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1 Introduction 
1.1 Machine translation 
Machine Translation (MT) is the translation of text from one human language to another 

by a computer. Computers, like all machines, are excellent at taking over repetitive and 

mundane tasks from humans. As translating long texts from one language to another 

qualifies as such a task, Machine Translation is a potentially very economic way of 

translation. Unfortunately natural languages are not very suitable for processing by a 

machine. They are ambiguous, illogical and constantly evolving, qualities that are 

difficult to handle with a machine. This makes the problem of Natural Language 

Processing, and by extension MT, a difficult one to solve. 

 

A theoretical method that can analyze a text in a natural language and decipher its 

semantic content can store this semantic content in a language-independent 

representation. From this representation, another text with the same semantic content 

can be generated in any language for which exists a generation mechanism. Such an MT 

architecture would provide high quality translations, and be modular; a new language 

could be added to the pool of inter-translatable languages simply by developing an 

analysis and generation method for that language. 

 

Unfortunately this method does not exist. Some existing MT attempts to approach it to a 

degree, but as long as semantic analysis remains an unsolved problem in the field of 

Natural Language Processing there can be no true language independent representation. 

Figure 1 shows the Machine Translation Pyramid, which is a schematic representation 

of the degree of analysis performed on the input text. The MT method described in 

these paragraphs is at the top of the pyramid. 

 

 
Figure 1. The Machine Translation Pyramid, which is an indication of the level of syntactic and semantic 

analysis performed by various MT methods. 

 

Existing MT can be categorized into three fields: Rule-based Machine Translation, 

Example-based Machine Translation and Statistical Machine Translation. 



 

Rule-based Machine Translation 
Rule-based MT is a method that focuses on analyzing the source language by syntactic 

rules. It typically creates an intermediary, symbolic representation from that analysis 

that represents the content of the text, and then builds a translation from the 

intermediary representation. In the Machine Translation Pyramid (figure 1), this method 

is highest up of all the existing MT varieties. It can do syntactic analysis, but since 

semantic analysis is still an unsolved problem, there is still a need for language-specific 

translation steps. 

 

Rule-based MT is one of the most popular methods for practical use. Well known rule-

based systems include Systran and METEO [1]. Systran was fairly successful, being 

utilized for a time by both the United States Air Force and the European Union 

Commission. The system was never abandoned, as today it is used in Altavista’s 

Babelfish and Google’s language tools. METEO is a system developed for the purpose 

of translating weather forecasts from French to English, and was used by Environment 

Canada. It continued to serve its purpose until 2001. 

 

The main advantage to this method of translation is that it works fast. A translation can 

be produced within seconds, which makes it an attractive method for the casual user. 

However, the translations produced by Rule-based MT tend to be of poor quality, as 

Rule-based MT deals poorly with ambiguity. 

 

Example-based Machine Translation 
Example-based Machine Translation operates on the philosophy that translation can be 

done by analogy. An Example-based Machine Translation system breaks down the 

source text into phrases, and translates these phrases analogous to the example 

translations it was trained with. New sentences are created by substituting parts of a 

learned sentence with parts from other learned sentences. This basic principle is 

explained in a paper by Nagao [2]. In the Machine Translation Pyramid (figure 1), this 

method is lower than Rule-based MT, because there is little in the way of analysis of the 

text. 

There have been few commercially used example-based translation systems, but the 

techniques involved are still being researched. A recent proposal for an Example-based 

MT system was submitted by Sasaki and Murata [3]. 

 

The advantage of Example-based MT is that it can produce very high-quality 

translations, as long as it is applied to very domain-specific texts such as product 

manuals. However, once the texts become more diverse, the translation quality drops 

quickly. 

 

Statistical Machine Translation 

Statistical Machine Translation (SMT) is a type of MT similar to Example-based MT in 

the sense that it translates an input text according to what it has learned from training 

data. Unlike Example-based MT, SMT aims to be able to translate phrases it has not 

specifically seen before. 

 



With advances in statistical modeling the translation quality of SMT systems has risen 

above that of alternative methods. A paper by Alshawi and Douglas shows this 

difference in performance [4]. However, the drawback of this method of MT is that it 

requires massive amounts of processing time and training material to produce a 

translation. This makes it unsuitable for time-critical applications. Furthermore, SMT is 

not very effective for language pairs that have little training data available. 

 

In the Machine Translation Pyramid (figure 1), SMT is all the way at the bottom. This 

reflects the fact that SMT does not syntactically or semantically analyze the input text at 

all. It simply uses statistics obtained during model training to find a sequence of words 

it deems the best translation.  

  

Two well-known SMT systems include Moses and Pharaoh. In addition there exists a 

variety of other systems that focus on components of an SMT system, such as language 

model trainers and decoders. 

 

1.2 SMT, Alignment and preprocessing 
This thesis will investigate preprocessing methods for SMT, in an attempt to find ways 

to increase the performance of this method of MT. Before we can go into the details of 

preprocessing we must introduce the workings of SMT. 

 

SMT translates based on information it has trained from example translation data. This 

example translation data takes the form of a parallel corpus. Such a corpus consists of 

two texts, each of which is the translation of the other. In this work, this corpus is the 

Europarl corpus [5], which is freely available for the purposes of SMT research. 

 

By statistically analyzing such parallel corpora, one can estimate the parameters for 

whatever statistical models one chooses to employ (see Brown et al [6] and Och and 

Ney [7]). 

 

The trained statistical models are then used by the system to calculate the sentence that 

has the highest probability of being the translation of the input sentence. The part of the 

system that does this is called the decoder. Decoding is a difficult problem that is the 

subject of much research, but it falls outside the scope of this thesis. It is important to 

note, however, that the performance of the decoder is a function of the quality of the 

statistical models. Preprocessing on the training data can help improve model quality 

and by extension the performance of an SMT system. 

 

To understand how preprocessing has an effect on the performance of an SMT system, 

one must understand the concept of alignment. In the remainder of this text there will be 

mention of two types of alignment: the sentence-level alignment and the word-level 

alignment. 

 

  



The sentence-level alignment refers to the way the sentences in the corpus are 

sequenced. If a given sentence in one half of the parallel corpus is in the same 

sequential position as a sentence in the other half of the corpus, then those sentence are 

said to be a sentence pair. If the sentences in a sentence pair are translations of each 

other, those sentences are said to be aligned. In order to train an SMT system, one 

requires a parallel corpus the sentences of which are properly aligned. In the remainder 

of this thesis, we will assume the training data has a correct sentence-level alignment. 

 

Following Och and Ney [8], the word-level alignment is defined as a subset of the 

Cartesian product of the word positions. This can be visualized by printing a sentence 

pair and drawing lines between the words. Such a visualization is given in figures 2 and 

3. Both visualizations will be used in the remainder of this thesis. 

 

 
Figure 2 An example of a graphical representation of an alignment on a sentence pair. Words connected 

by a line are considered to be translations of each other. 

 

 
Figure 3 The same alignment as shown in figure 2, represented as a subset of the Cartesian product of 

the word positions. 

 

As is explained in more detail in chapter 2, a word-level alignment is essential for 

training the statistical models. As training data does not contain a word-level alignment 

from the get-go, such an alignment must be created by the system. 

 

Note that there is not necessarily one specific “good” alignment for any given sentence 

pair. When asked to create an alignment, human aligners may well come up with 

different alignments, and it may well be that one alignment is as good as another, 

depending on one’s point of view. A human will create an alignment based on meaning, 

while a machine cannot do this. Clearly, this means that it’s not easy to define what a 

“good” alignment is for a machine. In practice, the algorithm simply tries to come up 



with an alignment that has a low perplexity. Perplexity is a measure of how complex an 

alignment is. To give a simple example where we only consider word mapping, 

alignments in which words are mapped to multiple other words will have a higher 

perplexity than alignments that have few word mappings. The example in figures 2 and 

3 has exactly one word associated with each word in the source language, and therefore 

has a low perplexity. 

Perplexity will be formally introduced in chapter 2. 

 

When creating a word-level alignment, a lot depends on the quality of the corpus itself. 

Things such as spelling errors, missing words or sentences, garbage and mistranslations 

may negatively influence the accuracy of the alignment, which in turn may negatively 

affect the translation models that are trained from the alignment. To minimize these 

negative influences, the corpus can be adjusted prior to the alignment step. Spelling 

errors can be corrected or simply tokenized away. Incomplete sentence pairs can be 

removed, as can garbage such as punctuation or formatting codes. It is tasks such as 

these that are performed by preprocessing. 

 

In addition to eliminating elements that reduce the corpus’ quality, preprocessing can 

analyze the corpus, often on a semantic level, thereby stimulating a certain tendency in 

the creation of the word-level alignment. For example, number tagging can ensure that 

numbers will be aligned to other numbers. For detailed descriptions of preprocessing 

steps that are relevant in this thesis, refer to chapter 3. 

 

Previous research into preprocessing steps includes work by Habash and Sadat [9], who 

investigated the effect of preprocessing steps on SMT performance for the Arabic 

language. Research into preprocessing for automatic evaluation of MT has also been 

done by Leusch et al [10]. 

 

The goals of this work are twofold. 

 

Firstly, it investigates the impact of preprocessing on the performance of SMT training, 

if the preprocessing is applied to both halves of a parallel corpus. The objective is to 

judge whether such preprocessing steps are a useful addition to a typical training 

process. The preprocessing methods examined in this thesis are Stemming, 

Tokenization and Named Entity Recognition. 

 

Secondly, it investigates whether the efficiency of preprocessing in the context of a 

bilingual corpus can be improved by making use of the bilingual corpus and the 

assumption that the two halves are accurate translations of each other. This research 

goal will focus on the Named Entity Recognition preprocessing method. 

 



1.3 Overview of further chapters 
Chapter 2 will give an outline of the SMT theory underlying the experiments. It 

describes the basic SMT theory, which is later used to explain how preprocessing steps 

can influence the performance of an SMT system. 

 

Chapter 3 describes the theoretical foundations of the experiments performed. It 

introduces the techniques involved in the preprocessing steps and explains their working. 

 

Chapter 4 is a description of the experimental setup. It lists the experiments that were 

performed as well as a predicted result, along with a motivation. 

 

Chapter 5 will show the results of the experiments and provide an explanation as to 

what they mean and how they reflect the impact of the preprocessing steps. 

 

Finally, Chapter 6 will conclude this thesis, review the results and give 

recommendations on future research. 

  



 

2 Statistical machine translation 
To understand why changing certain properties of a corpus can have an influence on the 

accuracy of an SMT system, it is important to understand how an SMT system works. 

An SMT system can roughly be considered as a training process and a decoding process. 

Because preprocessing has its effect during the training process, this chapter will focus 

on that and forego a detailed explanation of the decoding process. 

 

2.1 Basic theory 
MT is about finding a sentence e  that is the translation of a given sentence f . The 

identifiers f  and e  originally stood for French and English because those were the 

languages used in various articles written on the subject (Brown et al [6], Knight [11]). 

This thesis deals with Dutch and English, but will adhere to the convention. 

 

SMT considers every sentence e  to be a potential translation of sentence f . Consider 

that translating a sentence from one language to another is not deterministic. While a 

typical sentence can usually only be interpreted in only one way when it comes to its 

meaning, the translation may be phrased in many different ways. In other words, a 

sentence can have multiple translations. For this reason, SMT does not, in principle, 

outright discard any sentence in the foreign language. Any sentence is a candidate. The 

trick is to determine which candidate has the highest probability of being a good 

translation. 

 

For every pair of sentences ),( fe  we define a probability )|( feP that e  is the 

translation of f . We choose the sentence that is the most probable translation of f  by 

taking the sentence e  for which )|( feP  is greatest. This is written as:  

 

)|(
e

Argmax
feP

 
(1) 

 

SMT is essentially an implementation of the noisy channel model, in which the target 

language sentence is distorted by the channel into the source language sentence. The 

target language sentence is “recovered” by reasoning about how it came to be by the 

distortion of the source language sentence. As the first step, we apply Bayes’ Theorem 

to the formula given above. Because )( fP  does not influence the argmax calculation, it 

can be disregarded. The formula then becomes:  

 

)|(
e

Argmax
feP = )|()(

e
Argmax

efPeP  (2) 

 

The highest probability that e  is the translation of f  has been expressed in terms of the 

probability of e  a priori and the probability of f  given e . At first glance this does not 

appear to be beneficial. However, the introduction of factor )(eP  lets us find translations 

that are well-formed. To understand this, remember that )|( feP  is never zero – after 



all, every e  is a potential translation of f . It isn’t zero even if e  is complete gibberish. 

In effect, this means that some of the probability mass is given to translations that are 

ill-formed sentences – a sizable portion of the probability mass, in fact. The probability 

)(eP  compensates for this. It is called the language model probability. The language 

model probability can be thought of as the probability that e  would occur. As gibberish 

is less likely to occur than coherent, well-formed sentences, )(eP  is higher for the latter 

than for the former. The probability )|( efP is called the translation model probability. 

The translation model probability is the probability that the sentence e  has f  as its 

translation. Evidently the product )|()( efPeP  will be greatest if both )(eP  and 

)|( efP  are high – in other words, if f  is a translation of e  and if e  is a good sentence. 

 

It is especially )|( efP  that is of interest for this thesis. As stated in the introduction, 

preprocessing affects the word-level alignment that the system creates on a corpus, and 

the word-level alignment is used to estimate models that are used to calculate )|( efP . 

)(eP  gives statistical information about a single language, and as such is not determined 

from the alignment. Often, language models are trained separately from translation 

models, on different data. 

 

Figure 4 is a graphical representation of the above. This figure shows a basic SMT 

system, including preprocessing for the translation model training. 

 

 
 

Figure 4 A more detailed schematic of an SMT system’s architecture. Note that the language model is 

trained from separate (monolingual) training data. 

 

As will be clear, a good SMT system requires a good language model as well as a good 

translation model. The remainder of this chapter describes how one may obtain such 

models. 

 

2.2 Language modeling 



The language model )(eP  is largely determined by the training corpus that was used to 

train the language model. The more similar the sentence is to the raining data, the higher 

its )(eP  score will be. 

 

An important part of this probability is the “well-formedness” of the sentence. A 

sentence that is grammatically correct is a well-formed sentence, whereas a sentence 

that is a mere collection words that bear no relation to each other is ill-formed.  

While well-formedness is important, it is not all that matters for the language model 

probability. The words used in the sentence also have their impact. If a sentence uses 

many uncommon words, it may be given a lower )(eP  score than a sentence that only 

uses more common words. For example, a sentence that uses the words “mausoleum”, 

“nanotechnology” and “comatose” together may be given a lower )(eP  score than a 

sentence that uses the words “cooking”, “house” and “evening” together. Of course, if 

the training corpus was largely on the subject of people being held comatose in a 

mausoleum by means of nanotechnology, the opposite might be true, as the former 

sentence would be using common words given that training corpus. 

 

The language model can be trained by simple counting. Training requires a training 

corpus, preferably as large a corpus as possible, which contains sentences in the 

language for which the language model is being trained. From this corpus a collection 

of n-grams is constructed. An n-gram is a fragment of a sentence that consists of n 

consecutive words. For example, the sentence “Resumption of the session” contains five 

2-grams: “<s> Resumption”, “Resumption of”, “of the”, “the session” and “session 

<s>”, where <s> and </s> indicate the absence of a word at the start and the end of the 

sentence, respectively.  

The n-grams can then be assigned probabilities as follows:  

 

)...(#

)...(#
)...|(

10

0
10

−
− =

n

n
nn

XX

XX
XXXP  (3) 

 

Where X  is a word in the sentence, nXX ...0 is an n-gram and # is the number of 

occurrences of in the corpus. Any sentence that can be constructed from the n-grams 

that the system has learned can be assigned a )(eP  that is a function of the probabilities 

of its component n-grams. 

 



However, this isn’t sufficient. A sentence that cannot be built out of learned n-grams 

will be given a probability of zero, which means the system will not be able to generate 

those sentences. As training data is finite and the number of possible sentences is not, it 

will always be possible to construct a sentence that has one or more n-grams that do not 

occur in the training data, no matter how large the training corpus is. Therefore, we 

employ a technique called smoothing, which assigns a nonzero probability to every 

possible n-gram given the words in the training corpus, even those that don’t actually 

occur. This allows the system to generate sentences that contain n-grams that weren’t in 

the training corpus, as long as those n-grams contain known words. There are many 

possible approaches to smoothing, the most simple being the addition of a very small 

value to every n-gram that did not appear in the corpus. 

 

There are other methods of building a language model, though the smoothed n-gram 

method is prevalent. These methods are outside the scope of this thesis. However, it is 

worth pointing out that Eck et al [12] investigated a method that expands on the n-gram 

method by adapting the language model to be more domain specific, thereby achieving 

better results in that domain.  

 

2.3 Translation modeling 
The purpose of the translation model is to indicate for a given sentence pair ),( fe  the 

probability that f  is the translation of e . It assigns a probability to each potential 

translation of the input sentence, and if the model is any good, better translations will 

have higher probabilities. Training models that will yield good probabilities is not easy, 

and in fact a great deal of the research done in the field of SMT is related to translation 

modeling. 

 

The approach used by the SMT translation models is called string rewriting. It is 

described in detail by Brown et al [6]. String rewriting essentially replaces the words in 

a sentence with their translations, then reorders them. While string rewriting cannot 

explicitly map syntactic relationships between words from the source sentence to the 

target sentence, it is possible to approximate such a mapping statistically. The upside to 

this method is that it’s very easy in principle, and it can be learned from available data. 

This means that as long as appropriate training data is available this method applies to 

any language pair. 

 

In string rewriting, there are four parameters that are calculated by the translation model.  

 



The first parameter is the amount of translated words that are associated with every 

source word. This is called the fertility of that word. For example, a word with a fertility 

of 3 will have 3 words associated with it as a translation of that word. The fertility for a 

word is not directly dependent on the other words in the sentence or their fertilities, but 

as the sum of all fertilities must be equal to the amount of words in the target sentence, 

fertilities indirectly influence each other by competing for words when estimating the 

fertility probabilities during model training. 

The part of the translation model that decides on the fertility is called the fertility model. 

This model assigns to each word ie  a fertility iφ  with probability  

 

)|( ii en φ  (4) 

 

Secondly, the translation model decides which translation words are generated for each 

word in the source sentence. This is called the translation probability, not to be 

confused with the translation model probability. More formally, for each word ie  the 

generation model chooses k  foreign words ikτ  with probability  

 

)|( iik et τ  (5) 

With 
ik φ≤≤1  

 

Thirdly, the translation model decides the order in which these translated words are to 

be placed. This part of the translation model is called the distortion model. The 

distortion model chooses for each generated word ikτ  a position ikπ  with probability  

 

),,|( mlid ikπ  (6) 

 

Where l  is the amount of words in the source sentence and m  is the sum of all 

fertilities. 

 

Finally, the translation model causes words to be inserted spuriously. To understand this, 

consider that sometimes, words that appear in a translation may not be directly 

generated from a word in the original sentence. For example, a grammatical helper word 

that exists in one language may have no equivalent in the other language, and will 

therefore not be generated by any of the words in that language. For this reason, all 

sentences are assumed to have a NULL word at the start of the sentence. This NULL 

word can have translations like any other word, which allows words without a 

counterpart in the original sentence to be generated. This is called spurious insertion. 

Every time a word is generated normally in the target sentence, there is a probability 

that a word is generated spuriously. This probability is denoted with  

 

1p  (7) 

 



The probability 
0p  is the probability that spurious generation does not occur, given by 

 

10 1 pp −=  (8) 

 

In the following section we will see how these parameters can be turned into the 

translation model probability )|( efP  that we’re looking for, by means of a word-level 

alignment. 

 

2.4 Alignment 
An actual translation model is trained from a word-level alignment. The parameters 

described in the previous section can be estimated from a word-level alignment. 

  

)|( en φ for a certain e  and φ  can be obtained simply by checking the word-level 

alignment on the entire corpus, counting all the occurrences that e is aligned to exactly 

φ  words in the foreign language, then dividing this count by the amount of probabilities 

n  in the translation model. 

 

n

e
en

#

)|(#
)|(

φ
φ =  (9) 

 

)|( et τ for a certain τ  and e  can be obtained by counting how many words are 

generated by all occurrences of e  in the alignment and then dividing the amount of τ  
by the total count. 

 

)|(#

)|(#
)|(

ex

e
et

τ
τ =  (10) 

 

Where x  means “any word”. 

 

),,|( mlid π  for a certain π , i , l  and m  can be obtained by counting the occurrences of 

),,|( mliπ  and dividing it by the count of all occurrences of ),,|( mlij , with mj ...1= . 

 

),,|(#

),,|(#
),,|(

mlij

mli
mlid

π
π =  (11) 

 



1p  can be obtained by looking at the foreign corpus. This corpus consists of N  words. 

We reason that M  of these N  words were generated spuriously, and that the other 

MN −  words were generated from English words. M can be obtained from the word-

level alignment by counting the occurrences of translation parameter )NULL""|(x . This 

leads to the value for 
1p :  

 

MN

M
p

−
=1  (12) 

 

The above shows that it is vitally important for the word-level alignment to be as 

accurate as possible. The ideal scenario is that every word in a sentence is aligned to a 

word that is a translation of that word, or if there is no translation of that word available 

in the translation sentence, that it not be aligned to another word at all.  

 

In practice, prefabricated word-level alignments do not exist. It falls to the SMT system 

training process to estimate one from the sentence-aligned corpus. Because the trainer 

has no knowledge of the languages involved at all, it must determine which alignment is 

the best one based on patterns that exist in the corpus. For this purpose we employ the 

Expectation Maximization (EM) algorithm (Al-Onaizan et al [13]). 

 

2.5 The Expectation Maximization algorithm 
EM is an iterative process that attempts to find the most probable word-level alignment 

on all sentence pairs in the parallel corpus. It attempts to find patterns in the corpus by 

statistically analyzing the component sentence pairs, and considers alignments that 

conform to these patterns to be better than alignments that don’t. This is why 

preprocessing on the corpus has an effect on the overall translation model quality. By 

modifying the corpus we modify certain patterns, with the intent to direct the EM 

algorithm produce a better alignment. 

 

In creating a word-level alignment on a sentence-aligned corpus, we consider that each 

sentence pair has a number of alignments, not just a single one. Some of these 

alignments we may consider “better” than others. To reflect this, we introduce 

alignment weights. An alignment with a higher weight is considered better than an 

alignment with a lower weight. The sum of the alignment weights for all alignments on 

a sentence pair is equal to 1. There weights will help us estimate the translation model 

parameters by collecting fractional counts over all alignments. The basic method is the 

same as described at the beginning of this section, but we do it for all alignments. 

Furthermore, we multiply the counts by the weight of the alignment that we count the 

parameter from, and then add the fractional counts for a parameter together to get the 

final count. In this manner, we can estimate parameters even if we have more than a 

single alignment on a sentence pair. 

 

  



The question arises where these alignment weights come from. Let us express these 

weights in terms of alignment probabilities. The probability of an alignment on a 

sentence pair ),( fe is the probability that the alignment would occur given that sentence 

pair. We write this probability as 

 
),|( feaP  (13) 

 

Where a  is the alignment. We can use the definition of conditional probability to 

rewrite this probability as 

 

),|( feaP =
),(

),,(

feP

feaP
 (14) 

 

Because e  is statistically independent of both f  and a , we can write 

 

),|( feaP =
)()|(

)()|,(

ePefP

ePefaP
 (15) 

 

After dividing out )(eP  we end up with 

 

),|( feaP =
)|(

)|,(

efP

efaP
 (16) 

 

It is easy to see that taking the sum over a  of all probabilities )|,( efaP is the same as 

)|( efP : 

 

)|( efP = ∑
a

efaP )|,(  (17) 

 

In other words: 

 

),|( feaP =
∑
a

efaP

efaP

)|,(

)|,(
 

(18) 

 

Finally, )|,( efaP is calculated as follows: 
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Where 

e  is the source sentence 

f  is the foreign sentence 

a  is the alignment 

ie  is the source word in position i  

jf  is the foreign word in position j  

l  is the number of words in the source sentence 

m  is the number of words in the foreign sentence 

ja  is the position in the source language that connects to position j  in the foreign 

 language in alignment a  

aje  is the word in the source sentence in position ja  

iφ  is the fertility for the source word in position i  given alignment a  

1p  
is the probability that spurious insertion occurs 

0p  
is the probability that spurious insertion does not occur 

 

Note that, in deducing the formula for ),|( feaP , we introduced a formula for 

calculating )|( feP  (formula 17). Remember that this is the translation model 

probability that we ultimately aim to establish by training the translation models. 

 

In summary, the alignment probability ),|( feaP  can be expressed in all the translation 

model parameters. As we already asserted, these translation model parameters can be 

calculated given the alignment probability. If we have one, we can compute the other. 

Needless to say we start out with neither, which presents a problem. This is often 

referred to the chicken-and-egg problem. We will need a method for bootstrapping the 

training, and Expectation Maximization is exactly that. 

 

EM begins with a set of uniform parameters. Every word in the corpus will be given the 

same fertility, the same translation probabilities and the same distortion probabilities. 

With this set of parameters, alignment probabilities can be computed for every sentence 

pair in the corpus, as described above. From these alignments we can collect fractional 

counts, and with the fractional counts we can compute a new set of parameter estimates. 

This new set of parameters is going to be better than the one we started with, because 

the process takes into account the correlation data in the parallel corpus. For example, if 

a certain word always shows up with a certain other word in the other language, the 

translation parameter for those two words will get a higher count. As a result, the EM 

process will give a higher probability to alignments that connect those words with each 

other. 

 



EM searches for an optimization of numerical data. As EM iterates it will produce 

alignments it considers “better”. In this context, “better” means a lower perplexity. In 

the introduction, perplexity was described as a measure of complexity. With the theory 

described in this section, we are ready for a more formal definition: 

 

N

efP )|(
log
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Remember that )|( efP  can be expressed in terms of )|,( efaP (equation 14). N is the 

amount of words in the corpus. The higher )|( efP  is, the lower the perplexity will be. 

)|( efP  is higher if the parameters that make up )|,( efaP  have higher values. Finally, 

the parameters will have higher values when their fractional counts – over the entire 

corpus – are high. Because simple relationships between words will show up more often 

than complex ones, alignments with such simple relationships will yield higher 

parameter values. 

 

What EM does is find the lowest perplexity it can. Each iteration lowers perplexity. 

However, because perplexity is a measure over a product of the parameters, the EM 

algorithm is only guaranteed to find a local optimum, rather than the global optimum. 

The optimum it finds is partly a function of where it starts searching, or to put it in other 

words, what parameter values it starts with. 

 

There are several EM algorithms imaginable. For example, there could be an EM 

algorithm that simplifies the translation model by ignoring fertility probabilities, 

probabilities for spurious insertion and distortion probabilities. This EM algorithm will 

only optimize perplexity in terms of the translation probability parameter. As there is 

only one factor to optimize, this EM algorithm will be guaranteed to find the global 

optimum for its perplexity. This EM algorithm exists, and it is the EM algorithm used in 

IBM Model 1. 

 

2.6 GIZA++ 
In practice the alignment is generated by a program called GIZA++. GIZA++ is an 

extension of GIZA, which is an implementation of several IBM translation models. In 

addition to the IBM models, GIZA++ also implements Hidden Markov Models 

(HMMs). By request this thesis acknowledges Franz Josef Och and Hermann Ney for 

GIZA++. The theory of their implementation is described in [8]. 

 

GIZA++ produces a word-level alignment on a sentence aligned parallel corpus. 

GIZA++ will produce a one-to-many alignment, in which words in the “target” sentence 

may only be aligned to a single word in the “source” sentence. This is illustrated in 

figure 5. 

 



 
 

 
Figure 5. Two one-to-many alignments, one for Enlish-Dutch and one for Dutch-English. Note that these 

alignments are not optimal. Some errors exist, such as the alignment of “naar” to “be”. 

 

To achieve a many-to-many alignment from GIZA++ it is necessary to produce two 

one-to-many alignments, one for each translation direction, and combine them into a 

single many-to-many alignment. This process is referred to as symmetrization. There 

are two methods of symmetrization used in these experiments: Union and Intersection 

symmetrization. 

 

Union symmetrization assumes that any alignment the two one-to-many alignments do 

not agree on should be included in the many-to-many alignment. Formally: 

 

21 OTMOTMMTM AAA ∪=  (21) 

 

Intersection symmetrization assumes that any alignment the two one-to-many 

alignments do not agree on should be discarded. Words that no longer have any 

alignment after symmetrization are aligned to NULL. Formally: 

 

21 OTMOTMMTM AAA ∩=  (22) 

 

The Union and Intersection many-to-many alignments for the two one-to-many 

alignments given in figure 5 are shown in figure 6. 

 



 
 

 
Figure 6. Two many-to-many alignments created from the one-to-many alignments in figure 5. The upper 

figure is the Union alignment and the lower figure is the Intersection alignment. 

 

2.7 Parameter estimation 
When optimum perplexity has been achieved, the alignment with the highest probability 

is called the Viterbi alignment. The Viterbi alignment found by Model 1 when starting 

off with uniform parameter values may be a very bad alignment. For example, all words 

could be connected to the same translation word. Model 1 has no way of knowing that 

this is not a probable alignment, because it ignores all the parameters that show this 

improbability, such as the fertility parameter. However, the Model 1 Viterbi alignment 

can be used as the starting position for more complex EM algorithms. More complex 

algorithms have more parameters that weigh into the perplexity, and they are not 

guaranteed to find a global optimum. From the most probable alignment given a local 

optimum we can get a new set of parameters. This new set of parameters can then be fed 

back to Model 1, which may find a new Viterbi alignment as a result of its new starting 

parameters. 

 

This last part is an important aspect of translation model training. By using the 

parameters from a training iteration of one model, we can start a new training iteration, 

with that same model or with a different one, which will hopefully yield improved 

parameter values. This process is called parameter estimation. A simple, schematic 

representation of this process is given in figure 7. 

 



 
Figure 7. A schematic representation of the parameter estimation process. The models can each be 

trained a number of times, taking the results from the previous iteration as the starting point for the new 

iteration. When a model estimates parameters that were not estimated by a previous model, it starts the 

first training iteration with uniform values for those parameters. 

 

There is one practical problem with starting the parameter estimation process. Recall 

that ),|( feaP can be expressed in terms of )|,( efaP (see formula 18). In the Model 1 

EM algorithm, the denominator of that formula, ∑
a

efaP )|,( , can be written as 

∑∏
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m

j

ajj eft
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As is implied by this formula, the EM algorithm needs to enumerate over every 

alignment in the corpus. In a corpus of N words in language e  and M  words in 

language f , the amount of alignments is equal to  

 
MN )1( +  (24) 

 

To illustrate, in a single sentence pair with 20 words in each sentence, the amount of 

alignments is 26102.78 ⋅ . For a corpus with 120,000 sentence pairs the amount of 

alignments is astronomical, and enumerating all of them is impractical. Fortunately, we 

can optimize the enumeration process.  

 



As formula 21 sums over a product that contains independent elements, we can factor 

out the elements independent to the product and take the product over the independent 

element of the sum of the factored expression: 
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With this formula, the amount of alignments to be enumerated to get the fractional 

counts for all alignments is equal to 

 

MN •+1  (26) 

 

This formula has a quadratic order of magnitude, whereas formula 22 has an 

exponential order. To illustrate, consider again the single sentence pair with 20 words in 

each sentence. The amount of alignments to enumerate is now only 420. 

 

The above means that we can enumerate all the alignments for IBM Model 1 within 

reasonable time, and therefore find the Viterbi alignment. The same is true for IBM 

Model 2, which is like Model 1, but handles distortion probabilities as well as 

translation probabilities. Unfortunately, this manner of simplification cannot be 

performed for complex models like IBM Model 3, and so we cannot find their Viterbi 

alignment in reasonable time. However, there is a technique called hill climbing that can 

be used to find the (local) optimum for such models. Hill climbing takes for every 

sentence pair a single alignment to start with. A good place to start would be the Model 

2 Viterbi alignment. The model then makes a small change to the alignment, for 

example by moving a connection from one position to another position close by. Then 

the model computes the perplexity for the new alignment. This can be done fairly 

quickly with formula 19. If the new alignment is worse, it is discarded. If it is better, it 

replaces the old alignment. The model repeats this process until no better alignment can 

be found by making a small change. The alignment the model ends up with is 

considered the Viterbi alignment for this model, even though there is no guarantee that 

the alignment is, in fact the best alignment given the current parameter values. From 

this “Viterbi” alignment and a small set of alignments that are “close” to it we can 

collect fractional counts and estimate a new set of parameters. This new set of 

parameters can be used as the starting point for a new training iteration or, if no more 

training is deemed necessary, to calculate the final )|( efP . 

 

There are more models than IBM Models 1, 2, and 3, such as the models presented by 

Och and Ney [7]. However, for the purpose of preprocessing it is not necessary to 

enumerate and explain each of these models. 

 



In summary, this chapter shows that Statistical Machine Translation is about calculating 

the highest probability that a given sentence is the translation of another sentence. This 

is done by analyzing monolingual data to obtain language models and bilingual data to 

obtain translation models. Translation model training is by far the most complex task, 

because it requires a word-level alignment, which has to be estimated from a sentence-

level alignment by analyzing patterns. The EM algorithm is used for this analysis. By 

modifying the patterns we influence the EM algorithm, and by extension the word-level 

alignment and the translation model. 

  



3 Preprocessing 
Preprocessing is literally to process something before it is processed by something else. 

In computer science a preprocessor is a program that processes its input data to produce 

output that is used as input to another program. In the specific context of these 

experiments the output data of the preprocessors serves as the input data for GIZA++. 

This chapter gives an overview of the preprocessing techniques used in the experiments. 

 

3.1 Tokenization and sentence alignment 
Following Webster and Kit [14], tokenization is defined as a type of preprocessing that 

decomposes parts of a given text into more basic units. An example of tokenization on 

English is decomposing the contraction “it’s” into “it is”. 

 

The tokenization employed in these experiments is limited to the removal of 

punctuation and words that do not bear any semantic significance, such as corpus 

markup. 

 

Tokenization on punctuation is a trivial task in itself. However the scripts that are 

included with the Europarl corpus take a slightly more involved approach, making use 

of a list on non-breaking prefixes. These non-breaking prefixes indicate words that do 

not mark the end of a sentence when encountered with a period. The list is used not only 

in tokenization but also for sentence alignment, and later it will be used during Named 

Entity Recognition as well. Europarl includes a list of non-breaking prefixes for English, 

but not for Dutch. 

 

Although a Dutch list is not required to remove punctuation on the corpus, the list can 

also be used during the sentence-alignment of the text. If no suitable list is found for a 

language, the sentence alignment script falls back to English. This can result in a bad 

sentence alignment, which is effectively useless as a base to train statistical translation 

models. 

 

A list of Dutch non-breaking prefixes is shown in Appendix A. 

 

3.2 Stemming 
Stemming is the process of reducing a word to its stem. In linguistics a stem is the part 

of a word that is common to all its inflected variants. This is also called the 

morphological root. The morphological root is the primary lexical unit of a word, which 

carries the most significant aspects of semantic content and cannot be reduced into 

smaller constituents. Any word in natural languages such as Dutch and English can be 

considered to be composed of a stem, optionally inflected by an affix (be it a prefix, a 

suffix or a circumfix). 

 



In the context of Natural Language Processing, a word’s stem is taken to be the first part 

of that word, stripping off any trailing letters that might constitute inflections, 

conjugations or other modifiers to the word. It is important to note that the stem thus 

generated is not necessarily the same as the morphological root of that word. In 

stemming for NLP, it is usually sufficient that related words map to the same stem, even 

if this stem is not in itself a valid root. 

 

Example 8 illustrates the result of stemming on a small selection of words. 

 

consist 

consisted 

consistency 

consistent 

consistently 

consisting 

consists 

consist 

consist 

consist 

consist 

consist 

consist 

consist 

knock 

knocked 

knock 

knock 

knocker 

knockers 

knocker 

knocker 
Example 8. Examples of stemming applied to a few English words and their variations. 

 

The stemming algorithm used in most NLP related tasks is the Porter stemmer, or a 

stemmer derived from the Porter stemmer. The stemmer used in this experiment is no 

exception; the stemmer used is the Porter2 stemmer, which is a slightly improved 

version of the Porter stemmer. The Porter stemming algorithm is described by Porter et 

al [15].  

 

Because stemming directly changes the corpus, it requires a postprocessing step to 

restore the words in the corpus to their original forms once the alignment has been 

computed, as estimating the translation model parameters from a stemmed corpus 

would not result in a very good SMT system. 

 

3.3 Named Entity Recognition using Conditional Random Fields 
Named Entity Recognition (NER) is a subtask of information extraction that seeks to 

locate and classify Named Entities (NEs), which are expressions that refer to the names 

of persons, organizations, locations, expressions of times, quantities, monetary values, 

percentages, etc. 

 

NER has been a topic of research for years on conferences and in workshops, most 

notably the Message Understanding Conference (MUC), the Conference on Natural 

Language Learning (CoNLL) and the Multilingual Entity Tasks (MET). One of the 

methods evaluated on these conferences and workshops is NER by means of 

Conditional Random Fields (CRFs) (Lafferty et al, [16]). 

 



CRFs are conditional probabilistic models not unlike HMMs for labeling or segmenting 

sequential data, such as a plaintext corpus. One of the problems with labeling sequential 

data is that the data often cannot be interpreted as independent units. For example, an 

English sentence is bound by grammatical rules that impose long-range relationships 

between the words in the sentence. This makes enumerating all observation sequences 

intractable, which in turn means that a joint probability distribution over the observation 

and label sequences, as would be the case in an HMM, cannot be calculated in 

reasonable time. On the other hand, making unwarranted independence assumptions 

about the observation sequences is not desirable either. A solution to this problem is to 

define a conditional probability given a particular observation sequence rather than a 

joint probability distribution over two random variables. 

 

Let X  be a random variable that ranges over observable sequences of words, and let Y  

be a random variable that ranges over the corresponding sequences of labels, in this case 

named entity tags. A CRF defines a conditional probability )|( xYP  given a particular 

observed sequence of words x . The model attempts to find the maximal probability 

)|( xyP  for a particular label sequence y . Let ),( EVG =  be an undirected graph such 

that there is a node Vv∈  corresponding to each of the random variables representing an 

element vY  of Y  . If each random variable vY obeys the Markov property with respect 

to G , then ),( XY  is a CRF. The Markov property entails that the model is memoryless, 

meaning each next state in the model depends solely on its previous state. 

 

While in theory G may have any structure, in practice it always takes the form of a 

simple first-order chain. Figure 9 illustrates this. 

 

 
Figure 9. A simple first-order chain CRF architecture. The states at the top are the label sequences 

generated by the model, while the state X at the bottom represents the observed data sequences. The 

states Yn are only dependent on their neighboring states, thereby satisfying the Markov property. 

 



Lafferty et al. [16] define the probability of a particular label sequence y given 

observation sequence x to be a normalized product of potential functions, each of the 

form 
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Where ),,,( 1 ixyyt iij − is a transition feature function of the entire observation sequence 

and the labels at positions i and 1−i in the label sequence, and ),,( ixys ik is a state 

feature function of the label at position i and the observation sequence. jλ  and kµ  are 

parameters that are obtained from the training data. These feature functions take on the 

values of one of a number of real-valued features. Such features are conditions on the 

observation sequence that may or may not be satisfied. For example, a feature ),( ixb  

could be 
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A state feature function for this feature could be 
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Similarly, a transition feature function ),,,( 1 ixyyt iij − is defined on two states and a 

feature.  

 

With such features and feature functions, we can write the probability of a label 

sequence y given an observed sequence x as 
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Where 
)(

1

xZ
is a normalization factor and ),( xyFj  is the sum over all feature functions, 

both state and transition.  



Given this probability we can calculate the maximal probability by maximizing the 

logarithm of the likelihood, given by: 
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Because this function is defined on the probabilities of local label sequences, we can 

ensure we get the general label sequence with the highest probability by maximizing 

this function. It is concave, which ensures convergence to a global maximum. 

 

An NER system that implements CRFs is the Stanford Named Entity Recognizer (Rose 

Finkel et al [17]), which scored 86.86 F-score on the CoNLL2002 shared task and 92.29 

on the CMU Seminar Announcement dataset  (these are the highest overall scores only). 

This system will be used in the CRF NER experiments described in this thesis. 
 

3.4 NER for SMT 
An NE is special from the perspective of SMT in the sense that each NE can only have 

exactly one translation, no more and no less. Though some entities may have more than 

one name, they are typically indicated with only one of the possible names throughout 

the use of the language. For example, In English the Belgian town of Bruges is always 

referred to by that name, though in Dutch the town is invariably referred to by its Dutch 

name, Brugge. We can say that in this specific example, Bruges in English is the correct 

translation of Brugge in Dutch, and that any other translation is wrong. 

 

Linguistically speaking NER is aimed towards finding and classifying exactly those 

words that are indeed NEs, and no others. In tasks such as information retrieval it is 

important to achieve a high precision and recall under those constraints, because of the 

semantic significance of the words. In the context of training an SMT system, however, 

there is a different consideration that comes into play.  

 

NER is not a means for information extraction but for exerting influence over the EM 

algorithm. An NER algorithm that scores very badly, but can be shown to improve the 

quality of the word-level alignment is still an effective algorithm, even if it is 

uninteresting for the NER task itself. In an ideal world a word tagging algorithm would 

be able to recognize which words are translations of each other in all cases. If such an 

algorithm existed there would effectively no longer be a need for the EM algorithm. 

Clearly such an algorithm is not realistic, but by applying NER an attempt is made to 

perform a small portion of this task. 

 



3.5 NER algorithms for bilingual data 
 

Sentence pair based lexical similarity 

This algorithm tags words as NEs by checking for a lexically similar word in the 

translation sentence. For each word it calculates the maximum lexical similarity score 

for that word given all the words in the translation. Lexical similarity is a measure of 

how closely two words resemble each other. The words “Parlement” and “Parliament”, 

for example, are lexically quite similar because they have many letters in common. In 

the experiments, lexical similarity is defined as 
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Where D  is the Levenshtein distance (Navarro, [18]) between the two words and 1N  

and 2N  are the lengths of the words.  

 

The Levenshtein distance is a measure about how different the words are in terms of 

how many elementary operations to one word need to be preformed to obtain the other 

word. An elementary operation is either the substitution of any letter with a different 

letter, the addition of a letter at any position in the word or the removal of any letter in 

the word. 

In equation 30, the Levenshtein distance is normalized by the length of the longer of the 

two words. The reason for this is that the Levenshtein distance only indicates the 

absolute difference between two sequences. For example, the words “European” and 

“Europa” have a Levenshtein distance of 2, because it takes 2 elementary operations to 

obtain one from the other. However, the same can be said for the words “of” and “in”, 

which are clearly not very lexically similar. By normalizing for word length we obtain a 

score that gives an indication of how many letters the two words have in common 

relative to how many are different. An example of this algorithm is shown in example 

10. 

 

English: One of the people assassinated very recently in Sri Lanka was Mr Kumar 

Ponnambalam, who had visited the European Parliament just a few months ago. 

Dutch: Een van de mensen die zeer recent in Sri Lanka is vermoord, is de heer Kumar 

Ponnambalam, die een paar maanden geleden nog een bezoek bracht aan het Europees 

Parlement. 

recently recent 

Sri Sri 

Lanka Lanka 

Kumar Kumar 

Ponnambalam Ponnambalam 

European Europees 

Parliament Parlement 
Example 10. A sentence pair and its NEs, recognized by lexical similarity, given a similarity threshold of 

0.4. 



 

While all NEs in this example have been successfully recognized, note how “recently” 

and “recent” were also recognized as NEs because they are sufficiently similar. This 

shows that judging NEs by lexical similarity is prone to false positives. 

 

Corpus based lexical similarity 

Corpus based lexical similarity is like sentence based lexical similarity, but it attempts 

to avoid some of the problems inherent to the sentence based approach. 

 

To combat false positives, the algorithm imposes two conditions on the word pairs. 

Firstly, a matching word pair must occur at least a certain amount of times in the corpus. 

Singletons are statistically insignificant, and are even likely to decrease the alignment 

accuracy. Secondly, the algorithm calculates an occurrence score for each matching 

word pair. Even if a matching word pair is found, this pair cannot be considered a NE if 

the component words appear unpaired too often in the text. The NER algorithm will not 

consider a matching word pair to be a NE pair if its occurrence score is too low. 

Formally, for every unique word w  and for all sentence pairs ),( ji in the corpus the 

occurrence score for that word is calculated as: 
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Example 11 shows the recognized NEs in the sentence pair from example 10. 

  



Sri Sri 

Lanka Lanka 

Kumar Kumar 

Ponnambalam Ponnambalam 

European Europees 
Example 11. Lexical similarity NER using minimum occurrence and minimum length constraints. 

 

Note that “Parlement” and “Parliament” are now not recognized as NEs. This can be 

remedied by reducing the similarity threshold. 

 

Re-classifying unclassified tags 

Most of the tagging algorithms described here do not classify the NEs, as the 

classification is not immediately relevant to the word level alignment. However, 

classification can help establish a correct alignment. 

 

The re-classification algorithm compares two unclassified tagged corpora to their 

respective untagged versions and classifies the tags according to the lexical similarity 

score of the tagged words only. A tagged word that has a lexically identical counterpart 

in the translation sentence will be marked as <NE_VERBATIM>, a tagged word that is 

not lexically identical yet lexically similar above a given threshold will be marked as 

<NE_SIMILAR> and all tagged words that have no lexically similar counterparts will 

remain unclassified. The expectation is that such a re-classification will lead to a better 

Alignment Error Rate while not reducing the NER performance. 

 

3.6 Uppercase and lowercase 
The sentences in the Europarl corpus are punctuated and capitalized. While punctuation 

is only markup that benefits a human reader, capitalization can be used to analyze the 

text from a MT point of view. For example, capitalization might be used to identify 

named entities, or to facilitate part-of-speech tagging. However, because capitals are 

also used at the beginning of sentences and sentences can begin with practically any 

word, a capitalized corpus is inherently more complex than a corpus with the capitals 

removed. 

 

Capitalization typically is highly language specific. For one thing, it is limited to 

languages that use the alphabet. And even amongst alphabet-based languages there are 

often differences. In English it is customary to capitalize the names of days and months, 

as well as the first person pronoun “I”, while in Dutch this is not the case. In German 

every noun is capitalized. 

 

Because capitals carry information that can be useful for Named Entity Recognition, the 

NER experiments were performed on a corpus with the capitals intact. However, 

because capitals carry no information in the context of stemming – in fact they counter 

the intended effect of stemming – the stemming experiments were performed on a 

lowercase corpus. 



4 Experiments and Evaluation 
Chapters 2 and 3 provided the theoretical background of an SMT system and (some 

types of) preprocessing. This chapter describes the data used for the experiments, how 

the various preprocessing techniques are applied to this data, what the expected effect is 

on the alignment and how the performance is evaluated. 

 

4.1 The Europarl parallel corpus 
The experiments in this thesis were performed on a parallel corpus called Europarl 

(Koehn, [19]). The corpus is extracted from the proceedings of the European Parliament 

from April 1996 to December 2001. Most of the sentences are the sentences spoken by 

the politicians in the Parliament, translated if the speaker was speaking in a language 

other than the language used in the corpus. The translation was created manually by 

teams of freelance translators employed by the European Parliament. The sentences 

cover political debates and procedural conversation between the politicians and the 

president of the Parliament. In addition, the corpus contains descriptive sentences that 

indicate non-verbal action taken by the Parliament at large. 

 

The corpus contains about 20 million words in 743,880 sentences per language. The 

corpus is available in a sentence aligned format.  

 

4.2 Alignment Error Rate 
The effectiveness of a preprocessing step can be expressed as the improvement in the 

alignment that it causes. 

 

To determine how “good” any generated alignment actually is, a point of reference is 

needed. For this purpose, a reference alignment must be created. This reference 

alignment represents the “correct” alignment. The alignment created by the system 

should ideally be identical to this reference alignment. Because the reference alignment 

must be made manually, it is relatively costly to produce. For that reason, only a small 

portion of the corpus is used for the reference alignment. 

 

The accuracy of the generated alignments is the degree in which they differ from the 

reference alignment. This is called the Alignment Error Rate. The Alignment Error Rate 

is the most important evaluation measure used in this thesis. 

 

210 sentences of the first part of the Europarl corpus have been aligned manually in 

many-to-many format. This is the reference that will be used to calculate the Alignment 

Error Rate. 

 



The Alignment Error Rate is a measure of how similar two alignments are to each other. 

The definition of the AER is given by Och and Ney [8]: 
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Where S is the Sure alignment, P is the Possible alignment and A is the generated 

alignment for which the AER is being calculated. A Sure alignment is an alignment that 

is always considered to be correct. A Possible alignment is an alignment that may be 

correct. Possible alignments can be used to resolve differences in opinion between 

multiple human aligners. An example of an alignment that combines Sure and Possible 

alignments is shown in figure 12. 

 

 
Figure 12. A sentence pair that was aligned using Sure and Possible alignments. The black fields are the 

Sure alignment and the grey fields are the Possible alignment. While the Possible alignment may seem to 

be largely in error, it could have been established like this because some human aligners chose to align 

certain sequences to other sequences, where other human aligners did not. 
 

  



The manual alignment used as the reference for the experiments described here only 

includes Sure alignments, no Possible ones, due limited time and resources. This means 

that for the purpose of calculating the Alignment Error Rate in this instance, formula 25 

should be rewritten as 

 

SA

SA
AS

+

∩⋅
−=
2

1);(AER  (35) 

 

Some sentence pairs provide a poor match on the semantic level (and as a result have 

few words that can be aligned). These sentences contain many words that are aligned to 

NULL. The AER score for a standard training on these sentences is likely to be low, but 

the score could increase as a result of preprocessing, because words are properly aligned 

to NULL. 

 

4.3 Precision, recall and F1-score 
Precision and recall are standard evaluation measures used for many NLP related tasks. 

In the context of NER, precision is the portion of the words recognized that are in fact 

NEs. Recall is the portion of NEs in the text that was successfully recognized. The 1F -

score is a measure that combines precision and recall into a single scalar score. 

 

Precision is defined as 

 

A

AM
precision

#

)(# ∧
=

 

(36) 

 

Where M denotes an NE that was manually tagged and A  denotes an NE that was 

automatically tagged. Classification, if present, is ignored.  

 

Recall is defined as 

 

M
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recall

#

)(# ∧
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(37) 

 

The 1F -score is defined as 

 

recallprecision

recallprecision
F

+
⋅⋅

=
2

1

 
(38) 

 
Precision and recall are a good measure to gain insight in the performance of the NER 

algorithms themselves. However, it is important to note that in the context of these 

experiments neither precision nor recall are the most important evaluation measure. The 

AER is the evaluation measure that matters most. 

  



4.4 Basic Experiments 
The following is a list of the preprocessing experiments and the expected effect. The 

experiments in this section are strictly limited to preprocessing steps that apply to 

monolingual data. 

 

Tokenization 
This is a GIZA++ training on the corpus after tokenization for punctuation. No other 

tokenization was applied to the corpus. The AER score for this training is considered 

the baseline. If an AER score is said to improve or worsen, it does so relative to the 

AER for this training. 

 

Stemming 

In this experiment the porter2 stemmer described in section 3.2 was applied to both 

halves of the parallel corpus. The stemmed corpus was then used to train an alignment, 

following which a postprocessing step was performed to restore the corpus to its 

original state. 

 

As stemming reduces the amount of unique words in a corpus, it reduces the complexity 

of the alignment training task, in the sense that the EM algorithm no longer has to 

distinguish between morphological variants of words. This will result in a stronger bias 

towards alignments that align words that were previously morphological variants, which 

in turn reduces the perplexity of the alignment. 

 

Simple NER 

The simple algorithm considers any word that starts with a capital letter an NE, as long 

as it isn’t at the start of a sentence. It judges the latter condition by checking if the word 

is the first in the input, and subsequently by checking for a period at the end of the 

preceding word, excepting those words listed in the list of non-breaking prefixes. 

 

As the name suggests this algorithm is unsophisticated and will likely yield a low 

performance in terms of precision and recall as well as AER improvement. 

 

Conditional Random Field NER 
This is an experiment with a corpus annotated by the CRF NER algorithm. The corpus 

was annotated using the standard classifier for the Stanford CRF NER implementation, 

which uses three tag types: <PERSON>, <ORGANIZATION> and <LOCATION>. 

 

Because the algorithm tags the NEs with three different kinds of tags and does so 

independently on both halves of the parallel corpus, it is very likely that a pair of NEs 

that are meant to be aligned to each other get different classifications. In these cases the 

NEs will not be aligned to each other because the EM algorithm will not favor 

alignments that match up different tags. Therefore it is likely that this kind of NER will 

not yield a large improvement in AER, and may even cause the AER score to worsen. 

  



4.5 Experiments on bilingual data 
These experiments attempt to improve on the performance of the experiments described 

in section 4.4 by using bilingual information. 

 

NER with sentence based lexical similarity 

This experiment uses the lexical similarity algorithm described in section 3.5. Each 

word is in a given sentence pair is examined for lexical similarity with all words in the 

other sentence. If a word pair is found which is lexically similar to a sufficient degree, 

specified by a similarity threshold, that pair is considered an NE pair and will be tagged. 

In addition a minimum word length may be specified. Words that are smaller than the 

minimum specified word length will never be considered as part of an NE pair. The 

minimum word length is a measure to avoid false positives among very short words. 

Precision may be increased by increasing this parameter, but recall is likely to suffer as 

a result. 

 

However even by doing so, it is expected that too many non-NE words will be falsely 

tagged. The AER may not improve much, or even worsen as a result. 

 

NER with corpus based lexical similarity 

This is an experiment using the lexical similarity algorithm described in section 3.5, 

which takes into account occurrence information of word pairs in the corpus. The 

algorithm tags words based on a lexical similarity threshold as well as an occurrence 

threshold. The occurrence threshold is a measure to improve precision by disqualifying 

suspected false positives. 

 

This algorithm is expected to perform substantially better than the sentence based 

approach in terms of precision. Recall, however, is expected to be roughly the same 

because the lexical similarity algorithm that judges NEs is identical. 

 

Reclassification of unclassified NER 

By reclassifying unclassified NE tags, an attempt is made to ensure that NEs that look 

the same will always be aligned to one another, rather than unrelated NEs that may be 

present in the sentence pair. 

 

Because this algorithm does not tag untagged words, the impact on precision and recall 

is nil. By the same token the alignment generated on the untagged words is unlikely to 

be affected. The only gain to be had is in the alignment among the tagged words. 

Therefore, it is expected that AER will improve, albeit to a modest degree.  



5 Experimental Results 
5.1 Tokenization 
Table 13 shows the result of the tokenization step, in terms of the amount of unique 

words encountered in the corpus and the average amount of unique words on each line. 

 

 Amount of unique words in 

the entire corpus 

Average amount of unique 

words per sentence 

Normal English corpus 109,491 21.33 

Tokenized English corpus 55,397 21.18 

Normal Dutch corpus 168,007 21.46 

Tokenized Dutch corpus 100,713 21.39 
Table 13. Unique word count across the corpus and on average per sentence before and after 

tokenization for punctuation. 

 

This table shows a dramatic decrease in the amount of unique words in the corpus. The 

effect is that the complexity of the alignment task is also reduced, showing a 50% 

reduction in the amount of unique Dutch words and a 40% reduction of unique English 

words. 

 

Table 14 shows the effect the tokenization step had on alignment accuracy. 

 

 Intersection Union 

Normal corpus 38.80 39.74 

Tokenized corpus 30.64 33.29 
Table 14. AER scores in % for a non-tokenized and a tokenized corpus. 

 

Clearly, the reduction of the corpus’ complexity has significantly improved the 

alignment accuracy.  

 

5.2 Named Entity Recognition 
Table 15 shows precision, recall and 1F -scores for the NER tagging experiments. The 

sentence based lexical similarity was judged at 70% similarity or more with a minimum 

word length of 2. The corpus based lexical similarity experiment used the same 

similarity threshold and also enforced an occurrence threshold of 75%. 

  



 Precision Recall 
1F -score 

CRF English 0.77 0.74 0.76 

CRF Dutch 0.73 0.53 0.61 

Simple English 0.72 1.00 0.84 

Simple Dutch 0.67 0.84 0.75 

Sentence based LexSim English 0.32 0.56 0.41 

Sentence based LexSim Dutch 0.34 0.66 0.45 

Corpus based LexSim English 0.66 0.42 0.52 

Corpus based LexSim Dutch 0.73 0.48 0.58 
Table 15. Precision, recall and 

1F -score for the various NER algorithms. 

 

Precision is low in general. In the case of CRF, this is mostly because the algorithm tags 

sequences of words, and considers the entire sequence part of the same NE. In these 

sequences there are often non-NE words which are considered false positives during 

evaluation. An example of this is “the European Parliament”, which is tagged as an 

organization as a whole, including the article “the”. The lexical similarity algorithm 

suffers badly from the similarity between languages. Frequently words that look the 

same but have nothing to do with each other will be tagged as an NE pair, as is the case 

with “near” and “naar”. The corpus-based algorithm eliminates a lot of the false 

positives, but not enough to rival the performance of the CRF algorithm. In addition 

recall considerable suffers compared to the sentence-based approach. 

 

Table 16 shows the AER scores for the different NER algorithms. 

 

 Intersection Union 

Baseline 30.64 33.29 

Simple 42.42 41.37 

CRF 34.24 35.95 

Uniform CRF 35.35 36.19 

Sentence based LexSim 33.12 35.33 

Corpus based LexSim 31.18 33.70 

Reclassified Simple 42.23 41.18 

Reclassified CRF 34.57 36.00 
Table 16. AER scores for the NER experiments. 

 

The best alignment was in fact the baseline alignment that was obtained without the use 

of NER. Only corpus based lexical similarity achieves an AER score that approaches 

the baseline score. Simple AER scores worse than even the non-tokenized corpus. 

 



5.3 Stemming 
The stemming preprocessing step reduced the amount of unique words in the corpus. 

Table 13 shows the total amount of unique words in the English and Dutch corpora, as 

well as the average amount of unique words per sentence. 

 

 Amount of unique words in 

the entire corpus 

Average amount of unique 

words per sentence 

Normal English corpus 55,397 21.18 

Stemmed English corpus 38,920 21.08 

Normal Dutch corpus 100,713 21.39 

Stemmed Dutch corpus 93,219 21.36 
Table 17. Unique word count across the corpus and on average per sentence, before and after stemming. 

 

As is immediately apparent, the amount of unique words in the entire corpus has been 

reduced significantly while the average amount of unique words in the individual 

sentences has not. Because the perplexity of the individual sentence has been mostly 

preserved, the alignment accuracy of the stemmed corpus should not decrease. 

 

This alignment was made after stemming preprocessing was applied as described in 

section 4.3. Table 14 shows the AER scores for the corpus prior to and after stemming. 

 

 Intersection Union 

AER on normal corpus 30.64 33.29 

AER on preprocessed corpus 29.49 31.90 
Table 18. AER scores for stemming preprocessing 

 

 

 

 

 



6 Review and Conclusions 
6.1 Preprocessing effectiveness 
One of the goals of this work was to examine the general effectiveness of different 

kinds of preprocessing on the training process of an SMT system. 

 

Tokenization and stemming are two forms of preprocessing that have considerable 

effect. The reason for this can be found in tables 13 and 17. Because the amount of 

unique words is drastically reduced the EM algorithm has an easier task. This is 

especially true for words that have punctuation affixed, as those words will be 

considered different from words that are not punctuated, even if those words are 

identical otherwise. 

 

With stemming this effect is enhanced because inflected word variants are eliminated. 

Because stemming only removes word variants to a common stem the complexity of the 

corpus decreases. Because the amount of unique words per sentence remains almost the 

same we can conclude that the EM algorithm has no reason to confuse words, while at 

the same time having a better base to judge the alignment probabilities. 

 

Named Entity Recognition did not fare well across the board. It is immediately apparent 

from table 16 that sentence based lexical similarity performs dramatically poorly, with 

both precision and recall being disappointingly low. Corpus based lexical similarity 

performs better, but still well below par. Simple NER tagging, however, outperforms 

even Conditional Random Fields in terms of the 1F -score. 

 

The most noticeable aspect of the results for NER is that none of the NER algorithms 

decreased the AER score, which means every algorithm introduced more errors than it 

solved. This effect can be attributed to a precision problem. As shown in table 15, the 

precision scores for all algorithms are below 80%. The false positives significantly 

distort the EM algorithm’s process, resulting in a worse alignment. 

 

The simple algorithm scores very poorly in terms of AER because words in English and 

in Dutch aren’t capitalized in the same way. In English, many significant words such as 

names are capitalized, while in Dutch they often are not. Therefore, the simple 

algorithm will tag a significant number of words in the English corpus while not tagging 

their corresponding translations in the Dutch corpus. The precision and recall scores for 

the simple algorithm support this observation. This tagging behavior causes the EM 

algorithm to prefer alignments that do NOT align the words in question to their 

translations, which hurts the AER score. This experiment clearly shows that the simple 

algorithm is extremely sensitive to the language on which it is performed. While in 

Dutch the algorithm has low recall and low precision, it is likely to yield a high recall 

by a very low precision on a language like German, which capitalizes all nouns. 

 



In the case of the lexical similarity algorithm the result is highly dependent on the 

language pair on which it is performed. While it is theoretically sound, it is prone to 

incorrectly tagging word pairs that just happen to be lexically similar while not being 

translations of each other. This effect is likely to be strong between language pairs that 

bear similarity to each other, as is the case with Germanic and Romantic languages. 

Arguably it will be less pronounced between lexically different languages, such as 

Germanic languages versus East-European languages. However, because lexical 

similarity is based on the alphabet, it will be useless on languages that do not make use 

of the alphabet, such as Arabic or Asian languages. 

 

6.2 Using bilingual data for preprocessing 
The second goal of this work was to research if the use of bilingual data could improve 

on preprocessing that normally is applied to monolingual data. Given the results, the 

conclusion must be that this approach does not look promising. On its own, a bilingual 

NER tagging algorithm such as lexical similarity is not a substitute for monolingual 

tagging such as CRF. 

 

The use of bilingual data in the context of tokenization and stemming is not helpful. 

Both forms of preprocessing apply to aspects of a language that bear no relationship to 

the same aspects in the other language. In both cases we test for certain syntactic 

properties of the text, which differ between language pairs almost by definition. 

 

The results do show that reclassification by lexical similarity on the uniform CRF 

tagging performs comparable to the original CRF classification. This indicates that 

reclassification by lexical similarity can constitute a gain in AER score relative to an 

unclassified tagging. The AER scores for simple and reclassified simple confirm this. 

This means that given an NER algorithm that focuses on obtaining a high precision 

without regard to classification, the use of bilingual data can improve on such an 

algorithm. 

 

6.3 Future research 
This thesis examined a select number of preprocessing steps, those steps being basic 

stemming, basic tokenization and NER. Further research into the effect of preprocessing 

on SMT performance could expand the borders into other techniques offered by the 

field of NLP. These techniques include: 

• Chunking 

By breaking sentence pairs into multiple smaller sentence pairs, each of which is 

a contained translation, the complexity of the alignment task can be significantly 

reduced. Roughly 70,000 out of the 120,000 sentences in the English corpus are 

longer than 50 words, and about 1,400 sentences are over 100 words, which is 

the maximum amount of words GIZA++ will accept before truncating the 

sentence. A good chunking algorithm is likely to produce considerable gain in 

training times, and possibly alignment quality. 



• Part-of-speech Tagging 

Part-of-speech tagging in itself is unlikely to contribute to SMT training directly, 

as translations typically don’t use the same amount of noun phrases, verbs or 

other types of words, nor do the patterns in which such word classes occur 

generally match. However, Part-of-speech Tagging might be helpful as part of 

another type of preprocessing, such as Named Entity Recognition. 

• Decompounding 

Some languages such as Dutch and Finnish feature compounded words where 

other languages tend to use the compound words separated by spaces. By 

analyzing the compound words it may be possible to either decompounds the 

words into their components, or alternatively arrange for the word-level 

alignment to take compounded words into account. Alignment quality could 

increase as a result, and decompounding a compounded word is likely to reduce 

the complexity of the alignment task as well. 

• Number recognition 

Numbers can be written in a variety of ways, including written-out words, 

numeric characters and Roman numerals. By standardizing the way numbers are 

represented in the corpus it may be possible to improve alignment accuracy. 

• Named Entity Recognition 

Though the experiments in this thesis failed to attain an improvement in 

alignment quality by means of NER, there is merit in further research into this 

type of preprocessing. As the decline in AER scores can be largely attributed to 

low precision, an attempt could be made at a system that attains 100% precision 

at any nonzero recall. 

• Using bilingual data for preprocessing 

The use of bilingual data has not shown promising results in the experiments 

described in this thesis. However, there are many other ways to use bilingual 

data, and future research may produce an approach that produces better results. 

For example one could use cross-reference information between gazetteers in 

NER. In addition it may be worthwhile to research an adaptation of monolingual 

algorithms such as CRF that makes use of bilingual data directly. 
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Appendix A: Dutch list of non-breaking prefixes 
#Anything in this file, followed by a period (and an upper-case word), 

does NOT indicate an end-of-sentence marker. 

#Special cases are included for prefixes that ONLY appear before 0-9 

numbers. 

 

#any single upper case letter  followed by a period is not a sentence 

ender. U can be an exception, but we leave it in. 

#usually upper case letters are initials in a name. 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 

P 

Q 

R 

S 

T 

U 

V 

W 

X 

Y 

Z 

 

#List of titles. These are often followed by upper-case names, but do not 

indicate sentence breaks 

#Source: http://taaladvies.net/taal/advies/tekst/21/ 

LADM 

gen 



VADM 

lgen 

SBN 

genm 

bgen 

KTZ 

kol 

KLTZ 

lkol 

LTZ1 

maj 

LTZ2OC 

kap 

ritm 

LTZ2 

elnt 

LTZ3 

tlnt 

DR 

Dr 

dr 

Drs 

drs 

Prof 

prof 

Prof.dr 

prof.dr 

Dhr 

dhr 

Mevr 

mevr 

kand 

bacc 

ir 

mr 

dr 

dr.h.c 

ds 

ing 

bc 

BA 

BSc 



MPhil 

LLB 

MA 

MSc 

PhD 

 

 

#misc - odd period-ending items that NEVER indicate breaks (p.m. does 

NOT fall into this category - it sometimes ends a sentence) 

vs 

b.v 

bv 

n.b 

dwz 

mbt 

c.q 

 

#Numbers only. These should only induce breaks when followed by a 

numeric sequence 

# add NUMERIC_ONLY after the word for this function 

#This case is mostly for the english "No." which can either be a sentence 

of its own, or 

#if followed by a number, a non-breaking prefix 

Art #NUMERIC_ONLY# 

Nr 

pp #NUMERIC_ONLY# 


