
Master Thesis
University of Twente

Querying Probabilistic XML

Ruud van Kessel

Supervisors:
Dr. ir. Ander de Keijzer
Dr. ir. Maurice van Keulen
Dr. Maarten Fokkinga

Enschede, April 2008

Management Summery

In the scientific field and in working with data integration, uncertain data is a very
common subject. In [KKA05] a compact representation is proposed for storing uncertain
data in XML. A naive way of querying this data is by calculating all possible worlds and
execute the query on each of the worlds. Calculating these possible worlds is however
very inefficient because of the exponential growth of worlds. In this thesis we will
investigate how the compact representation can be queried in an efficient way.
We will compare two methods for querying the compact representation: Recursive path
analysis and the Compare paths method.

Recursive path analysis.
Using a script, for each step of the query a piece of XQuery code is generated, which
returns each possible answer for that step. The output of step one is the input of step
two and so on. The increase in performance is obtained by calculating the possible
answers for the query, instead of calculating all possible worlds for the document.

Compare paths method.
The query is converted by adding the needed possibility and probability steps to the
query. When executing queries that include a predicate, an extra check has to be
performed to examine if the returned results indeed can occur together with one of the
elements referred to in the predicate. We do this by comparing the paths of node
identifiers belonging to the probability and possibility ancestors of the candidate
elements with the ones of the predicate elements. Two elements occur in the same world
only if the number of probability ancestors that occur in both paths of the two elements
is equal to the number of probability ancestors that occur in both paths.

We test both methods by executing several queries on test documents of different sizes
and containing different levels of uncertainty. This leads to the following conclusions:
– Even for large documents (up to an address book containing 1000 people) the

compare paths method works well. However when requesting documents with a lot of
descendants in the result, the performance decreases quickly. This is a point of
interest for future work.

– The performance of the recursive path analysis is more dependent of uncertainty.
Therefore it works better on smaller documents and documents with a smaller level of
uncertainty.

– In the recursive path analysis, no feature of checking the correctness of child nodes is
implemented. For this reason it performs better than the compare paths method when
elements with a lot of children are returned. However, when using predicates there
are several cases in which the result can contain incorrect child nodes because simply
every node is returned.

2

Contents
 1 Introduction..4

 1.1 Motivation...4
 1.1.1 Applications..4
 1.1.2 Data integration...5

 1.2 Problem...5
 1.3 Problem definition...6

 1.3.1 Goals...6
 1.3.2 Research questions..6
 1.3.3 Research method...7

 1.4 Overview...7
 2 Background & related research..8

 2.1 Possible worlds...8
 2.2 Representation of uncertain data...9
 2.3 Querying data..10
 2.4 Result representation styles...14

 2.4.1 Possible worlds style...15
 2.4.2 Document structure style..16
 2.4.3 Possibility per node style..17

 3 Naive method...18
 3.1 Basic idea..18
 3.2 In practice..18
 3.3 Observations..19

 4 Recursive path analysis (RPA)..20
 4.1 Basic idea..20
 4.2 In practice..23

 4.2.1 XQuery..23
 4.2.2 Perl..27
 4.2.3 Predicates..27

 4.3 Observations..28
 5 Compare paths method (CPM)..29

 5.1 Basic Idea..29
 5.2 In Practice...32

 5.2.1 The representation style of the prototype..32
 5.2.2 General overview..32
 5.2.3 The Java parser...35
 5.2.4 The CPM XQuery Module..36
 5.2.5 Subnodes...42

 5.3 Observations..45
 6 Experiments...47

 6.1 Experimental set-up..47
 6.2 Results...48
 6.3 Test conclusions..53

 7 Conclusions & recommendations..55
 7.1 Optimization recommendations..56
 7.2 Extension recommendations...56

References..58

3

 1 Introduction

 1.1 Motivation

In our modern world, stored data is everywhere around us. Just think of the client
databases of your bank, insurance company or hospital, but also of the geographical data
in a navigation system or the contacts in your mobile phone. In most cases this data is
stored in a relational database, because of the clear table structure and the fast lookup
methods these databases offer.
In several cases, however, it is preferred to represent data as a graph instead of using
tables. For example when the structure of the data changes frequently. XML is the most
commonly used standard to represent this semistructured data. In 2000 [CFP00] stated
that data representation, data interchangeability and the abilities of using XML as a
repository are three promising perspectives of XML. Nowadays XML is used more and
more instead of HTML for representing web-pages. Furthermore, it is widely used for
RSS-feeds and it is the basis in the SOAP protocol for exchanging messages between
web-services.
Semistructured data storage systems like [BGK+06], [DAF04], [DFS99], [FK99],
[KKR+00], and [JAC+02] are used for storing and querying XML documents. In most
cases, this is done by mapping XML to relational tables.
What is common for relational databases and the current semistructured data storage
systems is, that the data stored is assumed to be the correct data. If the database of
your bank for example contains a customer “John” with account number “1234567”, then
you can assume there is a “John” with such an account i.e. the data is certain.
There are however several cases in which the data one obtains, is somehow not certain.
To illustrate the need for the possibility to store uncertain data, we will give a few
examples in the following sections.

 1.1.1 Applications

In the scientific field all kinds of experiments are executed. In many cases this leads to
uncertain data. For example, sensors produce inherently uncertain data, because sensors
usually return a value with a certain inaccuracy, instead of one precise value.
Manipulating sensor data probably produces uncertain results as well.
[NJ02] gives an example of uncertainty in scientific data by giving insight into the area of
proteomics. A challenge in this area is to identify individual proteins. For this task several
experimental tests are available, all with varying reliability. Cases may occur in which
proteins are totally misidentified. For following steps in the process an efficient way of
storing the level of uncertainty of the test is crucial. Working with imprecise sensors and
running test programs that may deliver multiple results, are common sources of
uncertain data in the scientific field.

Another example is a speech recognition system that could return several options for

4

processed spoken words. The system may have recognized that you said “Hello”, but it
might also have been “Yellow” (see Figure 1.1). In such a system it is possible that one
wants to store both values and return those to the user for feedback and interactive
learning of the system.

A system that is related to the one described above, but used for more serious business,
is the military surveillance system described in [HGS03]. In this case, instead of spoken
language, images of a battlefield are processed. These images may contain several
objects that need to be classified, for example vehicle convoys or refugee groups. It is
not always possible to extract precise information like the exact number of refugees or
the specific type of vehicle in a convoy, but all different possibilities need to be stored to
create an overview of the situation, so that important decisions can be based on this
data.

 1.1.2 Data integration

Besides the uncertainty in external information, uncertainty can also occur when
integrating two or more certain data sources. This may become clear when combining,
for example, the address book stored on your computer with the one stored on
somebody else's laptop. There may be contacts that you both know. But if the contact
“John” has “john@hotmail.com” as an email address in your address book and the other
person knows a “John” with “john@gmail.com”, then which email address is right and are
we even talking about the same “John”?

These uncertainties are hard to store in a normal database. Therefore methods are
currently being investigated to adapt traditional databases in such a way that it is
possible to store uncertain data. This has been done for relational databases but also for
XML databases.

 1.2 Problem

5

Figure 1.1: Schematic overview of possible speech recognition output

mailto:john@hotmail.com
mailto:john@gmail.com

We have shown that systems that are able to store uncertain data, have an important
role to fulfill. Probabilistic databases differ from normal databases in the following way. A
normal database describes one world in which all data is certain. Because in a
probabilistic database the data contains different possibilities, instead of one world,
multiple possible worlds are described. Hence, a probabilistic database can be seen as a
collection of several normal databases that each describe a possible world. However,
storing probabilistic data this way is very inefficient, because the number of possible
worlds grows exponentially with the number of possibilities that the document contains.
Therefore a probabilistic database uses a compact representation for storing probabilistic
data. In this thesis, we investigate how we can query this compact representation in an
efficient way.

 1.3 Problem definition

The problem is defined as follows:

How can we efficiently query probabilistic XML documents in the compact representation,
in such a way that we get the correct result including the associated probabilities?

 1.3.1 Goals

In [KKA05] the theory behind querying probabilistic data is explained. A naive
implementation of this theory implies constructing all possible worlds and executing a
query on each of them. This is an inefficient process, because the number of possible
worlds grows exponentially with the number of possibilities in the document. Our goal is
to improve this situation by developing a technique to process queries on a probabilistic
XML document in an efficient manner.
Normal queries on XML documents are formulated in XQuery or XPath. Our goal is to
support a significant subset of XPath.

 1.3.2 Research questions

To guide this research to a successful solution for our main problem, we formulated the
following research questions:

● Which alternatives are known for querying probabilistic data?
We want to know if there currently exist methods that are useful for our research.
How is the querying of probabilistic data solved for relation databases and what
research is done in the semisturctured field?

● How does a probabilistic XML document differ from a normal XML document and
how does this affect the execution of a query?
The structure of a probabilistic XML document differs from a normal XML
document. Therefore, it is possible queries have to be converted to another

6

format. We want to know to what extend this influences the total process of
executing a query.

● On what properties of the compact representation should an approach focus for
more efficiently query evaluating on probabilistic documents?
Instead of querying all possible worlds independently, we want to query a compact
representation. The properties of this representation are different which possibly
creates the opportunity to evaluate queries in an new and efficient way.

● When converting a query to a probabilistic format, should we look at step level or
at the query in total?
XPath queries exist of different steps. Is it possible to convert them one by one? Is
it possible to convert the query as a whole? And where in this process i.e. Between
steps or at the and, should the query actually be evaluated.

● How do alternative approaches for querying probabilistic data compare concerning
efficiency?
When having different set of (probabilistic data) which approach performs best for
which set? Does the format of the query itself influences this result?

● How should answers of a query on a probabilistic XML document be represented?
The representation of a probabilistic query result differs from a normal result,
because the results occur with a certain probability. What extra information is
necessary to include in the result? What kind of styles can be thought of to
represent this extra data?

 1.3.3 Research method

By analyzing the properties of probabilistic XML documents in the representation with
probability and possibility nodes, we create a prototype mostly written in XQuery. We do
performance experiments to test the prototype's efficiency. We compare the prototype
with other methods to query probabilistic data, including the naive approach. We use
these comparisons to verify to what extent our goal is reached.

 1.4 Overview

We continue in Chapter 2 with the related research done in this field. In Chapters 3, 4
and 5 we discuss three different ways of querying probabilistic data: the naive approach,
recursive path analysis and the compare paths method respectively. In Chapter 6 we
present our experiment evaluation and we take a look at the results of these
experiments. In Chapter 7 we will formulate an overall conclusion and recommendations
for future work.

7

 2 Background & related research

To understand exactly what this investigation is about, we will explain in this chapter
some important concepts in this chapter. First we will show how uncertain data can be
considered as a description of multiple possible worlds. After this, we give an overview of
the representation method used in [KEI06],[KKA05], because we use this way of
representing uncertain data in the rest of this report. We conclude by explaining how
specific information is normally extracted from a database and what the difference is
when querying probabilistic data.

 2.1 Possible worlds

In working with probabilistic data whereby mutual exclusive possibilities can occur, is it
useful to keep in mind the possible world semantics: the idea that an uncertain document
can be seen as a sequence of possible worlds. When we have somehow retrieved
uncertain data, this means that we are uncertain about what elements occur in our
world. So instead of listing one certain world, we list all possible worlds, together with
(for each of them) the probability it that is the correct one. In general an uncertain
document does not describe all of these possible worlds separately, but uses a compact
representation using less storage space.
Looking at our speech recognition system (see Figure 2.1) again, it can be seen that the
corresponding XML document describes the world in which “Yellow” or “Hello” can be
said, followed by “How are you”. We can look at this one uncertain world as if it exists of
two possible worlds: the world in which is said “Yellow, how are you” and the world in
which is said “Hello, how are you”. Only one of those possible worlds is the correct one.
At this point, we don't know which one, but we estimate that with a probability of 0.8 the
“Hello”-world is correct against a 0.2 probability of the “Yellow”-world.

8

Figure 2.1: Two possible worlds when doing speech recognition

 2.2 Representation of uncertain data

We have seen that working with uncertain data leads to different possible worlds. The
number of possible worlds grows exponentially with every possibility. If we manage to
store every world separately in a database, the size of our database will grow
exponentially too. Using a more compact representation is attractive because of the
possibility to use less space for storing the data. The several relational and
semistructured applications use different representations for storing probabilistic data in
a compact way.
For instance, Trio[WID05], a relational probabilistic database project of the Stanford
university, uses an uncertainty and lineage database (ULDB) filled with x-tuples. These
x-tuples can be seen as normal tuples with the addition that for each element in the
tuple more than one alternative can be given. These alternatives are mapped onto a
regular relational table.
MayBMS [AKO07] is another relational probabilistic database system comparable with
Trio. In this system the compact representation of possible worlds is called a world-set
decomposition (WSD). Instead of one table with more (possible) attributes in one tuple,
multiple tables with tuples containing one attribute are created for every group of
possible attributes. Alternative representations like world-set decomposition templates
(WSDTs) and unified world-set decomposition templates (UWSDTs) are used to reduce
the number of tables in the database.
To reduce the space needed for data storage the probabilistic XML application ProTDB
[NJ02] specifies some special nodes and attributes that are inserted into the XML
document to indicate the presence of uncertainty. For every normal element an attribute
“prob” (standing for probability) can be added which has a certain value between 0 and
1. Also a “val” (for value) element with a “prob” attribute can be added to indicate that
all nodes contained in this “val” element have some probability to occur. One or more of
those “val” elements have to be placed inside a “dist” element. This “dist” element has
an attribute “type” that describes the distribution type of the underlying “val nodes” and
which can be “mutual-exclusive” or “independent”.
To store uncertainties in XML documents [KKA05] introduces its own compact
representation comparable with the one used by ProTDB. The main difference is that the
method described in [KKA05] holds that every distribution is mutual exclusive. This is
achieved by introducing two extra elements with a special meaning: the probability node
and the possibility node. A probability node is used to indicate that there could be
multiple mutually exclusive possibilities present under that node. A possibility node is
used to indicate that the underlying node has a certain chance to occur, identified with
the value attribute (called “prob”) of this possibility element. Every normal node is
preceded by a probability node and a possibility node.
A piece of sample probabilistic XML with a possible output of the speech recognition
system mentioned in 2.1 is shown in Figure 2.2:

9

We will continue to use this representation in the next coming parts of this report,
because this work builds on the method introduced by [KKA05].

 2.3 Querying data

To get specific data from a database a query has to be given as input. In general a query
contains information about the location where the data can be found and about the
conditions that the data to be returned will have to fulfill. For a relational database SQL is
a common query language. For a specific table, elements of rows can be returned when a
row fulfills a certain condition.

Students

studentnr name city

10 Jan Enschede

11 Henk Enschede

20 Piet Amsterdam

To get for example the names of the students that live in Enschede one can execute the
following SQL-query.

SELECT name FROM students WHERE city=”Enschede”;

This leads to the following result:

10

<prob>
<poss prob=”1”>

<recognizedsentence>
<prob>

<poss prob=”0.8”>
<words>Hello</words>

</poss>
<poss prob=”0.2”>

<words>Yellow</words>
</poss>

</prob>
<prob>

<poss prob=”1”>
<words>How are you</words>

</poss>
</prob>

</recognizedsentence>
</poss>

</prob>

Figure 2.2: Probabilistic XML document for speech recognition

Result

name

Jan

Henk

However, XML documents do not work with tables, but instead they have the structure of
a tree (see Figure 2.3 with its tree representation in Figure 2.4). Therefore new query
languages have been developed, for querying XML documents. The XQuery [CFR+00]
standard together with the XPath [CD99] standard (which is a subset of XQuery) are
widely used. In the query one describes the path where the needed information is
located in the XML tree.

We give the XPath query for selecting the names of the students that study in Enschede.
We give the path where to find the “name” node (Figure 2.5), but because we only want
the name of those students who live in Enschede, we add a predicate to “student” in
Figure 2.6.

11

<students>
<student>

<studentnr>10</studentnr>
<name>Jan</name>
<city>Enschede</city>

</student>
<student>

<studentnr>11</studentnr>
<name>Henk</name>
<city>Enschede</city>

</student>
<student>

<studentnr>20</studentnr>
<name>Piet</name>
<city>Amsterdam</city>

</student>
</students>

Figure 2.3: students.xml

Figure 2.4: students.xml represented as tree.

The XQuery language is a lot more complicated than this, but XPath queries of this kind
are the ones we pay most attention to in this report.

After the creation of a compact representation of all possible worlds a new problem
arises: how do we query this representation? In the Trio system this problem is tackled
by introducing TriQL, which is an extension of SQL. These TriQL queries can be executed
on the ULDB containing x-tuples. This is done by parsing the TriQL statements which
results in one or more SQL queries that are executed on the tables containing the
possible alternatives.
The strategy of using some kind of module that converts a query into a suitable format
for the probabilistic representation is also used by MayBMS. This system uses relational
algebra. New versions of select, product join and other functions are created to query the
multiple tables of their WSD.

The goal of the current investigation is to make it possible to execute queries like the

12

doc(“students.xml”)/students/student/name

Evaluation steps:

• get the document student.xml

• from this result, get all the underlying “students” elements

• from this result, get all the underlying “student” elements

• from this result, get all the underlying “name” elements

Result:
<name>Jan</name>,
<name>Henk</name>,
<name>Piet</name>

Figure 2.5: Evaluation of doc(“student.xml”)/students/student/name

doc(“students.xml”)/students/student[./city=”Enschede”]/name

Evaluation steps:

• get the document student.xml

• from this result, get all the underlying “students” elements

• from this result, get all the underlying “student” elements

• from this result, get only those “student” elements that contain an element “city”
with the text “Enschede”

• from this result, get all the underlying “name” elements

Result:
<name>Jan</name>,
<name>Henk</name>

Figure 2.6: Evaluation of doc(“student.xml”)/students/student[./city=”Enschede”]/name

ones described in Figure 2.5 and Figure 2.6 directly on the compact representation of a
probabilistic XML document (like the one shown in Figure 2.2). When we query a
probabilistic document this can be seen as executing a query on every possible world.
For the compact representation the approach of evaluating the query and the final
representation style may be different compared to querying all possible worlds
separately. However, the final answer should correspond with the answer that would
have been returned when each possible world was queried separately. We have seen in
section 2.2 that the compact representation contains probability and possibility nodes
which we do not want to take into account when formulating our query. This goal
corresponds with the one described for the ProTDB system where the “dist” and “val”
nodes should not be specified in the query itself, but probabilities should be returned in
the result. To accomplish this the query parser module and the query evaluator module
of Timber are adapted. The query parser module is changed in such a way that “dist” and
“val” nodes are inserted where needed, before executing the query. The query evaluator
takes care of the probability calculations for the result.
The syntax problem (handled by the query parser module in ProTDB) is only a sub-
problem we have to deal with when querying the compact representation. A bigger issue
is the huge number of calculations that have to be done to find each of the possible
answers. The representation styles for the final result (described in the next subsection)
play an important role when dealing in possible answers. In chapters 4 till 6 different
solutions for the total problem are described. The amount of attention paid to the syntax
part is different for each solution.

13

 2.4 Result representation
styles

This investigation is aimed at
developing a tool that is able to
query the compact representation
of a probabilistic XML document in
a more efficient way. Before a
prototype can be build a
representation style has to be
chosen for our query output. In
the coming subsections we
describe three possible
representation styles. Each
representation style is illustrated
by an example. Those examples
show the output of the particular
representation style when
executing the following query on
the document shown in Figure
2.7:

doc(“figure2.7”)/addressbook
/person/phones/homephone

14

<prob>
<poss prob="1">

<addressbook>
<prob>

<poss prob="0.5">
<person>

<prob>
<poss prob="0.7">

<phones>
<prob>

<poss prob="1">
<homephone>1111</homephone>

</poss>
</prob>

</phones>
</poss>
<poss prob="0.3">

<phones>
<prob>

<poss prob="1">
<homephone>2222</homephone>

</poss>
</prob>
<prob>

<poss prob="0.75">
<homephone>2323</homephone>

</poss>
<poss prob="0.25">

<homephone>2424</homephone>
</poss>

</prob>
</phones>

</poss>
</prob>

</person>
</poss>
<poss prob="0.5">

<person>
<prob>

<poss prob="1">
<phones>

<prob>
<poss prob="0.8">

<homephone>3434</homephone>
</poss>
<poss prob="0.2">

<homephone>3535</homephone>
</poss>

</prob>
<prob>

<poss prob="0.5">
<homephone>3636</homephone>

</poss>
<poss prob="0.5">

<homephone>3737</homephone>
</poss>

</prob>
</phones>

</poss>
</prob>

</person>
</poss>

</prob>
</addressbook>

</poss>
</prob>

Figure 2.7: Probabilistic XML document for an addressbook

 2.4.1 Possible worlds style

This representation style (shown in Figure
2.8) is the style that corresponds with the
naive method of querying the compact
representation of probabilistic data. The
result is now represented as answer per
possible world. In a possible world all
elements can be seen as certain because the
world itself has a probability to occur. The
probability of an answer equals the
probability of the possible world on which the
query is executed.

It can be seen that answers are given as
combinations of nodes and the correct
answer is one of the given combinations. The
probabilities of all combinations add up to 1
which is intuitively correct. The number of
answers increases however exponentially as
the number of possibility-nodes that are
involved in the answer grows.

15

<prob>
<poss prob="0.35">

<homephone>1111</homephone>
</poss>
<poss prob="0.1125">

<homephone>2222</homephone>
<homephone>2323</homephone>

</poss>
<poss prob="0.0375">

<homephone>2222</homephone>
<homephone>2424</homephone>

</poss>
<poss prob="0.2">

<homephone>3434</homephone>
<homephone>3636</homephone>

</poss>
<poss prob="0.2">

<homephone>3434</homephone>
<homephone>3737</homephone>

</poss>
<poss prob="0.05">

<homephone>3535</homephone>
<homephone>3636</homephone>

</poss>
<poss prob="0.05">

<homephone>3535</homephone>
<homephone>3737</homephone>

</poss>
</prob>

Figure 2.8: All possible worlds style

 2.4.2 Document structure style

This style (see Figure 2.9) can be seen as
an improved version of the possible
worlds style. The underlying concept is
not to display all possible worlds but to
keep the result nodes in the same
structure as used for the original
document. Thus the structure is quite
compact. Furthermore, knowledge about
the possibilities is preserved, so that it is
clear which combinations of result nodes
form an answer.
However a “prob” node cannot be placed
directly again under a “poss” node
according the compact representation
syntax of [KKA05], nodes like, for
example, “seq” and “subseq” need to be
added to preserve a correct structure of
the answer.

16

<prob>
<poss prob="0.5">

<seq>
<prob>

<poss prob="0.7">
<homephone>1111</homephone>

</poss>
<poss prob="0.3">

<subseq>
<prob>

<poss prob="1">
<homephone>2222</homephone>

</poss>
</prob>
<prob>

<poss prob="0.75">
<homephone>2323</homephone>

</poss>
<poss prob="0.25">

<homephone>2424</homephone>
</poss>

</prob>
</subseq>

</poss>
</prob>

</seq>
</poss>
<poss prob="0.5">

<seq>
<prob>

<poss prob="0.8">
<homephone>3434</homephone>

</poss>
<poss prob="0.2">

<homephone>3535</homephone>
</poss>

</prob>
<prob>

<poss prob="0.5">
<homephone>3636</homephone>

</poss>
<poss prob="0.5">

<homephone>3737</homephone>
</poss>

</prob>
</seq>

</poss>
</prob>

Figure 2.9: Document structure style

 2.4.3 Possibility per node style

In this method the answer is represented by each
result node with its own possibility instead of the
combinations of result nodes that constitute an
answer (see Figure 2.10).
Therefore knowledge about the probabilities is lost
because there is no way of reconstructing which
nodes have the ability to occur together.
The size of this representation style grows linearly
with the number of nodes in the original document
that satisfy the query.

17

<result>
<resultnode val="0.35">

<homephone>1111</homephone>
</resultnode>
<resultnode val="0.15">

<homephone>2222</homephone>
</resultnode>
<resultnode val="0.1125">

<homephone>2323</homephone>
</resultnode>
<resultnode val="0.0375">

<homephone>2424</homephone>
</resultnode>
<resultnode val="0.4">

<homephone>3434</homephone>
</resultnode>
<resultnode val="0.1">

<homephone>3535</homephone>
</resultnode>
<resultnode val="0.25">

<homephone>3636</homephone>
</resultnode>
<resultnode val="0.25">

<homephone>3737</homephone>
</resultnode>

</result>

Figure 2.10: Possibility-per-node style

 3 Naive method

 3.1 Basic idea

As stated before our probabilistic data is stored in a compact representation with
probability and possibility nodes. According to [KKA05], a naive way to query this
probabilistic data is by calculating all possible worlds. Each of these distinctive possible
worlds can then be queried as a normal XML document. All possible answers that are
created this way taken together, form the total result of the probabilistic query.

 3.2 In practice

The following example clarifies the principle of the naive method in which all possible
worlds are constructed.

Figure 3.1 describes a probabilistic document of a person and his or her characteristics.

18

<person>
<name>henk</name>
<phone>2222</phone>
<roomnr>2</roomnr>
<email>henk@hotmail.com</email>

</person>

Figure 3.2b: Second of four possible worlds

<person>
<name>henk</name>
<phone>1111</phone>
<roomnr>1</roomnr>
<email>henk@hotmail.com</email>

</person>

Figure 3.2a: First of four possible worlds

<prob>
<poss>

<person>
<prob>

<poss>
<name>henk</name>

</poss>
</prob>
<prob>

<poss>
<phone>1111</phone>
<roomnr>1</roomnr>

</poss>
<poss>

<phone>2222</phone>
<roomnr>2</roomnr>

</poss>
</prob>
<prob>

<poss>
<email>henk@hotmail.com</email>

</poss>
<poss>

<email>henk@gmail.com</email>
</poss>

</prob>
</person>

</poss>
</prob>

Figure 3.1: Simple example probabilistic XML document

<person>
<name>henk</name>
<phone>1111</phone>
<roomnr>1</roomnr>
<email>henk@gmail.com</email>

</person>

Figure 3.2c: Third of four possible worlds

<person>
<name>henk</name>
<phone>2222</phone>
<roomnr>2</roomnr>
<email>henk@gmail.com</email>

</person>

Figure 3.2d: Fourth of four possible worlds

We want to execute the following XQuery on this document:
doc(“Figure3.1”)/person[phone=”1111”]//roomnr

which is the query to return all the room numbers from those persons that have 1111 as
a phone number. On first sight, without paying enough attention to the possibilities, one
could think that the result would exist of both room 1 and room 2, since those are the
room numbers that can be found under the person element in which “phone” is 1111.
Now, let us look at Figure 3.2a till 3.2d that describe the 4 possible worlds that can be
constructed out of this document (the prob and poss nodes are omitted for readability).
Here we can see that only Figure 3.2a and 3.2c return a result, since the persons in 3.2b
and 3.2d have the wrong phone number. Both these correct results however, have room
1 as room number. The correct result of this query on the above probabilistic document
therefore is room one.

 3.3 Observations

As mentioned before this naive method is not very efficient, especially because of the
exponentially growing number of possible worlds. This number increases for each
probability node in the original document with a factor equal to the number of possibility
nodes in that probability node. An example calculation in [KKL06] gives an indication of
the fast growth of the number of possible worlds.
As seen in the example in section 3.2, multiple possible worlds may return the same
result. In the example room 1 is returned twice although it can be seen as one answer.
Since the possible worlds style is used for representing our result, instead of per element
we get the probability per possible combination of elements. Because of all the
combinations that have to be listed the size of the result grows very fast.
In practice, the function that creates all possible worlds of a document, returns a
“worldlist” element which contains world elements that each represent a possible world.
This can be considered a simple variation on the possible world representation style.

19

 4 Recursive path analysis (RPA)

In this chapter we discuss a prototype implementation of a proposed solution [KEU08] for
the probabilistic query problem. We describe the basic idea behind this solution and show
how the prototype is implemented. In the “observations“-subsection we mention the
strong points and the limitations of this method.

 4.1 Basic idea

A normal XPath query exists of several steps. Each of these steps has an input and an
output. The output of the first step serves as the input of the second one and so on. The
total sequence of steps results in the queried information. One of the ideas of the
“Recursive path analysis”-method is to evaluate probabilistic queries in the same way. A
difference with normal queries is that a suitable intermediate result format has to be
chosen. Whilst the input and output of a normal XPath step are both sequences of XML
nodes or atomic data, the probabilistic variant should contain somehow information
about the probabilities. This information should be in such a format that in the next step
again calculations can be performed on these probabilities again. When working out this
approach it should be kept in mind that answers always have to fit in a possible world
which has some probability to occur. The fact that multiple answers may occur in
multiple possible worlds led to an intermediate representation that contains world
elements each with its probability as attribute.
Every node has a unique identifier. We use these identifiers as references to store result
nodes in the world elements. Figure 4.1 shows us a XML document “addressbook.xml”
with node identifiers.

20

The pieces of sample XML in Figure 4.2a and 4.2b, are the intermediate results between
two steps. Figure 4.2a shows the outcome of a step “doc(“addressbook.xml”)/person”.
This step results in one possible world with the one person element (with node identifier
“3”) in it. This result functions as the input for the next step (in this case “/phone”). To
get the phone numbers of the selected persons, for each world each person is evaluated
to select his or her phone numbers . Figure 4.2b shows the result when both the person
and the phone step are executed. For the selected person two possible phones numbers
are found, so the selected two possible worlds are returned as result. Note that only
possible worlds are created for phone numbers, in contrast to the naive method in which
all possible worlds of the total document are created. The output of our /phone step
could now serve as input for a next step or in case this was the last step of the query,
the result could be converted to the actual query result. This conversion is done by
replacing the “nid” nodes by the elements they actually refer to and by placing an
“answer”-node around the result.

21

(1) <prob>
(2) <poss prob=”1”>
(3) <person>
(4) <prob>
(5) <poss prob=”1”>
(6) <name>henk</name>

</poss>
</prob>

(7) <prob>
(8) <poss prob=”.6”>
(9) <phone>1111</phone>
(10) <roomnr>1</roomnr>

</poss>
(12) <poss prob=”.4”>
(13) <phone>2222</phone>
(14) <roomnr>2</roomnr>

</poss>
</prob>

(15) <prob>
(16) <poss prob=”.8”>
(17) <email>henk@hotmail.com</email>

</poss>
(18) <poss prob=”.2”>
(19) <email>henk@gmail.com</email>

</poss>
</prob>

</person>
</poss>

</prob>

Figure 4.1: Simple example probabilistic XML document “addressbook.xml” with
node identifiers (nids)

<world prob=”1”>
<nid>3</nid>

</world>

Figure 4.2a: result of doc(“addressbook.xml”)/person

<world prob=”.6”>
<nid>9</nid>

</world>,
<world prob=”.4”>

<nid>13</nid>
</world>

Figure 4.2b: result of doc(“addressbook.xml”)/person/phone

To create the possible worlds that correspond with the nodes found for one step a
function called allCombinations is used. In the above example only two possible phone
numbers are found which results in two possible worlds, but dependent on the number of
possible answers found, more possible worlds can be created. Because some answers
cannot occur in the same world because of their mutual exclusive properties, the
allCombinations function only creates worlds with those combinations of nodes that have
the ability to occur together.

22

Figure 4.3: First step of the allCombinations function, combining
name with phone and roomnr.

Figure 4.4: Next step of the allCombinations function, combining
the result of step one with the email elements.

When we execute the following query (get all child elements from person) on the
document of Figure 4.1:

doc(“addressbook.xml”)/person/*

The following elements are part of the result:

<name>henk</name>,

<phone>1111</phone> <roomnr>1</roomnr> or
<phone>2222</phone> <roomnr>2</roomnr>,

<email>henk@hotmail.com</email> or
<email>henk@gmail.com</email>

To get the result according the possible worlds representation style the allCombinations
function combines the name element with the possible phone and roomnr elements (see
Figure 4.3). This result is then combined with the email elements again (see Figure 4.4),
which leads to four possible answers. This method is not only used to represent the final
result, but also for the intermediate results. Thus a total possible answer can easily be
excluded from the final result if it is found out that in this world a necessary child node
doesn't exist.

 4.2 In practice

Important in this prototype is, that the prototype itself only generates XQuery (Figure
4.5). The XQuery that is generated works according to the idea explained in section 4.1
and can be executed on the probabilistic XML documents (in our case stored in the
MonetDB/XQuery database).

We will first explain how the generated XQuery works and later on we will show how the
Perl script manages to generate this XQuery code.

 4.2.1 XQuery

The generated XQuery code consists of one function declaration and one big XQuery-
statement that uses this supportive function. Every step in the probabilistic XPath query
is represented by a piece of XQuery code that has a sequence of world elements

23

Figure 4.5: Schematic overview of the recursive path analysis

mailto:henk@gmail.com
mailto:henk@hotmail.com

containing node identifiers (nids) as input and as output. The result of one step is used to
calculate the result of the following step. The working of the piece of XQuery code that is
generated for each step is illustrated in the scheme of Figure 4.7. This scheme shows the
step of selecting all phones of (the first) person using the example document listed in
Figure 4.6.

24

(1) <prob>
(2) <poss prob="1.0">
(3) <person>
(4) <prob>
(5) <poss prob="0.6">
(6) <phone>1212</phone>

</poss>
(7) <poss prob="0.4">
(8) <phone>1111</phone>
(9) <phone>2222</phone>

</poss>
</prob>

(10) <prob>
(11) <poss prob="1.0">
(12) <phone>3333</phone>

</poss>
</prob>

</person>
(13) <person>
(14) <prob>
(15) <poss prob="1.0">
(16) <phone>4444</phone>

</poss>
</prob>

</person>
(17) <person>
(18) <prob>
(19) <poss prob="1.0">
(20) <phone>5555</phone>

</poss>
</prob>

</person>
</poss>

</prob>

Figure 4.6: Example XML document with nids.

25

Figure 4.7: Selecting all phone elements using recursive path analysis

In this simplified schema of the process, just one world is shown from which only the
element of the first nid is used for evaluation. In practice multiple worlds with multiple
nids can be used as input. In the version of MonetDB/XQuery we use, two useful
functions are included for handling node identifiers. We use the function pf:nid($element)
to get the unique node identifier of an element and we use the function id($nid, $doc) to
get the element that belongs to a node identifier (in a certain document).

● We start the process by looking up the elements that belong to the nids in the
worlds of our input.

● Now we do the actual selection, in our example we select all “phone” elements
together with their probability and possibility parents.

● While selecting them, we convert each probability node to a worldlist node,
convert each possibility node to a world node and replace the phone element with
its node identifier.

● Now we have zero or more created worldlists for each nid in every world of our
original input. The worlds in these seperate worldlists are mutually exclusive, but
the worlds inside one worldlist may occur together. The “allCombinations” function
creates all worldlists with worlds that may occur together, from the worldlists with
mutually exclusive properties.

● We merge all worlds of a worldlist to one world by placing all nids in it.
● We calculate the probability of the new world by taking the product of the

probabilities of the merged worlds, and multiplying this value with the probability
of the original world from the input. This can be explained as follows: In this last
step we create worlds containing elements that occur together. The chances that
these elements occur are independent of each other so we take the product of the
probabilities of the merged worlds following the rule P(A and B) = P(A)*P(B). The
elements to return can only occur when the world they are in actually occurs in the
first step. Because the world in the first step itself also has a certain probability to
occur we multiply our outcomes with this probability.

● The result: zero or more possible worlds including their probability and having the
result-nodes of this query-step as nid elements.

26

1. let $ctx1 :=
2. for $w1 in $ctx0
3. let $pw1 := data($w1/@prob)
4. let $sub1 :=
5. for $nid1 in $w1/nid
6. let $xml1 := id($nid1,$scope)
7. return
8. for $prob1 in $xml1/prob[./poss/person]
9. return
10. <worldlist>{
11. for $poss1 in $prob1/poss
12. let $newnids1 :=
13. for $n in $poss1/person
14. return
15. <nid>{pf:nid($n)}</nid>
16. return
17. <world>{$poss1/@prob,$newnids1}</world>
18. }</worldlist>
19.)
20. for $comb1 in allCombinations($sub1)
21. let $p1 := pf:product($comb1/world/@prob)
22. return <world prob="{$pw1*$p1}">{$comb1/world/nid}</world>

Figure 4.8: Piece of generated XQuery that takes care of a /person step

mailto:$comb1/world/@prob

 4.2.2 Perl

As mentioned before the actual prototype is a Perl script that has generating Xquery as
its only function. By evaluating the path of the XPath-query in the Perl script, all steps
that need to be executed in XQuery can be generated in advance. Although it is unknown
what the result of the several steps will be at this point, it is already known which
transformations will have to be done on the result. So the Perl-script generates in
XQuery, the transformations that have to be done for each step to get the final result.
The path of the XPath-query can be evaluated by calling a Perl function for each step.
The basic step is the child-step and for each of those the function genstep(input, output,
nodetest) is called. The input and output parameter that have to be given contain a
number to identify the input and output fur further use. Thus it can be specified that the
output of one step is the input of the following step.

genstep(0,1,"person");
genstep(1,2,"phones");
genstep(2,3,"homephone");

When calling each of these functions, every time a piece of XQuery-code, as listed in
Figure 4.8, is generated. In this figure is shown that the first line the output is assigned
to the variable ctx1. The second line shows that the result of this person step is obtained
by iterating over all items in ctx0: the input. When doing following steps (like phones and
homephone) the names of the variables (in the form ctx..X..) are changed according to
the input and output parameters that are given to the “genstep” function, while the
XQuery-code itself stays the same. The Perl-script ends by calling the function
genanswer(input). As input the identifier of the last output can be given. This leads to a
piece of XQuery-code that converts all nids back to their elements and places the worlds
in which those result-elements are located into an answer element.

 4.2.3 Predicates

We have seen in the previous section how the prototype handles normal child steps. The
prototype is, however, also capable of handling predicates in an XPath-query. Predicates
are used to filter out those nodes from the result, that do not fulfill a certain condition.
The principle of performing a predicate step is the same as for performing a child step,
but the way we handle the input and output is different . When we perform a child step,
we would take all the possible worlds generated in the previous step and get the
elements belonging to the nids in those worlds. We would select all children of those
elements that match our child step and create possible worlds for them.
When we do a predicate step we evaluate each possible world one by one. We get the
elements belonging to the nids of the first possible world and check for matches with our
predicate for the children of those elements. If those child elements indeed exist we use
them to calculate allCombinations. We return the original world with its probability
multiplied with the probabilities of the created worlds by the allCombinations function. It
is possible that all children of the nids in the original world match the predicate. In that
case the original world is returned with a probability of 1. In case there are no children of

27

the nids in the original world that match the predicate, an empty world with a probability
one is returned. In this way every possible world of the previous step is checked for the
predicate. The main difference with a normal child step is that the possible worlds of the
previous step are evaluated individually in a predicate step. Besides that the output of
the allCombinations function of a predicate step is not directly used as result, but is used
to modify the possible worlds of the previous step.

 4.3 Observations

● Because nids are used in this process, in the end the original elements that
correspond with the nids are returned. When an element to return contains
children, these children may be in conflict with a predicate given in the query. A
practical example of this problem is given in section 5.2.5.

● For every step of the query all possible answers are generated, even if the final
step contains a predicate that matches only a few nodes.

● The size of the result is dependent of the number of possible worlds, because of
the use of the possible worlds representation style.

● The naive method is improved by calculating only those possible worlds that play a
role in the path of the query

● The recursive path of the process (i.e. evaluating what needs to be done of each
step of the XPath query), is already done in the Perl-script. This means that the
XQuery module doesn't need expensive functions that can handle different lengths
of paths.

28

 5 Compare paths method (CPM)

 5.1 Basic Idea

The basic idea behind this compare paths method is that we can query probabilistic XML
just by replacing all /node steps by /prob/poss/node steps. If we then link the queried
nodes with their probability, then we are done. One problem is, we indeed get all the
nodes we asked for, but some nodes are not valid. See the following example for an
explanation.

When we want to query all roomnr elements in figure 3.1, in a normal XML document we
give the following query:

doc(“something”)/person/roomnr

Because we work with probabilistic XML we convert this query into:

doc(“something”)/prob/poss/person/prob/poss/roomnr

this gives as result:

<roomnr>1</roomnr>,
<roomnr>2</roomnr>

which is the correct result since we asked for all roomnr elements.

The problem arises when we start using predicates. When we want to have the roomnr of
the person that has 1111 as phone number, we would query that in a normal XML
document in the following way

doc(“something”)/person[./phone=”1111”]/roomnr

converting leads to:

doc(“something”)/prob/poss/person[./prob/poss/phone=”1111”]/prob/poss/roomnr

which gives also as result:

<roomnr>1</roomnr>,
<roomnr>2</roomnr>

This time the result is incorrect because it contains too much information, because there
is no world (see Figures 3.2) in which the phone number “1111” occurs together with
room number “2”. So our result is not correct until we manage to filter out those nodes
that cannot occur in the possible world of the predicate.

29

Thus, want to determine whether each of the original results (the candidate elements:
room numbers “1” and “2”) can occur in the same possible world as the predicate.
Therefore we do the following query

doc(“something”)/prob/poss/person/prob/poss/phone[.=”1111”]

which gives us the predicate element: phone number “1111”:

<phone>1111</phone>

Finally a comparison has to be made between the results two both queries.

The general way to get the correct result for an XPath query on the compact
representation containing a predicate is by doing the following steps:

1. Get the candidate elements by executing the XPath query (after replacing every
/step by /prob/poss/step).

2. Get the predicate elements by executing an XPath query, including prob and poss
steps, that returns the elements that are checked for in the predicate of the
original query.

3. For every candidate element check whether there exists one or more predicate
elements that occur in the same world as the candidate element.
1. If there is no predicate that occurs in the same world as the candidate element,

this candidate element is no part of the result.
2. otherwise, it is.

Step 1 and 2 were illustrated above. In step 3 of this approach we want to determine
whether or not two nodes can occur in the same possible world. We can say the following
about this issue:

[1] To check if node1 and node2 occur in the same world, we take all probability and
possibility ancestors of both node1 and node2. If, for every probability ancestor of
node 1 that is also a probability ancestor of node2, the underlying possibility node
is the same for node1 as for node2, then node1 and node2 occur in the same
possible world.

What we can conclude from this formulation is the following:

[2] The only case in which node1 and node2 cannot occur in the same possible world
is when a probability node exists that is both an ancestor of node1 and node2 but
that probability node has different underlying possibility nodes for node1 and
node2.

We can simplify this rule to:

[3] if (the number of probability ancestors that is equal for node1 and node2) > (the
number of possibility ancestors that is equal for node1 and node2) then: node1
and node2 do not occur in the same possible world (else: they do).

30

The way in which we use these rules to check whether nodes can occur in the same
world is illustrated in Figures 5.1 till 5.3. It can be seen in Figure 5.1 that the roomnr
element with value “1” occurs in the same world as the phone element with value “1111”
because all their probability and possibility nids correspond.
For the roomnr element with value “2” it is shown in Figure 5.2 that the probability nid
corresponds with the probability nid of the phone element while the possibility nid of
those both elements differ. This combination leads to the conclusion that the roomnr
element with value “2” cannot occur in the same world as the phone number with value
“1111”.
When the node we want to compare with is located in a totally different probability node,
such as the email element with value “henk@hotmail.com” in Figure 5.3, this means that
both elements can occur in the same world, as long as the parent elements (person in
this case) occur in the same world.

31

Figure 5.1: Comparison between the prob and poss nids of phone “1111” and room “1”

Figure 5.2: Comparison between the prob and poss nids of phone “1111” and room “2”

Figure 5.3: Comparison between the prob and poss nids of phone “1111” and email “henk@hotmail.com”

mailto:henk@hotmail.com

 5.2 In Practice

In the following sections it is described how we use the abovementioned ideas as a basis
for our prototype.

 5.2.1 The representation style of the prototype

First of all, we have to decide what representation style to use for our prototype. We do
not select the possible worlds style because of the large number of possible answer
combinations that are generated in this style when the level of uncertainty increases.
Furthermore, the document structure style is hard to realize because of the “seq” and
“subseq” elements that need to be added. Finally, this style does not give a clear
overview of the answers because the result nodes may have dependencies with upper
laying “seq” or “subseq” nodes.
We choose to use the possibility per node style for our prototype, because of its clear
structure and the size of the result that grows linear with the number of queried
elements. Another reason is that for simple queries the probability can easily be
calculated by multiplying all probability values of the ancestors of the result node which
each other.

 5.2.2 General overview

In the previous section we introduced three steps to get the right answers in the result.
In our prototype we implemented those three steps. The first two (getting the candidate
elements and getting the predicate elements) basically mean doing a transformation of
the original query. We use a Java parser to perform those transformations.
After we have obtained the candidate and predicate elements, we want to compare paths
of nids (the “pps” element in the following examples) to check if candidate elements are
part of the final result (as shown in Figures 5.1 till Figure 5.3). For this part of the
process we use the functions in our XQuery module.
First of all we call the getnids function for both candidate and predicate elements to get
the paths of nids. So, the input of the getnids function is a sequence of (candidate or
predicate) elements and the output consists of one nids element containing a
completenode element for each of the original input elements (see Figures 5.11 a and b
for examples). In this completenode element the original node is listed together with a
sequence of the node identifiers of the prob and poss ancestors of this node. These
sequences we use for the comparison further on in the process.
The “computeprobs” function that takes care of returning the correct nodes with the
correct probability, needs a sequence of nids elements (as generated by the getnids
function) as input. The first nids element in the input sequence contains the
completenode elements of the candidate elements. Every following nids element in the
sequence contains the completenode elements for all the predicate elements that satisfy
the predicate. This makes that the length of the nids element sequence used as
argument for the computeprobs function is equal to one (for the candidate elements)

32

plus the number of predicates used in the query. The computeprobs function returns the
results in the possibility-per-node representation style.

In addition to filtering out candidate elements that do not occur in one of the possible
worlds of the predicate elements, we also want to give the probabilities that correspond
with the elements in the result. The computeprobvals function takes care of the
comparisons and calls the createpossworlds function to keep track of the possible
combinations of candidate and predicate elements.
To be able to return the right result the computeprobs function should make comparisons
of paths of nids and calculate the probabilities of the correct candidate elements. This is
done by the following steps (Figure 5.4 illustrates this process including the loop that
occurs when following these steps):

1. the computeprobs function calls the computeprobvals function with as argument
the nids element that corresponds with the candidate elements, together with the
nids element that corresponds with the predicate elements of the first predicate.

2. The computeprobvals function filters out incorrect candidate elements using the
before mentioned rules. The probability of an element in the final result is
dependent of the probability of the element itself and of the probability of the
predicate. (For example, when we query the document in Figure 4.1 for all email
addresses, we get the “henk@hotmail.com” with probability 0.8 and
“henk@gmail.com” with probability 0.2. However, when we query for all email
addresses of those persons that have a phone number “1111”, we see that the
chance that such person exists is 0.6. So now the overall probability for
“henk@hotmail.com” becomes 0.6*0.8=0.48 and for “henk@gmail.com” is will be
0.6*0.2=0.12).

3. To calculate the properties in the right way, we want to know which candidate
elements occur in combination with which predicate elements. Therefore the
computeprobvals function calls the createpossworlds function, which creates such
combinations. Each time a path of nids of a correct candidate element is given as
argument, together with the paths of nids of the predicate elements that can occur
in the same world.

4. The createpossworlds function takes together these paths of nids in a “pw”
element. When there are multiple predicate elements possible that exclude each
other multiple “pw” elements are created.

5. It is possible that the original query does contain more than one predicate. If this
is the case we return to step 1, but this time we call the computeprobvals function
with the “pw” elements found in step 4 instead of the nids element of the
candidate elements. For these total “pw” objects, it is now checked if there are
predicate elements of the following predicate that occur in their world. We do this
to make sure we have no inconsistencies between predicates on different levels.
We continue this loop until all predicates of the original query are compared.

6. The computeprobvals function returns for each candidate element one or more
“pw” elements. As said before these “pw” elements contain paths of nids for the
candidate element together with the paths of nids for one or more predicate
elements.

7. For every “pw” element of a candidate element the calculateproperties function is
called. This calculates the correct probability of the combination of candidate and
predicate elements in the “pw” element.

33

mailto:henk@gmail.com
mailto:henk@hotmail.com
mailto:henk@gmail.com
mailto:henk@hotmail.com

8. The sum of the probabilities calculated for the “pw” elements of one candidate
element is the final probability for that element.

In the following subsections the total process is explained using one simple and one more
complicated example.

34

Figure 5.4: Total overview of the Compare Paths Method

 5.2.3 The Java parser

To prepare XPath queries to be executed by our XQuery module, we built a parser in
Java. This parser takes care of the conversion of queries as shown in the first section of
this chapter. The module contains a function “computeprobs” which is the core function
of the module. This function returns the right nodes with their probability and needs the
nodes that are about to get selected together with their probability and possibility nids as
input. The “getnids” function creates a list of these nids for each element in the sequence
given as argument. The output of the Java parser is shown in Figure 5.5 for the query:

doc(“addressbook.xml”)/person/phone

The first line takes care of the import of the XQuery module called “cpm”. In line 3, the
“computeprobs” function is called. The argument for this function (line 4) is the outcome
of the “getnids” function. The “getnids” function gets the converted version of the original
XQuery as argument.

When an XPath query with a predicate needs to evaluated, the parser output looks
somewhat more difficult. In Figure 5.6 we show the output for the following query:

doc(“addressbook.xml”)/person[./phone="1111"]/roomnr

When we look at the lines 6-8, we see that now as argument a sequence of two “getnids”
function outcomes is given. The first one is for the candidate elements and returns the
probability and possibility nids of all roomnr elements that are located under a person
element that also contains a phone element with value “1111”. These nids need to be

35

1. import module namespace cpm = "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/" at
"/path/to/cpm.xq";

2. <resultset>{
3. cpm:computeprobs(
4. (cpm:getnids(doc("addressbook.xml")/prob/poss/child::person/prob/poss/child::phone))
5.)/result
6. }</resultset>

Figure 5.5: XQuery output of the Java parser.

1. import module namespace cpm = "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/" at
"/path/to/cpm.xq";

2. <resultset>{
3. for $i0 in
4. doc("addressbook.xml")/prob/poss/child::person[./prob/poss/child::phone="1111"]
5. return
6. cpm:computeprobs(
7. (cpm:getnids($i0/prob/poss/child::roomnr),
8. cpm:getnids($i0/prob/poss/child::phone[.="1111"]))
9.)/result
10. }</resultset>

Figure 5.6: XQuery output of the Java parser.

compared with the nids of the predicate, so the second of the “getnids” calls is executed
for the phone elements with the value “1111”. In lines 3-6 the “computeprobs” function
is called once for every person element that has the specific phone element. This is done
because we don't want to mix up child-nodes from different persons in our result, in case
that more than one person element with the specific phone number exists.

 5.2.4 The CPM XQuery Module

The “computeprobs” function compares the different paths of nids and computes the
probabilities of the result. In order to do so, it needs paths of nids generated by the
“getnids” function as input. What the “getnids” constructs, is a new element which
contains the original node and a sequence of prob-poss-nids pairs with their probability in
the following form:

In Figure 5.7 the output is given for the “getnids” function called with two roomnr
elements (see line 7 of Figure 5.6). For every roomnr element a “completenode” element
is constructed. The sub element “node” contains the actual roomnr element. The sub
element “pps” (prob-poss-sequence) contains a sequence of probability and possibility
nids. These node identifiers are obtained by calling the “pf:nid()” function as explained in
section 4.2.1. Every possibility node together with its probability node and the probability
value is stored in a “pp” element. The overall value of the node, obtained by multiplying
the probability values of every possibility in the path, is stored in the “pps” element.

Now that we executed the “getnids” function for both the candidate elements and the
predicate elements, we start comparing each candidate element with each of the

36

<nids>
<completenode>

<node>
<roomnr>1</roomnr>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.6<value></pp>
<oavalue>0.6</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node>
<roomnr>2</roomnr>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>12</poss><value>0.4<value></pp>
<oavalue>0.4</oavalue>

</pps>
<subnodes/>

</completenode>
</nids>

Figure 5.7: The output of the “getnids” function for two roomnr elements.

predicate elements in the “computeprobs” function. For each of the candidate elements
the “computeprobs” function calls a help function “computeprobvals” that compares the
candidate element with every predicate element. If, for every probability nid of the
candidate element that is equal to a probability nid of the predicate element, also a
possibility nid of the candidate element is equal to a possibility nid of the predicate
element then the both nodes occur in the same world and the node can be legally
returned (see the rules in section 5.1). Otherwise the two nodes cannot occur in the
same world and nothing is returned.
Before returning the legal elements the combination of “pps” elements of the candidate
and predicate elements are stored in a “pw” element. This is done in the
“createpossworlds” function and requires the ability to calculate the probability of the
elements that are part of the final answer. A possible result of the “createpossworlds”
function may look as follows (see Figure 5.8):

In the example of Figure 5.8 the outcome of the “createpossworlds” function is given
when the phone element with value “1111” and the email element with value
“henk@hotmail.com” are given as input. We chose not to show the combination of the
phone element with value “1111” with the roomnr element with value “1” in our example
because they occur in the same possibility node. In that case our “pw” element only has
one “pps” element.

37

<pw>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1</value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.6</value></pp>
<oavalue>0.6</oavalue>

</pps>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1</value></pp>
<pp><prob>16</prob><poss>17</poss><value>0.8</value></pp>
<oavalue>0.8</oavalue>

</pps>
</pw>

Figure 5.8: The output of the “createpossworlds” function

mailto:henk@hotmail.com

The final probabilities are calculated according to the example of Figure 5.9: We take the
“pps”-elements of a “pw” element and multiply the values of all distinct “pp” elements
with each other. Doing so, double “pp” elements are only used once in this calculation,
because as long as the path of ancestors of two elements is the same, following that path
for one element automatically means following that path for the other node.

It might seem that the “createpossworlds” function is simple, because it only puts
different “pps” nodes together in a “pw” element. This is true, but only for simple
queries. For more complicated queries, the “createpossworlds” has a more important role
to fulfill. To illustrate this we will now introduce a more complicated document (see
Figure 5.10) on which we execute a more complicated query:

doc(“figure5.10”)/person[.//phone > ”2222”]/info[.//roomnr<”3”]/mobilephone

38

Figure 5.9: Calculating the final probabilities

The Java parser outcome for this query contains a double for-loop (see Figure 5.11),
because we do not want to mix up results for “person” and “info” elements (although in
this case this is not a major point because our document only has one “person” and one
“info” element). The “computeprobs” function now gets a sequence of the result of three
“getnids” function calls as argument. One for the candidate “mobilephone” elements, one
for the predicate “phone” elements and one for the predicate “roomnr” elements.

39

(1) <prob>
(2) <poss prob=”1”>
(3) <person>
(4) <prob>
(5) <poss prob=”1”>
(6) <info>
(7) <prob>
(8) <poss prob=”.5”>
(9) <roomdetails>
(10) <prob>
(11) <poss prob=”0.4”>
(12) <roomnr>1</roomnr>
(13) <phone>4444</phone>

</poss>
(14) <poss prob=”0.6”>
(15) <roomnr>4</roomnr>
(16) <phone>2222</phone>

</poss>
</prob>

</roomdetails>
</poss>

(17) <poss prob=”.5”>
(18) <roomdetails>
(19) <prob>
(20) <poss prob=”0.2”>
(21) <roomnr>2</roomnr>
(22) <phone>1111</phone>

</poss>
(23) <poss prob=”0.8”>
(24) <roomnr>3</roomnr>
(25) <phone>3333</phone>

</poss>
</prob>

</roomdetails>
</poss>

</prob>
(26) <prob>
(27) <poss prob=”1”>
(28) <mobilephone>0666</mobilephone>

</poss>
</prob>

</info>
</poss>

</prob>
</person>

</poss>
</prob>

Figure 5.10: More difficult example probabilistic XML document with node identifiers

The “computeprobs” function starts with comparing the probability and possibility nids of
the mobilephone query with the nids of the phone query (see Figures 5.12 a and b).

40

import module namespace cpm = "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/" at
"/path/to/cpm.xq";

<resultset>{
for $i0 in
doc("figure6.3.2.3")/prob/poss/child::person[.//phone > ”2222”]
return

for $i1 in $i0/prob/poss/child::info[.//roomnr < "3"]
return

cpm:computeprobs(
(cpm:getnids($i1/prob/poss/child::mobilephone),
cpm:getnids($i0//phone[.> ”2222”]),
cpm:getnids($i1//roomnr[.< "3"]))

)/result
}</resultset>

Figure 5.11: Xquery output of the Java parser.

<nids>
<completenode>

<node>
<mobilephone>0666</mobilephone>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>26</prob><poss>27</poss><value>1.0<value></pp>
<oavalue>1.0</oavalue>

</pps>
<subnodes/>

</completenode>
</nids>

Figure 5.12a: The output of the “getnids” function for one mobilephone element.

<nids>
<completenode>

<node>
<phone>4444</phone>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss>1.0<value/></pp>
<pp><prob>4</prob><poss>5</poss>1.0<value/></pp>
<pp><prob>7</prob><poss>8</poss>0.5<value/></pp>
<pp><prob>10</prob><poss>11</poss>0.4<value/></pp>
<oavalue>0.2</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node>
<phone>3333</phone>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>17</poss><value>0.5<value></pp>
<pp><prob>19</prob><poss>23</poss><value>0.8<value></pp>
<oavalue>0.4</oavalue>

</pps>
<subnodes/>

</completenode>
</nids>

Figure 5.12b: The output of the “getnids” function for two phone elements.

Since the “computeprobvals” function determines that both predicate elements (phone
4444 and phone 3333) are valid, the “createpossworlds” function should combine the
nids of the mobilephone element with the nids both phone elements. However, the two
phone elements cannot occur in the same world. In this situation, the more advanced
functionality of the “createpossworlds” function is used. Based on the “pps” elements the
“createpossworlds” function now creates two “pw” elements, one for each combination of
the mobilephone element with one of the phone elements. This is shown in Figure 5.13:

The value of this division in possible world elements is that we can evaluate each
possible world separately for any following predicate steps. We use the possible world
elements as input for the “computeprobvals” function, in which we compare the “pps”
elements with the “pps” elements of the new predicate elements: roomnr 1 and roomnr
2. We determine (using our rules) that roomnr 1 only occurs in the first possible world
(with mobilephone 0666 and phone 4444), but that roomnr 2 occurs in neither possible
worlds. Therefore the “computeprobvals” filters out the roomnr element with value “2”
and the second “pw” element. The “createpossworlds” is called with the first “pw”
element and the roomnr element with value “1”. Because the roomnr element with value
“1” and the phone element with value “4444” are positioned in the same possibility node
no extra “pps” elements are added to the first “pw” element and the final result (before
calculating the actual probability) is shown in Figure 5.14:

41

<pw>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>26</prob><poss>27</poss><value>1.0<value></pp>
<oavalue>1.0</oavalue>

</pps>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>11</poss><value>0.4<value></pp>
<oavalue>0.2</oavalue>

</pps>
</pw>,
<pw>

<pps>
<pp><prob>1</prob><poss>2</poss><value>1.0</value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0</value/></pp>
<pp><prob>26</prob><poss>27</poss><value>1.0</value></pp>
<oavalue>1.0</oavalue>

</pps>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>17</poss><value>0.5<value></pp>
<pp><prob>19</prob><poss>23</poss><value>0.8<value></pp>
<oavalue>0.4</oavalue>

</pps>
</pw>

Figure 5.13: The output of the “createpossworlds” function.

The “computeprobs” function now takes the “node” element of the “getnids” result of the
only mobilephone candidate element and returns this node with the calculated probability
(1.0 x 1.0 x 1.0 x 0.5 x 0.4=0.2) obtained from the “createpossworlds” result.

 5.2.5 Subnodes

In the prototype introduces thus far, a problem arises when we query for elements that
contain children and we use this child element as predicate. An example is the following
query executed on the document of Figure 5.10:

doc(“figure5.10”)/person/info/roomdetails[./roomnr=”1”]

The “computeprobs” function would notice that there is one roomdetails element and one
roomnr element that satisfy this query. So the probability of the roomdetails element
(0.5) will be multiplied with the probability of the roomnr element (0.4) and the whole
roomdetails element will be returned with a result probability of 0.2 as shown in Figure
5.15:

42

<pw>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>26</prob><poss>27</poss><value>1.0<value></pp>
<oavalue>1.0</oavalue>

</pps>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>11</poss><value>0.4<value></pp>
<oavalue>0.2</oavalue>

</pps>
</pw>

Figure 5.14: The output of the “createpossworlds” function for the final result.

<resultset>
<result val=”0.2”>

<roomdetails>
<prob>

<poss prob=”0.4”>
<roomnr>1</roomnr>
<phone>4444</phone>

</poss>
<poss prob=”0.6”>

<roomnr>4</roomnr>
<phone>2222</phone>

</poss>
</prob>

</roomdetails>
</result>

</resultset>

Figure 5.15: The output of the “computeprobs” function for the final incorrect result.

Returning the whole roomdetails element with its entire subtree is not correct because it
returns two worlds: one in which roomdetails contains a roomnr “1” and a phone “4444”
and one in which roomdetails contains a roomnr “4” and a phone “2222”. However, this
second world is not part of our query result, since we asked only for roomdetails
elements that contain a roomnr equal to “1”. To prevent that child nodes of the result are
listed while they cannot occur in the same world as the predicate elements of the query,
we do an extra check for all descendants of the result elements.
To be able to check child elements the “getnids” result for an element containing child
elements is extended as shown in Figure 5.17. We fill the “subnodes” element with the
“completenode” elements that correspond with the children of roomdetails. Instead of
returning the roomdetails element, we compare the “pps” elements of all child elements
with the “pw” elements returned by the “createpossworlds” function. When the “pps”
element of the child can be added to a current “pw” element, the child belongs to the
result. If a new “pw” elements needs to be constructed when we would add the “pps”
element of the child to the “pw” elements, we can conclude that the child element
doesn't occur in the same possible world as the predicate element.
We construct a new roomdetails elements that contains only those child elements that
occur in the same possible world as the predicate (or one of the predicates). We also
make sure the the possibility nodes of the predicate elements itself gets the probability
value “1.0”. The new and correct result is shown in Figure 5.16:

43

<resultset>
<result val=”0.2”>

<roomdetails>
<prob>

<poss prob=”1.0”>
<roomnr>1</roomnr>
<phone>4444</phone>

</poss>
</prob>

</roomdetails>
</result>

</resultset>

Figure 5.16: The output of the “computeprobs” function for the final correct result.

44

<nids>
<completenode>

<node>
<roomdetails>

<prob>
<poss prob=”0.4”>

<roomnr>1</roomnr>
<phone>4444</phone>

</poss>
<poss prob=”0.6”>

<roomnr>4</roomnr>
<phone>2222</phone>

</poss>
</prob>

</roomdetails>
</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<oavalue>0.5</oavalue>

</pps>
<subnodes>

<completenode>
<node><roomnr>1</roomnr></node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>11</poss><value>0.4<value></pp>
<oavalue>0.2</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node><phone>4444</phone></node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>11</poss><value>0.4<value></pp>
<oavalue>0.2</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node><roomnr>4</roomnr></node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>14</poss><value>0.6<value></pp>
<oavalue>0.3</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node><roomnr>2222</roomnr></node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>14</poss><value>0.6<value></pp>
<oavalue>0.3</oavalue>

</pps>
<subnodes/>

</completenode>
</subnodes>

</completenode>
</nids>

Figure 5.17: The output of the “getnids” function one roomdetails element.

 5.3 Observations

The most important observations using the compare paths method can be summarized
as follows:

● When output elements are returned that contain a lot of child elements, for all
these elements a check is performed to examine whether they are valid for the
possible world in which the parent element occurs. This process is inefficient for
the following two reasons:
○ As shown in Figure 5.17 the “getnids” function returns for such a parent

element the nids of both the element itself and the nids for all his children. For
the example this means that the “pp” elements with prob-poss combinations
(1,2)(4,5) and (7,8) are listed in total five times, although it is obvious that the
children all contain the “pp” elements of their parent.

○ The depth of the predicate is not taken into account when checking. So all
descendant elements are checked for validity although the predicate itself
might be a direct child element of the result element.

● Using the possibility per node representation style, no combinations of results
elements can be reconstructed from the result. In other words; we cannot give the
probability that two of the elements in the result occur in the same possible world.

● The size of the result grows linearly with the number of elements that satisfy the
query.

● Calculations are done only for candidate elements i.e. those elements that have a
chance to be in the final result (based on the original query, that is converted to a
probabilistic variant).

45

46

<prob>
<poss prob="1">

<person>
<prob>

<poss prob="1">
<firstname>Eliza</firstname>

</poss>
</prob>
<prob>

<poss prob="1">
<lastname>David</lastname>

</poss>
</prob>
<prob>

<poss prob="1">
<phones>

<prob>
<poss prob="1">
<homephone>057-5049214</homephone>

</poss>
</prob>
<prob>

<poss prob="0.34">
<mobilephone>06-18624061</mobilephone>

</poss>
<poss prob="0.66">
<mobilephone>06-85489600</mobilephone>

</poss>
</prob>

</phones>
</poss>

</prob>
<prob>

<poss prob="1">
<address>

<prob>
<poss prob="1">
<street>Madridweg</street>

</poss>
</prob>
<prob>

<poss prob="0.02">
<housenr>576</housenr>

</poss>
<poss prob="0.98">
<housenr>111</housenr>

</poss>
</prob>
<prob>

<poss prob="1">
<postalcode>8244HV</postalcode>

</poss>
</prob>
<prob>

<poss prob="1">
<city>Luinjeberd</city>

</poss>
</prob>

</address>
</poss>

</prob>
<prob>

<poss prob="1">
<emails>

<prob>
<poss prob="1">
<email>Eliza.David@hotmail.com</email>

</poss>
</prob>

</emails>
</poss>

</prob>
</person>

</poss>
</prob>

Figure 6.1: An example of one person in a generated test-addressbook-
document

mailto:Eliza.David@hotmail.com

 6 Experiments

 6.1 Experimental set-up

To compare the efficiency of the different methods described in this report we setup a
test scenario. We generate sample XML files as input for the different prototypes. The
sample XML files all describe an uncertain address book, although the number of persons
in the address book and the level of uncertainty differs. We create address books with
the following combinations of properties:

Table 6.1: Combinations for generated test address books with the number of possible worlds they contain.

Number of PWs Layout-code 2-1-0% 3-1-0% 3-2-0% 3-2-20% 3-2-50%

Number of persons

5 2.09e+6 1.19e+12 9.52e+12 4.04e+11 2.14e+13

10 1.09e+12 1.38e+22 2.21e+25 9.25e+26 2.21e+30

20 1.98e+28 2.03e+46 3.33e+49 2.39e+51 1.36e+63

100 1.08e+127 1.24e+223 1.38e+224 9.07e+254 2.58e+281

1000 Inf Inf Inf Inf Inf

10000 Inf Inf Inf Inf Inf

In the code a-b-c% of Table 6.1, a, b and c are explained as follows:

a: leaf-nodes (firstname, lastname, homephone, mobilephone, street, housenr,
postalcode, city and email) have a maximum of a possibilities

b: leaf nodes which can occur multiple times (homephone, mobilephone and email)
have a maximum of b occurrences.

c: c percent of the parent nodes (phones, address email) has a maximum of 2
possibilities (the other part has one possibility).

The person elements and the address element that these persons contains have both a
probability of one.

There are a few main cases in which our different prototypes may achieve a different
level of performance. These are (together with the queries we specified to test the
cases):

● Selecting all leaf nodes (like homephone or city)
Q1 /person/phones/homephone

● Selecting all parent nodes (like person, phones or address)
Q2 /person/phones

● Selecting a leaf node that has a specific value
Q3 /person/phones/homephone[.=X]

● Selecting a parent node that has a certain leaf node or a leaf node with a specific

47

value.
Q4 /person/phones[./homephone]
Q5 /person/phones[./homephone=X]
Q6 /person[./phones/homephone=X]

Where X is an existing homephone number in the document that is queried.

We will describe the results of the queries ran by the different prototypes over our test
files in the next section. It has to be mentioned that the prototypes we tested for the
recursive path analysis and the compare paths method both support only one
representation style. The recursive path analysis uses the possible-world style, while the
compare paths method uses the possibility-per-node style. The system we use to run our
prototypes has the following specifications:

 - Pentium 4 2.66GHz
 - 1GB ram
 - Suse Linux 10.0 kernel 2.6.13-15.18-default
 - MonetDB Server v4.22.1
 - MonetDB/XQuery module v0.22.1

 6.2 Results

First of all we tested the naive method. Its outcomes should have formed the basis for
the comparisons done with the other two prototypes. However, we do not have any
usable test data for the naive method, because every test case caused a crash of the
MonetDB/XQuery database. The reason for this was the huge number of possible worlds
that needed to be calculated. For example, our most simple test file with five persons
consists of 2,097,152 different possible worlds. Since in our opinion, this sufficiently
proved the inefficiency of the naive method, we continued with the tests for the other
prototypes to examine whether they would outperform the naive method and which of
both would turn out to be the most efficient method.

We started testing both remaining methods (CPM and RPA) using a small dataset,
namely the 5-person address books in the different layouts we mentioned in Table 6.1.
This first query (Q1) doesn't contain a predicate and the generated results do not contain
any subnodes.

Figure 6.2 shows the time (in
milliseconds) it takes to get all
homephone elements from our
dataset. It is clear that the processing
time of the compare paths method
stays constant around 1600
milliseconds. The processing time of
the recursive path analysis increases
up to 4600 milliseconds as the level of
uncertainty grows, since the number
of possible answers that need to be
generated increases.
Next, we did the same test but time
we queried all phones elements. These

48

Figure 6.2: Testresults for Q1 with 5 persons

rp5-2-1 rp5-3-1 rp5-3-2 rp5-3-2-20per rp5-3-2-50per

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750

/person/phones/homephone

CPM

RPA

Documents

M
ill

is
ec

on
d

s

phones elements contain subnodes: they are the parents of the homephone elements
and are positioned one level higher in the XML tree.

In Figure 6.3 the test results for both methods are displayed. For the compare paths
method the fact that in this test, the getnids function generates nids for both phones and
its subnodes, causes a longer processing time (of around 2000 milliseconds).
The processing time for the recursive path analysis decreases to less than one second for
the test documents rp5-2-1 to rp5-3-2, which don't contain uncertainty on the phones
level. For the documents that contain 20 or 50 percent uncertainty on the phones level,
the processing time increases slightly.

For both Q1 and Q2 it can be concluded that the CPM processing time is independent of
the level of uncertainty. In contrast, the processing time of the RPA increases when the
level of uncertainty rises. We can explain this difference by taking a closer look at the
idea behind the both prototypes. The compare paths method compares paths to examine
if nodes are valid (see also below, when executing queries containing predicates is
discussed). However, since the queries we used in Q1 and Q2 do not contain predicates,
each node is valid. That is why in CPM no checking is performed in all of the cases. The
recursive path analysis constructs for each step of the query all possible worlds for nodes
that satisfy that step. In case of uncertainty on the phone level, the number of possible
worlds increases considerably. This causes the increasing processing time for Q1. On the
other hand when having no uncertainty, no possible worlds have to be calculated, which
explains the processing time less than a second for Q2.

In the next test, the influence of a predicate in the query in combination with subnodes
in the result was investigated. In Q4, all phones that contain a homephone element were
selected. In Figure 6.4, the results of Q4 are represented.

49

Figure 6.3: Testresults Q2 with 5 persons

rp5-2-1 rp5-3-1 rp5-3-2 rp5-3-2-
20per

rp5-3-2-
50per

0

200

400

600

800

1000

1200

1400

1600

1800

2000

/person/phones

CPM

RPA

Documents

M
ill

is
ec

o
nd

s

As can be seen, CPM's performance decreases drastically to 37.5 seconds for a document
with uncertainty on phones level. The recursive path analysis handles the same queries
in less then 2.5 seconds.

In Q6, instead of descendants of a person, a total person with a particular homephone is
returned in the result. Test results are depicted in Figure 6.5.

The differences between both query evaluating methods are even more pronounced than
in the results of Q4: more than 1.5 minute is needed to get one person using the
compare path method, whilst 3 seconds is enough for the recursive path analysis.
These differences can be explained as follows:
When executing Q6 we query for elements that contain child nodes. It is possible that
some children are not valid for the result (as explained in 5.2.5). CPM performs a check
to prevent the occurrence of invalid children in the result, whilst RPA does not. Therefore,
the comparison between both methods is not completely fair for this kind of query. Thus,
Figure 6.5, in which such an comparison is shown, should be seen as an indication of the
processing time needed for both methods, instead of a proof that the recursive path
analysis performs better in this situation.

50

Figure 6.4: Testresults for Q4 with 5 persons

rp5-2-1 rp5-3-1 rp5-3-2 rp5-3-2-
20per

rp5-3-2-
50per

0

5000

10000

15000

20000

25000

30000

35000

40000

/person/phones[./homephone]

CPM

RPA

Documents

M
ill

is
ec

o
nd

s

Figure 6.5: Testresults for Q6 with 5 persons

rp5-2-1 rp5-3-1 rp5-3-2 rp5-3-2-
20per

rp5-3-2-
50per

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

/person[./phones/homephone="??"]

CPM

RPA

Documents

M
ill

is
ec

on
ds

The increased CPM processing times for both Q4 and Q6 are caused by the fact that both
contain a predicate. In the evaluations of these queries, for each subnode it is checked
whether it is valid (as explained in section 5.2.5), which is a rather inefficient procedure.
The number of subnodes influences the processing time. This is why it takes longer to
query bigger nodes (like person in Q6) as well as to execute a query on a document with
more uncertainty (like the 50% documents in Figure 6.4 and Figure 6.5).

In the previous tests we have seen that the compare paths method can execute queries
without leaf elements in less than 2 seconds independent of the level of uncertainty. To
test the boundaries of this method in terms of the size of the dataset, we repeated Q1
using CPM with address books that contained larger numbers of persons (see Figure 6.6).

This figure shows that even for a 100-person address book, the processing time
increases barely. When querying address books with 1000 or 10000 persons the process
slows down. This is probably the logical effect of the fact that large output has to be
generated together with a large amount of probabilities that have to be calculated.

We performed Q1 with large address books again using RPA. The results of this query are
shown in figure 6.7.

51
Figure 6.7: Testresults for Q1 executed on addressbooks of different sizes using RPA

5 10 20 100 1000 10000

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

32500

35000

RPA /person/phones/homephone

2-1

3-1

3-2

3-2-20per
3-2-50per

Nr of persons

M
ill

is
ec

on
ds

Figure 6.6: Testresults for Q1 executed on addressbooks of different sizes using CPM

5 10 20 100 1000 10000

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000

CPM /person/phones/homephone

2-1

3-1

3-2

3-2-20per

3-2-50per

Nr of persons

M
ill

is
ec

on
ds

The large number of possible worlds that have to be constructed leads to the fact that,
except from the address book in its most simple form (2-1), address books with 20 or
more persons can not be queried.
Finally, we chose to take a closer look on the CPM because of the promising results that
were obtained in Q1 for different sizes of address books. We assumed that the long
processing time in the query of the largest address books could be assigned to the large
amount of results that had to be returned. To investigate if CPM could be useful for
selecting only a few elements from a large dataset, we tested two more queries.

First, we queried only for a homephone with a
certain value (Q3, see Figure 6.8). Thus, in Q3, as
in Q1, we query leaf nodes. However, Q3 returns
only one element, since it contains a predicate that
is fulfilled by one specific homephone element
existing in the document that is queried. Because
no lower subnodes are present, no checking for
valid subnodes is performed. For this reason, such a
query can be executed on the 5-persons address
book in less than five seconds. The observation that
the 10000-person address book can be queried in
approximately the same amount of time, results
from the fact that the selection as well as the
representation processes of only element can be
performed in a small amount of time.

In our final query (Q5), we queried all phones that
contain a homephone with a specific value. Thus,
contrary to Q3, Q5 does contain subnodes that are
checked for validity. We chose the value for the
homephone element in such a way that this query
returns exactly one phones element. Running this
query on the most complicated variant (3-2-50%) of
the 5-person address book takes 17 seconds, but
running it on the same variant of the 10000-address
book only takes 11 seconds (Figure 6.9). The fact
that in some cases it is possible to achieve lower
processing times for larger address books than for
small ones can be explained as follows: because the
test files are randomly generated, it can be the case
that the phones element requested in the small
address book contains more subnodes than the one
requested in the larger address book. Thus, the
present results can be considered a coincidence.

52

Figure 6.8: Testresults for Q3 executed on
different sizes of addressbooks using CPM

3-2-50per

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

/person/phone/homephone[.="X"]

5

10000

Documents

M
ill

is
ec

on
ds

Figure 6.9: Testresults for Q5 executed on
different sizes of addressbooks using CPM

3-2-50per

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

/person/phones[./homephone="X"]

5

10000

Documents

M
ill

is
ec

on
ds

 6.3 Test conclusions

● The large number of possible worlds that are generated by the naive method,
causes that none of our data-sets can be queried. So it can be concluded that the
efficiency of this method is insufficient for practical use.

● The processing time of a query using the recursive path analysis varies with the
level of uncertainty in the result. A high level of uncertainty causes long processing
times. This makes that the recursive path analysis works well on a broad range of
documents and queries, until the number of possible worlds in the result gets too
high.

● The processing time of the compare paths method is almost independent of the
level of uncertainty of the document. Therefore, queries for elements that do not
contain subnodes, can be executed in a small amount of time.

● However, checking for valid subnodes in the compare paths method is such a slow
process that querying for nodes with a large number of subnodes in combination
with a predicate is no option for almost all documents. The recursive path analysis
however only supports queries with predicates, if the query contains a following
step in which the element does not occur in the same probability node as the
predicate element.

● When the results itself is small sequence with a each small number of subnodes,
the compare paths method can be used on very large (10000-person) files.

Based on these conclusions we can give a decision tree as shown in Figure 6.10. A user
that has a certain knowledge about the document and what his query probably would
return, can use this tree to choose a suitable query method.

53

54

Figure 6.10: Decision tree for choosing a query method

 7 Conclusions & recommendations

In this thesis, we have presented three methods for querying XML directly on the
compact representation. In the naive method, all possible worlds are constructed and the
query is executed over all these worlds. We have shown that the naive method is
unsatisfactory for even a small dataset. We then described and tested two new methods
for querying the compact representation: The “Recursive path analysis” and the
“Compare paths method”. We found out that both methods outperform the naive
method; however, there are differences in performance between the two methods. Each
method has its own strong and weak points.

The recursive path analysis method generates an XQuery that selectively considers
possible worlds that are relevant to the query. A strong point of the recursive path
analysis method is its ability to produce an answer in the possible worlds representation
style. The improvement compared with the naive method is achieved by avoiding most of
the possible world construction. The weak point of the recursive path analysis is the fact
that for every step taken in the XPath query all possible worlds for the nodes satisfying
that step are enumerated. Doing “deep” queries on documents with a lot of uncertainty
still causes too many possible worlds to be enumerated.

The compare paths method compares the paths of nids of candidate elements with those
of predicate elements to determine whether candidate elements should be included in the
final answer. A strong point of this method is its use of the possibility-per-node answer
representation. Moreover, for several types of queries the processing time of the
compare paths method is independent of the level of uncertainty or the size of the
document. This makes it possible to query an address book document containing up to
10000 people in roughly the same amount of time as a five person address book. An
disadvantage of the compare paths method concerns the filtering of the result subtrees.
If the query result contains elements with a lot of child elements, the response time will
be long.

The recursive path analysis uses the possible world representation style. Although the
result is very precise this way, it generates very large results. If we do not take this issue
into account we can conclude the following about the two methods:

• Using small documents (10 pers.) or larger documents containing minimal
uncertainty (1000 pers.), overall, the recursive path analysis performs best.

• The compare paths method performs better only if the elements that are queried
have (almost) no child elements. If this is the case, even very large probabilistic
XML documents (10000 pers.) can be queried with the same speed as a small
document (5 pers.).

The execution times of both methods are not directly comparable. The compare paths
method filters the subtrees of result elements. The recursive path analysis doesn't do so.
For this reason, using the recursive path analysis, correct results are not guaranteed
when queries containing a predicate are executed.

In conclusion, the compare paths method has the most potential to form the basis for an
efficient probabilistic XML query mechanism. The result subtree filtering technique

55

deserves further research as it currently appears to be one of the major bottlenecks.

Because of the different answer representation styles the two prototypes use, our
comparison is not completely fair. The performance of the recursive path analysis
decreases when documents containing more uncertainty are queried. In the same
situation the performance of the compare paths method stays roughly the same.
However, the current investigation doesn't answer the question whether this difference in
performance is caused by a fundamental difference between the algorithms of both
prototypes or by the considerable difference between the sizes of the results that need to
be generated. An additional experiment comparing both prototypes using both the
possibility-per-node style and the possible world style could give a better view on this
issue.

 7.1 Optimization recommendations

As mentioned before, the processing time of the compare paths method increases rapidly
when returning elements with large subtrees. The method to check whether child
elements may occur in the result needs to be optimized to get a prototype that is more
usable in practice. Possible solution directions are:

• The number of subnodes that are checked for validity should be reduced to a
minimum. In many cases it is not necessary to check all descendants. For
predicate elements it is not needed at all.

• For the structure of a path of prob and poss nids, a way of efficiently representing
subnodes should be investigated, so that less redundant data is needed.

• The function that takes care of returning paths of prob and poss nids should have
a different output for candidate and predicate elements. Furthermore it isn't
necessary to call this function when no predicates are involved in the query.

Another way of optimizing the compare paths method can be done by implementing the
the function that compares paths and the “createpossworlds” function in the internal
programming language of MonetDB as a standard function instead of an XQuery module.

 7.2 Extension recommendations

The compare paths method prototype supports the most general XPath queries. More
advances applications of XPath are not yet (fully) implemented. Axis steps are for
example already supported in the Java parser but whether the XQuery module can
handle them is not yet fully tested. Some operators (like “+”, “-”, “<=” , “>=”, “eq” and
“or” for example) and functions (like “position()” and “last()” for example) however
shouldn't be a problem for the XQuery module but are not yet supported in the Java
parser.

56

When the goal is to fully support XQuery not only the parser has to be extended, also
some important questions have to be asked. The most used feature of XQuery is in
general to iterate over XPath query results. But when we have probabilistic results,
where do we want to iterate over? different worlds? result elements? combinations of
result elements? And what do we do with the probabilities? Do we want to use them for
further calculation or ignore them? Do the probabilities differ when we specify a where
clause in our for loop?
We do not have the answers on these questions but hopefully they form a challenge for
future research.

57

References

[AKO07] L. Antova, C. Koch, and D. Olteanu. Maybms: Managing incomplete information with
probabilistic world-set decompositions. In ICDE’07, pages 1479–1480.

[BGK+06] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery - Fast and Scalable XQuery Processor Powered by a Relational Engine. In
ACM SIGMOD International Conference on Management of Data, Chicago, USA, June 26-29,
2006, June 2006.

[CD99] J. Clark and S. DeRose. XML path language (Xpath) 1.0. W3C recommendation. World Wide
Web Consortium, http://www.w3.org/TR/xpath, Nov. 1999.

[CFR+00] D.Chamberlin, D.Florescu, J.Robie, J.Simeon, and M.Stefanescu. XQuery: A query language
for XML. World Wide Web Consortium, http://www.w3.org/TR/xquery, Feb 2000.

[CFP00] S. Ceri, P. Fraternali, S. Paraboschi. XML: Current Developments and Future Challenges for
the Database Community. In Proc. of the 7th Int. Conf. on Extending Database Technology
(EDBT), Springer, LNCS 1777, Konstanz, March, 2000.

[DAF04] F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML documents in relational databases.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), 2004.

[DFS99] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with STORED. In
Proceedings of the 1999 ACM SIGMOD international conference on Management of Data
(SIGMOD’99) , Philadelphia, Pennsylvania, May 31 - June 3 1999.

[FK99] D. Florescu and D. Kossmann. Storing and querying XML data using an RDBMS. In IEEE Data
Engineering Bulletin, 22(3), September 1999.

[HGS03] Edward Hung, Lise Getoor, and V.S. Subrahmanian. Probabilistic interval XML. In
International Conference on Database Theory (ICDT), Siena, Italy, January 2003.

[JAC+02] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. Lakshmanan, A. Nierman, S. Paparizos, J. M.
Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A native XML database. In
The VLDB Journal, pages 274–291, 2002.

[KEI06] A. de Keijzer. Probabilistic XML in Information Integration. In Proceedings of the VLDB2006
Ph.D. Workshop, Seoul, Rep of Korea, 2006.

[KEU08] M. van Keulen, Personal communication, March 2008.

[KK04] A. de Keijzer and M. van Keulen. A possible world approach to uncertain relational data. In
Proc. SIUFDB Workshop, Zaragoza, Spain, Sept. 2004.

[KKA05] M. van Keulen, A. de Keijzer, and W. Alink. A probabilistic xml approach to data integra-
tion. In Proc. ICDE Conf., Tokyo, Japan, pages 459–470, 2005.

[KKL06] A. de Keijzer, M. van Keulen, and Y. Li. Taming Data Explosion in Probabilistic Information
Integration. In Proceedings of the International Workshop on Inconsistency and
Incompleteness in Databases (IIDB), March 26, 2006, Munich, Germany, March 2006.

[KKR+00] G. Kappel, E. Kapsammer, S. Rausch-Schott, W. Retschitzegger: X-Ray - Towards Integrating
XML and Relational Database Systems. In Conceptual Modeling - ER 2000 - 19th Int.
Conference on Conceptual Modeling, Salt Lake City, Utah, USA, October 9-12, 2000, LNCS
1920, Springer-Verlag, Berlin, 2000, pages 339–353.

[NJ02] A. Nierman and H.V. Jagadish. ProTDB: Probabilistic data in XML. In Proc. of the 28th VLDB
Conference, Hong Kong, China, August 2002.

[WID05] J. Widom, "Trio: A System for Integrated Management of Data, Accuracy, and Lineage," In
CIDR, 2005.

58

	 1 Introduction
	 1.1 Motivation
	 1.1.1 Applications
	 1.1.2 Data integration

	 1.2 Problem
	 1.3 Problem definition
	 1.3.1 Goals
	 1.3.2 Research questions
	 1.3.3 Research method

	 1.4 Overview

	 2 Background & related research
	 2.1 Possible worlds
	 2.2 Representation of uncertain data
	 2.3 Querying data
	 2.4 Result representation styles
	 2.4.1 Possible worlds style
	 2.4.2 Document structure style
	 2.4.3 Possibility per node style

	 3 Naive method
	 3.1 Basic idea
	 3.2 In practice
	 3.3 Observations

	 4 Recursive path analysis (RPA)
	 4.1 Basic idea
	 4.2 In practice
	 4.2.1 XQuery
	 4.2.2 Perl
	 4.2.3 Predicates

	 4.3 Observations

	 5 Compare paths method (CPM)
	 5.1 Basic Idea
	 5.2 In Practice
	 5.2.1 The representation style of the prototype
	 5.2.2 General overview
	 5.2.3 The Java parser
	 5.2.4 The CPM XQuery Module
	 5.2.5 Subnodes

	 5.3 Observations

	 6 Experiments
	 6.1 Experimental set-up
	 6.2 Results
	 6.3 Test conclusions

	 7 Conclusions & recommendations
	 7.1 Optimization recommendations
	 7.2 Extension recommendations

	References

