
University of Twente
department of

Electrical Engineering

Date: 14-06-2000

Demonstration of the
Software-Radio Concept

R. Schiphorst

M.Sc. Thesis

Report no: EL-S&S-005.00

January – June 2000

Under supervision of: Prof. dr. ir. C.H. Slump
Dr. ir. S.H. Gerez
Ing. G.J. Laanstra

University of Twente, Department of Electrical Engineering, Signals
& Systems PO Box 217, 7500 AE Enschede, The Netherlands

i

Abstract

Since the early 1980’s an explosion-like increase of cellular mobile systems can

be observed. A side effect of this rapid growth is an excess of mobile system

standards. In fact, every major country has its own standard(s). Therefore, the

software-radio concept is emerging as a potential pragmatic solution: a software

implementation of the user terminal able to dynamically adapt to the radio

environment in which it is located.

First, this report presents a global overview of the software-radio concept.

Furthermore it explains a software-radio transmitter and receiver built for

demonstration purposes. The source code has been written as much as possible

in C and is running on an evaluation module of Spectrum Digital (with the

TMS320LC549 DSP from Texas Instruments). The software-radio transmitter and

receiver are based on a modified version of the China Wireless

Telecommunication Standard (CWTS). Because the used evaluation module has

been designed for audio applications the software radio uses frequencies that are

about 5000 times lower than the CWTS standard uses. Both the receiver and

transmitter require about 75 million instructions for decoding/encoding one

frame. Because the source code is not optimized, the total number of instructions

can be reduced significantly. Finally the system has been verified by measuring

the BER versus the bit-energy-to-noise-energy ratio.

ii

iii

Acknowledgements

This Master-of-Science assignment, Demonstration of the Software-Radio

Concept, has been performed at the Signals & Systems chair of the University of

Twente.

I would like to thank the following persons. First, my daily supervisors and

graduation committee, Sabih Gerez, Kees Slump and Geert-Jan Laanstra for their

ideas and help of during the assignment. Furthermore I would like to thank Eelke

Blok for his comments on this report.

Of course, I would like to thank everyone else who helped me or showed interest

in my assignment.

Enschede, June 2000

Roel Schiphorst

iv

v

Table of contents

1 Introduction___ 1

1.1 Assignment __ 1

1.2 Overview___ 2

2 Software radio_______________________________________ 3

2.1 Introduction ___ 3

2.2 Definition __ 4

2.3 Second-generation standards _____________________________________ 5
2.3.1 Functional architecture of a transceiver _______________________________ 7
2.3.2 GSM and IS-95 ___ 8

2.4 Architecture__ 9

2.5 Technological challenges __11

2.6 Commercial aspects ___12

2.7 Front-end design __13
2.7.1 Several receiver designs__ 13
2.7.2 Receiver challenges __ 16

3 Hardware __19

3.1 Introduction __19

3.2 DSP Evaluation Module ___19
3.2.1 The TMS320LC549 DSP chip___ 20
3.2.2 The TMS320AD55 AD/DA chip_______________________________________ 22
3.2.3 External memory __ 23

3.3 Code composer__24

4 Software ___27

4.1 Introduction __27

4.2 The China wireless telecommunication standard (CWTS)__________27
4.2.1 Multiple access __ 27
4.2.2 Frame structure ___ 28
4.2.3 QPSK modulation__ 31
4.2.4 Filter characteristics ___ 33

4.3 Practical implementation __35
4.3.1 Hardware limitations __ 35
4.3.2 Cascaded integrated comb (CIC) filters________________________________ 35
4.3.3 TMS320C54x DSPLIB__ 36
4.3.4 Transmitter ___ 36
4.3.5 Receiver ___ 42

vi

5 Experiments _______________________________________49

5.1 Introduction __49
5.1.1 Software-radio-system setup ___ 49

5.2 Inside the transmitter using Code Composer _____________________50

5.3 Inside the receiver using Code Composer _________________________53

5.4 Performance of the software radio________________________________55

6 Final Review _______________________________________59

6.1 Conclusions___59

6.2 Recommendations___60

Bibliography __63

References__63

Consulted Works ___65
Internet___ 66

Abbreviations ___67

List of figures ___69

List of tables __71

Appendices ___73

Appendix I: Source code of the software-radio transmitter ______________74
cdma.c__ 75
diffenc.c __ 75
frame.c ___ 77
main.c __ 79
mod_QPSK.c __ 85
reg549.h __ 87
table.h__ 89
filter_int.h __ 90
vecs.asm__ 92
549.cmd __ 92

Appendix II: Interpolation-filter data___________________________________93
Interpolation filter I__ 93
Interpolation filter II ___ 94
Interpolation filter III __ 95
Interpolation filter IV __ 96

Appendix III: Source code of the software-radio receiver ________________97
carrier_mult.c ___ 98
cdma.c__ 99
cic.c __ 99
compare.c__ 100
demod_QPSK.c___ 102
detect.c __ 106
main.c ___ 107
vecs.asm___ 113
reg549.h ___ 113
table.h___ 113
filter_dec.h___ 113
549.cmd ___ 114

vii

Appendix IV: Decimation-filter data__________________________________ 115
Decimation filter I (CIC filter) ___ 115

Decimation filter II ___ 116

Decimation filter III___ 116

viii

1

1 Introduction

Nowadays the magic word in consumer electronics is mobile. In the Netherlands

almost seven million people [1] have a mobile telephone and their number is

increasing every year with tens of percents. The current second-generation

mobile network (such as GSM) is however developed for speech; it is not suited

for multi-media applications. Therefore, a new third-generation (3G) mobile

network is in development, which can handle these new speech and data

services. However, this new generation does not imply that the old one will be

replaced, both systems will exist. Furthermore, other countries have other

standards, which use other modulation techniques and other frequency bands. So

there are tens of standards worldwide and their number is increasing. Efforts to

reduce the number of standards by defining an integrating standard, results often

in a new extra standard [2].

For worldwide roaming it would be nice to have an intelligent handheld able to

dynamically adapt to the radio environment in which it is located. The handheld

should independently determine with which modulation technique, frequency

band and protocol, transmission could take place in a certain place and time. A

possible solution for this problem is the software radio: a system in which

adaptation is achieved by executing the program appropriate to the situation.

1.1 Assignment
The chair Signal & Systems has set up a project [35] in collaboration with the

telecommunication industry for investigating the software-radio paradigm. The

final goal of the project is to build a software-radio prototype. When I started

with my Master’s project the software-radio project was not started yet.

Therefore my first assignment was to make a study of literature about software

radio.

The second assignment was to build a part of the software radio on a re-

configurable platform such as a digital signal processor (DSP). This part, the front

end, starts in the transmitter with the modulation of binary data. Then, the

modulated signal is transformed to a channel frequency in the system band. In

the next step, the signal is transmitted and received by the receiver. The receiver

selects digitally the used channel and demodulates the data. Together these

parts form the front end of the software radio transceiver. The emphasis of this

task is the projection of the required algorithms on the resources and to design,

to implement and to test the required functionality. This should result in a

demonstration model of the front end of the software radio.

Introduction

CHAPTER

1

2

1.2 Overview

Chapter 2, Software radio, gives a global overview of the software-radio subject.

It will deal with the definition, the architecture, technological challenges and

commercial aspects of software radio. Also two second-generation standards will

be discussed. Finally this chapter will discuss the front-end design of software

radio in more detail.

Chapter 3, Hardware, deals with the hardware that is used in this project. Two

evaluation modules of Spectrum Digital (with a Texas-Instruments DSP) are

used. The design of these evaluation modules and the used programming tool,

Code Composer, will be discussed in this chapter.

Chapter 4, Software, discusses the design of the software, which is running on

the two evaluation modules. First, it will deal with the used mobile system

standard, the China wireless telecommunication standard (CWTS). Finally the

practical implementation of this standard will be discussed. Also the design of the

transmitter and receiver are discussed.

Chapter 5, Experiments, discusses some experiments with the software radio

transmitter/receiver. First the working of the transmitter and receiver is verified

with the programming tool, Code Composer. Finally the BER versus bit-energy-

to-noise-energy is measured and verified.

Chapter 6, Final Review, draws conclusions about this project. Furthermore it

gives recommendations for further research in the field of software radio.

3

2 Software radio

2.1 Introduction

Since the early 1980’s an explosion-like increase of cellular mobile systems

can be observed. Nowadays, mobile communication has become a major

worldwide business. A side effect of this rapid growth is an excess of analog

and digital mobile system standards such as TACS, GSM, DCS-1800, IS-95

CDMA etc. In fact, every major country has its own standard(s). Efforts to

define a unique worldwide standard result often in a new, extra standard [2].

The excess of standards is not only bad for manufacturers but also for

consumers. Manufacturers have to develop a new telephone for each

standard. This results in extra development costs and small divided markets.

It is also bad for consumers because they cannot use their mobile telephones

abroad.

A unique common worldwide standard has benefits, but the industrial

competition between Asians, Europeans and Americans makes it very difficult.

It is therefore in this field that the software-radio concept is emerging as a

potential pragmatic solution: a software implementation of the user terminal

able to dynamically adapt to the radio environment in which it located [3].

Aside of the standardization issues, one should also view the software radio

concept as a means to make users, service providers, and manufacturers

more independent of standards as such. The benefits of this approach are that

air interfaces may, in principle, especially be tailored to the specific needs of a

particular service for a particular user in a given environment at a given time.

For a manufacturer, a single design is sufficient for the whole world and

consumers can use their telephones in every country.

Software Radio can also be described as radio functionalities defined by

software [4], meaning the possibility to define by software, the typical

functionalities of a radio interface. Currently the radio interface in mobile

telephones is usually implemented by dedicated hardware. The presence of

software defining the radio interface implies the use DSPs replacing dedicated

hardware to execute, in real time, the necessary software. Although digital

signal processing has developed exponentially since the 1980’s, the

processing power of DSPs and programmable logic such as field

programmable gate arrays (FPGAs) is today still too small for a complete

digital programmable transceiver. The required processing power (several

thousands of MIPS [5]) is expected to become available in the near future.

The structure of this chapter is as follows. First the definition of the software

radio will be dealt. Then, two second-generation mobile system standards

(GSM (Global System for Mobile Computing) and the American code division

multiple access (CDMA) system (IS-95)) will be discussed. Similarities and

CHAPTER

2
Software radio

4

differences between standards affect the architecture of the software radio.

This issue is discussed after the description of these two standards. There are

several problems, which have to be overcome before the software radio can

be manufactured. These problems are discussed in the final section.

2.2 Definition

There is not one unique definition for the software radio concept. The most

common definitions are summed up below and quoted from [3]:

• Flexible transceiver architecture, controlled and programmable by

software

• Signal processing able to replace, as much as possible, radio

functionalities

• air-interface-download ability: dynamically re-configurable radio

equipment by downloadable software, at every level of the protocol

stack

• Software realization of terminals multiple mode/standard

• Transceiver where the following parts can be defined by software:

o frequency band & radio channel bandwidth

o modulation & coding scheme

o radio resource and mobility management protocols

o user applications

These parameters can be adapted and changed by:

1 network operator

2 service provider

3 final user

Software radios use digital techniques, but software-controlled digital radios

are generally not software radios [5]. The difference between software-

controlled digital radios and software radios is the total programmability of

software radio. This programmability includes programmable radio-frequency

(RF) bands, channel access modes, and channel modulation.

Therefore, in summary, the following definition is proposed (which is quoted

from [3]):

Software radio is an emerging technology, aimed to build flexible radio

systems, which are multiple-service, multi-standard, multi-band, re-

configurable and re-programmable, by software.

A software-radio system can operate in multi-service environments. This

means that the software radio is able to offer services of any already

standardized systems or future ones, on any radio frequency band and is not

constrained to a particular standard. For that reason the software-radio

system is very flexible. The compatibility of a software-radio system with any

defined mobile-system standard is guaranteed by its re-configurability, which

is supplied by DSP processors. These processors implement in real time radio

interface and upper-layer protocols.

A software radio does not just transmit only, to quote Mitola [5]:

In an advanced application, a software radio does not just transmit: it

characterizes the available transmission channels, probes, the

propagation path, constructs an appropriate channel modulation,

electronically steers its transmit beam in the right direction, selects the

appropriate power level, and then transmits. Again, in an advanced

5

application, a software radio does not just receive: it characterizes the

energy distribution in the channel and in adjacent channels, recognizes

the mode of the incoming transmission, adaptively nulls interferers,

estimates the dynamic properties of desire-signal multi-path,

coherently combines desired-signal multi-path, adaptively equalizes

this ensemble, trellis decodes the channel modulation, and then

corrects residual errors via forward error control (FEC) decoding to

receive the signal with lowest possible bit-error rate (BER).

Finally, the software radio supports incremental service enhancements

through a wide range of software tools. These tools assist in analyzing

the radio environment, defining the required enhancements,

prototyping incremental enhancements via software, testing the

enhancements in the radio environment, and finally delivering the

service enhancements via software and/or hardware.

2.3 Second-generation standards
Ideally, the software radio should be able to carry out every mobile system

standard in the world. A good understanding of those standards is thus

required. Therefore this section will discuss two major second-generation

standards. The first one is GSM, developed in Europe and the second one is

IS-95, developed in the USA. An overview of all major second-generation

standards and their technical details is given in Table 1.

The structure of this section is as follows. First a functional architecture of a

mobile telephone receiver is discussed. After this description, the differences

and similarities between GSM and IS-95 are discussed for every segment in

this functional architecture.

6

System TACS GSM DCS-
1800

Qualcomm
IS-95 CDMA

IS-54
DAMPS

JDC CT2 DECT PHS PACS

Origin UK Europe Europe USA USA Japan UK Europe Japan USA
Forward Band (MHz)
(base station� mobile
station = down link)

935-950 935-960 1805-
1880

869-894 869-894 810-826
1477-1489
1501-1513

864-868 1880-
1900

1985-
1918

1930-
1990

Reverse Band (MHz)
(mobile station� base
station = up link)

890-905 890-915 1710-
1785

824-849 824-849 940-956
1429-1441
1453-1465

(TDD) (TDD) (TDD) 1850-
1910

Multiple Access FDMA TDMA TDMA CDMA TDMA TDMA FDMA TDMA TDMA TDMA
Duplex FDD FDD FDD FDD FDD FDD TDD TDD TDD FDD
Carrier Spacing 25 200 200 1250 30 25 100 1728 300 300
Channels/carrier (kHz) 1/pair 8/pair 8/pair 55-62 3 3 1 12 4 8/pair
Modulation FM GMSK GMSK QPSK π/4-

DQPSK
π/4-
DQPSK

FSK GMSK π/4-
DQPSK

π/4-
QPSK

Modulation Rate (kBd) N/A 271 271 1228 48.6 42 72 1152 192 192
Voice + FEC Rate (kbps) N/A 22.8 22.8 8/Var. 11.2 13 32 32 32 32
Speech codec N/A RPE-

LTP
RPE-
LTP

CELP VSELP VSELP ADPCM ADPCM ADPCM ADPCM

Unprotected Voice Rate
(kbps)

N/A 13 13 1.2-9.6 7.95 6.7 32 32 32 32

Control Chan. Name SACCH SACCH SACCH SACCH SACCH D C SACCH
Control Chan. Rate (bps) 967 967 800 600 2000 640 4000
Control Message Size
(bits)

184 184 1 65 64 64 10/2.5 ms

Control Delay (ms) 480 480 1.25 240 32 10
Peak Power (Mobile) (W) 0.6-10 2-20 0.25-2 0.6-3 0.6-3 0.3-3 10 mW 250 mW 80 mW 200 mW
Mean Power (Mobile)
(W)

0.6-10 0.25-2.5 0.03-0.25 0.2-1 0.6-3 0.1-1 5 mW 10 mW 10 mW

Power Control Yes Yes Yes Yes Yes Yes Yes No Opt.
Voice Activity Detection Yes Yes Yes Yes Opt. Opt. No No
Handover Yes Yes Yes Yes Yes Yes No Yes Yes Yes
Dynamic Channel
Allocation

No No No N/A No Opt. Yes Yes Yes autonom.

Min. Cluster Size 7 3 3 1 7 4 N/A N/A N/A N/A
Capacity
(Dpx ch/cell/MHz)

2.8 6.7 6.7 16.5* 7 N/A N/A N/A N/A

Frame duration (ms) 4.615 4.615 20 40 40 2 10 5 2.5
Speech FEC N/A Conv.

(2,1,5)
Conv.
(2,1,5)

Conv.
Fwd: (2,1,9)
Rev: R = 1/3

Conv.
(2,1,5)

R = 9/17 No No CRC CRC

Channel Eq. N/A Yes Yes Yes Opt. Opt. No No No No
Half-rate codec (kbps) N/A 5.6 5.6 No No 3.2 No No No No
Half-rate + FEC (kbps) N/A 11.4 11.4 5.6
Enhanced Full-rate (kbps) N/A 12.2 12.2 Yes 7.4 No No No No No
DCS-1800: GSM-like European system in the 1800 MHz band
IS-95: American CDMA system
PHS: Japanese personal handy phone system
TACS: total-access communications system
CDMA: code-division multiple access
FDMA: frequency-division multiple access
TDMA: time-division multiple access
FM: frequency modulation
DQPSK: differential quadrature phase shift keying
RPE-LTP: regular-pulse-exited – long-term-predicted
VSELP: vector-sum-excited linear predictive
SACCH: slow-associated control channel

IS-54: American digital advanced mobile phone system (DAMPS)
CT2: British cordless telephone system
PACS: personal access communications system
GSM: global system for mobile computing
DECT: digital European cordless telephone
FDD: frequency-division duplex
TDD: time-division duplex
GMSK: Gaussian minimum shift keying
GFSK: Gaussian phase shift keying
CELP: code-excited linear predicted
ADPCM: adaptive differential pulse-code modulation
JDC: Japanese Digital Cellular

Table 1: Overview of second-generation standards [6]

7

2.3.1 Functional architectu re of a transceiver

Although every standard is different, all standards have the same global steps

in decoding a radio signal into speech or data and vice versa. Figure 1 shows

a global schematic of a transceiver. The first step of a transmitter is to

convert the speech signal into a bit stream. This bit stream must be tiny,

because a smaller bit stream leads to less channel bandwidth, which increases

the capacity of the network. Therefore, GSM and IS-95 use complex

algorithms for encoding speech. The output of the speech encoder is between

9 – 15 kbps (kilo bits per second) [Table 1]. Then, error correction code is

added to this bit stream. Although a speech encoder reduces the bit stream

significantly, the importance of every bit is increased. The system becomes

more sensitive for bit errors. To overcome this, error correction code is added.

Thus, the real objective of the speech encoder is to minimize this bit stream,

to have a small error-insensitive bit stream.

The next step is to cipher the bit stream for privacy reasons. After ciphering,

the bit stream will be modulated. This modulated signal uses the bandwidth of

one channel. Standards, which use CDMA as modulation technique, multiply

this modulated signal with a spreading code ([4], [6], [7] and [8]). So, every

channel uses a (small) part of the total bandwidth of the mobile network. The

next step is to convert the base band (BB) signal into the appropriate part of

the system bandwidth. This step marks the border between BB processing and

intermediate-frequency (IF) processing. The IF stage has a bandwidth of

several tens of MHz. Finally, this band has to be converted into the real radio

frequency (RF) band, which is used by the system (for GSM this band is 890 –

960 MHz).

The transmitted signal is picked up by the receiver, which converts the RF

signal into speech or data. The first step is to isolate the bandwidth, which is

used by the system. In this step the signal is converted from RF band into IF

band. The next block, IF processing, selects one channel from the system

band and converts this channel into BB. Then the BB signal will be

demodulated. First, it will de-spread the bit stream (if a CDMA standard is

used) followed by an equalization process. The last steps of the signal

processing are the symbol-to-bit conversion and forward error correction

(FEC) decoding. The final step is to convert the received bit stream into a

speech signal.

RF conversion IF processing Base band Bit stream Source

Channel coding/decoding

Source coding/decoding

Antenna

Figure 1: functional architecture of a mobile system transceiver

8

2.3.2 GSM and IS-95

This section describes how each segment of the transceiver has been

implemented by GSM and IS-95. Both standards use for example a different

speech encoder/decoder (codec). GSM uses the regular-pulse-exited – long-

term-predicted codec (RPE-LTP) and IS-95 uses the code-exited-linear-

prediction (CELP) codec. Both methods are complex; for a more detailed

explanation, the reader is referred to [9] and [10]. In short, both methods

have a model of the speech system. First the optimal parameters of this

model are determined for each frame (of 20 ms). The output after this model,

the residual signal (which is minimized by the choosing the optimal

parameters), can be approximated by different methods. The CELP codec has

a codebook, which contains the most used residual fragments. The index of

the best match will be transmitted. For optimal performance the codebook is

adapted at every frame. The RPE-LTP codec uses another, more difficult

method for approximating the residual signal. The residual signal does not

vary quickly in time. The codec uses this property and tries to match the

signal with a sequence from the past. The best match is subtracted from the

signal and the outcome can be considered as noise. This noise is then roughly

encoded and transmitted.

After the speech codec, the signal can be considered as a stream of data

packets. (The speech encoder encodes the speech per frame (of 20 – 30 ms)).

To reduce errors a FEC code is added. Both methods use a convolutional code

as FEC. The output of a convolutional code does not only depend on the inputs

but also on the state of the encoder. An example of such an encoder is given

in Figure 2. From the state diagram, it can be seen that the next state

depends on the current input and the current state. There are several

algorithms, which can be used to decode this bit stream, for example the

Viterbi-algorithm ([7], [11]).

Figure 2: a simple convolutional encoder and its state diagram [11]

After the convolutional encoder, the data packet is led to an interleaver.

Errors, in mobile communication do not occur uniformly in time, they occur in

short bursts. The best performance of FEC codes is achieved when bit errors

occur uniformly [7]. Therefore, the bits of the data packet are mixed,

interleaved, for optimal performance. GSM and IS-95 use the same methods,

although the implementation differs. Mobile communication must also be safe;

therefore the bit stream will be ciphered before it will be modulated. Both

standards use ciphering algorithms, which change the encryption from call to

call. Therefore, it is nearly impossible to tap a channel.

9

After ciphering, the bit stream can be modulated and transmitted. Both

standards use very different methods. Therefore they will be discussed

separately, starting with GSM. GSM uses the Gaussian-minimum-shift-keying

(GMSK) - modulation technique. This is a spectrally efficient variant of the

frequency-shift-keying (FSK) -modulation technique. For a binary “1”,

frequency f1 is transmitted and for a “0”, frequency f2. The GMSK variant,

however, uses a minimal frequency distance (by meeting several conditions)

and the output is led through a Gaussian filter, to reduce bandwidth. More

information can be found in [7] and [19].

GSM uses a combination of FDMA (frequency division multiple access) and

TDMA (time-division multiple access) for communication between mobiles and

base stations. First, the frequency band of GSM is divided into channels

(FDMA). At most eight users can use each channel by using TDMA. Thus,

every user has his own channel and time slot. So the GMSK-signal has to be

converted into the right frequency band and must be transmitted in the right

time slot.

As said before, IS-95 uses a very different modulation technique because it

uses another method, CDMA for communication between mobiles and base

stations. First, the bit stream is modulated using the quadrature-phase-shift-

keying (QPSK) - modulation technique. This technique modulates two bits a

time; the phase of a QPSK-signal has namely four values: π/4, 3π/4, 5π/4,
and 7π/4. So, for every bit combination, there is another phase. The bit

stream is then multiplied with a fast random binary signal (called the pseudo-

noise (PN) code). More information can be found in [7] and [19].

So, every user has another PN code, which is orthogonal to other PN codes.

This means that the output of multiplication of two PN codes is zero. Because

the bit stream is spread by the PN code, it uses a relative large frequency

band. Other users can nevertheless share this frequency band, because each

PN code is orthogonal to other PN codes. The capacity of CDMA is therefore in

theory unlimited, but PN codes are in reality not purely orthogonal. Thus,

every extra user increases the noise floor. The first step in recovering the

original bit stream is to de-spread the received signal. This is achieved by

multiplying it with the same PN code used by the transmitter. The next and

final step is to demodulate the QPSK signal into a bit stream. More

information about IS-95 and GSM can be found in [6], [7], [8], [10] and [12].

It should be noted that the standards mentioned in this chapter (GSM and IS-

95) are not discussed completely. Only the link between handset and base

station is discussed. Besides this connection, there are, for example, service

channels. The transmitted power is regulated and there are other aspects of a

mobile system standard on a higher level such as the billing system. These

aspects are not discussed here because they are irrelevant for the handset to

base station link. More information can be found in the literature cited above.

2.4 Architecture

In the previous section, the functional diagram of radio transceivers is

described. This section discusses the architecture of those transceivers.

Currently transmitters and receivers are based on the traditional super-

heterodyne scheme (Figure 3). The RF and IF stages are completely analog.

Only the BB stage is digital, usually built in dedicated hardware. In Figure 3

the signal is picked up by the antenna. The next step is to filter the signal with

a band-pass filter (BPF) and to amplify it with a low-noise amplifier (LNA). The

10

resulting system band is converted to a lower frequency band by multiplying it

with a local oscillator (LO). A low-pass filter (LPF) isolates the down-converted

system band. Then the analog gain control (AGC) block tries to normalize the

signal power for an optimal use of the analog digital converter (ADC). The

next step is to isolate one channel from the system band. First the signal is

multiplied with a voltage-controlled oscillator (VCO). The Digital-Base-Band

block controls this VCO. A digital analog converter (DAC) is used to convert

the digital control signal of the Digital-Base-Band block to an analog signal.

This analog signal controls the VCO. After the signal is multiplied with the

VCO, the signal is filtered with a LPF and finally sampled (ADC). Because

some mobile system standards use quadrature modulation techniques, both

the in-phase (I) and quadrature-phase (Q) component are extracted and

sampled. These two bit streams are sent to the digital base band processing.

This block also controls the channel selection. More information can be found

in section 2.7, Front-end design.

I component

Q component

Figure 3: traditional heterodyne receiver [3]

In contrast, the ideal software-radio receiver is shown in Figure 4. The analog

stage is as small as possible. The analog stage consists only of the antenna,

the BPF and the LNA. The A/D conversion (ADC) is done immediately after the

LNA, in order maximize the re-programmability of the system.

Figure 4: the ideal software-radio receiver [3]

At this moment, the ideal software radio is not realizable. There are several

matters, which cause this [13]. For example it is impossible to build antenna

and LNAs on a working bandwidth ranging from hundreds MHz to units or tens

of GHz. The only way to guarantee the multi-band feature is to have more RF

11

stages. Also, jitter effects limit the possibility of A/D conversion directly at the

RF band. The most promising solution for the moment is known as Digital

Radio receiver [3], shown in Figure 5. The RF stage is still completely analog,

but the A/D converter samples the spectrum allocated to the system

immediately after the RF stage. The IF stage of the Digital Radio transceiver

consists of the programmable down converter (PDC) which provides the

following operations [3]:

• down conversion: digital conversion from IF to BB, by using a look-up

table containing the samples of a sinusoidal carrier. The look-up table

replaces the local oscillator used in the analog down converter.

• channelization: selection of the carrier and channel which is performed by

digital filtering. In analog receivers, analog filters with very stringent

requirements are used.

• sample-rate adaptation: under-sampling of the channelization-filter-signal

output, to match the sample rate to the selected channel bandwidth. The

bandwidth of a channel is compared to the spectrum of the A/D input

signal a narrow-band signal. Therefore the sample rate can be much lower

to enlighten the required processing power.

After these three operations, the digital PDC output is base-band processed.

An example of a PDC can be found in [14].

Figure 5: Digital Radio receiver [3]

2.5 Technological challenges
This section discusses the technological issues, which have to be solved before

the software radio can be manufactured (commercially). The development of

a software radio system, implies, above all, the achievement of two main

targets [3]:

1. To move, in transceivers, the border between analog and digital world,

as much as possible, towards RF. This requires A/D & D/A wide-band

converters placed as near as possible to the antenna.

2. To replace dedicated hardware (ASICs (application specific integrated

circuits)) with DSPs or FPGAs. In other words, to define, as much as

possible, radio functionalities in software.

The first target, indeed, is not software radio exclusive. Much research has

been carried out in the wide-band transceiver realization [3]. The primary

12

goal of this transceiver was to extend the digital domain at the IF stage and

keeping the RF stage analog.

The second goal is also not only applicable to software radio. A global trend in

the industry is to replace hardware by software, because software is flexible.

Besides DSPs there are other solutions to make the transceiver flexible, for

example FPGAs [2]. There are advantages of using FPGAs instead of DSPs for

signal processing in commercial telecommunication systems. The power

consumption is lower, the size is smaller and the costs are much lower in

comparison with DSPs. A disadvantage of FPGAs is the lack of good tools for

efficient mapping of the algorithms. For a commercial product this mapping

should be very efficient. This does not only apply for FPGAs but also for DSPs.

Only for DSPs more tools are available.

Besides these two important issues there are other challenges, which have to

be solved [15]. The first challenge is the power management. For example,

sleep modes of DSPs or other hardware save power but introduce a probability

that the radio will be asleep during a paging message. A possible solution is a

structured timing of paging messages, which reduces the miss probability, and

further conserves battery life.

The second challenge is the clock generation and distribution. Every standard

such as GSM or IS-95 has its own clock rate. Using one reference oscillator

per standard increases parts count, complexity, and therefore cost. A single

master clock may use the least common multiple (LCM) of the required clocks,

but this leads to a very high clock rate, which is very power inefficient. A

possible solution is to normalize standards to avoid clock rates with large

LCMs.

Receiver complexity is typically four or more times the transmitter complexity.

Thus, the receiver architecture has a first order impact on handset cost. The

challenge is thus to develop a simple receiver. With the current technology,

the support of many standards leads to complex and power-inefficient

solutions. ASICs are very power efficient but inflexible. FPGAs could be a

possible solution.

The final challenge is the handset production. The cost of handsets in volume

production is a nearly linear function of parts count. A possible solution to this

problem is a new emerging technology, called MEMS (micro electro-

mechanical systems) [36]. MEMS is a technology that combines computers

with tiny mechanical devices such as sensors, valves, gears, mirrors, and

actuators embedded in semiconductor chips. Finally the handset software has

to be extraordinarily efficient in use of computational resources. Therefore the

handset software has to be very efficient. Every extra line in the source code

leads to extra costs. For more information about technical challenges the

reader is referred to [15]. That article describes also the technical challenges

in the infrastructure of the mobile network and base stations.

2.6 Commercial aspects
So far, only technical details on the implementation of the software radio have

been discussed, but there are other aspects, for example the standardization

of the software radio. Should every manufacturer develop its own software

radio standard, making it incompatible with other systems, or should there be

one standard for the software radio. In [16], an overview is given on this

area. The article describes which standards can be developed for the software

13

radio: standardized interface to applications (API (application program

interface)), standardized means for delivering new software to a software

radio, standardized ways for allowing a software radio to access a system,

standardized software specification language. Furthermore, the question

arises how intellectual property (IP) can be protected, allowing manufacturers

to develop their own features. Too many standards may limit the competition

between manufacturers and the development of new hardware. In addition,

too many standards will prevent the software radio to become a success.

2.7 Front-end design

2.7.1 Several receiver designs

A global introduction to the software radio was given in the previous section.

This section describes in more detail the front end of the software-radio

receiver, the RF/IF section.

The conventional heterodyne-transceiver architecture requires some analog

filters fitted to the carrier frequency and channel bandwidth of each of the

communication standards. The disadvantage of this architecture is that it uses

fixed narrow-band passive components that don’t fit in a broadband system

with multi-mode operation. Therefore a general-purpose common RF stage is

required for standards with different RF specifications. These specifications

include carrier frequency, bandwidth, modulation scheme, and transmission

power [17].

The ability of the software-radio architecture to support a communication

waveform is predominantly determined by [18]:

• the largest instantaneous signal bandwidth (W)

• the frequency range and bandwidth of the RF;

• the ADC sampling rate (greater than 2W)

• the maximum dynamic range

• DSP throughput requirements including translation of IF to base band,

modulation, demodulation, coding, and decoding.

In most systems the conventional heterodyne receiver is used as shown in

Figure 6. It works as follows. First a band-pass filter isolates the system band

(Figure 7a). This band is then moved towards a lower frequency band (Figure

7b) by multiplying it with a tuned LO. The system band is then converted from

RF to IF. In the next stage the signal is multiplied with a second

(programmable) local oscillator (NCO). With this oscillator a channel can be

selected. The selected channel will be moved to base-band frequencies (Figure

7c). Finally a low-pass filter will isolate the channel (Figure 7d). Then the

signal is digitized where it can be digitally processed.

14

Antenna

Diplexer

TX Input

System bandwidth

BPF LNA

LO

RF Circuits

Mixer

BPF AMP

Channel Band

IF Chain

One or more stages

90° NCO

AMP

AMP

I Phase
A/D

Q Phase
A/D

Base band
Sample
clock

In Phase

Quadrature

cos

sin

Analog Quadrature
Demodulation

N

N

DSP
Sub-System

Figure 6: conventional heterodyne receiver [18]

frequency

frequency

frequency

frequency

a)

b)

c)

d)

Figure 7: global steps of a heterodyne receiver, a) normal radio spectrum,
b) filtering and movement of system band to intermediate
frequencies, c) selection of channel and d) filtering and
digitalization of channel band width.

A second configuration is the pass-band super-heterodyne receiver that

translates the RF signal in one or more IF stages to a final pass-band IF

frequency where it is digitized, as shown in Figure 8. The sampling rate of the

pass-band signal must be at least twice the bandwidth of the system. Pass-

band sampling is popular because only one ADC converter is required,

15

simplifying the component configuration. An example of the pass-band super-

heterodyne receiver is given in [3].

Antenna

Diplexer

TX Input

System bandwidth

BPF LNA

LO

RF Circuits

Mixer

BPF AMP

Channel Band

Pass-band IF Chain

One or more stages

90° NCO Base band

In Phase

Quadrature

cos

sin

Digital Quadrature
Demodulation

DSP
Sub-System

A/D

Sample
clock

2

2

N

Figure 8: pass-band super-heterodyne receiver [18]

Finally, Figure 9 shows a direct-conversion (or homodyne or zero-IF) receiver

where the RF signal is translated directly to base band. Therefore a NCO or

synthesizer must be locked to the carrier. There are several advantages of the

direct-conversion receiver: fewer signal translation steps and the ability to use

simpler receiver filters cascaded with low-pass base-band digital filters in the

DSP. The result is a more flexible (wider) tuning range and potentially larger

channel bandwidths. But there are also a number of disadvantages of the

direct-conversion receiver. These disadvantages are leakage from high-gain

low-noise mixers, requirements for very-high-dynamic-range analog

components, the requirement for higher sensitivity than a comparable super-

heterodyne receiver, the need for precise in (I) and quadrature (Q) phase

balancing, DC-offset cancellation, antenna isolation, and high-selectivity

filters. As a result, homodyne receivers are extremely difficult to implement

[18].

16

LPF

Antenna

Diplexer

TX Input

System bandwidth

BPF LNA

RF Circuits

AMP

90° NCO

In Phase

Quadrature

cos

sin

Base band DSP
Sub-System

Control

I Phase
A/D

LPFAMP
Q Phase
A/D

N

N

Sample
clock

Figure 9: direct-conversion receiver [18]

2.7.2 Receiver challenges

In a receiver several effects appear which have to be compensated. These

effects appear both in the analog and digital stage. These items are [17]:

• Analog stage (LNA, mixer, LPF)

o Signal saturation (i.e. gain control)

o Nonlinear distortion

o DC offset

• Base band or digital stage

o I/Q gain mismatch

o I/Q phase mismatch

o DC offset

Base-band-stage compensation is generally achieved by DSP algorithms using

received-signal sequences stored in memory [17]. On the other hand, RF

analog stage performance depends on circuit linearity. The laws of physics

define this linearity. A device-level approach is not recommended because it

results in excessive demands on the circuit in order to make it meet every

standard. The results are increased terminal cost and size. Therefore, system-

level compensation techniques are desirable.

The first problem is signal saturation. The receiver gain must be set to feed

the received signal linearly to the ADC over approximately an 80 - 90 dB input

range for practical applications. A too low or too high receiver gain leads to an

increased BER. Therefore the gain should be controlled to achieve an optimal

BER.

The second problem is the non-linear distortion. In mobile communication

systems, the radio terminal must receive the desired signal even when an

undesired signal approximately 60 dB stronger than the desired signal is

17

present [17]. Any second-order non-linearity produces an undesired distortion

signal in the base band. This non-linear distortion is produced mainly in the

mixer. Therefore a highly linear mixer is required which reduces second-order

distortion. The realization of such a mixer is, however, difficult. This distortion

signal must always be lower than the desired signal output (e.g.,

approximately 15 dB for QPSK modulation [17]).

Finally the DC offset is a problem. This DC offset is mainly caused by self-

mixing in the mixer circuit. This offset can be divided into two components:

time-invariant offset inherent to the mixer circuit and the timer-variant offset

caused by local-leakage reflections. The latter is mainly caused by variations

in the environment. For a QPSK differential detection the DC offset must be

approximately 30 dB lower [17] than the desired signal at the ADC input. A

possible solution for removing the DC offset is a DC-offset-canceller circuit. If

a small signal is received, only a digital-stage canceller is sufficient. However,

if a large desired signal is received, the DC offset will saturate the ADC. Then

an analog-stage canceller is also needed.

18

19

3Hardware

3.1 Introduction

Software runs on hardware. This chapter describes the hardware that is used in

this project. Two DSP-evaluation modules from Spectrum Digital are chosen as

re-configurable platform. The laboratory has namely two of these evaluation

modules. So, one can be used as receiver whereas the other can be used as

software-radio transmitter. The next section describes the DSP-evaluation

module. Also the DSP and the AD/DA chip from Texas Instruments are discussed

in this section. The last section discusses the programming tool, Code Composer

that is used for programming the software-radio concept into the DSP.

3.2 DSP Evaluation Module

The TMS320LC549 Evaluation Module is a stand-alone card that lets evaluators

examine certain characteristics of the TMS320LC549 DSP to determine if this DSP

meets their application requirements. Other important parts on the evaluation

module, besides the DSP are the AD/DA-chip and the external memory. The next

sections discuss those parts in more detail. Figure 10 shows how these parts are

connected on the evaluation module (Note: The AD/DA-chip is the TLC320AD55

chip).

CHAPTER

3
Hardware

20

Figure 10: the TMS320C549 Evaluation Module [20]

3.2.1 The TMS320LC549 DSP chip

The homepage of the TMS320LC549 DSP [21] gives a good overview of the

capabilities of the processor. A summary of this homepage is given below:

The TMS320LC549 fixed-point DSP is based on a modified Harvard

architecture that has one program-memory bus and three data-memory

buses. The processor also provides an arithmetic-logic unit (ALU) that has

a high degree of parallelism, application-specific hardware logic, on-chip

memory, and additional on-chip peripherals. Separate program and data

spaces allow simultaneous access to program instructions and data,

providing a high degree of parallelism. Two read operations and one write

operation can be performed in a single cycle. Instructions with parallel

store and application-specific instructions can fully utilize this architecture.

In addition, data can be transferred between data and program spaces.

Such parallelism supports a powerful set of arithmetic, logic, and bit-

manipulation operations that can all be performed in a single machine

cycle. In addition, the TMS320LC549 includes the control mechanisms to

manage interrupts, repeated operations and function calls.

The TMS320LC549 DSP consists of the following parts [22]:

• 40-bit ALU

• Two 40-bit accumulators

• Barrel shifter

• 17x17-bit multiplier

• 40-bit adder

• Compare, select, and store unit (CSSU)

• Data address generation unit

21

• Program address generation unit

These parts are connected internally as shown in Figure 11 and the most

important features of TMS320LC549 DSP are shown in Table 2.

Parameter Name TMS320LC549-100

Frequency (MHz) 100

MIPS 100

Cycle Time (ns) 10

Data / Program Memory (Words) 64K/8M

RAM (Words) 32K

ROM (Words) 16K

Timers 1

Total Serial Ports 3

TDM Serial Ports1 1

Buffered Serial Ports 2

COM2 HPI3

Boot Loader Available YES

Core Supply (Volts) 3.3

IO Supply (Volts) 3.3

Table 2: TMS320LC549 specifications [21]

1 A time-division multiplexed(TDM) serial port is a synchronous serial port that is enhanced to allow
time-division multiplexing of the data.
2 COM = port of the TMS320C549 DSP used to interface a host processor or device.
3 HPI = host port interface, more information can be found in [32].

22

Figure 11: block diagram of TMS320C549 internal hardware [22]

3.2.2 The TMS320AD55 AD/DA chip

The capabilities of the TMS320AD55 AD/DA chip are described in its datasheet

[23]. Below a summary is given from this datasheet.

The TLC320AD55 provides high-resolution low-speed signal conversion

from digital-to-analog (D/A) and from analog-to-digital (A/D) using over-

sampling sigma-delta technology. This device consists of two, serial,

synchronous conversion paths (one for each data direction) and includes an

interpolation filter before the digital-to-analog converter (DAC) and a

decimation filter after the analog-to-digital converter (ADC) (see Figure

12). Other overhead functions provide analog filtering and on-chip timing

and control. The sigma-delta architecture produces high resolution, A/D

and D/A conversion at low system speeds and low cost. The options and

the circuit configurations of this device can be programmed through the

serial interface. The options include reset, power-down, communications

protocol, serial clock rate, signal sampling rate, and test mode. The circuit

configurations could include a selection of input ports to the ADC, analog

loop-back, digital loop-back, decimator-sinc-filter output, decimator Finite-

23

duration-Impulse-Response (FIR) filter output, interpolator-sinc-filter

output, and interpolator FIR filter output. The TLC320AD55 is characterized

for operation from 0°C to 70°C.

Features of the TLC320AD55 AD/DA-chip are:

• Single 5-V power supply

• Power dissipation (PD) of 150 mW maximum in the operating mode

• Power-down mode to 1 mW

• General-purpose 16-bit signal processing

• Two’s-complement format

• Serial port interface

• Minimum 80-dB harmonic distortion plus noise

• Differential architecture

• Internal reference voltage (Vref)

• Internal 64-oversampling

• Analog output with programmable gain of 1, 1/2, 1/4, and 0 (squelch)

• Phone-mode output control

• Variable sampling (conversion) frequency (Fs). Fs = MCLK/(Fk ⋅==256), Fk
= 1,2,3,...,256 and MCLK = master clock

• System test mode:

– Digital loop-back test

– Analog loop-back test

Figure 12: function block diagram of the TLC320AD55 IC [23]

3.2.3 External memory

The evaluation module has 192k words of one wait-state program read-access

memory (RAM) and 64k words of one wait-state data RAM memory. Besides the

24

256k of off-chip static RAM the board has also two 32k flash read-only memories

(ROMs) for boot loading.

3.3 Code composer
Code Composer is a powerful tool for programming DSPs. With Code Composer

source files can be edited and projects can be built, debugged, profiled and

managed from a single unified environment. Other features include graphical

signal analysis, injection/extraction of data signals via file I/O, multi-processor

debugging, automated testing and customization via a scripting language [24].

With this language, the general extension language (GEL) the development

environment can be customized and a graphical user interface (GUI) can be

created to control the target DSP application. Figure 13 shows a typical Code

Composer screen.

Project window

Output window

Watch window

File edit window

Figure 13: typical Code Composer screen

In Figure 13 the left-most window is the Project window. In this window files can

be added or removed to the project. By double clicking on the file names in the

Project window, files will be opened for editing (in the File-edit window). After

compiling the output file must be loaded into the DSP. Possible compile errors are

shown in the Output window. While the program is running variables can be

viewed in the Watch window. Also break points can be set in the source code as

shown in Figure 14. Not only can variables be viewed in the Watch window, but

they can also be shown graphically in the Graph window, shown in Figure 15.

Another feature of Code Composer is the use of Profile points. Profile points are

similar to breakpoints, but instead of halting the target processor they count

occurrences, and they collect statistics on the number of instruction cycles, or

25

other events, that have elapsed since the previous profile point was encountered.

In Figure 16 two Profile points are added. In the Statistics window one can see

how many instructions have elapsed between the current profile point and the

next one. Other data in the Statistics window are the minimal and maximal value.

All these features make Code Composer a powerful tool for programming DSPs.

Break point

Figure 14: break points in Code Composer

26

Graph window

Figure 15: graph window in Code Composer

Profile point

Statistics window

Figure 16: profile points

27

4 Software

4.1 Introduction

The previous chapter describes the hardware that is used in this project. This

chapter, Software, discusses the software part of the software radio. The source

code is written as much as possible in C; assembler statements are only used for

the initialization of the DSP. For that reason, porting the source code to other

hardware should be easy. The next section describes the CWTS standard. The

software radio uses a standard that is derived from CWTS. The final section will

deal with the practical implementation of the software radio. The architecture of

the receiver and transmitter and also design choices are discussed in this section.

4.2 The China wireless telecommunication

standard (CWTS)

A wireless telecommunication standard is very complex; besides the physical

layer there are many other aspects, such as the billing system, service channels,

etc. This section only describes the physical layer of the communication between

base station and user terminal of the CWTS standard. The physical layer consists

of the following parts: multiple access, frame structure, modulation, and filter

characteristics. These parts will also be discussed in this order.

4.2.1 Multiple access

The CWTS standard uses a combination of CDMA and TDMA for multiple access.

The used CDMA component is direct-sequence code division multiple access (DS-

CDMA). In DS-CDMA systems [28], the spreading code is a sequence of bits

(known as chips). First an XOR operation is carried out between the message and

the spreading code. This XOR operation is also known as chipping. So a “0” is

represented by a chip sequence and a “1” is represented by the inverse of this

chip sequence. Thus instead of transmitting the message bits the accompanying

chip sequences are transmitted. The DS-CDMA technique is shown in Figure 17.

CHAPTER

4
Software

28

Data to be
transmitted

Modulating
signal
(DS-CDMA)
for 5 chip
sequence

0 1 0 0 1 0 1 0 0 1 1 0 1 1 01 0 1 1 01 0 1 1 0

Figure 17: DS-CDMA modulation

The chip rate of the DS-CDMA technique in CWTS is equal to 1.28 Mchips/s which

results in a bandwidth of approximately 1.6 MHz. Furthermore, the system uses a

200-kHz carrier raster. So, eight channels utilize the same 200-kHz band. CWTS

uses besides DS-CDMA a TDMA component, namely TDD (time-division duplex).

TDD mode is defined as follows:

TDD [27]:

A duplex method whereby forward link and reverse link transmissions are

carried over same radio frequency by using synchronized time intervals.

In the TDD, time slots in a physical channel are divided into transmission

and reception part. Information on forward link and reverse link are

transmitted reciprocally.

4.2.2 Frame structure

The CWTS standard uses a four-layer structure. The first level consists of super

frames, which contain 72 radio frames of 10 ms. Radio frames are divided into

two 5-ms sub frames. In each sub frame, there are 7 main time slots and 3

special time slots. The complete physical channel signal format is presented in

Figure 18. The 7 main time slots can be used for down-link communication

(DL#n) or up-link communication (UL#m). Between the down-link and up-link

communication there are 3 special time slots. The first one is the down-link pilot

symbol (DwPTS) that is used for down-link synchronization. The next time slot is

a guard period (GP) used to separate down and up-link communication. The last

special time slot is up-link pilot symbol (UpPTS) which is used for up-link

synchronization.

So, all physical channels consist of a four-layer structure of super frames, radio

frames, sub frames and time slots/codes. The configuration of sub frames or time

slots depends on the resource allocation. Between every time slot there are

guard symbols for separation. The basic physical channel is defined as the

association of one code, one time slot and one frequency.

29

Radio Frame (10ms)

Time slot (0.675ms)

Sub-frame #0 Sub-frame
#1

Sub-frame (5ms)

DwPTS
(75us)

GP
(75us)

UpPTS
(125us)

where n+m+2=7

Time slot
DL#n

Time slot
DL#0

Time slot
UL#0

Time slot
UL#m

Super-frame (720ms)

Frame #0 Frame #1 Frame #71

Figure 18: physical channel structure [26]

Sub-frame structure

As mention before, each sub frame (Figure 19) is subdivided into 7 main time

slots (TS) of 675 µs duration each and 3 special time slots: DwPTS (down-link

pilot symbol), GP (guard period) and UpPTS (up-link pilot symbol). The 7 main

time slots can be used both for up and down-link communication.

DwPTS
(96chips) GP (96chips)

UpPTS
(160chips)

Sub-frame 5 ms (400 symbols)

Td0Td1Tdn Tu0 Tu1 Tum1.28Mchip/s

Where n+m+2=7
and spreading factor = 16

Figure 19: sub frame structure [26]

30

The DwPTS in each sub-frame is designed for both down-link pilot and

synchronization channel. This time slot is usually composed of 64 chips of

synchronization word (SYNC) and 32 chips of guard period as shown in Figure 20.

The contents in the SYNC are a set of Gold codes. The Gold-code set is designed

to distinguish nearby cells for the purpose of easier cell measurement. More

information about the construction of the Gold-code set can be found in [25].

75us

GP(32chips) SYNC(64chips)

Figure 20: burst structure of DwPTS [25]

The UpPTS in each sub frame is designed for both up-link pilot and

synchronization channel. The time slot is usually composed of 128 chips of

synchronization word (SYNC1) and 32 chips of GP as shown in Figure 21. The

contents in the SYNC1 are a set of Gold codes. The Gold code set is designed to

distinguish different mobile telephones in access procedures. More information

about the construction of the Gold-code set for the up-link synchronization can be

found in [25].

SYNC1(128chips) GP(32chips)

125us

Figure 21: burst structure of UpPTS [25]

The guard period (GP) between the DwPTS and the UpPTS time slot has the

duration of 75 µs (96 chips).

Time slot structure

The information rate of the channel varies with the symbol rate being derived

from the 1.28 Mchips/s chip rate and the spreading factor. The spreading factor

for both up link and down link has a range from 16 to 1. Thus the respective

modulation symbol rates vary from 80.0K symbols/s to 1.28M symbols/s (Table

3). Table 4 shows the detailed time-slot structure that is also shown graphically

in Figure 22. The training sequences, i.e. mid amble, of different users active in

the same time slot are time-shifted versions of one single periodic basic code.

Different cells use different periodic basic codes, i.e. different mid amble sets. In

this way joint channel estimation for the channel impulse responses of all active

users within one time slot can be done by one single cyclic correlation. The

different user-specific channel-impulse-response estimations are obtained

sequentially in time at the output of the correlator.

31

Spreading

factor (Q)

Number of

symbols (N) per

data field in Burst

1 352

2 176

4 88

8 44

16 22

Table 3: number of symbols per data field in bursts [25]

Chip number

(CN)

Length of field

in Chips

Length of field

in Symbols

Length of field

in µs

Contents of

field

0-351 352 Cf Table 3 275 Data symbols

352-495 144 9 112.5 Mid amble

496-847 352 Cf Table 3 275 Data symbols

848-863 16 1 12.5 Guard period

Table 4: contents of the burst fields [26]

Data symbols
352chips

Midamble
144 chips

Data symbols
352 chips

GP
16
CP

675 µs

Figure 22: burst structure (GP denotes the guard period and CP the chip
period.) [26]

4.2.3 QPSK modulation

The CWTS standard uses the quadrature-phase-shift-keying (QPSK) -modulation

technique for transmission. QPSK uses two channels for transmission, an in-

phase (I) and quadrature phase (Q) channel. The I channel is multiplied with a

cosine and the Q channel with a sine. Because a sine is orthogonal to a cosine,

both carriers can use the same frequency. Data is sent by changing the phase of

the carriers, A binary “1” is leads to a phase shift of 180 degrees, whereas a

binary “0” leads to no phase shift. A phase shift of 180 degrees equals

multiplying the sine with “-1” and no phase shift equals multiplying with “1”.

Figure 23 shows the different steps of QPSK modulation. Figure 23a shows the

two carrier signals (I and Q) and Figure 23b represents the data signals. The

modulated signal is the multiplication of the carriers with the data signals and is

shown in Figure 23c. To reduce inter-symbol interference (ISI), the output of the

QPSK modulation is led through a root-raised-cosine filter with a roll-off factor α
of 0.22. The roll-off factor α defines the sharpness of the filter. If α = 1, the root-
raised-cosine filter is an ideal low-pass filter. On the other hand if α = 0 the root-
raised-cosine filter is an all-pass filter. More information about root-raised-cosine

filter can be found in [19]. The basic modulation parameters used by CWTS are

listed in Table 5.

32

a) carriers

b) data signals

c) modulated signal

I

Q

I

Q

Q

I

I + Q

Figure 23: QPSK modulation

33

Chip rate 1.28Mcps

Carrier spacing 1.6MHz

Data modulation QPSK

Chip modulation Root-raised cosine

Roll-off α = 0.22
Spreading characteristics Orthogonal

Qchips/symbol,

where Q = 2p, 0 <= p <= 4

Table 5: basic modulation parameters of CWTS [25]

4.2.4 Filter characteristics

A software-radio transceiver is used for user terminals, not for base stations.

Therefore, the filter characteristics of the user terminal are only discussed in this

section. More information about base-station filter characteristics can be found in

[29] and user-terminal filter characteristics are described in [30]. The input

signal at the receiver can have a large input range. The minimal (reference)

sensitivity is –135 dB when the data rate is 12.2 kbps. An input signal at the

reference sensitivity level should not have a BER larger than 0.001. The maximal

input level on the other hand cannot be described by an absolute value. It

depends on the BER which should not be larger than 0.001. More information can

be found in [31].

The filter characteristics of the receiver cannot be obtained directly from the

CWTS standard. But the standard describes several definitions and requirements

for these definitions from which the filter characteristics can be estimated [30].

• Adjacent Channel Selectivity (ACS) [31]:
Adjacent Channel Selectivity is a measure of the capability of the user-

terminal receiver to receive a wanted signal at its assigned channel

frequency in the presence of adjacent channel signal at a given frequency

offset from the center frequency of the assigned channel. ACS is the ratio

of the receive-filter attenuation on the assigned channel frequency to the

receiver filter attenuation on the adjacent channel(s).

The minimal requirement of ACS is 33 dB [31]. The BER should also be

smaller than 0.001.

• Blocking characteristics [31]:
The blocking characteristics is a measure of the receiver ability to receive

a wanted signal at is assigned channel frequency in the presence of an

unwanted interferer on frequencies other than those of the spurious

response or the adjacent channels. The blocking performance shall apply

at all frequencies except those at which a spurious response occur.

Multiple requirements are given for the blocking characteristics. The BER

should not be larger than 0.001 when an interferer is 58 dB [31] stronger

than the wanted signal.

• Spurious response characteristics [31]:
Spurious response is a measure of the receiver’s ability to receive a

wanted signal on its assigned channel frequency without exceeding a

given degradation due to the presence of an unwanted unmodulated

34

interfering signal at any other frequency at which a response is obtained

i.e. for which the blocking limit is not met.

The BER should not be larger than 0.001 when an unmodulated interferer

is 58 dB [31] stronger than the wanted signal.

• Inter-modulation response characteristics [31]:
Third and higher order mixing of the two interfering RF signals can

produce an interfering signal in the band of the desired channel. Inter-

modulation response rejection is a measure of the capability of the user

terminal receiver to receive a wanted signal on its assigned channel

frequency in the presence of two or more interfering signals, which have a

specific frequency relationship to the wanted signal.

The BER should also not be larger than 0.001 when the interfering signals

are 56 dB [31] stronger than the wanted signal.

• Spurious emissions [31]:
The Spurious Emissions Power is the power of emissions generated or

amplified in a receiver that appear at the user terminal antenna

connector.

The most stringent requirement for spurious emissions is –90 dB [31].

A combination of the above mentioned definitions and accompanying

requirements results in the following estimated filter characteristics, shown in

Table 6 and Figure 24. The most important requirements are the ACS and the

intermodulation response characteristics. The latter one is the most critical.

Therefore the minimal stop band attenuation is equal to this requirement, –56

dB.

Parameter Value Unit

Minimal attenuation stop band 56 dB

Pass band 0.64 (0.5 *1.28) MHz

Transition band 0.16 (0.80 – 0.64) MHz

Table 6: filter characteristics of CWTS

0.64 0.80

-56 dB

f (MHz)
gain

Figure 24: filter characteristics of CWTS

35

4.3 Practical implementation

4.3.1 Hardware limitations

The Evaluation Module from Spectrum Digital is designed for audio applications.

For that reason the maximal sample frequency of the AD/DA converter is low (64

kHz). The software radio cannot utilize this maximum sample frequency because

of the time requirements of the interrupt routine for the ADC of the software

radio receiver. The receiver must detect a frame burst, which is carried out in this

interrupt. If the interrupt routine is not finished when the next sample arrives,

data is lost. Therefore the sample frequency is limited to 16 kHz. Another

limitation of the Evaluation Modules is the size of the data memory (64 kb). This

size is too small for a direct implementation of the CWTS standard. Therefore a

derived frame structure is used, shown in Figure 25. This frame structure

contains only one sync word and one time slot. The sync word is chosen

arbitrarily and is not based on the gold-code set, defined by the CWTS standard.

Data symbols
128 chips

Data symbols
128 chips

GP
32 chips

sync-word
32 chips

not used
32 chips

GP
16 cp

GP
16 cp

384 chips

Figure 25: new frame structure (GP denotes the guard period and CP the chip
period)

4.3.2 Cascaded integrated comb (CIC) filters

The software-radio receiver filters a channel in multiple stages. A multi-stage

filter requires less computational power than a one-stage filter [33]. The receiver

uses special filters in the first stages of the decimation (filtering) process. These

special filters are cascaded integrated comb (CIC) filters. More information about

CIC filters can be found in [9] and [34]. CIC filters can only be used in the first

steps of the decimation process because the frequency response is bad. (An

example is shown in Figure 27.) CIC filters requires only additions and

subtractions, which is a great advantage because normal FIR filters require

additions and multiplications. Multiplications are difficult to calculate on DSPs and

therefore slow compared with an addition. An example of a CIC filter is shown in

Figure 26. The frequency response of CIC filters can be captured in the following

equation (where M = decimation factor and L = number of integrators/combs)

[34]:

()[]

L

Mjj e
M

M

eH

�
�
�
�

�

�

�
�
�
�

�

�

= −− 21

2
sin

2
sin

)(ωω

ω

ω

(1)

36

1/M 1/M

z-1

+

Integrator #1

M

z-1

+

Integrator #L

z-1

+
-

z-1

+
-

Comb #1 Comb #L

Figure 26: cascaded integrated comb filter

gain

f/2fs

Figure 27: frequency response of a CIC filter

4.3.3 TMS320C54x DSPLIB

The Texas Instruments TMS320C54x DSPLIB is an optimized DSP function library

for TMS320C54x processors. It contains more than 50 assembly-optimized

general-purpose signal-processing routines that can be called from C. This

project uses several functions of this library. The used functions are firdec and

firinterp. Firdec is an assembler optimized decimating FIR filter and firinterp is an

interpolating FIR filter. The DSPLIB library is freeware and can be downloaded

from the following location:

https://www-a.ti.com/apps/c5000/xt_download.asp?sku=C54x_DSPLib

More information about the DSPLIB can also be found in the accompanying

manual [37].

4.3.4 Transmitter

This section discusses the internal structure of the software-radio transmitter.

The transmitter uses the frame-structure shown in Figure 25. Figure 28 shows

the internal structure of the transmitter. It contains eight steps that are

described in the following subsections. The source code of the transmitter can be

found in Appendix I.

37

Initialization

Build frame

QPSK modulation

Root-raised-cosine filter

CDMA

Interpolation

Translation channel

Send frame

Figure 28: functional block diagram of the software-radio transmitter

Initialization

This step initializes the DSP and the AD/DA chip of the evaluation module. Also

the communication between the two chips is set up. Figure 29 shows the

initialization function in more detail. The first step is to set the location of the

interrupt table. In this table functions are assigned to interrupts. If an interrupt

occurs, the DSP uses this table to call the appropriate function. Then, the serial-

port receive interrupt is enabled. The DSP uses this port to communicate with the

AD/DA chip. The next step is the configuration of the AD/DA chip. All control

registers of the AD/DA chip are set to the appropriate value. After the

configuration the serial-port interrupt is disabled.

38

Enable serial-port receive
interrupt

Set control registers of the
AD/DA chip

Set location of interrupt table

Disable serial port receive
interrupt

Figure 29: initialization block diagram

Build frame

In this block, a frame is built up using the structure of Figure 25. At this point the

frame consists only of 0’s and 1’s and the frame has a size of 384 bits. Figure 30

shows a detailed block diagram of the build-frame block. First the build-frame-

data function is called. This function creates the data part of the frame (256 bits).

The spreading factor defines how many times an information bit is repeated in

the frame. If, for example, the spreading factor is 16 the frame consists only of

16 information bits (, which are repeated 16 times). In the next function, build

frame, the frame is built up using the structure of Figure 25.

build frame

build frame data spreading factor

Figure 30: build-frame block diagram

QPSK modulation

This step modulates the frame with QPSK. Odd bits are transmitted via the I

channel (cosine) and even bits via the Q channel (sine). A one causes a 180

degrees phase shift, so a –1 is transmitted. On the other hand if a bit is 0 (0

degrees phase shift), a 1 is transmitted. The QPSK modulation can be

represented by the following formula:

inout *21−= (2)

39

where in ∈ {0, 1}

After modulation there are two arrays, one with I-channel symbols and one with

Q-channel symbols. They have an equal size of 192 16-bit integers (2 * 192 =

384).

CDMA
This block multiplies the two arrays with a PN code. The length of the PN code

depends on the spreading factor. If the spreading code is 16 for example, the PN

code is also 16 chips long and every information bit in the frame is repeated 16

times. Note: only the data is multiplied, the sync word is unaffected. The CDMA

process can be captured in the following pseudo source code:

j = 0;

for (i = data_start; i < data_end; i++)
{

I[i] = I[i] * PN_code[i];
Q[i] = Q[i] * PN_code[i];

//update index of PN code:
j = (j + 1) % spreading_factor;

}

Figure 31: pseudo source code of CDMA block

Root-raised-cosine filter
To reduce ISI a root-raised-cosine filter is used with α = 0.22. The first step of
this block (Figure 32) is to interpolate the I and Q channel with a factor 4. In this

interpolation process only zeros are added. Then the data stream is led through a

48-tap root-raised-cosine filter with α = 0.22. The results of this step are two
arrays (I and Q channel) which have a size of 768 (4*192) 16-bit fixed-point

numbers.

48-tap root-raised-cosine
filter

Interpolation with factor 4

Figure 32: root-raised-cosine filter block diagram of the transmitter

Interpolation
The carrier frequency has a much higher sample rate than the symbol rate of the

frame. Therefore, the I and Q channel are interpolated with a factor 16 in this

block to match with the sample rate of the carrier frequency. To reduce memory

space, the frame is also broken into pieces. Once one piece has been

interpolated, the next step, Translation channel, will be carried out. Furthermore

the interpolation process is divided into 4 stages for efficient use of processing

40

power. Figure 33 shows a block diagram of the interpolation step. The frequency

responses of the used interpolation filters are shown in Appendix II.

Interpolaton filter I

Interpolation with factor 2
(zero padding)

Interpolaton filter II

Interpolation with factor 2
(zero padding)

Interpolaton filter III

Interpolation with factor 2
(zero padding)

Interpolaton filter IV

Interpolation with factor 2
(zero padding)

Figure 33: interpolation block diagram

Translation channel

This block transforms the QPSK signal to a channel of the system band. So the

signal is transformed to a higher frequency. The interpolated part of the I channel

is multiplied with a cosine and the Q channel with a sine. First the I channel is

multiplied with values from a cosine table and the result is stored in an output

table. Then, the Q channel is interpolated and multiplied with values from a sine

table. The result is added to the output table. Figure 34 shows a block diagram of

the translation-channel step. (The output vector has a size of 11648 16-bit

integers.)

41

Store result in output table

Multiply I channel with
cosine

Add result to output table

Multiply Q channel with sine

Figure 34: translation-channel block diagram

Send frame

The calculated output vector is transmitted in this step. By enabling the serial-

port-receive interrupt the interrupt function sends the contents of the output

vector to the AD/DA chip. Once the last byte has been transmitted the interrupt

function disables itself by disabling the serial-port-receive interrupt.

42

4.3.5 Receiver

This section discusses the internal structure of the software-radio receiver. The

receiver is more complex than the transmitter described in the previous section.

A functional block diagram of the software-radio receiver is shown in Figure 35.

All blocks are described separately in the subsections below. The source code of

the software-radio receiver can be found in Appendix III.

43

Initialization

Detect frame

Store frame

Detect phase

Translation channel

Decimation

CDMA

Search sync word

Root-raised-cosine filter

Demodulation

Decode frame

Calculate BER

Figure 35: functional block diagram of the software-radio receiver

Initialization

This block is equal to the initialization block of the transmitter, which is discussed

on page 37.

44

Detect frame
The receiver stays in this block/state until a frame is being received. If an

incoming frame has been detected the receiver will go to the next block, Store

frame. The internal structure of this block is shown in Figure 36. First the average

value of the input must be smaller than a certain threshold I. If so, no

transmission is taking place and only noise has being received. If it is established

no frame is currently being transmitted, the system should wait for the start of

the next frame. A frame is assumed to be transmitted if the signal level rises

above a certain threshold 2. The next block, Store frame will store the incoming

frame. The possibility exists that this function becomes active during a frame

transmission. By using two thresholds this function will only proceed until the

next frame is transmitted. If only one threshold is used, the receiver does not

wait until the next frame and stores an incomplete frame into memory.

Proceed if average value is
above threshold 2

Proceed if average value is
below threshold 1

Figure 36: detect-frame block diagram

Store frame
This step stores 12800 samples into a vector after a frame has been detected.

The size of this vector is large enough to contain one frame. This block and the

previous block have been implemented in the serial-port receive interrupt

routine. Therefore these two blocks must be programmed very efficiently. Only

necessary functionality has been implemented in this routine. Furthermore the

average value is only taken over 4 samples, to reduce the number of

instructions.

Detect phase
The first step in decoding a frame is to detect the phase of the carrier. The phase

of the carrier (which is the sum of a sine and cosine) is derived from a zero

crossing of the signal. The zero crossing shown in Figure 37 has a phase of -¼π.
From this position the phase of the start position can be calculated. Accuracy is

achieved by interpolating the input signal.

45

Wanted zero crossing of
the carrier (sine + cosine)
(phase = - ¼π)

Figure 37: detection of the carrier phase

Figure 38 shows the internal structure of this block. The first step is to detect a

zero crossing. If the previous sample has a negative value and the current

sample a positive value, the zero crossing must be between these two samples.

The next step is to save the position of the zero crossing. The sine table contains

32 samples and the carrier has a period of 4 samples. Therefore the samples

around the zero crossing must be interpolated (linearly) with a factor 8. From

these 8 samples the closest match of the zero crossing is determined. With these

data the zero-phase point can be calculated. This point is used in the next block,

Translation channel.

Store position

Detect zero crossing (-� +)

Determine closest match

Interpolate samples around
zero crossing

Calculate zero-phase point

Figure 38: detect-phase block diagram

46

Translation channel
The channel is transformed to base-band frequencies by multiplying it with the

carrier frequency. At this point two channels, the I channel and the Q channel are

decoded from the input signal. The I channel is regained by multiplying the input

signal with a cosine and the Q channel is recovered by multiplying the input with

a sine. The zero-phase point from the previous block is used to align the initial

phase of the cosine/sine with the initial phase of the carrier. Otherwise separation

of the I channel and Q channel is not possible. This step and the following step

are calculated by breaking the input signal into pieces to reduce memory space.

Decimation
The symbol rate is 64 times lower than the input sample rate. This step reduces

the signal rate with a factor 16. Multi-stage decimation and the use of CIC filters

accomplish an efficient decimation. Figure 39 shows the decimation process in

more detail. The first stage is a CIC filter that decimates the data rate with a

factor 4. Then, two decimating FIR filters are used to reduce the output of the

CIC filter with a factor 4. The total decimation factor is thus 16. The results of

this step are two arrays (I and Q channel) with a size of 800 16-bit integers. The

frequency responses of the used decimation filters are shown in Appendix IV. The

responses are based on the filter characteristics of CWTS, described in 4.2.

CIC filter with decimation
factor 4

Decimation filter I

Decimation filter II

Decimation with factor 2

Decimation with factor 2

Figure 39: decimation block diagram

Search sync word
At this point the sample rate is still four times the symbol rate. Figure 40 shows

the internals of this block. First the I and Q channel are filtered with a root-

raised-cosine filter. The same filter is used at the transmitter and only the first

parts of both vectors are filtered. The next step correlates the filtered data with

the synchronization word. The maximal correlation indicates the position of the

47

sync word in the received frame. The position of the sync word is used in the

next step to provide optimal decoding.

Filter first part of I and Q
array with root-raised-cosine

filter

Search for optimal match of
the sync word

Figure 40: search-sync-word block diagram

Root-raised-cosine filter

The ISI is minimized if the receiver uses the same root-raised-cosine filter as the

transmitter. So this block uses also a root-raised-cosine filter with α = 0.22.
Figure 41 shows the internals of this block. Because the sample rate is 4 times

the symbol rate, not all data is filtered, only the necessary filter output is

calculated. The filtering begins with the start of the synchronization word. Then,

every fourth output of the filter is calculated. Because the position of the sync

word is determined very accurately, optimal decoding of the frame is achieved.

The results of this step are two arrays (I and Q channel) which contain 188

samples. These samples represent the phase of both channels.

48-tap root-raised-cosine
filter

Decimation with factor 4
sync word position

Figure 41: root-raised-cosine block diagram of the receiver

CDMA

After decimation the two arrays are multiplied with the same PN-code of the

transmitter. The result is the original QPSK-signal. More information can be found

in the CDMA block of the transmitter.

48

j = 0;

for (i = data_start; i < data_end; i++)
{

I[i] = I[i] * PN_code[i];
Q[i] = Q[i] * PN_code[i];

//update index of PN code:
j = (j + 1) % spreading_factor;

}

Figure 42: pseudo source code of CDMA block

Demodulation

The resulting I and Q array can easily be demodulated into data. If a symbol

value is greater than zero the received bit is zero, and otherwise one. The

demodulation process can be captured in the following pseudo source code

(Figure 43).

j = 0;

for (i = data_start; i < data_end; i++)
{

if (I_symbol > 0)
{

I_bit = 1;
}
else
{

I_bit = 0;
}
if (Q_symbol > 0)
{

Q_bit = 1;
}
else
{

Q_bit = 0;
}

}

Figure 43: pseudo source code of demodulation block

Decode frame

This step extracts the data bits from the received frame data. The frame

structure, described in Figure 25, is used to extract the data bits.

Calculate BER

The last step calculates the number of bit errors in the received frame. The

received data is compared with a reference frame (The transmitter transmits

always the same frame.) The BER is calculated by dividing the number of bit

errors by the total number of received bits.

49

5 Experiments

5.1 Introduction

This chapter describes several experiments that have been carried out with the

implemented software-radio system. The purpose of these experiments was to

verify the constructed system. First, Code Composer has been used as debugger

to verify the software-radio transmitter and receiver. Section 5.2 describes the

internals of the transmitter by using Code Composer and section 5.3 discusses

the software-radio receiver. Finally, the performance of the software-radio

system has been evaluated by measuring the BER versus bit-energy-to-noise-

energy in section 5.4. Below the used hardware setup of the software-radio-

system is discussed.

5.1.1 Software-radio-system setup

A complete radio system transmits and receives data through the air. In this

project, only the IF stage of the software-radio system has been implemented.

Therefore, to simulate a real radio system, the output of the software-radio

transmitter is led through an FM transmitter. This transmitter modulates an

analog input signal with FM modulation at 433 MHz, which is a free frequency

band. An FM receiver receives this 433-MHz signal and demodulates the signal

back to an analog signal. This analog signal is amplified in order to use the full

range of the ADC of the DSP evaluation module. Finally, the software-radio

receiver demodulates the analog signal into data. More information about the FM

receiver and transmitter can be found in the datasheets [38] and [39]. The total

software-radio-system setup is shown in Figure 44.

CHAPTER

5
Experiments

50

Software-radio
receiver

Software-radio
transmitter

FM transmitter
(433 MHz)

FM receiver
(433 MHz)

antenna antenna

amplifier

Figure 44: Software-radio-system set up

5.2 Inside the transmitter using Code
Composer

Code Composer is a very useful program to verify the programmed software-

radio transmitter. This section describes the output of every block of Figure 28.

First the transmitter constructs a frame. The output of this block is shown in

Figure 45. Then, the frame is QPSK modulated (Figure 46). After modulation the

data part of the frame is multiplied with a PN code (Figure 47). This signal is led

through a root-raised-cosine filter (Figure 48). The output of this filter is

interpolated with a factor 16. Finally, the I channel is multiplied with a cosine and

the Q channel is multiplied with a sine. These two channels are combined and

transmitted (Figure 49). The DSP evaluation module is capable of transmitting

0.73 frames per second. If the serial-port receive interrupt is disabled, so no

transmission takes place, the DSP is capable of calculating 1.33 frames per

second. Furthermore, the DSP can process 100 million instruction cycles per

second, so about 75 million instructions are needed for calculating one frame.

sync word data

Figure 45: example of a frame

51

Figure 46: frame after QPSK modulation

Figure 47: frame after CDMA

52

Figure 48: frame after root-raised-cosine filter

Figure 49: transmitted frame (first part)

53

5.3 Inside the receiver using Code Composer
This section describes the output of every block of Figure 35. The output plots are

created with Code Composer. First the receiver detects a frame and stores it into

a large vector (Figure 50). The next step is to multiply the frame with a sine and

cosine to regain the I and Q channel. The output after decimation is shown in

Figure 51. Then the signals are led through a root-raised-cosine filter (Figure 52).

The original bit sequence is regained by multiplying the frame with the same PN

code of the transmitter (Figure 53). Finally, the frame is demodulated (Figure 54)

and the data is extracted. The receiver can decode 0.33 frames per second. If the

serial-port receive interrupt is disabled the receiver can decode 1.27 frames per

second. Furthermore the DSP can process 100 million instruction cycles per

second, so decoding one frame takes about 80 million instructions.

Figure 50: received frame (first part)

54

Figure 51: frame after channel separation and decimation

Figure 52: frame after root-raised-cosine filter

55

Figure 53: frame after CDMA

Figure 54: demodulated frame (only data), identical to the data part of Figure
45

5.4 Performance of the software radio

Another way to verify the built software-radio system is to measure the BER. This

BER depends on the bit-energy-to-noise-energy-ratio and this relation is known

from literature. So, in this section, the BER has been measured with different

levels of noise. There are different ways to introduce noise in the system. In this

experiment noise is added in the transmitter by software. Only noise is added to

the data part of the frame. In this way the frame detection is unaffected by noise

and only bit errors are counted which are caused by noise and not by wrong

frame synchronization. Furthermore the analog output of the software-radio

transmitter is directly connected to the analog input of the software-radio

receiver (Figure 55). In this way, all noise other than the software-generated

noise is eliminated.

56

Software-radio
receiver

Software-radio
transmitter

White noise

Figure 55: Set up for the BER versus bit-energy-to-noise-energy experiment

To measure the BER versus bit-energy-to-noise-energy relation, 3 variables are

needed: bit energy (Eb), noise energy (N0) and the accompanying BER. Eb can be

captured in the following formula:

TAEb
2

2
1= (3)

where A = amplitude and T = bit period

The noise energy, N0, can be determined from the power spectrum. The noise

floor of the power spectrum is equal to N0/2. Finally the BER is measured in the

software-radio receiver. Table 7 shows the BER at different noise levels. As

expected, the BER increases when the Eb/N0 ratio is decreasing. The received-bits

column indicates the reliability of the BER. If more bits are received the BER is

more reliable.

Eb/N0 (dB) BER Received bits

1 -0.7 0.02307291700 28400

2 -0.7 0.01847061300 38656

3 0.3 0.01779600000 96256

4 1.6 0.00543766840 617728

5 1.6 0.00547201190 245246

6 2.8 0.00192662610 320768

7 2.8 0.00214667780 255744

8 4.1 0.00040860355 122368

9 4.1 0.00048182820 616224

10 4.9 0.00045772895 225024

11 4.9 0.00046588303 251136

Table 7: BER versus bit-energy-to-noise-energy results

The BER for white noise can also be described by the following formula [19]:

��
�

�
��
�

�
�
�
�

�
�
�=

0
2 N

EQBER b (4)

where () λ
π

λ

�
∞

−
∂=

z

ezQ 2
2

2

1
(5)

Figure 56 shows this equation in a doubly logarithmic plot. The BER decreases

quickly when the bit-energy-to-noise-energy is increasing.

57

Figure 56: theoretical BER curve

The results of Table 7 are plotted in Figure 57. The black line, in Figure 57

(through the data points), is the best-fitted curve when assuming an exponential

relation (
bxaey =). The least-square method is used to determine this line. The

theoretical line is also shown in Figure 57 (the uppermost line).

The theoretical and measured BER curves are different. They have almost the

same shape, but the measured BER curve is much lower. The theoretical formula

assumes a QPSK signal surrounded by white noise. The measured BER curve on

the other hand has not been measured with white noise, because the noise has

been generated by software. If noise is generated by software, only noise is

added in the frequency band from zero to half the sample rate. On the other

hand white noise has equal energy in all frequencies. Furthermore the sample

rate of the software-radio is relatively low. So the generated noise cannot be

considered as an approximation of white noise. In addition the receiver uses low-

pass filters to extract the QPSK signal. Thus only noise in the pass band remains;

the low-pass filters have eliminated other noise.

If the noise floor of the power spectrum is equal for white noise and generated

noise, the noise energy of both noises are not equal. White noise has much more

energy (in fact infinite energy) than the generated noise. The low-pass filters of

the receiver also attenuate the energy of the generated noise. Therefore the BER

is larger for white noise than the generated noise for equal bit-energy-to-noise-

energy ratios. This effect can also been seen in Figure 57. Other methods for

generating noise are difficult to implement. For example a noise generator which

adds noise at the analog output of the software-radio transmitter also affects the

synchronization word and thus the synchronization. Because synchronization

errors do not count for the BER, the BER is difficult to measure.

58

Figure 57: measured BER curve

59

6 Final Review

6.1 Conclusions

In this project two major tasks are fulfilled. First a study of literature has been

made about software radio and secondly a software-radio transmitter and

receiver have been built for demonstration purposes. Besides these major tasks

there are also minor ones. The programming environment Code Composer has

been evaluated and the BER curve of the software radio has been measured.

The first task of this master’s thesis was to make a study of literature about

software radio. Software radio is a very large subject with many aspects. A global

overview of the software-radio subject is given in this thesis; Some of the most

important aspects of software radio such as the definition, the architecture,

technological challenges, the front-end design and commercial aspects are

described. The definition of software radio varies in literature. This paper uses the

following definition:

Software radio is an emerging technology, aimed to build flexible radio systems,

which are multiple-service, multi-standard, multi-band, re-configurable and re-

programmable, by software.

The second task was to build a software-radio transmitter and receiver for

demonstration purposes. Software radio requires both hardware and software.

Two evaluation modules of Spectrum Digital are used as configurable hardware.

One module is used as transmitter and the other is used as receiver. The

modules are equipped with the TMS320LC549 DSP from Texas Instruments. This

processor is capable of processing 100 million instructions per second. Because

the evaluation module is designed for audio applications, the maximal sample

frequency is limited to 64 kHz. Therefore the whole software-radio system uses a

sample rate which is 5000 times lower than desired. Apart from the low sample

rate, the evaluation module is equipped with 64-kb data RAM which is too small

for a direct implementation of a mobile-system standard.

The software has been written as much as possible in C, only the initialization of

the DSP has been programmed in assembly. Furthermore the software uses an

optimized DSP function library of Texas Instruments for the implementation of

the interpolation and decimation filters. This library is assembly-optimized and

can be called from C. Other parts of the software radio are written fully in C and

are not optimized for the used DSP. The software-radio transmitter requires

about 75 million instruction cycles for encoding one frame. If the code is

optimized the required amount of instructions is expected to be reduced

significantly. The software-radio receiver requires about 80 million instruction

cycles. Not all functions of the receiver have been (fully) implemented though.

The automatic-gain-control block is missing and furthermore the software-radio

CHAPTER

6
Final Review

60

receiver uses a very simple frame-detection method. So the total amount of

required instruction cycles for the software-radio receiver is larger than 80

million.

The software radio uses a standard that is derived from CWTS. This Chinese

standard uses a chip rate of 1.28 Mchips/s. Because the evaluation module is

designed for audio applications, the software radio utilizes a chip rate of 250

chips/s. This chip rate is about 5000 times lower than CWTS uses.

Code Composer is used in this project as the programming environment. It is a

useful tool, developed by Texas Instruments for programming DSPs. With Code

Composer source files can be edited and projects can be built, debugged, profiled

and managed from a single unified environment. Especially debugging with Code

Composer is very powerful. Statistical data about program flow can be shown

both numerically and graphically. Furthermore variables and (control) registers

can be changed in run time, so the DSP can be fully controlled.

A complete radio system transmits and receives data through the air. In this

project, only the IF stage of the software-radio system has been implemented.

Therefore, to simulate a real radio system, the output of the software-radio

transmitter is led through an FM transmitter (at 433 MHz). An FM receiver

receives the signal and demodulates the signal back to an analog signal. This

signal becomes after amplification the input of the software-radio receiver. With

this setup the software-radio system has been tested successfully.

Another way to verify the software-radio system is to measure the BER. This BER

depends on the bit-energy-to-noise-energy-ratio and this relation is known from

literature. The BER curve has been measured and compared with the theoretical

curve. They have almost the same shape, but the measured BER curve is much

lower. The difference is caused by difference in noise. The theoretical BER curve

assumes a QPSK signal surrounded by white noise. The generated noise on the

other hand is not white but band-limited noise, because it is generated by

software. Furthermore this generated noise is reduced at the receiver by the

decimation filters. So, at equal noise floors, white noise has more energy than

the generated noise. For that reason the measured BER curve is lower than the

theoretical curve. Other methods for generating noise are difficult to implement,

because the receiver uses a simple frame-detection method and synchronization

errors do not count for the BER.

6.2 Recommendations

The built software radio is not complete. Only the IF stage of the software radio

has been implemented. Therefore further research should focus on a complete

implementation of a mobile-system standard in software. At this moment two

major stages are missing, the RF and BB stage.

The IF stage is also not completely implemented. The built software-radio

receiver uses a very simple frame-detection method, which can only be used in

environments with little noise. A possible solution to this problem is the use of

one threshold instead of two. Currently, two thresholds are used in the frame-

detection block to ensure that the beginning of a frame is detected. If the

beginning of the frame has a higher signal level, one threshold will also satisfy.

This solution has the advantage that it is less sensitive to noise. Furthermore this

detection method is simpler, so the size of the interrupt routine can be reduced.

61

Besides the frame-detection method, the automatic-gain-control block is not

implemented in this project. This block is required when the received-signal

power has a large range. In real radio environments this is the case. So further

research should focus on implementing these two blocks, frame detection and

automatic gain control.

At this moment the realization of a software-radio system, which operates at

intended frequencies, is not possible. Both the transmitter and receiver would

require about 5000 TMS320LC549 DSPs. However, the source code of the

software-radio system has not been optimized. There are several possibilities that

can reduce the source code and hardware requirements significantly. The

software-radio system has been programmed in an old version of Code

Composer. The new Code Composer Studio is more advanced and allows the

evaluation of every procedure. In this way the most critical functions of the

software-radio system can be determined and optimized. Furthermore the stages

of the interpolation and decimation filters are not optimized; the filter

requirements are met easily. Therefore the order and thus the number of

coefficients can also be reduced. At this moment the interpolation and decimation

block have been split up in pieces due to the lack of memory. Sufficient memory

allows interpolation and decimation in one step, which is more efficient. These

solutions should reduce the code size with about a factor 10 but this is still not

enough for a software-radio implementation.

Several parts of the transmitter and receiver, such as multiplication by the carrier

and the use of CIC filters are equal with every mobile-system standard. Therefore

these parts could also be implemented in a FPGA. In addition FPGA are more

power efficient. If these parts are implemented in an FPGA the requirements for

the DSPs can be dropped again with a factor 10 because these parts are in the

front-end of the transmitter/receiver. Thus if the code is optimized and the

several parts are implemented in an FPGA the requirements for the DSPs are

lowered with a factor 100. So 5000/100 = 50 TMS320LC549 DSPs are required.

However, the TMS320LC549 DSP is not new. The newest DSP of Texas

Instruments is about 25 times more powerful than the TMS320LC549 (for

example the TMS320C64X-family). If the newest DSP is used in combination with

FPGAs, only 2 or 3 DSPs are required for the implementation of a software-radio

transmitter or receiver operating at intended frequencies.

62

63

Bibliography

References

[1] E-news Home Page, Nieuwsbrief week 2.

http://www.allcity.demon.nl/archief/week02.htm

[2] Cummings, M. and Haruyama, S., “FPFA in the Software Radio,” IEEE

Communications Magazine, pp. 108 – 112, February 1999.

[3] Buracchini, E., SORT & SWRADIO concept

http://www.ifn.et.tu-dresden.de/~sort/

[4] Herbrig, H., Lundheim, L., Rossing, N. K., SORT SW-Radio - From Concept

Towards Demonstration

http://www.ifn.et.tu-dresden.de/~sort/

[5] Mitola III, J., “The Software Radio Architecture,” IEEE Communications

Magazine, pp. 26 – 38, May 1995.

[6] Steele, R. and Hanzo, L., Mobile Radio Communications second Edition, John

Wiley & Sons, London, 1999.

[7] Rappaport, T. S., Wireless communications, Prentice Hall, Upper Saddle River,

1996.

[8] Whipple, D. P., “The CDMA Standard,” T.S. Rappaport, Cellular Radio &

Personal Communications, IEEE, Piscataway, pp. 501 – 509, 1994.

[9] Frerking, M. E., Digital signal processing in communication systems, Kluwer

Academic Publishers, Boston, 1993

[10] Mehrotra, A., GSM System Engineering, Artech house publishers, Boston,

1997

[11] Smit, J. and Snijders, H., Collegedictaat VLSI System Design en VLSI Signal

Processing, Universiteit Twente, 1997.

[12] Bekkers, R. and Smits, J. GSM in detail, Kluwer/Segment, Beek, 1999.

[13] Kraemer, B., Chen, P., Damerow, D., Bacrania, K., Advances in

Semiconductor Technology - Enabling Software Radio

http://www.infowin.org/ACTS/ANALYSYS/CONCERTATION/MOBILITY/swr.htm

64

[14] Intersil Corporation, Datasheet Programmable Down Converter HSP50214B

http://www.intersil.com/data/fn/fn4/fn4266/index.asp

[15] Mitola III, J., “Technical challenges in the globalization of Software Radio,”

IEEE Communications Magazine, pp. 84 – 89, February 1999.

[16] Robinson, B., Software radio: The standards perspective

http://www.infowin.org/ACTS/ANALYSYS/CONCERTATION/MOBILITY/swr.htm

[17] Tsurumi, H. and Suzuki, Y., “ Broadband RF stage architecture for software-

defined radio in handheld terminal applications,” IEEE Communications

Magazine, pp. 90 – 95, February 1999.

[18] Gunn, J. E., “A low-power DSP core-based software radio architecture,” IEEE

Journal on selected areas in communications, vol. 17, no. 4, pp. 574 – 589,

April 1999.

[19] Couch, L.W., Modern communication systems, Prentice Hall, Englewood

Cliffs, 1995

[20] Spectrum digital, TMS320LC54x Evaluation Module: Technical Reference,

503482-0001 Rev. E, 1998.

http://www.spectrumdigital.com/technical/c54x_man.pdf

[21] Texas Instruments, TMS320LC549, Digital Signal Processor Home Page.

http://www.ti.com/sc/docs/products/dsp/tms320vc549.html

[22] Texas Instruments, TMS320C54x DSP Reference Set, Volume 1: CPU and

Peripherals, SPRU131F, 1999.

http://www-s.ti.com/sc/psheets/spru131f/spru131f.pdf

[23] Texas Instruments, TLC320AD55C Data Manual, SLAS085, 1995.

http://www-s.ti.com/sc/psheets/slas085/slas085.pdf

[24] Texas Instruments, Code Composer Home Page.

http://dspvillage.ti.com/docs/tools/dsp/ccomposer/index.htm

[25] Yuezhen, W., China Wireless Telecommunication Standard (CWTS); Working

Group 1 (WG1); Spreading and modulation, CWTS, 1999.

http://www.cwts.org/tdd/R1_c104_v301.zip

[26] Yang, G., China Wireless Telecommunication Standard (CWTS); Working

Group 1 (WG1); Physical Channels and Mapping of Transport Channels onto

Physical Channels, CWTS, 1999.

http://www.cwts.org/tdd/R1_c102_v300.zip

[27] Li, S., China Wireless Telecommunication Standard (CWTS); Working Group

1 (WG1); Physical layer – General description, CWTS, 1999.

http://www.cwts.org/tdd/R1_c101_v300.zip

[28] Schwartz, S.M., Frequency Hopping Spread Spectrum (FHSS) vs. Direct

Sequence Spread Spectrum (DSSS) in the IEEE 802.11 Wireless Local Area

Network arena, BreezeCOM, 1997.

http://www.breezecom.com/TechSupport/fhvsds.htm

[29] Yang, G. and Hu, J., China Wireless Telecommunication Standard (CWTS);

Working Group 1 (WG1); Base Station Conformance testing, CWTS, 1999.

65

http://www.cwts.org/tdd/R1_c301_v100.zip

[30] Yang, G. and Hu, J, China Wireless Telecommunication Standard (CWTS);

Working Group 1 (WG1); Mobile Station Conformance Testing, CWTS, 1999.

http://www.cwts.org/tdd/R1_c302_v100.zip

[31] Li, S. China Wireless Telecommunication Standard (CWTS); Working Group 1

(WG1); TD-SCDMA (UE); Radio Transmission and Reception, CWTS, 1999.

http://www.cwts.org/tdd/R1_c401_v300.zip

[32] Chhabra, A. and Iyer R.A., A Practical Application of the TMS320C54x Host

Port Interface (HPI), Texas Instruments, 1999.

http://www-s.ti.com/sc/psheets/spra574/spra574.pdf

[33] Roberts, R. A., and Mullis, C. T., Digital signal processing, Addison-Wesley

Publishing Company, 1987.

[34] Kwentus, A.Y., Jiang, Z. and Willson, A.N., “Application of filter Sharpening

to Cascaded Integrator-Comb Decimation Filters,” IEEE Transactions on Signal

Processing, vol. 45, no. 2, pp. 457 – 467, February 1997.

[35] Nauta, B. and Slump, C.H., Development of a Software-Radio Based

Embedded Mobile Terminal, Universiteit Twente, 1999.

[36] DARPA MEMS Program

 http://darpa.mil

[37] Texas Instruments, Optimized DSP Library for C Programmers, SPRA480A,

2000.

http://www-s.ti.com/sc/psheets/spra480a/spra480a.pdf

[38] Radiometrix Ltd, UHF Radio Telemetry Transmit Module, 1995.

http://www.radiometrix.co.uk/dsheets/txm.pdf

[39] Radiometrix Ltd, UHF Radio Telemetry Receive Module, 1998.

http://www.radiometrix.co.uk/dsheets/rxm.pdf

Consulted Works

Bose, V. G. and Shah, A. B., Software Radios for Wireless Networking

http://www.vanu.com/publications/

Mitola III, J., Software Radio Technology Challenges and Opportunities

http://www.infowin.org/ACTS/ANALYSYS/CONCERTATION/MOBILITY/swr.htm

Hentschel, T., Fettweis, G., Bronzel, M., Channelization and sample rate

adaptation in software radio terminals

http://www.ifn.et.tu-dresden.de/~sort/

Davis, R., Prabhu, V., Architectures for Wideband CDMA Software Radios

http://infopad.eecs.berkeley.edu/~vanp/courses/cs252/

Tuttlebee, W. H. W., “Software radio technology: A European perspective,” IEEE

Communications Magazine, pp. 118 – 123, February 1999.

66

Patti, J. J., Husnay, M., Pintar, J., “A smart software radio: Concept development

and demonstration,” IEEE Journal on selected areas in communications, vol.

17, no. 4, pp. 631 – 649, April 1999.

Baines, R., “The DSP bottleneck”, IEEE Communications Magazine, pp. 46 – 54,

May 1999.

Chester, D. B., “Digital IF filter technology for 3G systems: an introduction,” IEEE

Communications Magazine, pp. 102 – 107, February 1999.

Internet

China Wireless Telecommunication Standard:

http://www.cwts.org

Texas Instruments:

http://www.ti.com

Spectrum Digital:

http://www.spectrumdigital.com/

Intersil Corporation

http://www.intersil.com/

67

Abbreviations

AC alternating current

ACS adjacent channel selectivity

A/D analog/digital

AD/DA analog/digital-digital/analog

ADC analog digital converter

ADPCM adaptive differential pulse-code modulation

AGC analog gain control

ALU arithmetic-logic unit

ampl amplifier

API application program interface

ASIC application-specific integrated circuit

BB base band

BER bit error rate

BPF band pass filter

bps bits per second

CDMA code-division multiple access

CELP code excited linear predicted

codec encoder/decoder

CSSU compare, select, and store unit

CT2 British cordless telephone system

CWTS China wireless telecommunication standard

D/A digital/analog

DAC digital analog converter

DAMPS American digital advanced mobile phone system

dB decibel

dBm decibels relative to one milliwatt

DC direct current

DCS-1800 GSM-like European system in the 1800 MHz band

DECT digital European cordless telephone

DL down link

Dpx duplex

DQPSK differential quadrature phase shift keying

DSP digital signal processor

DwPTS down-link pilot symbol

FDD frequency-division duplex

FDMA frequency-division multiple access

FEC forward error control

FIR finite-impulse response

FM frequency modulation

FPGA field-programmable gate array

FSK frequency shift keying

GEL general extension language

GFSK Gaussian frequency shift keying

GMSK Gaussian minimum shift keying

GP guard period

68

GSM global system for mobile computing

GUI graphical user interface

HPI host-port interface

I in phase

IF intermediate frequency

ISI inter-symbol interference

IP intellectual property

IS-54 American digital advanced mobile phone system (DAMPS)

IS-95 American CDMA system

JDC Japanese digital cellular

kBd kilobaud

kbps kilobits per second

kHz kilohertz

LCM least common multiple

LNA low noise amplifier

LO local oscillator

LPF low-pass filter

MCLK master clock

MHz megahertz

MEMS micro electro-mechanical systems

MIPS million instructions per second

ms millisecond

NCO numerically-controlled oscillator

PACS personal access communications system

PDC programmable down converter

PHS Japanese personal handy phone system

PN code pseudo-noise code

Q quadrature phase

QPSK quadrature phase shift keying

RAM random-access memory

RF radio frequency

ROM read-only memory

RPE-LTP regular-pulse-exited – long-term-predicted

SACCH slow-associated control channel

SNR signal-to-noise ratio

TACS total-access communications system

TDD time-division duplex

TDM time-division multiplexed

TDMA time-division multiple access

UL up link

UpPTS up-link pilot symbol

VCO voltage-controlled oscillator

VSELP vector-sum-excited linear predictive

69

���
�����������

Figure 1: functional architecture of a mobile system transceiver______________________________7
Figure 2: a simple convolutional encoder and its state diagram [11] __________________________8
Figure 3: traditional heterodyne receiver [3] ___10
Figure 4: the ideal software-radio receiver [3] __10
Figure 5: Digital Radio receiver [3] __11
Figure 6: conventional heterodyne receiver [18] ___14
Figure 7: global steps of a heterodyne receiver, a) normal radio spectrum, b) filtering and movement
of system band to intermediate frequencies, c) selection of channel and d) filtering and digitalization of
channel band width. ___14
Figure 8: pass-band super-heterodyne receiver [18] ______________________________________15
Figure 9: direct-conversion receiver [18] __16
Figure 10: the TMS320C549 Evaluation Module [20]_____________________________________20
Figure 11: block diagram of TMS320C549 internal hardware [22] __________________________22
Figure 12: function block diagram of the TLC320AD55 IC [23] _____________________________23
Figure 13: typical Code Composer screen __24
Figure 14: break points in Code Composer ___25
Figure 15: graph window in Code Composer__26
Figure 16: profile points__26
Figure 17: DS-CDMA modulation __28
Figure 18: physical channel structure [26] ___29
Figure 19: sub frame structure [26] ___29
Figure 20: burst structure of DwPTS [25] __30
Figure 21: burst structure of UpPTS [25] __30
Figure 22: burst structure (GP denotes the guard period and CP the chip period.) [26] __________31
Figure 23: QPSK modulation __32
Figure 24: filter characteristics of CWTS___34
Figure 25: new frame structure (GP denotes the guard period and CP the chip period)___________35
Figure 26: cascaded integrated comb filter ___36
Figure 27: frequency response of a CIC filter ___36
Figure 28: functional block diagram of the software-radio transmitter ________________________37
Figure 29: initialization block diagram __38
Figure 30: build-frame block diagram ___38
Figure 31: pseudo source code of CDMA block __39
Figure 32: root-raised-cosine filter block diagram of the transmitter _________________________39
Figure 33: interpolation block diagram __40
Figure 34: translation-channel block diagram___41
Figure 35: functional block diagram of the software-radio receiver __________________________43
Figure 36: detect-frame block diagram __44
Figure 37: detection of the carrier phase ___45
Figure 38: detect-phase block diagram __45
Figure 39: decimation block diagram__46
Figure 40: search-sync-word block diagram __47
Figure 41: root-raised-cosine block diagram of the receiver________________________________47
Figure 42: pseudo source code of CDMA block __48
Figure 43: pseudo source code of demodulation block ____________________________________48
Figure 44: Software-radio-system set up ___50

70

Figure 45: example of a frame ___50
Figure 46: frame after QPSK modulation __51
Figure 47: frame after CDMA ___51
Figure 48: frame after root-raised-cosine filter __52
Figure 49: transmitted frame (first part) ___52
Figure 50: received frame (first part)__53
Figure 51: frame after channel separation and decimation _________________________________54
Figure 52: frame after root-raised-cosine filter __54
Figure 53: frame after CDMA ___55
Figure 54: demodulated frame (only data), identical to the data part of Figure 45_______________55
Figure 55: Set up for the BER versus bit-energy-to-noise-energy experiment ___________________56
Figure 56: theoretical BER curve___57
Figure 57: measured BER curve__58
Figure 58: file hierarchy of the software-radio transmitter _________________________________74
Figure 59: frequency response of interpolation filter I_____________________________________94
Figure 60: frequency response of interpolation filter II ____________________________________95
Figure 61: frequency response of interpolation filter III ___________________________________96
Figure 62: frequency response of interpolation filter IV ___________________________________97
Figure 63: file hierarchy of the software-radio receiver ___________________________________98
Figure 64: frequency response of decimation filter I _____________________________________115
Figure 65: frequency response of decimation filter II ____________________________________116
Figure 66: frequency response of decimation filter III ____________________________________117

71

���
����
�����

Table 1: Overview of second-generation standards [6] _____________________________________6
Table 2: TMS320LC549 specifications [21]___21
Table 3: number of symbols per data field in bursts [25]___________________________________31
Table 4: contents of the burst fields [26] ___31
Table 5: basic modulation parameters of CWTS [25] _____________________________________33
Table 6: filter characteristics of CWTS___34
Table 7: BER versus bit-energy-to-noise-energy results____________________________________56
Table 8: filter coefficients of interpolation filter I __94
Table 9: filter coefficients of interpolation filter II __95
Table 10: filter coefficients of interpolation filter III ______________________________________96
Table 11: filter coefficients of interpolation filter IV ______________________________________97
Table 12: filter coefficients of decimation filter II _______________________________________116
Table 13: filter coefficients of decimation filter III_______________________________________118

72

73

����	�����

74

�##	���.��/������	����	����
�	����
���	������

������

	�

'�������!	
��
	�����
	�������
����������������������!�� �������%����	����)� �
��0�&(

• 89)���

����������������
���	���������+�2

•
�������
��	��
���������',�-.�*01��+�2/"4����
	
�

• ������F����
�����
�������������������������
���	����������
�

• ���89)��
������������������
�����
���	�����
� ����
�

• �������
��	��
��������
�
����
	�����������������
�	���������7������	���

• ���=�&��
���������	�	�������+�'��	���/+�'�

• 89�
������
',�-.�*01��+�2/"4����
	
�

• �������
��	��	
�����
	
����
������	��8	�����	��������� �������+�2

• �
����
���������	������������*+,�������

• �������
������������
�������� ����	��
	��

• �����
���������	�������������	��������	�������
����������������	�������	��8	����#
����
���	�����	����
	���	�������	����������

• ��
FD!�E��
������������
�J2�>������	�����	���
����
	�����������������

• ��������
����������������

�����	���

'������
�����������������������������!�������������������������!�

Figure 58: file hierarchy of the software-radio transmitter

75

cdma.c

/**/
/* Functions for implementing Code Division Multiple Access (CDMA) */
/* */
/* File: cdma.c */
/* Version: 1.0 */
/* Last update: 28-04-2000 */
/* Creation date: 28-04-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#include <tms320.h>

/* Function Prototypes */
void cdma(DATA*, DATA*, DATA*, unsigned int, unsigned int, unsigned int);

/**/
/* */
/* Function: cdma() */
/* */
/* This function multiplies the data part of a frame with a pseudo */
/* noise (PN) code. The sync-part is not multiplied! Note: The input */
/* vectors are overwritten with the new values */
/* */
/* args: */
/* I */
/* In-phase-component with "length" elements */
/* */
/* Q */
/* Quadrature component with "length" elements */
/* */
/* code */
/* Vector with 16 elements which contains the PN-code */
/* */
/* spreading_factor */
/* Indicates the spreading factor. If spreading_factor */
/* = 1 there is no spreading. If spreading_factor */
/* = 16, maximal spreading occurs. */
/* */
/* offset */
/* receiver: offset = 24 ((sync-word + 16)/2)*/
/* transmitter: offset = 40 ((32 + sync-word + 12)/2) */
/* */
/* length */
/* Number of elements of both input vectors */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void cdma(DATA *I, DATA *Q, DATA* code, unsigned int spreading_factor,
unsigned int offset, unsigned int length)
{

int i, j = 0;

for (i = offset ; i < length; i++)

{
//Multiplication with the PN-code

I[i] *= code[j];
Q[i] *= code[j];

j = (j + 1) % spreading_factor; //update index of the PN-code
}

}

diffenc.c

/**/
/* IS54 Baseband Simulation Software */
/* */

76

/* File Description : QPSK Differential Encoder */
/* File Name : diffenc.c */
/* Date : 20/04/00 */
/* */
/* Differential Encoder for QPSK */
/* */
/* This encoder receives two bits from the data stream, and encodes them*/
/* into QPSK modulation. It outputs I and Q for each input symbol pair.*/
/* */
/* The input symbols and their bit relationship and phase changes */
/* are listed below: */
/* */
/* input data phase changes */
/* */
/* 00 -pi/2, -pi */
/* 01 pi/2, -pi */
/* 10 -pi/2, 0 */
/* 11 pi/2, 0 */
/* */
/* Inputs : */
/* packed : Pointer to array containing 384 symbol */
/* bits to be encoded. Note that each element */
/* of the array consists of a single bit (i.e. */
/* a 0 or 1 only) */
/* */
/* Outputs : */
/* out_I : Pointer to floating point array where */
/* 192 modulation vector I-components shall */
/* be stored. */
/* */
/* out_Q : Pointer to floating point array where */
/* 192 modulation vector Q-components shall */
/* be stored. */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

/* Include Files */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <tms320.h>

/* Defines */

/* Function Prototypes */

void diffenc(unsigned*, DATA*, DATA*);

/* External Function Prototypes */

/* Data */

/* External Data */

/* Code */

void diffenc(unsigned *packed, DATA *out_I, DATA *out_Q)
{

int i;
int phase_i, phase_r;

for (i = 0 ; i < 192 ; i++)
{

phase_i = 1; /* 0 == 1, 1 == -1*/
phase_r = 1; /* assume both bits are zero */

if(*(packed++) != 0) phase_i = -1; // 1st bit determines imag
// phase

if(*(packed++) != 0) phase_r = -1; // 2nd bit determines real
// phase

*(out_I++) = phase_i;

77

*(out_Q++) = phase_r;
}
return;

}

frame.c

/**/
/* Functions for building up a frames */
/* */
/* File: frame.c */
/* Version: 1.0 */
/* Last update: 01-05-2000 */
/* Creation date: 01-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

/* Function Prototypes */
void build_frame_data(unsigned *, unsigned int);
void build_frame(unsigned *, unsigned *);

/**/
/* */
/* Function: build_frame_data() */
/* */
/* This function creates the data-part of the frame. The output is */
/* choosen in such a manner that verification of the received frame at */
/* the receiver is easy. */
/* */
/* args: */
/* slot */
/* 256-bits of data */
/* */
/* spreading_factor */
/* Every symbol is repeated n-times. Each frame */
/* consists 256/Spreading_factor number of data bits. */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void build_frame_data(unsigned *frame, unsigned int spreading_factor)
{

int i, j;

/* Build up data part of the frame */
/* layout: I channel: 1111 0000 1111 */
/* Q channel: 1010 1010 1010 */

for(i = 0 ; i < 256;)
{

for(j = 0 ; j < spreading_factor; j++) // repeat bit
// spreading_factor
// times

{
frame[i] = 1; //even bit, I channel
i++;
frame[i] = 1; //odd bit, Q channel
i++;

}

for(j = 0 ; j < spreading_factor; j++) // repeat bit
// spreading_factor
// times

{
frame[i] = 1; //even bit, I channel
i++;
frame[i] = 0; //odd bit, Q channel
i++;

}

for(j = 0 ; j < spreading_factor; j++) // repeat bit
// spreading_factor

78

// times
{

frame[i] = 1; //even bit, I channel
i++;
frame[i] = 1; //odd bit, Q channel
i++;

}

for(j = 0 ; j < spreading_factor; j++) // repeat bit
// spreading_factor
// times

{
frame[i] = 1; //even bit, I channel
i++;
frame[i] = 0; //odd bit, Q channel
i++;

}
for(j = 0 ; j < spreading_factor; j++) // repeat bit

// spreading_factor
// times

{
frame[i] = 0; //even bit, I channel
i++;
frame[i] = 1; //odd bit, Q channel
i++;

}
for(j = 0 ; j < spreading_factor; j++) // repeat bit

// spreading_factor
// times

{
frame[i] = 0; //even bit, I channel
i++;
frame[i] = 0; //odd bit, Q channel
i++;

}

for(j = 0 ; j < spreading_factor; j++) // repeat bit
// spreading_factor
// times

{
frame[i] = 0; //even bit, I channel
i++;
frame[i] = 1; //odd bit, Q channel
i++;

}

for(j = 0 ; j < spreading_factor; j++) // repeat bit
// spreading_factor
// times

{
frame[i] = 0; //even bit, I channel
i++;
frame[i] = 0; //odd bit, Q channel
i++;

}
}

return;
}

/**/
/* */
/* Function: build_frame() */
/* */
/* This routine constructs a 384-bit formatted slot from 256-bit slot */
/* data according to the following: */
/* */
/* 16 bits : 0, guard period */
/* 32 bits : Sync word */
/* 16 bits : 0, guad period */
/* 128 bits : 1st 128 bits of slot data */
/* 48 bits : 0 */
/* 128 bits : 2nd 128 bits of slot data */
/* 16 bits : 0 */
/* */
/* args: */
/* data */

79

/* pointer to 256-element bit array representing the data bits*/
/* the data bits for the slot. (Note that all elements should */
/* elements should be binary, i.e. 0's and 1's only). */
/* */
/* frame */
/* pointer to 384-element bit array where the resultant */
/* formatted frame shall be stored. */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void build_frame(unsigned *data, unsigned *frame)
{

int i;
unsigned sync1[32]= {1,0,1,0,1,0,0,1,0,0,0,1,1,1,0,1,1,1,1,0,

0,1,0,0,1,0,1,0,0,1,0,1}; // sync word

for(i = 0; i < 32; i++) *(frame++) = 0; // guard period
for(i = 0; i < 32; i++) *(frame++) = sync1[i]; // sync word
for(i = 0; i < 16; i++) *(frame++) = 0; // guard period
for(i = 0; i < 128; i++) *(frame++) = *(data++); // 1st data

// block
for(i = 0; i < 32; i++) *(frame++) = 0; // zeros
for(i = 0; i < 128; i++) *(frame++) = *(data++); // 2nd data block
for(i = 0; i < 16; i++) *(frame++) = 0; // guard period
return;

}

main.c

/**/
/* This file contains the main loop of the QPSK transmitter. Besides the*/
/* main loop it contains functions for initilization of the DSP and the */
/* AD/DA chip. */
/* */
/* File: main.c */
/* Version: 1.0 */
/* Last update: 02-05-2000 */
/* Creation date: 02-05-2000 */
/* Author: Roel Schiphorst */
/* */
/***/

#include <tms320.h>
#include <dsplib.h>

#include "reg549.h"
#include "table.h"
#include "filter_int.h"

/* Function Prototypes */
void main(void);

volatile int p0_serialflag; / / 0 = normal operatio n 1 = programming
// AD/DA chip

volatile int p0_serialint; / / 1 = serial port receive interrupt has
// occured

volatile int p0_ready; / / 1 = frame has been sent

int output[frame_length]; // contains the data that is being send to
// the AD/DA chip

DATA I_RRC[728]; // I channel after root raised cosine filter

DATA Q_RRC[728]; // Q channel after root raised cosine filter

unsigned int tx_data[256]; // array of data bits that are transmitted
unsigned int tx_frame[384]; // total frame (data + sync word)

DATA out_I[192]; // QPSK modulated I channel
DATA out_Q[192]; // QPSK modulated Q channel

80

float tx_filt[48]; // array which contains the root raised cosine table:
// the input is interpolated 4 times. Therefore 3/4 of
// the samples are zero. The filter table is so
// rearranged that the first 12 elements contain the
// filter coeffs for the first output value, the next 12
// for the second output, the next 12, for the third
// interpolated output and the last 12 filter coefs
// values for the last interpolated output value.

DATA tx_filt_data[48]; // same as tx_filt, only the data is converted
// from float to DATA

DATA buffer[8]; // contains a small piece of the I_RRC/Q_RRC
// array, used for interpolation process

DATA out16[16]; // output first interpolation filter
DATA out32[32]; // output second interpolation filter
DATA out64[64]; // output third interpolation filter
DATA out128[128]; // output fourth interpolation filter

float const1_1 = 1.1; // constant value
unsigned int shift_value = 15;

unsigned int spreading_factor = 16;
// defines the spreading factor for the frame

/*
DATA code1[16]= { 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1 };
DATA code2[16]= { 1,1,1,1, 1,1,1,1, -1,-1,-1,-1, -1,-1,-1,-1 };
DATA code3[16]= { 1,1,1,1, -1,-1,-1,-1, 1,1,1,1, -1,-1,-1,-1 };
DATA code4[16]= { 1,1,1,1, -1,-1,-1,-1, -1,-1,-1,-1, 1,1,1,1 };
DATA code5[16]= { 1,1,-1,-1, 1,1,-1,-1, 1,1,-1,-1, 1,1,-1,-1 };
DATA code6[16]= { 1,1,-1,-1, 1,1,-1,-1, -1,-1,1,1, -1,-1,1,1 };
DATA code7[16]= { 1,1,-1,-1, -1,-1,1,1, 1,1,-1,-1, -1,-1,1,1 };
DATA code8[16]= { 1,1,-1,-1, -1,-1,1,1, -1,-1,1,1, 1,1,-1,-1 };
DATA code9[16]= { 1,-1,1,-1, 1,-1,1,-1, 1,-1,1,-1, 1,-1,1,-1 };
DATA code10[16]= { 1,-1,1,-1, 1,-1,1,-1, -1,1,-1,1, -1,1,-1,1 };
DATA code11[16]= { 1,-1,1,-1, -1,1,-1,1, 1,-1,1,-1, -1,1,-1,1 };
DATA code12[16]= { 1,-1,1,-1, -1,1,-1,1, -1,1,-1,1, 1,-1,1,-1 };
DATA code13[16]= { 1,-1,-1,1, 1,-1,-1,1, 1,-1,-1,1, 1,-1,-1,1 };
DATA code14[16]= { 1,-1,-1,1, 1,-1,-1,1, -1,1,1,-1, -1,1,1,-1 };
DATA code15[16]= { 1,-1,-1,1, -1,1,1,-1, 1,-1,-1,1, -1,1,1,-1 };
DATA code16[16]= { 1,-1,-1,1, -1,1,1,-1, -1,1,1,-1, 1,-1,-1,1 };
*/
// There are 16 different CDMA codes, listed above. One code is choosen for
// the communication and is equal to the transmitter CDMA code
DATA code[16]= { 1,-1,1,-1, -1,1,-1,1, 1,-1,1,-1, -1,1,-1,1 };

/**/
/**/

void inline disable() {
asm(" ssbx INTM"); // Disable all interrupts of the DSP

}

void inline enable() {
asm (" rsbx INTM"); // Enable all interrupts of the DSP

}

/**/
/* */
/* Function : waitintr() */
/* */
/* This function is used by the progreg()-function. It will only exit */
/* the function if the serial port has received a new word. */
/* */
/* args: */
/* NONE */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void waitintr(void)
{

while (p0_serialint == 0); // Wait until data is received from the

81

// AD-DA chip

p0_serialint = 0; // Reset p0_serialint
return;

}

/**/
/* */
/* Function : progreg() */
/* */
/* This function programs a register of the AD/DA chip via the serial */
/* port */
/* */
/* args: */
/* progword */
/* a 16 bit word which contains besides the address of */
/* the register, also the new contents of the register */
/* See the datasheet of the AD/DA-chip for more */
/* information */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void progreg(int progword)
{

*BDXR0 = 0x0001; // Request secondary communication
// (read of write to registers)

waitintr(); // Wait for serial port receive
// interrupt

*BDXR0 = progword; // Send configuration word to AD-DA
// chip

waitintr(); // Wait for serial port receive
// interrupt

return;
}

/**/
/* */
/* Function : init() */
/* */
/* This function initializes the DSP and the AD/DA-chip */
/* */
/* args: */
/* NONE */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void init()
{

*SWWSR = 0x1209; // Set wait states for memory
*PMST = 0x0ffc0; // Set location of interrupt table
disable(); // Disable all interrupts
*BSPC0 = 0x0000; // Initialize SPC
*BSPC0 = *BSPC0 | 0x00C0; // Initialize SPC
*IMR = 0x0010; // Enable serial port 0 receive interupt
*IFR = 0xffff; // Clear any pending interrupts

enable(); // Enable all interrupts

p0_serialflag = 1; // Indicated whether the AD-DA chip is
// configured (1)
// or normal use (0)

waitintr();

progreg(0x0100); // 01 = control 1 register, value 00
// (default)

progreg(0x0200); // 02 = control 2 register, value 00
// (default)
// Decimator and interpolator filters are

82

// disabled
progreg(0x0304); // 03 = Fk divide register, value 10

// controls filter clock rate and sample
// period

progreg(0x0404); // 04 = Fsclk divide register, value 10
// controls the shift (data) clock rate

progreg(0x0500); // 05 = control 3 register, value 00
// DAC reference enabled

*BDXR0 = 0x0000; // Send zero to end configuration

p0_serialflag = 0; // Configuration is finished.

*IMR = *IMR & 0xffef; // disable serial port receive interrupts

}

/**/
/* */
/* Function : codrx() */
/* */
/* This function is called when a serial port receive interrupt occurs. */
/* */
/* args: */
/* NONE */
/* */
/* Return Value : */
/* NONE */
/* */
/**/
void interrupt codrx()
{

static int index_RX = 0;
p0_serialint = 1; // Set the interrupt variable to 1
*AL = *BDRR0; // Read data (and trash it)

if (p0_serialflag == 0) // If 'normal' operation (no
// programming of regs)

{
*BDXR0 = output[index_RX]; // Send data to serial port 0

if (index_RX == frame_length_min_1)
// If last sample is transmitted then disable serial port
// communication
{

*IMR = 0x0000; // Disable serial port interrupt
*BDXR0 = 0x0000; // Send a zero to clear the transmit

// buffer
p0_ready = 1; // frames is sent, set var to 1
index_RX = -1; // reset index var

}

index_RX++;
}

}

/**/
/* */
/* Function : main() */
/* */
/* Main loop of the QPSK transmitter. */
/* */
/* args: */
/* NONE */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void main(void)
{

int i = 0, j = 0, k = 0;
DATA noise;

LDATA sample_data; // temp value used for multiplication with carrier
DATA sample_data2; // temp value used for multiplication with carrier
int interpolation_factor_x_8 = interpolation_factor*8;

83

p0_serialint = 0; // Variable used to recognize a serial port
// receive interrupt

p0_ready = 1;
init(); // Initialization of the DSP and AD/DA chip

rand16init(); // initialize random generator, used to create
// noise

k = 0;
for (i = 3; i >= 0; i--)
{

for(j = i; j < 48; j += 4)
{

tx_filt[k++] = tableRaisCosFilt[j]/const1_1;
// Read root raised cosine filter coefficients
// and convert them to 4 filter banks

} // data rate = 4*symbol rate
}
/* convert filter coeffs to DATA-type */
fltoq15(tx_filt, tx_filt_data, 48);

build_frame_data(tx_data, spreading_factor);
// create data bits for the frame

build_frame(tx_data, tx_frame);
// build frame (sync word + data)

mod_QPSK(tx_frame, out_I, out_Q);
// QPSK modulation

cdma(out_I, out_Q, code, spreading_factor, 40, 192);
// multiply with PN-code

tx_RRC_filt(out_I, out_Q, 182, tx_filt_data, I_RRC, Q_RRC);
// Root raised cosine filter (4x oversampling)

while (1)
{

/**/
/* Interpolation */
/**/

/* I channel*/
for (j=0; j< NH16; j++) dbuffer16[j] = 0;

// clear delay buffer (a must)
for (j=0; j< NH32; j++) dbuffer32[j] = 0;

// clear delay buffer (a must)
for (j=0; j< NH64; j++) dbuffer64[j] = 0;

// clear delay buffer (a must)
for (j=0; j< NH128; j++) dbuffer128[j] = 0;

// clear delay buffer (a must)

for (i = 0; i < 91; i++)
// Interpolate only a part of the I_RRC array a time

{ // interpolation occurs in 91 steps
for (j = 0; j < 8; j++)
{

buffer[j] = I_RRC[i*8 + j];
// use next 8 samples for interpolation

}

/* 4-stage Interpolation FIR filter, interpolation factor = 16*/
firinterp(buffer, h16, out16, &dp16, NH16, 8, 2);
firinterp(out16, h32, out32, &dp32, NH32, 16, 2);
firinterp(out32, h64, out64, &dp64, NH64, 32, 2);
firinterp(out64, h128, out128, &dp128, NH128, 64, 2);

/* multiply with carrier and store result in output array*/
k = 0;
for (j = 0; j < interpolation_factor*8; j++)
{

sample_data = out128[j];

sample_data *= table_f_cos[k]; // multiply with cosine
sample_data >>= shift_value; // scale
output[i*interpolation_factor_x_8 + j] = sample_data;

// store in output array

84

k = (k + 8) % 32;
// update index to cosine table

}
}

/**/
/* Interpolation */
/**/

/* Q channel*/
for (j=0; j< NH16; j++) dbuffer16[j] = 0;

// clear delay buffer (a must)
for (j=0; j< NH32; j++) dbuffer32[j] = 0;

// clear delay buffer (a must)
for (j=0; j< NH64; j++) dbuffer64[j] = 0;

// clear delay buffer (a must)
for (j=0; j< NH128; j++) dbuffer128[j] = 0;

// clear delay buffer (a must)

for (i = 0; i < 91; i++)
// Interpolate only a part of the Q_RRC array a time

{ // interpolation occurs in 91 steps
for (j = 0; j < 8; j++)
{

buffer[j] = Q_RRC[i*8 + j];
// use next 8 samples for interpolation

}

/* 4-stage Interpolation FIR filter, interpolation factor = 16*/
firinterp(buffer, h16, out16, &dp16, NH16, 8, 2);
firinterp(out16, h32, out32, &dp32, NH32, 16, 2);
firinterp(out32, h64, out64, &dp64, NH64, 32, 2);
firinterp(out64, h128, out128, &dp128, NH128, 64, 2);

/* multiply with carrier and add result in output array*/

k = 0;
for (j = 0; j < interpolation_factor*8; j++)
{

sample_data = out128[j];

sample_data *= table_f_sin[k]; // multiply with sine
sample_data >>= shift_value; // scale
sample_data2 = output[i*128 + j];

// save current output value (I channel)
sample_data += sample_data2;

// add current output value
sample_data &= 0xfffffffe;

// reset lsb of word, required for AD/DA chip

output[i*interpolation_factor_x_8 + j] = sample_data;
// Store output value

k = (k + 8) % 32;
// update index to sine table

}
}

/**/
/* add noise */
/**/

for (i = 1150 ; i < frame_length; i++) // leave sync word unaffected
{

rand16(&noise,1);
noise >>= 3;
output[i] >>= 2;
output[i] += noise;
output[i] &= 0xfffffffe;

// reset lsb of word, required for AD/DA chip
}

/**/
/* end noise part */
/**/

/**/
/* End of interpolation */
/**/

85

p0_ready = 0; // reset var
*IMR |= 0x0010; // enable serial port receive interrupt

// frame has been calculated and is ready to send

build_frame_data(tx_data, spreading_factor);
// create data bits for the frame

build_frame(tx_data, tx_frame);
// build frame (sync word + data)

mod_QPSK(tx_frame, out_I, out_Q); // QPSK modulation

cdma(out_I, out_Q, code, spreading_factor, 40, 192);
// multiply with PN-code

tx_RRC_filt(out_I, out_Q, 182, tx_filt_data, I_RRC, Q_RRC);
// Root raised cosine filter (4x oversampling)

while (p0_ready == 0);
// only proceed to next step if frame has been sent

}
}

mod_QPSK.c

/**/
/* Functions for modulating a QPSK signal */
/* */
/* File: mod_QPSK.c */
/* Version: 1.0 */
/* Last update: 01-05-2000 */
/* Creation date: 01-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#include <tms320.h>

/* Function Prototypes */
void mod_QPSK(unsigned*, DATA*, DATA*);
void tx_RRC_filt(DATA*, DATA*, int, DATA*, DATA*, DATA*);

/**/
/* */
/* Function: mod_QPSK() */
/* */
/* This function modulates frame, using QPSK modulation. The output */
/* are two arrays (I channel and Q channel). */
/* */
/* args: */
/* data */
/* 384-bits frame (sync word + data) */
/* */
/* out_I */
/* QPSK modulated I channel with 192 elements */
/* */
/* out_Q */
/* QPSK modulated Q channel with 192 elements */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void mod_QPSK(unsigned *data, DATA *out_I, DATA *out_Q)
{

int i;
int phase_i, phase_r;

for (i = 0 ; i < 192 ; i++)
{

86

phase_i = 1; /* 0 == 1, 1 == -1*/
phase_r = 1; /* assume both bits are zero */

if(*(data++) != 0) phase_i = -1;
/* 1st bit determines imag phase */

if(*(data++) != 0) phase_r = -1;
/* 2nd bit determines real phase */

*(out_I++) = phase_i; // store result into arrays
*(out_Q++) = phase_r;

}
return;

}

/**/
/* */
/* Function: tx_RRC_filt() */
/* */
/* This filters the QPSK signal with a root raised cosine filter. */
/* This reduces the ISI (Inter Symbol Interference). The same filter is */
/* used at the receiver. */
/* */
/* args: */
/* I */
/* input vector of the in-phase channel */
/* */
/* Q */
/* input vector of the quadrature channel */
/* */
/* num_of_syms */
/* lenght of I (and Q) - 11 (filter length -1) */
/* */
/* filt */
/* pointer to 48-taps-root-raised-cosine-filter vector */
/* */
/* I_SRC */
/* output vector after Root Raised Cosine filter */
/* lengt h = 4 * num_of_syms */
/* */
/* Q_SRC */
/* output vector after Root Raised Cosine filter */
/* lengt h = 4 * num_of_syms */
/* */
/* Return Value : */
/* NONE */
/* */
/***/

void tx_RRC_filt(DATA *I, DATA *Q, int num_of_syms, DATA *filt, DATA *I_SRC,
DATA *Q_SRC)

{
int i,j,k;
long int i_temp, q_temp; // temp value for saving filter output value
DATA *iptr, *qptr; // pointer to input data

/* Set up Pointers to input data */
iptr = I;
qptr = Q;

/* Main Filter Loop */
for (i = 0 ; i < num_of_syms ; i++)
{

for (j = 0 ; j < 4 ; j++) /* 4-bank filtering, 12 taps a piece */
{

/* Clear Filter Sums */
i_temp = 0;
q_temp = 0;

/* Filter Input Data */
for (k = 0 ; k < 12 ; k++)
{

i_temp += (*(iptr++)) * (*filt);
q_temp += (*(qptr++)) * (*(filt++));

}

/* Store Filter Output */
*(I_SRC++) = i_temp >> 2;
*(Q_SRC++) = q_temp >> 2;

87

/* Use Same Input Data Next Time, but different filter bank */
iptr -= 12;
qptr -= 12;

}

iptr++;
qptr++; /* Proceed to next symbol */

filt -= 48; /* Set Filter Pointer back to Start */
}
return;

}

reg549.h

/**/
/* */
/* Memory-mapped registers for TMS320C549 DSP */
/* */
/* File: reg549.h */
/* Version: 1.0 */
/* Last update: 01-05-2000 */
/* Creation date: 01-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/
#ifndef _reg549
#define _reg549
/* Interrupt mask register */
volatile unsigned int* IMR = (volatile unsigned int *) 0x0000;

/* Interrupt flag register */
volatile unsigned int* IFR = (volatile unsigned int *) 0x0001;

/* status register 0*/
volatile unsigned int* ST0 = (volatile unsigned int *) 0x0006;

/* status register 1*/
volatile unsigned int* ST1 = (volatile unsigned int *) 0x0007;

/* Accumulator A low word*/
volatile unsigned int* AL = (volatile unsigned int *) 0x0008;

/* Accumulator A high word*/
volatile unsigned int* AH = (volatile unsigned int *) 0x0009;

/* Accumulator A guard bits*/
volatile unsigned int* AG = (volatile unsigned int *) 0x000A;

/* Accumulator B low word*/
volatile unsigned int* BL = (volatile unsigned int *) 0x000B;

/* Accumulator B high word*/
volatile unsigned int* BH = (volatile unsigned int *) 0x000C;

/* Accumulator B guard bits*/
volatile unsigned int* BG = (volatile unsigned int *) 0x000D;

/* Temporary register*/
volatile unsigned int * T = (volatile unsigned int *) 0x000E;

/* Transistion register*/
volatile unsigned int* TRN = (volatile unsigned int *) 0x000F;

/* Auxiliiary register 0*/
volatile unsigned int* AR0 = (volatile unsigned int *) 0x0010;

/* Auxiliiary register 1*/
volatile unsigned int* AR1 = (volatile unsigned int *) 0x0011;

/* Auxiliiary register 2*/
volatile unsigned int* AR2 = (volatile unsigned int *) 0x0012;

/* Auxiliiary register 3*/

88

volatile unsigned int* AR3 = (volatile unsigned int *) 0x0013;

/* Auxiliiary register 4*/
volatile unsigned int* AR4 = (volatile unsigned int *) 0x0014;

/* Auxiliiary register 5*/
volatile unsigned int* AR5 = (volatile unsigned int *) 0x0015;

/* Auxiliiary register 6*/
volatile unsigned int* AR6 = (volatile unsigned int *) 0x0016;

/* Auxiliiary register 7*/
volatile unsigned int* AR7 = (volatile unsigned int *) 0x0017;

/* Stack pointer*/
volatile unsigned int* SP = (volatile unsigned int *) 0x0018;

/* Circular-buffer size register*/
volatile unsigned int* BK = (volatile unsigned int *) 0x0019;

/* Block-repeat counter*/
volatile unsigned int* BRC = (volatile unsigned int *) 0x001A;

/* Block-repeat start address*/
volatile unsigned int* RSA = (volatile unsigned int *) 0x001B;

/* Block-repeat end address*/
volatile unsigned int* REA = (volatile unsigned int *) 0x001C;

/* Processor mode status register*/
volatile unsigned int* PMST = (volatile unsigned int *) 0x001D;

/* Program counter extension register*/
volatile unsigned int* XPC = (volatile unsigned int *) 0x001E;

/* Synchronous buffered serial port registers */
volatile unsigned int* BDRR0 = (volatile unsigned int *) 0x0020;
volatile unsigned int* BDXR0 = (volatile unsigned int *) 0x0021;
volatile unsigned int* BSPC0 = (volatile unsigned int *) 0x0022;

/* timer registers */
volatile unsigned int* TIM = (volatile unsigned int *) 0x0024;
volatile unsigned int* PRD = (volatile unsigned int *) 0x0025;
volatile unsigned int* TCR = (volatile unsigned int *) 0x0026;

/* various */
volatile unsigned int* SWWSR = (volatile unsigned int *) 0x0028;
volatile unsigned int* BSCR = (volatile unsigned int *) 0x0029;
volatile unsigned int* XWSR = (volatile unsigned int *) 0x002B;
volatile unsigned int* HPIC = (volatile unsigned int *) 0x002C;

/* TDM serial port registers */
volatile unsigned int* TRCV = (volatile unsigned int *) 0x0030;
volatile unsigned int* TDXR = (volatile unsigned int *) 0x0031;
volatile unsigned int* TDPC = (volatile unsigned int *) 0x0032;
volatile unsigned int* TCSR = (volatile unsigned int *) 0x0033;
volatile unsigned int* TRTA = (volatile unsigned int *) 0x0034;
volatile unsigned int* TRAD = (volatile unsigned int *) 0x0035;

/* ABU (automatic buffering unit registers */
volatile unsigned int* AXR0 = (volatile unsigned int *) 0x0038;
volatile unsigned int* BKX0 = (volatile unsigned int *) 0x0039;
volatile unsigned int* ARR0 = (volatile unsigned int *) 0x003A;
volatile unsigned int* BKR0 = (volatile unsigned int *) 0x003B;
volatile unsigned int* AXR1 = (volatile unsigned int *) 0x003C;
volatile unsigned int* BKX1 = (volatile unsigned int *) 0x003D;
volatile unsigned int* ARR1 = (volatile unsigned int *) 0x003E;

/* serial port 1 */
volatile unsigned int* BDRR1 = (volatile unsigned int *) 0x0040;
volatile unsigned int* BDXR1 = (volatile unsigned int *) 0x0041;
volatile unsigned int* BSPC1 = (volatile unsigned int *) 0x0042;
volatile unsigned int* BSPCE1 = (volatile unsigned int *) 0x0043;

/* clock mode register */
volatile unsigned int* CLKMD = (volatile unsigned int *) 0x0058;

89

#endif

table.h

/**/
/* */
/* Contains tables for the root-raised-cosine filter (48 elements) and */
/* a sine and cosine table of 32 elements. */
/* */
/* File: table.h */
/* Version: 1.0 */
/* Last update: 02-05-2000 */
/* Creation date: 02-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#pragma DATA_SECTION (tableRaisCosFilt,".rcf")
//store coeffs in a special defined memory region

float tableRaisCosFilt[] = { /* Sum = 4 (interpolation factor = 4) */
-0.005844,
-0.004486,
0.002716,
0.009177,
0.007490,
-0.002346,
-0.011605,
-0.010247,
0.002016,
0.013292,
0.009547,
-0.009547,
-0.025432,
-0.014774,
0.025597,
0.065309,
0.057078,
-0.022058,
-0.135144,
-0.188601,
-0.084650,
0.206831,
0.607737,
0.957119,
1.094239,
0.957119,
0.607737,
0.206831,
-0.084650,
-0.188601,
-0.135144,
-0.022058,
0.057078,
0.065309,
0.025597,
-0.014774,
-0.025432,
-0.009547,
0.009547,
0.013292,
0.002016,
-0.010247,
-0.011605,
-0.002346,
0.007490,
0.009177,
0.002716,
-0.004486,
};
#pragma DATA_SECTION (table_f_sin,".sin")

//store coeffs in a special defined memory region
int table_f_sin[] ={

/*step = 11.25 degrees, max int value (0x8000) = 32768 == 1.0 */
0, // 0.000000000,

90

6393, // 0.195090322,
12540, // 0.382683432,
18205, // 0.555570233,
23170, // 0.707106781,
27246, // 0.831469612,
30274, // 0.923879533,
32138, // 0.980785280,
32767, // 1.000000000,
32138, // 0.980785280,
30274, // 0.923879533,
27246, // 0.831469612,
23170, // 0.707106781,
18205, // 0.555570233,
12540, // 0.382683432,

6393, // 0.195090322,
0, // 0.000000000,

-6393, //-0.195090322,
-12540, //-0.382683432,
-18205, //-0.555570233,
-23170, //-0.707106781,
-27246, //-0.831469612,
-30274, //-0.923879533,
-32138, //-0.980785280,
-32767, //-1.000000000,
-32138, //-0.980785280,
-30274, //-0.923879533,
-27246, //-0.831469612,
-23170, //-0.707106781,
-18205, //-0.555570233,
-12540, //-0.382683432,

-6393, //-0.195090322,
};
#pragma DATA_SECTION (table_f_cos,".cos")

//store coeffs in a special defined memory region

int table_f_cos[] ={
/*step = 11.25 degrees, max int value (0x8000) = 32768 == 1.0 */

32767, // 1.000000000,
32138, // 0.980785280,
30274, // 0.923879533,
27246, // 0.831469612,
23170, // 0.707106781,
18205, // 0.555570233,
12540, // 0.382683432,

6393, // 0.195090322,
0, // 0.000000000,

-6393, //-0.195090322,
-12540, //-0.382683432,
-18205, //-0.555570233,
-23170, //-0.707106781,
-27246, //-0.831469612,
-30274, //-0.923879533,
-32138, //-0.980785280,
-32767, //-1.000000000,
-32138, //-0.980785280,
-30274, //-0.923879533,
-27246, //-0.831469612,
-23170, //-0.707106781,
-18205, //-0.555570233,
-12540, //-0.382683432,

-6393, //-0.195090322,
0, // 0.000000000,

6393, // 0.195090322,
12540, // 0.382683432,
18205, // 0.555570233,
23170, // 0.707106781,
27246, // 0.831469612,
30274, // 0.923879533,
32138, // 0.980785280,

};

filter_int.h

/**/
/* */

91

/* Contains the filter coeffs tables for the FIR interpolation filters */
/* */
/* File: filter_int.h */
/* Version: 1.0 */
/* Last update: 02-05-2000 */
/* Creation date: 02-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#define NH16 19 // number of filter coefs for 1st filter
#define NH32 10 // number of filter coefs for 2nd filter
#define NH64 6 // number of filter coefs for 3rd filter
#define NH128 6 // number of filter coefs for 4th filter
#define interpolation_factor 16 // total interpolation factor
#define frame_length 728*interpolation_factor // define total frame length
#define frame_length_min_1 728*interpolation_factor - 1

#pragma DATA_SECTION (h16,".co_h16")
//store coeffs in a special defined memory region

DATA h16[NH16] ={
/* total su m = 2 (interpolation = 2, so 1/2 of samples are 0 */

82, /* max int value = 32767 (0x7fff) == 1.0 */
0,
-498,
-2,
1774,
2,
-5166,
-4,
20194,
32760,
20194,
-4,
-5166,
2,
1774,
-2,
-498,
0,
82,
};

#pragma DATA_SECTION (h32,".co_h32")
//store coeffs in a special defined memory region

DATA h32[NH32] ={
/* total su m = 2 (interpolation = 2, so 1/2 of samples are 0 */

586, /* max int value = 32767 (0x7fff) == 1.0 */
-1006,
-3892,
7416,
29654,
29654,
7416,
-3892,
-1006,
586,
};

#pragma DATA_SECTION (h64,".co_h64")
//store coeffs in a special defined memory region

DATA h64[NH64] ={
/* total su m = 2 (interpolation = 2, so 1/2 of samples are 0 */

-2888, /* max int value = 32767 (0x7fff) == 1.0 */
5518,
30170,
30170,
5518,
-2888,
};

#pragma DATA_SECTION (h128,".co_h128")
//store coeffs in a special defined memory region

DATA h128[NH128] ={
/* total su m = 2 (interpolation = 2, so 1/2 of samples are 0 */

-2946, /* max int value = 32767 (0x7fff) == 1.0 */
5308,

92

30410,
30410,
5308,
-2946,
};

#pragma DATA_SECTION (dbuffer16,".db16")
//store delay buffer in a special defined memory region

DATA dbuffer16[NH16]; //define buffer
DATA *dp16 = dbuffer16; //define pointer to buffer

#pragma DATA_SECTION (dbuffer32,".db32")
//store delay buffer in a special defined memory region

DATA dbuffer32[NH32]; //define buffer
DATA *dp32 = dbuffer32; //define pointer to buffer

#pragma DATA_SECTION (dbuffer64,".db64")
//store delay buffer in a special defined memory region

DATA dbuffer64[NH64]; //define buffer
DATA *dp64 = dbuffer64; //define pointer to buffer

#pragma DATA_SECTION (dbuffer128,".db128")
//store delay buffer in a special defined memory region

DATA dbuffer128[NH128]; //define buffer
DATA *dp128 = dbuffer128; //define pointer to buffer

vecs.asm

;/***/
;/* Setting up the interrupt vector table */
;/* */
;/* File: vecs.asm */
;/* Version: 1.0 */
;/* Last update: 01-05-2000 */
;/* Creation date: 01-05-2000 */
;/* Author: Roel Schiphorst */
;/* */
;/***/

.title "vecs.asm"

.ref _c_int00,_codrx

.sect ".vectors"

.mmregs

;vector table:
RESET bd _c_int00 ;Start of main program,

;_c_int00 provided by rts.lib
nop
nop

.space 76*16
BRINT0 bd _codrx ;serial port receive interrupt

nop ;goto codrx-function
nop
.space 44*16
.end

549.cmd

/**/
/* Functions for setting up memory map of the 549 DSP processor */
/* */
/* File: 549.cmd */
/* Version: 1.0 */
/* Last update: 01-05-2000 */
/* Creation date: 01-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/
main.obj
cdma.obj
frame.obj
mod_qpsk.obj

93

-o transmit.out

-m transmit.map

-e RESET

MEMORY
{

PAGE 0: ROM: origin = 00000h, length = 007FFh
PRAM0: origin = 00800h, length = 0F780h
VECTOR: origin = 0ff80h, length = 00080h

PAGE 1: REGS: origin = 00000h, length = 00050h
I_O: origin = 00050h, length = 00010h
DRAM0: origin = 0x0060, length = 0x0020
DRAM1: origin = 0x0080, length = 0x1f80
DRAM2: origin = 0x2000, length = 0x6000

}

SECTIONS
{

.vectors : > VECTOR
.text : > PRAM0
.cinit : > ROM
.bss : > DRAM2
.cos : > DRAM2
.sin : > DRAM2
.rcf : > DRAM2
.co_h16 : > DRAM2, align(128) /* alignment of filter coeffs */
.co_h32 : > DRAM2, align(128)
.co_h64 : > DRAM2, align(128)
.co_h128 : > DRAM2, align(128)
.db16 : > DRAM2, align(128) /* and filter buffers */
.db32 : > DRAM2, align(128)
.db64 : > DRAM2, align(128)
.db128 : > DRAM2, align(128)
.stack : > DRAM1

}

Appendix II: Interpolation-filter data
The transmitter uses a four-stage interpolation filter. Below the frequency

responses are shown and the accompanying filter coefficients.

Interpolation filter I

94

0 100 200 300 400 500 600 700 800 900 1000
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

Order 18 FIR Filter designed with REMEZ

Figure 59: frequency response of interpolation filter I

The filter coefficients of the interpolation filter I are shown in Table 8.

Coefficients Interpolation filter I

C0 0.00297634096950

C1 0.00000572929590

C2 -0.01193960904697

C3 -0.00001163211854

C4 0.03357607686325

C5 0.00002113699900

C6 -0.08497456198584

C7 -0.00002556341517

C8 0.31067825918356

C9 0.31067825918356

C10 0.31067825918356

C11 -0.00002556341517

C12 -0.08497456198584

C13 0.00002113699900

C14 0.03357607686325

C15 -0.00001163211854

C16 -0.01193960904697

C17 0.00000572929590

C18 0.00297634096950

Table 8: filter coefficients of interpolation filter I

Interpolation filter II

95

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

Order 9 FIR Filter designed with REMEZ

Figure 60: frequency response of interpolation filter II

The filter coefficients of the interpolation filter II are shown in Table 9.

Coefficients Interpolation filter II

C0 0.00910909968705

C1 -0.01590330913436

C2 -0.05958142823839

C3 -0.05958142823839

C4 0.45198770231206

C5 0.45198770231206

C6 0.11414753579084

C7 -0.05958142823839

C8 -0.01590330913436

C9 0.00910909968705

Table 9: filter coefficients of interpolation filter II

Interpolation filter III

96

0 500 1000 1500 2000 2500 3000 3500 4000
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

Order 5 FIR Filter designed with REMEZ

Figure 61: frequency response of interpolation filter III

The filter coefficients of the interpolation filter III are shown in Table 10.

Coefficients Interpolation filter III

C0 -0.04395008588476

C1 0.08475721686120

C2 0.45978475413957

C3 0.45978475413957

C4 0.08475721686120

C5 -0.04395008588476

Table 10: filter coefficients of interpolation filter III

Interpolation filter IV

97

0 1000 2000 3000 4000 5000 6000 7000 8000
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

Order 5 FIR Filter designed with REMEZ

Figure 62: frequency response of interpolation filter IV

The filter coefficients of the interpolation filter IV are shown in Table 11

Coefficients Interpolation filter IV

C0 -0.04493820850244

C1 0.08098307261048

C2 0.46403046514701

C3 0.46403046514701

C4 0.08098307261048

C5 -0.04493820850244

Table 11: filter coefficients of interpolation filter IV

Appendix III: Source code of the software-radio
receiver

The software-radio receiver consists of the following files (See also Figure 63):

• 549.cmd

defines the memory map of the DSP

• dsplib.h

header file of TMS320C54x DSPLIB library

• filter_dec.h

filter coefficients of the decimation filters

• reg549.h

defines symbols for memory-mapped registers

98

• table.h

header file for root-raised-cosine filter and cosine/sine table

• tms320.h

defines data types DATA and LDATA

• 54xdsp.lib

TMS320C54x DSPLIB library

• rts.lib

standard library for initialization and booting up of DSP

• carrier_mult.c

functions for multiplying a carrier with a cosine/sine table

• cdma.c

implementation of the CDMA block

• cic.c

implementation of the CIC filter

• compare.c

calculates the BER

• demod_QPSK.c

functions for QPSK demodulation and root-raised-cosine filter

• detect.c

functions for detecting the initial phase of the carrier

• main.c

implementation of the main loop and other functions such as initialization

and decimation block

• vecs.asm

defines the interrupt table

The source code of these files is shown in the subsections below.

Figure 63: file hierarchy of the software-radio receiver

carrier_mult.c

/**/
/* Functions for multiplying a signal with a carrier */
/* */
/* File: carrier_mult.c */

99

/* Version: 1.0 */
/* Last update: 28-04-2000 */
/* Creation date: 28-04-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

/* Function Prototypes */
void carrier_mult(int, int*, int, int*, int*, int);

/**/
/* */
/* Function: carrier_mult() */
/* */
/* This function multiplies a vector with a cosine or sine. The */
/* cosine or sine is derived from a table with 32 elements */
/* */
/* args: */
/* NumOfSampl_f */
/* Length of the cosine/sine period */
/* */
/* f */
/* Pointer to a sine/cosine table with 32 elements */
/* */
/* NumOfSampl_in */
/* Length of input vector, this must be a multiple of */
/* NumOfSampl_f */
/* */
/* in */
/* Pointer to input vector with length NumOfSampl_in */
/* */
/* out */
/* Pointer to output vector with length NumOfSampl_in */
/* */
/* offset */
/* Indicates the zero-phase point in the input vector */
/* Range: 0..32 */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void carrier_mult(int NumOfSampl_f, int *f, int NumOfSampl_in, int* in,
int* out, int offset)

{
int i,j;
int f_index;
long int temp;

f_index = 32 - offset; //Match cos/sin with the input vector phase

for (i = 0; i < NumOfSampl_in; i += NumOfSampl_f)
{

for (j = 0; j < NumOfSampl_f; j++)
{

temp = f[f_index] * (*in++);
//Multiply the input with the cosine/sine value

(*out++) = temp >> 16; //Use only the 16 MSBs of temp

f_index = (f_index + (32/NumOfSampl_f)) % 32;
//Change pointer to the next cosine/sine value

}
}

return;
}

cdma.c

See appendix I.

cic.c

100

/**/
/* Functions for implementing the Cascaded Integrated Comb(CIC) filters */
/* */
/* File: cic.c */
/* Version: 1.0 */
/* Last update: 28-04-2000 */
/* Creation date: 28-04-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#include <tms320.h>
/* Function Prototypes */
void CIC_L3M4(DATA*, DATA*, LDATA*, int, LDATA*);

/**/
/* */
/* Function: CIC_L3M4() */
/* */
/* This function implement s a 3 stage CIC-filter with a decimation */
/* factor of 4 */
/* */
/* args: */
/* in */
/* input vector with NumberOfInputSamples elements */
/* */
/* out */
/* output vector with NumberOfInputSamples/4 elements */
/* */
/* state_buffer */
/* Vector with 6 elements which contains the buffer */
/* values of the CIC filter */
/* */
/* NumberOfInputSamples */
/* Length of the input vector */
/* */
/* temp */
/* temporary buffer of length NumberOfInputSamples */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void CIC_L3M4(DATA *in, DATA* out, LDATA* state_buffer,
int NumberOfInputSamples, LDATA* temp)

{
int i;
int temp_in;

for(i = 0 ; i < NumberOfInputSamples; i++)
{

temp_in = in[i]/30; //scale input vector to prevent a
// quick overflow in the filter buffers

state_buffer[2] += state_buffer[1]; //integrator #3
state_buffer[1] += state_buffer[0]; //integrator #2
state_buffer[0] += temp_in; //integrator #1

temp[i] = state_buffer[2]; //store temp data
}

for(i = 0 ; i < NumberOfInputSamples/4; i++) //downsample factor 4
{

out[i] = temp[4*i] - 3*state_buffer[3] + 3*state_buffer[4] –
state_buffer[5];

//calculate output sample
state_buffer[5] = state_buffer[4]; //update buffer values
state_buffer[4] = state_buffer[3];
state_buffer[3] = temp[4*i];

}
}

compare.c

101

/**/
/* Functions for calculation the BER (Bit Error Rate) */
/* */
/* File: compare.c */
/* Version: 1.0 */
/* Last update: 03-05-2000 */
/* Creation date: 03-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#include <tms320.h>

/* Function Prototypes */
void compare(DATA*, float*);

/**/
/* */
/* Function: cdma() */
/* */
/* This function determines the number of errors in the received frame */
/* */
/* args: */
/* rx_data */
/* Received frame data (256 bits) */
/* */
/* ber */
/* Bit Error Rate */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

DATA reference_frame_data[256] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

void compare(DATA *rx_data, float* ber)
{

static unsigned long errorsum = 0;
static unsigned long totalbitsum = 0;
float temp_error;
float temp_totalbit;
int i = 0;

for (i = 0; i < 256; i++)
{

if (rx_data[i] != reference_frame_data[i])
{

errorsum++;
}

}
totalbitsum += 256;

temp_error = errorsum;
temp_totalbit = totalbitsum;
temp_error = temp_error/temp_totalbit;

102

*ber = temp_error;
}

demod_QPSK.c

/**/
/* Functions for demodulating a QPSK signal */
/* */
/* File: demod_QPSK.c */
/* Version: 1.0 */
/* Last update: 01-05-2000 */
/* Creation date: 01-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#include <tms320.h>

/* Function Prototypes */

int sync_corr(DATA*, DATA*, DATA*);
void rx_RRC_filt(DATA*, DATA*, unsigned int, DATA*, DATA*, DATA*,

unsigned int);
void demod_QPSK(DATA*, DATA*, unsigned*);

/* Data */
DATA cor_sync[] = { -1, 1, // vector which contains the sync-word

-1, 1, // the left row is sent via the I channel
-1, 1, // the other via the Q channel

1,-1,
1, 1,
1,-1,

-1,-1,
1,-1,

-1,-1,
-1, 1,

1,-1,
1, 1,

-1, 1,
-1, 1,

1,-1,
1,-1

};

/***/
/* */
/* Function: sync_corr() */
/* */
/* This function searches the best match of the sync-word in the input */
/* vector sync word. This done via correlation. The position of the */
/* best match is returned and used by the demodulation process. */
/* */
/* args: */
/* I */
/* input vector of the in-phase channel */
/* */
/* Q */
/* input vector of the quadrature channel */
/* */
/* filt */
/* pointer to 48-taps-root-raised-cosine-filter vector */
/* */
/* Return Value : */
/* sync_point */
/* position of the correlation-peak in the input vectors */
/* */
/**/

int sync_corr(DATA *I, DATA *Q, DATA *filt)
{

LDATA temp_rc[2*100]; // Temporary storage array for post-
// filtered root-raised-cosine data.

int i, j,

103

sync_point; // synchronization point
static long int max; // contains the maximal correlation value
long int *rc_data, // pointer to temp_rc array

corr_mag, // correlation value of one posibility
I_temp, Q_temp, // temporary filter output values
rc_i, rc_q; // used for calculating correlation

DATA *sync_ptr, // pointer to synchronization table
sync_i, sync_q; // used for calculating correlation

/**************************************/
/* Filter just enough data to span */
/* correlation window */
/* */
/* Store resultant 100 I,Q pairs */
/* into temp_rc[] storage. */
/**************************************/

rc_data = temp_rc; // Set pointer to temporary storage for filter output

I += 24; // Intentional offset to start 6 symbols
Q += 24; // to left of expected sync point.

for (i = 0 ; i < 100; i++)
{

I_temp = 0; // Zero filter sums
Q_temp = 0;

for (j = 0 ; j < 48 ; j++) // Calculate output value of root
// raised cosine filter

{
I_temp += (*(I++)) * (*filt);
Q_temp += (*(Q++)) * (*filt++);

}
filt -= 48; // Set Filter pointer back to start

I -= 47; // Start 1 sample over next time
Q -= 47;

*(rc_data++) = I_temp/16; // Store Filter Output I term and divide
// by 16 to prevent overflow

*(rc_data++) = Q_temp/16; // Store Filter Output Q term and divide
// by 16 to prevent overflow

}

/**/
/* Correlate with Sync Word */
/* Keep track of correlation peak. */
/**/

max = 0; // Correlation Magnetude Maximum

sync_point = 0; // Index into data to sync point

rc_data = temp_rc; // Set pointer to beginning of filtered data

for (i = 0; i < 10; i++)
{

I_temp = 0; // Set correlation values to zero
Q_temp = 0;

sync_ptr = cor_sync; // Set pointer to sync-word table

/* Perform Correlation at offset 'i' into data */
for (j = 0; j < 16; j++)
{

sync_i = *(sync_ptr++);
sync_q = *(sync_ptr++);
rc_i = *(rc_data++);
rc_q = *(rc_data++);
rc_data += 6;
I_temp += sync_i*rc_i;
Q_temp += sync_q*rc_q;

}
rc_data -= 126; // 128 would set pointer back to start we will

// start 1 sample (I,Q pair) over next time

104

/* Compute Correlation Magnetude & Maximize */
corr_mag = I_temp + Q_temp;

if(corr_mag > max) //if new point is greater than it is new max.
{

sync_point = i;
max = corr_mag;

}
}

return(sync_point + 24); // return correlation-peak position

// 24 is added because we started after 24 samples
// (to reduce calculations)

}

/**/
/* */
/* Function: rx_RRC_filt() */
/* */
/* This filters the QPSK signal with a root raised cosine filter. */
/* This reduces the ISI (Inter Symbol Interference). The same filter is */
/* used at the transmitter. */
/* */
/* args: */
/* I */
/* input vector of the in-phase channel */
/* */
/* Q */
/* input vector of the quadrature channel */
/* */
/* sync_pos */
/* location of the start of the sync-word in the input */
/* vectors */
/* */
/* filt */
/* pointer to 48-taps-root-raised-cosine-filter vector */
/* */
/* I_bits */
/* decoded I channel which contains length/4 elements */
/* */
/* Q_bits */
/* decoded Q channel which contains length/4 elements */
/* */
/* length */
/* number of elements of the both input vectors */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void rx_RRC_filt(DATA* I, DATA* Q, unsigned int sync_pos, DATA* filt,
DATA* I_bits, DATA* Q_bits, unsigned int length)

{
int i,j;
long int I_temp, Q_temp; // output values of root raised cosine filter
DATA *filt_ptr, // pointer to the filter table, filt

*isrc_ptr, // pointer to the input vector I
*qsrc_ptr; // pointer to the input vector Q

/* Update pointers to SRC data to start at sync point */

I += sync_pos; // Start at the begin of the sync word
Q += sync_pos;

/********************/
/* Filter Data Loop */
/********************/

for (i = 0 ; i < length ; i++)
{

/* Set filter sums to zero */
I_temp = 0;
Q_temp = 0;

105

/* Initialize pointers to input data */
isrc_ptr = I;
qsrc_ptr = Q;

/* Set filter pointer to filter */
filt_ptr = filt;

/* Perform 48-tap filter */
for (j = 0 ; j < 48 ; j++)
{

I_temp += (*(isrc_ptr++)) * (*filt_ptr);
Q_temp += (*(qsrc_ptr++)) * (*(filt_ptr++));

}

/* Store output samples */
if (I_temp > 0)
{

*(I_bits++) = 1;
}
else
{

*(I_bits++) = -1;
}
if (Q_temp > 0)
{

*(Q_bits++) = 1;
}
else
{

*(Q_bits++) = -1;
}

/* Update start sample pointers */
I += 4;
Q += 4;

}

return;
}

/**/
/* */
/* Function : demod_QPSK() */
/* */
/* This routine extracts 256-bit slot data from a demodulated I and Q */
/* channel A demodulated 1 means 0 and -1 implies a 1. */
/* */
/* args: */
/* I */
/* input vector of the demodulated in-phase channel */
/* */
/* Q */
/* input vector of the demodulated quadrature channel */
/* */
/* data */
/* output array, which contains the decoded data bits of the */
/* received frame (256 bits) */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void demod_QPSK(DATA* I, DATA* Q, unsigned *data)
{

DATA *I_ptr, *Q_ptr; // pointer to both input vectors, I and Q
int i;

I_pt r = I + 24; // start at the begin position of the first data field
Q_pt r = Q + 24;

for(i = 0; i < 64; i++) // decode QPSK signal
{

if (*(I_ptr++) < 0) // -1 means bi t = 1 and 1 means bit = 0
{

*(data++) = 1;

106

}
else
{

*(data++) = 0;
}
if (*(Q_ptr++) < 0) // -1 means bi t = 1 and 1 means bit = 0
{

*(data++) = 1;
}
else
{

*(data++) = 0;
}

}
I_pt r = I + 104; // start at the begin position of the second data field
Q_pt r = Q + 104;

for(i = 0; i < 64; i++) // decode QPSK signal
{

if (*(I_ptr++) < 0) // -1 means bi t = 1 and 1 means bit = 0
{

*(data++) = 1;
}
else
{

*(data++) = 0;
}

if (*(Q_ptr++) < 0) // -1 means bi t = 1 and 1 means bit = 0
{

*(data++) = 1;
}
else
{

*(data++) = 0;
}

}
return;

}

detect.c

/**/
/* Function for detecting the phase of the input signal */
/* */
/* File: detect.c */
/* Version: 1.0 */
/* Last update: 01-05-2000 */
/* Creation date: 01-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

/* Function Prototypes */
int detect_phase_carrier(int*);

/**/
/* */
/* Function: detect_phase_carrier() */
/* */
/* This function detects the phase of the input vector. It returns the */
/* best match of the zero phase. This zero-phase position is used by */
/* the alignment of the sin/cosine table to the input signal. Therefore */
/* the range = 0..32. */
/* */
/* args: */
/* in */
/* input vector */
/* */
/* Return Value : */
/* offset */
/* Zero-phase-position */
/* */
/**/

107

int detect_phase_carrier(int* in)
{

int phase_negmin = 0;
// position of the closest match in the input vector
// of the zero-crossing (- --> +)
// This point is the nearest sample at the negative part.

int phase; // return-value of the function
int phase2; // output value of the interpolation
int negmin = 32000; // value of phase_negmin
int posmin = 32000;

// value of phase_negmi n + 1 (other side of the crossing)
int min = 32000;

// used in the interpolation to determine the position
int i;
int temp = 30000, temp_old = 30000;

//temp value to determine the crossing
int x[9]; // array which contains the interpolated value

for (i = 0; i < 20; i++)
// Evaluate the first 20 sample for a zero-crossing

{
temp_old = temp;
temp = (*in);

in++;

if ((temp_old <= 0) && (temp >= 0))
// if previous sampl e = - and this sample
// = + then zero-crossing

{
phase_negmin = (4 + (i - 1)) % 4;

// carrier-period is 4 samples
posmin = temp; // save + sample of the crossing
negmin = temp_old; // save - sample of the crossing
break; // exit loop

}
}

x[0] = negmin; // interpolation
x[1] = 7*(negmin/8) + posmin/8;
x[2] = 3*(negmin/4) + posmin/4;
x[3] = 5*(negmin/8) + 3*(posmin/8);
x[4] = negmin/2 + posmin/2;
x[5] = 3*(negmin/8) + 5*(posmin/8);
x[6] = negmin/4 + 3*(posmin/4);
x[7] = negmin/8 + 7*(posmin/8);
x[8] = posmin;

for (i = 0; i < 9; i++) // determine closest match to

// zero-crossing
{

if (abs(x[i]) < min)
{

min = abs(x[i]); // save new minimum
phase2 = i; // save position

}
}

phase = 8*phase_negmin; // Calculate zero-phase position =
phase += phase2; // 8*input-match + interpolation position
phase += 4; // phase value of zero-crossing = -1/4 pi

// so 4 (32/8) has to be added to the phase
phase = phase % 32; // normalize phase

return phase;
}

main.c

/**/
/* This file contains the main loop of the QPSK receiver. Besides the */
/* main loop it contains functions for initilization of the DSP and the */

108

/* AD/DA chip. */
/* */
/* File: main.c */
/* Version: 1.0 */
/* Last update: 03-05-2000 */
/* Creation date: 03-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#include <tms320.h>
#include <dsplib.h>

#include "filter_dec.h"
#include "reg549.h"
#include "table.h"

/* Function Prototypes */
void main(void);

volatile int p0_serialflag; / / 0 = normal operatio n 1 = programming
// AD/DA chip

volatile int p0_serialint; / / 1 = serial port receive interrupt has
// occured

volatile int p0_serial_frame; / / 1 = complete frame has been received
volatile int p0_state; // state variable used in the detection of

// a frame
// 0 = wait for no signal
// 1 = wait for signal
// 2 = record frame

int p0_buffer[4]; // buffer used by the receive interrupt
//routine to detect a frame

DATA I[800]; // Array for the I channel before the root raised cosine
// filter

DATA Q[800]; // Array for the Q channel before the root raised cosine
// filter

DATA I_bits[188]; // Array for the decoded I symbols
DATA Q_bits[188]; // Array for the decode Q symbols

int rx_idata[256]; // Array for the data bits of the received frame
DATA rx_filt[48]; // Array for the root raised cosine filter
int input[frame_length]; // Array of the input samples which contain the

// frame

DATA buffer[128]; // Buffer which contains a small part of the input array

DATA out_cic[32]; // output array of the cic filter
LDATA buffer_cic[6]; // state array of the cic filter
LDATA temp_cic[128]; // temp data of the cic filter

DATA out8[16]; // output of the first FIR decimation filter
DATA out4[8]; // output of the second FIR decimation filter

float const1_1 = 1.1; // constant value

unsigned int syncpoint = 0; // Synchronisation point
float BER; // Bit Error Rate
/*
DATA code1[16]= { 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1 };
DATA code2[16]= { 1,1,1,1, 1,1,1,1, -1,-1,-1,-1, -1,-1,-1,-1 };
DATA code3[16]= { 1,1,1,1, -1,-1,-1,-1, 1,1,1,1, -1,-1,-1,-1 };
DATA code4[16]= { 1,1,1,1, -1,-1,-1,-1, -1,-1,-1,-1, 1,1,1,1 };
DATA code5[16]= { 1,1,-1,-1, 1,1,-1,-1, 1,1,-1,-1, 1,1,-1,-1 };
DATA code6[16]= { 1,1,-1,-1, 1,1,-1,-1, -1,-1,1,1, -1,-1,1,1 };
DATA code7[16]= { 1,1,-1,-1, -1,-1,1,1, 1,1,-1,-1, -1,-1,1,1 };
DATA code8[16]= { 1,1,-1,-1, -1,-1,1,1, -1,-1,1,1, 1,1,-1,-1 };
DATA code9[16]= { 1,-1,1,-1, 1,-1,1,-1, 1,-1,1,-1, 1,-1,1,-1 };
DATA code10[16]= { 1,-1,1,-1, 1,-1,1,-1, -1,1,-1,1, -1,1,-1,1 };
DATA code11[16]= { 1,-1,1,-1, -1,1,-1,1, 1,-1,1,-1, -1,1,-1,1 };
DATA code12[16]= { 1,-1,1,-1, -1,1,-1,1, -1,1,-1,1, 1,-1,1,-1 };
DATA code13[16]= { 1,-1,-1,1, 1,-1,-1,1, 1,-1,-1,1, 1,-1,-1,1 };
DATA code14[16]= { 1,-1,-1,1, 1,-1,-1,1, -1,1,1,-1, -1,1,1,-1 };
DATA code15[16]= { 1,-1,-1,1, -1,1,1,-1, 1,-1,-1,1, -1,1,1,-1 };
DATA code16[16]= { 1,-1,-1,1, -1,1,1,-1, -1,1,1,-1, 1,-1,-1,1 };
*/

109

// There are 16 different CDMA codes, listed above. One code is choosen for
// the communication and is equal to the transmitter CDMA code
DATA code[16]= { 1,-1,1,-1, -1,1,-1,1, 1,-1,1,-1, -1,1,-1,1 };

/**/
/**/

void inline disable() {
asm(" ssbx INTM"); // Disable all interrupts of the DSP

}

void inline enable() {
asm (" rsbx INTM"); // Enable all interrupts of the DSP

}

/**/
/* */
/* Function : waitintr() */
/* */
/* This function is used by the progreg()-function. It will only exit */
/* the function if the serial port has received a new word. */
/* */
/* args: */
/* NONE */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void waitintr(void)
{

while (p0_serialint == 0);
// Wait until data is received from the AD-DA chip

p0_serialint = 0; // Reset p0_serialint
return;

}

/**/
/* */
/* Function : progreg() */
/* */
/* This function programs a register of the AD/DA chip via the serial */
/* port */
/* */
/* args: */
/* progword */
/* a 16 bit word which contains besides the address of */
/* the register, also the new contents of the register */
/* See the datasheet of the AD/DA-chip for more */
/* information */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void progreg(int progword)
{

*BDXR0 = 0x0001; // Request secondary communication
// (read of write to registers)

waitintr(); // Wait for serial port receive interrupt

*BDXR0 = progword; // Send configuration word to AD-DA chip

waitintr(); // Wait for serial port receive interrupt
return;

}

/**/
/* */
/* Function : init() */
/* */
/* This function initializes the DSP and the AD/DA-chip */
/* */
/* args: */

110

/* NONE */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void init()
{

*SWWSR = 0x1209; // Set wait states for memory
*PMST = 0x0ffc0; // Set location of interrupt table

disable(); // Disable all interrupts
*BSPC0 = 0x0000; // Initialize SPC
*BSPC0 = *BSPC0 | 0x00C0; // Initialize SPC
*IMR = 0x0010; // Enable serial port 0 receive interupt
*IFR = 0xffff; // Clear any pending interrupts

enable(); // Enable all interrupts

p0_serialflag = 1; // Indicated whether the AD-DA chip is
// configure (1) or normal use (0)

waitintr();

progreg(0x0100); // 01 = control 1 register, value 00 (default)

progreg(0x0200); // 02 = control 2 register, value 00 (default)
// Decimator and interpolator filters are disabled

progreg(0x0304); // 03 = Fk divide register, value 10
// controls filter clock rate and sample period

progreg(0x0404); // 04 = Fsclk divide register, value 10
// controls the shift (data) clock rate

progreg(0x0500); // 05 = control 3 register, value 00
// DAC reference enabled

*BDXR0 = 0x0000; // Send zero to end configuration

p0_serialflag = 0; // Configuration is finished.

*IMR = *IMR & 0xffef; // disable serial port receive interrupts
}

/**/
/* */
/* Function : codrx() */
/* */
/* This function is called when a serial port receive interrupt occurs. */
/* */
/* args: */
/* NONE */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void interrupt codrx()
{ int sample_int; // var to save sample value

static in t i = 0, j = 0, k = 0;
static int long temp = 0;

p0_serialint = 1; // Set the interrupt variable to 1
sample_int = *BDRR0; // save sample value

// If 'normal' operation (no programming of regs)
if (p0_serialflag == 0)
{

if (p0_state < 2) // if p0_stat e = 0 or 1
{

if (sample_int == -32768) sample_int = 32767;

// Store sample in buffer
p0_buffer[i] = abs(sample_int);

i = (i + 1) % 4;

111

temp = 0;
for (j = 0; j < 4; j++)
// Buffer is used for averaging the input
{

temp += p0_buffer[j];
// calculate abs sum

}

// if temp is great enough, signal detected, record
// frame
if (temp > 0x00007000)
{

if (p0_state == 1) p0_state = 2;
}

// if temp is small enough, no signal, goto next state
if (temp < 0x00000010)
{

if (p0_state == 0) p0_state = 1;
}

}
else
{ // record the first frame_length samples

input[k] = sample_int;

// If last sample is transmitted then
if (k == frame_length_min_1)
{

// set p0_serial_frame var to 1;
p0_serial_frame = 1;
k = -1; // reset index k

}
k++;

}
}

}

/**/
/* */
/* Function : main() */
/* */
/* Main loop of the QPSK receiver. */
/* */
/* args: */
/* NONE */
/* */
/* Return Value : */
/* NONE */
/* */
/**/

void main(void)
{

int i,j;
int offset; // Zero-phase position of the input signal

int decimation_factor_x_8 = decimation_factor*8;

p0_serialint = 0; // reset var
p0_state = 0; // reset var

init(); // Initialization of AD-DA chip

for(j = 0; j < 48; j ++)
{

tableRaisCosFilt[j] /= const1_1;
// Normalize Root Raise Cosine table

}

fltoq15(tableRaisCosFilt, rx_filt, 48); // convert to DATA array

for(j = 0; j < 48; j ++)
{

// divide by 4 (total sum of the filter = 4)
// same filter is used by the transmitter
// the transmitter interpolates the signal 4 times

112

// so 3/4 of the input is zero and therefore the
// total sum of the filter = 4

rx_filt[j] >>= 2;
}

while (1) // receive frames forever
{

p0_serial_frame = 0;// reset var
*IMR |= 0x0010; // enable serial port receive interrupt

// Wait until a new frame is received
while (p0_serial_frame == 0)
{
}

*IMR &= 0xffef; // Disable serial port interrupt
p0_state = 0; // Reset serial-port state var

offset = detect_phase_carrier(input + 80); // Determine offset

/**/
/* Decimation */
/**/

/* I channel*/
for (j=0; j< NH8; j++) dbuffer8[j] = 0; // clear delay buffer (a must)
for (j=0; j< NH4; j++) dbuffer4[j] = 0; // clear delay buffer (a must)
for (j=0; j< 6; j++) buffer_cic[j] = 0; // clear delay buffer (a must)

for (i = 0; i < 100; i++)
{

// Multiply with carrier
carrier_mult(4, table_f_cos, decimation_factor_x_8,

&input[i*decimation_factor_x_8], buffer, offset);

// CIC filter
CIC_L3M4(buffer, out_cic, buffer_cic, decimation_factor_x_8,

temp_cic);

/* 2 stage fir filter */
firdec(out_cic, h8, out8, &dp8, NH8, 32, D8);
firdec(out8, h4, out4, &dp4, NH4, 16, D4);

/* Store output in I array */
for (j = 0; j < 8; j++)
{

I[i*8 + j] = out4[j];
}

}

/* Q channel*/
for (j=0; j< NH8; j++) dbuffer8[j] = 0; // clear delay buffer (a must)
for (j=0; j< NH4; j++) dbuffer4[j] = 0; // clear delay buffer (a must)
for (j=0; j< 6; j++) buffer_cic[j] = 0; // clear delay buffer (a must)

for (i = 0; i < 100; i++)
{

// Multiply with carrier
carrier_mult(4, table_f_sin, decimation_factor_x_8,

&input[i*decimation_factor_x_8], buffer, offset);

// CIC filter
CIC_L3M4(buffer, out_cic, buffer_cic, decimation_factor_x_8,

temp_cic);

/* 2 stage fir filter */
firdec(out_cic, h8, out8, &dp8, NH8, 32, D8);
firdec(out8, h4, out4, &dp4, NH4, 16, D4);

/* Store output in Q array */
for (j = 0; j < 8; j++)
{

Q[i*8 + j] = out4[j];
}

113

}
/**/
/* End of decimation */
/**/

syncpoint = sync_corr(I, Q, rx_filt);
// Determine pos of sync-word

rx_RRC_filt(I, Q, syncpoint, rx_filt, I_bits, Q_bits, 188);
// Root raised cosine filter

cdma(I_bits, Q_bits, code, 16, 24, 188);
// Multiply with the same PN code to become original signal

demod_QPSK(I_bits, Q_bits, rx_idata);
// demodulate the two channel into data

compare(rx_idata, &BER);
}

}

vecs.asm

See Appendix I.

reg549.h

See Appendix I.

table.h

See Appendix I.

filter_dec.h

/**/
/* */
/* Contains the filter coeffs tables for the FIR decimation filters */
/* */
/* File: filter_dec.h */
/* Version: 1.0 */
/* Last update: 01-05-2000 */
/* Creation date: 01-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/

#ifndef _filter_dec
#define _filter_dec

#define NH8 10 // number of filter coefs for 1st filter
#define D8 2 // decimation factor filter 1
#define NH4 35 // number of filter coefs for 2nd filter
#define D4 2 // decimation factor filter 2

#define decimation_factor 16 // total decimation factor (CIC + FIR)
#define frame_length 800*decimation_factor //define total frame length
#define frame_length_min_1 800*decimation_factor - 1

#pragma DATA_SECTION (h8,".co_h8") //store coeffs in a special defined
// memory region

DATA h8[NH8] ={
//filter coeffs 1st filter

2985, //max int value (0x8000) = 32768 == 1.0
-521.
-1952,
3740,
14810,
14810,
3740,

114

-1952,
-521,
2985,
};

#pragma DATA_SECTION (dbuffer8,".db8") //store delay buffer in a special
//defined memory region

DATA dbuffer8[NH8]; //define buffer
DATA *dp8 = dbuffer8; //define pointer to buffer

#pragma DATA_SECTION (h4,".co_h4") //store coeffs in a special defined
//memory region

DATA h4[NH4] ={
//filter coeffs 2nd filter

38, //max int value (0x8000) = 32768 == 1.0
0,
-90,
0,
189,
0,
-352,
0,
609,
1,
-1019,
-1,
1724,
1,
-3248,
-1,
10352,
16385,
10352,
-1,
-3248,
1,
1724,
-1,
-1019,
1,
609,
0,
-352,
0,
189,
0,
-90,
0,
38,
};

#pragma DATA_SECTION (dbuffer4,".db4") //store delay buffer in a special
//defined memory region

DATA dbuffer4[NH4]; //define delay buffer
DATA *dp4 = dbuffer4; //define pointer to this buffer

#endif

549.cmd

/**/
/* Functions for setting up memory map of the 549 DSP processor */
/* */
/* File: 549.cmd */
/* Version: 1.0 */
/* Last update: 01-05-2000 */
/* Creation date: 01-05-2000 */
/* Author: Roel Schiphorst */
/* */
/**/
main.obj
carrier_mult.obj
cic.obj
detect.obj
demod_qpsk.obj

115

cdma.obj

-o receive.out

-m receive.map

-e RESET

MEMORY
{

PAGE 0: ROM: origin = 00000h, length = 007FFh
PRAM0: origin = 00800h, length = 0F780h
VECTOR: origin = 0ff80h, length = 00080h

PAGE 1: REGS: origin = 00000h, length = 00050h
I_O: origin = 00050h, length = 00010h
DRAM0: origin = 0x0060, length = 0x0020
DRAM1: origin = 0x0080, length = 0x1f80
DRAM2: origin = 0x2000, length = 0x6000

}

SECTIONS
{

.vectors : > VECTOR
.text : > PRAM0
.cinit : > ROM
.bss : > DRAM2
.cos : > DRAM2
.sin : > DRAM2
.rcf : > DRAM2

/* alignment of filter coeffs and filter buffers */
.co_h8: > DRAM2, align(128)
.db8 : > DRAM2, align(128)
.co_h4: > DRAM2, align(128)
.db4 : > DRAM2, align(128)
.stack : > DRAM1

}

Appendix IV: Decimation-filter data
The receiver uses a three-stage decimation. Below the frequency responses are

shown and the accompanying filter coefficients.

Decimation filter I (CIC filter)

Figure 64: frequency response of decimation filter I

116

Decimation filter II

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

Order 11 FIR Filter designed with REMEZ

Figure 65: frequency response of decimation filter II

The filter coefficients of the decimation filter II are shown in Table 12

Coefficients Decimation filter II

C0 0.00501366817478

C1 0.00893665588294

C2 -0.03164948271466

C3 -0.05402394353169

C4 0.13631696318803

C5 0.43563345229614

C6 0.43563345229614

C7 0.13631696318803

C8 -0.05402394353169

C9 -0.03164948271466

C10 0.00893665588294

C11 0.00501366817478

Table 12: filter coefficients of decimation filter II

Decimation filter III

117

0 100 200 300 400 500 600 700 800 900 1000
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

Order 34 FIR Filter designed with REMEZ

Figure 66: frequency response of decimation filter III

The filter coefficients of the decimation filter III are shown in Table 13.

Coefficients Decimation filter III

C0 0.00115231466580

C1 0.00000537777114

C2 0.00000537777114

C3 -0.00000479327194

C4 0.00576296767733

C5 0.00001184899847

C6 -0.01073431260741

C7 -0.00001277015431

C8 0.01858639414522

C9 0.00002058156598

C10 -0.03109221158338

C11 -0.00002132190202

C12 0.05259937703532

C13 0.00002796029231

C14 -0.09913078385136

C15 -0.00002627823095

C16 0.31592463163592

C17 0.50003103100212

C18 0.31592463163592

C19 -0.00002627823095

C20 -0.09913078385136

C21 0.00002796029231

C22 0.05259937703532

C23 -0.00002132190202

118

C24 -0.03109221158338

C25 0.00002058156598

C26 0.01858639414522

C27 -0.00001277015431

C28 -0.01073431260741

C29 0.00001184899847

C30 0.00576296767733

C31 -0.00000479327194

C32 -0.00274720845232

C33 0.00000537777114

C34 0.00115231466580

Table 13: filter coefficients of decimation filter III

