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Abstract

Within the context of the 3TU federation the 14 degrees of freedom (DOF) antropo-
morphic robot `Tulip' is being developed with the goal to compete in the Robosoccer
tournament of 2008 held in Suzhoo, China. Tulip will be a dynamic walker able to kick,
goal-keep and walk. In order to gain a deeper insight in the dynamics of the design
and to design and test motion patterns and controllers, a model has been developped and
presented in this report, which will serve as a starting point for further work on the robot.

Tulip has 12 DOFs that are actively actuated and 2 DOFs that are passively actuated
by torsional springs. Of this structure a 3D-dynamics model is built up using 20-sim's
3D Mechanics Editor. The main points of interest include the modelling of end-stops,
ground contacts and the overall control structure, all incorporated into a re-usable, clear
and e�cient simulation-model.
As a test case for this model and as a �rst trial for the design speci�cations, a routine
is developed for getting to an upright standing position from a prone position. Several
motions were considered and a robust and stable algorithm is presented in this report.

Stability in biped robots in general has been well researched and for many robots. The
zero moment point (ZMP) is a frequently used, and often discussed, criterion ensuring
dynamic stability of the robot. Periodic gait stability for such walker usually results in
small regions of stability. In this report a control strategy is proposed that reduces the
necessity for trial and error establishment of variables, but moreover will produce gaits
less sensitive to parameter variations.
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Preface

This report contains the results of my �nal project in my masters studies in Electrical
Engineering. Coming home from an internship working on a humanoid robot in Spain, I
sat down with Edwin Dertien to discuss those results and possible graduation projects. As
I was complaining a bit about the fact that I had not been dealing with locomotion or any
other fundamental problem in Spain, I was extremely lucky to hear that in context of the
3TU federation a humanoid dynamic walker was being developped and that a simulation
model and walking behaviour needed to be designed. Hence I ended up with this great
project.

Throughout the months of hardship and su�ering, which in fact were months of fun
and challenging research, many people have popped up to help and advise, whom I would
like to thank. Clearly I will not be able to mention them all here as it would get too long
a list. So even if your name is missing: you are not forgotten.
Obviously this whole project would be impossible without the new great releases from
Control Lab Products and I would like to thank them all, and Frank especially for the
time they took to help out. Then of course there were my room-mates at CE8156, always
sharing that essential co�eebreak, which was another fundamental building block of this
thesis 1.

Some 2 years ago, prof. dr. ir. Stefano Stramigioli was the one who sparked my
interest in robotics, made it possible for me to go on internship in Spain and, with his
vision and ideas, led the project to where it is now. Another great many thanks go out
to ir. Gijs van Oort, who always had a moment free when I needed him. Seldomly have
I met any person who is able to say `yes, no problem' that many times and still smile.
He always o�ered constructive feedback and support which literally dragged me through
the rough patches encountered. And last but not least I thank Anna, for enduring me bei
glued to my laptop 24/7, working on this weird, perhaps juvenile boy-ish, topic that the
normal world does not concern itself with.

All in all it was a great project, which took place in a great research deparment, for
which I am very grateful.

Peter Daemen, January 2007

1http://rsna2005.rsna.org/rsna2005/V2005/conference/event_display.cfm?em_id=4418422
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Chapter 1

Introduction

Ever since the �rst operational robot was employed at the General Motors plant in Ew-
ing Township [12], robotics has evolved into a large and established �eld of research and
commerce. In manufacturing, robots are paramount and we are slowly moving towards
applications such as household robotics [8] and other task-settings which require both
moving around in the human sphere as well as human interaction.

This move, albeit slow, shifts the focus from stationary robots, via mobile robotic plat-
forms, to independent robots that can move around alongside of humans in their working
and living environment. Especially this requirement and the incentive from the medical
industry towards active prosthesis design, push research into the direction of biped loco-
motion in anthropomorphic robots.

1.1 Bipedal locomotion

Many institutes, both commercial as well as academic, are contributing to a worldwide
progress of the �eld of humanoid robotics and biped locomotion. Examples of functioning
humanoid robots are Honda's Asimo [9] and HRP-2. Both robots are independent hu-
manoid robotic platforms, however their human likeness is lacking one important aspect:
anthropomorphic e�cient locomotion.

The principal reason for this is the concept of actuation. High gear-ratios, resulting in
a non backdriveable system combined with sti� control and pre-computed gaits for every
conceivable motion have led to very acceptable and interesting looking displays. However
adorable the result of these techniques may be, it is very power-consuming as it disre-
gards most of the oscillatory behaviour of for example a swinging leg. Development has
branched into two main directions, which can be characterized by their stability criteria
and control. There are many examples of robots with dynamically stable walking gaits,
such as Asimo [9], RH-1 [1], HRP-2 [6] and many others.
This type of gait is developed in such fashion that at every moment of time, the robot
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�nds itself in a dynamic equilibrium: it does not fall, no matter what it is doing1. The
mainstream criterion to ensure such stability is the Zero Moment Point (ZMP) criterion
in combination with sti� set-point control on the principal joints of the robot. The ZMP
criterion is used both in on-line and o�-line applications; �rstly to generate viable combi-
nations of motion patterns and secondly online to deal with interaction forces like wind
or a changing ground surface, such as steps up and down.

In contrast to such walkers, McGeer pioneered the study and development of com-
pletely passive walking in 1990 [11]. Starting o� from the `simplest walker', much research
has been done on energy e�cient walking. From planar walking frames on inclining slopes,
the `passive dynamic' principle of walking is applied to more complex 3D walkers, such
as Denise[16] and others [3] and in the future the 3TU robot Tulip as well.

1.2 Context

The research at the Control Engineering department has been focused on determining
the important dynamic characteristics of 2D dynamic walking frames. Dribbel has been
developed [5] to study the important dynamic characteristics of its structure and the
development of robust control strategies for such walking frames. Research on Dribbel
has covered stability analysis of walking gaits [14], the in�uence of foot-shapes [15], the
in�uence of ankle actuation [7] and other topics.

Especially [14] has started the movement from planar walkers to 3D walkers. This is a
step which is being continued by participating in the 3-TU2 development a 3D humanoid
robot to compete in the Robot-soccer league of 2008 in Suzhou, China. Based upon pre-
viously developed walking robots at the Technical University of Delft and the work of
Wisse and others[16], robot Tulip has been designed.

1.3 Goal

This thesis establishes a model and simulation structure of Tulip, in 20-sim. The pur-
pose of the model will be the development of and experimentation with di�erent motion
patterns required for the RoboSoccer League of 2008 in Suzhou, therefore a strong focus
will be on detail and commenting of the simulator code. Secondly a 3D walking control
algorithm is sought based upon the transposition of the well known and widely discussed
Zero Moment Point (ZMP) from the `dynamically stable' to the `passive dynamic' world.

1it may be noted that Asimo and Qrio [4] reportedly can run, which is not `dynamically stable'
2Federation of Dutch Technical Universities
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1.4 Report outline

This report sets out to provide a sound basis of understanding for continuation of work
on this project, therefore at times the report follows a more qualitative than quantitative
approach. Chapter chapter 2 will focus on the development and implementation of a
20-sim model of Tulip. Then chapter chapter 3 demonstrates an application of the devel-
oped model by proposing a recovery algorithm from a prone position. In chapter 4 a new
gait-control strategy is proposed, incorporating the ZMP concept into a dynamic walker
after which conclusions and recommendations are presented. In the appendices, detailed
design speci�cations are included, of the robot, the motors, gearboxes, ground-contact
pucks and of course the essential code of the simulator and the setpoint generation DLL.
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Chapter 2

Model of 3D walker, Tulip

This chapter will elaborate on the structure and implementation of the model developed
to simulate gaits and other motion patterns for the robot Tulip. Firstly the structure of
the model is outlined, after which the 3D-dynamic model and its composition is discussed.
Then section section 2.1.2 outlines the ground-contact model and �nally the control and
actuation structure is presented.

To develop and simulate a model for Tulip, the simulation package 20-sim 4.0.1[2]
(20-sim) is used. The developed model can be divided into three main parts, as shown in
�gure 2.1. Overall control, the block `Setpoints', generating the set-points and controller
parameters for the control loop; control and actuation, containing a 14 dimensional control
loop for all joints; and the mechanical model, in which the dynamics and all present motion
constraints are modelled. The overall control will be discussed in chapter chapter 3 and
again in chapter chapter 4, as its use is di�erent in the two implementations that are
presented in this report. The following sections will discuss the remaining submodels.

2.1 Mechanical model

2.1.1 `DynamicModel'

This block in �gure �gure 2.1 contains the automatically generated code from the 3D
Mechanics Editor (3D-ME) included in the 20-sim package. In �gure �gure 2.2 two views
of the 14 degrees of freedom (DOF) model of Tulip are shown, in which the center of mass
(COM) of all bodies has been marked and world coordinate frame Ψ0 is de�ned. Lastly
he cylinders illustrate rotational joints along their center axis.
The models consists of 11 bodies with speci�ed inertias, masses and relative positions to
the connecting joints. These dimensions of the bodies have been extrapolated from the
mechanical design made at the TU-Delft, as given in diagrams 1, 3 and 4 in appendix
A. Additional to the design, 4 extra bodies, with negligible mass and inertia, have been
added to accommodate more than one DOF between ankle and lower leg and between hip
and upper leg. It should be noted that the visual representation in �gure 2.2 a) of the
robot is only geometrically correct and is chosen in a user-friendly way, but the shape of
the bodies has no relation to the inertial properties or mass of the body itself. In �gure
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Figure 2.1: Overview of the used simulation model

2.2 b) the locations of the centers of mass (COMs) are shown, where it must be noted
that all x̂0 components of H

0
i are zero.

In addition to the dynamics of the robot, the 3D-ME allows for the insertion of �addi-
tional code�. This has been used to enumerate the joints in a logical way, as denoted
in appendix A. As the generated 20-sim code relies on the use of vectors to describe
for example the 14-dimensional actuator-space, it is important to consequently order the
joints in this vector to avoid confusion. Rather than being dependent on the internal
workings of the code-generator for the numbering of the joints, appendix A presents the
joints, their names and number which are de�ned in the 3D-Mechanics Editor.
It is important to note that each body has it's own coordinate system, located in the COM
of the body and there is a world frame Ψ0 de�ned by the 3DME. In the model there is
one 6 DOF free moving joint, connecting the model to a body which is �xed to the world.
This is done to be able to more easily de�ne and manipulate initial positions of the robot
with respect to the �xed world, throughout several versions of the editor. The location
of this extra body is independent of Ψ0 and the body is not important for the simulations.

The C and R elements that can be seen in �gure 2.1 represent torsional spring acting
and the R represent a damper on all joints. They have been implemented 14-dimensionally,
with K,φ0, R ∈ R14. Via matrix manipulations, fourteen springs are implemented, and
fourteen dampers to model linear friction. This is done because one of the design choices
has been to have the ankle-y-rotations to be passively actuated. For �exibility the springs
have been implemented on all joints, but are generally only active on the ankle-y rotation.
This actuation is called passive, because the present spring is not supplying energy to the
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(a) x,y,z (b) y,z

Figure 2.2: The 3D mechanics model of Tulip, joints in zero-positions

system, only storing it. The choice for such a passive DOF has been made before the
start of this project, based upon the experiences of the partners in the 3TU team.

2.1.2 `Contactmodel'

After modelling the dynamics of the robot, the interaction of the model with the environ-
ment needs to be modelled, as the 3D-ME does not o�er integrated �oors and reaction
forces. The component `ContactModel' determines whether there is contact with the
ground and the resultant force of this contact. In �gure 2.3 one `cell' out of the contact
model has been shown. For each contact point to be modelled there exists such a combina-
tion of blocks and additionally, there is one block connected to both of the contact-model
submodels for the feet of the robot, in order to pass on information about which foot is
interacting with the �oor and the center of pressure (COP).

W i,i denotes a wrench [13] acting on body i, seen from its own coordinate frame, Ψi.
Wrenches are generally de�ned as

W i,j = [Mx My Mz Fx Fy Fz] ∈ R6 (2.1)

whereMa and Fa are the moments around and the forces along axis a of coordinate frame
Ψi, acting on body j. An important observation is that in 20-sim bond graphs, wrenches
take the place of e�orts, where in our 3D model the actuator which e�ectuates the inter-
action forces is de�ned such that P.e = W i,iT , a column vector.
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Figure 2.3: The contact model

In �gure 2.3(b) body i is de�ned, with frame Ψi at its COM and transformation matrix
H0
i [13]. This means that if

pa = [xa, ya, za, 1]T

and

Hj
i = [

Rj
i pji

03 1
],

then
pj = Hj

i p
i, (2.2)

where pa denotes the point p expressed in coordinate frame Ψa, R
j
i denotes the 3D

rotation from Ψi to Ψj and p
j
i is the translation that brings the origin of Ψi to Ψj.

Submodel `CP', contact point, determines the lowest point of body i, pc. Then frame
Ψc is de�ned with pc as the origin and the orientation along world frame Ψ0. Knowing
this transformation matrices H0

c and H
c
i , are calculated, being the coordinate change from

Ψc to Ψ0 and to Ψi, respectively.

Assuming a convex geometry of body i, submodel `CF' checks H0
c to see if p

c is below
the ground level. If it is not, then from the convex geometry the body it follows that
there is no point below the �oor, which means no contact and no reaction forces.
If pc approaches the ground level1 submodel CF focusses on the zero-crossing of pc[3] and
upon that event, the contact model explained in the following paragraph is activated.

1For simulation purposes, the model forces the simulator to determine the zero crossing of the z-
coordinate of pc to prevent large `dips' below the �oor and large discontinuities in the reaction force
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Compliant contacts

Submodel `CF', contact force, calculates FN , the normal force compensating gravity and
the coupled frictional forces. The force is calculated according to a compliant contact
model, which is justi�ed by two reasons.
Firstly, [15] has found that for e�cient passive dynamic gaits, compliant contact with the
�oor is bene�cial. Therefore the feet of the robot have been designed such that they rest
upon pucks, which have a K-value, as can be found in appendix C. The second argument
is that the alternative solution, a rigid contact model, poses large problems in terms of
simulation. A rigid contact would mean that, for example, during the two phases of a gait,
swing and double-support, the dynamic equations would be fundamentally di�erent. As
the contact point becomes a �xed point on impact, during the gait, the dynamic equations
alternate between an open kinematic chain for the swing phase and a redundant closed
kinematic chain during the double support phase.
As an added advantage, compliant contacts have proven to be much simpler to simulate
and less demanding on the simulator due to the avoidance of many extra discontinuous
states. It must be noted however that the introduction of very sti� models alongside of a
very loosely controlled passive dynamic walker will give rise to rather high computation
times.

A compliant contact can be modelled as a spring and damper between pc and the
ground level, acting in the z-direction of Ψ0. For e�cient simulation, the model should
be critically damped, making its parameters, spring constant K and damping factor D
depend on the admissible steady-state εss, mass M resting on the point, gravitational
constant g by equation equation 2.3.

K ≥Mg/εss (2.3)

D = 2KM1/2

Of course the 2 parameters are subject to �ne-tuning towards a trade o� between
accurate simulation and fast simulation results. One of the problems one encounters is
that it is not always clearly known which portion of the total mass of the robot will rest
on the contact point, therefore how large is M in equation equation 2.3. However, taking
the total mass as a worst case scenario will result in reasonable performance in simulation.

A problem arising from equation equation 2.3 is that when the body is moving to
break contact a, the damper will counter-act such motions, resulting in unnatural `stick'.
In �gure �gure 2.4 a) the F (x) curve of a body hitting the ground and then moving away
agian is show. When x = 0 occurs for the second time, at point A, we can clearly see that
the force exerted by the linear contact model is negative, potentially keeping the body on
the ground. In order to overcome this we introduce a non-linearity into the damper, such
that when Pc reaches the ground level, the forces are zero. This is achieved by

FN =

{
−K(z − z0) +Dż(z − z0) if z ≤ Hf ,

0 if z > Hf ,
(2.4)
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Figure 2.4: [F,x] diagram of linear spring/damper contact and a Hunt-Crossley contact

which is better known as the Hunt-Crossley model [10]. Equation equation 2.4 gives the
implemented equations for determining FN , the normal component of the contact force,
counteracting gravity, of which the result is shown in �gure 2.4 b), where x = −(z − z0).

Contact points and surfaces

Now for each body we need to choose an appropriate contact surface. In section section
2.1.2 we assumed the body shape to be convex, which is clearly not the case in any of
the bodies of our robot. To ease the calculation of point Pc, we therefore choose convex
shapes that approximate the body shapes, or relate well to the function the contact point
has in maintaining the robot position with respect to the �oor.

The arms of the robot are very thin, and the most important characteristic of the arm
to be modelled is the presence of a �xed elbow. Due to this, as becomes clear in chapter 3,
some advantages arise from the fact that we can push on the �oor therefore we can choose
the simplest convex contact surface for these four contacts: a point. No computation is
required and the two required transformation matrices can be straightforwardly de�ned.
However, as soon as the exact speci�cations of the protective outer hull are known how-
ever, some alterations may be needed. The contact point at the tip of the arms is sure,
however, the shape of the upper arm might lead to an ellipsoid contact surface.

Because of the wider cross-section of the lower leg, the contact point on the top of the
lower leg is chosen spherical to form a knee-cap so to speak. To determine the lowest point
of a spherical contact point, one simply translates, in Ψ0 but starting from the origin of
the sphere, over the distance of the radius of the circle, in the direction of ẑ0 as depicted
in �gure 2.5. Then P 0

c is simply transformed to the body frame by multiplication with H
i
0.
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Figure 2.5: Determination of the lowest point of a sphere, implemented as in appendix
E.1.2

For the torso we choose a rather �at ellipsoid, to approximate its shape. Determining
Pc in this case will be done in two steps. Firstly we transform the total space, by the
invertible linear transformation Qsph

ell : R3 7→ R3 such that the ellipsoid becomes a sphere.
Then in this virtual space, we repeat the steps for a spherical contact surface and then
apply the inverse transformation Qell

sph to obtain Pc, of which the total implementation is
given in appendix E.1.3.

p cp c

Figure 2.6: Determination of the lowest point of a ellipsoid

So far the feet have been assumed to be �at, which is not a convex shape. The best
convex approximation of a �at surface is sphere with a very large radius, r. We then take a
small portion of its surface and within this surface we try to �nd the lowest point with re-
spect to Ψ0. When the foot rotated that much that Pc calculated for the circle itself, would
fall outside of this small portion, Pc for this foot will be located on the edge of this surface.

Depending on the size of the radius, the foot will exhibit some form of rolling be-
haviour, meaning that point p will move around the foot-sole. As for further application
the location of p, as the centre of pressure (COP), it is important we need to verify whether
the behaviour of p can be assumed to be reasonable and the choice of this contact surface
is correct. Therefore compare our spherical �at foot with one contact to the situation in



20

which there are four contacts at the corners of the foot.

In �gure �gure 2.7 we observe the two-dimensional case and we can see that a torque
on the foot, as a result of a force somewhere on the rest of the body, will result in a larger
force on the front contact point. This corresponds to the intuition that the pressure on
the front foot increases when your center of mass moves forward. From equation 2.4 it
follows that also in the case of two contact points there must be a slight rotation of the
foot, as the force in a contact point in steady-state only depends on the z position with
respect to the �oor.

Knowing that in steady state all moments are zero, we can establish an expression for
Pc for both foot models. In �gure 2.7 we do this for the 2D case, where x denotes the
position where the resultant Fr acts. We assume the rotations to be very small, justifying
x′ = x For the four-point foot, we draw up the moments with respect to the ankle location
and it follows that

F1 =
1

2
(Fz − εl ∗ sin θ) (2.5)

F2 =
1

2
(Fz + εl ∗ sin θ).

Setting all moments to zero for the four-point foot leads us to

Fzxfr =
l

2
(Fz −Kl sin θ) +

l

2
(Fz +Kl sin θ) (2.6)

→ x =
Kl2 sin θ

4Fz
=̃
Kl2θ

4Fz
,

while for the convex foot it easily follows that the foot will rotate until x is directly
underneath the acting point of Fz. This straightforwardly delivers the expression

x = πr sin θ =̃πrθ , (2.7)

which is unfortunately not the same as the expression in equation 2.6. In a dynamic
situation, Fz = f(t), which means that on impact, especially when using a compliant
contactmodel, the transient behaviour of Fz(t) in�uences the location of the COP, while
the convex foot does not account for that.

We must note however, that apart from on impact, the variations in Fz can, while walking,
be assumed to be rather small to the constant m ∗ g component. This means that for
walking purposes, when the Hunt-Crossley equations are tuned such that the transient of
Fz is fast, the model of the convex foot closely approximates the 4-point model Therefore
we may conclude that this surface choice is proper and tuning of parameters will enable
the model to approximate the real four-point-contac situation.



21

-d1’ x‘ d2’0-d1 x d20

Fz

F1 F1F2
Fr

F

Fz

r

θ

Fz

Fr F2

θ

ε

Figure 2.7: Foot rolling with 2 contact points (up) versus convex spherical foot

An important note is that when, for this model, a ZMP controller will be implemented
the design must be made such that the location of the ZMP is not approximated by the
COP, as this will not incorporate the dynamics of the robot into the ZMP position, only
the con�guration2.

The �rst image of �gure �gure 3.3 shows a snapshot from a simulation which con�rms
that the outlined combination of contact points and surfaces keep the model in prone
position leveled with respect to the �oor. As for the implementation of the ellipsoid and
the sphere, one might doubt the usefulness of such distinction. The main reason for it is
that to model a total body that behaves as �gure 3.3 would need more contact points to
achieve e.g. the same behaviour for lying in prone and in supine position.

Contact friction

A standard friction model taking into account for static friction, coulomb friction, viscous
friction and depends on the relative acceleration, velocity and force present between the
two interacting bodies. Having calculated the magnitude of FN , the other two, frictional,
force components of contact wrench W i,i are computed by

Ffr = −Fn(sign(vtr) (µc + µst|tanh(svtr)| − µc)e−vtrvst
−2

+ vstvtr), (2.8)

where

vtr =

√
Ṗ 0

x

2
+ Ṗ 0

y

2
,

2This is because any motion in the robot will cause variations in the gCOM, which results in changes
in x in the convex foot. However, the real COP also reacts to accelerations of the bodies, which is now
disregarded



22

F

v

(a) Static, coulomb and viscous fric-
tion

F

vvst

-vst

(b) Friction with added Stribeck curve

Figure 2.8: The friction model

with static, viscous and coulomb friction coe�cient µs, µv, µc, steepness of the coulomb-
friction curve s and characteristic Stribeck velocity vst.

Now we may note that the Stribeck e�ect only occurs in lubricated bearings, which in
the case of ground-contacts is not present. However, to reduce the discontinuity between
static friction and the Coulomb plus Viscous friction curves, the Stribeck curve serves
us well with small vst's. Equation equation 2.8 therefore gives us the friction, along the
direction of the velocity of the body.

The exact same friction model, with di�erent constants, is applied to calculate the
rotational friction, with the notion that only rotations around the z can can be calculated
based on ground reaction forces. Rolling friction, around [x, y]0, are assumed to be zero
in the context of the ground reaction wrench, so there is only one non-zero component in
the reaction moment, MGRF .

2.1.3 Total wrench

The last step of submodel `CF' is to incorporate all computed reaction forces and mo-
ments into the contact wrench W c,i and transform it to body coordinates W i,i. This is
done by aligning the translational friction with the velocity of the body and placing the
resulting forces and moments in the co-vector representing the wrench,

W c,i =




0
0

MGRF

ṗ0
xv
−1
tr Ffr

ṗ0
yv
−1
tr Ffr
FN




T

, (2.9)
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with FN , Ffr according to equation 2.4 and equation 2.8. Now transformation to Ψi is
done by

W i,iT = AdT
Hi −1

c
W c,iT , (2.10)

with the dual-adjoint mapping of coordinate changes for wrenches being

AdTHb
a

=

[
Ra
b −Ra

b p̃
b
a

03 Ra
b

]
. (2.11)

Ultimately we transpose the wrench to �t the power-bond P.e = W i,iT , as indicated
before, to complete the contact model as is implemented in appendix E.2.

2.1.4 `EndStops'

As indicated in appendix A the range of motion of the robot is not unlimited in all joints.
End-stops are therefore implemented, as given in appendix E.3. As an end-stop limit-
ing the range of motion is the same phenomenon as a interaction with the ground, the
reasoning is completely analogous to the previous section, except now taking place in R
instead of R6.

The robot has 14 degrees of freedom and therefore 14 endstops. The implementation
is adjusted to operate on the vector of 14 joint angles, even though some may have an
unlimited range of motion, such as the rotation around ẑ in the hip. First the incursion
on the endstop is calculated and the force exerted by the end stop is then de�ned as

K,D, q̄, q̇, Fstop ∈ R14

Fstop = K ∗̄ q̃ + D ∗̄ q̇ ∗̄ q̃ (2.12)

where ∗̄ denotes elementwise multiplication and q̃ is the distance that q has overpassed
the boundary posed by the endstop. Note that also here the Hunt-Crossley contact-model
is applied for contact with the endstop. When a joint has no endstops, its corresponding
element in vectors K,D is set to zero.

2.2 Control and actuation

Now that the physical system is modelled, a control loop can be implemented. Figure
�gure 2.9 shows the outline of this part of the model. The control of the walker consists
basicly of two loops, the direct control loop, which is described �rst in this section, which
is in turn governed by the setpoint generator, as a higher-level control loop, described at
the end of this section.

A vector of 14 targets is provided to the controller, submodel �P(i)D� appendix E.4,
of which the parameters are modi�ed online by the `Setpoints' submodel which also com-
putes the setpoints. The implementation is a paralel PID controller, with tame di�erential
part, in order to enable the switching on and o� of individual, or all, parts of the controller
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without resulting in divisions by zero. This is done to enable the use of the control-loop
for both rigidly actuated motion, with a sti� PID controller, `passive dynamic' actuation
in which a loosely set P(D) controller is generally used and even direct torque steering
by the higher-level controller in the setpoint generator. The implementation follows the
following general form

~e = ~qset − ~q (2.13)

~uP = ~K.̄ ∗ ~error

~uI =

∫
(~e. ∗ ~Ki)dt

~Dstate =

∫
~uDdt

~uD = (~e. ∗K − ~Dstate). ∗ ( ~Kd./~β)

~y = ( ~uP + ~uI + ~uD). ∗ ~on

where all vectors are ∈ R14, ~y are the fourteen control outputs of the controller, ~β denotes
the tameness and the ~on vectors is used to switch on and o� control on any joint without
resetting the controller parameters.

The �f�-symbol, labelled `encoders', represents a �ow-sensor in the simulator, which is
a bond-graph 1-junction with a signal representing the P.f at that junction in the graph.
In our model the �ow-sensor is adapted to integrate the �ow, taking into account the ini-
tial position of the robot, to deliver the joint angles. This is a construct for the simulator,
as in reality, optical encoders directly deliver q for use in the control loop.
The �MSe� is the idealized bond-graph representation of an inertia-free motor delivering
unlimited torque, depending on the input signal. The idealized motor is connected to
a `TF' which represents the gear-ratios present in the robot design, as given in the sec-
ond diagram of appendix appendix A. Again idealized gears are taken, as later-on in
the design-process, via the element R in the `Mechanical model', various frictions can be

MSe14

fP(i)D14Setpoints

TF Gears

Encoders

[p,i,d]

Limits

P

Figure 2.9: Control and actuation, taken from �gure �gure 2.1



25

added.

To ensure the designed motions will not require torques which are out of reach by the
chosen motors,as indicated in appendix B, the input-signal of the �MSe� of the P (i)D is
limited by the �limits� block, which simply clips any of the desired moments to be deliv-
ered by the motors which are outside of their ranges. The limits have been based upon the
maximum continuous torque which the motors can deliver, which can be considered an
extremely conservative estimation, as the stall torque of a motor can be sustained shortly
as well. However at this stage of the development, gaits and other motions should �t
within the theoretic operating ranges, until tests have proven otherwise. Lateron strate-
gies may be developed using the extra headroom the motor o�ers for short instances of
time.

2.2.1 Series-elastic actuation

All actively actuated joints of Tulip, except the ankle-rotation around ŷ,have a series
elastic element between the actuator and the actuated joint, as illustrated in �gure �gure
2.10(a). The ankle rotation is actuated via Bowden-cables3 attached to the heels, much
like the Achilles-tendon. Just as human tendons, Bowden-cables can hardly be used for
pushing, but to overcome that problem, the cable is preloaded with an antagonistic spring.
This concept is illustrated in �gure �gure 2.10(b). This actuation principle chie�y im-
proves the isolation of the motor (Bowen cables hardly push) in a regular walking gait and
additionally bring along the advantage of the motor being more �exible in its placement.
In this case the ankle actuator is found in the upper body of the robot which resulted
in an optimization of the weight-distribution, [16] [17]. However for our simulations we
assume it to behave similarly to the other joints, which is fairly accurate except for a
needed o�set in the motor-torque of this joint for pre-loading the spring.

Using such actuation o�ers several advantages; it disconnects the motors from bodies
on which impacts occur. When landing on the swing-foot during a walking gait, the shock
is now absorbed by the mechanical structure and the elastic element in the drive-train.
Secondly it absorbs other vibrations resulting in a much smoother, better looking, gait
Thirdly, the fact that both the motor axle and the joint axle are equipped with encoders,
we can, as the elastic element is a simple spring, measure the instantaneous torque being
delivered to the joint at all times enabling the use of force-control.

Obviously, this choice introduces latency between the moment in which the desired
torque is actually delivered to the joint. Choosing the K-value of the elastic element very
high, allows for, when neglecting the inertia of the motor and damping in the cable and
elastic element. However, obvously, this limits the chock-absorption towards the motors.
The design of K will be done once the robots are built and a trade-o� between latency

3Other examples of use: bicycle-brakes, throttle control in cars
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θ θa

joint axle motor axle

0 0

(a) General schematic

Bowden-cable

Series-elastic elelm
ent

(b) Implementation on ankle

Figure 2.10: Series elastic actuation

and shock-absorption has to be made.

For this model, the series-elastic drive-train is a good justi�cation for using a pure
modulated source of e�ort to model the motors, the MSe-element in �gure �gure 2.9.
This means that the motion pro�les used here, as well as the joint torques, are only use-
able as concepts, not for direct code generation, until the inertiae of the motors and gear-
boxes are modelled together with the latency that the series-elastic drive-train introduces.

2.2.2 Set-point Generation

The motion pro�les needed for the control loop are generated by a statemachine, which
is implemented in C-code compiled into a DLL. The 20-sim simulator calls upon the DLL
in the submodel �Setpoints� in �gure �gure 2.1.

The generator holds a 6×4 array of targets, t1 in equation equation 3.2, for the motion
pro�les. At the same time another function is called, setting the P, I,D values of the con-
troller to the desired setting, according to the state. In this way, for example a dynamic
walking gait can be started after getting up on your feet. Every state corresponds to a
row in this matrix.

State transitions should be de�ned for each task separately, so that di�erent conditions
can be used. For example while getting up, the following criterion is used:

∑
qtarget − q < ε, (2.14)

so that as soon as all joints have reached their target position, the robot will start
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working towards the next desired posture. For a walking gait, the foot-contact signals
provide a better state-transition condition.

The submodel takes care of the collection of all signals needed from the simulator
and sorting them into the proper function calls of the DLL. In the initial equations, the
setpoints matrix and the control-parameter matrix are preloaded into the DLL, so that
this can be set via the simulator instead of external text-�les or even within the code of
the implementation.

The main reason for the separate implementation is that the equation-sorting that
20-sim does does not allow for easy implementation of state-machines. It would result
in large �les with deeply nested if-statements and it is, on top of that, unclear to the
author which e�ects this will have on the sorting algorithm of 20-sim. The result of the
separate implementation is in any case a much quicker simulation, eliminating many prob-
lems encountered in the beginning of this project. The implementation of both the DLL
and the submodel are given in appendix appendix E.6, and are self-explanatory with the
comments written in-line.
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Chapter 3

Simulation Case: Getting up

In this chapter it is shown how the previously described model is used to simulate the
robot recovering from lying on the �oor in prone position, face-down, towards an upright
position. The sequence of motions leading to an upright position is discussed after which
simulation results are shown.

3.1 Recovery algorithm

The main goal is to end in a standing up position. There are many ways to get up and,
contrary to initial intuition, this is not necessarily a 2D problem. Expanding into 3D
allows for combination of motions of di�erent joints and taking into account the proper
3D energy balance. However, in all cases, the main target is to move the COM of the
robot over the feet and then straighten the legs. In our case we will approach this prob-
lem 2-dimensionally, exploiting the symmetry of the robot to ensure stability in the 3rd

dimension, and divide the motion into several phases, when reasoning backwards from
the standing position:

1. Get on hands and `knees'

2. Move into squatted position

3. Straighten out legs

Before starting the motion towards a hands and knees position, the feet are lifted of
the ground just slightly by bending the knees. This limits the potential ground contacts
to 3, torso and 2 knees, and moves the COM towards the knees. Having the COM as low
as possible is bene�cial for the motion, because that means that a larger portion of the
total wait is lifted by the stronger motors.
Now we must choose in which direction the arms should rotate. From �gure 3.1.i it be-
comes clear that when taking the shortest path to the desired angle, the point where the
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Figure 3.1: Target postures for getting up, with COM and active joints marked

tip of the arm will touch the �oor will be very close to the COM, meaning that the shoul-
der should deliver enough torque to lift practically the full weight of the robot, resutling
in a moment of larmsmtotalg, which it cannot, as follows from appendices appendix A and
appendix B.

Having arrived to posture �gure 3.1.ii), we can proceed in several ways. We can �rst
start to with the arms only, with the hipjoint only or with both at the same time. �Arms
only� is not an option, due to the weaker shoulder motors, and �hip only� would lead
us into a position in which in the end again the arms need to carry the largest weight.
Therefore we have chosen the posture iii) as the next step, which leaves the largest `work-
ing arm' between the weakest joint, the shoulder, and the COM.

What can also be observed is that between posture iii) and v) the tips of the arms
are dragged over the �oor. Even though stability is guaranteed in this way, it is far from
e�cient. Therefore, when arriving at a position like iv) the ankle, knee and hip joint
are �exed maximally, making the legs as short as possible. We can easily calculate the
momentum needed for the robot to rotate around the front tip of the foot, landing on
its feet but not toppling over backwards, given a non-inclining �oor and zero interaction
forces except for the ground contacts. For completeness we state that this momemtum
has a minimum, the amount of energy to overcome the energetic maximum in the rota-
tion around the foot-tip, and a maxiumum, the amount of energy needed to overcome the
energetic maximum in the rotation around the heels.
As soon as the COM passes over the tip of the feet, a simple centre of pressure controller
could be implemented to stabilize this motion using the knee joint. Stretching the knee
joint will move the COM more towards the front of the feet as well as increase rotational
inertia Irobot. Both e�ects result in increasing the energy needed to tip over backwards.
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3.2 Motion pro�le

Throughout the motion, the PID controller of each joint is set to ζ = 0.7 and a low
bandwidth. The simulation as such is very computationally intensive, as it now contains
throughout the simulation 3 very sti� ground contact models, 14 less sti� PID controllers
and 2 much less sti� torsional springs in the ankle.

In order not to introduce vibrations into the simulation which may give rise to instabil-
ities, a motion pro�le needs to be provided that is at least continuous in the acceleration
pro�le. By choosing the shape of the jerk,

...
q , to be continuous but not continuously

di�erentiable, we guarantee q(t) to be of class C3 and q(t) ∈ R∀t. We choose

...
q (t) = sin

(
4π
|t− ∆t

2
|

∆t

)
, (3.1)

with
∆t = (t1 − t0).

When integrating this to obtain a q(t) several integration constants are introduced, which
can be found by applying boundary conditions such as beginning and end position, speed
and acceleration. Doing so we �nd

q(t) =





q0 t ≤ t0,

q0 + 4∆q

∆2
t

(
∆t

4π

2
(
cos(4π t−t0

∆t
)− 1

)
+ (t−t0)2

2

)
t0 < t ≤ tmid,

q0 − 4∆q

∆2
t

(
∆t

4π

2
(
cos(4π t−t0

∆t
)− 1 + (4π)2

)
+ (t−t0)2

2
−∆t(t− t0)

)
tmid < t ≤ t1,

q1 t > t1

,

(3.2)
with

∆q = (q1 − q0),

tmid = t0 +
∆t

2
,

which results in �gure 3.2 where the jerk, acceleration, velocity and position. Scaling of
each magnitude is relative to the others, in other words 1[rad] = 1[rad s−1] = 1[rad s−2] =
1[rad s−3]. Additionally ∆t can be chosen according to

∆t =

√
|8∆q|
q̈max

,

limiting the maximum required acceleration required for the motion pro�le. In com-
bination with the various inertias connected to each motor, we can straight-forwardly
implement the motion pro�les in a way that takes into account the maximum nominal
continuous torque of the motors. However, in the case that there is more than 1 point
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Figure 3.2: Jerk, accelleration, velocity and position

of interaction on the robot, actual limits on the maximum required torque are hard to
compute without more detailed knowledge of the encountered frictions and other factors.
Obviously this motion pro�le is not used for the shoulder joints at the moment of giving
the impulse between postures iv) and vi) of �gure 3.1.

3.3 Results

When running the simulation, the results are given in the following table and in �gure
�gure 3.3. We can see that the algorithm works and have veri�ed so far that the design
of the robot, in combination with the friction parameters chosen during this simulation
correspond. In other words, the limitations of the motors with respect to limb-length and
other factors are chosen well and the robot will have enough power to execute this motion
in real life as well, given that no unexpectedly large frictions occur in joints.

The 20-sim �le �gettingUp.emx� contains the simulation as described in this chapter,
�gettingUp.avi� shows the real-time execution of the recovery algorithm. The model is
outlined in this chapter and it's implementation is to be found in appendix appendix E
and more detailed results are given in appendix appendix D.
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Average execution time: 159.98[s]
Simulated time: 12[s]
Energy used 150[J ]

1

Table 3.1: Simulation results

# ankley knee hipy shoulder
i) −60 45 0 10
ii) −60 45 0 180
iii) −60 70 −20 200
vi) −60 150 −150 260
vii) 0 0 0 0

Table 3.2: Joint positions for target postures

Figure 3.3: Screenshots of the model getting up on two feet
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Figure 3.4: Joint motion pro�les, left limbs



Chapter 4

Application of ZMP to a dynamic

walker



Zero Moment Point control in passive dynamic walking

P.H.M. Daemen, ir. G. Van Oort, prof. dr. ir. S. Stramigioli

Abstract— In humanoid biped locomotion, the Zero Moment
Point (ZMP) is a widely used concept to ensure dynamic
stability of the robot. The role the ZMP usually plays to
achieve this, is that of a stability criterion, which relies on
having full control over the motions of each joint. Applications
exist both as an on-line control algorithm, as well as as a
criterion for off-line setpoint generation.
When considering passive dynamic motions, more soft control
algorithms are used, which implicates that less rigid control
over the motions of each joint can be guaranteed. Discrete
controllers that evaluate a whole step and alter the execution of
the consecutive step are available to create stable locomotion.
In addition to this, this paper proposes a method for using
the ZMP as an on-line, which means during the step’s swing
phase, gait analysis tool. The location of the ZMP is related
to the overall motion of the robot body, which in turn is
compared to the desired situation. By means of an application
of the algorithm towards a humanoid robot in development,
Tulip, it is shown that such reasoning results in a solution and
produces achievable control outputs.

I. INTRODUCTION

The goal of this research has been is to implement and
evaluate the concept of Zero Moment Point(ZMP) [8] into
gait control of the 3D passive dynamic walker Tulip, which
is being developed within the collaboration of the 3TU
federation, to compete in the RoboSoccer league 2008 in
Suzhou, China. The concept of ZMP will be introduced,
outlined and reviewed towards its applicability in the context
of passive dynamic walking and the robot Tulip, which is
elaborated on in [2], specifically.
The type of application of the ZMP to achieve dynamic
stability for humanoid robots is that of a stability criterion,
which relies on having full control over the motions of each
joint. When considering passive dynamic motions, more soft
control algorithms are used, which implicates that less rigid
control over the motions of each joint can be guaranteed.
3D walking gaits can be computed and executed for simple
walking systems, and also for more complex walkers, stable
gaits have been achieved. However, such gaits are based
upon discrete controllers that evaluate a whole step and
alter the execution of the consecutive step, to obtain stable
locomotion.
In addition to such strategies, this paper proposes a method
for using the ZMP as an on-line, which means during the
step’s swing phase, gait analysis tool. The location of the

This work is executed in the context of the Dutch 3TU federation,
supervised by ir. G. Van Oort, prof. dr. ir. S. Stramigioli and prof. dr. ir. J.
Van Amerongen

Peter Daemen is a graduate student at the Faculty of Electrical Engineer-
ing, Mathematics and Computer Science, University of Twente, 7500 AE
Enschede, The Netherlands; phmdaemen@gmail.com

ZMP is related to the overall motion of the robot body,
which in turn is compared to the desired situation. This
paper aims to outline the foundation on which we start off
to find such algorithms, that we can, based upon extremely
simple walkers, achieve stable gaits when applying an
on-line gait control algorithm. By applying this algorithm
to the 14 DOF biped robot Tulip, it is shown that such
reasoning converges to an optimizable solution and produces
achievable control outputs.

II. ANALYSIS

A. Dynamic walking

A dynamic walking gait is designed such that by using the
potential and kinetic energies of the walker, a stable walking
cycle is established with a minimum of energy introduced
by actuation. We will consider the simplest walker that is
possible, a compass walker as depicted in figure 1. It has
massless legs, which rotate around the hip, with forward hip
angle φh(t) and sideways leg-splay φs(t) and mass m as a
point mass in the hip P0

w. T 0,0
w ∈ R6 denotes the twist, [6],

of the walker in Ψ0 and both legs are in the plane spanned
by m and ẑ0. The stance leg is standing on the ground in the
origin of Ψ0, a left hand coordinate frame which has the x-
axis parallel to the overall walking direction. For any frame
Ψi, it’s axes will be referred to as x̂i, ŷi and ẑi

Fig. 1. Simplest walker
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The sequence of positions of a walking gait is depicted in
figure 2, where ξ̇ denotes `ωy and ζ̇ denotes `ωx. Figure 2
shows the simplest walker at t0, with its mass having velocity
vector ξ̇0 in the [x,z] plane and ζ̇0 in the [y,z] plane. Then at
tmid , we can see that ζ̇ has reduced to zero and ξ̇ to some
minimum, while the position of the mass is raised ∆h from
its original height.
At tstep, the total step time, the walker’s hip mass has reached
a certain velocity, ξ̇s and ζ̇s, and impact occurs. Assuming in-
stantaneous inelastic contact, on impact an impulse directed
along the landing-leg instantaneously stops the rotation of
the walker in its original direction and redirects it to rotate
around the new stance-leg, giving rise to ξ̇ ′ and ζ̇ ′. However,
as the new velocities are a projection of the old velocities
onto the tangent of the new sphere, they are reduced to

ξ̇ ′ = ξ̇s cosφ ∗h (2)

ζ̇ ′ = ζ̇s cosφ ∗s ,

where φ ∗(h,s) denote the two angles at instant tstep for φh and
φs. Hereby we have assumed the motions in the two planes
to be uncoupled. To achieve a periodic gait ξ̇0 = ξ̇ ′ must hold.

When considering the energy balance on impact, even
for an idealized system without friction, it is obvious that
energy needs to be inserted, to ensure that for the next swing
phase, there is enough energy in the system to at overcome
energetic maximum occurring at tmid . This means that just
before impact,

Ekin−Eimpact ≥ ∆Epotential , (3)

should be satisfied. From figure 2 we see that for the lateral
view the on-impact balance looks like

Eimpact =
1
2

m(ξ̇ ′
2− ξ̇ 2) (4)

Ekin =
1
2

m(ξ̇ )2

∆Epotential = mg∆h,

with m the mass of the walker, g the gravitational pull, ∆h
the height difference between the starting position and the
mid-swing height, ξ̇ the starting velocity and ξ̇ ′ the after
impact velocity. Analogous to equation 4 we have

T ∗−T ∗impact ≥ ∆V, (5)

T ∗ =
1
2

T T I T

T ∗impact =
1
2
(T −T ′)T I (T +T ′)

∆V = mG0(P0
w(tmid)−P0

w(t0)),

Fig. 2. Key moments in a gait: push-off t0, mid-swing tmid and impact
tstep

with G0 = [ 0 0 g 0] being the gravitational potential field
expressed in Ψ0, I the inertia tensor of the walker, P0

w
the walker’s center of mass (COM) expressed in Ψ0, T ∗

the pre-impact kinetic co-energy, T ∗impact the energy lost on
impact, and ∆V the difference in potential energy between
mid-swing phase, at tmid , and the moment of impact ti.

In Van Oort’s [7] model of the simplest walker, energy
injection takes place by extension of the pre-impact support
leg. When the robot would be equipped with actuated feet,
the energy injection can be done by pre-impact ankle push-
off, as investigated by Franken [3], or ankle actuation during
the swing phase. In the case of pre-impact push-off the
contribution consists of potential energy, elevation of the
stance leg due to push-off, and kinetic co-energy, and in
the case of swing phase ankle actuation as pure kinetic co-
energy T ∗.
In figure 2 it becomes clear that the energy loss on impact

depends on φs and φh, and the ‘post-impact’ velocities are
dependant as well on their derivatives. When looking at
figure 1, a special situation is depicted in which the impact
occurs exactly so that

[
φ ′h
φ ′s

]
=
[
−φ ∗h
φ ∗s

]
, (6)

which means that the impact exactly takes place in-plane
with both ẑ0 and m, from figure 1. In this case, a symmetric
gait, the components in the direction of m of the added
and lost momentum cancel out and the ẑ-component
remains, provided that during the swing phase the exact
momentum which is going to be lost on impact is fed into
the system. For this situation, Van Oort [7] has shown that
without explicit knowledge of the limit cycle of the walker, a
stable gait-controller can be derived by ensuring ζ̇ (tmid) = 0.



Fig. 3. Forces on the stance foot

This model for the simplest walker neglects many aspects
of a realistic 3D walking robot, such as non-zero inertia of
legs, knee-flexion and upper-body influences. For such more
complicated models, the regions of stability/periodicity
for parameter deviations are very small, whereas this
simple walker can be stabilized more straightforwardly. The
dynamics of the more complex body of humanoid robots
may be seen as disturbances upon the dominant inverse
pendulum behaviour. In order to achieve a periodic gait
in the presence of such disturbances, a controller, such as
the one proposed below, can be implemented. The goal
of any gait-control is to decrease the sensitivity towards
disturbances like pushes, steps down and slopes, as well as
parameter deviations and variations, into which the ‘missing
dynamics’ can be counted as well.

B. Dynamic stability and zero moment point

To analyse the dynamic stability of a bipedal robot, we
must look at the relation between the wrenches acting upon
its body and the wrench resulting from interaction with
the ground. So far we have only discussed the simplest
walker which has no feet, however it is useful to venture
into an analyses of the forces and moments acting upon the
stance-foot where afore mentioned wrenches interplay, as
depicted in figure 3.

In figure 3 we define three coordinate frames Ψc,Ψa,Ψg
having the same orientation. Their origins are located at
points Pc,Pa,Pg, the points of action of the contact wrench
W c, the total body wrench W a and the gravitational wrench
W g. The total body wrench expressed in Ψa is

W a,a = [ Ma Fa ] with Ma,Fa ∈ R3,

which is the resultant wrench of all dynamics of the rest of
the body acting on the ankle. In other words, it constitutes
all influences of the rest of the body on the foot, including
any interaction forces encountered by any of the limbs of
the robot. The foot’s gravity wrench W g,g and the ground
interaction wrench W c,c are defined as

W g,g = [0 0 0 0 0 Fg] (7)
W c,c = [Mc Fc],

with

Mc = [0 0 M f rz ],
Fc = [Ff rx Ff ry FN ] and

Fg =−m f g

where m f is the mass of the foot, g the gravitational
constant, Ff r∗ denotes the translational friction components,
M f rz denotes the rotational friction along the vertical axes
with respect to the floor. In [8] Vukobratovic defines point
Pz, with Ψz, on which W z,z compensates all moments around
x̂ f and ŷ f acting on the foot, by means of a pure force.
The ZMP does not exist outside of the support polygon
of the robot, which is spanned by either the outer edges
of the stance foot alone, or of both feet in double-support
positions. At Pz we must note that the moment around ẑ is
not necessarily zero, but as this degree of freedom (DOF)
hardly influences the stability of biped robots, this moment
disregarded. Pz can be found by equating the wrenches on
the foot,

W f ,a +W f ,g +W f ,c = [0 0 • • • 0]

from which it straightforwardly follows that the ZMP ex-
pressed in Ψ f is

Pz =




zmpx
zmpy

0




=
1

FN




May +Fax paz −Faz pax +m f gpgx

−Max +Fay paz −Faz pay +m f gpgy

0


 , (8)

with P f
a = [pax pay paz ]

T and P f
g = [pgx pgy pgz ]

T represent
the coordinates of points Pa and Pg expressed in coordinate
frame Ψ f . We are now in need of an expression for W a,a,
which can be derived from figure 4.
Assuming zero interaction, we can state that the total wrench
W 0,i

t consists of the constraint wrench W 0,i
q keeping the

bodies connected via joint q together and the gravitational
wrench W 0,i

g . Knowing that for the constraint wrenches,
opposite reaction forces act upon the other connected body,
we can find an expression for W f ,a equate the wrench
exercised body 1 by the ankle as

W 0,1
q1 = W 0,1

t −W 0,1
g −W 0,1

q2

where W 0,i
g denotes the gravitational wrench on body i and

−W 0,1
q2 = W 0,2

q2 = W 0,2
t −W 0,2

g −W 0,3
q3 −W 0,4

q4 −W 0,5
q5 .

Assuming the absence of closed kinematic chains, a similar
recursion can be made throughout the kinematic chain of a
more advanced humanoid robot, which results in

(W f ,a)T = AdT
H0

f

(
n

∑
i=1

W 0,i
t −

n

∑
i=1

W 0,i
g

)T

. (9)



Fig. 4. Determining W a,a, by means of constraint forces

This means to keep track of the exact motions of all
bodies1, which in simulation can be done, but in reality
poses practical problems. A more realistic approach would
be to directly measure the constraint forces in the ankle,
instead of measuring the accelerations of all bodies, for
example by positioning a 6 DOF force and torque sensor
between the ankle and the foot.

Coincidently, while the robot is standing on the floor, it
will in general not have just one point with which it interacts
with the floor. We can however make a weighed sum of all
FN resulting from the ground-contact,

FN =
n

∑
k=1

FNk and Pgr f =
1

FN

n

∑
k=1

FNk Pk,

where n is the number of contact points, FNk is the normal
reaction force on point k and Pk denotes the position of
contact point k. Pgr f is also known as the centre of pressure
(COP), the weighted average acting point of all normal
forces interacting with the foot.

We know that when the robot is standing in a stable
position, or executing dynamically stable motions, W c,c

must act in Pz, to ensure that W c,c suffices to keep the robot
standing. This makes in the dynamically stable situation Pz
is equal to the COP in figure 3 and FN the component along
axis ẑ of Fc. In fact, from the definitions of both ZMP and
COP we can deduce that they almost always coincide except
when the ZMP would fall outside of the support polygon, in
which case the COP is at the edge of the polygon and the
ZMP does not exist. This situation is an unstable situation,
because W c,c cannot act on a point which would give it’s
forces a long enough arm to counteract the moments acting
on the foot. This means the foot will start a rotation around
the edge, or around the corner, where the COP is located
at that moment. This is called an unpowered DOF, because

1For interaction forces, equation 9 is augmented with −∑n
i=1 W 0,i

ext

no actuation is possible in that new DOF, which means that
the system becomes underactuated. The foot, and with it
the whole robot, will start an uncontrolled rotation.

Our simplest walker, introduced before, has no actuated
degrees of freedom to manipulate the location of the ZMP.
Added to this, the foot of this walker is simply a point
contact, which means that the ZMP and COP hardly ever
coincide. Foot-placement is the only way of ensuring a
periodic gait in this simple system.
However, more complex robotic gait generation often relies
upon the criterion of maintaining the ZMP within the
support polygon of the robot, to ensure dynamically stable
motion planning, as for example in [1]. In other cases,
control loops have been established, for example in Honda’s
Asimo [5], in which the ZMP is manipulated in order to
maintain stability during gaits.

In [4], Goswami et al. define a point called the foot
rotation indicator (FRI) in such a way that it always
coincides with the ZMP, except for the fact that the
FRI is allowed to exist outside of the support polygon,
where Vukobratovic refers then to that point as the
fZMP, fictitious ZMP. From this moment on, the point
where the resultant W c acts, Pc, will be referred to as
the COP, and Pz, which is the FRI or (f)ZMP, simply as
the ZMP, according to the definition of Vukobratovic’ fZMP.

Multiplication of equation 8 with FN results in Mtotal , the
total moment in need of compensation to ensure dynamic
stability. At the same time PcFN denotes the amount of
moment that is actually being compensated by the interaction
with the ground. We define the unbalanced moment as

Mu =−FN ∗ ((Pz−Pc)) , (10)

which indicates the moment with which the robot is
accelerated around the new unpowered DOF. In our simplest
walker, we have no feet, therefore Pc , Pa and Pz is a true
(foot) rotation indicator of the walker.

III. GAIT CONTROL

Having established an understanding of the concepts out-
lined so far, we can proceed to design a passive dynamic
walking gait, which will be augmented by a gait controller.
As stated at the end of section II-A, we will treat the
additional dynamics of more complex robots and parameter
variations as disturbances upon the gait. The ZMP accounts
for the additional dynamics and forms a basis for this
controller.

A. Gait design

When designing a gait, we need to define a set of
parameters, out of which some may be chosen freely and
others follow from those choices for the variables, which
are defined in figure 2 and figure 1.



We start by selecting a target speed ṽ and a corresponding
tstep, from which directly follows the forward step length xs.
Then we choose the sideways foot-placement with respect
to the COM, see figure 2, d, realising we do not want to
deviate too much from the x̂0 direction of walking. Hereby
the targets for the hip, φ ∗h ,φ ∗s are specified.

⇒ xs = ṽ tstep

ys = 2d

⇒ φ ∗h = arcsin
xs

2`cosφ ∗s
φ ∗s = arcsin

ys

2`
∆h = `(1− cosφ ∗h sinφ ∗s )

B. ZMP based control

Having established the parameters as given in equation 11
we can start to solve the equation of motion by looking at the
boundary conditions that exist for the differential equation.
Solving these equations using the twists and wrenches de-
fined before will create a large and hard to solve differential
equation, with boundary conditions

H0
w(φ(tstep)) =

∫ tstep

0
T̃ 0,0

w (t)H0
w(t)dt +H0

w(0) (11)

1
2

T ′T I T ′ ≥ mg`(1− cosφ ∗h cosφ ∗s )

which combined with the dynamics rather quickly grows
out of hand. Instead we choose to split up the problem into
two dimensions, which results in a set of equations for the
boundary conditions on impact. This split up will result
in an imbalance in the energies, as stated before, but is
justified as long as the difference between the forward and
sideways velocities remains big enough.

These equations we will solve by finding a function
Mw(t) needed to achieve φh(tstep) = φ ∗h while satisfying the
requirement for a minimum ω ′w = φ̇(t)=̃ ξ̇ ′

` , analogously to
equation 2, plus stating that ω0 = ω ′, which means that we
will add all energy required during the swing phase, and not
on impact. We have to solve, for both dimensions,

ω ′ = ω0 = cosφ ∗ωstep (12)

ωstep = ω0 +
1
I

∫ tstep

0
M(t)dt

∆φ = φstep−φ0 =
∫ tstep

0

(
ω0 +

1
I

∫ t

0
M(τ)dτ

)
dt,

with additionally

1
2

T ′T I T ′ ≥ mg`(1− cosφ ∗h cosφ ∗s )

and

T ′ = T 0,0
w
′
=




ωx
ωy
04


 ,

which altogether provides a solvable optimal control
problem, which can be minimized towards Mw, giving the
optimal path for Pz during the swing phase.

Deviations from the ideal Pz should then result in changes
of W 0,w. However, as stated before, we cannot achieve this
in the simplest walker, so rearranging the foot-placement is
the only other option. Several solutions for this exist, but in
any case it will result in a change of direction, a different
walking speed or both.

Now we take the simplest walker with a foot connected
by a 2 DOF actuated ankle to the stance leg and we choose
only to actuate the ankle with the aim to maintain the ideal
Pz trajectory. This will lead to the foot placement that gives
rise to the designed stable gait, with sufficient kinetic energy
for a periodicly stable gait. However, from equation 10 we
conclude that this can be only achieved and supported by
actuation, while if Pz = Pc, in other words, as long as the
ZMP remains within the support polygon of the robot. This
limitation can be included in the optimal control problem of
equation 12.

Using equation 8 we can define several control rules to
control the ZMP and we can see that the ZMP can be used
as an indicator of the resulting energy on impact. Therefore,
the ZMP is in this case not a criterion for dynamic stability,
but rather a criterion towards ‘energy-direction’ for the
walker. At the moment that equation ?? is no longer
satisfied, we can deviate from the chosen foot-placement,
side-stepping or other countermeasures against falling, and
in the next step change the injected energy at push-off to
re-establish the initially designed gait.

IV. APPLICATION TO A 3D PASSIVE DYNAMIC WALKER

Having established the above interpretation of Pz we now
evaluate this concept by means of a simulation case-study
on the 3TU robot Tulip. The design and modelling of this
robot is sufficiently discussed in [2].

A. Tulip ankle actuation

As indicated in [2] rotation around x̂a is passively
actuated by a torsional spring, which means we cannot
control the dynamics of side-ways falling throughout the
swing phase. Consequently, in the process of gait design,
tstep now determines d, K and φ0, being the spring constant
and the zero position of the torsional spring. This means
that to ensure stability, we need to devise a foot-placement
strategy.
By choosing K and φ0 we can manipulate the shape of the
potential energy Vy,z(φs), as depicted in figure 5. A flatter
curve results in a slower sideways falling acceleration in the
(y,z)-plane, as well as in a smaller ζ ′, and kinetic co-energy,
needed to achieve the mid-stance position, COMy = Ay−d,
as defined in figure 2. However, it also implies a higher
sensitivity to disturbances, as any impulse destabilizing the
gait is hardly counteracted. The lower graph in figure 5



Fig. 5. Tulip vs. simple walker

shows the shape of the energy curve for the value of K that
compensates gravity, while the zero position of the spring
is only slightly off centre. The shape of this curve is what
is desirable, ensuring an inward moment, even when the
φs = 0, however a steeper curve is beneficial.

The actual time required to pass the three gait phases
from figure 2 is tstep

′, which is dependant on the excursion
of the pendulum from its central position and ζ ′. This
means that, when we place the foot in such position that
the initial excursion, Ay− comy results in falling time tstep,
then we can rely on the gait to be periodic with period
P = 2tstep, provided that the initial speed is correct. If we
choose the target foot placement in the ŷ0 direction as the
measured comy + dy, this is ensured while assuming only
small side-ways disturbances to be present.

While m = 11.6[kg] and ` = 0.48[m] for this robot, we
obtain for variations of the torsional spring constant K and
its zero position φ0 the upper-right plot of figure 5, where
the lower-right plot shows K = 54 in detail. The potential
energy is of the form

V = mg`cosφN +
1
2

K(φ0−φN)2, (13)

where we can substitute the Taylor expansion cosx =̃ 1− x2

2 ,
which would give the flattest curve around K = 54.6,
the dotted line in figure 5. Taking into account that
−aFN ≤ Max ≤ (w − a)Fn is limited by the foot width,
we can define a region of stability, in terms of φN , where
the tstep is influenced (positively) by the torsional spring,
outside of this, the inverse pendulum reverts to free-fall,
invalidating the chosen tstep. Another factor manipulating
the energy curve in this plane would be to actuate the hip
rotation around x̂. For example, actuation in such manner
that the upper-body stays levelled with the floor, effectively
shortening ` slightly as the leg is rotated counter-clockwise
with respect to the foot, which is what happens if you move
the ‘inverse pendulum’ (COM) to φN = 0.

φs 10[deg] mw 11.5[kg]
` 0.48[m] g 9.81[ms−2]
ṽ 0.694[ms−1] tstep 0.5[s]
xs 0.35[m] φh 21.2[deg]
w0 104[degs−1] dy 0.06[m]
K 58[Nmrad−1] φN0 −7[deg]

TABLE I
GAIT PARAMETERS

B. Application of passive dynamic ZMP control

As one of the degrees of freedom which is essential for
proper 3D ZMP manipulation is passively actuated, we are
forced to split up the problem of gait stability in forward
and sideways stability. The sideways stability was discussed
in the previous section, and is established by proper design.
Having selected the parameters for the torsional spring
and the sideways foot placement, our tstep is fixed and the
forward step length xs follows from this, assuming a target
walking velocity of ṽ.

As can be seen in figure 5 the geometry of the robot
imposes a minimum value for φs of the simplification to
be used, to prevent the feet from overlapping. Choosing a
target walking speed of ṽ = 2.5[ km

h ] = 0.68[m
s ] results in the

gait characteristics given in table I.
Now we can establish the desired trajectory for the ZMP

in ankle coordinates Pa
zmpx by solving equation 12. Candidate

function
Mx(t) = asin

π ∗ t
tstep

+bsin
2πt
tstep

, (14)

while substituting the values from table I makes

a = 1.115 and b =−13.95,

resulting in a pofile for zmpx as given in figure 6.
The zmpx is obtained by dividing equation 14 with

a F ′N=̃mw ∗ g, disregarding strong variations in FN . The
distances of the ankle towards the edges of the support
polygon impose −0.05≤ zmpx ≤ 0.13. A simple calculation
shows that this profile satisfies these boundaries, which
means that this profile of the ZMP can be supported and

Fig. 6. Candidate profile for Mx, starting at t0



42



Chapter 5

Conclusions and recommendations

The model as described in chapter 2 has proven su�cient to start simulating motion
schemes for di�erent operations for Tulip. The recovery algorithm is executed successfully
and simulation times are at an acceptable level, to allow for iterative design of motions.
A set of parameter-settings for the model is save in the di�erent .emx-�les which are
aimed at accurate simulation, �ne-tuning these settings towards the goal of the ongoing
iterations can improve simulation times further. For example while creating a rough idea
of a new recovery algorithm, the ground-contact parameters can be relaxed, whereas the
creation of a stable gait needs a very sti� ground-contact for precision.

20-sim has proven to be an adequate environment for the simulation of this 14-DOF
robot, especially in the versions 4.0.1 and beyond. However, the implementation of a DLL
has improved the simulation stability. Removing the state machine and the non-linearities
of the varying motion pro�le out of the equations of the simulator has reduced simulation
time drastically as well as removed all instabilities.

The mechanical design of Tulip has been veri�ed against the supposed `critical task'
of getting on its feet. As can be seen in appendix appendix D the motor torques stay
well within speci�cation, however it must be noted that this simulation was executed with
extremely low, and purely static, joint-friction. This outlines the need for bushings and
bearings on tulip to be carefully mounted such that the friction is as low as possible, with
the exception of the passively actuated rotation around x in the ankle, where friction in
the bushings might present a bene�cial factor for the proposed walking gait.

As a model for a passive dynamic walker, a model for the simplest walker has been
presented, from which design criteria for a periodic gait have been derived. Next to this
the concept of the ZMP, which is widely applied in dynamically stable walkers, was dis-
cussed and expressed in generalized coordinates, twists and wrenches and an expression
for the location of the ZMP has been formulated.
For the robot Tulip, the parameters for a periodic gait have been derived, based upon the
compass walker model. Considering the extra dynamics of the actual robot, with respect
to the compass walker, to be disturbances upon the model, the idealized ZMP trajectory
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provides, together with the computed or measured actual ZMP of the robot can be used to
form a control loop, controlling the gait during the swing-phase. Together with a simple
sideways foot-placement strategy, it has been shown that the equations are solvable for
robot Tulip and that the resulting computed torques are within the reasonable operating
range.

Simulations to con�rm the postulated theory have not been completed as of yet, due
to implementation issues. The e�cient calculation of the ZMP in 20-sim has proven to be
less straightforward than expected. Practical implementation of the controller in the real
robot faces similar computational problems. However, implementing a force and torque
sensor for all 6 dimensions would deliver a very computationally inexpensive expression
for the actual ZMP.

Simulations of the new walking gait have not been established, due to implementation
di�culties. The e�cient calculations, as shown, requires the knowledge of the twists and
wrenches of all bodies in the kinematic chain, which gives rise to 6x8 = 48 explicit di�er-
entiations. Implementing a F/T sensor around the ankle of the robot has proven equally
challenging and a good solution to this problem has to be found.

It has however been shown that the concept of the ZMP indeed can be a tool in the
design of passive dynamics gaits for complex robots. The fact that this is based upon a
simple model of an inverse pendulum would reduce the amount of work and time spent
on obtaining experimental data and parameter settings for periodic gaits. It is not sug-
gested here that each ZMP stabilised gait will necessarily be an energetically optimum
one. However, the necessity of di�erent walking speeds and variations in stepsize result-
ing from for example a kicking task, would force the walker to execute energetically less
favourable gaits. In such situations the ZMP control will �nd its optimum use.

The research on the walking behaviour of Tulip is at this stage not �nished and will
require some special attention. This project has resulted in a well documented model that
can serve, together with this report, as a starting point for further work on Tulip and
eventually other UT-humanoids. However, the study into the 3D walking behaviour has
not been as far-stretching as was expected and aimed for. An attempt has been made to
bridge the gap between the reasonably large region of stability for a 3D compass walker
and the complex problem of a 3D 14-DOF walker, but especially in this area more focus
is needed.
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Appendix A

Robot layout Tulip



Torso
(0.000, 0.000, 0.675)

5
(13.34, 13.73, 2.86)

Body name

COM (x,y,z) [m]
mass [kg]

inertia  (Ixx ,  Iyy ,   Izz)
*10e-3 [kg*m2]

Right Hip
(0.000, 0.000, 0.675)

0.8
...

Right upperleg
(0.A,  -0.157, 0.375)

1.75
(6.28,  7.28,  1.53)

Right lowerleg
(0.000,   -0.157, 0.125)

0.25
(1.850, 1.820, 0.070)

Left foot
(0.030, -0.187, 0.005)

0.3
(0.083, 0.500, 0.600)

Right Left

Footdesign (right foot) Armdesign:

z

xy

x

yz

l

w

a

b

a = 0.06  [m]
b = 0.05
l = 0.18
w = 0.13

l1 = 0.24 [m]
l2 = 0.21
α = 20ol1

l2α
z

yx

β = 15o

β

z

rz

y ryx

rx

Right arm
(0.012, -0.207, 0.584)

0.2
(5.53, 4.40, 0.48)

Hz_L: q5
RE 25, 20W
86 : 1
(0.000, 0.125, 0.563)
360

 Joint name,, angle

Maxon motor-type
Maxon GP32C gear-ratio
position [x,y,z] [m]
stroke [deg]

3TU: Dutch robotics team

Tulip
10-01-2008

S_L: q6
RE 25, 20W
411 : 1
(0.000, 0.150, 0.800)
360

Ay_L: q1
RE 60, 60W
68 : 1
(0.000, 0.157, 0.035)
-60 : 60

Hy_L: q3
RE 30, 60W
111 : 1
(0.000, 0.137, 0.500)
-160 : 90

K_L: q2
RE 60, 60W
111 : 1
(0.000, 0.157, 0.250)
0 : 150

Ax_L: q13
torsional spring
(0.000, 0.157, 0.025)
-30 : 30

Hy_L: q3

Hx_L: q4
RE 30, 60W
86 : 1
(0.000, 0.125, 0.538)
-30 : 90



Appendix B

Motor Speci�cations



Operating Range Comments

Continuous operation
In observation of above listed thermal resistance
(lines 17 and 18) the maximum permissible winding
temperature will be reached during continuous
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be brie�y overloaded (recurring).

Assigned power rating

n [rpm]

m
ax

on
D

C
m

ot
or

maxon Modular System Overview on page 16 - 21

Speci�cations

78 maxon DC motor May 2007 edition / subject to change

Stock program
Standard program
Special program (on request)

Order Number

RE 25 25 mm, Graphite Brushes, 20 Watt

Thermal data
17 Thermal resistance housing-ambient 14 K / W
18 Thermal resistance winding-housing 3.1 K / W
19 Thermal time constant winding 12.4 s
20 Thermal time constant motor 910 s
21 Ambient temperature -20 ... +100°C
22 Max. permissible winding temperature +125°C

Mechanical data (ball bearings)
23 Max. permissible speed 14000 rpm

mm51.0-50.0yalplaixA42
mm520.0yalplaidaR52

26 Max. axial load (dynamic) 3.2 N
27 Max. force for press �ts (static) 64 N

(static, shaft supported) 270 N
28 Max. radial loading, 5 mm from �ange 16 N

Other speci�cations
1sriapelopforebmuN92

30 Number of commutator segments 11
g031rotomfothgieW13

Values listed in the table are nominal.
Explanation of the �gures on page 47.

Option
Preloaded ball bearings

according to dimensional drawing 118749 118750 118751 118752 118753 118754 118755 118756 118757
shaft length 15.7 shortened to 4 mm 302002 302003 302004 302005 302006 302007 302001 302008 302009

Motor Data
Values at nominal voltage

VegatlovlanimoN1 9.0 15.0 18.0 24.0 30. 0 42.0 48.0 48.0 48.0
mprdeepsdaoloN2 10000 9650 10200 9550 9860 11100 10300 8230 5050
AmtnerrucdaoloN3 110 60.7 53.9 36.9 30.5 25.2 20.1 15.2 8.51
mprdeepslanimoN4 8980 8470 8890 8360 8680 9950 9190 7070 3870

5 Nominal torque (max. continuous torque) mNm 11.1 20.6 23.1 26.7 27. 2 27.6 28.4 29.4 30.8
6 Nominal current (max. continuous current) A 1.50 1.50 1.47 1.17 0. 983 0.799 0.667 0.548 0.352

mNmeuqrotllatS7 244 237 233 257 263 299 280 222 136
AtnerrucgnitratS8 30.7 16.6 14.3 11.0 9.21 8.39 6.38 4.03 1.52

%ycneiciffe.xaM9 77 83 84 86 86 88 88 87 85
Characteristics

10 Terminal resistance 0.293 0.902 1.26 2.19 3. 26 5.00 7.53 11.9 31.6
HmecnatcudnilanimreT11 0.0275 0.0882 0.115 0.238 0. 353 0.551 0.832 1.31 3.48
A/mNmtnatsnoceuqroT21 7.97 14.3 16.3 23.4 28. 5 35.7 43.8 55.0 89.7
V/mprtnatsnocdeepS31 1200 669 585 407 335 268 218 173 106

14 Speed / torque gradient rpm / mNm 44.1 42.3 45.3 38.1 38. 2 37.5 37.4 37.6 37.5
15 Mechanical time constant ms 5.36 4.58 4.49 4.28 4. 20 4.13 4.11 4.10 4.09

mcgaitrenirotoR61 2 11.6 10.3 9.45 10.7 10. 5 10.5 10.5 10.4 10.4

Planetary Gearhead
32 mm

0.4 - 2.0 Nm
Page 228
Planetary Gearhead

32 mm
0.75 - 6.0 Nm
Page 229 / 231

Encoder MR
128 - 1000 CPT,
3 channels
Page 250

Encoder HED_ 5540
500 CPT,
3 channels
Page 254 / 256

Planetary Gearhead
26 mm

0.5 - 2.0 Nm
Page 226

DC-Tacho DCT
22 mm,

0.52 V
Page 263

Encoder Enc
22 mm
100 CPT, 2 channels
Page 252

Brake AB 28
28 mm

24 VDC, 0.4 Nm
Page 300

M 1:2

Recommended Electronics:
LSC 30/2 Page 268
ADS 50/5 268
ADS_E 50/5 269
EPOS 24/5 286
EPOS P 24/5 287
MIP 10 289
Notes 18



Operating Range Comments

Continuous operation
In observation of above listed thermal resistance
(lines 17 and 18) the maximum permissible winding
temperature will be reached during continuous
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be brie�y overloaded (recurring).

Assigned power rating

n [rpm]

m
ax

on
D

C
m

ot
or

maxon Modular System Overview on page 16 - 21

Speci�cations

80 maxon DC motor May 2007 edition / subject to change

Stock program
Standard program
Special program (on request)

Order Number

RE 30 30 mm, Graphite Brushes, 60 Watt

Thermal data
17 Thermal resistance housing-ambient 6.0 K / W
18 Thermal resistance winding-housing 1.7 K / W
19 Thermal time constant winding 16.2 s
20 Thermal time constant motor 714 s
21 Ambient temperature -20 ... +100°C
22 Max. permissible winding temperature +125°C

Mechanical data (ball bearings)
23 Max. permissible speed 12000 rpm

mm51.0-50.0yalplaixA42
mm520.0yalplaidaR52

26 Max. axial load (dynamic) 5.6 N
27 Max. force for press �ts (static) 110 N

(static, shaft supported) 1200 N
28 Max. radial loading, 5 mm from �ange 28 N

Other speci�cations
1sriapelopforebmuN92

30 Number of commutator segments 13
g832rotomfothgieW13

Values listed in the table are nominal.
Explanation of the �gures on page 47.

Tolerances may vary from the standard
speci�cation.

Option
Preloaded ball bearings

Planetary Gearhead
32 mm

0.75 - 4.5 Nm
Page 230

Encoder MR
256 - 1024 CPT
3 channels
Page 251

according to dimensional drawing 310005 310006 310007 310008 310009
shaft length 15.7 shortened to 8.7 mm 268193 268213 268214 268215 268216

Motor Data
Values at nominal voltage

VegatlovlanimoN1 12.0 18.0 24.0 36.0 48.0
mprdeepsdaoloN2 8170 8590 8810 8590 8490
AmtnerrucdaoloN3 300 212 164 106 78.5
mprdeepslanimoN4 7630 7900 8050 7810 7750

5 Nominal torque (max. continuous torque) mNm 51.7 75.5 85.0 83.4 88.2
6 Nominal current (max. continuous current) A 4.00 4.00 3.44 2.20 1.72

mNmeuqrotllatS7 844 991 1020 936 1020
AtnerrucgnitratS8 60.5 49.8 39.3 23.5 19.0

%ycneiciffe.xaM9 86 87 87 87 88
Characteristics

10 Terminal resistance 0.198 0.362 0.611 1.53 2.52
HmecnatcudnilanimreT11 0.0345 0.0703 0.119 0.281 0.513
A/mNmtnatsnoceuqroT21 13.9 19.9 25.9 39.8 53.8
V/mprtnatsnocdeepS31 685 479 369 240 178

14 Speed / torque gradient rpm / mNm 9.74 8.71 8.69 9.22 8.33
15 Mechanical time constant ms 3.42 3.25 3.03 3.17 3.01

mcgaitrenirotoR61 2 33.5 35.7 33.3 32.9 34.5

Planetary Gearhead
32 mm

1.0 - 6.0 Nm
Page 231

M 1:2

Recommended Electronics:
ADS 50/5 Page 268
ADS_E 50/5 269
EPOS 24/5 286
EPOS P 24/5 287
MIP 50 289
Notes 18
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Appendix C

Compliant pucks for the feet



product information http://www.skiffy.com/docs/prodinfo.cfm?taal=gb&ID=xyxz207681...

1 di 2 12/11/2007 16.12

Physical information

Property Value DIN

Relative density (gr/cm³) 1.14 --

Tensile strength (MN/m²) 55 53455

Elongation at break (%) 250 53455

Tensile modulus (MN/m²) 950 53457

Notched impact strength (kJ/m²) 35 53453

Ball indentation (MN/m²) 82 53456

Application temperature (max ºC) 120 --

Volume resistivity (Ohm.cm) 10^15 53482

Dissapation factor tan. (10³ Hz) 0.2 53483

Dielectric strength (MV/m) 35 53481

Flammability (UL94>1.6mm) V2 --

Coefficient of friction (on steel) (--) 0.3 --

Chemical resistance

Resistant to  

Petrol A 

Benzene A 

Mineral oils A 

Vegetable oils A 

Weak alkalis A 

Strong alkalis B 

Weak acids B 

Strong acids C 

 A = Good

 B = 
Doubtful

006-k1 - Cover cap

Prices in EuroEuro
Dimensions in mm

Dimensions in inches

Article number A B C D E F Gram Price Per Price Per Price Per

006 1082 599 01 18.8 20.6 10.2    0.7 40.40 1000 28.18 500   

covercaps type k1 --- Colour: black --- Material: Nylon-6 (PA-6)

 Let me try a sample first
 I would like to order this part now

 Previous size
 

 Next size
 

 Print this page
 

Colour: Colour number:

black 599 XXX XXXX XXXXX

Colour description : jet black

Matches : Reasonably matches 
RAL colour 9005

Featured colours reserved. Due to the screen differences in colour may occur.

Material: Material number:

Nylon-6 (PA-6) 01 XXX XXXX XXXXX

General information
A strong, tough and durable material. Suitable for connecting elements and other technical components. 
Thanks to self lubricant properties ideal for slide bearings. Always has to acclimatize for a few days after 
injection moulding, taking approximately 3% moisture to obtain its normal strenght. Operational 
temperature can go up to 100-120°C temporarily for non-critical parts. Many nylons are self extinguishing.



Appendix D

Prone recovery results

In this appendix the results are given in more detail, represented as the setpoints, the
applied motor torques and the used power versus the simulated time.
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Figure D.1: Joint motion pro�les, left limbs

Figure D.2: Joint motion pro�les, left limbs
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Figure D.3: Joint motion pro�les, left limbs
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Appendix E

20-sim models

� CP.emx: Contact point

� CP.emx: Contact sphere

� CP.emx: Contact ellipsoid

� CF.emx

� Endstops.emx

� COP.emx

� Setpoints.emx
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E.1 Contact points

E.1.1 Contact point

/**Daemen 20071009: Generate a con tac t po in t f o r body b
*

* i npu t s :
* r e a l Hb_0 [ 4 , 4 ] \\ H−matrix o f body w. r . t . psi_0
* ou tpu t s :
* r e a l Hp_0[ 4 , 4 ] \\ H−matrix o f po in t P w. r . t . world−frame
* r e a l Hp_b [ 4 , 4 ] \\ H−matrix o f po in t P w. r . t . body−frame
*

**/

va r i a b l e s
r e a l p_0 [ 3 ] ;

equat ions

p_0 = Hb_0 [ 1 : 3 , 4 ] ;

// Express the p o s i t i o n o f p in world coords as an H−matrix .
// o r i e n t a t i o n o f the frame i s a l i gn ed to world o r i e n t a t i on .

Hp_0 = [ 1 , 0 , 0 , p_0 [ 1 ] ;
0 , 1 , 0 , p_0 [ 2 ] ;
0 , 0 , 1 , p_0 [ 3 ] ;
0 , 0 , 0 , 1 ] ;

Hp_b = inverseH (Hb_0) * Hp_0;

E.1.2 Contact sphere

/**Daemen 20071009: Generate a con tac t po in t f o r body b
*

* i npu t s :
* r e a l Hb_0 [ 4 , 4 ] \\ H−matrix o f body w. r . t . psi_0
* ou tpu t s :
* r e a l Hp_0[ 4 , 4 ] \\ H−matrix o f po in t P w. r . t . world−frame
* r e a l Hp_b [ 4 , 4 ] \\ H−matrix o f po in t P w. r . t . body−frame
*

**/
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v a r i a b l e s
r e a l p_0 [ 3 ] ;

parameters
r e a l r ; \\ rad iu s o f the sphere

equat ions

p_0 = Hb_0 [ 1 : 3 , 4 ] ;

// Express the p o s i t i o n o f p in world coords as an H−matrix .
// o r i e n t a t i o n o f the frame i s a l i gn ed to world o r i e n t a t i on .

Hp_0 = [ 1 , 0 , 0 , p_0 [ 1 ] ;
0 , 1 , 0 , p_0 [ 2 ] ;
0 , 0 , 1 , p_0 [ 3 ] − r ;
0 , 0 , 0 , 1 ] ;

Hp_b = inverseH (Hb_0) * Hp_0;

E.1.3 Contact ellipsoid

/**Daemen 20071009:
* Ca l cu l a t e the l owe s t po in t o f an e l l i p s e ,
* with r e s p e c t to the ground
*

* i npu t s :
* r e a l Hb_0 [ 4 , 4 ] \\ H−matrix o f body w. r . t . psi_0
* ou tpu t s :
* r e a l Hp_0[ 4 , 4 ] \\ H−matrix o f po in t P w. r . t . world−frame
* r e a l Hp_b [ 4 , 4 ] \\ H−matrix o f po in t P w. r . t . body−frame
*

**/

va r i a b l e s
r e a l Q_sphere [ 4 , 4 ] ;
r e a l p_b [ 4 ] ;
r e a l xAxis [ 4 ] , yAxis [ 4 ] , z_n3 [ 3 ] , z_n4 [ 4 ] ;
r e a l p_c [ 3 ] ;

parameters
r e a l rx = 0 . 0 3 ;
r e a l ry = 0 . 1 2 5 ;
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r e a l rz = 0 . 1185 ;
equat ions

// t rans format ion e l l i p s e to c i r c l e

Q_sphere = [1/ rx , 0 , 0 , 0 ; 0 , 1/ ry , 0 , 0 ; 0 ,0 ,1/ rz , 0 ; 0 , 0 , 0 , 1 ] ;

// the 0 as the l a s t e lement o f the a x i s i s because we
// are on ly i n t e r e s t e d in r o t a t i on .
// po s i t i o n cou ld have been inc luded , from H, but t h i s
// i s f a s t e r :

xAxis = Q_sphere * inverseH (Hb_0) * [ 1 ; 0 ; 0 ; 0 ] ;
yAxis = Q_sphere * inverseH (Hb_0) * [ 0 ; 1 ; 0 ; 0 ] ;

// c a l c u l a t e l owe s t po in t :

z_n3 = c r o s s ( xAxis [ 1 : 3 ] , yAxis [ 1 : 3 ] ) ;
z_n4 = [−z_n3 [ 1 ] ; −z_n3 [ 2 ] ; −z_n3 [ 3 ] ; norm(z_n3 ) ] / norm(z_n3 ) ;
p_b = inve r s e (Q_sphere ) * ( z_n4 ) ;

// conver t to con tac t frame

p_c = Hb_0 [ 1 : 3 , 1 : 4 ] *p_b ;

// Now p_c i s the po in t o f the body ( or e l l i p s o i d ) t ha t has the
// minimum z−coord ina te .

Hp_0 = [ 1 , 0 , 0 , p_c [ 1 ] ;
0 , 1 , 0 , p_c [ 2 ] ;
0 , 0 , 1 , p_c [ 3 ] ;
0 , 0 , 0 , 1 ] ;

Hp_b = inverseH (Hp_0) * Hs_0 ;

E.1.4 Contact convex foot

/**Daemen 20071009:
* Ca l cu l a t e the l owe s t po in t o f a almost f l a t ,
* convex f o o t wi th r e s p e c t to the ground
*

* i npu t s :
* r e a l Hb_0 [ 4 , 4 ] \\ H−matrix o f body w. r . t . psi_0
* ou tpu t s :
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* r e a l Hp_0[ 4 , 4 ] \\ H−matrix p in world−frame
* r e a l Hp_b [ 4 , 4 ] \\ H−matrix p in . body−frame
*

* f o o t r e f e r ence frame i s a t the cen te r o f the foo t ,
* on the ground .
**/

parameters
r e a l l = 0 . 1 8 ; // c i r c um f e r en t i a l Length o f the f o o t
r e a l w = 0 . 1 3 ; // width o f the f o o t
r e a l Ry = 10 . 0 ; // sphero id rad ius in y−d i r e c t i o n .
r e a l Rx = 10 . 0 ; // sphero id rad ius in x−d i r e c t i o n .

va r i a b l e s
r e a l lambda ; // The l en g t h o f the f o o t in rad ians .
r e a l p_accent [ 3 ] ;
r e a l p_0 [ 4 ] ; // P, in world coord ina t e s .
r e a l p_b [ 4 ] ; // P, in l o c a l ( body ) coord ina t e s .
r e a l xf_0 [ 3 ] ; // the f o o t ' s x−axis , in world coords .
r e a l yf_0 [ 3 ] ; // the f o o t ' s y−axis , in world coords .
r e a l zf_0 [ 3 ] ; // the f o o t ' s y−axis , in world coords .
r e a l theta_accent , theta ;
r e a l gamma;
r e a l y_deviation_accent , y_deviat ion ;

cons tant s
// Direc t ion o f the world ' s z−axis , expre s sed in world coords .
r e a l zw_0 [ 3 ] = [ 0 ; 0 ; 1 ] ;

i n i t i a l e q u a t i o n s
lambda = l /Rx ;

equat ions
xf_0 = Hb_0 [ 1 : 3 , 1 ] ;
yf_0 = Hb_0 [ 1 : 3 , 2 ] ;
zf_0 = Hb_0 [ 1 : 3 , 3 ] ; // check f o r f o o t i n v e r s i on

i f ( zf_0 [3]<=0) then // Foot not up r i g h t
// c l o s e s t po in t i s one o f the corners .
theta = l im i t ( (Rx*xf_0 [ 3 ] ) , −lambda /2 , lambda /2 ) ;
y_deviat ion = − l im i t ( Rx * yf_0 [ 3 ] , −w/2 , w/2 ) ;

else

p_accent = c r o s s ( yf_0 , ( c r o s s ( yf_0 , zw_0 ) ) ) ;
theta_accent = −a r c s i n ( inne r ( p_accent , xf_0 ) / norm( p_accent ) ) ;
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theta = l im i t ( theta_accent ,− lambda /2 , lambda /2 ) ;

// For s ideways c a l c u l a t i o n o f the con tac t po in t
gamma = inner ( yf_0 , zw_0 ) ;
y_deviation_accent = −Ry * gamma;
y_deviat ion = l im i t ( y_deviation_accent , −w/2 , w/2 ) ;

end ;
p_b = [ −Rx* s i n ( theta ) ; y_deviat ion ; Rx−Rx* cos ( theta ) ; 1 ] ;
p_0 = Hb_0 * p_b ;

// Write P in world coords . Or ien ta t ion a l i gn ed to world
Hp_0 = [ 1 , 0 , 0 , p_0 [ 1 ] ;

0 , 1 , 0 , p_0 [ 2 ] ;
0 , 0 , 1 , p_0 [ 3 ] ;
0 , 0 , 0 , 1 ] ;

Hp_b = inverseH (Hb_0) * Hp_0;

E.2 CF : calculate contact wrench

/**Daemen 20071009:
* Ca l cu l a t e the ground reac t i on force , i n c l u d i n g f r i c t i o n
*

* i npu t s :
* r e a l Hp_0[ 4 , 4 ] H−matrix o f p in world frame
* r e a l Hp_b [ 4 , 4 ] H−matrix o f p in body frame
* boo lean on swi t ch f l o o r on/ o f f
* ou tpu t s :
* power P 6 DOF power bond
* boo lean con tac t i n d i c a t e s con tac t
*

* f o o t r e f e r ence frame i s a t the cen te r o f the foo t ,
* on the ground .
**/

va r i a b l e s
boolean contact ;
boolean contactevent ;
boolean endcontactevent ;
r e a l e r r [ 6 ] ;
r e a l Tp [ 6 ] ; // Body tw i s t expre s sed in po in t ' s coords
r e a l Wp[ 6 ] ; // Body wrench expres sed in po in t ' s coords
r e a l Fn ; // Normal f o r c e = Wp[ 6 ]
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r e a l omega_x , omega_y , omega_z ;
r e a l v_tr ; // the speed o f po in t p over the p lane
r e a l v_tr_temp ;
r e a l Fr ; // r o t a t i o n a l f r i c t i o n f o r c e ;
r e a l Ft ; // t r a n s l a t i o n a l f r i c t i o n f o r c e ;
r e a l T_x; // r o l l i n g f r i c t i o n
r e a l T_y; // r o l l i n g f r i c t i o n
r e a l Zworld_body [ 4 ] , Yworld_body [ 4 ] ;
boolean FloorIsOn ;
r e a l f_tot , t_tot ;

parameters
boolean g l oba l f r i c t i o n_ r o t \ a c t i v e ;
boolean f r i c t i o n_t r an s \ a c t i v e ;
r e a l g l oba l hc_model\Kp, hc_model\Kd;
r e a l g l oba l f r i c t i o n_ r o t \mu_st ;
r e a l g l oba l f r i c t i o n_ r o t \mu_c;
r e a l g l oba l f r i c t i o n_ r o t \mu_v;
r e a l g l oba l f r i c t i o n_ r o t \ s l ope ;
r e a l g l oba l f r i c t i o n_ r o t \omegaz_st ;
r e a l g l oba l f r i c t i o n_t r an s \mu_st ;
r e a l g l oba l f r i c t i o n_t r an s \mu_c;
r e a l g l oba l f r i c t i o n_t r an s \mu_v;
r e a l g l oba l f r i c t i o n_t r an s \ s l ope ;
r e a l g l oba l f r i c t i o n_t r an s \v_st ;

cons tant s
r e a l e p s i l o n = 0 . 0 0 1 ;

i n i t i a l e q u a t i o n s
contact=f a l s e ;
FloorIsOn = f a l s e ;
T_x = 0 ;
T_y = 0 ;

equat ions
// c a l c u l a t e the P in po in t coords :
Tp = Adjoint (Hp_f) * P. f ;

contactevent=eventdown (Hp_0 [ 3 , 4 ] ) ;

e r r = [ 0 ; 0 ; 0 ; 0 ; 0 ; Hp_0 [ 3 , 4 ] ] ;

i f ( contactevent ) then contact = true ; end ;
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endcontactevent = eventup (Hp_0 [ 3 , 4 ] ) ;
i f ( endcontactevent ) then contact=f a l s e ; end ;

// We may turn on f l o o r , but not when f o o t i s be low f l o o r
FloorIsOn = (On and ( not FloorIsOn ) and ( not contact ) ) ;

// We use the hunt−c r o s s l e y model f o r the compl iant con tac t
// F = −kp * x^n + −kd * x^n * xdot , where we have n=1:

// Fr i c t i on component f o r r o t a t i on around the l o c a l Z−ax i s .
// t y p i c a l mu_st = 0 . 04 ; mu_c = 0 .02 ; mu_v = 0 .002 .
//
// Trans l a t i ona l : a l s o a rough guess based on human f e e t .
// mu_st = 0 . 5 ; mu_c = 0 .25 ; mu_v = 0 .025 .

omega_x = Tp [ 1 ] ;
omega_y = Tp [ 2 ] ;
omega_z = Tp [ 3 ] ;

v_tr_temp = norm(Tp [ 4 : 5 ] ) ;
v_tr = i f ( abs (v_tr_temp)>ep s i l o n ) then

v_tr_temp
else

s i gn (0.5+ s i gn (v_tr_temp ))* ep s i l o n
end ;

// prevent d i v i s i o n by zero

i f ( FloorIsOn==1 and contact ) then
Fn = −hc_model\Kp* e r r [ 6 ] − hc_model\Kd* −e r r [ 6 ] *Tp [ 6 ] ;
T_x = −0.1*omega_x ;
T_y = −0.2*omega_y ;
Fr = i f ( f r i c t i o n_ r o t \ a c t i v e ) then
−Fn * (

( f r i c t i o n_ r o t \mu_c + ( f r i c t i o n_ r o t \mu_st
*abs ( tanh ( f r i c t i o n_ r o t \ s l ope *omega_z ) )
− f r i c t i o n_ r o t \mu_c)
* exp ( −((omega_z / f r i c t i o n_ r o t \omegaz_st )^2 ) )

) * s i gn (omega_z) + f r i c t i o n_ r o t \mu_v * omega_z)
else

0
end ;

Ft = i f ( f r i c t i o n_t r an s \ a c t i v e ) then
−Fn * (

( f r i c t i o n_t r an s \mu_c + ( f r i c t i o n_t r an s \mu_st
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*abs ( tanh ( f r i c t i o n_t r an s \ s l ope *v_tr ) )
− f r i c t i o n_t r an s \mu_c)
* exp ( −((v_tr / f r i c t i o n_t r an s \v_st )^2 ) )

) * s i gn ( v_tr ) + f r i c t i o n_t r an s \mu_v * v_tr
)

else

0
end ;

else

Fn = 0 ;
Fr = 0 ;
Ft = 0 ;

end ;

Wp = [ T_x;
T_y;
Fr ; // r o t a t i o n a l f r i c t i o n
Ft * (Tp [ 4 ] / v_tr ) ;
Ft * (Tp [ 5 ] / v_tr ) ;
Fn

] ;
f_tot = norm(Wp[ 4 : 6 ) ;
t_tot = norm(Wp[ 1 : 3 ] ) ;
P . e = transpose ( Adjoint ( (Hp_f ) ) ) * Wp;

Contact = FloorIsOn and contact ;

E.3 Endstops

/**Daemen 20070614:
* 14 DOF ends tops
*

* i npu t s :
* r e a l q [ 1 4 ] \\ j o i n t ang l e s
* ou tpu t s :
* power P \\ Power bond
*

**/

va r i a b l e s
r e a l q_range [ 1 4 , 2 ] , e r r [ 1 4 , 2 ] ;



68

i n t e g e r i , dof ;

parameters
r e a l q_range_deg [ 1 4 , 2 ] ; \\ j o i n t motion range
r e a l stop_dynamics [ 1 4 , 2 ] ; \\ end stop dynamics , [K,D]

i n i t i a l e q u a t i o n s
e r r = [ 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ; 0 , 0 ] ;
q_range = ( q_range_deg / 360 ) * 2 * pi ;
dof = rows ( q_range ) ;

code
for i = 1 to dof by 1 do

e r r [ i , 1 ] =
i f ( stop_dynamics [ i ,1]<>0) then
q [ i ] − l im i t ( q [ i ] , q_range [ i , 1 ] , q_range [ i , 2 ] )

else

0
end ;

e r r [ i , 2 ] =
i f ( e r r [ i , 1 ] <>0) then
P. f [ i ] * e r r [ i , 1 ] //Hunt−Cross l ey

else

0
end ;

end ;

P. e = stop_dynamics .* e r r * [−1;−1] ;

E.4 PID

/**Daemen 20070729:
* 14 DOF p a r a l l e l PID , tame d i f f e r e n t i a l par t
*

* i npu t s :
* r e a l q [ 1 4 ] j o i n t ang l e s
* r e a l K[ 1 4 ] j o i n t ang l e s
* r e a l Kd[ 1 4 ] j o i n t ang l e s
* r e a l Ki [ 1 4 ] j o i n t ang l e s
* r e a l be ta
* ou tpu t s :
* output
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*

**/

va r i a b l e s
r e a l e r r o r [ 1 4 ] ;
r e a l hidden uP [ 1 4 ] , uI [ 1 4 ] ,uD[ 1 4 ] , uDstate [ 1 4 ] ;

equat ions
e r r o r = s e tpo i n t − q ;
uP = K .* e r r o r ;
uI = int ( e r r o r .* Ki ) ;
uDstate = int (uD) ;
uD = K .* e r r o r / beta − uDstate .* ( Kd ) ;
output = (uP + uI + uD) ;

E.5 COP and contact

H_lf_0H_rf_0 P_lfP_rf

COP_0 contact

CP_rf CF_rf CP_lfCF_lf

1 1

COP

Figure E.1: Calculate COP of standing robot

/**Daemen 20070809:
* c a l c u l a t e COP and c o l l e c t con tac t boo leans
*

* i npu t s :
* r e a l H l f [ 4 , 4 ] \\ l e f t f o o t in world coords
* r e a l Hrf [ 4 , 4 ] \\ r i g h t f o o t in world coords
* r e a l Fn_r , Fn_l \\ normal fo rces , r i g h t and l e f t
* ou tpu t s :
* r e a l COP[ 2 , 1 ] COP planar coords in world coords
* r e a l con tac t [ 2 , 1 ] con tac t boo leans , [ l e f t , r i g h t ]
*

**/

va r i a b l e s



70

r e a l cop_x , r e a l cop_y ;
r e a l Fn ;
r e a l i s c on t a c t ;

equat ions
contact [ 1 : 2 ] = [ ( Fn_l>0); (Fn_r>0) ] ;

Fn = Fn_l + Fn_r ;

cop_x = Hrf_0 [ 1 , 4 ] * Fn_r + Hlf_0 [ 1 , 4 ] * Fn_l ;
cop_y = Hrf_0 [ 2 , 4 ] * Fn_r + Hlf_0 [ 2 , 4 ] * Fn_l ;

COP_0[ 1 : 2 ] =
i f (Fn>0) then

[ cop_x ; cop_y ] . / Fn
else

[ 0 ; 0 ]
end ;

i s c on t a c t = i f ( (Fn_l>0) or (Fn_r>0)) then 0 .2 else 0 .0 end ;

E.6 Set-point generation

/**Daemen 20071023:
* Generate s e t p o i n t s accord ing to s ta temachine
* implemented in daemen . d l l
*

* i npu t s :
* q [ 1 4 ] a c t ua l j o i n t ang l e s
* ou tpu t s :
* q_set [ 1 4 ] j o i n t s e t p o i n t s
*

* f o o t r e f e r ence frame i s a t the cen te r o f the foo t ,
* on the ground .
**/

parameters
s t r i n g f i l ename = ' . . / d l l /daemen . d l l ' ;
r e a l e p s i l o n = 0 . 0 3 ;
r e a l t a r g e t s [ 1 5 , 7 ] = [
0 , −60, 45 , 0 , 0 , 0 , 10 , −60 , 45 , 0 , 0 , 0 , 10 , 0 , 0 ;
1 , −60, 45 , 0 , 0 , 0 , 180 , −60, 45 , 0 , 0 , 0 , 180 , 0 , 0 ;
2 , −60, 70 , −20, 0 , 0 , 200 , −60, 70 , −20, 0 , 0 , 200 , 0 , 0 ;
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3 , −60, 150 ,−150 , 0 , 0 , 260 , −60, 150 ,−150 , 0 , 0 , 260 , 0 , 0 ;
4 , 0 , 0 , 0 , 0 , 0 , 360 , 0 , 0 , 0 , 0 , 0 , 360 , 0 , 0 ;
5 , −13, 0 , 0 , 0 , 0 , 360 , −13, 0 , 0 , 0 , 0 , 360 , 0 , 0 ;
6 , −13, 20 , −20, 0 , 0 , 360 , 0 , 0 , 0 , 0 , 0 , 360 , 0 , 0
] ;

v a r i a b l e s
r e a l in_sp [ 2 ] , y [ 1 4 ] , in_state [ 1 6 ] ;
r e a l s t a t e [ 4 ] , dummy;
r e a l t a rg e t1 [ 1 5 ] , t a r g e t2 [ 1 5 ] , t a rg e t3 [ 1 5 ] , t a rg e t4 [ 1 5 ] ;
r e a l t a rg e t5 [ 1 5 ] , t a r g e t6 [ 1 5 ] , t a rg e t7 [ 1 5 ] ;

i n i t i a l e q u a t i o n s
s t a t e = [ 0 ; 0 ; 0 ; 0 ] ;

// pre load t a r g e t po s tu re s
t a rg e t1 = ta r g e t s [ 1 : 1 5 , 1 ] ;
dummy = d l l ( f i l ename , ' load ' , t a rg e t1 ) ;
t a r g e t2 = ta r g e t s [ 1 : 1 5 , 2 ] ;
dummy = d l l ( f i l ename , ' load ' , t a rg e t2 ) ;
t a r g e t3 = ta r g e t s [ 1 : 1 5 , 3 ] ;
dummy = d l l ( f i l ename , ' load ' , t a rg e t3 ) ;
t a r g e t4 = ta r g e t s [ 1 : 1 5 , 4 ] ;
dummy = d l l ( f i l ename , ' load ' , t a rg e t4 ) ;
t a r g e t5 = ta r g e t s [ 1 : 1 5 , 5 ] ;
dummy = d l l ( f i l ename , ' load ' , t a rg e t5 ) ;
t a r g e t6 = ta r g e t s [ 1 : 1 5 , 6 ] ;
dummy = d l l ( f i l ename , ' load ' , t a rg e t6 ) ;
t a r g e t7 = ta r g e t s [ 1 : 1 5 , 7 ] ;
dummy = d l l ( f i l ename , ' load ' , t a rg e t7 ) ;

code
in_state [ 1 : 1 4 ] = (180/ p i ) * q ;
in_state [ 1 5 : 1 6 ] = [ time ; (180/ p i )* ep s i l o n ] ;
s t a t e = d l l ( f i l ename , ' stateMachine ' , in_state ) ;

in_sp = time ;
y = d l l ( f i l ename , ' s e t p o i n t s ' , in_sp ) ;

q_set = ( p i / 180) * y ;
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Appendix F

DLL C Code

#include <windows . h>
#include <vector>
#include <iostream>
#include <math . h>

#define DllExport __declspec ( d l l e xpo r t )

us ing namespace std ;

extern "C" {

double maxT [ 1 4 ] ;
double i n e r t i a [ 1 4 ] ;
double q_0 [ 1 4 ] ;
double t a r g e t s [ 7 ] [ 1 4 ] ;

double q [ 1 4 ] , t , t_start , t_mid , t_f ina l , deltaT , s e tPo in t s [ 1 4 ] ;
const double pi = M_PI;
int s t a t e ;

DllExport int s e t p o i n t s (double * i nar r , int inputs ,
double *q_out , int outputs , int major ) {

int n = 0 ;
double dq = 0 ;

t = ina r r [ 0 ] ;

// c a l c u l a t e ou tpu t s :
for (n=0; n < 14 ; n++) {

dq = ta r g e t s [ s t a t e ] [ n]−q_0 [ n ] ;
i f ( t > t_f i na l ) {
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q_out [ n ] = t a r g e t s [ s t a t e ] [ n ] ;
} else {

i f ( t <= t_start ) {
q_out [ n ] = q_0 [ n ] ;

} else {
i f ( t < t_mid ) {
q_out [ n ] = q_0 [ n ] + (4 / pow( deltaT , 2 ) )

* dq * ( pow( deltaT /4/ pi , 2 )
*( cos (4* pi *( t−t_start )/ deltaT ) − 1)

+ ( t−t_start )* ( t−t_start ) / 2 ) ;
} else {

q_out [ n ] = q_0 [ n ] − (4 / pow( deltaT , 2 ) )
* dq * ( pow( deltaT /4/ pi , 2 )

*( cos (4* pi *( t−t_start )/ deltaT ) − 1 + 4*pow( pi , 2 ) )
+ pow( t−t_start , 2 ) /2 − deltaT *( t−t_start ) ) ;

}
}

s e tPo in t s [ n ] = q_out [ n ] ;
}

}
return 0 ; // re turn s u c c e s f u l l

}

DllExport int stateMachine (double * i nar r , int inputs ,
double * outarr , int outputs , int major ) {

int n ;
double e r r o r = 0 . 0 ;
double maxdt = 0 . 0 ;
double a_max = 0 . 0 ;
double dq [ 1 4 ] , dt ;

for (n=0; n<12; n++) {
dq [ n ] = fabs ( t a r g e t s [ s t a t e ] [ n ] − i n a r r [ n ] ) ;
e r r o r += dq [ n ] ;

}

i f ( e r r o r <= ina r r [ 1 5 ] && ina r r [ 1 4 ] > t_mid) {
s t a t e += 1 ;

for (n=0; n<14; n++) { // r e s e t p r o f i l e :
q_0 [ n ] = se tPo in t s [ n ] ;
dq [ n ] = fabs ( t a r g e t s [ s t a t e ] [ n ] − q_0 [ n ] ) ;
e r r o r += dq [ n ] ;
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a_max = 1 ; //maxT[ n ] / i n e r t i a [ n ] ;
dt = sq r t ( f abs (8*dq [ n ] ) / a_max ) ;
i f ( dt > maxdt ) maxdt = dt ;

}
t_start = ina r r [ 1 4 ] ;
deltaT = 2 ; //maxdt ;
t_ f i na l = t_start + deltaT ;
t_mid = t_start + deltaT /2 ;

}

outar r [ 0 ] = (double ) s t a t e ;
outar r [ 1 ] = e r r o r ;
outar r [ 2 ] = t_start ;
outar r [ 3 ] = deltaT ;

return 0 ;
}

DllExport int load (double * i nar r , int inputs ,
double * outarr , int outputs , int major ) {

for (n=1; n<15; n++) {
t a r g e t s [ i n a r r [ 0 ] ] [ n−1] = i na r r [ n ] ;

}
outar r [ 0 ] = 1 ;
return 0 ;

}

DllExport int I n i t i a l i z e ( ) {
// do some i n i t i a l i z a t i o n s here .
s t a t e = 0 ;
q_0 [ 1 4 ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
t_start = 1 ;
t_mid = 3 ;
t_ f i na l = 5 ;
deltaT = 4 ;
return 0 ; // Ind i c a t e t ha t the d l l was i n i t i a l i z e d s u c c e s s f u l l y .

}

DllExport int Terminate ( ) {
// do some c l ean ing here
return 1 ; // Ind i c a t e t ha t the d l l was terminated s u c c e s s f u l l y .

}
}


