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Summary 
Tube hydroforming uses a combination of internal pressure and axial feeding to form complex 
parts, like exhausts, engine cradles and roof rails. Tubes used for hydroforming are mostly 
round of shape and are subjected to several forming steps prior to hydroforming. These steps 
are necessary to fit the tube in the die cavity and successfully produce the hydroformed part.  
To reduce the number of production steps prior to hydroforming, the initial tube geometry 
should be improved. To find this geometry a research study is conducted using an 
optimisation strategy. The optimisation described in this report is based on Response Surface 
Methodology. This technique uses a number of finite element simulations, executed according 
to an experimental design. An objective function is used to evaluate the results of the finite 
element simulations and is a function of the design variables describing the initial tube 
geometry. From the collected data a response surface (metamodel) is build with linear 
regression analysis, which is an approximation of the objective function. The optimum of the 
metamodel is found using a line search technique in Matlab.  
In this report the optimisation of a tube to a square die is described. To find the optimum the 
initial tube geometry is described with design variables, which are altered according to an 
experimental design and subsequently simulated using the finite element package DiekA. The 
simulated hydroform products are evaluated by determining the wall thickness distribution. 
The optimisation searches for the tube with a uniform distribution.  
From the optimisation it is found that the largest influence on the wall thickness distribution is 
not so much a single design variable, but the perimeter of the initial tube. The larger the 
perimeter of the initial tube, the more uniform the wall thickness distribution. A further study by 
altering the constraint concerning the maximum allowable perimeter resulted in a preference 
for square tubes with a small radius and a small dent in the sides of the box. 
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1 Introduction 
Manufacturers are continuously searching for improvement of their processes to gain better 
quality products for lower costs (make more profit). This applies to all kinds of industry, 
including the metal forming industry. In the past customer demands were met by using 
experimental trial-and-error methods, which is a time-consuming and expensive process. With 
the rise of the computer era the experiments could be simulated using computer models. This 
allowed for the trial-and-error process to be conducted on the computer, thereby reducing the 
stress on production resources. Nowadays the manufacturers are interested in maximum 
efficiency for a minimum expense, leading to the search for optimal processes. This demands 
for a more systematic approach of the problem and led to the development of mathematical 
tools. The coupling between mathematical optimisation algorithms and finite element 
simulations is an important step for industrial optimisation.  
 

The Aim of the Thesis 
The aim of an optimisation is to find a set of parameters that minimise the objective function 
subjected to a set of constraints. To implement this for the industry the Netherlands Institute 
for Metal Research (NIMR) started the project “optimisation of forming processes”, which 
aims at developing an optimisation strategy for metal forming processes. The PhD student 
Martijn Bonte at the University of Twente conducts this project using mathematical tools in 
combination with the finite element method.  
Together with Corus a graduation project was formed to gain a better understanding in the 
utilisation of optimisation for forming processes. The project is concentrated on one forming 
process, namely hydroforming. This technique uses a water emulsion to form metal sheets or 
tubes into the shape of a die. In this case tube hydroforming to a prismatic die shape is 
investigated.  
The project is a case study for optimisation of a hydroformed product. The problem is 
formulated as the optimisation of the initial tube geometry for hydroforming. The investigation 
aims at the reduction of forming steps prior to the hydroform step by selecting a better tube 
geometry. The input parameters are formed by the geometrical description of the initial tube. 
As an objective for the problem the distribution of the wall thickness is used. A better 
distribution implies a more uniform thinning of the wall across the perimeter and additionally a 
more uniform strain distribution in the entire tube.  

 

Report Structure 
An introduction into the hydroforming technique is given in chapter two. Here the different 
stages of hydroforming are discussed to get a feeling for the work hardening of the material. 
The strain introduced into the material influences the forming capability during the hydroform 
process and must be prevented if possible. 
The third chapter discusses the theory used for optimisation of the hydroform process. The 
focus is on the preparation and evaluation of the optimisation rather than on the used 
algorithms. For the optimisation itself use is made of a Matlab tool. 
The use of the theory for the optimisation of the initial tube geometry for hydroforming is 
discussed in the chapters four to six. At first the preparation of the optimisation problem is 
described, where the choice of variables, objective functions (criterion) and constraints is 
discussed. Furthermore the experiments (runs) are presented, which are used to gain as 
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much information as possible. The experiments consist of two- and three-dimensional finite 
element simulations. The two-dimensional simulations are validated by mesh refinement and 
comparison with a model taking in account the work hardening of the tube forming process. 
In chapter seven the results and procedure of the optimisation are discussed. The report 
finishes with the conclusions and recommendations in chapter eight. 
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2 Hydroforming 
Hydroforming is a general term to denote sheet or tube forming using a pressurized medium. 
Initial hydroforming started in 1940, when J.E. Grey et al. [16] investigated the possibility for 
making seamless copper sockets. In the early days, the technique was mostly used by the 
sanitary industry fabricating sockets. Since then a lot of theoretical studies and experiments 
have been carried out to investigate the technique of hydroforming in general. 
The automobile industry started their investigations of the techniques usability in the 70s 
followed by a decline of interest and in the last decade large-scale production of both tube- 
and sheet-hydroforming became more common. Nevertheless the theoretical and practical 
knowledge of hydroforming is less extensive and detailed compared to deep drawing due to 
large investment costs needed for research [14, 20]. 
The advantage of hydroforming compared to deep drawing is the ability to produce complex 
hollow parts without the need of an assembly step. The absent of flanges needed for 
assembly reduces the weight and the continuous weld in longitudinal direction of the tube 
increases the stiffness. Replacing traditional deep drawing designs by a hydroformed part is 
only economical when the traditional design consists of multiple deep drawing components, 
due to the high production cost of hydroformed parts. 
This report focuses on tube hydroforming, explained in more detail in the following sections. 
In section 2.2 the production cycle is described to indicate several pre-forming steps, followed 
by a section about the process parameters and possible failure modes of the hydroform 
process. The last sections describe the influence of the tube geometry on the ability to 
produce hydroform parts. 
 

2.1 Tube Hydroforming 
Tube hydroforming, depicted in Figure 2.1 uses a combination of internal pressure and axial 
feeding to form complex parts, like exhausts, engine cradles, roof rails, longitudinal beams 
and pillars as shown in Figure 2.2. A hydroform cycle can be divided into four steps; Placing 
the tube in the die cavity (1), filling the tube with a water emulsion (2), increasing the internal 
pressure and applying axial feeding (3) and ejecting the hydroformed product (4). The axial 
feeding can be stroke– or force controlled, while the pressurized medium can be pressure or 
volume controlled. 
 

Figure 2.1. A typical hydroform 
process for a T-piece 

 
Figure 2.2. A Body-in White structure 

 

 

Step 1 

 

Step 2 

 

Step 3 

 

Step 4 
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Hydroforming can be divided into Pressure Sequence Hydroforming (PSH) and High Pressure 
Hydroforming (HPH). With the former technique the tube is deformed in a bending mode, 
while the latter technique uses elongation of the tube wall. Tubes used in HPH have a 5 to 10 
percent smaller perimeter compared to the die perimeter. When the die is closed, an internal 
pressure is applied forcing the tube to adopt the shape of the die. Hereby the tube is inflated, 
increasing its perimeter and causing the wall thickness to decrease. The difference in the 
perimeter between the tube and the die, forces the tube to expand along the entire perimeter. 
Variation of the wall thickness around the perimeter is caused by partial contact of the tube 
wall with the die during expansion, see Figure 2.3. Contact between the tube and the die 
restricts free forming, where material flow becomes dependent on the amount of friction. To 
overcome this, the internal pressure is increased causing an increase of friction, which is 
proportional to the internal pressure. The minimum corner radius of the die (corner filling) 
determines the ultimate internal pressure, also called calibration pressure. 
With PSH the perimeter is equal to the perimeter of the die and deformation of the low-
pressurised tube takes place during the closure of the die. For further reference on PSH is 
referred to [21…24]. 
 

 
Figure 2.3. Wall thinning due to friction 

 

2.2 Production Steps Prior to Tube Hydroforming 
Prior to hydroforming the material is subjected to a number of forming steps. At first a metal 
sheet is bent to form a tube. Dependent on the final product, the tube is bent and pre-formed 
to fit into the die cavity. These forming steps introduce plastic deformation to the material, 
resulting in a decreased formability of the material for the subsequent forming step. In this 
section a few pre-forming steps applied for hydroforming are briefly discussed. 
 
2.2.1 Tube Forming 
In the next sections two tube making techniques are shortly explained, roll-forming and 
tubular blank [26]. Another technique for producing tubes is extrusion, which is mostly used 
for making seamless aluminium tubes. This report is focused on steel tubes used for 
hydroforming and therefore extrusion is not discussed. 

Roll–forming 
A continuous process to produce tubes out of strip, sheet or coiled stock is called roll-forming. 
The sheet metal is guided through a row of roll stations, see Figure 2.4, forming a tube with 
uniform cross-section. The production line consists of up to 25 stations including two or more 
rolls per station. 
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Figure 2.4. Roll–forming 

 

The rolls can be divided into forming rolls and sizing rolls, the former one is subdivided into 
breakdown and finishing rolls. 
When the sheet is bent in the right shape and calibrated, the sheet is welded to form a closed 
cross-section, forming a so-called mother tube. This mother tube is cut into predefined 
lengths. The process takes place with a speed of ±75 meter per minute, depending on the cut 
and weld speed in the line. 
The roll forming process not only introduces stress in the circumferential direction but also in 
the longitudinal direction caused by the non-simultaneous bending of the sheet (in the entire 
production line). Most of the stresses though are caused by the calibration step, the last step 
in the roll forming process. In this step the tube not only obtains its final shape, it also acts as 
a power drive for the production line. To pull the tube through the line, the tube is slightly 
squeezed for grip, with that introducing extra strain in circumferential direction. The strains 
have a non-uniform distribution of approximately 6 percent. 

Tubular Blank 
The tubular blank process is a discontinuous process, forming a pre-cut metal sheet in 
several steps on a press brake by bending, see Figure 2.5. In approximately 5 to 7 steps the 
sheet is bent to a round shape after which the tube is laser welded. This principle lends itself 
for making normal, tailored or conical tubes. Tailored tubes consist of multiple sheets made 
form different materials and/or various thicknesses. The tubular blank is formed by bending 
only, introducing uniform strains in the circumferential direction of approximately 2 percent. 
 

 
Figure 2.5. Tubular blank process: press forming 

(source: Corus: The tubular blank) 

 
2.2.2 Pre-forming 
Pre-form operations, like bending or crushing, often are necessary before hydroforming to 
prevent material trapping during closure of the die, see Figure 2.6. 
Strains and stresses are introduced during pre-forming, influencing the formability of the tube. 
During pre-forming wall thinning occurs at several places of the tube wall. To prevent further 
thinning, elongation of these spots should be avoided by introducing contact between the die 
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and tube wall. Due to friction the elongation of the tube wall in contact with the die is blocked, 
which is called wall locking [4]. 

 

 
Figure 2.6. Bent tube within die 

 

 
When only pure expansion occurs due to limited material flow, crushing and pre-forming 
processes become important steps prior to hydroforming of circular tubes into various cross-
sections. Many hydroform operations require pre-forming in order to fit the tubes into the 
hydroforming die cavity and close the tool without chance on die trapping.  
For some hydroform operations the pre-forming step is conducted by the closing of the die, 
which leads to higher demands on the hydroforming tools, although saving an extra process 
step with corresponding tools. When die trapping can occur a separate step is needed. 
Crushing is used to decrease the contact area between the tube and die before hydroforming, 
thereby decreasing the hydraulic pressure and clamping force needed, and leads to a more 
uniform wall thickness distribution. After a pre-forming step annealing may be necessary to 
remove residual stresses, although it is an expensive and unwanted production step [15].  

 

2.3 Influence of Process Parameters 
Process parameters like internal pressure, axial force and friction have a large influence on 
the formability of the hydroformed tube. Two parameters are directly controlled, namely the 
internal pressure and axial feeding, and the interaction between them on the formability is 
shown in Figure 2.7. The chart forms a process window in which the process has to take 
place to form a correct part. When the load path, the relation between the internal pressure 
and axial force, is located outside the process window, failure occurs.  
 

 
Figure 2.7. Process window 

 

Excessive axial feeding at the beginning of the forming process, in combination with low 
pressure, while the tube has no contact with the die wall, leads to buckling depicted in Figure 
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2.8b. Wrinkling, local buckling, occurs both in the beginning and further along in the process 
and is caused, like buckling, due to high compressive stresses in the tube wall. Buckling 
generally occurs for relatively long, thick-walled tubes, while wrinkling occurs for tubes with a 
relatively small wall-thickness for both long and short tubes.  
Excessive internal pressure leads to necking. This is a local instability of the tube wall caused 
by high internal pressure in combination with lack of axial feeding and is mostly followed by 
bursting. 
 

 
Figure 2.8. Common failure modes, which limit the THF process. (a) Wrinkling; (b) 

buckling, (c) bursting. 

 
Axial feeding or axial force is applied for multiple reasons dependent on the type of process. 
For all process types the axial force is used to seal off the tube to make internal pressure 
build up possible and is therefore dependent on the internal pressure in combination with the 
surface area on which the pressure is working. In the process window shown in Figure 2.7 it 
results in a straight line as a lower limit.  
Axial feeding is only efficient in the area near the end of the tube. Figure 2.9 shows 
characteristic areas of the tube and the effect on material feeding possibilities. Feeding 
material to areas further along the tube needs much higher axial forces to overcome the 
friction between the tube and the die, increasing the possibility to exceed the material 
strength. Regardless of the tube length, no axial feeding is possible to areas after a bend due 
to wrinkles occurring in the inside of the bend. 
 

 
Figure 2.9. Different zones of axial feeding in a hydroform product 

 
Many studies are conducted to optimise the process parameters involving hydroforming. 
Particularly the relation between the internal pressure and axial feeding is investigated using 
experimental and theoretical studies, where the latter imply both analytical studies and 
optimisation routines.  
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2.4 Influence of Tube Geometry on the Hydroform Process 
The most used initial tube geometry is circular. The choice of tube diameter and wall 
thickness depends on the final hydroform part shape and application, pursuing an optimal 
mass to strength and mass to stiffness ratio. Stiffness is determined by the part geometry, 
thus for a given die geometry fully dependent on the wall thickness and wall thickness 
distribution. Strength of the hydroformed part is besides on the geometry also dependent on 
the material characteristics, where work hardening is of great importance.  
HPH uses tubes with a perimeter approximately 5 to 10% smaller than the die perimeter. This 
leads to a high elongation in the tube wall. High pressure needed for complete expansion of 
the tube causes high normal stresses between the tube wall and die, with that increasing 
friction leading to locking of the tube wall areas in contact with the die. This locking leads to a 
reduced material flow in the contact areas, leading to increased expansion in the rest of the 
tube. 
Tubes described above all have a circular perimeter and are uniform along the length of the 
tube. A new development of hydroform tubes is a conical tube suited for hydroform parts with 
a largely varying perimeter along the length of the tube. For instance a B-pillar of a body-in-
white, as shown in Figure 2.2, with a large perimeter at the bottom and small perimeter at the 
top. A big advantage of conical tubes is the reduced expansion compared to a normal tube 
with a perimeter equal to the smallest perimeter of the hydroformed part, moreover optimising 
the wall thickness distribution over the length of the tube. Both advantages mentioned are 
important for increasing strength and rigidity with decreasing the mass, using high strength 
steels. 
J.Spörer et. al. [30] show a development of a tube with a non–circular perimeter suited for 
manufacturing an aluminium rear cross member for the rear axle mounting using hydroform 
technique. The use of these kind of new tubes can lead to a reduction of the cycle time by 
reducing the number of production steps. In this case the pre-forming step and the heat 
treatment became redundant, as shown in Figure 2.10.  

 

 
Figure 2.10. Optimisation of initial tube by BMW [30] 

 
Tubes with non–circular cross-sections have, as described above, the potential advantages to 
produce more complex parts or to achieve a more cost efficient production. The engineer 
finds himself for a new task finding the optimal, or at least better, cross-section. In the next 
chapter a mathematical approach is presented for finding these kinds of optima.  
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3 Theory: Mathematical Optimisation 
To optimise industrial problems a systematic approach is necessary to increase the chance of 
reaching the desired goal in a reasonable amount of time. Mathematical tools form the basis 
for this approach. The optimisation problem is first evaluated before experiments are 
conducted to minimize the use of resources without affecting the outcome of the optimisation 
problem. The approach divides the optimisation problem into four steps:  
 

1. Selecting variables 
2. Defining objective function / criterion 
3. Defining a set of constraints 
4. Determining the optimum with the corresponding set of variables 

 
The input of the optimisation problem is selected in the first step, taking into account the most 
important and interesting parameters. A distinction is made between variable and constant 
parameters; see section 3.1. 
The second and third item of the approach is the definition of the desired goal and restrictions 
of the optimisation problem in a mathematical form. The objective function is the 
mathematical formulation of the aim of an optimisation problem (section 3.2). A badly defined 
objective function can lead to an outcome of the optimisation problem, which is of no or less 
interest to the engineer. Therefore the objective function must be formulated with care. 
Restrictions of the optimisation problem are formed by the constraints of the parameters, but 
can also depend on the outcome of the experiments. This is discussed in section 3.3. 
After these three steps the problem is well defined and can be solved. The mathematical 
algorithm needed for this step depends not only on the optimisation problem, but also on the 
approach of the solving step itself. This is explained in section 3.4 followed by the description 
of Response Surface Methodology (RSM) (section 3.5). RSM is an optimisation strategy 
using regression analysis to approximate a response surface of the objective function.  
 

3.1 Parameters 
The design parameters are the input or conditions of the optimisation problem. The 
parameters can be both continuous (the pressure inside the hydroform tube) and discrete (the 
number of tubes). The design parameters can be divided into variables, parameters and 
constants. All three groups are explained below in separate sections. The type of variable 
influences the choice of optimisation algorithm suited for the problem solving. Optimisation 
problems consisting of continuous variables can be solved using classical algorithms, while 
discrete variables need special kind of algorithms. In this report only continuous variables are 
used, therefore discrete variables are not discussed any further.  

Design Variables 
The design variables or factors are altered to obtain the different settings of the experiments. 
The number of design variables determines the kind of algorithm needed. Problems with a 
few variables need a different kind of algorithm than problems containing several hundreds of 
variables to ensure an effective way of finding a solution. The complexity of the problem 
depends on the number of variables present in the optimisation problem. Therefore if possible 
only the most significant and important parameters need to be considered. 
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Design Parameters 
The variables of less interest are the parameters, which are constant for the current 
optimisation problem. They can however be altered by the engineer. Design variables and 
design parameters are interchangeable, resulting in a new optimisation problem. 

Design Constants 
The last group of parameters are the design constants. These parameters cannot be 
controlled by the engineer but are of influence on the outcome of the optimisation problem; for 
instance gravity. 
 

3.2 Objective Function 
With the determination of the design variables, parameters and constants, the input of the 
optimisation problem is known. The outcome of the problem is formed by the objective 
function, a mathematical description of the optimisation goal. The true optimum of the 
objective function is called the global optimum and can either be a maximum or a minimum. In 
the case of this report, minimisation problems are considered. However, a maximisation 
problem can be transformed to a minimisation problem by ( ) ( )ff −= minmax , with f  the 
objective function.  
It is possible to optimise more than one objective function at the same time. This requires 
another type of algorithms to solve the optimisation problem and is the field of multi-objective 
optimisation. The optimum points are called "Pareto" points (see [5].) Before conducting the 
optimisation problem with multiple objective functions, the possibility to concentrate on one 
objective function must be considered. The remaining objective functions can be transformed 
in criteria for the experiments and thereby forming implicit constraints. This is further 
explained in section 3.3. 
 

3.3 Constraints 
The type of algorithm needed for finding a solution for the objective function, depends on the 
restrictions of the optimisation problem. When no restrictions are present the problem is 
unconstrained. Most industrial optimisation problems however are restricted in some sort of 
way, thereby forming a constrained problem. The constraints form a boundary of the solution 
space, with it forming a feasible domain. The optimum can be located within the feasible 
domain or on its border. The former one is called an interior optimum and can be treated as 
an unconstrained problem. 
 

 

Figure 3.1. Schematic representation of the input and output of an experiment 

In Figure 3.1 the input and the output of an experiment is represented.  Here a division is 
shown between constraints known prior to the experiment and formed by the response of the 
experiment. The constraints are called explicit and implicit constraints respectively. Both types 
of constraints can be either equality or inequality and are either linear or non-linear. The 
optimum for an equality constraint is located on a boundary for at least one of the design 

FEM 
Input 

Explicit (in)equality 
constraints (gexpl, hexpl) 

Response f (x) 

Implicit (in)equality 
constraints (gimpl, himpl)
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variables. For an inequality constraint a boundary is formed to which a relation must be larger 
or smaller. The total optimisation problem can now be formulated as follows: 
 

0)(        
0)(    s.t.

)(min  

≤
=

x
x
x

g
h
f

 Eq. 3.1

 
Where x  denotes the design variables. 
As mentioned in the previous section, objective functions can be transformed into implicit 
constraints. Like the objective functions these constraints depend on the outcome of the 
experiment. The transformation from objective function to implicit constraint is not 
complicated. For each objective function, for example )(2 xf  a maximum value (in case of a 
minimisation problem) for which the outcome is still acceptable must be determined, say *

2f . 
The implicit constraint becomes: 
 

*
22 )( ff ≤x  Eq. 3.2

 
Which is rewritten to: 
 

0)(
0)( *

22

≤⇒
≤−

x
x

implg
ff

 Eq. 3.3

 
The shape of an implicit constraint is not known and dependent on the used optimisation 
algorithm; only the direction of the constraint for an experimental run can be determined. With 
Response Surface Methodology, discussed in section 3.5, an approximation of the constraint 
can be made. 
Together all the constraints form the boundary of the feasible domain. Within this domain the 
optimum is solved. Experiments can only be run if the values of the design variables are 
located within or on the border of the feasible domain. Before the first experiment is executed 
the feasible domain is formed by the explicit constraints only. The actual boundary of the 
domain is not known until sufficient experiments are executed to determine the exact location 
of the remaining implicit constraints. 
The feasible domain is the maximum domain usable for conclusions about the optimisation 
problem, i.e. the shape of the objective function. However, the actual domain suitable for 
optimisation is determined by the location and number of experimental data within the feasible 
domain. Extrapolation of experimental data is not allowed, to prevent a meaningless 
conclusion. 
 

3.4 Optimisation 
With the above, the first three points of the optimisation procedure stated at the beginning of 
this chapter are completed. The last step is the actual optimisation of the problem. For this a 
good algorithm is needed to find the optimum in an efficient way. In this section the 
optimisation algorithms are briefly discussed. The optimisation method used for this thesis is 
Response Surface Methodology (RSM). Interested readers are referred to literature (L.F. 
Alvarez [2] and M Bonte [5]) 
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3.4.1 Iterative and Approximation Methods 
The optimisation in this thesis is based on finite element simulations, which are computational 
expensive operations. Therefore an optimisation method with a low number of simulations is 
best to be used. Most classical optimisation algorithms are iterative techniques. For each 
iteration a new finite element simulation is needed. The iteration tends to be slow in the 
neighbourhood of an optimum, which can lead to a large number of iteration steps thus a 
large number of finite element simulation.  
Another disadvantage of iterative techniques is the validity of the optimum. The optimum is 
always a local optimum and no statement can be made whether the optimum is the global 
optimum. In Figure 3.2 a function is depicted, where point A is a local and point B the global 
optimum. The optimum reached depends on the starting point of the iteration. 
 

 
Figure 3.2. Derivative of a function in point x0, with A and B local optima 

 
Furthermore the iterative technique is often based on the derivative of the objective function. 
The code of the finite element program needs to be adjusted to obtain the derivative of the 
objective function, which is dependent on the optimisation problem. Most finite element 
packages are not suited for adjustments by the user. A few iterative algorithms obtain the 
derivatives independent of the finite element (FE) code or do not use derivatives at all. 
However, these algorithms are highly inefficient. 
 

 

Figure 3.3. Schematic representation of iterative optimisation 

 
To reduce the number of needed FEM simulations another technique for optimisation was 
developed, called approximation optimisation methods. The solution of this method is not the 
true optimum, but an approximation. The lack of accuracy is compensated by the relatively 
small computational costs.  
For approximation methods both local and global algorithms exist. A well known global 
approximation strategy is response surface methodology (RSM). The technique combined 
with FEM is schematically depicted in Figure 3.4. 
 

FEM Optimisation 
algorithm 
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Figure 3.4. Schematic representation of approximate optimisation 

 
RSM uses a metamodel constructed from a number of data points, formed by the FE 
simulations in combination with the objective function. To obtain as much information from a 
small number of simulations as possible, an experimental design is used. In this case a 
Design of Experiments (DOE) strategy. This design forms a scheme with the variations of the 
design variables. The model is built using linear regression analysis like least square method 
and is solved with classical algorithms.  
RSM was originally developed for responses obtained from physical experiments, which 
involve random errors due to noise. Later it is used for computer experiments, which have a 
deterministic character. In recent years Design and Analysis of Computer Experiments 
(DACE) is developed. This is an optimisation strategy, using experimental design, to adapt to 
the more local behaviour of the response. An example of this technique is Kriging. The 
difference between a deterministic and non-deterministic (stochastic) approach is depicted in 
Figure 3.5. 
 

 
Figure 3.5. Deterministic and stochastic metamodel 

 
The solution obtained form the metamodel can be quite coarse. Further investigation of the 
approximated optimum can be conducted by using sequential approximate optimisation. 
Around the approximated optimum an area of the original domain is selected, where a new 
optimisation is performed. This can be done using both iterative as approximate optimisation 
methods. For this thesis RSM is used and further discussed in the next section.  
 

Optimisation 
algorithm 

MetamodelFEM 
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3.5 Response Surface Methodology 
Response surface methodology (RSM) is as described in the previous section an 
approximating technique for optimisation of objective functions. RSM is subdivided into 
several steps to obtain a metamodel for optimisation. The first step is the selection of the 
experiments. For this a Design of Experiment strategy is used, which is described in section 
3.5.1. 
In the second and most time consuming step the experiments are conducted according to the 
experimental design. The results of the experiments are used to form a metamodel with linear 
regression analysis. The model is subsequently optimised with a standard Matlab function for 
constrained optimisation based on Quasi-Newton line search. The underlying algorithms for 
the tool are explained briefly in section 3.5.4. 
 
3.5.1 Design of Experiments 
Design Of Experiments (DOE) is the deliberately changing of one or more variables in order 
to investigate the effect of the changes on one or more response variables. The number of 
experiments and the spreading of the results in the feasible domain influence the forming of 
the metamodel. A DOE places the experiments in the feasible domain to obtain a model, 
which beholds as much information as possible with as low as possible number of 
experiments [20,25]. 
The most common Designs of Experiments are the classical designs. These designs form 
either a hyper cube or a hyper sphere in the design space. Advanced designs use computer 
software to place the points in the design space using several criteria, thereby obtaining the 
ability to fill the feasible domain more efficiently compared to classical design space.  
For this project the use is made of a Box-Wilson Face Centred Central Composite design 
(CCD). For the terminology and background of the classical designs the reader is referred to 
Appendix A. In this section only a few global characteristics of the CCD design are denoted.  
The basis of a CCD design is a two-level full factorial design, capable of determining linear 
and two-factor interaction behaviour of the response. To determine quadratic behaviour also, 
extra points are added. A centre run, located in the exact middle of the design, is suited for 
better prediction of interaction effects and indicates the presence of quadratic effects. The 
centre run alone cannot estimate the quadratic effects and therefore the star points are 
added. The star points, two times the number of design variables, are located at a distance α 
of the centre of the design. In Figure 3.6 the three variants of Central Composite Design for 
two design variables are depicted. 

Circumscribed Inscribed Face Centred
 

Figure 3.6. Central Composite Designs 

For n  design variables the number of runs of the designs is equal to 122 ++ nn  (two-level 
design plus the star points plus the centre run). The Face Centred CCD is the only CCD 
design forming a hyper cube in the design space. The star points for the Face Centred design 
are located at |α| =1. This means that in contrast of the two central composite designs 
mentioned above, the design has three levels per factor. The design is less suited for 
estimating the quadratic effects due to the number of levels. The advantage however is the 
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better spreading of points in the design space compared to the inscribed design and the 
smaller range compared to the circumscribed design. This last argument is important due to 
potential impossible combinations of levels of the design variables. 
To reduce the number of experiments a fraction of the design can be used to determine the 
metamodel. The reduction of experiments leads to confounding of effects, which is minimised 
by following multiplications rules. Confounding means effects are paired (for instance linear 
with interaction effects), which makes it impossible to estimate individual effects. The degree 
of confounding is further explained in Appendix A.  
 
3.5.2 Function Order 
Linear regression analysis is used to determine the values of parameters of the metamodel 
based on the results of the experiments. The analysis is preformed using a least-square-error 
method to find the values of parameters resulting in the best fit. The regression analysis 
however is not capable of determining the type of function needed, but use an on forehand 
stated function.  
The experimental design used (Face Centred CCD) is capable of determining linear, 
quadratic and interaction terms. To see what kind of model best represents the experimental 
data several models are fitted. The first model fitted with linear regression analysis is a simple 
linear model of the form. 
 

ii xf αα += 0  Eq. 3.4

 
The fit of the model is checked using lack-of-fit tools (discussed in the next section). If the 
model has a sufficient fit to the experimental data, the optimisation is performed. Otherwise 
the model is altered by adding terms to Eq. 3.4. This is repeated until a good model is found. 
The models used are: 
   

jkjkii xxf ααα ++= 0  Linear model with interactions if kj <  

iiii xf αα += 0   Quadratic model  

jkjkii xxf ααα ++= 0  Quadratic model with interactions if kj ≤  
 

Eq. 3.5

 
It is known that adding terms to the model will always lead to a better description of the 
experimental data. Therefore the regression analysis starts with the simplest model. The last 
model of Eq. 3.5 is not expanded further due to the property of the Face Centred CCD, which 
is only capable of determining quadratic effects at its maximum. Furthermore, a higher order 
model consists out of a must larger number of terms. Fitting these models becomes 
numerically expensive.  Remark must be made to the design. The number of levels is only 
three, which is the minimal number of points needed to fit a quadratic function. Due to the 
absence of control points the model will always find a good fit for the quadratic terms. 
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3.5.3 Lack-Of-Fit 
The response surface formed with the linear regression analysis of the previous section is an 
approximation of the data points formed by the experimental design of section 3.5.1. This 
means the data points are not located on the response surface. The regression analysis 
selected the values of the parameters for the response surface, which minimise the error to 
the data points. To examine the fit of the response surface to the data points, a lack-of fit 
analysis is conducted. Five lack-of-fit tools suited for the analysis of the response surface are 
represented below. 

R-squared 
One of the tools is the R-squared value, which is formed by: 
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Where iy  and iŷ are the experimental data and the estimated value respectively. The R-
squared value is between zero (no correlation) and one (perfect fit). Some caution should be 
taken, when using the R-squared value. When adding extra terms to the model, the R-
squared value will always increase. This does not necessary imply a better model.  

Adjusted R-squared 
A variant of the above is the adjusted R-squared, which accounts for the number of terms in 
the model and the available experimental data: 
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Where n  is the number of data points, p  the number of terms in the regression model and 

EMS  is the mean square error, i.e. sum of square error divided by the number of degrees of 
freedom. The adjusted R-squared value can both increase and decrease by adding terms to 
the model. The decrease of the adjusted R-squared value occurs when the decrease of the 
error is not compensated by the loss of degree of freedom of the regression.  
The maximum of the adjusted R-squared value is reached when EMS  is at its minimum. This 
is derived from the believe that the sum of squares of the new model must reduce by an 
amount equal to the mean square error of the old model to gain a better model:  
 

oldEnewEoldE MSSSSS ,,, <−  
Eq. 3.9

 
The EMS  will increase if this is not the case due to the loss of a degree of freedom. 
Therefore the model with the lowest EMS  is considered to be the best model, corresponding 
to a maximum of the adjusted R-squared value. 

F-stat 
Another way of investigating the model is the F -stat, which is not an actual lack-of fit test but 
a test for significance of regression. This statistical tool uses a hypothesis test for an F -
distribution. The response model is represented as: 
 

....ˆ 22110 xxy βββ ++=  
Eq. 3.10

 
The hypothesis test: 
 

0...: 210 ==== kH βββ  

0:1 ≠iH β  for at least one 0>i  

Eq. 3.11

 
The hypothesis 0H  is rejected when with a confidence of %100)1( ⋅−α  at least one effect 
is significant, i.e. not zero. To satisfy 1H , the F  value of Eq. 3.12 is above a critical value, 
determined from statistical tables for the distribution of 1,),1( −−− knkF α .  The test statistic is 
formed by: 
 

MSE
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Eq. 3.12

 
Where k  is the degree of freedom of the regression model.  

p-value 
The p-value is the probability of wrongly rejecting the null hypothesis if it is in fact true. The p-
value is compared to the confidence interval, formed by )1( α− . The p-value must be smaller 
than α  to confirm the hypothesis test of Eq. 3.11. 
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t-test 
The F  statistic tells us something about the model in general. The following step is to look at 
the individual effects. For this a new hypothesis test is used: 
 

0:0 =iH β  

0:1 ≠iH β   

Eq. 3.13

 
Where the hypothesis 0H  is rejected if t  is above or below a critical value, formed by 

1,2/ −−kntα  and 1),2/1( −−− knt α  respectively. The t  value is formed by: 
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Where iβ  is the estimated effect and 

i
Sβ  the standard error. 

 
3.5.4 Optimisation Algorithms 
In this section the algorithms used by Matlab in the function fmincon is briefly discussed [1]. 
For comparison between different algorithms is referred to the work of Martijn Bonte [5]. 
fmincon is a Matlab routine for constrained optimisation, suited for Response Surface 
Methodology. The constraints can be both equality and inequality constraints and are of the 
same form as described in section 3.3.  
The Matlab routine is divided in large-scale and medium-scale optimisations. For large-scale 
optimisations a trust region method is used, based on the interior-reflective Newton method 
described in [8] and [9]. 
The strategy of a trust region method is to optimise the objective function )(xf  around 
iterate kx  by approximating the objective function by a model function kq . In a standard trust 
region, the quadratic approximation kq  is defined by the first two terms of the Taylor 
approximation of the objective function around kx : 
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Eq. 3.15

 
Where H is the Hessian matrix containing the second order derivatives of the objective 
function: 
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The trust region method is based on the minimisation of  
 

)(min pxq kkp
+   Eq. 3.17

 
Where p is the direction within a trust region N  around kx , usually spherical or ellipsoidal of 
shape. If )()( kk xfpxf >+ , the trust region is reduced and minimised again according to 
Eq. 3.17. Subsequently kx  is updated. 
For medium-scale optimisations the Matlab routine fmincon uses Sequential Quadratic 
Programming. This is based on Quadratic Programming (QP), which have the standard form: 
 

xcHxxxf TT +=)(min   
0:.. 11 =− bxAts   

       022 ≤− bxA   

Eq. 3.18

 
Sequential Quadratic Programming method solves a QP sub problem at each iteration.  The 
basic idea is to solve the Karush-Kuhn-Tucker (KKT) conditions iteratively with Newton’s 
method. This is a necessity condition for problems with mixed constraints, i.e. both equality 
and inequality constraints:  
 

 0)(,0)( ** ≤= xgxh   

0,0,0,0)( *** =≥≠=∇+∇+∇ gghf TTTTT µµλµλ  

Eq. 3.19

 
For a problem with only equality constraints, Newton’s method leads to the following set of 
equations. 
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Eq. 3.20

 
With L the Lagrangian in which only equality constraints h are present, λ the Lagrange 
multipliers and f the objective function. A related quadratic programming problem can now 
be solved for the kth iteration step: 
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Eq. 3.21
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The Hessian matrix is obtained by a Broyden-Fletcher-Goldfarb-Shannon (BFGS) Quasi-
Newton method. This method is used for updating the Hessian matrix in a numerically cheap 
way. 
The Matlab routine fmincon is suited for finding local optima. For the global optimum the 
following assumption is made: 
 

When optimising with the Matlab routine ’fmincon’ from every point of the 
experimental design, at least one of the solutions is the global optimum. 

 
The response surfaces are of a maximum order of two. This means that for an unconstrained 
problem (only bounded by the boundaries of the feasible domain), the surface has only one 
optimum and is therefore the global optimum. The implicit constraints are also of a maximum 
order of two. Therefore in this case it is believed the assumption is valid.  
In the next chapters the theory discussed in the sections above is applied to a case study, the 
optimisation of the metal forming process of chapter two; tube hydroforming. 
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4 Experimental Simulations 
This chapter and the following two chapters discuss an application of the theory described in 
chapter 3: The optimisation of the initial tube geometry for hydroform tubes. For the 
simulations of the hydroform process a die with a square geometry is used, which is depicted 
in Figure 4.1. The simulations are conducted in plane strain conditions, a common situation in 
the hydroforming processes due to the absence of axial feeding as indicated in section 2.3. 
The parameters, which are altered to find the optimum, form the description of the initial tube 
geometry (section 4.1) and the objective of the optimisation problem is a uniform wall 
thickness distribution. Several formulations for the objective are used to investigate the 
influence on the optimum.  
The boundaries of the problem are described in section 4.3. Besides explicit constraints, an 
implicit constraint is introduced formed by the margin to failure. In this case necking. The 
chapter concludes with the implementation of an experiment design, namely Face Centred 
Central Composite Design. 
 

4.1 Choice of Design Parameters 
As mentioned in the introduction, the goal of the thesis is to optimise the initial tube geometry 
for hydroforming. Applying the theory discussed in chapter 3, would imply the initial tube 
geometry as the objective function. Even though this kind of formulation is commonly used, 
the actual goal (objective) of the optimisation problem is a uniform wall thickness distribution 
and the initial tube geometry is used to achieve this goal. Therefore the parameters used to 
describe the initial tube geometry are the design variables. Parameters that are variable but 
kept constant for this optimisation problem are called design parameters. 
 
4.1.1 Design Variables 
As mentioned above, the parameters describing the initial tube geometry are design 
variables. It is possible to describe the initial tube geometry in several different ways. For this 
project a Cartesian coordinate system is used. 
The geometry is based on the estimated practical limitations of the tubular blank process 
(section 2.2.1). At this moment the tubular blank machine is designed to produce round tubes. 
For applying non-round tubes in the future, the practical and economical limitations of the 
machine needs to be described in detail. For now the limitation is set on two different 
dimensions for radii, implying two different tool sets. Furthermore, the tube is assumed to be 
prismatic. 
The die used for the experiments is square with rounded corners, depicted in Figure 4.1. The 
height of the square is 60 millimetres with corner radii of 6 millimetres. The lines of symmetry 
are marked in red. 
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Figure 4.1. Die-shape for "corner filling" tests 

The finite element models will consist of a quarter tube, to simulate the plane strain 
deformation of the tube during hydroforming. A possible initial tube is depicted in Figure 4.2. 
The geometry is described using seven variables, three lengths (H, L, δ), the thickness ( t ) 
two radii (ρ1, ρ2) and one angle ( β). The radii will be described using the radius of curvature κ, 
to be able to describe both concave and convex radii for ρ2. This is due to the discontinuity of 
the radius in the transition from a concave to a convex radius and visa versa. 
 

ρ

ρ

1

2

δ

β

 
Figure 4.2. Design variables to describe the initial tube geometry  

 
The relation between the design variables depicted in Figure 4.2 is formed by the following 
two equations: 
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Eq. 4.3

 
The derivation of the equations can be found in Appendix B. From Eq. 4.1 and Eq. 4.2 it is 
seen that there are five degrees of freedom instead of the seven variables depicted in Figure 
4.2. Thus the initial geometry from Figure 4.2 can be described with five design variables. For 
this optimisation problem the following design variables are chosen: the height H , the radius 
of curvature 1κ , the radius of curvature 2κ , the length L  and the wall thickness t .  
 
4.1.2 Design Parameters and Constants 
The design variables are established and the remaining parameters for hydroforming are 
constant. This includes material parameters, geometrical parameters (initial geometry) and 
process parameters. The remaining geometrical parameter is the length of the tube, which is 
trivial due to the assumption of plane strain and prismatic geometry. 
The plane strain situation implies also that no axial feeding is applied. The axial force 
however is not zero and provides stress in the length of the tube. This is due to the self-
feeding character of tubes during hydroforming. Another process parameter is the friction. 
The lubrication and most of all the pressure determine amongst other things the friction force 
during the hydroform process. For the simulations for this project Coulomb friction is 
assumed, with a constant friction coefficient of 1.0=µ .  
In the beginning of the project the material parameters of DP600 were used for the 
optimisation problem. DP600 is a dual phase high strength steel and of high interest for 
hydroform applications. Due to the low work hardening coefficient n, the maximum strain 
before failure is relatively low. This leads to convergence problems for a wide range of 
settings for the design variables. Therefore another type of material was used with a higher 
work hardening coefficient (see Table 4.1), namely the mild steel DC04. This material has a 
higher strain before failure and is more stable during numerical simulations.  
 

Table 4.1. Material properties 

 DP600 DC04 

0yσ  431 174 

n  0.151 0.213 

C  1004 542 

0ε  0.0037 0.0048 
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4.2 Objective Function 
The aim of an optimisation problem is to minimise or maximise an objective, named the 
objective function. The optimum of the objective function corresponds to a set of values for 
the design variables. In the next subsections the formulation of objective functions for a wall 
thickness distribution is discussed.  
 
4.2.1 Wall Thickness Distribution 
The wall thickness distribution of a hydroformed tube influences the properties of the product. 
A uniform or an almost uniform wall thickness distribution provides a more uniform stiffness 
and strength of the tube wall. In case of a plane strain situation a uniform wall thickness 
distribution implies an equal plastic deformation in the entire tube. Let us consider the 
invariance of volume for an infinitesimal cube. 
 

0321 =++ εεε  

Plane strain → 02 =ε  

hoopthickness εε
εε

−=⇒
−=⇒ 13

 

Eq. 4.4

 
Eq. 4.4 implies a uniform strain in circumferential direction, when the wall thickness is 
uniformly distributed over the tube perimeter. This holds only for tubes with a small wall 
thickness compared to the diameter of the tube, where the bending effect becomes 
secondary.  
In this section the quantification of the wall thickness distribution is derived in the form of an 
objective function. The wall thickness is a continuous function of the tube perimeter and for 
the determination of the distribution a finite number of observations is used. The number of 
observations is denoted with N  and is related to the number of elements used in a finite 
element model of the tube. The i th observation is denoted with )(xit  dependent of the 
design variables x . The finite element model will be further discussed in section 5.1.  
 
4.2.2 Absolute Difference  
An overall measure for the observations of the wall thickness is the average wall thickness, 

( )xt , dependent on the design variables x . The wall thickness of the tube in an arbitrary 
point i  along the perimeter of the tube is equal to the average wall thickness plus a variation: 
 

ii ttt δ+=  Eq. 4.5

 
The variation itδ  represents the deviation to the average wall thickness. The comparison of 
variations for all points i  is an quantification for the wall thickness distribution and forms the 
basis for the first group of objective functions. The simplest form is the summation of all 
variations: 
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Where α  is a scaling factor. For 1=α , Eq. 4.6 is always equal to zero, independent of the 
number and values of the observations. Odd values of α  result in a summation of negative 
and positive values of itδ , which lead to a meaningless evaluation of the wall thickness 
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distribution, i.e. high values for f could be assigned to uniform distributions and low values to 
coarse distributions and visa versa. To obtain an objective function with a value of zero for f  
for a sample with equal observations and increased values for f  when the variation of the 
observations increase, the scaling factor α needs to be even. For the remaining objective 
functions the following count, unless stated otherwise: ,..6,4,2=α  
For small variations between the observations the values of itδ  are small. Due to the power 
of Eq. 4.6, especially for high values of α , the summation will consist of small values and 
lead to small variations of f between the experiments. To improve the distinction between 
the experimental results the inverse power of α  is added: 
  

( ) ( ) ( )( ) αα

1

1
2 







 −= ∑
=

N

i
i ttf xxx  

Eq. 4.7

 
Where 2=α  and ∞  respectively represent the 2L  and ∞L –norm. These are norms 
commonly used for evaluating properties of vectors. 
The objective functions of Eq. 4.6 and Eq. 4.7 do not account for the number of observations, 
which will result in incomparable values for the objective function. The number of 
observations is not equal for all models due to different wall thicknesses and perimeters. 
Therefore the objective function is divided by the number of observations N : 
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An in the statistics common used and important measure of the spread of observations is the 
variance. This is roughly the arithmetic average of the squared distance from the mean. 
Written in general form, where 2=α  represents the variance: 
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The standard deviation is the square root of the variance. This restores the unit of the spread 
to the original data units. Again written in general form, where 2=α  represents the standard 
deviation: 
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In the equation for the variance and standard deviation is divided by 1−N  instead of N . 
This results from the statistical fact that the average ( )xt  is not the true average, but an 
approximation. The true average is obtained when using an infinite number of observations. 
Due to this approximation the variance and standard deviation lose one degree of freedom, 
i.e. it is possible to calculate the N th observations when 1−N  observations and the average 
are known. By using 1−N  the variance and standard deviations become bias corrected. 
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To represent the behaviour of the above described objective functions the course of the 
penalty for the observations is shown in Figure 4.3 for three values of α . The penalty is the 
value, which an individual observation contributes to the summation of the objective function. 
The penalty is zero when the observation it  is equal to the average value t . For the figure it 
is seen that for higher values of α  the emphasis is on larger values for itδ , but that the 
penalties self are lower. They only will be higher for higher values of α  when itδ  becomes 
larger than t . This would imply a thickness smaller than zero, which is impossible. 
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Figure 4.3. Penalty profile for objective functions 

To obtain a penalty profile with more emphasis on small variations around the average value, 
but without exorbitant penalty values on a further distance to the average value, the following 
objective function is formulated: 
 

( )
( ) ( )( )( )

N

e
f

N

i

tti∑
=

−− 




 −

= 1
6

2

1
αxx

x  
Eq. 4.11

 
The maximum value for a penalty is 1 and for higher values for α  this value is reached for 
smaller variations around the average )(xt . The penalty profile is depicted in Figure 4.4. 
Note that α  can now assume all possible real values. 
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Figure 4.4. Penalty profile for objective functions of 6f  
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4.2.3 Relative Difference  
Until this moment the absolute difference between the observations is considered. Another 
possibility for quantifying the wall thickness distribution is using the relative difference 
between the wall thickness in point i and the average wall thickness. 
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This function was derived using the objective function of Revuelta en Larkiola (2004) [29]. 
They used the initial wall thickness, it ,0 , instead of the average wall thickness. The emphasis 
of their objective function is not so much on the wall thickness distribution, but on the 
decrease of the wall thickness. This means that a uniform distribution with high strains in wall 
thickness direction can be considered worse than a coarse distribution with low strains. The 
objective function for this report focuses on the distribution only and for high strains a necking 
criterion is used (see section 4.3). 
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The penalty profile for the objective function of 7f  (Eq. 4.12) is the same as Figure 4.3 with 
one difference. The penalty value is now no longer dependent on the absolute value of the 
average wall thickness, which is related to the initial wall thickness. This means objective 
function 7f  is not biased concerning initial wall thickness, which is a design variable. 
 
4.2.4 Quotient  
A third option for the formulation of objective functions for the wall thickness distribution is the 
quotient between )(xit and )(xt  as stated in Eq. 4.14 and Eq. 4.15. The former objective 
function emphasis on the observations with values higher, while the latter emphasis on the 
observations with values smaller than the average value. 
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Endelt and Nielsen (2001) [10] formulated an objective function based on the quotient of 

)(xit and )(xt . Their objective function consists of two parts namely ( )xthf  and ( )xgeof . 
The former determines the distribution of the wall thickness and the latter the geometric error 
of the fit to the die, i.e. how close the tube follows the shape of the die. The last stated is not 
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an objective for this project, but a constraint. The tube must fit to the die perfect at all times. 
The objective function is: 
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Where 1α , 2α , β are scaling factors and id  the distance between the die and the nodes. 
The penalty profiles for all three objective functions ( 9f , 10f  and 11f ) are asymmetric. In 
Figure 4.5 the penalty profile for Eq. 4.16 is depicted. The asymmetric characteristic of the 
objective function lead to a different evaluation of asymmetric distributions, dependent on 
which side of t the largest variation is. For hydroform tubes this means that wall thickness 
reduction on small parts of the tube perimeter lead to high values for the objective function. 
The emphasis for this objective function is besides on the distribution also on the necking of 
the tube. As applied to the objective function of Eq. 4.13, only the wall thickness distribution is 
considered. 
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Figure 4.5. Penalty profile for the objective function of Eq. 4.16 

 
4.2.5 Objective Function Selection 
All objective functions mentioned above are some sort of measurements for the wall thickness 
distribution for a hydroformed tube, divided into three categories. The objective functions 
based on absolute and relative difference do not differ much in their evaluation of the wall 
thickness with the exception of the biasing effect of the objective functions based on the 
absolute difference. They are biased in favour of small values of itδ . This has nothing to do 
with the strain in thickness distribution, but the initial wall thickness. Since, for a given strain 
distribution in wall thickness direction along the perimeter of the tube, a small initial wall 
thickness leads to small values of itδ , while a high initial wall thickness will lead to high 
values.  
The third group of wall thickness distributions has an asymmetric character and as a 
consequence less suitable for evaluating the distribution. For the remainder of the report three 
objective functions are examined in more detail. That is 7f (Eq. 4.12) for the unbiased 
character towards the design variables, 5f (Eq. 4.10) to investigate the influence of the 
biasing effect and 6f  (Eq. 4.11) for the emphasis on small variations around the average 
value of the wall thickness. 
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4.3 Constraints 
All the design variables, parameters and objective functions are now known. In this section 
the boundaries conditions (constraints) are formulated, starting with the constraints depending 
on the design variables only. These explicit constraints form the boundaries of the feasible 
domain, for which the design of experiments are determined. First let us describe the 
constraints before formulating them in mathematical form. 
 

1. The initial tube must fit in the die cavity of the closed die, 
2. The minimum radius applied to the tube must be at least two times the wall thickness, 
3. The (outside) perimeter of the tube must be at least 2 percent smaller than the 

perimeter of the die cavity, 
4. After hydroforming the tube must have adopted the shape of the die, 
5. Necking of the tube is not allowed. 

 
The first three constraints are explicit constraints and are geometrical based. The last two 
constraints are implicit constraints. Endelt and Nielsen (2001) combined the fourth constraint 
with the evaluation of the wall thickness in the objective function of Eq. 4.16. With the theory 
of section 3.3 the second part of this objective function can be transformed into a constraint. 
However, for the simulations conducted for this project only a visual inspection of the mesh is 
performed. This is possible due to the simplicity of the die, for both two- and three-
dimensional simulations. 
Now the explicit constraints are formulated in a mathematical form, using the design variables 
of Figure 4.2 (initial tube) and the parameters of the die depicted in Figure 4.1. 
 
Constraint 1.a:  The total height of the initial tube, totH , is restricted to the height of the die 

cavity dieH . 
 

⇓

≤ dietot HH
 Eq. 4.17a

0, ≤≤+ δdieHtH  b

0,2 ≥≤++ δδ dieHtH  c

 
Constraint 1.b:  The length L  cannot adopt negative values 
 

0≥L  Eq. 4.18

 
Constraint 2:  The radius (measured on the outside of the bend) is not allowed to be 

smaller than two times the wall thickness. Note that the radii of curvatures 
are measured form the centre of the tube wall. 
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 Constraint 3: The (outside) perimeter of the initial tube is restricted to a maximum of 98% 
of the perimeter of the die cavity. This boundary condition is created to 
prevent simulations of an almost filled die cavity.  

  

Dietube PP ⋅≤ 98.0  Eq. 4.20

 
In Appendix B the derivation of the explicit constraints is described in more detail.  
Constraint 5 restricts necking of the tube. Necking is one of the failure modes discussed in 
chapter 1 and can be simulated in the form of mesh localisation. This is however dependent 
on the mesh of the finite element model. For this reason a constraint is formulated, which is 
dependent on the response of the simulation. Therefore the constraint is implicit.  
Necking occurs when the strains exceed a certain limit, dependent on the strain ratio and 
strain path. In Figure 4.6 a forming limit diagram is displayed. The vertical and horizontal axis 
represents the first and second principal strain respectively. The line in the diagram is called 
the forming limits curve. When the strains of a point in the tube exceed the forming limit curve, 
the tube will neck at this point. For a plane strain situation, as used in this report, the second 
principal strain is always equal to zero. Therefore all points in the tube are situated on the 
vertical axis.  
 

 
Figure 4.6. Forming limit diagram 

The right side of the forming limit curve can be described with the Marciniak-Kuczynski 
criterion, based on the ratio of the strain rates. For the purpose of this report a criterion is 
used to describe the left side of the forming limit curve, given in Eq. 4.21. The derivation is 
described in Appendix C.  
 

n=+ 21 εε  Eq. 4.21

 
This criterion is independent of the anisotropic effects of the material (assuming strain rate 
independent work hardening behaviour). The information can be obtained from the finite 
element package DiekA by using the equivalent strain. For a plane strain situation the 
following holds: 
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Necking appears only on a small section of the tube wall. Therefore the node with the highest 
equivalent strain is used. With the information of all simulations a metamodel is formed, 
described with: 
 

( ) ( ))(max 2
3 xx ig ε=                     for Ni K1=  Eq. 4.23

 
To transform this into an implicit constraint the theory of section 3.3 is used, applied on Eq. 
4.21 and Eq. 4.23.  
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The optimisation problem is now fully constrained. The boundaries for the design variables in 
the experimental design can now be determined. 
 

4.4 Interpretation of the Design of Experiments 
In section 3.5.1 the choice of the experimental design was indicated. In this section the values 
for the design variables and the settings for the experimental runs are discussed. Together 
they form the experimental design. The design is called Face Centred Central Composite 
Design and is depicted in Figure 3.6. For the optimisation problem the solution space is 
formed by five design variables and one objective function. As described in section 3.5.1 the 
corners of the design are formed by a two-level full factorial design. These points form the first 
2n=25=32 runs, followed by the 2*n=2*5=10 star points and the last run is the centre run. The 
experimental runs are shown in Table 4.2. 
 

Table 4.2. Face Centred Central Composite Design for 5 design variables 

  
2
H  L  t  

1κ  1κ     
2
H  L  t  

1κ  1κ  

 1 -1 -1 -1 -1 -1 ff 22 +1 -1 +1 -1 +1 
ff 2 -1 -1 -1 -1 +1 ff 23 +1 -1 +1 +1 -1 
ff 3 -1 -1 -1 +1 -1 24 +1 -1 +1 +1 +1 

 4 -1 -1 -1 +1 +1 25 +1 +1 -1 -1 -1 
ff 5 -1 -1 +1 -1 -1 ff 26 +1 +1 -1 -1 +1 

 6 -1 -1 +1 -1 +1 ff 27 +1 +1 -1 +1 -1 
 7 -1 -1 +1 +1 -1 28 +1 +1 -1 +1 +1 

ff 8 -1 -1 +1 +1 +1 ff 29 +1 +1 +1 -1 -1 
ff 9 -1 +1 -1 -1 -1 30 +1 +1 +1 -1 +1 

 10 -1 +1 -1 -1 +1 31 +1 +1 +1 +1 -1 
 11 -1 +1 -1 +1 -1 ff 32 +1 +1 +1 +1 +1 

ff 12 -1 +1 -1 +1 +1 ff 33 -1 0 0 0 0 
 13 -1 +1 +1 -1 -1 ff 34 +1 0 0 0 0 

ff 14 -1 +1 +1 -1 +1 ff 35 0 -1 0 0 0 
ff 15 -1 +1 +1 +1 -1 ff 36 0 +1 0 0 0 

 16 -1 +1 +1 +1 +1 ff 37 0 0 -1 0 0 
ff 17 +1 -1 -1 -1 -1 ff 38 0 0 +1 0 0 

 18 +1 -1 -1 -1 +1 ff 39 0 0 0 -1 0 
 19 +1 -1 -1 +1 -1 ff 40 0 0 0 +1 0 

ff 20 +1 -1 -1 +1 +1 ff 41 0 0 0 0 -1 
 21 +1 -1 +1 -1 -1 ff 42 0 0 0 0 +1 
     ff 43 0 0 0 0 0 
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For the two-dimensional experiments, a fractional factorial design will be used as a validation 
of the design. As will be shown later in the text the fraction will lead to a resolution V design, 
which must result in the same model for the used regression models. For a half fraction the 
number of runs decreases with 16. This time only the experimental runs denoted with " ff" in 
Table 4.2 form the experimental design. 
The basis of the design consists out of a two-level full factorial design for four variables. 
Multiplying the four variables per run, the fifth variable (column) is formed. The star points and 
centre run remain the same. Using the theory of Appendix A the confounding is determined. 
The multiplication is written as 5=1234, forming the word I=12345 (resolution V design). Using 
some math, the following can be formed: 
 

1=2345 12=345 23=145 34=125 45=123 
2=1345 13=245 24=135 35=124  
3=1245 14=235 25=134   
4=1235 15=234    
5=1234     

Eq. 4.25

 
The main effects are therefore confounded with four-factor interactions and the two-factor 
interaction with the three-factor interactions. The order of the response surface fitted through 
the experimental data is not higher then quadratic. Thus only linear, pure quadratic and two-
factor interactions are considered. The higher order terms are assumed to be insignificant. 
Therefore the fractional factorial design should lead to the same result as the entire design of 
Table 4.2. 
Both designs form a hyper cube of five dimensions, which is to be fitted into the feasible 
domain. Due to the complexity of some constraints, the boundaries for the design are chosen 
in an iterative manner. Increasing the range of one variable can lead to the decrease of the 
range of one or more variables. Therefore it is impossible to indicate if the design forms the 
largest space possible in the feasible domain. In the table below the ranges for the design 
space are indicated: 

Table 4.3. Ranges for the design variables 

 -1 0 -1 

2H  26.4 27.1 27.8 

L  1 3 5 
t  1 1.3 1.6 

1κ  1/15 7/60 1/6 

2κ  -1/40 -9/800 1/400 

 
The next step for the optimisation of the problem described in this chapter is conducting the 
numerical experiments. In the next two chapters the experiments are modelled and the results 
optimised using RSM. 
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5 Two-Dimensional Experiments 
In this chapter the experimental results are discussed of two-dimensional simulations 
conducted in the finite element programme DiekA, developed at the University of Twente. The 
chapter is divided into two groups. In the first sections the optimisation problem of chapter 4 
for two-dimensional simulations is discussed, starting with the formulation of the finite element 
model in section 5.1. Also a few comments are made concerning the simulation results. In 
section 5.2 the results are used to build a metamodel, which is subsequently optimised with a 
Matlab routine.  
The second group concentrates on the validation of the optimisation. At first the optimum is 
compared with the simulation results. To validate the finite element model, two methods are 
used. First a mesh convergence check is preformed. For this the optimisation is repeated for 
two new finite element models with different mesh densities. For the second validation a 
model is used taking in account initial work hardening, representing the tube-forming step. To 
investigate the possibility of reducing the number of finite element simulations a fractional 
factorial design is used for the optimisation to see if this kind of model is sufficient and detect 
possible influence on the optimum. This is described in section 5.3.3. 
 

5.1 Finite Element Model  
The tube geometries according to the experimental design of Table 4.2 and the settings of the 
design variables of Table 4.3 are modelled with two dimensional plane strain elements. Each 
element consists of four nodes with two degrees of freedom, namely the x and y 
displacement. A quarter of the tubes are modelled with five elements across the wall 
thickness. The aspect ratio of these elements is as close to one as possible. A meshed tube 
with die contour is depicted in Figure 5.1. The other meshed tube geometries according to the 
experimental design are described in Appendix D. 
 

 
Figure 5.1. Finite Element Model 

 
The plastic deformation is described using a von Mises yield locus with a Nadai work 
hardening model. This model describes an isotropic material behaviour. The material used for 
the simulations (DC04) is an anisotopic material however. In this case the r-values 
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(anisotropy parameters) are of no influence on the strain distribution. This is a result of the 
plane strain assumption; therefore an isotropic material model is sufficient. 
The contact is described using four node contact elements in combination with a Coulomb 
friction model. The contact stress and friction are calculated using the penetration of the 
elements in the die contour in combination with a prescribed contact stiffness. This results in 
a geometrical error of the final tube. An implicit constraint in section 4.3 stating the adoption of 
the die shape of the tube at the end of the forming process, which cannot be fully met with the 
contact algorithm. The influence of the penetration on the wall thickness distribution however 
is expected to be low. 
The simulation is stopped when the middle node of the outside tube perimeter reaches the die 
wall. This is possible due to the corner filling aspect of the process. The small radius of the 
die is likely to be the last spot of the die cavity that is completely filled. A visual inspection is 
used to ensure a correct filling of the die cavity.  
 
5.1.1 Extracting Simulation Data 
The information needed for the optimisation problem is limited by the objective functions and 
the implicit constraint. This is only the geometry of the final model and the equivalent strain. 
The rest of the simulation data is not used, except for globally checking the validity of the 
model compared with existing results, like the maximum pressure occurring in the 
simulations. 

Wall Thickness 
The distance between a node on the outside of the mesh and a node on the inside of the 
mesh is used to extract the wall thickness from the model at the end of the simulation. This is 
derived from the position of the nodes using Pythagoras: 
 

( ) ( )2
,,

2
,, kijikijii yyxxt −+−=

 
Eq. 5.1

 
With j  the node number on the outside and k  the node number on the inside of the mesh, 
belonging to the i th observation of the wall thickness. The wall thickness it  will overestimate 
the true wall thickness of the model it′  due to uneven elongation strains across the thickness. 
The correlation between it  and it ′  is:  
 

itt ⋅=′ αcos  Eq. 5.2

 
With α  the angle as depicted in Figure 5.2. 
 

 
Figure 5.2. Obliqueness of the Mesh 

 
The deflection of it  is however negligible for small angles of α , even less than 1% for angles 
up to 8 degrees. α  is assumed to be small, therefore it may be used as the real thickness of 
the model. 
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Necking Criterion 
The implicit constraint of Eq. 4.24 uses the maximum equivalent strain of the model. This data 
is easily extracted from the output files of DiekA. In hydroforming the major part of the strain is 
caused by elongation of the tube wall and only for a small part by bending. Only in the last 
part of the simulation, during the corner filling, the strains can be dominated by bending. (Thin 
walled versus thick walled theory). It is reasonable to assume a constant increasing strain in 
the model; therefore the output of the last step is used. 
 
5.1.2 Results of the Simulation 
With the experimental design of section 4.4 and the model setting mentioned above, all the 
necessary information is present to execute the finite element simulations. The simulations 
are run with all the constraints mentioned in section 4.3. The implicit constraint for necking is 
not used for stopping the simulations; the simulations only stop when numerical instability 
occurs. For two-dimensional simulations this occurs when the mesh starts to show 
localisation, thus necking. From the results of J. Bakker [3] it is seen that a round tube of 
DC04 with a wall thickness of 1.5 mm and diameter of 60 mm completely fills the die cavity, 
without mesh localisation. The experimental design was chosen in such way that the 
perimeter of the smallest tube is equal or larger compared to the mentioned round tube, to 
prevent mesh localisation to occur. However, for four simulations the mesh localised, 
indicating necking. The perimeters of the localised finite element models are the four smallest 
perimeters and the models have a wall thickness of 1 mm. This indicates an increased 
sensitivity for necking for tubes with small perimeters and small wall thicknesses. 
The wall thicknesses as function of the perimeter of the converged simulations are depicted in 
Figure 5.3. In Appendix E a larger version of this figure is incorporated. The three levels of the 
experimental design for the design variable t  are clearly recognisable, namely 1, 1.3 and 1.6 
mm.  
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Figure 5.3. Wall thickness of the completed simulations 
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In Figure 5.4 the wall thickness as a function of the perimeter for a round tube is depicted. 
The wall thicknesses in both figures show a similar patron. The plateau in the middle of the 
function for the wall thickness corresponds to the corner of the die. The dent in the middle of 
the plateau is caused by the bending effect during hydroforming, which is less obvious for 
tubes with smaller initial wall thicknesses. The two dents on either side of the plateau 
correspond to the area next to the radius of the die. These points of the tube experience the 
highest strain in the wall thickness direction and are likely the points were necking occurs. 
 

Wall Thickness as function of the perimeter

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Perimeter

W
al

l T
hi

ck
ne

ss

 
Figure 5.4. Wall thickness for a round tube with an initial wall thickness of 1.5 mm 

 

5.2 Response Surface Methodology 
In this section the approximation method Response Surface Methodology (RSM) is used to 
find the optimum of the wall thickness distribution and give an estimation of the effects. As 
mentioned in section 4.2.5 three objective functions are evaluated (Note that the values for α  
are 2, 20 and 2 respectively): 
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The first step is the forming of a metamodel followed by the optimisation of this model (section 
5.2.1 and 5.2.2 respectively). For the optimisation the criterion of section 4.3 (implicit 
constraint) is used to see the influence on the optimum. 
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5.2.1 Metamodel 
The metamodel is fitted using linear regression analysis as mentioned in section 3.5.2. In 
Table 5.1 the results for the lack of fit tests are displayed. The R-squared values are above 
0.9 for all models and objective functions, which indicated a good fit.  
 

Table 5.1. Lack-of-fit tests 
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R2 0.9511 0.9936 0.9527 0.9981  0.9564 0.9955 0.9634 0.9979
F-statistic 128.5 238.7 56.41 482.7  144.7 342.9 73.68 437.2 
p-value 0 0 6e-16 0  0 0 0 0 
Adjusted R2 0.9453 0.9899 0.9380 0.9962  0.9513 0.9929 0.9520 0.9959
 Lack-of-fit for 5f   Lack-of-fit for 6f  
          
R2 0.9279 0.9921 0.9313 0.9953      
F-statistic 84.88 191.5 37.98 191.5      
p-value 0 0 1e-13 0      
Adjusted R2 0.9194 0.9875 0.9100 0.9906      
 Lack-of-fit for 7f       

 
The same applies to the F-statistic. The critical values are depicted in Table 5.2. The values 
for the fitted models are all ample above the critical values, which results in the low p-values. 
Thus the probability is nearly zero to have falsely rejected the null hypothesis 0H  of Eq. 3.11. 
This means that at least one term of the metamodels is significant. Due to the similarities 
between the models (repetition of terms), a statement can be made for the significance of at 
least one term of all models if the linear model has an F  value above the critical value. If the 
null hypothesis 0H  is rejected for the linear model, all models will reject the null hypothesis 

0H . 
 

Table 5.2. Critical F-values 

 Critical 1,),1( −−− knkF α  value 
 05.0=α  01.0=α  
Linear model 2.4558 3.5277 
Linear model with interactions 2.0839 2.8139 
Quadratic model 1.9313 2.5350 
Quadratic model with interactions 1.8459 2.3824 

 
Of the four models presented the 'linear model with interactions' is considered as the best 
model and will be used for the optimisation. Below the choice will be explained on the basis of 
the lack-of-fit test of Table 5.1.  
The 'linear model' already has a good fit. If interaction terms are added to this model, the R-
squared value increases significantly. The increase of the R-squared value is always the case 
when adding terms to a model. Therefore the adjusted R-squared value is examined, which 
considers the reduction of the sum of squares error (SSE) against the reduction of the 
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degrees of freedom of the regression model. In this case an evident increase of the adjusted 
R-squared is observed, indicating a better model. 
The next step is the comparison between the 'linear model with interactions' and the 
'quadratic model with interactions'. The increase in the R-squared value is small, although the 
values for both models are high. The same holds for the adjusted R-squared value. For the 
first two objective functions the F-statistic increases, which can indicate a relative larger 
amount of significant terms. For the third objective functions the F-statistic remains the same. 
The choice between these two models is not obvious. The quadratic effects added to the 
'linear model' show a small increase in the R-squared value, a decrease of the F-statistic and 
for the first and third objective function a decrease of the adjusted R-squared value, while the 
increase for the second objective function is very small. From this it can be concluded that 
there are no major quadratic effects present in the metamodel.  
Above the regression models are compared with the use of the lack-of-fit tests. These models 
consist of a number of effects, dependent on the choice of model. The four models consists 
either of all effects of a type or none of these. This means that all interaction effects are 
considered or none. The preference of one model above another model does not imply a 
contribution of all added effects to a better model. The significance of each individual effect is 
tested with the t-test of section 3.5.3. With this test a 95% confidence interval is determined, 
which implies a probability of 95% that an effect has a value within this interval. When zero is 
included within an interval the corresponding effect is considered insignificant. In Figure 5.5 
the confidence intervals for the 'linear model with interactions'  (Eq. 5.2) is shown, where the 
significant effects are marked in a red font. In Appendix F the parameters of the metamodels 
with corresponding confidence intervals for all models are enclosed. 
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Figure 5.5. 95% confidence intervals of the linear model with interactions 
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In the Matlab routine the parameters of the regression model is scaled to coded variables. 
This means all variables have a lower bound of ’–1’ and an upper bound of ’+1’, like in the 
experimental design of Table 4.2 and NOT the lower and upper bound of Table 4.3. 
When the confidence intervals are examined the insignificance of a group of effects is 
noticed. This concerns the linear and interaction effects of the design variable L , which 
implies an insignificant effect of this design variable on the wall thickness distribution. 
Furthermore the significant interaction effects are globally three times smaller than the linear 
effect, which corresponds to the already high R-squared for the linear model.  
Another commend is in place regarding the difference between the models, the objective 
functions based on the absolute difference between )(xit  and )(xt  (Eq. 3.10 and Eq. 3.11) 
on one side and the objective function based on the relative difference on the other side (Eq. 
3.12). The dissimilarity concerns the design variable t  (the green arrows in Figure 5.5). The 
sign of the significant effects are opposite, both linear and interactive. Furthermore the 
significance of the interaction effects Ht and 2κt is not equal for the two groups. The most 
striking difference is the value of the linear effect for t  compared to the other significant linear 
effects. For the objective function of Eq. 3.12 the effect is much smaller compared to the other 
two, this is probably due to the biasing effect of the objective function based on the absolute 
difference. The significance of the design variable t  is apparently not as high as the other two 
objective functions indicate. 
Overall speaking, the design variables with the highest significance are the height H and the 
radius of curvature 1κ , see Figure 4.2 for the geometry of the initial tube. This counts for both 
the individual linear effects as the interaction effect between the two design variables. Below 
the metamodel is depicted for the two design variables for the objective function 5f . The 
linear behaviour of the metamodel is clearly shown and the effect of the interactions is small, 
shown as a twist of the surface.  
 

 

Figure 5.6. Metamodel of the objective function 5f  

 

Radius of curvature )( 1κ

       Objective function 5f
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5.2.2 Optimisation 
The optimisation of the metamodel is conducted in Matlab using the fmincon command. First 
the model is optimised without the use of the implicit constraint, which is added later to see 
the influence on the optimum. In Figure 5.7 the behaviour of the metamodel around the 
optimum is depicted for the three objective functions.  
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Figure 5.7. Behaviour around the optimum 

Each line represents a variable varied between –1 and +1 (coded variables), for which the 
other variables are kept constant and equal to the optimum value. All lines are linear as 
expected from the choice of metamodel. The optimum is consequently located on the border 
of the feasible domain for all design variables. The values of the variable in the optimum for 
the three objective functions are shown in Table 5.3 and the initial tube geometry is depicted 
in Figure D.19 in Appendix D. The location of the optimum is equal for the three objective 
functions. A remark must be made concerning the objective function of Eq. 4.12. The negative 
sign for the linear effect of the design variable t  is different from the other objective functions 
and indicates a preference for the upper bound (+1) of the design variable, while the optimum 
is formed by the lower bound (-1). The line for t  in the right objective function in Figure 5.7 is 
almost horizontal with a minimum at the lower bound. This is caused by the interaction 
effects, which tend to twist the response surface (metamodel). 
   

Table 5.3. Optima for three objective functions 

 2H (mm) L (mm) t (mm)
1κ (mm-1) 2κ (mm-1) 

5f  27.8 (+1) 1 (-1) 1 (-1) 1/6 (+1) -1/40 (-1) 

6f  27.8 (+1) 1 (-1) 1 (-1) 1/6 (+1) -1/40 (-1) 

7f  27.8 (+1) 1 (-1) 1 (-1) 1/6 (+1) -1/40 (-1) 

 
The optimum is located in a corner of the experimental design and corresponds to an 
experimental run of the design (run number 19 of Table 4.2). This means the actual values for 
the objective functions are known. In Table 5.4 the values for the optimum of the metamodel 
are compared to the values of the simulation. It is seen that the metamodel differs to the value 
of the simulations, which is caused by the regression analysis.  

-1                         0                         1|-1                        0                         1|-1                        0                          1
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Table 5.4. Optima for three objective functions 

 Metamodel Simulation

5f  0.0169 0.0154

6f  0.0179 0.0157

7f  0.0017 0.0047

 
The next step is the implementation of the implicit constraint of Eq. 4.24 
 

( ) 0max)( 2
3 ≤−= ng iimpl εx  Eq. 4.24

 
The data of the simulations concerning the implicit constraint are formed into a metamodel as 
done with the objective functions. The metamodel is subsequently used to determine the 
course of the constraint through the solution space. The model is fitted using regression 
analysis. The lack-of-fit results are shown in Table 5.5. 
 

Table 5.5. Lack-of-fit tests for Eq. 4.24 
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R2 0.8522 0.9714 0.8586 0.9774
F-statistic 38.04 52.08 17.0 38.9 
p-value 0 0 0 0 
Adjusted R2 0.8348 0.9547 0.8147 0.9548

 
All models show a good fit, even though the R-squared, adjusted R-squared and F-statistic 
values are lower compared to the objective functions. With the help of the table above the 
model for the implicit constraint is set on the ‘linear model with interactions’, for which the F-
statistic and adjusted R-squared value are the highest of all four models. 
The results of the optimisation for the objective function 5f  in combination with the implicit 
constraint of Eq. 4.24 are depicted in Figure 5.8 and are of the same sort as Figure 5.7. Note 
that the metamodel for the implicit constraint is independent of the objective functions. The 
solid and dashed lines represent the metamodel of the objective function and implicit 
constraint respectively. The horizontal dotted line indicates the boundary of the implicit 
constraint. When the metamodel of the implicit constraint is located above the dotted line, the 
tube will fail due to necking. From the figure it is seen that for the variation around the 
optimum the implicit constraint has values above zero for H  and 1κ  only. Furthermore at the 
optimum point for the objective function the implicit constraint is satisfied. 
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Figure 5.8. Behaviour of the implicit constraint around the optimum 

From the figure it is shown that the metamodels around the optimum have the same direction. 
This is due to the relationship with the strains of both the objective function and the implicit 
constraint. The wall thickness distribution becomes more uniform if the maximum strain in the 
tube is small. As mentioned for Figure 5.3, the wall thickness distribution show for all tubes a 
similar patron. Also seen for the round tube. In the first stage of the process the tubes are 
inflated in a bending mode, without any wall thickness reduction. Until contact occurs with the 
die wall, the tubes attempt to obtain a round shape. From the moment of contact the 
elongation of the tube wall starts, resulting in reduction of the wall thickness. This reduction 
only occurs for those regions, which are not in contact with the die wall. This is the reason 
why the optimal initial tube geometry has the largest possible perimeter within the domain of 
the experimental design.  
A last remark is in place concerning the metamodel for the implicit constraint. The minimum 
for this metamodel is located for small values of the design variable t . A higher sensitivity for 
necking was mentioned in section 5.1.2 concerning small values of t  also. Apparently the 
combination with the perimeter length is of more importance than the wall thickness only. 
 

Figure 5.9. Metamodel as function of the 
perimeter 

Figure 5.10. Metamodel of the implicit constrain 
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The relation between the initial tube perimeter P  and the initial wall thickness t  is depicted in 
Figure 5.10 and is a transformation of the metamodel for the implicit constraint. The 
mentioned interaction between the wall thickness and the perimeter is clearly shown. The 
dark blue area and the dark red area stand for low risk and high risk for necking respectively. 
Thus a combination between a low wall thickness and a low perimeter increase the change 
on necking. 
In Figure 5.9 the metamodel for the objective function 5f  is depicted as function of the same 
variables. Note that the outside perimeter is a function of all five design variables. The 
influence of the perimeter is linear on the wall thickness distribution. For this objective function 
the role of the initial wall thickness t  is also good represented. For low perimeters a high wall 
thickness is preferred, while for high perimeters a low wall thickness is preferred. The former 
is caused by the linear effect of t  in the metamodel and the interaction effects causing the 
twist in the metamodel. 
The location of the optimum is now known and the influence of the parameters is globally 
known. In the next section the optimum is validated using several methods. In chapter 7 the 
influence of the design variables is further discussed. 
 

5.3 Validation of the Optimisation 
In this section the results of the optimisation is validated. At first the behaviour around the 
optimum is investigated using the simulation data to see if it is in accordance with Figure 5.7.  
To see if the used finite element model is accurate enough for the optimisation a mesh 
refinement is applied to conduct a mesh convergence check. Furthermore an initial condition 
is added, representing the tube-forming step. 
In the previous sections the optimisation of three objective functions was discussed using the 
Face Centred Central Composite Design (CCD) of Table 4.2. In the same table a design with 
less experimental runs was presented, indicated with 'ff'. In section 5.3.3 the influence of this 
fractional design on the optimum is discussed.  
 
5.3.1 Comparison with the Results of the Simulations 
In Figure 5.7 the behaviour around the optimum was shown. The optimum of the metamodel 
is in accordance with the minimum value of the objective functions determined from the 
experimental runs. In Figure 5.11 the same behaviour is shown, by plotting the wall 
thicknesses as function of the perimeter. The magenta coloured line corresponds to the 
optimum derived in the previous section. The other lines correspond to the initial geometries 
for which one design variable is altered compared to the optimum. The numbers mentioned in 
the legend correspond to the experimental runs of Table 4.2. 
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Figure 5.11. The behaviour of the wall thickness around the optimum 
 

The largest difference in the wall thickness is caused by the change of 1κ , followed by H . 
Which corresponds to the largest slope of these two design variables in Figure 5.7, where the 
slope for L  is almost horizontal. This matches to the almost same wall thickness for L  in 
Figure 5.11, represented with the orange line. The slope for 2k  is between the slopes of H  
and L  in Figure 5.7, which corresponds to the distribution of the green line compared to the 
red and orange line in the figure above. The line for the wall thickness of t  (blue line) is 
harder to judge. Absolute the spreading is larger compared to the optimum, but relatively the 
difference is not so obvious. This explains the difference in the slope for the three objective 
functions in Figure 5.7 concerning the design variable t . 
 
5.3.2 Finite Element Model Validation 
The optimisation of the wall thickness distribution for hydroform tubes as conducted in this 
chapter is based on finite element models. These models are approximations of the reality 
and are based on several assumptions and simplification. The best way to validate finite 
element simulations is by physical experiments. This is however not possible for this project. 
Therefore the finite element model is validated on the field of convergence. Further more the 
influence of initial work hardening is investigated, which is neglected in the simulations used 
until this point.  

Mesh Convergence 
To validate the accuracy of the model, without the possibility of comparison with physical 
experiments a mesh convergence check is performed. The characteristic of finite element 
simulations is the mesh dependent accuracy [11]. Generally speaking, the more elements 
used the more accurate the mesh. The same applies to the complexity of the elements. A 
mesh consisting of elements with a higher order interpolation function will generally result in a 
more accurate result. Increasing the number or the complexity of the elements eventually 
leads to no significant improvement of the model. For this project a convergence check is 
conducted using mesh refinement. Three different mesh densities, depicted in Figure 5.12 are 
modelled: 
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Figure 5.12. Mesh Refinement 

 
The model on the left consists of two elements across the tube wall; the middle model is the 
original model with 5 elements across the tube wall and the model on the right consists of 10 
elements across the tube wall. 
The first difference between the models emerged during the simulations. The models with 
smaller elements are subjected more to mesh localisation. This is due to the capability of 
better predicting local behaviour. In this case necking. Table 5.6 represents the number of 
simulations with mesh localisation. 
 

Table 5.6. Mesh localisation 

Number of 
elements across 
the tube wall 

Number of 
simulations with 
mesh localisation 

2 0 
5 4 
10 8 

 
The values of the design variable t  for the models subjected to localisation are all the same, 
namely 1mm. And have the smallest perimeters of the simulated tubes. This corresponds to 
the metamodel of the implicit constraint (see Figure 5.10). 
The convergence of the simulation and the influence of this on the objective function are 
investigated only. In this case the objective functions are all based on geometric properties of 
the mesh. Displacements in simulation have the tendency to converge much faster than 
stresses when applying mesh refinement. The convergence effect is probably stronger for the 
stresses and of influence for the failure criteria (implicit constraint). 
To examine the influence of the mesh on the objective function the results of the simulations 
are plotted in Figure 5.13 and Figure 5.14. Each dot represents one setting of the 
experimental design for two mesh densities. On the axes the value for the objective function 
is displayed. The dotted line in the plot denotes the line for which both type of simulations 
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obtain equal values for the objective function. The green and red lines denote the upper and 
lower bound of the 25% and 50% diversion respectively. 
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Figure 5.13. Coarse and reference mesh 
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Figure 5.14. Reference and fine mesh 

 
The plots above are for the objective function 5f . The other two objective functions produce 
similar plots. The dots on the horizontal axis denote the lack of convergence of the mesh 
plotted on the vertical axis and visa versa. The dot(s) in the origin denote lack of convergence 
of both mesh types. In both plots the dots are concentrated around the dotted line, indicating 
a good match between the three meshes. Due to this placement of the dots it is believed 
there is no influence of the mesh density in combination with the objective functions on the 
position of the optimum in the feasible domain. This is checked with the Matlab routine and 
confirms the statement.  
The reference model of Figure 5.1 is accurate enough for the optimisation problem; the 
coarse mesh however is accurate enough also. The use of this mesh would save a lot of time, 
when additional runs are necessary. 

Influence of the Initial Work Hardening 
As shown in chapter two, several forming steps are potentially conducted before 
hydroforming, of which forming of the tube is always present. The forming steps cause strain 
hardening and decrease the formability of the material during hydroforming. The model of 
Figure 5.1 is compared to a similar model with initial work hardening to investigate the model 
behaviour. The initial work hardening is derived from the tube-forming step. Especially for 
small radii the work hardening is large and the difference between the non-work hardening 
sections can become important. The other forming steps are not considered, because this 
project aims at excluding them from the process cycle. 
The tube-forming process is the tubular blank process of section 2.2.1 and only consists of 
bending of the sheet. The strain in the sheet depends on the radius and the wall thickness 
only and is formed by the relation: 
 

0
1 ρ
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0
3 ρ
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Eq. 5.4
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With 0ρ  the radius of the neutral line and y  the distance from the neutral line. From this the 
equivalent strain needed for the input of the simulation programme is determined: 
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Eq. 5.5

 
For the derivation is referred to Appendix G. 
 

 
Figure 5.15. Initial Work Hardening 

 
In Figure 5.15 the variation of the strain hardening across the tube wall is depicted. For the 
simulations the model is simplified to a uniform strain hardening across the wall thickness, 
indicated with the red line, and is chosen half of the maximum strain hardening. 
For the comparison between the reference model and the model with initial work hardening a 
similar plot as for the mesh convergence check is used, depicted in Figure 5.16.  
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Figure 5.16. Influence of initial work hardening 

 
The dots are ones more concentrated around the dotted line, but more diverted as the mesh 
density comparison. All dotes are placed between the green lines indicating a diversion of 
less than 25%. Notable is the difference in diversion between the dots with high and low value 
of the objective function. This means the initial work hardening has a positive effect on the 
wall thickness distribution for tubes with high elongation and negative effect for tubes with low 
elongation. From this a difference between the metamodel is expected. The linear effects 
become a little smaller and the interaction effect larger for the finite element models 
accounting for the initial work hardening. Globally speaking, the simulations of the initial work 
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hardening have no influence on the location of the optimum, similar as the mesh density. 
Therefore it is believed the used model of Figure 5.1 (without work hardening) is accurate 
enough for the optimisation problem. 
 
5.3.3 Fractional Factorial Design 
The Face Centred CCD of Table 4.2 consists of 43 experimental runs. To lower the 
computational cost the number of runs is decreased. To realise this a fraction of the 
experimental design is used, denoted with 'ff' in Table 4.2. As mentioned in section 4.4 the 
design is of resolution V. This implies no confounding of main and two-factor interaction 
effects with each other. This new design should lead to the same optimum as obtained in the 
analysis of section 5.2.2.  
In Table 5.7 the lack-of-fit tests are displayed for the fractional design. The lack-of-fit table 
shows similar results as the lack-of-fit of the original design (see Table 5.1), except for the F-
statistic. These values are all lower, but still ample above the critical values. This is caused by 
the reduction of the number of experiments, which leads to the reduction of the degrees of 
freedom of the Mean Square Error (see section 3.5.3). Overall the choice of metamodel is the 
same as for the original experimental design, the 'linear model with interactions'. 

Table 5.7. Lack-of-fit tests 
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R2 0.9499 0.9927 0.9529 0.9981  0.9518 0.9937 0.9631 0.9986
F-statistic 72.11 81.18 28.32 102.7  74.99 94.90 36.54 138.1 
p-value 1e-11 9e-8 1e-7 2e-4  7e-12 4e-8 2e-8 1e-4 
Adjusted R2 0.9399 0.9825 0.9246 0.9901  0.9422 0.9849 0.9410 0.9933
 Lack-of-fit for 5f   Lack-of-fit for 6f  
          
R2 0.9327 0.9919 0.9391 0.9976      
F-statistic 52.64 73.26 21.59 83.14      
p-value 1e-10 1e-7 8e-7 3e-4      
Adjusted R2 0.9192 0.9806 0.9026 0.9885      
 Lack-of-fit for 7f       

 
The small difference in the lack-of-fit compared to the original model indicates a small 
difference of the metamodels. The influence on the optimum is however negligible, the optima 
for the objective functions of Eq. 4.10 and Eq. 4.11 are even the same. The only difference is 
the location of the optima for the design variable L  and t  for the objective function of Eq. 
4.12, marked in bold in Table 5.8. This variation for the former one however is of no influence 
due to the insignificance of all effects concerning the design variable L (linear and interaction 
effects), for both the original as the fractional design.  
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Table 5.8. Optima for three objective functions 

 2/H (mm) L (mm) t (mm)
1κ (mm-1) 2κ (mm-1) 

5f  27.8 (+1) 1 (-1) 1 (-1) 1/6 (+1) -1/40 (-1) 

6f  27.8 (+1) 1 (-1) 1 (-1) 1/6 (+1) -1/40 (-1) 

7f  27.8 (+1) 5 (+1) 1.6 (+1) 1/6 (+1) -1/40 (-1) 

 
The latter one is a bad approximation of the metamodel. The combination of the linear and 
interaction effects for t  is not captured in the metamodel. If the original data is examined 
(thus not the metamodel), the minimum value corresponds to the optimum of section 5.2.2. In 
this case the results of the corresponding simulations is not evaluated in this design. This 
means that, even though the design is of resolution V and the major linear and interaction 
effects are found, small effects can be missed, which can lead to a different optimum. 
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6 3D Simulations 
The geometry of most hydroformed products vary in three dimensions and are not suited for 
simulations using two-dimensional elements. In this chapter the optimisation problem of 
chapter 5 is repeated with three-dimensional elements to investigate the influence on the 
optimum. The study of J. Bakker [3] showed a worse reproduction of the wall thickness 
distribution, compared to two-dimensional simulations. This is caused by the formulation of 
the elements, which do not have the capacity of coupling the wall thickness between the 
elements and assume a plane stress conditions. 
 

6.1 Finite Element Model 
The finite element model consists of three-dimensional discrete Kirchhoff triangles with three 
integration points in the plane and five integration points in thickness direction. The elements 
take into account the membrane stresses and the bending stresses. Each element has six 
degrees of freedom. The material parameters and the contact formulation are similar to the 
two-dimensional simulations. 
 

 
Figure 6.1. 3D finite element model 

 
In Figure 6.1 a finite element model is presented. The length of the tube is limited to 10 mm to 
minimise the computational costs. The boundary conditions on the edge of the model restrict 
movement in the z-direction to simulate a plane strain situation, corresponding to the two-
dimensional elements. This allows us to compare the results with the results of chapter five. 
The elements have a length of approximately two millimetres, which results in far less 
elements than for the two-dimensional simulations. This means a lower number of 
observations of the wall thickness to predict the wall thickness distribution.  
The information needed for the objective functions, the wall thickness, is directly exported to 
the output files and no extra calculation is needed. To determine the wall thickness 
distribution, the wall thickness of all element nodes is used. 
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6.1.1 Results of the Simulation 
With the experimental design of Table 4.2 (in combination with Table 4.3) and the model 
parameters of the previous section the simulations are executed. Figure 6.2 the wall thickness 
as a function of the perimeter is depicted. As with the two-dimensional simulations the three 
different initial wall thicknesses (1, 1.3 and 1.6 mm) can be clearly distinguished as three 
groups in the figure. Compared to the wall thickness distributions of the two-dimensional 
simulations, similar patterns are presents. The figures below however are less ordered. 
Numerous simulations show an asymmetric wall thickness distribution. The strains are 
concentrated on one spot of the tube, denoting localisation.  Furthermore an increase in wall 
thickness variation is noticed, which indicates an overestimate of the thickness strain 
compared to the two-dimensional simulations. In Appendix D a larger version of the figure 
below is included. 
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Figure 6.2. Wall thickness of the completed 3D simulations 

 
In the next section the wall thickness distributions are evaluated with the objective functions 
and used to form metamodels for the optimisations.  
 

6.2 Response Surface Methodology 
This section follows the same strategy as section 5.2. Regression analysis is used to fit the 
data and form a metamodel, which is optimised using the Matlab routine fmincon. The implicit 
constraint for necking is not applied to the three-dimensional model. The results of the two-
dimensional simulations already showed that this constraint has no influence on the optimum 
and is therefore not of any interest.  
 
6.2.1 Metamodel 
The results of the simulations are used in combination with the objective functions to fit a 
metamodel with regression analysis. The lack-of-fit for the four possible metamodels are 
presented below for the three objective functions (Eq. 4.10, Eq. 4.11 and Eq. 4.12). 
 

Table 6.1: Lack-of-fit tests 
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R2 0.7898 0.9436 0.8080 0.9618  0.8279 0.9537 0.8511 0.9759
F-statistic 27.80 30.11 13.47 27.72  35.60 37.09 18.29 44.60 
p-value 1e-11 5e-13 7e-9 3e-11  3e-13 4e-14 2e-10 2e-13 
Adjusted R2 0.7677 0.9154 0.7556 0.9302  0.8098 0.9305 0.8105 0.9560
 Lack-of-fit for 5f   Lack-of-fit for 6f  
          
R2 0.8187 0.9338 0.8511 0.9662      
F-statistic 33.42 25.38 18.29 31.43      
p-value 9e-13 5e-12 1e-10 8e-12      
Adjusted R2 0.7996 0.9007 0.8105 0.9383      
 Lack-of-fit for 7f       

 
The ‘linear model’ shows a worse fit compared to the two-dimensional model, and the 
quadratic effects have a larger influence on the improvement of this model. However the 
confidence intervals for all quadratic effects include zero, for both the ‘quadratic model’ and 
the ‘quadratic model with interactions’. This means the quadratic effects are of no 
significance. This leads to the choice for the ‘linear model with interactions’, which show a 
better fit compared to the ‘linear model’.  
 
6.2.2 Optimisation 
The metamodel of the section above is used to find the optimal wall thickness distribution. 
The linear behaviour of the metamodel indicates an optimum on the border of the feasible 
domain. Compared to the two-dimensional simulations the optimum (see Table 6.2) is the 
same for the three objective functions concerning three design variables. Two differences are 
noticed, namely the behaviour of the design variables L  and t . For the former one this 
variation is unimportant, because all effects (linear and interaction) concerning L  are 
insignificant. For the design variable t  all effects are insignificant concerning the objective 
function of Eq. 4.12. The difference however is the significance of the linear effect and two 
interaction effects of the metamodel for the two-dimensional simulations, even though these 
effects are small. The metamodel for the three-dimensional simulations is not capable of 
estimating the small interactions between the effects of t , as the metamodel for the fractional 
factorial design. In this case the smaller number of observation and with it the more roughly 
estimation of the final geometry probably the caused the difference with the two-dimensional 
simulations. 
 

Table 6.2: Optimal dimensions predicted by the three objective functions 

 2/H (mm) L  (mm) t  (mm) 1κ  (mm-1) 2κ  (mm-1) 
5f  27.8 (+1) 1 (-1) 1 (-1) 1/6 (+1) -1/40 (-1) 

6f  27.8 (+1) 5 (+1) 1 (-1) 1/6 (+1) -1/40 (-1) 

7f  27.8 (+1) 1 (-1) 1.6 (+1) 1/6 (+1) -1/40 (-1) 
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Generally speaking with the insignificant design variables in mind it can be concluded that the 
three-dimensional simulations lead to the same result compared to the two-dimensional 
simulations. Al though the confidence interval of the effects are larger, leading to 
insignificance of some effects compared to the two dimensional simulations. 
 

Table 6.3: Values of the objective function in the optimum 

 Metamodel Simulation 

5f  0.0166 0.0225 

6f  -0.003 0.0006 

7f  0.0123 0.0194 
 
In Table 6.3 the values in the optima for the metamodel and the simulations are compared. 
They show a good resemblance. One comment must be made concerning the optimum value 
for the simulations concerning the objective function of Eq. 4.10. The minimum value for the 
simulations occurs for the same settings of the design variables as in Table 6.2 except for L , 
which is 1 mm. This is due to the low significance of L  and the larger confidence interval 
compared to the two-dimensional simulations. 
 

6.3 Data Comparison with 2D Simulations 
In Figure 6.3 the results of the two-dimensional and three-dimensional simulations are plotted 
against each other to obtain a clear view of the difference between the models. The plot is 
made for the objective function of Eq. 4.10 The majority of the points are located above the 
dotted line (denoting similar results for both types of simulations). This means that the three-
dimensional simulations predict a worse distribution of the wall thickness, especially for the 
simulations with small perimeters. These are the simulations with high elongations in 
circumferential direction and thus high strains in thickness direction. J. Bakker [3] showed a 
good resemblance of the wall thickness distribution for round tubes simulated using two-
dimensional elements. Apparently the three-dimensional simulations overestimate the 
thickness strains. 
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Figure 6.3. Comparison between two and three dimensional simulations for the 

objective function of 6f  
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Form the results of this chapter, compared to the two-dimensional simulations of chapter 5, 
the three-dimensional simulations for optimisation (and simulation of hydroforming in general) 
is suitable in case of low strains in the wall thickness directions. When the strains increase the 
prediction of the wall thickness distribution becomes worse and the moment of necking occurs 
earlier compared to the two-dimensional simulations.  
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7 Discussion 
In these chapter aspects of the optimisation of chapters 4 through 6 are discussed. This is 
divided into two groups. The first two sections focuses on the results of the optimisation. At 
first a screening of the design variables is applied to see if this kind of step in the optimisation 
routine would filter out the design variables, which are insignificant or small. Furthermore two 
new constraints are added, composed from the results of the optimisation of chapter 5.  
In the last two sections some aspects of the used optimisation routine is discussed. The 
emphasis lies on the experimental design and the influence of implicit constraints. 
 

7.1 Screening Design 
The derived optima for the optimisation problem are formed by a set of design variables. The 
metamodel composed to describe the behaviour of the design variables contains a number of 
effects, which are not significant. In the case of the design variable L , all possible effects 
(main and two factor interaction effects) are insignificant and for 2κ only a weak significance 
for the main effect and interaction with 1κ  is present.  
The question is if it is possible to find the design variables with the largest effects on the 
model with the help of a screening design. This is a design consisting of a small number of 
experimental runs. The design is suited to find linear and two-factor interaction effects, but is 
not capable to estimate the effects. The design used in this section is a two-level fractional 
factorial design of resolution III (see Appendix A). This means the linear effects are heavily 
confounded with the interaction effects. For five design variables only eight experimental runs 
are needed. With the multiplications:  
 

315

214

xxx
xxx

=
=

 Eq. 7.1

 
The following design is formed: 

Table 7.1. Resolution III design 

 H/2 L t k1 k2 
1 -1 -1 -1 +1 +1
2 +1 -1 -1 -1 -1
3 -1 +1 -1 -1 +1
4 +1 +1 -1 +1 -1
5 -1 -1 +1 +1 -1
6 +1 -1 +1 -1 +1
7 -1 +1 +1 -1 -1
8 +1 +1 +1 +1 +1

 
Other designs are possible when the multiplications are altered. The experimental runs of 
Table 7.1 form a part of the experimental design of Table 4.2. Normally a screening design is 
the first step and the experimental runs can be used for the experimental design needed for 
the Response Surface Methodology. Also when a design variable appears to be insignificant, 
because the influence of the variable is negligible, the runs can be used. 
 



       Optimisation of the Initial Tube Geometry for Tube Hydroforming 58 

7.1.1 Results of the Screening 
The screening of the designs is preformed with a DEX mean plot for a number of possible 
experimental designs amongst them the design of Table 7.1. The rest of the designs are 
mentioned in Appendix H together with the DEX mean plots for the three design variables 
(Eq. 4.10, Eq. 4.11 and Eq. 4.12). The DEX mean plot uses the average of the experimental 
data per level of a variable, represented in Eq. 7.2. These two points form a line and indicate 
the linear effect of the design variable.  
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Eq. 7.2

 
In Figure 7.1 the DEX mean plot for de design of Table 7.1 is depicted. 
 

 
 

Figure 7.1. DEX mean plot of a screening design 

 
In the figure the horizontal axis presents the design variables in the same order as the 
columns of the experimental design. From the figure the conclusion can be drawn that 2κ is 
insignificant and the other design variables are significant. However the effects for 2κ have a 
small significance and the effects for L  have no significance at all. The conflicting results of 
the DEX mean plot above and the results of chapter 5 are caused by the nature of the 
screening design. In the design the main effects are confounded with the interaction effects. 
In case of L  the linear effect is confounded with the interaction term 1κH , which is a 
significant term.  
In Appendix G the other DEX mean plots show similar confounding effects. This means that 
the engineer is dependent of the choice of screening design to find all insignificant terms.  
 

7.2 Constant Mass of the Tube 
In this section an extra constraint is added to the optimisation problem of the previous 
chapters. The constraint beholds a constant mass of the tube. Mass is an interesting 
parameter for the car industry and an increase of mass compared to the common round tube 
is not preferred. Therefore the mass of the tube is chosen almost equal to the mass of a 
round tube of diameter 60 mm (largest possible tube to fit in the die cavity  of Figure 4.1) 

21 κκtLH

5f
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To rewrite the constraint to the design variables the use is made of the proportionality of the 
mass to the area of the tube wall for a prismatic tube. The volume is approximated by the 
product of the wall thickness with the length of the neutral line of the tube, i.e. the tube is 
approximated as a rectangle, which is valid for thin walled tubes. The constraint in 
mathematical form becomes: 
 

=⋅ tLmiddleline constant 

( ) ( ) =⋅







+−+−⋅ tL2

2
4

3

1

118 ππ β
κ

β
κ

constant 
Eq. 7.3

 
With this constraint a relation is formed between the 5 design variables. The optimisation 
problem looses one degree of freedom; therefore one design variable can be eliminated. In 
this case the wall thickness t  is excluded. As a result only 25 experimental runs are needed 
for the experimental design (a Face Centred CCD) for this new optimisation problem. The 
boundaries for the design variables (except t ) are the same as in Table 4.3 for comparison. 
The constant value for the (equality) constraint is set on 280 mm2. This is slightly larger as a 
round tube with a diameter of 60mm and a wall thickness of 1.5 mm with an area of 275.7 
mm2. 
 
Results 
The fitting of the metamodel for the objective functions shows a more dominating quadratic 
effects and less influence of the interaction effects compared to the metamodel of chapter 5. 
This is due to the absence of the design variable t . In the metamodel of chapter 5 two 
interaction effects of t  were significant and the quadratic effect of t  was not significant. 
These terms are excluded from the new metamodel. 
In chapter 5 the optimum implied a tube with a maximum perimeter. In this case the result is 
not much different with exception of t, which is now dependent of the new constraint. The 
result for the optimisation problem with the constraint denoting constant mass the optima for 
all objective functions are equal: 
 

Table 7.2: Optimum for an optimisation involving tubes with constant mass. 

2/H (mm) L (mm) 1κ (mm-1) 2κ (mm-1) 
27.8 (+1) 1 (-1) 1/6 (+1) -1/40 (-1) 

 
Which forms the tube with the maximum perimeter.  
Also in this case, there is no influence of the necking criterion, which influences only tubes 
with relatively small perimeters.  
 

7.3 Decrease of Acceptable Maximum Perimeter 
The optimum for the wall thickness distribution derived in chapter 5 is the initial tube with the 
largest perimeter within the investigated domain. In this domain the maximum perimeter is 
formed by a unique combination of design variables. To investigate the influence of the 
design variables on the optimum a restriction is added within the domain. The domain is 
bounded by the constraint (see section 4.3) restricting the perimeter to a maximum of 98% of 
the perimeter of the die cavity. The new constraint will restrict the perimeter to 90 % of the 
perimeter of the die cavity. This extra explicit constraint is used to form a boundary within the 
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domain of the experimental design. Therefore it is written in the same form as the implicit 
constraint for necking: 
 

09.0 ≤⋅− Dietube PP  Eq. 7.4
 
Where tubeP  is the outside perimeter of the initial tube and DieP  the perimeter of the die 
cavity.  
The metamodel for the constraint shows a perfect fit for a ‘quadratic model with interactions’, 
i.e. a R-squared value of one. This model is, in combination with the metamodel for the 
objective functions, subsequently optimised with the Matlab routine fmincon. The results are 
presented in Table 7.3.  
 

Table 7.3. Optimum with a new constraint 

 2/H (mm) L (mm) t (mm) 1κ (mm-1) 2κ (mm-1) 

5f  26.5605 5 1 1/6 -1/98 

6f  26.4805 5 1 1/6 -1/74 

7f  26.4357 5 1.6 1/6 -1/185 
 
The corresponding tubes are presented below: 
 

 
(a) 

 
(b) 

 
(c) 

Figure 7.2. New optimum initial geometry for (a) 5f ,  (b) 6f  and (c) 7f  

 
The tubes presented above are almost alike. The biggest difference is found in the wall 
thickness of the objective function of Eq. 4.12, which has a preference for a wall thickness of 
1.6 mm. This is due to the linear effect compared with the interaction effects concerning the 
design variable t . For a certain maximum allowable perimeter a change in preference occurs. 
This is seen in Figure 5.9.  
The set of design variables forming the optimum are used to run a simulation. The results are 
used to determine the values of the objective functions. These are compared with the 
approximate values of the metamodels in Table 6.3.  
 

Table 7.4: Values of the objective function in the optimum 

 Metamodel Simulation 

5f  0.0599 0.0605 

6f  0.0625 0.0635 

7f  0.0606 0.0630 
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The metamodels made a good approximation of the objective function in the found optimum. 
However the objective function of Eq. 4.10 shows a smaller value for the tube of Figure 7.2 
(a) rather than (b). The metamodel for this objective function is not accurate enough in this 
region. The difference between the tubes are however small. 
An overall conclusion from this constraint is the preference for a low box-like tube ( H ) with a 
sharp corner ( 1κ ) rather than a large box with a wide corner. Furthermore the box-like tube is 
dented in the middle of the sides ( 2κ ) 
 

7.4 Data Point not satisfying an Implicit Constraint 
In the previous sections the discussion was about the optimisation problem of the previous 
chapters. In this and the next section the discussion is shifted to the optimisation in general, 
starting with the influence of the implicit constraint on the optimum. It was not mentioned 
during the optimisation of chapter 5, but the introduced implicit constraints are treated in two 
different ways: An experiment not satisfying an implicit constraint 
 

1. is excluded from the remainder of the optimisation, i.e. does not contribute to the 
metamodel; 

2. together with the other experiments is used to build a metamodel to form a boundary 
on which the optimum can be located. 

 
An example of the first point is the localisation of the mesh. In this situation the experiment 
does not satisfy two implicit constraints, namely the complete filling of the die cavity and the 
necking criterion. An example for the second point is the necking criterion used to build a 
metamodel. In the first case it is obvious that the experiment cannot be used for the 
optimisation, but it is not always so clear. It is all connected to the behaviour of the problem in 
consideration. The functions used to fit a metamodel through the data points are of a 
polynomial function with a maximum order of two. For most cases this model is sufficient to 
describe the considered phenomena. But this is restricted. When an experiment does not 
satisfy a constraint the behaviour of the experiment can alter to a more complex model. 
Necking is an example, which can be applied in both mentioned ways. Point two can be used 
when the strains in the model do not lead to mesh localisation. In that case point one applies. 
In chapter 5 initial work hardening was added to the finite element model. For some 
simulations the die cavity was completely filled, but the mesh showed localisation. The result 
for the simulation could be used to form a metamodel, but the localisation leads to an 
abnormality of the thinning behaviour of the tube, i.e. a peek in the wall thickness distribution. 
Therefore the simulations where excluded.  
The necking criterion however excluded far more simulations, but the simulation of necking 
behaviour is less sensitive than the proposed criteria. Due to this the simulations followed 
normal thinning behaviour of the tube wall and can be used to form the metamodel. 
 

7.5 Combination of the Feasible Domain and the 
Experimental Design  

The constraints of an optimisation problem form the boundaries of the feasible domain. Within 
this domain the settings for the experimental runs are chosen according to an experimental 
design. In this report a classical design (Face Centred Central Composite Design) is used. 
The shape of the classical design limits the domain for the search to the optimum. When 
representing a classical design in an n -dimensional space formed by the n design variables, 
the shape of the classical design is either a hyper cube or a hyper sphere. In the case of the 
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classical design used in this report a hyper cube is formed. The classical design will only 
completely fill the feasible domain if the constraints forming its boundary are restricted to two 
conditions, namely:  
 

- All constraints should be linear 
- The in-product of the normal vectors of two constraints is either zero or one. 

 
In practice however the constraints rarely meet both of the conditions. This leads to a 
difference between the domain size of the feasible domain and the experimental domain 
according to: 
 

Domain {experimental design} ∈ feasible domain 
 
Due to this the optimisation is performed on a smaller domain than possible with the risk of 
excluding the true optimum. Furthermore the domain of the experimental design can be small 
leading to a metamodel dominated by linear effects. Possible quadratic effect can be 
estimated, but the confidence interval will be large and lead to exclusion of the effects. This 
can explain the dominating linear behaviour of the metamodel for the wall thickness 
distribution of chapter 5 and 6. 
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8 Conclusions and Recommendations 
 

8.1 Conclusions 
The aim of this project was to gain more insight in optimisation of forming processes with 
finite element method in general, furthermore to improve the knowledge of the hydroforming 
process. In this section the conclusions are presented with a short explanation. 
 
¾ The elements and element size have limited influence on the optimum. 

Three mesh sizes for two-dimensional and a three-dimensional analysis were 
conducted. Each resulted in the same optimum. The three-dimensional simulations 
have the tendency to overestimate the wall thickness distribution (value of the 
objective function) and are less accurate due to overestimated maximum thinning. 
The same holds for the coarse mesh in the two-dimensional analysis. The overall 
picture however stays the same, which results in the same optimum.  
 

¾ The optimal wall thickness distribution depends mostly on the perimeter of the tube.  
As shown in chapter 5 the optimum is formed by the settings of the design variables, 
which form the largest perimeter for the initial tube. In chapter 7 the maximum 
perimeter was reduced. The optimum still beholds the tube with the largest allowable 
perimeter. The optimum tube is a box-like tube with a preference for a low side ( H ) 
and a sharp corner ( 1κ ) rather than a large box with a wide corner. Furthermore the 
box-like tube is dented in the middle of the sides ( 2κ ), forming a convex radius.  
 

¾ An optimum located on the boundary of the domain can be misleading. 
As mentioned before, the optimum depends on the maximum perimeter of the initial 
tube. For the domain used in chapters 4 through 6 the maximum perimeter is only 
reached for one combination of design variables. After the introduction of an extra 
restriction in section 7.3 in the form of an implicit constraint, the maximum allowed 
perimeter can be formed for several combinations of the design variables. Only in this 
situation the influence of the design variables on the optimum could be investigated.  

 
¾ Applying a screening design to reduce the number of design variables is useful. 

The screening designs of chapter 7 are capable of detecting insignificant design 
variables, but due to confounding of effects it is not certain that all insignificant 
variables are found.  

 
¾ Insignificance of effects is influenced by the domain size 

For the investigated optimisation problem the design variable L  is insignificant for all 
effects (linear, interaction and quadratic) for the four possible metamodels. This is 
caused by the small variation of the length. When the domain is increased the design 
variable will be significant due to the influence on the perimeter length, especially in 
combination with the other design variables. 

 
 
¾ The objective function should be unbiased with regard to the design variables. 
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In this report mostly two types of objective functions were investigated, biased and 
unbiased with respect to the initial wall thickness. When the initial wall thickness is 
used as a design variable the unbiased objective functions is preferred.  
In the case the design variable is not linked to the objective function, as in section 7.2 
the choice of objective function is less important due to the domination of the 
perimeter to the optimum initial tube geometry. 

 

8.2 Recommendations 
 
¾ Applying screening designs 

When using a classical design, the screening design is a portion of the classical 
design. The results of the screening design can be used for the RSM, even if one 
design variable is insignificant. It is recommended to use a centre run in order to 
detect quadratic effects. These effects are not detected by a screening design and 
therefore the risk of excluding a variable with a weak linear but strong quadratic effect 
is present. 

 
¾ (in)Significance of effects 
 With regression analysis the metamodel is fitted through the data points. For this 

 project it was possible to choose from four different models, from which one was 
 picked with the help of lack-of-fit tools. The effects forming the metamodel are (with 
the help of the confidence intervals) considered significant or insignificant. The 
influence of the insignificant is noteworthy. These effects contribute to the optimum, 
but are not entitled to. To lose the effect of the insignificant terms it is recommended 
to chance the value to zero. The fit of the model will deteriorate, but the chance of 
misinterpretation of the optimum is decreased. 

 
¾ The necking criteria have no influence in the optimum 

Despite of this it is useful to apply these criteria to the optimisation problem. If al 
simulations in the investigated domain do not meet the necking criteria, the 
metamodel can be used to gain insight into the necking behaviour of the tube(s) and 
help to find a new direction of search. 

 
¾ Experimental design 

The experimental design used in this project was a Face Centred Central Composite 
Design. This design is suited for predicting linear, interaction and quadratic effects 
needed for Response Surface Methodology. The domain of the design however is a 
limiting factor, concerning all classical designs. The domain of a classical design is 
rarely similar to the feasible domain formed by the constraints. This means that with 
the use of classical designs it is not possible to capture the behaviour of the process 
in the entire feasible domain. For this other designs are needed, which must be 
sought in the range of computer generated designs. 
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Appendix A. Design of Experiments 
Design Of Experiments (DOE) is the deliberately changing of one or more variables in order 
to investigate the effect of the changes on one or more response variables. The number of 
experiments and the spreading of the results in the feasible domain influence the forming of 
the metamodel. A DOE places the experiments in the feasible domain to obtain a model, 
which beholds as much information as possible with as low as possible number of 
experiments. In this section DOEs suited for RSM and used for this project are discussed. A 
large portion of DOE strategies are not mentioned and for further information is referred to 
literature [22], [27]. 
The most common Designs of Experiments are the classical designs. These designs form 
either a hyper cube or a hyper sphere in the design space. Advanced designs use computer 
software to place the points in the design space using several criteria, thereby obtaining the 
ability to fill the feasible domain more efficiently compared to classical design space.  
 

A.1 Levels of a Design 
First a quote by Montgomery (1991): It is our belief that the two-level factorial and 
fractional factorial designs should be the cornerstone of industrial experimentation for 
product and process development and improvement. He went on to say: There are, 
however, some situations in which it is necessary to include a factor (or a few factors) 
that have more than two levels. 
The number of levels determines the maximum function order and the complexity of the 
design. To reduce the number of experimental runs the number of levels must kept low, while 
to maximise the obtainable information the number of levels must be high. This contradictive 
demand of a DOE is the reason for much research in the past to find better designs. As 
Montgomery stated above the problem considered plays an important roll and two level 
designs are sufficient for most optimisation problems. Hereafter several designs are 
explained. To indicating the levels of a design in a DOE, coded variables are used. For a two-
level design the higher level is indicated with ‘+1’ and the lower level with ‘–1’. To obtain a 
centre run (explained later) ‘0’ is used.  
 

A.2 Full Factorial Design 
In a full factorial design the number of runs is equal to all possible combinations of levels from 
the design variables. In a design with two levels per variable, the number of experimental runs 
is equal to 2n, where n is the number of variables. For a design with three levels per variable 
the number of experimental runs is equal to 3n. In general, if there are k factors, each at n 
levels, a full factorial design has nk runs. The number of experimental runs required for a 
design depends strongly on the number of variables due to the power of n. The effect is even 
stronger for a larger number of levels as shown if Table A.1. 
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Table A.1. Number of experimental runs in a Full Factorial Design 

Number of 
Variables 

Two-level 
Design 

Three-level 
Design 

1 2 3 
2 4 9 
3 8 27 
4 16 81 
5 32 243 

 

x

x

x

1

2

3

x2

x1

3x

 
Figure A.1. 2-Level and 3-Level 3-Factor Full Factorial Design 

 
In the figure above both a two and three-level three-factor full factorial design is depicted. The 
two-level design is capable of predicting the linear effects together with two-factor interactions 
effects. The response surface adapts to the following form: 
 

jiijii xxxf ααα ++= 0)(x   for ij >  and 3,2,1, =ji  Eq. A.1

 
Where ix  is the i th design variable and iα the corresponding effect. ijα  is the effect for the 
two-factor interaction. 
The three-level design is capable of predicting the same effects as the two-level design with 
addition of the quadratic effects and the three-factor interactions, giving the response surface 
the following form: 
 

mlkklmjiijii xxxxxxf αααα +++= 0)(x   for ji ≥ , klm >>  

       and 3,2,1,,,, =mlkji  
Eq. A.2

 
In which klmα  is the effect of the three-factor interaction and ijα  is now also the effect of the 
quadratic term. 
In Table A.2 an example is given for a three-factor two-level full factorial design. The design is 
built by alternating the levels from low to high with steps of 12 −i , where i is the number of the 
design variable. 
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Table A.2. Example of a two-level three-factor full factorial design 

 x1 x2 x3 
1 -1 -1 -1 
2 +1 -1 -1 
3 -1 +1 -1 
4 +1 +1 -1 
5 -1 -1 +1 
6 +1 -1 +1 
7 -1 +1 +1 
8 +1 +1 +1 

 
The columns of the design can be considered as vectors, which are orthogonal with respect 
to each other. This implies that the outcome of the in-product of two arbitrary columns is zero. 
The orthogonality property of a design is important because it eliminates the correlation of the 
estimate of the main effects and interactions. 
 

A.3 Fractional Factorial Designs 
To decrease the number of experimental runs, a fraction of the factorial design is used to 
evaluate the optimisation problem. Desired is a design that is both balanced and orthogonal. 
The fraction consists of nk-p runs, where n is the number of levels, k the number of factors and 
p the fraction. This means that a fraction is a (½)p part of the full factorial design.  
There are a number of other designs, which are a fraction of a full factorial design, but differ in 
the number of runs and the combination of levels, like Plackett-Burman, Box-Behnken and 
John’s ¾ fractional factorial design. For further information about these designs is referred to 
literature [22], [27]. 
For a half fractional factorial design, the full factorial design is split in half. Both halves are a 
half fractional factorial design and therefore both suited for use as a guide for the 
experiments. However both designs will likely give a different approximation of the main and 
interaction effects, which in turn will deflect from the outcome of the full factorial design. Note 
that the full factorial design is an approximation of the effects itself. 
Let us now look how a two-level three-factor fractional factorial design can be composed with 
preservation of orthogonality. First a full factorial design is built for two factors. 
 

Table A.3. Two factor full factorial design 

 X1 X2 
1 -1 -1 
2 +1 -1 
3 -1 +1 
4 +1 +1 

The third column is generated by multiplying the first and second column, i.e. 
213 xxx =   
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Table A.4. Three factor fractional factorial design 

 X1 X2 X3 
1 -1 -1 +1 
2 +1 -1 -1 
3 -1 +1 -1 
4 +1 +1 +1 

 
Instead of using the above stated relation between the columns the right side can be 
multiplied with '-1', obtaining 213 xxx −= . Combining both designs leads to the full factorial 
design. 
Reducing the number of runs comes with a price, namely the reduction of accuracy of the 
fitted model. The fractional factorial design of Table A.4 is generated by the multiplication of 
the first two columns. The ability of obtaining an estimate of the main effect 3x  and the 
interaction term 21xx is lost. The main effect and interaction term are confounded.  
Multiplication (like 213 xxx = ) will from now on be written as 3=12. To examine the influence 
fraction on other terms multiply both sides of the equation with 3: 
 

33=123 
 
33 is equal to I, a column of all ones. This leads to I=123, which is called a design generator. 
The term 123 is called a word. Using some algebra the following equations can be formed: 
 

I=123 Æ I1=1123 Æ 1=23 
I=123 Æ I2=1223 Æ 2=13 

 
Since 11=22=33=I. From this it is seen that all main effects are confounded with interaction 
terms. The design (number of runs) can therefore only be decreased when the interactions 
effect is small compared to the main effect.  
An indication of the degree of confounding of effect is described by the resolution of a design. 
This is indicated by a roman numbers, which indicates the length of the smallest word. For 
instance in a resolution II design the smallest word has a length of two, for instance 12. The 
design generator is thus I=12, which leads to 1=2. The main effects 1x  and 2x  are 
confounded with each other. Therefore a resolution II design is not a good design. 
A resolution III design has a minimum word length of three, which means that main effects 
and two-factor interaction terms are confounded. For a resolution IV design the two-factor 
interaction terms are confounded among themselves and the main effect are confounded with 
three-factor interactions. For instance the design generator I=1234 lead to: 
 

1=234, 2=134, 3=124, 4=123 
12=34, 13=24, 14=23 

 
In a resolution V design the main effects are confounded with four-factor interactions and two 
–factor interactions with three-level interactions. The assumption that third order models are 
highly unusual for industrial processes, thus the negligible effect of third order terms, lead to 
the conclusion that a resolution V design or higher will not influence the approximation of the 
first and second order effects. 
A fractional factorial design, nk-p, can be of different resolutions and differ within a resolution. 
The latter one was shown with the design of Table A.4, where the inverse of a design 
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generator was used. Also another word with the same length leads to a different design with 
the same resolution. A 24-1 design can be both a resolution III design and a resolution IV 
design. In the tables below both designs are shown, with corresponding words. 

 

Table A.5. . Resolution III 
design  

Table A.6. Resolution IV 
design 

 x1 x2 x3 x4 
(124) 

  x1 x2 x3 x4 
(1234) 

1 -1 -1 -1 1       1 -1 -1 -1 -1 
2 -1 -1 1 1  2 -1 -1 1 1 
3 -1 1 -1 -1  3 -1 1 -1 1 
4 -1 1 1 -1  4 -1 1 1 -1 
5 1 -1 -1 -1  5 1 -1 -1 1 
6 1 -1 1 -1  6 1 -1 1 -1 
7 1 1 -1 1  7 1 1 -1 -1 
8 1 1 1 1  8 1 1 1 1 

 

A.4 Box–Wilson Central Composite Designs 
The above-mentioned designs are based on two-level designs. These designs are favourable 
above three level designs due to the small number of runs. However, quadratic effects, 
preferable for RSM, cannot be predicted using a two level design. To increase the ability of 
predicting quadratic effects, Box and Wilson came up with a new design based on two-level 
designs. These designs, called Central Composite Designs, are capable of predicting 
quadratic effects, without adding a high number of additional runs.  
The design consists out of a two level design added with a centre run and star points. The 
centre run, located in the exact middle of the design, is suited for better prediction of 
interaction effects and indicates the presence of quadratic effects. The centre run alone 
cannot estimate the quadratic effects and therefore the star points are added. The star points, 
two times the number of design variables, are located at a distance α of the centre of the 
design. In Figure A.7 the three variants of Central Composite Design for two design variables 
are depicted. The number of runs of the designs is equal to 2n +2n+1 ( two-level design plus 
the star points plus the centre run). 
 

Circumscribed Inscribed Face Centred
 

Figure A.7. Central Composite Design 

A.4.1 Circumscribed Central Composite Design  
The circumscribed design adds star points outside the design space of the two-level design at 
a distance |α| of the centre of the design space. Therefore each design variable is examined 
at 5 different levels. This means that the design space is extended. The range of the variables 
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must be considered when using this design to prevent experimental runs outside the feasible 
domain.  

A.4.2 Inscribed Central Composite Design 
If the circumscribed design is not possible, the inscribed design can be used. The base of the 
design is equal to the circumscribed design, except |α| equals to one and the range of the 
variables for the two level design is scaled, i.e. the circumscribed design is scaled in such 
way that all levels are within the original range of the two-level (fractional) factorial design 

A.4.3 Face Centred Central Composite Design 
The star points for the face centred design are located at |α| =1. This means that in contrast 
to the two central composite designs mentioned above, the design has three levels per factor. 
The design is less suited for estimating the quadratic effects due to the number of levels. The 
advantage however is the better spreading of points in the rectangular design space 
compared to the inscribed design and the smaller range compared to the circumscribed 
design. This last argument is important due to potential impossible combinations of levels of 
the design variables. 

A.4.4 Fractional Factorial Central Composite Design 
To reduce the number of experimental runs, but still keep the properties of a Central 
Composite Design, the basis of this design is altered. Instead of using a two-level Full 
Factorial Design a fraction of this design is chosen. This is normally done when five or more 
design variables are involved in a design. As shown in Table A.7 the reduction of 
experimental runs is low for four or less design variables and does not compensate for the 
confounding of the design.  
 

Table A.7. Number of runs for a Central Composite Design 

Central Composite Design with a Design 
Variables Full Fraction ½ Fractional  ¼ Fraction 
    
2 9 7 6 
3 15 11 9 
4 25 17 13 
5 43 27 19 
6 77 45 29 
7 143 79 47 
8 273 145 81 
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A.5 Other Designs 
The designs described above are a small portion of all existing designs, but probably the most 
widely used ones. The already mentioned designs, Plackett-Burman, Box-Behnken and 
John’s ¾ fractional factorial design, are suited for decreasing the number of runs and still get 
a reasonable amount of information. The heavily confounded designs, like Plackett-Burman 
and low-resolution fractional factorial designs are not suited for predicting effects with RSM 
but convenient tools for screening the design variables. Screening designs are used to 
determine the design variables with high significance. This is very useful when a large 
number of design variables are present and the choice cannot be made on forehand. After 
this step, the remaining design variables are used in a new design for Response Surface 
Modelling.  
Until now only classical designs are mentioned. Another group of designs are the computer-
generated designs. These designs use several criteria for placing experimental runs into the 
design space. A common used criterion is D-optimality, where the minimum distance between 
two runs is maximized. Other criteria are A-, ASV-, C-, E-, I-, V-optimality and Bayesian. For 
further information about design of experiments the reader referred to literature ([6], [7], [12], 
[13] and [21]) 
With the completed experimental design, the experiments are conducted. The outcome of the 
experiments is used to fit a metamodel with regression analysis. In the next section the 
function order of this model is discussed. 
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Appendix B. Design Variables 
The model of figure B.1 is described with seven variables. These variables are used to derive 
the equations describing the geometry in mathematical form. 
 

ρ

ρ

1

2

δ

β

 
Figure B.1. The model used for optimisation containing two different radii. 

 
Before deriving these equations an indication presented for the values of the variables 
concerning the radii.  
 

ρ1

ρ3

ρ2

 
Figure B.2. A concave (left), affine (middle) and convex (right) radius 

 
In figure B.2 three possible situations are presented for the radii. The middle one (affine) is 
the transition of a concave to a convex radii and visa versa. The signs of the radii are: 
 

01 >ρ    (concave) 
−∞=∩∞= 22 ρρ  (affine) 

03 <ρ    (convex) 
Eq. B.1

 
The transition from concave to convex leads to an infinite radius. This means the formulation 
of the radius leads to a discontinuous function. To form a continuous function the radius of 
curvature is introduced. The relation of the radius of curvature and the radius is: 
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ρ
κ 1=   

 
Eq. B.2

 
This leads to the signs of the radius of curvature according the figure B.2: 
 

01 >κ    (concave) 
0=κ    (affine) 
03 <κ    (convex) 

Eq. B.3

 
The radius of curvature is zero in the transition from concave to convex. With this the radius 
can be described with a continuous function. 
For the derivation of the mathematical description of the tube two cases are considered. The 
first one is the convex situation and the second one is the concave situation for 2ρ . 
 
Situation1: convex: 
 
The model is presented in figure B.3 
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8.2.1... Figure B.3: Convex situation 
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The height of the tube 
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And δ  is: 
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Rewriting both equations to the radius of curvature: 
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Eq. B.7 

 
The perimeter of neural line of the tube is written as: 
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Eq. B.8 

 
Situation 2: Concave situation 
 
The model is presented in figure B.4 
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Figure B.4: Convex situation 
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The height of the tube 
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And δ  is: 
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Rewriting both equations to the radius of curvature: 
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Eq. B.7 

 
The perimeter of neural line of the tube is written as: 
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Eq. B.8 

 
Considering the wall thickness, the outside perimeter becomes: 
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Summary 
 

Situation 1: 
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The height of the tube is described with the same equation, but δ has a different sign. This is 
due to the missing of an agreement of sign. From now on δ  is negative in a convex situation 
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and positive in a concave situation. This lead to the following equations for the description of 
the neutral line of the tubes: 
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Eq. B.10 

 



       Optimisation of the Initial Tube Geometry for Tube Hydroforming 82 

Appendix C. Necking 
Both Koç et al.[19], Marciniak et al. [20] and S. Kim et al. [17] , describe a derivation of the 
same bursting criterion for the maximal elongation of sheet metal, according to Koç applicable 
on hydroforming tubes. Below the derivation proposed by Marciniak is represented.  
Plain stress deformation is assumed for sheet metal, i.e. the stress in thickness direction is 
equal to zero ( 03 == rσσ ). Consider a region of a sheet subjected to a uniform 
deformation. This deformation is described in the following manner: 
 

1σ ;  1ε ; 

12 ασσ = ; 21 βεε = ; 
03 =σ ; ( ) 13 1 εβε +−= . 

     

 Eq. C.1 

 
Where α  and β are the ratio between the first two principal stresses and strains 
respectively. 
 

 
Figure C.1. Uniform deformation of part of a continuous sheet in a plane stress 

proportional process. 

 
The principal tension in the sheet is presented as: 
 

tT 11 σ= ; 

tTT 212 σα ==  
Eq. C.2

 
Differentiating equation Eq. C.2: 
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1

1

1

1

1 1 εβ
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σ
σ

σ
σ

d
d

d
d

t
dtd

T
dT

+−=+=+=  Eq. C.3

 
Which is only valid for 1−>β . If 1−<β , then the material flow towards the region is bigger 
then from the region, thereby thickening the sheet. Thus, a work-hardening material will never 
reach its maximum tension. 
When the tensions reach a maximum, equation Eq .3 becomes zero, which results in: 
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β
ε
σ

σ
+= 11

1

1

1 d
d

 Eq. C.4

 
De relation between the stress and strain is described with the work hardening relation of 
Hollomon Eq. C.5. The relation is proportional during deformation for which α  and β  are 
constant, thus the relation can be written for a single direction: 
 

nCεσ =  
nC 11 εσ ′=  

Eq. C.5

 
Differentiation and substitution into equation Eq. C.4 results in: 
 

11
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1

11
εε
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n
d
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=  Eq. C.6

β
ε

+
=

11
n

β
βε
+

=
12

n
 Eq. C.7

n=+ 21 εε  Eq. C.8

 
The strain at which necking occurs is shown in Eq. C.8 and is the summation of the two 
principal strains in the sheet. In Figure C.2 (a) the criterion for bursting is shown as function of 
the two principal strains and in Figure C.2 (b) the experimental determent boundary. 
 

 
Figure C.2. (a) Strains at the maximum tension in a continuous sheet, (b) 

Experimentally observed necking strains in sheet 
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Appendix D. Finite Element Models for the Two-
Dimensional Simulations 

 
Below the 2D finite element models are depicted used for the optimisation of chapter 5. The 
figure numbers correspond to the experimental run number of table 4.2. 
 

 
Figure D.1. H=26.4mm, 
L=1mm, t=1mm, 
k1=1/15mm-1 k2=-1/40mm-
1 

 
Figure D.2. H=26.4mm, 
L=1mm, t=1mm,  
k1=1/15mm-1 k2=1/400mm-
1 

 
Figure D.3. H=26.4mm, 
L=1mm, t=1mm,  
k1=1/6mm-1 k2=-1/40mm-1 

 
Figure D.4. H=26.4mm, 
L=1mm, t=1mm,  
k1=1/6mm-1 k2=1/400mm-1 

 
Figure D.5. H=26.4mm, 
L=1mm, t=1.6mm,  
k1=1/15mm-1 k2=-1/40mm-
1 

 
Figure D.6. H=26.4mm, 
L=1mm, t=1.6mm,  
k1=1/15mm-1 k2=1/400mm-
1 

 
Figure D.7. H=26.4mm, 
L=1mm, t=1.6mm,  
k1=1/6mm-1 k2=-1/40mm-1 
 

 
Figure D.8. H=26.4mm, 
L=1mm, t=1.6mm,  
k1=1/6mm-1 k2=1/400mm-1 

 
Figure D.9. H=26.4mm, 
L=5mm, t=1mm,  
k1=1/15mm-1 k2=-1/40mm-
1 
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Figure D.10. H=26.4mm, 
L=5mm, t=1mm,  
k1=1/15mm-1 k2=1/400mm-
1 

 
Figure D.11. H=26.4mm, 
L=5mm, t=1mm,  
K1=1/6mm-1 k2=-1/40mm-1 

 
Figure D.12. H=26.4mm, 
L=5mm, t=1mm,  
k1=1/6mm-1 k2=1/400mm-1 

 
Figure D.13. H=26.4mm, 
L=5mm, t=1.6mm,  
k1=1/15mm-1 k2=-1/40mm-
1 

 
Figure D.14. H=26.4mm, 
L=5mm, t=1.6mm,  
k1=1/15mm-1 k2=1/400mm-
1 

 
Figure D.15. H=26.4mm, 
L=5mm, t=1.6mm,  
k1=1/6mm-1 k2=-1/40mm-1 

 
Figure D.16. H=26.4mm, 
L=5mm, t=1.6mm,  
k1=1/6mm-1 k2=1/400mm-1 

 
Figure D.17. H=27.8mm, 
L=1mm, t=1mm,  
k1=1/15mm-1 k2=-1/40mm-
1 

 
Figure D.18. H=27.8mm, 
L=1mm, t=1mm,  
k1=1/15mm-1 k2=1/400mm-
1 
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Figure D.19. H=27.8mm, 
L=1mm, t=1mm,  
k1=1/6mm-1 k2=-1/40mm-1 

 
Figure D.20. H=27.8mm, 
L=1mm, t=1mm,  
k1=1/6mm-1 k2=1/400mm-1 

 
Figure D.21. H=27.8mm, 
L=1mm, t=1.6mm,  
k1=1/15mm-1 k2=-1/40mm-
1 

 
Figure D.22. H=27.8mm, 
L=1mm, t=1.6mm,  
k1=1/15mm-1 k2=1/400mm-
1 

 
Figure D.23. H=27.8mm, 
L=1mm, t=1.6mm,  
k1=1/6mm-1 k2=-1/40mm-1 

 
Figure D.24. H=27.8mm, 
L=1mm, t=1.6mm,  
k1=1/6mm-1 k2=1/400mm-1 

 
Figure D.25. H=27.8mm, 
L=5mm, t=1mm,  
k1=1/15mm-1 k2=-1/40mm-
1 

 
Figure D.26. H=27.8mm, 
L=5mm, t=1mm,  
k1=1/15mm-1 k2=1/400mm-
1 

 
Figure D.27. H=27.8mm, 
L=5mm, t=1mm,  
k1=1/6mm-1 k2=-1/40mm-1 
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Figure D.28. H=27.8mm, 
L=5mm, t=1mm,  
k1=1/6mm-1 k2=1/400mm-1 

 
Figure D.29. H=27.8mm, 
L=5mm, t=1.6mm,  
k1=1/15mm-1 k2=-1/40mm-
1 

 
Figure D.30. H=27.8mm, 
L=5mm, t=1.6mm,  
k1=1/15mm-1 k2=1/400mm-
1 

 
Figure D.31. H=27.8mm, 
L=5mm, t=1.6mm,  
k1=1/6mm-1 k2=-1/40mm-1 

 
Figure D.32. H=27.8mm, 
L=5mm, t=1.6mm,  
k1=1/6mm-1 k2=1/400mm-1 

 
Figure D.33. H=26.4mm, 
L=3mm, t=1.3mm,  
k1=7/60mm-1  
k2=-9/800mm-1 

 
Figure D.34. H=27.8mm, 
L=3mm, t=1.3mm,  
k1=7/60mm-1 
k2=-9/800mm-1 

 
Figure D.35. H=27.1mm, 
L=1mm, t=1.3mm,  
k1=7/60mm-1  
k2=-9/800mm-1 

 
Figure D.36. H=27.1mm, 
L=5mm, t=1.3mm,  
k1=7/60mm-1  
k2=-9/800mm-1 
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Figure D.37. H=27.1mm, 
L=3mm, t=1mm,  
k1=7/60mm-1  
k2=-9/800mm-1 

 
Figure D.38. H=27.1mm, 
L=3mm, t=1.6mm,  
k1=7/60mm-1  
k2=-9/800mm-1 

 
Figure D.39. H=27.1mm, 
L=3mm, t=1.3mm,  
k1=1/15mm-1  
k2=-9/800mm-1 

 
Figure D.40. H=27.1mm, 
L=3mm, t=1.3mm,  
k1=1/6mm-1 k2=-9/800mm-
1 

 
Figure D.41. H=27.1mm, 
L=3mm, t=1.3mm,  
k1=7/60mm-1 k2=-1/40mm-
1 

 
Figure D.42. H=27.1mm, 
L=3mm, t=1.3mm,  
k1=7/60mm-1 k2=1/400mm-
1 

 
Figure D.43. H=27.1mm, 
L=3mm, t=1.3mm,  
k1=7/60mm-1  
k2=-9/800mm-1 
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Appendix E. Wall Thickness as Function of the 
Perimeter 

 
 

Wall-thickness as function of the perimeter for two-dimensional 
simulations
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Wall thickness as function of the perimeter for three-
dimensional simulations
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Appendix F. Confidence Intervals of the Metamodel 
 

Table F.1. Effects of the linear metamodel for two-dimensional simulations 

 5f  6f  7f  

0β  0.0773 0.1099 0.0668 
H1β  -0.0167 -0.0353 -0.0143 
L2β  0.0002 0.0002 0.0003 
t3β  0.0095 0.0249 -0.0054 

14κβ  -0.0239 -0.0531 -0.0220 

25κβ  0.0046 0.0074 0.0046 

 
Table F.2. 95% Confidence intervals for the effects of the linear metamodel for two-

dimensional simulations 

 5f  6f  7f  

0β  0.0750 0.0795 0.1051 0.1146 0.0646 0.0689 
H1β  -0.0192 -0.0141 -0.0407 -0.0299 -0.0167 -0.0118 
L2β  -0.0022 0.0027 -0.0050 0.0054 -0.0021 0.0027 
t3β  0.0070 0.0121 0.0195 0.0303 -0.0079 -0.0030 

14κβ  -0.0264 -0.0213 -0.0585 -0.0477 -0.0245 -0.0196 

25κβ  0.0021 0.0070 0.0021 0.0126 0.0023 0.0070 
 

Table F.3.  Effects of the linear metamodel with interactions for two-dimensional 
simulations 

 5f  6f  7f  

0β  0.0751 0.1040 0.0665 
H1β  -0.0139 -0.0279 -0.0139 
L2β  0.0002 0.0002 0.0003 
t3β  0.0122 0.0323 -0.0051 

14κβ  -0.0212 -0.0456 -0.0217 

25κβ  0.0041 0.0067 0.0044 
HL12β  0.0001 0.0000 0.0001 
Ht13β  -0.0029 -0.0112 0.0008 

114 κβ H  -0.0067 -0.0089 -0.0044 

215 κβ H  0.0009 -0.0003 0.0003 
Lt23β  -0.0004 -0.0006 -0.0004 

124 κβ L  0.0001 0.0002 0.0000 

22 κβ L  -0.0002 -0.0003 -0.0002 

134 κβ t  -0.0033 -0.0151 0.0021 

225 κβ t  -0.0007 -0.0003 -0.0018 

2145 κκβ  0.0036 0.0058 0.0033 
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Table F.4.  95% Confidence intervals for the effects of the linear metamodel with 
interactions for two-dimensional simulations 

 5f  6f  7f  

0β  0.0740 0.0762 0.1019 0.1061 0.0655 0.0675 
H1β  -0.0152 -0.0126 -0.0303 -0.0254 -0.0151 -0.0128 
L2β  -0.0009 0.0014 -0.0019 0.0024 -0.0007 0.0013 
t3β  0.0109 0.0136 0.0299 0.0348 -0.0063 -0.0039 

14κβ  -0.0225 -0.0198 -0.0481 -0.0432 -0.0229 -0.0205 

25κβ  0.0029 0.0052 0.0045 0.0088 0.0034 0.0054 
HL12β  -0.0011 0.0013 -0.0022 0.0022 -0.0010 0.0011 
Ht13β  -0.0042 -0.0015 -0.0137 -0.0086 -0.0004 0.0020 

114 κβ H  -0.0081 -0.0054 -0.0114 -0.0063 -0.0056 -0.0032 

215 κβ H  -0.0003 0.0021 -0.0025 0.0019 -0.0007 0.0014 
Lt23β  -0.0015 0.0008 -0.0028 0.0016 -0.0015 0.0006 

124 κβ L  -0.0011 0.0013 -0.0020 0.0024 -0.0010 0.0010 

22 κβ L  -0.0013 0.0009 -0.0024 0.0018 -0.0012 0.0008 

134 κβ t  -0.0047 -0.0019 -0.0176 -0.0125 0.0009 0.0033 

225 κβ t  -0.0019 0.0005 -0.0025 0.0019 -0.0028 -0.0007 

2145 κκβ  0.0025 0.0048 0.0036 0.0080 0.0023 0.0043 
 

Table F.5. Effects of the quadractic metamodel for two-dimensional simulations 

 5f  6f  7f  

0β  0.0773 0.1011 0.0658 
H1β  -0.0167 -0.0358 -0.0143 
L2β  0.0002 0.0002 0.0003 
t3β  0.0095 0.0244 -0.0055 

14κβ  -0.0239 -0.0536 -0.0221 

25κβ  0.0046 0.0074 0.0046 
2

11Hβ  -0.0013 -0.0002 -0.0010 
2

22 Lβ  0.0016 0.0043 0.0012 
2

33tβ  -0.0009 0.0004 -0.0003 
2
144κβ  0.0033 0.0124 0.0043 
2
255κβ  -0.0028 -0.0053 -0.0028 
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Table F.6. 95% Confidence intervals for the effects of the linear metamodel for two-
dimensional simulations 

 5f  6f  7f  

0β  0.0719 0.0827 0.0905 0.1117 0.0607 0.0710 
H1β  -0.0194 -0.0139 -0.0413 -0.0304 -0.0169 -0.0117 
L2β  -0.0024 0.0029 -0.0050 0.0054 -0.0022 0.0028 
t3β  0.0067 0.0123 0.0189 0.0298 -0.0081 -0.0028 

14κβ  -0.0267 -0.0211 -0.0590 -0.0481 -0.0247 -0.0194 

25κβ  0.0019 0.0072 0.0021 0.0126 0.0021 0.0072 
2

11Hβ  -0.0106 0.0079 -0.0185 0.0180 -0.0099 0.0078 
2

22 Lβ  -0.0076 0.0109 -0.0140 0.0226 -0.0077 0.0100 
2

33tβ  -0.0101 0.0084 -0.0179 0.0187 -0.0092 0.0086 
2
144κβ  -0.0060 0.0125 -0.0059 0.0307 -0.0046 0.0131 
2
255κβ  -0.0120 0.0065 -0.0235 0.0130 -0.0117 0.0060 

 

Table F.7. Effects of the quadratic metamodel with interactions for two-dimensional 
simulations 

 5f  6f  7f  

0β  0.0781 0.1029 0.0659 
H1β  -0.0133 -0.0281 -0.0141 
L2β  0.0002 0.0002 0.0003 
t3β  0.0128 0.0321 -0.0052 

14κβ  -0.0206 -0.0458 -0.0218 

25κβ  0.0041 0.0067 0.0044 
HL12β  0.0001 0.0000 0.0001 
Ht13β  -0.0035 -0.0109 0.0009 

114 κβ H  -0.0074 -0.0086 -0.0042 

215 κβ H  0.0009 -0.0003 0.0003 
Lt23β  -0.0004 -0.0006 -0.0004 

124 κβ L  0.0001 0.0002 0.0000 

22 κβ L  -0.0002 -0.0003 -0.0002 

134 κβ t  -0.0040 -0.0148 0.0023 

225 κβ t  -0.0007 -0.0003 -0.0018 

2145 κκβ  0.0036 0.0058 0.0033 
2

11Hβ  -0.0022 -0.0022 -0.0011 
2

22 Lβ  0.0008 0.0023 0.0011 
2

33tβ  -0.0017 -0.0016 -0.0004 
2
144κβ  0.0024 0.0104 0.0042 
2
255κβ  -0.0036 -0.0073 -0.0029 
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Table F.8. 95% Confidence intervals for the effects of the quadratic metamodel with 
interactions for two-dimensional simulations 

 5f  6f  7f  

0β  0.0767 0.0795 0.0996 0.1061 0.0642 0.0676 
H1β  -0.0142 -0.0125 -0.0301 -0.0261 -0.0151 -0.0130 
L2β  -0.0005 0.0009 -0.0014 0.0019 -0.0005 0.0012 
t3β  0.0120 0.0137 0.0301 0.0341 -0.0063 -0.0042 

14κβ  -0.0214 -0.0197 -0.0478 -0.0438 -0.0229 -0.0208 

25κβ  0.0034 0.0048 0.0050 0.0083 0.0035 0.0053 
HL12β  -0.0006 0.0008 -0.0017 0.0018 -0.0008 0.0010 
Ht13β  -0.0044 -0.0026 -0.0130 -0.0088 -0.0002 0.0020 

114 κβ H  -0.0083 -0.0065 -0.0107 -0.0066 -0.0053 -0.0031 

215 κβ H  0.0002 0.0016 -0.0020 0.0014 -0.0006 0.0012 
Lt23β  -0.0011 0.0004 -0.0023 0.0011 -0.0013 0.0005 

124 κβ L  -0.0006 0.0008 -0.0015 0.0019 -0.0009 0.0009 

22 κβ L  -0.0009 0.0005 -0.0019 0.0014 -0.0011 0.0007 

134 κβ t  -0.0048 -0.0031 -0.0169 -0.0127 0.0011 0.0034 

225 κβ t  -0.0014 0.0000 -0.0020 0.0015 -0.0027 -0.0009 

2145 κκβ  0.0029 0.0044 0.0041 0.0076 0.0024 0.0042 
2

11Hβ  -0.0045 0.0002 -0.0078 0.0033 -0.0041 0.0019 
2

22 Lβ  -0.0016 0.0031 -0.0033 0.0078 -0.0019 0.0041 
2

33tβ  -0.0041 0.0006 -0.0071 0.0040 -0.0033 0.0026 
2
144κβ  0.0000 0.0047 0.0049 0.0160 0.0013 0.0072 
2
255κβ  -0.0060 -0.0013 -0.0128 -0.0017 -0.0059 0.0001 
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Appendix G. Bending of Sheet 
 
This section describes a simple way for determining the stresses and strains induced by a 
bending process, which is a good indication for the stress and strain situation in a tube 
produced according to the tubular blank process. 
 

 
Figure G.1. A unit length of a continuous strip bent along a line. 

 
In Figure G.1 a sheet subjected to a bending moment is displayed. The basic assumption is 
sheet metal in a plane stress situation. Furthermore, the strains across the width of the sheet 
is assumed zero, i.e. the sides in Figure G.1 stay at an equal distance to each other. 
The stress and strain situation is described as follows: 
 

1ε ; 02 =ε ; 13 εε −=  Eq. G.1 

1σ ; 12
1

2 σσ = ; 03 =σ  Eq. G.2 

 

 
Figure G.2. Deformation of longitudinal fibres in bending condition. 

 

In Figure G.2 a part of the sheet is represented in the starting and deformed condition. The 
fibre CD corresponds to the neutral line and remains of the same length during bending, when 
no normal stress is applied. The fibre AB undergoes a positive elongation for 0>y  and a 
negative elongation for 0<y . The following applies for fibre AB: 
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with ABρ  the radius of fibre AB, 0ρ  the radius of the neutral line (fibre CD) and y  the 
distance from the neutral line to fibre AB.  
If t>>ρ  then the elongation can be approached by: 
 

00
1 1ln

ρρ
ε yy ≈








+=  Eq. G.4 

 
 

 
Figure G.3. Stress distribution for a power-
law-hardening sheet bent without tension. 

 
A model describing the work hardening relation between the stresses and strains can be 
written as nCεσ =  (Hollomon). Using the relations for σ  en ε , stated in Eq. G.5 and Eq. 
G.6 the relation can be rewritten for the hoop direction: 
 

( ) ( ) ( ){ }2
13

2
32

2
212

1 σσσσσσσ −+−+−=  Eq. G.5 

( )2
3

2
2

2
13

2 εεεε ++=  Eq. G.6 
nC 11 εσ ′=  Eq. G.7 

 
Substitution of Eq. G.4 into Eq. G.7 leads to a relation between the stress and the radius of 
the bend. 
 

n
yC 






′=
0

1 ρ
σ  Eq. G.8 

 
Summarised; the stresses and strains in the bent sheet can be described as follows, 
schematic represented in Figure G.4: 
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Figure G.4. The variation of stress and 

strain in the hoop direction of the 
bend sheet 

 
In the finite element package DiekA the work hardening of the material is calculated using the 
equivalent strain. For a von Mises material model the equivalent strain is: 
 

( )2
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2
2

2
13

2 εεεε ++=  Eq. G.11

 
Using Eq. G.10 this leads to: 
 

03
2

ρ
ε y=  Eq. G.12
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Appendix H. Screening Designs 
 
In this appendix the screening designs used in section 7.1 are described. These designs are 
five-factor two-level fractional factorial designs of resolution III and are formed from a three-
factor two-level full factorial design. The remaining columns are formed by multiplication of 
two or more columns. These multiplications are showed above the table with ix  the variable 
corresponding to the i th column. 
 

 
(a) Multiplications: 

214 xxx =  

315 xxx =  
 H L t k1 k2 
1 -1 -1 -1 +1 +1 
2 +1 -1 -1 -1 -1 
3 -1 +1 -1 -1 +1 
4 +1 +1 -1 +1 -1 
5 -1 -1 +1 +1 -1 
6 +1 -1 +1 -1 +1 
7 -1 +1 +1 -1 -1 
8 +1 +1 +1 +1 +1  

0.04

0.09

0.14

0.19

0.24

 
 

 
(b) Multiplications: 

214 xxx =  

315 xxx −=  
 H L t k1 k2 
1 -1 -1 -1 +1 -1 
2 +1 -1 -1 -1 +1 
3 -1 +1 -1 -1 -1 
4 +1 +1 -1 +1 +1 
5 -1 -1 +1 +1 +1 
6 +1 -1 +1 -1 -1 
7 -1 +1 +1 -1 +1 
8 +1 +1 +1 +1 -1  

0.04

0.09

0.14

0.19

0.24

 
 

 
(c) Multiplications: 

214 xxx −=  

315 xxx =  
 H L t k1 k2 
1 -1 -1 -1 -1 +1 
2 +1 -1 -1 +1 -1 
3 -1 +1 -1 +1 +1 
4 +1 +1 -1 -1 -1 
5 -1 -1 +1 -1 -1 
6 +1 -1 +1 +1 +1 
7 -1 +1 +1 +1 -1 
8 +1 +1 +1 -1 +1  

0.04

0.09

0.14

0.19

0.24

 

21 κκtLH 21 κκtLH 21 κκtLH

765 fff

21 κκtLH 21 κκtLH 21 κκtLH

765 fff

21 κκtLH 21 κκtLH 21 κκtLH

765 fff
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(d) Multiplications: 

214 xxx −=  

315 xxx −=  
 H L t k1 k2 
1 -1 -1 -1 -1 -1 
2 +1 -1 -1 +1 +1 
3 -1 +1 -1 +1 -1 
4 +1 +1 -1 -1 +1 
5 -1 -1 +1 -1 +1 
6 +1 -1 +1 +1 -1 
7 -1 +1 +1 +1 +1 
8 +1 +1 +1 -1 -1  

0.04

0.09

0.14

0.19

0.24

 
 
 

(e) Multiplications: 

214 xxx =  

325 xxx =  
 H L t k1 k2 
1 -1 -1 -1 +1 +1 
2 +1 -1 -1 -1 +1 
3 -1 +1 -1 -1 -1 
4 +1 +1 -1 +1 -1 
5 -1 -1 +1 +1 -1 
6 +1 -1 +1 -1 -1 
7 -1 +1 +1 -1 +1 
8 +1 +1 +1 +1 +1  

0.04

0.09

0.14

0.19

0.24

 
 

 
(f) Multiplications: 

214 xxx =  

3215 xxx −=  
 H L t k1 k2 
1 -1 -1 -1 +1 -1 
2 +1 -1 -1 -1 -1 
3 -1 +1 -1 -1 +1 
4 +1 +1 -1 +1 +1 
5 -1 -1 +1 +1 +1 
6 +1 -1 +1 -1 +1 
7 -1 +1 +1 -1 -1 
8 +1 +1 +1 +1 -1  

0.04

0.09

0.14

0.19

0.24

 

21 κκtLH 21 κκtLH 21 κκtLH

765 fff

21 κκtLH 21 κκtLH 21 κκtLH

765 fff

21 κκtLH 21 κκtLH 21 κκtLH

765 fff
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(g) Multiplications: 

214 xxx −=  

325 xxx =  
 H L t k1 k2 
1 -1 -1 -1 -1 +1 
2 +1 -1 -1 +1 +1 
3 -1 +1 -1 +1 -1 
4 +1 +1 -1 -1 -1 
5 -1 -1 +1 -1 -1 
6 +1 -1 +1 +1 -1 
7 -1 +1 +1 +1 +1 
8 +1 +1 +1 -1 +1  

0.04

0.09

0.14

0.19

0.24

 
 

 
(h) Multiplications: 

214 xxx −=  

325 xxx −=  
 H L t k1 k2 
1 -1 -1 -1 -1 -1 
2 +1 -1 -1 +1 -1 
3 -1 +1 -1 +1 +1 
4 +1 +1 -1 -1 +1 
5 -1 -1 +1 -1 +1 
6 +1 -1 +1 +1 +1 
7 -1 +1 +1 +1 -1 
8 +1 +1 +1 -1 -1  

0.04

0.09

0.14

0.19

0.24

 
 

 
(i) Multiplications: 

314 xxx =  

325 xxx =  
 H L t k1 k2 
1 -1 -1 -1 +1 +1 
2 +1 -1 -1 -1 +1 
3 -1 +1 -1 +1 -1 
4 +1 +1 -1 -1 -1 
5 -1 -1 +1 -1 -1 
6 +1 -1 +1 +1 -1 
7 -1 +1 +1 -1 +1 
8 +1 +1 +1 +1 +1  

0.04

0.09

0.14

0.19

0.24

 
 

21 κκtLH 21 κκtLH 21 κκtLH

765 fff

21 κκtLH 21 κκtLH 21 κκtLH

765 fff

21 κκtLH 21 κκtLH 21 κκtLH

765 fff
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(j) Multiplications: 

314 xxx =  

325 xxx −=  
 H L t k1 k2 
1 -1 -1 -1 +1 -1 
2 +1 -1 -1 -1 -1 
3 -1 +1 -1 +1 +1 
4 +1 +1 -1 -1 +1 
5 -1 -1 +1 -1 +1 
6 +1 -1 +1 +1 +1 
7 -1 +1 +1 -1 -1 
8 +1 +1 +1 +1 -1  

0.04

0.09

0.14

0.19

0.24

 
 

 
(k) Multiplications: 

314 xxx −=  

325 xxx =  
 H L t k1 k2 
1 -1 -1 -1 -1 +1 
2 +1 -1 -1 +1 +1 
3 -1 +1 -1 -1 -1 
4 +1 +1 -1 +1 -1 
5 -1 -1 +1 +1 -1 
6 +1 -1 +1 -1 -1 
7 -1 +1 +1 +1 +1 
8 +1 +1 +1 -1 +1  

0.04

0.09

0.14

0.19

0.24

 
 

 
(l) Multiplications: 

314 xxx −=  

325 xxx −=  
 H L t k1 k2 
1 -1 -1 -1 -1 -1 
2 +1 -1 -1 +1 -1 
3 -1 +1 -1 -1 +1 
4 +1 +1 -1 +1 +1 
5 -1 -1 +1 +1 +1 
6 +1 -1 +1 -1 +1 
7 -1 +1 +1 +1 -1 
8 +1 +1 +1 -1 -1  

0.04

0.09

0.14

0.19

0.24

 
 

 
 

21 κκtLH 21 κκtLH 21 κκtLH

765 fff

21 κκtLH 21 κκtLH 21 κκtLH

765 fff

21 κκtLH 21 κκtLH 21 κκtLH

765 fff


