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1 Introduction
The discipline of brain-computer interfaces (BCI) has seen a great deal of
development over the last decades. From the mid-1990s onwards, BCI systems have
started to move out of the laboratory an into actual use.

The goal of a BCI is to directly employ brain activity to control a device of some
description, bypassing the peripheral nervous system and the muscles. This is
somewhat distinct from the construction of artificial limbs, that generally connect to
nerve endings rather than the brain itself; this belongs to the related field of
neuroprosthetics. The most obvious application of this is to return some measure of
function to sufferers from ‘locked-in syndrome’ or quadriplegics, who have no means
to interact with their environment at all. Examples are control of a 2D cursor on a
computer screen, or a BCI-controlled virtual keyboard.

In recent years, there has been a growing interest in BCI applications outside the
realm of medicine, to the point where several companies are preparing to release
commercial BCI equipment.1,2 Use of BCIs by healthy users presents it’s own set of
challenges. The low bandwidth and slow response time of existing BCIs is not
acceptable to users that have alternatives such as a keyboard. The lengthy training
period needed for both user and machine is also problematic.

It is clear that, while rapid progress has been made so far, there are still some
substantial problems to be solved before BCI can become a common form of
interacting with machines. In this paper, we aim to solve one of these problems: the
requirement for retraining on subsequent uses of a BCI system.

1.1 Motivation
One of the most difficult problems to overcome in any practical BCI system is the
degree of variation in brain signals. Every brain is unique, and even though the same
action or mental task is generally executed in the same way by different brains,
there is a lot of difference in the details. It is because of this that BCI systems
require a (frequently lengthy) training period, during which the systems gathers the
data needed to adjust to the user’s characteristics in order to be able to interpret the
brain signals with a high degree of accuracy.
Even so, this is not always sufficient. It is a well known phenomenon in BCI research
that there is often a subset of users for which the system simply does not work, i.e.
the recognition rate is not significantly better than random. The reasons for this are
not fully understood; clearly though, the variation in brain signals between persons is
such that currently there is no method that works equally well for everyone.
A related problem is the variation in brain signals exhibited over time in the same
subject. This is a characteristic inherent to the brain; the distribution of signal
strength varies due to a number of factors like fatigue, levels of concentration,
background thoughts, etc. This occurs even during training sessions, which are
generally set up to eliminate as much sources of nonstationarity as possible, for
example by being in a quiet room with no distractions.
The result is that a classifier trained on past data will perform sub optimally.
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1.2 Research questions
The aim of this research is to develop machine learning tools for BCI systems with
good time-invariance properties, i.e. that generalize well over time so that the
amount of retraining on subsequent sessions is minimized.

We have performed a study using a pre-existing dataset, determining the properties
of common machine learning and feature extraction techniques with respect to time-
invariance.
Unfortunately, there has not been a great deal of study into the exact nature and
extent of signal variation during BCI usage, so finding a suitable dataset for the first
stage was somewhat problematic. The set used is the so-called Dataset I, used in the
2003 BCI Competition21, organized by the Fraunhofer Institute. The dataset is
described in more detail in paragraph 4.1.1.
Using this dataset, we examine the nature of the changes that occur over time, as
expressed through the feature extraction algorithm. This analysis is detailed in
chapter 4.
With the results of the analysis in hand, we then in chapter 5 propose a number of
possible enhancements with the aim of enhancing the generalization over time of the
classifier, and compare their performance on the dataset with the standard
algorithm.
Finally, we will conclude with a summary of our findings, and recommend a line of
inquiry for future work.
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2 Brain-Computer Interfaces
In this chapter, we will give an overview of the underlying mechanics of BCI
systems. BCI systems are built to recognize a specific type of brain event that is, or
can be trained to be, under the control of the user. The basis on which BCI systems
are built are therefore the brain, its function, and the means by which that function
may be measured and recorded.
First, we will briefly describe the composition and function of the human brain. Then,
we will summarize the techniques used to capture brain activity. Finally, we will
explore some of the neurological phenomena that are commonly used to build BCI
systems.

2.1 The human brain
The human brain has been called ‘the most complex object known to man’.
Consisting of on the order of 100 billion neurons, each of which can connect to up to
10000 other neurons, trying to comprehend the brains myriad information
processing capabilities might indeed seem like a hopeless task.
Fortunately, in building a BCI system, we don’t need to dig this deep. Our intention
is to find patterns that can be used to reliably control a device, and it is not needed
to fully understand how these patterns are generated. Additionally, while massively
complex, the brain is not without organization. Specific functions are generally
assigned to specific area, although there is a great deal of variation between
individuals.

2.1.1 Neurons
At the lowest level, the brain (like the entire nervous system) consists of nerve cells,
or neurons. Neurons are cells specialized for the transmission and processing of
signals through a variety of electrochemical mechanisms.
Structurally, a neuron consists of a cell body (the soma), a collection of dendrites,
and (usually) one axon. Axons can be thought of as the neuron’s transmission lines,
and can be up to a meter or more in length. Dendrites function as the receivers.

Figure 1 - Schematic of a neuron.
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They are heavily branched; this structure is called the dendritic tree. The end of the
axon (the axon terminal) is where the connection between neurons is made; this is
called a synapse.
Neurons communicate by passing an
electrical impulse known as an action
potential across the cell membrane of the
axon. Upon reaching the axon terminal, the
axon releases chemicals called
neurotransmitters into the gap between the
axon terminal and the dendrite; this excites
the dendrite into generating an action
potential of its own, which is propagated
toward the soma.

The formation of new connections between
neurons, coupled with continuous
adaptation of the influence of each
connection (the synaptic weight) is thought
to be the method by which the brain
continues to learn throughout life.

Given the diversity of functions performed by the nervous system, it is no surprise
that neurons come in a great variety of forms, distinguished by, among other
characteristics, polarity, location, size, effect on other neurons and the specific
neurotransmitters used. Of specific interest are the so-called pyramidal neurons
which comprise about 80% of the neurons in the cerebral cortex. The synchronized
post-synaptic (i.e. in the dendrites) action potentials of these cells are what
generates the local field potential, which is the electrical field that is measured by
both EEG and ECoG, as well as implants.

2.1.2 Organization
Anatomically, the central nervous system consists of the brain and the spinal cord.
The brain itself can be divided into three parts, the hindbrain, midbrain, and
forebrain. The hindbrain and midbrain are the older, more primitive parts of the
brain, and are chiefly responsible for autonomic functions. Of more interest is the
forebrain or cerebrum, in particular the cerebral cortex.
The cortex (Latin for ‘bark’ so named for its folded and wrinkled appearance) forms
the outside of the cerebrum. In humans, the cortex consists of six layers of nervous
tissue (distinguished by type of neuron) and is extensively folded, greatly increasing
the surface area while keeping the volume manageable. The fissures are called sulci
(Latin for ‘furrow’, singular sulcus) while the ridges are known as gyri (singular
gyrus). The neocortex is the most recently evolved part of the cerebral cortex. In
humans, the neocortex covers approximately 80% of the cerebral cortex. It is
divided into the frontal, parietal, temporal, and occipital lobes. All four lobes are split
in two by the longitudinal fissure, diving the cerebral cortex into the two
hemispheres. Oddly, the hemispheres correspond to the opposite side of the body;
the left hemisphere controls the right side of the body and vice versa.

Figure 2 - A synapse
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Trying to determine precisely where in the brain certain functions are located is
extremely difficult, and is likely to remain an active area of research for quite some
time. The brain’s information processing capabilities are based on massive
parallelism; no particular area operates entirely alone. Any function performed by a
given area could very well be influenced by another in a variety of ways, and have
the same effect elsewhere in turn.
Even so, general locations for many brain functions have been determined, often by
studying the effects of brain damage to a person’s behaviour and capabilities. It is
important to remember, however, that these attributions are oversimplifications.

The frontal lobe is the area of the brain where conscious thought, reasoning, and
personality are located. It is located at the front and top of the cerebrum, delineated
from the parietal and temporal lobes by the central sulcus and the lateral or Sylvian
sulcus, respectively.
Of particular interest is the primary motor cortex. Located just anterior of the central
sulcus (as well as extending partway into the sulcus), it is directly responsible for
executing movement. Axons from this area reach down into the brainstem and the
spinal cord, where they connect to lower motor neurons, which pass stimuli on to the
muscles.
Interestingly, the primary motor cortex constitutes a map of sorts of the entire body.
Areas of the cortex that control adjacent parts of the body are located next to one
another. The control area for the legs are located at the top of the brain, the head
and face at the other end, near the lateral sulcus. The most surface area is taken up
by the arms and hands.
This arrangement has been called the motor homunculus (‘little man’). It is the basis
of many BCI systems; since movement (or imagined movement) will predictably

Figure 3 - The four lobes of the cerebral cortex (left hemisphere).
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activate certain areas of the primary
motor cortex, imagined movement can
be used to control the system.

The parietal lobe lies on the top of the
cerebral cortex, wedged in between the
central, lateral, and parieto-occipital
sulci. It is involved in integrating
somatosensory information. The
primary somatosensory cortex is
located on the posterior side of the

central sulcus, adjacent to the primary
motor cortex. It has the same type of
somatic mapping. Other functions of
the parietal lobe include the integration of visual and spatial information.

The temporal lobe is where the primary auditory cortex is located. It is also involved
in memory, and different forms of semantics.

Finally, the occipital lobe is devoted mostly to visual processing. Visual information is
fed into the primary visual cortex from the optic nerve via the thalamus. The
information is then passed on from the primary visual cortex towards both the
parietal and temporal lobes. The path to parietal lobe (the dorsal stream) is
concerned with spatial relations and integrating the visual information with
somatosensory information. The ventral stream passes into the temporal lobe. It’s
function is recognition of objects and the formation and retrieval of memories.

2.1.3 Neuroplasticity
Neuroplasticity refers to the phenomenon where the brain alters its own
organization. Previously, it was thought that many parts of the brain become fixed
after formation. One example is the acquisition of language; if a child is not exposed
to language during the first few years of life, it becomes very difficult to learn to
speak at a later age.
Studies done during the last several decades however, have shown that the brain is
a great deal more flexible. It is capable of “re-wiring” itself on almost any level of
organization in response to experience or, sometimes, trauma.
Neuroplasticity is a key concept in brain-computer interfaces. When presented with
feedback, the brain will adapt. The result is that artificial additions to the usual
output paths of the brain, such as controlling a cursor on a computer screen, are
incorporated into the functionality of the brain itself. It is hoped that this ability to
rewire itself will lead to, among other things, artificial limbs that feel, to the user,
like a part of themselves.

2.2 Neuroimaging
Neuroimaging refers to the body of techniques used to derive an image of the brain.
It can be divided into two types: structural and functional neuroimaging. The first is
concerned with determining the physical structure of the brain; it is used to reveal,
for example, tumors or brain injury. Functional neuroimaging is concerned with the
activity of (a part of) the brain. It is used to build BCIs, as well as to diagnose
neurological conditions such as Alzheimer’s disease or epilepsy. These are not

Figure 4 - Cross section of the brain, showing
the layout of the sensory and motor homunculi.
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mutually exclusive, some neuroimaging techniques can be used for both structural
and functional neuroimaging.

In this section we will briefly summarize methods of neuroimaging that have been
used for BCIs.

2.2.1 Invasive methods
Invasively measuring the activity of the brain amounts to nothing more than opening
up the skull and placing electrodes in the appropriate location. Two types can be
distinguished: implants that actually penetrate into the grey matter, and those that
do not.

2.2.1.1 Intracortical implants
These are electrodes that have been implanted directly into the cerebral matter
itself, either directly connected to one or more neurons, or simply sensing the local
field potential.
For obvious reasons, most research in this area has been done on animals, often
Rhesus monkeys. In one study, monkeys were able to operate a robotic arm
remotely. In humans, the focus is on restoring vision to blind people, and neurally-
controlled prosthetics, with clinical trials in the preliminary stages. Also, brain
pacemakers have been used to artificially stimulate specific areas of the brain to
relieve the symptoms of afflictions like Parkinson’s and depression.
Intracortical electrodes provide the highest resolution of any method, with the ability
to measure the activity of a single neuron or small samples of neuron (on the order
of tens of neurons). However, because of the severity of the surgery involved, they
will most likely not be used for BCI systems intended for use by healthy people in the
near future.

2.2.1.2 Electrocorticography (ECoG)
Electrocorticography records brain activity using a number of electrodes (usually a
grid or strips) that are applied underneath the skull and the dura mater (the outer
and toughest of the three membranes making up the meninges) but outside the
brain itself. Since the electrodes are effectively lying on top of the cerebral cortex,
ECoG has a much higher spatial resolution than EEG, where the presence of the skull
mixes and attenuates the signals. Because of this, it can also record higher
frequencies that are blocked entirely by the skull.
ECoG is used clinically as a diagnostic tool for sufferers of intractable epilepsy. ECoG
is used to precisely map out the epileptogenic zone prior to resectioning surgery.
For BCI systems, ECoG represents a compromise between intracortical implants and
non-invasive methods. Because it does not break the blood-brain barrier, the risks of
rejection are reduced, while it delivers data of a higher quality than most non-
invasive methods.

2.2.2 Non-invasive methods
In most cases, be it for BCI systems or medical purposes, opening the head of a
subject is not a feasible proposition. For this reason, most neuroimaging methods
attempt to measure the activity of the brain by means that don’t require surgery.
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2.2.2.1 Electroencephalography (EEG)
EEG is the oldest technique for recording brain activity, going back to the first half of
the 20th century. It is widely used for both clinical and research purposes, and is by
far the most commonly used method for BCI.
EEG records the local field potential using a number (ranging from tens to 256) of
electrodes that are in contact with the scalp, usually with the aid of conductive gel.
Every electrode is then connected to an amplifier, which amplifies the signal (which
is in the range of tens of microvolts) 1,000 to 100,000 times.
EEG suffers from several limitations. The spatial resolution is very limited; the field
potential recorded consists of the net result of the activity of many thousands of
neurons. Additionally, the parts of the cerebral cortex that are located inside the
sulci, which are located further away from the scalp, contribute much less to the
recorded signal. Making things even worse, the signal has to penetrate the meninges
and the skull, mixing the signal and making it impossible to precisely determine the
source of a specific signal.
EEG is also sensitive to interference from several sources. Externally, electrical
devices such as mobile phones can interfere with the recordings. (Most EEG
amplifiers are in fact designed to filter out the nigh-ubiquitous 50 and 60 Hz
interference from power lines.) Internally, muscle activity and eye potentials (the
potential difference between the front and back of the eyeball), both of which are
several orders of magnitude greater than brain signals, can cause significant
problems.
On the other hand, the temporal resolution of EEG is quite good; up to 1000 Hz.
Despite EEGs limitations, its ease of use and relatively low cost make it the most
commonly used form of neuroimaging.

2.2.2.2 Magnetoencephalography (MEG)
The same synchronized electrical activity that
gives rise to the local field potential measured
by EEG, as any electrical current, also
generates a magnetic field that is orthogonal
to that current. These magnetic fields can be
detected using extremely sensitive
magnetometers known as superconducting
quantum interference devices (SQUIDs) to
map the electrical activity. As these magnetic
fields are extremely weak (on the order of
femtoteslas, or 10-15 T), this requires the
subject be located inside a room specially
sealed against magnetic interference.
MEG has a better spatial resolution than EEG,
since magnetic fields are less affected by the
skull then electrical fields. On the other hand,
they also decay faster with distance, making
MEG more sensitive to superficial activity.
While MEG has been used in BCI in a research
setting3, the high cost of the device is likely to

preclude its use in practical applications. One
possible application is the use of MEG to
obtain detailed data that can then be used to
train a EEG-based BCI system.

Figure 5 - An MEG machine, located at
the Martinos Center for Biomedical
Imaging at Massachusetts General
Hospital-East.
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2.2.2.3 Functional Magnetic Resonance Imaging (fMRI)
Magnetic Resonance Imaging was developed as a medical imaging technology. The
subject undergoing scanning is placed inside a powerful magnetic field, aligning the
atomic nuclei with the magnetic field lines. Under these conditions, these nuclei will
absorb certain frequencies of radio waves. This is known as nuclear magnetic
resonance. Different nuclei will absorb different frequencies, for a given field
strength. By pulsing a second magnetic field at the resonance frequency for a chosen
type of nucleus (usually protons, or hydrogen nuclei, as these are abundant in living
tissue in water molecules) some of these nuclei can be pushed out of alignment.
When drifting back into alignment, the protons emit detectable radio frequencies.
Depending on the molecule the hydrogen atom is part of, these frequencies will be
slightly different, allowing an image of the makeup of the tissue to be constructed.

While MRI can provide a highly detailed image of the structure of tissues, it does not
show the metabolic activity, e.g. brain activity. Functional MRI is a form of MRI that
measures brain activity by using MRI to measure the blood oxygenation in the brain.
When neurons are active they consume a great deal of oxygen; as such, the oxygen
level of the blood is a good indicator of activity. Oxygen is carried in the blood bound
to hemoglobin molecules; the magnetic resonance frequency of hemoglobin is
slightly different depending on whether it has oxygen molecules bound to it. In this
way, local brain activity can be measured.

fMRI has spatial resolution on the order of millimeters. Temporal resolution is much
lower, on the order of several seconds, since the hemodynamic response is slower
than the neural activity it reflects.

fMRI has been used for BCI in the laboratory. In a study by Weiskopf et. al4 subjects
could learn to control their hemodynamic response in the supplementary motor area
and parahippocampal place area. More recently, researchers at the University of
California succeeded in identifying the pictures that a subject was looking at by
analyzing the brain activity using fMRI5.

2.2.2.4 Electromyography (EMG)
Not a neuroimaging method as such, but since it has been used for/as a component
of BCI systems it is mentioned here for completeness. EMG uses the same electrodes
as EEG, but instead of recording electrical signals given off by the brain, it records
the electrical activity associated with muscle contraction and relaxation.
While this is not strictly BCI, as the interface is not established with the central, but
rather the peripheral nervous system, it can be used in much the same way, for
example to give paralyzed people control of a mouse cursor (as long as at least some
muscle control remains).

2.3 Physiological phenomena used by BCIs
Currently existing BCI systems can be categorized based on the specific signals they
utilize. In this section, we will describe these phenomena, followed by a brief
description of BCIs using them.

2.3.1 Brain waves
‘Brain waves’ is the name colloquially given to rhythmic activity seen in EEG over
certain areas of the brain.
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• Alpha: high amplitude signals over the occipital lobes in a range of 8-12 Hz.
Alpha waves are thought to be the visual cortex’s idle rhythm; they decrease
in amplitude when processing visual information.

• Beta waves range from 12 to 30 Hz. They are associated with concentration
and high mental activity.

• Gamma waves: sometimes considered part of the high end of the beta range,
from 24 to up to as much as 100 Hz.

• Delta waves are very low frequency, up to 3 Hz. Associated with slow-wave
sleep states.

• Theta waves are 4-8 Hz and are also associated with some sleep states as
well as with memory.

• Mu waves occur in the same frequency range as alpha waves, but over the
motor areas rather than the visual cortex.

Mu waves in particular can be used for BCIs. When moving, the mu rhythm over the
corresponding area of the contralateral motor area is decreased. After movement,
the mu rhythm increases. This so-called event-related (de)synchronization
(ERD/ERS) occurs even if no movement is actually made; simply imagining motion
has the same result. It is possible to distinguish between several types of imagined
movements (e.g. either the hands or legs), in order to drive a BCI.
Another way to use brain rhythms is the Brainball game6. In this game, the ratio
between alpha and beta strength is used as a measure of relaxation. Of two players,
the one with the most relaxed state will cause a ball lying on a table to move toward
the other players, eventually scoring a goal.

2.3.2 Evoked potentials
Evoked potentials are changes in voltage that occur as the result of some sort of
external stimulus. Both stimulus and response can be anything in principle. In BCIs,
two types are generally used: visual evoked potentials and P300.

2.3.2.1 Visual evoked potentials (VEP)
VEP-based systems generally attempt to use the recorded brain activity to determine
which of several presented visual stimuli the user is looking at.
Lalor et al7 used steady-state VEP as a means to control a 3D game called
MindBalance. Steady-state VEP refers to the different visual stimuli being
distinguished from one another by frequency. In the game, the character walks along
a tightrope, holding a pole with a black and white checkered flag at each end. At
times, the character falters and starts to list to one side; the player must correct for
this by looking at the opposite flag. The two flags flicker; one at 17Hz, the other at
20 Hz. The game determines which flag the player is looking at by extracting this
frequency from the activity of the visual cortex.
BCIs of this type extract information primarily from EEG recorded from the back of
the head, where the visual cortex is located. Because of this, interference from blinks
and eye movements is reduced. One downside is that operation requires the subject
to be able to direct their gaze, and as such is problematic for those who are
completely paralyzed.

2.3.2.2 P300
When a subject is presented with a number of stimuli, stimuli that hold significance
to the subject elicit a peak in the EEG over the parietal cortex after about 300 ms
after the stimulus. This response has therefore been termed the P300 response. It
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has been called the brains “a-ha” response. It is, in effect, the brain sitting up and
taking notice.
An advantage of BCIs based on the P300 response is that no training is required; it is
an innate response. At the same time, it is unclear how the P300 response changes
in the long term when used as a basis for BCI.
The P300 response has been employed in a number of BCIs, notably by Donchin et
al8. The user faces a 6x6 matrix of letter and digits. Every 1/8 s, one row or column
is highlighted. The strength of the P300 response is computed for every time a row
or column flashes. This strength is significant only for the row and column containing
the desired choice, thus revealing which character the user intended.

2.3.3 Slow cortical potentials (SCP)
Caused by synchronous depolarization of the apical dendrites in the upper layers of
the cortex, slow cortical potentials have some of the lowest frequencies of all EEG
features. They manifest as a positive or negative shift in potential and can last from
0.5 second up to 10 seconds. SCPs are considered to reflect a self-regulatory
mechanism of the brain; positive shifts are seen during periods of activity and lead
to an increase in the inhibition of neuronal activity, preventing overexcitation.
Similarly, negative shifts represent increased excitability and a state of readiness.
In studies over more than 30 years, Birbaumer et al demonstrated that using visual,
auditory or tactile feedback, people can learn to regulate SCPs. This forms the basis
of a BCI known as the TTD (thought translation device) which has been used to
restore basic communication capability to people with late-stage ALS.9

2.3.4 Cortical neurons
This last form of BCI uses intracortical microelectrodes to directly record action
potentials from cortical neurons. This form of BCI is actually one of the oldest; in
experiments done during the late 1970s several studies showed that using operant
conditioning, monkeys could learn to control the firing rate of recorded neurons.10,11

It was not until the 1990s that electrodes suitable for human use became available.
In one case12 an almost completely paralyzed patient used an implanted electrode to
spell at a rate of about 3 letters per minute. The first commercial brain implant,
BrainGate, developed by the bio-tech company Cyberkinetics in conjunction with the
Department of Neuroscience at Brown University is currently undergoing clinical
trials.13

Figure 6 - Screenshot of the
P300 speller.
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3 Computational methods in BCI
Following signal acquisition, the actual task of translating the recorded signals into
commands begins. The process of mapping brain signals to a small number of
classes (each representing a possible command) is generally divided into several
subtasks. Pre-processing is concerned with preparing the data, removing noise and

artifacts, and otherwise improving the quality of the data. Feature extraction distills
the pre-processed trials, which can be quite large, down to a small number of
features. The feature extraction process is usually designed with the specific
characteristics of the targeted phenomenon(s) in mind. Others, like autoregressive
models, may not be directly linked to a specific phenomenon, while still showing
discriminating capability. Optionally, post-processing can be applied to reduce the
size of the feature vector. And finally, a classifier determines the class of the trial.

In this chapter we will discuss some algorithms and mathematical models commonly
used in BCI systems.

3.1 Preprocessing steps

3.1.1 Time-frequency analysis
Feature extraction methods generally attempt to isolate one particular
neurophysiological phenomenon, which is usually found only in a specific frequency
range. The purpose of time-frequency analysis is to filter out signals outside a
certain frequency range. The chosen range depends on the type of brain wave that is
expected and the amount of variability in which frequency this wave is usually seen.
For example, mu waves occur mostly over the range of 8-13 Hz, however larger
ranges have been used.

Figure 8 - - A single ECoG trial before and after band-pass filtering with a window of 8-13 Hz.

Pre-processing Feature
Extraction ClassificationPost-Processing

Signal
Acquisition

Class
labels

Figure 7 - Schematic of a BCI system
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3.1.2 Down sampling
Frequently, BCI systems use EEG equipment which delivers the recorded brain
signals at a sampling rate far higher than needed. Since the highest frequency brain
waves of interest are no higher than 40-50 Hz at most, down sampling the signal is a
common method used. As long as the sampling rate is not reduced too much, it
should not adversely affect the classification performance while greatly reducing
memory and processor load.

3.1.3 Independent Component Analysis
ICA separates the measured signals into maximally independent source signals. This
is potentially very useful in processing EEGs, since the recorded signals are mixed
and attenuated by the skull. For ECoGs, where the recording electrodes are in direct
contact with the brain, ICA is not expected to be very helpful.

ICA assumes independent, non-Gaussian sources that linearly combine at the
sensors with no time delay:

x = As, s = A-1x
where s is the source vector and x the sensors. Let W be an estimator of A-1, and y
and estimator of s. wi is a row of W, and yi = wi

Tx. W is calculated by exploiting the
central limit theorem, which states that the sum of independent random variables
tends towards a Gaussian distribution as the number of variables increases.
Therefore, because the components of x are a weighted sum of the (non-Gaussian)
components of s, x is more Gaussian than s. W can now be found by finding those wi

that maximize the nongaussianity of yi. For this, some measure of nongaussianity
must be chosen. Common choices are kurtosis or an estimation of negentropy.

3.2 Feature Extraction

3.2.1 Common Spatial Patterns (CSP)
Common Spatial Patterns, described by Koles et al.14, applies a linear transformation
to the data, projecting the original channels onto an equal number of surrogate
channels in a way that maximizes the between-class difference in mean variance.
Since channel variance in band-pass filtered data is a measure of signal strength,
this can be used to detect event-related desynchronization resulting from motor
imagery.
The following paragraphs will describe the basic CSP algorithm, as well as a number
of modifications that exist.

3.2.1.1 Basic CSP
The method of CSP takes the measurements of a trial of class a in the form of an N
channels by T samples matrix Vi

a. The columns of all matrices (trials) are then
interpreted as a point cloud in N dimensions. The trials have previously undergone
band-pass filtering, so the mean of the distribution is zero. Ri

a is the covariance
14matrix normalized with the total variance of trial i, and Ra is the average covariance
matrix for class a
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with Ri
b and Rb equivalent for class b. The composite covariance matrix Rc=Ra+Rb is

subsequently factored into it’s eigenvectors as follows:
T

ccc BBR Λ=
Bc is the N x N matrix of normalized eigenvectors, and ?Ythe matrix of the
corresponding eigenvalues. The whitening transformation

T
cBW 2/1−Λ=

equalizes the variances of the space spanned by the eigenvectors, so that WRcW
T=I.

The whitening transformation scales the point cloud to have a variance of one in all
dimensions, effectively turning it into white noise. Individually transforming Ra and
Rb in this way

T
bb

T
aa WWRSWWRS == ,

results in matrices Sa and Sb with identical eigenvectors and complimentary
eigenvalues:

IUUSUUS ba
T

bb
T

aa =+== λλλλ ,,
The difference between the classes is greatest along those vectors in U where the
corresponding eigenvalues differ the most. Therefore, when the trials are the
whitened and projected onto U

iTiTT VPZWUP == ,
those directions are maximally suited to distinguish between the two classes.
In other words, when sorted in order of ascending eigenvalues for one class a, the
first row of the transformed matrix has maximum variance for the trials of class a
and minimum variance for class b, and the last row has minimum variance for the
trials of class a and maximum variance for class b. The variances of the first and last
m rows are used as features, after being normalized by the sum of the retained
variances and log-transformed:
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Figures 1 and 2 illustrate the way CSP operates. The stacked bars represent the
variance per channel (normalized to have a mean of one, for purposes of
illustration), the bottom bar being the total variance (i.e. the mean variance over all
trials) of class 1 and the top bar of class 2. The black dots superimposed on the bars
represent the difference between the two classes.
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Most of the CSP algorithm does not strictly qualify as feature extraction; rather it is a
form of preprocessing. The only part that actually extracts any features is the
calculation of the normalized log-variance. Because CSP is specifically designed to
maximize separability in channel variance, it is usually considered as a whole.

As the name implies, CSP does not take the time factor into account; merely
location. Since we expect certain movements to activate certain areas of the brain,
this is useful. However, that activation will occur only in a limited frequency band,
prompting the use of temporal filters such as band-pass filters.
A so-far unresolved weakness of CSP is it’s tendency to overfit. The reliance on
equalizing the variance means that small shifts in variance distribution (which, given
the random nature of EEG signals, are commonplace) can cause a significant
increase in classification error.

3.2.1.2 Multi-class CSP
A shortcoming of CSP is that it was designed for discriminating between only two
classes of input. This limits the bandwidth of CSP-based BCI systems to 1 bit per
trial. Several extensions have been proposed to extend CSP for the multi-class case.
One approach, used in 15, is to simply leave the algorithm as-is, compute pairwise
classifications and use a voting scheme to determine the final classification.
Another is to use a One-Versus-the-Rest (OVR) approach15,16. As the name implies,
OVR extracts spatial patterns common to one class by regarding all other classes as
one class, repeated for all classes. So, instead of calculating Sa and Sb as in the basic
CSP algorithm, we calculate:

T
aa

T
aa WWRSWWRS !!, ==

where axRR xa ≠=∑ ,! . Spatial patterns specific to each class can thus be

estimated by repeating the process for each class.

Both these methods still use the same binary algorithm; specifically, the
simultaneous diagonalization of the mean covariance matrices of the two classes.
The goal of this operation is, given the mean covariance matrices of i classes

icR , to

derive T
cc WWRS

ii
= so that ISN

i ci
=∑ =1

. This can be done exactly in the binary case;

when N>2 it can only be approximated. This is known as joint approximate
diagonalization (JAD). Another difficulty with this method is that, unlike the binary

Figure 10 - Mean variance per channel per
class on the pre-CSP training set (stacked
bars).

Figure 9 - Mean variance per surrogate
channel per class on the post-CSP training
set (stacked bars).
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case where one simply sorts W by eigenvalue, it is not obvious which spatial patterns
are optimal with respect to discriminating between classes. Grosse-Wentrup and
Buss17 and the references therein provide more information on JAD and the problem
of selecting optimal spatial patterns.

3.2.1.3 Spectral CSP
The use of a band-pass filter prior to CSP, while necessary, can also be a weakness.
It is desirable to filter out as much frequencies as possible, leaving only those with
the highest information content. Unfortunately, the distribution of discriminative
information content varies from person to person. Whereas one subject might
achieve optimal performance with a 12 Hz filter, another might be better served with
8 Hz. Spectral CSP attempts to improve discrimination by optimizing, in addition to
the spatial filters, a spectral filter as well.

Common Spatio-Spectral Patterns (CSSP)18 works by concatenating the signal si with
	
is which is si delayed by tÿtime points. This allows the CSP method to construct a

projection vector W which is composed of N spatial filters and N spectral filters,
defining a finite impulse response filter (FIR) for each channel.
Lemm et al found that improvement of CSSP over CSP is heavily dependant on the
choice of tÉ, although almost any choice of tÉconstituted an improvement. The
optimal choice for t�was chosen by cross-validation on the training set. CSSP is not
necessarily limited to one block of delayed channels, but it was found that, in most
realistic cases, one delay tap was most effective.

Proposed in [19], Common Sparse Spectral Spatial Patterns attempts to learn a
complete spatio-temporal filter. A FIR filter can be defined by a sequence b so that
y(t)=b1x(t)+b2x(t-1)+…+bnbx(t-nb-1). A fixed length nb is chosen and b(1)=1. Given
	
is as above:

∑ =
+=

bn iibi sss
..2, 	

	

For any b, we can use CSP to calculate the optimal W, leaving a nb-1-dimensional
optimization problem. To restrict the complexity of the solution and prevent
overfitting, a regularization constant is used, which restricts the solutions to sparse
ones, i.e. solutions for b that only have a few non-zero entries. This constant has to
be chosen through cross-validation.

3.2.1.4 Common Spatial Subspace Decomposition
CSSD20 places some additional interpretation on the signal matrices Xa and Xb. It
uses a spatio-temporal source model modeling Xa and Xb as follows:
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where Sa and Sb are sources specific to class a and b, Sc are sources common to both
classes, and Ca, Cb and Cc are the corresponding spatial patterns. Using spatial
subspace analysis, the subspace spanned by the common patterns Cc is eliminated,
leaving the patterns particular to the classes.

3.3 Post processing
Post processing on the features derived from the data is not generally necessary; in
most cases whatever algorithm is used for feature extraction produces feature
vectors that are small enough to be classified.
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However, when feature vectors are of a high dimensionality, such as when several
feature extraction methods are used in parallel, it can be occasionally useful. Just
about any of the standard dimensionality reduction techniques can be used, a
common choice is Principal Components Analysis.

3.4 Classification
For classification any of the standard machine learning techniques can be used; there
does not appear to be much advantage in using one particular type of classifier. The
primary reason for this is simply that the feature extraction methods are designed to
maximize separability; it has already done most of the work, so no advanced
classification techniques are needed. Common choices are support vector machines
(SVM), neural networks, Mahalanobis distance, linear discriminant analysis (LDA) or
some combination thereof.
In cases where multiple feature extraction algorithms are used, sometimes it is
beneficial to use multiple classifiers. To arrive at the final classification, the classifiers
are then combined, using one of the standard methods such as cascading or a voting
scheme.
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4 Analyzing generalization over time
The first step in improving generalization over time properties of BCI methods is to
determine how the nonstationarity inherent to brain waves manifests in the feature
vectors that are derived from them. In this chapter we will examine the influence of
nonstationarity on a basic CSP-based classifier.

4.1 Methodology
The purpose of this research is to evaluate methods used for BCI on their
generalization over time, and to investigate how this can be improved. To this end,
using the dataset described above, we will start with an experiment in a simple setup
that will serve as the baseline to further inquiries.

4.1.1 Dataset

The data used in this research was obtained from the BCI Competition III21. The
dataset was provided by the University of Tübingen and recorded by Lal et al22.

The subjects involved in the recording were patients suffering from focal epilepsy, in
which the source of the seizures is only a portion of the brain. In order to precisely
localize this epileptic focus the patients had electrodes implanted underneath the
dura mater, on the surface of the brain itself. These electrodes were connected to a

recorder for a period of 5-14 days.
These recordings allow doctors to
localize the focus prior to surgery.

The dataset consists of data recorded
from one subject, who had been
implanted with a platinum electrode grid
consisting of 8x8 electrodes,
approximately 8x8 cm in size. The grid
was placed on the right hemisphere of
the brain, covering the primary motor

cortex and premotor areas as well as
adjacent areas unrelated to motor

control such as the primary somatosensory cortex.

The subject was asked to imagine either moving the left little finger or the tongue, as
indicated by a visual cue, for four seconds. The trials in the dataset consist of 3
seconds of recordings, starting 0.5 seconds after the visual cue had ended in order to
prevent visually evoked potentials from affecting the data.
The dataset consists of a training set of 278 trials, and a test set of 100 trials,
recorded approximately one week after the training set. Each trial consists of 3
seconds of brain activity, recorded at 1000 Hz from 64 channels.

In the experiments described in this chapter we will randomly split the training set
into two parts. The first part is what we will use to train the classifiers, and so when
we refer to the training set from now on, we will be referring to this subset, and not
the original 278-trial training set. The remainder we will refer to as the validation
set; this set will be used to measure the classification error of the classifier. This

Figure 11 - Schematic of electrode placement
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error rate will then be compared to the error rate
incurred by the test set, which is the 100-trial set
that was recorded later.

The purpose of this is to get a measure of the
performance degradation that occurs through
variation in the signal over time. Note that this
disregards any variation within the sets; it treats
that as part of the ‘normal’ variance of the signal.

4.1.2 Characteristics
The use of data obtained by ECoG rather than EEG has a number of ramifications for
the applicability of this research to practical BCI applications, most of which can be
expected to not involve major surgery, at least for the immediate future.
The first major difference is the higher spatial resolution of ECoG. A single electrode
records the potentials of a much smaller part of the cerebral cortex when compared
to EEG, where the presence of the skull and several layers of tissue mixes and
attenuates the signals. For the same reason, ECoG recordings suffer to a much lesser
extent from the artifacts caused by muscle movements and eye potentials that
plague EEG.
This generally higher quality does not directly affect the primary focus of this
research, i.e. the generalization over time properties of the methods under
investigation. However, the fact that ECoG uses implanted electrodes does eliminate
one of the sources of poor performance during subsequent sessions in EEG-based
BCI systems. In such systems, the electrodes have to be re-applied for every
session. As a result, electrodes may be placed in a slightly different location, or the
conductivity of the contact between electrode and scalp may be different, either from
varying amounts of conductive gel or from natural variations in skin conductivity
over time.

The degree to which these factors contribute to reduced performance on later
sessions is unknown, and may be a venue for future research.

4.2 Baseline experiment
The baseline experiment will be used to quantify any degradation in performance
that occurs over time and to attempt to find the underlying cause(s). We will use a
CSP-based system using multiple classifiers. The reason for this that CSP is a
commonly used technique for BCI systems, with a great deal of available literature.
The use of multiple classifiers is intended to show if there is significant difference in
performance; given the literature, this is not expected.

4.2.1 Setup
The baseline experiment as well as follow-up experiments will use the same basic
framework, as shown in the figure below.

Training set Test
set

Split

Training
set

Validation
set

Figure 12 - Decomposition of the
original training and test sets.

http://www.go2pdf.com


24

The setup for the initial experiment is fairly basic. The preprocessing consists of a
band-pass filter, followed by down sampling of the filtered trials to reduce memory
and processing requirements. Feature extraction consists of projecting the trials onto
the spatial filters derived by CSP algorithm from the training set, and computing the
variance of each projected channel as described in 3.2.1.

Several machine learning techniques will be used to classify the feature vectors, to
see if there is a significant difference in their performance. The classifiers used will
be a linear classifier based on the Fisher Linear Discriminant, a Support Vector
Machine, and two neural networks, one a single perceptron and one a multilayer
perceptron with four neurons in the hidden layer.

This setup has three parameters: the frequency band used by the band-pass filter,
the new sampling rate, and the number of channels retained from the transformed
trials (which determines the dimensionality of the feature vector). Based on the
literature, we will use a frequency band of 8-13 Hz, a 100 Hz sampling rate, and
retain the variances of the two first and last channels of the projected trials, for a
four-dimensional feature vector. The training set will consist of 200 trials, 100 of
each class; the remaining 78 trials will make up the validation set.

4.2.2 Results
The following table shows the result of the baseline experiment. Since the training
and validation sets are randomly drawn from the original training set, we table
shows the means and standard deviation over 30 iterations.

Validation set Test set
Error %
(mean)

Error %
(standard
deviation)

Error %
(mean)

Error %
(standard
deviation)

FLD 12.69 0.0368 19.60 0.0365
P 15.90 0.0699 21.90 0.0612
MLP 16.50 0.0871 25.40 0.0930
SVM 13.08 0.0387 23.07 0.0569

FLD
34.7667 (1.8323)
47.8 (1.2429)

4.2333 (1.8323)
2.2 (1.2429)

5.6667 (2.3243)
17.4 (3.5096)

33.3333 (2.3243)
32.6 (3.5096)

P
32.4 (6.6726)
46.0667 (5.4135)

6.6 (6.6726)
3.9333 (5.4135)

5.8 (4.7518)
17.6997 (8.8297)

33.2 (4.7518)
32.0333 (8.8297)

Preprocessing

Feature extraction Classification

FIR filter Downsample

CSP

Spatial
filters Log-variance

Test
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Validation

Training set
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Figure 13 - Schematic of the setup of the baseline experiment.
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MLP
32.0667 (4.6904)
45.3 (4.3482)

6.9333 (4.6530)
3.9333 (3.8857)

5.9333 (2.8154)
21.4667 (10.8524)

33.0667 (2.8154)
28.6667 (10.7366)

SVM
34.6667 (1.9889)
48.2667 (1.2299)

4.3333 (1.9889)
1.7333 (1.2299)

5.8667 (2.6747)
21.3333 (6.1775)

33.1333 (2.6747)
28.6667 (6.1775)

Table 1 - Results of the baseline experiment. Top: error rates and standard deviation. Bottom:
confusion matrices per classifier, standard deviation in parentheses, test set in italics. Numbers
are mean recognition counts, not percentages.

As can be seen in the table, there is not a great deal of difference in performance
between the different classifiers. The neural network-based classifiers perform
slightly worse than the other two. They also have a higher variability in their
performance, as seen in the higher standard deviation.
While interesting, these differences are not statistically significant. Comparing the
error rates using one-way analysis of variance (ANOVA) and the Kruskal-Wallis test
yields a 26.08% and a 39.85% chance respectively of all tests having the same
mean error rate.
It should be noted that the data violates some of the assumptions underlying these
tests; specifically the assumption of the sample points being normally distributed
(ANOVA) and of equal variance (both ANOVA and Kruskal-Wallis). However, since
violation of these assumptions results in a greater chance of the null hypothesis
being rejected, which is not the case here, we can safely assume that the conclusion
in this case is correct.

With regards to generalization over time, all classifiers show the same behaviour on
the validation set: the error rate increases approximately 5-10% and the standard
deviation increases slightly. The Fisher Linear Discriminant again performs the best;
it not only has the highest recognition rate (although not by much), but is also the
most reliable, with a standard deviation 1.5-2.5 times smaller.

4.3 Analysis of baseline experiment
First, let us look at the outputs of the CSP algorithm itself. In the following plots
every bar represents one channel. The bottom bar represents the mean value of the
normalized and log-transformed variance of the channel for class 1, the top bar for
class 2. The dots are the difference between means of the two classes.

Figure 15 - Mean normalized log-variance
per channel after CSP on the training set,
stacked bars indicating class. Dots signify
between-class difference.

Figure 14 - Mean normalized log-variance
per channel after CSP on the validation set,
stacked bars indicating class. Dots signify
between-class difference.
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As expected, on the training set the mean variances for both classes add up to
approximately the same across channels, with the difference between classes
greatest in the first and last few channels.
On the validation set, although it is drawn from the same distribution, it can be seen
that the difference between classes is shrinking; while the outer channels still have a
large distinction between classes, it drops off faster, and the middle channels in
particular fluctuate apparently randomly between the training set value and almost
zero.

When we look at the test set, two things stand out. First, the differences between
classes look mostly the same compared to the test set. Most middle channels still
fluctuate in much the same way, while the first few are still approximately the same.
Secondly, the mean variance is no longer the same across channels. What this
means for the derived features can be seen in Figure 17:

Figure 16 - Mean normalized log-variance per
channel after CSP on the test set, stacked
bars indicating class. Dots signify between-
class difference.

http://www.go2pdf.com


27

These are the actual values used by the classifiers, i.e. the variances of the first and
last projected channels, normalized to add up to one, log-transformed and plotted in
2D. Channels 2 and 63, omitted from the plot, show a similar pattern.

It is clear that in all cases there is a certain amount of overlap between classes, so
perfect classification is not possible in any case, but this is hardly surprising. When
comparing the sets, the validation set looks very much like what is: additional
samples drawn from the same distribution. The test set also looks roughly similar;
the samples are a little more spread out, but their relative position is mostly the
same. In relation to the training and validation sets, however, the test set as a whole
has moved. In other words, the difference between classes is similar, but the mean
has shifted.

4.4 Conclusions
As described in paragraph 3.2.1, the CSP algorithm uses channel variance as a
measure of signal strength, maximizing the between-class difference in variance on
the training data. The main source of nonstationarity when classifying this dataset
using CSP is a shift in the distribution of strength between the signals recorded from
the portions of the brain relevant to the task and those that are not. As a result, the
feature vectors derived from the test set are shifted compared to those derived from
the training set.

This shift is most likely inherent to CSP-based BCI systems; since the whitening
transformation equalizes the mean variance of all channels, any change in relative
signal strength between the channels will be reflected in the variances of the
surrogate channels. Even if the signal strength in the area of the brain that is
activated by the motor imagery does not change at all, any change in another,
possibly completely unrelated part of the brain will influence all surrogate channels.

Moreover, the effect of the shift on classifier performance is unpredictable. In the
case of the baseline experiment, the shift occurred mostly along the hyperplane
separating the two classes, leading to a relatively minor increase in classifier error.
There is no guarantee that this will always be the case; the shift could easily deposit
the entire test set on one side of the hyperplane, causing an error rate of 50%.

Figure 17 - Variances of the first and last projected channels, normalized and log-transformed.
The crosses represent trials of class 1, plusses of class 2.
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In order to create a CSP-based classifier with better generalization over time, it is
necessary to correct for this shift in relative signal strength. We will discuss possible
methods for doing this in chapter 5.
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5 Improving generalization over time
Having seen in chapter 4 the effects of nonstationarity on CSP-based classifiers, we
will now examine a number of possible ways to correct for the observed shift of the
feature vectors, evaluating them for improvements in performance.

5.1 Rebiasing
The baseline experiment shows that there is significant performance loss on the test
set; clearly some sort of adaptation is needed. As seen, the features derived from
the trials using CSP will shift to a new mean over time; however, the distinction
between classes remains roughly similar. The simplest way to adjust the classifiers
would be to simply shift the feature vectors back to the old mean; this is equivalent
to changing the threshold/bias on the classifiers, but is more easily accomplished by
subtracting the average vector from the feature vectors.

trialsfff iii −=

In other words, the feature vectors of each set are shifted so that they are centered
on the origin. This is done for all three sets separately, reducing the difference
between sets, hopefully improving the performance of classifiers trained on one set
in classifying the other sets.
Obviously, in the case of the test set this is hardly realistic; the test set represents
the BCI system being used after having gone through a training session some
amount of time earlier, and during online use the trials would be recorded one at a
time, ensuring that the new mean is not yet known. The purpose of this experiment
is simply to determine if this approach is viable.

5.1.1 Results
This results in the following performance ratios, again over 30 iterations with a
training set of 200 trials.

Validation set Test set
Error %
(mean)

Error %
(standard
deviation)

Error %
(mean)

Error %
(standard
deviation)

FLD 13.12 0.0379 13.93 0.0216
P 15.21 0.0614 16.93 0.0537
MLP 13.68 0.0320 18.20 0.0497
SVM 13.38 0.0254 13.67 0.0243

FLD
34.1333 (1.6761)
43.5667 (1.6543)

4.8667 (1.6761)
6.4333 (1.6543)

5.3667 (1.8659)
7.5000 (1.4563)

33.6333 (1.8659)
42.5000 (1.4563)

P
32.7667 (5.2502)
40.8333 (6.3086)

6.2333 (5.2502)
9.1667 (6.3086)

5.6333 (4.9024)
7.7667 (6.0269)

33.3667 (4.9024)
42.2333 (6.0269)
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MLP
33.3000 (2.5072)
40.2000 (4.8877)

5.4333 (2.2234)
9.6667 (4.6781)

5.2333 (2.3295)
8.5333 (3.9977)

33.7667 (2.3295)
41.1000 (4.0798)

SVM
34.0667 (1.8925)
43.8667 (1.8144)

4.9333 (1.8925)
6.1333 (1.8144)

5.5000 (1.9957)
21.3333 (1.9605)

33.5000 (1.9957)
42.4667 (1.9605)

Table 2 - Results of centering. Top: error rates and standard deviation. Bottom: confusion
matrices per classifier, standard deviation in parentheses, test set in italics. Numbers are mean
recognition counts, not percentages.

It is clear that centering the sets has had its desired effect; while performance on
the validation set has remained virtually identical to the baseline experiment, the
classifiers now perform almost as good on the test set as well. The loss of
performance is less than 1% for the FLD and SVM classifiers, about 1.5% for P, and
under 5% for MLP (which is still significantly less than the 9% drop on the baseline).

5.2 Adaptation - mean
As noted, the centering approach, while effective, it is not very realistic. In the case
of a real BCI system, the system would not know how much the features had shifted.
In order to be practical, the system would have to estimate the new mean from the
trials as they are recorded one by one.
In order to simulate such a system in operation, we will again center the training and
validation sets around their mean, but from the trials of the test set we will subtract
only the mean of the trials seen so far, i.e.:

∑
=

−=
i

n

nii f
i

ff
1

1

This simulates the situation of a BCI system attempting to learn the new mean. We
are assuming that the system has no information regarding the class labels of the
new trials, which may or may not be the case, depending on the application. (For
example, a spelling system can periodically find out whether or not certain
classifications were correct, by checking the spelled words for errors.)

In such a system, the new bias being applied to the classifier would at first be very
inaccurate, and then converge on the ‘true’ mean. Because of this, the error rate on
the whole test set is not of much interest. What we want to know is, how soon does
the mean of the trials seen so far approach the true mean closely enough for the
classifier to be not much worse than the centered approach above?

To find out, we will randomly shuffle the test set, and then subtract from all trials the
mean of the first n trials. We will refer to this as a window size of n. We then classify
the test set, again repeating the procedure 30 times. The assumption is that there
are no fundamental changes within the test set, and consequently the order of the
trials is immaterial. By centering the entire test set around the mean of the first n
trials, we can approximate the error rate after n trials.

5.2.1 Results
The following graphs show the performance of the four classifiers on the rebiased
test set. The top line represents the mean error rate for the given window size, while
the bottom line represents the standard deviation on the error rate.
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It can be seen that the error rate in most cases quickly converges on a value 1-2%
above the value on the centered approach, generally within 10-20 trials. Again, the
neural network-based classifiers are more unreliable, especially the perceptron.

5.2.2 Discussion
From this experiment, it appears that this simple approach to adaptation could
potentially be useful in improving generalization over time in CSP-based BCI
systems. There are several possible issues with it however.

Firstly, the experiment assumes there are no fundamental changes within the test
set; it only affects generalization from training set to test set. This is out of
necessity; the dataset did not include any information about the order in which the
trials were recorded. As such, trying to track changes over the course of the test set,
and trying to distinguish those changes from the normal variation is not possible with
this dataset.
The most likely approach to deal with such changes would be to use a sliding window
to estimate the current mean. From the above result, a window size of approximately
10-20 trials should be adequate. The desirability of a sliding windows algorithm over
one used here depends on how likely a fundamental shift like the one between
training set and test set is likely to occur during a session. If one does not occur
during a session, a sliding window would be slightly less effective than using all
trials. On the other hand, if one does occur, it could take a long time before enough
trials have been seen to shift the computed mean to the actual mean.

Figure 18 - Mean error rate and standard deviation over 30 runs per classifier. Window size
refers to the number of trials used to estimate the new mean.

http://www.go2pdf.com


32

All things considered, for practical applications a sliding window would probably the
preferable approach. As can be seen, classification error effectively ceases to drop
after 20 trials. Under those condition, the ability to continuously adapt should be
considered to be more valuable than a very small increase in performance if nothing
goes wrong.

The second issue in implementing this approach in BCI systems lies in the fact that,
as explained in 4.1.2, ECoG suffers far less from artifacts than EEG. Outliers in the
feature vectors could well cause the computed mean to shift away from the actual
mean.

5.3 Adaptation – mean with minimum window size
In the approach to adaptation used in 5.2, at the beginning of the test set the
system starts with a blank slate. The new mean is estimated from the trials of the
test set only, ignoring the old data.
For this experiment, we will attempt to use the information from the training set to
improve the speed with which the classifier converges by supplementing the padding
the feature vectors used to estimate the new mean with training set data. The theory
is that on the first few trials, where the inaccuracy is highest, the classifier can
benefit from using some information from the training set.
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The above formula is identical to the one used in 5.2, except for the introduction of a
minimum window size m. In case the window size i (i.e. the number of trials seen so
far) is smaller than m, the last m-i trials of the training set are added to the
calculation. When im ≤ the second term is empty, and it becomes identical to 5.2.

5.3.1 Results
As in 5.2, we test the method by calculating the new mean as it would be estimated
after i trials, then subtracting it from all trials to estimate the error rate at that point
in time. Because the approach in 5.2 converged after 20 trials, we examined window
sizes up to 20 only. The minimum windows sizes used were 4 to 20, in increments of
2. As always, each combination of window size and minimum window size was tested
30 times, but since the algorithm is identical to 5.2 when im ≤ , only the cases
where im ≥ were tested.
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The plot is a little crowded, but it is still clear that attempting to co-opt the training
set to speed up convergence has had an adverse effect. The higher the minimum
window size, the slower it converges. The smallest minimum window size used, 4, is
almost identical to the baseline from 5.2. The overall effect is one of increased error
rate, which only approaches the base line when the minimum window size
approaches the actual window size, i.e. when the influence of the training data is
smallest.

5.4 Adaptation – robustness to skewed test sets
In the tests done so far, we have always randomized the trials before classifying the
entire test set (based on the first n trials). Since the test set consists of 50 trials of
each class, this means that the performance figures derived are predicated on a test
set with a 1:1 ratio of classes. During online operation of a BCI system, there is no
guarantee that this is the case; for a spelling application for example, some letter
would be wanted more often than others.
In this paragraph, we will test a number of rebiasing methods that are expected to
be less susceptible to skewed input.

5.4.1 Method
In this experiment, we will test a number of methods we hope will have a better
performance on a skewed test set. To this end, we construct the test set in such a
way that, for every window size, every possible ratio of classes is tested. So, for a
window size of 4, ratios of 1:3, 2:2 and 3:1 are tested. Window sizes of two up to

Figure 19 - Mean error rate by window size over 30 runs, using the FLD classifier. Numbers
in legend refer to the minimum window size used.
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twenty will be tested. As before, each combination of window size and class ratio will
be tested a total of 30 iterations.
In the following sections, the methods undergoing evaluation are detailed. In the
test, the mean method from 5.2 is also included as a baseline. Only FDA will be used
as a classifier, owing to its consistently superior performance and low computational
cost.

5.4.1.1 Median
The median, as a measure of the central tendency of a distribution, is generally more
robust in the presence of outliers than the arithmetic mean. It is the obvious choice
for a rebiasing strategy that can deal better with the effects of a skewed test set.

5.4.1.2 Bounding box
The second method constructs an axis-aligned bounding box around every set, then
moves the entire set so the center of the box is on the origin:
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This arrangement is clearly going to be extra sensitive to outliers, as even a single
anomalous trial can move the entire set considerably. It is included here more for
the purpose of evaluating performance at small window sizes. In the case of, say, a
window size of four trials, three of which are of one class, the mean will be skewed
toward one side. The bounding box is expected to perform better in these cases; in
effect using its sensitivity to outliers as a positive.

5.4.1.3 K-means clustering
As observed in paragraph 4.3, the feature vectors of each set can be seen forming
two slightly overlapping but mostly distinct clusters in feature space. Using k-means
clustering, we can attempt to separate the test set into these two clusters. This
effectively constitutes a form of classification in its own right. Here, we will use it as
a means to estimate the mean for rebiasing.
We performed k-means clustering on the trials of the window. Because k-means
clustering is a local search method and highly dependant on the initial cluster
centroid positions (or “seeds”), we use as initial values the means of the feature
vectors for the trials of both classes from the training set, shifted by the difference
between means of the overall training set and the window:
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Note that this method, unlike the previous methods. uses the class labels of the
training set as a preliminary toward estimating the class labels of the test set.

The result is a set of preliminary class labels, which we ignore, and the centroids of
the two clusters. The clustering process minimizes the sum over all clusters of
within-cluster squared Euclidian distance from all feature vectors to the centroid. We
finally rebias the test set, using as estimated mean the mean of the two centroids.
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5.4.1.4 Weighted k-means
The k-means clustering method in 5.4.1.3 estimates the means of both clusters by
minimizing the sum of squared Euclidian distance from the feature vectors to their
respective centroid.
While this will generally give good results, if the vectors from one class in the
window are skewed toward one ‘edge’ of the range for that class, k-means will be
substantially off from the actual center.
To correct for this, we assume that the difference between classes is constant across
sets, i.e. that the distance between the two classes is identical for both training and
test set. We then define an error term

cwindow
N
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denoting the probability that a vector xn is the actual center of the cluster n, where
cn is the centroid of class n derived through k-means clustering. We then calculate
the x1 and x2 that minimize the error term, with the added constraint that
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The midpoint of these x1 and x2 is used for rebiasing the test set. The use of

cwindown , in the error term ensures that clusters with a greater number of points

(and so a greater degree of certainty) have a greater weight, i.e. the estimated
actual centers of the clusters will be closer to a larger cluster.

5.4.2 Results

The effect of skewed data on the baseline method using the mean is as one might
expect. As window size increases, average classification error rates drop to around
15% when the class ratio is close to parity. As the class ratio becomes more and
more skewed to either class, error rates increase until they approach 25%. This is as
expected; when nearly all samples are of one class, this method will rebias the trials
around the mean of that class rather than the mean of all classes. For a linear
classifier, that means that half of the trials of that class will be misclassified while the
other class will be correctly classified by default.
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Figure 20 - Result of the baseline experiment on skewed test windows. The top patch
represents the mean error rate, the bottom patch the standard deviation.

Of the four methods under consideration, the bounding box and median are outright
failures. Neither drops below 20% error rate even on balanced test windows, and
they approach 30% as windows become more skewed.
The median method simply performs in the same manner as the baseline method,
only inferior. With the highest window size, it performs about 7% worse than when
the test window is balanced, which is around the same as the baseline. Performance
is approximately 5% below the baseline across the board.
The bounding box method does show a decreased loss of performance when the test
window is skewed, as shown by the relative ‘flatness’ of the graph along the x-axis.
Oddly, error rates, as well as their standard deviation, are much higher when the
class ratio is skewed toward class 1 rather than class 2. No explanation for this
behaviour suggests itself.
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Figure 21 - Result of the experiment on skewed test windows using the
median. The top patch represents the mean error rate, the bottom patch
the standard deviation.

Figure 22 - Result of the experiment on skewed test windows using a
bounding box. The top patch represents the mean error rate, the bottom
patch the standard deviation.
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K-means performs surprisingly well. Error rates at the very edge of the spectrum of
skewness, with only one or two members of one class, are slightly above those of
the baseline. When the test window is closer to balanced, performance quickly
increases, quickly outperforming the baseline method. In fact, it appears that k-
means’ error rate is not so much dependant on the class ratio rather than the
number of trials per class; as long as each class has two or three trials, it performs
better on average than the baseline.
K-means does have the drawback of being less reliable; the standard deviation of the
error rate becomes much higher for skewed sets, unlike the baseline which maintains
a mostly stable standard deviation. This is not unexpected; when there are only a
few trials of one class, the effect of a misclassification by the k-means algorithm on
the centroid position (and thereby the estimated set mean) will be much more
severe.

Figure 23 - Result of the experiment on skewed test windows using k-
means clustering. The top patch represents the mean error rate, the
bottom patch the standard deviation.
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Finally, weighted k-means. While not as bad as median or bounding box-based
rebiasing, it performs sub-par with respect to both the baseline and k-means
methods. Not only this, but the standard deviation becomes even more pronounced
than that of k-means when dealing with highly skewed windows.

For the purposes of comparison, the following graph depicts the mean error rate and
standard deviation of all five methods at a window size of 20. The dotted lines
represent standard deviation. It can clearly be seen that median and bounding box
have higher error rates than the baseline, as does weighted k-means, to a lesser
extent. K-means performs better than the baseline except at the very highest class
imbalance. It does have a higher standard deviation than the baseline, which only
gets worse as skewness increased, unlike the baseline, which maintains a low
standard deviation throughout.

Figure 24 - Result of the experiment on skewed test windows using
weighted k-means clustering. The top patch represents the mean error
rate, the bottom patch the standard deviation.
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The aim in this paragraph was to examine methods on their robustness to test sets
with a skewed class balance. While all of the tested methods except k-means
perform significantly worse than the baseline, all methods do show at least some
improvement over the baseline in this respect.
Performance loss is reflected in Figure 25 by the curvature of the lines. The baseline
shows a steep curve between 0 and +/-0.5 (roughly 1:1 and 1:4), performance
quickly deteriorating as imbalance increases. The other methods’ graphs are much
less steep, although more erratic. K-means in particular loses around 2-3% as
opposed to the baseline’s 4-5%.

We conclude that the k-means method, in addition to being more robust than the
mean method with respect to skewed class balance in test trials, is also as good or
better on balanced test sets, having a lower mean error rate at window sizes above
9-10, although it’s higher standard deviation does raise questions about reliability.

Figure 25 - Mean error rates and standard deviations for all five methods at a window size of
20.
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6 Conclusions and Future work
As stated in paragraph 1.1, practical brain-computer interface (BCI) systems tend
toward reduced performance when some time has passed between training and use.
The goal of this research is to develop machine learning tools to improve the
properties of commonly used BCI methods with regards to generalization over time.

In chapter 4, we investigated the effects of the nonstationarity inherent to brain
signals on the performance of a CSP-based classifier using event-related
desynchronization in the right motor cortex.
It was shown that, in the context of CSP, nonstationarity manifests as a global shift
of the feature vectors. This is due to the basic mechanism underlying CSP: the
projection involves whitening the training data (i.e. equalizing its variance across all
dimensions). However, the data contains many signals that are not related to the
task (in this case, imagined movement). These signals inevitably vary, causing a
change in the distribution of variance between channels. The key observation is that,
while the feature vectors move, the difference between classes (which CSP is
intended to maximize) stays largely the same.

From this, we can infer a possible way of compensating for this shift; by shifting the
feature vectors on the test set back, or equivalently, shifting both sets to be
centered on the origin by subtracting the mean. This is shown in 5.1 to be highly
effective; reducing the performance loss to under 1%. It does not, however, address
the issue of online operation, when the precise shift is not yet known, or may occur
in the course of operation.
In this study, we disregard the latter possibility, and regard all variation within
classes as part of the ‘normal’ variation, rather than reflecting a fundamental
change. This leaves the issue of adapting a CSP-based classifier to changed
conditions. This amounts to estimating the new mean of the feature vectors. Several
methods have been subjected to testing, leading to the conclusion that the method
of simply using the mean of all trials so far has the best performance, mostly
converging on the optimal value within 10 trials.
These rebiasing methods were tested using a test set containing en equal number of
trials of each class. Several methods were proposed to improve performance in the
case of skewed data, i.e. an average ratio of classes substantially different from 1:1.
Of these methods, k-means clustering proved to be the only one outperforming the
simple mean on a skewed test set; surprisingly, it also performed somewhat better
on a balanced set.

6.1 Conclusion
In attempting to improve the properties of CSP-based BCI systems with regards to
generalization over time, several methods have been proposed and tested, with
varying degrees of success.
Overall, the simple rebiasing strategy of centering each set around the mean of trials
seen so far performs reasonably well. The centering test done in paragraph 5.1
represents the upper limit on performance gain that can be achieved using this
method, adaptation using the mean as shown in 5.2 approaches this upper limit
within 10-20 trials.
However, its performance decreases sharply if the distribution of trials is skewed
toward one class. Of the methods tested to remedy this, k-means clustering
performed somewhat better as the mean method, with a decreased performance loss
on unbalanced test sets.
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We conclude that, based on these findings, both the k-means and mean-based
rebiasing method are good candidates for use in a CSP-based BCI system, where k-
means appears to be more robust. In practical systems, use of a sliding window is
recommended; while we have not tested this, the tests show that a window size
larger than 20 trials does not offer improved performance, whereas any
nonstationarity of the brain signals that occur during use would take a great deal
longer for the system to adapt to.

6.2 Future work
The focus of this research is fairly narrow, in that many possible complications
afflicting real BCI systems have been either sidestepped or disregarded. Part of that
is a consequence of the dataset; as noted in paragraph 4.1.2 the comparative lack of
artifacts in ECoG recordings as opposed to EEG is a possible source of complications.

Firstly, the methods tested in chapter 5 have not been evaluated on their robustness
with respect to outliers. It is likely that these could throw off the estimated mean
considerably. Especially the bounding box and averaging method are expected to be
susceptible to such disruption.

Most importantly, we have not done a comprehensive study regarding the precise
nature of nonstationarity in brain signals during movement-related tasks, nor are we
aware of such a study. In the absence of such, the scope of this study is by necessity
limited to the available dataset. The methods examined in chapter 5 are based on
the results of the analysis carried out in chapter 4, but there is no guarantee that
these characteristics hold true for BCI systems with other methods of signal
acquisition, other targeted brain events, or simply other users.

Future research avenues lie in this direction; to reproduce and evaluate the methods
described in this study in an online BCI system. More data is needed in order to
determine whether the proposed methods really can make a substantial difference in
improving generalization over time.

As an aside, the assumption is made in estimating the new mean that no information
is available about the actual class labels of the trials. In actual applications this may
not be the case, in which case techniques from the discipline of reinforcement
learning may be applied to accelerate the adaptation, or perhaps to retrain either the
classifiers or the CSP algorithm itself.
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