
Master Thesis
University of Twente

Querying Probabilistic XML

Ruud van Kessel

Supervisors:
Dr. ir. Ander de Keijzer
Dr. ir. Maurice van Keulen
Dr. Maarten Fokkinga

Enschede, April 2008



Management Summery

In the scientific field and in working with data integration, uncertain data is a very 
common subject. In [KKA05] a compact representation is proposed for storing uncertain 
data in XML. A naive way of querying this data is by calculating all possible worlds and 
execute the query on each of the worlds. Calculating these possible worlds is however 
very inefficient because of the exponential growth of worlds. In this thesis we will 
investigate how the compact representation can be queried in an efficient way. 
We will compare two methods for querying the compact representation: Recursive path 
analysis and the Compare paths method. 

Recursive path analysis.
Using a script, for each step of the query a piece of XQuery code is generated, which 
returns each possible answer for that step. The output of step one is the input of step 
two and so on. The increase in performance is obtained by calculating the possible 
answers for the query, instead of calculating all possible worlds for the document.

Compare paths method.
The query is converted by adding the needed possibility and probability steps to the 
query. When executing queries that include a predicate, an extra check has to be 
performed to examine if the returned results indeed can occur together with one of the 
elements referred to in the predicate. We do this by comparing the paths of node 
identifiers belonging to the probability and possibility ancestors of the candidate 
elements with the ones of the predicate elements. Two elements occur in the same world 
only if the number of probability ancestors that occur in both paths of the two elements 
is equal to the number of probability ancestors that occur in both paths.

We test both methods by executing several queries on test documents of different sizes 
and containing different levels of uncertainty. This leads to the following conclusions:
– Even for large documents (up to an address book containing 1000 people) the 

compare paths method works well. However when requesting documents with a lot of 
descendants in the result, the performance decreases quickly. This is a point of 
interest for future work.

– The performance of the recursive path analysis is more dependent of uncertainty. 
Therefore it works better on smaller documents and documents with a smaller level of 
uncertainty.

– In the recursive path analysis, no feature of checking the correctness of child nodes is 
implemented. For this reason it performs better than the compare paths method when 
elements with a lot of children are returned. However, when using predicates there 
are several cases in which the result can contain incorrect child nodes because simply 
every node is returned.
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 1 Introduction

 1.1 Motivation

In our modern world, stored data is everywhere around us. Just think of the client 
databases of your bank, insurance company or hospital, but also of the geographical data 
in a navigation system or the contacts in your mobile phone. In most cases this data is 
stored in a relational database, because of the clear table structure and the fast lookup 
methods these databases offer.
In several cases, however, it is preferred to represent data as a graph instead of using 
tables. For example when the structure of the data changes frequently. XML is the most 
commonly used standard to represent this semistructured data. In 2000 [CFP00] stated 
that data representation, data interchangeability and the abilities of using XML as a 
repository are three promising perspectives of XML. Nowadays XML is used more and 
more instead of HTML for representing web-pages. Furthermore, it is widely used for 
RSS-feeds and it is the basis in the SOAP protocol for exchanging messages between 
web-services.
Semistructured data storage systems like [BGK+06], [DAF04], [DFS99], [FK99], 
[KKR+00], and [JAC+02] are used for storing and querying XML documents. In most 
cases, this is done by mapping XML to relational tables. 
What is common for relational databases and the current semistructured data storage 
systems is, that the data stored is assumed to be the correct data. If the database of 
your bank for example contains a customer “John” with account number “1234567”, then 
you can assume there is a “John” with such an account i.e. the data is certain. 
There are however several cases in which the data one obtains, is somehow not certain. 
To illustrate the need for the possibility to store uncertain data, we will give a few 
examples in the following sections.

 1.1.1 Applications

In the scientific field all kinds of experiments are executed. In many cases this leads to 
uncertain data. For example, sensors produce inherently uncertain data, because sensors 
usually return a value with a certain inaccuracy, instead of one precise value. 
Manipulating sensor data probably produces uncertain results as well.
[NJ02] gives an example of uncertainty in scientific data by giving insight into the area of 
proteomics. A challenge in this area is to identify individual proteins. For this task several 
experimental tests are available, all with varying reliability. Cases may occur in which 
proteins are totally misidentified. For following steps in the process an efficient way of 
storing the level of uncertainty of the test is crucial. Working with imprecise sensors and 
running test programs that may deliver multiple results, are common sources of 
uncertain data in the scientific field.

Another example is a speech recognition system that could return several options for 
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processed spoken words. The system may have recognized that you said “Hello”, but it 
might also have been “Yellow” (see Figure 1.1). In such a system it is possible that one 
wants to store both values and return those to the user for feedback and interactive 
learning of the system.

A system that is related to the one described above, but used for more serious business, 
is the military surveillance system described in [HGS03]. In this case, instead of spoken 
language, images of a battlefield are processed. These images may contain several 
objects that need to be classified, for example vehicle convoys or refugee groups. It is 
not always possible to extract precise information like the exact number of refugees or 
the specific type of vehicle in a convoy, but all different possibilities need to be stored to 
create an overview of the situation, so that important decisions can be based on this 
data.

 1.1.2 Data integration

Besides the uncertainty in external information, uncertainty can also occur when 
integrating two or more certain data sources. This may become clear when combining, 
for example, the address book stored on your computer with the one stored on 
somebody else's laptop. There may be contacts that you both know. But if the contact 
“John” has “john@hotmail.com” as an email address in your address book and the other 
person knows a “John” with “john@gmail.com”, then which email address is right and are 
we even talking about the same “John”?

These uncertainties are hard to store in a normal database. Therefore methods are 
currently being investigated to adapt traditional databases in such a way that it is 
possible to store uncertain data. This has been done for relational databases but also for 
XML databases.

 1.2 Problem
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We have shown that systems that are able to store uncertain data, have an important 
role to fulfill. Probabilistic databases differ from normal databases in the following way. A 
normal database describes one world in which all data is certain. Because in a 
probabilistic database the data contains different possibilities, instead of one world, 
multiple possible worlds are described. Hence, a probabilistic database can be seen as a 
collection of several normal databases that each describe a possible world. However, 
storing probabilistic data this way is very inefficient, because the number of possible 
worlds grows exponentially with the number of possibilities that the document contains. 
Therefore a probabilistic database uses a compact representation for storing probabilistic 
data. In this thesis, we investigate how we can query this compact representation in an 
efficient way.

 1.3 Problem definition

The problem is defined as follows:

How can we efficiently query probabilistic XML documents in the compact representation, 
in such a way that we get the correct result including the associated probabilities?

 1.3.1 Goals

In [KKA05] the theory behind querying probabilistic data is explained. A naive 
implementation of this theory implies constructing all possible worlds and executing a 
query on each of them. This is an inefficient process, because the number of possible 
worlds grows exponentially with the number of possibilities in the document. Our goal is 
to improve this situation by developing a technique to process queries on a probabilistic 
XML document in an efficient manner. 
Normal queries on XML documents are formulated in XQuery or XPath. Our goal is to 
support a significant subset of XPath.

 1.3.2 Research questions

To guide this research to a successful solution for our main problem, we formulated the 
following research questions:

● Which alternatives are known for querying probabilistic data?
We want to know if there currently exist methods that are useful for our research. 
How is the querying of probabilistic data solved for relation databases and what 
research is done in the semisturctured field? 

● How does a probabilistic XML document differ from a normal XML document and 
how does this affect the execution of a query?
The structure of a probabilistic XML document differs from a normal XML 
document. Therefore, it is possible queries have to be converted to another 
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format. We want to know to what extend this influences the total process of 
executing a query.

● On what properties of the compact representation should an approach focus for 
more efficiently query evaluating on probabilistic documents?
Instead of querying all possible worlds independently, we want to query a compact 
representation. The properties of this representation are different which possibly 
creates the opportunity to evaluate queries in an new and efficient way.

● When converting a query to a probabilistic format, should we look at step level or 
at the query in total?
XPath queries exist of different steps. Is it possible to convert them one by one? Is 
it possible to convert the query as a whole? And where in this process i.e. Between 
steps or at the and, should the query actually be evaluated.

● How do alternative approaches for querying probabilistic data compare concerning 
efficiency?
When having different set of (probabilistic data) which approach performs best for 
which set? Does the format of the query itself influences this result?

● How should answers of a query on a probabilistic XML document be represented?
The representation of a probabilistic query result differs from a normal result, 
because the results occur with a certain probability. What extra information is 
necessary to include in the result? What kind of styles can be thought of to 
represent this extra data? 

 1.3.3 Research method

By analyzing the properties of probabilistic XML documents in the representation with 
probability and possibility nodes, we create a prototype mostly written in XQuery. We do 
performance experiments to test the prototype's efficiency. We compare the prototype 
with other methods to query probabilistic data, including the naive approach. We use 
these comparisons to verify to what extent our goal is reached.

 1.4 Overview

We continue in Chapter 2 with the related research done in this field. In Chapters 3, 4 
and 5 we discuss three different ways of querying probabilistic data: the naive approach, 
recursive path analysis and the compare paths method respectively. In Chapter 6 we 
present our experiment evaluation and we take a look at the results of these 
experiments. In Chapter 7 we will formulate an overall conclusion and recommendations 
for future work.
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 2 Background & related research

To understand exactly what this investigation is about, we will explain in this chapter 
some important concepts in this chapter. First we will show how uncertain data can be 
considered as a description of multiple possible worlds. After this, we give an overview of 
the representation method used in [KEI06],[KKA05], because we use this way of 
representing uncertain data in the rest of this report. We conclude by explaining how 
specific information is normally extracted from a database and what the difference is 
when querying probabilistic data.

 2.1 Possible worlds

In working with probabilistic data whereby mutual exclusive possibilities can occur, is it 
useful to keep in mind the possible world semantics: the idea that an uncertain document 
can be seen as a sequence of possible worlds. When we have somehow retrieved 
uncertain data, this means that we are uncertain about what elements occur in our 
world. So instead of listing one certain world, we list all possible worlds, together with 
(for each of them) the probability it that is the correct one. In general an uncertain 
document does not describe all of these possible worlds separately, but uses a compact 
representation using less storage space.
Looking at our speech recognition system (see Figure 2.1) again, it can be seen that the 
corresponding XML document describes the world in which “Yellow” or “Hello” can be 
said, followed by “How are you”. We can look at this one uncertain world as if it exists of 
two possible worlds: the world in which is said “Yellow, how are you” and the world in 
which is said “Hello, how are you”. Only one of those possible worlds is the correct one. 
At this point, we don't know which one, but we estimate that with a probability of 0.8 the 
“Hello”-world is correct against a 0.2 probability of the “Yellow”-world.
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 2.2 Representation of uncertain data

We have seen that working with uncertain data leads to different possible worlds. The 
number of possible worlds grows exponentially with every possibility. If we manage to 
store every world separately in a database, the size of our database will grow 
exponentially too. Using a more compact representation is attractive because of the 
possibility to use less space for storing the data. The several relational and 
semistructured applications use different representations for storing probabilistic data in 
a compact way.
For instance, Trio[WID05], a relational probabilistic database project of the Stanford 
university, uses an uncertainty and lineage database (ULDB) filled with x-tuples. These 
x-tuples can be seen as normal tuples with the addition that for each element in the 
tuple more than one alternative can be given. These alternatives are mapped onto a 
regular relational table.
MayBMS [AKO07] is another relational probabilistic database system comparable with 
Trio. In this system the compact representation of possible worlds is called a world-set 
decomposition (WSD). Instead of one table with more (possible) attributes in one tuple, 
multiple tables with tuples containing one attribute are created for every group of 
possible attributes. Alternative representations like world-set decomposition templates 
(WSDTs) and unified world-set decomposition templates (UWSDTs) are used to reduce 
the number of tables in the database.
To reduce the space needed for data storage the probabilistic XML application ProTDB 
[NJ02] specifies some special nodes and attributes that are inserted into the XML 
document to indicate the presence of uncertainty. For every normal element an attribute 
“prob” (standing for probability) can be added which has a certain value between 0 and 
1. Also a “val” (for value) element with a “prob” attribute can be added to indicate that 
all nodes contained in this “val” element have some probability to occur. One or more of 
those “val” elements have to be placed inside a “dist” element. This “dist” element has 
an attribute “type” that describes the distribution type of the underlying “val nodes” and 
which can be “mutual-exclusive” or “independent”.
To store uncertainties in XML documents [KKA05] introduces its own compact 
representation comparable with the one used by ProTDB. The main difference is that the 
method described in [KKA05] holds that every distribution is mutual exclusive. This is 
achieved by introducing two extra elements with a special meaning: the probability node 
and the possibility node. A probability node is used to indicate that there could be 
multiple mutually exclusive possibilities present under that node. A possibility node is 
used to indicate that the underlying node has a certain chance to occur, identified with 
the value attribute (called “prob”) of this possibility element. Every normal node is 
preceded by a probability node and a possibility node.
A piece of sample probabilistic XML with a possible output of the speech recognition 
system mentioned in 2.1 is shown in Figure 2.2:

9



We will continue to use this representation in the next coming parts of this report, 
because this work builds on the method introduced by [KKA05].

 2.3 Querying data

To get specific data from a database a query has to be given as input. In general a query 
contains information about the location where the data can be found and about the 
conditions that the data to be returned will have to fulfill. For a relational database SQL is 
a common query language. For a specific table, elements of rows can be returned when a 
row fulfills a certain condition.

Students

studentnr name city

10 Jan Enschede

11 Henk Enschede

20 Piet Amsterdam

To get for example the names of the students that live in Enschede one can execute the 
following SQL-query.

SELECT name FROM students WHERE city=”Enschede”;

This leads to the following result:
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<prob>
<poss prob=”1”>

<recognizedsentence>
<prob>

<poss prob=”0.8”>
<words>Hello</words>

</poss>
<poss prob=”0.2”>

<words>Yellow</words>
</poss>

</prob>
<prob>

<poss prob=”1”>
<words>How are you</words>

</poss>
</prob>

</recognizedsentence>
</poss>

</prob>

Figure 2.2: Probabilistic XML document for speech recognition



Result

name

Jan

Henk

However, XML documents do not work with tables, but instead they have the structure of 
a tree (see Figure 2.3 with its tree representation in Figure 2.4). Therefore new query 
languages have been developed, for querying XML documents. The XQuery [CFR+00] 
standard together with the XPath [CD99] standard (which is a subset of XQuery) are 
widely used. In the query one describes the path where the needed information is 
located in the XML tree.

We give the XPath query for selecting the names of the students that study in Enschede. 
We give the path where to find the “name” node (Figure 2.5), but because we only want 
the name of those students who live in Enschede, we add a predicate to “student” in 
Figure 2.6.
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<students>
<student>

<studentnr>10</studentnr>
<name>Jan</name>
<city>Enschede</city>

</student>
<student>

<studentnr>11</studentnr>
<name>Henk</name>
<city>Enschede</city>

</student>
<student>

<studentnr>20</studentnr>
<name>Piet</name>
<city>Amsterdam</city>

</student>
</students>

Figure 2.3: students.xml

Figure 2.4: students.xml represented as tree.



The XQuery language is a lot more complicated than this, but XPath queries of this kind 
are the ones we pay most attention to in this report.

After the creation of a compact representation of all possible worlds a new problem 
arises: how do we query this representation? In the Trio system this problem is tackled 
by introducing TriQL, which is an extension of SQL. These TriQL queries can be executed 
on the ULDB containing x-tuples. This is done by parsing the TriQL statements which 
results in one or more SQL queries that are executed on the tables containing the 
possible alternatives.
The strategy of using some kind of module that converts a query into a suitable format 
for the probabilistic representation is also used by MayBMS. This system uses relational 
algebra. New versions of select, product join and other functions are created to query the 
multiple tables of their WSD.

The goal of the current investigation is to make it possible to execute queries like the 

12

doc(“students.xml”)/students/student/name

Evaluation steps:

• get the document student.xml

• from this result, get all the underlying “students” elements

• from this result, get all the underlying “student” elements

• from this result, get all the underlying “name” elements

Result:
<name>Jan</name>,
<name>Henk</name>,
<name>Piet</name>

Figure 2.5: Evaluation of doc(“student.xml”)/students/student/name

doc(“students.xml”)/students/student[./city=”Enschede”]/name

Evaluation steps:

• get the document student.xml

• from this result, get all the underlying “students” elements

• from this result, get all the underlying “student” elements

• from this result, get only those “student” elements that contain an element “city” 
with the text “Enschede”

• from this result, get all the underlying “name” elements

Result:
<name>Jan</name>,
<name>Henk</name>

Figure 2.6: Evaluation of doc(“student.xml”)/students/student[./city=”Enschede”]/name



ones described in Figure 2.5 and Figure 2.6 directly on the compact representation of a 
probabilistic XML document (like the one shown in Figure 2.2). When we query a 
probabilistic document this can be seen as executing a query on every possible world. 
For the compact representation the approach of evaluating the query and the final 
representation style may be different compared to querying all possible worlds 
separately. However, the final answer should correspond with the answer that would 
have been returned when each possible world was queried separately. We have seen in 
section 2.2 that the compact representation contains probability and possibility nodes 
which we do not want to take into account when formulating our query. This goal 
corresponds with the one described for the ProTDB system where the “dist” and “val” 
nodes should not be specified in the query itself, but probabilities should be returned in 
the result. To accomplish this the query parser module and the query evaluator module 
of Timber are adapted. The query parser module is changed in such a way that “dist” and 
“val” nodes are inserted where needed, before executing the query. The query evaluator 
takes care of the probability calculations for the result.
The syntax problem (handled by the query parser module in ProTDB) is only a sub-
problem we have to deal with when querying the compact representation. A bigger issue 
is the huge number of calculations that have to be done to find each of the possible 
answers. The representation styles for the final result (described in the next subsection) 
play an important role when dealing in possible answers. In chapters 4 till 6 different 
solutions for the total problem are described. The amount of attention paid to the syntax 
part is different for each solution.
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 2.4 Result representation 
styles

This investigation is aimed at 
developing a tool that is able to 
query the compact representation 
of a probabilistic XML document in 
a more efficient way. Before a 
prototype can be build a 
representation style has to be 
chosen for our query output. In 
the coming subsections we 
describe three possible 
representation styles. Each 
representation style is illustrated 
by an example. Those examples 
show the output of the particular 
representation style when 
executing the following query on 
the document shown in Figure 
2.7: 

doc(“figure2.7”)/addressbook
/person/phones/homephone
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<prob>
<poss prob="1">

<addressbook>
<prob>

<poss prob="0.5">
<person>

<prob>
<poss prob="0.7">

<phones>
<prob>

<poss prob="1">
<homephone>1111</homephone>

</poss>
</prob>

</phones>
</poss>
<poss prob="0.3">

<phones>
<prob>

<poss prob="1">
<homephone>2222</homephone>

</poss>
</prob>
<prob>

<poss prob="0.75">
<homephone>2323</homephone>

</poss>
<poss prob="0.25">

<homephone>2424</homephone>
</poss>

</prob>
</phones>

</poss>
</prob>

</person>
</poss>
<poss prob="0.5">

<person>
<prob>

<poss prob="1">
<phones>

<prob>
<poss prob="0.8">

<homephone>3434</homephone>
</poss>
<poss prob="0.2">

<homephone>3535</homephone>
</poss>

</prob>
<prob>

<poss prob="0.5">
<homephone>3636</homephone>

</poss>
<poss prob="0.5">

<homephone>3737</homephone>
</poss>

</prob>
</phones>

</poss>
</prob>

</person>
</poss>

</prob>
</addressbook>

</poss>
</prob>

Figure 2.7: Probabilistic XML document for an addressbook



 2.4.1 Possible worlds style

This representation style (shown in Figure 
2.8) is the style that corresponds with the 
naive method of querying the compact 
representation of probabilistic data. The 
result is now represented as answer per 
possible world. In a possible world all 
elements can be seen as certain because the 
world itself has a probability to occur. The 
probability of an answer equals the 
probability of the possible world on which the 
query is executed.  

It can be seen that answers are given as 
combinations of nodes and the correct 
answer is one of the given combinations. The 
probabilities of all combinations add up to 1 
which is intuitively correct. The number of 
answers increases however exponentially as 
the number of possibility-nodes that are 
involved in the answer grows.
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<prob>
<poss prob="0.35">

<homephone>1111</homephone>
</poss>
<poss prob="0.1125">

<homephone>2222</homephone>
<homephone>2323</homephone>

</poss>
<poss prob="0.0375">

<homephone>2222</homephone>
<homephone>2424</homephone>

</poss>
<poss prob="0.2">

<homephone>3434</homephone>
<homephone>3636</homephone>

</poss>
<poss prob="0.2">

<homephone>3434</homephone>
<homephone>3737</homephone>

</poss>
<poss prob="0.05">

<homephone>3535</homephone>
<homephone>3636</homephone>

</poss>
<poss prob="0.05">

<homephone>3535</homephone>
<homephone>3737</homephone>

</poss>
</prob>

Figure 2.8: All possible worlds style



 2.4.2 Document structure style

This style (see Figure 2.9) can be seen as 
an improved version of the possible 
worlds style. The underlying concept is 
not to display all possible worlds but to 
keep the result nodes in the same 
structure as used for the original 
document. Thus the structure is quite 
compact. Furthermore, knowledge about 
the possibilities is preserved, so that it is 
clear which combinations of result nodes 
form an answer.
However a “prob” node cannot be placed 
directly again under a “poss” node 
according the compact representation 
syntax of [KKA05],  nodes like, for 
example, “seq” and “subseq” need to be 
added to preserve a correct structure of 
the answer.
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<prob>
<poss prob="0.5">

<seq>
<prob>

<poss prob="0.7">
<homephone>1111</homephone>

</poss>
<poss prob="0.3">

<subseq>
<prob>

<poss prob="1">
<homephone>2222</homephone>

</poss>
</prob>
<prob>

<poss prob="0.75">
<homephone>2323</homephone>

</poss>
<poss prob="0.25">

<homephone>2424</homephone>
</poss>

</prob>
</subseq>

</poss>
</prob>

</seq>
</poss>
<poss prob="0.5">

<seq>
<prob>

<poss prob="0.8">
<homephone>3434</homephone>

</poss>
<poss prob="0.2">

<homephone>3535</homephone>
</poss>

</prob>
<prob>

<poss prob="0.5">
<homephone>3636</homephone>

</poss>
<poss prob="0.5">

<homephone>3737</homephone>
</poss>

</prob>
</seq>

</poss>
</prob>

Figure 2.9: Document structure style



 2.4.3 Possibility per node style

In this method the answer is represented by each 
result node with its own possibility instead of the 
combinations of result nodes that constitute an 
answer (see Figure 2.10). 
Therefore knowledge about the probabilities is lost 
because there is no way of reconstructing which 
nodes have the ability to occur together.
The size of this representation style grows linearly 
with the number of nodes in the original document 
that satisfy the query.
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<result>
<resultnode val="0.35">

<homephone>1111</homephone>
</resultnode>
<resultnode val="0.15">

<homephone>2222</homephone>
</resultnode>
<resultnode val="0.1125">

<homephone>2323</homephone>
</resultnode>
<resultnode val="0.0375">

<homephone>2424</homephone>
</resultnode>
<resultnode val="0.4">

<homephone>3434</homephone>
</resultnode>
<resultnode val="0.1">

<homephone>3535</homephone>
</resultnode>
<resultnode val="0.25">

<homephone>3636</homephone>
</resultnode>
<resultnode val="0.25">

<homephone>3737</homephone>
</resultnode>

</result>

Figure 2.10: Possibility-per-node style



 3 Naive method

 3.1 Basic idea

As stated before our probabilistic data is stored in a compact representation with 
probability and possibility nodes. According to [KKA05], a naive way to query this 
probabilistic data is by calculating all possible worlds. Each of these distinctive possible 
worlds can then be queried as a normal XML document. All possible answers that are 
created this way taken together, form the total result of the probabilistic query. 

 3.2 In practice

The following example clarifies the principle of the naive method in which all possible 
worlds are constructed.

Figure 3.1 describes a probabilistic document of a person and his or her characteristics. 
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<person>
<name>henk</name>
<phone>2222</phone>
<roomnr>2</roomnr>
<email>henk@hotmail.com</email>

</person>

Figure 3.2b: Second of four possible worlds

<person>
<name>henk</name>
<phone>1111</phone>
<roomnr>1</roomnr>
<email>henk@hotmail.com</email>

</person>

Figure 3.2a: First of four possible worlds

<prob>
<poss>

<person>
<prob>

<poss>
<name>henk</name>

</poss>
</prob>
<prob>

<poss>
<phone>1111</phone>
<roomnr>1</roomnr>

</poss>
<poss>

<phone>2222</phone>
<roomnr>2</roomnr>

</poss>
</prob>
<prob>

<poss>
<email>henk@hotmail.com</email>

</poss>
<poss>

<email>henk@gmail.com</email>
</poss>

</prob>
</person>

</poss>
</prob>

Figure 3.1: Simple example probabilistic XML document 

<person>
<name>henk</name>
<phone>1111</phone>
<roomnr>1</roomnr>
<email>henk@gmail.com</email>

</person>

Figure 3.2c: Third of four possible worlds

<person>
<name>henk</name>
<phone>2222</phone>
<roomnr>2</roomnr>
<email>henk@gmail.com</email>

</person>

Figure 3.2d: Fourth of four possible worlds



We want to execute the following XQuery on this document: 
doc(“Figure3.1”)/person[phone=”1111”]//roomnr 

which is the query to return all the room numbers from those persons that have 1111 as 
a phone number. On first sight, without paying enough attention to the possibilities, one 
could think that the result would exist of both room 1 and room 2, since those are the 
room numbers that can be found under the person element in which “phone” is 1111.
Now, let us look at Figure 3.2a till 3.2d that describe the 4 possible worlds that can be 
constructed out of this document (the prob and poss nodes are omitted for readability).
Here we can see that only Figure 3.2a and 3.2c return a result, since the persons in 3.2b 
and 3.2d have the wrong phone number. Both these correct results however, have room 
1 as room number. The correct result of this query on the above probabilistic document 
therefore is room one.

 3.3 Observations

As mentioned before this naive method is not very efficient, especially because of the 
exponentially growing number of possible worlds. This number increases for each 
probability node in the original document with a factor equal to the number of possibility 
nodes in that probability node. An example calculation in [KKL06] gives an indication of 
the fast growth of the number of possible worlds.
As seen in the example in section 3.2, multiple possible worlds may return the same 
result. In the example room 1 is returned twice although it can be seen as one answer. 
Since the possible worlds style is used for representing our result, instead of per element 
we get the probability per possible combination of elements. Because of all the 
combinations that have to be listed the size of the result grows very fast. 
In practice, the function that creates all possible worlds of a document, returns a 
“worldlist” element which contains world elements that each represent a possible world. 
This can be considered a simple variation on the possible world representation style.
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 4 Recursive path analysis (RPA)

In this chapter we discuss a prototype implementation of a proposed solution [KEU08] for 
the probabilistic query problem. We describe the basic idea behind this solution and show 
how the prototype is implemented. In the “observations“-subsection we mention the 
strong points and the limitations of this method.

 4.1 Basic idea

A normal XPath query exists of several steps. Each of these steps has an input and an 
output. The output of the first step serves as the input of the second one and so on. The 
total sequence of steps results in the queried information. One of the ideas of the 
“Recursive path analysis”-method is to evaluate probabilistic queries in the same way. A 
difference with normal queries is that a suitable intermediate result format has to be 
chosen. Whilst the input and output of a normal XPath step are both sequences of XML 
nodes or atomic data, the probabilistic variant should contain somehow information 
about the probabilities. This information should be in such a format that in the next step 
again calculations can be performed on these probabilities again. When working out this 
approach it should be kept in mind that answers always have to fit in a possible world 
which has some probability to occur. The fact that multiple answers may occur in 
multiple possible worlds led to an intermediate representation that contains world 
elements each with its probability as attribute.
Every node has a unique identifier. We use these identifiers as references to store result 
nodes in the world elements. Figure 4.1 shows us a XML document “addressbook.xml” 
with node identifiers.
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The pieces of sample XML in Figure 4.2a and 4.2b, are the intermediate results between 
two steps. Figure 4.2a shows the outcome of a step “doc(“addressbook.xml”)/person”. 
This step results in one possible world with the one person element (with node identifier 
“3”) in it. This result functions as the input for the next step (in this case “/phone”). To 
get the phone numbers of the selected persons, for each world each person is evaluated 
to select his or her phone numbers . Figure 4.2b shows the result when both the person 
and the phone step are executed. For the selected person two possible phones numbers 
are found, so the selected two possible worlds are returned as result. Note that only 
possible worlds are created for phone numbers, in contrast to the naive method in which 
all possible worlds of the total document are created. The output of our /phone step 
could now serve as input for a next step or in case this was the last step of the query, 
the result could be converted to the actual query result. This conversion is done by 
replacing the “nid” nodes by the elements they actually refer to and by placing an 
“answer”-node around the result.
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(1) <prob>
(2) <poss prob=”1”>
(3) <person>
(4) <prob>
(5) <poss prob=”1”>
(6) <name>henk</name>

</poss>
</prob>

(7) <prob>
(8) <poss prob=”.6”>
(9) <phone>1111</phone>
(10) <roomnr>1</roomnr>

</poss>
(12) <poss prob=”.4”>
(13) <phone>2222</phone>
(14) <roomnr>2</roomnr>

</poss>
</prob>

(15) <prob>
(16) <poss prob=”.8”>
(17) <email>henk@hotmail.com</email>

</poss>
(18) <poss prob=”.2”>
(19) <email>henk@gmail.com</email>

</poss>
</prob>

</person>
</poss>

</prob>

Figure 4.1: Simple example probabilistic XML document “addressbook.xml” with 
node identifiers (nids)

<world prob=”1”>
<nid>3</nid>

</world>

Figure 4.2a: result of doc(“addressbook.xml”)/person 

<world prob=”.6”>
<nid>9</nid>

</world>,
<world prob=”.4”>

<nid>13</nid>
</world>

Figure 4.2b: result of doc(“addressbook.xml”)/person/phone 



To create the possible worlds that correspond with the nodes found for one step a 
function called allCombinations is used. In the above example only two possible phone 
numbers are found which results in two possible worlds, but dependent on the number of 
possible answers found, more possible worlds can be created. Because some answers 
cannot occur in the same world because of their mutual exclusive properties, the 
allCombinations function only creates worlds with those combinations of nodes that have 
the ability to occur together. 
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Figure 4.3: First step of the allCombinations function, combining 
name with phone and roomnr.

Figure 4.4: Next step of the allCombinations function, combining 
the result of step one with the email elements.



When we execute the following query (get all child elements from person) on the 
document of Figure 4.1:

doc(“addressbook.xml”)/person/*

The following elements are part of the result:

<name>henk</name>,

<phone>1111</phone> <roomnr>1</roomnr> or
<phone>2222</phone> <roomnr>2</roomnr>,

<email>henk@hotmail.com</email> or
<email>henk@gmail.com</email>

To get the result according the possible worlds representation style the allCombinations 
function combines the name element with the possible phone and roomnr elements (see 
Figure 4.3). This result is then combined with the email elements again (see Figure 4.4), 
which leads to four possible answers. This method is not only used to represent the final 
result, but also for the intermediate results. Thus a total possible answer can easily be 
excluded from the final result if it is found out that in this world a necessary child node 
doesn't exist.

 4.2 In practice

Important in this prototype is, that the prototype itself only generates XQuery (Figure 
4.5). The XQuery that is generated works according to the idea explained in section 4.1 
and can be executed on the probabilistic XML documents (in our case stored in the 
MonetDB/XQuery database).

We will first explain how the generated XQuery works and later on we will show how the 
Perl script manages to generate this XQuery code.

 4.2.1 XQuery

The generated XQuery code consists of one function declaration and one big XQuery-
statement that uses this supportive function. Every step in the probabilistic XPath query 
is represented by a piece of XQuery code that has a sequence of world elements 
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Figure 4.5: Schematic overview of the recursive path analysis 

mailto:henk@gmail.com
mailto:henk@hotmail.com


containing node identifiers (nids) as input and as output. The result of one step is used to 
calculate the result of the following step. The working of the piece of XQuery code that is 
generated for each step is illustrated in the scheme of Figure 4.7. This scheme shows the 
step of selecting all phones of (the first) person using the example document listed in 
Figure 4.6.
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(1) <prob>
(2) <poss prob="1.0">
(3) <person>
(4) <prob>
(5) <poss prob="0.6">
(6) <phone>1212</phone>

</poss>
(7) <poss prob="0.4">
(8) <phone>1111</phone>
(9) <phone>2222</phone>

</poss>
</prob>

(10) <prob>
(11) <poss prob="1.0">
(12) <phone>3333</phone>

</poss>
</prob>

</person>
(13) <person>
(14) <prob>
(15) <poss prob="1.0">
(16) <phone>4444</phone>

</poss>
</prob>

</person>
(17) <person>
(18) <prob>
(19) <poss prob="1.0">
(20) <phone>5555</phone>

</poss>
</prob>

</person>
</poss>

</prob>

Figure 4.6: Example XML document with nids.
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Figure 4.7: Selecting all phone elements using recursive path analysis



In this simplified schema of the process, just one world is shown from which only the 
element of the first nid is used for evaluation. In practice multiple worlds with multiple 
nids can be used as input. In the version of MonetDB/XQuery we use, two useful 
functions are included for handling node identifiers. We use the function pf:nid($element) 
to get the unique node identifier of an element and we use the function id($nid, $doc) to 
get the element that belongs to a node identifier (in a certain document).

● We start the process by looking up the elements that belong to the nids in the 
worlds of our input.

● Now we do the actual selection, in our example we select all “phone” elements 
together with their probability and possibility parents.

● While selecting them, we convert each probability node to a worldlist node, 
convert each possibility node to a world node and replace the phone element with 
its node identifier.

● Now we have zero or more created worldlists for each nid in every world of our 
original input. The worlds in these seperate worldlists are mutually exclusive, but 
the worlds inside one worldlist may occur together. The “allCombinations” function 
creates all worldlists with worlds that may occur together, from the worldlists with 
mutually exclusive properties.

● We merge all worlds of a worldlist to one world by placing all nids in it.
● We calculate the probability of the new world by taking the product of the 

probabilities of the merged worlds, and multiplying this value with the probability 
of the original world from the input. This can be explained as follows: In this last 
step we create worlds containing elements that occur together. The chances that 
these elements occur are independent of each other so we take the product of the 
probabilities of the merged worlds following the rule P(A and B) = P(A)*P(B). The 
elements to return can only occur when the world they are in actually occurs in the 
first step. Because the world in the first step itself also has a certain probability to 
occur we multiply our outcomes with this probability. 

● The result: zero or more possible worlds including their probability and having the 
result-nodes of this query-step as nid elements.
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1. let $ctx1 :=
2. for $w1 in $ctx0
3. let $pw1 := data($w1/@prob)
4. let $sub1 :=
5. for $nid1 in $w1/nid
6. let $xml1 := id($nid1,$scope)
7. return
8. for $prob1 in $xml1/prob[./poss/person]
9. return
10. <worldlist>{
11. for $poss1 in $prob1/poss
12. let $newnids1 :=
13. for $n in $poss1/person
14. return
15. <nid>{pf:nid($n)}</nid>
16. return
17. <world>{$poss1/@prob,$newnids1}</world>
18. }</worldlist>
19. )
20. for $comb1 in allCombinations($sub1)
21. let $p1 := pf:product($comb1/world/@prob)
22. return <world prob="{$pw1*$p1}">{$comb1/world/nid}</world>

Figure 4.8: Piece of generated XQuery that takes care of a /person step

mailto:$comb1/world/@prob


 4.2.2 Perl

As mentioned before the actual prototype is a Perl script that has generating Xquery as 
its only function. By evaluating the path of the XPath-query in the Perl script, all steps 
that need to be executed in XQuery can be generated in advance. Although it is unknown 
what the result of the several steps will be at this point, it is already known which 
transformations will have to be done on the result. So the Perl-script generates in 
XQuery, the transformations that have to be done for each step to get the final result. 
The path of the XPath-query can be evaluated by calling a Perl function for each step. 
The basic step is the child-step and for each of those the function genstep(input, output, 
nodetest) is called. The input and output parameter that have to be given contain a 
number to identify the input and output fur further use. Thus it can be specified that the 
output of one step is the input of the following step.

genstep(0,1,"person");
genstep(1,2,"phones");
genstep(2,3,"homephone");

When calling each of these functions, every time a piece of XQuery-code, as listed in 
Figure 4.8, is generated. In this figure is shown that the first line the output is assigned 
to the variable ctx1. The second line shows that the result of this person step is obtained 
by iterating over all items in ctx0: the input. When doing following steps (like phones and 
homephone) the names of the variables (in the form ctx..X..) are changed according to 
the input and output parameters that are given to the “genstep” function, while the 
XQuery-code itself stays the same. The Perl-script ends by calling the function 
genanswer(input). As input the identifier of the last output can be given. This leads to a 
piece of XQuery-code that converts all nids back to their elements and places the worlds 
in which those result-elements are located into an answer element. 

 4.2.3 Predicates

We have seen in the previous section how the prototype handles normal child steps. The 
prototype is, however, also capable of handling predicates in an XPath-query. Predicates 
are used to filter out those nodes from the result, that do not fulfill a certain condition. 
The principle of performing a predicate step is the same as for performing a child step, 
but the way we handle the input and output is different . When we perform a child step, 
we would take all the possible worlds generated in the previous step and get the 
elements belonging to the nids in those worlds. We would select all children of those 
elements that match our child step and create possible worlds for them.
When we do a predicate step we evaluate each possible world one by one. We get the 
elements belonging to the nids of the first possible world and check for matches with our 
predicate for the children of those elements. If those child elements indeed exist we use 
them to calculate allCombinations. We return the original world with its probability 
multiplied with the probabilities of the created worlds by the allCombinations function. It 
is possible that all children of the nids in the original world match the predicate. In that 
case the original world is returned with a probability of 1. In case there are no children of 
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the nids in the original world that match the predicate, an empty world with a probability 
one is returned. In this way every possible world of the previous step is checked for the 
predicate. The main difference with a normal child step is that the possible worlds of the 
previous step are evaluated individually in a predicate step. Besides that the output of 
the allCombinations function of a predicate step is not directly used as result, but is used 
to modify the possible worlds of the previous step.

 4.3 Observations

● Because nids are used in this process, in the end the original elements that 
correspond with the nids are returned. When an element to return contains 
children, these children may be in conflict with a predicate given in the query. A 
practical example of this problem is given in section 5.2.5.

● For every step of the query all possible answers are generated, even if the final 
step contains a predicate that matches only a few nodes.

● The size of the result is dependent of the number of possible worlds, because of 
the use of the possible worlds representation style.

● The naive method is improved by calculating only those possible worlds that play a 
role in the path of the query

● The recursive path of the process (i.e. evaluating what needs to be done of each 
step of the XPath query), is already done in the Perl-script. This means that the 
XQuery module doesn't need expensive functions that can handle different lengths 
of paths.
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 5 Compare paths method (CPM)

 5.1 Basic Idea

The basic idea behind this compare paths method is that we can query probabilistic XML 
just by replacing all /node steps by /prob/poss/node steps. If we then link the queried 
nodes with their probability, then we are done. One problem is, we indeed get all the 
nodes we asked for, but some nodes are not valid. See the following example for an 
explanation. 

When we want to query all roomnr elements in figure 3.1, in a normal XML document we 
give the following query:

doc(“something”)/person/roomnr

Because we work with probabilistic XML we convert this query into:

doc(“something”)/prob/poss/person/prob/poss/roomnr

this gives as result:

<roomnr>1</roomnr>,
<roomnr>2</roomnr>

which is the correct result since we asked for all roomnr elements.

The problem arises when we start using predicates. When we want to have the roomnr of 
the person that has 1111 as phone number, we would query that in a normal XML 
document in the following way

doc(“something”)/person[./phone=”1111”]/roomnr

converting leads to:

doc(“something”)/prob/poss/person[./prob/poss/phone=”1111”]/prob/poss/roomnr

which gives also as result:

<roomnr>1</roomnr>,
<roomnr>2</roomnr>

This time the result is incorrect because it contains too much information, because there 
is no world (see Figures 3.2) in which the phone number “1111” occurs together with 
room number “2”. So our result is not correct until we manage to filter out those nodes 
that cannot occur in the possible world of the predicate.

29



Thus, want to determine whether each of the original results (the candidate elements: 
room numbers “1” and “2”) can occur in the same possible world as the predicate.
Therefore we do the following query

doc(“something”)/prob/poss/person/prob/poss/phone[.=”1111”]

which gives us the predicate element: phone number “1111”:

<phone>1111</phone>

Finally a comparison has to be made between the results two both queries.

The general way to get the correct result for an XPath query on the compact 
representation containing a predicate is by doing the following steps:

1. Get the candidate elements by executing the XPath query (after replacing every 
/step by /prob/poss/step).

2. Get the predicate elements by executing an XPath query, including prob and poss 
steps, that returns the elements that are checked for in the predicate of the 
original query.

3. For every candidate element check whether there exists one or more predicate 
elements that occur in the same world as the candidate element.
1. If there is no predicate that occurs in the same world as the candidate element, 

this candidate element is no part of the result.
2. otherwise, it is.

Step 1 and 2 were illustrated above. In step 3 of this approach we want to determine 
whether or not two nodes can occur in the same possible world. We can say the following 
about this issue:

[1] To check if node1 and node2 occur in the same world, we take all probability and 
possibility ancestors of both node1 and node2. If, for every probability ancestor of 
node 1 that is also a probability ancestor of node2, the underlying possibility node 
is the same for node1 as for node2, then node1 and node2 occur in the same 
possible world.

What we can conclude from this formulation is the following:

[2] The only case in which node1 and node2 cannot occur in the same possible world 
is when a probability node exists that is both an ancestor of node1 and node2 but 
that probability node has different underlying possibility nodes for node1 and 
node2.

We can simplify this rule to:

[3] if (the number of probability ancestors that is equal for node1 and node2) > (the 
number of possibility ancestors that is equal for node1 and node2) then: node1 
and node2 do not occur in the same possible world (else: they do).
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The way in which we use these rules to check whether nodes can occur in the same 
world is illustrated in Figures 5.1 till 5.3. It can be seen in Figure 5.1 that the roomnr 
element with value “1” occurs in the same world as the phone element with value “1111” 
because all their probability and possibility nids correspond.
For the roomnr element with value “2” it is shown in Figure 5.2 that the probability nid 
corresponds with the probability nid of the phone element while the possibility nid of 
those both elements differ. This combination leads to the conclusion that the roomnr 
element with value “2” cannot occur in the same world as the phone number with value 
“1111”.
When the node we want to compare with is located in a totally different probability node, 
such as the email element with value “henk@hotmail.com” in Figure 5.3, this means that 
both elements can occur in the same world, as long as the parent elements (person in 
this case) occur in the same world.
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Figure 5.1: Comparison between the prob and poss nids of phone “1111” and room “1” 

Figure 5.2: Comparison between the prob and poss nids of phone “1111” and room “2” 

Figure 5.3: Comparison between the prob and poss nids of phone “1111” and email “henk@hotmail.com”

mailto:henk@hotmail.com


 5.2 In Practice

In the following sections it is described how we use the abovementioned ideas as a basis 
for our prototype.

 5.2.1 The representation style of the prototype

First of all, we have to decide what representation style to use for our prototype. We do 
not select the possible worlds style because of the large number of possible answer 
combinations that are generated in this style when the level of uncertainty increases.
Furthermore, the document structure style is hard to realize because of the “seq” and 
“subseq” elements that need to be added. Finally, this style does not give a clear 
overview of the answers because the result nodes may have dependencies with upper 
laying “seq” or “subseq” nodes. 
We choose to use the possibility per node style for our prototype, because of its clear 
structure and the size of the result that grows linear with the number of queried 
elements. Another reason is that for simple queries the probability can easily be 
calculated by multiplying all probability values of the ancestors of the result node which 
each other.

 5.2.2 General overview

In the previous section we introduced three steps to get the right answers in the result. 
In our prototype we implemented those three steps. The first two (getting the candidate 
elements and getting the predicate elements) basically mean doing a transformation of 
the original query. We use a Java parser to perform those transformations.
After we have obtained the candidate and predicate elements, we want to compare paths 
of nids (the “pps” element in the following examples) to check if candidate elements are 
part of the final result (as shown in Figures 5.1 till Figure 5.3). For this part of the 
process we use the functions in our XQuery module.
First of all we call the getnids function for both candidate and predicate elements to get 
the paths of nids. So, the input of the getnids function is a sequence of (candidate or 
predicate) elements and the output consists of one nids element containing a 
completenode element for each of the original input elements (see Figures 5.11 a and b 
for examples). In this completenode element the original node is listed together with a 
sequence of the node identifiers of the prob and poss ancestors of this node. These 
sequences we use for the comparison further on in the process.
The “computeprobs” function that takes care of returning the correct nodes with the 
correct probability, needs a sequence of nids elements (as generated by the getnids 
function) as input. The first nids element in the input sequence contains the 
completenode elements of the candidate elements. Every following nids element in the 
sequence contains the completenode elements for all the predicate elements that satisfy 
the predicate. This makes that the length of the nids element sequence used as 
argument for the computeprobs function is equal to one (for the candidate elements) 
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plus the number of predicates used in the query. The computeprobs function returns the 
results in the possibility-per-node representation style.

In addition to filtering out candidate elements that do not occur in one of the possible 
worlds of the predicate elements, we also want to give the probabilities that correspond 
with the elements in the result. The computeprobvals function takes care of the 
comparisons and calls the createpossworlds function to keep track of the possible 
combinations of candidate and predicate elements.
To be able to return the right result the computeprobs function should make comparisons 
of paths of nids and calculate the probabilities of the correct candidate elements. This is 
done by the following steps (Figure 5.4 illustrates this process including the loop that 
occurs when following these steps):

1. the computeprobs function calls the computeprobvals function with as argument 
the nids element that corresponds with the candidate elements, together with the 
nids element that corresponds with the predicate elements of the first predicate.

2. The computeprobvals function filters out incorrect candidate elements using the 
before mentioned rules. The probability of an element in the final result is 
dependent of the probability of the element itself and of the probability of the 
predicate. (For example, when we query the document in Figure 4.1 for all email 
addresses, we get the “henk@hotmail.com” with probability 0.8 and 
“henk@gmail.com” with probability 0.2. However, when we query for all email 
addresses of those persons that have a phone number “1111”, we see that the 
chance that such person exists is 0.6. So now the overall probability for 
“henk@hotmail.com” becomes 0.6*0.8=0.48 and for “henk@gmail.com” is will be 
0.6*0.2=0.12).

3. To calculate the properties in the right way, we want to know which candidate 
elements occur in combination with which predicate elements. Therefore the 
computeprobvals function calls the createpossworlds function, which creates such 
combinations. Each time a path of nids of a correct candidate element is given as 
argument, together with the paths of nids of the predicate elements that can occur 
in the same world.

4. The createpossworlds function takes together these paths of nids in a “pw” 
element. When there are multiple predicate elements possible that exclude each 
other multiple “pw” elements are created.

5. It is possible that the original query does contain more than one predicate. If this 
is the case we return to step 1, but this time we call the computeprobvals function 
with the “pw” elements found in step 4 instead of the nids element of the 
candidate elements. For these total “pw” objects, it is now checked if there are 
predicate elements of the following predicate that occur in their world. We do this 
to make sure we have no inconsistencies between predicates on different levels. 
We continue this loop until all predicates of the original query are compared.

6. The computeprobvals function returns for each candidate element one or more 
“pw” elements. As said before these “pw” elements contain paths of nids for the 
candidate element together with the paths of nids for one or more predicate 
elements.

7. For every “pw” element of a candidate element the calculateproperties function is 
called. This calculates the correct probability of the combination of candidate and 
predicate elements in the “pw” element.
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8. The sum of the probabilities calculated for the “pw” elements of one candidate 
element is the final probability for that element.

In the following subsections the total process is explained using one simple and one more 
complicated example.
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Figure 5.4: Total overview of the Compare Paths Method 



 5.2.3 The Java parser

To prepare XPath queries to be executed by our XQuery module, we built a parser in 
Java. This parser takes care of the conversion of queries as shown in the first section of 
this chapter. The module contains a function “computeprobs” which is the core function 
of the module. This function returns the right nodes with their probability and needs the 
nodes that are about to get selected together with their probability and possibility nids as 
input. The “getnids” function creates a list of these nids for each element in the sequence 
given as argument. The output of the Java parser is shown in Figure 5.5 for the query: 

doc(“addressbook.xml”)/person/phone

The first line takes care of the import of the XQuery module called “cpm”. In line 3, the 
“computeprobs” function is called. The argument for this function (line 4) is the outcome 
of the “getnids” function. The “getnids” function gets the converted version of the original 
XQuery as argument.

When an XPath query with a predicate needs to evaluated, the parser output looks 
somewhat more difficult. In Figure 5.6 we show the output for the following query:

doc(“addressbook.xml”)/person[./phone="1111"]/roomnr

When we look at the lines 6-8, we see that now as argument a sequence of two “getnids” 
function outcomes is given. The first one is for the candidate elements and returns the 
probability and possibility nids of all roomnr elements that are located under a person 
element that also contains a phone element with value “1111”. These nids need to be 
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1. import module namespace cpm = "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/" at 
"/path/to/cpm.xq";

2. <resultset>{
3. cpm:computeprobs(
4. (cpm:getnids(doc("addressbook.xml")/prob/poss/child::person/prob/poss/child::phone))
5. )/result
6. }</resultset>

Figure 5.5: XQuery output of the Java parser.

1. import module namespace cpm = "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/" at 
"/path/to/cpm.xq";

2. <resultset>{
3. for $i0 in
4. doc("addressbook.xml")/prob/poss/child::person[./prob/poss/child::phone="1111"]
5. return
6. cpm:computeprobs(
7. (cpm:getnids($i0/prob/poss/child::roomnr),
8. cpm:getnids($i0/prob/poss/child::phone[.="1111"]))
9. )/result
10. }</resultset>

Figure 5.6: XQuery output of the Java parser.



compared with the nids of the predicate, so the second of the “getnids” calls is executed 
for the phone elements with the value “1111”. In lines 3-6 the “computeprobs” function 
is called once for every person element that has the specific phone element. This is done 
because we don't want to mix up child-nodes from different persons in our result, in case 
that more than one person element with the specific phone number exists.

 5.2.4 The CPM XQuery Module

The “computeprobs” function compares the different paths of nids and computes the 
probabilities of the result. In order to do so, it needs paths of nids generated by the 
“getnids” function as input. What the “getnids” constructs, is a new element which 
contains the original node and a sequence of prob-poss-nids pairs with their probability in 
the following form:

In Figure 5.7 the output is given for the “getnids” function called with two roomnr 
elements (see line 7 of Figure 5.6). For every roomnr element a “completenode” element 
is constructed. The sub element “node” contains the actual roomnr element. The sub 
element “pps” (prob-poss-sequence) contains a sequence of probability and possibility 
nids. These node identifiers are obtained by calling the “pf:nid()” function as explained in 
section 4.2.1. Every possibility node together with its probability node and the probability 
value is stored in a “pp” element. The overall value of the node, obtained by multiplying 
the probability values of every possibility in the path, is stored in the “pps” element.

Now that we executed the “getnids” function for both the candidate elements and the 
predicate elements, we start comparing each candidate element with each of the 
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<nids>
<completenode>

<node>
<roomnr>1</roomnr>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.6<value></pp>
<oavalue>0.6</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node>
<roomnr>2</roomnr>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>12</poss><value>0.4<value></pp>
<oavalue>0.4</oavalue>

</pps>
<subnodes/>

</completenode>
</nids>

Figure 5.7: The output of the “getnids” function for two roomnr elements.



predicate elements in the “computeprobs” function. For each of the candidate elements 
the “computeprobs” function calls a help function “computeprobvals” that compares the 
candidate element with every predicate element. If, for every probability nid of the 
candidate element that is equal to a probability nid of the predicate element, also a 
possibility nid of the candidate element is equal to a possibility nid of the predicate 
element then the both nodes occur in the same world and the node can be legally 
returned (see the rules in section 5.1). Otherwise the two nodes cannot occur in the 
same world and nothing is returned.
Before returning the legal elements the combination of “pps” elements of the candidate 
and predicate elements are stored in a “pw” element. This is done in the 
“createpossworlds” function and requires the ability to calculate the probability of the 
elements that are part of the final answer. A possible result of the “createpossworlds” 
function may look as follows (see Figure 5.8):

In the example of Figure 5.8 the outcome of the “createpossworlds” function is given 
when the phone element with value “1111” and the email element with value 
“henk@hotmail.com” are given as input. We chose not to show the combination of the 
phone element with value “1111” with the roomnr element with value “1” in our example 
because they occur in the same possibility node. In that case our “pw” element only has 
one “pps” element. 
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<pw>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1</value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.6</value></pp>
<oavalue>0.6</oavalue>

</pps>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1</value></pp>
<pp><prob>16</prob><poss>17</poss><value>0.8</value></pp>
<oavalue>0.8</oavalue>

</pps>
</pw>

Figure 5.8: The output of the “createpossworlds” function

mailto:henk@hotmail.com


The final probabilities are calculated according to the example of Figure 5.9: We take the 
“pps”-elements of a “pw” element and multiply the values of all distinct “pp” elements 
with each other. Doing so, double “pp” elements are only used once in this calculation, 
because as long as the path of ancestors of two elements is the same, following that path 
for one element automatically means following that path for the other node.

It might seem that the “createpossworlds” function is simple, because it only puts 
different “pps” nodes together in a “pw” element. This is true, but only for simple 
queries. For more complicated queries, the “createpossworlds” has a more important role 
to fulfill. To illustrate this we will now introduce a more complicated document (see 
Figure 5.10) on which we execute a more complicated query:

doc(“figure5.10”)/person[.//phone > ”2222”]/info[.//roomnr<”3”]/mobilephone
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Figure 5.9: Calculating the final probabilities



The Java parser outcome for this query contains a double for-loop (see Figure 5.11), 
because we do not want to mix up results for “person” and “info” elements (although in 
this case this is not a major point because our document only has one “person” and one 
“info” element). The “computeprobs” function now gets a sequence of the result of three 
“getnids” function calls as argument. One for the candidate “mobilephone” elements, one 
for the predicate “phone” elements and one for the predicate “roomnr” elements.

39

(1) <prob>
(2) <poss prob=”1”>
(3) <person>
(4) <prob>
(5) <poss prob=”1”>
(6) <info>
(7) <prob>
(8) <poss prob=”.5”>
(9) <roomdetails>
(10) <prob>
(11) <poss prob=”0.4”>
(12) <roomnr>1</roomnr>
(13) <phone>4444</phone>

</poss>
(14) <poss prob=”0.6”>
(15) <roomnr>4</roomnr>
(16) <phone>2222</phone>

</poss>
</prob>

</roomdetails>
</poss>

(17) <poss prob=”.5”>
(18) <roomdetails>
(19) <prob>
(20) <poss prob=”0.2”>
(21) <roomnr>2</roomnr>
(22) <phone>1111</phone>

</poss>
(23) <poss prob=”0.8”>
(24) <roomnr>3</roomnr>
(25) <phone>3333</phone>

</poss>
</prob>

</roomdetails>
</poss>

</prob>
(26) <prob>
(27) <poss prob=”1”>
(28) <mobilephone>0666</mobilephone>

</poss>
</prob>

</info>
</poss>

</prob>
</person>

</poss>
</prob>

Figure 5.10: More difficult example probabilistic XML document with node identifiers



The “computeprobs” function starts with comparing the probability and possibility nids of 
the mobilephone query with the nids of the phone query (see Figures 5.12 a and b).
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import module namespace cpm = "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/" at 
"/path/to/cpm.xq";

<resultset>{
for $i0 in
doc("figure6.3.2.3")/prob/poss/child::person[.//phone > ”2222”]
return

for $i1 in $i0/prob/poss/child::info[.//roomnr < "3"]
return 

cpm:computeprobs(
(cpm:getnids($i1/prob/poss/child::mobilephone),
cpm:getnids($i0//phone[.> ”2222”]),
cpm:getnids($i1//roomnr[.< "3"]))

)/result
}</resultset>

Figure 5.11: Xquery output of the Java parser.

<nids>
<completenode>

<node>
<mobilephone>0666</mobilephone>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>26</prob><poss>27</poss><value>1.0<value></pp>
<oavalue>1.0</oavalue>

</pps>
<subnodes/>

</completenode>
</nids>

Figure 5.12a: The output of the “getnids” function for one mobilephone element.

<nids>
<completenode>

<node>
<phone>4444</phone>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss>1.0<value/></pp>
<pp><prob>4</prob><poss>5</poss>1.0<value/></pp>
<pp><prob>7</prob><poss>8</poss>0.5<value/></pp>
<pp><prob>10</prob><poss>11</poss>0.4<value/></pp>
<oavalue>0.2</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node>
<phone>3333</phone>

</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>17</poss><value>0.5<value></pp>
<pp><prob>19</prob><poss>23</poss><value>0.8<value></pp>
<oavalue>0.4</oavalue>

</pps>
<subnodes/>

</completenode>
</nids>

Figure 5.12b: The output of the “getnids” function for two phone elements.



Since the “computeprobvals” function determines that both predicate elements (phone 
4444 and phone 3333) are valid, the “createpossworlds” function should combine the 
nids of the mobilephone element with the nids both phone elements. However, the two 
phone elements cannot occur in the same world. In this situation, the more advanced 
functionality of the “createpossworlds” function is used. Based on the “pps” elements the 
“createpossworlds” function now creates two “pw” elements, one for each combination of 
the mobilephone element with one of the phone elements. This is shown in Figure 5.13:

The value of this division in possible world elements is that we can evaluate each 
possible world separately for any following predicate steps. We use the possible world 
elements as input for the “computeprobvals” function, in which we compare the “pps” 
elements with the “pps” elements of the new predicate elements: roomnr 1 and roomnr 
2. We determine (using our rules) that roomnr 1 only occurs in the first possible world 
(with mobilephone 0666 and phone 4444), but that roomnr 2 occurs in neither possible 
worlds. Therefore the “computeprobvals” filters out the roomnr element with value “2” 
and the second “pw” element. The “createpossworlds” is called with the first “pw” 
element and the roomnr element with value “1”. Because the roomnr element with value 
“1” and the phone element with value “4444” are positioned in the same possibility node 
no extra “pps” elements are added to the first “pw” element and the final result (before 
calculating the actual probability) is shown in Figure 5.14:
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<pw>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>26</prob><poss>27</poss><value>1.0<value></pp>
<oavalue>1.0</oavalue>

</pps>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>11</poss><value>0.4<value></pp>
<oavalue>0.2</oavalue>

</pps>
</pw>,
<pw>

<pps>
<pp><prob>1</prob><poss>2</poss><value>1.0</value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0</value/></pp>
<pp><prob>26</prob><poss>27</poss><value>1.0</value></pp>
<oavalue>1.0</oavalue>

</pps>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>17</poss><value>0.5<value></pp>
<pp><prob>19</prob><poss>23</poss><value>0.8<value></pp>
<oavalue>0.4</oavalue>

</pps>
</pw>

Figure 5.13: The output of the “createpossworlds” function.



The “computeprobs” function now takes the “node” element of the “getnids” result of the 
only mobilephone candidate element and returns this node with the calculated probability 
(1.0 x 1.0 x 1.0 x 0.5 x 0.4=0.2) obtained from the “createpossworlds” result.

 5.2.5 Subnodes

In the prototype introduces thus far, a problem arises when we query for elements that 
contain children and we use this child element as predicate. An example is the following 
query executed on the document of Figure 5.10:

doc(“figure5.10”)/person/info/roomdetails[./roomnr=”1”] 

The “computeprobs” function would notice that there is one roomdetails element and one 
roomnr element that satisfy this query. So the probability of the roomdetails element 
(0.5) will be multiplied with the probability of the roomnr element (0.4) and the whole 
roomdetails element will be returned with a result probability of 0.2 as shown in Figure 
5.15:   
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<pw>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>26</prob><poss>27</poss><value>1.0<value></pp>
<oavalue>1.0</oavalue>

</pps>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>11</poss><value>0.4<value></pp>
<oavalue>0.2</oavalue>

</pps>
</pw>

Figure 5.14: The output of the “createpossworlds” function for the final result.

<resultset>
<result val=”0.2”>

<roomdetails>
<prob>

<poss prob=”0.4”>
<roomnr>1</roomnr>
<phone>4444</phone>

</poss>
<poss prob=”0.6”>

<roomnr>4</roomnr>
<phone>2222</phone>

</poss>
</prob>

</roomdetails>
</result>

</resultset>

Figure 5.15: The output of the “computeprobs” function for the final incorrect result.



Returning the whole roomdetails element with its entire subtree is not correct because it 
returns two worlds: one in which roomdetails contains a roomnr “1” and a phone “4444” 
and one in which roomdetails contains a roomnr “4” and a phone “2222”. However, this 
second world is not part of our query result, since we asked only for roomdetails 
elements that contain a roomnr equal to “1”. To prevent that child nodes of the result are 
listed while they cannot occur in the same world as the predicate elements of the query, 
we do an extra check for all descendants of the result elements. 
To be able to check child elements the “getnids” result for an element containing child 
elements is extended as shown in Figure 5.17. We fill the “subnodes” element with the 
“completenode” elements that correspond with the children of roomdetails. Instead of 
returning the roomdetails element, we compare the “pps” elements of all child elements 
with the “pw” elements returned by the “createpossworlds” function. When the “pps” 
element of the child can be added to a current “pw” element, the child belongs to the 
result. If a new “pw” elements needs to be constructed when we would add the “pps” 
element of the child to the “pw” elements, we can conclude that the child element 
doesn't occur in the same possible world as the predicate element.
We construct a new roomdetails elements that contains only those child elements that 
occur in the same possible world as the predicate (or one of the predicates). We also 
make sure the the possibility nodes of the predicate elements itself gets the probability 
value “1.0”. The new and correct result is shown in Figure 5.16:
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<resultset>
<result val=”0.2”>

<roomdetails>
<prob>

<poss prob=”1.0”>
<roomnr>1</roomnr>
<phone>4444</phone>

</poss>
</prob>

</roomdetails>
</result>

</resultset>

Figure 5.16: The output of the “computeprobs” function for the final correct result.
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<nids>
<completenode>

<node>
<roomdetails>

<prob>
<poss prob=”0.4”>

<roomnr>1</roomnr>
<phone>4444</phone>

</poss>
<poss prob=”0.6”>

<roomnr>4</roomnr>
<phone>2222</phone>

</poss>
</prob>

</roomdetails>
</node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<oavalue>0.5</oavalue>

</pps>
<subnodes>

<completenode>
<node><roomnr>1</roomnr></node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>11</poss><value>0.4<value></pp>
<oavalue>0.2</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node><phone>4444</phone></node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>11</poss><value>0.4<value></pp>
<oavalue>0.2</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node><roomnr>4</roomnr></node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>14</poss><value>0.6<value></pp>
<oavalue>0.3</oavalue>

</pps>
<subnodes/>

</completenode>
<completenode>

<node><roomnr>2222</roomnr></node>
<pps>

<pp><prob>1</prob><poss>2</poss><value>1.0<value></pp>
<pp><prob>4</prob><poss>5</poss><value>1.0<value></pp>
<pp><prob>7</prob><poss>8</poss><value>0.5<value></pp>
<pp><prob>10</prob><poss>14</poss><value>0.6<value></pp>
<oavalue>0.3</oavalue>

</pps>
<subnodes/>

</completenode>
</subnodes>

</completenode>
</nids>

Figure 5.17: The output of the “getnids” function one roomdetails element.



 5.3 Observations

The most important observations using the compare paths method can be summarized 
as follows:

● When output elements are returned that contain a lot of child elements, for all 
these elements a check is performed to examine whether they are valid for the 
possible world in which the parent element occurs. This process is inefficient for 
the following two reasons:
○ As shown in Figure 5.17 the “getnids” function returns for such a parent 

element the nids of both the element itself and the nids for all his children. For 
the example this means that the “pp” elements with prob-poss combinations 
(1,2)(4,5) and (7,8) are listed in total five times, although it is obvious that the 
children all contain the “pp” elements of their parent.

○ The depth of the predicate is not taken into account when checking. So all 
descendant elements are checked for validity although the predicate itself 
might be a direct child element of the result element. 

● Using the possibility per node representation style, no combinations of results 
elements can be reconstructed from the result. In other words; we cannot give the 
probability that two of the elements in the result occur in the same possible world.

● The size of the result grows linearly with the number of elements that satisfy the 
query.

● Calculations are done only for candidate elements i.e. those elements that have a 
chance to be in the final result (based on the original query, that is converted to a 
probabilistic variant).
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<prob>
<poss prob="1">

<person>
<prob>

<poss prob="1">
<firstname>Eliza</firstname>

</poss>
</prob>
<prob>

<poss prob="1">
<lastname>David</lastname>

</poss>
</prob>
<prob>

<poss prob="1">
<phones>

<prob>
<poss prob="1">
<homephone>057-5049214</homephone>

</poss>
</prob>
<prob>

<poss prob="0.34">
<mobilephone>06-18624061</mobilephone>

</poss>
<poss prob="0.66">
<mobilephone>06-85489600</mobilephone>

</poss>
</prob>

</phones>
</poss>

</prob>
<prob>

<poss prob="1">
<address>

<prob>
<poss prob="1">
<street>Madridweg</street>

</poss>
</prob>
<prob>

<poss prob="0.02">
<housenr>576</housenr>

</poss>
<poss prob="0.98">
<housenr>111</housenr>

</poss>
</prob>
<prob>

<poss prob="1">
<postalcode>8244HV</postalcode>

</poss>
</prob>
<prob>

<poss prob="1">
<city>Luinjeberd</city>

</poss>
</prob>

</address>
</poss>

</prob>
<prob>

<poss prob="1">
<emails>

<prob>
<poss prob="1">
<email>Eliza.David@hotmail.com</email>

</poss>
</prob>

</emails>
</poss>

</prob>
</person>

</poss>
</prob>

Figure 6.1: An example of one person in a generated test-addressbook-
document

mailto:Eliza.David@hotmail.com


 6 Experiments

 6.1 Experimental set-up

To compare the efficiency of the different methods described in this report we setup a 
test scenario. We generate sample XML files as input for the different prototypes. The 
sample XML files all describe an uncertain address book, although the number of persons 
in the address book and the level of uncertainty differs. We create address books with 
the following combinations of properties:

Table 6.1: Combinations for generated test address books with the number of possible worlds they contain.

Number of PWs Layout-code 2-1-0% 3-1-0% 3-2-0% 3-2-20% 3-2-50%

Number of persons

5 2.09e+6 1.19e+12 9.52e+12 4.04e+11 2.14e+13

10 1.09e+12 1.38e+22 2.21e+25 9.25e+26 2.21e+30

20 1.98e+28 2.03e+46 3.33e+49 2.39e+51 1.36e+63

100 1.08e+127 1.24e+223 1.38e+224 9.07e+254 2.58e+281

1000 Inf Inf Inf Inf Inf

10000 Inf Inf Inf Inf Inf

In the code a-b-c% of Table 6.1,  a, b and c are explained as follows:

a: leaf-nodes (firstname, lastname, homephone, mobilephone, street, housenr, 
postalcode, city and email) have a maximum of a possibilities

b: leaf nodes which can occur multiple times (homephone, mobilephone and email) 
have a maximum of b occurrences.

c: c percent of the parent nodes (phones, address email) has a maximum of 2 
possibilities (the other part has one possibility).

The person elements and the address element that these persons contains have both a 
probability of one.

There are a few main cases in which our different prototypes may achieve a different 
level of performance. These are (together with the queries we specified to test the 
cases):

● Selecting all leaf nodes (like homephone or city)
Q1 /person/phones/homephone

● Selecting all parent nodes (like person, phones or address)
Q2 /person/phones

● Selecting a leaf node that has a specific value
Q3 /person/phones/homephone[.=X]

● Selecting a parent node that has a certain leaf node or a leaf node with a specific 
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value.
Q4 /person/phones[./homephone]
Q5 /person/phones[./homephone=X]
Q6 /person[./phones/homephone=X]

Where X is an existing homephone number in the document that is queried.

We will describe the results of the queries ran by the different prototypes over our test 
files in the next section. It has to be mentioned that the prototypes we tested for the 
recursive path analysis and the compare paths method both support only one 
representation style. The recursive path analysis uses the possible-world style, while the 
compare paths method uses the possibility-per-node style. The system we use to run our 
prototypes has the following specifications:

 - Pentium 4 2.66GHz
 - 1GB ram
 - Suse Linux 10.0 kernel 2.6.13-15.18-default
 - MonetDB Server v4.22.1
 - MonetDB/XQuery module v0.22.1

 6.2 Results

First of all we tested the naive method. Its outcomes should have formed the basis for 
the comparisons done with the other two prototypes. However, we do not have any 
usable test data for the naive method, because every test case caused a crash of the 
MonetDB/XQuery database. The reason for this was the huge number of possible worlds 
that needed to be calculated. For example, our most simple test file with five persons 
consists of 2,097,152 different possible worlds. Since in our opinion, this sufficiently 
proved the inefficiency of the naive method, we continued with the tests for the other 
prototypes to examine whether they would outperform the naive method and which of 
both would turn out to be the most efficient method.

We started testing both remaining methods (CPM and RPA) using a small dataset, 
namely the 5-person address books in the different layouts we mentioned in Table 6.1. 
This first query (Q1) doesn't contain a predicate and the generated results do not contain 
any subnodes.  

Figure 6.2 shows the time (in 
milliseconds) it takes to get all 
homephone elements from our 
dataset. It is clear that the processing 
time of the compare paths method 
stays constant around 1600 
milliseconds. The processing time of 
the recursive path analysis increases 
up to 4600 milliseconds as the level of 
uncertainty grows, since the number 
of possible answers that need to be 
generated increases. 
Next, we did the same test but time 
we queried all phones elements. These 
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Figure 6.2: Testresults for Q1 with 5 persons
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phones elements contain subnodes: they are the parents of the homephone elements 
and are positioned one level higher in the XML tree. 

In Figure 6.3 the test results for both methods are displayed. For the compare paths 
method the fact that in this test, the getnids function generates nids for both phones and 
its subnodes, causes a longer processing time (of around 2000 milliseconds). 
The processing time for the recursive path analysis decreases to less than one second for 
the test documents rp5-2-1 to rp5-3-2, which don't contain uncertainty on the phones 
level. For the documents that contain 20 or 50 percent uncertainty on the phones level, 
the processing time increases slightly. 

For both Q1 and Q2 it can be concluded that the CPM processing time is independent of 
the level of uncertainty. In contrast, the processing time of the RPA increases when the 
level of uncertainty rises. We can explain this difference by taking a closer look at the 
idea behind the both prototypes. The compare paths method compares paths to examine 
if nodes are valid (see also below, when executing queries containing predicates is 
discussed). However, since the queries we used in Q1 and Q2 do not contain predicates, 
each node is valid. That is why in CPM no checking  is performed in all of the cases. The 
recursive path analysis constructs for each step of the query all possible worlds for nodes 
that satisfy that step. In case of uncertainty on the phone level, the number of possible 
worlds increases considerably. This causes the increasing processing time for Q1. On the 
other hand when having no uncertainty, no possible worlds have to be calculated, which 
explains the processing time less than a second for Q2.

In the next test, the influence of a predicate in the query in combination with subnodes 
in the result was investigated. In Q4, all phones that contain a homephone element were 
selected. In Figure 6.4, the results of Q4 are represented.  
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Figure 6.3: Testresults Q2 with 5 persons
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As can be seen, CPM's performance decreases drastically to 37.5 seconds for a document 
with uncertainty on phones level. The recursive path analysis handles the same queries 
in less then 2.5 seconds.

In Q6, instead of descendants of a person, a total person with a particular homephone is 
returned in the result. Test results are depicted in Figure 6.5. 

The differences between both query evaluating methods are even more pronounced than 
in the results of Q4: more than 1.5 minute is needed to get one person using the 
compare path method, whilst 3 seconds is enough for the recursive path analysis. 
These differences can be explained as follows:
When executing Q6 we query for elements that contain child nodes. It is possible that 
some children are not valid for the result (as explained in 5.2.5). CPM performs a check 
to prevent the occurrence of invalid children in the result, whilst RPA does not. Therefore, 
the comparison between both methods is not completely fair for this kind of query. Thus, 
Figure 6.5, in which such an comparison is shown, should be seen as an indication of the 
processing time needed for both methods, instead of a proof that the recursive path 
analysis performs better in this situation.
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Figure 6.4: Testresults for Q4 with 5 persons 
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Figure 6.5: Testresults for Q6 with 5 persons
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The increased CPM processing times for both Q4 and Q6 are caused by the fact that both 
contain a predicate. In the evaluations of these queries, for each subnode it is checked 
whether it is valid (as explained in section 5.2.5), which is a rather inefficient procedure. 
The number of subnodes influences the processing time. This is why it takes longer to 
query bigger nodes (like person in Q6) as well as to execute a query on a document with 
more uncertainty (like the 50% documents in Figure 6.4 and Figure 6.5). 

In the previous tests we have seen that the compare paths method can execute queries 
without leaf elements in less than 2 seconds independent of the level of uncertainty. To 
test the boundaries of this method in terms of the size of the dataset, we repeated Q1 
using CPM with address books that contained larger numbers of persons (see Figure 6.6).

This figure shows that even for a 100-person address book, the processing time 
increases barely. When querying address books with 1000 or 10000 persons the process 
slows down. This is probably the logical effect of the fact that large output has to be 
generated together with a large amount of probabilities that have to be calculated. 

We performed Q1 with large address books again using RPA. The results of this query are 
shown in figure 6.7. 
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Figure 6.7: Testresults for Q1 executed on addressbooks of different sizes using RPA
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Figure 6.6: Testresults for Q1 executed on addressbooks of different sizes using CPM
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The large number of possible worlds that have to be constructed leads to the fact that, 
except from the address book in its most simple form (2-1), address books with 20 or 
more persons can not be queried.
Finally, we chose to take a closer look on the CPM because of the promising results that 
were obtained in Q1 for different sizes of address books. We assumed that the long 
processing time in the query of the largest address books could be assigned to the large 
amount of results that had to be returned. To investigate if CPM could be useful for 
selecting only a few elements from a large dataset, we tested two more queries.

First, we queried only for a homephone with a 
certain value (Q3, see Figure 6.8). Thus, in Q3, as 
in Q1, we query leaf nodes. However, Q3 returns 
only one element, since it contains a predicate that 
is fulfilled by one specific homephone element 
existing in the document that is queried. Because 
no lower subnodes are present, no checking for 
valid subnodes is performed. For this reason, such a 
query can be executed on the 5-persons address 
book in less than five seconds. The observation that 
the 10000-person address book can be queried in 
approximately the same amount of time, results 
from the fact that the selection as well as the 
representation processes of only element can be 
performed in a small amount of time. 

In our final query (Q5), we queried all phones that 
contain a homephone with a specific value. Thus, 
contrary to Q3, Q5 does contain subnodes that are 
checked for validity. We chose the value for the 
homephone element in such a way that this query 
returns exactly one phones element. Running this 
query on the most complicated variant (3-2-50%) of 
the 5-person address book takes 17 seconds, but 
running it on the same variant of the 10000-address 
book only takes 11 seconds (Figure 6.9). The fact 
that in some cases it is possible to achieve lower 
processing times for larger address books than for 
small ones can be explained as follows: because the 
test files are randomly generated, it can be the case 
that the phones element requested in the small 
address book contains more subnodes than the one 
requested in the larger address book. Thus, the 
present results can be considered a coincidence.
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Figure 6.8: Testresults for Q3 executed on 
different sizes of addressbooks using CPM
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Figure 6.9: Testresults for Q5 executed on 
different sizes of addressbooks using CPM
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 6.3 Test conclusions

● The large number of possible worlds that are generated by the naive method, 
causes that none of our data-sets can be queried. So it can be concluded that the 
efficiency of this method is insufficient for practical use. 

● The processing time of a query using the recursive path analysis varies with the 
level of uncertainty in the result. A high level of uncertainty causes long processing 
times. This makes that the recursive path analysis works well on a broad range of 
documents and queries, until the number of possible worlds in the result gets too 
high.

● The processing time of the compare paths method is almost independent of the 
level of uncertainty of the document. Therefore, queries for elements that do not 
contain subnodes, can be executed in a small amount of time.

● However, checking for valid subnodes in the compare paths method is such a slow 
process that querying for nodes with a large number of subnodes in combination 
with a predicate is no option for almost all documents. The recursive path analysis 
however only supports queries with predicates, if the query contains a following 
step in which the element does not occur in the same probability node as the 
predicate element.

● When the results itself is small sequence with a each small number of subnodes, 
the compare paths method can be used on very large (10000-person) files.

Based on these conclusions we can give a decision tree as shown in Figure 6.10. A user 
that has a certain knowledge about the document and what his query probably would 
return, can use this tree to choose a suitable query method.
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Figure 6.10: Decision tree for choosing a query method



 7 Conclusions & recommendations

In this thesis, we have presented three methods for querying XML directly on the 
compact representation. In the naive method, all possible worlds are constructed and the 
query is executed over all these worlds. We have shown that the naive method is 
unsatisfactory for even a small dataset. We then described and tested two new methods 
for querying the compact representation: The “Recursive path analysis” and the 
“Compare paths method”. We found out that both methods outperform the naive 
method; however, there are differences in performance between the two methods. Each 
method has its own strong and weak points.

The recursive path analysis method generates an XQuery that selectively considers 
possible worlds that are relevant to the query. A strong point of the recursive path 
analysis method is its ability to produce an answer in the possible worlds representation 
style. The improvement compared with the naive method is achieved by avoiding most of 
the possible world construction. The weak point of the recursive path analysis is the fact 
that for every step taken in the XPath query all possible worlds for the nodes satisfying 
that step are enumerated. Doing “deep” queries on documents with a lot of uncertainty 
still causes too many possible worlds to be enumerated.

The compare paths method compares the paths of nids of candidate elements with those 
of predicate elements to determine whether candidate elements should be included in the 
final answer. A strong point of this method is its use of the possibility-per-node answer 
representation. Moreover, for several types of queries the processing time of the 
compare paths method is independent of the level of uncertainty or the size of the 
document. This makes it possible to query an address book document containing up to 
10000 people in roughly the same amount of time as a five person address book. An 
disadvantage of the compare paths method concerns the filtering of the result subtrees. 
If the query result contains elements with a lot of child elements, the response time will 
be long.

The recursive path analysis uses the possible world representation style. Although the 
result is very precise this way, it generates very large results. If we do not take this issue 
into account we can conclude the following about the two methods:

• Using small documents (10 pers.) or larger documents containing minimal 
uncertainty (1000 pers.), overall, the recursive path analysis performs best.

• The compare paths method performs better only if the elements that are queried 
have (almost) no child elements. If this is the case, even very large probabilistic 
XML documents (10000 pers.) can be queried with the same speed as a small 
document (5 pers.).

The execution times of both methods are not directly comparable. The compare paths 
method filters the subtrees of result elements. The recursive path analysis doesn't do so. 
For this reason, using the recursive path analysis, correct results are not guaranteed 
when queries containing a predicate are executed.

In conclusion, the compare paths method has the most potential to form the basis for an 
efficient probabilistic XML query mechanism. The result subtree filtering technique 
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deserves further research as it currently appears to be one of the major bottlenecks. 

Because of the different answer representation styles the two prototypes use, our 
comparison is not completely fair. The performance of the recursive path analysis 
decreases when documents containing more uncertainty are queried. In the same 
situation the performance of the compare paths method stays roughly the same. 
However, the current investigation doesn't answer the question whether this difference in 
performance is caused by a fundamental difference between the algorithms of both 
prototypes or by the considerable difference between the sizes of the results that need to 
be generated. An additional experiment comparing both prototypes using both the 
possibility-per-node style and the possible world style could give a better view on this 
issue. 

 7.1 Optimization recommendations

As mentioned before, the processing time of the compare paths method increases rapidly 
when returning elements with large subtrees. The method to check whether child 
elements may occur in the result needs to be optimized to get a prototype that is more 
usable in practice. Possible solution directions are:

• The number of subnodes that are checked for validity should be reduced to a 
minimum. In many cases it is not necessary to check all descendants. For 
predicate elements it is not needed at all.

• For the structure of a path of prob and poss nids, a way of efficiently representing 
subnodes should be investigated, so that less redundant data is needed.

• The function that takes care of returning paths of prob and poss nids should have 
a different output for candidate and predicate elements. Furthermore it isn't 
necessary to call this function when no predicates are involved in the query.

Another way of optimizing the compare paths method can be done by implementing the 
the function that compares paths and the “createpossworlds” function in the internal 
programming language of MonetDB as a standard function instead of an XQuery module.

 7.2 Extension recommendations

The compare paths method prototype supports the most general XPath queries. More 
advances applications of XPath are not yet (fully) implemented. Axis steps are for 
example already supported in the Java parser but whether the XQuery module can 
handle them is not yet fully tested. Some operators (like “+”, “-”, “<=” , “>=”, “eq” and 
“or” for example ) and functions (like “position()” and “last()” for example) however 
shouldn't be a problem for the XQuery module but are not yet supported in the Java 
parser.
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When the goal is to fully support XQuery not only the parser has to be extended, also 
some important questions have to be asked. The most used feature of XQuery is in 
general to iterate over XPath query results. But when we have probabilistic results, 
where do we want to iterate over? different worlds? result elements? combinations of 
result elements? And what do we do with the probabilities? Do we want to use them for 
further calculation or ignore them? Do the probabilities differ when we specify a where 
clause in our for loop?
We do not have the answers on these questions but hopefully they form a challenge for 
future research.
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