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“Doubt is not a pleasant condition, but certainty is absurd.” –Voltaire





Abstract

Database systems are widely used in today’s world. Almost every information system
contains one or more databases. From a traditional perspective, databases are used to store
precise values about objects in the ’real world’. However, many information is uncertain or
imprecise. Consider, for example, sensor applications. Sensors produce uncertain and impre-
cise data since readings of sensors are inherently imprecise and uncertain. Current database
management systems are not able to store, manipulate or query continuous uncertain data
unless through user-defined attributes. However, this approach delegates the responsibility
of managing the uncertainty associated with the data to the end-user.

In many situations, the uncertainty associated with the data is distributed continuously,
the data can be represented in terms of a continuous probability distribution. In this thesis,
we present an extension to an existing probabilistic data model, resulting in a data model
which is capable of storing continuous uncertain data in XML documents. We give a sound
semantical foundation to this data model. The probabilistic XML data model is based on
the probabilistic tree. In the probabilistic tree, elements and subtrees can be associated with
probabilities. Our extension to the probabilistic XML data model extends the probabilistic
XML data model in such a way that probability density functions can be associated with
elements.

Instead of enumerating explicitly the data values with their associated probabilities, a
probability density function represents a continuous probability distribution in terms of in-
tegrals, it can represent the probability that an element attains a value on a specific interval.
In order to query this data, we present a query language containing query operations that
are based on probability theory. We show how querying of continuous uncertain data works
using a sound semantical foundation. Next, we introduce some new query operators sup-
porting the aggregation of continuous probability distributions using the same semantical
foundation. An aggregation operator accepts a number of histograms representing contin-
uous probability distributions, aggregates them and returns one histogram representing a
continuous probability distribution.

A proof of concept demonstrates the outcomes of our study towards the management
of continuous uncertain data. This proof of concept allows the end-user to query XML
documents containing continuous uncertain data.





Managing Continuous Uncertain Data by a Probabilistic XML Database Management System i

Dankwoord

Na 7 jaren studeren rond ik mijn studie Informatica af door het doen van een onderzoek.
Deze scriptie is daarvan het resultaat. Het afgelopen halfjaar heb ik onderzoek gedaan naar
het beheren van continue onzekere data. En ik moet zeggen dat het leek alsof ik in deze peri-
ode weer was teruggekeerd naar de peutertijd, spelend met de blokkendoos. In je peutertijd
bouw je met blokken huizen en gebouwen en als het resultaat niet voldoet, dan sloop je het
en begin je weer opnieuw. Zo gaat het ook met onderzoek doen, je stelt een hypothese op,
je werkt naar een theorie, je ontwikkelt een model. Door middel van een prototype kan je
experimenten uitvoeren waardoor je weet of je aanpak werkt. Werkt de aanpak niet, dan gooi
je het weg en begin je weer opnieuw. Net als dat ik het spelen met blokken leuk vond, vind
ik onderzoek doen ook hartstikke leuk. Het was een leuke afsluiting van een fantastische tijd
die ik hier op de Universiteit Twente heb gehad.

Onderzoek doen heeft ook mindere kanten. Het is een nogal solitaire bezigheid waardoor
het saai kan worden. Dan zijn er een aantal oplossingen. 1. Je maakt een wandeling over de
prachtige campus. 2. Je gaat met je begeleiders of andere mensen op de vakgroep praten.
3. Je gaat vroeg naar huis. Regelmatig had ik een paar uur ”bedenktijd” nodig voordat ik
überhaupt een eerste zin op ”papier” kon zetten. Een wandeling maken, het bekende DB-
rondje, bood dan uitkomst. Maar gelukkig heb ik ook veel aan mijn begeleiders en de mensen
op de vakgroep gehad om inspiratie en nieuwe ideeën op te doen. Ook de zogenoemde DB
Colloquia hebben daar zeker aan bijgedragen.

Deze scriptie was niet tot stand gekomen zonder de hulp van heel veel mensen. Allereerst
wil ik mijn begeleiders, Ander de Keijzer en Maurice van Keulen, bedanken. Zij waren het
die het initiatief namen om onderzoek te gaan doen naar het beheren van continue onzekere
data. Ik heb niet alleen hun data model voor discrete onzekere data kunnen gebruiken,
maar ze hebben me ook enorm geholpen met het uitbreiden van dit model zodat het nu
ondersteuning biedt voor continue onzekere data. Hun enthousiasme gaf mij vertrouwen
om door te gaan met het onderzoeksproject, ook als het even wat minder ging. Daarnaast
hebben ze altijd het geduld gehad om naar mij te luisteren ook al had ik soms moeite om
datgene wat ik wilde zeggen, juist te formuleren. Ook zal ik de voortgangsbesprekingen die
we hadden niet snel vergeten. We hadden deze besprekingen niet vaak, maar ze mondden
vaak wel uit in interessante, heftige en diepgaande discussies over de inhoud. Mijn derde
begeleider, Sander Evers, heeft me enorm geholpen om het verslag leesbaarder te maken
voor de buitenstaander en wist me nog op een aantal onjuistheden te wijzen. Uiteraard, ben
en blijf ik, verantwoordelijk voor de overgebleven onjuistheden.
Tijdens mijn onderzoek heb ik een prototype gemaakt wat op een experimenteel database
management systeem draait. Dit prototype was niet tot stand gekomen zonder de hulp van
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Jan Flokstra. Ik kon hem op de meest rare tijden nog e-mailen en dan loste hij een probleem
snel voor me op.

Uiteraard kan ik mijn ouders niet vergeten te bedanken want zonder hen was ik nooit zover
gekomen. Inhoudelijk hebben zij natuurlijk weinig kunnen bijdragen aan deze scriptie, maar
zij hebben wel mijn eindeloze verhalen over de voortgang aangehoord. Daarnaast, zijn zij
het, die het überhaupt mogelijk hebben gemaakt om te studeren, zonder al te veel druk er
achter te zetten. Ik heb daardoor kunnen genieten van mijn studie en alle nevenactiviteiten,
zonder financiële zorgen hoeven te maken, iets wat in mijn ogen erg belangrijk is.

Theodoor Scholte
Enschede, 28 mei 2008
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Chapter 1

Introduction

Database Management Systems (DBMSs) play an important role in today’s world. Almost ev-
ery information system contains one or more databases [5]. The application domain ranges
from those things that we daily use (e.g. phone book on a cellular phone) to highly so-
phisticated systems (e.g. container terminal management system in a main port). From a
traditional perspective, databases are used to store precise values about objects in the ’real
world’. Though, today, there are many applications in which data is uncertain and/or impre-
cise. It is frequently the case that these applications use a conventional DBMS and process
the uncertainty outside the DBMS.

1.1 Motivation

More than one decade ago, researchers addressed the importance of the problem of managing
uncertain data by a Database Management System [21]. Although, considerable research ef-
fort has been conducted to solve this issue, the management of uncertain data by a Database
Management System is still an active research topic. The reason for this is that there is a
wide variety of different models supporting the storage of uncertain data, each with its own
features. Similarly, there is a broad range of applications each having its own specific require-
ments. In the next few sections we will mention several application domains of uncertain
data.

1.1.1 Sensors

”Ubiquitous computing names the third wave in computing, just now beginning. First
were mainframes, each shared by lots of people. Now we are in the personal computing
era, person and machine staring uneasily at each other across the desktop. Next comes
ubiquitous computing, or the age of calm technology, when technology recedes into the
background of our lives.” [24]

Ubiquitous computing is a paradigm which breaks the traditional borders in the interface
between person and computer. The computer will be integrated into everyday’s life. Applica-
tions using the ubiquitous computing paradigm are emerging. In many ubiquitous systems
sensors are one of the core components. For example, due to location sensors, a car knows
where it is. In case of an accident the car is able to notify the rescue operators with a cell phone.

1
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Another example is the adaptable room conditions in an office building. A user wears cloth-
ing with an RFID-tag. When entering the room, the temperature control system ’recognizes’
the user and its preferences. Sensors of the control system are measuring the temperature
and humidity in the room at regular intervals, and transmit the data to a central processing
component. The control system adjusts the temperature and humidity in the room according
to the user’s preferences.

Sensors may produce unreliable data due to missed readings and/or erroneous or impre-
cise values. Another problem occurring in applications with sensors and databases is that
there is a gap in time between the actual value in the ’real world’ and the database value [10].
Then, queries will use the old database value instead of the accurate value in the ’real world’.
One way to solve these problems, is to store imprecise data along with probabilities that
indicate the confidence that an imprecise value stored in the database is the accurate value
in the ’real world’.

1.1.2 Science

In experimental scientific research like earth-sciences, psychology, chemistry and biology,
scientists conduct a lot of experiments that produce raw data which should be stored and
processed. This data is often imprecise and subject to uncertainty and errors that cannot
be modeled by traditional data management systems [25]. The causes of uncertainty and
errors range from reading errors, errors in filled questionnaire forms, transmission noise to
other errors in unreliable information sources or unreliable systems. Experimental data can
be transformed or processed further using certain operations (like aggregation). Subsequent
experiments can be carried out using the derived data resulting in new data. This data may
alter the previously approximated data or it might change the confidence scores of it. The
values that will be stored, might be inexact or uncertain. In many situations, it is desirable
to store the data along with probabilities or with confidence values. This motivates the need
for a data management system with uncertain capabilities.

1.1.3 Analysis and Forecasting

Consider economic analysis and forecasting over a certain period of time. In general, the
following holds: the more information becomes available, the better becomes the predic-
tion [11]. It is basically the same as with the weather forecast. The forecast for the next day is
much more accurate and certain than the forecast for three days in the future. Most macroe-
conomic data should be treated as uncertain data; they are estimates rather than measures.
This is because errors arise due to the fact that the data is often based on small samples. The
estimates are revised as more information has become available and statistical methods have
been reviewed. The data published in the past can be seen as probabilistic data. Using this
data together with historical experience can improve the way of estimating the confidence
of earlier received macroeconomic data. Closely related to this area are applications which
analyze data about individuals to create elaborate profiles [25]. Typical examples include:
of risk assessment (credit and insurance) and targeted advertising. Another closely related
topic is Online Analytical Processing.

2
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1.1.4 Online Analytical Processing

Business Intelligence is increasingly being used to support strategic decision-making. Busi-
ness Intelligence applications like Online Analytical Processing are used to gain knowledge
in a certain business domain resulting in competitive advantages. OLAP applications are
used by managers supporting them in making decisions. OLAP queries frequently involve
a significant part of the database, they are complex and updates on the data are infrequent.
Data warehouses are special databases used by OLAP applications. Data warehouses are
very large, have schemas which differ from schemas of ”normal” online transaction pro-
cessing DBMSs (OLTP systems) and the data itself is different from what is normal in OLTP
systems. In practice, warehouses contain uncertain data because data has been obtained from
multiple data sources. When integrating data from different sources, each having its own
schema, conflicts may occur. Moreover, the input data does not only arrive from the OLTP
systems of an enterprise [5]. Think, for instance, about a customer of a company filling out a
questionnaire form on a website and the customer enters a wrong city name. Typically, OLAP
applications deal with problems due to space limitations of the warehouse. Sometimes, it
is impossible to store all the data of the business in the warehouse. One solution then is to
perform OLAP queries on smaller samples that have been extracted from the large data set.
However, this simplification introduces imprecision [16]. Another example of uncertainty in
OLAP applications is forecasting [15]. Data warehouses are used to maintain a history of
forecasts about, for instance, sales. These forecasts are inherently uncertain.

1.1.5 Data Integration

Consider a person who has address books on his cellular phone, PDA and desktop computer.
All these information sources contain information about persons. The person would like to
have one information source to find an address. Data integration can assist the user because
it can present the various information sources as one single source. The data in different
information sources can refer to the same ’real world’ object or to multiple objects. If the
data is about the same object, data can be conflicting. For instance, the phone number of
the same person is different. Then there are several possibilities: a person can have two
different phone numbers or only one of the phone numbers is valid. Data can be conflicting
for several reasons: a miss-typed phone number, an old phone number etcetera. We can
choose to use one phone number out of the different possibilities, but this may lead to
incorrect results. A better approach when integrating information sources is to store for all
conflicting values the possibilities with their associated probabilities [23]. The probabilities
are a measure of truth that a certain possibility indeed occurs in the ’real world’. The result
of the integration process is an integrated information source containing uncertain data. A
probabilistic database management system is required to store the result. The main benefit
of this approach is the unattended way of integration [12].

1.1.6 Approximate Queries

There are scenarios in which huge amounts of data are generated. Due to limited resources
(e.g. bandwidth, disk space, computing power), it is often infeasible to store all the exact
values [10, 25]. In some scenarios when querying the database, the end-user is more interested
in an estimated result with a lower execution time than in an exact result taking ages to

3
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compute. One approach is to produce approximate answers using a small data set or statical
tools. Another approach is to store the approximate values along with a degree of uncertainty;
a DBMS supporting the management of uncertain data is required then.

1.2 Problem statement

The previous section illustrates some application domains in which (continuous) uncertain
data is involved. Many applications in these domains make use of database management
systems to maintain and manipulate data. The management of (continuous) uncertain data
by traditional database management systems is hard to achieve. This is because those sys-
tems assume that data is certain, precise and complete. As shown in the previous sections,
information about the real world can be inherently uncertain, imprecise or incomplete. The
management of continuous uncertain data by current database management systems is only
possible through user-defined attributes. Then, the database management system delegates
the responsibility of managing continuous uncertain data to the end-user. Moreover, there
are currently no database management systems available which are capable of managing
continuous uncertain data using a semi-structured data model. This leads us to the main
problem which this thesis will focus on:

Designing a semi-structured probabilistic database management system which is
responsible for maintaining and manipulating continuous uncertain data in such way
that probabilistic query operators are able to produce imprecise, but correct, answers.

To clarify the problem statement, we elaborate three terms:

• Semi-structured
Data can be represented in different data models, examples are the relational and the
semi-structured data models. Discrete uncertain data can be represented in a semi-
structured data model (XML) in a more natural way than in the relational model. In
order to fully support the representation of uncertain data in XML, the representation
of continuous uncertain data should be examined as well. We are also interested in
using XML for the representation of continuous uncertain data since XML is used more
and more for storing data and it is the de facto standard for data exchange between
organisations.

• Continuous uncertain data
With the term ”continuous uncertain data”, we mean data that can be denoted as
stochastic variables each having a univariate continuous probability distribution.

• Imprecise, but correct
Data which describes a certain aspect of the real-world can be represented by one
value, a set of values or an interval. A probability distribution can be added to the
representation to indicate the likelihood that a value reflects the actual state of the
real world. In case the value of an attribute is set- or interval-based, a query for that
attribute should return (a part of) the corresponding set or interval which is imprecise,
but correct.

4
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1.3 Research questions

In the previous section we identified the main problem this thesis will focus on. This problem
can be solved by answering several research questions:

1. Which additions to existing data models are necessary in order to support the representation of
continuous uncertain data in XML?
In order to integrate continuous uncertainty in a DBMS and making the system re-
sponsible for maintaining and manipulating continuous uncertain data, a data model
is required. The development of such model is also the main research challenge that
has to be addressed in this thesis.

2. Which semantic foundation is suitable for storing continuous uncertain data?
The data model we will introduce in this thesis has to be complete and closed. The data
model has to deal with data which is associated with continuous probability distribu-
tion in a correct way. For these reasons, the model needs a (semantic) foundation.

3. How can we provide support for querying continuous uncertain data?
Besides the development of a data model supporting the representation of continuous
uncertain data in XML, we need query operations that allow the end-user to retrieve
information from continuous uncertain data.

How should the semantic foundation be applied in order to support querying continuous
uncertain data in an intuitive way?
The query operations which we will provide should be intuitive to use. Next, the results
generated by the query operations, should be intuitive to interpret (understand).

Which query operations are useful when querying continuous uncertain data?
At this moment, we have no idea which query operations are useful for the end-user.
We will examine which operations could be useful.

4. How can the theoretical concepts as a result from the research on the management of continuous
uncertain data be practically applied?
The answers on the previous research questions may contain several new concepts. We
are interested if these concepts are applicable in a feasible way. This question will be
answered by developing a proof of concept.

5. What is the behavior of a probabilistic XML DBMS supporting the management of continuous
uncertain data in terms of efficiency and accuracy of query answers?
In database research, benchmarks are used to evaluate the performance of database
management systems. By developing the proof of concept, we build new elements that
will run on top of an existing XML DBMS. Since we add new mechanisms to a DBMS,
we are interested in their behavior. We will examine whether the approach that has
been taken is feasible in terms of efficiency and accuracy of query answers.

5
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1.4 Scope

The main goal of our research is to provide support for the management of continuous
stochastic variables in an XML database management system. In order to meet this goal, we
determine several subgoals:

• The development of a data model supporting the storage of continuous probability
distributions in semi-structured data.

• Extending a query language with operations that allow users to query on semi-
structured documents containing continuous stochastic variables.

• Developing a prototype in order to prove the concepts.

Besides these goals, there are also some goals or activities that are related to the topic of this
thesis but are out of the scope of this thesis. We will summarize them here.

• Our work is inherently related to mathematics and especially statistics and probability
theory. In this thesis, we will propose query operators that are capable of querying
continuous distributions resulting in probabilistic answers. Query operators include
the probability, the expected value and variance of a continuous distribution and so on.
The probabilistic answers can be computed in two ways.

Exact answers
Standard continuous distributions like gaussian, gamma, beta and uniform have well-
known probability density functions. One approach to compute an exact answer is
based on probability theory, answers are computed by taking the integral of the proba-
bility density function. Another approach is to use a distribution-specific function, with
the parameters of a standard continuous distribution as input, to compute the answer.
An example is a query for the expected value of a continuous uniform distribution,
the expected value can be computed with the parameters a and b using the following
distribution-specific function: a+b

2 .

Approximations by histograms
A continuous distributions can be approximated by a histogram. Histograms are capa-
ble of approximating non-standard continuous distributions. A continuous distribution
is called ”non-standard” if the probability density function is not a trivial one, e.g. the
probability density function is really hard to compute or it is unknown. Query opera-
tors that operate on histograms will return approximated answers.
Our goal is to provide formal definitions for the data model and the query language.
The query language should be based on probability theory and the operators are de-
fined as if they return exact and correct answers, no approximations. However, it is not
required that the proof of concept produces exact answers or formulas when these are
too complex or too time-consuming to compute.

• Performance and efficiency are currently not the most important issues. We would
like to focus on the concepts and proof them using a prototype. Query optimization,
indexing and overall database performance are out of the scope of this thesis.

• The prototype will be build to demonstrate the concepts that are introduced in this
thesis (proof of concept). For that reason, we are currently not interested in usability
aspects of the prototype.

6
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1.5 Approach

The approach taken in this research is that of the constructive research. In this thesis, we
present new theoretical knowledge by means of a data model and a query language. This
theoretical knowledge can be seen as a solution to the problem of managing continuous
uncertain data by a semi-structured DBMS. The solution is based on many sources that
contain theoretical information about uncertain data, e.g. papers and so on. In order to proof
the concepts that are presented in the theoretical knowledge, we will develop a prototype
and perform some tests or benchmarks on it. This proof of concept forms also an important
part of the validation. The proof of concept shows us, for example, whether the data model
allows the modeling of continuous uncertain data in a sufficient way; it will give us feedback
on the shortcomings of the data model and the query language. The tests or benchmarks
allow us to make conclusions about whether the practical use of the data model and query
language is feasible in terms of the quality of query answers and query response time.

1.6 Outline

One of the first activities that will be carried out is the extension of an existing data model [23].
This data model is based on the possible world semantics [27] and it has already support
for the representation of discrete stochastic variables. We will extend this model in chapter 3
in such a way that it supports the representation of continuous uncertain data. Next, in
chapter 4 a query language is proposed. This query language includes constructs for querying
uncertain data modeled in the proposed data model. The development of the data model and
a corresponding query language results in new concepts. In order to proof those concepts, we
will develop a prototype that will be described in chapter 5. The prototype will be evaluated
in chapter 6 using benchmarks. Chapter 7 includes the conclusions and future work. But, first,
we start with discussing the related research on the management of (continuous) uncertain
data in chapter 2.

7
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Chapter 2

Related work

In this section we will discuss related work on uncertain data management. Different data
models such as the relational model, semi-structured models, probabilistic and possibility
models will be discussed. Moreover, existing research projects will be mentioned. Besides
explaining different data models, we will explain general concepts such as what imperfect
information is and what possible world semantics is. An important point in this chapter is
the discussion of related work on continuous uncertainty.

2.1 Imprecise, uncertain, and erroneous data

The title of this section mentions some terminology used in previous work on uncertain data
management. Although, terms like imprecise, uncertain and erroneous might suggest that their
meaning are all the same, this is certainly not the case. A. Motro gave a good interpretation [17]
to these terms. In this section we will give a short summary.

Erroneous information is information that is different from true information. This type of
imperfect information influences the integrity of information systems. One kind of erroneous
information is inconsistent information. Different representations of a particular part of the
real world that are conflicting can be considered as inconsistent information. An example is
the birth date of the author which is stored in a database as August 4th, 1982 but which is in
fact August 3th, 1983.

Another kind of imperfect information is imprecise information. Imprecise information
is represented as a set of alternatives and the real value is one of those alternatives, so the real
actual value is not known a-priori. Consider the temperature of a room stored in a database as
a range between 18 and 20 degrees, while the real room temperature is 19 degrees. There are
two extreme kinds of imprecise information: precise values and incompleteness. A precise
value means that the set of possible alternatives contains exactly one single alternative.
Incompleteness means that no information is available. Note that the representation then
indicates that there is no information available.

Uncertain information expresses doubt about if our knowledge about the real world is
correct. The doubt is quantified with confidence values. These confidence values can be
associated with each representation of the real world in an information system. An example
is John Doe who has phone number 1111 with probability 0.5 and phone number 2222 with
probability 0.5.

9
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2.2 Possible world semantics

The data stored in a database describes some part of the real world. In situations where
available information is certain and complete, the similarity between the database and the
real world is clear. However, when the database contains data that is uncertain, the database
represents a collection of possible appearances of the real world. Those appearances are
also called states or possible worlds. A possible world describes a set of objects in the real
world. An object in the real world can have different (or multiple) interpretations. Then,
different information about that object exist. Another way of describing this is to say: “there
exist several possibilities or alternatives for an object in the real world”. A possible world is
constructed by choosing one alternative among a collection of representations for each of the
real world objects in the database. If one of the possibilities represents that the real world
object does not exist, this should also be considered and treated as if it is an alternative.
The possible world semantics are especially helpful for defining the mechanisms used for
querying and manipulating data in uncertain databases. As we will show in one of the
following chapters, evaluating a query on an uncertain database is equivalent with evaluating
the query over each individual possible world and collecting the results that originate from
each possible world. In this thesis we interpret information represented in the database under
the Closed World Assumption stating that all the information not explicitly represented in
the database is supposed to be false. This is contrary to the Open World Assumption in
which negative information must be explicitly represented in the database. The possible
world semantics is such a fundamental concept in research on management of uncertain
data that most of the related projects are based on this theory.

2.3 Uncertainty in relational databases

Uncertain data can be encoded in conventional relational tables. The data model of most
existing uncertain data management systems, MystiQ [8], Orion [10, 22], PrDB [20], Prob-
View [14] and Trio [4, 18], extends the relational data model. Those data models support one
or more of the following concepts:

• Type-1 probabilistic relations
Type-1 uncertainty refers to confidence if a tuple belongs to a relation or not. Consider
table 2.1(a). The table represents a part of my personal address book. It is not really
likely that my address book contains the phone number of the Dutch Queen, where it
is very likely that the address book contains the phone number of one of my fellow
students, Ruud van Kessel.

• Type-2 probabilistic relations
With Type-2 uncertainty, the value of the key-attribute is deterministic but values of
other attributes in the relation may be uncertain. Table 2.1(b) shows a relation which
depicts where Kings and Queens of different countries around the world live. There is
no uncertainty about the country where the King or Queen lives. Since the attribute-
values of the field ”town” for Queen Beatrix and King Carl XVI Gustaf represents
uncertainty, it is not possible to tell in which village they live with complete certainty,
based on this list.

10
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Table 2.1: Examples of different concepts related to managing uncertain data.

(a) Type-1 probabilistic relations

Name Phone number Probability

Beatrix van Oranje +31 70 1234567 0.01

Ruud van Kessel +31 6 12345678 0.99

(b) Type-2 probabilistic relations

Name Country Town

Beatrix van Oranje The Netherlands The Hague/0.9
Amsterdam/0.1

Carl XVI Gustaf Sweden Stockholm/0.5
Malmo/0.5

(c) Null values

Name E-mail address

Sander Evers null

Ander de Keijzer a.dekeijzer@utwente.nl

Maurice van Keulen keulen@ewi.utwente.nl

(d) Tuple alternatives

Name Country City Probability

Teade Scholte The Netherlands Ede 0.5
Teade Scholte France Condorcet 0.5

Theodoor Scholte The Netherlands Enschede 0.9
Theodoor Scholte France Biot 0.1

• Incompleteness
The value of an attribute in a relation is sometimes unknown; the information is in-
complete. This can be expressed by a NULL value. A NULL value models the lack of
information about a value explicitly. Table 2.1(c) represents another part of my address
book. The table lists the names and e-mail addresses of my supervisors. The e-mail
address of supervisor ”Sander Evers” is currently not known, this has been indicated
in the table with ”null”.

• Tuple alternatives
The presence of tuple alternatives in a database means that there are several possible
tuples for one tuple available in the database. Each possible tuple can be associated
with a probability indicating the likelihood that the possible tuple represents some part
of the real world. Table 2.1(d) shows a list of places where my parents live (and where
I live). There are two alternatives in case of my parents, each having a probability.

11
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• Mutual exclusiveness
A database, supporting the modeling of mutual exclusiveness, is able to manage the
relation between data items that represent propositions. These propositions cannot be
true at the same time. An example is ‘Theodoor saw Ander OR Theodoor saw Maurice‘.
Note that Type-2 probabilistic relations model also some kind of mutual exclusiveness.
However, with Type-2 probabilistic relations, a probability is associated with each
alternative.

Many uncertain data management systems are built on top of a traditional RDBMS extended
with (stored) procedures, functions and data types implementing the uncertainty features.
Most uncertain data management systems provide support for querying uncertain data by
accepting a modified version of SQL. In general, the modified language has special constructs
for querying uncertain data.

2.4 Uncertainty in semi-structured data

Semi-structured data models have also been used as a model to represent uncertain data.
In [12] two strategies were identified for modeling uncertainty in semi-structured data mod-
els: event based and choice point based. With the first one, a choice for a certain alternative in
a tree is based on a pre-specified event occurring. This choice invalidates the other possible
alternatives that are present in the tree. Each event has an associated probability. The choice
point based strategy is more dependent on the structure of the tree. The strategy requires that
at specific points in the tree, a decision has to be made between children, each having an
associated probability. The result of such approach is an entire subtree representing a path
or trace of decisions made. This subtree invalidates the other possible alternatives.

Hung et al. [13] proposed the PXML data model. It is a complex data model supporting
the probabilistic representation of arbitrary distributions over relationships between objects
and arbitrary distributions over the object’s value. In this data model, a probabilistic instance
does not have to be tree structured. A probabilistic instance has to be acyclic which means that
one node can have two different parents, the only restriction is that cycles are not allowed.
This data model is event based. The same holds for the Fuzzy tree model of Abiteboul and
Senellart [1]. Their model allows conditional reasoning and modeling of complex dependen-
cies between events. ProTDB of Nierman et al [19] and the Probabilistic XML data model
proposed in [23] are both choice point based probabilistic models. Each node is not treated
as an independent fact but its probability is dependent on the probabilities of its ancestors
(except the root). In both models, a special type of node expresses possibilities (alternatives)
and each possibility is associated with a node indicating the probability. However, the model
proposed in [23] handles mutual exclusiveness in a more natural way because it does not
require that mutual exclusive possibilities have to be specified explicitly.

2.5 Continuous uncertainty

Many applications require the management of continuous uncertain data at the database
level. Sensor data, scientific data and geographical information are all examples of data
containing continuous uncertainty. Continuous uncertain data can be represented as a con-
tinuous probability density function (PDF) like Gaussian or the Gamma function with some

12
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Table 2.2: A small address book
Name Phone number

John 1111
John 2222

Peter 3333

parameters. The integral over such functions on a particular interval results in the prob-
ability that the value of the continuous stochastic variable lies on that particular interval.
Continuous uncertainty can also be approximated by a histogram, hence the continuous
distribution has to be sampled. At Purdue University, a probabilistic model was developed
in the Orion project by Singh et al. [10, 22]. It supports the management of discrete as well
as continuous uncertain data using the relational data model. The model is able to represent
continuous distributions very efficiently and handle them accurately by using the symbolic
form of a continuous distribution. Discrete approximations (e.g. histograms) are not nec-
essarily required. However, the model uses discrete approximations for the representation
of non-standard distributions. Moreover, the model supports both Type-1 and Type-2 un-
certainty and it can handle correlations within and across tuples. The prototype has been
developed as an extension of PostgreSQL. Orion is currently the only project investigating
the management of continuous uncertain data as far as we know.

2.6 Querying uncertain data

As mentioned earlier, a database supporting the management of uncertain data, represents a
set of possible worlds. Following the possible world theory, querying uncertain data means
that the query is evaluated in every possible world. The results from each of the worlds are
collected by the database management system and the union of the results is presented to
the user as an answer to the query that was posed by the user. Consider an address book as
depicted in table 2.2. The database contains two tuples, one tuple has two alternatives. The
total number of possible worlds equals 1 ∗ 2 = 2. A query for the phone number of John is
evaluated in each possible world. Collecting the results from each of the worlds and applying
the union operator over the results would yield the following result: {1111, 2222}. As we will
see later, a database which is storing continuous uncertain data, holds theoretically an infinite
number of possible worlds. Querying this kind of data using the possible world semantics,
means from a theoretical perspective that the query is evaluated in an infinite number of
possible worlds.

The uncertain data management systems developed in the Trio project at Stanford Uni-
versity and in the Orion project at Purdue University, are built on top of an existing database
management system. The SQL query language is extended with functionality supporting
query evaluation over uncertain data. Querying uncertain data leads to query answers con-
taining uncertainty. Then, the question arises how the quality of the answer can be measured.
Ander de Keijzer and Maurice van Keulen contributed to this subject by proposing redefined
functions for precision and recall [12]. Precision and recall are measures for the quality of an
answer indicating the exactness and completeness, respectively. The measures were adapted
in such a way that probabilities are taken into account.
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Table 2.3: A part of a database containing advertisements of real estate objects.

AdId AgencyId City Type Rooms Surface Furnished Price

101 303 Amsterdam Apartment 2 ? yes 800

102 445 Amstelveen Apartment 3 ? no 650

103 303 Hilversum Apartment 2 45 ? 600

Table 2.4: Factors describing the correlations and probabilities among tuples and attributes

AdID f (t.E)

101 0.2

102 0.8

103 0.6

t103 Furnished f (t103.Furnished)

yes 0.5

no 0.5

City Type Rooms Surface Price f (city, type, rooms, sur f ace, price)

Amsterdam Apartment 25 2 800 0.25

Amsterdam Apartment 30 2 800 0.5

Amsterdam Apartment 35 2 800 0.25

Amstelveen Apartment 30 2 650 0.1

Amstelveen Apartment 40 2 650 0.8

Amstelveen Apartment 50 2 650 0.1

Table 2.5: An example of tuple fields having set-values.

ID Name City Phone

1 John Doe {Eindhoven, Groningen, Maastricht} {0845533228, 0622222222}
2 Peter Pan {Amsterdam, Enschede, Utrecht} {0843335599, 0611111111}

2.7 Lineage

A database having support for lineage means that it has support for modeling the trace to
the origin of data residing in a tuple. Lineage identifies the derivation of a tuple to other
tuples. These tuples can be inside the database (internal lineage) or in an external data source
(external lineage). Lineage is closely related to uncertainty because it is a powerful mechanism
to trace where uncertainty is originating from. The mechanism allows the correlation and
coordination of uncertainty between query results and data residing in base tuples (origin).
Trio of Widom et al. [4, 18] is an example of a relational database management system that
has support for representing and manipulating uncertainty and lineage.

14



Managing Continuous Uncertain Data by a Probabilistic XML Database Management System 15

Table 2.6: An example of world-set decomposition.

t1.Name

John Doe
×

t1.City

Eindhoven

Groningen

Maastricht

×

t1.Phone

0845533228

0622222222
×

t2.Name

Peter Pan
×

t2.City

Amsterdam

Enschede

Utrecht

×

t2.Phone

0843335599

0611111111

2.8 Probabilistic dependencies

Probabilistic dependencies are related to the topic of lineage. In the probabilistic models
that are based on the relational data model, one can distinguish intra-tuple and inter-tuple
correlations. Inter-tuple correlations refer to dependencies between tuples. Historical de-
pendencies between tuples can be used to represent the result of prior database operations
on base tuples. In other probabilistic models, lineage is used for this purpose. Intra-tuple
correlations capture the dependencies between attributes inside a tuple. In semi-structured
probabilistic models, dependencies or correlations can be expressed in a natural way by
modeling child nodes that depend on their ancestors. An interesting project to mention is
PrDB. PrDB is a probabilistic data model proposed by Getoor et al. [20] that can express
both Type-1 and Type-2 uncertainty. One of the remarkable features is that it supports so-
called shared correlation structures. This mechanism prevents that probability functions and
correlations have to be copied many times when probabilities do not change from tuple to
tuple. The idea of the correlation structure is based on a parameterized factor representing
uncertainty and correlations over parameterized variables which involve attributes or tuples
(existence). Consider table 2.3, it represents a database containing information regarding real
estate objects that are for sale or for rent. Unknown attribute values are shown as question
marks. The corresponding probabilistic database is depicted in table 2.4. Table 2.4 shows the
parameterized factor f (t.E), this factor describes the likelihood of each advertisement ex-
isting. The table also shows the parameterized factor f (t103.Furnished), this factor describes
the probability that the apartment described by tuple 103 is furnished or not. The surface of
the apartments, that are described by advertisements with ID 101 and 102, is unknown. The
parameterized factor f (city, type, rooms, sur f ace, price) describes the likelihood for the combi-
nations of (city, type, rooms, surface, price). Due to the data sharing features, the model is
space efficient. Another interesting project is MayBMS [2, 3], the model used by MayBMS
allows world-set-decompositions. The concept is based on the decomposition of world sets
into several relations such that the product of the relations represent a possible world. Ta-
ble 2.5 shows an example of a database having set-based attribute-values. In table 2.6, we
see that the world-set relations are decomposed into several relations such that their product
is again the world-set relation. A possible world can be constructed by choosing one tuple
from each relation. The decomposition is based on interdependence between sets of fields
within a tuple; dependent fields are put in the same component, independent fields are put
in different components.
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2.9 Fuzzy data

Fuzzy set and possibility theory are closely related terms. A fuzzy set is an extension of
a standard set. With fuzzy sets, each element is associated with a value between 0 and 1
indicating the weight of the membership of the element in the fuzzy set. The central notion
in possibility theory is that of the possibility distribution. The possibility distribution may
be used to specify to which extent elements of a particular set are allowed as the actual
value of a variable x. An example of a data model, that is based on fuzzy set theory, can be
found in [7]. It supports the modeling of gradual properties, vague classes and approximate
descriptions. The data model does have support for representing constructs like ”a person
A aged 40 belongs to the class ”middle-aged” people with a degree of .8” in relations. So, an
item is assigned to a set with the help of membership function, the assignment is stored in the
database along with a probability indicating the confidence of the assignment. A derivation
of fuzzy set theory is fuzzy logic which deals with reasoning that is approximate instead
of precise (predicate logic). Household appliances, air conditioners and vehicle subsystems
are examples in which fuzzy logic is used. A washing machine, for instance, senses the
amount of laundry and adjusts the amount of water and detergent to be used accordingly.
The microchip in the washing machine has to make decisions based on the variable ”amount
of laundry”. The variable ”amount of laundry” can be subdivided into states: ”not much
laundry”, ”some laundry”, ”normal amount”, ”a lot of laundry”. The transition from one
state to another is hard to define. The term fuzzy database is commonly used when people
refer to information systems that store data in fuzzy set-based relations. Actually, this term
has several meanings. We refer to [7, 6] for a more comprehensive overview.
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Chapter 3

Modeling Continuous Uncertain Data

In this chapter the data model for continuous uncertain data will be discussed. The data
model supporting continuous uncertainty is based on the Probabilistic XML data model
proposed in [12, 23]. First, the properties of this Probabilistic XML data model are presented.
Next, another topic which will be discussed is the interpretation of a continuous distribution
in terms of possible worlds. One of the last sections of this chapter is dedicated to the
specification of the model to be used for representing continuous uncertain data. This chapter
contains several definitions. These definitions are either directly taken from [12, 23], or
adapted, based on the definitions presented in [12, 23].

3.1 Probabilistic XML

3.1.1 Possible worlds

The probabilistic XML data model proposed in [12, 23] is based on the possible world
semantics explained in 2.2. The possible world representation of the probabilistic XML data
model enumerates all possible worlds and encode them in an XML document as separate
subtrees. Each subtree is associated with a probability.

Table 3.1 shows a simplified version of a database used in a patient record system. The
table shows the relation between name and birthdate. There is uncertainty in this relation.
This uncertainty is represented in possible worlds in table 3.2. Figure 3.1 shows the encoding
of the enumeration of possible worlds in a tree.

When a database stores data using the possible world representation, a lot of redundant
data will be stored in the database. As can be seen in table 3.2, there is overlap in names

Table 3.1: Part of the data in a Patient Record System

Name Birthdate

Jan Janssen 8-3-1983
Jan Janssen 9-3-1983

Piet Bakker 4-1-1976
Piet Bakker 4-2-1976
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Table 3.2: Construction of Possible Worlds

World 1

Name Birthdate

Jan Janssen 8-3-1983

Piet Bakker 4-1-1976

World 2

Name Birthdate

Jan Janssen 8-3-1983

Piet Bakker 4-2-1976

World 3

Name Birthdate

Jan Janssen 9-3-1983

Piet Bakker 4-1-1976

World 4

Name Birthdate

Jan Janssen 9-3-1983

Piet Bakker 4-2-1976

▽

◦

P(World1)

hhhhhhhhhhhhhhhhhhhhhhh

◦

P(World2)
vv

vv

vv
vv

◦

P(World3)
HH

HH

HH
HH

◦

P(World4)

UUUUUUUUUUUUUUUUUUUU

· · · · · · · · · · · ·

Figure 3.1: Possible world representation of Patient Record Example (XML), figure has been taken
from [12].

and birthdates. Each unique pair of names and birthdates is duplicated across some of the
worlds. Although, thinking and reasoning in terms of possible worlds is sound, enumerating
possible worlds and encoding them in an XML document is not practical. For that reason,
the Compact representation was proposed in [12, 23]. This type of representation will be
discussed in the next section.

3.1.2 Compact representation

The work presented in this section is based on the possible world semantics discussed earlier.
The compact representation encodes discrete uncertainty in an XML document and reduces
the storage of redundant data compared to the approach discussed in the previous section.
In order to reduce the storage of redundant data, the compact representation distinguishes
three different kinds of nodes: possibility nodes, probability nodes and regular XML nodes.
Children of probability nodes are possibility nodes which represent different possibilities
or alternatives, possibility nodes encodes encode probabilities. The children of possibility
nodes are XML nodes. The regular XML nodes contain the base data. This approach leads to
a reduction of overlapping data as we will see later.

In contrast to set theory and relational data, order is important in XML documents. In the
formal definitions which will be presented in the next few section, set-based theory is used.
For this reason, some notations for handling sequences will be introduced first.

Notational convention 1 Analogous to the powerset notation P , we use a power sequence nota-
tion S A to denote the domain of all possible sequences built up of elements of A. We use the notation
[a1, . . . , an] for a sequence of n elements ai ∈ A (i = 1..n). We use set operations for sequences, such as
∪,∃,∈, whenever definitions remain unambiguous.
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The notions of a tree and subtree are abstractions from the XML document and XML
fragment, respectively. A tree is modeled as a node having a sequence of subtrees as children
of the node.

Definition 2 Let n = {id, tag, kind, attr, value} be a node, with
• id the node identity
• tag the tag name of the name
• kind the node kind
• attr the list of attributes, which can be empty
• value the text value of the node, which can be empty

In an implementation, a node is defined in terms of their properties like in definition 2.
In this theoretical model, we abstract from this definition. In the following definition, the
notion of a tree is defined.

Definition 3 LetN be the set of nodes. Let Ti be the set of trees with maximum level i inductively
defined as follows:

T0 = {(n, ∅) |n ∈ N}

Ti+1 = Ti ∪ {(n, ST) |n ∈ N
∧ST ∈ STi

∧(∀T ∈ ST • n < NT)
∧(∀T,T′ ∈ ST • T , T′

⇒ NT ∩NT′ = ∅)}

where NT = {n} ∪
⋃

T′∈STN
T′. Let Tfin be the set of finite trees, i.e., T ∈ Tfin ⇔ ∃i ∈ N • T ∈ Ti.

In the sequel, we only work with finite trees.

Operations are frequently performed on children of a node or a subtree instead of an entire
tree or a single node. For this reason, functions to obtain subtrees or children are defined. A
subtree can be retrieved by performing the function subtree with parameters T, indicating
the tree containing the subtree, and n, indicating the rootnode of the obtained subtree. The
function child accepts the parameters T, indicating the tree containing the subtree, and n,
indicating the parent of the returned nodes.

Definition 4 Let subtree(T, n) be the subtree within T = (n, ST) rooted at n.

• subtree(T, n) =















T if n = n

subtree(T′, n) otherwise

where T′ such that (n′,T′) ∈ ST ∧ n ∈ NT′.
For subtree(T, n) = (n, [(n1, ST1), . . . , (nm, STm)]),

let child(T, n) = [n1, . . . , nm].

The central notion in the compact representation is that of the probabilistic tree. In an
ordinary XML document all information is certain, whereas in a probabilistic XML document
each XML node has one or more possibilities or alternatives. As mentioned before, the
compact representation introduces two new kinds of nodes:

1. probability nodes depicted as ▽, and
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2. possibility nodes depicted as ◦, which have an associated probability.

In probabilistic XML, ordinary XML are depicted as •. The root of a probabilistic XML
document is always a probability node. The children of a probability nodes are always
possibility nodes, children of possibility nodes are always ordinary XML nodes, and children
of these XML nodes are probability nodes. The result of using this layered structure is a well-
structured probabilistic tree where each level of the tree only contains one kind of nodes.

For examples of probabilistic XML documents and applications of probabilistic XML, we
refer to [12]. [12] contains a formal definition of a probabilistic tree, a formal definition for
deriving possible worlds from a probabilistic tree and it contains an algorithm for counting
the number of possible worlds encoded in a probabilistic tree. We chose not to include
these definitions here as we will present adapted versions of these definitions in one of the
following sections. The adapted definitions allow the encoding of continuous uncertainty
in a probabilistic tree using possible world semantics. However, before we can elaborate on
the representation of continuous uncertainty in a probabilistic tree, we have to agree on how
continuous uncertainty can be expressed in terms of possible worlds.

3.2 Expressing Continuous Uncertainty in Possible Worlds

The Gaussian, gamma and continuous uniform distributions are all examples of absolutely
continuous distributions. A probability distribution is called absolutely continuous if it has an
associated probability density function. An equivalent definition of an absolutely continuous
distribution is that the probability equals zero if a random variable X attains a value on any
given interval.

Figure 3.2 shows the probability density function of a stochastic variable that has a
Gaussian distribution. The stochastic variable is, for instance, the room temperature; the
distribution has parameters mean 18 and variance 2. A property of the probability density
function is that the integral of a probability density function equals 1. Another property is
that for all values of x, f (x) is greater than or equal to zero.

The probability density function that is shown in figure 3.2 can be sampled. Sampling the
probability density function on the interval [13, 23], yields a histogram which approximates
the continuous distribution by means of bars. The Middle Riemann Sum method is used here
for the approximation of the probability density function. The width of each bar corresponds
to the unit or the segment size. In this example each unit has a size of 2. Figure 3.3 depicts this
sampling. The areas of the bars correspond to approximations of the following probabilities:
P(13 ≤ X < 15), P(15 ≤ X < 17), P(17 ≤ X < 19), P(19 ≤ X < 21), P(21 ≤ X < 23). When
the probability density function is sampled on the same interval with a smaller segment
size, the resolution of the histogram increases. This means that the histogram consists of a
larger number of segments, each segment having a smaller interval. Each bar has a smaller
area and thus denotes a smaller probability. In a very fine-grained histogram, the segment
size becomes close to zero, the area of each bar (column) approaches zero meaning that the
probability approaches zero. Moreover, the number of segments approaches infinity. Thus,
the result of sampling is histogram which approaches the curve of a probability density
function.

In contrast to figure 3.3, probability density functions in general and especially the Gaus-
sian distribution, are not bounded on an interval. The continuous uniform distribution is an
example of a distribution that is defined on a specific interval. Thus, theoretically, the result
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Figure 3.2: Probability density function of a Gaussian distribution with parameters mean 18 and
variance 2.

dx = 2

Figure 3.3: An approximation of the area under the probability density function by means of rectangles.
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of sampling a continuous distribution is, in most cases, a very fine-grained histogram which
is unbounded.

When a database models a particular aspect of the real world, the database holds infor-
mation on real world objects. In case of an uncertain database, a database holds information
on possible representations of real world objects. As mentioned before, a possible represen-
tation is also called a possibility. A real world object that can be described by a continuous
distribution, is represented in a continuous uncertain database as an infinite sequence of
possibilities. Each element in the set of possibilities has a value and an associated proba-
bility approaching zero. This all follows from the sampling approach explained before, if
we consider a possibility to be equivalent to a segment and the associated probability to
be equivalent to the segment area under the graph of a probability density function. Con-
sider again figure 3.3. The probability density function is sampled, yielding seven histogram
segments or seven possibilities. Each possibility has an interval, a value (the middle of the
interval) and a probability (the area of the column). The equivalence between a continuous
distribution and an enumeration of possibilities can be described by the following equation:

The representation in a probabilistic database of a real world object, o, that can be described by a
continuous distribution, is defined as follows:

• distribution(o)↔ (S = [s1, . . . , s∞])
• ∀si ∈ S ∧ ∃r ∈ R⇒ prob(si) ≈ 0 ∧ value(si) = r

where distribution samples the continuous distribution into possibilities, si, S denotes the set of pos-
sibilities, prob returns the probability which is associated with each possibility and value returns the
value that corresponds with a possibility.

As mentioned before, a possible world is constructed by choosing one alternative out of
a set of alternatives for each of the real world objects represented by the database (and the
non-existence of an rwo is to be considered an alternative as well). When a database contains
the representation of one or more real world object(s) that can be described by continuous
distributions, the database holds an infinite number of possibilities. In that situation, the
database also holds an infinite number of possible worlds.

As was shown in section 3.1, uncertainty can be represented in XML by enumerating pos-
sible worlds and encode them in separate subtrees.Following this approach when continuous
uncertain data is involved, yields a tree as shown in figure 3.4. This approach is theoretically
very interesting, though practically not feasible. Besides the problem of duplicate information
across possible worlds as discussed in the previous section, the enumeration and encoding
of an infinite number of possible worlds into separate subtrees would yield a never-ending
XML document. For this reason, the continuous representation will be introduced.

3.3 Representing Continuous Uncertainty

In this section the continuous representation, used to model continuous uncertain data, will
be presented. The continuous representation solves some limitations of the compact repre-
sentation. The representation introduced here is entirely based on the compact representation
proposed in [12, 23].

The central notion in the compact as well as in the continuous representation is the
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· · · · · · · · · · · · · · ·

Figure 3.4: Possible world representation of continuous uncertain data.

probabilistic tree. As discussed before, a probabilistic XML document consists of probability
nodes, possibility nodes and regular XML nodes. Possibility nodes are used to model zero
or more alternatives for an XML node. In the compact representation, which can be used to
model discrete uncertainty, each subtree of a possibility node denotes one possibility.

The continuous representation is somewhat more complicated with respect to this. When
the continuous representation is used to model continuous uncertain data, possibility nodes
are associated with continuous distributions and with the probability mass, in other words:
possibility nodes hold probability density functions and the probability mass. Consequently,
each possibility node represents an infinite number of possibilities. The continuous represen-
tation handles discrete probabilities in the same way as the compact representation does. In
the compact representation, each possibility node has an associated probability. The contin-
uous representation also uses possibility nodes with associated probabilities when modeling
discrete uncertainty. The continuous as well as the compact representation require that the
total probability mass under a probability node sums up to 1. This means that the sum of
the the probabilities associated with possibility nodes and the area below the graph of a
probability density function have to be equal to 1.

In the continuous representation, the possibility nodes may encode probability density
functions along with its parameters. We need to define which probability density functions
are supported by the probabilistic model.

Definition 5 The supported probability density functions are defined by the following set:
• PDF0 = {gaussian(µ, σ2), gamma(k, θ), uniform(a, b), beta(α, β)}
• PDFi = PDFi−1 ∪

⋃

p∈PDFi−1
floor(p, F)

• PDF =
⋃

i PDFi

In definition 5, PDF0 is the set of labels that refer to the probability density functions
of standard continuous distributions. Besides the probability density functions, the labels
also specify the parameters of the probability density function, e.g. µ and σ for the Gaussian
distribution. The set PDFi contains the labels that refer to the probability density functions
of non-standard continuous distributions. An example of a non-standard continuous distri-
bution is a continuous distribution that has been floored. The application of a floor over a
standard continuous distributions acts as a selection predicate or a filter. In terms of seman-
tics, the possibilities that do not satisfy the selection criteria are filtered out. Consequently,
these possibilities do not exist in the resulting continuous distribution. The area under the
curve of the resulting probability density function is less than one. Thus, in the result, prob-
ability mass is missing. A floor is used to cut-off a continuous distribution. An example of a
situation in which this operator is useful, is the representation of sensor readings. In many
cases, sensor readings are only correct if the reading falls within a particular interval which
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is part of the whole domain. The floor operator can be used to create a new probability
distribution function that is specified on that particular interval.

A probabilistic tree is defined as a tree, a kind function that assigns node kinds to specific
nodes in the tree, a prob function which attaches probabilities to possibility nodes and a
distribution function which attaches probability density functions to possibility nodes. The
root node is defined to always be a probability node. A special type of probabilistic tree is a
certain one, which means that all information in it is certain, i.e., all probability nodes have
exactly one possibility node with an associated probability of 1.

Definition 6 A probabilistic tree PT = (T, kind, prob, distribution) is defined as follows

• kind ∈ (N → {prob, poss, xml})

• NT
k
= {n ∈ NT | kind(n) = k}.

• kind(n) = prob where T = (n, ST)

• ∀n ∈ NT
prob∀n′ ∈ child(T, n) • n′ ∈ NT

poss

• ∀n ∈ NT
poss∀n′ ∈ child(T, n) • n′ ∈ NT

xml

• ∀n ∈ NT
xml∀n′ ∈ child(T, n) • n′ ∈ NT

prob

• prob ∈ NT
poss ֌ [0, 1]

• distribution ∈ NT
poss ֌ {discrete} ∪ PDF

• ∀s ∈ dom(distribution(s)) • distribution(s) ∈ PDF =⇒ s ∈ dom(prob) ∧ prob(s) =
+∞
∫

−∞

pdf(s)(x)dx

• ∀n ∈ NT
prob • ((

∑

n′∈child(T,n) prob(n′)) = 1 ∨ (∀n′ ∈ child(T, n) • prob(n′) = ⊥)).

Where A ֌ B is a partial function.

A probabilistic tree PT = (T, kind, prob, distribution) is certain iff there is only one possibility
node for each probability node and the possibility node is not associated with a continuous distribution,
i.e., certain(PT) ⇔ ∀n ∈ NT

prob • |child(T, n)| = 1.To clarify definitions, we use b to denote a

probability node, s to denote a possibility node, and x to denote an XML node.

Continuous probability distributions can be characterized by probability density func-
tions. A probability density function is defined as a function of a possibility node holding the
kind of probability density function with its parameters, and the input variable x which is an
element from the set R. The result is also a rational number. The attentive reader will notice
that definition 7 allows the modeling of continuous probability distributions that have been
floored.
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Definition 7 Let pdf(s)(x) return the value of the probability density function, which is associated
with possibility node s, with as input x. Since function pdf is a probability density function describing
the probability density in terms of the input variable x, it has the following properties:

• pdf ∈ Nposs ֌ R→ R

• ∀s ∈ dom(pdf)∀x ∈ R • pdf(s)(x) ≥ 0
• ∀s ∈ dom(distribution(s)) •

pdf(s) =















































”usual probability density function

associated with distribution(s)”, if distribution(s) ∈ PDF0

λx : R •















0, if x ∈ F

f (x), otherwise
if distribution(s) = floor(f , F)

⊥ otherwise

A probability density function can be used to compute probabilities. A real-world object
can be described by a random variable whose probability distribution is continuous. The
probability that a random variable attains a value less or equal than a given value, x, is
defined by the following definition.

Definition 8 The real world object, o, can be described by the continuous random variable X. Let
Pr(s,X ≤ x) be the probability that the continuous random variable attains X a value less or equal x.

• Pr(s,X ≤ x) =
x
∫

−∞

pdf(s)(x)dx

where s is a possibility node, encoding the probability density function of the continuous random
variable X.

A possibility node that encodes a probability density function represents an infinite
number of possibilities, the possibility node can be replaced by an infinite sequence of
possibility nodes. By doing this, we expand or slice the possibility node that has an associated
probability density function. The parent node of the resulting sequence is the probability
node which can be seen as the root node of a probabilistic (sub-)tree. The children of the
probability node is a sequence of possibility nodes which may contain possibility nodes that
represent probabilities (discrete uncertain data) as well as an infinite number of possibility
nodes which correspond to one or more continuous distributions. The possibility nodes of the
latter type, have an associated probability approaching zero. This is more formally described
by the following definition.

Definition 9 Let α̂s′ be the probability associated with possibility node s′ after expanding the proba-
bility density function encoded by possibility node s.

• α̂s′ = Pr(s,X ≤ x + dx) − Pr(s,X ≤ x)

After expanding the possibility node, each resulting possibility node has one child which
is a regular XML node holding a value. A possibility node holding a continuous distribution
can be transformed from the continuous representation to the compact representation using
the expand function.
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Definition 10 Let expand(T, n) be a probabilistic subtree of T rooted at n enumerating the infinite
number of possibilities summarized by a possibility node that encodes a probability density function
and is originally a child of n. Each resulting possibility is associated with a probability approaching
zero, i.e., prob(s′

i
) = α̂s′

i
.

expand(T, n) =























(n,D ∪ [(s′
1
, [x′

1
]), . . . , (s′q, [x

′
q])]), if ∃s ∈ child(T, n)•

distribution(s) ∈ PDF

subtree(T, n), otherwise

(3.1)

where n ∈ NT
prob∧ s′ ∈ Nposs∧ x′ ∈ Nxml∧prob(s′

i
) = α̂s′

i
∧D = [∀c ∈ child(T, n)|distribution(c) <

PDF • c] ∧ {x′
1
, . . . , x′q} = dom(pdf(s)) ∧ ∀i, j ∈ N • i , j =⇒ si , s j

A probability density function is defined on an interval. This interval is open or it is
bounded. In both situations, when dx approaches zero, the associated α̂s′ approaches zero
and the number of possibility nodes approaches infinity. Consequently, the number of XML
nodes, that are children of the possibility nodes, approaches infinity. This is similar to the
sampling approach which we described in section 3.2. When the size of a segment in a
histogram approaches zero, the area of that segment approaches zero. In order to fill the
curve of a probability density function with segments, an infinite number of segments is
required.

A probabilistic tree may contain several possibility nodes, each encoding a probability
density function. Applying the expand on the parents, the probability nodes, of those pos-
sibility nodes yields a new probabilistic tree. The resulting probabilistic tree is the compact
representation of the set of possible worlds. In this probabilistic tree, each probability node
representing continuous uncertainty, have an infinite number of possibility nodes as chil-
dren. In the compact representation, a possible world can be constructed from a probabilistic
tree by making a decision at each probability node for one of the possibility nodes. For this
reason, a probability node can also be seen as a choice point. Each possible world can be
represented by a certain probabilistic tree. Definition 11 assumes that all possibility nodes in
PT have already been expanded.

Definition 11 A certain probabilistic tree PT′ is a possible world of another probabilistic tree PT,
i.e., pw(PT′,PT), with probability pwprob(PT′,PT) iff
• PT = (T, kind, prob) ∧ PT′ = (T′, kind′, prob′)
• T = (n, STn) ∧ T′ = (n, ST′

n
)

• ∃s ∈ child(T, n) • child(T′, n) = [s]
• X = child(T, s) = child(T′, s)
• ∀x ∈ X • child(T, x) = child(T′, x)
• B =

⋃

x∈X child(T, x)
• ∀b ∈ B • PTb = subtree(PT, b)

∧PT′b = subtree(PT′, b)
∧pw(PT′b,PTb)

• ∀b ∈ B • pb = pwprob(PTb,PT′b)
• pwprob(PT′,PT) = prob(s) ×

∏

b∈B pb

The set of all possible worlds of a probabilistic tree PT is
PWSPT = {PT′ |pw(PT′,PT)}.
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Figure 3.5: Examples of the continuous and the compact representations.

The number of possible worlds captured by a probabilistic tree is determined by the
number of probability nodes and the number of possibilities below each probability node.
We also define a function leaf that returns all the leaf nodes of a tree.

Definition 12 In the continuous representation, the number of possible worlds defined by the tree

PT, N
PW(T)
PT

is equal to the number of possible worlds at node n, defined by N
PW(T)

n
where

• leaf(T) = {n|n ∈ NT • child(n) = ∅}

• N
PW(T)
n = 1, if n ∈ leaf(T)

• N
PW(T)
n =

∏

n′∈child(T,n) N
PW(T)
n′ , if kind(n) = poss ∧ distribution(n) < PDF

• N
PW(T)
n = ∞, if kind(n) = poss ∧ distribution(n) ∈ PDF

• N
PW(T)
n =

∑

n′∈child(T,n) N
PW(T)
n′ , if kind(n) = prob

• N
PW(T)
n =

∏

n′∈child(T,n) N
PW(T)
n′ , if kind(n) = xml

Using the definition above, one can calculate the number of possible worlds captured by
a probabilistic tree. The definition says that if a tree captures at least one continuous distri-
bution, the number possibilities and thus also the number of possible worlds it represents is
∞.
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3.4 Examples

Figure 3.5 shows an example of how a continuous distribution can represented in a proba-
bilistic database. In the example, the temperature in a room of an office building during the
day can be described by a continuous distribution. The database stores the combinations of
room numbers and the corresponding temperature models for the whole office building. The
continuous representation shown in figure 3.5(a) stores the probability density function with
its parameters. Figure 3.5(b) shows the corresponding expanded version of the probabilistic
tree from figure 3.5(a), this representation is also called the compact representation.

3.5 Conclusion

In this chapter, we introduced a probabilistic data model that supports the representation of
continuous uncertain data in XML. We explained how continuous uncertain data can be ex-
pressed in possible worlds. Besides that, we proposed the continuous representation which is
able to represent continuous uncertain data in XML in an efficient way. The continuous repre-
sentation is an extension to the compact representation proposed in [12, 23]. Furthermore, we
showed that the continuous representation and the compact representation are equivalent
since the continuous representation can be transformed to the compact representation using
the expand(T, n) function. As a result of this, all the properties that are valid for the compact
representation, are also valid for the continuous representation.
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Chapter 4

Query language

One of our goals is to provide simple, yet very powerful, constructs for querying XML
documents containing continuous uncertain data. In conjunction with the XQuery language,
the constructs can be used by the end-user to compose queries. In this chapter we will discuss
querying techniques in terms of possible world semantics. First, we need to show how the
semantics are followed when querying continuous uncertain data. Then, we will explain the
working of basic operators, such as querying the probability or retrieving the mean from
a distribution. We conclude this chapter with a discussion on advanced functions that are
capable of aggregating one or more continuous distributions in different ways.

4.1 Possible worlds

In the previous chapter we examined two representations in detail: the compact and the con-
tinuous representation. As we discussed in chapter 2, most uncertain database management
systems are based on the possible world semantics.

Pirotte and Zimányi showed in [27] how the semantics are followed when querying an
uncertain database. Information residing in a database is represented by a set of possible
worlds. Following the possible world semantics, querying uncertain data means that a query
is evaluated in every possible world captured in a probabilistic database, the results of the
individual query evaluations are collected and the union of these results are presented to the
user as if it is one result.

Section 3.1.1 showed that a collection of possible worlds stored in a probabilistic database,
contains overlapping data. Moreover, in terms of semantics, continuous uncertain data is
represented by an infinite number of possible worlds. Querying redundant or overlapping
data is not efficient and querying continuous uncertain data by enumerating an infinite
number of possible worlds is infeasible. For these two reasons, the query operations we will
propose will work directly on the continuous representation. The continuous representation
should be fully compatible with possible world semantics because it only extends the compact
representation in such a way that it supports the modeling of continuous uncertainty; [12, 23]
showed that the compact representation is consistent with possible world semantics when
querying discrete uncertain data.

Figure 4.1 shows a commutative diagram. D is a single database, D1...D∞denote possible
worlds and R is a function which returns the query result. The top part of the figure represents
the continuous representation and the lower part represents the possible world semantics.
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D
OO

PI
��

q
// Rq(D)

OO

PI
��

D1, · · · ,D∞
q
// Rq(D1), · · · ,Rq(D∞)

Figure 4.1: Commutative diagram, figure has been taken from [12].

The figure also shows two vertical arrows. These arrows denote the transformation between
the possible worlds and the continuous representation (and vice versa).

4.2 Querying a continuous distribution

An XML document containing continuous uncertain data holds multiple continuous dis-
tributions. Each possible world stored in the document, consists of one possibility (a slice)
from each continuous distribution encoded in the document. Following the possible world
semantics, computing a probability is an operation that works across possible worlds because
a probability is associated with a possible world and is not known within a possible world.
Examples of other operations that are useful and work across possible worlds, include the
computation of the mean and the variance of a continuous distribution. All these value-based
query operators do not conform to possible world semantics. In this section we will define
several probabilistic query operations using probability theory as basis. As discussed in the
previous section, we will define these operations in such way that they can be used on the
continuous representation.

4.2.1 The mean function

The expected value is a way to describe the location of the distribution in the set of possible
values (which is infinite in the case of a continuous distribution) in terms of the location of the
probability mass. It is computed by taking the integral over the input values of the probability
density function multiplied with the outcome of the probability density function for each
element in the set of possible values. A more formal description is given in definition 13.

Definition 13 Let mean(T, s) be a function that computes the expected value of the continuous
distribution encoded in possibility node, s.

• mean(T, s) =
+∞
∫

−∞

x ∗ pdf(s, x)dx

where x ∈ R and T is the probabilistic tree containing the possibility node s.

4.2.2 The variance function

In statistics, the variance of a distribution is a way to express the degree of being spread out.
The variance is computed by averaging the squared distances of the possible values from the
expected value. A more formal description is given below.
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Definition 14 Let variance(T, s) be a function that computes the variance of the continuous distri-
bution encoded in possibility node, s.

• variance(T, s) =
+∞
∫

−∞

pdf(s, x) ∗ (x −mean(T, s))2dx

where x ∈ R and T is the probabilistic tree containing the possibility node, s.

4.2.3 The vmin function

The vmin function computes the minimum possible value of a continuous distribution. A
more formal description is given below.

Definition 15 Let vmin(T, s) be a function that computes the minimum value of the continuous
distribution encoded in the possibility node, s.

vmin(T, s) =























−∞ if distribution(s) = gaussian

0 if distribution(s) = gamma
∨

distribution(s) = beta

a if distribution(s) = uniform

(4.1)

where T is the probabilistic tree containing the probability node s.

4.2.4 The vmax function

The vmax function computes the maximum possible value of a continuous distribution. A
more formal description is given below.

Definition 16 Let vmax(T, s) be a function that computes the maximum value of the continuous
distribution encoded in the possibility node, s.

vmax(T, s) =























+∞ if distribution(s) = gaussian
∨

distribution(s) = gamma

1 if distribution(s) = beta

b if distribution(s) = uniform

(4.2)

where T is the probabilistic tree containing the possibility node s.

4.2.5 Predicates

In the previous sections we discussed the behavior of several operators that process one
continuous distribution returning one single value as a result. These operators can be used
as means to determine the properties of one or more distributions by simply executing
the operator over each distribution and enumerating the results. Since these operators are
able to determine the properties of distributions, they can also be used in a predicate. A
predicate can be composed using one or more operators and all distributions satisfying
the predicate will be returned. Consider figure 4.2, it shows a part of the sensor database
which is in use by the Dutch Environment Agency. It is an example of a semi-structured
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<locations>

<location>

<name>Arnhem</name>

<prob>

<poss type=gaussian(920,20)>

<water-level/>

</poss>

</prob>

</location>

<location>

<name>Den Helder</name>

<prob>

<poss type=gaussian(-30,5)>

<water-level/>

</poss>

</prob>

</location>

</locations>

Figure 4.2: An example of a sensor database.

Table 4.1: The value-probability pairs correspond to the segments in histograms A and B.

(a) Histogram HA

Segment Value Probability

gA1 2 0.1079819330

gA2 4 0.7978845605

gA3 6 0.1079819330

(b) Histogram HB

Segment Value Probability

gB1 10 0.1079819330

gB2 12 0.7978845605

gB3 14 0.1079819330

database containing continuous uncertain data. The data is originating from sensors that
measure the actual water levels on different locations in The Netherlands. The Dutch En-
vironment Agency is responsible for notifying several governmental organizations when
the water level reaches a certain limit. For this reason, an employee of the Dutch Environ-
ment Agency wants to know the locations where the expected value of the water level is
more than 100 centimeters. In order to get this knowledge, he poses the following query to
the database: /location[mean(water-level)>100]/name. The answer to this query will be
<name>Arnhem</name>.

4.3 Aggregating continuous distributions

Aggregation operators can be used to aggregate multiple continuous distributions in one
single continuous distribution. If a distribution is considered to describe a real world object,
those descriptions use the same unit of measurement, and the distributions are independent,
an aggregation function can be used to aggregate descriptions of similar real world objects.
The resulting distribution can be presented to the end-user or used for further processing.
We will show that these aggregation query operators follow the possible world semantics

32



Managing Continuous Uncertain Data by a Probabilistic XML Database Management System 33

A B

Figure 4.3: The probability density functions of Gaussian distributions A and B.

A

(a) Histogram A

B

(b) Histogram B

Figure 4.4: The sampled probability density functions.

Table 4.2: Each computed probability in table B indicates the likelihood that both events occur
simultaneously.

(a) min (gAi, gBj)

min 10 12 14

2 2 2 2
4 4 4 4
6 6 6 6

(b) Multiplied probabilities (gAi, gBj)

min 10 12 14

2 0.01166009785 0.08615711716 0.01166009785
4 0.08615711716 0.6366197722 0.08615711716
6 0.01166009785 0.08615711716 0.01166009785
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Table 4.3: Merging value-probability pairs, summation of probabilities.

(a) min Intermediary result

Value Probability

2 0.01166009785

2 0.08615711716

2 0.01166009785

4 0.08615711716

4 0.6366197722

4 0.08615711716

6 0.01166009785

6 0.08615711716

6 0.01166009785

(b) Aggregate MIN result, histogram HC

Segment Value Probability

gC1 2 0.1094773129

gC2 4 0.8089340065

gC3 6 0.1094773129

which were discussed in section 4.1.

Figure 4.3 shows us a Gaussian distribution A with parameters mean 4 and variance 1
and a Gaussian distribution B with parameters mean 12 and a variance of 1. The two Gaus-
sian distributions are independent. Discretizing the two distributions yields two separate
histograms as depicted in figure 4.4(a) and figure 4.4(b), respectively. The Middle Riemann
Sum method is used here for the approximation of the probability density functions. Ta-
ble 4.1(a) depicts the value-probability pairs, gAi, which correspond with each segment, i,
in histogram HA. This histogram has been derived from distribution A. Table 4.1(b) denotes
those properties for each segment in histogram HB. The value in each value-probability pair,
gAi and gBi, refers to the middle of each segment. It is required for the other stages in the
aggregation process that the step sizes of the histograms are the same. The attentive reader
will notice that the probabilities or the areas of the columns in the histogram do not add up
to one. The error is caused by the Middle Riemann Sum method which is used as a tech-
nique for approximating the continuous distribution. There are two classes of methods for
sampling a continuous distribution. In one class, standard methods like Riemann sums and
the Trapezoidal rule are used. The sampling methods in the other class ensure that the sum
of approximated probabilities equals one. An example of these sampling methods is to use
the Middle Riemann Sum method in conjunction with normalization of the approximated
probabilities in such way that their sum equals one. However, the implication of using such
method, is that the associated value moves. For this reason, we will use the Middle Riemann
Sum method. The consequence is that the approximation errors will be propagated during
the aggregation process; the errors will affect the final aggregation result.

A histogram can be considered as a sequence containing value-probability pairs. If we con-
sider sequence SA to be the sequence containing all the value-probability pairs corresponding
to each segment in histogram HA and sequence SB corresponds similarly to histogram HB,
we can take the cartesian product of those two sequences. The result of this operation is: R =
[[gA1, gB1], [gA1, gB2], [gA1, gB3], [gA2, gB1], [gA2, gB2], [gA2, gB3], [gA3, gB1], [gA3, gB2], [gA3, gB3]]. It
is a sequence of sequences. In terms of possible world semantics, the result of the cartesian
product operation is a collection of possible worlds. A possible world corresponds to a
sequence [[gAi, gBj]].
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Now, we can apply selection function over the values from each pair, g, in each sequence,
[[gAi, gBj]]. The selection function is one of the following functions: min,max, avg, sum, product.
Applying the min over each value from each pair in the sequence [gA1, gB1] means that
min(2, 10) will be executed, yielding a result of 2. Moreover, the probabilities from each pair
in the sequence [[gAi, gBj]] are multiplied resulting in the probability that the events corre-
sponding to the segment gAi are occurring and the events corresponding to the segment gBj

are occurring at the same time. Multiplying the probabilities from each pair in the sequence
[gA1, gB1] is equivalent with 0.1079819330 ∗ 0.1079819330 = 0.01166009785. Combining the
result of the selection function with the result of the multiplication of the original probabil-
ities yields a new value-probability pair. If we apply this algorithm on each element in the
sequence R, we get a number of value-probability pairs. Table 4.3(a) shows us the result of
applying this algorithm on histograms A and B, with min as selection function. This part of
the aggregation process is also called the selection phase since one value is computed or se-
lected using a selection function from each sequence, [[gAi, gBj]], in the sequence R. We showed
that one sequence [[gAi, gBj]] corresponds to one possible world, the sequence R corresponds
to the collection of possible worlds. So, the selection function is evaluated in each possible
world that is part of the collection of possible worlds. The results of the selection in each of
the worlds is collected yielding a number of possibilities.

As we can see in table 4.3(a), the values in the value-probability pairs may overlap.
For this reason, we introduce an additional step. We merge the value-probability pairs that
contain the same value resulting in a set of unique pairs. In the merging phase, a summation
is performed over the probabilities that correspond with the same values. This is because
merged value-probability pairs should have a higher weight in the resulting distribution. In
terms of semantics, the possibilities having the same value, are taken together.

Table 4.3(b) shows us the distribution resulting from the application of the aggregate
AMIN function on histograms A and B. The result should be equal to histogram HA because
the values corresponding to the segments in histogram HA are smaller than the values of
the segments in histogram HB. The cause for the error between the resulting histogram and
the original histogram HA is that the areas of the columns in histogram HA do not add up
to one. The error occurred during the sampling of continuous distributions is propagated in
the computation and therefore affects the result, as has been explained before. As shown in
table 4.3(b), the resulting distribution is approximated with a histogram having a step size
of 2. The value corresponding to each segment lies in the middle of the segment.

The aggregation of continuous distributions results into one continuous distribution. Fig-
ure 4.5 shows an overview of the aggregation process. The aggregation process is based on
possible world semantics. To summarize, the cartesian product of all possibilities residing in
each distribution is taken. The result is a collection of possible worlds. The next step involves
the selection phase. In this step, a possibility is selected from each possible world using a
selection function. The selected possibility is associated with a probability that is equal to the
multiplication of probabilities that are available in the corresponding possible world. The
results, from selecting a possibility in each possible world, are collected. The next step in-
volves the merging of possibilities having the same value. In this merging step, probabilities
are summed. These last two steps are the actual aggregation of possibilities. The result of this
aggregation process is a number of combined possibilities having a value and an associated
probability. The result can be approximated with a histogram. As explained before, a very
fine-grained histogram on a relative large interval approaches a continuous distribution.
When Gaussian distributions are aggregated, the aggregation process may produce a Gaus-
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Figure 4.5: An overview of the aggregation process.

sian distribution which is approximated by a histogram. An example is the application of the
ASUM or the AAVG operators with two Gaussian distributions, the result is one Gaussian
distribution.

A detailed description of the aggregation operators is given by the algorithms in figure 4.3
and in figure 4.3. The algorithms are written in pseudocode. In the first figure, the sampling
and the cartesian product functions are described. The cartesian product function uses several
helper functions. The algorithm in the second figure describes the selection and merging
phase. The selection function is responsible for computing the AMIN, AMAX, ASUM or the
AAVG from the continuous distributions. The merge function merges value-probability pairs
that contain the same value.

4.3.1 Scenario

In the previous section we introduced several aggregate operators that are capable of aggre-
gating multiple continuous distributions yielding one single continuous distribution. In this
section we will motivate the need for these operators with the help of a scenario.

The ”Brouwerij” is the name of a large brewery located in Enschede, The Netherlands. This
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sample(distribution) : [(value, pdf(value))]
begin

delta := 0.1; start := getStartOfDistribution(distribution); end := getEndOfDistribution(distribution)
result := []
let cnt := start
while (cnt < end)

result := result ∪ (cnt, pdf(cnt) ∗ delta)
cnt := cnt + delta

return result
end

cartesianProduct(array[] H) : [[(value, probability)]]
begin

A :=H[1]
B :=H[2]
position := 3
result := cartesianSimpleProduct(A, B)
return cartesianRecursive(H, position, result)

end

cartesianRecursive(H, position, result) : [[(value, probability)]]
begin
if (position ¡ count(H)) then

res := set:cartesianSimpleProduct(result, H[position])
pos := position + 1
return cartesianRecursive(H, pos, res)

else
res := cartesianSimpleProduct(result, H[position])
return res

end

cartesianSimpleProduct(array[] A, array[] B) : [[(value, probability)]]
begin

result := []
for each a ∈ A

PW := [a]
for each b ∈ B

PW := PW ∪ b
result := result ∪ PW

return result
end

Figure 4.6: Algorithms for sampling and the cartesian product.

brewery produces beer under different brands, its target is the whole European market. The
”Brouwerij” wants to control the quality of the production of beer continuously. Moreover,
the goals of the management of the brewery is to gain competitive advantage. For that reason,
the management decided to cut costs and to improve the operational management of the
production process. The brewery does have an enterprise resource planning system. Among
other things, this system helps to improve operational management and to keep the quality
of beer at the same constant level.

The factory does have two production lines for bottling bottles of beer. Both production
lines have a certain capacity a day, this capacity is Gaussian distributed. Production line one
is distributed with parameters mean 10000 bottles and variance 1000 bottles, production line
two is distributed with parameters mean 20000 and variance 2000. The management wants
to know the total bottling capacity. In this situation, the ASUM operator can be used to sum
both distributions.
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select(selectiontype, C) : [(value, probability)]
begin

mins := []; maxs := []; sums := []; avgs := []
for each seq ∈ C

values := []
probability := 1
for each pair ∈ seq

values := values ∪ firstElement(pair)
probability := probability ∗ secondElement(pair)
mi :=MIN(values); mins :=mins ∪ (mi, probability)
ma :=MAX(values); maxs :=maxs ∪ (ma, probability)
su := SUM(values); sums := sums ∪ (su, probability)
av := AVG(values); avgs := avgs ∪ (av, probability)

if (selectiontype == ”MIN”) then return mins
else if (selectiontype == ”MAX”) then return maxs
else if (selectiontype == ”SUM”) then return sums
else if (selectiontype == ”AVG”) then return avgs
else []

end

merge(P) : [(value, probability)]
begin

result := []
for each pair ∈ P

value := firstElement(pair)
probability := −1
for each pair res ∈ result

value res := firstElement(pair res)
if (value==value res) then

prob p := secondElement(pair)
prob res := secondElement(pair res)
probability := prop p + prob res
updateSecondElement(pair res, probability)

else
if (probability == −1) then

result := result ∪ [(value, secondElement(pair))]
else

return result
end

Figure 4.7: Algorithms for selecting and merging.

The filling process consists of different stages. One stage of the process is filling the
bottle, the next step is pushing the caps on the bottle. The filling machine fills a beer bottle
imprecisely. The amount of beer in a bottle is Gaussian distributed with an expected value of
33 centiliters and a variance of 5 centiliters. While pushing caps on a bottle, some bottles get
broken due to too much pressure of the pushing machine or damaged glass. The beer inside
broken bottles will be lost in the production line. The daily amount of damaged bottles in the
bottling process is Gaussian distributed with parameters mean 50 bottles and a variance of
10 bottles. The management wants to know the amount of lost beer in the bottling process.
This can be computed by applying the PRODUCT operator over the distribution denoting
the amount of beer in a bottle and over the distribution representing the amount of broken
bottles.

A study towards the operational performance of the bottling line makes clear that the
capacity of the bottling line is heavily dependent on which team of employees is on duty. The
management would like to fire bad performing teams, while good performing teams may
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Table 4.4: The resulting values of the APRODUCT aggregate over (gAi, gBj)

product 10 12 14

2 20 24 28
4 40 48 56
6 60 72 84

get a bonus. During one month, the bottling capacity is measured for each team that was
in charge. The result is a set of Gaussian distributions, each distribution corresponds to the
performance of one team in a particular month. The AMIN operator is executed over these
distribution resulting in the distribution that indicates the likelihood that a team performs
badly. Similarly, the AMAX operator is executed. The management introduces a general rule:
when the production of one team in the next month is less than the expected value of the
minimum performance in the previous month, and when this happens two times, the team
as a whole is fired. Bonuses are provided similarly.

Besides, the production facilities, the factory does also host a laboratory which is moni-
toring the quality of beer continuously by taking samples and do experiments on them. One
of the experiments is the measurement of the alcohol percentage. Due to impreciseness of
instruments, the measurements of the alcohol percentage have a Gaussian distribution. The
laboratory would like to aggregate the measurement results of the past month. One approach
for doing this, is to use the AAVG operator to compute the average distribution.

4.3.2 A special case: the APRODUCT aggregate operation

In section 4.3 we presented an approach for aggregating continuous distributions. One type
of aggregation is the APRODUCT aggregate, the need for this type was motivated in the
previous section. In contrast to other aggregate operations, the result of the APRODUCT
aggregate cannot be approximated with a histogram.

Consider table 4.2(a), when we apply the APRODUCT operator instead of the MIN
function, we will get a distribution containing the values that are shown in table 4.4. There
is no fixed step size, the step size varies between 4 and 12. This result cannot be represented
by a histogram since a histogram has, by definition, a fixed segment size. This is still an open
issue.
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Chapter 5

Prototype

While the previous chapters focused more on the theoretical aspects of supporting continuous
uncertainty by semi-structured databases, this chapter will describe the practical issues dealt
with during the implementation of a prototype supporting continuous uncertainty. The most
important goal of this prototype is to show the ability of managing continuous uncertain
data. In this chapter we will discuss the development of a proof of concept supporting the
model and concepts presented in the previous chapters. This chapter is structured like any
other software design document; it contains sections about the requirements, design and
implementation.

5.1 Requirements

Since our study focused primarily on a data model and a query language for continuous
uncertain semi-structured data, these are the most important aspects of our proof of concept.
We distinguish the following requirements:

1. Probabilistic XML
In chapter 3 we explained that our model for continuous uncertainty is based on Prob-
abilistic XML [12, 23]. For that reason, the data format used in the prototype should
resemble the continuous representation which we proposed in chapter 3. We need
to find a way to encode probability density functions, which are inherently related
to continuously uncertainty, into Probabilistic XML documents. Moreover, the imple-
mentation of the query language should be able to work on these specific versions of
Probabilistic XML documents.

2. Continuous distributions
The common continuous probability distributions like beta, gamma, gaussian and the
uniform distributions can be stored in XML using the data model that was proposed
in chapter 3. We require that the proof of concept has support for at least one of the
following continuous distributions: beta, gamma, gaussian or the uniform distribution.
Extending the prototype in such way that it will support other well-known continuous
probability distributions is straightforward then. Furthermore, the prototype should
support storing and querying non-standard continuous probability distributions (e.g
distributions that have been floored).
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3. Probabilistic query constructs
One of the major issues we would like to evaluate is the query language as proposed
in 4. The prototype should have support for all the operations that were discussed in
the previous chapter; operators like mean, variance and the aggregate functions. The
implementation should have support for using operators in predicate queries.

4. Symbolic representation
Although the approximations of continuous distributions can be represented by his-
tograms as was shown in chapter 3, the only way to store this data without loss of
information is to store the symbolic form of a probability density function itself (and
its parameters). The implementation should have support for encoding various kinds
of probability density functions in the symbolic form in probabilistic XML documents.

5. Historical dependencies
As discussed above, the symbolic representation ensures that no information will be
lost when managing continuous uncertain data. The ideal situation is that the symbolic
representation captures the operations that were performed on the base probability
density functions. Then, the symbolic representation acts as a log that keeps track of
the history of a continuous stochastic variable.

6. Histograms
The symbolic representation is able to represent any kind of distribution in an accurate
way when it stores the distributions as a sequence of operations that have been per-
formed on base probability density functions. Consider the application of the FLOOR
operator on a standard Gaussian distribution. This results in a non-standard distri-
bution, the symbolic representation would represent this as a floor function applied
on a gaussian probability density function. The exact formula is, in most situations,
unknown or is too complicated to compute. Suppose we would like to compute a
probability, the mean or variance of this non-standard distribution, then we have to
compute the area under the graph of the resulting probability density function dynam-
ically at run-time. This is too time-consuming. For this reason, the prototype should
have support for histograms which can capture non-standard distributions such as
distributions that have been floored or aggregated. The symbolic representation has to
be stored along with the histogram representation.

7. Understandable presentation
The query language consists of complex constructs for querying continuous uncertain
data. The presentation of the query results to the end-user should be understandable
so that non-advanced end-users are able to work with this prototype.

8. XQuery
XPath/XQuery is the de facto standard for querying XML documents. The prototype
should have support for querying Probabilistic XML documents, containing continuous
uncertain data, using the XPath/XQuery language. So it should be possible to use
the probabilistic query constructs, that were presented in chapter 4, in XPath/XQuery
queries

9. Extensibility/Scalability (non-functional)
The piece of software we are developing, is a research prototype. The prototype maybe
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<rooms>

<room>

<number>1</number>

<prob>

<poss type="gaussian(15,3)" approximation="true"

approximation-type="middle-riemann-sum" left="6"

right="24" delta="2" heights="(3.157722291e-7,0.00006540503306,

0.003570993807,0.05139344328,0.1949696557,0.1949696557,

0.1949696557, 0.003570993807,0.00006540503306,3.157722291e-7)">

<temperature/>

</poss>

</prob>

</room>

<room>

<number>2</number>

<prob>

<poss type="gaussian(23,1)" approximation="true"

approximation-type="middle-riemann-sum" left="20"

right="26" delta="2" heights="(0.004431848411, 0.2419707244, 0.2419707244,

0.2419707244)">

<temperature/>

</poss>

</prob>

</room>

</rooms>

Figure 5.1: A Probabilistic XML document containing continuous uncertain data.

extended in a later stage with support for other continuous distributions or other
concepts/functionalities to be discussed in section 7.3.

5.2 Design

As mentioned before, the aim of the prototype is to manage continuous uncertain data.
The prototype allows the end-user to query continuous uncertain data using a query lan-
guage. Query languages are data-oriented languages, a language should be able to process
a database having a certain schema. Data formats or structures form an important aspect
of our prototype. In this section we will discuss the structure of XML documents that are
supported by the prototype.

5.2.1 Probabilistic XML (continuous representation)

An example of a Probabilistic XML document containing continuous uncertainty is provided
in Figure 5.1. The probabilistic XML document concerns the temperatures of two rooms
that are located in a home for elderly people. The room temperature has been measured by
temperature sensors resulting in imprecision. The temperature can be described by Gaussian
distributions. The continuous distributions are encoded in the document with the help of sep-
arate prob- and poss-nodes, the children of a prob-node enumerate the possible alternatives
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and a poss-node encodes a single probability or a probability density function. The poss-node
holds both the symbolic as well as the histogram representation. The gaussian distribution is
stored by the poss-node as if it is a value of the type-attribute of the poss-node. The value of
the type-attribute expresses the gaussian distribution as a function which has two parameters:
the mean and the variance. The type-attribute actually models the symbolic representation of
the continuous distribution, for instance: a floor operator performed on the gaussian(15,3)
on the interval [20, 24] would be represented as type=floor(gaussian(15,3),[20,24])).
The symbolic representation is a nested chain of probabilistic operations. The approximation
of the symbolic representation is represented by a histogram, the left and right boundaries of
the interval of the histogram, the step size and the heights corresponding to each segment,
are all stored as parameters of attributes within the poss-node. It is often the case that a
continuous distribution is not bounded by an interval, for instance the curve of the Gaussian
distribution does never reach the x-axis. It is practically impossible to store the whole his-
togram corresponding to a continuous distribution. A histogram is always specified with an
interval and/or the size of the histogram representation will become infinite. For this reason,
the prototype stores only that part of a continuous distribution where the probability mass is
concentrated. In case of a Gaussian distribution, it means that the histogram stores the pairs
of the value and the corresponding output of the probability density function on the interval
[(mean - 3 * standard deviation), (mean + 3 * standard deviation)]. This interval reflects 99.73
percent of the probability mass.

The advantage of using the Probabilistic XML data format is that there is a one-to-one
mapping possible between the theoretical data model presented in chapter 3 and the XML
document as presented in figure 5.1. However, as we can see, some ‘hacks’ were necessary
to store the parameters of the continuous distribution and the heights of the histogram. The
information is formatted as string-data and saved as values of different attributes. During
query processing, all this string-data have to be parsed in an appropriate way. Another issue
is that there is no definition/specification language available for specifying the data format
or schema of these attribute values. A better approach is to store the symbolic representation
and the histogram representation in separate subtrees. We will describe this approach in the
next section.

5.2.2 Continuous Uncertain XML

Figure 5.2 shows us an XML document representing a continuous distribution. The dis-
tribution is represented by a symbolic representation and a histogram representation. The
symbolic and the histogram representations are both stored as separate child-nodes of the
distribution-node. The probability density function is modeled as a separate XML element
which is a child of the symbolic-representation-node, the parameters of the distribution are
represented by attributes. The height of each column in the histogram is stored in an y-node.
In the previous section we mentioned, that it is impossible to represent a continuous dis-
tribution by a histogram without loss of information; the histogram representation stores
only that part of the continuous distribution where the probability mass is significant. This
means that, in case of a Gaussian distribution, only the interval of the mean plus/minus 3
times the standard deviation is stored by the histogram representation. As mentioned before,
the symbolic representation keeps track of the actions that were applied on base continu-
ous distributions. An advantage of the approach presented in figure 5.2, is that it uses the
expressive power of XML to model nested hierarchies for the symbolic representation. The
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<distribution>

<symbolic><gaussian variance="3" mean="15"/></symbolic>

<histogram left="6" right="24" delta="2">

<y>3.157722291e-7</y>

<y>0.00006540503306</y>

<y>0.003570993807</y>

<y>0.05139344328</y>

<y>0.1949696557</y>

<y>0.1949696557</y>

<y>0.05139344328</y>

<y>0.003570993807</y>

<y>0.00006540503306</y>

<y>3.157722291e-7</y>

</histogram>

</distribution>

Figure 5.2: An XML document containing a continuous distribution.

<distribution>

<symbolic>

<AMIN>

<distribution>

<symbolic><gaussian variance="3" mean="15"/></symbolic>

</distribution>

<distribution>

<symbolic><gaussian variance="1" mean="23"/></symbolic>

</distribution>

</AMIN>

</symbolic>

</distribution>

Figure 5.3: The symbolic representation of the AMIN operation applied on two continuous distribu-
tions.

result of applying the AMIN function over two Gaussian distributions can be presented by
the symbolic representation as is shown in figure 5.3.

Although the Continuous Uncertain XML approach differs from the theoretical data
model presented in chapter 3, the Continuous Uncertain XML representation is fully com-
patible with this data model. The only difference with the Continuous representation is that
the continuous distribution is modeled as a separate subtree below the poss-node, with the
distribution-node being the root of the subtree.

Another major advantage of this approach is that the format of these kind of XML
documents can be specified using XMLSchema or a DTD. This allows the use of a validator
which checks whether an instantiation complies to the schema of Continuous Uncertain
XML. The schema of Continuous Uncertain XML is given in appendix A.
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5.2.3 Query processing

The prototype will support the query constructs that were discussed in chapter 4, except
the APRODUCT operator. The query constructs can be used in compositions of XQuery
queries. Since the prototype supports both standard as well as non-standard distributions,
histograms are needed to capture the distributions. We mentioned in the previous section
that the histogram representation is stored along with the symbolic representation because
it is too time-consuming to generate a histogram out of a symbolic representation at query
time. It is possible to use the symbolic representation when querying a standard distribution.
However, for reasons of simplicity, we decided that the query operators will always work
directly on the histogram representation of a continuous distribution instead of making a
distinction between standard and non-standard distributions and routing the query to the
appropriate representation when executing a query. Thus, the query operators operate di-
rectly on histograms. Because of the inherent inaccuracy of histograms, the answers returned
by these query operators are at most approximations.

5.2.4 Continuous distributions

We posed the requirement that the prototype should have support for at least one continuous
distribution. The prototype will support the storage of Gaussian distributions by the symbolic
representation since this is a commonly used continuous distribution. Next, the prototype
will contain functions which are capable of transforming the symbolic representation of a
Gaussian distribution to a histogram representation. In addition, the symbolic representation
and the implementation of the query language will support the use the floor operators over
Gaussian distributions.

5.3 Architecture

The implementation of the prototype supports both the Probabilistic XML and the Continu-
ous Uncertain XML data formats. Figure 5.4 contains two diagrams depicting the architecture
of the prototype. The prototype consists of two parts: one component is responsible for query
operators that are able to process Continuous Uncertain XML, the other component of the
prototype consists of operators that are capable in processing Probabilistic XML. Although
the prototype consists of two separate components, the name and the semantical meaning of
the query operators in both components are equal.

The prototype is implemented using the XQuery language and it runs on MonetDB/X-
Query. The XQuery code is organized equivalently with the architecture: there is a set of
modules (namespaces) which implement the features for querying Probabilistic XML and
there is a set of modules which implement querying Continuous Uncertain XML. Each mod-
ule is a collection of XQuery functions, a module implements at most one operator of the
query language for continuous uncertain data.

As shown in figure 5.4, the component responsible for querying Continuous Uncertain
XML, contains a wrapper component that generates histograms from a symbolic representa-
tion. The histogram generator allows us to invoke the query operators of the prototype with
a symbolic representation. Then, the prototype generates the histogram corresponding to the
symbolic representation and passes it to the appropriate (low-level) query operator.
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Querying Probabilistic XML
(probability theory based)

Input: continuous 

distribution encoded in a 

poss-XML-node

Output: single value

(a) Probabilistic XML

Querying Continuous Uncertain XML

Input: continuous 

distribution, symbolic 

representation

Wrapper

(histogram 

generator)

Query operators

(probability theory 

based)

Aggregation 

functions

(PW based)

Input: continuous 

distributions, symbolic 

representation

Output: single 

value

Output: distribution,

Symbolic+histogram 

representation

(b) Continuous Uncertain XML

Figure 5.4: The architecture of the prototype.

The result of an aggregate query operator is a continuous distribution represented by
a histogram. Due to the complex way of representing histograms in Probabilistic XML, we
decided to leave out the functionality in the prototype for performing aggregate operations
on Probabilistic XML. The support for the Probabilistic XML data format is limited to query
operators like P, vmin, vmax, mean and variance.

5.4 Implementation details

The XQuery code which implements the prototype is divided into several XQuery modules.
Each module contains several functions. In this section, we will discuss several aspects of the
implementation of the Continuous Uncertain XML representation such as how the symbolic
representation is transformed to histograms, how histograms are processed by the query
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operators and how the aggregation of distributions is implemented.

5.4.1 Symbolic to histogram

In order to transform a symbolic representation to a histogram representation, a recursive
function is required. This recursive function traverses the nested chain of operations that have
been performed on the base probability density function. While traversing the nested chain
of operations, each operation is applied on the operation that has been performed before
resulting in an updated histogram. Thus, the chain is scanned backward and the updated
histograms are propagated forward finally resulting in a histogram which corresponds with
the symbolic representation. The XQuery implementation is shown below.

1 declare function symbolic:createHistogramFromSymbolic($distribution as node(), $delta as

xs:double) as node() {

2 let $op_or_pdf := exactly-one($distribution/symbolic/child::node())

3 let $name := local-name($op_or_pdf)

4 return

5 if($name eq "gaussian") then

6 <distribution><symbolic>{$op_or_pdf}</symbolic>

7 {symbolic:createHistogramFromSymbolicGaussian($op_or_pdf , $delta)}

8 </distribution>

9 else if($name eq "A_MIN") then

10 let $agg_childs := $op_or_pdf/child::node()

11 let $distributions := for $dist in $agg_childs return

12 <distribution><symbolic>{$dist/symbolic/child::node()}</symbolic>

13 {symbolic:createHistogramFromSymbolic($dist, $delta)/histogram}

14 </distribution>

15 let $result := exactly-one(a_min_ed:A_MIN_ED($distributions))

16 return $result

17 else if($name eq "A_MAX") then

18 let $agg_childs := $op_or_pdf/child::node()

19 let $distributions := for $dist in $agg_childs return

20 <distribution><symbolic>{$dist/symbolic/child::node()}</symbolic>

21 {symbolic:createHistogramFromSymbolic($dist, $delta)/histogram}

22 </distribution>

23 let $result := exactly-one(a_max_ed:A_MAX_ED($distributions))

24 return $result

25 else if($name eq "A_AVG") then

26 let $agg_childs := $op_or_pdf/child::node()

27 let $distributions := for $dist in $agg_childs return

28 <distribution><symbolic>{$dist/symbolic/child::node()}</symbolic>

29 {symbolic:createHistogramFromSymbolic($dist, $delta)/histogram}

30 </distribution>

31 let $result := exactly-one(a_avg_ed:A_AVG_ED($distributions))

32 return $result

33 else if($name eq "A_SUM") then

34 let $agg_childs := $op_or_pdf/child::node()

35 let $distributions := for $dist in $agg_childs return

36 <distribution><symbolic>{$dist/symbolic/child::node()}</symbolic>

37 {symbolic:createHistogramFromSymbolic($dist, $delta)/histogram}

38 </distribution>

39 let $result := exactly-one(a_sum_ed:A_SUM_ED($distributions))

40 return $result

41 else error("An undefined error occurred while parsing the symbolic representation.")

42 };

Listing 5.1: The implementation of symbolic-to-histogram transformer.

When this recursive algorithm reaches the base probability density function, in this case
the Gaussian distribution, the Gaussian distribution is sampled yielding a histogram. The
XQuery code implementing this function is shown below:
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1 declare function symbolic:createHistogramFromSymbolicGaussian($gaussian as node(), $delta

as xs:double) as node() {

2 let $sigma_cnt := 3

3 let $factor := 1 div $delta

4 let $mean := (exactly-one($gaussian/@mean)) cast as xs:double

5 let $variance := (exactly-one($gaussian/@variance)) cast as xs:double

6 let $sd := pf:sqrt($variance) cast as xs:double

7 let $left := gaussian:getStartOfDistribution($mean, $sd, $delta, $sigma_cnt)

8 let $right := gaussian:getEndOfDistribution($mean, $sd, $delta, $sigma_cnt)

9 let $start := ($left div $delta) cast as xs:integer

10 let $end := ($right div $delta) cast as xs:integer

11 return <histogram left="{$left}" right="{$right}" delta="{$delta}">

12 {

13 for $v at $index in ($start to $end)

14 let $x := ($v*$delta)

15 return <y>{gaussian:gaussian -density($x, $mean, $sd)}</y>

16 }

17 </histogram>

18 };

Listing 5.2: The implementation of the histogram generator.

We can see in the code that there are a lot of division and multiplications by delta. This
is because the for-loops can only process integers. When we divide the boundaries of the
histogram by the delta, we get start- and end-values that are round integers.

5.4.2 Histograms

The histogram representation is defined as a histogram-node holding the values for the
left- and right-boundaries and the delta as values of attributes. The height of each column
in the histogram is represented by a y-node which is a child of the histogram-node. Each
column in the histogram corresponds to a value and an height. The area of the column
(probability) is computed by multiplying the height with the delta of the histogram. Each
column in a histogram can be identified by a unique number. We implemented functions for
retrieving the value given the column-identifier and vice versa, retrieving the height given
the column-identifier, computing the probability given the identifier and so on. The identifier
corresponds to the relative location of the y-node under the histogram-node.

The function below returns the height of the column, given the column-identifier (index).

1 declare function hist:getHeightByIndex($histogram as node(), $index as xs:integer) as

xs:double {

2 data(exactly-one($histogram/child::node()[$index])) cast as xs:double

3 };

Listing 5.3: This function returns the height of a column in the histogram.

The function below returns the value which is associated with a column, given the
column-identifier (index).

1 declare function hist:getValueByIndex($histogram as node(), $index as xs:integer) as

xs:double {

2 if( ($index le hist:getLastIndex($histogram)) and ($index ge 1) ) then

3 let $delta := hist:getDeltaOfHistogram($histogram)

4 let $left := hist:getLeftOfHistogram($histogram)

5 let $l := ($left div $delta) cast as xs:integer

6 let $v := (($l + $index) - 1)

7 let $value := ($v * $delta) cast as xs:double

8 return $value

9 else
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10 error("The specified index is lies out of the interval for which the histogram was

specified.")

11 };

Listing 5.4: This function returns the value which is associated with a column in the histogram.

5.4.3 Simple probabilistic functions: Pr, mean, variance

The implementation of operators like Pr, mean and variance process (parts of) the his-
tograms that represent continuous distributions. The Pr function has to determine the left-
and right-boundaries which were specified by the end-user when composing the query.
These boundaries indicate the interval of the continuous distribution for which it has to
compute the probability. The Pr function is shown below. The implementations of the mean
and variance operations are similar to the implementation of Pr.

1 declare function prob:P($distribution as node(), $f_interval as xs:string) as xs:double {

2 let $histogram := exactly-one($distribution/histogram [1])

3 let $left_index := parsers:getLeftBorderIndex($histogram, $f_interval)

4 let $right_index := parsers:getRightBorderIndex($histogram , $f_interval)

5 let $prob := sum(for $y at $index in $histogram/y

6 return if(($index gt $left_index) and ($index lt $right_index)) then

7 hist:getProbByIndex($histogram, $index)

8 else if(($index = $left_index) or ($index = $right_index))

then

9 hist:getProbByIndex($histogram, $index) div 2

10 else()

11 )

12 return $prob

13 };

Listing 5.5: This function computes the probability that corresponds to the given interval and
continuous distribution.

5.4.4 Aggregation operators

The implementation of the aggregation operators resulted in a complex piece of XQuery
code. We faced two main problems during the implementation of the aggregation operators:

1. XQuery does not support the use of sequences within sequences (nesting)
A sequence within a sequence will be flattened.

2. There is no out-of-the-box support for data objects that can represent x-y pairs
This makes the use of value-probability pairs, as it was used in the algorithms in
figure 4.3 and figure 4.3, difficult.

A solution to the first problem was using XML nodes to encode sequences. Each sequence
is encoded in a separate seq-node. Each element in a sequence is encoded in a separate e-
element which itself is a child of the seq-node. This approach allowed us to represent a
histogram as if it is a sequence. The disadvantage of this approach is that a lot of inter-
mediary XML nodes have to be created within the XML database management system.
MonetDB/XQuery performs poorly when intermediary XML nodes have to be generated.

The second problems was tackled by using an identifier structure for retrieving the
corresponding value and probability of a column in a histogram. This identifier is based on
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the order of columns that are representing a histogram (left to right). By keeping track of the
order of histograms during query processing in conjunction with the column identifier, we
are able to retrieve the (value, probability) pair at any time.

When we combine the solutions that are explained above, a set of histograms can be
represented as if it is a sequence of sequences. Each sequence in the sequence represents
a histogram, each element in the deepest sequence contains an identifier which maps to a
(value, probability)-pair of a certain histogram. The location of the histogram-sequence in
the sequence of histograms, determines the histogram to be used for retrieving the (value,
probability)-pair. The XQuery code of the AAVG operator is shown below.

1 declare function a_avg_ed:A_AVG_ED($distributions as node()*) as node()* {

2 let $histograms := for $dist in $distributions return $dist/histogram

3 let $left := a_avg_ed:getAvgOfLefts($histograms)

4 let $right := a_avg_ed:getAvgOfRights($histograms)

5 let $delta := hist:getDeltaOfHistogram(exactly-one($histograms[1]))

6 let $count_hist := count($histograms)

7 let $new_delta := ($delta div $count_hist) cast as xs:double

8 let $start := ($left div $new_delta) cast as xs:integer

9 let $end := ($right div $new_delta) cast as xs:integer

10 let $possible_combinations := agg:getPossCombsOfIndices($histograms)

11 let $y_values := for $item at $index_in_hist in ($start to $end)

12 let $x_value := ($item * $new_delta) cast as xs:double

13 let $y_value :=

(a_avg_ed:getProbabilityPWAVG($possible_combinations,

$histograms , $x_value) div $delta) cast as xs:double

14 return <y>{$y_value}</y>

15 let $histogram := <histogram left="{$left}" right="{$right}"

delta="{$new_delta}">{$y_values}</histogram>

16 let $symbolic := <symbolic><A_AVG>{for $dist in $distributions return

17 <distribution>{$dist/symbolic}</distribution>

18 }

19 </A_AVG></symbolic>

20 let $distribution := <distribution>{$symbolic, $histogram}</distribution>

21 return $distribution

22 };

Listing 5.6: This function covers the whole process of aggregating multiple continuous distributions
using the AVG aggregate.

The function above calls the agg:getPossCombsOfIndices($histograms) function with
an array of histograms as argument. The getPossCombsOfIndices-function transforms each
histogram in a sequence of identifiers, each identifier identifies a (value,probability)-pair.
The implementation of the getPossCombsOfIndices-function is shown below. As we can see,
the function calls the cartesianProduct-function which computes the cartesianproduct of the
sequences containing the identifiers.

1 declare function agg:getPossCombsOfIndices($histograms as node()*) as node()* {

2 set:cartesianProduct(

3 for $histogram at $i in $histograms

4 return

5 <seq>

6 {

7 (: let $delta := hist:getDeltaOfHistogram($histogram) :)

8 let $end := hist:getLastIndex($histogram) cast as xs:integer

9 return for $index in (1 to $end) return <e>{($index)}</e>

10 }

11 </seq>

12 )

13 };
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Listing 5.7: This function computes the probability that corresponds to the given interval and
continuous distribution.

The function that is shown below, implements the selection phase and the merging phase
of the aggregation algorithm. It first computes the averages over each possible combination
of values, then it computes the associated probabilities. When there are two or more values
that are the same, the probabilities of those corresponding values are summed.

1 declare function a_avg_ed:getProbabilityPWAVG($poss_combs_indices as node()*, $histograms

as node()*, $x_value as xs:double) as xs:double

2 {

3 let $sets := (for $set in $poss_combs_indices

4 let $elements := $set/e

5 let $avgg := avg(

6 for $element at $hist_index in $elements

7 let $index_in_hist := data($element) cast as xs:integer

8 let $histogram := exactly-one($histograms[$hist_index])

9 let $value_data := hist:getValueByIndex($histogram, $index_in_hist)

10 return $value_data

11 )

12 return if($avgg = $x_value) then $set else()

13 )

14
15 return sum(for $set in $sets

16 let $elements := $set/e

17 let $product :=

18 pf:product(for $element at $hist_index in $elements

19 let $index_in_hist := data($element) cast as xs:integer

20 let $histogram := exactly-one($histograms[$hist_index])

21 let $prob := hist:getProbByIndex($histogram, $index_in_hist)

22 return $prob)

23 return $product

24 )

25
26 };

Listing 5.8: This function computes the probability that corresponds to the given interval and
continuous distribution.

The aggregate operators are all processing the histograms that are encoded in the Continu-
ous Uncertain XML representation. A problem occurs when an aggregate operator aggregates
two or more continuous distributions and the corresponding histograms have different step
sizes. The algorithm presented in section 4.3 requires that slices of the continuous distribu-
tions have the same size. There are several ways to solve this issue. Our approach is first
to check whether the histograms vary with respect to the step size. If that is the case, the
histograms are re-generated from the symbolic representation with a step size that is defined
as a fixed constant within the database management system.

5.5 Using the prototype

This chapter would not be complete without a section on how to use the prototype software.
In this section we present several examples containing queries for continuous uncertain
data. We discuss querying Probabilistic XML and querying the Continuous Uncertain XML
representation, separately.
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Probabilistic XML

The queries that are shown by the following examples, use the Probabilistic XML document
depicted in figure 5.1. In this query, the variable $d points to that document.

Example 1:

$d/room[number = 1]/Pr(.,"temperature < 16")

The query above returns the probability that the room with roomnumber 1 has a temperature
of less than 16 celcius.

As mentioned in the previous section, all the query operators for continuous uncertain
data only process discretized versions of continuous uncertain data (histogram representa-
tion). A histogram stores y-coordinates (which are ordered), a fixed step size which denotes
the distance between two y-coordinates and the interval for which the histogram is specified.
The x-coordinates can be determined from the location of ordered y-coordinates, the step
size and the interval. Posing queries on the histogram representation brings us to a problem
related to specifying a correct interval in query operators like Pr. Suppose the histogram rep-
resentation that corresponds to the temperature-attribute from example 1 has a step size of 0.5.
What will happen when we pose a query like $d/room[number = 1]/Pr(.,"temperature < 16.1")
and the histogram is specified on the interval [14,20]? In this example, the value 16.1 lies in the
segment associated with interval [16,16.5]. We can choose to exclude or include this segment
when computing the probability. Whatever option we choose, we get an inaccurate answer
then. The problem is that the given interval cannot be covered completely by histogram
segments. Our solution is to return an error when this situation happens. The solution is
implemented as follows:

1. Divide the x-coordinate by the step size.

2. Take the round over the result from the previous step.

3. The result from the first step minus the result from the second step.

4. If the result from the previous step is greater than zero, raise an error.

Example 2:

$d//room/mean(.,"temperature")

The query above computes for each room in document $d an approximation of the expected
temperature.

The histogram representation is stored in a poss-node which is a child of a prob-node.
The prob-node is a child of the room-node. As we can see in the examples above, it is not
necessary to specify the prob/poss-node structure in the queries, explicitly. In both examples,
the query context is provided to the query function, Pr and mean, respectively. The query
context (location) is provided to the query function by invoking the function with ”.” as
first parameter. When the query functions know the query context, the query functions can
navigate through the prob/poss-node structure and the histogram can be found.
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Continuous Uncertain XML

The major difference between Continuous Uncertain XML and Probabilistic XML is that
the continuous distribution is represented in a subtree below a poss-node. The rootnode
of the subtree is a distribution-node which contains a symbolic-node, holding the symbolic
representation, and a histogram-node, holding the histogram representation. In contrast to
querying Probabilistic XML, the query functions for querying Continuous Uncertain XML
cannot be invoked with the query context (location) as parameter. When querying continu-
ous distributions that are represented in Continuous Uncertain XML, the query function has
to be invoked with as argument the location of the distribution-node in the XML document.

Example 1:

Pr($distribution,"[15,24]")

Pr($distribution,"]15,24]")

Pr($distribution,"[inf,24]")

All the queries in the example above compute the approximated probability corresponding to
the interval and the continuous distribution indicated by $distribution. The $distribution
could be the distribution depicted in figure 5.2. The second parameter of the Pr function is
used to specify the interval for which we would like to know the corresponding probability.
The notation is similar to other notations for specifying intervals, ”]15” excludes the value 15
from the interval, with ”[15” the value 15 is included. The string ”inf” or ”INF” can be used
to specify infinity. So ”]INF, 5]” means ] −∞, 5].

Example 2:

ASUM($distribution1,$distribution2)

The query in the example above aggregates two continuous distributions using the ASUM
operator. The result is in an aggregated continuous distribution.
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Chapter 6

Evaluation

The previous chapter addressed the issues related to the realisation of a prototype that
is capable of querying continuous uncertain data which is represented by histograms. A
histogram represents a number of segments on a certain interval. The ratio between the
number of segments and the length of the interval determines the following:

• Efficiency
The more segments that have to be taken into account during query execution, the
more memory will be consumed for storing temporarily execution data. Thus, it will
take more processing time.

• Accurateness
The more segments on a certain interval, the smaller the segments are. We expect
that a smaller segment size means that the answers returned by queries will be more
precise/accurate.

In the world of database management systems, it is common to use benchmarks to test the
performance of a DBMS. In general, benchmarks are used to assess the relative performance
characteristics of software. A database benchmark is a prescribed set of queries and data
that can be run against a DBMS. Benchmarking is helpful in making a fair comparison
between database management systems by measuring the time of performing the same tests
on different database management systems. These benchmarks are also applicable to assess
the performance of a single database system, to determine the improvement in performance
of e.g. a renewed implementation of a query operator. However, benchmarks for database
management systems holding continuous uncertain semi-structured data do not exist as far
as we know. For that reason, we have to setup new benchmark scenarios.

In this chapter we will quantify the relationship between the performance indicators
efficiency and accurateness by conducting some experiments. We will discuss the set-up of
the experiments, the results and we will analyse them.

6.1 Experiments

When we examine the complexity of the different query operators specified in chapter 4, the
value-based operators like Pr, mean, variance differ from the aggregate operators like AMIN,
AMAX, ASUM. The complexity of value-based operators is linear where the algorithm of
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let $variance := 4

let $delta := 0.1

let $dist := <distribution><symbolic>

<gaussian mean="0" variance="{$variance}"/>

</symbolic></distribution>

let $dist_hist := symbolic:createHistogramFromSymbolic($dist, $delta)

let $intervalleft := concat(’[’, 0)

let $intervalright := concat(’inf’, ’]’)

let $intervalmiddle := concat($intervalleft, ’, ’)

let $intervalstring := concat($intervalmiddle, $intervalright)

let $prob_est := prob:P($dist_hist, $intervalstring)

return

<result>

<inaccuracy>{abs(0.5 - $prob_est)}</inaccuracy>

</result>

Figure 6.1: XQuery code used for measuring the accuracy and performance of the probability operator.

aggregate operators is at least quadratic. The query operators can be grouped in value-based
and aggregate operators based on the complexity. As the complexity is different, we have to
setup different benchmarks for the two groups.

6.1.1 Value-based operators

The complexity of all value-based operators is the same, so it is not necessary to assess the
performance of each individual query operator. It is interesting to examine how parameters
like variance and the segment size influence the execution time and the accuracy when
querying one continuous distribution using a value-based operator. Next, it is interesting to
examine the effects on the response time of executing a value-based operator over several
continuous distributions. This relationship, between the number of continuous distributions
to be queried and the response time, describes the correlation between the size of a continuous
uncertain XML document and the time required to query the document.

In the first experiment, we will examine how factors like variance and the delta influence
the accuracy of the answer and efficiency of query execution. The experiment contains several
tests where variance and the delta are the variables. In each test, a Gaussian distribution is
generated and then the test computes the probability on the interval [mean, inf] using the
Pr operator. This probability is theoretically equal to 0.5. The error can be measured by
taking the absolute value from 0.5 minus the value computed by the Pr operator. So the
deviation between the estimated answer and the exact answer is the error. Each test assesses
the efficiency by measuring the query execution time. Each test is ran three times, so that
execution times can be averaged. In the first test, the segment size of the histogram is the
variable, the parameters for the Gaussian distribution are constants: mean=0, variance=4.
The variance determines the length of the interval on which the histogram is defined. As
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let $delta := 0.01

let $room_count := 90

let $variance := 4

return

<rooms>

{

for $r in (1 to $room_count)

let $dist := <distribution><symbolic>

<gaussian mean="{$r}" variance="{$variance}"/>

</symbolic></distribution>

let $dist_hist := symbolic:createHistogramFromSymbolic($dist, $delta)

return

<room>

<number>{$r}</number>

<temperature>{$dist_hist}</temperature>

</room>

}

</rooms>

Figure 6.2: XQuery code used for generating a test document.

let $roomsdoc := doc("/home/misc_cis/scholte/msc_project/cul/version2/output.xml")/rooms

return

<rooms>

{

for $room in $roomsdoc/room

return

<room>

<number>{data($room/number)}</number>

<mean_temp>

{prob:v_MEAN(exactly-one($room/temperature/distribution))}

</mean_temp>

</room>

}

</rooms>

Figure 6.3: XQuery code used for measuring the performance of querying an XML document con-
taining continuous uncertain data.

discussed before, the interval is defined as [(mean - 3 * standard deviation), (mean + 3 *
standard deviation)]. When the variance equals 4, the interval is [−6, 6], the length is 12. In
the second test, the variance is the variable. The variance changes with a step size of 5, starting
at 5 ending at 50. The second test is carried out twice: once with a delta of 0.05 and once
with a delta of 0.1. As with the first test, the second will be run three times, so that execution
times can be averaged. The benchmark has been implemented using the XQuery language.
The code is printed in figure 6.1. In section 5.5 we described a mechanism that prevents
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the Pr operator from executing when the interval, which is specified by the user, cannot be
covered completely by histogram segments. This mechanism will be disabled during testing.
However, we will determine the number of histogram segments that are processed by each
query.

Another benchmark concerns the performance assessment of querying an XML document
containing numerous continuous distributions. The query execution time of querying a
different number of distinct continuous distributions, is measured. The benchmark consists
of two tests. Each test computes the expected value of each Gaussian distribution captured by
the XML document. In the first test, the delta is equal to 0.01 where in the second test the delta
equals 0.1. In all tests, the variance of the Gaussian distribution remain the same, namely
4. In each test, the expected value from a increasing number of continuous distributions is
computed: 1, 10, 20...100 distributions. The XML document containing a prespecified number
of Gaussian distributions, is automatically generated using an XQuery script. The code of this
script is shown in figure 6.2. The script takes care of generating a number of different Gaussian
distributions with corresponding histograms. The efficiency of executing the mean operator
on Gaussian distributions in an XML document, will be measured by another XQuery script.
The code of this script is depicted in figure 6.3.

6.1.2 Aggregate operators

The complexity of all the aggregate operators is the same. Therefore, it is not necessary
to assess the efficiency of all the aggregate query operators. The most expensive operation
is the cartesian product over the discretized continuous distributions. The benchmark will
simulate scenarios in where 2 or more different Gaussian distributions are aggregated using
the ASUM operator. The performance is measured by the query execution time. The Gaussian
distributions, used in each test, will differ with respect to the mean, the variance remains
the same (and thus the interval lenght of the histogram will be the same in all tests). To
summarize: this benchmark constists of 4 tests, the number of distributions varies between
2 and 5 and the delta of the histograms will be equal to 1.0.

6.1.3 Test environment

Each individual test was carried out by executing an XQuery script on a MonetDB/XQuery
installation. Detailed information about the installation can be found below. The script was
executed using the following command: mclient -lx script.xq --time. The --time pa-
rameter will produce a result like this:

<example>Hello World</example>

Trans 18.000 msec

Shred 0.000 msec

Query 5.000 msec

Print 0.000 msec

Timer 24.436 msec

The Query time is taken as a quantity for the performance (efficiency).

The following hardware was used to conduct the experiments:
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Table 6.1: The results of the benchmark that simulates the use of value-based operators with
the delta being the variable, parameters used: mean=0.0, variance=4.0.

Delta Segments Error Average query time (ms)

0.005 1200 0.00135267471431571 10356.450

0.010 600 0.00135546539379205 1706.153

0.015 400 0.00135826992257792 735.304

0.020 300 0.0013610883004152 481.143

0.025 240 0.00136392052693817 345.081

0.030 200 0.00136676660168072 273.499

0.035 171.4285714 0.001403689318692 225.954

0.040 150 0.00137250029343422 200.604

0.045 133.3333333 0.001409581072012 178.765

0.050 120 0.00137828936985912 166.073

0.055 109.0909091 0.00139256081887861 156.398

0.060 100 0.00138413382347729 148.148

0.065 92.30769231 0.00143319235132027 142.916

0.070 85.71428571 0.0015081785933817 137.946

0.075 80 0.0013930043156935 134.038

0.080 75 0.00139598882407138 131.178

0.085 70.58823529 0.0015178206631406 122.966

0.090 66.66666667 0.00154595651280353 119.162

0.095 63.15789474 0.00143988711926584 118.912

0.100 60 0.00140806520216291 118.060

• Processor: AMD Opteron(tm) Processor 246
• 8 Gigabytes of main memory

The following software was used:
• Linux version 2.6.22.5-31-default (geeko@buildhost) (gcc version 4.2.1 (SUSE Linux))
• MonetDB Server v4.22.0
• GDK v1.22.0
• MonetDB/XQuery module v0.22.0

6.2 Results

The first experiment measures the accuracy and the efficiency with the delta and variance
being the test parameters. In order to determine a valid query execution time, all queries in all
tests in this experiment have been executed 3 times and the average has been taken from the
query execution times. The query execution times that are indicated in the tables have been
measured in milliseconds. The results from the first experiment are shown in table 6.1 and
table 6.2. The first table corresponds with the test where the segment size is the variable, the
variance is fixed. Table 6.2 shows the result of the tests in which the variance is the variable.
Table 6.2(a) shows the result from the test in which a segment size of 0.05 has been used, the
results showed by table 6.2(b) have been produced with a segment size of 0.1.
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Table 6.2: The results of the benchmark that simulates the use of value-based operators with
the variance being the variable.

(a) Parameters: mean=0, delta=0.05

Variance Segments Error Average query time (ms)

5.00 134.1640786 0.00139185592373008 175.392

10.00 189.7366596 0.00142085546513198 247.074

15.00 232.3790008 0.00138644436868173 324.034

20.00 268.3281573 0.00137891197585915 387.629

25.00 300 0.0013610883004152 477.604

30.00 328.6335345 0.00138613718956187 539.303

35.00 354.964787 0.00139615654017777 604.008

40.00 379.4733192 0.0013755028563922 671.112

45.00 402.4922359 0.0013746594774226 746.740

50.00 424.2640687 0.00136613060561341 835.287

(b) Parameters: mean=0, delta=0.1

Variance Segments Error Average query time (ms)

5.00 67.08203932 0.00141858258894539 119.415

10.00 94.86832981 0.00151595111459518 141.343

15.00 116.1895004 0.00140152063449117 159.175

20.00 134.1640786 0.00139185592373008 177.308

25.00 150 0.00137250029343427 198.883

30.00 164.3167673 0.00139670957417792 216.578

35.00 177.4823935 0.00140599471663555 232.219

40.00 189.7366596 0.00142085546513198 247.932

45.00 201.246118 0.00138319555101257 266.464

50.00 212.1320344 0.00137417609631973 292.977

The second experiment involves measuring the performance of querying an XML docu-
ment containing an increasing number of distinct Gaussian distributions. In this experiment,
the mean operator is executed on all the Gaussian distributions returning a list of expected
values. The XML document contains the symbolic as well as the histogram representation of
each Gaussian distribution. The variance of each Gaussian distribution in the XML document
is the same: 4.0, the mean differs. The results of the experiment are shown in table 6.3. The
first table shows the result of the experiment with delta=0.01 being the segment size of the
histogram. It shows the number of Gaussian distribution with the corresponding average
query execution time in seconds. The average query execution times have been computed by
taking the average over the query execution times from 3 tests. The second table shows the
result of a similar experiment, the value of the delta in this experiment was equal to 0.1. The
query execution times indicated in the second table have been measured in milliseconds.

The goal of the third experiment is to determine the relationship between performance and
the number of different continuous distributions that are aggregated by a query containing an
ASUM operator. The continuous distributions are Gaussian distributions having a variance
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Table 6.3: The results of the benchmark that simulates the querying of a document.

(a) Parameters: delta=0.01

Distributions Average query time (s)

1 5.138

10 56.120

20 152.234

30 223.966

40 397.821

50 491.174

60 586.109

70 900.544

80 1020.830

90 1031.545

100 1160.790

(b) Parameters: delta=0.1

Distributions Average query time (ms)

1 84.388

10 298.213

20 576.600

30 943.741

40 999.743

50 1383.812

60 1593.433

70 1729.483

80 2021.038

90 2375.604

100 3883.425

Table 6.4: The results of the benchmark that simulates the use of aggregate operators. The
segment size was equal to 1.0

Distributions Average query time (s)

2 0.338

3 4.487

4 179.417

5 23541.323

of 4. The mean of each Gaussian distribution differs, distribution number one has a mean of
0, distribution number two a mean of 1, distribution number three a mean of 2 and so and so
on. Each test is executed 3 times, the indicated query execution time is the average that has
been taken over the individual query execution times.

6.3 Analysis

The first experiment was conducted in order to give an answer to the question of how the
variance-parameter of a Gaussian distribution and the delta-parameter of a corresponding
histogram affects the accuracy and performance of query operators, especially the Pr operator.
The tables containing the results of the first experiment were transformed to graphs for
analysis purposes. The pairs in the tables correspond to points in the graphs, the points
are connected by lines resulting in graphs. The graphs in figure 6.4 show the impact of an
increasing segment size on the accuracy of the query answer and the impact of an increasing
variance on the accuracy, respectively. The graphs shown by figure 6.6 show the relationship
between the segment size and the response time and the relationship between variance and
response time, respectively. The impact of an increasing variance on the accuracy and the
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Figure 6.4: Query accuracy of computing a probability.

response time, was measured with two different values for the segment size.

The graph in figure 6.4(a) has been derived from table 6.1and depicts some local maximum
values. The graph shows the relationship between the segment size and the deviation between
the query answer and the exact answer when computing the probability P(0 ≤ X ≤ ∞). Since
the expected value is equal to 0, the exact probability should be equal to 0.5. When querying
the histogram representation, querying for P(0 ≤ X ≤ ∞) means that the area under the
probability density function is computed corresponding to the following interval: [0, 6]; the
variance is 4 and the right border is equal to the expected value plus three times the standard
deviation. The local maxima are caused by the fact that for some values for the delta, there is
no round number of segments that lie on the interval [0, 6]. This is also shown by the second
column of table 6.1, the values in the field ”Segments” have been computed by dividing the
length of the interval by the segments size. When there is no round number of segments that
cover the interval, there is a significant larger error in the answer of a probabilistic query.
This is because some (additional) surface below the graph of a probability density function is
in the computation omitted, the number of segments processed by the algorithm is floored.
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Figure 6.5: The number of samples (segments) and the error.

The algorithm prevents that one segment crosses one of the borders of the interval during
computation of an answer. If we omit the local maxima in the intrepretation of the graphs,
then we can conclude from the graph in figure 6.4(a) that the error increases linearly with the
segment size. As aspected, we see in figure 6.4(b) that a smaller segment size yields a smaller
error. Furthermore, we see that an increasing variance does not have a major impact on the
accuracy of the query answer. This is sound since there is a constant level of error which
caused by the cut-offs of the probability density function on the right-hand and left-hand
side. Another source of inaccuracy are the casting and rounding errors and the imprecision
caused by the underlying XML database management system. An example is the assignment
of the value 0.0000001 to a variable and returning that variable gives the following result:
0.000000. To summarize, inaccuracy is caused by:

• Histogram segments that do not cover an interval completely. The number of histogram
segments that are taken into account is less than the size of the given interval.

• The interval of a continuous distribution is not closed where the interval of a histogram
is closed. In case of a Gaussian distribution, 0.27 percent of the probability mass is
missing.

• Histogram segments that cross the graph of the probability density function (Gaussian).

• Rounding casting errors made by the underlying XML database management system.
Furthermore, the DBMS does not support large fractions. When using the double data
type, a fraction larger than 6 digits is not supported by the DBMS.
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Figure 6.6: Efficiency of computing a probability.

Figure 6.5 shows the relation between the number of segments and the error. The graph
has been derived from table 6.1. The error decreases exponentially when the number of
segments increases. This behavior is in accordance with the evaluation results of the prototype
developed in the Orion project [22].

Another goal of this experiment was to examine the relation between the segment size of
a histogram and the response time on one hand and on the other hand the influence of
an increasing variance on the response time. Figure 6.6(a) shows the effect of an increas-
ing segment size on the performance. It is clear that the query execution time decreases
exponentially when the segment size increases. In other words: the performance increases
exponentially when the segment size increases. Figure 6.7 shows the relation between the
number of sample points (number of segments) and the query execution time. The figure is
derived from table 6.1. The relation can be described by an exponential function.

The graph in figure 6.6(b) depicts the relation between variance and performance, each
line corresponds with a different segment size. We see that when the variance grows, the
query execution time increases proportionally. As aspected, histograms with a larger segment
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Figure 6.7: The number of samples (segments) and the runtime.

size outperforms the histograms with smaller segment sizes.
The goal of the second experiment was to examine the relation between the query per-

formance of querying a document containing numeruous disctinct continuous distributions.
Figure 6.8(a) shows a graph of table 6.3(a) that was generated in a similar way as in the previ-
ous experiment. Figure 6.8(b) shows a similar graph, it has been derived from table 6.3(b) and
the delta is larger: 0.1. We can conclude from the graphs that the query time grows linearly
with the number of Gaussian distributions that are processed when querying a document
containing those distributions. The behavior is in accordance with the evaluation results
of the prototype developed in the Orion project [22]. Furthermore, we see a big difference
in query execution time between the different segment sizes. When querying histograms
with the smaller segment size, the query execution time is much greater than querying the
histograms with the bigger segment size.

Table 6.4 and figure 6.9 show the results of the benchmark that measures the performance
of aggregate queries. The number of continous distribution that are aggregated is the variable.
We see that the execution time increases a lot when 5 distributions are aggregated. We
performed the tests with a relative large delta, 1.0. Due to a lack of resources in terms of
available hardware and the amount of time available, it was not possible to perform tests
that aggregate more than 5 distributions. For the same reason, it was also not possible to
perform tests using a smaller delta. This prevents us from making satisfying conclusions
about the measurements.
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Figure 6.8: The relation between the number of Gaussian distributions and query execution time.
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Figure 6.9: The relation between the number of Gaussian distributions in an aggregate query and
query execution time.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we introduced a probabilistic data model that supports the representation of
discrete and continuous uncertain data in XML. Continuous probability theory was used as a
reference for the development of this probabilistic data model. The data model supports the
representation of standard as well as non-standard continuous distributions. We (re-) defined
the semantics of queries on continuous uncertain data in terms of possible worlds, based
on the work presented in [12, 23], and we showed how the semantics are followed when
evaluating queries on Probabilistic XML containing continuous uncertain data. Next, we
introduced some new operators for aggregating continuous distributions based on possible
world semantics. The mechanism we presented, allows the selection of a possibility from
each combination of possibilities which originates from continuous distributions and merge
the possibilities that have the same values. We also introduced an approach for measuring
the efficiency and accuracy of a DBMSs that has support for the management of continuous
uncertain data.

7.2 Research questions

In this section, we answer the research questions posed in section 1.3.

1. Which additions to existing data models are necessary in order to support the representation of
continuous uncertain data in XML?
In chapter 3, we presented a data model for probabilistic XML that supports the rep-
resentation of continuous uncertain data using the continuous representation. The
continuous representation is an extension to the compact representation proposed
in [12, 23]. We showed that the continuous representation and the compact represen-
tation are equivalent since the continuous representation can be transformed to the
compact representation. As a result of this, all the properties that are valid for the
compact representation, are also valid for the continuous representation. Continuous
probability distributions are stored by the continuous representation as the name of
one of the corresponding possible probability density functions and its parameters.
The probabilistic model supports the storage of beta, gamma, gaussian and uniform
distributions. We consider the support for the representation of joint and conditional
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probability distributions, dependencies between probabilistic attributes and lineage in
the probabilistic data model, as future work.

2. Which semantic foundation is suitable for storing continuous uncertain data?
We have explained the possible world approach in chapter 2 and explained how,
following this approach, discrete data can be stored using the probabilistic XML data
model. With this foundation laid, we introduced how the semantics are followed when
storing continuous uncertain data. A continuous uncertain data item is described by
a probability density function and it reflects an infinite number of possibilities and
thus also possible worlds. We showed that a probabilistic XML document containing
probability density functions (continuous representation) can be transformed to the
compact representation. Then, each probability node in the compact representation has
an infinite number of possibility nodes as children.

3. How can we provide support for querying continuous uncertain data?
We introduced some simple query operators (chapter 4) for computing probabilities,
expected values and variances. The operators can be used in XQuery queries to query
probabilistic XML data. We showed that the operators can be applied in predicate
queries.

How should the semantic foundation be applied in order to support querying continuous
uncertain data in an intuitive way?
In chapter 3 we showed that it is theoretically possible to transform the continuous
representation to the possible world as well as the compact representation proposed
in [12, 23]. Since these representations can be queried following the possible world
approach, as shown in [12, 23], we are able to show in chapter 4 that continuous
uncertain data can be queried following the possible world approach.

Which query operations are useful when querying continuous uncertain data?
In order to allow the user to integrate or aggregate two or more continuous distri-
butions into one single continuous distribution, aggregate operators were introduced.
The aggregate operators are based on possible world semantics. We can distinguish
three phases in the process of aggregating distributions: the cartesian product, the se-
lection phase and the merging phase. The application of the cartesian product yields an
enumeration of combinations of possibilities, an enumeration of possible worlds; each
possibility originating from a distribution is combined with all the possibilities from all
the other distributions. The type of selection operator used in the selection phase deter-
mines the name of the aggregate operator. The selection phase selects one value from
each combination of possibilities. At the same time, the probabilities, corresponding to
the possibilities in each combination, are multiplied. Thus, in the selection phase, one
possibility is selected from each possible world. The last step concerns the merging of
value-probability pairs that have equal values.

4. How can the theoretical concepts as a result from the research on the management of continuous
uncertain data be practically applied?
We described in chapter 5 the development of a proof of concept. The proof of concept
supports the storage, querying and manipulation of Gaussian distributions. It was pos-
sible to implement the proof of concept using the XQuery language. We introduced a
new representation, the argumentation can be found in chapter 5. This representation
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stores the symbolic form of a probability density function along with the correspond-
ing histogram. The implementation of all the query operators work directly on the
histogram representation of continuous uncertain data. We also demonstrated the use
of the prototype.

5. What is the behavior of a probabilistic XML DBMS supporting the management of continuous
uncertain data in terms of efficiency and accuracy of query answers?
We developed three benchmarks that are able to assess the query execution times
and the inaccuracy of query answers. The first benchmark compares the answer of a
probability query operator with the exact probability. Both probabilities should be equal
since they correspond to the same interval of the same continuous distribution. This
benchmark measures at the same time the performance. The error grows proportionally
with the segment size. Sources of inaccuracy are:

• Histogram segments that do not cover an interval completely. The number of
histogram segments that are taken into account is less than the size of the given
interval.

• The interval of a continuous distribution is not closed where the interval of a
histogram is closed.

• Histogram segments that cross the graph of the probability density function (Gaus-
sian).

• Rounding casting errors made by the underlying XML database management
system. Furthermore, the DBMS does not support large fractions.

The performance increases exponentially when the histogram segment size increases,
the performance increases proportionally with the variance. The second benchmark
assess the performance of querying a probabilistic XML document of different sizes
containing different Gaussian distributions. We have found that the response time
increases proportionally with the number of distributions in the probabilistic XML
document. The third benchmark assesses the performance of the aggregate operators
by applying an aggregate operator over a growing number of different Gaussian distri-
butions. This showed us that aggregate operators are really computational expensive
operations. The method of evaluating did not satisfy us as the benchmarks do not reflect
a real-life scenario. For this reason, we will address in section 7.3 the need for bench-
marks that can be used to benchmark relational as well as semi-structured probabilistic
database management systems, capable of managing continuous uncertain data.

7.3 Future work

This thesis would not be complete without a section on future research directions. In this
section, we try to explain problems which have been become visible during our research.
Furthermore, we will motivate the need for examining these issues and we will give some
directions.

7.3.1 Support for querying multiple stochastic variables

At this moment, the query operators in the continuous uncertain language supports only
querying one attribute that has been modeled as a continuous distribution. However, when
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(a) Two probability density functions of X
and Y

X
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(b) A segment from the unification of X and
Y

Figure 7.1: Unifying two continuous distributions.

computing a probability, it is common practice that multiple stochastic variables are involved.
Typical examples include the computations of synchronous probabilities and conditional
probabilities. In this section, we will give some examples of queries where multiple stochastic
variables are involved. Moreover, we will go into detail about the consequences for the query
language and the data model.

Unifying continuous distributions

Consider figure 7.1(a). The figure depicts two Gaussian distributions that correspond with
the stochastic variables X en Y. X and Y represent both the body lengths of males in one
country. The Gaussian distribution of variable X has parameters mean 172 and variance 49,
the distribution of Y does have the parameters mean 174 and variance 81. The Gaussian dis-
tribution corresponding to stochastic variable X has been constructed by measuring the body
length of hundred people, where Y has been constructed by taking a different population,
having a size of one million people. Because the distribution corresponding to variable Y is
based on more experiments, it’s model is more accurate than the distribution of X. However,
when the two distributions will be taken together, even more experiments are involved which
will improve the accurateness.

An example of the unification of two distributions is shown in figure 7.1(b). Let’s denote
the resulting continuous distribution with the variable L. The area of the segment is an
approximation of the probability P(170 ≤ L ≤ 175). This probability can be computed by the
following formula: P(170 ≤ L ≤ 175) = P(170 ≤ L ≤ 175|group1) ∗ P(group1) + P(170 ≤ L ≤
175|group2) ∗ P(group2). When we consider that group1 is represented by stochastic variable
X and group2 by stochastic variable Y, the probabilities P(170 ≤ L ≤ 175|group1) and P(170 ≤
L ≤ 175|group2) correspond to the area of respectively the green and red rectangles. The
probabilities P(group1) and P(group2) are the weighing factors in the resulting distribution.
The weighing factors can be determined by the size of the population. In this example
P(group1) is equal to 1000

(1000+1000000) and p(group2) = 1000000
(1000+1000000) . The size of populations or
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Figure 7.2: Almost no overlap.

experiments are not part of continuous distributions, though, the continuous distributions
are created using the population. This is where lineage comes into play. To determine the
weighing factors, we need to where the continuous distributions are originating from. We go
into detail on lineage in one of the succeeding sections.

The open issues related to unification are:

1. Query language
The query language could be extended with a UNION operator. This UNION operator
can be used by the end-user to unify two continuous distributions, posing queries
on the result, present the result on a screen or to insert the result in the database.
The UNION operator takes the location of two continuous distributions as argument.
An alternative approach is to allow the end-user to use a UNION construct directly
in the Pr operator. Then, the end-user has to specify in the Pr operator the location
of the stochastic variables to query. With this approach, the union of two continuous
distributions is computed at query time. Whether this is a feasible approach is currently
not known.

2. Data model and representation (histogram)
The unification of two continuous distributions yields a non-standard continuous dis-
tribution. The step size is known a-priori. So the result of an unification can be repre-
sented by a histogram. Suppose that there is a large gap between the two continuous
distributions, i.e. there is not much overlap (as depicted in figure 7.2). How to represent
this is by a histogram? One approach is to floor the original distribution on the interval
where the density of the probability mass is small. Then, the interval between the two
distributions can be represented in the histogram by zeros for the y-values on that
interval. Following this approach, and there is a huge gap between the distributions,
the resulting histogram can become very large.
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Joint probability distributions

Consider the scenario of the beer brewery given in section 4.3.1. The production facility
does have two production lines. The daily capacity of each production line is expressed by
the amount of bottles filled and it can be modeled by a Gaussian stochastic variable. For
the capacity of production line one, holds the following parameters mean=10000 and vari-
ance=1000, the capacity of production line two can be described by a Gaussian distribution
with parameters mean=20000 and the variance=2000. Suppose we would like to know the
probability that, on a random day, production line one produces more than 11000 bottles
and production line 2 produces more than 22000 bottles. If the amount of bottles filled in
production line one is described by stochastic variable X and the amount of bottles filled in
production line two is described by stochastic variable Y, the probability can be expressed as
follows: P(X > 11000 and Y > 22000). These kinds of probabilities are called joint probabili-
ties. When the distributions of X and Y are taken together, we get the joint distribution of X
and Y with an associated joint probability density function:

∫

x

∫

y
fX,Y(x, y)dy dx = 1.

A common example of a joint probability density function is the multivariate normal
distribution, it is a generalization of the one-dimensional Gaussian distribution to multiple
dimensions. A special case is the bivariate normal distribution for which the filling-capacity
of two production lines is a good example. The bivariate normal distribution in the example
above, is drawn in figure 7.3(a).

Figure 7.3(b) depicts a bivariate normal distribution. The red rectangle cuts the bivariate
normal distribution on the y-axis. The volume under the red rectangle corresponds to the
probability P(9800 < X < 10200 and 20020 < Y < 20040). When the width of the red rect-
angle becomes infinite large, the volume below the rectangle corresponds to the probability
P(9800 < X < 10200 and Y = j) = P(9800 < X < 10200). This is an example of a marginal
probability. The probability can be computed using the marginal probability density func-
tion. This function can be determined by integrating (or summing in the discrete case) over
the variable Y: fX(x) =

∫

y
fX,Y(x, y)dy. This is a basic operation and can be supported by the

DBMS by implementing a marginalize function. Given a probability density function over a
set of attributes, the marginalize function returns a new probability density function over a
subset of attributes.

We came up with an example where the stochastic variables are independent. However,
in many situations the stochastic variables are dependent and they may be correlated too.
An open issue is how to model these statistical dependencies in semi-structured data and
how to encode correlations and factors in this data.

Because there are many scenarios in which end-users would like to use joint probabilities,
we would like to have support for this feature in our probabilistic XML database manage-
ment system. The theoretical data model presented in chapter 3 can be extended in such
way that it will have support for joint probability density functions. The data representa-
tion used by the prototype should be adapted as well. The histogram representation will
not be sufficient anymore because it only supports the representation of one-dimensional
data where the storage of multi-dimensional data will be required then. As stated above,
a complicated aspect will be the modeling of statistical dependencies and correlations in
a semi-structured probabilistic data model. Having said all this, it is actually necessary to
investigate the need for storing multi-dimensional probability density functions in semi-
structured data. An alternative (or optional?) approach would be to store the individual
stochastic variables with its probability density function and the correlation factors and to
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(a) A bivariate normal distribution. (b) A sliced bivariate normal distribution.

Figure 7.3: Bivariate normal distributions.

compute the joint probabilities at query-time. Besides the data model and the representation,
another open issue involves the query language. The query language requires additional
constructs in order to support querying joint probability density functions. It should have
at least support the ”AND” construct in the Pr operator such that Pr(X > 2 and Y > 3)
constructs are allowed. When the probabilistic density functions of two stochastic variables,
X and Y, are stored separately in an XML document (as in the alternative approach), the
location of X and Y should be specified within the query. Instead of just providing the
attribute-names, the location can be provided using an XPath expression. An example could
be Pr(room[1]/temperature>18 and /room[2]/temperature>19) while the XML document
contains temperatures of all rooms in an office building. Moreover, needless to say, when the
DBMS supports the storage of multi-dimensional probability density functions, the query
language should have support for marginalization in order to rule out stochastic variables.

Multiple (exclusive) events

Consider again the scenario of the beer brewery given in section 4.3.1. Suppose someone
would like to know the probability that in production line one more than 22000 bottles
are filled or that in production line two more than 11000 are filled. This is an example of
two mutual exclusive events that either occur. The probability can be computed as follows
P(X ≥ x or Y ≥ y) = P(X ≥ x

⋃

Y ≥ y) = P(X ≥ x) + P(Y ≥ y). In case the two events are not
mutual exclusive, the probability can be computed as follows P(X ≥ x or Y ≥ y) = P(X ≥
x) + P(Y ≥ y) − P(X ≥ x and Y ≥ y).

One way to support this, is to extend the query language with an ”OR” construct that
can be used within the argument which is provided to the Pr operator. Furthermore, the
query language should have some kind of rewrite mechanism such that it will support the
transformation described above. As discussed in the previous section, the query evaluation
component of the DBMS should have means to locate the stochastic variables X and Y in the
XML document. The stochastic variables could reside in entirely different sections of the XML
document. One approach to solve this problem is to express the location of the variables X and
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Y as XPath expressions that will be evaluated individually by the Pr operator. Another aspect
concerning the probability computation of two mutual exclusive stochastic variables has to
do with checking whether those two probabilistic attributes are indeed mutual exclusive.
The data model of probabilistic XML handles mutual exclusiveness in a natural way. Two
events are mutual exclusive if the associated stochastic variables reside in two different poss-
nodes. One approach to solve this issue, is to determine the relative locations of the stochastic
variables.

Conditional probabilities and distributions

A conditional probability is the probability of event A occurring given the occurrence of an

event Y. According to Bayes theorem, the following holds: P(X | Y) =
P(X and Y)

P(Y) =
P(Y | X)P(X)

P(Y) .
Consider the scenario of the beer brewery. Suppose someone would like to know the proba-
bility that the throughput of production line one is more than 10000 bottles a day while the
number of broken bottles caused by the caps-pushing machine is 50. This can be expressed
with the following conditional probability: P(X ≥ 10000 | Y = 50). X and Y are both Gaussian
distributed and it is likely that the variables X and Y are dependent and negatively corre-
lated. Let’s say the correlation between X and Y is -0.01. We can compute the conditional
distribution using linear regression. We use the following formulas:

• µX|Y=a = ba + c

b =
ρXYσX

σY = −0.01

c = µX − bµY = 10000 − (−0.01 ∗ 50) = 10000.5

• σ2
X|Y=a

= (1 − ρ2
XY

)ρ2
Y

The resulting conditional (Gaussian) distribution will have the parameters µ = −0.01 ∗ 50 +
10000.5 = 10000 and σ2 = 1−ρ2

XY
σX = 1−(0.0001∗1000) = 0.9. This distribution corresponds to

a ”cut through” of the multivariate Gaussian distribution on the y-axis at position y = 50. An
example of a multivariate Gaussian distribution can be found in figure 7.3. The conditional

probability density function can be written as: fX|Y(x|y) =
fX,Y(x,y)

fY(y) . Note that if fX|Y(x|y) = fX(x),

X and Y are said to be independent.
Support for conditional probabilities and distributions by a probabilistic DBMS is de-

sirable because there are many foreseeable scenarios in which people deal with conditional
probabilities. Supporting them has the following implications for the DBMS:

1. Data model
As [19] and [23] discovered, dependencies between probabilistic attributes, like mutual
exclusiveness and simultaneous occurence, can be expressed in XML in a naturual way.
However, when probabilistic attributes are dependent, they might be correlated as well.
The correlation coefficient indicates to what extent two random variables are correlated.
The data model we developed does not have support for modeling correlations and
their coefficients.

2. Query language
It would be interesting to extend the query language with some construct that can
produce a conditional probability density function given two probabilistic attributes
which are described by continuous distributions. The result should be a symbolic
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representation with a corresponding approximation (e.g. histogram). Besides that, it
is desirable that the Pr operator in the query language will be adapted in such way
that the usage of ”|” constructs are allowed. Another related issue is how correlations
between probabilistic attributes fit into possible worlds semantics. This would also be
an interesting topic.

The data model and query algebra proposed in [26] supports the storage, manipulation and
querying of joint and conditional probability distributions in semi-structured data. However,
the model and query algebra is limited to discrete data. The results of this project might be
used to extend our data model and query language for continuous uncertain data.

7.3.2 Support for lineage

Lineage refers to the name of a mechanism in a DBMS that keeps track of where the data
came from. Our prototype supports one kind of lineage. The prototype is able to keep track
of operations performed on each base probability density function corresponding to each
stochastic variable (probabilistic attribute). However, lineage is a much broader topic. It
involves interrelating representations of different real world objects by links, each having its
own semantical meaning. Benjelloun et al. distinguishes in [4] internal and external lineage.
As mentioned before, internal lineage refers to references between representations of real
world objects in one database where external lineage refers to references to representation
that are outside the database. Support for lineage (internal and external) is desirable as the
example in section 7.3.1 made clear. Moreover, lineage allows us to track and recover the
original data when performing probabilistic computations; this may improve the quality of
the query result in some situations.

As [9] shows, it is possible to encode data provenance or lineage into XML documents. The
open issues concern the modeling of lineage with continuous uncertainty as an alternative
to the confidence values presented in [4].

7.3.3 Query optimization

Until now we have not much worried about query performance, including speed and ac-
curacy, of the probabilistic XML DBMS. As shown in chapter 6, there is a trade-off between
accuracy and response time. The goal of query optimization is to improve response times of
the DBMS as well as accuracy of the query answers returned by the DBMS.

A relational query can be optimized using a query optimizer. The two main components
of a query optimizer are the query execution plan generator and the plan cost estimator. A
query plan defines the way of how a query is evaluated. In a relational DBMS, the query plan
can be seen as a relation expression with evaluation methods attached to each operation.
The query plan generator generates a number of query execution plans using commutativity
and associativity rules. A query optimizer uses a number of heuristics and cost estimates in
order to choose among query execution plans. The query is evaluated according to the query
execution plan chosen. It is likely that the execution of probabilistic queries can be optimized
using a query optimizer. It might be that by developing commutativity and associativity
rules for probabilistic operators, probabilistic queries can be optimized. Another issue to be
examined is how we can estimate the costs of executing a query execution plan.
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Another aspect of query optimization is the following. As described in chapter 5 the im-
plementation of all the query operators process continuous uncertain data that has been dis-
cretized. This approach ensures that all kinds of continuous distributions (also non-standard
continuous distributions) can be queried following possible world semantics. However, it is
not an very efficient approach because the query operators have to process a large number
of histogram segments during query execution. In many situations, the parameters from the
symbolic representation can be used in conjunction with some sophisticated functions to
compute a query answer. For instance, the cumulative distribution functions of continuous
distributions can be used for computing probabilities. In many cases, the expected value
and the variance can be computed, using a distribution-specific function with parameters
which are encoded in the symbolic representation. A good example is the computation of
the expected value from a continuous uniform distribution; it is simply a+b

2 where param-
eters a and b will be stored in the symbolic representation. The function that computes the
expected value is distribution-specific and the function has to be present in the DBMS. The
functionality can be implemented by a mean-function in the DBMS accepting the symbolic
representation of the continuous uniform distribution, containing the parameters a and b.
This approach implies that the functionality of the DBMS should be extended with all kinds
of hard-coded distribution-specific functions. Each function simply retrieves the value(s)
from the symbolic representation and computes the answer directly. This approach yields
much more accurate answers with lower response times. Although this approach has major
advantages, the support for non-standard continuous distributions poses a problem because
distribution-specific functions for non-standard continuous distributions are not available.
Then, histograms can be used for approximating non-standard continuous distributions.
Another solution could be to implement the query operators, that are based on probability
theory, in such way that integrals are used. In order to provide support for the different
ways of computing answers for probability queries simultaneously, the DBMS should be
extended with a mechanism that is able to decide whether a probability query should be
executed using the symbolic form, histograms or using integrals. This mechanism should act
accordingly by invoking the appropriate internal functions. This is where query plans come
into play. The query plan should be chosen based on the type of continuous distributions
to be queried. This approach would have an considerable positive impact on performance,
accuracy as well as response time.

As we have seen in chapter 6, the performance of aggregate operators is very poor. One of
the reasons is that an aggregate operation performs a cartesian product over the set of distri-
butions and the cartesian product operation is a computational expensive operation. Maybe
there is a smart way to compute an aggregated continuous distribution such that the use of
an expensive cartesian product operation can be avoided. This should be further examined.
Furthermore, during execution of an aggregate query operator, the values and probabilities
corresponding to each discretized distribution are retrieved using identifiers. This costs a
lot of overhead. Adding native support for histogram dataobjects to the underlying DBMS
might have a positive effect on the performance because then the values and correspond-
ing probabilities can be retrieved directly without having to use the complex datastructures
containing identifiers.
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7.3.4 Benchmarks

In chapter 6 we tried to evaluate our own Database Management System for Continuous
Uncertain XML data. We assessed the performance of the system in terms of query execution
time and accuracy by running self-defined benchmarks. Those benchmarks did not reflect a
real-world situation (scenario): the query operators and the data sets were simple and the
same. In the ideal situations, the benchmarks reflect a real-world situation and are applicable
on relational as well as semi-structured data. A future direction could be to look at the
Information Retrieval community. On a Text REtrieval Conference (TREC), fair comparisons
are made among information retrieval systems by posing a number of questions on a set of
documents, the correct answers are known in advance. Each conference produces a series of
test collections, each of them consisting of a set of documents and a set of questions.

7.3.5 Support for other probability distributions

Our data model for continuous uncertain data does only have support for some continuous
distributions at this moment. Only the gamma, gaussian, continuous uniform and the beta
distributions are supported now. The prototype is only able to manage continuous uncertain
semi-structured data that contains Gaussian distributions.

It is easy to extend the data model with other continuous distributions like the Chi, chi-
square and Kent distributions etcetera. Besides that, it would be interesting to have support
for discrete distributions, like Bernouilli and binomial distributions, in the data model. Al-
though, the continuous uncertain data model does have support for discrete probabilities as
it is based on the probabilistic XML data model, storing discrete distributions with its param-
eters could be more space-efficient. An example is the binomial distribution with parameters
n and p.

7.3.6 Support for ignorance

The current data model does not take ignorance into account. The current solution is that, for
missing probability mass, an empty possibility node with the remaining probability is added.
This solution is used when the floor operator is applied on a continuous distribution, this
operation yields missing probability mass. We foresee a solution in which missing probability
mass is associated with uncovered elements. However, this requires a fundamental extension
to the data model and the query language [12].

7.3.7 PRODUCT aggregate operator

As shown in section 4.3.2, the resulting distribution of the PRODUCT aggregate operator
cannot be represented by a histogram. Support for this operator is desirable as motivated
in section 4.3.1. Open issues with respect to supporting the PRODUCT aggregate operator
reflect questions like what are the properties of the resulting (continuous) distribution, what
are feasible approaches for representation and which one is the most preferable approach?
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7.3.8 Updates

Updates in terms of possible worlds semantics mean that an update is performed in each
possible world [12]. An update on an attribute in a probabilistic DBMS yields one of the
following phenomena:

• The attribute becomes probabilistic.
The attribute was deterministic and due to the update, the value of the attribute is
modeled by a continuous distribution.

• The attribute becomes deterministic.
The attribute was probabilistic and due to the update, the value of the attribute is a
single value or a set of values. In case of a set of values, each value represents the state
of the real world and is thus true (simultaneous occurrence).

• The probability that a probabilistic attribute attains a value on a particular interval
becomes more likely.
The variance is adapted by the query in such way that the area under the probability
density function on that interval becomes larger.

• The probability that a probabilistic attribute attains a value on a particular interval
becomes less likely.
The variance is adapted by the query in such way that the area under the probability
density function on that interval becomes smaller.

We have not paid any attention to updates on continuous uncertain data so far. Consequently,
this topic needs further examination.
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Appendix A

Schema Continuous Uncertain XML

1
2 <?xml version=” 1 . 0 ” ?>
3
4 <xs:schema xmlns :xs=” h t t p : / /www.w3 . org /2 0 0 1 /XMLSchema”
5 targetNamespace=” h t t p : / / db . ewi . utwente . nl ” xmlns=” h t t p : / / db . ewi . utwente . nl ”
6 elementFormDefault=” q u a l i f i e d ”>
7
8 <x s :e lement name=” d i s t r i b u t i o n ” type=” d i s t t y p e ” />
9

10 <xs:complexType name=” d i s t t y p e ”>
11 < x s : a l l>
12 <x s :e lement name=” symbolic” type=” symbolictype ” />
13 <x s :e lement name=” histogram” type=” histogramtype ” />
14 < / x s : a l l>
15 < / xs:complexType>
16
17 <xs:complexType name=” d is t ty pe only sy mbol i c ”>
18 < x s : a l l>
19 <x s :e lement name=” symbolic” type=” symbolictype ” />
20 < / x s : a l l>
21 < / xs:complexType>
22
23 <xs:complexType name=” symbolictype ”>
24 <x s : c h o i c e>
25 <x s :e lement name=” gaussian” type=”normaltype” />
26 <x s :e lement name=”FLOOR” type=” f l o o r t y p e ” />
27 <x s :e lement name=”A MIN” type=”mintype” />
28 <x s :e lement name=”A MAX” type=”maxtype” />
29 <x s :e lement name=”A AVG” type=” avgtype” />
30 <x s :e lement name=”A SUM” type=”sumtype” />
31 <x s :e lement name=”A PRODUCT” type=” producttype” />
32 < / x s : c h o i c e>
33 < / xs:complexType>
34
35 <xs:complexType name=” histogramtype ”>
36 <xs :sequence>
37 <x s :e lement name=”h” type=” x s :d ec imal ” />
38 < / xs :sequence>
39 <x s : a t t r i b u t e name=” l e f t ” type=” x s :d ec imal ” use=” required ” />
40 <x s : a t t r i b u t e name=” r i g h t ” type=” x s :d ec imal ” use=” required ” />
41 <x s : a t t r i b u t e name=” d e l t a ” type=” x s :d ec imal ” use=” required ” />
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42 < / xs:complexType>
43
44 <xs:complexType name=” normaltype”>
45 <x s : a t t r i b u t e name=”mean” type=” x s :d ec imal ” use=” required ” />
46 <x s : a t t r i b u t e name=” var iance ” type=” x s :d ec imal ” use=” required ” />
47 < / xs:complexType>
48
49 <xs:complexType name=” f l o o r t y p e ”>
50 <xs :sequence>
51 <x s :e lement name=” d i s t r i b u t i o n ” type=” d is t ty pe only sy mbol i c ”
52 maxOccurs=”1” minOccurs=”1” />
53 < / xs :sequence>
54 <x s : a t t r i b u t e name=” l e f t ” type=” x s :d ec imal ” use=” opt ional ” />
55 <x s : a t t r i b u t e name=” r i g h t ” type=” x s :d ec imal ” use=” opt ional ” />
56 < / xs:complexType>
57
58 <xs:complexType name=”mintype”>
59 <xs :sequence>
60 <x s :e lement name=” d i s t r i b u t i o n ” type=” d is t ty pe only sy mbol i c ” minOccurs=”2” />
61 < / xs :sequence>
62 < / xs:complexType>
63
64 <xs:complexType name=”maxtype”>
65 <xs :sequence>
66 <x s :e lement name=” d i s t r i b u t i o n ” type=” d is t ty pe only sy mbol i c ” minOccurs=”2” />
67 < / xs :sequence>
68 < / xs:complexType>
69
70 <xs:complexType name=” avgtype”>
71 <xs :sequence>
72 <x s :e lement name=” d i s t r i b u t i o n ” type=” d is t ty pe only sy mbol i c ” minOccurs=”2” />
73 < / xs :sequence>
74 < / xs:complexType>
75
76 <xs:complexType name=”sumtype”>
77 <xs :sequence>
78 <x s :e lement name=” d i s t r i b u t i o n ” type=” d is t ty pe only sy mbol i c ” minOccurs=”2” />
79 < / xs :sequence>
80 < / xs:complexType>
81
82 <xs:complexType name=” producttype”>
83 <xs :sequence>
84 <x s :e lement name=” d i s t r i b u t i o n ” type=” d is t ty pe only sy mbol i c ” minOccurs=”2” />
85 < / xs :sequence>
86 < / xs:complexType>
87
88 < / xs:schema>

Listing A.1: XML Schema of Continuous Uncertain XML data format
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