematical models used by the verification algorithms [14].

Well-known model specification languages are Promela [33], famed for
protocol verification, SMV [46], suitable for specifying hardware models and
BIR [55], suitable for specifying object-oriented software.

Specification The specification states the correctness properties that a
system must satisfy. There are two types of correctness properties, namely
safety and liveness properties. Safety properties must always be true. Exam-
ples are “the system never deadlocks” or “the variable x is always between
0 and 42”. Liveness properties must eventually be true (where the present
is included is eventually) [8], like for example “on a stoplight, a red green is
eventually followed by the yellow light”.

For correctness properties to be applicable for automatic verification,
they ought to be expressed in an unambiguous way rather than in natural
language like in the provided examples. Notable approaches for expressing
them are by assertions, like “0 ≤ x ≤ 42” or by more powerful temporal
logic formulae. The latter can express a particular ordering of events without
explicitly introducing time. Linear Temporal Logic (LTL) and Computation
Tree Logic (CTL) are the most prominent temporal logics. The interested
reader is referred to [35] for an in-depth treatment on LTL and CTL.

Verification Several verification methods exist for checking whether the
model satisfies the specification. The preferred method is by using automatic
verification algorithms, as they require little to no manual interference. A
global overview of such an algorithm is shown in algorithm 1. This algorithm
starts with the initial state s0, and then recursively explores its successors
states by following the transitions possible by the system in that state s, i.e.,

4 CHAPTER 1. INTRODUCTION

the Enabled(s). States that have been visited are matched by M and do not
have to be explored further. The result of this algorithm is a graph, called
the state space, which is a representation of the behaviour of the verified
system.

Algorithm 1: Explore(s0)
Data: backtrack stack B, state matcher M

push s0 on B

while B is not empty do
s← popped element from B

if s is not matched by M then
update M such that it matches s

foreach transition t from Enabled(s) do
s′ ← the successor state of s by exploring t
push s on B

Two methods exist for encoding the state space, namely symbolically
or explicitly. A state in symbolic state spaces represents a set of states.
The symbolic representation tends to work out well for hardware circuits
and protocols, as they often contain regularities which can be nicely cap-
tured symbolically [19]. Our focus is on explicit state model checking. In
explicit state spaces, each state is represented individually. The drawback
of purely explicit state model checking is that explicit states spaces ex-
plode even more in open systems, i.e., systems with interaction with the
environment. Hybrid symbolic-explicit approaches have recently emerged
in software model checking as the symbolic representation better suits the
information retrieved from and sent to the environment [50].

The state space can be traversed in several ways. Depth-first search is
usually the traversal order of choice because state spaces tend to be broad
and deep, on which depth-first search is a resource-efficient traversal or-
der. Algorithm 1 does a depth-first search as well. However, in some cases
breadth-first search might be more effective because correctness properties
might be dissatisfied “early” in the state space. Another traversal approach
is the directed one. Directed strategies determine the order of traversal by
heuristics meant to find dissatisfied correctness properties sooner [27].

When the search leads to a dissatisfied correctness property, a proof of it
aids the user to locate the error. In model checking, such a proof is an error
trace. An error trace is one run of the model that leads to the dissatisfied
correctness property condition.

Tools for verification are Spin [33], an explicit state model checker that
uses the Promela language, NuSMV [11], a symbolic model checker that
uses the SMV language and Bogor [55], a hybrid model checker that uses

1.2. MODEL CHECKING 5

the BIR language, Java PathFinder, a model checker for Java and Groove,
a graph transformation tool that is also usable as a model checker for model
checking models represented as graphs and graph transformations[41].

1.2.2 Techniques for Effective Model Checking

Early model checkers were only capable of verifying small systems due to
limitations of available computing resources at that time. This drove re-
searchers to develop techniques allowing model checkers to verify larger sys-
tems without added computing resources. These techniques are categorised
into performance improvements, reduction methods, approximative meth-
ods. Many of these techniques can be applied orthogonal on each other.

Performance Improvements The category of performance improvements
contain techniques that improve the performance of the model checker by
employing more efficient algorithms that either or both reduce time and
memory usage.

In a typical search, the explorer (see algorithm 1) encounters states that
it has seen before. This is because different runs of a concurrent system may
lead to the same state. Exploration of its successors is not necessary, as these
have already been visited. A state matcher is used to check whether a state
has already been visited or not [23]. An usually used datastructure for a
state matcher is a hashtable of visited states. Another approach to match
states is using a state recogniser, like the minimised automata approach
by [32]. Instead of storing a state individually, an automaton is built that
recognises the seen states. Upon exploration of a new state, the automaton
is updated such that it becomes recognisable.

Related to state matching using hashtables is state caching. It is a
memory management technique that stores states to a certain threshold,
like the available amount of memory. If that threshold is reached, older
states, like those not on the backtrack stack, are freed from the cache. With
state caching, the search risks to revisit already visited states, however the
chance is less compared to statelessness [23].

State compression encompasses all techniques applied to reduce the size
of individual states. Huffman encoding is for example used by [29] to reduce
the size of a state represented by a bitvector. Another example that is
combinable with Huffman encoding is state collapsion. This compression
approach exploits the observation that a single transition only results to
a small change between successive states. A greater part of the state is
left unchanged. Hence, in a state space, states tend to share large parts of
values. This observation can be put to an advantage by collapsing those
parts, and store a reference to the collapsed part instead. This way, shared
components are only stored once, thereby reducing memory [29].

6 CHAPTER 1. INTRODUCTION

Concurrent verification techniques exploit multi-processor systems by
having the state space explored by concurrent explorers [31]. The best
results have been delivered when each explorer explores a non-overlapped
partition of the state space [22]. Similar to concurrent verification is dis-
tributed verification. Whereas concurrent verification techniques share the
same memory, hence also the same state storage in case state matching is
used, distributed techniques explore the state space over processing nodes
which each have their non-shared memory. In practise, distributed tech-
niques are applied over computers connected by a computer network.

Reduction Methods Reduction methods reduce the size of model’s state
space while ensuring that the verification results remain formally correct.
Reduction methods also lead to increased performance.

Partial order reduction is the primary optimisation technique for model
checking. Central to partial order reduction is the notion of dependent and
independent actions (more about this in §3.3.2, 3.3.3 and §4). Independent
actions are actions that do not affect other concurrent processes. Yet they
incur interleavings (i.e., paths) in the state space which are not interest-
ing (with respect to the specification) to explore. Partial order reduction
techniques detect independent actions and defer their exploration until all
dependent actions are explored, thereby reducing the size of the state space.

Thread symmetry reduction (also known as process symmetry reduction)
techniques detect threads that are different by their process identifier and
not by their semantics. Not all actions induced by symmetric threads in
a particular state need to be explored. Only one of them suffices. The
degree of exploitation of thread symmetries is inherent to the model [54].
The dining philosophers model is academically well known to be massively
reducible by thread symmetry reduction.

Heap symmetry reduction techniques detect heaps that are semantically
equivalent. They are useful in verification of dynamic memory systems,
where a heap (or some other dynamic memory structure) is used by the
model. In case of pointerless object-oriented systems, the reduction is pos-
sible because the index of an object on the heap does not matter, but it
matters how objects are referenced. By mapping out all object references,
one gets an object graph and heaps with the same object graph shape can
be considered semantically equivalent, even though objects are differently
indexed in the array. Heap symmetry reduction is achieved by canonicali-
sation of the heap, and use the canonicalised representation for storage and
matching [54, 43].

Program slicing techniques reduces the model and therefore its state
space. This exploits the observation that parts of the model may not be
interesting for the behaviour to be verified. They can be sliced away. The
resulting model is then verified instead. Usually the specification is used for
determining the slicable parts [14].

1.2. MODEL CHECKING 7

Approximative Methods Contrary to exhaustive methods of model check-
ing, approximative methods speed up the verification process by applying
techniques that may cause the model checker to miss parts of the state
space. Two well known approximative techniques are bitstate hashing and
hash compaction.

Bitstate hashing is a form of state matching where states are not ex-
plicitly stored, but their position in the hashtable is flagged by a boolean.
Upon a collision, the assumption is made that the current state is already
seen. This is not certain, as the current state cannot be matched using
byte-for-byte equivalence. That is why bitstate hashing is approximative.
An optimisation of bitstate hashing is k-fold bitstate hashing, where k in-
dependent hashfunctions are used to flag the bits in k hashtables. A state
collides if its hashcodes all return indices that are already flagged [30].

Hash compaction [65] is a technique that is closely related to bitstate
hashing. Two independent hashfunctions are used. One is used for cal-
culation of the position in the hashtable. The second is used to derive a
compacted hash that is representative for the state in question. It is then
stored at the position determined using the first hash. A state is matched if
both the position and the compacted hashes are equivalent. This technique
is approximative because while the compacted hashes may be equivalent,
their states from which they are derived might not [42].

1.2.3 Software Model Checking

Model checking was deemed inadequate for verification of software appli-
cations due to the high level of detail found it. In the past decade, the
development of effective techniques as described in §1.2.2 and advances in
hardware led industry and academia to study and develop software model
checkers, where the software is the model itself.

The foremost advantage of software model checkers is that there is no
need to manually create a model of the system. Faults not existing in the
system tend to slip in easily through the abstraction process. Also, creating
a model that contains all interested behaviour of the system has proved to
be difficult. Thirdly, a correctly verified model does not implicitly mean that
the system satisfies the specification. That is why classic model checkers has
proved to verify designs with success, whereas software model checkers can
be employed to verify implementations.

A disadvantage of software model checkers is the on average larger state
size due to the high level of detail found in systems. Also, software model
checkers need to cope with dynamic allocations and complex datastructures.
These are abstracted away in classic model checking. Another disadvantage
is that most of the actions that systems can do are independent. Partial
order reduction is therefore a necessity to deal with state space explosion.
A third disadvantage is that systems are rarely closed systems. A software

8 CHAPTER 1. INTRODUCTION

model checker either deals with that, or limits the set of verifiable systems
to the set of closed systems.

Most techniques outline in §1.2.2 are effective and, with some modifi-
cation, applicable to software model checkers. Besides those, through ob-
servations of the early software model checkers, researchers identified issues
and optimisation opportunities that are specific to software model checkers.
Heap symmetry reduction is for example one of them. The Java PathFinder
team identified that for their heap canonicalisation technique, garbage collec-
tion is needed. They also developed backtracking optimisations by creating
a delta (like a patch) between collapsed states on the backtrack, and upon
backtracking, only restore the delta instead of the whole collapsed state [43].
Both [18] and [43] observed the use of object escape analysis for detecting
independent actions for driving partial order reduction. In [21], a partial
order reduction method called dynamic partial order reduction is described
that further reduces the state space upon previous partial order reduction
methods.

To name a handful of existing software model checkers, like Java Path-
Finder [61], for the verification of Java programs, Bandera [14], which can
also verify Java programs and StEAM [44], for the verification of C and
C++ programs.

1.3 Mono Model Checker

The first version of the Mono Model Checker (MMC) was developed as
part of a Master’s thesis at the University of Twente. Its development was
initiated to gain experience with designing and implementing a software
model checker and to provide an inhouse sandbox for further research. The
result was a competitive software model checker that is performance wise on
par with today’s software model checkers [1]. We further improved MMC
and used it as testbed for the techniques developed for this Master’s thesis.

MMC verifies Common Intermediate Language (CIL) assemblies, better
known as .NET programs. The CIL and its semantics are the core of the
Common Language Infrastructure (CLI), better known as .NET. The CLI
is standardised under ECMA 335 and ISO/IEC 23271:2006. It is designed
to be language-agnostic and today, many variants on many languages as C,
C#, C++, Java, Visual Basic, Prolog, Python and Ruby have been created
that compile to CIL. Principally, MMC can model check them all, although
only C# programs have been used in tests so far.

CLI is creation of Microsoft, but its specification is open and others are
free to implement it themselves. A group of open source programmers or-
ganised the Mono project to provide an free and open source implementation
of CLI [15]. Although the CIL is designed as such that CIL programs are
exchangeable with different implementations of CIL, the internals of Mono’s

1.4. JAVA GRANDE BENCHMARKS 9

virtual machine differ from Microsoft’s implementation in such a way that
their class libraries are completely different, although they share same the
API. MMC mimics the semantics of Mono’s implementation because their
internal calls semantics were easily determined by reading the source code.

To prove that the CLI is platform-independent, Microsoft provides its
own implementation of the CLI for FreeBSD under the shared source li-
cense1. This implementation is called the Rotor distribution [58], and shares
a part of code with the current Windows implementation of .NET. We at-
tempted to support Rotor, and hopefully the current Windows implemen-
tations as well with MMC by mimicking their internal call semantics. This
failed because of the lack of documentation, up to date source code and
support from Microsoft. However, we were able to port MMC to Microsoft’s
.NET platform, without much effort. In order to run MMC under a Mi-
crosoft VM, one has to set the MONO HOME environment variable to the
Mono directory in order to ensure that MMC uses Mono’s class library to
link the to be verified program to.

From the perspective of model checking techniques and architecture,
MMC has a close resemblance with JPF. Many techniques used in JPF are
also included in MMC, like statefulness, state collapsion, a form of partial
order reduction, heap symmetry reduction, deadlock checking, checking of
assertion violations and backtracking by delta’s. More on MMC is described
in [1].

1.4 Java Grande Benchmarks

The techniques described in this thesis are assessed using experiments. In-
stead of using small benchmarks that synthesise a small scenario, we used
benchmarks that resemble real life applications. This is more in line with the
research goal, because such applications have a higher complexity and their
state space is therefore larger. Also, we purposely did not create our own
benchmarks, of which the results may be interpreted with bias. We used an
existing benchmark suite developed for the scientific community called the
Java Grande Forum Benchmarks (JGF benchmarks) [57].

One part of this suite are the parallel benchmarks, which are multi-
threaded applications for evaluating emerging parallel programming para-
digms in Java and to expose their weaknesses. There are three parallel
benchmarks, of which we used two:

• MolDyn “is an O((N ∗ (N − 1))/2) N -body code modelling particles
interacting under a Lennard-Jones potential in a cubic spatial volume
with periodic boundary conditions. The computationally intense com-
ponent of the benchmark is the force calculation, which calculates the

1The shared source license is not an open source license.

10 CHAPTER 1. INTRODUCTION

Metric MolDyn RayTracer
#Lines of code 965 1540
#Classes 9 17
#Methods 28 71
#Statements 433 421
#Source code size in Kb. 26 49

Table 1.1: Metrics of the MolDyn en RayTracer benchmarks.

force on a particle in a pair wise manner. This involves an outer loop
over all particles in the system and an inner loop ranging from the
current particle number to the total number of particles. The outer
loop has been parallelised by dividing the range of the iterations of
the outer loop between processors, in a cyclic manner to avoid load
imbalance.” [57].

• RayTracer “measures the performance of a 3D ray tracer. The scene
contains 64 spheres and is rendered at a resolution of N × N pixels.
The outermost loop (over rows of pixels) has been parallelised using a
cyclic distribution for load balance.” [57].

The third benchmark is the MonteCarlo benchmark. It however uses file
input/output, which is not (yet) supported by both MMC and Bandera,
which is why we left it out for comparison.

The benchmark are parametrised with two parameters: the number of
threads and the data size. Throughout this thesis, a configuration of these
parameters is denoted by t-d, where t is the number of threads and d is
the datasize. For MolDyn, the datasize means the number of particles that
is simulated. For RayTracer it means the number of pixels in both width
and height that is rendered. An increased t and an increased d will lead to
a larger state space. Additionally, to get an idea of the models’s size and
complexity, its metrics are shown in table 1.4.

As the benchmarks are written in Java, we had to convert them to C#.
This was done using Microsoft’s Java Language Conversion Assistant 3.0,
which is included with Microsoft Visual Studio 2005. The conversion was
nearly complete and self-contained. The only two things that were not
automatically converted were assert statements and final field attributes.
The first was fixed by manually converting the assert statement to a Sys-
tem.Diagnostics.Debug.Assert statement in the resulting C# code. The sec-
ond was fixed by adding the readonly attribute to fields which are marked
final in the Java code.

While running initial runs, MMC found an assertion violation in both
models due to a datarace. The datarace is on the correctness property, so the
race does not affect behaviour of the model. Data races in the Java Grande
Benchmarks have also been detected by [20]. While the datarace can be fixed

1.5. ORGANISATION OF THIS THESIS 11

by proper synchronisation on the variables read by the correctness property,
we purposely did not do that. We wanted to keep the benchmarks as pure
as possible, and secondly, the datarace only increases the state space, so the
only thing that happens is that the model checker has to do more work.

1.5 Organisation of this Thesis

Chapter 2 describes the formalisms used throughout this thesis. A formal
definition of a model, the Labelled Formal Concurrent System is presented.
Its semantics is formalised as a Labelled Transition System. The memory
semantics of a state is formalised by an object graph.

Chapter 3 describes several improvements to MMC, namely a redesigned
explorer, dynamic partial order reduction, partial order reduction using ob-
ject escape analysis, exception handling, testing framework, error tracing,
ex post facto transition merger and performance improvements by profiling.

Chapter 4 describes a compression technique that is used for collapsing
interleaving information. This information is collected and used for the
stateful variant of dynamic partial order reduction algorithm. The technique
is evaluated with experiments on the Java Grande Benchmarks.

Chapter 5 describes the Memoised Garbage Collection algorithm, which
is designed for use in software model checkers. This technique has been
evaluated with experiments of the Java Grande Benchmarks as well and the
results and its discussion are included.

Chapter 6 describes the incremental hashing scheme. It is a hashing
scheme suited for model checkers in which the hash function has a big stake
in the total running time. Its effectiveness is supported by results from
experiments with a modified version of the Spin model checker.

Chapter 7 describes results from benchmarking two competitive model
checkers against the Mono Model Checker, namely Java PathFinder and
Bandera. The Java Grande Benchmark suite is used as input models.

Chapter 8 summarised this work and highlights the most promising di-
rections for future work.

Chapter 2

Concurrent Software
Semantics

This chapter presents a formalism for modelling concurrent software systems
(i.e., model), a formalism of its behaviour (i.e., state space) and a formalism
to model its memory semantics (i.e., object graph). These formalisms shall
be used throughout this thesis.

2.1 Model Definition

Within the object-oriented software domain, sequential processes in a con-
current software systems are abstracted as threads. Threads are assumed
to be finite-state and deterministic. Threads communicate by accessing ob-
jects and interact by synchronisation mechanisms on objects. This formal
model used throughout this thesis is a Labelled Formal Concurrent System
(LFCS), which is inspired by [23]:

Definition 2.1.1. A labelled formal concurrent systems, further referred to
as a system, is a tuple 〈P,O, T, λ, s0〉 where

• P is a finite set of threads.
• O is a finite set of object entities.
• T is a finite set of transitions.
• λ : T 7→ Σ is a labelling function associating a label from an alphabet

of instructions Σ with each transition of T .
• s0 is the initial state of the system.

A thread TH ∈ P is represented as a finite nonempty set of program
counters, TH = {p1, . . . , pn}. The set denotes the possible local states the
thread can be in. Threads are pairwise disjoint.

An object entity OE = {o1, . . . , on}, OE ∈ O, is a finite nonempty set
of object states which it may take during its lifetime. Object entities are

13

14 CHAPTER 2. CONCURRENT SOFTWARE SEMANTICS

pairwise disjoint. An object entity can change state because of a transition.
In the LFCS, O captures only global objects entities. Local object entities
like local variables and method arguments are abstracted away. Also, for
ease, we simply refer an object state as an object.

A state of the LFCS is an element in the Cartesian product of threads
and objects: S ⊆ TH1 × . . . × THn × OE1 × . . . × OEm where n = |P |,
m = |O|, THi ∈ P and OEj ∈ O, 0 ≤ i ≤ n and 0 ≤ j ≤ m. The initial
state s0 is an element of S.

A transition t ∈ T models the execution by one thread. It is a tuple
〈p, g, c, p′〉. Program counters p and p′ are elements of a thread TH ∈ P .
The predicate Thread(t) is used to get thread TH from t. The program
counter p′ is the incremented program counter upon the transition by that
thread. A transition is enabled in state s if p matches with the thread’s
current program counter and if the guard g is true, which is a conjunction
of boolean conditions upon the objects in s. The command function c(o1 ×
. . . × oi × . . . × on) = (o1 × . . . × o′i × . . . × on) models a change to one
object entity OEi ∈ O from object state oi to o′i, where both oi and o′i are
in OEi. It is possible that the function c does not change any object entity,
in case transition t is a no operation instruction (NOP). Since at most one
object entity is involved in a transition, we shall denote this object entity
by Object(t).

To the reader familiar with the nomenclature in [1], the semantic link
between a LFCS and a program in the .NET model checking domain is as
follows. Object entities in O model both heap- and static object entities.
The definition of O also includes thread-unshared objects (discussed further
in §3.3.2). A transition is the equivalent of a CIL instruction. Note the
definition of a LFCS abstracts from dynamic thread spawning, dynamic
memory allocation and implicit object wait queues; including their notions
in the definition does not add value throughout this thesis.

2.2 Model Semantics

The behaviours of a LFCS are modelled as a directed graph called the state
space. Successive states s and s′ in the state space are linked by the transi-
tion t that led s to s′ and is notated by s

t−→ s′. Formally, a state space is a
labelled transition system (LTS):

Definition 2.2.1. The behaviour of a LFCS 〈P,O, T, λ, s0〉 is represented
by LTS AG = 〈Σ, S,∆, s0〉 where:

• Σ is the alphabet from λ.
• S is the set of states.
• ∆ ⊆ S × Σ× S is the transition relation defined as:

〈s, a, s′〉 ∈ ∆⇔ ∃t ∈ T • s
t−→ s′ ∧ a = λ(t)

• s0 is the initial state of the LFCS.

2.3. OBJECT GRAPH SEMANTICS 15

A transition in ∆ corresponds to the execution of a transition t ∈ T .
To avoid confusion, transitions in ∆ are from now on referred to as global
transitions while transitions in T are referred to as transitions. The global
transition relation is bound to the deterministic nature of threads. If there
exists a transition t = 〈p, g, c, p′〉 enabled in state s, then another transition
t′ 6= t having the same p cannot be enabled in s. A consequence of this, is
that enabled transitions in s, denoted by Enabled(s), can also be uniquely
identified by the threads involved in the enabled transitions. This notion is
used throughout this thesis if it eases the context.

A path π in AG is the sequence s1
t1−→ s2

t2−→ . . .
tn−1−−−→ sn such that for

0 < i < n holds 〈si, λ(ti), si+1〉 ∈ ∆. The transitions involved in the path
is a transition sequence t1 . . . tn−1 ∈ T ∗. The transition sequence can be
mapped by the labelling function λ to the word a1 . . . an−1. Also, similar to
the transition sequence, we define a state sequence s1 . . . sn−1 ∈ S∗ from π.
Paths, words, transition- and state sequence are mutually deducible given
AG, hence each notation is used interchangeable in this thesis when suitable
within the context. The notation s

w=⇒ s′ means that s′ is reachable from s
via a finite transition sequence or word w.

The state space is constructed by exploring all states that are reachable
from the initial state. This algorithm is discussed in §3.2.

2.3 Object Graph Semantics

In anticipation of a discussion of the Memoised Garbage Collection in §5,
this section introduces an object graph notation and its semantics. The
object graph1 models a part of a state from the state space by mapping the
relations between the values held in the objects.

The LFCS abstracted peculiar details of an object entity, thus also that
of an object. More specifically, an object entity is a composition of a finite
amount of field entities. A field entity F is a set of field values that it may
held. For ease, a field value is just called a field. An object is therefore
a tuple of fields 〈f1, . . . , fn〉, where n is the amount of field entities, also
referred to as the size of an object.

In §2.1, a transition only changes the state of one object entity. In fact,
a transition actually only changes the state of one field entity, and therefore
the state of the object entity. The field involved in a transition t is denoted
by Field(t).

A field fi may hold a reference to another object. In an object graph,
these references between objects are mapped as a directed graph.

1The object graph is also called heap graph in literature.

16 CHAPTER 2. CONCURRENT SOFTWARE SEMANTICS

Definition 2.3.1. An object graph 〈V,E, v0〉 of a state s = 〈. . . , o1, . . . , om〉
derived from LFCS 〈P,O, T, λ, s0〉 is a directed graph where:

• V = {v0, o1, . . . , om} represents objects.
• E ⊆ V × V represents object references.
• v0 represents the fictive root.

Given a state s, the object graph is built up as follows. The callstacks
of the threads are traversed for references to objects. Any object referenced
in there is a child of the fictive root. Then, for every object o ∈ V its fields
are read, and the objects referenced by o become its children. This relation
is captured by E, where a pair 〈o, o′〉 ∈ E states that o′ is a child of o, and
o is the parent of o′. The easier readable notation o → o′ is equivalent to
〈o, o′〉 ∈ E.

An object oi ∈ V is said to be reachable from oj ∈ V iff oi → oj or if
there is a reference chain oi → . . . → oj . The shorter notation oi =⇒ oj is
also used to express this notion of reachability. The predicate Parents(o)
is the set of parent objects of o. The predicate Childs(o) is the set of child
objects of o.

Chapter 3

Improving the Mono Model
Checker

This chapter describes the engineering efforts on MMC that have advanced
its usefulness. The result is an improved version of MMC, which we ver-
sioned 1.0. The improvements are built upon MMC 0.5, which is described
by [1]. The reader is recommended to read it first, because we shall build
upon the concepts and terminology introduced there.

3.1 Overview of Improvements

This section sets out the metrics of MMC 0.5 against our improved MMC,
MMC 1.0 (see table 3.1). This is followed by a list of MMC 0.5’s features,
which is extended by the list of improvements upon it by MMC 1.0.

Metric MMC 0.5 MMC 1.0
#Lines of code 15834 17052
#Classes 284 274
#Methods 2701 1907
#Statements 4348 5034
#Source size in Kb. 451 475
Implemented CIL instructions 58 out of 83 74 out of 83
Supported internal calls 13 33

Table 3.1: Metrics of MMC 0.5 set against MMC 1.0.

MMC 0.5’s list of noteworthy features is as follows:

• Verification of deadlocks and assertion violations.
• Structured state collapsion.
• Backtracking by delta’s.

17

18 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

• Heap canonicalisation.
• Reference counting garbage collection.1

• Mark & Sweep garbage collection.
• Partial order reduction by distinguishing thread-safe and thread-unsafe

instructions.

In MMC 1.0, the following improvements were added upon those above:

• Memoised garbage collection (see §5).
• Partial order reduction using object escape analysis (see §3.3.2).
• Stateful dynamic partial order reduction (see §3.3.3 and §4.2.1).
• Collapsion of Summarised Interleaving Information (see §4.2.3).
• Error tracer (see §3.6).
• Testing framework (see §3.5).
• A priori statement merging (see §3.3.2).
• Ex post facto statement merging2 (see §3.8).

3.2 Redesigned Explorer

The design of the original explorer was not extensible enough for our pur-
poses. Our first attempts of implementing partial order reduction (see §3.3.3
and §3.3.2) and error tracing (see §3.6) proved to be difficult and error-prone.
Eventually, we decided to save our time by redesigning a new explorer from
scratch that better suits our needs. The remainder of this section replaces
§4.3.1 and §4.3.2 from [1].

3.2.1 Definitions

The following are additional definitions upon those mentioned in §2.
The working set, denoted by Working(s), is the set of transitions that

have not been explored yet in state s. The done set, denoted by Done(s),
is the set of transitions that have already been explored in state s. The
working and done sets for a state s are always disjoint.

3.2.2 Algorithm

From a global point of view, the redesigned explorer works in five repeating
phases:

1. Forwarding
2. Error checking
3. State matching
1In MMC 1.0, reference counting became defunct. It has not been prioritised to be

fixed, as it lacks preciseness (see §5.2), thereby causing possible state space explosion.
2Ex post facto statement merging is combinable with a priori statement merging

3.2. REDESIGNED EXPLORER 19

4. Backtracking
5. Next transition decision

Our explorer that is based on this phased approach is shown in algorithm
2. It is a stateful depth-first search explorer. Additional features like heap
symmetry reduction, state collapsion and backtracking by delta’s [1] are left
out of this description. They are however included and enabled by default
in MMC. As this thesis does not further builds on them, their notions are
excluded for the sake of overview.

Algorithm 2: Explorer()
Data: backtrack stack B, state matcher M , state s

thread← 0
s← initial state

repeat
// Forwarding

s← ExecuteStep(thread, s)

// Error checking

if s violates assertion ∨ s deadlocks then
break

// State matching
if s is matched by M then

Working(s)← empty set
OnSeenState(s) // hook

else
Working(s)← Enabled(s)
update M to match s
OnNewState(s) // hook

// Backtracking

while (Working(s) is empty) ∧ (B is not empty) do
pop s from B
Backtracked(s) // hook

// Next transition decision

if Working(s) is not empty then
push s on B
t← a removed transition from Working(s)
add t to Done(s)
ThreadPicked(s, Thread(t)) // hook

until B is empty

Initially, the explorer is engaged by picking thread 0, the main thread,
as the first thread to forward. One forward step by ExecuteStep is called

20 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

a normal step. A normal step explores one transition, followed by zero or
more thread-safe3 instructions by the same thread. A forward step also ends
if an endstate of a thread is reached.

After a forward step, a successor state is reached that becomes the cur-
rent state. It is checked for assertion violations and deadlocks. The assertion
violation check and the deadlock detection algorithm is the same as in §4.3.3
of [1]. Upon an error, MMC will by default stop exploration and pass control
to the error tracer (see §3.6).

The state matching phase checks whether the state has already been
visited. If it is, the working set is set to the empty set, ensuring that the
explorer will backtrack in the next phase. If the state is new, the working
set is populated with the enabled set and the state matcher is updated such
that it will match the new state.

Backtracking only happens if the working set is empty and if there are
states to backtrack to. The working set can be empty for two reasons: either
the state is a revisited state or the state is an endstate. In both cases, the
explorer backtracks. A backtrack operation pops off the top state from the
backtrack state. This is repeated until a state is found on the backtrack
stack that has a non-empty working set.

The next transition decision phase can only be entered when the working
set is non-empty, as a transition from the working set has to be chosen to
forward. The working set is empty if all states in the state space have
been explored. MMC will then stop exploration and quit. Otherwise, a
transition is chosen from the working set and the explorer jumps back to
the forwarding phase. Currently, the choice of a transition is based on the
ordering of threads. The enabled thread with the lowest thread identifier is
chosen first.

Several hooks (see the hook comments in algorithm 2) have been added
to the exploration algorithm. They are used for error tracing (see §3.6),
stateful dynamic partial order reduction (see §3.3.3) and logging exploration
statistics. These hooks separate the source code of these features from the
exploration code. This improves the readability and the overview of their
respective sources.

3.3 Partial Order Reduction

Partial order reduction (POR) may reduce the state space to be explored,
while maintaining correctness of the verified specification. MMC already
performs a limited form of POR by merging thread-safe instructions as one
step (see ExecuteStep in §3.2). We implemented two much more effective
POR techniques in MMC, namely POR using object escape analysis [23, 43,

3Thread-safe instructions are called safe instructions in [1], yet we call them thread-safe
to distinct it from safe and unsafe code as specified by the CLI.

3.3. PARTIAL ORDER REDUCTION 21

18] and dynamic POR [21]. Our approach is based on the principles outlined
in those papers. This section only focuses on implementation-specific details.

3.3.1 Definitions

A typical state space contains many paths that are semantically equivalent
with respect to the specification. Yet, the explorer algorithm in §3.2 explores
all these paths anyway. The idea behind POR is to detect the semantically
equivalent paths and then explore only one of them. POR is therefore also
described as model checking using representatives.

The notion of dependency and independency is central to POR. Con-
current commutative independent transitions lead to the same state when
executed in different orders. This principle is formalised by the following:

Definition 3.3.1. Given a LFCS 〈P,O, T, λ, s0〉. The relation D ⊆ T ×T is
a minimal dependency relation for the LFCS iff for all t1, t2 ∈ T , 〈t1, t2〉 /∈ D
(t1 and t2 are independent) implies that the following holds for all states s
in S of the associated LTS:

• Independent transitions can neither disable nor enable each other: if
s

t1−→ s′, then t2 is enabled in both s and s′

• There is a unique state s′ such that s
t1t2−−→ s′ and s

t2t1−−→ s′

Instead of exploring the full enabled set, the minimal D can be used to
calculate a perfect persistent set. This is a subset of the enabled set that
contains only mutually dependent transitions. The minimal D is however
only determinable when the full state space is known. Calculating it during
exploration would defy the purpose of POR.

To achieve reduction, the dependency relation does not have to be mini-
mal. It suffices to determine a D′ that is a superset of the minimal D. Such
a D′ can be determined using information other than the full state space,
like dependency information inferred from a particular state or from a set
of already explored states. Such a D′ is useful for calculating supersets of
the perfect persistent set, which we just call a persistent set4.

For example, an other less perfect, but good, known way to determine
dependencies is by tracking the nature of the transition and the object it
accesses. If two transitions are enabled and they write to the same object,
they can be assumed dependent. This assumption is false if both transitions
write the same value. Nevertheless, it is a safe assumption to make. An
other approach is to determine the objects that are only accessible by one
thread for a part of the state space. Accesses to this object are ensured to
be independent for that part of the state space. Both approaches towards
the determination of D are used in MMC.

4A persistent set is also called an ample set

22 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

3.3.2 Object Escape Analysis

The calculation of persistent sets using object escape analysis in software
model checking was pioneered by the JPF team [43] and was subsequently
improved by [18] and [53]. Although these improvements work, we only
implemented JPF’s original partial order reduction technique in MMC. This
is for two reasons. For one, it was relatively easy to implement once the
explorer was redesigned (see §3.2). And two, it could be used to assess the
impact of the more recent dynamic POR approach (see §3.3.3).

Dependency relation The first step is the calculation of the dependency
relation D. In both JPF and MMC, transitions in the state space are ensured
to be independent if they access an object that is only reachable by one
thread in the object graph. Such objects are called thread-unshared objects.
We use an object escape analysis algorithm to determine those objects. See
algorithm 3.

The object escape analysis algorithm determines which objects “escape”
their thread-local context, and therefore become thread-shared objects. It
does this by setting an attribute for each object, that can hold either UN-
MARKED, a thread identifier or SHARED. It first initialises every object
to UNMARKED, indicating it is unreachable from the callstacks. Then the
callstacks are traversed, setting every object with the thread identifier asso-
ciated with the callstack referenced from. This also indicates that the object
is reachable. In case an object is referenced from two different callstacks, it
is promoted to the SHARED status.

In the second phase, the objects in toRecurse are recursively traversed
and the attributes are propagated. A child object is promoted to SHARED
in case the propagated attribute is different than its own. This happens if
the propagated attribute is a different thread identifier than the currently
set thread identifier, or the current object is not yet shared, but its parent
is. After the call to algorithm 3, objects that are attributed UNMARKED
are unreachable and can be garbage collected, objects that are attributed
SHARED are thread-shared objects and objects that are attributed by a
thread identifier are thread-unshared objects.

Note that an assumption is made here that only unescaped objects are
automatically assumed thread-unshared. This is a coarse, but safe, assump-
tion. After exploration of the full state space, it could turn out that all
accesses to a thread-shared object were after all made by only one thread.
Even though this assumption does not always hold, we will see later in the
experimental results that this POR technique reduces the state space quite
effectively.

Persistent set Once all objects are marked either thread-shared or thread-
unshared, we use that information to calculate the persistent set. This goes

3.3. PARTIAL ORDER REDUCTION 23

Algorithm 3: MarkThreadSharedObjects
Data: Object graph 〈V,E, D, v0〉, LFCS 〈P,O, T, λ, s0〉, stack

toRecurse

// Initialise every object to be unmarked

foreach Object o in V do1

Attribute(o)← UNMARKED2

foreach Thread p in P do3

foreach Object o referenced from the callstack of p do4

SetAttribute(o, p)5

// Recursively traverse childs

while toRecurse is not empty do6

o← pop toRecurse7

foreach Object oc in Childs(o) do8

SetAttribute(oc, Attribute(o))9

Algorithm 4: SetAttribute(o, p)
Data: stack toRecurse

if Attribute(o) = UNMARKED then1

Attribute(o)← p2

push o on toRecurse3

else if Attribute(o) 6= p ∧Attribute(o) 6= SHARED) then4

Attribute(o)← SHARED5

push o on toRecurse6

24 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

as follows: If the enabled set contains any transition that accesses an thread-
unshared object, that transition is ensured to be independent with all other
transitions in the enabled set and can therefore be used as the singleton
persistent set. If no such independent transition is found, the whole enabled
set is used to populate the persistent set. This for ensuring correctness.

A priori transition merging There is an opportunity for optimisation
with this approach. In case a singleton persistent set is formed for a state, we
know for sure that state has only one successor state. This allows us to merge
that transition with its predecessor. This observation can be extended for
multiple subsequent states that have singleton persistent sets. By merging
those transitions, intermediate state canonicalisation, state collapsion and
state storage is prevented, therefore decreasing running time. In MMC,
this transition merging is implemented similar to the merging of thread-safe
instructions. One ExecuteStep is called first. This is followed by object
escape analysis, calculation of a persistent set, and if it is a singleton, call
another ExecuteStep. The latter steps are repeated until a non-singleton
persistent set is calculated.

There is one drawback of transition merging. For some models, it is pos-
sible that the POR merges an infinite sequence of ExecuteStep. The model
checker will then livelock. This happens if the explored state space also
contains a sequence of transitions that purely operates on thread-unshared
(or even worse, local) objects. Such states spaces are associated with models
that have threads that can starve because of the lack of fairness. This can
be detected. A technique for this is described in the future work (see §3.9),
as time-constraints prevented us from implementing it. Another available
method to verify models with starvable threads in the absence of fairness is
by disabling POR using object escape analyses.

Another issue with a priori transition merging is that we have to be sure
that the dependency relation used is consistent, i.e., that objects marked
thread-unshared are truly thread-unshared. This may deviate because of
writes to object field instances and static class fields. More particularly, if
an object reference to a thread-unshared object is written to a field whose
associated object is thread-shared, then the thread-unshared object becomes
thread-shared. In order to ensure the consistency of the dependency relation,
algorithm 3 is triggered when (i) the written value is an object reference to
a thread-unshared object, and (ii) the object associated to the written field
is known as thread-shared.

Miscellaneous details Some last implementation notes: just as in JPF,
object escape analysis (algorithm 3) in MMC piggybacks with the garbage
collector, which is used for heap symmetry reduction. This saves time by
traversing the object graph only once. Second, objects referenced from the

3.3. PARTIAL ORDER REDUCTION 25

static area are considered as thread-shared objects. They are pushed on the
recurse stack before the callstacks are traversed. Third, ExecutePORStep is
implemented similar to ExecuteStep. At runtime, a parameter can be given
to choose between either two. The explorer uses that parameter to make
the right call.

3.3.3 Dynamically Tracked Dependencies

A POR technique that differs from POR using object escape analysis (see
§3.3.2) is called POR using dynamically tracked dependencies, also called
dynamic POR. It is a more recent POR technique by [21]. That description
of dynamic POR worked only correctly for stateless exploration. [66] and
[53] proposed a variant on dynamic POR that works for stateful exploration,
dubbed stateful dynamic POR. We implemented the latter in MMC.

First, we recap the general idea behind stateless dynamic POR, followed
by the pieces of algorithms that compose the stateless dynamic POR frame-
work in MMC. The parts that extend this stateless algorithm for stateful
dynamic POR is described in §4.2.1.

Reasons for dynamic POR The POR approach with object escape anal-
ysis is very imprecise. For nearly all models, the object escape analysis makes
too much assumptions. An often wrong assumption, but made for correct-
ness, is that all child objects of a thread-shared object are also thread-shared.
Dynamic POR does not use object escape analysis, but analyses transitions
on the backtrack stack for dependencies. These dependencies can be made
at the level of field entities, making the dependency relation much more
precise.

Dependency relation How does dynamic POR work? Dynamic POR
assumes that at each newly visited state, the current optimal persistent
set is a singleton. The singleton can be any arbitrary transition from the
enabled set. This singleton is then explored. Upon further exploration
of a state, dependencies between transitions in subsequent enabled sets and
explored transitions on the backtrack stack are determined. Two transitions
are dependent if they access the same field entity and if no intermediate
transition accesses it as well. Using this dependency relation, the backtrack
stack is traversed to inject dependent transitions in the working sets. Thus,
contrary to POR using object escape analysis, persistent sets are constructed
afterwards and not beforehand.

More formally, at the visit of a newly visited state s, the associated
enabled set is traversed. Each transition t ∈ Enabled(s) is checked for
its dependency with a transition t′ from state s′ on the backtrack stack
by matching the field entity they access. If they are found dependent, a
transition t′′ ∈ Enabled(s′) by the same thread as t is injected into the

26 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

Working(s′). If Thread(t) is not enabled in s′, then the whole enabled set is
added to the Working(s′). An outline of the algorithm is shown in algorithm
5, which is hooked to OnNewState in the explorer (see algorithm 2). Note
that algorithm 5 calls ExpandSelectSet, which is described in algorithm 6.

Algorithm 5: OnNewState(s)
Data: backtrack B

Working(s)← an arbitrary element from Enabled(s)1

foreach transition t in Enabled(s) do2

ExpandSelectedSet(Field(t), Thread(t))3

Algorithm 6: ExpandSelectedSet(F , tid)

s′ ← L(F)1

if ∃t′ ∈ Enabled(s′) ∧ Thread(t′) = tid then2

if t′ /∈ Done(s′) then3

add t′ to Working(s′)4

else5

add Enabled(s′)\Done(s′) to Working(s′)6

Line 1 of ExpandSelectedSet makes a call to L. That call retrieves the
most recent state on the backtrack stack that was accessed by the field entity
given as an argument. This is implemented by a hashtable that maps each
field entity to a stack of working sets as the internal datastructure of the L.
It is updated every time a new transition is chosen (see algorithm 7) and
upon backtracking (see algorithm 8).

Algorithm 7: ThreadPicked(s, t)
Data: hashtable L

push Working(s) on L(Field(t))1

C3 proviso The original dynamic POR technique works only correctly
on verification of deadlocks and safety properties in acyclic state spaces.
Preserving correctness of verifying safety properties on cyclic state spaces is
little more problematic. The problem is referred to as the “ignoring prob-
lem”. The solution is an additional proviso called the C3 proviso in [12].
Both [66] and [53] independently recognised that this same proviso must be
applied for dynamic POR if safety properties are verified in a cyclic state
space. The C3 proviso simply states that if a revisited state is still on the

3.3. PARTIAL ORDER REDUCTION 27

Algorithm 8: Backtracked(s)
Data: hashtable L

t← most recently explored transition from s1

pop L(Field(t))2

stack, i.e., a cycle, then the enabled set minus the done set should be added
to its working set (see algorithm 9).

Algorithm 9: OnSeenState(s)

if s is on B then1

Working(s)← Enabled(s)\Done(s)2

3.3.4 Combining the two POR techniques

POR using object escape analysis and (stateful) dynamic POR are combin-
able. In case the object escape analysis does not reveal a singleton persistent
set, the whole enabled set is then used as the working set. If dynamic POR
is activated as well, the dynamic POR clears the working set and only adds
one transition from the enabled set to it. This transition is then traversed.
Dependent transitions determined from the state space below may update
the working set by adding elements from the enabled set to it.

3.3.5 Experimental Evaluation

To evaluate the effectiveness of the mentioned POR approaches, we con-
ducted experiments with the Java Grande Benchmarks (see §1.4). We ran a
series with POR completely disabled (¬P), a series with purely POR using
object escape analysis (P-E), a series with purely stateful dynamic POR
(P-D) and a series that uses a combined POR approach (P-C). All series
were ran on a 2.4 GHz systems equipped with 2 GB memory. We set the
maximal running time to 10 hours, the memory limit to 1.5 Gb and the ex
post facto transition merger (see §3.8) memory threshold also to 1.5 Gb.

This experiment was planned to and initially ran on Mono’s VM, but the
results from it were unusable. Mono’s GC crashed on many configurations of
both MolDyn and RayTracer, making it impossible to run a complete series
of trials. The crashes were caused by two known bugs in Mono’s GC5. We
decided to rerun all experiments under Windows XP installed with .NET
3.0, as Microsoft’s VM does not have that bug. All subsequent experiments
with the JGF benchmarks were run in the latter setup as well.

5These bugs are knows under bug #324318 and #325386 within the Mono project.

28 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

The results are shown in tables 3.2 and 3.3. The time column is the ver-
ification time in seconds. A verification that has run out of time is indicated
by “o.t.”. The memory column is the maximal memory used during verifi-
cation in megabytes. A verification that has run out of memory is indicated
by “o.m.”. The states column is the amount of states in the state space.
The revisits column is the amount of states revisited during verification.
The states stored column is the amount stored in the hashtable. This may
differ from the amount of states in the state space due to the ex post facto
transition merger. The max. DFS stack column is the maximal depth of the
state space reached during verification. Note that the latter four columns
are represented in thousands for the results from MolDyn benchmarks (see
table 3.2). The state stored/Mb. column gives an indication of the memory
utilisation efficiency. The states/sec. column is the amount of states pro-
cessed per second during verification. It is calculated by adding the amount
of states with the revisits and have that divided by the verification time.

We shall first look at the amount of reduction achieved. The MolDyn
results show (see table 3.2) that the absence of POR explodes the state space
as every configuration runs out of memory with POR disabled. POR using
object escape analysis improves the situation a lot, as the state space is
enormously reduced for all configurations when it is enabled. It furthermore
enables the full exploration of the first configuration. If stateful dynamic
POR is used on its own, the first model also becomes fully verifiable, yet its
achieved reduction is less than runs with POR using object escape analysis.
The reason of this is the a priori transition merger that is driven by POR
using object escape analysis. It is extremely effective in cutting down the
amount of states. This is reflected in the max. DFS stack size, which is less
when POR using object escape analysis is enabled. The same principle is
not usable for dynamic POR, as every thread-safe instruction encountered is
always considered a scheduling point at which state collapsion and garbage
collection is run. When the combined POR approach is used, the state space
is further reduced, but not much. This is however different when we look
at the results with RayTracer (see table 3.3). Here, three configurations are
fully verifiable, and the combined POR approach reduces the space space
by nearly a half over POR using object escape analysis. This observation is
in line with that of [53]. They observed as well that the effectiveness of the
combined POR approach depends on the structure of the model.

When it comes to pure raw performance (in terms of states per second),
we see in both tables 3.2 and 3.3 that verifications with POR using object
escape analysis and verifications with POR disabled are significantly faster.
This reflects the overhead of the stateful dynamic POR algorithm. We ran
the profiler on this to understand this, and we observed that the overhead is
mostly caused by maintaining the L map (see algorithm 6) and the handling
and maintenance of metadata used by stateful dynamic POR (see §4.2.1).

When it comes to memory overhead, we also see in table 3.2 that the use

3.3. PARTIAL ORDER REDUCTION 29

con
fig.

POR typ
e

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

(·10
3)

rev
isit

s (·10
3)

sta
tes

sto
red

(·10
3)

max.
DFS sta

ck
(·10

3)

sta
tes

sto
red

/M
b.

sta
tes

/se
c

2-1

P-C 458 1470 1482 1063 1482 28 1008 5560
P-E 142 643 1533 1474 1533 28 2386 21246
P-D 1450 1535 7529 1092 2076 93 1352 5945
¬P 403 o.m. 3799 3690 3735 93 2490 18564

2-2

P-C 1553 o.m. 1926 788 977 196 651 1748
P-E 563 o.m. 1939 1741 1930 196 1286 6536
P-D 120 o.m. 512 0 512 512 341 4251
¬P 137 o.m. 754 0 754 754 503 5501

2-3

P-C 72 o.m. 249 0 249 249 166 3475
P-E 145 o.m. 378 0 378 378 252 2613
P-D 108 o.m. 254 0 254 254 169 2343
¬P 99 o.m. 383 0 383 383 255 3862

3-1

P-C 1038 o.m. 2724 3018 1662 66 1108 5531
P-E 590 o.m. 3359 6459 3357 66 2238 16652
P-D o.t. 1512 190546 51544 27049 140 17886 6725
¬P 431 o.m. 3198 6011 3198 140 2132 21

3-2

P-C 98 o.m. 327 0 327 327 218 3324
P-E 78 o.m. 453 0 453 453 302 5817
P-D 53 o.m. 335 0 335 335 223 6264
¬P 82 o.m. 458 0 458 458 305 5567

3-3

P-C 68 o.m. 151 0 151 151 101 2238
P-E 73 o.m. 215 0 215 215 144 2948
P-D 54 o.m. 168 0 168 168 112 3129
¬P 73 o.m. 227 0 227 227 152 3102

Table 3.2: MolDyn results with no POR at all (¬P), purely POR using
object escape analysis (P-E), purely dynamic POR (P-D) and the combined
POR approach (P-C).

30 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

con
fig.

POR typ
e

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

rev
isit

s
sta

tes
sto

red

max.
DFS sta

ck

sta
tes

sto
red

/M
b.

sta
tes

/se
c

2-1

P-C 1 36 844 579 844 73 23 1198
P-E 2 36 1505 1365 1505 73 41 1733
P-D 593 1546 752107 6711 229767 6602 149 1280
¬P 201 o.m. 364997 356998 362684 6602 242 3597

2-2

P-C 113 655 65923 53264 65923 3173 101 1055
P-E 142 729 134910 128570 134910 3173 185 1857
P-D o.t. 1529 29029628 315742 471622 12897 308 815
¬P 236 o.m. 354620 341712 350169 12897 233 2949

2-3

P-C o.t. 1373 97233 24289 97233 24362 71 3
P-E o.t. 821 64867 32395 64867 32468 79 3
P-D 80 o.m. 75931 0 75931 75931 51 954
¬P 52 o.m. 121473 0 121473 121473 81 2336

3-1

P-C 68 475 53631 71076 53631 145 113 1842
P-E 163 950 115113 215103 115113 148 121 2025
P-D 516 o.m. 434336 308140 166874 10966 111 1438
¬P 221 o.m. 173727 295279 173360 10966 116 2126

3-2

P-C o.t. 1572 30093872 246229 185707 3245 118 843
P-E 175 o.m. 188101 199539 184887 3245 123 2211
P-D o.t. 1561 29472967 246995 164672 17261 106 826
¬P 172 o.m. 162085 144809 161473 17261 108 1788

3-3

P-C 32 o.m. 43323 0 43323 43323 29 1347
P-E 42 o.m. 63035 0 63035 63035 42 1513
P-D 31 o.m. 44554 0 44554 44554 30 1421
¬P 44 o.m. 64583 0 64583 64583 43 1463

Table 3.3: RayTracer results with no POR at all (¬P), purely POR using
object escape analysis (P-E), purely dynamic POR (P-D) and the combined
POR approach (P-C).

3.4. FILTER-BASED EXCEPTION HANDLING 31

of dynamic POR (on its own and when combined with POR using object
escape analysis) decreases the amount of stored states per megabyte by a
half when compared against purely POR using object escape analysis. This
is observable in table 3.3 as well. One might expect that the combined
POR would use less memory instead of more because a smaller state space
is explored. The memory savings of traversing a smaller state space are
however cancelled out by the storage of summarised interleaving information
(see 4) necessary for stateful dynamic POR.

Conclusive, POR in general enables a significant reduction of the state
space. This reduction is as such, that it enables full verification of config-
urations which would be otherwise not fully verifiable without POR. We
furthermore observed that POR using object escape analysis is the most ef-
fective POR technique. It reduces the state space significantly without much
performance and memory overhead. Stateful dynamic POR can further re-
duce the state space, but the degree of reduction depends on the structure
of the model. This reduction comes at the cost of increased performance
and memory overhead. These observations are in line with that of [43], [18]
and [66] and [53].

3.4 Filter-based Exception Handling

The first version of MMC missed exception handling. The lack of it was re-
flected during testing (see §3.5), where many tests failed because exceptions,
like arithmetic overflows or illegal array accesses were left unhandled. Also,
the Java Grande Benchmarks (see §1.4) relies on proper exception handling
for correctness. For these reasons, we designed and implemented exception
handling in MMC.

The CLI specifies an exception handling mechanism called structured
exception handling (SEH). SEH is one of the most sophisticated and fine-
grained exception handling mechanisms for application platforms. We have
implemented it fully in MMC. Several difficulties had to be overcome to make
this possible. To our knowledge, its implementation is the most sophisticated
in a model checker to date. Its architecture can be used as a reference for
future model checkers.

The remainder of this section shall introduce CLI’s exception handling
mechanism followed by a description of the implementation in MMC.

3.4.1 Structured Exception Handling

CLI specifies an exception handling mechanism called Structured Exception
Handling (SEH) [45]. It is similar to Java’s exception handling mechanism,
but differs substantially on three points.

For one, contrary to Java, all exceptions in .NET are unchecked. At
source level, methods do not need to catch all exceptions possibly raised

32 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

Public Sub ExceptionTestWithUserFilter()
Try

...
Catch ex As MyException When (ex.Code = 1 && CheckBounds(ex))

...
Catch ex as OverflowException

...
End Try

End Sub

Figure 3.1: Expressing filter-handlers in VisualBasic.NET.

public void exceptionTestWithUserFilter() {
try {

...
} catch (Exception ex) {

if (ex instanceof MyException &&
(MyException) ex).Code == 1 &&
checkBounds((MyException) ex)) {

...
} else if (ex instanceof OverflowException) {

...
} else {

throw;
}

}
}

Figure 3.2: Expressing filter-handlers in Java.

by its body. For this instead, the CLI traverses the callstack upon a raised
exception in search for a method that has a matching handler. If one is not
found, the thread in which the exception occurred stops.

Another significant difference from Java’s exception handling mecha-
nism, is that SEH allows user-defined exception handlers. In Java, the ap-
propriate exception handler is looked up by matching the exception’s type
with the types defined by the catch-handlers. SEH supports in addition to
Java’s type-matching handler-lookup a filter-mechanism. A filter-handler
is composed of two parts: the filter and the handler. The filter is a block
of statements defined by the programmer that returns true or false. Upon
true, the accompanied handler is invoked for handling the exception. Upon
false, SEH further traverses the callstack for other possible filter- or type-
handlers. Filter-based and type-based handlers can be mixed. An example
of this is shown in figure 3.4.1, which is a piece of VisualBasic.NET code. It
is possible to express filter-handlers in Java using a catch-all, and have that
catch all to do the actual exception handling. This approach is less elegant
with the equivalent in .NET, as can be seen in figure 3.4.1.

3.4. FILTER-BASED EXCEPTION HANDLING 33

1: Entering try
block

2: Exception
handling mode

3: Finalising
mode

End
exception

thrown
exception
handled

no exception thrown

exception
unhandled

Figure 3.3: Global overview of structured exception handling.

A third point are fault-handlers. SEH supports it in addition to finally-
handlers. Fault-handlers are similar to finally-handlers, but are different
in that fault-handlers are only invoked when an exception was or will be
handled.

3.4.2 Architecture

Figure 3.3 shows a global overview of exception handling. Three global
phases are distinguished, namely the entrance to the try block, the exception
handling mode and the finalising mode.

If an exception is thrown while the program counter is within the try
block, exception handling (process 1 in figure 3.3) mode kicks in. Otherwise,
it will eventually always leave the try block via a leave instruction. In both
cases, finalising mode is entered.

Upon detection of an exceptional condition, the IsSourceException field
of the current method state is set to true, indicating that the exceptional
condition arose from that method. Next is the construction of the exception
object, which is constructed as any object. Upon completion of construction,
the program counter returns to the method state from where the exception
was thrown. This method state is indicated by the IsSourceException field.
The instruction throw is used to throw the reference to the exception object,
thereby entering exception handling mode (process 2 in 3.3).

Figure 3.4 shows the flow diagram of the exception handling mode (pro-
cess 2 in 3.3). The algorithm is shown in figure 10. The first step is to find
a suitable exception handler. For that, the callstack is traversed from top
to bottom to search for the first catch- or filter-handler within the scopes
of the current program counters (see process 2.1 in 3.4 and lines 2 to 16 in
algorithm 10). While traversing, it also purges the evaluation stacks of the
traversed method states (line 3 of algorithm 10). If no suitable exception
handler is found, the call stack of the active thread is cleared, indicating
that the exception is unhandled (line 18 of algorithm 10).

If a matching catch-handler is found first in a method, then its program
counter is set to that catch-handler. The stack of that method is purged
and ThreadState::ExceptionReference is pushed upon that. This denotes that
that method is ready to handle the exception. See lines 5 to 7 in algorithm
10. However, before handling the exception, all finally- and fault-handlers

34 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

Algorithm 10: HandlerLookup()
Data: Callstack of current thread C, ObjectReference e

retval← null1

foreach m ∈ C do2

clear m’s evaluation stack3

eh← m.NextF ilterOrCatchHandler(e)4

if eh is a catch handler then5

m.PC ← eh.HandlerStart6

push e on m’s evaluation stack7

retval← FinallyOrFaultLookup(m)8

break9

else if eh is a filter handler then10

m.PC ← eh.HandlerStart11

push e on m’s evaluation stack12

retval← eh.F ilterStart13

m′ ← m14

push m′ on C15

break16

if retval = null then17

clear C18

return retval19

Algorithm 11: FinallyOrFaultLookup(m)
Data: Callstack of current thread C

m← peek of C1

retval← m.PC2

while C is not empty ∧ m’s evaluation stack is empty do3

m← popped method from C4

eh← m.NextF inallyOrFaultHandler()5

if eh 6= null then6

retval← eh.HandlerStart7

break8

return retval9

3.4. FILTER-BASED EXCEPTION HANDLING 35

2.1: Lookup
exception
handler

2.2: Lookup and
run final‐ and
fault handlers

2.3: Run
exception
handler

3: Finalising
mode

End

exception
handler
found

no
finalisers

left

exception
handled

exception unhandled

exception
thrown

Figure 3.4: Flow diagram of exception handling mode.

occurring in method states above the one that will handle the exception
have to be invoked first (see process 2.2 in 3.4 and line 8 in algorithm 10
and algorithm 11). This is done by traversing the call stack, do the necessary
invocations, until the method state is reached that has the ObjectReference
to the exception object on the evaluation stack (see algorithm 11).

If a filter is found first, things become more complicated. The filter block
must be run first to determine whether it will handle the exception. It is
possible that the filter occurs below the method from which the exception
rose. It is not possible to pop off all methods above the one that has the filter,
because the methods in between might contain finally- and fault-handlers
that need to be invoked if (and only if) the filter returns true. We solved this
by cloning the method state that contains the filter. The clone is pushed
on the callstack. Its program counter is set the the beginning of the filter
(see lines 10 to 16 in algorithm 10). If the filter returns true, the finally-
and fault-handlers between the top method state and the one that contains
the filter are invoked, similar to the invocation of finally- and fault-handlers
upon a found catch-handler. If the filter returns false, the callstack is further
traversed for lookup of other possible matching catch- or filter-handlers.

Finalising mode (process 3 in figure 3.3) is entered after the exception
was handled by either a filter or catch-handler. It can also be entered after
leaving the try-block. This can be seen by two entrance points in figure
3.5. A fault handler, if existing, is only invoked if it comes from excep-
tion handling mode. The latter case is distinguished by reading Thread-
State::ExceptionReference, which will contains the ObjectReference to the ex-
ception object. This distinction is made before finalising mode is entered,
because upon entering finalising mode, the ThreadState::ExceptionReference
is set back to ObjectReference.Null.

Process 3.1, the “lookup final or fault handling” process, and the “lookup
and run final handlers” (process 2.2) are similar. In fact, both call algo-
rithm 11. The only difference is that in process 2.2, after invocation of
a finally- or fault handler, subsequent finally- or fault-handlers are looked
up and invoked, whereas in process 3.1 just ends after invocation. Here,
the distinction is made by reading ThreadState::ExceptionReference. Dur-
ing process 2.2, ThreadState::ExceptionReference holds an ObjectReference
to the exception object, whereas during process 3.1 and onwards, it holds
ObjectReference.Null.

36 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

3.1: Lookup
final or fault

handler

3.2: Lookup
final handler

3.3: Run fault
handler

3.4: Run final
handler

End

exception
handled

no
exception

thrown

fault handler
found

final handler
found

no final or fault
handler found

no final handler
found

Figure 3.5: Flow diagram of finalising mode.

Between exception construction, throwing and filter-, catch-, final- and
fault-invocation, other threads may interleave, causing other new states to
be explored.

3.5 Testing Framework

Early in the second iteration of MMC’s development, we set up a testing
framework for two reasons:

• CLI conformance testing.
• Regression testing.

Conformance testing was the foremost objective. MMC was initially tested
with C# programs only. We wished to support other .NET languages as
well by conforming better to the CLI [56]. Conformance testing was also
important to weed out bugs in MMC. Regression testing became more im-
portant after MMC evolved a lot and the chances of breaking something
became bigger. The remainder of this section discusses the components of
the testing framework and the results achieved with it.

Test suite A testing framework consists of two parts, (i) the test suite
and (ii) the test driver. We started with looking at existing test suites.
The CLI is a big specification and writing a test suite from scratch that
covers it properly is time consuming. We considered JPF’s and Mono’s
testsuites first. However, upon a closer look, we found out they were too
unstructured, even lacking an unit test for each CIL bytecode instruction.
The third test suite we investigated showed more promise. Microsoft’s Rotor
contains a highly structured and comprehensive test suite covering tests
for the virtual machine, security mechanism, base class collection, JIT and
platform independence. We took the virtual machine tests, which are called
the Base Verification Tests (BVT). The BVT is composed of 328 unit tests
that tests each CIL instruction for border equivalence classes and conditions.

3.5. TESTING FRAMEWORK 37

Initial test results We designed a testdriver for running the BVT tests.
Although the design was tailored for BVT tests, it should also work for other
(self-made) test suites. The first testruns showed that MMC passed only 83
out of the 328 BVT tests. Quite a low score, but not surprising, as MMC was
developed directly from the specification without such a structured testsuite.

The tests failed for many reasons. A short list of reasons: bugs in wait-
/notify semantics, bugs in default variable initialisation, bugs in static class
initialisation in combination with the state collapser, bugs in handling vir-
tual methods, bugs in accessing inherited fields, bugs with operations on
64-bits datatypes, bugs with operations on unsigned datatypes, bugs with
casting, bugs with managed pointers, lack of overflow checking, lack of ex-
ception handling, lack of managed pointer arithmetic, lack of support for
multidimensional arrays, lack of support for important internal calls, lack of
support for reflection, lack of support for value types, etc. All of them were
resolved except for the latter two. They are deferred as future work.

Unimplemented CIL instructions The parts where MMC lacked were
mostly due to unimplemented CIL instructions. The first MMC release
implemented 58 instructions. We added another 16 instructions upon it.
These instructions varied from overflow checking, loading and operations on
managed pointers, multidimensional arrays, exception handling, instructions
on unsigned datatypes and casting. MMC in its current state still misses
nine instructions, namely ARGLIST, CPBLK, INITBLK, LOCALLOC, CPOBJ,
INITOBJ, MKREFANY, REFANYTYPE, REFANYVAL. Their implementation
is deferred as future work.

Initial tests runs with the MolDyn and RayTracer benchmarks unveiled
the lack of many System.Math.* and System.Array.* internal calls. They were
easily implemented in MMC, as the first MMC author anticipated on that.

Furthermore, the addition of exception handling as described in §3.4
improved conformance a lot. Exceptions play a big role in the BVT tests.
The unit tests do not only test for border conditions, but also for semantics
on violation of them. Exceptions are thrown in that case, which need to be
caught, otherwise the test fails automatically. Now that exception handling
was in place, many more tests could pass.

Another significant bug was that accesses to inherited fields did not
work. MMC did not create space for field entities that were inherited from
the class’s supertypes. We considered two approaches to solve this. One, is
to create a stack of field-arrays, where the stack represents the inheritance
chain (see figure 3.6(a)). This approach would have overhauled too much
of MMC, including the garbage collector and the state collapser. There-
fore, we decided on a less invasive approach by creating one big array that
hold all fields, including inherited ones. Upon initialisation of an object,
the inheritance chain is traversed to calculate the necessary length. The

38 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

ArrayList
IList

Object
null

6

null

4

m_Pos m_Index m_count

(a) By stack of field-arrays.

null null 6 4

m_Pos m_Index m_count

Object IList ArrayList

(b) By concatenated field-arrays.

Figure 3.6: Modelling inherited fields.

field-array is then initialised with that length. Upon access to a field, the
corresponding offset in the field-array is calculated. See figure 3.6(b). This
approach only changed the AllocatedObject constructor, stfld (store field)
and ldfld (load field) instructions.

Final test results The testing framework was run repeatedly to fix the
bugs and to fill in the missing parts. Currently, MMC passes 286 out of
the 328 BVT tests. This is an improvement of 62% percent compared to
the initial testrun. At this moment, most of the failures are due to the
lack of pointer arithmetic on datatypes. We deliberately did not attempt to
solve them. Code that contains pointer arithmetic is considered unsafe, and
the CLI does not specify its semantics. Because its semantics are undefined,
MMC cannot meaningfully implement them in a verifiable way. Besides that,
Microsoft encourages the use of safe code over unsafe code. The current test
results show that MMC covers lots of the semantics of safe code. This
gives us more confidence that more .NET languages and more programs are
verifiable with MMC.

3.6 Error Tracing

The first release of MMC prints out the current callstacks upon detection
of an assertion violation or deadlock. This does not explain to the user how
that error could have occurred. We extended MMC by providing a trace of
CIL instructions. If the explorer detects an assertion violation or deadlock,
the backtrack stack is traversed and a trace of the chosen thread-id’s at the
schedulingpoints is collected. Then the hashtable is purged of all states and
the initial state is recreated. The trace is passed to the error tracer, and
exploration is restarted from the initial state. The error tracer is simply a
subclass of the explorer that only adds the thread-id from the trace to the

3.7. FASTER CHANGINGINTVECTOR 39

- thread: 0 0006 ret on stack [3]
- thread: 0 ____________|
- thread: 0 |_ System.Void DataRace::Main(System.String[])
- thread: 0 0087 ldc.i4.6 on stack [3]
- thread: 0 0088 beq.s 0102 on stack [3, 6]
- thread: 0 0090 ldloc.0 on stack []
- thread: 0 0091 callvirt Cell::Get() on stack [Alloc(5)]
- thread: 0 |_ 0000 ldarg.0 on stack []
- thread: 0 0001 ldfld Cell::v on stack [Alloc(5)]
- thread: 0 0006 ret on stack [3]
- thread: 0 ____________|
- thread: 0 |_ System.Void DataRace::Main(System.String[])
- thread: 0 0096 ldc.i4.s 12 on stack [3]
- thread: 0 0098 ceq on stack [3, 12]
- thread: 0 0100 br.s 0103 on stack [0]
- thread: 0 0103 call Debug::Assert(Boolean) on stack [0]
10:26:33 [Message] Assertion violation detected

Figure 3.7: Trace snippet to an assertion violation.

working set, not the full set of runnable threads. The error tracer also prints
out the textual description of each executed instruction along with the the
method’s evaluation stack for each step. A sample trace snippet looks is
shown in figure 3.7.

This error traces improves usability a lot, as it does not only provide a
trace, thereby explaining the cause and effect relations towards the error,
but also shows the nesting of methods as well, providing the user with an
elegant overview of traced events.

3.7 Faster ChangingIntVector

During profiling MMC with the ANTS profiler6, we observed a bottleneck
with the ChangingIntVector. As described in [1], the ChangingIntVector is
the datastructure used for representing collapsed states and maintaining the
delta between successive states. The profiler showed that read accesses to
the ChangingIntVector were responsible for a large stake of the total running
time, roughly about 8.5% to 10% of the total running time. This is quite a
lot for a rather simple datastructure. We gave it a thorough look and saw
an opportunity to optimise.

The redesign involves an observation of an invariant. We observed that
between successive states, if an index is written, it is only written once.
With this invariant in mind, the ChangingIntVector was designed to contain
one array holding all current values and a linked list of patches. Upon a

6From Red Gate Software Ltd: http://www.red-gate.com/

40 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

s

s’

t

102 42 2

...

102 6 2

i=1, old=42, new=6

Figure 3.8: The linked list in the ChangingIntVector associated with state s′

contains the changes between itself and state s.

read of the ChangingIntVector the array of current values was accessed and
the desired value is returned. Upon a write, the new value was written and
a patch was created that contains a triple of the index, the old value and
the new value. The patch is added to the linked list of patches. See figure
3.8.

The state decollapser had to be slightly changed as well. Prior to the
change, the state decollapser got a delta of the type ChangingIntVector. It
was traversed to see whether any values had changed. Now, after over-
haul, the state decollapser receives the linked list of patches as the delta.
The changes are directly readable and do not have to be inferred from the
ChangingIntVector.

This redesign increased performance significantly. The profiler backed
this up by showing that the relative stake of accesses to the ChangingIntVec-
tor has been diminished to a near 0% percent stake. Such a percentage is
what one expects more from a simple datastructure as the ChangingIntVec-
tor.

3.8 Resource Optimisation and Limitation

For extremely large models whose state space size is yet unknown, it is useful
to control the time and memory available for exploration such that results
can be retrieved from a partial exploration.

We added these limitations as runtime options to MMC. Two timers are
used for that. The first timer triggers an event if the maximal time limit has
been reached. Upon the event, the exploration algorithm jumps out the do-
loop and stops exploration. The second timer is triggered every five seconds
and is used to control and limit memory resources. At runtime, a maximal
memory use limit in megabytes can be provided at which the exploration
will stop. A second memory-related option is the ex post facto transition
merger.

3.9. FUTURE WORK 41

The ex post facto transition merger purges the hashtable from states that
are, in retrospect, part of a mergable transition sequence. This is different
than the a priori transition merger (see §3.3.2), as this transition merging
technique occurs after the state is canonicalised, collapsed, stored and subse-
quently traversed. Such states can be safely purged, because upon a revisit
of it, the exploration simply continues until an end state is reached or a
non-mergable state is matched. As a state description in a software model
checker is large, and the amount of states can be huge, this compaction
technique saves memory at the cost for additional exploration time.

Initially, this compaction technique was implemented as such that it pre-
vented the storage of states on a mergable transition sequence. We noticed
that this increased exploration time quite much, especially on models whose
paths have long sequences of mergeable transitions. Instead, we added a
memory threshold parameter which can be provided as an argument upon
running MMC. If this threshold is set, the ex post facto transition merger
becomes enabled, and purging only occurs if that threshold is reached. By
setting the memory threshold parameter close to the amount of available
memory, the explorer holds as much states possible in memory, such that
statefulness is as efficient as possible.

The effectiveness of this technique can be seen in table 3.2 and 3.3 by
comparing the columns states and states stored. If the amount of states
stored is less than the amount of states, then the ex post facto transition
merger has purged states from the hashtable. If we look purely at the
results of the combined POR approach, we see that twice the amount of
states stored was explored of MolDyn configurations 2-2 and 3-1. Without
the ex post facto transition merger, it would have run out memory twice
at fast. The technique is particularly effective on a purely stateful dynamic
POR exploration, where the amount of explored states is a multiple of what
is stored. The reason for this effectiveness is that stateful dynamic POR
lacks the a priori transition merger that is enabled with POR using object
escape analysis. This also explains why the ex post facto transition merger
is ineffective for verifications with only POR using object escape analysis
enabled. Additionally, with stateful dynamic POR, it is well possible that
the initial assumed singleton persistent set is the actual persistent set, and
thus it is detected by the ex post facto transition merger as purgable when
the memory threshold is reached.

3.9 Future Work

There are many promising techniques that further improve MMC. In this
section, we shall highlight the ones we recommend to start with.

42 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

Partial order reduction The foremost technique that has substantially
improved performance is POR. The current implemented POR techniques,
object escape analysis and dynamic POR, reduce the state space a lot. Yet,
there is still much room for improvement. Dependencies can be more fine-
grained by distinguishing read-write dependencies from read-read indepen-
dencies. Even better is to distinguish write-write independencies by looking
up which value they write. These approaches still use information from
the state space for the calculating dependencies. Instead of using the state
space, one can also use the model itself. Such static analysis is more diffi-
cult on object-oriented software models due to their dynamically structured
nature. Nevertheless this difficulty, [53] showed that their Indus analyser,
which employs a collection of Java analysis techniques, could find many de-
pendencies to drive POR. They showed that this POR on its own is on par
with the POR approach using object escape analysis. A combination of
the static POR, POR by object escape analysis and dynamic POR reduces
the state space even more dramatically. A fourth POR technique which is
worth implementing is sleep sets [23]. Sleep sets can reduce the number of
transitions, thereby preventing calls to garbage collection, heap symmetry
analysis and state collapsion for the revisited state. Case studies back this
up: [66] combined dynamic POR with sleep sets and showed that this re-
duces the running time dramatically. As we see it, there is no reason why
it could not be implemented along with the other three POR approaches.

Prevention of livelock As mentioned in §3.3.2, the merging of transi-
tions may lead to a livelock. One approach to prevent this is by keeping
track of the program counters on the backtrack stack and by keeping an
incremental hash (see §6) of the dynamic- and static area. If the explorer
jumps back to a program counter that is also on the stack, we know there is
a loop. If the hash has not changes during that loop, we can assume the loop
is a live lock. An another approach to solve the problem is by disabling tran-
sition merging, without disabling POR using object escape analysis. The
advantage of transition merging would then also be disabled.

Program slicing We believe that program slicing will also improve perfor-
mance a lot [43]. The idea with program slicing is to trim the CIL assembly
such that only instructions remain that have an effect on the behaviour one
is wishing to verify. Therefore by reducing the size of the model, the size
of its state space is also reduced. Of course, only parts should be sliced out
that have no effect on the checked assertion property or deadlock. Program
slicing requires a static analysis, just as static POR as described above.
Therefore, if a static analyser is written for either two of them, it is worth
to design it for use of both techniques.

3.9. FUTURE WORK 43

State compression The ex post facto transition merger technique (see
§3.8) gave us another idea to further reduce memory. Instead of using full
blown collapsed arrays, one can use partial arrays, where parts of the array
are represented by a part from the parent state. This exploits the idea that
only a part of the state is changed upon transition. Such a partial array
could be composed of triples of 〈 reference to array, offset, range 〉. For
values that have changed, a reference to a fresh state-unrelated array can
be used. This works of course only well when a transition only incurs small
changes. An issue is that at some point, referring to parts of arrays of parent
states is not efficient, as too much patchwork may be needed to keep a partial
state description complete. A simple solution to this might be to only use
a full blown array for states at uneven depth, and use a partial array for
states at even depth. This can in theory reduce the amount of used memory
up to nearly 50%. This technique is also called difference compression [49].

Error tracing The current error tracer shows the sequence of CIL in-
structions from the initial state to the error state. This list of instructions
is long and can be difficult to read. More interesting is to link the bytecode
to the corresponding statements in the sourcecode, thus providing a more
high-level trace. This is possible using the Debugging Interchange Format as
defined in the fourth edition of the ECMA 335 specification. Additionally, it
would be more helpful to show a sliced trace that only shows the statements
that have a cause and effect relation with the detected error. This helps the
user to understand the error faster.

Profiling Performance can also be improved by investigation of the bot-
tlenecks. We have already optimised away the bottleneck with the Changing-
IntVector, but there are more, less obvious, bottlenecks to optimise. Right
now, the garbage collector tops at the profiler results. Any optimisation
should start with that. We made a start by experimenting with the Mem-
oised Garbage Collector. The reader is referred to §5 for more on this.

CLI conformance MMC can also be improved on CLI conformance.
Even though conformance has improved much, the conformance is still in-
complete. For instance, a few rarely used instructions have not been im-
plemented yet. The support for value types is also lacking. If both become
implemented, MMC would fully conform to .NET 1.0. For full conformance
to .NET 2.0, support for generics is needed. Implementing generics into
MMC is not a trivial task. Contrary to Java, generics are not syntactic
sugar in .NET, but their notion is known and reasoned with at the level
of the virtual machine. MMC therefore should do the same. We have not
studied generics in depth to present implementation suggestions, but we are
sure that is will overhaul much of MMC. However, prior to any conformance

44 CHAPTER 3. IMPROVING THE MONO MODEL CHECKER

improvement should be the creation of appropriate tests that can be used
with the existing testing framework. This eases debugging and prevents
possible regressions.

Testing other .NET languages We have only tested MMC with models
expressed in C#. With the increased CLI conformance, it is likely that mod-
els expressed in other .NET languages are verifiable as well. More testing is
however needed to claim compatibility with other languages.

3.10 Conclusions

A significant amount of time was spent on studying, designing, implement-
ing and testing existing techniques for use in software model checking. The
result is that MMC is much improved because of this. The explorer has been
refactored, which made implementations of POR using object escape analy-
sis and dynamic POR possible. Our experiments show that engineering these
POR techniques in MMC were worth their time, as our experiments show
that they improve performance a lot. The refactored explorer also eased the
implementation of an error tracer. This gives the user better feedback on
detected errors. Furthermore, on the performance front, we ran the profiler
on MMC, and detected a bottleneck in a core datastructure, the Changing-
IntVector. Read accesses to it topped the profiler results. We optimised the
bottleneck away by redesigning it. Now accesses to the ChangingIntVector
are at the end of the profiler results. Additionally, we implemented an ex
post facto transition merger that reduces the memory used for large state
spaces by purging states that are part of an mergeable transition sequence.

Also things were improved in the area of CLI conformance. A testing
framework for MMC has been created that uses Microsoft’s testsuite for
conformance and regression testing. This made rigorous testing possible,
and because of that, CLI conformance improved a lot. One part of the CLI
that was challenging to implement is structured exception handling. The
fined-grainedness of SEH introduces rather complicated issues, which we had
to resolve. Our elegant approach towards SEH can be used as a reference
for future software model checkers.

Even though MMC has improved greatly on all areas, there is still much
room left for improvement. The future work in §3.9 provides some sug-
gestions which we believe are the next logical step for further improving
MMC.

Chapter 4

Collapsing Interleaving
Information

This chapter presents a memory compression technique that collapses meta-
data, called the interleaving information, collected during a stateful dynamic
POR search.

4.1 Related Work

This section introduces the stateful dynamic POR technique along with a
brief description of state collapsion employed in software model checkers.

4.1.1 Stateful Dynamic Partial Order Reduction

The dynamic POR algorithm as described in §3.3.3 only works correctly
with stateless exploration. The issue lies in the correct dynamic POR se-
mantics upon a state revisit. A naive and incorrect stateful adaptation of
dynamic POR would backtrack upon exploration of a revisited state. This
is incorrect, because mutual dependencies between transitions in the state
space below the revisited state and the current path to the revisited state
would not be considered. This leads to over-aggressive reduction. Both [53]
and [66] independently observed this, and proposed similar solutions. The
idea is to mimic a stateless search upon a revisit by recalling all necessary
information about the state space below the revisited state and inject the
appropriate transitions in the working sets on the current DFS stack. In
[53], each stored state is associated with a set that contains all transitions
occurring after s. This set represents the interleaving information (II) after
s, denoted as II(s). Upon a revisit of s, mutual dependencies between tran-
sitions on the current DFS stack and II(s) are calculated, and appropriate
transitions are injected in the working sets. This approach is however very
memory-intensive. The interleaving information of states grows when one

45

46 CHAPTER 4. COLLAPSING INTERLEAVING INFORMATION

comes closer to the initial state. At the end of exploration, the initial state
holds all transitions in the state space. The approach by [66] stores a more
efficient representation of the interleaving information called the summarised
interleaving information (SII). The SII only contains minimum-indexed tran-
sitions. This is discussed in detail in §4.2.1.

Both [53] and [66] provide empiric results of stateful DPOR, and show
that stateful dynamic POR improves upon stateless dynamic POR in terms
of speed. Both groups however noticed that while stateful DPOR reduces the
state space even more, this increased reduction comes at the cost of increased
memory. Both groups suggest that a form of memory compression on the
(summarised) interleaving information to lower memory usage. However,
they both left this issue open as future work. In this thesis, a compression
technique in the form of collapse compression is proposed for compressing
the SII’s from a stateful dynamic POR exploration.

4.1.2 Structured State Collapsion

State collapsion has been extended to software model checking in JPF by
[43]. In software model checking, states are dynamic in size and are built up
structurally. The latter eases state collapsion. States of software systems
tend to be composed of objects, which are further composed of fields, a type
definition and a locking wait queue. Hence its structure is clearly defined and
the identifiable components in a state can represent parts to be collapsed.
Upon backtracking, a state is easily restored by following the references to
the collapsed part.

Structure state collapsion has proved to be very effective in reducing
memory usage. The level of reduction is dependent on the collapsion scheme
used. For JPF, a ten to twenty-fold reduction in memory use has been
measured. Furthermore, collapsed states are faster matched because they
only need to match the references to the collapsed parts, thereby prevent
matching the substructures. Collapsion however incurs an overhead, but
this overhead is overly compensated by the performance increase incurred
by only matching references [43].

4.2 Implementation

This section describes the statefulness extension upon the dynamic POR
implementation as described in §3.3.3. It first describes how to use the SII.
The internal structure of SII is described afterwards, along with a scheme
to collapse the SII to a CollapsedSII.

4.2. IMPLEMENTATION 47

4.2.1 Statefulness Extension

In the stateless dynamic POR approach, ExpandSelectedSet is responsible
for calculating dependencies with transitions in the current enabled set and
the transitions on the DFS stack, and also injection of the appropriate tran-
sitions in the working sets. It does this based on the field entity and thread
involved in the transition (of an enabled set). To mimic a stateless dy-
namic POR search by using SII, the SII of a state s should therefore contain
pairs of 〈field entity, thread〉 that were involved in the transitions below s.
Two hooks are needed for this, namely one into OnSeenState and one into
Backtracked.

OnSeenState is triggered upon a state revisit. The extension (see the On-
SeenState hook in algorithm 2) looks up the SII associated with the revisited
state, requests the field entity-thread pairs and calls ExpandSelectedSet as if
it were a stateless search.

Algorithm 12: OnSeenState(s)

foreach field entity-thread pair 〈F, t〉 in SII(s) do1

ExpandSelectedSet(F , tid)2

The next issue is how to collect the field entity-thread pairs such that
it can be used by OnSeenState when it is necessary. To understand what is
needed for a SII, one must understand the design flaw with a II.

The design flaw involves the notion of path-independency. Consider a
path π = s0

t0−→ . . .
ti−1−−→ si

ti−→ . . .
tn−1−−−→ sn. The II of si would at least

contain ti and tn−1. Assume that ti−1, ti and tn−1 access the same field
entity F , then a stateful dynamic POR should find that ti is dependent
on ti−1 and that ti−1 is independent with tn−1, even though tn−1 accesses
the same field. That is because ti−1 and tn−1 are independent given path
π, also called path-independent. Path-independent transitions in a state s
can be determined beforehand, as path-independent transitions always have
an intermediate transition that accesses the same field entity. By leaving
path-independent transitions out of the II, we get a Summarised II, called
SII. The transitions in the SII are called minimum-indexed transitions.

Path-independency is different than independency, as the latter is an
independency relation on the whole state space. It is possible that two
transitions are path-independent on one path from state s, and on another
path from s, they are path-dependent. Both transitions would then be
included in the SII. This reveals another issue with calculating the SII: The
SII of a state s is not only constructed from one path from s, but for all
paths from s. This introduces a problem: a typical state space contains
exponentially many paths from a state. Instead of maintaining all paths, we
devised a different approach by propagating the minimum-index transitions

48 CHAPTER 4. COLLAPSING INTERLEAVING INFORMATION

upwards in the state space. This exploits the observation that most of the
minimum-indexed transitions in the SII’s of successor states also hold for
their parent state s. We can simply merge them to get the SII for s. The
only pairs not valid are those transitions that directly follow from s. An
exception for them have to be made during merging. A second exception is
also made for transitions that access fields of objects instantiated after state
s. Such transitions are never dependent with transitions on any path to s.
They too can be left out for consideration of merging. This consideration
involved a check whether a field entity exists in state s. See algorithm 13.

Algorithm 13: Backtracked(s)

s′ ← the state backtracked from1

t← transition explored from s to s′2

foreach field entity-thread pair 〈F, tid〉 in SII(s′) do3

if F 6= Field(t) ∧ F exists in s then4

add 〈F, tid〉 to SII(s)5

add 〈Field(t), Thread(t)〉 to SII(s)6

A SII for a state s is incomplete until all successor’s SII are merged. We
know this when the working set for s is empty, as then all transitions from
s are explored and backtracked to.

4.2.2 SII organisation

So far, pairs of field identifier-thread were read and written to a SII. We
have not described how the SII actually stores them. We have considered
two approaches, of which one is implemented in MMC.

The first considered approach is the most straightforward approach: the
SII is a set of field-identifier pairs. A fast implementation of a set is a
hash set, which has O(1) operations. Our initial implementation of stateful
dynamic POR used this approach. Initial runs revealed that the performance
decreased so much, that it was even slower than POR disabled. Initially, we
found this strange, because of the favourable theoretical time-complexity of
a hash set. Yet, upon a closer look using a profiler, we saw that the merging
process (see algorithm 13) took lots of time. The problem lies in the nature
of an implementation of a set: before an element can be added, the set has
to verify whether that element has not been added yet. This involves a call
to the hash function and a lookup in the array. Although these operations
are constant in time, the constant costs are quite high, especially when lots
of field identifier-thread pairs were propagated between states.

We devised a different approach that mimics the organisation of a state
and hence its field entities. In MMC, a state consists of three parts: the
dynamic area (i.e., the heap), the static area (for static classes) and the

4.2. IMPLEMENTATION 49

{}

{ }

{0,1,2}

{ } { 1, 2 } { }o0

o1

o2

o3

f0 f1 f2

f3

f4 f5

f6

{ 1,2}

(a) Organisation of the dynamic area in
the SII.

{ 0,1,2 }

{ } { 1, 2 }42

88

collapsion pool

(o0, 42) (o2, 42) (o3, 88)

(b) Collapsed representation of the left.

Figure 4.1: SII organisation and collapsion.

thread pool. The first two contain fields. The dynamic area is composed
as an array of objects. Each object is composed as an array of fields. The
static area is composed as an array of classes. Each class is composed as an
array of static fields. Whereas in a state the field entity holds the field value,
the SII holds there a set of threads, namely those in the minimum-indexed
transitions pairs. Thus, the SII follows the same hierarchical composition of
a state. See figure 4.1(a).

Operations on such a hierarchical SII are also in O(1). The advantage is
that hashing is not used for looking up a field entity-thread pair, but that
indexing is used instead. The latter has lower constant costs. The drawback
of the hierarchical SII approach is that all fields in a state are modelled,
they take space. Collapsion, as explained in the next subsection, is applied
to solve that.

4.2.3 SII collapsion scheme

Collapsion compresses the SII by exploiting the notion that SII’s of states do
not change much between successive states. The collapsion scheme is rather
obvious: we simply use the same state collapsion scheme for collapsing the
SII. In MMC, this means that objects and classes are collapsed to a reference.
See figure 4.1(b). We used two additional techniques to further reduce the
size of the collapsed SII.

The first technique optimises by canonicalising the collapsed SII’s. The
canonicalisation process exploits the notion that interleaving information of
two objects can be similar, even though their sizes differ. For example, in
figure 4.1(b), assume object o0 has a size of n field entities, where n > 2.
Furthermore, assume that field entities after the f1 were unaccesed, and thus
no threads are stored in them. In terms of interleaving information, o0 is

50 CHAPTER 4. COLLAPSING INTERLEAVING INFORMATION

con
fig.

coll
apser

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

(·10
3)

rev
isit

s (·10
3)

sto
red

sta
tes

(·10
3)

back
tra

cks
(·10

3)

sta
tes

/se
c

sto
red

sta
tes

/M
b.

2-1
C 458 1470 1482 1063 1482 2544 5560 1008
¬C 482 o.m. 1014 722 731 1727 3602 488

2-2
C 1553 o.m. 1926 788 977 2524 1748 651
¬C 390 o.m. 552 203 393 563 1936 262

2-3
C 72 o.m. 249 0 249 0 3475 166
¬C 79 o.m. 247 0 247 0 3112 165

3-1
C 1038 o.m. 2724 3018 1662 5677 5531 1108
¬C 440 o.m. 1401 1294 727 2630 6127 485

3-2
C 98 o.m. 327 0 327 0 3324 218
¬C 99 o.m. 326 0 326 0 3296 217

3-3
C 68 o.m. 151 0 151 0 2238 101
¬C 70 o.m. 152 0 152 0 2174 101

Table 4.1: MolDyn results with collapsing of SII’s enabled (C) and disabled
(¬C).

similar to o2, but o2 uses less memory. For this reason, o2 is stored instead.
Whenever o0 is collapsed, it is collapsed to the same reference used to for
collapsing o2, thereby saving memory.

The second technique exploits the observation that a collapsed SII is in
fact a sparse array. A typical SII includes objects that are never accessed
from s. These can be left out in the collapsed SII. We did this by modelling
the collapsed SII as a linked list of pairs, where a pair consists of an object
location and the collapsed reference. This is shown in figure 4.1(b), where
the unaccessed object o1 is not included in the collapsed SII.

An yet undiscussed issue of this collapsion scheme for SII’s, is when
to collapse and when to decollapse. Given a state s, the SII associated
with state s should be collapsed when all paths from s have been explored.
This is certain when the explorer backtracks the first time from state s.
Decollapsing is necessary when the explorer stumbles upon an already seen
state s′ in the hashtable, namely in OnSeenState.

4.3 Experimental Evaluation

We used the JGF benchmarks for evaluating the effectiveness of this col-
lapsion scheme. The experimental setup is the same as those for POR (see
§3.3). All configurations were ran with collapsing enabled and after that, a
second run with collapsing disabled. Disabling the collapser means that the
SII is still stored in the hashtable, but in a uncollapsed form.

4.3. EXPERIMENTAL EVALUATION 51

con
fig.

coll
apser

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

rev
isit

s
sto

red
sta

tes

back
tra

cks

sta
tes

/se
c

sto
red

sta
tes

/M
b.

2-1
C 1 36 844 579 844 1422 1198 23
¬C 1 36 844 579 844 1422 1124 23

2-2
C 113 655 65923 53264 65923 119186 1055 101
¬C 111 1256 65923 53264 65923 119186 1070 52

2-3
C o.t. 1373 97233 24289 97233 97163 3 71
¬C o.t. 1501 97154 24269 58941 97084 3 39

3-1
C 68 475 53631 71076 53631 124706 1842 113
¬C 74 1038 53631 71076 53631 124706 1684 52

3-2
C o.t. 1572 30093872 246229 185707 30339192 843 118
¬C o.t. 1600 25803859 128121 83086 25929137 720 52

3-3
C 32 o.m. 43323 0 43323 0 1347 29
¬C 38 o.m. 42713 0 42713 0 1136 28

Table 4.2: RayTracer results with collapsing of SII’s enabled (C) and dis-
abled (¬C).

The collapsion of SII’s reduces the memory much. Table 4.1 shows that
for configurations 2-1, 2-2 and 3-1, the SII collapser enables over two times
more states stored in the same amount of memory. This is also visible in
the RayTracer results (see table 4.2), where the same amount of memory
reduction is visible in configurations 2-2, 2-3, 3-1 and 3-2. In all other con-
figurations, the reduction is not visible for either two reasons. The foremost
reason is seen by the amount of backtracks. In case this in 0, the SII’s were
still on the DFS stack before the exploration ran out of memory, and thus
never were backtracked to, and as such, never collapsed to the hashtable.
The second reason is reflected in RayTracer configuration 2-1. Here the
amount of states is so small that the SII collapser cannot make difference.

The performance overhead of collapsing SII is visible for MolDyn config-
urations 2-2 and 3-1 and RayTracer configuration 2-2. Here, the slowdown
of the SII collapser (in terms of states per second) is up to 10%. This is
caused by the ex post facto statement merger, as reflected in the amount
of states stored in those configurations. This statement merging technique
causes purged revisited states to be reexplored. Its reexploration incurs an
overhead that is visible in the amount of states per second. For most config-
urations however, the SII collapser improves performance. This is because
the merging of collapsed SII’s is faster as it is modelled as a sparse array.
The full traversal of it is faster than a full blown array. Furthermore, col-
lapsing of SII’s frees up memory which can be used to store more states in
memory, and hence, allows the explorer to detect more revisited states.

52 CHAPTER 4. COLLAPSING INTERLEAVING INFORMATION

4.4 Future Work

There are several ways to further improve the modelling, calculation and
storage of SII’s. First, two kinds of SII’s need to be distinguished, namely
those associated with states that are still on the stack, and those remaining
in the hashtable. The SII’s on the stack are unfinished, and successor SII’s
still have to be merged with it, and thus the datastructure is still in a volatile
state. Also, in order to have the merging process to be fast, it needs to look
up field entities fast. Hashtable SII’s are used differently. The information
they hold are only read, and also, when it is read, all its data is read. It is
desired that hashtable SII’s use memory more efficiently, because the number
of SII’s grows corresponding with the amount of stored states.

Backtrack SII First, the current design of a backtrack SII (see figure
4.1(a)) fits the demands for which it is used. Most importantly, accesses to
them are fast through indexing. They do consume quite a lot of memory,
as it also reserves memory for field entities that are not accessed during
exploration. For example a thread object has 40 fields, yet only five of them
are accessed during exploration. The relative large size of the backtrack
SII is not a problem as long as the state space is not too steep. Some
configurations in the Java Grande Benchmarks have a depth of up to ten-
thousands elements, and they were verifiable.

Yet, for models with problematic steep state spaces, other designs for
a backtrack SII can be used. A hybrid approach is one way to reduce
memory, while keeping the speed on par. A linkedlist-based SII is used for
states whose interleaving information only contains n fields. If the threshold
of n is crossed, the linkedlist-based SII is converted to an indexing SII.
Combinations with other datastructures might also be effective. A sorted
list, based for example on a binary tree, might also be effective. As a ordering
scheme, one can order the fields heap < static < lock, then the location by
their natural order, followed by the offset, also in their natural order. Even
though the time-complexity of accesses to a sorted list is theoretically more
expensive, it can be relatively cheap and fast when n is kept small.

When these solutions are not effective enough, then one might consider
to store the backtrack SII in a collapsed form on the DFS stack. However,
when they are needed again, they need to be decollapsed back. As this
happens upon every backtrack to the state associated with the SII, this will
certainly increase running time. Also, from an engineering point of view, one
also has to consider to decanonicalise the decollapsed SII, as canonicalised
objects in the SII may have a deviated size. We therefore think this is only
necessary for verifying extremely steep state spaces.

Unstructured collapsing The above are merely suggestions that are
have a likely chance of working out well. A more daring approach is to

4.5. CONCLUSIONS 53

let go of structured collapsing, and resort to unstructured collapsing, where
for example blocks of n bytes are collapsed instead. Further study on the
collapsion heuristics would be required in that case. We recommend those
who pursuit this, to study the nature of SII, especially under which circum-
stances it is read, and when it is written, and experiment with datastructures
that suit those circumstances.

4.5 Conclusions

Experiments with our proposed collapsion scheme enables MMC to store
more states in the same amount of memory. The increased amount depends
heavily on the size of the state space. As can be seen in the results of the
RayTracer benchmark, the effect of SII collapsion is insignificant on small
state spaces. For bigger state spaces, as seen in the results of the MolDyn
benchmark, the memory is utilised more efficiently by allowing twice as much
memory to be stored in the same amount of memory.

Even though our proposed collapsion scheme is already effective, it might
be improved further, as can be read in the future work of §4.4.

Chapter 5

Memoised Garbage
Collection

This chapter presents a new garbage collection algorithm, called Memoised
Garbage Collection, for specific use in software model checkers.

5.1 Purpose of Garbage Collection

Garbage collection is usually, albeit not wholly, associated with virtual ma-
chines. It is the process of reclaiming memory allocations that will not be
used in the future, thereby freeing up memory. Garbage collection is a rather
expensive process, it usually requires the traversal of all memory allocation
before it is decidable which allocations can be reclaimed. Within the context
of software model checking, garbage collection is used for a slightly different
purpose [43].

The scenario of a typical software model checker is as follows. Consider
an object-oriented language like Java that disallows pointer arithmetic, like
Java or C#. Objects used by a program are internally stored in an array.
Yet, because pointer arithmetic’s is disallowed, the index of an object (i.e.,
its address) has no semantic value. Objects can only be reached via referenc-
ing. When references between objects in an array are mapped, the resulting
graph is an object graph (see §2.3). The shape of the object graph is of
semantic value, because the references between objects are. Due to different
interleavings of a program, a model checker can reach different states such
that both have the same object graph shape, but the objects in question
are permutated differently in the respective arrays. If states are matched
by matching array-equivalence, the semantically equivalent heaps will be
seen as different, thereby increase the state space unnecessary. Detection of
semantically equivalent heaps is called heap symmetry detection [37, 43].

So far, two variants of heap symmetry reduction are known to be effec-
tive. The technique of [36] traverses the object graph and creates a canonical

55

56 CHAPTER 5. MEMOISED GARBAGE COLLECTION

array of objects out of it. This canonical array is stored in the hashtable.
Upon state matching, the state to be matched is canonicalised and then the
canonicalised arrays are matched. The technique of [43] maintains a canon-
icalised array, instead creating one when necessary. The latter is employed
by MMC and details of it can be found in [1]. However, for both techniques,
the array needs to be purged of garbage objects, i.e., objects that are not
longer referenceable. Garbage objects may differ between states that have
different paths leading to them, but are equivalent when canonicalised.

As for garbage collection in virtual machines, the time spent for garbage
collection in software model checking is the most expensive algorithm in
terms of its stake of the total running time (see §3.9) as it is run after each
state visit. Its relative stake depends on the model and other enabled model
checking techniques like POR. For example, for RayTracer configuration 2-
1, we measured a 26% stake of the total running time with the Mark &
Sweep garbage collection algorithm. In software model checking though,
it is observable that changes between successive states are small. Hence,
the changes to the object graph are also small. The garbage collection
algorithm proposed in this thesis exploits this observation by remembering
object graph shape information along with a state on the DFS stack, and
propagates that information along with the changes due to the transition,
to the successive state. Therefore, by reusing the information deduced from
previous garbage collection analysis, time is saved on garbage collection.

5.2 Related Work

There are two fundamental different garbage collection techniques, namely
Mark & Sweep and reference counting [64, 4].

The Mark & Sweep algorithm consists of two phases. The marking phase
first marks all the roots of the object graph and then recursively marks
all the children of the marked objects. The roots are allocations whose
references occur in thread’s callstacks and the static classes. The sweep
phase traverses the array and deallocates all unmarked objects. The Mark
& Sweep algorithm therefore traverses the complete object graph [64, 4].

The reference counting approach tracks the amount of references towards
an object. This amount is updated when references are added, removed or
updated. If the amount becomes zero, the object is ensured to be unreach-
able and therefore can be deallocated. There is a big disadvantage on the
reference counting approach, namely that cyclic subgraphs unconnected to
the fictive root cannot be detected with it. Consider the base case: an ob-
ject with a self-reference. Such object, with a cycle to itself, has a reference
count of at least one (unless the self-reference is removed). If that object
becomes disconnected from the object graph, it becomes unreachable, but
as it reference count has not reached 0, it is not detected as unconnected.

5.2. RELATED WORK 57

Reference counting algorithms used in practise (like virtual machines) there-
fore also employ a cycle detection algorithm, that is executed at particular
intervals, and deallocates objects on disconnected cycles [64, 4].

For virtual machines, there are numerous variants on these two ap-
proaches. Stop-the-world variants only run the garbage collection algorithm
when the program is paused. Afterwards, the heap is completely clean from
garbage, and the program can be resumed. Another variant, namely precise
garbage collection algorithms, identify all unreachable objects, whereas non-
precise variants use assumptions to leave false-negatives on the heap. All
algorithms need to ensure that they do not collect away false-positives [39].
In the context of software model checking, precise stop-the-world algorithms
are used.

In this thesis, a completely different approach towards garbage collection
is presented which is inspired by an incremental shortest-path algorithm
originally intended for routers and context-free grammars. It is generalised
for single-source directed graphs with positive weights in [52]. The basic idea
is to track depths for each vertex. Upon changes to the graph, the tracked
depths of the changed vertices become inconsistent, and their depths needs
to be recalculated. It does this without traversing the whole graph. See the
algorithm 14.

Algorithm 14: RamalingamReps()
Data: graph G′ = (V ′, v0, E

′)

while G′ contains inconsistent vertices do1

u← inconsistent vertex with least key value2

if rhs(u) < depth(u) then3

depth(u)← rhs(u)4

else if depth(u) < rhs(u) then5

depth(u)←∞6

This algorithm is applicable as follows. Given a graph G = (V, v0, E)
with a depth-labelling function depth that is consistent, i.e., the depths
associated with the vertices from the fictive root v0 are correct. Changes to
the graph, like the removal or addition of edges or the removal or addition of
vertices, lead to the successor graph G′ = (V ′, v0, E

′). The depth-labelling
depth is not changed accordingly, and thus for a subset vertices in V ′, the
depth-labelling is inconsistent for graph G′. We call this the initial set
of inconsistent vertices. For now we assume that we just know them, in
§5.4 it is shown how these can be calculated. The algorithm is used to make
the depth-labelling consistent by traversing inconsistent vertices from top to
bottom. It first picks out an inconsistent vertex that has the lowest key. The
key of vertex v is determined using min(depth(v), rhs(v)). The function rhs
stands for right-hand-side function and calculates the depth of v based on a

58 CHAPTER 5. MEMOISED GARBAGE COLLECTION

parent from Parent(v) that has the lowest depth-labelling. The rhs-value
of an inconsistent vertex is always different than its depth-labelling. In case
vertex v is underconsistent, i.e., rhs(v) < depth(v), we make the v consistent
by assigning rhs(v) to depth(v). In the case, it is certain that rhs(v) is a
consistent depth-labelling of v as the algorithm traverses the graph from top
to bottom, and vertices between v and the fictive root v0 are ensured to be
consistent. In case vertex v is overconsistent, depth(v) < rhs(v), we set the
depth to infinity, to ensure it stays inconsistent until it becomes the vertex
with the lowest key. Note that if a vertex is made consistent, it can cause
child vertices to become inconsistent. They are made consistent too when
their key is the lowest. The algorithm runs until no inconsistent vertex is
left, i.e., the depth-labelling function depth is consistent with G′. A proof
of correctness is provided in [52].

From a more global view, the above algorithm determines a subgraph of
consistent vertices from which neighbouring inconsistent vertices are made
consistent and added to the subgraph of consistent vertices. Once an in-
consistent vertex becomes consistent, it cannot become inconsistent in the
same call of the algorithm. This is similar to Dijkstra’s algorithm. The
difference lies in the input. Whereas Dijkstra’s algorithms starts from the
fictive root, algorithm 14 starts with an inconsistent vertex closest to the
root. It is made consistent and from that point, neighbouring inconsistent
vertices are processed.

The foremost application of this incremental shortest path algorithm is in
routing. Routers need to recalculate shortest paths to neighbouring routers
when the connections change. Whereas Dijkstra’s algorithm recalculates
all shortest paths, this algorithm only recalculates shortest paths that have
actually changed. This algorithm therefore reduces time.

Several other approaches to incremental computation of shortest paths
have been proposed, an overview of them along with an experimental anal-
ysis is provided in [16]. They all have their unique distinctive features. Yet,
the main reasons for basing the garbage collection algorithm in this paper
on the above incremental shortest path algorithm is: (i), this algorithm is
generally known to be correct, (ii), it is able to deal with deleted edges and
(iii), it is relatively easy to implement as proof of concept. The use of other
incremental shortest path algorithms for garbage collection is deferred as
future work.

A final note on how our garbage collection algorithm compares against
incremental garbage collection techniques [5]. Incremental garbage collec-
tion techniques are a class of imprecise garbage collection algorithms that use
heuristics to determine which area of the heap contains collectable garbage
objects. The work of an incremental garbage collector is then interleaved
during the normal work to prevent observable pauses in program execution.
Our algorithm is different as it is precise and as we view it, only applicable
to model checking. It is memoised in the sense that is uses heap information
remembered from the predecessor state to determine the garbage objects.

5.3. ALGORITHM 59

5.3 Algorithm

The Memoised Garbage Collection approach has algorithm 14 as its core.
However, that algorithm is designed for any weighted direct graph in general,
and not specifically for object graphs. To make it applicable for object
graphs, we apply the following notions: the fictive root v0 has always a depth
of 0. The edges are always of weight 1, as the object graph is unweighted.

Given this specialisation, the object graph can be treated by algorithm
14 as any graph it would have as input. After that algorithm has run, objects
that are reachable from the fictive root have a finite depth, while those that
are unreachable have an infinite depth. The latter can be garbage collected.

Due to the dynamic nature of object oriented software, the algorithm
should also deal with newly created objects. Consider a transition that
creates a new object entity in the dynamic area. To ensure that it will be
seen as reachable from the fictive root, the new object must be initialised
with a depth of infinity. The object will then be seen as inconsistent upon
the first next run of the Memoised Garbage Collector, and as such, it will
be made consistent by assigning it with a consistent depth.

5.4 Implementation Details

Algorithm An implementation of the Memoised Garbage Collection algo-
rithm has three issues to consider, namely (i) how are inconsistent vertices
determined, (ii) how to find an inconsistent vertex with the least key and (iii)
how to determine rhs-values of vertices. Algorithm 15 is an implementation
of algorithm 14 for which these issues have been resolved.

Algorithm 15: MemoisedGC(s, s′)
Data: priority queue Q
(Vs, Es, v0)← the object graph associated with state s1

(Vs′ , Es′ , v0)← the object graph associated with state s′2

foreach object o in Vs′ do3

if Parentss(o) 6= Parentss′(o) ∨ Parentss′(o) is empty then4

insert o to Q with order key(o)5

while Q is not empty do6

u← dequeue element from Q with smallest order7

if rhs(u) < depth(u) then8

depth(u)← rhs(u)9

CheckConsistency(Childs(u), s′))10

else if depth(u) < rhs(u) then11

depth(u)←∞12

CheckConsistency(Childs(u) ∪ {u}, s′)13

60 CHAPTER 5. MEMOISED GARBAGE COLLECTION

Algorithm 16: CheckConsistency(U , s′)
Data: priority queue Q

foreach o ∈ U do1

if rhs(o) 6= depth(o) then2

if o ∈ Q then3

adjust o on Q with order key(o)4

else5

enqueue o to Q with order key(o)6

else if o ∈ H then7

remove o from Q8

Let us tackle the first issue about how algorithm 15 and algorithm 16
combined solve the problem of determining inconsistent vertices. Initially,
lines 3 to 5 initialise the algorithm by looking up vertices whose parents
have changed. As the weights are always fixed to one, a vertex’s depth is
only changed if its parents have changed. Secondly, it is also possible that
during one transition, an object is created, used and discarded again. Those
objects have an empty parent set, and that is why they are also added as
inconsistent vertices to Q. Lines 6 and 13 traverses Q in order by their key,
and makes them consistent. When a vertex is made consistent, it could be
possible that its children become inconsistent because of that. Therefore,
all its children are traversed and checked for consistency by algorithm 16.
Any inconsistent child is added to the priority queue Q so that it will be
made consistent by algorithm 15

The second issue is determining the vertex with the least key. Incon-
sistent vertices added to Q are sorted by their key. Due to this order, the
vertex with the least key can be extracted in constant time. Upon changes
of an object’s key due to changes of its parent, these changes are updated
in the heap, as done in algorithm 15.

The third issue is about the determination of the rhs-value of an object.
The rhs-value of an object is based on the depths of its parents. The parent
with the least depth value is used for that. That value is then added with 1,
i.e., the edge weight, to get the rhs-value. However, to make this possible,
the set of parents of an object need to be maintained, which normally a
software model checker does not.

Maintaining parent objects We approached this problem by looking
how children of an object are maintained. For parents, this process is similar,
but only the reverse edges are mapped out. Whenever a reference to a child
changes, we also update the references to the parents. This happens in the
following situations:

5.5. EXPERIMENTAL EVALUATION 61

• Upon a stfld, if an object reference is stored into a field entity.
• Upon a stelem, if an object reference is stored into an array element.
• Upon a System.Array.ArrayCopy internal call, when object references

are copied to the destination array.
• When an object reference is pushed on the call stack. The referenced

object then becomes a child of the fictive root.
• When an object reference is popped from the call stack. The referenced

object is then removed as child of the fictive root.
• Upon the restore of a collapsed object, any object referenced from its

fields become its childs.
• Upon the restore of a collapsed array, any object referenced from its

elements become its parents.
• Upon the restore of a collapsed callstack, any object referenced from

it becomes a child of the fictive root.

In order to maintain a correct set of parents of an object in the object
graph, this set must be modelled as a bag1. It is possible that an object
references another object multiple times by holding the same object reference
is multiple fields. If one of these references is removed, then the parent-
child relation still holds. The parent-child relation is discarded when all its
references to the child object are removed.

Time complexity Let us first explain the used factors that is needed to
express the time complexity of the Memoised GC. An object is affected if its
depth has changed during one run of the algorithm. The extended size of an
affected object is the amount of parents of that object. In [52], it is shown
that the time-complexity of algorithm 15 is O(N · (log(N) + M)), where N
is the sum of extended sizes of affected objects plus the amount of affected
objects, and M the costs to calculate the rhs-value. The reader is referred
to [52] for a more thorough explanation.

5.5 Experimental Evaluation

We used the JGF benchmarks for evaluating the effectiveness of the Mem-
oised Garbage Collection algorithm. The experimental setup is the same as
for POR (see §3.3). All benchmarks where run with the Memoised Garbage
Collector enabled, and another series were run with the Mark & Sweep
garbage collector enabled.

Table 5.1 show the results with MolDyn. MGC is faster (in terms of
states/sec) for configurations 2-1, 2-2, 3-1 and 3-2, with respectively 5%, 7%,
14% and 8% performance increase. The average performance increase with

1A bag is also known as a counting set, a set that also keeps track how many times an
element occurs in the set

62 CHAPTER 5. MEMOISED GARBAGE COLLECTION

con
fig.

gc. heap
size

(#obj.)

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

(·10
3)

rev
isit

s (·10
3)

sta
tes

sto
red

(·10
3)

sta
tes

sto
red

/M
b

sta
tes

/se
c

2-1
MGC

45
434 1470 1482 1063 1482 1008 5863

M&S 458 1470 1482 1063 1482 1008 5560

2-2
MGC

101
1447 o.m. 1928 790 978 652 1878

M&S 1553 o.m. 1926 788 977 651 1748

2-3
MGC

253
78 o.m. 246 0 246 164 3163

M&S 72 o.m. 249 0 249 166 3475

3-1
MGC

60
913 o.m. 2726 3022 1664 1109 6296

M&S 1038 o.m. 2724 3018 1662 1108 5531

3-2
MGC

144
91 o.m. 328 0 328 218 3591

M&S 98 o.m. 327 0 327 218 3324

3-3
MGC

372
153 o.m. 152 0 152 101 993

M&S 68 o.m. 151 0 151 101 2238

Table 5.1: MolDyn results with the Memoised garbage collector (MGC) and
the Mark & Sweep garbage collector (M&S).

con
fig.

gc. heap
size

(#obj.)

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

rev
isit

s
sta

tes
sto

red

sta
tes

sto
red

/M
b

sta
tes

/se
c

2-1
MGC

935
1 37 844 579 844 23 1231

M&S 1 36 844 579 844 23 1198

2-2
MGC

940
109 664 65923 53264 65923 99 1091

M&S 113 655 65923 53264 65923 101 1055

2-3
MGC

3254
o.t. 1151 79673 19899 79673 69 3

M&S o.t. 1373 97233 24289 97233 71 3

3-1
MGC

1368
38 483 53631 71076 53631 111 3278

M&S 68 475 53631 71076 53631 113 1842

3-2
MGC

1368
o.t. 1571 32520383 248967 187623 119 910

M&S o.t. 1572 30093872 246229 185707 118 843

3-3
MGC

1384
23 o.m. 43330 0 43330 29 1890

M&S 32 o.m. 43323 0 43323 29 1347

Table 5.2: Raytracer results with the Memoised garbage collector (MGC)
and the Mark & Sweep garbage collector (M&S).

5.6. FUTURE WORK 63

MGC on these configuration is 9%. Table 5.2 shows that MGC is faster for
all configurations except configuration 2-3. The increases are respectively,
3% for both configurations 2-1 and 2-2, 78% for configuration 3-1, 8% for
configuration 3-2 and 40% for configuration 3-3. The average increase of
these configurations is 26%.

We hypothesised that the increase of performance correlates with the
heap size. This is partially true. We saw that RayTracer configurations
have bigger heaps, and as such the performance increase is generally higher
than those of the MolDyn benchmarks. The latter configurations however
revealed a surprising result, namely a huge decline in performance for con-
figuration 3-3 and a moderate decline in performance for configuration 2-3.
We investigated this using a profiler and observed that an assumption we
hold true does not always hold. We assumed that the heap does not change
much between successive states. This depends however on the heap prop-
erty that is being measured. The heap shape does not change much, but
we did observe that the depth labelling changes much for MolDyn config-
urations 2-3 and 3-3. As object references are popped and pushed upon
the callstacks, the children of the fictive root change, and thus, also the
object graph. Also, these affected objects can cause a chain reaction of
changed depth labelling of subsequent child objects. The MGC bases object
reachability on this depth labelling. Furthermore, the profiler revealed an
overhead in the maintenance of parent lists. These list are updated upon
every change to the object graph. The changes are especially heavy when a
collapsed state is restored, where it is not uncommon that many are object
change. Note that these observations also depend on the model that is being
verified. The RayTracer model is less suspective to massive depth-labelling
changes between successive states, thereby benefiting more from MGC.

When it comes to memory overhead (in terms of states stored per Mb.),
we see that there is no significant difference between MGC and M&S. This
means that the memory overhead for maintaining parentlists is neglectible.

5.6 Future Work

It is important to improve the garbage collector in a software model checker.
Our profiler data of RayTracer configuration 2-1 shows that the Mark &
Sweep algorithms takes 26% of the total running time. This is improved by
the Memoised GC, which decreases the stake to 17%. Even though this is
less, it is still significant. While developing and investigating the Memoised
GC, we saw opportunities for further improving it. They are outlined below.

Priority queue Algorithm 15 is very amendable for improvements. For
the priority queue, Q, we used the IntervalHeap [60] from the C5 .NET
collection library. It has O(logn) time-complexity for adding and removing

64 CHAPTER 5. MEMOISED GARBAGE COLLECTION

elements and O(1) time-complexity for retrieving the vertex with the least
key. Other datastructures may be more effective. It is important that
operations for adding, removing and retrieve the vertex with least key are
fast. A promising datastructure is the HOT queue [10]. It is designed for
applications in which keys are monotone increasing, i.e., in one run of the
algorithm, the keys added or updated are either equal or increasing. For such
applications, the HOT queue has improved time complexities. A description
of it, along with the elaborate time complexities are can be found in [10].

Right hand side value In our experiments we observed that the calcu-
lation of the rhs-value can be expensive, as it requires the traversal of all
parents of the given child. This is of linear time complexity. This can be
improved to constant time by using the improved algorithm by [52]. This im-
proves the time-complexity, but it is more difficult to implement efficiently.
For this reason, we have not implemented it ourselves, but put it as future
work.

State decollapsion As shown in §5.5, MGC is not always improvement.
The overhead incurred my the maintenance of parent sets is significant, and
mostly caused on backtracking. Currently, on state decollapsion, changes to
the heap are not accumulated, but committed per decollapsed object. Thus,
successive decollapsion of the same object entity causes repeated calls made
to the parent set maintainer. In the end, only the last change really matters.
Thus, it might be effective to accumulate the changes, and calculate which
changes are going to have effect, and only process those. Another possibility
is to find a method to detect whether the state is going to change a lot and
disable the parent set maintainer in that case. After the changes are over, a
complete sweep over the heap can be made to recalculate all parent sets. An
other approach is by storing parentlists associated with a state on the DFS
stack, and restore them when the explorer backtracks to the state. This
increases memory use, but saves a lot of parent lists maintenance necessary
during state decollapsion.

No garbage We observed that lots of calls to the garbage collector do not
result in the collection of garbage objects. It appears that most of the time,
garbage collection is called on heaps that have no garbage. This happens
especially when the callstack of a thread grows by successive method calls.
If one develops a cheap method to determine such situations beforehand, it
can be used to prevent a call garbage collector. The method does not have
to be precise, it can have false-positives (where a positive indicates that the
GC should be run), as long as the false-positive rate is low. Such a method
will help the Memoised Garbage Collector a little, but might improve the
performance of Mark & Sweep a lot.

5.6. FUTURE WORK 65

Hybrid approaches We also observed that some calls to the garbage
collector result in the collection of relative lots of garbage objects. This
happens quite often when the exploration comes closer to the end state.
Mark & Sweep is faster in such cases, and it would be beneficial to have
the explorer dynamically switch to that algorithm from Memoised Garbage
Collector. However, one has to develop a method that determines before-
hand that likely (there can be false-positives) lots of objects are collected.
Secondly, one has also to develop how the dynamic switch can be done
efficiently.

Another way to combine the strengths of Mark & Sweep with Memoised
GC is to partition the heap in two graphs. For one graph, Memoised GC is
responsible. Mark & Sweep is responsible for the other. A partition criterion
can be for example the number of fields in an object. Objects with lots of
fields are the responsibility of the Memoised GC, the remaining objects are
for Mark & Sweep GC.

Other incremental shortest path algorithms The incremental short-
est path algorithm by [52], used as inspiration for Memoised Garbage Col-
lection, has set off an active field of study on incremental shortest path
calculation. Since its publication, refinements and specialisations have been
proposed. We have not investigated the state of art in this area, because of
the lack of time to study this, to us unfamiliar, field. It it well possible that
improvements have been developed that are also applicable to Memoised
Garbage Collection.

Incremental cycle detection with reference counting The improve-
ments mentioned above are merely to improve the Memoised GC. Our study
also gave us an idea for a more fundamental improvement. The Memoised
GC uses the depth of a vertex as a property to determine connectedness.
In the end, it is all about the latter, not about the depth. Other properties
of a graph might be used instead. For example, a fundamental different
approach is to combine reference counting with a form of incremental cycle
detection. The incremental cycle detector exploits the changes in a transi-
tion to incrementally maintain the list of cycles in a heap. The reference
garbage collector then only has to check whether the change causes the cycle
to become unreachable from the object graph, and if so, collect the cycle.

Applications of incremental computation The incremental nature
of the Memoised Garbage Collector is also applicable to other algorithms.
For instance, [48] describes an incremental heap canonicalisation algorithm
based on Iosif’s canonicalisation algorithm [36]. They use the shortest path
to achieve this, and, as they suggest themselves, can be calculated incre-
mentally. This can be further extended to gain an incremental k-BOTS
algorithm [54], such that thread symmetries can be detected incrementally.

66 CHAPTER 5. MEMOISED GARBAGE COLLECTION

5.7 Conclusions

The use of Memoised GC increases performance between 3% to 78%, de-
pending on the model. The average performance increase for the MolDyn
benchmark is 9% and for the RayTracer benchmark is 26%. This perfor-
mance increase comes at an insignificant memory overhead. In few cases
the Memoised GC performs worse, namely up to a two-fold performance
decrease. This decreased performance is dependent on the model, and more
particularly, its state space. A transition may trigger many changes to the
object graph, which triggers the parent set maintainer, and eventually, trig-
gers more objects as possible affected for traversal by the Memoised GC.

As the garbage collector is the most expensive algorithm in a software
model checker, improving it can lead to much gain. Much of our time was
spent investigating how to achieve that. While our proposed solution, the
Memoised GC, works well for most configurations of the used Java Grande
Benchmark models, it works only particularly well for configurations whose
object graphs have depth labellings that change little during transitions. It
is desired to devise a GC algorithm that works well for all models. Via our
work on the Memoised GC, we generated ideas for future study (see future
work in §5.6), which hopefully will eventually lead to a faster novel general
purpose GC for software model checking.

Chapter 6

Incremental Hashing

The first application of incremental hashing scheme in a model checker is
described in [47]. That incremental hashing scheme is only practicable for
hashing stack and queues incrementally. We improved that hashing scheme
by generalising it for hashing vector-based datastructure incrementally by
using cyclic polynomials from [13]. Implementations in C and C# are pro-
vided as well, along with analysis followed from extensive benchmarking
with Spin using the BEEM benchmark suite [51].

6.1 Use of Hashcodes in Model Checking

The hashtable is the cornerstone of stateful state space exploration. States
encountered during exploration are stored in it. Upon exploration of each
state, the hashtable is consulted to check whether that state has already
been explored or not. Hashtables are also used for state collapsion, where
shared components are mapped to a reference (usually an integer). Accesses
to a hashtable are in amortised O(1) time. Although this is a good worst-
case time-complexity, the constant costs are high if a bad hash function is
chosen.

The characteristics of a good hash function depends much on the anatomy
of the hashtable. A hashtable constitutes of B indexed buckets. The ele-
ment to be stored in a hashtable is called a key. Upon storing, the hashtable
computes the hashcode of the key using a hash function, then maps that
hashcode to an index of the hashtable and finally stores the key into the
bucket associated with that index. In case another key is already mapped
to that index, a collision occurred. The hashtable will need to perform
collision-management, like closed address hashing or open address hashing,
to resolve the collision [3].

Collision management is a time-expensive operation. Thus a good hash
function should have a good uniformity, i.e., keys are spread along buckets
as much as possible. A good hash function is also fast. In model checking,

67

68 CHAPTER 6. INCREMENTAL HASHING

states are usually represented as arrays. A good “traditional” hashcode of
an array would at least require the traversal of the whole array.

But states can become large, and so do the arrays that represent them.
The traversal of a large array becomes an expensive operation. That is why
a considerable amount of running time of a model checker is spent on the
computation of the hashcode. [47] observed that successive states do not
change much, and if somehow the hashcode of the predecessor state can
be reused to compute the hashcode of the successor state, a performance
increase is gained. This is the underlying idea of incremental hashing as
described in this thesis. Upon a small change of an array k = v1 . . . vj . . . vn

resulting in the changed array k′ = v1 . . . v′j . . . vn, the hashcode of k′ is
calculated by using the hashcode of k and vj , v′j as input. This prevents
traversal of all elements in array k′. This idea can also be extended to state
collapsion, where shared components as stacks and object field vectors are
also modelled as arrays and stored into hashtables.

6.2 Related Work

A well known hash function for hashing arrays is the rolling hash function
[3]. Given a ring R, a radix r ∈ R and a mapping function T that maps array
elements to R, the rolling hash code for an array a = a0 . . . an is computed
as follows:

H(a) = T (a0) + rT (a1) + . . . + rnT (an) (6.1)

=
n∑

i=0

riT (ai) (6.2)

A possible suitable ring R is Z/B, where B is a prime and is also the amount
of buckets in the hashtable. This specialisation of the rolling hash function
is called hashing by prime integer division [13].

It is not difficult to see that the rolling hash function is prone to overflow,
especially due to the power operations with the radix. Remedying overflow
is costly. A recursive formulation of the rolling hashcode is less prone to
overflow:

H(a0) = T (a0) (6.3)
H(ai) = rH(ai−1) + T (ai) 1 ≤ i ≤ n (6.4)

Note that the radixes are reversely mapped to the array elements when
compared to equation 6.2, and therefore hashcodes derived from the recur-
sive formulation should not be matched against hashcodes derived from the
non-recursive formulation.

[40] described an incremental recursive hash function for fast string pat-
tern matching by using recursive hashing by prime integer division. Their
method is as follows. Given a string s = s1 . . . sn and a pattern p = p1 . . . pm:

6.2. RELATED WORK 69

1. Hashcode of pattern p is H(p)
2. Hashcode of the first m characters in s is H(s1 . . . sm)
3. Iterate for all 1 ≤ i ≤ n−m:

(a) If H(p) = H(si . . . si+m−1), then perform a character by character
comparison on p and si . . . si+m−1

(b) Else, calculate H(si+1 . . . si+m) incrementally by:

H(si+1 . . . si+m) = rH(si . . . si+m−1)+T (si+m−1)−rm−1T (si)

The idea is to reuse the hashcode of the previous unmatched substring for the
calculation of the shifted substring. In [13], this is generalised for matching
of n-grams.

The rolling hash function is not only amenable for incremental recursive
hashing, but also incremental linear hashing. The idea behind incremental
linear hashing, is that the contribution of an array element is independent
of the contributions of other array elements. In case of an array change,
the influence of the old array element is known and thus can be removed,
followed by adding the influence of the new array element [13]. In [47], this is
expressed as follows. Consider an array k = v0 . . . vi . . . vn and its successor
k′ = v0 . . . v′i . . . vn, then the hashcode of k′ can be computed as follows:

H(k′) = H(k)− riT (ki) + riT (k′i) (6.5)

Depending on the ring chosen, the power operation with a large index i
can easily lead to overflow. Thus using this hashing scheme for arbitrary
modification of large arrays is impractical. For stacks and queues however,
[47] describes a rewritten version of that formula for push and pop operations
with the power operation removed. They tested it in their StEAM model
checker, and got at least a speedup factor by 10 compared to non-incremental
hashing. Note that this speedup was achieved with fixed-sized stacks of eight
megabyte. It is logical to assume that the speedup factor will be much lower
with with arbitrary sized stacks.

In this thesis, it is the goal to hash arbitrary sized arrays, not just stacks,
without worrying about overflow issues, and still having a hash function that
distributes uniformly. The inspiration for such a hash function came from
[13]. That paper proposes the use of cyclic polynomials for the generalised
n-gram matching algorithm. Operations over cyclic polynomials can be done
using bitwise operations without overflowing. In this chapter, Cohen’s recur-
sive hashing approach using cyclic polynomials is combined with equation
6.5 to obtain a fast and overflowless linear recursive hashing algorithm for
dynamically-sized arrays with arbitrary changes.

Finally, a section on hashing cannot leave hashing methods in cryp-
tography unmentioned. Hashcodes in cryptography are used to determine
authenticity of information. In [7], several incremental hashing algorithms

70 CHAPTER 6. INCREMENTAL HASHING

suited for cryptography are described. Though there are superficial simi-
larities with the approach described in this thesis, there are fundamental
differences. Hash functions in cryptography need to have the collision-
free property, which contrary to one might assume, means that it should
be computationally unfeasible to find two (or more) keys that hash to the
same hashcode. The presented collision-free incremental hash functions suf-
fer from overflow issues, which is less concerning in cryptography because
hashcode sizes of 512 bits and even larger are more common, hence the
increased uniformity. For a typical model checker, and for hashtables in
general, hashcodes are restricted to 32 bits, and the collision-free property
is of no concern. Speed on the other hand is, and as such, makes up the
fundamental difference between the incremental hashing function there and
the one presented here.

6.3 Incremental Hashing Function

This section presents the proof of the incremental property and the time-
complexity of the incremental hash function. A few concepts, like polyno-
mial rings, from algebra are used to express this proof. Readers unfamiliar
with this may consult [13, Appendix A]. Implementors can skip this section
and jump directly to §6.4.

Consider a Galois field (also known as a finite field) R = GF (2)[x]/(xw +
1), the ring consisting of polynomials in x whose coefficients are 0 or 1,
reduced modulo the polynomial xw + 1. Make sure that w matches the
computer’s word size, thus 32 for 32-bits words. The polynomials are rep-
resented by w-sized bitmasks by placing the coefficients of xi at the ith bit,
creating an one-on-one correspondence between polynomials in R and the
bitmasks.

As a radix, the polynomial xδ ∈ R is chosen. By setting radix r = xδ,
the following incremental hash function is derived from equation 6.5:

H(k′) = H(k) + xδiT (ki) + xδiT (k′i) (6.6)

The minus operation from equation 6.5 is replaced by an +, because addition
and subtraction are the same in ring R. Now, consider an arbitrary member
q ∈ R with q(x) = qw−1x

w−1 + qw−2x
w−2 + . . . + q0. The multiplication of

the x and q(x) is the following:

xq(x) = qw−1x
w + qw−2x

w−1 + . . . + q0x (6.7)

= qw−2x
w−1 + qw−3x

w−2 + . . . + q0x + qw−1 (6.8)

Equation 6.8 is equation 6.7 reduced to modulo xw+1. The multiplication by
polynomial x results to a left rotate of the coefficients in q(x), hence the name
cyclic polynomials. These multiplications by the radix are therefore easily

6.4. IMPLEMENTATION 71

implemented by bitshifts on the bitmask. The addition can be implemented
using an exclusive-or.

There is only one variable left unmentioned, namely δ. The choice of a
δ for the radix xδ was experimentally evaluated by [13]. No δ clearly stood
out. For δ = 1, the incremental hashing function worked well and they used
is subsequently for their experiments. For this reason, this thesis shall now
also take 1 for δ.

As described in [13], cyclic polynomials have one weakness. They have
a cycle length of size w for which it computes the hashcode of zero. For
example, if a key of size 2w starts with w elements followed by another
identical sequence of w elements, then the hashcode for that key is zero.
In practise, such keys are extremely rare in model checking, as their size
must be exactly nw-sized, where n ∈ N, and that its contents should be also
w-cyclic as well.

The time-complexity of the incremental hash function is differently de-
fined compared to traditional hash functions. A fast traditional hash func-
tion has a time-complexity in O(N), where N is the array length. The
incremental hash function hash function has a time-complexity of O(1) for
one change to the array. Theoretically, the incremental hash function is
faster if the amount of changes between successive states is smaller than N .
This is usually the case in model checking, where the amount of changes is
usually 1 or 2 and almost never near N .

6.4 Implementation

A straightforward implementation of equation 6.6 would do, though there
is an opportunity to save a few computing instructions by rewriting the
formula using the laws of distribution and association. Considering δ = 1,
the rewrite is as follows:

H(k′) = H(k) + xiT (ki) + xiT (k′i) (6.9)

= H(k) + xi(T (ki) + T (k′i)) (6.10)

As described in the previous section, the + operator is implemented as a
exclusive-or and the multiplication with the radix is implemented as a left
rotate. Although nearly every programming language has an exclusive-or
operator, this does not holds for the left rotate. In C# for example, a left
rotate is simulated by using left and right bitshifting, like as follows:

public static int H(int k, int i, int ki, int ki_prime) {
int diff = ki ˆ ki_prime;
return k ˆ ((diff << i) | (diff >> (32 - i)));

}

72 CHAPTER 6. INCREMENTAL HASHING

Implementations for other programming languages are easily derivable from
the above example.

6.5 Experimental Method

The incremental hashing function was originally developed for MMC. It was
planned to conduct experiments with MMC and prove empirically that the
incremental hashing function is better than non-incremental hash functions.
However, initial tests with MMC showed that there was no measurable per-
formance gain. We studied the results of these initial tests and the con-
clusions followed from it made us to decide to conduct experiments with
Spin. Therefore, the experimental evaluation of it split into two parts, one
part that describes the initial tests with MMC and one part that describes
elaborate experiments with Spin.

6.5.1 Mono Model Checker

MMC was extended with incremental hashing by hashing the state vectors
and collapsed components incrementally. Several models were then used for
initial tests. The results were quite unexpected. Although they could be
elaborated in much detail, it is only meaningful to mention that no perfor-
mance gain was measured with any of the models.

The big question was: why? By running MMC through the ANTS
profiler1, the answer became evident. By comparing at the absolute time
spent in the traditional hash function and the incremental hash function,
it was clear that the latter was superior. The reason that this was not
measurable without a profiler, is that hashing in MMC constitutes only a
small fraction of the total running time. Any performance gain in hashing
would not be visible in the total running time.

This experience forced us to learn an important lesson in optimisation.
Profile first and optimise the bottlenecks. Hashing is not a bottleneck in
MMC, so improving it serves no purpose. The ANTS profiler did however
show that the theoretical improved time-complexity pays off. This gave us
a glimpse that if the incremental hashing function would be implemented
into an application in which traditional hashing consumes a relative large
part of the total running time, a speedup might be gained.

6.5.2 Spin

Spin uses Jenkins’s hash function by default, which is known for its speed
and good uniformity [38]. It is a traditional hash function in the sense that
calculates the hashcode by using the whole array as input. To measure

1A .NET code and memory profiler from Red Gate Software Ltd.

6.5. EXPERIMENTAL METHOD 73

whether this hash function is a bottleneck in Spin, we ran a profile run on
the petersonN model (distributed along with Spin) using gprof, the GNU
profiler. The results were promising. The GNU profiler showed that Jenk-
ins’s hash constitutes 20% percent of the total running time. This indication
was convincing enough for us to implement the incremental hash function
in Spin.

Our implementation strategy was by adding a call to the incremental
hash function before every change made to the state vector. The address
of the changed element in the state vector is used as the index. This works
for almost all Promela constructs except for unsigned integers and bits.
Unsigned integers and bits are transformed by Spin into bitfields, which,
according to any C standard, do not have addresses.

Initial testruns showed that the incremental hash function performed
poorly compared to Jenkins’s hash function. The total running time even
increased with the incremental hash function. Collisions were to blame for
this, as the incremental hash function distributed the keys very poorly. The
source of the collisions lied in the entropy of changes between state vectors
of successive states. Transitions are often of low entropy, like changing
changing a variable from 0 to 1 or add 1 upon variable i. The incremental
hash function recalculates the hash function upon such changes, but since
the entropy is low, the resulting hash would not differ much as one desires
for a good hash function. To improve entropy, every value to be hashed
is first multiplied by Knuth’s golden ratio of 232, which is 2654435761 [63].
This ensures that bits of the hashed values are better spread among the word
(which is 32 bits) and therefore increasing entropy. Elaborate details on the
resulting collision-rate is described later in this section. The incremental
hash function used in Spin therefore looks as follows:

uint c_hash(uint k, uint i, uint ki, uint ki_prime) {
uint diff = (2654435761*ki) ˆ (2654435761*ki_prime);
return k ˆ ((diff << i) | (diff >> (32 - i)));

}

Instead of devising our own models for the experiments, it is more con-
vincing to use a large existing benchmark set. The research group in Brno
created the BEEM suite, consisting of 57 models that range from communi-
cation protocols, mutual exclusion algorithms, election algorithms, planning
and scheduling solvers and puzzles [51]. The model are parameterised to
yield different problem instances. The total amount of models is 298. 231
of them are in Promela. We used all the Promela models for our experi-
ments. Each model was verified with four configurations, namely by every
combination of the -O3 and -O0 compiler optimisation flags, Jenkins’s hash
function and the incremental hash function. The rationale behind consid-
ering compiler optimisation flags as factors shall become evident upon the

74 CHAPTER 6. INCREMENTAL HASHING

discussion of the results. All verifications were done on a Linux machine,
equipped with 4 GB memory and a 1.86 GHz processor. The used compiler
options are -DMEMLIM=3600 and -DSAFETY. The hashtable size was set
to 226 and the maximal DFS stack size was set to 10.000.000.

6.6 Results and Discussion

Table 6.1 shows the results of models that have a state space of one million
and larger. Besides the number of states, it shows the size of the state
vector of each model, along with the collision rates (in percentages of the
number of states) of both Jenkins’s and the incremental hash function. The
verification time with Jenkins’s hash function is taken as reference (100%).
The verification times of the incremental hashing function are in percentages
of the verification times of Jenkins’s hash function. Note that the verification
times were measured for both models compiled with -O0 and -O3, as we
found out that this changes the performance gain of incremental hashing
function. This difference shall be explained later on.

model sv
(by

tes
)

sta
tes

(·10
6)

Jen
. (%)

inc. (%)

Jen
. (se

c)

=
10

0%

inc. (%)

Jen
. (se

c)

=
10

0%

inc. (%)

collrate time -O0 time -O3
telephony.6 36 239 16 17 390 87 197 88
peg solitaire.6 52 234 12 19 598 90 283 94
telephony.5 44 214 13 14 353 89 174 92
telephony.8 44 208 14 14 337 90 168 92
phils.7 45 206 3 3 188 83 82 93
peg solitaire.3 60 200 11 33 855 94 408 104
anderson.3 20 197 20 20 294 89 155 88
fischer.7 36 195 15 16 373 83 189 84
fischer.5 36 194 14 30 329 100 185 89
peg solitaire.2 60 192 11 15 608 92 265 101
lann.7 52 186 11 14 529 91 264 90
bakery.8 36 182 14 34 269 85 127 91
anderson.5 28 170 11 22 247 89 123 93
lann.6 44 162 12 12 415 94 212 86
peterson.7 36 149 14 30 222 86 114 93
anderson.7 36 147 8 19 211 90 102 94
lann.8 52 144 10 14 413 92 206 92
anderson.8 36 141 13 55 242 93 118 100
phils.6 54 139 8 8 283 100 170 80
lamport nonatomic.5 60 132 5 8 304 88 143 101
. . .

(continues on next page)

6.6. RESULTS AND DISCUSSION 75

model sv
(by

tes
)

sta
tes

(·10
6)

Jen
. (%)

inc. (%)

Jen
. (se

c)

=
10

0%

inc. (%)

Jen
. (se

c)

=
10

0%

inc. (%)

collrate time -O0 time -O3
lann.5 68 132 8 17 425 93 214 84
at.5 28 125 10 14 205 89 101 96
peterson.5 28 124 7 14 172 87 89 87
phils.8 53 121 4 4 158 102 88 87
mcs.5 36 116 10 31 182 93 100 95
telephony.7 36 114 7 8 184 89 80 101
at.6 29 107 11 12 181 86 89 94
bakery.7 28 95 7 11 130 86 59 90
elevator planning.2 46 93 6 55 127 83 60 95
blocks.4 37 93 3 3 108 91 48 97
loyd.3 29 89 4 4 108 94 49 90
production cell.5 85 88 5 5 593 95 261 95
anderson.6 37 87 7 45 164 94 87 101
extinction.3 76 83 7 7 235 88 110 91
frogs.5 44 82 10 11 183 88 87 88
extinction.4 76 80 8 8 227 89 110 92
train-gate.5 60 76 7 21 236 89 101 99
train-gate.6 60 73 8 20 233 96 105 94
train-gate.4 60 73 7 20 228 89 98 99
firewire link.3 76 72 7 13 294 94 140 91
production cell.6 93 71 4 4 573 94 256 96
elevator.3 61 70 6 8 216 91 103 92
iprotocol.6 60 69 5 5 196 91 88 96
iprotocol.5 60 69 5 6 194 94 89 96
iprotocol.7 60 69 5 5 201 90 89 92
cambridge.5 77 68 6 7 220 90 97 93
krebs.4 36 67 4 4 123 86 54 101
at.7 38 64 7 8 116 88 59 88
telephony.4 36 64 4 7 100 88 50 92
driving phils.3 84 62 7 12 131 83 53 87
train-gate.7 68 61 7 12 203 97 96 90
lamport nonatomic.4 52 60 5 22 166 91 84 97
elevator.4 62 58 6 9 183 90 86 94
public subscribe.5 68 58 7 9 194 95 95 90
train-gate.3 44 57 5 15 147 94 66 93
driving phils.5 92 56 6 6 122 87 50 89
elevator2.3 36 55 3 3 75 89 34 97
elevator2.3 prop4 36 55 3 3 75 92 34 97
cambridge.7 92 55 4 4 192 86 84 91
. . .

(continues on next page)

76 CHAPTER 6. INCREMENTAL HASHING

model sv
(by

tes
)

sta
tes

(·10
6)

Jen
. (%)

inc. (%)

Jen
. (se

c)

=
10

0%

inc. (%)

Jen
. (se

c)

=
10

0%

inc. (%)

collrate time -O0 time -O3
cambridge.6 84 53 5 5 173 87 75 91
firewire link.6 116 51 5 10 266 90 112 100
lann.4 61 51 4 5 180 91 81 93
train-gate.2 44 50 5 15 128 94 58 92
brp.6 44 48 5 8 126 93 59 94
schedule world.3 44 44 2 3 65 87 31 90
production cell.4 60 42 5 5 165 91 70 97
elevator.5 88 39 3 4 132 92 66 88
bakery.6 28 38 3 11 52 87 24 92
frogs.4 44 36 4 3 76 89 35 95
fischer.6 36 33 3 3 64 83 32 86
peterson.6 28 33 3 3 49 86 26 91
lamport.8 28 31 3 11 40 93 21 99
driving phils.4 84 30 2 46 64 85 27 93
bridge.2 28 27 4 4 66 96 32 93
sorter.4 44 27 4 5 67 89 34 95
at.4 29 25 2 2 41 88 20 95
bakery.5 28 25 2 8 34 87 16 92
lann.3 44 24 2 2 63 95 33 88
production cell.3 69 24 2 2 128 94 57 92
sokoban.3 220 23 1 284 93 100 38 135
brp.5 44 20 2 3 54 90 24 97
lamport.7 28 19 2 12 26 93 14 99
krebs.3 36 16 1 1 26 96 13 92
hanoi.3 80 15 2 34 41 85 17 93
hanoi.4 80 15 2 8 39 91 18 91
brp.4 44 13 1 3 36 93 17 99
firewire link.5 116 12 1 6 67 94 31 96
fischer.3 28 12 1 2 22 84 11 99
adding.6 20 12 1 1 15 85 8 92
msmie.4 60 11 1 1 36 103 19 104
iprotocol.4 52 8 0 1 24 93 12 94
adding.5 20 8 1 1 11 87 6 90
protocols.5 36 8 1 12 19 93 10 97
at.3 29 6 0 2 10 94 6 92
cambridge.4 61 6 1 1 19 90 9 96
peg solitaire.4 36 5 0 0 12 92 6 101
adding.4 20 5 0 1 7 86 4 94
fischer.4 36 5 0 0 9 99 5 88
. . .

(continues on next page)

6.6. RESULTS AND DISCUSSION 77

model sv
(by

tes
)

sta
tes

(·10
6)

Jen
. (%)

inc. (%)

Jen
. (se

c)

=
10

0%

inc. (%)

Jen
. (se

c)

=
10

0%

inc. (%)

collrate time -O0 time -O3
reader writer.3 68 4 0 0 47 102 20 99
leader filters.5 36 4 0 2 7 94 4 98
phils.5 46 4 0 0 9 86 6 86
lamport.6 28 3 0 2 5 91 3 96
rushhour.4 125 3 0 0 11 84 6 92
telephony.3 36 3 0 2 6 85 3 91
phils.4 38 3 0 0 6 87 4 90
szymanski.3 28 3 0 0 5 89 3 90
protocols.4 36 3 0 10 8 94 4 98
adding.3 20 3 0 0 5 88 3 95
iprotocol.3 52 3 0 0 9 90 5 94
krebs.2 36 3 0 0 5 96 3 95
peterson.4 28 2 0 9 5 90 3 91
blocks.3 31 2 0 0 5 101 3 92
bopdp.3 44 2 0 0 6 97 3 96
sokoban.2 76 2 0 15 5 88 3 93
sorter.3 36 2 0 5 5 96 3 95
hanoi.2 65 2 0 4 5 90 3 95
rushhour.3 126 2 0 0 6 86 3 91
cambridge.2 61 1 0 2 6 94 3 97
cambridge.3 62 1 0 0 6 96 3 98
extinction.2 85 1 0 0 5 90 3 95
adding.2 20 1 0 0 3 91 2 96
pouring.2 90 1 0 0 15 97 7 98
brp.3 44 1 0 1 4 96 3 98
extinction.1 61 1 0 0 4 92 2 97
elevator2.2 38 1 0 0 3 93 2 96
Average 52 62 5 12 144 91 69 94

Table 6.1: BEEM benchmark results of Jenkins versus incre-
mental hash function. The gain is the performance improve-
ment of the incremental hash function over Jenkins’s.

The key statistics of this table are as follows. With -O0, incremental
hashing improves the exploration time up to 17%. The average improvement
is 9%. With -O3, incremental hashing improves the exploration time up to
20%, with an average of 6% improvement. Thus, in general, incremental
hashing is a substantial improvement upon Jenkins’s.

78 CHAPTER 6. INCREMENTAL HASHING

(?Vm�V
�²É

V�à÷�%
�<É

%Smjj÷�
�É

¯%Æ?�àmà%
�<É�÷SÝ�%��

ô�É

(÷?à�m¯��à
ôÉ

S���
��É

(a) Jenkins.

(?Vm�V
�² V�Éà÷�

�%²

�<mSSà(
j²

���?�ÉmÉ�
�¯²

(à<Æ÷���
Ýô²

�à?É÷m��"É
j²

<"�(
�j²

(b) Incremental hashing.

Figure 6.1: Percentual stakes of six most time-consuming functions for
BEEM benchmarks compiled with -O0.

The outlier in the table is the sokoban.3 model. For this model, the
performance decreases with incremental hashing by 35%. This extreme value
is explained by looking at its collision rate. Its collision rate with incremental
hashing is 284%. This percentage might look strange. However, Spin does
not count how often a key collides with an index, but how much it collides
with other keys in the chain2. So, it appears for sokoban.3, the incremental
hash function hashes lots of different states to the same index. Besides
this spike, the collision rate of Jenkins’s is on average 5% whereas that of
incremental hashing is on average 12%, thus the incremental hasher has a
more worse uniformity, but not that much more worse.

To explain the difference in performance improvement between the mod-
els with -O0 and -O3, all configurations were ran again with GNU profiler
enabled. For the explanation, we summarised the profiling data of the mod-
els with a state space of million states or more into pie-charts, see figure
6.1 and 6.2. The slices represent the relative stakes of the total running
time of the six most time-consuming functions, namely the used hash func-
tion (c hash is the incremental hashing function, d hash is Jenkins’s hash
function), the hstore3, compress4, new state5 and do transit6. Stakes of
remaining functions are summed under misc.

A close look at the stakes of the hash function for models compiled with -
O0 reveals that Jenkins’s hash function has a considerable stake in the total
running time. When the model is compiled with -O0, the average stake
of Jenkins’s hash is 11%. This drops to 1% when incremental hashing is

2Spin uses chaining for collision management
3hstore stores the current state in the hashtable
4compress removes bytes from the state vector which are known to never change
5new state is the DFS routine
6do transit performs one transition from the current state

6.6. RESULTS AND DISCUSSION 79

(?Vm��
²Éà

÷m�V�%<?SV
jà

�m�¯��??
Éà

÷�(%?(
²à

�S?�
Æà

<�Ý�?V%V�
ô�à

��%""m�
Éà

(a) Jenkins.

(?Vmm��
²É

à÷��%(
<SÉ

?j÷�
�É��¯�%VÆ÷j�

ÝÉ
��?ô%(÷÷

²É

Æ(�¯÷�V�(
S²É

�¯àV÷à
²É

(b) Incremental hashing.

Figure 6.2: Percentual stakes of six most time-consuming functions for
BEEM benchmarks compiled with -O3.

used. This shows that incremental hashing therefore eliminates hashing as
a bottleneck. And more generalised, this proves that the incremental hash
function is a substantial improvement upon traditional hashing.

Let us have a close look at the stakes of the hash function for models
compiled with -O3 in figure 6.2. It also shows that here incremental hashing
also improves upon traditional hashing by completely eliminating hashing
as a bottleneck. If we compare those stakes of hashing with -O0, we see that
Jenkins’s hash is quite optimisible, as its average stake drops to 7%. This
also reduces the maximal gain, and therefore also explaining the difference
in the performance gain between -O0 and -O3 shown in table 6.1.

We hypothesised a correlation between the performance gain and the
state vector size. We mapped these two factors out using the results from
the BEEM benchmarks, but we did not found a correlation. There is a
simple explanation for this: the BEEM suite does not cover models that
have both large state spaces and large state vectors. The amount of invoca-
tions of Jenkins’s hash is therefore small, causing to leave the hypothesised
correlation disguised. This explanation is backed up by a small experiment
we performed with a modified six-processes Szymanski model that was ar-
tificially extended by adding a global array which we varied in size. The
results are shown in figure 6.3. The figure shows that for both -O0 and -O3
the performance gain grows with the state vector size. The growth declines
after state vectors of 1646 bytes or larger. A stronger claim of the correla-
tion should however be backed up by experiments with a variety of other
models besides Szymanski’s that have both large state spaces and large state
vectors.

80 CHAPTER 6. INCREMENTAL HASHING

Figure 6.3: Relative performance gain of the incremental hash function with
Szymanski’ mutual exclusion model plotted against the state vector size.

A final remark on the differences between the results measured by -O0
and -O3. In general, we found the verification times with -O3 are on average
51% faster than those with -O3. This performance gain comes however at a
cost, as the -O3 flag takes longer to compile. With -O3, we measured that
all models compile within 21 seconds, with an average of 5 seconds. With
-O0, all models compile within 2 seconds, with an average of 1 second. This
difference in compilation time is in relative terms enormous, but nothing
compared to tenths of minutes of verification the average BEEM model
might take.

6.7 Future Work

The weaker uniformity of the general incremental hashing scheme leaves
room open for future tweaking. For instance, a hashcode from the incre-
mental hash function can be rehashed by an integer hash function, like
Wang’s integer hash [63], for increasing uniformity. One can also tweak the
mapping of integers to ring R. The current mapping works by multiplying
by Knuth’s golden ratio, but other, less simplistic mappings are devisable.
In any case, before one proceeds with such tweakings, we recommend one
to analyse the outliers in collision rate in table 6.1 first, and further proceed
from that point on.

For our experiments, we used 1 for δ (see equation 6.6), as this was
experimentally decided to work out well by [13]. His work was however on
hashing n-grams, which is a different application than model checking. It is
interesting to see whether other values for δ might improve the uniformity
of the incremental hashing function in the context of model checking.

6.7. FUTURE WORK 81

Figures 6.1 and 6.2 show clearly that the hstore function has the biggest
stake in the total running time. It is worth to profile this function in detail
and optimise the bottlenecks in it. Performance might be also be gained
by enhancing the collision management. Each key does not necessarily have
to be hashed once, but can also be hashed twice or more by different hash
functions. If a collision needs to be resolved, an indication of equality can be
faster checked by comparing all hashcodes before a byte-to-byte comparison.
This is of course expensive if traditional hashing schemes are used for cal-
culating the hashcodes. Incremental hashing is much cheaper, and applying
it for this context might strongly reduce the costs of collision management.

On the engineering front, the current implementation of the incremental
hashing scheme in Spin does a call to c hash at every change of the state
vector. This is a quite invasive implementation, making future changes to
Spin more error-prone. Also, this approach could not be applied for hash-
ing bitfields, which are used to represent unsigned integers and bits in a
Promela model. In a private communication, Holzmann suggested a diffi-
cult implementation approach. Instead of the more fine-grained incremental
hashing scheme, he suggested to rehash a known and addressable portion
of state vector (including the bitfields) upon a change. For example, like
rehashing the whole local process structure if one local variable would be
changed. This approach however does lead to a smaller performance gain,
as the incremental hash function would have to work more.

Another architectural future-proof implementation would be piggyback-
ing on an incremental state collapser. Such an incremental collapser does not
exist in Spin, yet. Currently, if the model is compiled with -DCOLLAPSE,
Spin recollapses the whole state upon each visit. However, the observation
that only a small part of a state changes between successive states is very
well applicable to collapsion. An implementation of this already exists in
software model checkers like JPF and MMC, where only changed parts of
the state are collapsed. For Spin, such an incremental collapser may im-
prove performance by itself. The combination with incremental hashing
may improve performance even further.

In this chapter, incremental hashing was purely applied to exhaustive
state space search. It is also perfectly adaptable for approximative ap-
proaches, like bitstate hashing [30]. A 20-fold scheme is recommended by
[65]. To give an indication of the possible gain, we profiled the same Szy-
manski’s model with 20-fold bitstate hashing. The profiler measured a 32%
stake of Jenkins’s hash function with -O0 and a 15% with -O3. [42] even
recommends a 30-fold scheme if hardware resources allows to. Using those
recommended settings, we measured a 26% stake of Jenkins’s hash func-
tion with -O0 and 15% with -O3. Those percentages are also the maximal
performance gain with an incremental bitstate hashing scheme.

The general incremental hashing scheme can also be used for hash com-
paction [65]. With hash compaction, we even measured a higher possible

82 CHAPTER 6. INCREMENTAL HASHING

gain. The same Szymanski’s model shows a 51% stake of Jenkins’s hash
function with -O0 and 40% stake with -O3. As with bitstate hashing, these
even larger stakes indicate the possible performance gain with if the general
incremental hashing scheme is adapted for hash compaction.

Lastly, the BEEM benchmark suite served their purpose for the greater
part of our experiments. It was only lacking on one point, and that is where
we wanted to unfold a correlation between the state vector size and the
performance gain. The problem lies in the lack of models that have both
large state spaces and large state vectors. Adaptations of models in the
current suite, or a series of new models that do have those properties would
be welcoming for increasing the usefulness of the BEEM benchmark suite
even further.

6.8 Conclusions

Benchmarks with the BEEM suite showed that the use of the generalised in-
cremental hashing scheme improves performance up to 20%. It does this by
completely annihilating the relative stake of hashing from the total running
time. The performance gain is reduced when the models are compiled with
-O3, though still the resulting improvement is significant and noticeable.
When it comes to uniformity, the generalised incremental hashing scheme is
weaker than Jenkins’s hash. The loss of performance because of that is how-
ever greatly compensated by the speed of the incremental hashing scheme.
We hypothesised a correlation between the state vector and the performance
increase, but we could not reveal such a correlation from the BEEM bench-
mark results. The suite lacks suitable models for measuring that. Instead,
a small experiment with a six-process Szymanski model showed a strong in-
dication that the incremental hashing scheme does correlate with the state
vector size.

Not only did this research improves the performance of Spin, but more
importantly, it opens various new possibilities for further research. A most
promising direction for future study is the adaptation of incremental hash-
ing to bitstate hashing and hash compaction as our provisional profilings
indicate a major possible time reduction of up to 51%.

Chapter 7

Comparative Analysis

This chapter describes the results of benchmarking MMC against its main
competitors, JPF and Bandera. These two are briefly described, followed
by a rationale on the experimental method. The chapter concludes with an
overview of the results, its discussion and suggestions for future work.

7.1 Competition

Java PathFinder was the first Java model checker and also pioneered the
interpreted bytecode exceution verification approach. It has been used for
verifying several real-world applications, most notable a prototype of the
Mars Rover, Deep-Space 1 fault-protection and Shuttle ground control soft-
ware. We retrieved JPF’s version of 10 October 2007 from their SVN repos-
itory for our benchmarks. Features in this version not (yet) implemented in
MMC are heuristic search and symbolic execution.

Bandera is also a Java model checker and also one of the earliest software
model checkers. It distincts itself by its architecture: Bandera is a pipeline of
tools combined to provide the functionality of a model checker. The version
we used, version 1.04a from May 2006, is based on Bogor, which is a model
checking framework. Features present in Bandera, but not in MMC, are a
program slicer and a state abstracter.

The reason why we chose to set MMC against JPF and Bandera is that
they are similar in many ways:

• The input is a program that is also executable.
• The program under verification is implemented in a programming lan-

guage which is in wide-spread use (i.e. Java and C#)
• The program is verified by interpreting its representation in bytecode.
• Their input languages are based on the same object-oriented model,

and thus have similar semantics and expresiveness.
• They use the same model checking approach and techniques: DFS

search, statefulness, POR, deadlock detection and assertion violations.
• They are publicly available.

83

84 CHAPTER 7. COMPARATIVE ANALYSIS

Other software model checkers were considered, but not taken into the
comparative analysis because they did not fulfilled the above. For example,
the Slam model checker [6], is different in that it interprets C code and
applies heavy abstraction techniques, which might be refined during the
same verification run. This model checking approach is called Counter-
Example Guided Abstraction Refinement (CEGAR). The BLAST model
checker [9] is similar, but uses a different abstraction approach.

The software model checker Zing [2] is also different in that is has its
own object-oriented modelling language, the Zing language. This language
is not, as far as we know, used for building software. The main reason is
that the language lacks the expresiveness for that. And most importantly,
it lacks inheritance.

XRT [26] is, like MMC, also a software model checker that interprets CIL
bytecode. It converts CIL bytecode to an abstraction called XIL, which is
then verified. Its featureset is similar to JPF’s. XRT is however not publicly
available, and therefore is not taken with the benchmarks.

7.2 Benchmark Setup

All benchmarks were run on identical 2.4 GHz computers with 2 GB memory
installed. Each computer ran an identical Windows XP installation with
an installation of Sun’s Java 1.6 and Microsoft’s .NET 3.0. Verifications
that exceeded 10 hours were automatically terminated. Also, verifications
that exceeded 1.5 Gb use of memory were also automatically terminated.
All three models checkers were configured for detection of deadlocks and
assertion violations. Also, they were configured not to stop at the detection
of an error, but to continue to explore the state space.

The verifications with MMC were run with the combined POR approach
enabled, collapsion of SII’s enabled and the use of the memoised garbage
collector. The verifications with JPF were run with POR using object escape
analysis. Heuristic search and symbolic extension were not enabled. For
Bandera, POR using object escape analysis was also set to enabled.

The .NET port of the Java Grande Benchmarks were compiled with
Mono 1.1.8. The DEBUG constant was enabled such that the assertion check
would be compiled into the CIL assembly. All Mono compiler optimisations
were also enabled. The Java version of the Java Grande Benchmarks were
compiled with Java SDK 1.6 with the compiler options -target 1.4 and -source
1.4. This ensures that Java 1.4 compatible JVM bytecodes are generated.
Bandera cannot process bytecode that are targetted at a higher version.

Our initial benchmark runs showed that JPF explored a much smaller
state space than MMC. We found that this was caused by a POR bug. JPF
assumed that accesses to arrays were always independent, which is not true.
Accesses to arrays are only independent if (and only if) the accessed array is

7.3. RESULTS 85

con
fig.

model check
er

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

rev
isit

s
max.

depth

sta
tes

/se
c

2-1
MMC 434 1470 1481603 1062794 27885 5863
JPF 411 1488 1377258 1319071 26686 6560
Bandera 1772 o.m. 3045 0 99596 2

2-2
MMC 1447 o.m. 1928282 789872 195892 1878
JPF 28618 o.m. 65681631 65270139 194710 4576
Bandera 7841 o.m. 3962 0 210646 1

2-3
MMC 78 o.m. 245878 0 245878 3163
JPF 508 o.m. 567965 0 567964 1118
Bandera 7793 o.m. 10779 0 267473 1

3-1
MMC 913 o.m. 2725664 3021684 65706 6296
JPF 31442 o.m. 65681631 128783286 63307 6185
Bandera 2310 o.m. 11330 0 106769 5

3-2
MMC 91 o.m. 327597 0 327597 3591
JPF 19610 o.m. 7864076 11395825 565215 982
Bandera 12770 o.m. 16320 0 264632 1

3-3
MMC 153 o.m. 151782 0 151782 993
JPF 529 o.m. 457719 0 457718 865
Bandera 11466 o.m. 12501 0 267314 1

Table 7.1: Results of the MolDyn benchmark comparing MMC, JPF and
Bandera.

thread-unshared. We fixed this bug in JPF and reran all experiments again.
The results from it are shown in table 7.1 and table 7.2.

7.3 Results

We analysed the results from three points of view: speed, reduction of the
state space and memory utilisation.

Speed Let us have a look at the performance in states per second. The
results from the MolDyn benchmark are shown in table 7.1. The table shows
that Bandera is no match against JPF and MMC. Its performance in states
per seconds is between 1 and 5 states per second, which is in sharp constrast
to the multiple thousands states per second achieved by JPF and MMC.
MMC outperforms JPF in terms of states per second on configurations 2-3,
3-1, 3-2 and 3-3. JPF is faster on configurations 2-1 and 2-2. However note,
that in table 3.2, we saw that the combined POR in MMC was significantly
slower for these configurations than purely POR using object escape analy-
sis. For configuration 2-1, MMC processed 21246 states per second and for
configuration 2-2 it processed 6536 states per second when only POR using

86 CHAPTER 7. COMPARATIVE ANALYSIS

con
fig.

model check
er

tim
e (se

c)

mem
ory

(M
b.)

sta
tes

rev
isit

s
max.

depth

sta
tes

/se
c

2-1
MMC 1 37 844 579 73 1231
JPF 14 1488 2205 1978 214 299
Bandera 13051 o.m. 2589 2135 28292 0

2-2
MMC 109 664 65923 53264 3173 1091
JPF 112 1488 67511 64180 3318 1176
Bandera o.t. - 1472 140 40780 0

2-3
MMC o.t. 1151 79673 19899 19972 3
JPF o.t. 1488 66352 33063 33286 3
Bandera o.t. - 541 0 503544 0

3-1
MMC 38 483 53631 71076 145 3278
JPF 172 1488 63207 117031 425 1048
Bandera o.t. - 78981 143300 39234 6

3-2
MMC o.t. 1571 32520383 248967 3245 910
JPF 9944 1488 3590219 6938176 3528 1059
Bandera o.t. - 60736 57395 51722 3

3-3
MMC 23 o.m. 43330 0 43330 1890
JPF 379 o.m. 214594 0 214593 566
Bandera o.t. - 197220 0 464478 5

Table 7.2: Results of the RayTracer benchmark comparing MMC, JPF and
Bandera.

7.3. RESULTS 87

object escape analysis was enabled. This outperforms JPF by far. The same
observation can be seen in the results with the RayTracer benchmark 7.2.
MMC outperforms JPF on configurations 2-1, 3-1 and 3-3. For all remaining
configurations, it is either on par or nearly on par with JPF. Bandera is here
the slowest too, as it maximal speed is measured at 6 states per second. We
intended the investigation of this slow rate. Due to time-constraints, we did
not managed to do that. The foremost reason is Bandera’s complexity. It is
built as a chain of tools, of which we would have to study all to understand
how Bandera exactly works. We prioritised to investigate the results from
JPF more thoroughly as there are more competetive with MMC and we also
found JPF’s source code easier to study.

State space reduction When it comes to state space reduction, MMC
and JPF are both able to fully verify MolDyn configuration 2-1 and Ray-
Tracer configurations 2-1, 2-3 and 3-1. JPF is able to also fully verify Ray-
Tracer configuration 3-2. This observation was at first surprising, as we
expected that MMC would be better at reducing the state space than JPF
because it employs stateful dynamic POR. This is only true for the fully ex-
plorable RayTracer configurations. The increased reduction is however not
big. There are three reasons for this. First, we saw in §3.3 that stateful dy-
namic POR is not much effective on the MolDyn benchmark, which explains
the absence of increased reduction in MMC when compared to JPF. Second,
MMC only performs object escape analysis via object reachability. It does
not consider locking information to detect thread-unshared objects. JPF
does, and this helps it to reduce the space space a lot more because both
benchmarks makes extensive use of locking for rendez-vous barriers. The
third reason is the semantic difference between Java and .NET. Especially
the locking semantics of .NET cause an additional state explosion. Contrary
to Java’s, every lock operation (like wait or exit of a monitor) is preceded by
a test that checks whether the thread actually holds the lock. This check is
thread-unsafe, and adds another scheduling point that results in the creation
of a state. Also, the semantics of CIL and JVM bytecodes differ slightly, and
this might be reflected in the resulting compiled bytecode. The respective
compilers might perform optimisations which the other does not. We did
inspect numerous parts (the whole is too big to study within the available
time) of the bytecode of the .NET and Java versions of the Java Grande
Benchmarks, and while we did not detect any significant differences, it is
not unimaginable that other parts of the bytecodes are different. In general,
there are too many factors involved with conducting experiments on two dif-
ferent platforms (.NET and Java) with two different tools (MMC and JPF)
and two different representations of the model (the .NET version and Java
version) in order to draw hard conclusions. That is why we have not stated
concrete numbers on the relative performance difference between JPF and
MMC.

88 CHAPTER 7. COMPARATIVE ANALYSIS

Memory usage The last discussion point is about the memory usage.
Bandera does not measure the peek memory use, and this is reflected by a
minus in the memory column. Bandera does however indicate when it runs
out of memory, hence the use of o.m. indicators. JPF always reports that
it used all the memory up to nearly 1.5 Gb, even for small state spaces.
This probably unlikely. It is likely that this the allocated heap size and the
not true peek usage of the heap. However, there is an indication that JPF
utilised memory more efficiently than MMC by looking at the pace at which
MMC runs out of memory. For all verifications that ran out of memory,
MMC explores less states in the same amount of memory than JPF. This
is due to the use of stateful dynamic POR, which incurs a relative high
memory overhead (see §3.3).

7.4 Future Work

Future work, in this context, is mostly about investigating methods to per-
form comparative benchmarks that gives us better indication of relative
differences in speed and memory efficiency.

First, we used barely modified source code of Java Grande Benchmarks
benchmarks. While investigating the results, we detected that the current
models are unoptimised for model checking. For example, the static field
<benchmark class>.nthreads was accessed very often during exploration, but
the accesses were only reads. This static field behaves as a final field. If it
were marked final, MMC and JPF could make advantage of that in the POR
and consider transitions that access that field as independent. We suggest
to further investigate these models and optimise them for the purpose of
verification.

Second, we observed that, to us known, semantic differences between
.NET and Java lead to different state spaces for the same model. It is
interesting to understand all differences, and how they affect the behaviour
of the benchmarks and their verifiability with MMC and JPF. A start could
be made by defining smaller models in both Java and C# and ensure their
behavioural equivalence. They can be extended incrementally to eventually
become models that reflect real-life situations. It is important to keep focus
on the behavioural equivalence during every incremental extension.

Third and last point is about cross-fertilisation. For instance, when we
saw that JPF considered accesses to final fields as independent, we con-
sidered this applicable to MMC as well, as accesses to readonly fields can
also be considered independent. In general, techniques in JPF are usuable in
MMC and vice versa. JPF could benefit from stateful dynamic POR, the SII
collapser and the memoised garbage collector. MMC could benefit from the
better object escape analysis by also considering locking information. For
benefiting most from the cross-fertilisation, a study of source code of both

7.5. CONCLUSIONS 89

model checkers is recommended. Otherwise, details like the independency
of accesses to final fields is likely to be overlooked.

7.5 Conclusions

A comparison between JPF and MMC requires a thorough knowledge of
both Java and .NET platforms. Little semantic differences between them
affect the size of the state space, and thus makes it is difficult to compare
the degree of reduction achieved by JPF and MMC. Therefore, we suggest
to investigate the semantics of Java and .NET within the context of software
model checking. An approach for this is described in the future work (see
§7.4).

Even though there were many factors involved in the benchmarking pro-
cess, we can draw general conclusions. JPF and MMC are similar in terms
of performance. In terms of raw states per seconds, MMC is generally faster.
JPF is however better at reducing the state space because it also uses locking
information for determining dependencies. JPF also utilised memory more
efficiently than MMC. This difference in efficiency is caused by the use of
stateful dynamic POR, which causes a significant memory overhead. Lastly,
all results clearly show that Bandera is outperformed by JPF and MMC in
terms of memory utilisation efficiency and speed. However, contrary to JPF
and MMC, development of Bandera has been in hibernation since May 2006.
This lack of active development may explain the performance gap between
JPF and MMC.

Chapter 8

Conclusions

This chapter summarised this thesis by briefly discussing the conclusions
from the previous chapters and the most important directions for future
work.

8.1 Summary

Improving the mono model checker The principal author of MMC
designed its architecture for extendability. We made good use of it. The
general architecture is still the same. The only part of MMC we overhauled
was the explorer algorithm. We did this to enable a clean implementation
of the error tracer and partial order reduction. The error tracer increased
the usability of MMC by generating a trace of CIL instructions towards the
deadlock or assertion violation. The latter, partial order reduction, has im-
proved MMC’s performance a lot. We implemented two POR techniques,
namely POR using object escape analysis and stateful dynamic POR. Ex-
periments with .NET ports of the Java Grande Benchmarks show that these
POR techniques enable MMC to verify models with much larger state spaces.
This is in line with our research goal as stated in the introduction (see §1).

We also improved MMC’s compliance with the CLI. A signification addi-
tion is that of exception handling. The CLI specifies Structured Exception
Handling and is one of the most fine-grained exception handling mecha-
nism for application platforms to date. Our implementation in MMC can
be used as reference for future model checkers that implement a similar ex-
ception handling mechanism. We also created a test framework based on
Microsoft’s virtual machine test suite, called the Base Verification Tests.
We used this test framework to detect numerous bugs and regressions that
slipped in during development. Initially, MMC passed only 83 out of 328
BVT tests. Now, after fixing the bugs and regressions, MMC passes 286 out
of 328 BVT tests. This increase coverage allowed us to verify more sophisti-
cated .NET programs, like the .NET ports of the Java Grande Benchmarks.

91

92 CHAPTER 8. CONCLUSIONS

Furthermore, this gives us more confidence that .NET programs compiled
from other languages can also be verified by MMC, like VisualBasic.NET
and Haskell.NET.

Some smaller, though significant changes are the ex post facto statement
merger and the optimised ChangingIntVector. The first detects states that
are on an atomic transition sequence. Such states can be safely purged from
the hashtable. We added a runtime parameter to trigger the purging process
at a given memory threshold, as it is beneficial to keep as many states of
a state space in the hashtable. Furthermore, we optimised the Changing-
IntVector, which is the core datastructure of a collapsed state. It contained
a bottleneck, namely that it was optimised for lots write of accesses. In
practise, it was read far more often. We then simply optimised it for this
usage scenario.

Collapsing interleaving information The idea of collapsing interleav-
ing information came from [66] and [53]. They observed that stateful dy-
namic POR uses lots of memory and suggested as future work to compress
the interleaving information used for stateful dynamic POR. Our solution
is to compress the interleaving information by canonicalisation followed by
a collapsion. Experiments with it show that it reduces the memory use by
a factor of two, allowing more states to be stored in the same amount of
memory and thus, allowing larger state spaces to be explored. This too is
in line with our research goal as stated in the introduction (see §1).

Memoised garbage collection The Memoised Garbage Collector uses
information retrieved from changes between successive states to determine
which objects can be garbage collected. When the changes are small, only
a small part of the heap needs to be traversed. This technique therefore
has a better time-complexity than Mark&Sweep, which is the dominant
garbage collection in use by software model checkers. We ran experiments
with the Java Grande Benchmarks to evaluate the effectiveness of Memoised
garbage collection. The results show that the Memoised Garbage Collector
is on average 9% faster on the MolDyn benchmark and 26% faster on the
RayTracer benchmark. This enables the verification of models of larger state
space in less time.

Incremental hashing Incremental hashing was first applied by [47]. Their
incremental hashing approach was only pratical for hashing stack and queues
incrementally. We improved this hashing scheme by generalising it for hash-
ing vector-based datastructures incrementally. It was first implemented in
MMC. Its positive effect did however not influence the total running time,
as the profiler revealed that hashing constitutes an insignificant part of the
total running time in MMC. To prove the effectiveness of our incremental

8.2. FUTURE WORK 93

hashing function, we implemented it Spin. Hashing takes relatively more
time in Spin than in MMC, and thus, the positive effect of it would become
visible in the total running time. We evaluated it using the BEEM bench-
marks, and measured a time reduction of up to 20%. The average time
reduction is 9%.

Comparative analysis We evaluated MMC against JPF and Bandera
using the Java Grande Benchmarks. Even though there are many factors
involved in order to draw concrete conclusions, results indicated that MMC
and JPF are on par in terms of performance. MMC is faster in terms of
states per second, but JPF is better at reducing the state space because its
object escape analysis algorithm also uses locking information. The results
also indicate that MMC utilises memory relatively less efficiently than JPF.
This causes by the memory overhead incurred by stateful dynamic POR.
Bandera was outperformed by both MMC and JPF in all areas.

8.2 Future Work

All future work is described in sections §3.9, §4.4, §5.6, §6.7 and §7.4. We
shall highlight the ones that we consider most promising to investigate.

In order to cope with bigger state spaces, we suggest to further inves-
tigate the use of POR. MMC currently employs POR using object escape
analysis and stateful dynamic POR. The first can be improved by also con-
sidering locking information, as described in [18]. Stateful dynamic POR
can be further improved by distinguishing more fine-grained independen-
cies, like distinguishing read-write dependencies and read-read independen-
cies. MMC can be further improved by using static POR pioneered by [53].
They use the Indus analyser to extract independencies. The same can also
be applied for MMC if a similar analysis tool is developed. A fourth POR
technique, sleep sets [23], can be used to reduce the number of transitions,
and hence the amount of revisits. Besides POR, we believe that the addition
of program slicing will reduce the state space significantly. This too requires
an analysis tool for .NET, which development could be combined with the
analyser for static POR.

In order to reduce the memory use, we suggest to improve state compres-
sion. We believe that a big memory reduction can be achieved by storing
states using delta’s. For example, the collapsed representation of states at
an odd depth are stored normally, while states at an even state are stored as
a delta of their parent state. A similar scheme is also applicable to further
reduce the memory use of SII’s.

During profiling, we detected that garbage collection has the biggest
stake of the total running time in a software model checker. We made a
start to improve this by developing the Memoised Garbage Collector. While

94 CHAPTER 8. CONCLUSIONS

it has a significant time-reduction, we believe there are ways to reduce it even
more. A promising direction is by investigating incremental cycle detection,
and then combine that with a reference counting garbage collector.

While our incremental hashing proved not to be effective in a software
model checker, we proved it to be effective in traditional model checking.
This is based on experiments that used the incremental hashing scheme in an
exhaustive verification. We believe that applying our incremental hashing
scheme to approximative verification methods, like bitstate hashing and hash
compaction, will significantly improve its performance. Initial profiling data
show a possible time-reduction of up to a half.

8.3 Development Process

We would like to conclude this thesis with a note on developing model check-
ers. For this Master’s project, we developed many improvements for MMC,
added incremental hashing to Spin and fixed a POR bug in JPF’s source
code. During the course, we encountered many bugs, regression and anoma-
lous results. We gradually developed tactics for hunting them more effec-
tively, and therefore becoming more productive on the whole. To finalise this
thesis, we described these tactics in appendix A. We hope that colleague
model checker developers will benefit from it.

Bibliography

[1] Aan de Brugh, N. Software Model Checking for Mono. Master’s
thesis, University of Twente, 2006.

[2] Andrews, T., Qadeer, S., Rajamani, S. K., Rehof, J., and Xie,
Y. Zing: A Model Checker for Concurrent Software. In CAV (2004),
R. Alur and D. Peled, Eds., vol. 3114 of Lecture Notes in Computer
Science, Springer, pp. 484–487.

[3] Baase, S., and van Gelder, A. Computer Algorithms, Third ed.
Addison-Wesley, 2000.

[4] Bacon, D. F., Cheng, P., and Rajan, V. T. A Unified Theory
of Garbage Collection. In OOPSLA (2004), J. M. Vlissides and D. C.
Schmidt, Eds., ACM, pp. 50–68.

[5] Baker, H. C., and Hewitt, C. The Incremental Garbage Collection
of Processes. In AIPL (1977), ACM, pp. 55–59.

[6] Ball, T., and Rajamani, S. K. The SLAM project: Debugging
System Software via Static Analysis. In POPL (2002), pp. 1–3.

[7] Bellare, M., and Micciancio, D. A New Paradigm for Collision-
Free Hashing: Incrementality at Reduced Cost. In EUROCRYPT
(1997), pp. 163–192.

[8] Ben-Ari, M. Principles of Concurrent and Distributed Programming.
Prentice-Hall, 1990.

[9] Beyer, D., Henzinger, T. A., Jhala, R., and Majumdar, R. The
Software Model Checker Blast: Applications to Software Engineering.
STTT 9, 5-6 (2007), 505–525.

[10] Cherkassky, B. V., Goldberg, A. V., and Silverstein, C. Buck-
ets, Heaps, Lists, and Monotone Priority Queues. In SODA (1997),
pp. 83–92.

95

96 BIBLIOGRAPHY

[11] Cimatti, A., Clarke, E. M., Giunchiglia, F., and Roveri, M.
NUSMV: A New Symbolic Model Verifier. In CAV (1999), N. Halb-
wachs and D. Peled, Eds., vol. 1633 of Lecture Notes in Computer Sci-
ence, Springer, pp. 495–499.

[12] Clarke, E. M., Grumberg, O., Minea, M., and Peled, D. State
Space Reduction Using Partial Order Techniques. STTT 2, 3 (1999),
279–287.

[13] Cohen, J. D. Recursive Hashing Functions for N-grams. TOIS 15, 3
(1997), 291–320.

[14] Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S.,
Pasareanu, C. S., Robby, and Zheng, H. Bandera: Extracting
Finite-State models from Java Source Code. In ICSE (2000), pp. 439–
448.

[15] de Icaza, M. Mono: .NET framework. Dr. Dobb’s Journal of Software
Tools 27, 1 (2002), 21–24.

[16] Demetrescu, C., Emiliozzi, S., and Italiano, G. F. Experimental
Analysis of Dynamic All Pairs Shortest Path Algorithms. In SODA
(2004), J. I. Munro, Ed., SIAM, pp. 369–378.

[17] Dwyer, M. B., Ed. Model Checking Software, 8th International SPIN
Workshop, Toronto, Canada, May 19-20, 2001, Proceedings (2001),
vol. 2057 of Lecture Notes in Computer Science, Springer.

[18] Dwyer, M. B., Hatcliff, J., Robby, and Ranganath, V. P.
Exploiting Object Escape and Locking Information in Partial-Order
Reductions for Concurrent Object-Oriented Programs. Formal Methods
in System Design 25, 2-3 (2004), 199–240.

[19] Edmund M. Clarke, J., Grumberg, O., and Peled, D. A. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[20] Elmas, T., Qadeer, S., and Tasiran, S. Goldilocks: Effi-
ciently Computing the Happens-Before Relation Using Locksets. In
FATES/RV (2006), K. Havelund, M. Núñez, G. Rosu, and B. Wolff,
Eds., vol. 4262 of Lecture Notes in Computer Science, Springer, pp. 193–
208.

[21] Flanagan, C., and Godefroid, P. Dynamic Partial-Order Reduc-
tion for Model Checking Software. In POPL (2005), J. Palsberg and
M. Abadi, Eds., ACM, pp. 110–121.

[22] Garavel, H., Mateescu, R., and Smarandache, I. M. Parallel
State Space Construction for Model-Checking. In Dwyer [17], pp. 217–
234.

BIBLIOGRAPHY 97

[23] Godefroid, P. Partial-Order Methods for the Verification of Concur-
rent Systems: An Approach to the State-Explosion Problem. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1996. Foreword By-Pierre
Wolper.

[24] Godefroid, P., Ed. Model Checking Software, 12th International
SPIN Workshop, San Francisco, CA, USA, August 22-24, 2005, Pro-
ceedings (2005), vol. 3639 of Lecture Notes in Computer Science,
Springer.

[25] Graf, S., and Mounier, L., Eds. Model Checking Software, 11th
International SPIN Workshop, Barcelona, Spain, April 1-3, 2004,
Proceedings (2004), vol. 2989 of Lecture Notes in Computer Science,
Springer.

[26] Grieskamp, W., Tillmann, N., and Schulte, W. XRT- Exploring
Runtime for .NET Architecture and Applications. In SoftMC (2005),
vol. 144, pp. 3–26.

[27] Groce, A., and Visser, W. Heuristic Model Checking for Java
Programs. In SPIN (2002), D. Bosnacki and S. Leue, Eds., vol. 2318
of Lecture Notes in Computer Science, Springer, pp. 242–245.

[28] Havelund, K., Penix, J., and Visser, W., Eds. SPIN Model Check-
ing and Software Verification, 7th International SPIN Workshop, Stan-
ford, CA, USA, August 30 - September 1, 2000, Proceedings (2000),
vol. 1885 of Lecture Notes in Computer Science, Springer.

[29] Holzmann, G. State Compression in SPIN: Recursive Indexing and
Compression Training Runs. In Proceedings of Third Spin Workshop
(1997).

[30] Holzmann, G. An Analysis of Bitstate Hashing. Formal Methods in
System Design 13, 3 (1998), 289–307.

[31] Holzmann, G., and Bosnacki, D. The Design of a Multicore Ex-
tension of the SPIN Model Checker. IEEE Transactions on Software
Engineering 33, 10 (2007), 659–674.

[32] Holzmann, G., and Puri, A. A Minimized Automaton Representa-
tion of Reachable States. STTT 2, 3 (1999), 270–278.

[33] Holzmann, G. J. The Model Checker SPIN. IEEE Transactions
Software Engineering 23, 5 (1997), 279–295.

[34] Holzmann, G. J. Logic Verification of ANSI-C Code with SPIN. In
Havelund et al. [28], pp. 131–147.

98 BIBLIOGRAPHY

[35] Huth, M. R. A., and Ryan, M. Logic in Computer Science: Mod-
elling and Reasoning About Systems. Cambridge University Press, New
York, USA, 2000.

[36] Iosif, R. Exploiting Heap Symmetries in Explicit-State Model Check-
ing of Software. In ASE (2001), IEEE Computer Society, pp. 254–261.

[37] Iosif, R., and Sisto, R. Using Garbage Collection in Model Check-
ing. In Havelund et al. [28], pp. 20–33.

[38] Jenkins, R. J. Hash Functions for Hash Table Lookup. Dr. Bobb’s
(September 1997).

[39] Jones, R., and Lins, R. Garbage collection: Algorithms for Auto-
matic Dynamic Memory Management. John Wiley & Sons, Inc. New
York, USA, 1996.

[40] Karp, R., and Rabin, M. Efficient Randomized Pattern-Matching
Algorithms. IBM Journal of Research and Development 31, 2 (1987),
249–260.

[41] Kastenberg, H., and Rensink, A. Model Checking Dynamic States
in GROOVE. In Model Checking Software (SPIN), Vienna, Austria
(Berlin, 2006), A. Valmari, Ed., vol. 3925 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 299–305.

[42] Kuntz, M., and Lampka, K. Probabilistic Methods in State Space
Analysis. In Validation of Stochastic Systems (2004), C. Baier, B. R.
Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, Eds., vol. 2925
of Lecture Notes in Computer Science, Springer, pp. 339–383.

[43] Lerda, F., and Visser, W. Addressing Dynamic Issues of Program
Model Checking. In Dwyer [17], pp. 80–102.

[44] Leven, P., Mehler, T., and Edelkamp, S. Directed Error Detec-
tion in C++ with the Assembly-Level Model Checker StEAM. In Graf
and Mounier [25], pp. 39–56.

[45] Lidin, S. Inside Microsoft .NET IL Assembler. Microsoft Press, 2002.

[46] McMillan, K. The SMV System. Cadence Berkeley Labs (1999).

[47] Mehler, T., and Edelkamp, S. Dynamic Incremental Hashing in
Program Model Checking. Electronic Notes in Theoretical Computer
Science 149, 2 (February 2006), 51–69.

[48] Musuvathi, M., and Dill, D. L. An Incremental Heap Canonical-
ization Algorithm. In Godefroid [24], pp. 28–42.

BIBLIOGRAPHY 99

[49] Parreaux, B. Difference Compression in Spin. In Proceedings from
the 4th Spin Workshop (1998).

[50] Pasareanu, C. S., and Visser, W. Verification of Java Programs Us-
ing Symbolic Execution and Invariant Generation. In Graf and Mounier
[25], pp. 164–181.

[51] Pelánek, R. BEEM: Benchmarks for Explicit Model Checkers. In
SPIN (2007), D. Bosnacki and S. Edelkamp, Eds., vol. 4595 of Lecture
Notes in Computer Science, Springer, pp. 263–267.

[52] Ramalingam, G., and Reps, T. W. An Incremental Algorithm for
a Generalization of the Shortest-Path Problem. Journal Algorithms 21,
2 (1996), 267–305.

[53] Ranganath, V. P., Hatcliff, J., and Robby. Enabling Efficient
Partial Order Reductions for Model Checking Object-Oriented Pro-
grams Using Static Calculation of Program Dependencies. Tech. rep.,
Department of Computing and Information Sciences, Kansas State Uni-
versity, 2007.

[54] Robby, Dwyer, M., Hatcliff, J., and Iosif, R. Space-Reduction
Strategies for Model Checking Dynamic Software. Electronic Notes in
Theoretical Computer Science 89, 3 (2003), 499–517.

[55] Robby, Dwyer, M. B., and Hatcliff, J. Bogor: A Flexible Frame-
work for Creating Software Model Checkers. In TAIC PART (2006),
P. McMinn, Ed., IEEE Computer Society, pp. 3–22.

[56] Ruys, T. C., and Aan de Brugh, N. H. M. MMC: the Mono Model
Checker. Proceedings of the Second Workshop on Bytecode Semantics,
Verification, Analysis and Transformation 190, 1 (2007), 149–160.

[57] Smith, L. A., Bull, J. M., and Obdrzálek, J. A Parallel Java
Grande Benchmark Suite. In Proceedings of the 2001 ACM/IEEE con-
ference on Supercomputing (2001), p. 8.

[58] Stutz, D., Neward, T., and Shilling, G. Shared Source CLI Es-
sentials. O’Reilly, 2003.

[59] Tretmans, J., Wijbrans, K., and Chaudron, M. R. V. Software
Engineering with Formal Methods: The Development of a Storm Surge
Barrier Control System Revisiting Seven Myths of Formal Methods.
Formal Methods in System Design 19, 2 (2001), 195–215.

[60] van Leeuwen, J., and Wood, D. Interval Heaps. The Computer
Journal 36, 3 (1993), 209.

100 BIBLIOGRAPHY

[61] Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F.
Model Checking Programs. In ASE (2003), vol. 10, Kluwer Academic
Publishers, pp. 203–232.

[62] Visser, W., and Mehlitz, P. C. Model Checking Programs with
Java PathFinder. In Godefroid [24], p. 27.

[63] Wang, T. Integer Hash Function. http://www.cris.com/
∼Ttwang/tech/inthash.htm, 2007.

[64] Wilson, P. R. Uniprocessor Garbage Collection Techniques. In
IWMM (1992), Y. Bekkers and J. Cohen, Eds., vol. 637 of Lecture
Notes in Computer Science, Springer, pp. 1–42.

[65] Wolper, P., and Leroy, D. Reliable Hashing without Collision
Detection. In CAV (1993), pp. 59–70.

[66] Yi, X., Wang, J., and Yang, X. Stateful Dynamic Partial-Order
Reduction. In ICFEM (2006), Z. Liu and J. He, Eds., vol. 4260 of
Lecture Notes in Computer Science, Springer, pp. 149–167.

Appendix A

Tactics for Debugging Model
Checkers

A model checker is a very complex tool and building it can be a hardship.
Bugs and regressions slip in easily and unexplained performance degrada-
tions are often observed. These issues can be hard to debug. A lot of time
can be spent investigating the issue. This appendix describes tactics we
applied for investigating such problems as efficient as possible.

A.1 Slice the Model

An issue is usually observed upon verification of a model. This model be-
comes important, because it usable as an aid to help understanding the cause
of the issue. It is likely to loaded repeatedly into the model checker in order
to see whether a fix resolves the issue, or when particular points in a model
checker’s execution path are interesting as introspection moments. Thus to
reduce the time of these debugging round trips, it is crucial to reduce the
verification time of that particular model.

With slicing, it is important that the sliced model still reveals the issue.
Also, it is important to slice as much as as possible, because for debugging
some issues, it might be helpful to generate and analyse its full state space.

A.2 Debugging Facilities

During this Master’s project, Microsoft Visual Studio 2005 (VS2005) was
used to develop MMC. The main reason for this, is that it provides powerful
debugging facilities to the developer, which of course can only be of good
use if the developer knows how to use them.

Breakpoints are important to pause the model checker at interesting
statements. For example, if the issue is likely to come from the garbage
collector, then put a breakpoint before the garbage collector is called. In

101

102 APPENDIX A. TACTICS FOR DEBUGGING MODEL CHECKERS

Figure A.1: Setting a hitcounter breakpoint before the garbage collector is
called.

Figure A.2: Watch window upon a breakpoint.

VS2005, breakpoints can also be defined more fine-grained using breaking
conditions (like, if it is suspected that the issue only arises by thread 0) or
hitcounters (like, if it is suspected that an issue only occurs after n state
collapsions). See figure A.1.

When the VS2005 debugging pauses at a breakpoint, introspection be-
comes possible. The mouse can be hovered over variables to see what values
it hold as that moment. Also the variables window can be opened to see the
variables and their values of the current method. The callstack window can
be opened to introspect a different method state in the callstack. However,
the most powerful tool for introspection is the watch window. Expressions
can be put here for evaluation, like getting a current state as a string or
getting the DFS stack as a string. See figure A.2.

When the debugger pauses at a breakpoint, it is possible to (re)write
the code on the fly. The new code is then executed from that point. This is
useful when a new feature has to be implemented but only it stub methods
have been defined, or when an issue can be resolved on the fly.

Last, a disassembler might also be helpful to see how the compiler com-
piled the model to bytecode. VS2005 does contain a disassembler, but we
have found the tool ildasm.exe more helpful, because it organises the disas-
sembled code to its namespace-class structure.

A.3. TACTICS 103

A.3 Tactics

From our experience, most issues are either a thrown exception from the
virtual machine MMC is running in (like a NullPointerException), a regres-
sion (like a state collapser bug slipped in during the implementation of the
garbage collector) or a performance degradation (like when MMC performs
unexpectedly slow on a particular feature). In all cases, to understand the
cause of an issue, we need to answer when the issue occurs, why it occurs
and how. The latter usually explains the why.

When For exceptions, understanding when they occur is easy. Just run
a debugging instance in VS2005 with the sliced model and wait until the
exception is thrown. VS2005 will automatically open up the source file and
highlight the statement from which the exception is thrown.

For regressions, understanding when an issue happens is usually the most
time-consuming part. We created hunches to pinpoint the when. Then this
hunch was converted to a breakpoint. For example, if we believed that the
cause was from the garbage collector, we put a breakpoint at the statement
from which it is called. The breakpoint might be refined with conditions
or hitcounts. We then gathered information using introspection (see the
paragraph on Why) and used that to refine the conditions and/or hitcounts.

A more advanced tactic to understand the when is using purely hitcount-
based tactics. For example, when something was broken in the state decol-
lapser, and this was caused by the garbage collector, we used two break-
points. The first breakpoint was then set at the state collapser. Additional
break conditions were added to the breakpoint if necessary. The second
breakpoint was set at the garbage collector. Its hitcounter was set to a big
amount (one that is so big that it will not be hit before the first breakpoint
is reached). Then we ran a debugging instance and waited until the first
breakpoint was reached. When it was reached, we looked at the hitcounter
of the second breakpoint and refined it to break at the current hitcount
value. The debugger was then rerun until that hitcounter was reached. Both
breakpoints were refined and the debuggers rerun until the when was un-
derstood. The general idea behind this is to use multiple breakpoints based
on conditions and the amount of hits to pinpoint when an issue occurs.

Another tactic we used is an approach that we call dual-step debugging.
This approach is particularly effective when a particular feature (like stateful
dynamic POR) reveals an issue while another feature (like no POR) does
not. We opened up two instances of VS2005 for this, loaded up the same
sliced model, but in one instance, we ran the debugger with the feature
enabled, and in the other debugging instance, we ran it with the feature
disabled. Breakpoints were set at the same places. Then, the situation was
assessed using introspection. If a breakpoint was refined, or a debugging
step was made, it was done in both. At some point, the other instance

104 APPENDIX A. TACTICS FOR DEBUGGING MODEL CHECKERS

start

1 {[0, 1]}

0

2 {[1]}

0

4 {[0]}

1

bt

3 {[]}

1 bt

bt

bt

0

Figure A.3: An example state space visualised by GraphViz’s dot.

would do something different from the other, and it is that moment that
designates the when.

Another tactic is by generating the state space and inspect it manually.
This is especially useful to investigate POR bugs. If MMC is run with
the option -d <file> it will generate a GraphViz-parsable graph to <file>.
Nodes in the graph represent states and each node is labelled by an integer,
its identifier. The undashed edges represent transitions and their labels
represents the thread doing the transition. An example is shown in figure
A.3. For example, if an issue occurs at the creation of a state with, for
example identifier 3, then we set a breakpoint in the explorer and have it
break when a state with id 3 is created. The same approach can be used
when the issue is suspected to occur from a revisited state.

Why When a breakpoint is hit, the model checker is paused and this
moment can be used for introspection, the act of getting information of
the model checker’s current state. The most powerful means for this is the
watch window. Using the watch window, we can read variables, look at an
object’s structure of inner objects and their values and call methods. The
latter is extremely powerful. MMC contains many methods that return a
string, which can provide useful information about the object on which it
was called. Example methods that are almost always useful to call in a
watch window:

A.4. PROFILING 105

• ActiveState.cur.ToString, shows a text-formatted version of the current
state.

• ActiveState.cur.me, the identifier of the currently active thread.
• Explorer.DebugLastAccessed, shows a trace of fields accessed of the cur-

rent path.
• Explorer.DebugWorkingSets, shows the working sets on the DFS stacks.
• FastHashtable.CalculateDistribution, shows the distribution of elements

in the hashtable.

It is also possible to create other methods yourself, showing the information
you need, and have them called in the watch window.

How Sometimes knowing when and why is not enough. An issue can
have occurred due to cause and effects over time, and that needs to be
understood before the whole cause of an issue is understood. The main
approach for how is using dual-step debugging and/or repeated refinement
of breakpoints. For example, if the issue is caused by the POR (because
for example, it calculates the wrong persistent set), set a breakpoint at the
method that determines the persistent set, and use debugging steps (like
step over, step in) to determine what happens step by step.

Also, in case of understanding POR bugs, we created a -A option to
MMC, which will cause it to explore only one trace to an end state, and print
the intermediate thread-unsafe instructions. This is helpful to understand
the points at which POR reduces the enabled set to a persistent set.

A.4 Profiling

We extensively used the ANTS profiler to profile performance bottlenecks in
MMC. ANTS has two modes, the fast mode and the detailed mode. We used
the fast mode to quickly pinpoint the methods that bottlenecked. In this
mode, ANTS runs the profiled application (in this case the model checker)
with JIT optimisations enabled. The information it provides is not precise,
because the JIT compiler inlines lots of methods as an optimisation. If
we needed to understand why a particular method bottlenecked, we used
detailed mode with a filter on that method. ANTS then reports how much
time each statement consumes in that method. Note that in detailed mode,
the JIT compiler is disabled, and therefore it takes more time to profile.

In cases we ran the profiler on MMC with a big model, we took regular
intermediate snapshots that provided us the current profiling statistics so
far. Usually, these snapshots were sufficient to understand the bottleneck.

106 APPENDIX A. TACTICS FOR DEBUGGING MODEL CHECKERS

A.5 Conclusions

In general, understanding when an issue happens, why it happens and how it
happens, involves tools and their proper use. In our case, we extensively used
Microsoft Visual Studio 2005 and the ANTS profiler. These tactics are based
on their features. Yet, we were also limited by them. Dual-step debugging
for instance is great, but we had to do the steps manually. A tool that
would perform dual-steps automatically until a discrepancy occurs would
be enormously helpful. Also, the means for understanding the how of an
issue are also limited. Tools that help us to capture a program’s behaviour
over time would be helpful here. Therefore, the tactics described in this
chapter should be seen as a starting point for searching (or developing) new
tools that help model checker developers to be more productive.

