
University of Twente
Master of Science Thesis in Computer Science

Faculty of Electrical Engineering, Mathematics and Computer Science
Design and Analysis of Communication Systems

Implementation of aggregation based
Resource Management in DiffServ (RMD)

Quality of Service Model (QOSM)

Timothy Sealy
August 26, 2008

Committee:
Dr. ir. Georgios Karagiannis (UT/DACS)
Dr. ir. Geert Heijenk (UT/DACS)
Prof. dr. Hans van den Berg (UT/DACS)

Preface

This thesis is the result of a final thesis project for the Department of Electrical Engineering of the faculty
of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente.
Most of the work was conducted at the laboratory of the Design and Analysis of Communication Systems
(DACS) group at the University of Twente.

First and foremost I want to thank my girlfriend, whom I love very much. It has been a long and bumpy
road but baby, we made it. Thank you for your support and patience. You always know how to pick me
up when I feel down.

Special thanks go out to the members of my examination committee dr. ir. Georgios Karagiannis, dr.
ir. Geert Heijenk and prof. dr. Hans van den Berg. Many thanks go to my supervisor dr. ir. Georgios
Karagiannis, for his support and insights.

Last but not least I would like to thank Ruud Klaver for his knowledge of the Linux operating system
and his guidance during the implementation phase.

ii

Contents

Preface ii

1 Introduction 1

1.1 Integrated Services . 1

1.2 Differentiated Services . 2

1.3 NSIS . 2

1.4 Problem Definition . 3

1.4.1 Optimization Problem . 5

1.4.2 Constraints . 6

1.5 Outline . 7

2 Related Work and Proposed Solution 8

2.1 Related Work . 8

2.1.1 Schmitt et al. 8

2.1.2 Pipes Model . 11

2.1.3 Bandwidth Broker . 15

2.2 Proposed Solution . 21

2.2.1 Aggregate Update Algorithm . 21

2.2.2 The Cushion . 23

2.2.3 Scenario’s . 26

3 NSIS: Overview 27

3.1 Introduction . 27

3.2 Signaling scenario . 27

3.2.1 Internal structure QNE . 28

3.3 Protocol stack . 30

3.3.1 NSIS Transport Layer Protocol (NTLP) . 31

3.3.2 NSIS Signaling Layer Protocol (NSLP) . 34

iii

3.4 Quality of Service Models . 41

3.4.1 QoS Specification (QSpec) . 41

4 Resource Management in DiffServ 45

4.1 RMD Features Overview . 45

4.2 RMD QoS Model . 47

4.2.1 Transport of signaling messages . 47

4.2.2 RMD-QSpec . 49

4.3 Flow aggregation in RMD-QoSM . 53

4.3.1 Aggregate reservation setup . 55

4.3.2 Admission Control . 62

4.3.3 Increasing the aggregate reservation . 63

4.3.4 Decreasing the aggregate reservation . 66

4.3.5 Refreshing the aggregate reservation . 68

5 Design and Implementation 71

5.1 Previous Work . 71

5.2 Implementation overview . 72

5.2.1 Current design . 73

5.3 Extension on the design . 76

5.3.1 The NSLP statemachine . 79

5.3.2 Resource Management Function . 86

5.3.3 Aggregate management unit . 88

6 Experimental Evaluation 91

6.1 Test environment . 91

6.2 Functional experiments . 92

6.2.1 Successful setup of an aggregate reservation . 92

6.2.2 Unsuccessful setup of an aggregate reservation . 93

6.2.3 Successful increase of an aggregate reservation . 94

6.2.4 Unsuccessful increase of an aggregate reservation 94

6.2.5 Successful decrease of an aggregate reservation . 95

6.2.6 Successful refresh of an aggregate reservation . 95

6.2.7 Additional testing . 96

6.3 Performance experiments . 96

6.3.1 Goals . 97

iv

6.3.2 Measurements . 97

6.3.3 Assumptions . 100

6.3.4 Scenario . 100

6.3.5 Traffic model . 101

6.3.6 Results . 104

7 Conclusion 115

7.1 Conclusion . 115

7.2 Future Work . 116

Bibliography 117

Appendix 119

A GIST API Service Primitives . 119

A.1 SendMessage . 119

A.2 RecvMessage . 120

A.3 MessageStatus . 121

A.4 NetworkNotification . 122

A.5 SetStateLifetime . 122

A.6 InvalidateRoutingState . 122

B Path-coupled Message Routing Method . 123

C Sample RESERVE message . 124

D Results Performance Experiments . 126

D.1 Results for constant epsilon (ε = 0.005) . 126

D.2 Results for constant inter update target (T = 300) 126

v

Chapter 1

Introduction

Quality of service is a term used to describe the overall user experience a user or application will receive
over a network. In the fields of packet-switched networks and computer networking, the term Quality
of Service refers to resource reservation control mechanisms. These resources are reserved, for a user
or application, in order to provide certain (QoS) guarantees for the data transfer across a network.
Different priorities can be assigned to different users or data flows, and a certain level of performance can
be guaranteed to a data flow in accordance with requests from the application program or the internet
service provider policy. It is needless to say that Quality of Service guarantees are important if the
network capacity is limited. This is typically the case for real-time streaming multimedia applications,
for example voice over IP and IP-TV, since these often require a fixed bit rate and may be delay sensitive.

Consider for example a voice application. On a plain old telephony system, voice traffic experiences a low
and fixed amount of delay with no loss. Replicating this behaviour on an IP based network is difficult
because the IP network introduces a variable and unpredictable amount of delay to the packets and also
drops voice packets when the network is congested. The best effort IP network does not provide the
necessary means to provide the needed behaviour. QoS techniques are needed to provide the means to
control delay and packet loss.

The Internet, largely build on the Internet Protocol, is a best effort network offering no QoS assurances.
Due to its popularity and explosive growth it has lead to many services being deployed over the Internet.
For example, not so long a go an enterprise would have had an TDM-base voice network for telephony, an
ISDN network for video conferencing and a multi-protocol (IPX, AppleTalk) LAN. Today many of these
services are deployed over the IP based Internet. Not only enterprises seem benefit from this change,
consumers also seem to enjoy the ease and comfort of these services. It is not uncommon for consumers
to do their shopping online, watch streaming media over the Internet and make telephone calls using
Voice-Over-IP (VOIP) technology. With the growing number of services being offered over the Internet
and the increasing (bandwidth) demand of these services, it is necessary to employ QoS techniques into
the next generation networks. Only in this way we can develop and deploy advanced network applications
and technologies for tomorrow’s Internet [26, 27]

Currently there are two major approaches standardized in the Internet Engineering Task Force (IETF):
Integrated-Services (IntServ) [5] and Differentiated Services (DiffServ) [4].

1.1 Integrated Services

The idea behind the Integrated Services (IntServ) architecture is that every router in the network im-
plements mechanisms for admission control and resource reservation. Every application that requires
some kind of guarantee for a particular flow has to make an individual reservation at every router in the
path of the data flow. In order to signal the QoS requirements to the routers the resource reservation
protocol (RSVP) is used. The RSVP protocol is described in [6] and specifies how the reservation states
are installed, maintained and removed in the routers.

The main problem of the IntServ architecture is that it is not scalable. Routers have to store the

1

reservation state of every flow that traverse them. For a large scale network like the Internet - where
there are millions of flows to be maintained - it places a heavy burden on the routers. Not only is the
amount of states that need to be maintained high but also the amount of signaling required to set up,
maintain and remove these states is large. In order to address these scalability problems the Differentiated
Services architecture was designed.

1.2 Differentiated Services

In the Differentiated Services (DiffServ) architecture routers maintain flows on a coarser granularity.
Instead of maintaining per flow reservation states like in the IntServ architecture, flows are maintained per
traffic class. In a DiffServ domain a distinction is made between interior routers and border routers. The
interior routers are mainly responsible for packet forwarding and routing, whereas all other functionality
like admission control, traffic classification and conditioning are pushed to the border routers. All routers
in the network maintain a small amount reservation states based on the number of traffic classes. The
border routers classify and mark packets passing through the domain. Using Per-Hop Behaviors (PHBs)
the packets are associated with a particular class. PHBs define the packet forwarding properties associated
with a class of traffic. Thus all the routers in the network provide a certain level of QoS for packets based
on the PHB of a flow. The PHB is specified using a 6-bit value called the Differentiated Services Code
Point (DSCP) which is stored in the Differentiated Services (DS) field of the IP packet header.

In the DiffServ architecture the network is viewed as a collection of various domains based on adminis-
trative boundaries. At the domain boundaries, service level agreements (SLAs) are made regarding the
amount of resources allocated to traffic that crosses the domains. A service level agreement also refers
to the contract between a service provider and its customers. In this case the SLA specifies for example
a peak bit rate, which the customer is responsible for not exceeding. All excess traffic will be dropped.
For better link utilization, dynamic SLAs should be supported so customers can request bandwidth on
demand.

1.3 NSIS

The Next Steps in Signaling Working Group is responsible for standardizing an IP signaling protocol with
QoS signaling as the first use case. The focus of the working group is to re-use, where appropriate, the
protocol mechanisms of RSVP, while at the same time simplifying it in order to come to a more general
signaling model.

In [16] the NSIS signaling protocol suite is defined. The protocol suite is divided into a generic (lower)
layer, with separate upper layers for each specific signaling application. In the upper layer the NSIS
Signaling Layer Protocol (NSLP) protocol is defined which establishes and maintains reservation states
at routers along the path of a data flow, for the purpose of providing some forwarding resources for that
flow. This resource provisioning however can only be accomplished using QoS Models (QoSMs). Such
a QoSM is the Resource Management in DiffServ (RMD) QoSM which can be used to provide dynamic
resource management within DiffServ, see: http://www.ietf.org/html.charters/nsis-charter.html.

RMD-QoSM comes in different flavors such as measurement based RMD-QoSM, reservation based RMD-
QoSM and aggregation based RMD. In measurement based RMD-QoSM admission control and traffic
conditioning is done using traffic measurement whereas the reservation and aggregation based RMD
use traffic descriptors for admission control and traffic conditioning. For the purpose of this thesis we
will design and implement the aggregation based RMD-QoSM. This aggregation based RMD-QoSM is
similar to the RMD-QoSM reservation based scheme, with the difference that the boundary nodes of a
RMD-QoSM aware domain support the aggregated reservations instead of per flow reservations.

2

http://www.ietf.org/html.charters/nsis-charter.html

1.4 Problem Definition

Aggregation implies the grouping of several smaller flows into one large flow, called the aggregate flow.
The main benefit of aggregation is that the management of flows becomes easier. This is because instead
of having to manage many individual flows, also called micro flows, only several large flows need to be
managed.

Flows have a rate at which they transfer data. Based on this rate a certain amount of bandwidth is
reserved in order to provide the necessary QoS. Note that flows can either send data at a constant bit
rate (CBR) or at a variable bit rate (VBR). For CBR flows this implies that the rate of the flows does
not change during the flow’s lifetime. The amount of bandwidth that needs to be reserved for this type
of flows is simply equal to the flow’s rate. For VBR flows the rate fluctuates during the flows lifetime.
For this type of flows there are different techniques in determining the amount of bandwidth that needs
to be reserved. The easiest way to provision bandwidth for these flows is to use the flow’s peak rate. By
reserving the amount of bandwidth equal to the flow’s peak rate the flow always has enough bandwidth
reserved for its traffic rate. This way hard QoS guarantees can be provided. Another approach would
be to reserve the amount of bandwidth equal to the flow’s average bit rate. Whenever the flow’s rate
exceeds the reserved bandwidth amount, the excessive packets are sent as best effort. Note that in this
case hard QoS guarantees are not provided but higher bandwidth utilization is achieved.

For the purpose of this thesis we will only discuss the aggregation of CBR flows. Thus we are not
considering the fluctuation of the (data) traffic rate of an individual flow. Whenever an individual flow
requests a certain amount of bandwidth and this request is granted, its rate cannot exceed this limit. If
flows send more packets than their allowable limit, then these packets will be either shaped, dropped or
send as best effort.

The rate of the aggregate flow depends on the rates of the individual flows which make up the aggregate.
In the following equation we define the rate of the aggregate flow, which we will refer to as the aggregate
traffic rate from now on, to be equal to the sum of rates of the individual flows:

ra =
n∑
i=1

ri (1.1)

where ra is the aggregate traffic rate, ri is the rate of the ith flow in the aggregate, and n is the number
of flows in the aggregate.

Flows are constantly joining and leaving the aggregate flow and thus the rate of the aggregate flow
fluctuates over time. In order to provide sufficient bandwidth for the individual flows the size of the
aggregate flow needs to constantly be updated. Figure 1.1 shows how the aggregate traffic rate fluctuates
over time. Note that the fluctuations of the aggregate traffic rate occurs on a large timescale of hours.
We will not be addressing the fluctuations on a smaller time scale. It is important to know what the
relevance of the timescale is.

Fluctuations of the aggregate traffic rate on a small time scale are due to flows joining or leaving the
aggregate reservation. Thus in order to capture these fluctuations, and design an update policy to cope
with these fluctuations, it would make sense to model the statistical properties of the flow arrivals and
departures. For the fluctuations on a larger scale these statistical models can not be used. In this
case the effects of the individual flows are negligible small. Building a statistical model for the arrival
and departure of end-to-end flows is not very useful because this model does not capture the long term
fluctuation we are interested in. The large time scale fluctuations are mainly determined by the combined
activities of different groups of people. For example the internet activity on a certain backbone provider
is higher during business hours than outside business hours. The first peak would occur between 10am to
12am, while the second peak would occur in the late afternoon between 3pm to 5pm. Usually a prediction
of the future course of the aggregate traffic rate is computed based on historic measurements.

In order to provide the necessary QoS for the aggregate flow we need to reserve bandwidth for this flow.
The amount of bandwidth to be reserved depends on the aggregate traffic rate and must be equal to or

3

� Figure 1.1: The aggregate traffic rate.

larger than the aggregate traffic rate. First a reservation for the aggregate flow needs to be set up so
that the individual flows can be added to this aggregate flow. After the aggregate reservation has been
set up the amount of reserved bandwidth, referred to as the size of the aggregate reservation, is updated
according to the dynamics of the aggregate traffic rate and the aggregate update policy. The aggregate
update policy states when the size of the aggregate reservation needs to be updated and what the new
size of the aggregate reservation should be.

One policy for updating the bandwidth of the aggregate reservation is to increase the amount of bandwidth
reserved by the aggregate flow whenever a new flow joins this aggregate. And in a similar manner release
bandwidth whenever a flow leaves the aggregate. We will refer to this policy as the IntServ update policy.
Note that this solution is not very scalable and does not take advantage of the aggregation of the flows.
For example, if flows where not aggregated then for every flow bandwidth would have to be reserved
in the routers on the path of that flow. Control messages would have to be sent to request bandwidth
for this flow and state information would have to be maintained at the routers of this flow’s path. If
we choose to update the aggregate reservation state (stored in the routers on the path of the aggregate
flow) every time a flow joins or leaves the aggregate the amount of control message that needs to be
sent is similar to the case of no aggregation. The only gain in this case would be a reduction in the
amount of state information that needs to be maintained in the routers, because instead of maintaining
the state information for the individual flows the routers now simply maintain the state information for
the aggregate flow.

In order to improve this performance we need to reserve additional bandwidth for the aggregate to cope
with new flows joining the aggregate. In Figure 1.1 we see a horizontal line which depicts the aggregate
reservation size. The aggregate reservation size, which we will denote by Ca, is the amount of bandwidth
reserved for the aggregate flow. Flows can join the aggregate as long as it has enough spare bandwidth
to grant their request. At some point in time the amount of spare bandwidth of the aggregate might not
be sufficient for potential new flows. An attempt is then made to increase the aggregate reservation size
(denoted in Figure 1.1 by time t1). A request for extra bandwidth is sent to routers in the path of the
aggregate flow. Each router checks locally whether it can grant this request and once all the routers have
granted this request the aggregate flow has the additional amount of bandwidth at his disposal. Only
then is the aggregate reservation size increased to its new level (this is denoted in Figure 1.1 by time t2).
As one can see, the aggregate reservation size can not be increased instantaneous. Because the additional
bandwidth needs to be reserved in all the routers on the path of the aggregate, it might take a while
before the aggregate reservation size is increased. This delay between the time the aggregate initiates
the request for extra bandwidth and the time this additional bandwidth is granted is referred to as the
reservation latency. This delay is most likely in the order of milliseconds but can also be in the order of
seconds.

4

The aggregate reservation size should not only be increased but also needs to be decreased from time
to time. This should be done in case the aggregate traffic rate is significantly lower than the aggregate
reservation size. If the aggregate reservation size is not decreased then the aggregate has reserved (much)
more bandwidth then it actually needs. This spare bandwidth, referred to as the bandwidth inefficiency,
needs to be freed (partially) in order for other flows to use. In Figure 1.1 we see the bandwidth inefficiency
marked by the shaded area. Also shown in the figure is how at time t3 the aggregate reservation size is
reduced. Note that the decrease of the aggregate reservation is instantaneous and is not subject to the
reservation latency. This is because the release of resources does not have to be confirmed. Once a router
receives a signaling message indicating the release of a certain amount of bandwidth, this bandwidth is
released immediately. The newly freed up bandwidth is then available for other flows.

For the purpose of this thesis we will design an aggregate update policy that takes the issues discussed
above into account. In order to design a proper aggregate update policy a solution to the optimization
problem discussed in the following section needs to be found.

1.4.1 Optimization Problem

The problem we are faced with is how to design an aggregate update policy that is scalable and has a
reasonable utilization. In addition, our aggregate update policy should reject as few flows as possible.
The update policy we need to design is responsible for the following two things:

1. when should the aggregate reservation be updated. The update policy should decide when to
increase the aggregate reservation size such that the aggregate reservation can cope with the future
aggregate traffic rate. It should also determine when to decrease the aggregate reservation size such
that the utilization of the aggregate reservation is as high as possible.

2. what the new size of the aggregate should be. Aside from determining when to update the aggregate
reservation the policy should determine the new size of the aggregate reservation.

It should be clear by now that there is a trade-off between the signaling load and the utilization. A high
signaling load results in a high utilization for our update policy while a low signaling load yields a low
utilization for our update policy. Take for example the IntServ update policy described above. This policy
has a 100% utilization at the cost of having to update the aggregate reservation for every flow joining or
leaving the aggregate. Thus aside from the highest possible utilization, this policy also has the highest
possible signaling load.

We want to find a solution that balances the trade-off between the signaling load and the utilization. In
order to find such a policy we need to describe the problem above as an optimization problem. In words
we can define our optimization problem as follows:

Can we design an aggregate update policy so that the signaling load, the (normalized) bandwidth
inefficiency and the blocking probability are as low as possible? Or in other words, when do we need
to update the aggregate reservation and what should the new size be so that the signaling load, the
(normalized) bandwidth inefficiency and the blocking probability are as low as possible?

We can express the problem defined above using a cost function. Before we can do so we will define the
parameters involved in the optimization problem. The relevant parameters are:

• The signaling load S(t).

• The (normalized) bandwidth inefficiency BI ′(t).

• The blocking probability Pbl.

5

The details of these parameters are discussed in the following section. For now we will use these parameters
to describe our cost function c. This is defined as follows:

c = κ1 × S(t) + κ2 ×BI ′(t) + κ3 × Pbl (1.2)

where κ1, κ2 and κ3 are constants used to normalize the signaling load S(t), the normalized bandwidth
inefficiency BI ′(t) and the blocking probability Pbl. The constants κ1, κ2 and κ3 are weights that are
assigned to the different parameters indicating their importance. For a given set of constants we can now
calculate the cost of the update policy.

Solving our optimization problem means finding the update policy with the lowest cost. In other words
we need to minimize the cost function c. This problem however is rather theoretical and for the purpose
of this assignment we will not attempt to solve it. We will however use this cost function during the
testing of our implementation. The cost function can then be used to determine whether a given set of
configuration parameters is better than another set of configuration parameters. In the section “Proposed
Solution” the chosen update policy and the configurable parameters are discussed. The configuration of
these parameters is discussed in the chapter “Implementation and Testing”. In the next section we will
discuss the constraints for the aggregate update policy in more detail.

1.4.2 Constraints

The constraints we place on the aggregate update policy are as follows:

• The sum of rates for the individual flows should be lower or equal to the aggregate reservation size
at all times. The following equation denotes this constraint:

ra ≤ Ca (1.3)

where ra is the aggregate traffic rate, as calculated in Equation (1.1), and Ca the maximum capacity
of the aggregate reservation.

• The update frequency of the aggregate reservation size should be as small as possible. The fewer
updates the more scalable the solution. The number of updates for the aggregate reservation during
a time interval of length t is denoted by nu(t). The signaling load is defined as follows:

S(t) =
nu(t)

na(t) + nd(t)
(1.4)

where nu(t) is the number of update messages sent up to a certain time t, na(t) is the number of
reservation requests received up to time t, and nd(t) the number of flows that have left the aggregate
up to time t. Note that in case the IntServ update policy is used, the number of update messages
sent is equal to the number of flows that have joined plus the number of flows that have left the
aggregate. This yields a signaling load of 1, which is the maximum value for S(t).

• The bandwidth inefficiency should be as low as possible. Reserving excessive amounts of bandwidth
which is not utilized by the individual flows in the aggregate prevents other (aggregate) flows from
reserving these resources. In Figure 1.1 bandwidth inefficiency is defined as the area between the
aggregate reservation size and the aggregate traffic rate. It can be computed using the following
equation:

BI(t) =
∫ x=t

x=t0

Ca(x)− ra(x)dx (1.5)

where BI(t) is the bandwidth inefficiency for the aggregate reservation up to time t, Ca(x) is
the aggregate reservation size and ra(x) is the aggregate traffic rate. The bandwidth inefficiency
parameter defined above expresses the amount of bandwidth that was not utilized by the aggregate
reservation in terms of number of (mega)bits. Because we are more interested in the fraction of spare

6

bandwidth which is not used by the aggregate flow we define the normalized bandwidth inefficiency
as follows:

BI ′(t) =
BI(t)∫ x=t

x=t0
Ca(x)dx

(1.6)

The normalized bandwidth inefficiency can also be expressed in terms of utilization which is basically
the portion of the aggregate reservation size that is used by the aggregate traffic rate. Utilization
is denoted by Ur and is calculated as follows:

Ur(t) = 1−BI ′(t) = 1− BI(t)∫ x=t

x=t0
Ca(x)dx

= 1−
∫ x=t

x=t0
Ca(x)− ra(x)dx∫ x=t

x=t0
Ca(x)dx

=

∫ x=t

x=t0
ra(x)dx∫ x=t

x=t0
Ca(x)dx

(1.7)

Note that for the IntServ update policy the utilization is near 100%. This is because the aggregate
reservation size is always equal to the aggregate rate. In other words Ca(t) ≈ ra(t) and thus the

utilization Ur(t) ≈
R x=t
x=t0

ra(x)dxR x=t
x=t0

ra(x)dx
= 1. The normalized bandwidth inefficiency in this case is zero.

• The update policy should reject as few flows as possible. The update policy should somehow predict
the future aggregate traffic rate and attempt to reserve this bandwidth in advance. It should not be
the case that a flow is rejected because the aggregate has not reserved enough bandwidth to accept
this flow. Let’s assume that an aggregate reservation has the possibility to reserve an unlimited
amount of bandwidth so that the requests for extra bandwidth are always granted. If in this case
a (micro) flow is rejected, it’s because the aggregate reservation was not updated in time. In order
to address this problem we need to update the aggregate reservation whenever the predicted future
bandwidth over the reservation latency period is larger than the current aggregate reservation size.
In other words, we need to update the aggregate if the extra future bandwidth demand is larger
than our current spare bandwidth. The spare bandwidth forms a buffer that enables us to accept
flows while we are increasing the aggregate reservation size. This can be expressed in the following
probability:

Pbl {ra(t′) > Ca(t)} ≤ ε (1.8)

where t′ denotes the current time plus the reservation latency delay (t′ = t+∆trl), ra(t′) is the future
aggregate traffic rate at the end of the reservation latency period, Ca(t) is the current aggregate
reservation size and ε is a small error term. So the probability that our future aggregate traffic rate
over the period [t, t+ ∆t] exceeds the current aggregate reservation size may be no more than ε. If
the probability is larger than ε, then the aggregate reservation needs to be increased.

1.5 Outline

This thesis is structured as follows; Chapter 2 will provide the requirements and criteria for aggregation
based RMD-QoSM. Different aggregation methods and their corresponding admission control are dis-
cussed here. In Chapter 3 an overview of the NSIS protocol suite and the details relevant to this thesis
will be described. A description of the RMD-QoSM is also given. The complete specification of the
aggregation based RMD-QoSM is given in Chapter 4 and its design and implementation in Chapter 5.
If the reader is familiar with the NSIS protocol and the RMD-QoSM, Chapter 3 and 4 may be skipped.
Chapter 6 describes the experiments used to evaluate the performance of our implementation, along with
the results . Finally, the conclusions and recommendations are given in Chapter 7.

7

Chapter 2

Related Work and Proposed Solution

2.1 Related Work

In this section we will discuss the different solutions proposed by others regarding the aggregation of flows.
Much research has been done regarding the optimization problem described in the previous chapter. In
order to reduce the search space for our problem we will narrow our scope to threshold based aggregate
update schemes.

2.1.1 Schmitt et al.

Our problem comes closest to the one defined in Schmitt et al. [32]. Schmitt et al. [32] have studied
the time scales of different QoS architectures. They state that different QoS architectures have different
serving needs. For example an access provider that has a moderate load and directly connects end systems
may have a fast time scale system because it has to respond immediately to the end system requests. A
backbone provider that connects the access providers is generally faced with a higher load of individual
transmission. For the backbone provider it is usually not possible to react on the time scale of individual
requests, so a slower time scale system needs to be enforced. It is particularly an issue for access providers
that use the IntServ/RSVP architecture to suit their customers’ needs and connects these end systems to
backbone networks that use the DiffServ architecture (with a Bandwidth Broker). The problem of using
different time scales can be illustrated using the following figure.

� Figure 2.1: Example of different timescales.

In Figure 2.1 we see how the aggregate traffic rate is modeled as a stepwise function. Here, CDC stands
for the capacity demand curve which is the aggregate traffic rate. The CDC belongs to the underlying
QoS system which has a fast time scale, compared to the overlay QoS which has a slower time scale. The
capacity demand for the overlay QoS system is depicted by the cover in Figure 2.1, which covers the
underlying CDC. The capacity demand curve (R(t)) of the underlying system is computed as follows:

R(t) =
nR∑
i=1

fRi (t) (2.1)

8

where fRi (t) is computed as follows:

fRi (t) =
{
hRi , t ∈ [sRi , e

R
i]

0 , otherwise

with eRi = sRi+1 for ∀i.

Here, nR is the number of steps, hRi is the height of step i, sRi is the start of step i, eRi is the end of
step i. In order to provide the same QoS on a different time scale a cover is computed over CDC R(t).
Formally a cover is defined as a capacity demand curve R̄(t) for which R̄(t) ≥ R(t)∀t.

In Schmitt et al. [32] the main reason why the overlay system needs to enforce a slower time scale, is
because the setup costs for requests in the overlay network are relatively high. Based on this assumption
a cost model is designed which takes the flow setup and bandwidth usage into account. The cost of a
CDC R(t) for the underlying QoS systems in a given time period [t0, t1] is defined as:

c(R|F,U) = F × nR + U ×
∫ t1

t0

R(t)dt (2.2)

where F is the fixed setup cost for changing the requested capacity level and U is the variable cost per
capacity unit. These parameters are assumed to be set beforehand and remain unchanged. The problem
of decoupling the time scales can now be formulated as follows:

Find a covering CDC R̄ for R such that c(R̄|F,U) is minimal.

According to Schmitt et al. [32] it is rather hard to compute an optimal cover. The complexity lays in
the following parameters:

• the step length eRi − sRi , which is a product of the inter-arrival times of the individual requests of
the underlying QoS system.

• the step height hRi which corresponds to the aggregate capacity required to serve the requests.

It seems that especially the latter parameter is very difficult to model. It depends on the type of applica-
tions that issue the reservation requests and how widely the resource requirements for these applications
differ from each other. The first parameter can be modeled using Markovian models known from the
teletraffic theory as long as the individual requests are user initiated.

In order to address this problem an algorithm was developed to find the optimal cover for a certain known
CDC R(t). The optimal cover can be found by using a divide-and-conquer approach. First the peak rate
of the CDC (R(t)) is found and the height of the cover is set to this value. The cover is then divided into
two halves, namely the cover to the left of the peak and the cover on the right of the peak. In a recursive
manner all possible covers are calculated for the left and right side of the peak rate. The optimal cover
is the cover which has the lowest cost c(R̄|F,U) for a given set of F and U .

Exhaustively searching the search space for the optimal cover is a computational expensive task and is
not a feasible solution. An approximation to the calculation of the optimal cover was developed in order
to find near-optimal covers. The algorithm for computing near-optimal covers is similar to the algorithm
of calculation optimal covers. In the near-optimal cover algorithm the peak rate of the CDC (R(t)) is
found and the height of the cover is set to this value. The cover is thus again divided into two halves.
Let’s now denote tpeak as the timestamp at which the CDC R(t) is at its peak rate. For the cover on the
left of the peak the search for a second peak rate over the interval [t0, tpeak] is conducted. The algorithm
now checks whether the cost of decreasing the cover CDC to this second peak is lower than the cost of
keeping the height of the covering CDC unchanged up to this peak. If the cost of decreasing the cover is
lower, the cover is decreased and the computation of the rest of the cover done in a recursive manner over
the left side and the right side of the second peak rate. If the cost of leaving the height of cover unchanged

9

is lower than decreasing the cover, then the cover remains unchanged over this period. A search for a
new peak rate to the left of the second peakrate is conducted and the rest of the cover computed in a
recursive manner. Note that this process is also done for the right side of the first peak rate.

The algorithm discussed above can only be used when the CDC is known. Because the course of the
CDC is not known before hand the algorithm needs to be modified. The proposed solution to deal with
this uncertainty is to use a simple heuristic1. The heuristic is called thresholded depot excess (TDE)
because it builds a ‘depot’ of capacity in order to stabilize the fluctuations of the underlying curve. The
TDE has one parameter αTDE ∈ [0, 1] which is used as a relative threshold.

The TDE algorithm works as follows:

• Let D(t) be the capacity for the cover for the capacity demand curve R(t). The parameter D(t)
corresponds to the amount of bandwidth reserved by the covering CDC.

• If the R(t), in time interval t, rises above the current capacity depot D(t−1) then D(t) is increased
to R(t) immediately.

• A decrease of the cover D(t) is only triggered when the value of R(t) drops below a fraction of the
current capacity (R(t) < αTDE ×D(t− 1)). The value of D(t) is then set to R(t).

Several things can be noted from this algorithm. The capacity of the cover is only increased when it is
absolutely necessary. It is the decreasing of the capacity of the cover that is actually regulated. The
decrease is postponed until the capacity of the underlying CDC is well below the capacity of the cover.
The parameter αTDE has a crucial role in determining the threshold for the decrease of the cover’s
capacity. Setting αTDE too high will result in many changes in the cover capacity while setting αTDE
too low wastes bandwidth. The key question here is how should the value of αTDE be set.

For a given CDC we can calculate a covering CDC using the TDE algorithm discussed above. Using the
approximation for the optimal cover we can also compute a near-optimal cover for this CDC. For both
covers we can compute the cost of the cover, namely c(RTDE,αTDE) and c(RNEAROPT). In order to allow
the TDE algorithm to produce a cover which closely matches the near-optimal cover, we need to find the
value for αTDE such that the following is minimized:

c(RTDE,αTDE)− c(RNEAROPT) (2.3)

This minimization can be done using a simple recursive grid search over interval [0,1] for the parameter
αTDE .

Note that the above algorithm works with known CDC’s. To use this algorithm one must keep track of
some historic data about the CDC that the algorithm needs to cover. Based on this historic data a proper
value for αTDE is computed. The amount of historic data determines the performance of the algorithm.
The more past information is used, the more accurate can the αTDE be computed. However, if too much
past information is used, this information might not reflect the current behaviour of the aggregate traffic.
The amount of past information also has an impact on the computational cost of the near optimal cover.
Calculating the cover for a large amount of past information can be quite expensive.

Using simulation the optimal value for the amount of history to be stored is calculated. However, due
to the lack of empirical data these values can not be translated to actual meaning-full results. With this
adaptive scheme Schmitt et al. [32] have shown that the optimization problem can be solved using a
simple heuristic.

1Schmitt et al. [32] note that the proposed solution should be regarded as an illustrative example of how a heuristic can
be used in their update scheme.

10

2.1.2 Pipes Model

A widely used model for the aggregation of flows is the pipes model [36, 24]. In the pipes model individual
flows are mapped onto an aggregate using ‘pipes’. A pipe is defined as ‘a logical path between two end
points on the network having a predefined capacity’ [36]. In a DiffServ domain a pipe would be a path
between an Ingress and an Egress router. End-to-end communication over multiple domains using pipes
could be achieved by creating different pipes of similar capacity over the different domains and connecting
them together. Figure 2.2 gives a graphical representation of a pipe and how multiple pipes are connected
together.

� Figure 2.2: The pipes model.

The purpose of the pipe is to reduce the signaling and computation overhead in the core network. Flows
between an Ingress-Egress pair belonging to the same traffic class are aggregated onto the pipe and
signaling is done for the pipe instead of the individual flows.

Wang et al. [36] propose a simple threshold based algorithm to update the pipe. Their results show that
the relationship between the threshold δ and the utilization is somewhat linear while the relationship
between δ and the signaling load is curved. This information can be used to select a proper value for
the threshold δ. For example Wang et al. [36] have shown that sacrificing a little utilization can yield
significant gains in the signaling load.

Menth [24] has also proposed the use of a threshold based update scheme similar to Wang et al. [36].
In his scheme he defines two thresholds δH and δL which denote a high threshold and a low threshold
respectively. The region between δH and δL is called the tolerance window. The pipe is then updated
whenever the aggregate traffic rate either exceeds the high threshold, or drops below the low threshold.
Based on his analysis the following rule of thumb is derived for determining the values for the thresholds:
if the radius of the tolerance window is set to the square root of the number of calls in the system, the
average inter-update interval will be constant if there are a large number of flows in the aggregate. Below
the details of these two solutions are discussed in more detail.

Wang et al.

Wang et al. [36] have developed a model that allows individual flows to be mapped onto an aggregate
using ‘pipes’. How flows are aggregated is not described in this paper but this could easily be solved by
aggregating flows using DiffServ classes or other flow traffic characteristics.

Pipes do nothing more than reserve a certain amount of bandwidth between an Ingress and an Egress. As
stated before, the traffic of the individual flows between the Ingress and the Egress is passed through the
pipe. Because flows come and go it is necessary to update the capacity of the pipe regularly. Updating

11

� Figure 2.3: Traffic model.

the pipe for every arrival or departure of a flow does not reduce the signaling overhead but results in
high bandwidth utilization. On the other hand, updating the pipe infrequently results in a significant
reduction of the signaling overhead but a lower bandwidth utilization. How frequently the capacity of
the pipe is updated depends on the arrival and departure frequency of the individual flows. In Figure
2.3 we see a representation of average intensity of telephone calls a day on the British Telecom network.
The figures depict an approximation of the real life behavior by modeling the call arrival process as a
Poisson process. The length of each call is exponentially distributed with an average of 5 minutes. In
Figure 2.3(a) the peak arrival rate is set to 20 calls per minute so that on average there are 100 calls in
the pipe during the peak period (i.e., 9am-11am, 2pm-5pm). In Figure 2.3(b) the peak arrival rate is set
to 200 calls per minute so that on average there are 1000 calls in the pipe during the peak period.

From the graph we observe that the relative burstiness of Figure 2.3(a) is larger than that of Figure
2.3(b), implying that the more calls there are the smoother the curve and the better we can predict the
behaviour. This would ultimately result in a less frequent update of the pipe capacity. According to [36]
the variance of the number of calls is subject to two main factors: 1) a long term factor which is caused
by the different phone usage during different timeslots and 2) a short term factor which is caused by the
Poisson call arrival process.

A prediction model is created to update the pipe. The pipe is updated in intervals of 40 minutes. First
an ideal prediction model is taken which has knowledge of the peak rate in the next 40 minute interval.
Based on this peak rate the capacity of the pipe is adjusted. Of course there is no way of knowing what
the peak rate over the next 40 minutes is going to be. The goal however is to find a realistic prediction
algorithm that has similar performance as the ideal prediction model described above. A simple threshold
based prediction scheme is developed to achieve this (see Figure 2.4).

The value of the threshold δ is chosen based on the tradeoff analysis between the signaling overhead and
the bandwidth utilization. The algorithm for updating the pipe capacity can be stated as follows:

1. Upon a call arrival, if the number of calls reaches the pipe capacity, then pipe capacity is increased
by δ.

2. Upon a call departure, if the number of calls is under the pipe capacity− 2× δ, then pipe capacity
is decreased by δ.

It is easy to see that if δ is equal to one that the scheme represents the per-flow updating scheme. The
larger δ, the less frequent the pipe capacity is updated.

12

� Figure 2.4: Threshold based aggregation.

In this scheme the number of calls is constrained as follows:

pipe capacity − 2× δ ≤ number of calls < pipe capacity (2.4)

The utilization for this scheme depends solely on the value of δ. Because the aggregate traffic is always
between pipe capacity− 2× δ and pipe capacity we can compute the lower bound of the utilization using
the following equation:

utilization ≥ pipe capacity − 2× δ
pipe capacity

(2.5)

The normalized updates metric is used to evaluate how much updating overhead can be saved by using
a pipe for the aggregate traffic. It is defined as follows:

normalized updates =
number of updates

2× number of calls
(2.6)

The graphs shown in Figure 2.5 depict the relationship between the threshold δ and the bandwidth, and
the threshold δ and the (normalized) amount of updates.

From these figures we can conclude that the utilization has a somewhat linear relationship with the
threshold δ. If we set δ to 1 we achieve near 100 % utilization whereas if δ is set to half times the average
number of calls we get a utilization of about 50 %. In the both 100 calls and 1000 calls simulation we see
that the utilization decreases with an increasing δ. If we select δ = 10 in the case of 100 calls or δ = 100
in the case of 1000 calls we find a utilization of about 80 %. For the number of updates it is a different
story. Here we find that initially a small increase of δ leads to large decrease of the number of updates.
This eventually flats out for large values of δ. If we look again at the value of normalized updates for δ
= 10 in the 100 call simulation, we find a result of 10-2. This corresponds to 99 % of updating overhead
being removed. In the case of having an average of 1000 calls we find a value of 10-4, which corresponds
of 99.99 % of the updating overhead being removed.

Micheal Menth

Micheal Menth [24] also proposed a threshold based scheme similar to the one developed by Wang et al.
[36]. In order to reduce the amount of signaling and making the solution more scalable, overreservation
is proposed. By reserving more resources than needed, the aggregate can cope with small changes in
demand. Overreservation decreases network performance and thus in order to avoid extensive waste of

13

� Figure 2.5: Relationship between the utilization, number of updates and δ.

14

resources a simple control mechanism with a threshold θ is used. In Figure 2.6 a graphical representation
of the mechanism is given. In the figure the overall capacity demand for the aggregate is depict. The size

� Figure 2.6: Threshold based aggregation.

of the aggregate reservation is only updated in the case that the demand drops under the lower threshold
or exceeds the upper threshold.

The signaling load with - respect to the network performance - is analyzed using the mean inter-update
time. The model used is based on models used in conventional telephony systems. Here the demand ca-
pacity of the aggregate is assumed to be proportional to the number of admitted end-to-end sessions n(t).
The lower and upper thresholds are denoted by nlow and nhigh respectively. The aggregate reservation is
updated whenever the demand leaves the tolerance window [nlow, nhigh]. For two flows the inter-arrival
time can be described by an exponentially distributed random variable A (i.e., A(t) = 1 − e−λt). The
mean inter-arrival time is the inverse of the arrival rate (E[A] = 1

λ). The holding time B is exponentially
distributed as well with mean E[B] = 1

µ . The process n(t) is modeled as a Markov birth-death process
with a state transition from state i to i+ 1 having an arrival rate of λ and the transitions to state i− 1
having a departure rate of i× µ. Also the process does not change its state with rate −λ+ i× µ and all
other state transitions are not possible.

From this analysis a rule of thumb is derived which states that the tolerance window can be adjusted such
that the mean inter-update time remains constant. The radius of the tolerance window r can be computed
using: r =

√
n̄ with n̄ being the average aggregate window size. Because there is a linear relationship

between the inter-update time and the size of the tolerance window a scalar (ω) can be used to regulate
the inter-update time. It is easy to see that for large aggregates the degree of overreservation converges
towards zero: limn̄→∞

bω×
√
n̄c

n̄ = 0. The rule of thumb proposed in this solution is thus practical, scalable
and efficient (for large aggregates).

2.1.3 Bandwidth Broker

Another approach towards scalable QoS signaling is the Bandwidth Broker (BB) architecture. The idea of
BB was first proposed by Nichols et al. [25] and introduces a new central logical entity that is responsible
for both intra-domain and inter-domain resource management for DiffServ. Its goal is to provide IntServ-
like end-to-end QoS guarantees in DiffServ networks. In Figure 2.7 we see two autonomous systems (AS)
being controlled by the bandwidth brokers BB1 and BB2. Here ER and IR denote the Egress and
Ingress routers of the domain respectively.

The tasks of a bandwidth broker are split into two main categories: intra-domain and inter-domain. Intra-
domain tasks include resource management and traffic control within the domain of the BB. Inter-domain
tasks cover the specification of bilateral service level agreements (SLAs) with neighboring domains and
managing the boundary routers to police/shape the incoming/outgoing traffic to adhere to the SLAs.

15

� Figure 2.7: Inter domain signaling.

Pan et al. [28] designed a protocol called the Border Gateway Reservation Protocol (BGRP), which
handles the inter-domain signaling. The main purpose of the protocol is to support resource reservation
for aggregate flows. In Pan et al. [28] the main focus was on the development of the protocol rather then
on the update scheme. For updating the aggregate reservation a simple scheme is proposed. However
because this aspect has some significance for our problem we will briefly discuss the update scheme.

Mantar et al. [23] researched both the intra-domain as the inter-domain resource management for the BB
architecture. For the Internet2 QoS working group [27] they have designed an architecture which defines
these functions for the DiffServ architecture. In their architecture they assume the usage of a Bandwidth
Broker in the DiffServ domain and the usage of pipes for the aggregation of individual flows. Details of
their design is discussed below.

BGRP

The Border Gateway Reservation Protocol (BGRP) was also designed to address the scalability issues of
RSVP. The major issue that BGRP was designed to address was how to aggregate flows over multiple
domains. This was done by focusing on the inter-domain reservation. The protocol thus specifies how
border routers of different domains can setup and maintain aggregate reservations. Here aggregation is
done using sink trees. In [28] the BGRP is discussed in detail.

In order to reduce the amount of updates for the aggregate reservation overreservation, quantization and
hysteresis is proposed. Border routers always reserve more bandwidth than is actually needed in order to
cope with future demand. The size of the aggregate reservation is always a multiple of a certain quantity
Q. At a certain point in time the size of the aggregate reservation would be k×Q. If the capacity of the
aggregate reservation is not sufficient enough to admit potential new flows the new size for the aggregate
reservation is set to (k + 1) × Q. The aggregate size is decreased in a similar manner by setting the
new size of the aggregate reservation at (k − 1)×Q. Hysteresis is used to limit the amount of decreases
of the aggregate reservation size. A decrease is triggered only when the bandwidth requirement drops
below some threshold Tl < (k − 1) × Q. In [28] this threshold is set to (k − 1) × Q + 1. Here it is
assumed that individual flows require one unit of bandwidth and so the reservable bandwidth wasted due
to over-reservation by this technique is less than 2Q units.

16

Mantar et al.

For the Internet2 QoS working group [27] Mantar et al. [22, 23] have conducted much research on how to
provide a scalable QoS architecture for large networks. As a base for their architecture they assume the
usage of the DiffServ architecture because it is relatively scalable with large networks. This is because
‘the number of states in core routers are independent of the network size. Thus, it is considered as the de
facto standard for the next generation of the Internet. According to Mantar et al. [22, 23] the main open
issue of the DiffServ architecture is the control plane function. This is because ‘unlike the Intserv/RSVP,
Diffserv only addresses forwarding/data plane functionality, whereas control plane functions still remain
an open issue. Hence, DiffServ alone cannot provide end-to-end QoS guarantees.’ [22]. Furthermore
they assume the usage of Bandwidth Brokers (BB) at the DiffServ domains. Here the BB is responsible
for providing end-to-end IntServ-like QoS guarantees within the DiffServ networks. The main reason
why the usage of a BB is preferred is because the ‘control functionality such as policy control, admission
control and resource reservation are decoupled from the routers into the BB ’. Some other advantages are:

• Scalability: A BB increases network core scalability due to the decoupling of control path func-
tions.

• Easy to deploy: Network administrators are more likely to use the BB infrastructure because it
requires little changes in the network infrastructure.

• Simplified billing and accounting: Billing and accounting associated with can be simplified
because of the usage of a centralized network entity.

• Less inconsistency of QoS states: Another advantage of using a centralized server is the reduced
amount of inconsistency of QoS states, faced by distributed approaches in which the edge routers
make admission control decisions independent of each other.

All of these advantages makes the BB the strongest for their research on control path mechanisms for
DiffServ. In order to address this issue Mantar et al. [23] have developed a signaling protocol for both
intra-domain and inter-domain signaling. For intra-domain signaling the BB is used. No real signaling is
used because all the control functionality is located in the BB. In other words the routers in the network
do not have to be notified of QoS state changes. These routers are only responsible for the forwarding of
the traffic data. In the next section the intra-domain signaling is explained.

Intra-domain signaling

In [23] Mantar et al. propose a centralized server called the intra-domain resource manager (IDRM) which
is responsible for admission control and provisioning of the network. An architectural view of the IDRM
is shown in Figure 2.8. Here all the information regarding the network topology, routing information,
available links and the currently reserved resources are stored. The IDRM is located at the BB. In order
to achieve this the IDRM maintains four databases:

1. The Domain Topology Database which contains the connection map of the routers in the
domain and is considered to be static.

2. The QoS Database which contains the QoS parameters associated with each PHB. This can be
considered static information in the sense that it is updated only at network configuration time.

3. The Pipe Database which stores the state of the pipes established between each Ingress and
Egress router, for each PHB. This database is dynamically updated.

4. The Link State Database which maintains the class-based (PHB-based) QoS state information
of all the routers in the form of < interface, IP, PHB, total capacity, current traffic rate, cost >.
This database is also update dynamically.

17

� Figure 2.8: The Intra-Domain Resource Manager (IDRM).

Managing network resources within the Bandwidth Brokers domain is now just a matter of keeping
these database (mainly the pipes and link databases) up to date. Mantar et al. [23] propose a pre-
established pipe model in which the pipes between every possible Ingress-Egress router pair, for each PHB,
is determined at configuration time. Unlike Wang et al. [36], described earlier, no explicit bandwidth
reservation state is stored. Instead the IDRM maintains the reserved and available bandwidth for each
pipe in its database. Admission control is done based on the information stored in the database and thus,
there is no need to reserve resources along the forwarding path. The IDRM can dynamically resize the
pipes without reflecting these changes in the forwarding path.

For the maintenance of the pipe a utilization based update scheme is proposed. The size of the pipe is
maintained as follows: whenever the utilization of any pipe exceeds its utilization target (i.e., 90% of its
size) then the QoS state information of all links on the path is obtained from the link state database
and the appropriate pipe size is determined. Frequent changes of the pipes require frequent access to
the link state database which could result in scalability problems. Scalability issues could be resolved by
dividing the domain in smaller subdomains, which are all controlled by separate IDRM. This reduces the
amount of pipes and thus the frequency of accessing the pipe database. Another point worth noting is
that when flows are aggregated on to a single pipe, the fluctuations are smoothed out and the dynamics
of the aggregate traffic is much lower.

This pre-established model will work well for networks with mutually disjoint pipes but could lead to
serious under-utilization for networks that have multiple pipes sharing one link. For example, lets assume
that two pipes, P1 and P2, each having a size of 5Mbps, share a link of 10Mbps. Assume now that after
some time the traffic rate of P1 drops to 3Mbps and that there is a new reservation request for a flow
corresponding to P2. The IDRM would not know that the bandwidth of P1 is available and thus would
deny the request. In order to minimize this problem the concept of virtual capacity is introduced. Virtual
capacity corresponds to the share of link capacity, for pipes that share the link, assigned to a certain
pipe. The virtual capacity vcik of pipe Pi on link k is computed as follows:

vcik = ck
P cli∑m
j P

cl
j

(2.7)

where m pipes share a bottleneck link k with capacity ck and P cli denotes the current traffic load of Pi.
For every link in the network the virtual capacity is computed and stored in a virtual rate allocation

18

matrix (VRAM) where a column represents a link and a field in the column represents the virtual capacity
of a particular pipe on the link. Now whenever a pipe reaches it maximum size the pipe resizing process
is started. During this process the VRAM is update and the unused link capacities redistributed among
the pipes, sharing the same links, that require additional resources. It should be noted that this pipe
resizing process is a costly one and should not be done frequently.

Inter-domain signaling

For inter-domain signaling the Simple Inter-domain Bandwidth Broker Signaling (SIBBS) protocol was
designed. The SIBBS protocol was developed by the Qbone Signaling Team2 and is another example
of the pipe model. This protocol defines how resources reservation between Bandwidth Brokers, in BB-
supported DiffServ networks, can be accomplished.

Aggregation in this architecture is done between Bandwidth Brokers. Here again the pipes model is used.
By aggregating the individual reservations between two BBs into an existing pipe, network scalability
can be improved in terms of the signaling and state load and admission control time (compared with
IntServ/RSVP model). The solution proposed by Mantar et al. [23] works as follows:

• The source domains BB pre-establishes pipes to every other possible destination domain and then
multiplexes all the reservation requests (initiated by end hosts) that have the same destination
domain and QoS class into the same pipe.

• If a new flow wants to cross the two domains is will be added to the corresponding inter-domain
pipe. Before the flow is added, an admission control check is preformed. If the pipe has enough
available resources for the flow, it will be admitted to the pipe.

Note that at this point the flow has already passed the intra-domain admission control check. If
the requesting flow did not pass this check then it (or more specifically the traffic belonging to the
flow) cannot depart the domain.

• From time to time aggregate traffic in the inter-domain pipes are checked whether the aggregate
traffic has reached a certain utilization target. If the aggregate traffic has crossed the boundary
of the utilization target, the size of the pipe should be updated. The pipe size can either be
increased or decreased. Decreasing the pipe occurs instantaneous. This is because the BB issuing
the decrease does not have to perform a check for available resources. The resources can thus be
release immediately and the BB at the other end of the pipe is directly notified of the change in
pipe size. The increasing of the pipe size is a different story. When a pipe needs to be increase, a
request is issued for extra bandwidth. This request is sent from one BB to another which performs
the admission control check. If the request is granted then a response is sent back to the requesting
BB and it is then that the pipe size is increased. Thus the pipe is increased only after a successful
response has been received for the extra bandwidth request. The period between the initiation of
the request and the completion of the request is called the reservation latency period.

In the next section the details of the inter-domain pipe update scheme is explained.

Dynamic Provisioning Algorithm

Mantar et al. [22] have defined a dynamic provisioning algorithm (DPA) which is used to dynamically
reserve and release bandwidth for the aggregate reservation. The DPA determines when a BB should
modify the aggregate reservation size and how to modify it (i.e., how much to reduce, how much to
increase). Two essential issues that have been considered are inter-BB signaling scalability and efficient
resource utilization.

The DPA modifies the reservation rate according to a simple threshold-based scheme. The following
parameters are used:

2The authors: Haci A. Mantar, Junseok Hwang, Ibrahim T. Okumus, and Steve J. Chapin are all members of the Qbone
Signalling Team.

19

• Outgoing reservation rate Rout: this parameter represents the reserved rate of a Bandwidth
Broker’s outgoing interface.

• Instantaneous outgoing traffic rate Rcurr: this parameter represents the aggregate traffic rate
passing through the Bandwidth Broker’s outgoing interface.

• High threshold HT : this is the utilization level where the Bandwidth Broker is triggered to
increase the outgoing reservation rate.

• Low threshold LT : this is the utilization level where the Bandwidth Broker is triggered to reduce
the outgoing reservation rate.

• Operation region OR = HT − LT .

The algorithm dynamically checks if the current traffic rate is within the OR. As long as the traffic rate
fluctuates within the OR, no negotiation takes place. Once the traffic rate crosses the boundaries (HT ,
LT), the algorithm predicts the new width of the OR, and then triggers the BBRP to negotiate resources
with the provider BB.

Here, the width of the OR is critical in terms of the tradeoff between resource utilization and the frequency
of BBRP invocation. To maintain the balance, the OR width is chosen by taking previous, current, and
future traffic demand into account. For simplicity, similar to the mechanism used by Jacobson for
estimating TCP round-trip time [19], the DPA uses the first order of autoregressive integrated moving
average (ARIMA). The idea here is to make the OR width adaptive to traffic characteristics. Adapting to
the traffic characteristics is done by predicting the length of the next inter update period. The calculation
for this length is done as follows:

Tnext = αTcurr + (1− α)Tprev (2.8)

The parameters Tcurr and Tprev are defined as follows:

• Let times tn, tn−1, .., t1 denote the times at which the pipe size was updated. Assume that t =
tn then Tcurr and Tprev denote the current and previous inter update time respectively and are
computed as follows:

Tcurr = tn − tn−1 (2.9)
Tprev = tn−1 − tn−2 (2.10)

Once the prediction of the next interval (Tnext) has been calculated using Equation (2.8) then we can
calculate the next value for our OR:

• Let T denote the expected pipe size modification period or expected inter update period. The opera-
tion region (OR) is computed using the following equation:

OR =
T

Tnext
OR (2.11)

The new size of the pipe is calculated as follows:

Rout = Rcurr +
OR

2
(2.12)

where Rout is the outgoing reservation rate, Rcurr the instantaneous outgoing traffic rate and OR the
operation region as defined above. Once the new size of the pipe has been calculated the bandwidth
needs to be released or reserved at the BB of the neighbouring domain. If bandwidth needs to be released
then this is done instantaneous. For the negotiation of the reservation of extra bandwidth the BBs

20

are constrained by the reservation latency. During the reservation latency period the pipe can not be
updated. This means that when a flow wants to join a particular pipe which is being updated and there
are not enough available resources in the pipe, the flow is simply rejected. To avoid having to reject flows
during these flows Mantar et al. [22] propose the use of a ‘cushion’. The cushion is a spare amount of
bandwidth which is reserved specifically for the reservation latency delay. Thus during a pipe update
flows are admitted as long as the cushion has enough spare bandwidth. An appropriate size for the
cushion has not been given in [22].

2.2 Proposed Solution

The solution proposed in this paper is based on the pipes model and the update algorithm proposed by
Mantar et al. [23]. The reason why this algorithm is preferred over the other alternatives is because, aside
from the solution proposed by Schmitt et al. [32], all the other alternatives discuss the aggregation of flows
with a fixed bandwidth requirement. In these studies [24, 36, 28] the emphasis lies on the arrival process
of flows and the prediction or estimation of future flow arrivals or departures. The solution proposed by
Schmitt et al. [32] is rather simple and as stated in [32] should be regarded as the illustrative example.
In our opinion the algorithm proposed by Mantar et al. [22, 23] is much more sophisticated and takes the
dynamics of the underlying aggregate traffic rate into account. This solution also takes the importance
of the reservation latency between Bandwidth Brokers into account with their use of a ‘cushion’.

2.2.1 Aggregate Update Algorithm

At configuration time pipes for every Ingress-Egress pair in the domain should be created. The initial
value of the capacity should be set to a reasonable value such that it is possible for several flows to join the
aggregate. The value of the pipe represents the size of the aggregate reservation, Ca. We need to update
the capacity of the pipe according to the dynamics of the aggregate traffic rate ra(t). Updating should
occur whenever the pipe is nearly full. Thresholds are used to trigger an increase or a decrease of a pipe.
There are two thresholds that need to be set, the high threshold δhigh and the low threshold δlow. As long
as the aggregate traffic rate lies between the high and low thresholds no update is required. An increase of
the aggregate reservation size is triggered whenever the aggregate traffic rate exceeds the high threshold
δhigh. In this case the new size for the aggregate reservation needs to be computed and the additional
bandwidth reserved. A decrease of the aggregate is triggered whenever the aggregate traffic rate drops
below the low threshold δlow. In this case the new size for the aggregate reservation is computed and the
excess bandwidth released. In Figure 2.9 the threshold based aggregate update algorithm is displayed.

� Figure 2.9: The aggregate update algorithm.

21

Setting the thresholds and the calculation of the new aggregate reservation size is done according to the
update algorithm proposed by Mantar et al. [22]. First we will discuss how the new aggregate reservation
size is computed and then we will discuss how to set the thresholds δhigh and δlow. Note that there is a
small difference between our definition of the operation region and definition used by Mantar et al. [22].
Mantar et al. [22] define the region between the high and low threshold as the operation region (OR).
In our algorithm we define the OR as the region between the maximum capacity and the low threshold.
The reason why our definition of the OR is different from Mantar et al. [22] is because our algorithm
will use a dynamic cushion instead of the fixed size cushion used in Mantar et al. [22].

Let times tn, tn−1, .., t1 denote the times at which the pipe size was updated. Assume that t = tn then
Tcurr and Tprev denote the current and previous inter update time respectively and are computed as
follows:

Tcurr = tn − tn−1 (2.13)
Tprev = tn−1 − tn−2 (2.14)

Let T denote the expected pipe size modification period or expected inter update period. In our algorithm
T is a parameter which should be set by the network administrator. In [15] the operation region (OR) is
computed using the following equation:

OR =
T

αTprev + (1− α)Tcurr
OR (2.15)

We note that in [15] exponential averaging is said to be used in order to determine the size of the OR.
However, from the notations defined above the exponential averaging is done only over the measured size
of the current and previous inter update interval. The recursion of the OR also results in some form of
averaging but it is unclear whether these calculations are equivalent to the exponential moving average.
We can define the estimation of the inter update time by explicitly using the exponential weighted moving
average:

Tav = αTav + (1− α)Tcurr (2.16)

where Tav is the average inter update time computed using an exponentially weighted moving average
with smoothing factor α. The calculation of the OR is now done as follows:

OR =
T

Tav
OR (2.17)

The difference between Equation (2.15) and (2.17) is that the former uses a smaller history and relies
more on the recursion of the OR than the latter equation. This makes Equation (2.15) more adaptive to
changes in the aggregate traffic rate. The latter equation has a larger history and is thus less vulnerable
to fluctuation in aggregate traffic rate. Which computation is better depends on the dynamics of the
aggregate traffic rate. For the computation of the OR in our algorithm we will use Equation (2.17).
This choice is mainly motivated by the vulnerability to oscillations of Equation (2.15). Because Equation
(2.15) uses only the previous and current measured update interval it might be possible that the calculated
average (αTprev + (1− α)Tcurr) oscillates.

The new size of the pipe is calculated as follows:

C ′a(tn) = ra(tn) +
OR

2
(2.18)

where C ′a(t) is new aggregate reservation size that needs to be reserved. Note that there is a difference
between C ′a(t) and Ca(t). Ca(t) denotes the actual aggregate reservation size at time t and C ′a(t) denotes
the new aggregate reservation size which still needs to be reserved. Due to the reservation latency we can
not set the new reservation size and thresholds immediately. We have to wait for a confirmation that the

22

extra bandwidth has been reserved by the interior routers. The new values for the aggregate reservation
size and thresholds can only be set if this confirmation has been received (at the Ingress router). If the
reservation for the new size is granted then Ca(t) is set to C ′a(t).

Once the new aggregate reservation size (Ca(t)) is set the lower threshold can be set. The new value for
the low threshold is calculated as follows:

δlow = Ca(t)−OR (2.19)

The computation of the high threshold (δhigh) is a little more complicated because it depends on the
value of the ‘cushion’ (see Figure 2.9). The high threshold is set at:

δhigh = Ca(t)−∆cushion (2.20)

The computation of the cushion is discussed in the next section.

2.2.2 The Cushion

In Mantar et al. [22] the notion of using a ‘cushion’ is proposed in order to accomodate flows that arrive
during the pipe update process. Yet no computation for the appropriate size of the cushion is given. Our
proposed solution will attempt to find an appropriate value for the cushion, ∆cushion, by calculating the
following probability:

P {ra(t′) > Ca(t)} ≤ ε (2.21)

where t′ denotes the current time plus the reservation latency delay (t′ = t + ∆trl), ra(t′) is the future
aggregate traffic rate at the end of the reservation latency period, Ca(t) is the current aggregate reservation
size and ε is a small error term. The error term ε should be set by the network administrator. It defines
the probability of flows that may be rejected. If ε is set to a high value, the cushion will be more relaxed
in the rejection of flows. Setting ε low will make the cushion more sensitive to flow rejections. In this
case the value of the cushion will be large in order to cope for a larger number of flows arriving during
the update of the aggregate reservation. The maximum value of the cushion however is constrained by
the size of the operation region (OR) in the following way:

∆cushion ≤
OR

2
(2.22)

In other words the cushion can never be larger than half the size of the operating region. If the cushion
is larger than OR

2 , the aggregate traffic rate might come to be larger than the high threshold without an
update being triggered.

What we want to compute is the size of the cushion (∆cushion) such that Equation (2.21) holds. This
equation needs to be rewritten so that the cushion can be calculated explicitly. The cushion can be
calculated as follows:

∆cushion = Ca(t)− ra(t) (2.23)

where Ca(t) is the aggregate reservation size at time t and ra(t) is the aggregate traffic rate at time t.
Equation (2.21) states that the future aggregate traffic should not exceed the current aggregate reservation
size with high probability. We can rephrase this as follows: the difference between the current aggregate
traffic rate (ra(t)) and the future aggregate traffic rate (ra(t+ ∆trl)) should be smaller than the size of
the cushion with high probability. This can be expressed with the following probability:

P {ra(t′)− ra(t) ≥ Ca(t)− ra(t)} ≤ ε (2.24)

Substituting (2.23) gives the following:

P {ra(t′)− ra(t) ≥ ∆cushion} ≤ ε (2.25)

23

As stated in the problem definition only constant bitrate (CBR) flows are considered in our solution.
We simplify the problem further by defining flows to be of one particular type. This means that the
bandwidth requirement for all flows is constant. As a result we can now easily calculate the amount of
bandwidth needed for a particular number of flows. Thus for the equation above we can easily convert
the size of the cushion to the number of flows that fit in the cushion. The aggregate traffic rate ra(t)
and the future aggregate traffic rate ra(t′) can also be translated to the number of flows currently in
the aggregate and the future number of flows in the aggregate respectively. Because of the one-on-one
mapping between aggregate traffic rate and the number of flows we can simplify Equation (2.25) to a
counting process:

P {N(t′)−N(t) ≥ k} ≤ ε (2.26)

where N(t′) describes the number of flows in the aggregate at time t′, N(t) describes the number of flows
in the aggregate at time t and k is the number of flows that fit in the cushion. Note that the parameters
in the equation above are simply the number of flows equivalents of the rates in Equation (2.25). Now
let xbw be the bandwidth requirement for one flow. Because the rate of the individuals flows are all equal
we can calculate the number of flows in the aggregate at a certain time t as follows:

N(t) =
ra(t)
xbw

(2.27)

In a similar fashion we can calculate the number of flows that fit in the ∆cushion:

k =
∆cushion

xbw
(2.28)

In other words if we want to determine an appropriate value for ∆cushion we must calculate the value of
k. Before we can calculate the value of k we will make the following assumption:

• The arrival process for flows can be described as a Poisson process. Poisson models are typically
used to describe in telephony model to describe the call-arrival process. In these models calls
are assumed to arrive according to a Poisson distribution and their lifetime is assumed to be
exponentially distributed. These assumptions will also be used in our proposed solution.

• The length of the reservation latency period is very small and during this period no flows leave the
aggregate. This assumption is made in order to simplify the calculation of the cushion. Namely, if
no flows leave the aggregate we simply have to calculate the amount of bandwidth needed to cope
for the arriving flows during the reservation latency period. Flows leaving the aggregate during
this period are not considered. For small values of the reservation latency this assumption might
hold but for large value of the reservation latency period this certainly is not true. Due to this
assumption our calculation of the cushion size is slightly pessimistic.

• The rate parameter λ of the Poisson process does not change during the reservation latency period.
The fluctuations of the aggregate traffic rate on a large time scale are caused by the change in the
intensity of the flow arrivals. This intensity is represented by the rate parameter λ. Increasing
λ causes the (average) number of flows in the aggregate to grow while decreasing λ causes the
(average) number of flows in the aggregate flow to shrink. This process however occurs on a large
time scale. For the calculation of the cushion however a small time scale is considered and thus
we can safely assume that the rate parameter λ remains constant during the reservation latency
period.

What we are interested in is the (extra) number of flows that join the aggregate during the reservation
latency period ∆trl. Thus how many more flows join the aggregate during a certain period of time τ
compared to the flows that leave the aggregate during this period τ . Let Ñ(τ) be the difference between
the number of flows in the aggregate at the beginning of period τ and the number of flows in the aggregate
at the end of period τ . In one of the assumptions above we state that during the reservation latency

24

period ∆trl no flows leave the aggregate. In this case Ñ(τ) corresponds to the number of flow arrivals
during the period τ . Furthermore we have assumed that the flow arrival process can be modeled as
a Poisson process. A Poisson process is characterized by a rate parameter λ such that the number of
events in time interval (t, t+ τ] follows a Poisson distribution with associated parameter λτ . Given these
assumption we can write this relation as follows:

P{Ñ(τ) = i} =
e−λτ (λτ)i

i!
(2.29)

Note that the equation above computes the probability that there are exactly i arrivals during time
interval (t, t+ τ]. If we want to compute the probability that there are more than i arrivals during time
interval (t, t+ τ] we will have to use the following equation:

P{Ñ(τ) > i} =
∞∑

j=i+1

P{Ñ(τ) = j} (2.30)

What we want to compute is the number of arrivals (k) within time interval ∆trl such that the probability
that more flows that k arrive in this time interval is very small. In other words, we want to compute the
probability:

P{Ñ(τ) > k} =
∞∑

i=k+1

P{Ñ(τ) = i}

=
∞∑

i=k+1

e−λτ (λτ)i

i!

= 1−
k∑
i=0

e−λτ (λτ)i

i!
(2.31)

With the equation above and a set of values for λ, ∆trl and ε we can now calculate k. This can be done
by using a counter variable ki which is initialized to 0. Substituting Equation (2.26) and Equation (2.31)
gives:

P
{
Ñ(∆trl) > k

}
≤ ε

1−
k∑
i=0

e−λ∆trl(λ∆trl)i

i!
≤ ε

k∑
i=0

e−λ∆trl(λ∆trl)i

i!
≥ 1− ε (2.32)

We need to compute the minimum value for k such that the sum
∑k
i=0

e−λ∆trl (λ∆trl)
i

i! is greater than or
equal to 1− ε. This can be done by computing the summation defined in above and check whether it is
smaller than 1− ε. If this is larger than 1− ε, k is incremented and the probability computed again. This
is repeated until the summation is greater than 1− ε. In this case we have found the minimum value for
k. Note that as an additional constraint we have defined that the size of the cushion can never exceed
OR
2 (see Equation (2.22)). As a result we can apply the following constraint to the calculation of k:

The maximum value for k is OR
2×xbw . This is because the cushion is constrained by the size of the

operation region. Because ∆cushion can never be greater than OR
2 and ∆cushion = k × xbw this

result in the maximum value for k being OR
2×xbw

Once the correct value for k has been found, the size of the cushion can be computed as follows:

∆cushion = k × xbw (2.33)

25

Parameter Estimation

In order to calculate the value of the cushion we need to estimate the parameters λ and the reservation
latency ∆trl. The parameter λ is estimated by counting the number of arrivals over small intervals.
The length of these intervals is set to 5 minutes. The reason why λ is recalculated every five minutes is
because the intensity of arrivals fluctuates over time. For example, the (average) number of arrivals at
night is much lower compared to the (average) number of arrivals during business hours.

Estimating the reservation latency ∆trl is done using a moving average. The exponentially weighted
moving average is used due to its accuracy and simplicity. ∆trl is estimated as follows:

∆trl = αrl∆trl + (1− αrl)∆tcurr (2.34)

where αrl is the smoothing factor and ∆curr is the current measured latency window.

2.2.3 Scenario’s

Maximum capacity reached

Up till now we have assumed that our algorithm always gets the bandwidth it requests. This is not always
the case though. Due to congestion or the maximum capacity of a link being reached the request for
additional might be denied by an interior router. In our algorithm a new request for additional bandwidth
is sent immediately after the previous request was denied. This process is repeated until the additional
bandwidth is reserved. The probability that the new request will be denied is rather high and therefor the
amount of control messages sent is also rather high which is not desired. In order to address this problem
we propose a minimum waiting period before another request can be sent. This can be implemented in
two ways:

1. A back-off timer can be used which is triggered whenever a negative acknowledgement is received.

2. A minimum waiting time timer can be used which is triggered whenever a request is sent. The
timer denotes the minimum waiting time between to requests.

The difference between the two approaches is that the first is only used when a request is denied while the
latter specifies the minimum time between two consecutive reservation requests regardless of a request
being granted or rejected. For our algorithm we will use the latter approach because of its simplicity.
The parameter Tmin denotes the minimum waiting time between two consecutive requests.

Congestion

Another scenario which we need to address is the case of congestion. When the network is congested
the aggregate reservation needs to be decrease in order to resolve the congestion. In RMD there are
mechanisms designed to notify edge routers of the congestion and the degree of congestion. Based on
the degree of congestion the aggregate reservation size is decreased. This is done by terminating several
end-to-end flows until the desired size is reached. The selection of flows that are to be terminated can be
done in a random fashion or by terminating the oldest flows first.

For the purpose of this assignment we will not address the above mentioned, because the current im-
plementation of the NSIS signaling protocol does not support congestion notification. In order to test
how our prototype performs in the face of congestion we would first need to implement the congestion
notification feature.

26

Chapter 3

NSIS: Overview

In the previous chapter we have proposed an aggregate update scheme which can be used to balance
the number of updates and the utilization. To test the performance of our aggregate update scheme,
an implementation of the Next Step In Signaling (NSIS) framework, developed at Twente University, is
used. This prototype implementation was developed by Martijn Swanink and Ruud Klaver. It supports
the reservation of bandwidth for uni-directional flows but does not support the aggregation of end-to-end
flows. So before we can use the current implementation, we must extend its functionality to support the
aggregation of flows.

In this chapter we will give an introduction to the NSIS framework. For clarification reasons some parts
of the text in this Chapter have been copied from [16, 18, 33]. Here we will describe the components of the
NSIS framework. We will also show how these components can be used to setup and maintain reservation
states. Furthermore we will take an in depth look at QoS Models (QoSMs) and QoS Specifications
(QSpecs).

3.1 Introduction

The NSIS working group is currently working on standardizing an (IP) signaling protocol. This signaling
protocol can be used by many different types of applications (e.g., signaling for middleboxes, firewalls
or QoS) but for the purpose of this assignment we will narrow our scope to the signaling of Quality of
Service (QoS). QoS refers to resource reservation control mechanisms. It can provide different priorities
to different users or data flows, or guarantee a certain level of performance to a data flow in accordance
with requests from the application program. In the NSIS framework, described in RFC 4080 [16], a data
flow is defined as a stream of packets from sender to receiver that is a distinguishable subset of a packet
stream. We will be using the following five tuple to identify a flow: <source IP address, source port,
destination IP address, destination port, transport protocol>.

In order to provide QoS guarantees for a data flow we need to reserve resources, like bandwidth, at the
routers that the flow traverses. The reservation of resources for this data flow involves the setup and
maintenance of reservation states. In this state information regarding the amount and type of resources
are stored. This state is related to a data flow and signaling messages can be used to install, modify,
refresh or simply read this state from network elements for a particular flow.

3.2 Signaling scenario

In Figure 3.1 a NSIS signaling scenario is displayed. Here is the path of the data flow, which traverses
three routers, and its signaling session between the sender and receiver is shown. The red arrow indicates
the direction of the data flow and the yellow arrows indicate the QoS signaling interactions. At the end
hosts and the intermediate routers are network entities (NE) installed, which represent ‘the function
within a node that implements an NSIS protocol ’ [16]. In other words, the NE is responsible for the
processing of NSIS signaling messages according to the NSIS protocol. Because we are only concerned

27

� Figure 3.1: A NSIS signaling scenario

with QoS signaling we will refer to these NEs as QNEs. A QNE is ‘an NSIS Entity (NE), which supports
the QoS NSLP ’ [18]. Here NSLP stands for the NSIS Signaling Layer Protocol which we will elaborate
in section 3.3.2.

Figure 3.1 shows the distinction between NSIS aware and NSIS unaware routers. While the NSIS unaware
routers do not have an active role in the resource reservation for a particular flow, they still forward the
signaling messages to and from NSIS aware routers. These messages are not processed by the NSIS
unaware routers because these routers do not have an QNE.

In a signaling session QNE’s can assume different roles. In Figure 3.1 all possible roles of a QNE are
shown. We will name the QNE based on the role it is in. For the NSIS aware routers the QNE can be
one of the following entities depending on their role:

QoS NSIS Initiator (QNI): the signaling entity that makes the resource request, usually as a
result of user application request. It is the first node in the sequence of QNE’s that has issued the
reservation request.

QoS NSIS Responder (QNR): the signaling entity that acts as the endpoint for the signaling
and can optionally interact with applications as well.

QoS NSIS Forwarder (QNF): a signaling entity between a QNI and QNR that propagates NSIS
signaling further through the network. In this thesis we will not explicitly refer to the QNE’s of
intermediate routers as QNF’s. Instead we will we simply state that these routers have a QNE
because from the context it is clear that these entities are not initiators nor responders and thus
are only responsible for the forwarding of signaling messages.

In Figure 3.1 it is easy to see that the signaling entity at the end host sender is a QNI and the one at
the end host receiver is a QNR. The intermediate NSIS aware routers - which have QNE’s installed - are
QNF’s. Note that the role of the QNE is associated to a particular flow. At one point a QNE can be the
initiator of a particular reservation while at the same time being a forwarder for other flows.

3.2.1 Internal structure QNE

A representation of the internal structure of a QNE is given in Figure 3.2. Here the different components
that are involved in providing QoS for a particular flow are shown. First there is the ‘local application’
that interacts with the QNE triggering the setup or tear down of a reservation. This local application
can also be an management application for e.g. aggregates. Then there is the QNE which is subdivided
in the following components:

• QoS NSLP Processing : responsible for the processing of QoS messages received from the lower
transport layer. The NSIS framework has its own signaling transport layer, called the ‘NSIS Trans-
port Layer Protocol ’ (NTLP), which is discussed in section 3.3.1.

28

� Figure 3.2: An internal representation of a QNE.

• NTLP Processing : responsible for node discovery and routing.

• Resource Management Function (RMF): responsible for the actual granting of reservation requests
and/or configuration of resources.

• Policy Control : the RMF is connected to a policy control component which determines whether
the application or its user is authorized to query resources or make an actual reservation. In our
prototype implementation we will not implement this component.

The other components shown in Figure 3.2 are lower layer components that are responsible for networking
aspects:

• Input packet processing : this component handles the node’s incoming messages. Only QoS related
messages are passed to the NTLP processing component.

• Output packet processing : here outgoing messages are processed and actual packet forwarding is
done.

• Traffic Control : this component controls the flow data packets. It is subdivided in the following
components:

– Packet Classifier : as the name states, this component is responsible for the classification
of packets. Packets are classified and subsequently prioritized before being sent across a
network. Using this mechanism the traffic control can determine the flow for any packet, and
thus, the treatment that the packet receives. Once a packet has been classified as belonging

29

to a particular flow, the Packet Scheduler is able to treat it in accordance with that flow’s
parameters.

– Packet Scheduler : The Packet Scheduler enforces QoS parameters for a particular flow. The
scheduler retrieves the packets from the queues and transmits them according to the QoS
parameters, which generally include a scheduled rate and some indication of priority. The
scheduled rate is used to pace the transmission of packets to the network. The priority is used
to determine the order in which packets need to be submitted to the network when congestion
occurs. This smoothes bursts or peaks of traffic over a period of time, thereby effecting a
steadier use of the network and maintaining resource integrity.

– Admission Control : this component determines whether a flow can be granted without dis-
rupting any established flows in the network.

3.3 Protocol stack

The NSIS protocol provides functionality to routers which allow them to manage their resources, like
bandwidth. In these routers additional layers have been added to the protocol stack, on top of the
network layer or the IP layer. In Figure 3.3 the protocol stack of an NSIS aware router is shown.

� Figure 3.3: The NSIS protocol stack

In Figure 3.3 we see that the NSIS protocol is divided into two layers. This is done to achieve a modular
solution. The functionality of these layers are defined as follows:

• the ‘signaling transport’ layer is responsible for moving signaling messages around, which should
be independent of any particular signaling application. From here on forward we will refer to the
components of the transport layer as the ‘NSIS Transport Layer Protocol’, denoted by NTLP.

• the ‘signaling application’ layer is responsible for the setup, maintenance and tear down of the
reservation states. It contains functionality, such as message formats and sequences specific to a
particular signaling application. The term ‘NSIS Signaling Layer Protocol’ (NSLP) refers to any
protocol within the signaling application layer.

30

3.3.1 NSIS Transport Layer Protocol (NTLP)

The NTLP is the lower transport layer of the signaling layer (NSLP). Both layers form the basis of the
overall signaling solution and therfore must coexist with each other. The NTLP layer is responsible for the
routing and delivery of the signaling messages, while the NSLP is responsible for the ‘end-to-end’ issues
like message retransmissions and failure notification. Note that the NTLP cannot provide end-to-end
guarantees because the NTLP interactions occur only between adjacent QNE’s, making it a ‘hop-by-hop’
protocol. As a result, larger scope aspects, like the ‘end-to-end’ issues, are left up to the NSLP. The
NTLP works as follows:

• When a signaling message is ready to be sent by a NSLP, it passes the message along with flow
information to the NTLP. Note that the NTLP does not have any knowledge of the purpose of the
message being send. It is unaware of the fact that the signaling message is used to setup, update,
tear down or just refresh the network control state.

• The NTLP processes the received message and sends this message immediately to the next QNE
along the path (this can be either upstream or downstream). It is important to note that the NTLP
does not change the sequence of the messages. Because all messages are sent immediately, their
timing cannot be jittered at the routers nor are messages stored up to be re-sent.

• When the message is received by the adjacent node the responsibility of the NTLP ends. Because
of this, the NTLP has no knowledge of the addresses, capabilities, or status of any QNE other then
its direct peers.

• The receiving QNE processes the received message and can either forward the received message or
pass it to the signaling layer for further processing.

Essentially the NTLP is just an efficient upstream and downstream peer-to-peer message delivery service,
where message delivery includes ‘the act of locating and/or selecting which NTLP peer to carry out
signaling exchanges with for a specific data flow ’ [16]. Thus the NTLP takes care of the transport and
routing of the signaling messages. For the actual transport of messages existing protocols are used, like
for example Stream Control Transmission Protocol (SCTP)[34], Datagram Congestion Control Protocol
(DCCP)[21], Transmission Control Protocol (TCP)[30] or User Datagram Protocol (UDP)[29] protocols
(also see Figure 3.3).

In our prototype implementation of the NSIS protocol we only support the usage of the TCP
and UDP transport protocols. Optionally the TCP can be used in combination with Trans-
port Layer Security (TLS)[9] to provide an secure (encrypted) transport of the signaling
messages.

On top of these transport layers a common messaging layer is located, the General Internet Signaling
Transport (GIST) layer.

General Internet Signaling Transport (GIST)

The GIST layer is responsible for most of the NTLP’s functionality. The purpose of this layer is defined
in [33] as follows:

‘The purpose of GIST is thus to provide the common functionality of node discovery, mes-
sage routing and message transport in a way which is simple for multiple signalling appli-
cations to re-use.’ from [33]

GIST allows the NSLP layer to send and receive signaling message to and from other QNEs respectively.
This is done using the GIST Application Programming Interface (API). The GIST API specifies how
information can be passed on from the NSLP to GIST and vice versa using the API’s service primitives.
In Figure 3.4 the GIST API is shown.

31

� Figure 3.4: The GIST API.

The API has six service primitives, three of which can be used by the NSLP to pass information to GIST
and the other three can be used by GIST to pass information to the NSLP. The NSLP layer can interact
with GIST using the following primitives:

• SendMessage: which allows a NSLP application to send signaling messages to upstream or down-
stream peers.

• SetStateLifeTime: which allow a NSLP application to control how long GIST should retain its
routing state.

• InvalidRoutingState: which allows a NSLP application to explicitly remove any routing state asso-
ciated to a particular flow.

GIST can interact with the NSLP player using the following service primitives:

• RecvMessage: this service primitive is used to deliver signaling messages received by GIST, including
the case of null messages, to a NSLP application.

• MessageStatus: this service primitive allows GIST to notify a NSLP application whether a signal-
ing message was send successfully. This service primitive can also be used to inform the NSLP
application of the transfer attributes used to send the signaling message. The signaling application
can respond to this message with a return code to abort the sending of the message if the attributes
are not acceptable.

• NetworkNotification: this service primitive can be used to notify a NSLP application of changes in
the network status.

We will not discuss the service primitives here, but a more detailed description is given in Appendix A.
The routing of the signaling messages is done using the flow’s Message Routing Information (MRI). The
MRI can be used to describe a flow:

‘The set of data item values which is used to route a signalling message according to a
particular Message Routing Method (MRM); for example, for routing along a flow path, the
MRI includes flow source and destination addresses, protocol and port numbers.’ from [33].

Here the MRM is defined as:

32

‘... the different algorithms for discovering the route that signalling messages should take.
These are referred to as message routing methods, and GIST supports alternatives within a
common protocol framework.’ from [33].

The NSIS framework supports ‘path-coupled’ and ‘path-decoupled’ MRMs. If path-coupled signaling is
used, the signaling messages are routed only through QNEs that are on the data path. In the path-
decoupled case, signaling messages are routed to QNEs that are not assumed to be on the data path, but
that are (presumably) aware of it. In this case signaling messages will always be addressed directly to
the neighbor QNE, and the signaling endpoints may have no relation at all with the ultimate data sender
or receiver. In this assignment we will only consider the path-coupled signaling scenario, because this is
the paradigm supported by RMD.

In appendix B the bit format of an MRI with a path-coupled MRM is shown. Here we see that a
traditional five tuple, which we use to identify a flow, is used to describe a flow: <source IP address,
source port, destination IP address, destination port, transport protocol>. An important flag in this MRI
worth mentioning is the D-flag. This flag indicates the direction of the signaling with respect to the flow.
If the D-flag is set to 0 then the signaling messages are sent in the same direction as the flow. If the flag
is set to 1, the signaling messages are sent in the opposite direction. Using this flag a NSLP application
can indicate if it wants to send a message to its downstream peer or to its upstream peer.

For the transfer of messages to neighboring peers, GIST has three different modes:

Query Mode (Q-mode): This mode is used to discover downstream peers1. In Query Mode a
UDP datagram will be sent towards the MRI destination. The IP header of UDP datagram should
include a Router Alert Option (RAO), which is an IP option that can be used to notify routers
along a path. The RAO is specified in RFC 2113 [20] and is used to:

‘... provide a mechanism whereby routers can intercept packets not addressed to them
directly, without incurring any significant performance penalty.’ from [20].

The bit format of the RAO field is as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|1 0 0 1 0 1 0 0|0 0 0 0 0 1 0 0| 2 octet value |
+-+

� Figure 3.5: The Router Alert Option bit format.

The final 16 bits of the RAO field should contain the NSLP-ID of signaling application on the
querying node. This identifier is used by GIST to check whether the message should be associated
with the local NSLP. Note that this is the only information visible to GIST about the signaling
application being used. If a match is found between the NSLP-ID and a local signaling application,
GIST will intercept the message for further processing. At this point GIST will attempt to set up
the routing state between the two peers. In the case that no match was found between the NSLP-ID
and a local signaling application, the message will be forwarded unchanged.

Datagram Mode (D-mode): This mode is used to send GIST messages between neighboring
peers without using any transport layer state or security protection. In Datagram Mode messages
are simply sent as UDP datagrams, addressed directly to the GIST node to be reached. The IP
destination address of a node can be be derived from nodes previously discovered using the Query,
or derived from the flow’s MRI.

Connection Mode (C-mode): This mode is used to send messages directly to neighboring peers
with the re-use of existing transport and security protocols, where such functionality is required.

1GIST can also discover upstream peers but this is not advised. Upstream peers are to be discovered by preceding
downstream messages. This way the GIST state is only installed during downstream peer discovery.[31]

33

In Connection Mode a Messaging Association (MA) between two nodes is used to transmit the
message. A MA is ‘a connection between two nodes using a particular connection-oriented protocol
or a stack of protocols with a set of properties, such as security and reliability ’ [31]. If no MA is
present, it will be setup dynamically. Note that the MA is also stored in soft state, meaning that
the connection will automatically be torn down if it is not used for a certain period of time.

We will not discuss the complete routing and peer discovery functionality of GIST, for this the reader is
referred to [33] and [31]. Above we have discussed the different transfer modes used by GIST because of
their relevance for the RMD QoS model, as we will see in section 4.2.

3.3.2 NSIS Signaling Layer Protocol (NSLP)

The NSLP is responsible for making end-to-end QoS reservation for a particular data flow. This layer
uses the services provided by GIST to setup and maintain reservation states at nodes along the path of
a data flow. The key features of the NSLP are:

• The NSLP uses soft state reservations which need to be refreshed from time to time. If after a
pre-defined period of time and no refresh message has been received to maintain the reservation
state, the state is removed. Note that NSLP also supports the explicit removal of reservations state.

• The NSLP supports both sender-initiated reservations, where the sender of the data flow
initiates the reservation, and receiver-initiated reservations, where the receiver of the data flow
initiates the reservation. Bi-directional reservations are also supported by the NSLP, where
sender and receiver initiated reservations can be used to signal the initiation, refresh and terminate
reservations in both directions, i.e., from sender towards receiver and from receiver towards the
sender.

• The NSLP supports session binding and message binding.

Session binding is used to indicate a relation between different QoS NSLP sessions which is par-
ticularly useful for bi-directional sessions, where the upstream reservation is associated with the
downstream reservation, and aggregate sessions.

Message binding can be used to express the dependencies between different messages. There are
some scenarios where two different messages have to be synchronized at a particular QNE. In this
case the first arriving message would have to be queued until the other bound message arrives at
the node. The messages are processed only after both bound messages have been received.

• The NSLP has mechanisms to protect nodes from duplicate or re-ordered messages. The order
in which RESERVE messages are received affects the reservation state stored at a QNE. This is
because the most recent RESERVE message replaces the current reservation. Therefore, in order
to protect against RESERVE message re-ordering or duplication, the NSLP uses a Reservation
Sequence Number (RSN).

• Message scoping is supported by the NSLP, where a QNE can decide whether to propagate a
message or not. Two scoping flags limit the part of the path over which a message can travel.
A SCOPING flag can be used to indicate that the scope is “whole path” or a “single hop”. The
PROXY scope flag can be set to indicate that the path is terminated at a pre-defined Proxy QNE.

• For limiting the number of individual messages, the NSLP supports a summary refresh and
summary tear messages.

• The NSLP supports layered reservations. Layered reservations occur when certain nodes of the
network (domains) implement one or more local QoS models. This is particularly true in the case
of aggregation where the aggregate reservation uses a different QoSM than the per-flow QoSM.

34

• The NSLP can adapt to route changes in the data path. Whenever rerouting events are detected
by the NSLP, a new QoS reservation is created along the new path and optionally the reservations
on the old path torn down.

• Pre-emption is supported by the NSLP. Note that the NSLP specification does not define how
pre-emption should work, but only provides signaling mechanisms that can be used by QoS Models.
How this feature is used by QoS Models is out of scope of the NSLP specification.

The NSIS signaling protocol defines how the QNEs (more specifically state information stored at this
QNEs) in the network can be influenced. Different NSLP signaling messages can be sent to create,
modify, refresh or tear down the reservation state stored at the different routers. Note that aside from
the reservation state store at the QNE, the QoS NSLP operational state can also be maintained. The
QoS NSLP operation state is used by the QoS NSLP processing component to handle messaging aspects.
Whereas the QoS reservation state is used by RMF to describe reserved resources for a session.

The format and sequence of the signaling messages is defined in the IETF draft “NSLP for Quality-of-
Service Signaling [18]. In this section we will discuss the different message formats defined in this protocol
and using and message sequence diagrams discuss how QoS signaling can be achieved.

Message Formats

The NSIS signaling protocol has defined four different types of messages:

RESERVE: The RESERVE message is the only message that manipulates QoS reservation state.
It is used to create, refresh, modify and remove such state for a particular session.

QUERY: A QUERY message is used to request information about the data path without making
a reservation. Note that a QUERY does not change an existing reservation state.

RESPONSE: The RESPONSE message is used to provide information about the result of a
previous QoS NSLP message. This includes explicit confirmation of the state manipulation signaled
in the RESERVE message, the response to a QUERY message or an error code if the QNE or QNR
is unable to provide the requested information or if the response is negative. The RESPONSE
message does not cause any reservation state to be installed or modified.

NOTIFY: NOTIFY messages are used to convey information to a QNE. They differ from RE-
SPONSE messages in that they are sent asynchronously and need not refer to any particular state
or a previously received message. The information conveyed by a NOTIFY message is typically
related to error conditions. An example would be the notification to an upstream peer about state
being torn down or to indicate when a reservation has been preempted.

The message type, along with several flag bits, is specified in a signaling message’s common header. Every
signaling message consists of a common header, followed by a body consisting of a number of variable
length QoS objects. The common header is defined as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Message type | Message flags | Generic flags |
+-+

� Figure 3.6: The common header bit format.

The first 8 bits of the common header specify the message type which have been discussed above:

35

1 = RESERVE

2 = QUERY

3 = RESPONSE

4 = NOTIFY

The next 8 bits are used for the message specific flags. The message specific flags are defined as part of the
specification of individual messages and are different with each message type. Currently the RESERVE
and the QUERY messages are the only message types to have message specific flags. The RESERVE
message has the following message specific flags:

TEAR (T) - this flag indicates whether the reservation state and QoS NSLP operation state should
be torn down. Depending on the QoS model, the tear message may include a QSpec to further
specify state removal.

REPLACE (R) - this flag has two uses. First it indicates that a RESERVE (with a different MRI
but same SID) replaces an existing one, so the old one MAY be torn down immediately. Second,
this flag is used to indicate whether the reserved resources on the old branch should be torn down
or not when a data path change happens. In this case, the MRI remains the same and only the
route path changes.

The QUERY message has the following message specific flag:

RESERVE-INIT (R) - this flag indicates whether the QUERY message is a trigger for a receiver
initiated reservation. If this flag is set then the QNR is triggered to set up the reservation by
sending back a RESERVE message.

The final 16 bits are reserved for the generic flags. The generic flags are the same for all message types
and specify how QNE should process the NSLP messages with respect to routing. The following flags
have been defined:

SCOPING (S) - when set, it indicates that the message is scoped and should not travel down the
entire path but only as far as the next QNE (scope=”next hop”). By default, this flag is not set
(default scope=”whole path”).

PROXY (P) - when set, it indicates that the message is scoped, and should not travel down
the entire path but only as far as a pre-defined proxy-QNE. Note that in this thesis proxy mode
signaling is not discussed. For more information about proxy mode signaling the reader is referred
to [18] (section 4.8). By default, this flag is not set.

ACK-REQ (A) - when set, it indicates that the message should be acknowledged by the receiving
peer. The flag is only used between stateful peers, and only used with RESERVE and QUERY
messages. Currently, the flag is only used with refresh messages.

This flag is useful when a QNE wants to make sure that the messages received by the downstream
QNE have truly been processed by the QoS NSLP and have not just delivered by GIST. This makes
faster dead peer diagnostics on the NSLP layer possible.

The A-flag must not be set for RESERVE messages that already include an RII object, since a
confirmation has already been requested from the QNR. Also, it should be noted that this flag can
provide a more reliable transport of NSLP messages however, the message transmission reliability
between two QoS NSLP peer should be handled by GIST, not by the NSLP itself.

BREAK (B) - when set, indicates that there are routers along the path where QoS cannot be
provided.

36

In the message’s body several QoS objects are specified. A QoS object can be one of the following types:

1. Control Information: Control information objects carry general information for the QoS NSLP
processing, such as sequence numbers or whether a response is required.

2. QoS specifications (QSpecs): QSpec objects describe the actual resources that are required and
depend on the QoS model being used. Besides any resource description they may also contain other
control information used by the RMF’s processing.

3. Policy objects: Policy objects contain data used to authorize the reservation of resources.

A QoS object is specified in a Type-Length-Value (TLV) format. Every object in this format has the
following 32-bit object header:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|A|B|r|r| Type |r|r|r|r| Length |
+-+

� Figure 3.7: The QoS object header bit format.

The ‘A’ en ‘B’ flags are used to signal the desired treatment for the object. These flags can have the
following values:

AB = 00: indicates that the object is mandatory. If this object cannot be processed by a QNE,
the entire message containing the object should be rejected and an error message should be sent
back to the sender.

AB = 01: indicates that the object should be ignored. If this object cannot be processed by a
QNE, the object should be ignored and the rest of the message should be processed.

AB = 10: indicates that the object should not be changed if the message is forwarded.

AB = 11: indicates that the object should be refreshed.

The type bits are used to indicate the type of the object. In the NSIS protocol specification the following
object types have been defined2:

• Request Identification Information (RII). Type: 0x01.
The RII object is a 32-bit identifier which must be (probabilistically) unique within the context
of a session. For every message that requires a RESPONSE message, a different identifier should
be generated which can be used to match the RESPONSE with a previously sent RESERVE or
QUERY message.

• Reservation Sequence Number (RSN). Type: 0x02.
The RSN is an incrementing sequence which indicates in which order the state modification should
be performed. The object consists of two 32-bit words: the RSN and an Epoch identifier, which is
used to identify peer restarts.

• Refresh Period (REFRESH PERIOD). Type: 0x03.
This object specifies the refresh timeout period (in milliseconds) to be used for this message.

2All the objects defined in the NSIS protocol specification are mandatory objects.

37

• Bound Session ID (BOUND SESSION ID). Type: 0x04.
The BOUND SESSION ID object is used to indicate whether this session is bound to another QoS
session. The object is subdivided in a BINDING CODE and the 128-bit identifier of the associated
session. The BINDING CODE parameter is used to indicate the nature of the binding. The concept
of session binding can be used to indicate a dependency relation between the end-to-end session and
the aggregate session or in the case of bidirectional reservations, used to express the dependency
between the sessions used for forward and reverse reservation.

• Packet Classifier (PACKET CLASSIFIER). Type: 0x05.
The PACKET CLASSIFIER object contains the Message Routing Method (MRM) specific infor-
mation. The MRM is the algorithm that should be used for the routing of the signaling messages.
Currently two MRM have been specified, the patch-coupled and path-decoupled MRM, of which
only the former is used. A complete list of all possible error codes is given in [18].

• Information object (INFO SPEC). Type: 0x06.
The INFO SPEC object contains information regarding possible errors that have occurred during a
signaling interaction. Note that the errors can also be used for informational purposes or to indicate
the successful processing of a signaling message.

• Session ID List (SESSION ID LIST). Type: 0x07.
This object contains a list of 128-bit session identifiers which can be used in summary refresh or
summary tear messages.

• Reservation Sequence Number (RSN) List (RSN LIST). Type: 0x08.
This object contains a list of RSN values.

• Message ID (MSG ID). Type: 0x09.
This object contains an identifier for the signaling message containing the object.

• Bound Message ID (BOUND MSG ID). Type 0x0A.
The BOUND MSG ID object can be used to indicate the dependency between two different mes-
sages, much like the session binding. This object contains a 1-bit MESSAGE BINDING TYPE
flag, indicating the nature of the binding, and a 128-bit identifier of the associated message. The
two supported binding types are:

1. a unidirectional binding dependency, and

2. a bi-directional binding dependency.

• QoS Specification (QSpec). Type 0x0B.
The QSpec object contains the QoS information needed for the modification of the reservation state.
The format of this object is dictated by the QoS model used. The QSpec object and QoS models
are discussed in section 3.4.1 and 3.4 respectively.

All the objects listed above, except for the QSpec object, are considered to be Control information objects.
The structure of a sample RESERVE message is given in Appendix C. This sample output was generated
by our prototype implementation. In the next section we will discuss how these messages and parameters
can be used to setup a reservation for a particular flow.

Message Sequences

The NSIS signaling protocol supports the following two scenarios for the set up of a reservation: the
sender-initiated reservation and the receiver-based reservation. Note that we will not discuss the usage
of the QUERY and NOTIFY signaling messages described above. This is because the message sequence
diagram for the querying of resources or notification of errors or state changes is similar to the message
sequence diagram discussed here (also see Figure 3.8). For more information regarding these message
sequences the reader is referred to [16].

38

The sender-initiated reservation The reservation of resources can be explained using the message
sequence diagram shown in Figure 3.8. To make a new reservation, the QNI constructs a RESERVE
message. This message contains a QSPEC object describing the required QoS parameters.

� Figure 3.8: A message sequence diagram of a basic reservation.

The QSpec object contains all information regarding the resources which need to be reserved.
It encapsulates the relevant QoS parameters that are used for the creation of the reservation
state. The format of the QSpec object is defined by the QoS model in which these parameters
are defined and how they should be interpreted. A more in depth discussion of the QSpec
object is given in section 3.4.1.

The reservation of resources along a particular path is accomplished by establishing peering relationships
between neighboring QNE’s. Signaling messages are sent peer-to-peer to either downstream or upstream
neighboring routers. These routers process the signaling message and based on the type of message and
the role of the QNE, the message is forwarded to the next neighboring router or a RESPONSE is sent
back to the sender.

In case of a reservation request the QNI passes the newly created RESERVE message to the NTLP
layer which will transport it to the next QNE. The GIST located in the NTLP layer is responsible for
the transport of signaling messages to neighboring QNE’s. GIST is also responsible for the routing of
signaling messages and the setup up of peering relationships between routers (QNE’s). In section 3.3.1
GIST is discussed in more detail.

Once the QNI’s neighboring QNE has received the RESERVE message several error flags are checked.
If no error flags have been set, the QSpec object is extracted and processed based on the specified QoS
model (QoSM). The node then performs the appropriate actions (e.g., installing reservation) specified by
the QSpec object. The QoSM defines how the QSpec should be interpreted and which actions should
be executed. QoS models are used to support different QoS architecture3. For example a QNE can
implement the IntServ architecture as a QoSM while other QNE’s use the DiffServ QoSM. Note that

3 The QSpec object and the QoSM are dependent of each other. The QoSM model defines and implements the QoS
parameters used for a particular architecture. The QSPEC object is used to signal the required resource specified in the
QoSM. A more detailed description of the QoSMs is given in section 3.4.

39

although different QoSMs are used the signaling protocol remains the same. The signaling protocol does
not depend on the parameters specified in the QSpec object and thus the transport of the QSpec object
remains the same for all QoSMs.

If the message is processed correctly the QNE will generate a new RESERVE message (usually based
on the one received by the QNE). This message is passed to GIST, which forwards it to the next QNE.
The same processing is performed at the other QNEs along the path, up to the QNR. At the QNR
the RESERVE message is processed and if no error flags have been set by the intermediate routers, the
reservation is considered to be successful. In this case a RESPONSE message confirming the reservation
is send back to the QNI. If the reservation was not successful then a RESPONSE message containing an
error message is send back to the QNI.

Between the two end hosts a signaling session has been setup. For this session the reserved resources are
maintained at the routers along the path of this flow. Formally a session is defined as ‘an association
between a QNI and QNR related to a data flow ’ [16]. This session can identified using the Session
Identification (SID) and all QNEs on the path, including the QNI and QNR, use the same identifier to
refer to the network control state stored locally for the association. This SID can thus be used by these
routers to refresh, update or tear down the reservation. Note that a particular QNI and QNR pair may
have more than one session active at a time. In this case every session will have its own unique SID.

The receiver-initiated reservation The receiver-initiated reservation of resources is explained using
the message sequence diagram shown in Figure 3.9. Note that in this figure the QNI is located on the
right side whereas the QNR is located on the left side. The QNR, which in this case is the sender of
the data flow, constructs a QUERY message. This message contains a QSPEC object describing the
required QoS parameters. In this Query message the RESERVE-INIT (R) flag is set to indicate the
receiver-initiated request as oppose to a QUERY for available resources.

� Figure 3.9: A message sequence diagram of a basic reservation.

Once the QNI’s neighboring QNE has received the QUERY message it is checked for errors. If no error
flags have been set, the QSpec object is extracted and processed based on the specified QoS model
(QoSM). The QoSM defines how the QSpec should be interpreted and may choose to inform other

40

nodes of its available resources. This is done by creating a new QUERY message with an QSpec object
containing the information regarding its available resources. Note that the QoSM can specify that an
error message is generated if the amount of available resources is less than the amount of the requested
resources. These are possible scenarios which have to be defined by the QoSM using this reservation
method. This QUERY message is then sent to its downstream peer.

Once the QUERY message is processed accordingly and the QNE performs a check for its available
resources. In a similar manner as described above a new QUERY message is constructed, based on the
received QUERY message, which is sent downstream. Again, messages received by NSIS unaware routers
are not processed by these routers but are simply forwarded.

Eventually the QUERY message is received by the QNI which will check whether the request can be
granted, based on the available resources and the requested resources. If the request can be granted the
QNI can set the reservation process in motion, which is similar to the sender-initiated reservation process
discussed above.

3.4 Quality of Service Models

A QoS model (QoSM) incorporates QoS provisioning methods and an architecture to achieve QoS for a
flow. Every QoSM has its own properties which are defined in a specification document. This specification
states which NSLP features are to be used, how the QSPEC should be formated and interpreted, and
how QoS parameters should be mapped onto the specific properties of the QoSM. By separating this
functionality from the signaling protocol, it is now possible for a QNE to support multiple QoS models
along a single data path. This is particularly useful for transit domains that may use a different type of
signaling than the end node that initiated the signaling session. By using multiple QoSMs, border routers
of the transit domain can now process the end-to-end signaling messages according to the associated end-
to-end QoSM and translate the parameters to the QoSM used in the transit domain.

Some examples of QoSMs are, the end-to-end IntServ Controlled Load QoSM and the intra-domain
Resource Management for DiffServ (RMD) QoSM [1]. In this section we will discuss the details of the
QSpec which is the key component of a QoSM.

3.4.1 QoS Specification (QSpec)

The QSpec, defined in [13], is a template which can be used to hold different types of QoS object and QoS
parameters. The QSpec objects are the input or outputs for the RMF and form the main building blocks
of the QSpec. The QSpec parameters are part of a QSpec object and can specify one of the following:

• the traffic (TMOD) parameter, which must be included in the QSpec,

• a constraint (e.g., path latency or path jitter),

• a traffic handling directive (e.g., excess treatment),

• a traffic classifier (e.g., Per-Hop-Behaviour class).

If we look at the internal structure of a QSpec, shown in Figure 3.4.1, we see that it consists of a Common
QSpec Header and a set of QSpec objects.

Common QSpec Header
...

QSpec objects
...

41

The Common QSpec Header consists of a QSpec version number (4 bits), which is assigned by Internet
Assigned Numbers Authority (IANA), a QSpec type (4 bits), which corresponds to a particular QoSM, a
QSpec procedure (8 bits), an I-flag which identifies whether the QSpec is an initiator QSpec (I = 0) or a
local Qspec (I = 1), and a Length field (12 bits) which specifies the total length of the QSpec excluding
the common header. The QSpec procedure field is subdivided into a 4-bit Message Sequence and another
4-bit Object Combination field. The Message Sequence field can have the following values:

0: Sender-Initiated Reservations

1: Receiver-Initiated Reservations

2: Resource Queries

The Object Combination field, which is dependent of the value of the Message Sequence field, can take
the values between 1 and 3:

• Message Sequence: 0
Object Combination: 1, 2, 3

• Message Sequence: 1
Object Combination: 1, 2, 3

• Message Sequence: 2
Object Combination: 1

The Object Combination field defines which QSpec object are to be used for a particular message sequence.
For example, if we want to create a QSpec for a RESERVE message which is used in a sender -initiated
reservation scenario (Message Sequence = 0), we can choose one of the following IDs for our object
combination field :

ID RESERVE RESPONSE
1 QoS Desired QoS Reserved
2 QoS Desired, QoS Available QoS Reserved, QoS Available
3 QoS Desired, QoS Available, Minimum QoS QoS Reserved, QoS Available

If we set our Object Combination field to ‘2’ for example, we would have to include a QoS Desired and a
QoS Available object in our QSpec. Every object combination has its own motivation why the specified
QSpec objects should be used. We will not discuss all the possible values for the Object Combination
field, or the motivation for their usage. For an exhaustive list the reader is referred to [13, section 4.3 :
QSPEC Procedures].

The QSpec also contains a set of QSpec objects which can be of one of the following types:

• QoS Desired object: The QoS Desired Object describes the resources the QNI desires to reserve.
It is a read-only QSpec object and thus the QSpec parameters carried in the object may not be
overwritten. QoS Desired is always included in a RESERVE message.

• QoS Available object: The QoS Available Object is included in a RESERVE or QUERY message.
Its purpose is to collect information on the resources currently available on the path. This is a read-
write object, which implies that the QSPEC parameters contained in this object may be updated.
but they cannot be deleted. Every QNE that processes this object must inspect all the parameters
carried in this object. If the QNE has less resources available than stated by the parameter, it
must update this parameter accordingly. In other words, the QoS Available Object reflects the
bottleneck of the resources currently available on a path.

QoS Available can also be included in a RESPONSE message. In this case the QoS Available
Object contains the information collected by a previously sent RESERVE or QUERY message and
thus may not be updated by intermediate QNEs.

42

• QoS Reserved object: The QoS Reserved object reflects the resources that were reserved. It is
a read-only object.

• Minimum QoS object: The Minimum QoS object allows the QNI to define a range of acceptable
QoS levels by including both the desired QoS value and the minimum acceptable QoS in the same
message. Parameters cannot be overwritten in this QSPEC object.

Note that the QSpec specification states that the objects QoS Desired, QoS Available and QoS
Reserved must be supported, whereas the support for the Minimum QoS object is optional.

The QSpec parameters are encapsulated in QSpec objects which are either desired, available, reserved
or minimum. In the “QoS NSLP QSPEC Template” [13] several parameters have been defined which
can be used freely in any QoSM specification. This is done to achieve interoperability between different
QoSMs. The following parameters have been defined in [13]:

• <TMOD-1> Parameter:
This parameter specifies the traffic using a token bucket. The parameter consists of four numbers:

1. r : which represents the rate of the data flow in bytes/second.

2. b: which represents the bucket size of the token bucket in bytes.

3. p: which specifies the peak rate of a flow in bytes/second.

4. m: which specifies the minimum policed units in bytes.

This parameter is special because it must be included by the QNI and it must be interpreted by
all other QNEs. All other QSpec parameters are populated by a QNI only if they are applicable to
the QoSM used.

• <TMOD-2> Parameter
This parameter is identical to the <TMOD-1> parameter. The reason why there is a second traffic
parameter to support DiffServ applications. If an application wants to use the full set of Assured
Forwarding (AF) [17] then two token buckets are needed.

• <Path Latency> Parameter
This parameter specifies the maximum latency (in milliseconds) a flow wishes to experience.

• <Path Jitter> Parameter
This parameter specifies the maximum jitter (in milliseconds) a flow wishes to experience.

• <Path PLR> Parameter
This parameter specifies the minimum packet loss ratio (PLR) a flow wishes to experience.

• <Path PER> Parameter
This parameter specifies the packet error ratio (PER) a flow wishes to experience.

• <Slack Term> Parameter
The slack term parameter is the difference between desired delay and delay obtained by using
bandwidth reservation.

• <Preemption Priority> and <Defending Priority> Parameters
The Preemption Priority parameter is the priority of the new flow compared with the Defending
Priority of previously admitted flows. Once a flow is admitted, the preemption priority becomes
irrelevant.

The Defending Priority parameter is used to compare the current flow with the preemption priority
of new flows. The preemption priority of any flow must always be less than or equal to its defending
priority.

43

• <Admission Priority> and <RPH Priority> Parameters
These parameters provide an essential way to differentiate flows for emergency services like e.g.,
Emergency Telecommunications Service (ETS) (see [7]) or E911, and assign them a higher admission
priority than normal priority flows and best-effort priority flows.

• <Excess Treatment> Parameter
This parameter describes how the QNE will process out-of-profile traffic. Excess traffic can be
dropped, shaped and/or remarked

• <PHB Class> Parameter
This parameter specifies the Per-Hop-Behaviour (PHB) class to which this flow belongs. PHBs are
used by the DiffServ architecture to differentiate traffic distinct classes. This parameter is used by
the RMD-QoSM.

• <DSTE Class Type> Parameter
This parameter specifies a QoS as a DiffServ-aware MPLS traffic engineering (DSTE) class type
(see [12, 11]).

• <Y.1541 QoS Class> Parameter
This parameter specifies a QoS as a Y.1541 class type (see [14]).

A QoSM can include any parameter defined above in its specification and define its own processing rules
for it. In the next chapter we will discuss the parameters used by the RMD-QoSM, including their
processing rules.

44

Chapter 4

Resource Management in DiffServ

In this chapter we will discuss the Resource Management for DiffServ QoS Model (RMD-QoSM) [1]. For
clarification reasons some parts of the text in this Chapter have been copied from [1]. Here we will show
how the RMD-QoSM can be used to support the aggregation of flows. In addition, we will show how our
Aggregate Update Algorithm can be incorporated in the RMD-QoSM.

4.1 RMD Features Overview

Resource Management in DiffServ (RMD) [1] is an attempt to apply the DiffServ principles to the
NSIS signaling framework. It introduces dynamic reservation and admission control into the DiffServ
architecture. In RMD per flow classification, conditioning and admission control functions are moved to
the edges of a RMD domain. Within the RMD domain per traffic class admission control is done. This
way the reservation mechanism for the nodes within the domain is much simpler, which results in a more
scalable solution for providing QoS guarantees in large scale networks.

For the dynamic reservation of resources within an RMD domain, RMD describes a method that is able
to provide admission control for flows entering the domain. Two admission control modes are supported:

• Measurement based: This admission control mechanism uses measured traffic levels to make
admission control decisions. Here traffic levels are measured continuously and based on the available
amount of resources flows are admitted or not.

• Reservation based: Nodes that use the reservation based admission control scheme, base their
admission control decisions on a flows traffic descriptor and available resources. This implies that,
in the contrast to the measurement based admission control scheme, the reservation of resources
needs to be stored.

For the purpose of this assignment we will assume the use of the reservation based admission control
scheme. The reason for this is because this is the only admission control scheme currently supported by
our prototype. Also in our problem statement we have assumed that only Constant Bit Rate (CBR) flow
traverse the RMD domain. Such flow transfer their data at a fixed rate and thus can be described using
one parameter, the data rate. Because there are no fluctuation within the flow’s data rate the reserved
resources are assumed to be fully utilized at all times. For such flows the performance gain when using
is measurement base admission control is significantly lower. Last but not least, of the two admission
control schemes, the reservation based scheme is easiest to implement.

In Figure 4.1 a simple RMD signaling scenario is shown. Here we see the five routers of which three are
located in the RMD domain. The QNI and QNR are not part of the RMD domain but have a flow that
traverses the RMD domain, depicted by the red arrow. The other three QNE nodes located in the RMD
have one of the following roles:

• QNE Ingress: which is responsible for handling the incoming end-to-end signaling messages. At
this node per-flow state information is stored for the end-to-end flows traversing the node. At this

45

� Figure 4.1: A RMD signaling scenario

node two QoSM are supported, the end-to-end QoSM and a local QoSM, the RMD-QoSM. Using
the local QoSM intra-domain flows between the QNE Ingress and the QNE-Egress are setup and
maintained. Using this local QoSM we will setup an aggregate flow between the QNE-Ingress and
QNE-Egress.

• QNE-Interior: which is responsible for handling signaling messages according to the local QoSM
used by the QNE Ingress (and QNE-Egress). QNE-Interior nodes are very lightweight because they
only store reduced NSLP state per traffic class (for reservation-based RMD).

• QNE-Egress: which is responsible for handling incoming intra-domain as well as end-to-end sig-
naling messages. At this node the received intra-domain signaling messages are processed according
to the local QoSM whereas the end-to-end signaling messages have to be processed according to
the end-to-end QoSM. Note that the end-to-end signaling messages are tunneled through the RMD
domain and are not processed by the interior nodes.

In an RMD domain edge nodes support the fine-grained end-to-end reservation mechanisms whereas
the interior nodes support a simpler (aggregate) reservation mechanism. When using reservation-based
RMD per PHB state information is stored at all the nodes located in the communication path from
the QNE Ingress node up to the QNE-Egress node. This state is identified by the PHB class value
and it maintains the number of currently reserved resource units (or bandwidth). At the QNE-Ingress
end-to-end reservations requests are mapped onto a PHB group and associated with the corresponding
aggregate reservation. If the end-to-end flow can be admitted to the aggregate reservation, the end-to-
end reservation request is forwarded towards the QNE-Egress using some tunneling mechanism in order
to bypass the QNE-Interior nodes. At the QNE-Egress an admission control check for the end-to-end
request is performed. If the request can be granted, some state information is created and stored at this
node. The end-to-end request is then send further downstream towards the QNR.

In a nutshell the RMD specification describes the following procedures:

• RMD support the classification of individual resource reservations or resource query into Per-Hop-
Behavior (PHB) groups. This is done at the QNE-Ingress node of the domain.

• A hop-by-hop admission control based on a PHB is used within the RMD domain. It uses either the
reservation based admission control scheme or the measurement based admission control scheme.

• RMD supports the tunneling of the original reservation request across the domain. This way end-to-
end signaling messages can pass through the RMD domain without being processed by the interior
nodes.

• A congestion control algorithm is present in RMD to notify the QNE-Egress nodes about congestion.
The algorithm will terminate the appropriate number of flows in case of congestion due to a sudden
failure within the domain.

46

Limitations and Considerations

RMD has the following limitations and considerations:

• RMD can not support the full set of Assured Forwarding (AF) [17] per hop behavior traffic classes.
Currently the only supported PHB is the Expedited Forwarding (EF) [8] PHB or one class of the AF
PBH sets. The reason why RMD does not support the full set of AF PHBs is because this would
require two token buckets. Note that the NSIS QSpec template [13] includes the possibility for
specifying two traffic parameters (<TMOD-1> and <TMOD-2>), which can be used to represent
two token buckets. Currently the RMD specification does not take advantage of this possibility.

• Only one RMD-QoSM can be used in one RMD domain because NSIS aware routers cannot process
two different schemes at the same time. Thus within the RMD domain either the reservation-based
or the measurement-based method can be used, not a mix of the two.

4.2 RMD QoS Model

The RMD-QoSM is specified in [1]. Here the signaling, the format of the QSpec and the processing
rules are defined. First we will discuss how the signaling messages are to be transported, followed by the
format of the QSpec, which we will refer to as the RMD-QSpec. The signaling and processing rules are
discussed afterwards.

4.2.1 Transport of signaling messages

If we look at the protocol model of the same signaling scenario (shown in Figure 4.2), we can clearly
see the different QoSM used in the signaling scenario described above. The QNI and QNR set up an
reservation using a particular end-to-end (e2e) QoS model. The edge nodes of the RMD domain must
also support this end-to-end QoSM because they must be able to interpret the end-to-end requests in
order to make a proper translation to the local (RMD) QoSM used in the domain. In contrast to the
edge nodes, the interior node only supports the local QoSM used in the domain.

� Figure 4.2: The RMD protocol model

47

In Figure 4.2 the state information stored at the different nodes is shown. The end-to-end QoSM requires
the storage of per-flow state information. This translates to the nodes having to maintain a per-flow
NSLP operational state. Because the QNI, QNE-Ingress, QNE-Egress and QNR nodes support the end-
to-end QoSM, they have to store per-flow QoS NSLP operational state and are considered to be NSLP
stateful. In contrast to the other nodes, the QNE-Interior node can either store ‘reduced’ NSLP state or
be completely stateless. When using the measurement based admission control scheme, the QNE-Interior
nodes are stateless. If the reservation based scheme is used then reduced NSLP state, storing per PHB
aggregated QoS NSLP states, is maintained at the QNE-Interior node.

For the NTLP layer state information is stored at all nodes except the QNE-Interior nodes. This implies
that no routing association is set up for nodes within the RMD domain. In order to achieve this (intra-
domain) signaling messages have to be sent in GIST Datagram mode (D-mode). Intra-domain signaling
is denoted in Figure 4.2 by the blue arrow. This is done as follows:

• When the QNE-Ingress is ready to send an (intra-domain) NSLP signaling message it must instruct
GIST to send the message in unreliable mode with no security. This can be done by simply setting
the transfer-attributes of the GIST API to operate in unreliable mode with no security. In doing
so GIST will send the NSLP signaling message by piggybacking it on a GIST QUERY message.

• At the QNE-Interior node the GIST QUERY message is received and using the RecvMessage service
primitive of the GIST API passed on to the NSLP layer. This service primitive has a parameter
called ‘Routing-State-Check’ (also see appendix A.2). This boolean is used by GIST to check with
the signaling application whether routing state should be created. At the QNE-Interior node this
boolean should be set to false, in order to notify GIST that no routing state should be created. In
this case the (modified) NSLP payload is forwarded downstream using a GIST QUERY message.
This process is repeated for every QNE-Interior node until the NSLP signaling message is delivered
to the QNE-Egress.

• At the QNE-Egress routing state should be created and thus when the NSLP message is received,
using the RecvMessage service primitive, the Routing-State-Check boolean is set to true. At this
point GIST creates the routing state between the QNE-Ingress and QNE-Egress and traffic can now
be routed directly from one node to another. The routing state at the QNE-Egress can immediately
be used to send NSLP signaling message back tot the QNE-Ingress.

• Note that in the procedure described above we have discussed how (intra-domain) signaling messages
can be sent when no routing state has been set up. When an (intra-domain) message needs to be
send after the routing state has been set up, the NSLP should notify GIST to send the message
in Query mode (Q-mode). In this case the message should be send with the SendMessage service
primitive with the transfer attributes set to unreliable and no security. In addition, the local
processing parameter of the transfer attributes should be set such that GIST sends the (intra-
domain) signaling message in a Q-mode even if there is a routing state at the QNE Ingress. The
intra-domain signaling message is piggybacked on the GIST DATA message that is forwarded in
Q-mode and processed by the QNE-Interior nodes up to the QNE-Egress.

The transport of the signaling message above applies only to the transport of intra-domain NSLP signaling
messages. For the transport of end-to-end signaling messages (denoted in Figure 4.2 by the yellow arrow)
the following procedure should be used:

• At the QNE-Ingress the end-to-end signaling message should be forwarded to the QNE-Egress
and further but ignored by the QNE-Interior nodes. The QNE-Interior nodes are bypassed using
multiple levels of the router alert option (ROA). In this case, interior routers are configured to
handle only certain levels of (RAO) values. The ROA is set by GIST which derives its value from
the supplied NSLPID by the signaling application. Using the SendMessage service primitive, the
signaling can pass the NSLPID as parameter to GIST. At the QNE-Ingress the default NSLPID
value of the end-to-end signaling message is replaced with another predefined NSLPID and send
towards the QNE-Egress.

48

• At the QNE-Interior nodes GIST checks whether the RAO of the signaling message is supported by
the node. Because these nodes are only configured to handle certain RAO values, and not the one
included in the signaling message, the message is not processed and simply forwarded downstream.

• Once the signaling message reaches the QNE-Egress the marking performed by the QNE-Ingress is
reversed. The value of the NSLPID of the signaling message is replaced with the default NSLPID
and the message is forwarded towards the QNR.

4.2.2 RMD-QSpec

The format of the RMD-QSpec, defined in [1], is derived from the QSpec template defined in [13]. The
common QSpec header fields in the QSpec object carried by the RESERVE message are set as follows:

• the <QSpec Version> is set to the default version. Currently this is ‘0’ in
our prototype.

• the <QSpec Type> is the ID of RMD-QoSM to be assigned by IANA.

• the <I> flag is set to ‘Local’ (I =1).

• the <QSpec Procedure> is set as follows:

– Message Sequence = 0: Sender initiated

– Object combination = 1: <QoS Desired> for RESERVE and <QoS
Reserved> for RESPONSE, see table below (taken from [13]):

ID RESERVE RESPONSE
1 QoS Desired QoS Reserved
2 QoS Desired, QoS Avail. QoS Reserved, QoS Avail.
3 QoS Desired, QoS Avail., Min. QoS QoS Reserved, QoS Avail.

The RESERVE and RESPONSE messages used in the RMD-QSpec carry a QoS Desired object and a
QoS reserved object respectively. The QoS Desired object contains the following parameters:

<QoS Desired> = <Bandwidth> <PHB Class> <Admission Priority>

The QoS Reserved object in the RESPONSE message has the following parameters:

<QoS Reserved> = <Bandwidth> <PHB Class> <Admission Priority>

The <Bandwidth> parameter is used to provide information about the amount of bandwidth that needs
to be reserved or released. The parameter consist of a Bandwidth IDID, which is not yet assigned by
IANA, and a Peak Data Rate field.

The <PHB Class> parameter specifies the Per-Hop-Behavior class for a particular flow. There are two
ways to specify the PHB class. One is using the DSCP parameter while the other uses a PHB ID
parameter.

The <Admission Priority> provides an essential way to differentiate flows for emergency services, priority
flows and best-effort flows. High priority flows, normal priority flows, and best-effort priority flows can
have access to resources depending on their admission priority value, described as follows:

• 0 - best-effort priority flow

49

• 1 - normal priority flow

• 2 - high priority flow

Note that in the RMD-QOSM a reservation established with an <Admission Priority> parameter with
value 1, is equivalent to a reservation established without an <Admission Priority>.

In the RMD-QoSM specification [1] the <Traffic Handling Directives> is specified with the following
fields:

<Traffic Handling Directives> = <PHR container> <PDR container>

It seems that the <Traffic Handling Directives> is modeled as a QoS object. According to the QSpec
template [13] there is no such <Traffic Handling Directives> object or parameter. The QSpec template
does define some Traffic Handling Directives parameters such as the <Preemption Priority>, <Defending
Priority>, <Admission Priority>, <RPH Priority> and the <Excess Treatment> parameters. Note that
a QoSM can define its own traffic handling directives parameter, like the <PHR container> and <PDR
container> parameter. These parameters should be included in a QoS Desired object, according to the
QSpec template:

‘Generally, a traffic-handling-directives parameter is expected to be set by the QNI in <QoS
Desired>, and to not be included in <QoS Available>. If such a parameter is included in
<QoS Available>, QNEs may change their value.’ from [13].

In our prototype implementation we will include the<PHR container> and<PDR container> parameters
in the <QoS Desired> object. The format of the <QoS Desired> is then specified as follows:

<QoS Desired> = <PHR container> <PDR container> <Bandwidth> <PHB Class>
<Admission Priority>

In the RMD-QoSM specification [1] the <PHR container> and <PDR container> parameters are also
used to notify the QNE-Ingress of the successful or unsuccessful setup of reservations. We need to modify
our QoS Reserved object in the RESPONSE message as follows:

<QoS Reserved> = <PHR container> <PDR container> <Bandwidth> <PHB Class>
<Admission Priority>

The <PHR container> parameter contains control information for intra-domain communication and
reservation. The <PDR container> contains additional control information that is needed for edge-to-
edge communication. The details of these parameters are discussed below.

PHR container

The PHR container consists of the following parameters:

<PHR container> = <S>, <M>, <Admitted Hops>, , <Hop U>, <Time Lag>,
<Overload %>, <I>

The bit format of the PHR container is shown in Figure 4.3. Note that the <Hop U> parameter is given
by <U>.

Parameter/Container ID :
8 bits. The container ID indicates the PHR type, which can be one of the following:

• PHR Resource Request: used to initiate or update the traffic class reservation state on all nodes
located on the communication path between the QNE-Ingress and QNE-Egress nodes.

• PHR Refresh Update: used to refresh the traffic class reservation soft state on all nodes lo-
cated on the communication path between the QNE-Ingress and QNE-Egress nodes according to a
resource reservation request that was successfully processed during a previous refresh period.

50

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|0|E|N|R| Container ID |r|r|r|r| 1 |
+-+
|S|M| Admitted Hops |B|U| Time Lag | OverLoad % |I| |
+-+

� Figure 4.3: The PHR container bit format.

• PHR Release Request: used to explicitly release a certain amount of reserved resources, by
subtraction, for a particular flow from a traffic class reservation state.

<S> (Severe Congestion):
1 bit. In case of a route change refreshing RESERVE messages follow the new data path, and hence
resources are requested there. If the resources are not sufficient to accommodate the new traffic, severe
congestion occurs. Severe congested Interior nodes should notify Edge QNEs about the congestion by
setting the ‘S’ bit.

<M>:
1 bit. In case of unsuccessful resource reservation or resource query in an Interior QNE, this QNE sets
the M bit in order to notify the Egress QNE.

<Admitted Hops>:
8 bits. The <Admitted Hops> parameter counts the number of hops in the RMD domain where the
reservation was successful. It is set to ‘0’ when a RESERVE message enters a domain and is incremented
by each Interior QNE, provided that the ‘Hop U’ bit is not set. However, when a QNE does not have
sufficient resources to admit the reservation, the ‘M’ bit is set, and the <Admitted Hops> value is frozen,
by setting the ‘Hop U’ bit to ‘1’.

:
1 bit. When set to ‘1’ it indicates bi-directional reservation.

<Hop U> (NSLP Hops unset):
1-bit. The QNE-Ingress node sets the <Hop U> parameter to ‘0’. This parameter should be set to
‘1’ by a Interior node when it does not increase the <Admitted Hops> value. This is the case when
a reservation request is not granted. When <Hop U> is set ‘1’ the <Admitted Hops> are not to be
changed. Note that this flag in combination with the <Admitted Hops> flag are used to locate the last
node that successfully processed a reservation request.

<Time Lag>:
8 bits. The time lag used in a sliding window over the refresh period.

<Overload %>:
8 bits. In case of severe congestion the level of overload is indicated by the <Overload %> parameter.
This parameter should be higher than 0 if ‘S’ bit is set. If overload in a node is greater than the overload
in a previous node then the <Overload %> parameter should be updated.

<I>:
1 bit. When set to ‘1’ it indicates that the resources/bandwidth carried by a tearing RESERVE must
not be released.

PDR container

The PDR container consists of the following parameters:

51

<PDR container> = <S>, <M>, <Max Admitted Hops>, , <Overload %>,
[<PDR Bandwidth >]

The bit format of the PHR container is shown in Figure 4.4. Note that the <Max Admitted Hops>
parameter is given by <Max Adm Hops>

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|0|E|N|R| Container ID |r|r|r|r| 2 |
+-+
|S|M| Max Adm Hops |B| OverLoad % | Empty | |
+-+
|PDR Bandwidth(32-bit IEEE floating p.number) | |
+-+

� Figure 4.4: The PDR container bit format.

Parameter/Container ID :
8 bits. The container ID indicates the PDR type, which can be one of the following:

• PDR Reservation Request: generated by the QNE-Ingress node in order to initiate or update
the QoS-NSLP per domain reservation state in the QNE-Egress node.

• PDR Refresh Request: generated by the QNE-Ingress node and sent to the QNE-Egress node
to refresh, in case needed, the QoS-NSLP per domain reservation states located in the QNE-Egress
node.

• PDR Release Request: generated and sent by the QNE-Ingress node to the QNE-Egress node
to explicitly release the per domain reservation states.

• PDR Reservation Report: generated and sent by the QNE-Egress node to the QNE-Ingress
node to report that a “PHR Resource Request” and a “PDR Reservation Request” traffic handling
directive fields have been received and that the request has been admitted or rejected.

• PDR Refresh Report: generated and sent by the QNE-Egress node in case needed, to the QNE-
Ingress node to report that a “PHR Refresh Update” traffic handling directive field has been re-
ceived and has been processed.

• PDR Release Report: generated and sent by the QNE-Egress node in case needed, to the QNE-
Ingress node to report that a “PHR Release Request” and a “PDR Release Request” traffic han-
dling directive fields have been received and have been processed.

• PDR Congestion Report: generated and sent by the QNE-Egress node to the QNE-Ingress node
and used for congestion notification.

<S> (Severe Congestion):
1 bit. Specifies if a severe congestion situation occurred. It can also carry the <S> parameter of the
“PHR Resource Request” or “PHR Refresh Update” fields.

<M>:
1 bit. Carries the <M> value of the “PHR Resource Request” or “PHR Refresh Update” traffic handling
directive fields.

<Max Admitted Hops>:
8-bit. The <Admitted Hops> value that has been carried by the PHR container field used to identify
the RMD reservation based nodes that admitted or processed a “PHR Resource Request”.

52

:
1 bit. When set to ‘1’ it indicates bi-directional reservation.

<Overload %>:
8 bits. This parameter includes the <Overload %> parameter specified by the “PHR Resource Request”
or “PHR Refresh Update” control information fields, indicating the level of overload to the QNE-Ingress
node.

<PDR Bandwidth>:
32 bits. This field specifies the bandwidth that either applies when the ‘B’ flag is set to ‘1’ and when
this parameter is carried by a RESPONSE message, or when a severe congestion occurs and the QNE
edges maintain an aggregated intra-domain QoS-NSLP operational state and it is carried by a NOTIFY
message. In the situation that the ‘B’ flag is set to ‘1’ this parameter specifies the requested bandwidth
that has to be reserved by a node in the reverse direction and when the intra-domain signaling procedures
require a bi-directional reservation procedure. In the severe congestion situation this parameter specifies
the bandwidth that has to be released.

In the next section we will discuss the processing rules for the parameters discussed above. The processing
rules are explained using relevant signaling scenarios. The scenarios discussed in the next section are:

• The successful setup of an aggregate reservation.

• The unsuccessful setup of an aggregate reservation.

• The successful increase of an aggregate reservation.

• The unsuccessful increase of an aggregate reservation.

• The successful decrease of an aggregate reservation.

• The successful refresh of an aggregate reservation.

4.3 Flow aggregation in RMD-QoSM

In this section we will discuss how the RMD-QoSM can be used for the aggregation of flows. In order to
add support for flow aggregation we need to focus on the following areas:

• Setting up the aggregate reservation. Before flows can be aggregated there needs to be an
aggregate flow onto which the end-to-end flows can be mapped. So the first thing to do would be
to set up an aggregate reservation.

• Admission control. In a per flow reservation scheme the resource management function only
checks whether there are enough resources available to grant the end-to-end reservation request.
With the aggregation scheme this is a different story. Here the RMF should query the aggregate
reservation state to check whether it has enough spare bandwidth to grant the end-to-end reservation
request.

• The increasing and decreasing of the aggregate reservation. Increasing the aggregate
reservation means reserving extra bandwidth for the aggregate flow. In this case the RMF should
check locally whether there is enough bandwidth to grant this request. Only then is the aggregate
reservation increased. Decreasing the aggregate reservation is done in a similar manner as the release
of an end-to-end reservation. When an aggregate reservation wishes to decrease its reservation size,
it should notify the RMF to release the requested amount of bandwidth. The RMF on its turn
then does the actual release of the bandwidth.

53

• The refreshing of the aggregate reservation. Just as end-to-end reservations, the aggregate
reservation should also be refreshed from time to time. The main advantage here is that instead
of having to refresh all the end-to-end reservation mapped onto the aggregate reservation, only the
aggregate reservation needs to be refreshed. The refreshing of the aggregate reservation is done in
a similar manner as the refreshing of the end-to-end reservation.

The modifications to the protocol are explained using message sequence diagrams. For these message
sequence diagrams we will assume the following network topology.

� Figure 4.5: The scenario for the following reservation actions.

In Figure 4.5 only the routers that are part of the RMD domain are shown. The routers that fall outside
the RMD domain are not shown but their existence is assumed in the message sequence diagrams. For
example, the diagrams assume that the QNE Ingress routers can receive reservation requests from QNE
routers that want to set up end-to-end data flows that traverse the RMD domain.

The ‘aggregation region’ shown in Figure 4.5 is defined in RFC 3175 [2], which discusses the problem of
aggregating RSVP flows. In RFC 3175 an extension to the RSVP protocol is discussed which makes it
possible to aggregate multiple end-to-end RSVP reservations. Here the ‘aggregation region’ is defined as
follows:

“... a set of RSVP-capable routers for which end-to-end (E2E for short) RSVP messages
arriving on an exterior interface of one router in the set would traverse one or more interior
interfaces (of this and possibly of other routers in the set) before finally traversing an exterior
interface”, from RFC 3175 [2].

This definition simply states that (RSVP) signaling messages arriving at the aggregation region traverse
one or more routers before finally exiting the aggregation region. The signaling messages belonging to
an end-to-end (E2E) reservation however are not processed by the routers in the aggregation region.
Thus aggregation implies the ability to hide E2E RSVP messages from RSVP-capable routers inside the
aggregation region. This is useful because this way reservations within the aggregation region can be
created, maintained and removed independent of the E2E reservations that cross the aggregation region.

The router at which the signaling message entering the aggregation region first arrive is defined as
the ‘aggregating’ router or ‘aggregator’ while the router at which the signaling messages departing the
aggregation region arrive is referred to as the ‘de-aggregating’ router or the ‘de-aggregator’. In Figure
4.5 the aggregation region with an aggregator and a de-aggregator is shown. The aggregating router has
an incoming interface that does not fall within the aggregation region, whereas the outgoing interface of
this router does fall within the aggregation region.

In our signaling scenarios we will also use this concept of aggregation region. Here we define the RMD
domain to be the aggregation region. The QNE-Ingress node of the RMD domain will be the aggregator
and the QNE-Egress node will be the de-aggregator.

54

4.3.1 Aggregate reservation setup

Setting up the aggregate reservation can be done in several ways. An aggregate reservation can be setup
either by the sender (QNE Ingress) or by the receiver (QNE-Egress). Also, initialization of the aggregate
reservation can be done dynamically or manually.

The NSIS framework supports both sender initiated reservation as well as receiver initiated reservations.
In a sender initiated reservation, the sender of the data flow is responsible for the maintenance of the
signaling session. Whereas, in the receiver initiated case the receiver of the data flow requests needs to
maintain the signaling session. Also see Section 3.3.2 in which the message sequence diagram of the basic
sender initiated and basic receiver initiated signaling is discussed.

The sender and receiver initiated approaches have several differences, of which the main ones are:

• In a receiver-initiated approach, the signaling messages traveling from the receiver to the sender
must be backward routed such that they follow exactly the same path as they came from. In a
sender-initiated approach backward routing is not necessary, therefore the nodes on the path do
not have to maintain backward routing state.

• Mobile nodes using the sender-initiated approach can initiate a reservation for its outgoing flows
as soon as it has moved to another roaming subnetwork. In a receiver-initiated approach, the
mobile node has to inform the receiver about its handover, thus allowing the receiver to initiate a
reservation for these flows. For incoming flows, the reverse argument applies.

• In general, setup and modification will be fastest if the node responsible for authorizing these actions
can initiate them directly within the NSLP. A mismatch between authorizing and initiating QNEs
will cause additional message exchanges, either in the NSLP or in the protocol executed prior to
NSIS invocation. Depending on how the authorization for a particular signaling application is done,
this may favor either sender- or receiver-initiated signaling.

For the setup of our aggregate reservation we will implement the sender initiated approach. There are
several advantages when using the sender initiated approach:

1. As stated above in the receiver-initiated signaling scenario, backwards routing state has to be
maintained. This is not necessary when sender-initiated signaling is used.

2. When using the sender initiated approach the QNE Ingress is the one responsible for the mainte-
nance of the aggregate reservation. Because the new end-to-end reservation requests first arrive at
the QNE Ingress, this would be a logical place to control the aggregate reservation. If the receiver
based approach is used then the QNE-Egress would have to send a QUERY message back to the
QNE Ingress which is then triggered to set the actual reservation request in motion. Thus in the
receiver based approach the setup of the aggregate reservation would take 1.5 * RTT1 whereas the
sender initiated approach would take 1 RTT.

The initialization of the aggregate reservation can be done in a dynamic or manual fashion. Possible
options are:

• If the aggregate reservation is setup in a dynamic fashion, the component responsible for the ag-
gregate reservation will determine when the aggregate is setup. For example a border router can
be triggered to setup an aggregate reservation when receiving an end-to-end reservation. Upon
receiving this reservation request, the border router can lookup and map the aggregate reservation
for the end-to-end reservation. If no aggregate reservation exists, the node can choose to set one

1RTT stands for Round Trip Time. This is the time it takes for a message to be send from the sender to the receiver
(or vice versa) and a response being received by the sender.

55

up. In this case a request is sent to the relevant Egress router. Once the aggregate reservation has
been set up, the end-to-end request is mapped onto the aggregate reservation.

Note that the setup of the aggregate reservation does not necessary have to be triggered by the first
received end-to-end reservation request. The threshold for the setup of the aggregate reservation
can be set to a certain amount of bandwidth for example.

• The aggregate can also be setup at configuration time by the network administrator. In this case
the network administrator chooses the Ingress and Egress routers for which an aggregate reservation
should be set up. Once these reservations have been set they will exist until the reservation can not
be refreshed anymore and is torn down. This is particularly the case during link or router failure.
Note that in this case the aggregate reservation for that particular link or router have to be set up
again.

Of the options described above the latter is chosen for our prototype implementation. The main reason
for this is because it is the easiest to implement. On a side note, our selection for a particular setup
mechanism has no major impact on the performance for our flow aggregation algorithm, because of the
simple network topology. Our test environment consists of five nodes: a sender and a receiver router, two
border routers and one interior router.

A successful reservation setup. In Figure 4.6 the message sequence diagram for the successful setup
of the aggregate reservation is shown. The setup for the aggregate reservation is done as follows:

� Figure 4.6: A successful setup of the aggregate reservation.

• The QNE Ingress node receives a trigger to set up the aggregate reservation. Upon receiving the
trigger, the RMF checks whether the request can be granted locally and if so, create a (RMD)
QSpec object with the relevant parameters. This QSpec is wrapped in a RESERVE message and
sent downstream towards the QNE-Egress.

The flags and objects of the RESERVE message must be set to the following values:

The generic flags of the common header of the RESERVE message are set as follows:

56

– The SCOPING (S) flag is not set.

– The PROXY (P) flag is not set.

– The ACK-REQ (A) flag is not set.

– The BREAK (B) flag is not set.

The message specific flags of the common header of the RESERVE message are set as
follows:

– The TEAR (T) flag is not set.

– The REPLACE (R) flag is not set.

In the RESERVE message the following QoS objects are set accordingly:

– A new <RII> object is generated and included in the message.

– A newly generated <RSN> object is included in the message.

– The value of the <REFRESH PERIOD> object is calculated and set by the QNE
Ingress.

– The message includes a <PACKET CLASSIFIER> object which is associated with
the path-coupled MRM. Currently this is the only MRM supported by GIST and
thus the <PACKET CLASSIFIER> object does not have to be set to this MRM
explicitly. Of all the flags of the <PACKET CLASSIFIER> object only the T-
flag needs to be set. This flag indicates that the DiffServ Code Point (DSCP) field
included in the packet’s IP header should be used for packet classification.
Note that the DSCP value in the MRI can be derived from the <PHB class> object
which can be set by the QNE Ingress by passing this value to GIST, using the GIST
API.

The common QSpec header fields in the QSpec object carried by the RESERVE message
are set according to the RMD-QSpec definition (see section 4.2.2). The RMD-QSpec of the
RESERVE message contains the following QSpec object:

57

– a <QoS Desired> QSpec object containing the <Bandwidth> parameter, a <PHB
Class> parameter and an <Admission Priority> parameter.

∗ The value for the <Bandwidth> parameter is set to the initial size of the ag-
gregate reservation. Only the peak rate field [p] of this parameter should be
set.

∗ The value for the <PHB Class> parameter is set to the EF traffic class. This
is achieved by setting the DSCP field of this parameter to 0x2E.

∗ The value for the <Admission Priority> parameter is set to 1 which is equiv-
alent to a reservation without <Admission Priority> parameter.

– the <QoS Desired> QSpec object also carries the RMD traffic handling directives
with a <PHR container> and a <PDR container> parameter.

∗ The container id for the <PHR container> parameter is set to
‘PHR Resource Request’. The value of the <Admitted Hops> field is set to
1. All other flags of the <PHR container> parameter are unset.

∗ Note that the <PDR Container> parameter is not included in this message.
In a single RMD domain the <PDR Container> parameter in the RESERVE
message may be omitted.

• Once the QNE Ingress has sent the RESERVE message downstream it is received by one of the
QNE-Interior nodes. The QNE-Interior node processes the QSpec and checks whether the resources
can be granted. This is done as follows2:

– Through the <PACKET CLASSIFIER> object the QNE-Interior node is informed
that packet classification should be done based on the DSCP value. The value of the
DSCP can be obtained from the MRI which the NSLP receives from GIST. Once
the value for the DSCP is obtained it must be associated with the value carried by
the <PHB Class> carried in by the RMD-QSpec.
This is required, because there are situations that the <PHB class> parameter is
not carrying a DSCP value, but a “PHB ID code”.

– The QNE-Interior node decodes the PHR container parameter for processing. Here
several flags are checked. First the container ID is checked to see which actions
should be performed by the RMF. In this case it would be to reserve resources be-
cause the QNE-Ingress has set the container ID to ‘PHR Resource Request’. Before
actually performing this action the QNE-Interior node checks whether the M-flag
of the PHR container is set. This flag indicates whether the resource reservation
has failed at some upstream node. In this scenario the flag is not set and thus the
RMF has to process the QSpec in order to perform the resource reservation.

– The value of <Bandwidth> parameter of the RMD-QSpec object is obtained and
used by the QNE-Interior node for admission control.

– If the resource request is granted then they are added to the currently reserved re-
sources (stored in the reservation state). Furthermore, the value of the <Admitted
Hops> parameter in the PHR container has to be increased by one.

In this case the resources are reserved and a new RESERVE message, based on the received RE-
SERVE message, is created. This RESERVE message is then sent further downstream. This
RESERVE message is identical to the received RESERVE message with the only exception that
the <Admitted Hops> parameter has been incremented.

2The steps defined here are executed by the RMF component. Thus this is after the RESERVE message has been
processed by the QoS NSLP processing component according to the general processing rules.

58

• Eventually the RESERVE message is received by the QNE-Egress node. The QNE-Egress processes
the message and checks whether the resources can be reserved locally. This is done in a similar
fashion as QNE-Interior:

– The <PACKET CLASSIFIER> and <PHB Class> are processed in the same way
as done by the QNE-Interior nodes (described above).

– The QNE-Egress processes the <PHR container> parameter in order to find the
proper RMF action (resource reservation in this case). Here, the M-flag of this
parameter is checked in order to verify whether the reservation was successful at all
the QNE-Interior nodes in the path. If this is the case then the QNE-Egress has to
install the QoS NSLP operational and QoS reservation state.

If this is the case then the QNE-Egress generates a RESPONSE message with a successful INFO Spec
object and sends it directly to the QNE Ingress. The INFO Spec object is used to notify the QNE-
Ingress that the reservation was successful. The values for the INFO Spec object are set as follows:

Error Severity Class: Success
Error Code value: Reservation successful

Below the complete details of the RESPONSE message are discussed:

– The <RII> object carried by the intra-domain RESERVE message is copied and
added to the RESPONSE message.

– Included in the RESPONSE message is an INFO Spec object with the values set as
described above.

– In addition to the INFO Spec a RMD-QSpec object is also added to the RESPONSE
message. The RMD-QSpec contains a <QoS Reserved> object with the following
values:

∗ A <PDR container> parameter is included in the QSpec with the value of the
container ID field set to ‘PDR Reservation Report’. The value of the <M>
field of the PDR container is set to be equal to the value of the <M> parameter
of the PHR container that was carried by the RESERVE message.

∗ The <PHR container>, <Bandwidth>, <PHB Class> and <Admission
Priority> parameters included in the <QoS Reserved> object are omitted.

• Upon receiving a RESPONSE message the QNE-Ingress uses the QoS NSLP functionality to match
it to the RESERVE message sent earlier. After that, the RMD-QSpec carried by the RESPONSE
message is identified and processed. The container ID of the <PDR container> parameter in-
cluded in the RMD-QSpec is checked for the required action. With the container ID set to
‘PDR Reservation Report’ the QNE-Ingress needs to check whether the reservation was successful.
This is achieved by checking the <M> flag of the <PDR container> parameter and the INFO Spec
carried by the RESPONSE. If the QNE Ingress has received a RESPONSE message with a success-
ful INFO Spec and a <PDR container> parameter with an <M> flag set to ‘0’ then the reservation
has been completed successfully.

An unsuccessful reservation setup It is also possible that the resources requested by the aggregate
reservation could not be granted by a node in the path. In Figure 4.7 the message sequence diagram for
the unsuccessful setup of the aggregate reservation is shown. The initiation of the reservation request is
the same as described in the previous section.

• The QNE-Ingress creates a RESERVE message with a proper RMD-QSpec and sends this towards
the QNE-Egress. The details of the RESERVE message are described in the previous section.

59

� Figure 4.7: An unsuccessful setup of the aggregate reservation.

• At the QNE-Interior node the RESERVE message is processed and the relevant parameters decoded.
In this case the first QNE-Interior node can not reserve the requested amount of bandwidth. At
this point the QNE-Interior will update the RMD-QSpec as follows:

– The <M> flag of the <PHR container> parameter to ‘1’, indicating that the reser-
vation was unsuccessful.

– In addition to the <M> flag, the <Hop U> field of the <PHR container> param-
eter is set to ‘1’, indicating that the node has not increased the <Admitted Hops>
field.

The updated RMD-QSpec is then forwarded in a RESERVE message towards the QNE-Egress
node.

• At the next QNE-Interior node the <PHR container> parameter is checked to see which RMF-
related action should be executed and to check whether the reservation was successful at the up-
stream nodes. This QNE-Interior node will inspect the <M> flag and notice that the reservation
was unsuccessful at some upstream node. At the same time the <Hop U> field is inspected in
order to check whether the <Admitted Hops> field should be updated. The value of the <Hop U>
field has been set to ‘1’ and thus the <Admitted Hops> field is not to be updated. At this point
no RMF-related action is performed and the message is forwarded towards the QNE-Egress.

• At the QNE-Egress router the RESERVE message is processed as described in the previous section.
The QNE-Egress will notice that the <M> flag in the <PHR container> parameter is set and
has to notify the QNE-Ingress of the reservation failure. This is done by creating a RESPONSE
message with an INFO Spec parameter set to the following error:

Error Severity Class: Transient failure
Error Code value: Reservation failure

The RESPONSE message also includes the following objects:

60

– The parameters of the RMD-QSpec for the RESPONSE message are derived from
the RMS-QSpec that was carried by the RESERVE message. All the parameters for
the <QoS Reserved> object are copied from the <QoS Desired> object.

– A <PDR container> parameter is also included in the RESPONSE message.

∗ The container ID field is set to ‘PDR Reservation Report’.
∗ The value of the <Max Admitted Hops> parameter is derived from the
<Admitted Hops> parameter of the PHR container.

∗ The value of the (PDR) <M> flag is set to ‘1’.

• At the QNE-Ingress the RESPONSE message is received and processed. The <PDR container>
parameter of the RMD-QSpec is processed and the <M> flag inspected. This flag is set, indicating
that the reservation has failed. At this point the QNE-Ingress needs to tear down the reservation
that has been created at this node. In addition, a new tearing RESERVE message is constructed
in order to release the bandwidth that has been reserved at some of the QNE-Interior nodes. This
release procedure is called the ‘RMD partial release procedure’. In this RESERVE message none of
the common header’s generic flags are set. The message specific flags of the common header
are set as follows:

– The TEAR (T) flag is set.

– The REPLACE (R) flag is not set.

The RESERVE message has a RMD-QSpec with the following values:

– The RMD-QSpec for the RESERVE message should derive its parameters from the
QSpec that was carried by the RESPONSE message. The <Bandwidth>, <PHB
class> and <Admission Priority> parameters for the <QoS Desired> object are
copied from the <QoS Reserved> object.

– A <PHR container> parameter included in the RESERVE message are set as fol-
lows:

∗ The container ID field is set to ‘PHR Release Request’.
∗ The value of the <Admitted Hops> parameter is set to ‘0’.
∗ The value of the <M> parameter is set to ‘1’.

– The <PDR container> parameter is copied from the RESPONSE message.

• The RESERVE message is send downstream to the QNE-Interior nodes. The first QNE-Interior
processes the message and passes the RMD-QSpec to the RMF. Here the <PHR container> is
inspected for the proper RMF action. The container ID indicates that the RMF should release
the previously installed reservation state. Before actually releasing these resources the <I> flag
is checked. If the flag is set to ‘0’ then the resources can be released. If the flag is set to ‘1’,
the resources are not released and the message is ignored. In this case the flag is set to ‘0’ and
the resources released. This is achieved by subtracting the value of the <Bandwidth> parameter
from the reserved resources. After the resources have been removed, the <Admitted Hops> is
incremented. After the <Admitted Hops> has been updated it is compared to the <Max Admitted
Hops> from the <PDR container>. If the two values are equal then the partial release procedure
should be terminated. This is achieved by setting the <I> flag to ‘1’. This updated RESERVE
message is sent towards the QNE-Egress.

• At the next QNE-Interior the RESERVE message is processed and the RMD-QSpec extracted. The
RMF inspects the container ID and the PHR container flags. The ‘PHR Release Request’ indicates

61

that the resources should be removed but the <I> flag is set to ‘1’ and thus no resources will
be released. At this point the QNE-Interior has processed the RESERVE message and a newly
constructed RESERVE message (identical to the received message) is sent further downstream.

• The RESERVE message is finally received by the QNE-Egress node which will terminate the release
procedure.

4.3.2 Admission Control

Using the protocol described in the previous section we can set up an aggregate reservation between a
QNE-Ingress and a QNE-Egress node. The QNE-Ingress node can, after having set up such a reservation,
map end-to-end flows on to the aggregate reservation. For every end-to-end reservation request arriving at
the QNE-Ingress a check is performed whether the bandwidth requirements for that flow can be satisfied
locally. This is done by the RMF, which checks whether the router’s outgoing links have sufficient
available bandwidth to grant the flow’s bandwidth requirement. When aggregation is used, the RMF
should check whether the aggregate reservation, for which the end-to-end flow is mapped on, has enough
available resources for the end-to-end session. This is done as follows:

• First the RMF needs to establish on which aggregate session the end-to-end flow should be mapped.
This is done using the per hop behavior (PHB) defined by the DiffServ architecture. Using the
<PHB Class> parameter carried by the QSpec of the end-to-end flow and its destination QNE-
Egress the appropriate aggregate session is chosen. If the initial QSpec does not contain the <PHB
Class> parameter, the selection of the proper PHB is defined by a local policy similar to the
procedures discussed in RFC 2998 [3] and RFC 3175 [2]. For example, in the situation that the
initial QSpec is used by the IntServ Controlled Load QoSM, the appropriate PHB class to be used
by the intra-domain RMD-QSpec would be the Expedited Forwarding (EF) PHB, see RFC 3175
[2]. Again we note that the RMD QoSM does not support the full set of Assured Forwarding (AF)
PHBs but is limited to the use of one PHB class. For the purpose of this assignment we will not
implement a fully functioning mapping function. Instead all end-to-end flows will be mapped to
the Expedited Forwarding (EF) PHB.

• Let flow bw req be the amount of bandwidth a particular end-to-end flow wishes to reserve. The
flow is only admitted to the aggregate reservation if the condition ra + flow bw req ≤ Ca holds,
where ra is the aggregate traffic rate3 and Ca is the aggregate reservation size which is the amount
of bandwidth reserved for the aggregate flow.

• If ra + flow bw req > Ca then the flow is not admitted to the aggregate reservation and the
reservation request for the end-to-end session denied. If required a RESPONSE message is send to
the requesting node.

If the flow is admitted then ra is increased:

ra = ra + flow bw req (4.1)

After the ra parameter is updated, the end-to-end RESERVE message is forwarded downstream towards
the QNR. Note that the QNE-Ingress marks the RESERVE message in such a way that it is not processed
by the interior routers. The details of this marking process is discussed in section 4.2.1. The QNE-Egress
removes the marking in order to recreate the original RESERVE message. This message is then forwarded
towards the QNR. The QNR in turn can be instructed to send a response message back to the requesting
QNI. In this case the RESPONSE message is processed by the QNE-Ingress and the QNE-Egress nodes
through which the flow traverses. The QNE-Interior nodes are again bypassed using the same procedure
defined for the RESERVE message.

3The aggregate traffic rate corresponds with the sum of rates of the end-to-end flows that make up the aggregate flow
(also see section 1.4).

62

Note that in contrast to the reservation protocol discussed in [1], the end-to-end RESERVE message
do not have to be synchronized with an intra-domain RESERVE message. An end-to-end reservation
request has to pass the admission control check defined in Equation (4.1). This check does not require
the QNE-Ingress to reserve bandwidth within the RMD domain. As long as the new value for ra is less
than the upper threshold ∆high no increase of the aggregate is triggered and the end-to-end RESERVE
messages are forwarded immediately after the reservation has been granted.

4.3.3 Increasing the aggregate reservation

After every admission control check the QNE-Ingress checks whether the aggregate reservation needs to
be updated. As stated in section 2.2, a threshold based update scheme is used to trigger the aggregate
reservation to increase or decrease its amount of reserved bandwidth. In this section we will discuss how
the protocol can be used to increase the aggregate reservation size. This is done as follows:

• After an end-to-end flow has been admitted to the aggregate reservation, a check is performed to
see whether the new ra has exceeded an upper threshold. If this is the case, the aggregate needs to
be updated. In other words if ra > ∆high then an increase of the aggregate reservation is triggered.
This is achieved by raising the TRIGGER INCREASE trigger.

• If the new ra value does not exceed the upper threshold then the aggregate reservation is not
updated and the end-to-end flow is simply admitted to the aggregate reservation.

� Figure 4.8: A successful increase of the aggregate reservation.

The increase procedure of the aggregate reservation is shown in Figure 4.8. The blue arrows depict
the signaling messages associated with the increase of the aggregate reservation, while the black arrows
depict the signaling messages associated with the end-to-end flow. In case an increase of the aggregate
reservation is required, the new size of the aggregate reservation needs to be calculated (also see section
2.2):

C ′ a = ra +
OR

2
(4.2)

63

where C ′ a is the new size for the aggregate reservation, ra is the aggregate traffic rate and OR is the
operation region. The calculation of the operation region OR is done as follows:

OR =
T

Tav
OR (4.3)

where T is the target inter-update period and Tav is the average inter update interval based on previous
measurements. The average inter update interval in turn is computed as follows:

Tav = αTav + (1− α)Tcurr (4.4)

where α is used as a smoothing factor for the exponentially weighted moving average and Tcurr is the
size of the current inter update interval.

If we want to calculate the amount of bandwidth needed to increase the aggregate reservation size to
C ′ a we use the following equation:

bw update = C ′ a− Ca (4.5)

The bw update is used to signal the interior nodes of the additional amount of bandwidth to be reserved
for the aggregate reservation. Based on this parameter a new RMD-QSpec is created and sent towards
the QNE-Egress. A RESERVE message including this QSpec is then sent towards the QNE-Egress which
is processed by all the (NSIS aware) nodes in its path. This RESERVE message is formatted as follows:

• The TEAR (T) flag is not set.

• The REPLACE (R) flag is not set.

• A newly generated <RII> object is included.

• A newly generated <RSN> object is included.

• A value of the <REFRESH PERIOD> object is calculated and set by the QNE
Ingress.

• A <PACKET CLASSIFIER> object associated with the path-coupled MRM and
with the <T> flag set is included.

• The RMD-QSpec for the RESERVE message has a <QoS Desired> object with the
following parameters:

– The ‘Peak Data Rate’ [p] field of the <Bandwidth> is set to the value of
bw update.

– The <PHB class> is set to represent the EF PHB.
– The <Admission Priority> parameter is set to ‘1’ to represent the default pri-

ority.
– A <PHR container> parameter included in the RESERVE message are set as

follows:
∗ The container ID field is set to ‘PHR Resource Request’.
∗ The value of the other fields is set to ‘0’.

– A <PDR container> parameter is not included in this message.

This RESERVE message is sent to the QNE-Interior nodes which will check whether the requested band-
width can be reserved locally. Note that there is a small difference here that the QoS NSLP operational
state and the QoS reservation have already been set up. When this RESERVE message is processed by
the QoS NSLP processing component it will be regarded as a refreshing RESERVE. IN this case the QoS
NSLP operational state is simply refreshed. The RMD-QSpec is processed by the RMF which will have
to check whether there is a reservation state present. In this case the reservation state should be updated
by increasing the amount of reserved resources (in the case that the request was granted).

64

If the additional bandwidth can not be reserved the M-Flag in the RMD-QSpec is set. Otherwise the
bandwidth is reserved and the RESERVE message is forwarded. This RESERVE message is identical
to the one received by the QNE-Interior with the exception that the <Admitted Hops> parameter is
incremented.

The QNE-Egress processes the received RESERVE message and checks the relevant flags of the RMD-
QSpec. If necessary a notification of the reservation setup or failure is send to the QNE-Ingress. In the
case of a successful reservation the QNE-Egress sends back a RESPONSE message to the QNE-Ingress
router indicating that the reservation of the additional bandwidth for the aggregate reservation was
successful. The INFO Spec object is used to notify the QNE-Ingress if the reservation was successful or
not. In case of a successful reservation an INFO Spec parameter with the following values is included in
the RESPONSE message:

Error Severity Class: Success
Error Code value: Reservation successful

In the case that the reservation was unsuccessful the INFO Spec parameter is set as follows:

Error Severity Class: Transient failure
Error Code value: Reservation failure

The message sequence diagram for an unsuccessful increase of the aggregate reservation is shown in
Figure 4.9. Also see section 4.3.1 for a more detailed discussion of the successful and unsuccessful RMD
reservation procedures.

� Figure 4.9: An unsuccessful increase of the aggregate reservation.

Once the QNE-Ingress receives the RESPONSE message it checks whether the reservation of the addi-
tional bandwidth for the aggregate reservation was successful. This check is performed by inspecting the
error value of the INFO Spec object in the RESPONSE message. If the reservation was successful then

65

the Ca parameter is increased by the reserved amount bw update. The new value of the aggregate size is
thus computed by Ca = Ca + bw update.

If the request for additional bandwidth was rejected then the bw update parameter is set back to 0. In
addition a RESERVE tear message is created to release the (partially) reserved bandwidth at certain
interior routers.

For end-to-end reservation requests arriving at the QNE-Ingress during the update of the aggregate
reservation, the admission control is performed based on the Ca parameter as stated above. Note that
this admission control check is performed based on the ‘old’ size if the aggregate reservation rather then
the new, yet unconfirmed, aggregate reservation size value, C ′ a. Thus an end-to-end reservation request
is granted only if ra + flow bw req ≤ Ca. In the case that this condition does not hold the reservation
request is rejected. It should be noted in this case that the reservation is granted, the ra parameter could
possible exceed the ∆high again. This would trigger another update of the aggregate reservation which
is not desired. Thus if the increase of the aggregate reservation is triggered we need to perform another
check to see whether the aggregate reservation is already being updated.

If an increase of the aggregate reservation is triggered is only triggered if Tmin is equal to zero. Tmin is
a timer which is set whenever the first request for additional bandwidth is triggered. The timer counts
down to zero and the next request can only be send when the timer has reached zero.

In addition to the update of the Ca and C ′ a parameters, the threshold values ∆high and ∆low are
recomputed. Their new values are calculated as follows:

∆high = Ca − cushion (4.6)
∆low = Ca −OR (4.7)

where cushion is the size of the cushion and OR the size of the operation region. Note that the new
values for the thresholds are computed after the increase of the aggregate reservation increase has been
confirmed and the Ca parameter has been updated. The calculation of the value for the cushion is done
as discussed in section 2.2.1.

cushion = k × xbw (4.8)

where k is the minimum value for k such that the sum
∑k−1
i=0

e−λ∆trl (λ∆trl)
i

i! is greater than or equal to
1− ε and xbw is the bandwidth requirement for one flow (also see Equation (2.32)).

4.3.4 Decreasing the aggregate reservation

A decrease of the aggregate reservation is triggered by an end-to-end flow leaving the aggregate session.
This could be due to an explicit release or due to a failure of the reservation request. In the case of an
explicit release the QNE-Ingress receives a RESERVE message with the tear flag (T-Flag) set to one from
the QNI. In the case of a reservation failure the QNE-Ingress receives a RESPONSE message form the
QNR containing an INFO Spec with an error code indicating that the request was rejected somewhere
along the path. Whenever an end-to-end flow leaves the aggregate session the ra parameter is updated:

ra = ra − flow bw req (4.9)

where flow bw req is the reserved bandwidth for the flow leaving the aggregate session. After the ra
parameter is updated a check is performed to see whether the new value for ra has dropped below the
∆low. So if ra < ∆low then an decrease of the aggregate reservation is triggered. The message sequence
diagram for the decrease of the aggregate reservation is shown in Figure 4.10. The new value of the
aggregate reservation size is computed as follows:

• First the new value for the operation region OR is calculated:

66

� Figure 4.10: An decrease of the aggregate reservation.

OR =
T

Tav
×OR (4.10)

where OR is the size of the operation region calculated using Equation (4.3) and Tav is the average
inter update period calculated using Equation (4.4).

• After the new value of the OR has been calculated the new aggregate size is calculated as follows:

C ′ a = Ca −
OR

2
(4.11)

where Ca is the current aggregate reservation size and C ′ a is the new size for the aggregate
reservation. The amount of bandwidth to be released is calculated as follows:

bw update = Ca − C ′ a (4.12)

Based on the parameter bw update an RMD-QSpec is created. The parameters in the RMD-QSpec are
set as follows:

• The RMD-QSpec for the RESERVE message has a <QoS Desired> object with the
following parameters:

– The ‘Peak Data Rate’ [p] field of the <Bandwidth> is set to the value of
bw update.

– The <PHB class> is set to represent the EF PHB.
– The <Admission Priority> parameter is set to ‘1’ to represent the default pri-

ority.
– A <PHR container> parameter included in the RESERVE message are set as

follows:
∗ The container ID field is set to ‘PHR Release Request’.
∗ The value of the <M> field is set to ‘1’.
∗ The value of the other fields is set to ‘0’.

– A <PDR container> parameter is not included in this message.

67

A RESERVE message with the tear flag (T-flag) not set and the RMD-QSpec included, is sent towards the
QNE-Egress. This way the QNE-Interior nodes know that they have to release the requested bandwidth.
Note that the T-flag of the RESERVE message is not set because the QNE-Interior and QNE-Egress
nodes do not have to tear down the QoS NSLP operational state. The aggregate session is supported to
be kept intact. It is only the QoS reservation state that needs to be updated. Again here the reservation
state should not be deleted but the value of the <Bandwidth> parameter subtracted form the reserved
resources.

In addition to sending the RESERVE the Ca, C ′ a parameters and the thresholds need to be updated.
After a request for the release of bandwidth is sent towards the QNE-Egress the size of the aggregate
reservation is set to the new aggregate reservation size (Ca = C ′ a). The parameter C ′ a is reset by
setting its value to -1. The new threshold values are calculated as follows:

∆high = Ca − cushion (4.13)
∆low = Ca −OR (4.14)

The value of the OR using Equation (4.3) and the value of the cushion is calculated using Equation (4.8).
Notice that the Ca parameter is immediately updated to its new value, unlike in the event of an increase
of the aggregate reservation. This is because the release of bandwidth does not need to be confirmed.

4.3.5 Refreshing the aggregate reservation

In RMD soft-states are used which need to be refresh periodically. This process is similar to the setup
or increase of the aggregate reservation. The message sequence diagram for the refresh of the aggregate
reservation is shown in Figure 4.11.

� Figure 4.11: A refresh of the aggregate reservation.

At the QNE-Ingress a trigger (TRIGGER REFRESH) is released whenever the RMD states need to be
refreshed. Note that the refresh periods must be equal at all QNE nodes in the RMD domain. This
refresh period should also be smaller (by default more than two times smaller) than the refresh period
used the end-to-end QoSM at the edge QNEs. The structure of the RESERVE message is defined as
follows:

68

• The TEAR (T) flag is not set.

• The REPLACE (R) flag is not set.

• A newly generated <RII> object is included.

• A newly generated <RSN> object is included.

• A value of the <REFRESH PERIOD> object is calculated and set by the QNE
Ingress.

• A <PACKET CLASSIFIER> object associated with the path-coupled MRM and
with the <T> flag set is included.

• The RMD-QSpec for the RESERVE message has a <QoS Desired> object with the
following parameters:

– The ‘Peak Data Rate’ [p] field of the <Bandwidth> is set to the the amount of
resources reserved for the aggregate reservation.

– The <PHB class> is set to represent the EF PHB.
– The <Admission Priority> parameter is set to ‘1’ to represent the default pri-

ority.
– A <PHR container> parameter included in the RESERVE message are set as

follows:
∗ The container ID field is set to ‘PHR Refresh Update’.
∗ The value of the other fields is set to ‘0’.

– A <PDR container> parameter is not included in this message.

At the QNE-Interior nodes the intra-domain RESERVE message carrying the RMD-QSpec is received
and processed. The ‘PHR Refresh Update’ indicates that the QNE-Interior node should refresh the
QoS reservation state is has stored. In doing so the QNE-Interior must identify the traffic class state
(PHB) (using the <PHB Class> parameter). For every traffic class a reservation state is stored at the
QNE-Interior nodes.

Note that the QNE-Interior nodes do not store reservation states for the aggregate flows but store the
reservation state for the traffic classes of the flows traversing the nodes. This is different to RSVP where
trunk reservations are stored for the aggregate reservations. In other words, the amount of reservation
states stored at an interior node is equal to the amount of aggregate flows traversing the interior node (for
every traffic class). In RMD one reservation state per traffic class is stored at the QNE-Interior nodes.
Because there can be multiple aggregate flows manipulating the same reservation state a refresh timer is
used to refresh the reservation. It works as follows:

• At the beginning of the refresh period the QNE-Interior node sets the current refreshed counter
to zero. The current refreshed counter represents the amount of bandwidth refreshed within the
current refresh period.

• Upon receiving a refreshing RESERVE message the counter is increased with the amount of band-
width specified in the <Bandwidth> parameter in the RMD-QSpec. The ‘Peak Data Rate [p] ’
value of <Bandwidth> parameter is used for refreshing the reservation state. The value of the
<Bandwidth> parameter is added to the current refreshed counter. After the current refreshed
counter has been updated it is compared to the currently reserved resources Ca. If the current refreshed
counter is larger than Ca then extra bandwidth needs to be reserved. In this case the QNE-Interior
node attempts to reserve the extra bandwidth. If the bandwidth is granted then the Ca counter at
the node is updated to be equal to the current refreshed counter.

If the bandwidth can not be reserved then the refreshing of the reservation state is considered
to have failed. In this case the the <M> flag of the <PHR container> parameter is set to ‘1’

69

indicating that the refresh has failed. In addition the <Admitted Hops> and <Hop U> parameter
is set accordingly. The current refreshed counter is set back to its previous value.

• At the end of the refresh period the QNE-Interior sets its ra parameter to the value of the
current refreshed counter. After the ra parameter has been updated, the current refreshed
is reset to zero and the refresh process starts from the beginning.

If the reservation state has been refreshed successfully refreshed then the QNE-Interior node forwards
the RESERVE message downstream. The refresh procedure is repeated at the neighboring QNE-Interior
node until it eventually is delivered to the QNE-Egress node. At the QNE-Egress the RESERVE message
is processed and the M-flag inspected. If the M-flag is set then the refresh of the aggregate reservation
has failed and the ‘RMD partial release procedure’ should be triggered. This is done by including a
INFO Spec parameter set as follows:

Error Severity Class: Transient failure
Error Code value: Reservation failure

In case of a successful refresh an INFO Spec parameter with the following values is included in the
RESPONSE message:

Error Severity Class: Success
Error Code value: Reservation successful

The complete RESPONSE message is constructed as follows:

• The <RII> object carried by the RESERVE message is copied and added to the
RESPONSE message.

• Included in the RESPONSE message is an INFO Spec object with the values set as
described above.

• The RMD-QSpec for the RESPONSE message has a <QoS Reserved> object with
the following parameters:

– The <Bandwidth>, <PHB class> and <Admission Priority> parameters are
copied from the received RESERVE message.

– A <PDR container> parameter included in the RESERVE message are set as
follows:
∗ The container ID field is set to ‘PDR Refresh Report’.
∗ The value of the other fields is set to ‘0’.

This RESPONSE message is sent to the QNE-Ingress node. Here it is processed and if the INFO Spec
is set to the following value, the partial release procedure is initiated:

Error Severity Class: Transient failure
Error Code value: Reservation failure

If the INFO Spec is set to ‘Reservation successful ’ then the refresh is considered to have been refreshed
successful.

In the next chapter we will discuss how the aggregation based RMD-QoSM model specified here is
implemented in our prototype implementation.

70

Chapter 5

Design and Implementation

In this chapter will discuss the design and implementation of the aggregation based RMD-QoSM which
was specified in the previous chapter. First we will discuss the design of the current prototype implemen-
tation developed by Ruud Klaver [31] and Martijn Swanink [35]. Next we will show how the prototype
can be extended to support aggregation based RMD-QoSM.

5.1 Previous Work

The current prototype was developed by Ruud Klaver [31] and Martijn Swanink [35] in the DACS
laboratory at Twente University. It consists of two separate implementations: one implementing the GIST
functionality, the other implementing the reservation based RMD-QoSM. Ruud Klaver is responsible for
the implementation of the GIST functionality. His implementation runs on a Linux operating system
and was created using the Python (2.5) programming language. Martijn Swanink has worked on the
implementation of the (reservation based) RMD-QoSM and has also implemented some of the NSLP
layer functionality. His implementation was programmed in the C programming language and runs on
the Linux operating system. Although the two implementations have been coded in different languages
they interact with each other flawlessly.

The choice for the Linux operating system is obvious because it is open source and there is a large number
of open source applications available for the operating system. Open source means that the source code of
the application is distributed with the application and can be modified freely. Thus when developing an
application for the Linux operating system one can easily look into the source code of other applications
that have implemented similar functionality. This makes Linux the ideal platform for our prototype
implementation. An additional advantage of using Linux is the fact that it is free. This is particular
advantageous for our test environment in which five independently running Linux operating systems are
needed. The Linux distribution used for our testing is Gentoo Linux 3.4.5 running the Linux kernel
version 2.6.14-gentoo-r3.

For the purpose of this assignment we must implement the aggregation based RMD-QoSM discussed in
Chapter 4. Here we are presented with two options:

1. We can extend the implementation developed by Martijn Swanink. This would imply that our the
extension would have to be programmed in the C programming language which has several dis-
advantages. First and foremost, the C programming language is a procedural language lacking
functionality for object oriented programming. Although an object oriented programming is not a
must, it certainly has its benefits when using Rapid Application Development (RAD). In addition,
C is a low-level programming language and does not support features like automatic garbage col-
lection, exception handling and advanced multithreading. These features are all necessary for the
implementation of the aggregation based RMD-QoSM. Multithreading is needed for the simulation
of the many end-to-end flows that are to be aggregated. Automatic garbage collection significantly
relieves the programmer of having to explicitly allocate and free blocks of memory, which is a prim-
itive and error-prone in C. In our implementation we will set up, maintain and tear down many

71

NSLP operational and reservation states, making automatic garbage collection a nice feature to
have. Exception handling is particularly useful when debugging an application because when an
exception is thrown a complete stack track is included, from which the exact executing method
causing the error can be retrieved. This allows more efficient debugging compared to C’s infamous
core dumps.

On the plus side, C has the advantage that it generates highly optimized code because of its low
level nature. Because we are implementing a QoSM that needs to aggregate many flows this would
be a nice feature to have.

2. We can continue the development of the prototype implementation created by Ruud Klaver. The
main purpose of this implementation was to create a proof-of-concept for performing dynamic QoS
reservations for multimedia application using the NSIS signaling framework. Although the overall
focus of the assignment was on designing and implementing the GIST functionality, some basic
NSLP functionality had to be implemented in order to fully test the GIST implementation. The
implementation was tested using the RMD-QoSM implementation of Martijn Swanink but a basic
QoSM was implemented and used for additional testing. The QoSM used was the IntServ Controlled
Load (ISCL) QoSM. This QoSM allows applications to reserve per-flow resources at the nodes in
the network it traverses.

Because the main focus of this implementation was not to implement a fully featured NSLP layer,
the implemented functionality is very basic. Also, the NSLP functionality was not implemented in
a modular fashion. Thus extending this implementation will require some changes in the design.
The ISCL QoSM implementation can certainly be re-used but the other NSLP functionality will
require some serious refactoring.

Of the two options presented above we have chosen the latter. Our aggregation based RMD-QoSM will
be implemented as an extension on the prototype implementation of Ruud Klaver. The main reason
why this implementation was chosen is because of the programming language used. Python is an object
oriented programming language which offers many advantages which have been described best in [31]:

Python has a fully dynamic type system and uses automatic memory management; (...)
Python is notable amongst current popular high-level languages for having a philosophy that
emphasises the importance of programmer effort over that of computers and for rejecting
more arcane language features, readability having a higher priority than speed or expres-
siveness. (...) Furthermore, Python is an interpreted language, compiling source files to
bytecode on execution. The dynamic type system and memory management make sure that
the programmer can spend his or her time more efficiently, having more time available to
work on the structure of the program. These properties should aid in rapid development
(...).

In essence Python allows us to do RAD in return for sacrificing some performance. For our prototype
implementation this disadvantage does not weight against the benefits of using Python. Another ad-
vantage of using Python over C is the fact that it has better multithreading support. Multithreading
is needed for the simulation of the arrival and departure of many concurrent end-to-end flows. Another
advantage offered by the prototype implementation of Ruud Klaver is the implementation of a simple
end-to-end QoSM. This QoSM can be used as a reference for our QoSM implementation and can be used
for the simulation of the end-to-end flows. As it happens, for the end-to-end flows in our simulation an
end-to-end QoSM is needed and the ISCL QoSM satisfies this requirement.

5.2 Implementation overview

In this section an overview of the prototype implementation is given. First the design of the implementa-
tion provided by Ruud Klaver is presented, followed by a discussion on how it can be extended to support
our aggregation based RMD-QoSM.

72

5.2.1 Current design

In this section the current design of GIST is explained. Afterwards the NSLP functionality implemented
in the prototype will be discussed. In Figure 5.1 the components that make up the current GIST
implementation are shown.

� Figure 5.1: The GIST implementation overview.

The main class here is the gistServer.Server class. This server class contains instances to several other
classes, which work as threads and provide different types of services to the server. The threads of these
service classes monitor their specific domain and notify the GIST server of these incoming events. In
this design each established connection has its own thread, which is used to handle the network traffic
for that connection. A single thread per connection is needed because reading data from a connection
on which nothing is received results in a so-called blocking call, halting program execution at that point.
By using threading and proper exception handling the server thread can remain active and be notified of
errors occurred during the reading and writing of data from or to a connection.

The service classes all have their own domain for which they are responsible. In the current GIST
implementation the following service classes are supported:

gistRaw.RawService: This class is responsible for sending and receiving of messages in GIST-
Query Mode. The GIST-Query Mode is a transmission mode used for the discovery of downstream
peers. The name of this service class is derived from the method by which the messages are sent,
using raw sockets.

gistUDP.UDPService This class is used for sending and receiving messages in GIST-Datagram
Mode, using normal UDP encapsulation. The GIST-Datagram Mode is primarily used to transmit
data unreliably and insecurely between nodes.

gistTCP.TCPService This class handles incoming and outgoing TCP connections. This service
class is primarily used as the GIST-Connection Mode protocol. The GIST-Connection Mode allows
nodes to reliably send data with specific network or transport layer security. Note that every active
TCP connection is managed by its own gistTCP.TCPConnection class, which also has its own
thread and relays incoming data to the GIST server.

73

gistTLS.TLSService This class handles incoming and outgoing TLS over TCP connections. This
class is specifically used for the flows sending messages with the GIST Security Transfer Attribute
set to ‘true’. TLS connections are also managed by their own class, gistTLS.TLSTCPConnection.

gistICMP.ICMPService This class monitors Internet Control Message Protocol (ICMP) traffic
sent to the node. ICMP messages are mostly used to send error messages, indicating for instance
that a requested service is not available or that a host or router could not be reached. In our
prototype implementation ICMP messages are mainly used to deduce the last NSIS capable node
on the path.

In Figure 5.1 a gistAPI.APIService class is also displayed. This class provides the communication between
GIST and the local NSLP applications, which is achieved using the service primitives defined in GIST API
(see Section 3.3.1). In the gistAPI.APIService class an instance of the gistServer.Server and an instance
of the qosServer.QOSServer are maintained. Interaction between the two instances is done using this
service class. In this class the interfaces for the SendMessage, SetStateLifetime and InvalidRoutingState
service primitives are defined. Using these service primitives messages and notifications are send from the
NSLP layer to the GIST. GIST on its turn can communicate with the NSLP layer using the RecvMessage,
MessageStatus and NetworkNotification service primitives of the NSLP layer. In Figure 5.2 an overview
of the relevant classes in their corresponding layers is given.

� Figure 5.2: NSLP implementation overview.

In Figure 5.2 we see how the prototype is built up. A layered approach is used in this design separating the
NTLP, NSLP and Application functionality. The kernel is explicitly shown because here the network and
traffic control functionality is located. The traffic control in the kernel corresponds to the Traffic Control
component shown in Figure 3.2 (see Section 3.2.1) where the flow of data packets is controlled. In the
networking component located in the kernel the Input Packet Processing and Output Packet Processing
components can be found. These components handle incoming and outgoing messages respectively. The
relation between the gistAPI.APIService class and the Networking component is depict by a dotted line
because they are not connect directly to each other. As shown in Figure 5.1 there is a gistServer.Server
and a service class located between the gistAPI.APIService class and the Networking component. These
classes have been omitted here for clarity.

In the NSLP layer the following two classes are shown:

74

qosServer.QOSServer: The qosServer.QOSServer class represents the message handling compo-
nent of the NSLP layer. It is equivalent to the QoS NSLP Processing component shown in Figure
3.2. Here messages received from the NTLP layer using the RecvMessage service primitive are pro-
cessed. Note that the MessageStatus and NetworkNotification have also been implemented in this
class but the bulk of the processing is done in the RecvMessage method. There is a small difference
between the implementation and the reference model, shown in Figure 3.2, is the communication
between the NSLP and the local application. In the reference model a local application interacts
directly with the Resource Management Function, while in this implementation all interactions
between the NSLP layer and the local application is handled by the qosServer.QOSServer class.

qosRMF: The qosRMF module represents the Resource Management component. Here the ac-
tual reservation and release of resources is done. In this class the different QoS models can be
implemented. In the current implementation only the IntServ Controlled Load QoSM has been
implemented:

• qosRMF.ISCL: This class represent the IntServ Controlled Load QoSM. This QoSM uses
the IntServ architecture where per-flow QoS guarantees are provided. “Controlled load” here
means that a flow receives the equivalent treatment of a best effort flow in a lightly loaded
network. This QoSM is a simple one having only two QSpec parameters: a token bucket and
an excess treatment parameter (which is optional). The latter parameter specifies what actions
should be taken when a flow exceeds the given parameters, e.g. dropping or reclassifying its
packets.

Aside from the two classes discussed above the following helper classes can be found in the NSLP layer
of our prototype:

qosAPI: Here an interface for communication between the Application layer and NSLP layer
is defined. Communication between an application and the NSLP layer is done using a socket
connection. In this class some parameters have been defined which correspond to the actions that
can be executed. The following actions have been defined:

• Kill: this message instructs the QOSServer to shutdown and discontinue operation.

• List: this message asks the QOSServer to return a list of all the reservations that are currently
in place at this node.

• Add: this message instructs the QOSServer to install a new reservation and initiate signaling
for it.

• Del: this message instructs the QOSServer to remove state for a previously installed session
and start an explicit tear down procedure for it.

qosException: In this class most error handling is done. Every error is represented by a different
class. In each error class the Error Class and Error Code is defined. Additionally an INFO Spec
object is defined in the class which can be used to transfer the error message.

qosIface: This class is used for low level interaction with the kernel. Specifically, it is used to get
information about the network interfaces.

qosMsg: This class defines the structure of an NSLP signaling message. All the QoS objects and
parameters defined in the QSpec template [13] have been implemented here.

qosRSN: This class is a special helper class which is used to generate a reservation sequence
number. This (RSN) object is used to set the state modification actions in the correct order. This
class is implemented according to the RFC 1982: “Serial Number Arithmetic” [10].

qosState: The qosState module contains the QoS NSLP operational state class:

75

• qosState.PersistentState: In the qosServer.QOSServer class QoS NSLP persistent session
state is stored. It is indexed per Session ID (SID) and is represented by instances of the
qosState.PersistentState class. Here information about sequence numbers (RSN), Request
Identification Information (RII) objects, Message Routing Information (MRI), refresh and
expiry timers are stored.

In the current implementation a small console base application has been implemented which can be
used for testing purposes. The application is represented by the qosConsole class and can perform basic
operations like set up and tear down end-to-end reservations. This class is mainly used for testing
purposes.

5.3 Extension on the design

In this section we will discuss the extensions made on the current design in order to support our aggre-
gation based RMD-QoSM. In short, the following changes on the current prototype are required:

• Implementation of the aggregation based RMD-QoSM. In Chapter 4 we have specified how our
aggregate update policy can be incorporated in the RMD-QoSM. This QoSM will be added to the
QoSM implemented in the qosRMF module, as the qosRMF.RMD class.

• Implementation of a Aggregate Management Unit (AMU). Up till now we have talked about the
aggregate update policy as if it was part of the aggregation based RMD-QoSM. In our design
however, we will model it as a separate object, the Aggregate Management Unit (AMU). This class
is responsible for the updating of the aggregate reservation. Here the future aggregate traffic is
predicted and based on this prediction the RMF is instructed to increase or decrease the aggregate
reservation. In the Section 5.3.3 we will discuss this component in more detail. There are several
reasons for modeling the AMU as a separate component:

1. This way a clear overview of the responsibility of the different classes can be shown. From
a design perspective the RMF is responsible for the setup and tear down of resources at a
node. We feel that this does not include updating the reservation according to some update
algorithm. This would be the responsibility of an external component which will instruct the
RMF to setup, tear down or modify the resources reserved at the node. In other words the
RMF’s only role is to reserve resources, release resources and update the amount of resources
reserved at the node, when it is instructed to do so. The RMF thus may not decide when
resources should be reserved or how much resources should be reserved, it simply needs to
execute the actions triggered by other components (mainly the qosServer.QOSServer class).

2. Strictly speaking the mechanism used to determine how the aggregate reservation should be
updated is not part of a QoSM. A QoSM specifies how message are constructed and processed
and can use an aggregate update policy to determine when and how to update the aggregate
reservation. By modeling a separate component which implements an aggregate update policy
we can now easily add support for flow aggregation to other QoSMs.

3. In addition we can design the aggregate management unit in such a way that different update
policies can be used to update the aggregate reservation. Note however we will not implement
aggregate update policies other than the one specified in our proposed solution. In our design
we will take into account that different update policy can be used and supply the means to
allow the easy implementation of other methods.

• Explicitly implement a ReservationState class. In the current implementation no explicit reservation
state class has been implemented. Instead, the amount of bandwidth reserved at a particular node is
stored in the qosState.PersistentState class. This class should only be used to store the parameters
which are valid for a particular signaling session. The reason why the amount of reserved bandwidth
is stored here is because the parameter is too simple to model as a class. While this is certainly

76

possible in the current implementation, for the implementation of our aggregation based QoSM
the amount of reserved bandwidth needs to be maintained separately. The reason why we need
to explicitly model a reservation state class is because the QNE-Interior nodes do not store any
NSLP state but they do store per traffic class reservation state. Also the refresh procedure of the
amount of reserved resources at the QNE-Interior nodes required us to implement a more complex
reservation state object.

• Implement the QoS Server as a daemon. The current QoS NSLP implementation was coded to
work with one simple QoSM, the IntServ Controlled Load (ISCL) QoSM. In other words, it was
not designed to be used with multiple QoSMs. Because of that several changes need to be made
to the qosServer.QOSServer. First of all a clear distinction has to be made between the signaling
functionality and the functionality of the QoSM. After this has been achieved the message processing
and QoSM specifications can be implemented in different classes. In our design a statemachine
is used to handle the NSLP signaling message processing. By implementing the signaling as a
statemachine, the qosServer.QOSServer will now serve as a daemon which is only responsible for
the management of the statemachines. For the design of this statemachine, the statemachine
designed by Fu et al. [37] will be used as a base.

• Implement a console application which can be used for testing. Finally the qosConsole application
will be extended, so that different end-to-end flows can be simulated. In order to achieve this will
will implement the following option in the application:

Sim: When this message is passed to the console application, a trace file will be open containing
the details of the flows in the aggregate traffic. The file consists of lines which each define
the start time, holding time and bandwidth requirement for one end-to-end flow. A flow is
simulated using threads.

The changes defined above have led to a new design of the NSLP layer. An overview of this design is
shown in Figure 5.3.

� Figure 5.3: The QoS NSLP design overview.

77

The old design of the NSLP layer consisted mainly of the qosServer.Server class and the qosRMF.ISCL
class. In this design the following components have been added: the qosAMU module, the qosRMF.RMD
class, the qosState.ReservationState class and the qosSM.Statemachine class. The qosServer.QOSServer
class has also been modified extensively in order to work correctly with the other components. The
qosState.ReservationState class represents the reservation state and the qosSM.Statemachine class repre-
sents the NSLP statemachine, which we will discuss in Section 5.3.1. The qosRMF.RMD class represents
the aggregation based RMD QoSM which has been defined in the previous chapter and the qosAMU
module contains the functionality for our Aggregate Management Unit, which we will discuss in Section
5.3.3.

The central component in Figure 5.3 is the qosServer.QOSServer. This class is responsible for the handling
of incoming signaling messages. These messages can be received from either GIST or applications desiring
QoS. In the previous design of the prototype implementation the qosServer.QOSServer contained all the
logic for the processing of the NSLP signaling messages, according to the ‘General Processing Rules’
defined in [18]. In the current design this logic is moved from the qosServer.QOSServer class to a
separate class. This way the qosServer.QOSServer class will simply act as a daemon that forwards
incoming messages to other components for processing. The actual processing of the incoming messages
is done using a statemachine, implemented in the qosSM.Statemachine class. This statemachine will be
discussed in the next section.

The reason why a statemachine is used to model message processing is because it gives a nice overview
of the processing rules. This makes debugging easier because one can easily trace back the state of
the signaling session and at which transition the error occurred. Also by modeling the processing of
the signaling message as separate component one can easily see where the responsibility of the NSLP
signaling stops and that of the QoSM starts. A clear separation between the roles of the two components
is vital for a robust implementation.

The qosServer.QOSServer class is also connected to the qosRMF module. In this module the QoSM
implementations are located. In this design there are two QoSMs: (i) the ISCL-QoSM used for end-to-end
QoS and (ii) the RMD-QoSM used for QoS within a RMD domain. The qosRMF.RMD class implements
the RMD QoSM discussed in Chapter 4; the reader is also referred to [1] for a complete specification of
the RMD QoSM. The details of the qosRMF.RMD class implementation are discussed in Section 5.3.2.

As stated in the previous section the RMF is only responsible for updating the reservation state.
This is depicted in Figure 5.3 by a relationship between the qosState.ReservationState class and the
qosRMF module. Managing resources in this design means managing the qosState.ReservationState
instances. In a single end-to-end signaling session, one qosState.PersistentState instance and one -
qosState.ReservationState instance are maintained by the qosRMF. In an aggregate signaling scenario
the end-to-end flows will all have a single qosState.PersistentState instance while the aggregate session
has a qosState.PersistentState instance and a qosState.ReservationState instance storing the reserved
bandwidth for the aggregate reservation. The qosState.ReservationState class represents the resources
reserved at a particular node for a particular session. Currently this class only stores reserved bandwidth
information. It also contains a timer used in the reservation refresh procedure at the QNE-Core nodes
(see Section 4.3.5).

The qosRMF.RMD class uses the qosAMU module for the management of the aggregate reservation. It
instructs the qosAMU.AggregateManagementUnit class to admit a flow to the aggregate or to remove a
flow from the aggregate. The admission control for the end-to-end flows is performed at this class. The
qosAMU module also has a relationship with the qosServer.QOSServer, because this is the class that
controls the aggregate signaling session and all triggers for an increase or a decrease of the aggregate
reservation should be handled by it The design details of the qosAMU is discussed in Section 5.3.3.

78

5.3.1 The NSLP statemachine

As stated in the previous section, the NSLP statemachine is responsible for the correct processing of
NSLP signaling messages. A statemachine is used because it gives a clear view of how the signaling
messages are processed. As a basis for our statemachine we will use the statemachine designed by Fu
et.al. [37], in which QoS signaling messages are processed according to the message processing rules
defined in [18]. A complete overview of this statemachine is given in [37], however in this section we will
not discuss the entire statemachine. In our design a subset of this statemachine is used, containing only
the states and transactions relevant for our prototype. This reduced statemachine and its differences
with the statemachine defined in [37] are discussed in this section.

Before going into the details of this statemachine we will discuss how the statemachines are maintained.
For every signaling session a statemachine is created and maintained at a QNE node. The creation and
removal of these statemachines are coordinated by the QoS daemon (qosd) (see Figure 5.4).

� Figure 5.4: The QoS daemon.

The qosd listens for incoming messages from either a local application or from GIST. From a local
application the qosd can receive triggers to setup or tear down a reservation or to query the network for
resource availability. From GIST the qosd can receive one of the following the QoS signaling messages
RESERVE, RESPONSE, QUERY or NOTIFY.

The qosd is implemented by the qosServer.QOSServer class. This class uses the GIST API (implemented
by the gistAPI.APIService class) to read out the messages received from other nodes. More specifically
the RecvMessage service primitive is used to pass on the signaling messages from the GIST layer to the
NSLP layer. The qosAPI is used to read out the messages sent by a local application.

Whenever the qosServer.QOSServer receives a message, either from the local application or from GIST,
it checks whether there is a statemachine present that can be used to process this message. Internally
the qosServer.QOSServer maintains a lookup table for all the statemachines present at the QNE. In our
implementation this lookup table is a Python dictionary named statemachinedict. For every signaling
session a statemachine is created and a reference stored in this lookup table. These references are keyed
by their session id (SID). In other words the SID can be used to lookup the corresponding statemachine
for this session. When the qosServer.QOSServer receives a message it can use the received SID parameter
to lookup the statemachine. If the lookup table statemachinedict has a reference to a statemachine for
the SID then this statemachine is used. If statemachinedict does not have a reference to a statemachine
for the SID then a new statemachine is created and the reference and SID stored in statemachinedict.

Once a statemachine instance has been found or created, a trigger for an event can be raised. Relevant
events are:

TG RESERVE: An external trigger to send a RESERVE message. This trigger is received from
the local application.

RX RESERVE: A RESERVE message received (from GIST).

79

TG QUERY: An external trigger to send a QUERY message. This trigger is received from the
local application.

RX QUERY: A QUERY message received (from GIST).

RX RESPONSE: A RESPONSE message received.

RX NOTIFY: A NOTIFY message received.

TIMEOUT RESPONSE: The Wait-Response timer has expired.

TIMEOUT REFRESH: The Refresh timer has expired.

TIMEOUT STATE LIFETIME: The State lifetime timer has expired.

Of these events there are two (external) events that are triggered by an application, these are the
TG QUERY and TG RESERVE events. The TG QUERY event triggers the statemachine to send a
QUERY message which can be used by a QNE to trigger a receiver initiated reservation request or
to check the availability of resources. The TG RESERVE event triggers the statemachine to send a
RESERVE message which can be used to initiate a reservation.

The TIMEOUT events are internal events that are triggered due to the expiration of a particular timer.
The TIMEOUT RESPONSE event occurs when a RESERVE or QUERY message has been send and
no RESPONSE message has been received within a predetermined interval. The TIMEOUT REFRESH
event is raised when the refresh timer expires. The TIMEOUT STATE LIFETIME event resembles the
expiration of the reservations life time. It this timer expires and no refresh message has been received then
the reservation state and persistent state are removed along with the current instance of the statemachine.
In addition a tearing RESERVE message is sent.

Not all QNE’s maintain all these timers. Table 5.1 shows the timers which are used by the different
QNE’s.

QNI QNE QNR
Refresh Timer Refresh Timer StateLifetime timer
Response Timer Response Timer

StateLifetime timer

� Table 5.1: The timers at the QNI, QNE and QNR

The QNI only maintains the Refresh and Response timers. The Refresh timer is used to refresh the node’s
reservation state. Because the reservation state uses the soft state mechanism, it needs to be refreshed
regularly. Whenever a QNI or QNE receives a trigger that the refresh timer has expired, a refreshing
RESERVE message is sent peer-to-peer towards the QNR. The QNR on its turn send back a RESPONSE
indicating whether the reservation state was refreshed successfully. Once a positive RESPONSE is re-
ceived, the StateLifeTime time is restarted. If a negative RESPONSE is received then the reservation
state is removed and a tearing RESERVE send to the QNR. Note that the QNR does not have a refresh
timer, because it does not have a downstream neighbouring peer to which to send a RESERVE message.

The Response timer allows the QNI to check whether a neighbouring QNE has received a previously sent
message. If the timer expires before the QNI has received a RESPONSE message then the QNI re-sends
the message and restarts the timer. This process is repeated until a maximum retry is reached or when a
RESPONSE message is received. The QNE also has a response timer which is used in the same manner.
The QNR however does not have response timer. This is because it does not have a downstream peer
and thus cannot send RESERVE or QUERY messages.

The StateLifetime timer is used to maintain the reservation state for a maximum period of time. If a
reservation state has been active for more than the maximum lifetime then a trigger is released indicating

80

that the state lifetime has expired. In this case the reservation state is deleted and a tearing RESERVE
sent to the QNR.

The events starting with RX correspond with messages received from GIST. The messages that can
be received are RESERVE, QUERY, NOTIFY or RESPONSE messages. Note that there are other
interactions between GIST and the NSLP layer which are not regarded in this statemachine. For example
GIST can notify the NSLP layer of certain network information or the NSLP layer can instruct GIST
to change its routing. A received message is processed based on the state of the statemachine and
the role of the QNE. After the message has been processed a state transition is made and the running
qosServer.QOSServer instance notified. If the statemachine is in an idle state when returning to the
qosServer.QOSServer instance, it is deleted along with its reference in the statemachinedict lookup
table.

Currently there are three states have been defined for the statemachine:

ST IDLE: which is the idle state of the statemachine. In this state no reservation state have been
installed. This is the initial state for new statemachines but it is also the state that triggers the
qosServer.QOSServer instance to remove the statemachine.

ST WAITRESP: in this state the statemachine is waiting for a response from a previous sent
message. This is typically the case for receiver-initiated reservations or when resources are queried.
In this state no reservation state is installed.

ST INSTALLED: in this state a reservation state has been installed successfully.

In each of these states several events can be handled. An overview of the relevant events for every state
is given in Table 5.2.

State Event Function
ST IDLE TG QUERY idle tg query
ST IDLE RX QUERY idle rx query
ST IDLE TG RESERVE idle tg reserve
ST IDLE RX RESERVE idle rx reserve
ST IDLE RX RESPONSE idle rx response
ST WR TG QUERY wr tg query
ST WR RX QUERY wr rx query
ST WR TG RESERVE wr tg reserve
ST WR RX RESERVE wr rx reserve
ST WR RX RESPONSE wr rx response
ST WR TIMEOUT WAITRESP wr timeout waitresp
ST INST TG QUERY inst tg query
ST INST RX QUERY inst rx query
ST INST RX NOTIFY inst rx notify
ST INST TG RESERVE inst tg reserve
ST INST RX RESERVE inst rx reserve
ST INST RX RESPONSE inst rx response
ST INST TIMEOUT WAITRESP inst timeout waitresp
ST INST TIMEOUT REFRESH inst timeout refresh
ST INST TIMEOUT STATELIFETIME inst timeout statelifetime

� Table 5.2: All possible events for the different states in the statemachine.

For a complete overview and an detailed description of these functions the reader is referred to Fu
et.al. [37]. In our design we will implement a subset of this statemachine. In this reduced statema-
chine only two state are used: the IDLE state and the STATE INSTALLED state. In this statema-
chine the STATE WAIT RESPONSE is not included, because as stated earlier it is not used by our

81

QoSMs. A transition to the STATE WAIT RESPONSE state is made when a QNE wishes to set
up a reservation using the receiver base reservation scenario or when the QNE wishes to send a query
for particular resources. In both cases a QUERY message is send and the statemachine is set in the
STATE WAIT RESPONSE state, indicating that the QNE is waiting for a RESPONSE message.
The ISCL-QOSM and the RMD-QoSM used in our implementation do not support the querying of re-
sources nor do they implement the receiver initiated reservation. Thus, it would useless to implement
this functionality. Also because the described functionality is not supported, we will not implement the
processing of QUERY messages. This type of message is only used in the receiver initiated reservation
scenario or for the querying of available resources.

The IDLE state

When the statemachine is in the IDLE state it can receive a RESERVE or RESPONSE message from
GIST or receive a trigger from a local application (see Figure 5.5). Receiving a RESPONSE message in
the IDLE state is not very useful because no reservation state has been installed and thus the RESPONSE
message does not seem have any meaning. If the Scoping flag (S-flag) is not set then the message need
to forwarded upstream along the whole path. As a result only when the node in in the role of a QNE
then must the message be forwarded further upstream. The statemachine will remain in the IDLE state
after the message has been processed.

� Figure 5.5: Transitions from the IDLE state.

Before we continue describing the transactions of this statemachine, the roles of the nodes in the RMD
domain need to be explained. In the previous chapter we have defined some additional roles for the Ingress,
Egress and interior nodes; the QNE-Ingress, the QNE-Egress and QNE-Core roles respectively. These

82

roles are quite similar to the three roles used in this statemachine, the QNI, QNE and QNR roles. The
QNE-Ingress for example can be in one of these two roles depending on the signaling session associated
to the statemachine. If the QNE-Ingress is processing an end-to-end signaling message then it plays the
part of a QNE, whereas a signaling message received for an RMD signaling session is processed in the role
of QNI. For the QNE-Egress this means that the node fulfills the role of an QNE in when processing an
end-to-end signaling message and the role of QNR is assumed when processing RMD signaling messages.
The QNE-Core always assumes the role of a QNE because it will only get to process the RMD signaling
messages in which it plays the art of a QNE. End-to-end signaling messages are not processed by this
node. The reason why the different roles QNE-Ingress, QNE-Egress and QNE-Core have been used was
to avoid confusion.

In the IDLE state the statemachine may receive a RESERVE message from GIST. In this case the Tear
flag (T-flag) is checked to see whether the RESERVE is a tearing RESERVE or not. If the T-flag is set
then the RESERVE message should simply be forwarded because there is no reservation state that needs
to be removed. Note that the message is only forwarded when the node is in a QNE role and the S-flag
is not set. After the message has been forwarded a transition is made to the IDLE state.

If the T-flag has not been set then the supplied QSpec should be processed by the RMF. Here we have
specified the specified RMF method which is called in our implementation. The QSpec is passed to
the RMF.process reserve method, which will return a ‘SUCESS’ message in case the QSpec has been
processed correctly and the reservation state has been set up. A ‘FAIL’ message is returned when if
the message could not be processed accordingly or when no reservation state has been set up (because
the requested resources where not available). In this case a RESPONSE message is sent upstream ton
indicate the failure and a transition is made to the IDLE state.

If the RESERVE message was processed correctly by the RMF a new updated QSpec is returned which
is forwarded downstream in a newly created RESERVE message. This message is only forwarded down-
stream when the node is a QNE and the S-flag is not set. Notice how in our statemachine the in-
stall qos state has been removed. This is because in our design the reservation state is maintained by
the RMF. After the reservation state has been installed the proper timers are started and the RESERVE
message is processed further. The Q-flag is checked to see whether reduced refreshes should be used.
If this flag is set then a NOTIFY message needs to be send upstream in order to confirm the usage of
reduced refreshes. When using reduced refreshes no QSpec is added to a refreshing RESERVE message.
This greatly reduces the size of the refresh message. Note however that the reduced refreshes can only be
used when the NSLP operational state is installed at a node. If no operational state has been installed
then a QSpec is needed to indicate which resources need to be refreshed.

In the received RESERVE message a RII object might have been included indicating that the QNI wishes
to receive an explicit confirmation that the reservation state has been set up. In this case a RESPONSE
message with a proper INFO-Spec is sent upstream. After the message has been processed completely a
transition is made to the STATE INSTALLED state.

The statemachine can also receive a trigger from a local application to initiate a reservation. Again
here a T-flag is checked to indicate whether a reservation needs to be created or whether it needs to be
torn down. If the T-flag is set then a tearing RESERVE message is sent downstream and a transition
is mate to the IDLE state. If the T-flag is not set then the trigger is only processed if the node is in
the QNI role. This is most likely to always be the case. Again here the RMF is requested to process
the supplied QSpec and depending on its outcome a transition is made to either the IDLE state or
the STATE INSTALLED state. When the RMF returns a ‘FAIL’ message the local application will
be notified of the failure and a transition is made to the IDLE state. If a ‘SUCCESS’ message is
returned by the RMF then a RESERVE message is sent downstream, the relevant timers started and
a transition made to the STATE INSTALLED state. In our design the RMF is the one that will
generate the RESERVE message, using the RMF.generate reserve method. Strictly speaking this is not
entirely correct, because the RMF should only generate a QSpec while the actual RESERVE message is
constructed by the statemachine. The reason why this method is used in our implementation is because
we did not want to change the common interface of the QoSM classes implemented in the qosRMF

83

module.

The STATE INSTALLED state

In the STATE INSTALLED state, reservation state has been set up for a particular signaling session.
In this state several TIMEOUT events have been defined. In the beginning of this section the details of
these TIMEOUT events have been explained and thus we will briefly discuss them here. In Figure 5.6
an overview of these events and their transactions is shown. The TIMEOUT STATE LIFETIME event
resembles the expiration of the reservations life time. When this timer expires, the reservation state is
removed using the RMF.remove reservation method. In addition all timers are stopped and a tearing
RESERVE message is sent downstream (by all nodes other than the QNR). The TIMEOUT RESPONSE
event occurs when no RESPONSE message has been received within a predetermined interval, for a
previously sent RESERVE or QUERY message. The RESERVE or QUERY message will be re-sent if the
maximum number of retries has not yet been reached. Otherwise, the reservation state is removed using
the RMF.remove reservation method, the running timers stopped and a transition made to the IDLE
state. The TIMEOUT REFRESH event is raised when the refresh timer expires. Once the timer expires
a refreshing RESERVE message is sent downstream and the Response and Refresh timers (re)started.
Based on the parameters stored at this statemachine the RESERVE message is sent with or without a
RII or QSpec object.

� Figure 5.6: Transitions from the STATE INSTALLED state.

The other events that have been defined for the STATE INSTALLED state are shown in Figure 5.7.
In this statediagram two events are shown that have not been defined in Fu et.al. [37]:

1. TG INCREASE: An external trigger to increase the reservation. This trigger is received from
the AMU.

2. TG DECREASE: An external trigger to decrease the reservation, also received from the AMU.

These events are needed to add support for aggregation of flows to the statemachine. The original
statemachine did not have any means of updating the reservation state. A reservation could only be
set up, torn down or refreshed. In our statemachine, when a TG INCREASE is received by the
statemachine in the STATE INSTALLED state, it will send a request for extra bandwidth to the

84

� Figure 5.7: Transitions from the STATE INSTALLED state.

RMF only when the node is in the role of a QNI. In other words, only the QNI is allowed to update
the reservation state. First the RMF is queried for extra bandwidth using the RMF.increase reservation
method. This method is similar to the RMF.increase reservation method, with the exception that no
reservation state needs to be set up. The RMF.increase reservation method checks with the AMU whether
the requested bandwidth can be granted and if so a ‘SUCCESS’ message is returned. Note that at this
point the resources will be claimed for the (aggregate) signaling session but they cannot be used yet.
Only after a confirming RESPONSE message is received can this bandwidth be used. It is the task of
the AMU to keep track of the amount of reserved bandwidth. This means that the admission control for
new end-to-end flows, performed at the AMU, should be done using the previous reservation size until a
confirming RESPONSE has been received.

If a ‘SUCCESS’ message has been received from the RMF.increase reservation method, the statemachine
will instruct the RMF to generate a RESERVE message, using the RMF.generate increase method.
The newly created RESERVE message is sent downstream and the Response timer is started. At the
downstream nodes the RESERVE message is received and processed according to the RX RESERVE
transition (shown in Figure 5.7). Here the RMF.process reserve method is called which will attempt
to reserve the requested bandwidth. If the request is granted, a ‘SUCCESS’ message is returned. The
RMF.process reserve method may also construct a new QSpec, denoted by newQspec in the statediagram,

85

based on the received QSpec. If this is the case then this updated QSpec is sent further downstream until
it reaches the QNR.

Note that the refresh procedure defined in the statemachine designed by Fu et.al. [37] is too simple for
our prototype design. The problem here is that in Fu et.al. the assumption is made that a RESERVE
message received in the STATE INSTALLED state is either a refreshing RESERVE or a tearing
RESERVE. In the first case a RESPONSE or NOTIFY message is sent upstream, while in the latter case
the reservation state is torn down and the statemachine deleted. In both cases the QSpec is not sent
to the RMF for processing. This is particularly troublesome for our design because our QNE-Ingress,
QNE-Egress and QNE-Core nodes use the QSpec for the RMD-specific refresh and reserve procedures.
This is why we have added the RMF.process reserve method to the RX RESERVE transition. Note
that in our implementation the QNE-Core node will also use a statemachine for message processing but
will not set up any operation state.

Eventually the increasing RESERVE message is received by the QNR. The QSpec is sent to the RMF
for processing and based on the outcome a RESPONSE or NOTIFY message is sent back to the QNI. A
RESPONSE message is send if the original QSpec carried an RII object and a NOTIFY message is send
in case the RII was not included in the RESERVE message.

The TG DECREASE indicates that the AMU wishes to decrease the reservation. This functionality is
less complicated than increase because decreasing the reservation occurs instantaneously while increasing
the reservation requires an explicit confirm. When this trigger is raised the statemachine will check
whether it is in the role of a QNE. If this it the case, the RMF.generate decrease method is called which
will generate a RESERVE message containing a QSpec used for the decrease of the reservation state.
Note that no tearing RESERVE is send because this would result in the NSLP operation state being torn
down, which is not what we want. In the RMF.generate decrease method a call is made tot the AMU
which will perform the actual update on the reservation state.

Another trigger which can be received by the statemachine is the TG RESERVE. This trigger, received
from a local application, instructs the node to tear down the previously set up reservation state. Note
that if the T-flag is not set, this trigger is simply ignored. If such a trigger is received then the RMF
is instructed to remove the installed reservation state using the RMF.remove reservation method. The
timers are then stopped and a tearing RESERVE message is sent downstream. This tearing RESERVE
message is created by calling the RMF.genereate tear method.

The RX NOTIFY event corresponds to a NOTIFY message being received from GIST. The INFO Spec
object included in this message is inspected and based on the supplied ErrorClass and ErrorCode pa-
rameters some internal parameters are set. In this design the NOTIFY message will be used to inform
QNEs whether the reduced refresh procedure is supported or whether a RESERVE message was processed
successfully.

To summarize, an overview of the functions that need to be implemented for our reduced statemachine
is given in Table 5.3.

5.3.2 Resource Management Function

In the previous section we have seen how the RMF is used in the NSLP statemachine. Here we will
describe the details of the method used by the statemachine.

For each QoSM used in a node, an instance of the relevant class in the qosRMF module is maintained. The
current implementation is set up in such a way that a QoSM class in the qosRMF module is associated
to a particular network interface. In the qosOptions class one can specify which QoSM to use on which
network interface. For example our QNE-Ingress node has its external interface (relative to the RMD
domain) configured to use the ISCL-QoSM, while the internal interface is configured to use the RMD-
QoSM. The QoSM class implementing a particular QoSM specification must use the common interface
defined by the qosRMF module. This way the qosServer.QOSServer can use the same methods for

86

State Event Function
ST IDLE TG RESERVE idle tg reserve
ST IDLE RX RESERVE idle rx reserve
ST IDLE RX RESPONSE idle rx response
ST INST TG DECREASE inst tg decrease
ST INST TG INCREASE inst tg increase
ST INST RX NOTIFY inst rx notify
ST INST TG RESERVE inst tg reserve
ST INST RX RESERVE inst rx reserve
ST INST RX RESPONSE inst rx response
ST INST TIMEOUT WAITRESP inst timeout waitresp
ST INST TIMEOUT REFRESH inst timeout refresh
ST INST TIMEOUT STATELIFETIME inst timeout statelifetime

� Table 5.3: All possible events for our statemachine.

different QoSM classes. The methods that must be implemented are:

• generate reserve: This method instructs the RMF to construct an initiating reserve message with
a QSpec relevant to the QoSM used. This method is generally called as a result of an incoming
application API call.

• process reserve: This method is called when a RESERVE message is received from GIST. Here the
QSpec is processed according to rules defined in the QoSM specification. Depending on the values of
the QSpec, a reservation can be set up, torn down or refreshed. If the QSpec is processed correctly
an updated QSpec based on the received one is returned. This QSpec will be propagated further
downstream. In case the QSpec was not processed correctly, an exception is thrown, resulting in
the qosServer.QOSServer sending a RESPONSE message upstream.

At a QNR this method behaves slightly different. In this case a RESPONSE message is created
and send back towards the QNI confirming the reservation setup or failure.

• process response: This method is called by the qosServer.QOSServer upon receiving a RE-
SPONSE message from GIST containing a QSpec. After having inspected the QSpec the RMF can
conclude whether the reservation was successful or not. In the case that the reservation has failed, a
tearing RESERVE is sent downstream for the removal of states previously installed at some nodes.

• generate refresh: This method instructs the RMF to construct a refreshing RESERVE message
for a particular session. This method is called by the qosState.PersistentState class due to the
expiration of the refresh timer maintained in this state.

• generate tear: This method instructs the RMF to generate a tearing RESERVE message for a
particular session. This method is called whenever an application wishes to tear down a reservation
or due to error handling.

• remove reservation: This method instructs the RMF to remove the reservation state installed
at this node for a particular session. This method is called when a tearing RESERVE message is
received by the qosServer or an application has instructed the qosServer.QOSServer to remove a
reservation explicitly or whenever the state lifetime timer maintained at the qosState.PersistentState
has expired.

The methods defined above do not cover all the interactions between the statemachine and the RMF.
For example the QUERY and NOTIFY messages can also contain a QSpec object which will need
to be processed by the RMF according to the rules of a particular QoSM. In this case methods like
process query and process notify would have to be implemented. For the scope of this assignment

87

we will not implement these methods, because they are not used by our QoSM. The ISCL-QoSM only
uses the RESERVE message to set up or tear down a reservation, and a RESPONSE message to notify the
initiating node of a successful or unsuccessful reservation setup. The RMD-QoSM also uses RESERVE
and RESPONSE messages for all its actions (see Chapter 4). In the signaling statemachine we see that the
NOTIFY message is used to inform other nodes whether the reduced refresh procedure is supported for
example. These NOTIFY messages however do not carry a QSpec and thus do not need to be processed
by the RMF.

Aside from the methods defined in the common interface the following methods will be implemented in
our RMF.RMD class:

• increase reservation: This method instructs the RMF to increase the amount of reserved band-
width for a particular session. After the QSpec has been processed, a call is made to the AMU
which is responsible for the maintenance of the reservation state. If the extra bandwidth for the
increase can be granted at locally, a new RESERVE message is constructed which will be sent
downstream to request the extra bandwidth at the downstream nodes.

• decrease reservation: This method instructs the RMF to decrease the amount of reserved band-
width for a particular session. This maintenance of the aggregate reservation state is done by the
AMU, so after the QSpec has been processed the AMU is instructed to update the reservation state
accordingly. The method returns a RESERVE message containing a QSpec for the decrease of the
aggregate reservation state. Note that no tearing RESERVE message is sent because the NSLP
operational state needs to be kept intact.

• generate increase: This method instructs the RMF to create a RESERVE message for the in-
crease of the (aggregate). Note that this method is specific for our aggregation based RMD-QoSM.

• generate decrease: This method instructs the RMF to create a RESERVE message for the de-
crease of the (aggregate). Note that this method is specific for our aggregation based RMD-QoSM.

The methods defined above result into a call to the AMU. As stated before, the qosRMF.RMD class is
not allowed to manipulate the (aggregate) reservation state directly. For that the AMU should be used.
In the next section the details of the AMU are discussed.

5.3.3 Aggregate management unit

The Aggregate Management Unit (AMU) is responsible for controlling the aggregate reservation. It needs
to be able to setup an aggregate reservation, increase and decrease the aggregate reservation size. Last
but not least it should also be able to tear down the aggregate reservation. Aside from controlling the
aggregate reservation is can also be used for admission control for end-to-end flows joining the aggregate
reservation.

As shown in Figure 5.3, the AMU is located in the NSLP layer which is slightly different from the
approach taken in the ‘NSLP for Quality-of-Service Signaling ’ draft [18]. Here an ‘aggregate management
application’ is positioned in the application layer. The reason why the AMU in our design is located in
the NSLP layer because of its close relationship with the aggregation based RMD-QoSM. If the AMU is
modeled as an application is would required the implementation of additional communication means. A
socket connection would have to be set up between the RMF and the AMU and the messages would have
to be encoded and decoded at both ends. Also the RMF would have to implement methods that can verify
the presence of the AMU. In case no AMU application would be present, proper error handling would
have to be implemented. All these issues makes implementing the AMU as an application unnecessarily
complex.

The AMU is mainly used by the QNE-Ingress. It is here that end-to-end flows are aggregated and the
increase or decrease of the aggregate reservation initiated. Before the end-to-end flows can be aggregate

88

an aggregate reservation needs to be present. The AMU is responsible for the setup of this reserva-
tion. In our implementation we have chosen to set up the aggregate reservation immediately after the
qosServer.QOSServer has been started. As stated in Section 4.3.1 the initiation of this reservation can
be configured in several other ways, of which the automatic set up has been chosen. The setup of the
aggregate reservation is done by raising the TG RESERVE at the qosServer.QOSServer instance. The
server will then create a statemachine and raise the TG RESERVE instructing the statemachine to
trigger the set up of the aggregate reservation.

Once this reservation has been set up it will be increased or decreased by our AMU using an specified
aggregate update policy. In our implementation only one aggregate update policy has been implemented,
the one specified in our proposed solution (see Section 2.2). The aggregate update policy is implemented
in the qosAMU.UpdatePolicy class.

In our qosAMU.AggregateManagementUnit class the following methods have been implemented:

create aggr: This method instructs the AMU to setup an aggregate reservation state. The setup
of the aggregate reservation is done according to the procedure defined in Section 4.3.1.

remove aggr: This method instructs the AMU to remove an aggregate reservation state.

incr aggr: This method is used to notify the AMU of a successful increase of the aggregate
reservation. In this case the aggregate reservation state is updated by increasing the reserved
bandwidth for the aggregate reservation with the specified amount of bandwidth. This is done
according to the procedure defined in Section 4.3.3.

decr aggr: This method is used to notify the AMU of a successful decrease of the aggregate reser-
vation. The aggregate reservation state is updated and the reserved bandwidth for the aggregate is
decrease with the specified amount of bandwidth. This is done according to the procedure defined
in Section 4.3.4.

add bw: This method is used to notify the AMU of an increase in the aggregate traffic demand
(ra). In other words an end-to-end flow wishes to join the aggregate. This method will check
whether the aggregate reservation has enough bandwidth to grant the request of the end-to-end
flow. The end-to-end flow can only be added if ra+xbw ≤ Ca, where xbw is the bandwidth requested
by the end-to-end flow and Ca the bandwidth that has been reserved for the aggregate. If this is
the case then this method returns a positive acknowledgment. If the request could not be granted
a negative acknowledgment is returned.

rem bw: This method is used to notify the AMU of a decrease in the aggregate traffic demand
(ra). In other words an end-to-end flow has left the aggregate.

In the qosAMU.AggregateManagementUnit class the aggregate traffic rate (ra) is maintained. The RMF
uses the add bw and rem bw methods to notify the qosAMU.AggregateManagementUnit class of the
changes in the aggregate traffic demand. An end-to-end flow arriving at the QNE-Ingress it will have to
pass the admission control check before being admitted to the aggregate. This is done in the add bw
method. If the flow has been admitted then ra is updated as follows: ra = ra + xbw where xbw is
the bandwidth request of the end-to-end flow. The remove the rem bw method is used to remove the
bandwidth of end-to-end flow from the aggregate traffic demand. Here the parameter ra is updated
as follows: ra = ra − xbw. Once ra has been updated, the qosAMU.AggregateManagementUnit checks
whether the new value for ra still lays within the thresholds. If the new value for ra crosses the threshold
boundaries, an increase or decrease of the aggregate reservation is triggered.

The updating of the aggregate reservation size is done using the threshold based update policy dis-
cussed in Section 2.2. The aggregate reservation size is updated whenever the aggregate traffic crosses
the upper or lower threshold. Internally the qosAMU.AggregateManagementUnit class has two thresh-
olds which are updated according to the update policy specified in 2.2.1. This update policy is imple-
mented in the qosAMU.UpdatePolicy. Periodically the qosAMU.AggregateManagementUnit can ask the

89

AMU.UpdatePolicy class for a new set of thresholds using the calc thresholds method implemented b
the update policy. Here the thresholds are computed according to Equations (2.20) and (2.19) for the
upper and lower threshold respectively. If a AMU needs to increase the aggregate reservation, it queries
the AMU.UpdatePolicy class for the new aggregate reservation size (Ca) using the calc ca method. This
method will compute the new value for Ca according to Equation (2.18). After the new aggregate reser-
vation size has been computed, the TG INCREASE trigger is raised to notify the QNE-Ingress node
of the increase and the amount of bandwidth that needs to be reserved. This trigger is send to the
qosServer.QOSServer which will handle the further processing of the trigger.

90

Chapter 6

Experimental Evaluation

In the previous chapter we have discussed how the prototype can be extended in order to support
aggregation based RMD. Our prototype implementation has to be tested for bugs and compliance to the
RMD QoSM specification discussed in Chapter 4. The experiments that serve the purpose of testing
the implementation for bugs and compliance are categorized as Functional Experiments. Aside from the
functional experiments, Performance Experiments have been conducted in order to measure how well our
aggregate update policy works. In this chapter the Functional - and Performance Experiments, including
their results are discussed.

6.1 Test environment

For the experiments on our implementation we have set up a test environment to mimic a real-life scenario
on a small scale. In our test environment we have set up a network with five routers, each having the role
of either QNI, QNE-Ingress, QNE-Interior, QNE-Egress or QNR. Due to the limited amount of resources
our test environment has been recreated using several virtual machines. Virtual machines allows us to
run multiple instances of the Linux operating system on the same machine. The topology of the network
used for testing is shown in Figure 6.1.

� Figure 6.1: The test environment.

Here we have five virtual machines connected to each other, each representing a different role for the QNE.
The virtual machines are User-Mode Linux (UML) clients running on our host Linux server. The host
server runs Gentoo Linux version 3.4.5 on a Intel Pentium 800 MHz with 384 Mb of memory. The Linux
virtual machines are configured to run the same Linux kernel as the host server (version 2.6.14-gentoo-r3)
with 64 Mb of (virtual) memory. The UMLs run as separate processes in our host system. Every virtual

91

machine has one or more virtual network interfaces which connects it to either the host system (via the
eth0 network interface) or a neighboring virtual machine. The nodes in the RMD domain, Edge1, Core
and Edge2 have three network interfaces. One connects the node to the Host Linux server and the others
connect the node to its neighbors. The QNE-Ingress is located at router Edge1. It is connected to the
QNI, which is located at the Client1 router, and with the QNE-Interior, which is located at the Core
router. The QNE-Egress is located at the Edge2 router which is connected to the QNE-Interior and the
QNR located at the Client2 router.

For our functional experiments we will instruct the QNE-Ingress router to setup, increase, decrease and
refresh an aggregate reservation within the RMD domain. Here we will test whether the aggregate
reservations are set up and maintained according to the specification defined in Chapter 4. For the
performance experiments we will analyze how the aggregate reservation is updated for end-to-end flows
joining and leaving the aggregate. This is achieved by instructing the QNI to set up and tear down
end-to-end flows between the QNI and QNR according to some predefined traffic model. The setup of
these experiments is discussed in more detail in the next sections.

6.2 Functional experiments

To test whether our implementation complies with the RMD-QoSM specification discussed in Chapter 4
we will conduct the following functional experiments:

1. The successful setup of an aggregate reservation.

2. The unsuccessful setup of an aggregate reservation.

3. The successful increase of an aggregate reservation.

4. The unsuccessful increase of an aggregate reservation.

5. The successful decrease of an aggregate reservation.

6. The successful refresh of an aggregate reservation.

In addition to the scenarios listed above some additional testing is done for some specific cases which
are relevant for our performance experiments. These additional tests are needed so that the performance
experiments can be performed reliably.

To observe the behavior of our prototype implementation, we rely on the information stored in log files.
At every UML a log file is maintained which stores information regarding the signaling messages sent
or received, the reservation state which has been created or torn down, and the (NSLP and GIST)
statemachine interactions. Whenever the GIST server is started the log file is cleared and information
is stored for as long as the server is active. For example, if an application wishes to set up a signaling
session, information regarding the IP address and port numbers of the sender and receiver, along with the
NSLP operational state information (such as the RSN, RII and SID) and reservation state, is recorded in
the log file. If a GIST statemachine is created or an existing statemachine manipulated, this information
is stored to the log file. Also whenever a signaling message is sent or received, the complete message is
written to the log file.

6.2.1 Successful setup of an aggregate reservation

Our first functional experiment checks whether the aggregate reservation has been set up correctly (see
Section 4.3.1 for the details). First we instruct our QNE-Ingress to initiate the setup of the aggregate
reservation using the qosConsole application. This is basically the manual setup of the aggregate reser-
vation. At every node logging is performed in which state transitions, sent and received messages are

92

stored in a file. From the log file at the QNE-Ingress we see how an intra-domain RESERVE message is
sent towards the QNE-Egress. After some time a RESPONSE message is received by the QNE-Ingress
indicating that the reservation was set up successfully.

Aside from the QoS signaling messages the state transitions of the GIST state machine are shown. From
the GIST interaction we can see that the RESERVE message sent by the QNE-Ingress is done in GIST-
Query mode. Here a GIST-Query message is sent towards the QNE-Egress with the RESERVE message
as its payload. After the GIST-Query has been sent a Query State Machine, in state Awaiting Response,
is created at the QNE-Ingress. After some time the GIST-Response message is received and the state
machine is set to the state Established. The GIST then sends a GIST-Confirm message in order to confirm
the setup of the GIST state.

The log file of the QNE-Core node (at the Core UML) shows the signaling messages that have been
received by the QNE-Core node. Here we see how a GIST-Query message, with an intra-domain RE-
SERVE message as payload, is received. The RESERVE message is passed on to the NSLP layer where
it is processed. Here the RMD reservation state is setup and an updated RESERVE message forwarded
in a GIST-Query message. The next GIST message received by the QNE-Core node is a GIST-Reponse
message which is simply forwarded to the QNE-Ingress. This is because the QNE-Core node does not
store any GIST state. This message is followed by the GIST-Confirm message send by the QNE-Ingress.
Finally the intra-domain RESPONSE message is received and processed by the QNE-Core and forwarded
to the QNE-Ingress.

At the QNE-Egress the intra-domain RESERVE message is received over a GIST-Query message. The
GIST-Query triggers the creation of a Responder State Machine which is set to state Awaiting Confirm.
The RESERVE message is passed to the upper NSLP layer and processed by the QNE-Egress. Because
the reservation was setup successfully a RESPONSE with an INFO Spec object set to Error Code:
Reservation Successful and E-Class: Success is send to the QNE-Ingress. The RESPONSE message also
includes a PDR object set to code a PDR Reservation Report. Finally the QNE-Egress receives the
GIST-Confirm message sent by the QNE-Ingress to complete the GIST state setup.

In the log files at the QNE-Ingress, QNE-Core and QNE-Egress, information regarding the reservation
state is stored. Here we can see how an aggregate reservation has been set up. The correct messages
are send in the order described in Section 4.3.1 and processed accordingly. From these log files we can
also conclude that the transfer of these signaling message is done according to the procedure described
in Section 4.2.1 (Transport of signaling messages).

6.2.2 Unsuccessful setup of an aggregate reservation

In order to test the unsuccessful setup of an aggregate reservation the QNE-Core is modified such that
it will deny any reservation request (see Section 4.3.1 for the details). At the QNE-Ingress the setup
of the aggregate reservation is initiated using our qosConsole application. A RESERVE message is sent
from the QNE-Ingress to the QNE-Core. At the QNE-Core the request is denied and from the logs we
see how a RESERVE message with the M-flag in the PACKET CLASSIFIER object set is sent to the
QNE-Egress node.

At the QNE-Egress the failure is recognized and a RESPONSE with the an INFO Spec object set to:
Error Code: Reservation failure and E-Class: Transient Failure is sent back to the QNE-Ingress. This
RESPONSE contains a PDR object set to code a PDR Reservation Report. In the PDR object the Max
Admitted Hops flags is set to the value of the Admitted Hops parameter in the received PHR object.
Because the reservation setup has failed at the first hop this value is zero.

The QNE-Ingress node receives the RESPONSE message and tears down the previously set up reservation
state. Because the Max Admitted Hops parameter in the PDR object is set to zero no reservation states
needed to be released and thus no tearing RESERVE message is send downstream. In order to test
the RMD partial release procedure (see Section 4.3.1) we have configured our QNE-Egress to deny the
request, instead of the QNE-Core. In this case the QNE-Egress sends a RESPONSE message with an

93

INFO Spec set to code the reservation failure and a PDR with the Max Admitted Hops set to 1, because
reservation state has been set up at the QNE-Core node.

At the QNE-Ingress the RESPONSE message is received and processed. The reservation state is torn
down and a new RESERVE message is created in order to release resources that have been reserved at
the QNE-Core. This RESERVE message carries a RMD-QSpec with the PHR parameter set to PHR
Release Request and the M-flag set. In addition to the PHR a PDR parameter is included in the QSpec.

At the QNE-Core node the RESERVE message is received and the reservation state release. An updated
RESERVE message is sent to the QNE-Egress. In the new RESERVE the I-flag is set indicating that the
release procedure has been terminated and that the following nodes should not tear down their reservation
states.

From log files stored at the QNE-Ingress, QNE-Core and QNE-Egress, we can conclude that in our
prototype implementation the RMD partial release procedure has correctly implemented. It can be seen
that the notification of failure to reserve resources is correctly processed by the QNE-Egress node and
the clean up of previously installed reservation state is done correctly at the QNE-Ingress and QNE-Core
nodes. The log file at the QNE Ingress shows that reservation state has been created for the aggregate
and after the RESERVE message is sent, a RESPONSE message is received. This RESPONSE message
contains an INFO Spec with the failure and as a result the reservation state is deleted and a RESERVE
message is sent. In the case when reservation state was set up only at the QNE-Ingress, no RESERVE
message is sent to release bandwidth at the other nodes. This is in accordance with the NSIS specification
[18].

6.2.3 Successful increase of an aggregate reservation

This scenario for increasing the aggregate reservation is quite similar to the Successful setup of an aggregate
reservation scenario discussed above so we will not explain it in detail. From the log files stored at the
QNE-Ingress, QNE-Core and QNE-Egress, we can conclude the following:

• The RESERVE message sent by the QNE-Ingress, used to instruct the node to increase the aggregate
reservation, is sent in GIST-Query mode. Note that when the aggregate reservation has been setup
so has the GIST routing state. This means that the QNE-Ingress and QNE-Egress router can
send each other messages directly using the GIST-Datagram mode. When increasing the aggregate
reservation the RESERVE message must be sent to and processed by the QNE-Core node. Thus
in this case the RESERVE message is sent in GIST-Query mode.

• After the RESERVE message has been processed the reservation state is updated correctly. At the
edge nodes the SID is used to lookup the statemachine for the signaling session which updates the
amount of reserved resources accordingly. At the QNE-Core node this is slightly different because
only per traffic class reservation state is stored. Thus the traffic class for the RESERVE message
has to be extracted in order to find and update the reservation state accordingly. From our logs we
can conclude that this procedure works correctly.

Our experiment shows that the aggregate increase procedure, discussed in Section 4.3.3, has been imple-
mented correctly.

6.2.4 Unsuccessful increase of an aggregate reservation

In order to fully test this scenario we have set a maximum amount of resources which can be reserved
at the QNE-Egress node. When this maximum is reached the QNE-Egress node will reject the request
for extra bandwidth and notify the QNE-Ingress node of the failure in order to set the RMD partial
release procedure in motion. At the QNE-Ingress we have set up an aggregate reservation which will be

94

increased with some extra bandwidth. The maximum amount of resources which can be reserved at the
QNE-Egress is set such that it will reject this extra bandwidth. The RESERVE message for the extra
bandwidth is send by the QNE-Ingress to the QNE-Core, which will increase the aggregate reservation
and forward the message to the QNE-Egress. At the QNE-Egress the request for extra bandwidth is
denied and a RESPONSE with an INFO Spec set to code the reservation failure is sent back to the
QNE-Ingress.

At the QNE-Ingress the aggregate reservation state is not increased due to the reservation failure. Ad-
ditionally the QNE-Ingress inspects the Max Admitted Hops parameter to check whether the reservation
state other nodes needs to be released. In this case the reservation state at the QNE-Core node needs to
be decreased and thus the QNE-Ingress node sets the RMD partial release procedure in motion.

This experiment shows that the unsuccessful aggregate increase procedure, discussed in Section 4.3.3, has
been implemented correctly. The notification of the reservation failure is done correctly and the RMD
partial release procedure is initiated accordingly. In the RMD partial release procedure the release of
the extra bandwidth at the QNE-Ingress and the QNE-Core nodes is done correctly. Note that in the
scenario where end-to-end reservations are released, receiving a tearing RESERVE message would lead to
the tear down of the QoS NSLP operational and reservation states. However in the case of aggregation
the QoS NSLP operation state at the edge nodes should remain intact and the aggregate reservation at
the interior nodes decreased with the extra bandwidth that has been reserved previously. This is done
correctly in our prototype implementation.

6.2.5 Successful decrease of an aggregate reservation

The decrease of the aggregate reservation is quite similar to the RMD partial release procedure and thus
we will not discuss it in great detail. After an aggregate reservation has been set up the QNE-Ingress
router is instructed to decrease the aggregate reservation. First a RESERVE message is constructed at
the QNE-Ingress which is sent towards the QNE-Egress node. The signaling message is sent in GIST-
Query mode because it needs to be processed by the QNE-Core node. The RESERVE message includes
a RMD-QSpec containing a PHR object set to code “PHR Release Request”. In the PHR object the
M-flag is also set to 1. This RESERVE message is processed properly at every node in the RMD domain
and the reservation state is updated accordingly.

Our experiment shows that the aggregate decrease procedure, discussed in Section 4.3.4, has been imple-
mented correctly.

6.2.6 Successful refresh of an aggregate reservation

Again, the refreshing of the aggregate reservation state is similar to the setup and increase of the aggre-
gate reservation. From our test we can conclude that the refreshing of the aggregate reservation works
according to the specification discussed in Section 4.3.5.

In order to test whether the refreshing procedure is implemented correctly we have setup an aggregate
reservation and waited about 10 minutes before checking the reservation state. Logging information show
that indeed (refreshing) RESERVE messages have been sent between the QNE-Ingress, QNE-Core and
QNE-Egress nodes. Also, the size of the aggregate reservation has remained the same at all the nodes in
the RMD domain.

After we have tested whether the reservation state is indeed refreshed we shut down the QNE-Ingress
node. Shutting down the QNE-Ingress node will not cause the aggregate reservation state at the QNE-
Core and QNE-Egress nodes to be refreshed. Indeed after the refresh period has passed (in our tests
set to 30 seconds) the reservation state is torn down at the QNE-Core and QNE-Egress nodes. The
QNE-Egress node will also send a RESPONSE message to the QNE-Ingress notifying it of the tear down
of the aggregate reservation state.

95

Note that due to limited resources we were not able to test whether the reservation state at the QNE-Core
is refreshed/updated correctly when using multiple Ingress-Egress pairs. In the case of multiple Ingress-
Egress pairs the reservation state at the core nodes consists of bandwidth reserved for all the Ingress-Egress
pairs that traverse the core node. Thus when an Ingress-Egress pair refreshes the reservation state at this
core node only part of the reservation state is refreshed. In the RMD QoSM specification [1] a refresh
procedure has been defined which correctly refreshes the reservation state at the core nodes. Here the
refreshed resources are set to zero at the beginning of the refresh period and and incremented with every
refresh message. At the end of the refresh period the reserved resources are set to the amount of refreshed
resources for that refresh period. This process is repeated for every refresh period. Due to our limited
resources at our disposal, this refresh procedure could not be tested. This however has no impact on our
performance tests.

6.2.7 Additional testing

In addition to the functional tests above we have also tested whether our QNE-Ingress nodes rejects
end-to-end flow request when the aggregate reservation does not have sufficient resources to grant the
request. This test is particularly important because in the performance experiments, discussed in the
next section, we assume that this admission control check works. By checking whether the flows are
truly rejected in the case of insufficient bandwidth the correct measurement of our blocking probability
is ensured.

6.3 Performance experiments

The performance experiments focus on how our aggregate update policy performs according to the con-
straints defined in our problem definition. Our aggregate update policy has two parameters that can be
set which will influence the performance of the update policy. These parameters are:

1. the desired pipe size modication period or desired inter-update period T

2. the maximum blocking probability ε.

The desired inter-update period T tells our aggregate update policy how often we want our aggregate
reservation to be updated. Setting this parameter to a high value will instruct the aggregate policy to
reserve more bandwidth so that the aggregate reservation is updated less frequently. However this will
also result in a lower fraction of the reserved bandwidth to be utilized by the flows in the aggregate. If
we set T to a small value then the aggregate reservation is updated more frequently but its utilization
will also be higher.

The maximum blocking probability ε allows our update policy to reject a certain maximum number
of flows when the aggregate reservation needs to be increased. Although this parameter has no major
impact on the performance it is of importance to our update policy. Setting ε to a high value allows
our update policy to be more relaxed in rejecting flows. As a result our update policy will wait longer
before initiating an increase of the aggregate reservation. Because the aggregate update policy is allowed
to reject more flows it will postpone the increasing of the aggregate reservation. If ε is set to a low value
then our aggregate update policy will not take much risk and increase the aggregate at an earlier stage.

The impact of these parameters on the performance of our aggregate update policy is what we want
to examine. In order to measure the performance for different values of T and ε we need to define
(measurable) performance indicators which express how well our aggregate update policy works. The
performance indicators for our aggregate update policy have been defined in Chapter 1 (Section 1.4.2). In
our problem statement we have defined the following constraints: the signaling load S(t), the normalized
bandwidth inefficiency BI ′(t) and the blocking probability Pbl. These constraints will be used to measure

96

the performance of our aggregate policy. Our aggregate update policy should be configured such that
the these constraints are as small as possible.

In this section the setup of the performance experiments is discussed. It is subdivided as follows:

• Goals: here we will discuss the goals of our performance experiments.

• Measurements: here we will discuss what we want to measure in our experiments and how we
these measurements are conducted.

• Assumptions: here the assumption we have made for our parameters and our performance indi-
cators are discussed.

• Scenario: here the test environment for our experiments is discussed.

• Traffic model: here the traffic model used in our experiments is discussed.

• Results: here the results of our performance experiments are discussed.

6.3.1 Goals

As stated in the previous section we want to examine the effects of T and ε have on the performance
of our aggregate update policy. The performance of our aggregate update policy is expressed by the
following constraints:

• the signaling load S(t)

• the (normalized) bandwidth inefficiency BI ′(t).

• the blocking probability Pbl

For different values of T and ε we need to measure S(t), BI ′(t) and Pbl. Recall that we need to set T and
ε such that these constraints are as small as possible. Because these constraints complement each other,
an optimal solution need to be found. This can be achieved using the cost function defined in Section
1.4.1:

c = κ1 × S(t) + κ2 ×BI ′(t) + κ3 × Pbl (6.1)

where κ1, κ2 and κ3 are constants used to normalize the signaling load S(t), the normalized bandwidth
inefficiency BI ′(t) and the blocking probability Pbl. The constants κ1, κ2 and κ3 are weights that are
assigned to the different constrains indicating their importance. As an additional requirement for c we
will define that the sum of the weights κ1, κ2 and κ3 must be 100%.

The main goal of our performance experiments is to find some optimum value for T and ε such that the
cost function c is minimal. Note that we can only calculate the minimal cost of our update policy for a
given set of values for κ1, κ2 and κ3. For the calculation of the cost in our performance experiments we
will set the values of κ1, κ2 and κ3 to be equally important. In other words κ1 = 33.3%, κ2 = 33.3% and
κ3 = 33.3%. The effects of using different values for κ1, κ2 and κ3 will not be examined.

6.3.2 Measurements

If we want to compute the optimum value for c we need to measure the signaling load S(t), the normalized
bandwidth inefficiency BI ′(t) and the blocking probability Pbl. This is done as follows:

97

• The signaling load S(t) is defined as follows:

S(t) =
nu(t)

na(t) + nd(t)
(6.2)

where nu(t) is the number of update messages sent up to a certain time t, na(t) is the number of
reservation requests received up to time t, and nd(t) the number of flows that have left the aggregate
up to time t. Thus, for the signaling load S(t) we have to measure:

(i) nu(t) which is the number of update messages sent up to a certain time t,

(ii) na(t) which is the number of reservation requests received up to time t, and

(iii) nd(t) which is the number of flows that have left the aggregate up to time t.

Note that in this definition of the signaling load S(t) refresh messages are not taken into account.
If we include the refresh messages in our definition of the signaling load then the performance gain
compared to an end-to-end signaling scenario without aggregation would be much greater. This
is because in an end-to-end signaling scenario every reservation needs to be refreshed individually.
When using aggregation only the aggregate reservation needs to be refreshed and not the end-to-
end flows in the aggregate. However in our experiments we are not interested in the number of
(aggregate) refresh messages because they remain the same for different values of T and ε. The
refreshing of the aggregate reservation is an RMD specific procedure over which our aggregate
update policy does not have any influence.

If we want to measure na(t) then we need to count the number of (end-to-end) RESERVE messages
that cause the setup of an end-to-end reservation in time interval [0,t]. For the measurement of
nd(t) we need to measure the number of end-to-end tearing RESERVE messages that cause the tear
down of an end-to-end reservation in time interval [0,t]. The RESERVE messages that are used
to refresh the end-to-end reservation states are thus ignored. The parameter nu(t) is measured by
counting the amount of intra-domain RESERVE messages over time that cause the increase or the
decrease of the aggregate reservation during time interval [0,t].

• The normalized bandwidth inefficiency BI ′(t) can be computed using the following equation:

BI ′(t) =
BI(t)∫ x=t

x=t0
Ca(x)dx

(6.3)

where BI(t) is the bandwidth inefficiency for the aggregate reservation up to time t, defined as
follows:

BI(t) =
∫ x=t

x=t0

Ca(x)− ra(x)dx (6.4)

where Ca(x) is the aggregate reservation size and ra(x) is the aggregate traffic rate. The bandwidth
inefficiency parameter defined above expresses the amount of bandwidth reserved for the aggregate
reservation that was not utilized, in (mega)bits. In order to compute the normalized bandwidth
inefficiency BI ′(t) we have to measure:

(i) Ca(t) which is the aggregate reservation size at time t, and

(ii) ra(t) which is the aggregate traffic rate at time t.

Ca(t) and ra(t) are functions that express the fluctuations of the aggregate reservation size and
the aggregate traffic rate respectively over time. Because these functions a piecewise step functions
their integral can be measured quite easily. For example the aggregate reservation size function
Ca(t) can be measured by storing the different reservation sizes used during the experiments and
the intervals at which the aggregate reservation size was updated. In other words whenever the
aggregate reservation is updated the old size is stored along with the time stamp at which the
reservation was updated. In a similar manner the aggregate traffic rate ra(t) is measured.

98

• The blocking probability Pbl can be expressed using the following equation:

Pbl {ra(t′) > Ca(t)} ≤ ε (6.5)

where t′ denotes the current time plus the reservation latency delay (t′ = t + ∆trl), ra(t′) is
the future aggregate traffic rate at the end of the reservation latency period, Ca(t) is the current
aggregate reservation size and ε is a small error term. In other words the probability that our future
bandwidth over the period [t, t+∆t] exceeds the current aggregate reservation size may be no more
than ε.

In section 2.2.1 we have defined Pbl to be a counting process and thus Equation (6.5) can be
rewritten as follows:

P {N(t′)−N(t) ≥ k} ≤ ε (6.6)

where N(t′) describes the number of flows in the aggregate at time t′, N(t) describes the number
of flows in the aggregate at time t and k is the number of flows that fit in the cushion. Notice that
the blocking probability only applies to the flows arriving at the aggregator during the reservation
latency period. All other flows arrivals are discarded. This makes measuring the blocking probability
slightly complex and inaccurate.

If we want to measure the blocking probability we need to measure the flow arrivals during a
reservation latency period. At the start of the reservation latency, when the QNE-Ingress is triggered
to start the reservation of extra bandwidth, we should start counting the number of flow arrivals.
In addition to the number of requests arriving at the QNE-Ingress, the number of rejected requests
should be counted. At the end of the reservation latency period, thus when the QNE-Ingress
has been notified that its request for extra bandwidth has been granted, the measuring should
be stopped and the results stored. At the end of our simulation the number of end-to-end flows
request that have arrive at the QNE-Ingress during a reservation latency should be counted along
with the number of requests that have been rejected. Our measured blocking probability P̃bl is then
computed as follows:

P̃bl =
ṅr
ṅa

(6.7)

where ṅr is the total number of flow requests that have been rejected during the reservation latency
periods and ṅa is the total number of flows request that have arrived at the QNE-Ingress during
the reservation latency periods.

In order to get an accurate value for P̃bl we need a large data set. For our simulations however we
do not expect to have such a large data set. This is because the reservation latency periods are
relatively small and the number of flows arriving during these periods is not expected to be large.
In a real life scenario the number of flows arriving at the Ingress during the reservation latency
period would be much greater hence making this parameter more meaningful.

• After the signaling load, the bandwidth inefficiency and the blocking probability have been measured
the cost can be calculated:

c = κ1 × S(t) + κ2 ×BI ′(t) + κ3 × Pbl (6.8)

where κ1, κ2 and κ3 are predefined weights. As stated in the previous section we will set the values
for κ1, κ2 and κ3 to 33.3% so that all the parameters are evenly distributed over the cost function.
For our performance experiments we will search for the minimum value of c for a given traffic model.
The traffic model is discussed in more detail in Section 6.3.5. Using this traffic model we will set
the values for T and ε of our aggregate update policy to different values and measure the signaling
load, the normalized bandwidth inefficiency and the blocking probability. With these measured
values we can then computed the minimal cost.

Note that if we want to accurately compute the minimum value for c then we need to measure the
signaling load, bandwidth inefficiency and blocking probability for a large number of scenarios. Due
to a time constraint and the limited amount of resources we cannot perform that many experiments
and thus we need to define a minimal set of experiments that will be conducted. In our minimal
set of experiments we will test how our aggregate update policy performs for:

99

(i) for one particular traffic model (which we will specify in Section 6.3.5),
(ii) a fixed value for ε = 0.005 and T = 24 hours, 12 hours, 6 hours, 3 hours, 2 hours, 1 hour,
30 minutes, 20 minutes, 10 minutes, 5 minutes, 2 minutes and 1 minute and,
(iii) a fixed value for T = 5 minutes and ε = 0.25, 0.1, 0.05, 0.025, 0.01, 0.005 and 0.001.

Compared to the latter experiments we will conduct more experiments for a fixed value of ε because
we expect the T to have a significant impact on the performance whereas ε is expected to have little
impact on the performance of our aggregate update policy. The choice of the values for T is
exponentially because for large values of T we don’t expect the results to differ much. It is the
small values for T that will produce interesting result. For the small values of T is will be interesting
to see whether the desired target inter update is reached in our implementation. Also, it will not
be likely that the target blocking probability ε will be reached, for these values of T .

6.3.3 Assumptions

In Chapter 2 (Section 2.2.2) we have made the following assumptions:

• In our experiments the aggregation of only constant bit rate (CBR) flows is investigated. Thus we
are not considering the fluctuation of the (data) traffic rate of an individual flow. Whenever an
individual flow requests a certain amount of bandwidth and this request is granted then its rate
will not exceed this limit. The data rate for this flow does not change during the flow’s lifetime.

• The arrival process for flows can be described as a Poisson process. Poisson models are typically
used to describe in telephony model to describe the call-arrival process. In these models calls
are assumed to arrival according to a Poisson distribution and their lifetime is assumed to be
exponentially distributed.

• The length of the reservation latency period is very small and during this period no flows leave the
aggregate. This assumption is made in order to simplify the calculation of the cushion. Namely,
if no flows leave the aggregate we simply have to calculate the amount of bandwidth needed to
cope for the arriving during the reservation latency period. Flows leaving the aggregate during this
period are not considered. For small values of the reservation latency this assumption might hold
but for large value of the reservation latency period this certainly is not true. Note that due to this
assumption our calculation of the cushion size is slightly pessimistic.

• The rate parameter λ of the Poisson process does not change during the reservation latency period.
The fluctuations of the aggregate traffic rate on a large time scale are caused by the change in the
intensity of the flow arrivals. This intensity is represented by the rate parameter λ. Increasing
λ causes the (average) number of flows in the aggregate to grow while decreasing λ causes the
(average) number of flows in the aggregate flow to shrink. This process however occurs on a large
time scale. For the calculation of the cushion however a small time scale is considered and thus
we can safely assume that the rate parameter λ remains constant during the reservation latency
period.

In addition to the assumptions defined here we will not take congestion into account. Congestion has
not been considered in our aggregate update policy and thus simulating congestion would have a serious
negative impact on our aggregate update policy. This assumption is not a very restrictive one because
in a real life scenario the links in a backbone network are kept under-utilized using engineering rules.
Nevertheless, the impact of congestion on our aggregate update policy is a good subject for future work.

6.3.4 Scenario

Our test environment is set up to represent a basic signaling scenario in which the a sender and a receiver
reserve multiple flows, according to an end-to-end QoSM, that traverse a RMD domain. In the RMD

100

domain an aggregate reservation has been set up onto which the end-to-end flows are mapped. The
aggregate reservation is adjusted according to the flows joining or leaving the aggregate reservation. The
topology of the test environment is displayed in Figure 6.2.

� Figure 6.2: The topology of our test environment.

The QNI and QNR represent the sender and receiver of the end-to-end flows respectively. The RMD
domain in our test environment consists of three nodes: the QNE-Ingress node, the QNE-Interior node
and the QNE-Egress node. During our experiments end-to-end flows are set up and torn down by the
QNI. At the QNE-Ingress the admission control for the end-to-end flows is performed. The QNE-Ingress is
also the responsible for adjusting the aggregate reservation size according to the traffic demand generated
by the end-to-end flows. For our performance measurements we need to measure the number of end-to-
end flows joining and leaving the aggregate and the number of aggregate update message. All of these
parameters can be measured at the QNE-Ingress and so data collection is done here.

6.3.5 Traffic model

In order to test the performance of our aggregate update policy we need to set up a traffic model which
can be used to simulate real-time traffic behavior. Our implementation is intended to be used for real
time application like voice and video and in order to simulate this behavior we need to create a traffic
model which gives a correct representation of such applications. The basis for our traffic model will be
the model for telephony systems. In such models the arrival of flows are modeled as a poisson process.
This means that the inter arrival times of the flows is exponentially distributed. The holding times for
these flows are also exponentially distributed.

In our traffic model we assume that the call arrival rate fluctuates over time. This fluctuation occurs on
a larger time scale than the flow inter arrivals and we will refer to it as the long term fluctuation. This
long term fluctuation can be simulated by adjusting the call arrival rate according to some long term
behavior. For example the average number of telephone calls during business hours is higher than the
average number of calls outside business hours. This is also true for our traffic model. The long term
fluctuation used in our traffic model is comparable to the one described in Wang et al. [36] (also see
Section 2.1.2). In Figure 6.3 the (normalized) call arriving rate during a period of a day is shown.

In Figure 6.3 we see the long term fluctuation over a period of a day used in Wang et al. [36]. In the
beginning there is little traffic and the call arrival rate remains low. After 6 o’ clock we see a steep
increase of the call arrival rate. The rate drops to a moderate level at around 12 o’ clock for an hour
or so and then increases to a second peak. This peak lasts until 18 o’ clock, after which it drops to a
moderate level and finally at 23 o’ clock it will drop to the level it started which.

For our experiments we will use this long term fluctuation. In our traffic model we assume that flows
arrive according to a heterogeneous Poisson process with parameter λ(t). In such a process the arrival
intensity λ fluctuates over time. The behavior of our λ(t) is defined by the long term fluctuation described

101

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2 4 6 8 10 12 14 16 18 20 22 24

N
or
m
al
iz
ed

 c
al
l a
rr
iv
al
 ra

te

Time in hours

Call arrival distribu6on during a day

Lambda

� Figure 6.3: The call arrival distribution during a day.

above. In equation form λ(t) is defined as follows:

λ(t) =

0.1 0 ≤ t < 6 and 23 ≤ t < 24
0.3t− 1.7 6 ≤ t < 9
1.0 9 ≤ t < 11 and 14 ≤ t < 17
−0.7t+ 8.7 11 ≤ t < 12
0.3 12 ≤ t < 13 and 18 ≤ t < 22
0.7t− 8.8 13 ≤ t < 14
−0.7t+ 12.9 17 ≤ t < 18

(6.9)

where t is the time in hours. We are particularly interested in how our aggregate update policy adapts
to the flow arrivals during the transition periods of λ(t). The period between the two peaks (11 o’ clock
to 13 o’ clock) is especially interesting because our update policy will not have much time to adjust to
the drop in the flow arrivals.

Other parameters in our traffic model that we need to define are:

• The actual call arrival rate λ̇(t). In the previous section we have discussed how the long term
fluctuations can be modeled using a heterogenous Poisson process. However only the normalized
flow arrival rate λ(t) has been discussed. The actual flow arrival rate is some scalar times λ(t).
In Wang et al.[36] the actual peak rate of the call arrival was not given. Instead two scenarios
where used for testing: (1) a scenario with a peak arrival rate of 20 calls per minute and (2) a
peak rate of 200 calls per minute. The average holding time for a call was set to 5 minutes. Thus
this would result in the average number of calls in (1) being 100 during the peak period and in (2)
this would be a 1000 calls. The difference between the two scenarios is the burstiness of the traffic.
In scenario (1) the traffic is more bursty compared to scenario (2). This is because for a Poisson
arrival/departure process, the variance decreases when the average number of calls increases. For
our experiments we will simulate the scenario (1) and define the actual call arrival rate λ̇(t) (in
calls per minute) to be:

λ̇(t) = 20× λ(t) (6.10)

where λ(t) is the long term fluctuations as discussed previously. The equation above states that
during the peak(s) of the long term fluctuation the average number of flow arrivals would be 20
flow arrivals per minute. Note that the value for λ̇(t) has been chosen such that the amount of

102

flows generated using this traffic model can be supported by the links in our network. Along with
the bandwidth requirement for an end-to-end flow, λ̇(t) is chosen such that the load on our network
links is never more than 80% of the link capacity.

• The average holding time for an end-to-end flow. We have stated above that the end-to-end
flows have exponentially distributed holding times. In order to calculate the values for the holding
times used in our simulation we have to specify the average holding time parameter λht which is
used in our exponential distribution. Varying this parameter has a large impact on the fluctuation
of our aggregate traffic demand. Setting λht to a high value will cause flows to stay longer in the
aggregate which will result in an higher aggregate demand. Setting λht to a low value will cause
flows to leave the aggregate much sooner. For our simulations we will set the average holding time
for and end-to-end flow (λht) to 5 minutes. This value is also used for the average holding time for
the flows used in the simulation of Wang et al. [36].

• The bandwidth requirement of an end-to-end flow. In our traffic model we will only use CBR
flows. In addition we will use flows with equal bandwidth requirements. Again setting the band-
width requirement for an end-to-end flow to different values has an impact on the performance of
our aggregate update policy. If flows with large bandwidth requirements are used then the fluctu-
ations of the aggregate traffic demand will be larger. In our traffic model we will not fully explore
the effects of using different bandwidth requirements. Here we will simply use flows with a band-
width requirement of 50 kbps (kilo bits per second). The reason why 50 kbps was chosen is because
the maximum throughput of our network links is 10 Mbps. If we don’t want our network to get
congested we should never set the load to be more than 80% of the link capacity. In our case this
would be 8 Mbps. In the previous paragraph we have set the peak call arrival rate to be 20 calls
per minute. The average flow holding time is set at 5 minutes and thus during the peaks in our
traffic model we would have an average of 100 flows in the system. In other words on average our
aggregate traffic rate would be about 5 Mbps during peak times.

Using the parameters discussed above we have created a script that generates an aggregate traffic rate
for our simulations. The generated aggregate traffic rate used in our experiments is shown in Figure 6.4.
The characteristics for this traffic is stored in a file which is loaded into our client at the beginning of
every experiment in order to start the simulation.

0

1000

2000

3000

4000

5000

6000

7000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ba
nd

w
id
th
 in
 k
bp

s

Time in seconds

Traffic model: lambda = 20 calls/min, holding =me = 5 min, bandwidth = 50 Kbps

� Figure 6.4: The aggregate traffic demand used in our simulations.

103

In Figure 6.4 the aggregate traffic rate (ra) is shown. Here we see how the long term fluctuation follows
the fluctuation of λ(t). The aggregate traffic rate is rather low for the first 6 hours (= 21600 seconds),
followed by two peaks, the first between the 6th and 12th hour (= 43200 seconds) and the second between
13th (= 46800 seconds) and 18th hour (= 68400 seconds). After the peaks the aggregate traffic rate
returns to the level it started out with. The maximum peak rate of the aggregate traffic rate is measured
to be 6350 kbps. On a smaller timescale we see how the Poisson arrivals result in the burstiness of the
aggregate traffic rate. The aggregate traffic rate is not smooth but has minor fluctuations that are caused
by the flows joining or leaving our network. Notice how during peak times these bursts are larger than
during less busy hours. This aggregate traffic rate will be simulated in our experiments and the results
are discussed in the next section.

6.3.6 Results

In the following sections we will discus the results of our performance experiments. First we will discuss
the effects of choosing different values for T for a given ε (= 0.005) followed by a discussion of the impact
of changing ε for a given value for T (= 300 seconds). The results of our performance experiments
are shown in Appendix D. Before discussing the details of our results we will present some preliminary
findings:

• From initial testing it became apparent that the results are sensitive to the chosen bootstrapping
values for our aggregate reservation. This is especially true for large values of T . When T is set to
a rather large value (e.g. 12 hours) then the aggregate update policy will attempt to set the width
of the operating region (OR) such that the size of future update intervals is in the vicinity of T . If
we set the initial values for our aggregate reservation (Ca) too low then the first update will occur
very soon. The update policy will assume that its OR is too small and increase the width of the
new OR drastically. This value can even be larger than the maximum link capacity1. For small
values of T this is not an issue because the correction on the OR will not be as much and because
T is small any miscalculation will be corrected within the next update interval such that the new
update interval size is close to T .

• In our proposed solution we have set our cushion to be constrained a the maximum value. The
maximum value for the cushion is set to be OR

2 . However during our testing we have concluded
that the cushion should be constrained with w a minimum value. If the size cushion is less than
the bandwidth demand of one individual flow, it will not be possible to increase the aggregate
reservation. This is because our high threshold ∆high is set to Ca −∆cushion. An increase of the
aggregate reservation is triggered whenever the aggregate traffic rate ra crosses ∆high. However
the value of ra can never be more than Ca, thus an increase it triggered when ∆high < ra < Ca.
Now if the cushion ∆cushion is smaller than the bandwidth demand of a single flow, the probability
of ra falling in between Ca and ∆cushion gets very small. In order to avoid this problem we have
constrained the value of our cushion ∆cushion to be between OR

2 and the bandwidth requirement
for one flow.

• The performance of our aggregate is not very satisfying for large values of T . When T is set to
some large value our aggregate update policy will attempt to reserve extra bandwidth such that
the average inter update time is close to this value. Because this value is rather high our algorithm
will overshoot its target and attempt to increase the aggregate reservation to a significantly large
value. The request for this extremely large amount of bandwidth is rejected in many cases because
if granted the aggregate reservation will exceed the maximum link capacity. When the request
for extra bandwidth has been rejected the update policy will still attempt to reserve some extra
bandwidth. For the computation of the new OR the same values are used except the value for the
current inter update Tcurr. This value will be slightly larger because the time passed during the
rejection of the previous request is added. Because the values for the parameters in the computation

1In this case the request for extra bandwidth will be rejected.

104

have not changed significantly, the newly computed value for OR will be slightly less than the
previously computed OR. The request for this extra bandwidth is most likely to be rejected
again which brings us back to the beginning of the process. As time passes, the value of Tcurr
keeps increasing resulting in a decreasing OR. Eventually the request for extra bandwidth will be
granted and the reservation size is set to a value just below the maximum link capacity. In the
mean time many end-to-end flows will have to be rejected because the aggregate reservation could
not be increased.

Also because a symmetric OR is used the lower threshold will be set to an extremely low value. In
many cases this will result in a negative lower threshold, which will be set to zero by our update
policy because negative thresholds are not allowed. When the lower threshold is set to zero it will
be impossible to decrease the aggregate reservation.

Varying T for ε = 0.005

For the first set of experiments we have set the ε parameter of our aggregate update policy to a fixed
value (0.005). The second parameter of our aggregate update policy, the target inter update T is set
to the following values: 24 hours, 12 hours, 6 hours, 3 hours, 2 hours, 1 hour, 30 minutes, 20 minutes,
10 minutes, 5 minutes, 2 minutes and 1 minute. For every value of T the generated traffic rate is fed
into our network and the performance parameters (discussed above) measured. Note that for every T
the experiment is run only once, due to time constraints. This implies that we can not draw detailed
conclusion based on the results but only spot trends in the graphs. Based on the measurements of the
signaling load S(t), the bandwidth inefficiency BI(t), the (measured) blocking probability Pbl and the
cost c are calculated. The results can be found in Appendix D.1. Based on these results we have generated
graphs for S(t) (see Figure 6.5), BI(t) (see Figure 6.7), Pbl (see Figure 6.8) and c (see Figure 6.10). For
the cost function two graphs have generated because it seems that the range of the S(t) and Pbl is very
small compared to the range of BI(t). As a result the cost function closely resembles BI(t). In order to
increase the contribution of S(t) and Pbl on the cost we have created a second normalized cost function.
The details are discussed in the relevant paragraph below.

Signaling load. The signaling load for the different values of T is shown in Figure 6.5.

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

1 10 100 1000 10000 100000

si
gn
al
in
g
lo
ad

T (in seconds)

Signaling load: epsilon = 0.005

� Figure 6.5: The measured signaling load.

The first thing to note is the logarithmic scale used in the graph. We have assumed that for large values
of T the results are expected to be quite similar. It is the smaller values for T that should show some

105

interesting results. Because of the chosen values for T we can best display our results in a graph with a
logarithmic x-axis. This logarithmic scale is also used in the other graphs.

From Figure 6.5 we can conclude that the signaling load behaves as expected. For small values of T the
signaling load is high while for large values for T the signaling load is low. When using small values for
T the measured values for the signaling load correspond to the signaling load one would expect when
using an IntServ architecture. Large values for T result in a more static aggregate update policy, having
a low signaling load, which can be found in networks using the DiffServ architecture. As expected we see
a large drop in the signaling load when increasing T from 60 seconds. The decrease in the signaling load
is initially quite large and eventually flattens out for large values for T . Although this is the expected
result some remarks can be made:

• First the maximum value for S(t) in the graph is around 0.04. This is significantly lower then our
stipulated maximum value of S(t) which is 1. In Section 1.4.2 we have assumed that if we update
the aggregate for every arriving or departing flow we would get a signaling load of 1. This is the
maximum value for our signaling load and corresponds to the performance when using an IntServ
architecture. This however is not possible in our prototype because of a waiting timer we have
implemented in our prototype. After every request for extra bandwidth the timer is started and
while the timer is running no increase of the aggregate reservation is allowed. The value of this
timer is set to 30 seconds. This implies that the value for T in our prototype can not be lower than
30 seconds. Thus the maximum amount of increases (over a period of a day) that can be realized
with our prototype is 86400

30 = 2880.

Of our prototype implementation a maximum value of 1 for S(t) is not a realistic value. If we want
to calculate a more realistic maximum value for S(t) then we not only have to know the maximum
amount of increase possible with our prototype but also the maximum amount of decreases. The
number of decreases is however not constrained by our timer but let’s assume that the number of
decreases is more or less equal to the number of increases. In this case we get a maximum signaling
load of 5760

13155+13155 ≈ 0.21892816. This is still relatively small compared to our maximum value of
1.

• Initially there is a large drop in the signaling load when increasing T beyond 60 seconds. Although
this was the expected behavior we cannot help but wonder if such a large decrease is realistic.
In order to verify whether the measured increase is in line with the expected signaling load we
will compute an ‘ideal’ signaling load an compare it to our measured signaling load. Our ‘ideal’
signaling load is calculated based on the assumption that if T is set to a particular value then the
inter update times are indeed T . Thus for example if T is set to 24 hours then in our ideal situation
the number of updates would be 1, whereas is T is set to 5 minutes then the amount of updates
would be 288. In order to calculate the signaling load according to Equation 1.4 in Section 1.4.2 all
we need to know is the amount of flows that have been admitted to the aggregate and the amount
of flows that have departed from the aggregate. If we assume that all the flows in our aggregate
traffic rate are admitted to the aggregate and at the end of our simulation have departed from our
aggregate reservation then we can easily calculate the ‘ideal’ signaling load Ṡ(t) as follow:

Ṡ(t) =
ñu

ña + ñd
(6.11)

where ñu is our stipulated ‘ideal’ amount of update, ña the amount of flows that have been accepted
(which is 13155) and ñd the amount of flows that have been rejected (which is 13155). The results
for our ‘ideal’ signaling load is shown in Figure 6.6.

Looking at Figure 6.6 we see that the measured signaling load closely resembles our ideal signaling
load. Both graphs show an exponential decrease when increasing T and the difference between the
two is minimal. The maximum difference between our ideal signaling load function and the measured
signaling load is 0.014636576. The minimum difference and average difference is 4.7095 × 10−18

and 0.003128968 respectively. In other words our aggregate update policy performs close to ideal
in terms of signaling load.

106

0

0,01

0,02

0,03

0,04

0,05

0,06

1 10 100 1000 10000 100000

si
gn
al
in
g
lo
ad

T (in seconds)

Measured signaling load vs Ideal signaling load

Measured Ideal

� Figure 6.6: The measured signaling load vs the ‘ideal’ signaling load.

Bandwidth inefficiency The bandwidth inefficiency for different values of T is shown in Figure 6.7.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 10 100 1000 10000 100000

no
rm

al
iz
ed

 b
an

dw
id
th
 in
effi

ci
en

cy

T (in seconds)

Bandwidth inefficiency (normalized): epsilon = 0.005

� Figure 6.7: The measured (normalized) bandwidth inefficiency.

In Figure 6.7 a low bandwidth inefficiency is shown for small values of T and for large values of T a high
bandwidth inefficiency is shown. Thus in other words, the utilization is high when using a small value
for T and low when using a large value for T . This is logical because for high values of T the aggregate
reservation is not updated very often meaning that a large amount of extra bandwidth is reserved. The
amount of the reserved bandwidth that is actually utilized in this case would be rather low resulting in
a high bandwidth inefficiency. When a small value for T is chosen, the aggregate update policy would
update the aggregate reservation more often. The amount of extra bandwidth being reserved in this case
would be much lower resulting in a higher utilization and thus a lower bandwidth inefficiency.

Furthermore we can see a somewhat linear function for the bandwidth inefficiency. Note that the graph
has a logarithmic scale x-axis and thus the function cannot be considered linear. But for an exponentially
increasing T the (normalized) bandwidth inefficiency BI ′(t) increases somewhat linearly. This is partic-
ularly interesting because the signaling load decreases exponentially for increasing T . In other words the
if we slightly increase T from 60 seconds we get a large decrease in the signaling load while only getting

107

a small increase in our bandwidth inefficiency.

Looking at Figure 6.7 we see how the linear trend weakens for the larger values of T . One of the reasons
why the trend weakens is because the aggregate reservation size Ca is restricted by the maximum link
capacity of our network. In other words Ca can never be more than the maximum link capacity, which is
10 Mbps in our network. As we shall see in the next paragraph, for large values of T our update policy
will attempt to reserve the maximum available bandwidth. When this maximum is reserved the update
policy will not be able to increase the aggregate and thus reaching the maximum bandwidth inefficiency.
The absolute maximum value for BI ′(t) can be computed as follows:

• Let’s assume that at the start of the experiment the aggregate reservation size is set to the maximum
link capacity, which is 10 Mbps. Further more we assume that the aggregate reservation size Ca is
not decrease during the experiment. In this case we can compute the area for Ca = 86400×10000 =
8640000002 Kb.

• In our experiments the measured area of ra in the case that no flows were rejected is 198186000
Kb. Using Equation (1.6) we can now compute the maximum (normalized) bandwidth inefficiency
BI ′(t):

BI ′(t) =

∫ x=t

x=t0
Ca(x)− radx∫ x=t

x=t0
Ca(x)dx

=
864000000− 198186000

864000000
≈ 0, 77061805555 (6.12)

It is clear from Figure 6.7 that the larger values for T , the (normalized) bandwidth inefficiency approach
our calculated maximum. Note that if our aggregate reservation size would not have been restricted by
the maximum link capacity of our network then most likely we would also see a linear trend for BI ′(t)
for the larger values of T .

Blocking probability The blocking probability for different values of T is shown in Figure 6.8.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

1 10 100 1000 10000 100000

bl
oc
ki
n
pr
ob

ab
ili
ty

T (in seconds)

Blocking probability: epsilon = 0.005

� Figure 6.8: The (measured) blocking probability.

Figure 6.8 shows some surprising results. For large values of T we see a large peak in our graph while for
the largest value of T (= 86400 seconds) the measured blocking probability is 0. For small values of T
the blocking probability shows an exponential drop for increasing T . This can be explained as follows:

2For this calculation we will state that 1 MB = 1000 Kb.

108

• Flows are usually rejected when the aggregate reservation needs to be increased. It is during the
reservation latency period that the end-to-end flows can be rejected. When T is small the aggregate
reservation is often updated, increasing the probability of having to reject flows. This is because
there will be more updates and thus more reservation latency period in which flows may have to
be rejected. For large values of T there a less aggregate updates and thus less reservation latency
period in which flow can be rejected.

For T = 21600 and T = 43200 seconds we see an anomaly in our graph. Here the measured blocking
probability is 0.032817924 and 0.084514874 for T = 21600 seconds and T = 43200 seconds respectively.
Strangely enough the measured blocking probability for T = 10800 and T = 86400 seconds is 0. In order
to investigate this phenomenon we have drawn the aggregate traffic and aggregate reservation in one
figure. In Figure 6.9 the aggregate reservation for T = 84600 and T = 43200 is shown.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ba
nd

w
id
th
 in
 k
bp

s

T in seconds

Aggregate update policy: T = 86400 and epsilon = 0.005

aggregate traffic rate aggregate reserva5on size

(a)

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

0  10000  20000  30000  40000  50000  60000  70000  80000  90000  100000 

Ba
nd

w
id
th
 in
 k
bp

s 

T in seconds 

Aggregate update policy: T = 43200 and epsilon = 0.005 

aggregate traffic rate  aggregate reserva5on size 

(b)

� Figure 6.9: Aggregate update for T = 86400 (a) and T = 43200 (b)

From Figure 6.9(a), where T = 86400 seconds, we can conclude that the first increase for the aggregate
reservation is enough to grant all flow arrivals in our aggregate traffic rate. After 5100 seconds in the
experiments the first increase is triggered. The new value for the aggregate reservation is set to 8366 kbps
which is more than 8 times the initial value of the aggregate reservation, which was 1000 kbps. Note that
in order to achieve such a large increase the newly calculated value for new operating region (OR) would
be about 14732 kbps (= 2 × 7366). As a result the lower threshold ∆low, which is calculated as follows
∆low = Ca − OR

2 , will be set to zero because is cannot assume a negative value. If our ∆low it means
that a decrease of our aggregate reservation will never be triggered. This can have a serious impact on
the performance of our aggregate update policy, with respect to the bandwidth inefficiency.

If we look at Figure 6.9(b), in the case of T = 43200 seconds, the first increase is not enough to cope
with all flow arrivals over the entire simulation. The second increase sets the reserved bandwidth for
the aggregate reservation just under the maximum link capacity allowing all the incoming flows to be
admitted. After that the aggregate reservation is not updated anymore. The first increase is triggered
around 5000 seconds in the simulation, meaning that the size of the first update interval is about 5000
seconds. This is significantly lower than the 43200 seconds which is set as the targeted inter update
time. For the computation of the OR for the next interval the update policy will use the current values
of the OR and inter update time. The update policy assumes that the size of the inter update interval
is mainly determined by the size of the OR. Because the size of the previous inter update interval is
smaller compared to the targeted interval, the update policy will compute a larger value for OR in order
to compensate for the next inter update interval. Now because the difference between the measured
inter update interval and the target T is rather large the new value for OR will sky rocket. However
the maximum link capacity for the routers in the test network is 10 Mbps. Thus the request for extra
bandwidth, which would result in a aggregate reservation size of more than 10 Mbps, will fail. After the
request has failed the update policy will keep trying to increase the aggregate reservation. Note that the

109

requests are controlled by a timer. Thus after the increase has failed, the update policy will have to wait
at least 30 seconds before attempting to increase the aggregate reservation again. The calculation of the
new values for OR are still calculated based on the previous and current inter update intervals an thus will
be rather high. However as time passes, the calculated value for OR will keep decreasing. This is because
the current inter update interval keeps increasing with every failed increase of the aggregate reservation.
Eventually an increase will be calculated which sets the new value of the aggregate reservation just below
our maximum link capacity. In this case the bandwidth for the increase is granted and the aggregate
reservation updated. Flows arriving at the our Ingress node during this period, are rejected because the
aggregate reservation has not enough room for them. During the time period of 3500 seconds and 4000
seconds (in Figure 6.9(b)) we can clearly see that many flows have been rejected due to the failure of
increasing the aggregate reservation. This explains the peak in our measured blocking probability graph.

Cost The cost for different values of T is shown in Figures 6.10(a) and 6.10(b).

0

0,05

0,1

0,15

0,2

0,25

0,3

1 10 100 1000 10000 100000

co
st

T (in seconds)

Cost func0on: epsilon = 0.005

(a)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

1 10 100 1000 10000 100000

co
st

T (in seconds)

Cost func0on (normalized): epsilon = 0.005

(b)

� Figure 6.10: The cost function (a) and the normalized cost function (b)

For the cost function two graphs, representing the cost versus T , have been generated. The first graph,
shown in Figure 6.10(a) displays the cost function for the measured values for S(t), BI(t) and Pbl with
the weight set to κ1 = κ2 = κ3 = 33.3%. As stated in the previous paragraphs the range of the different
functions differ significantly from each other resulting in a cost function that closely resembles the function
with the highest range, BI(t) in this case. In order to compensate for these large differences we have
created a normalized cost function displayed in Figure 6.10(b).

If we look at the results for our cost function in Figure 6.10(a) we see that indeed it closely resembles
the graph of the (normalized) bandwidth inefficiency shown in Figure 6.7. The main reason why this
is, is because of the range of the bandwidth inefficiency fluctuates between 0 en 0.72 while the signaling
load and blocking probability fluctuate from 0 to 0.04 and 0 to 0.07 respectively. Because of the large
difference in ranges the bandwidth inefficiency has the upper hand in the computation of the cost. In
order to allow the other parameters to have a larger impact on the outcome of the cost we have attempted
to normalized the results. Also the bandwidth inefficiency function is a rather linear one meaning that
our cost function is also more or less linear, and thus having no optimum value.

The normalized cost function shown in Figure 6.10(b) is computed as follows:

• The values for the signaling load have been normalized according to the maximum value for the
signaling load which can be achieved in our prototype implementation. As stated previously a back-
off timer restricts our aggregate update policy to update the aggregate reservation more often than
30 seconds. In other words, the closest we can get to the maximum signaling load is to update the
aggregate every 30 seconds. In the previous paragraph we have computed the maximum signaling
load to be approximately 0.21892816. Note that this value is only valid for our particular traffic

110

model used for the experiments. If we would generate another traffic model then the maximum
signaling load would be different due to the different number of flow arrivals (and departures). The
measured results for our signaling load will be normalized by dividing them with our computed
maximum.

• The maximum value for the (normalized) bandwidth inefficiency has been computed in one of the
previous paragraphs. This value (0.77061805555) will be used to normalize the measurements of
BI ′(t).

• For the blocking probability the measured results will not be normalized. The reason of this is
because the blocking probability is not constrained by any boundaries. Whereas the signaling load
is constrained by a back-off timer and the (normalized) bandwidth inefficiency is constrained by
the maximum link capacity, the blocking probability knows no boundaries. The measured values
are indeed low and will not have a massive impact on the cost but this was expected.

The normalized cost function shown in Figure 6.10(b) is quite similar to the original cost function shown in
Figure 6.10(a). Only for the small values of T the difference between the two is apparent; the normalized
cost function is slightly curved upward while the original cost function remains more or less linear. The
curve in the normalized cost function is caused by the increased influence of the signaling load which, for
small values for T is rather high compared to the large values for T . Because of this curve the normalized
cost function has an optimum value, for T = 120 sec the normalized cost is minimal. Although this
result is not very convincing it illustrates the purpose of our cost function. The idea of the cost function
was to express the tradeoff between the three parameters as a single parameter and based on it curve
compute an optimal value for T and ε. Sadly enough we feel that our cost function does not achieve
this goal. However we do note that the results of measured S(t), BI ′(t) and Pbl show promising results.
For example, the fact that S(t) and Pbl drop exponentially for increasing T , while the BI ′(t) increases
linearly tells us that an optimum value should be found for some small value of T . Maybe using a more
complex cost function, this optimum value can be computed more accurately.

Varying ε for T = 300 seconds

The results above have been measured for our aggregate update policy with the ε parameter set to a
fixed value. In the next set of experiments we will set the value for T to be fixed at 300 seconds. The
values for ε will be set to the following values: 0.25, 0.1, 0.05, 0.025, 0.01, 0.005 and 0.001. Again, due to
time constraints the experiment is run only once for every ε. This implies that we can not draw detailed
conclusion based on the results but only spot trends in the graphs.

The parameter ε is mainly used for the calculation of the cushion (and the high threshold ∆high). The
size of the cushion determines the offset for the high threshold ∆high from the aggregate reservation
size Ca. This threshold in turn determines when the update policy should trigger an increase for the
aggregate reservation. Setting ε to a high value will result in a the small value for the cushion resulting
in the update policy to increase the aggregate in an earlier stage. For large values of ε the aggregate
update policy is more relaxed and will trigger an increase at a later time. As stated before we don’t think
that changing the ε will have a big effect on the performance of our update policy. The parameter ε has
an impact on when the aggregate is update but when it comes to the computation of the size of the OR
this parameter plays a small role. Here T is most likely to have the upper hand.

Signaling load. The signaling load for different values of ε is shown in Figure 6.11.

For Figure 6.11 we can conclude that the signaling load in not affected by increasing ε. Initially the
signaling load remains the same for increasing ε however for ε = 0.1 we see an increase in the signaling
load. In order to analyze why the signaling load increases for increasing ε we have generated the following
graphs.

Looking at the two figures we can conclude the following :

111

0 

0,0005 

0,001 

0,0015 

0,002 

0,0025 

0,003 

0,0035 

0,004 

0,0045 

0,001  0,01  0,1  1 

si
gn
al
in
g 
lo
ad

 

Epsilon 

Signaling load: T = 300 sec 

� Figure 6.11: The signaling load.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

T (in seconds)

Aggregate traffic: T = 300 seconds, Epsilon = 0.1

aggregate traffic rate aggregate reserva5on size

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

T (in seconds)

Aggregate traffic: T = 300 seconds, Epsilon = 0.01

aggregate traffic rate aggregate reserva5on size

(b)

� Figure 6.12: Aggregate update for ε = 0.1 (a) and ε = 0.01 (b)

• For large value for ε the update policy has the tendency to follow the aggregate traffic demand.
This can be seen in Figure 6.12(b) during the increase and decrease of the second peak. Here the
aggregate reservation size becomes rather bursty and somehow closely follows the aggregate traffic
rate.

We question whether the results shown here are consistent for all increasing values of ε or whether
the computed aggregate reservation is simply updated at the wrong time. In a simple case of bad
luck our update policy would have to increase the aggregate reservation, and shortly after have to
decrease it again due to a large drop in the aggregate traffic demand. If we look more closely at
aggregate traffic demand we see that the at the start of the seconds peak (around 53000 seconds),
the fluctuation in the aggregate traffic demand are rather high. As a result the aggregate reservation
is increase but shortly afterwards increased again. The following increases occur in a short period
of time resulting in the aggregate reservation going through the roof. The aggregate reservation
has been set to about 9000 kbps and after quite some time the aggregate update policy is triggered
to decrease the reservation. During this decrease this new aggregate size is set to a value in a
dip of the aggregate traffic demand (at about 61000 seconds). Immediately after the aggregate
reservation has been decreased it needs to be increased again due to a small peak in the aggregate
traffic demand. It is certainly possible that the sum of these unfortunate updates have resulted in
a (small) increase in the signaling load.

112

• Figure 6.12(b) shows promising results. During most of updates the aggregate reservation remains
stable for a rather large period of time. We do however conclude that the average size of the inter
update times seem to be rather large. Our aggregate update policy is set to target an inter update
time of 300 seconds and looking at Figure 6.12(b) many large update intervals can be seen.

Aside from this anomaly described above the graph for S(t) seems to meet our expectations.

Bandwidth inefficiency. The bandwidth inefficiency for different values of ε is shown in Figure 6.13.

0 

0,05 

0,1 

0,15 

0,2 

0,25 

0,3 

0,35 

0,4 

0,45 

0,5 

0,001  0,01  0,1  1 

no
rm

al
iz
ed

 b
an

dw
id
th
 in
effi

ci
en

cy
 

Epsilon 

Bandwidth inefficiency (normalized): T = 300 sec 

� Figure 6.13: The bandwidth inefficiency.

Looking at the (normalized) bandwidth inefficiency graph we see a rather stable horizontal trend. Again
here a peak is seen for ε = 0.01. If we look at Figure 6.12(b) we can see that this is not that strange. The
update policy seems to have made some crucial mistakes at certain point which have resulted in a rapid
increase in the aggregate reservation. Because the computed values for the OR are also most likely to be
very large the aggregate reservation remains high for quite some time. The reasoning here is that the low
threshold is set very low during a rapid increase and thus a decrease is postponed for quite some time. In
the mean time the excessive bandwidth is not used and thus a large bandwidth inefficiency is measured.
The slight increase in the (normalized) bandwidth inefficiency for ε = 0.025 can also be explained as some
specific bad judgement calls on behalf of the aggregate. In our generated graph (not shown here) a large
increase at the seconds peaks is shown and after the seconds peak the aggregate reservation remains high
for quite some times. A similar pattern as the one in Figure 6.12(b) can be seen.

Blocking probability. The blocking probability for different values of ε is shown in Figure 6.14.

The results for the blocking probability seem so be inconclusive. From Figure 6.14 we can not draw
many conclusions. It seems that the blocking probability shows an increasing trend but due to the
large fluctuations in the graph we cannot conclusively state whether this is true. As for the measured
blocking probability it seems that the targeted probability ε is never reached. In our experiments we
have measured the average number of aggregate updates during one experiment to be 87. During these
updates periods the average number of flow arrival within a reservation latency periods is about 3000
flows. The probability is the fraction of these 3000 flows that have been rejected. If we set our ε to
0.001 for example this would imply that only 3 flows are allowed to be rejected. From Figure 6.14 we can
conclude that this target is never almost reached.

113

0 

0,002 

0,004 

0,006 

0,008 

0,01 

0,012 

0,001  0,01  0,1  1 

bl
oc
ki
ng
 p
ro
ba

bi
lit
y 

Epsilon 

Blocking probability: T = 300 sec 

� Figure 6.14: The (measured) blocking probability.

Cost The cost function for different values of ε is shown in Figure 6.15.

0 

0,02 

0,04 

0,06 

0,08 

0,1 

0,12 

0,14 

0,16 

0,001  0,01  0,1  1 

co
st
 

Epsilon 

Cost func.on: T = 300 sec 

� Figure 6.15: The cost function.

For this set of experiments we have chosen not to show the graph for the normalized cost function. The
reason why is because the results are similar to the cost function shown in Figure 6.15. The form is curve
is the more or less the same but only the values are different. If we look at the cost function we see that it
remains horizontal for all the experiments. Because the curve shows some fluctuations we can state that
it has a minimum value at ε = 0.1. However, this value is not very reliable. The reason why the graph is
horizontal is because the graphs of both the signaling load and the normalized bandwidth inefficiency is
horizontal. The graph do not show an increasing nor decreasing trend rendering our cost function pretty
much useless. The only thing that can be concluded here is that the impact of the ε parameter on the
performance of our aggregate update policy is very small.

114

Chapter 7

Conclusion

The main goal of this assignment was to design and implement an aggregate update policy which solves
the following optimization problem:

Can we design an aggregate update policy so that the signaling load, the (normalized) bandwidth
inefficiency and the blocking probability are as low as possible? Or in other words, when do we need
to update the aggregate reservation and what should the new size be so that the signaling load, the
(normalized) bandwidth inefficiency and the blocking probability are as low as possible?

In this thesis a solution for the aggregation of end-to-end flows in a backbone network, using such a policy,
has been presented. In Chapter 1 the aggregation problem has been defined, followed by a discussion
of the relevant algorithms used in flow aggregation and our proposed solution in Chapter 2. A brief
overview of the NSIS framework has been given in Chapter 3, followed by the RMD QoSM specification
used for the aggregation of end-to-end flows in Chapter 4. Finally the design and implementation of our
prototype has been discussed in Chapter 5 followed by a discussion on the experimental evaluation of our
prototype in Chapter 6. In this final chapter we will conclude whether the predefined goals have been
reached or not. In addition, we will give some recommendations for future work.

7.1 Conclusion

Much research has been conducted on how to address the optimization problem before designing and
implementing the update policy. After the aggregate update policy has been defined, it was incorporated
in the RMD-QoSM specification. This QoSM specification was implemented as an extension on an
existing prototype implementation. The existing design and implementation of this prototype have been
examined and has led to redesign of certain parts of the prototype, the NSLP layer being completely
redesigned. Because of the extensive changes made to the prototype implementation, exhaustive testing
was required. After a set of functional experiments, we can conclude that the specified QoSM has been
successfully implemented. The implementation of the aggregation based RMD-QoSM has passed all the
functional experiments, meaning that the implementation adheres the defined specifications.

The aggregate update policy defined in our proposed solution has two parameters (T and ε) which can
be configured to tune the performance of the update policy. The parameter T can be used to tune the
signaling load S(t) and the (normalized) bandwidth inefficiency BI ′(t), while the parameter ε can be used
to tune the blocking probability Pbl and the (normalized) bandwidth inefficiency BI ′(t). A cost function
has been designed to compute the optimum value for T and ε. Performance experiments have been used
to measure the performance of our aggregate update policy and to verify the relationship between the
parameters (T and ε) and the constraints (S(t), BI ′(t) and Pbl). The following can be concluded:

• The parameter T can be used to balance S(t) and BI ′(t). From our results we can conclude that
it is a good parameter for the tuning of these two constraints. Setting T to a low value results in
a performance similar to using the IntServ architecture, in which S(t) is high and BI ′(t) is low.

115

High values of T generate results similar to those found in networks using the DiffServ architecture,
where S(t) is low but BI ′(t) is high.

The parameter ε, was used to balance BI ′(t) and Pbl. Our experiments show that it is difficult to
use this parameter to tune these constraints effectively.

• The cost function which computes the optimum value for T (and ε) does not give satisfying results
with the weights κ1, κ2 and κ3 set to their default values. In this case no optimum value for T
could be computed. The measured results for S(t) and BI ′(t) do indicate that there should be some
optimum value for T . For increasing T , S(t) drops exponentially while BI ′(t) increases linearly. In
other words, sacrificing a little bandwidth results in a large gain for the signaling load. The main
reason why no optimum value could be found, is because the cost function is largely influenced
by BI ′(t). If we want to compute a proper cost then the weights κ1, κ2 and κ3 should be set to
different values, in which the weight for the BI ′(t) is decreased.

7.2 Future Work

There is still much work to be done on the prototype implementation, therefore the following we will
recommended:

• The design of the prototype implementation was based on specifications which are still in devel-
opment stage. As a result many specifications used in this thesis, namely the QoS NSLP draft
[18] and the RMD-QoSM specification [1] have been superseded by newer versions. Updating the
prototype implementation to comply with these new specifications is highly recommended.

• The NSLP statemachine designed in Chapter 5 does not include all the functionality provided by
the NSIS framework. More specifically the support for receiver initiated reservation has no been
added to our design. The prototype will be greatly enhanced if this feature is added.

• The RMD-QoSM specification implemented in this assignment only supports the aggregate of end-
to-end flows. The current RMD-QoSM specification [1] also supports the tunneling of end-to-
end reservations, receiver initiated reservations and the aggregation of flow using a measurement
based scheme. Some of these features have been implemented in Martijn Swanink [35] a separate
implementation. We advise this code be ported to the current prototype implementation.

With respect to our aggregate update policy we recommend conducting research on the following issues:

• For the optimization problem defined in Section 1.4.1 we have defined a cost function which can be
used to compute the optimum values for T (and ε). The results from our cost function are not very
satisfying. Some work still remains to be done on the calibration of the weights κ1, κ2 and κ3. As
an alternative one could define an entirely different cost function.

• In our performance experiments we have only examined the effects of T and ε on our aggregate
update policy for constant bit rate flows with fixed bandwidth. It should be interesting to see how
our aggregate update policy performs when heterogenous flows are used.

116

Bibliography

[1] G. Karagiannis C. Kappler A. Bader, L. Westberg and T. Phelan. RMD-QOSM - The Resource
Management in Diffserv QOS Model, February 2007.

[2] F. Baker, C. Iturralde, F. Le Faucheur, and B. Davie. Aggregation of RSVP for IPv4 and IPv6
Reservations. RFC 3175 (Proposed Standard), September 2001.

[3] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie, J. Wroclawski,
and E. Felstaine. A Framework for Integrated Services Operation over Diffserv Networks. RFC 2998
(Informational), November 2000.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for Differentiated
Service. RFC 2475 (Informational), December 1998. Updated by RFC 3260.

[5] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an Overview.
RFC 1633 (Informational), June 1994.

[6] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol (RSVP)
– Version 1 Functional Specification. RFC 2205 (Proposed Standard), September 1997. Updated by
RFCs 2750, 3936, 4495.

[7] K. Carlberg, I. Brown, and C. Beard. Framework for Supporting Emergency Telecommunications
Service (ETS) in IP Telephony. RFC 4190 (Informational), November 2005.

[8] B. Davie, A. Charny, J.C.R. Bennet, K. Benson, J.Y. Le Boudec, W. Courtney, S. Davari, V. Firoiu,
and D. Stiliadis. An Expedited Forwarding PHB (Per-Hop Behavior). RFC 3246 (Proposed Stan-
dard), March 2002.

[9] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard), January
1999. Obsoleted by RFC 4346, updated by RFC 3546.

[10] R. Elz and R. Bush. Serial Number Arithmetic. RFC 1982 (Proposed Standard), August 1996.

[11] F. Le Faucheur. Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering. RFC
4124 (Proposed Standard), June 2005.

[12] F. Le Faucheur and W. Lai. Requirements for Support of Differentiated Services-aware MPLS Traffic
Engineering. RFC 3564 (Informational), July 2003.

[13] A. Bader G. Ash and C. Kappler. QoS NSLP QSPEC Template.

[14] M. Dolly P. Tarapore C. Dvorak G. Ash, A. Morton and Y. El Mghazli. Y.1541-QOSM – Y.1541
QoS Model for Networks Using Y.1541 QoS Classes.

[15] I. Okumus H. Mantar, J. Hwang and S. Chapin. Edge-to-Edge Resource Provisioning and Admission
Control in Diffserv Networks. IEEE 2001 International Conference on Software, Telecommunica-
tions, and Computer Networks, 2001.

[16] R. Hancock, G. Karagiannis, J. Loughney, and S. Van den Bosch. Next Steps in Signaling (NSIS):
Framework. RFC 4080 (Informational), June 2005.

117

[17] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB Group. RFC 2597
(Proposed Standard), June 1999. Updated by RFC 3260.

[18] A. McDonald J. Manner, G. Karagiannis. NSLP for Quality-of-Service Signaling, 2007.

[19] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM ’88, pages 314–329, Stanford,
CA, August 1988.

[20] D. Katz. IP Router Alert Option. RFC 2113 (Proposed Standard), February 1997.

[21] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP). RFC 4340
(Proposed Standard), March 2006.

[22] H. Mantar, J. Hwang, S. Chapin, and I. Okumus. A Scalable Model for Inter-Bandwidth Broker
Resource Reservation and Provisioning, December 2004.

[23] H. Mantar, I. Okumus, J. Hwang, and S. Chapin. A scalable intra-domain resource management
architecture for DiffServ networks.

[24] M. Menth. A Scalable Protocol Architecture for End-to-End Signaling and Resource Reservation
in IP Networks. Technical Report 278, University of Wurzburg, Departmenet of Computer Science,
juli 2001.

[25] K. Nichols, V. Jacobson, and L. Zhang. A Two-bit Differentiated Services Architecture for the
Internet. RFC 2638 (Informational), July 1999.

[26] The Internet2 [Online]. http://www.internet2.edu/.

[27] The Internet2 QoS Working Group [Online]. http://qos.internet2.edu/, 2007.

[28] E. Hahne P. Pan and H. Schulzrinne. BGRP: A Tree-Based Aggregation Protocol for Inter-domain
Reservations. Journal of Communications and Networks, 2000.

[29] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[30] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981. Updated by RFC
3168.

[31] R.Klaver. Using NSIS (Next Steps in Signaling) for support of QoS aware multimedia services,
February 2007.

[32] J. Schmitt, O. Heckmann, M. Karsten, and R. Steinmetz. Decoupling different time scales of network
qos systems, July 2002.

[33] H. Schulzrinne and R. Hancock. GIST: General Internet Signalling Transport.

[34] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC 2960 (Proposed Standard),
October 2000. Updated by RFC 3309.

[35] M. Swanink. RMD (Resource Management in DiffServ) within NSIS (Next Steps in Signaling):
protocol implementation, 2006.

[36] F. Wang and P. Mohapatra et al. An Efficient Bandwidth Management Scheme for Real-Time
Internet Applications, 2002.

[37] H. Tschofenig T. Tsenov X. Fu, B. Schloer. QoS NSLP State Machine, 2007.

118

http://www.internet2.edu/
http://qos.internet2.edu/

Appendix

Appendix

A GIST API Service Primitives

The GIST API has the following service primitives, which are discussed in section 3.3.1:

• SendMessage

• SetStateLifeTime

• InvalidRoutingState

• MessageStatus

• NetworkNotification

The detailed description of the primitives below was taken from [33].

A.1 SendMessage

This primitive is passed from a signaling application to GIST. It is used whenever the signaling application
wants to initiate sending a message.

SendMessage (NSLP-Data, NSLP-Data-Size, NSLP-Message-Handle, NSLPID,
Session-ID, MRI, SII-Handle, Transfer-Attributes, Timeout, IP-TTL,
GIST-Hop-Count)

The following arguments are mandatory:

NSLP-Data: The NSLP message itself.

NSLP-Data-Size: The length of NSLP-Data.

NSLP-Message-Handle: A handle for this message, that can be used by GIST as a reference in
subsequent MessageStatus notifications. Notifications could be about error conditions or about the
security attributes that will be used for the message. A NULL handle may be supplied if the NSLP
is not interested in such notifications.

NSLPID : An identifier indicating which NSLP this is.

Session-ID : The NSIS session identifier. Note that it is assumed that the signaling application
provides this to GIST rather than GIST providing a value itself.

MRI : Message routing information for use by GIST in determining the correct next GIST hop for
this message. The MRI implies the message routing method to be used and the message direction.

119

The following arguments are optional:

SII-Handle: A handle, previously supplied by GIST, to a data structure that should be used to
route the message explicitly to a particular GIST next hop.

Transfer-Attributes: Attributes defining how the message should be handled. The following at-
tributes can be considered:

• Reliability : Values ’unreliable’ or ’reliable’.

• Security : This attribute allows the NSLP to specify what level of security protection is re-
quested for the message (such as ’integrity’ or ’confidentiality’), and can also be used to specify
what authenticated signaling source and destination identities should be used to send the mes-
sage. The possibilities can be learned by the signaling application from prior MessageStatus or
RecvMessage notifications. If an NSLP- Message-Handle is provided, GIST will inform the sig-
naling application of what values it has actually chosen for this attribute via a MessageStatus
callback. This might take place either synchronously (where GIST is selecting from available
messaging associations), or asynchronously (when a new messaging association needs to be
created).

• Local Processing : This attribute contains hints from the signaling application about what
local policy should be applied to the message; in particular, its transmission priority relative
to other messages, or whether GIST should attempt to set up or maintain forward routing
state.

Timeout : Length of time GIST should attempt to send this message before indicating an error.

IP-TTL: The value of the IP layer TTL that should be used when sending this message (may be
overridden by GIST for particular messages).

GIST-Hop-Count : The value for the hop count when sending the message.

A.2 RecvMessage

This primitive is passed from GIST to a signaling application. It is used whenever GIST receives a message
from the network, including the case of null messages (zero length NSLP payload), typically initial Query
messages. For Queries, the results of invoking this primitive are used by GIST to check whether message
routing state should be created (see the discussion of the ’Routing-State-Check’ argument below).

RecvMessage (NSLP-Data, NSLP-Data-Size, NSLPID, Session-ID, MRI,
Routing-State-Check, SII-Handle, Transfer-Attributes, IP-TTL,
IP-Distance, GIST-Hop-Count, Inbound-Interface)

The arguments are defined as follows:

NSLP-Data: The NSLP message itself (may be empty).

NSLP-Data-Size: The length of NSLP-Data (may be zero).

NSLPID : An identifier indicating which NSLP this message is for.

Session-ID : The NSIS session identifier.

MRI : Message routing information that was used by GIST in forwarding this message. Implicitly
defines the message routing method that was used and the direction of the message relative to the
MRI.

120

Routing-State-Check : This boolean is True if GIST is checking with the signaling application to
see if routing state should be created with the peer or the message should be forwarded further. If
True, the signaling application should return the following values via the RecvMessage call:

• A boolean indicating whether to set up the state.

• Optionally, an NSLP-Payload to carry in the generated Response or forwarded Query respec-
tively.

This mechanism could be extended to enable the signaling application to indicate to GIST whether
state installation should be immediate or deferred.

SII-Handle: A handle to a data structure, identifying a peer address and interface. Can be used to
identify route changes and for explicit routing to a particular GIST next hop.

Transfer-Attributes: The reliability and security attributes that were associated with the reception
of this particular message. As well as the attributes associated with SendMessage, GIST may
indicate the level of verification of the addresses in the MRI. Three attributes can be indicated:

• Whether the signaling source address is one of the flow endpoints (i.e. whether this is the first
or last GIST hop);

• Whether the signaling source address has been validated by a return routability check.

• Whether the message was explicitly routed (and so has not been validated by GIST as delivered
consistently with local routing state).

IP-TTL: The value of the IP layer TTL this message was received with (if available).

IP-Distance: The number of IP hops from the peer signaling node which sent this message along
the path, or 0 if this information is not available.

GIST-Hop-Count : The value of the hop count the message was received with, after being decre-
mented in the GIST receive-side processing.

Inbound-Interface: Attributes of the interface on which the message was received, such as whether
it lies on the internal or external side of a NAT. These attributes have only local significance and
are implementation defined.

A.3 MessageStatus

This primitive is passed from GIST to a signaling application. It is used to notify the signaling application
that a message that it requested to be sent could not be dispatched, or to inform the signaling application
about the transfer attributes that have been selected for the message (specifically, security attributes).
The signaling application can respond to this message with a return code to abort the sending of the
message if the attributes are not acceptable.

MessageStatus (NSLP-Message-Handle, Transfer-Attributes, Error-Type)

The arguments are defined as follows:

NSLP-Message-Handle: A handle for the message provided by the signaling application in SendMes-
sage.

Transfer-Attributes: The reliability and security attributes that will be used to transmit this par-
ticular message.

Error-Type: Indicates the type of error that occurred. For example, ’no next node found’.

121

A.4 NetworkNotification

This primitive is passed from GIST to a signaling application. It indicates that a network event of possible
interest to the signaling application occurred.

NetworkNotification (NSLPID, MRI, Network-Notification-Type)

The arguments are defined as follows:

NSLPID : An identifier indicating which NSLP this is message is for.

MRI : Provides the message routing information to which the network notification applies.

Network-Notification-Type: Indicates the type of event that caused the notification and associated
additional data. Five events have been identified:

• Last Node: GIST has detected that this is the last NSLP-aware node in the path.

• Routing Status Change: GIST has installed new routing state, has detected that existing
routing state may no longer be valid, or has re-established existing routing state. The new
status is reported; if the status is Good, the SII- Handle of the peer is also reported, as for
RecvMessage.

• Route Deletion: GIST has determined that an old route is now definitely invalid, e.g. that
flows are definitely not using it. The SII-Handle of the peer is also reported.

• Node Authorisation Change: The authorisation status of a peer has changed, meaning that
routing state is no longer valid or that a signaling peer is no longer reachable.

• Communication Failure: Communication with the peer has failed; messages may have been
lost.

A.5 SetStateLifetime

This primitive is passed from a signaling application to GIST. It indicates the duration for which the
signaling application would like GIST to retain its routing state. It can also give a hint that the signaling
application is no longer interested in the state.

SetStateLifetime (NSLPID, MRI, SID, State-Lifetime)

The arguments are defined as follows:

NSLPID : Provides the NSLPID to which the routing state lifetime applies.

MRI : Provides the message routing information to which the routing state lifetime applies; includes
the direction (in the D flag).

SID : The session ID which the signaling application will be using with this routing state. Can be
wildcarded.

State-Lifetime: Indicates the lifetime for which the signaling application wishes GIST to retain its
routing state (may be zero, indicating that the signaling application has no further interest in the
GIST state).

A.6 InvalidateRoutingState

This primitive is passed from a signaling application to GIST. It indicates that the signaling application
has knowledge that the next signaling hop known to GIST may no longer be valid, either because of
changes in the network routing or the processing capabilities of signaling application nodes.

122

InvalidateRoutingState (NSLPID, MRI, Status, NSLP-Data, NSLP-Data-Size, Urgent)

The arguments are defined as follows:

NSLPID : The NSLP originating the message. May be null (in which case the invalidation applies
to all signaling applications).

MRI : The flow for which routing state should be invalidated; includes the direction of the change
(in the D flag).

Status: The new status that should be assumed for the routing state, one of Bad or Tentative.

Urgent : A hint as to whether rediscovery should take place immediately, or only with the next
signaling message.

The following arguments are optional:

NSLP-Data, NSLP-Data-Size : a payload provided by the NSLP to be used the next GIST hand-
shake. This can be used as part of a conditional peering process. The payload will be transmitted
without security protection.

B Path-coupled Message Routing Method

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| MRM-ID |N| Reserved |IP-Ver |P|T|F|S|A|B|D|Reserved |
+-+
// Source Address //
+-+
// Destination Address //
+-+
| Source Prefix | Dest Prefix | Protocol | DS-field |Rsv|
+-+
: Reserved | Flow Label :
+-+
: SPI :
+-+
: Source Port : Destination Port :
+-+

MRM-ID (8 bits): An IANA-assigned identifier for the message routing method.

N flag : If set (N=1), this means that NATs do not need to translate this MRM; if clear (N=0) it means
that the method-specific information contains network or transport layer information that a NAT must
process.

In the case of basic path-coupled routing, the addressing information takes the following format. The
N-flag N=0 for this MRM. IP-Ver (4 bits): The IP version number, 4 or 6.

Source/Destination address (variable): The source and destination addresses are always present and of
the same type; their length depends on the value in the IP-Ver field.

Source/Dest Prefix (each 8 bits): The length of the mask to be applied to the source and destination
addresses for address wildcarding. In the normal case where the MRI refers only to traffic between specific
host addresses, the Source/Dest Prefix values would both be 32/128 for IPv4/6 respectively.

123

P flag : P=1 means that the Protocol field is significant.

Protocol (8 bits): The IP protocol number. This MUST be ignored if P=0. In the case of IPv6, the
Protocol field refers to the true upper layer protocol carried by the packets, i.e. excluding any IP option
headers. This is therefore not necessarily the same as the Next Header value from the base IPv6 header.

T flag : T=1 means that the DiffServ field (DS-field) is significant.

DS-field (6 bits): The DiffServ field.

F flag : F=1 means that flow label is present and is significant. F MUST NOT be set if IP-Ver is not 6.

Flow Label (20 bits): The flow label; only present if F=1. If F=0, the entire 32 bit word containing the
Flow Label is absent.

S flag : S=1 means that the SPI field is present and is significant. The S flag MUST be 0 if the P flag is
0.

SPI field (32 bits): The SPI field. If S=0, the entire 32 bit word containing the SPI is absent.

A/B flags: These can only be set if P=1. If either is set, the port fields are also present. If P=0, the
A/B flags MUST both be zero and the word containing the port numbers is absent.

Source/Destination Port (each 16 bits): If either of A (source), B (destination) is set the word containing
the port numbers is included in the object. However, the contents of each field is only significant if the
corresponding flag is set; otherwise, the contents of the field is regarded as padding, and the MRI refers
to all ports (i.e. acts as a wildcard). If the flag is set and Port=0x0000, the MRI will apply to a specific
port, whose value is not yet known. If neither of A or B is set, the word is absent.

D flag : The Direction flag has the following meaning: the value 0 means ’in the same direction as the
flow’ (i.e. downstream), and the value 1 means ’in the opposite direction to the flow’ (i.e. upstream).

C Sample RESERVE message

QoS NSLP Reserve Message (complete):
Common Header:

Message Type: Reserve
B: 0
A: 0
P: 0
S: 0
T: 0
R: 1

TLV header
Extensibility: Mandatory
Type: RSN
Length: 2

RSN Object:
RSN: 2831123241
Epoch Identifier: 638999738

TLV header
Extensibility: Mandatory
Type: RII
Length: 1

RII Object:
RII: 3141525279

124

TLV header
Extensibility: Mandatory
Type: RefreshPeriod
Length: 1

REFRESH_PERIOD Object:
Refresh Period: 60000 ms

TLV header
Extensibility: Mandatory
Type: QSpec
Length: 8

QSPEC Object
Version: 0
QOSM ID: IntServ CL
Messsage Sequence: Sender Initiated Reservation
Object Combination: 1
QSPEC Object: QoS Desired

E: 0
Q: 0
Length: 6

QSPEC Parameter: Traffic
M: 1
E: 0
N: 0
R: 0
Length: 5
Parameter:
Token Bucket Rate: 45.000000 bytes/s
Token Bucket Size: 32768.000000 bytes
Peak Data Rate: inf bytes/s
Minimum Policed Unit: 1 bytes
Maximum Pakcet Size: 1500 bytes

125

D Results Performance Experiments

Due to time constraints the statistical accuracy of the results, e.g.e, computation of the confidence
intervals, has not been verified.

D.1 Results for constant epsilon (ε = 0.005)

T = 86400 43200 21600 10800 7200 3600
S(t) 3, 80084 ∗ 10−5 7, 60167 ∗ 10−5 0,000114969 0,000152033 0,000342075 0,000494109
BI ′(t) 0,712883966 0,70118557 0,684638955 0,682125789 0,651755447 0,598235848
Pbl 0 0,08451487 0,032817924 0 0

� Table 1: Measured data for an ε of 0.005 and T = [86400, 3600].

T = 1800 1200 600 300 120 60
S(t) 0,000342075 0,000988293 0,001560122 0,003237109 0,020029217 0,040095465
BI ′(t) 0,593758349 0,481646803 0,472040221 0,376155504 0,267736081 0,168793524
Pbl 0 0,000354233 0,004837595 0,007757167 0,034871526 0,083278581

� Table 2: Measured data for an ε of 0.005 and T = [1800, 60].

D.2 Results for constant inter update target (T = 300)

T = 0,25 0,1 0,05 0,025 0,01 0,005 0,001
S(t) 0,003351104 0,003964926 0,003274195 0,003044835 0,003275442 0,003237109 0,003273945
BI ′(t) 0,439525952 0,34721359 0,360726916 0,357747298 0,419983805 0,376155504 0,395175377
Pbl 0,007505971 0,011035378 0,005693235 0,005541069 0,006976744 0,007757167 0,005840363

� Table 3: Measured data for an T of 300.

126

	Preface
	1 Introduction
	1.1 Integrated Services
	1.2 Differentiated Services
	1.3 NSIS
	1.4 Problem Definition
	1.4.1 Optimization Problem
	1.4.2 Constraints

	1.5 Outline

	2 Related Work and Proposed Solution
	2.1 Related Work
	2.1.1 Schmitt et al.
	2.1.2 Pipes Model
	2.1.3 Bandwidth Broker

	2.2 Proposed Solution
	2.2.1 Aggregate Update Algorithm
	2.2.2 The Cushion
	2.2.3 Scenario's

	3 NSIS: Overview
	3.1 Introduction
	3.2 Signaling scenario
	3.2.1 Internal structure QNE

	3.3 Protocol stack
	3.3.1 NSIS Transport Layer Protocol (NTLP)
	3.3.2 NSIS Signaling Layer Protocol (NSLP)

	3.4 Quality of Service Models
	3.4.1 QoS Specification (QSpec)

	4 Resource Management in DiffServ
	4.1 RMD Features Overview
	4.2 RMD QoS Model
	4.2.1 Transport of signaling messages
	4.2.2 RMD-QSpec

	4.3 Flow aggregation in RMD-QoSM
	4.3.1 Aggregate reservation setup
	4.3.2 Admission Control
	4.3.3 Increasing the aggregate reservation
	4.3.4 Decreasing the aggregate reservation
	4.3.5 Refreshing the aggregate reservation

	5 Design and Implementation
	5.1 Previous Work
	5.2 Implementation overview
	5.2.1 Current design

	5.3 Extension on the design
	5.3.1 The NSLP statemachine
	5.3.2 Resource Management Function
	5.3.3 Aggregate management unit

	6 Experimental Evaluation
	6.1 Test environment
	6.2 Functional experiments
	6.2.1 Successful setup of an aggregate reservation
	6.2.2 Unsuccessful setup of an aggregate reservation
	6.2.3 Successful increase of an aggregate reservation
	6.2.4 Unsuccessful increase of an aggregate reservation
	6.2.5 Successful decrease of an aggregate reservation
	6.2.6 Successful refresh of an aggregate reservation
	6.2.7 Additional testing

	6.3 Performance experiments
	6.3.1 Goals
	6.3.2 Measurements
	6.3.3 Assumptions
	6.3.4 Scenario
	6.3.5 Traffic model
	6.3.6 Results

	7 Conclusion
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	Appendix
	A GIST API Service Primitives
	A.1 SendMessage
	A.2 RecvMessage
	A.3 MessageStatus
	A.4 NetworkNotification
	A.5 SetStateLifetime
	A.6 InvalidateRoutingState

	B Path-coupled Message Routing Method
	C Sample RESERVE message
	D Results Performance Experiments
	D.1 Results for constant epsilon (= 0.005)
	D.2 Results for constant inter update target (T = 300)

