
Preprocessing on bilingual data for

Statistical Machine Translation

Table of contents
1 INTRODUCTION .. 3

1.1 MACHINE TRANSLATION ... 3

1.2 SMT, ALIGNMENT AND PREPROCESSING .. 5

1.3 OVERVIEW OF FURTHER CHAPTERS .. 8

2 STATISTICAL MACHINE TRANSLATION .. 9

2.1 BASIC THEORY .. 9

2.2 LANGUAGE MODELING ... 10

2.3 TRANSLATION MODELING .. 12

2.4 ALIGNMENT ... 14

2.5 THE EXPECTATION MAXIMIZATION ALGORITHM .. 15

2.6 GIZA++ .. 18

2.7 PARAMETER ESTIMATION .. 20

3 PREPROCESSING ... 24

3.1 TOKENIZATION AND SENTENCE ALIGNMENT .. 24

3.2 STEMMING .. 24

3.3 NAMED ENTITY RECOGNITION USING CONDITIONAL RANDOM FIELDS.. 25

3.4 NER FOR SMT ... 28

3.5 NER ALGORITHMS FOR BILINGUAL DATA .. 29

3.6 UPPERCASE AND LOWERCASE .. 31

4 EXPERIMENTS AND EVALUATION ... 32

4.1 THE EUROPARL PARALLEL CORPUS .. 32

4.2 ALIGNMENT ERROR RATE ... 32

4.3 PRECISION, RECALL AND F1-SCORE .. 34

4.4 BASIC EXPERIMENTS .. 35

4.5 EXPERIMENTS ON BILINGUAL DATA ... 36

5 EXPERIMENTAL RESULTS .. 37

5.1 TOKENIZATION .. 37

5.2 NAMED ENTITY RECOGNITION ... 37

5.3 STEMMING .. 39

6 REVIEW AND CONCLUSIONS ... 40

6.1 PREPROCESSING EFFECTIVENESS ... 40

6.2 USING BILINGUAL DATA FOR PREPROCESSING .. 41

6.3 FUTURE RESEARCH... 41

7 REFERENCES.. 43

APPENDIX A: DUTCH LIST OF NON-BREAKING PREFIXES .. 45

1 Introduction
1.1 Machine translation
Machine Translation (MT) is the translation of text from one human language to another

by a computer. Computers, like all machines, are excellent at taking over repetitive and

mundane tasks from humans. As translating long texts from one language to another

qualifies as such a task, Machine Translation is a potentially very economic way of

translation. Unfortunately natural languages are not very suitable for processing by a

machine. They are ambiguous, illogical and constantly evolving, qualities that are

difficult to handle with a machine. This makes the problem of Natural Language

Processing, and by extension MT, a difficult one to solve.

A theoretical method that can analyze a text in a natural language and decipher its

semantic content can store this semantic content in a language-independent

representation. From this representation, another text with the same semantic content

can be generated in any language for which exists a generation mechanism. Such an MT

architecture would provide high quality translations, and be modular; a new language

could be added to the pool of inter-translatable languages simply by developing an

analysis and generation method for that language.

Unfortunately this method does not exist. Some existing MT attempts to approach it to a

degree, but as long as semantic analysis remains an unsolved problem in the field of

Natural Language Processing there can be no true language independent representation.

Figure 1 shows the Machine Translation Pyramid, which is a schematic representation

of the degree of analysis performed on the input text. The MT method described in

these paragraphs is at the top of the pyramid.

Figure 1. The Machine Translation Pyramid, which is an indication of the level of syntactic and semantic

analysis performed by various MT methods.

Existing MT can be categorized into three fields: Rule-based Machine Translation,

Example-based Machine Translation and Statistical Machine Translation.

Rule-based Machine Translation
Rule-based MT is a method that focuses on analyzing the source language by syntactic

rules. It typically creates an intermediary, symbolic representation from that analysis

that represents the content of the text, and then builds a translation from the

intermediary representation. In the Machine Translation Pyramid (figure 1), this method

is highest up of all the existing MT varieties. It can do syntactic analysis, but since

semantic analysis is still an unsolved problem, there is still a need for language-specific

translation steps.

Rule-based MT is one of the most popular methods for practical use. Well known rule-

based systems include Systran and METEO [1]. Systran was fairly successful, being

utilized for a time by both the United States Air Force and the European Union

Commission. The system was never abandoned, as today it is used in Altavista’s

Babelfish and Google’s language tools. METEO is a system developed for the purpose

of translating weather forecasts from French to English, and was used by Environment

Canada. It continued to serve its purpose until 2001.

The main advantage to this method of translation is that it works fast. A translation can

be produced within seconds, which makes it an attractive method for the casual user.

However, the translations produced by Rule-based MT tend to be of poor quality, as

Rule-based MT deals poorly with ambiguity.

Example-based Machine Translation
Example-based Machine Translation operates on the philosophy that translation can be

done by analogy. An Example-based Machine Translation system breaks down the

source text into phrases, and translates these phrases analogous to the example

translations it was trained with. New sentences are created by substituting parts of a

learned sentence with parts from other learned sentences. This basic principle is

explained in a paper by Nagao [2]. In the Machine Translation Pyramid (figure 1), this

method is lower than Rule-based MT, because there is little in the way of analysis of the

text.

There have been few commercially used example-based translation systems, but the

techniques involved are still being researched. A recent proposal for an Example-based

MT system was submitted by Sasaki and Murata [3].

The advantage of Example-based MT is that it can produce very high-quality

translations, as long as it is applied to very domain-specific texts such as product

manuals. However, once the texts become more diverse, the translation quality drops

quickly.

Statistical Machine Translation

Statistical Machine Translation (SMT) is a type of MT similar to Example-based MT in

the sense that it translates an input text according to what it has learned from training

data. Unlike Example-based MT, SMT aims to be able to translate phrases it has not

specifically seen before.

With advances in statistical modeling the translation quality of SMT systems has risen

above that of alternative methods. A paper by Alshawi and Douglas shows this

difference in performance [4]. However, the drawback of this method of MT is that it

requires massive amounts of processing time and training material to produce a

translation. This makes it unsuitable for time-critical applications. Furthermore, SMT is

not very effective for language pairs that have little training data available.

In the Machine Translation Pyramid (figure 1), SMT is all the way at the bottom. This

reflects the fact that SMT does not syntactically or semantically analyze the input text at

all. It simply uses statistics obtained during model training to find a sequence of words

it deems the best translation.

Two well-known SMT systems include Moses and Pharaoh. In addition there exists a

variety of other systems that focus on components of an SMT system, such as language

model trainers and decoders.

1.2 SMT, Alignment and preprocessing
This thesis will investigate preprocessing methods for SMT, in an attempt to find ways

to increase the performance of this method of MT. Before we can go into the details of

preprocessing we must introduce the workings of SMT.

SMT translates based on information it has trained from example translation data. This

example translation data takes the form of a parallel corpus. Such a corpus consists of

two texts, each of which is the translation of the other. In this work, this corpus is the

Europarl corpus [5], which is freely available for the purposes of SMT research.

By statistically analyzing such parallel corpora, one can estimate the parameters for

whatever statistical models one chooses to employ (see Brown et al [6] and Och and

Ney [7]).

The trained statistical models are then used by the system to calculate the sentence that

has the highest probability of being the translation of the input sentence. The part of the

system that does this is called the decoder. Decoding is a difficult problem that is the

subject of much research, but it falls outside the scope of this thesis. It is important to

note, however, that the performance of the decoder is a function of the quality of the

statistical models. Preprocessing on the training data can help improve model quality

and by extension the performance of an SMT system.

To understand how preprocessing has an effect on the performance of an SMT system,

one must understand the concept of alignment. In the remainder of this text there will be

mention of two types of alignment: the sentence-level alignment and the word-level

alignment.

The sentence-level alignment refers to the way the sentences in the corpus are

sequenced. If a given sentence in one half of the parallel corpus is in the same

sequential position as a sentence in the other half of the corpus, then those sentence are

said to be a sentence pair. If the sentences in a sentence pair are translations of each

other, those sentences are said to be aligned. In order to train an SMT system, one

requires a parallel corpus the sentences of which are properly aligned. In the remainder

of this thesis, we will assume the training data has a correct sentence-level alignment.

Following Och and Ney [8], the word-level alignment is defined as a subset of the

Cartesian product of the word positions. This can be visualized by printing a sentence

pair and drawing lines between the words. Such a visualization is given in figures 2 and

3. Both visualizations will be used in the remainder of this thesis.

Figure 2 An example of a graphical representation of an alignment on a sentence pair. Words connected

by a line are considered to be translations of each other.

Figure 3 The same alignment as shown in figure 2, represented as a subset of the Cartesian product of

the word positions.

As is explained in more detail in chapter 2, a word-level alignment is essential for

training the statistical models. As training data does not contain a word-level alignment

from the get-go, such an alignment must be created by the system.

Note that there is not necessarily one specific “good” alignment for any given sentence

pair. When asked to create an alignment, human aligners may well come up with

different alignments, and it may well be that one alignment is as good as another,

depending on one’s point of view. A human will create an alignment based on meaning,

while a machine cannot do this. Clearly, this means that it’s not easy to define what a

“good” alignment is for a machine. In practice, the algorithm simply tries to come up

with an alignment that has a low perplexity. Perplexity is a measure of how complex an

alignment is. To give a simple example where we only consider word mapping,

alignments in which words are mapped to multiple other words will have a higher

perplexity than alignments that have few word mappings. The example in figures 2 and

3 has exactly one word associated with each word in the source language, and therefore

has a low perplexity.

Perplexity will be formally introduced in chapter 2.

When creating a word-level alignment, a lot depends on the quality of the corpus itself.

Things such as spelling errors, missing words or sentences, garbage and mistranslations

may negatively influence the accuracy of the alignment, which in turn may negatively

affect the translation models that are trained from the alignment. To minimize these

negative influences, the corpus can be adjusted prior to the alignment step. Spelling

errors can be corrected or simply tokenized away. Incomplete sentence pairs can be

removed, as can garbage such as punctuation or formatting codes. It is tasks such as

these that are performed by preprocessing.

In addition to eliminating elements that reduce the corpus’ quality, preprocessing can

analyze the corpus, often on a semantic level, thereby stimulating a certain tendency in

the creation of the word-level alignment. For example, number tagging can ensure that

numbers will be aligned to other numbers. For detailed descriptions of preprocessing

steps that are relevant in this thesis, refer to chapter 3.

Previous research into preprocessing steps includes work by Habash and Sadat [9], who

investigated the effect of preprocessing steps on SMT performance for the Arabic

language. Research into preprocessing for automatic evaluation of MT has also been

done by Leusch et al [10].

The goals of this work are twofold.

Firstly, it investigates the impact of preprocessing on the performance of SMT training,

if the preprocessing is applied to both halves of a parallel corpus. The objective is to

judge whether such preprocessing steps are a useful addition to a typical training

process. The preprocessing methods examined in this thesis are Stemming,

Tokenization and Named Entity Recognition.

Secondly, it investigates whether the efficiency of preprocessing in the context of a

bilingual corpus can be improved by making use of the bilingual corpus and the

assumption that the two halves are accurate translations of each other. This research

goal will focus on the Named Entity Recognition preprocessing method.

1.3 Overview of further chapters
Chapter 2 will give an outline of the SMT theory underlying the experiments. It

describes the basic SMT theory, which is later used to explain how preprocessing steps

can influence the performance of an SMT system.

Chapter 3 describes the theoretical foundations of the experiments performed. It

introduces the techniques involved in the preprocessing steps and explains their working.

Chapter 4 is a description of the experimental setup. It lists the experiments that were

performed as well as a predicted result, along with a motivation.

Chapter 5 will show the results of the experiments and provide an explanation as to

what they mean and how they reflect the impact of the preprocessing steps.

Finally, Chapter 6 will conclude this thesis, review the results and give

recommendations on future research.

2 Statistical machine translation
To understand why changing certain properties of a corpus can have an influence on the

accuracy of an SMT system, it is important to understand how an SMT system works.

An SMT system can roughly be considered as a training process and a decoding process.

Because preprocessing has its effect during the training process, this chapter will focus

on that and forego a detailed explanation of the decoding process.

2.1 Basic theory
MT is about finding a sentence e that is the translation of a given sentence f . The

identifiers f and e originally stood for French and English because those were the

languages used in various articles written on the subject (Brown et al [6], Knight [11]).

This thesis deals with Dutch and English, but will adhere to the convention.

SMT considers every sentence e to be a potential translation of sentence f . Consider

that translating a sentence from one language to another is not deterministic. While a

typical sentence can usually only be interpreted in only one way when it comes to its

meaning, the translation may be phrased in many different ways. In other words, a

sentence can have multiple translations. For this reason, SMT does not, in principle,

outright discard any sentence in the foreign language. Any sentence is a candidate. The

trick is to determine which candidate has the highest probability of being a good

translation.

For every pair of sentences),(fe we define a probability)|(feP that e is the

translation of f . We choose the sentence that is the most probable translation of f by

taking the sentence e for which)|(feP is greatest. This is written as:

)|(
e

Argmax
feP

(1)

SMT is essentially an implementation of the noisy channel model, in which the target

language sentence is distorted by the channel into the source language sentence. The

target language sentence is “recovered” by reasoning about how it came to be by the

distortion of the source language sentence. As the first step, we apply Bayes’ Theorem

to the formula given above. Because)(fP does not influence the argmax calculation, it

can be disregarded. The formula then becomes:

)|(
e

Argmax
feP =)|()(

e
Argmax

efPeP (2)

The highest probability that e is the translation of f has been expressed in terms of the

probability of e a priori and the probability of f given e . At first glance this does not

appear to be beneficial. However, the introduction of factor)(eP lets us find translations

that are well-formed. To understand this, remember that)|(feP is never zero – after

all, every e is a potential translation of f . It isn’t zero even if e is complete gibberish.

In effect, this means that some of the probability mass is given to translations that are

ill-formed sentences – a sizable portion of the probability mass, in fact. The probability

)(eP compensates for this. It is called the language model probability. The language

model probability can be thought of as the probability that e would occur. As gibberish

is less likely to occur than coherent, well-formed sentences,)(eP is higher for the latter

than for the former. The probability)|(efP is called the translation model probability.

The translation model probability is the probability that the sentence e has f as its

translation. Evidently the product)|()(efPeP will be greatest if both)(eP and

)|(efP are high – in other words, if f is a translation of e and if e is a good sentence.

It is especially)|(efP that is of interest for this thesis. As stated in the introduction,

preprocessing affects the word-level alignment that the system creates on a corpus, and

the word-level alignment is used to estimate models that are used to calculate)|(efP .

)(eP gives statistical information about a single language, and as such is not determined

from the alignment. Often, language models are trained separately from translation

models, on different data.

Figure 4 is a graphical representation of the above. This figure shows a basic SMT

system, including preprocessing for the translation model training.

Figure 4 A more detailed schematic of an SMT system’s architecture. Note that the language model is

trained from separate (monolingual) training data.

As will be clear, a good SMT system requires a good language model as well as a good

translation model. The remainder of this chapter describes how one may obtain such

models.

2.2 Language modeling

The language model)(eP is largely determined by the training corpus that was used to

train the language model. The more similar the sentence is to the raining data, the higher

its)(eP score will be.

An important part of this probability is the “well-formedness” of the sentence. A

sentence that is grammatically correct is a well-formed sentence, whereas a sentence

that is a mere collection words that bear no relation to each other is ill-formed.

While well-formedness is important, it is not all that matters for the language model

probability. The words used in the sentence also have their impact. If a sentence uses

many uncommon words, it may be given a lower)(eP score than a sentence that only

uses more common words. For example, a sentence that uses the words “mausoleum”,

“nanotechnology” and “comatose” together may be given a lower)(eP score than a

sentence that uses the words “cooking”, “house” and “evening” together. Of course, if

the training corpus was largely on the subject of people being held comatose in a

mausoleum by means of nanotechnology, the opposite might be true, as the former

sentence would be using common words given that training corpus.

The language model can be trained by simple counting. Training requires a training

corpus, preferably as large a corpus as possible, which contains sentences in the

language for which the language model is being trained. From this corpus a collection

of n-grams is constructed. An n-gram is a fragment of a sentence that consists of n

consecutive words. For example, the sentence “Resumption of the session” contains five

2-grams: “<s> Resumption”, “Resumption of”, “of the”, “the session” and “session

<s>”, where <s> and </s> indicate the absence of a word at the start and the end of the

sentence, respectively.

The n-grams can then be assigned probabilities as follows:

)...(#

)...(#
)...|(

10

0
10

−
− =

n

n
nn

XX

XX
XXXP (3)

Where X is a word in the sentence, nXX ...0 is an n-gram and # is the number of

occurrences of in the corpus. Any sentence that can be constructed from the n-grams

that the system has learned can be assigned a)(eP that is a function of the probabilities

of its component n-grams.

However, this isn’t sufficient. A sentence that cannot be built out of learned n-grams

will be given a probability of zero, which means the system will not be able to generate

those sentences. As training data is finite and the number of possible sentences is not, it

will always be possible to construct a sentence that has one or more n-grams that do not

occur in the training data, no matter how large the training corpus is. Therefore, we

employ a technique called smoothing, which assigns a nonzero probability to every

possible n-gram given the words in the training corpus, even those that don’t actually

occur. This allows the system to generate sentences that contain n-grams that weren’t in

the training corpus, as long as those n-grams contain known words. There are many

possible approaches to smoothing, the most simple being the addition of a very small

value to every n-gram that did not appear in the corpus.

There are other methods of building a language model, though the smoothed n-gram

method is prevalent. These methods are outside the scope of this thesis. However, it is

worth pointing out that Eck et al [12] investigated a method that expands on the n-gram

method by adapting the language model to be more domain specific, thereby achieving

better results in that domain.

2.3 Translation modeling
The purpose of the translation model is to indicate for a given sentence pair),(fe the

probability that f is the translation of e . It assigns a probability to each potential

translation of the input sentence, and if the model is any good, better translations will

have higher probabilities. Training models that will yield good probabilities is not easy,

and in fact a great deal of the research done in the field of SMT is related to translation

modeling.

The approach used by the SMT translation models is called string rewriting. It is

described in detail by Brown et al [6]. String rewriting essentially replaces the words in

a sentence with their translations, then reorders them. While string rewriting cannot

explicitly map syntactic relationships between words from the source sentence to the

target sentence, it is possible to approximate such a mapping statistically. The upside to

this method is that it’s very easy in principle, and it can be learned from available data.

This means that as long as appropriate training data is available this method applies to

any language pair.

In string rewriting, there are four parameters that are calculated by the translation model.

The first parameter is the amount of translated words that are associated with every

source word. This is called the fertility of that word. For example, a word with a fertility

of 3 will have 3 words associated with it as a translation of that word. The fertility for a

word is not directly dependent on the other words in the sentence or their fertilities, but

as the sum of all fertilities must be equal to the amount of words in the target sentence,

fertilities indirectly influence each other by competing for words when estimating the

fertility probabilities during model training.

The part of the translation model that decides on the fertility is called the fertility model.

This model assigns to each word ie a fertility iφ with probability

)|(ii en φ (4)

Secondly, the translation model decides which translation words are generated for each

word in the source sentence. This is called the translation probability, not to be

confused with the translation model probability. More formally, for each word ie the

generation model chooses k foreign words ikτ with probability

)|(iik et τ (5)

With
ik φ≤≤1

Thirdly, the translation model decides the order in which these translated words are to

be placed. This part of the translation model is called the distortion model. The

distortion model chooses for each generated word ikτ a position ikπ with probability

),,|(mlid ikπ (6)

Where l is the amount of words in the source sentence and m is the sum of all

fertilities.

Finally, the translation model causes words to be inserted spuriously. To understand this,

consider that sometimes, words that appear in a translation may not be directly

generated from a word in the original sentence. For example, a grammatical helper word

that exists in one language may have no equivalent in the other language, and will

therefore not be generated by any of the words in that language. For this reason, all

sentences are assumed to have a NULL word at the start of the sentence. This NULL

word can have translations like any other word, which allows words without a

counterpart in the original sentence to be generated. This is called spurious insertion.

Every time a word is generated normally in the target sentence, there is a probability

that a word is generated spuriously. This probability is denoted with

1p (7)

The probability
0p is the probability that spurious generation does not occur, given by

10 1 pp −= (8)

In the following section we will see how these parameters can be turned into the

translation model probability)|(efP that we’re looking for, by means of a word-level

alignment.

2.4 Alignment
An actual translation model is trained from a word-level alignment. The parameters

described in the previous section can be estimated from a word-level alignment.

)|(en φ for a certain e and φ can be obtained simply by checking the word-level

alignment on the entire corpus, counting all the occurrences that e is aligned to exactly

φ words in the foreign language, then dividing this count by the amount of probabilities

n in the translation model.

n

e
en

#

)|(#
)|(

φ
φ = (9)

)|(et τ for a certain τ and e can be obtained by counting how many words are

generated by all occurrences of e in the alignment and then dividing the amount of τ
by the total count.

)|(#

)|(#
)|(

ex

e
et

τ
τ = (10)

Where x means “any word”.

),,|(mlid π for a certain π , i , l and m can be obtained by counting the occurrences of

),,|(mliπ and dividing it by the count of all occurrences of),,|(mlij , with mj ...1= .

),,|(#

),,|(#
),,|(

mlij

mli
mlid

π
π = (11)

1p can be obtained by looking at the foreign corpus. This corpus consists of N words.

We reason that M of these N words were generated spuriously, and that the other

MN − words were generated from English words. M can be obtained from the word-

level alignment by counting the occurrences of translation parameter)NULL""|(x . This

leads to the value for
1p :

MN

M
p

−
=1 (12)

The above shows that it is vitally important for the word-level alignment to be as

accurate as possible. The ideal scenario is that every word in a sentence is aligned to a

word that is a translation of that word, or if there is no translation of that word available

in the translation sentence, that it not be aligned to another word at all.

In practice, prefabricated word-level alignments do not exist. It falls to the SMT system

training process to estimate one from the sentence-aligned corpus. Because the trainer

has no knowledge of the languages involved at all, it must determine which alignment is

the best one based on patterns that exist in the corpus. For this purpose we employ the

Expectation Maximization (EM) algorithm (Al-Onaizan et al [13]).

2.5 The Expectation Maximization algorithm
EM is an iterative process that attempts to find the most probable word-level alignment

on all sentence pairs in the parallel corpus. It attempts to find patterns in the corpus by

statistically analyzing the component sentence pairs, and considers alignments that

conform to these patterns to be better than alignments that don’t. This is why

preprocessing on the corpus has an effect on the overall translation model quality. By

modifying the corpus we modify certain patterns, with the intent to direct the EM

algorithm produce a better alignment.

In creating a word-level alignment on a sentence-aligned corpus, we consider that each

sentence pair has a number of alignments, not just a single one. Some of these

alignments we may consider “better” than others. To reflect this, we introduce

alignment weights. An alignment with a higher weight is considered better than an

alignment with a lower weight. The sum of the alignment weights for all alignments on

a sentence pair is equal to 1. There weights will help us estimate the translation model

parameters by collecting fractional counts over all alignments. The basic method is the

same as described at the beginning of this section, but we do it for all alignments.

Furthermore, we multiply the counts by the weight of the alignment that we count the

parameter from, and then add the fractional counts for a parameter together to get the

final count. In this manner, we can estimate parameters even if we have more than a

single alignment on a sentence pair.

The question arises where these alignment weights come from. Let us express these

weights in terms of alignment probabilities. The probability of an alignment on a

sentence pair),(fe is the probability that the alignment would occur given that sentence

pair. We write this probability as

),|(feaP (13)

Where a is the alignment. We can use the definition of conditional probability to

rewrite this probability as

),|(feaP =
),(

),,(

feP

feaP
 (14)

Because e is statistically independent of both f and a , we can write

),|(feaP =
)()|(

)()|,(

ePefP

ePefaP
 (15)

After dividing out)(eP we end up with

),|(feaP =
)|(

)|,(

efP

efaP
 (16)

It is easy to see that taking the sum over a of all probabilities)|,(efaP is the same as

)|(efP :

)|(efP = ∑
a

efaP)|,((17)

In other words:

),|(feaP =
∑
a

efaP

efaP

)|,(

)|,(

(18)

Finally,)|,(efaP is calculated as follows:

!

1
),,|(

)|()|()|,(

001

11
1

2

0

0

0 00

φ
φ

φ
φ
φ φφ

••

•••••






 −
=

∏∏

∏∏

==

==

−

l

i
i

m

i
j

m

j
ajj

l

i
ii

m

mlajd

eftenpp
m

efaP

(19)

Where

e is the source sentence

f is the foreign sentence

a is the alignment

ie is the source word in position i

jf is the foreign word in position j

l is the number of words in the source sentence

m is the number of words in the foreign sentence

ja is the position in the source language that connects to position j in the foreign

 language in alignment a

aje is the word in the source sentence in position ja

iφ is the fertility for the source word in position i given alignment a

1p
is the probability that spurious insertion occurs

0p
is the probability that spurious insertion does not occur

Note that, in deducing the formula for),|(feaP , we introduced a formula for

calculating)|(feP (formula 17). Remember that this is the translation model

probability that we ultimately aim to establish by training the translation models.

In summary, the alignment probability),|(feaP can be expressed in all the translation

model parameters. As we already asserted, these translation model parameters can be

calculated given the alignment probability. If we have one, we can compute the other.

Needless to say we start out with neither, which presents a problem. This is often

referred to the chicken-and-egg problem. We will need a method for bootstrapping the

training, and Expectation Maximization is exactly that.

EM begins with a set of uniform parameters. Every word in the corpus will be given the

same fertility, the same translation probabilities and the same distortion probabilities.

With this set of parameters, alignment probabilities can be computed for every sentence

pair in the corpus, as described above. From these alignments we can collect fractional

counts, and with the fractional counts we can compute a new set of parameter estimates.

This new set of parameters is going to be better than the one we started with, because

the process takes into account the correlation data in the parallel corpus. For example, if

a certain word always shows up with a certain other word in the other language, the

translation parameter for those two words will get a higher count. As a result, the EM

process will give a higher probability to alignments that connect those words with each

other.

EM searches for an optimization of numerical data. As EM iterates it will produce

alignments it considers “better”. In this context, “better” means a lower perplexity. In

the introduction, perplexity was described as a measure of complexity. With the theory

described in this section, we are ready for a more formal definition:

N

efP)|(
log

2
−

(20)

Remember that)|(efP can be expressed in terms of)|,(efaP (equation 14). N is the

amount of words in the corpus. The higher)|(efP is, the lower the perplexity will be.

)|(efP is higher if the parameters that make up)|,(efaP have higher values. Finally,

the parameters will have higher values when their fractional counts – over the entire

corpus – are high. Because simple relationships between words will show up more often

than complex ones, alignments with such simple relationships will yield higher

parameter values.

What EM does is find the lowest perplexity it can. Each iteration lowers perplexity.

However, because perplexity is a measure over a product of the parameters, the EM

algorithm is only guaranteed to find a local optimum, rather than the global optimum.

The optimum it finds is partly a function of where it starts searching, or to put it in other

words, what parameter values it starts with.

There are several EM algorithms imaginable. For example, there could be an EM

algorithm that simplifies the translation model by ignoring fertility probabilities,

probabilities for spurious insertion and distortion probabilities. This EM algorithm will

only optimize perplexity in terms of the translation probability parameter. As there is

only one factor to optimize, this EM algorithm will be guaranteed to find the global

optimum for its perplexity. This EM algorithm exists, and it is the EM algorithm used in

IBM Model 1.

2.6 GIZA++
In practice the alignment is generated by a program called GIZA++. GIZA++ is an

extension of GIZA, which is an implementation of several IBM translation models. In

addition to the IBM models, GIZA++ also implements Hidden Markov Models

(HMMs). By request this thesis acknowledges Franz Josef Och and Hermann Ney for

GIZA++. The theory of their implementation is described in [8].

GIZA++ produces a word-level alignment on a sentence aligned parallel corpus.

GIZA++ will produce a one-to-many alignment, in which words in the “target” sentence

may only be aligned to a single word in the “source” sentence. This is illustrated in

figure 5.

Figure 5. Two one-to-many alignments, one for Enlish-Dutch and one for Dutch-English. Note that these

alignments are not optimal. Some errors exist, such as the alignment of “naar” to “be”.

To achieve a many-to-many alignment from GIZA++ it is necessary to produce two

one-to-many alignments, one for each translation direction, and combine them into a

single many-to-many alignment. This process is referred to as symmetrization. There

are two methods of symmetrization used in these experiments: Union and Intersection

symmetrization.

Union symmetrization assumes that any alignment the two one-to-many alignments do

not agree on should be included in the many-to-many alignment. Formally:

21 OTMOTMMTM AAA ∪= (21)

Intersection symmetrization assumes that any alignment the two one-to-many

alignments do not agree on should be discarded. Words that no longer have any

alignment after symmetrization are aligned to NULL. Formally:

21 OTMOTMMTM AAA ∩= (22)

The Union and Intersection many-to-many alignments for the two one-to-many

alignments given in figure 5 are shown in figure 6.

Figure 6. Two many-to-many alignments created from the one-to-many alignments in figure 5. The upper

figure is the Union alignment and the lower figure is the Intersection alignment.

2.7 Parameter estimation
When optimum perplexity has been achieved, the alignment with the highest probability

is called the Viterbi alignment. The Viterbi alignment found by Model 1 when starting

off with uniform parameter values may be a very bad alignment. For example, all words

could be connected to the same translation word. Model 1 has no way of knowing that

this is not a probable alignment, because it ignores all the parameters that show this

improbability, such as the fertility parameter. However, the Model 1 Viterbi alignment

can be used as the starting position for more complex EM algorithms. More complex

algorithms have more parameters that weigh into the perplexity, and they are not

guaranteed to find a global optimum. From the most probable alignment given a local

optimum we can get a new set of parameters. This new set of parameters can then be fed

back to Model 1, which may find a new Viterbi alignment as a result of its new starting

parameters.

This last part is an important aspect of translation model training. By using the

parameters from a training iteration of one model, we can start a new training iteration,

with that same model or with a different one, which will hopefully yield improved

parameter values. This process is called parameter estimation. A simple, schematic

representation of this process is given in figure 7.

Figure 7. A schematic representation of the parameter estimation process. The models can each be

trained a number of times, taking the results from the previous iteration as the starting point for the new

iteration. When a model estimates parameters that were not estimated by a previous model, it starts the

first training iteration with uniform values for those parameters.

There is one practical problem with starting the parameter estimation process. Recall

that),|(feaP can be expressed in terms of)|,(efaP (see formula 18). In the Model 1

EM algorithm, the denominator of that formula, ∑
a

efaP)|,(, can be written as

∑∏
=a

m

j

ajj eft
1

)|((23)

As is implied by this formula, the EM algorithm needs to enumerate over every

alignment in the corpus. In a corpus of N words in language e and M words in

language f , the amount of alignments is equal to

MN)1(+ (24)

To illustrate, in a single sentence pair with 20 words in each sentence, the amount of

alignments is 26102.78 ⋅ . For a corpus with 120,000 sentence pairs the amount of

alignments is astronomical, and enumerating all of them is impractical. Fortunately, we

can optimize the enumeration process.

As formula 21 sums over a product that contains independent elements, we can factor

out the elements independent to the product and take the product over the independent

element of the sum of the factored expression:

∏∑
= −

m

j

l

i

ij eft
1 0

)|((25)

With this formula, the amount of alignments to be enumerated to get the fractional

counts for all alignments is equal to

MN •+1 (26)

This formula has a quadratic order of magnitude, whereas formula 22 has an

exponential order. To illustrate, consider again the single sentence pair with 20 words in

each sentence. The amount of alignments to enumerate is now only 420.

The above means that we can enumerate all the alignments for IBM Model 1 within

reasonable time, and therefore find the Viterbi alignment. The same is true for IBM

Model 2, which is like Model 1, but handles distortion probabilities as well as

translation probabilities. Unfortunately, this manner of simplification cannot be

performed for complex models like IBM Model 3, and so we cannot find their Viterbi

alignment in reasonable time. However, there is a technique called hill climbing that can

be used to find the (local) optimum for such models. Hill climbing takes for every

sentence pair a single alignment to start with. A good place to start would be the Model

2 Viterbi alignment. The model then makes a small change to the alignment, for

example by moving a connection from one position to another position close by. Then

the model computes the perplexity for the new alignment. This can be done fairly

quickly with formula 19. If the new alignment is worse, it is discarded. If it is better, it

replaces the old alignment. The model repeats this process until no better alignment can

be found by making a small change. The alignment the model ends up with is

considered the Viterbi alignment for this model, even though there is no guarantee that

the alignment is, in fact the best alignment given the current parameter values. From

this “Viterbi” alignment and a small set of alignments that are “close” to it we can

collect fractional counts and estimate a new set of parameters. This new set of

parameters can be used as the starting point for a new training iteration or, if no more

training is deemed necessary, to calculate the final)|(efP .

There are more models than IBM Models 1, 2, and 3, such as the models presented by

Och and Ney [7]. However, for the purpose of preprocessing it is not necessary to

enumerate and explain each of these models.

In summary, this chapter shows that Statistical Machine Translation is about calculating

the highest probability that a given sentence is the translation of another sentence. This

is done by analyzing monolingual data to obtain language models and bilingual data to

obtain translation models. Translation model training is by far the most complex task,

because it requires a word-level alignment, which has to be estimated from a sentence-

level alignment by analyzing patterns. The EM algorithm is used for this analysis. By

modifying the patterns we influence the EM algorithm, and by extension the word-level

alignment and the translation model.

3 Preprocessing
Preprocessing is literally to process something before it is processed by something else.

In computer science a preprocessor is a program that processes its input data to produce

output that is used as input to another program. In the specific context of these

experiments the output data of the preprocessors serves as the input data for GIZA++.

This chapter gives an overview of the preprocessing techniques used in the experiments.

3.1 Tokenization and sentence alignment
Following Webster and Kit [14], tokenization is defined as a type of preprocessing that

decomposes parts of a given text into more basic units. An example of tokenization on

English is decomposing the contraction “it’s” into “it is”.

The tokenization employed in these experiments is limited to the removal of

punctuation and words that do not bear any semantic significance, such as corpus

markup.

Tokenization on punctuation is a trivial task in itself. However the scripts that are

included with the Europarl corpus take a slightly more involved approach, making use

of a list on non-breaking prefixes. These non-breaking prefixes indicate words that do

not mark the end of a sentence when encountered with a period. The list is used not only

in tokenization but also for sentence alignment, and later it will be used during Named

Entity Recognition as well. Europarl includes a list of non-breaking prefixes for English,

but not for Dutch.

Although a Dutch list is not required to remove punctuation on the corpus, the list can

also be used during the sentence-alignment of the text. If no suitable list is found for a

language, the sentence alignment script falls back to English. This can result in a bad

sentence alignment, which is effectively useless as a base to train statistical translation

models.

A list of Dutch non-breaking prefixes is shown in Appendix A.

3.2 Stemming
Stemming is the process of reducing a word to its stem. In linguistics a stem is the part

of a word that is common to all its inflected variants. This is also called the

morphological root. The morphological root is the primary lexical unit of a word, which

carries the most significant aspects of semantic content and cannot be reduced into

smaller constituents. Any word in natural languages such as Dutch and English can be

considered to be composed of a stem, optionally inflected by an affix (be it a prefix, a

suffix or a circumfix).

In the context of Natural Language Processing, a word’s stem is taken to be the first part

of that word, stripping off any trailing letters that might constitute inflections,

conjugations or other modifiers to the word. It is important to note that the stem thus

generated is not necessarily the same as the morphological root of that word. In

stemming for NLP, it is usually sufficient that related words map to the same stem, even

if this stem is not in itself a valid root.

Example 8 illustrates the result of stemming on a small selection of words.

consist

consisted

consistency

consistent

consistently

consisting

consists

consist

consist

consist

consist

consist

consist

consist

knock

knocked

knock

knock

knocker

knockers

knocker

knocker
Example 8. Examples of stemming applied to a few English words and their variations.

The stemming algorithm used in most NLP related tasks is the Porter stemmer, or a

stemmer derived from the Porter stemmer. The stemmer used in this experiment is no

exception; the stemmer used is the Porter2 stemmer, which is a slightly improved

version of the Porter stemmer. The Porter stemming algorithm is described by Porter et

al [15].

Because stemming directly changes the corpus, it requires a postprocessing step to

restore the words in the corpus to their original forms once the alignment has been

computed, as estimating the translation model parameters from a stemmed corpus

would not result in a very good SMT system.

3.3 Named Entity Recognition using Conditional Random Fields
Named Entity Recognition (NER) is a subtask of information extraction that seeks to

locate and classify Named Entities (NEs), which are expressions that refer to the names

of persons, organizations, locations, expressions of times, quantities, monetary values,

percentages, etc.

NER has been a topic of research for years on conferences and in workshops, most

notably the Message Understanding Conference (MUC), the Conference on Natural

Language Learning (CoNLL) and the Multilingual Entity Tasks (MET). One of the

methods evaluated on these conferences and workshops is NER by means of

Conditional Random Fields (CRFs) (Lafferty et al, [16]).

CRFs are conditional probabilistic models not unlike HMMs for labeling or segmenting

sequential data, such as a plaintext corpus. One of the problems with labeling sequential

data is that the data often cannot be interpreted as independent units. For example, an

English sentence is bound by grammatical rules that impose long-range relationships

between the words in the sentence. This makes enumerating all observation sequences

intractable, which in turn means that a joint probability distribution over the observation

and label sequences, as would be the case in an HMM, cannot be calculated in

reasonable time. On the other hand, making unwarranted independence assumptions

about the observation sequences is not desirable either. A solution to this problem is to

define a conditional probability given a particular observation sequence rather than a

joint probability distribution over two random variables.

Let X be a random variable that ranges over observable sequences of words, and let Y

be a random variable that ranges over the corresponding sequences of labels, in this case

named entity tags. A CRF defines a conditional probability)|(xYP given a particular

observed sequence of words x . The model attempts to find the maximal probability

)|(xyP for a particular label sequence y . Let),(EVG = be an undirected graph such

that there is a node Vv∈ corresponding to each of the random variables representing an

element vY of Y . If each random variable vY obeys the Markov property with respect

to G , then),(XY is a CRF. The Markov property entails that the model is memoryless,

meaning each next state in the model depends solely on its previous state.

While in theory G may have any structure, in practice it always takes the form of a

simple first-order chain. Figure 9 illustrates this.

Figure 9. A simple first-order chain CRF architecture. The states at the top are the label sequences

generated by the model, while the state X at the bottom represents the observed data sequences. The

states Yn are only dependent on their neighboring states, thereby satisfying the Markov property.

Lafferty et al. [16] define the probability of a particular label sequence y given

observation sequence x to be a normalized product of potential functions, each of the

form

)),,(),,,(exp(1 ∑∑ +−
k

ikk

j

iijj ixysixyyt µλ

(27)

Where),,,(1 ixyyt iij − is a transition feature function of the entire observation sequence

and the labels at positions i and 1−i in the label sequence, and),,(ixys ik is a state

feature function of the label at position i and the observation sequence. jλ and kµ are

parameters that are obtained from the training data. These feature functions take on the

values of one of a number of real-valued features. Such features are conditions on the

observation sequence that may or may not be satisfied. For example, a feature),(ixb

could be





=
otherwise 0,

letter capital a with starts position at word theif 1,
),(

i
ixb

(28)

A state feature function for this feature could be



 =

=
otherwise 0,

IN if ,),(
),,(

i

ik

yixb
ixys

(29)

Similarly, a transition feature function),,,(1 ixyyt iij − is defined on two states and a

feature.

With such features and feature functions, we can write the probability of a label

sequence y given an observed sequence x as

)),(exp(
)(

1
),|(∑=

j

jj xyF
xZ

xyP λλ

(30)

Where
)(

1

xZ
is a normalization factor and),(xyFj is the sum over all feature functions,

both state and transition.

Given this probability we can calculate the maximal probability by maximizing the

logarithm of the likelihood, given by:

∑ ∑ 







+=Λ

k j

kk

fjk
xyF

xZ
),(

)(

1
log)()()(

)(
λλ

(31)

Because this function is defined on the probabilities of local label sequences, we can

ensure we get the general label sequence with the highest probability by maximizing

this function. It is concave, which ensures convergence to a global maximum.

An NER system that implements CRFs is the Stanford Named Entity Recognizer (Rose

Finkel et al [17]), which scored 86.86 F-score on the CoNLL2002 shared task and 92.29

on the CMU Seminar Announcement dataset (these are the highest overall scores only).

This system will be used in the CRF NER experiments described in this thesis.

3.4 NER for SMT
An NE is special from the perspective of SMT in the sense that each NE can only have

exactly one translation, no more and no less. Though some entities may have more than

one name, they are typically indicated with only one of the possible names throughout

the use of the language. For example, In English the Belgian town of Bruges is always

referred to by that name, though in Dutch the town is invariably referred to by its Dutch

name, Brugge. We can say that in this specific example, Bruges in English is the correct

translation of Brugge in Dutch, and that any other translation is wrong.

Linguistically speaking NER is aimed towards finding and classifying exactly those

words that are indeed NEs, and no others. In tasks such as information retrieval it is

important to achieve a high precision and recall under those constraints, because of the

semantic significance of the words. In the context of training an SMT system, however,

there is a different consideration that comes into play.

NER is not a means for information extraction but for exerting influence over the EM

algorithm. An NER algorithm that scores very badly, but can be shown to improve the

quality of the word-level alignment is still an effective algorithm, even if it is

uninteresting for the NER task itself. In an ideal world a word tagging algorithm would

be able to recognize which words are translations of each other in all cases. If such an

algorithm existed there would effectively no longer be a need for the EM algorithm.

Clearly such an algorithm is not realistic, but by applying NER an attempt is made to

perform a small portion of this task.

3.5 NER algorithms for bilingual data

Sentence pair based lexical similarity

This algorithm tags words as NEs by checking for a lexically similar word in the

translation sentence. For each word it calculates the maximum lexical similarity score

for that word given all the words in the translation. Lexical similarity is a measure of

how closely two words resemble each other. The words “Parlement” and “Parliament”,

for example, are lexically quite similar because they have many letters in common. In

the experiments, lexical similarity is defined as

),max(
1similarity

21 NN

D
−=

(32)

Where D is the Levenshtein distance (Navarro, [18]) between the two words and 1N

and 2N are the lengths of the words.

The Levenshtein distance is a measure about how different the words are in terms of

how many elementary operations to one word need to be preformed to obtain the other

word. An elementary operation is either the substitution of any letter with a different

letter, the addition of a letter at any position in the word or the removal of any letter in

the word.

In equation 30, the Levenshtein distance is normalized by the length of the longer of the

two words. The reason for this is that the Levenshtein distance only indicates the

absolute difference between two sequences. For example, the words “European” and

“Europa” have a Levenshtein distance of 2, because it takes 2 elementary operations to

obtain one from the other. However, the same can be said for the words “of” and “in”,

which are clearly not very lexically similar. By normalizing for word length we obtain a

score that gives an indication of how many letters the two words have in common

relative to how many are different. An example of this algorithm is shown in example

10.

English: One of the people assassinated very recently in Sri Lanka was Mr Kumar

Ponnambalam, who had visited the European Parliament just a few months ago.

Dutch: Een van de mensen die zeer recent in Sri Lanka is vermoord, is de heer Kumar

Ponnambalam, die een paar maanden geleden nog een bezoek bracht aan het Europees

Parlement.

recently recent

Sri Sri

Lanka Lanka

Kumar Kumar

Ponnambalam Ponnambalam

European Europees

Parliament Parlement
Example 10. A sentence pair and its NEs, recognized by lexical similarity, given a similarity threshold of

0.4.

While all NEs in this example have been successfully recognized, note how “recently”

and “recent” were also recognized as NEs because they are sufficiently similar. This

shows that judging NEs by lexical similarity is prone to false positives.

Corpus based lexical similarity

Corpus based lexical similarity is like sentence based lexical similarity, but it attempts

to avoid some of the problems inherent to the sentence based approach.

To combat false positives, the algorithm imposes two conditions on the word pairs.

Firstly, a matching word pair must occur at least a certain amount of times in the corpus.

Singletons are statistically insignificant, and are even likely to decrease the alignment

accuracy. Secondly, the algorithm calculates an occurrence score for each matching

word pair. Even if a matching word pair is found, this pair cannot be considered a NE if

the component words appear unpaired too often in the text. The NER algorithm will not

consider a matching word pair to be a NE pair if its occurrence score is too low.

Formally, for every unique word w and for all sentence pairs),(ji in the corpus the

occurrence score for that word is calculated as:

∑∑

∑
+

•

=

j

j

i

i

ji

ji

i
ww

ww

wscore
),(

),min(2

)(

(33)

Example 11 shows the recognized NEs in the sentence pair from example 10.

Sri Sri

Lanka Lanka

Kumar Kumar

Ponnambalam Ponnambalam

European Europees
Example 11. Lexical similarity NER using minimum occurrence and minimum length constraints.

Note that “Parlement” and “Parliament” are now not recognized as NEs. This can be

remedied by reducing the similarity threshold.

Re-classifying unclassified tags

Most of the tagging algorithms described here do not classify the NEs, as the

classification is not immediately relevant to the word level alignment. However,

classification can help establish a correct alignment.

The re-classification algorithm compares two unclassified tagged corpora to their

respective untagged versions and classifies the tags according to the lexical similarity

score of the tagged words only. A tagged word that has a lexically identical counterpart

in the translation sentence will be marked as <NE_VERBATIM>, a tagged word that is

not lexically identical yet lexically similar above a given threshold will be marked as

<NE_SIMILAR> and all tagged words that have no lexically similar counterparts will

remain unclassified. The expectation is that such a re-classification will lead to a better

Alignment Error Rate while not reducing the NER performance.

3.6 Uppercase and lowercase
The sentences in the Europarl corpus are punctuated and capitalized. While punctuation

is only markup that benefits a human reader, capitalization can be used to analyze the

text from a MT point of view. For example, capitalization might be used to identify

named entities, or to facilitate part-of-speech tagging. However, because capitals are

also used at the beginning of sentences and sentences can begin with practically any

word, a capitalized corpus is inherently more complex than a corpus with the capitals

removed.

Capitalization typically is highly language specific. For one thing, it is limited to

languages that use the alphabet. And even amongst alphabet-based languages there are

often differences. In English it is customary to capitalize the names of days and months,

as well as the first person pronoun “I”, while in Dutch this is not the case. In German

every noun is capitalized.

Because capitals carry information that can be useful for Named Entity Recognition, the

NER experiments were performed on a corpus with the capitals intact. However,

because capitals carry no information in the context of stemming – in fact they counter

the intended effect of stemming – the stemming experiments were performed on a

lowercase corpus.

4 Experiments and Evaluation
Chapters 2 and 3 provided the theoretical background of an SMT system and (some

types of) preprocessing. This chapter describes the data used for the experiments, how

the various preprocessing techniques are applied to this data, what the expected effect is

on the alignment and how the performance is evaluated.

4.1 The Europarl parallel corpus
The experiments in this thesis were performed on a parallel corpus called Europarl

(Koehn, [19]). The corpus is extracted from the proceedings of the European Parliament

from April 1996 to December 2001. Most of the sentences are the sentences spoken by

the politicians in the Parliament, translated if the speaker was speaking in a language

other than the language used in the corpus. The translation was created manually by

teams of freelance translators employed by the European Parliament. The sentences

cover political debates and procedural conversation between the politicians and the

president of the Parliament. In addition, the corpus contains descriptive sentences that

indicate non-verbal action taken by the Parliament at large.

The corpus contains about 20 million words in 743,880 sentences per language. The

corpus is available in a sentence aligned format.

4.2 Alignment Error Rate
The effectiveness of a preprocessing step can be expressed as the improvement in the

alignment that it causes.

To determine how “good” any generated alignment actually is, a point of reference is

needed. For this purpose, a reference alignment must be created. This reference

alignment represents the “correct” alignment. The alignment created by the system

should ideally be identical to this reference alignment. Because the reference alignment

must be made manually, it is relatively costly to produce. For that reason, only a small

portion of the corpus is used for the reference alignment.

The accuracy of the generated alignments is the degree in which they differ from the

reference alignment. This is called the Alignment Error Rate. The Alignment Error Rate

is the most important evaluation measure used in this thesis.

210 sentences of the first part of the Europarl corpus have been aligned manually in

many-to-many format. This is the reference that will be used to calculate the Alignment

Error Rate.

The Alignment Error Rate is a measure of how similar two alignments are to each other.

The definition of the AER is given by Och and Ney [8]:

SA

PASA
APSAER

+

∪+∩
−=

||
1);,((34)

Where S is the Sure alignment, P is the Possible alignment and A is the generated

alignment for which the AER is being calculated. A Sure alignment is an alignment that

is always considered to be correct. A Possible alignment is an alignment that may be

correct. Possible alignments can be used to resolve differences in opinion between

multiple human aligners. An example of an alignment that combines Sure and Possible

alignments is shown in figure 12.

Figure 12. A sentence pair that was aligned using Sure and Possible alignments. The black fields are the

Sure alignment and the grey fields are the Possible alignment. While the Possible alignment may seem to

be largely in error, it could have been established like this because some human aligners chose to align

certain sequences to other sequences, where other human aligners did not.

The manual alignment used as the reference for the experiments described here only

includes Sure alignments, no Possible ones, due limited time and resources. This means

that for the purpose of calculating the Alignment Error Rate in this instance, formula 25

should be rewritten as

SA

SA
AS

+

∩⋅
−=
2

1);(AER (35)

Some sentence pairs provide a poor match on the semantic level (and as a result have

few words that can be aligned). These sentences contain many words that are aligned to

NULL. The AER score for a standard training on these sentences is likely to be low, but

the score could increase as a result of preprocessing, because words are properly aligned

to NULL.

4.3 Precision, recall and F1-score
Precision and recall are standard evaluation measures used for many NLP related tasks.

In the context of NER, precision is the portion of the words recognized that are in fact

NEs. Recall is the portion of NEs in the text that was successfully recognized. The 1F -

score is a measure that combines precision and recall into a single scalar score.

Precision is defined as

A

AM
precision

#

)(# ∧
=

(36)

Where M denotes an NE that was manually tagged and A denotes an NE that was

automatically tagged. Classification, if present, is ignored.

Recall is defined as

M

AM
recall

#

)(# ∧
=

(37)

The 1F -score is defined as

recallprecision

recallprecision
F

+
⋅⋅

=
2

1

(38)

Precision and recall are a good measure to gain insight in the performance of the NER

algorithms themselves. However, it is important to note that in the context of these

experiments neither precision nor recall are the most important evaluation measure. The

AER is the evaluation measure that matters most.

4.4 Basic Experiments
The following is a list of the preprocessing experiments and the expected effect. The

experiments in this section are strictly limited to preprocessing steps that apply to

monolingual data.

Tokenization
This is a GIZA++ training on the corpus after tokenization for punctuation. No other

tokenization was applied to the corpus. The AER score for this training is considered

the baseline. If an AER score is said to improve or worsen, it does so relative to the

AER for this training.

Stemming

In this experiment the porter2 stemmer described in section 3.2 was applied to both

halves of the parallel corpus. The stemmed corpus was then used to train an alignment,

following which a postprocessing step was performed to restore the corpus to its

original state.

As stemming reduces the amount of unique words in a corpus, it reduces the complexity

of the alignment training task, in the sense that the EM algorithm no longer has to

distinguish between morphological variants of words. This will result in a stronger bias

towards alignments that align words that were previously morphological variants, which

in turn reduces the perplexity of the alignment.

Simple NER

The simple algorithm considers any word that starts with a capital letter an NE, as long

as it isn’t at the start of a sentence. It judges the latter condition by checking if the word

is the first in the input, and subsequently by checking for a period at the end of the

preceding word, excepting those words listed in the list of non-breaking prefixes.

As the name suggests this algorithm is unsophisticated and will likely yield a low

performance in terms of precision and recall as well as AER improvement.

Conditional Random Field NER
This is an experiment with a corpus annotated by the CRF NER algorithm. The corpus

was annotated using the standard classifier for the Stanford CRF NER implementation,

which uses three tag types: <PERSON>, <ORGANIZATION> and <LOCATION>.

Because the algorithm tags the NEs with three different kinds of tags and does so

independently on both halves of the parallel corpus, it is very likely that a pair of NEs

that are meant to be aligned to each other get different classifications. In these cases the

NEs will not be aligned to each other because the EM algorithm will not favor

alignments that match up different tags. Therefore it is likely that this kind of NER will

not yield a large improvement in AER, and may even cause the AER score to worsen.

4.5 Experiments on bilingual data
These experiments attempt to improve on the performance of the experiments described

in section 4.4 by using bilingual information.

NER with sentence based lexical similarity

This experiment uses the lexical similarity algorithm described in section 3.5. Each

word is in a given sentence pair is examined for lexical similarity with all words in the

other sentence. If a word pair is found which is lexically similar to a sufficient degree,

specified by a similarity threshold, that pair is considered an NE pair and will be tagged.

In addition a minimum word length may be specified. Words that are smaller than the

minimum specified word length will never be considered as part of an NE pair. The

minimum word length is a measure to avoid false positives among very short words.

Precision may be increased by increasing this parameter, but recall is likely to suffer as

a result.

However even by doing so, it is expected that too many non-NE words will be falsely

tagged. The AER may not improve much, or even worsen as a result.

NER with corpus based lexical similarity

This is an experiment using the lexical similarity algorithm described in section 3.5,

which takes into account occurrence information of word pairs in the corpus. The

algorithm tags words based on a lexical similarity threshold as well as an occurrence

threshold. The occurrence threshold is a measure to improve precision by disqualifying

suspected false positives.

This algorithm is expected to perform substantially better than the sentence based

approach in terms of precision. Recall, however, is expected to be roughly the same

because the lexical similarity algorithm that judges NEs is identical.

Reclassification of unclassified NER

By reclassifying unclassified NE tags, an attempt is made to ensure that NEs that look

the same will always be aligned to one another, rather than unrelated NEs that may be

present in the sentence pair.

Because this algorithm does not tag untagged words, the impact on precision and recall

is nil. By the same token the alignment generated on the untagged words is unlikely to

be affected. The only gain to be had is in the alignment among the tagged words.

Therefore, it is expected that AER will improve, albeit to a modest degree.

5 Experimental Results
5.1 Tokenization
Table 13 shows the result of the tokenization step, in terms of the amount of unique

words encountered in the corpus and the average amount of unique words on each line.

 Amount of unique words in

the entire corpus

Average amount of unique

words per sentence

Normal English corpus 109,491 21.33

Tokenized English corpus 55,397 21.18

Normal Dutch corpus 168,007 21.46

Tokenized Dutch corpus 100,713 21.39
Table 13. Unique word count across the corpus and on average per sentence before and after

tokenization for punctuation.

This table shows a dramatic decrease in the amount of unique words in the corpus. The

effect is that the complexity of the alignment task is also reduced, showing a 50%

reduction in the amount of unique Dutch words and a 40% reduction of unique English

words.

Table 14 shows the effect the tokenization step had on alignment accuracy.

 Intersection Union

Normal corpus 38.80 39.74

Tokenized corpus 30.64 33.29
Table 14. AER scores in % for a non-tokenized and a tokenized corpus.

Clearly, the reduction of the corpus’ complexity has significantly improved the

alignment accuracy.

5.2 Named Entity Recognition
Table 15 shows precision, recall and 1F -scores for the NER tagging experiments. The

sentence based lexical similarity was judged at 70% similarity or more with a minimum

word length of 2. The corpus based lexical similarity experiment used the same

similarity threshold and also enforced an occurrence threshold of 75%.

 Precision Recall
1F -score

CRF English 0.77 0.74 0.76

CRF Dutch 0.73 0.53 0.61

Simple English 0.72 1.00 0.84

Simple Dutch 0.67 0.84 0.75

Sentence based LexSim English 0.32 0.56 0.41

Sentence based LexSim Dutch 0.34 0.66 0.45

Corpus based LexSim English 0.66 0.42 0.52

Corpus based LexSim Dutch 0.73 0.48 0.58
Table 15. Precision, recall and

1F -score for the various NER algorithms.

Precision is low in general. In the case of CRF, this is mostly because the algorithm tags

sequences of words, and considers the entire sequence part of the same NE. In these

sequences there are often non-NE words which are considered false positives during

evaluation. An example of this is “the European Parliament”, which is tagged as an

organization as a whole, including the article “the”. The lexical similarity algorithm

suffers badly from the similarity between languages. Frequently words that look the

same but have nothing to do with each other will be tagged as an NE pair, as is the case

with “near” and “naar”. The corpus-based algorithm eliminates a lot of the false

positives, but not enough to rival the performance of the CRF algorithm. In addition

recall considerable suffers compared to the sentence-based approach.

Table 16 shows the AER scores for the different NER algorithms.

 Intersection Union

Baseline 30.64 33.29

Simple 42.42 41.37

CRF 34.24 35.95

Uniform CRF 35.35 36.19

Sentence based LexSim 33.12 35.33

Corpus based LexSim 31.18 33.70

Reclassified Simple 42.23 41.18

Reclassified CRF 34.57 36.00
Table 16. AER scores for the NER experiments.

The best alignment was in fact the baseline alignment that was obtained without the use

of NER. Only corpus based lexical similarity achieves an AER score that approaches

the baseline score. Simple AER scores worse than even the non-tokenized corpus.

5.3 Stemming
The stemming preprocessing step reduced the amount of unique words in the corpus.

Table 13 shows the total amount of unique words in the English and Dutch corpora, as

well as the average amount of unique words per sentence.

 Amount of unique words in

the entire corpus

Average amount of unique

words per sentence

Normal English corpus 55,397 21.18

Stemmed English corpus 38,920 21.08

Normal Dutch corpus 100,713 21.39

Stemmed Dutch corpus 93,219 21.36
Table 17. Unique word count across the corpus and on average per sentence, before and after stemming.

As is immediately apparent, the amount of unique words in the entire corpus has been

reduced significantly while the average amount of unique words in the individual

sentences has not. Because the perplexity of the individual sentence has been mostly

preserved, the alignment accuracy of the stemmed corpus should not decrease.

This alignment was made after stemming preprocessing was applied as described in

section 4.3. Table 14 shows the AER scores for the corpus prior to and after stemming.

 Intersection Union

AER on normal corpus 30.64 33.29

AER on preprocessed corpus 29.49 31.90
Table 18. AER scores for stemming preprocessing

6 Review and Conclusions
6.1 Preprocessing effectiveness
One of the goals of this work was to examine the general effectiveness of different

kinds of preprocessing on the training process of an SMT system.

Tokenization and stemming are two forms of preprocessing that have considerable

effect. The reason for this can be found in tables 13 and 17. Because the amount of

unique words is drastically reduced the EM algorithm has an easier task. This is

especially true for words that have punctuation affixed, as those words will be

considered different from words that are not punctuated, even if those words are

identical otherwise.

With stemming this effect is enhanced because inflected word variants are eliminated.

Because stemming only removes word variants to a common stem the complexity of the

corpus decreases. Because the amount of unique words per sentence remains almost the

same we can conclude that the EM algorithm has no reason to confuse words, while at

the same time having a better base to judge the alignment probabilities.

Named Entity Recognition did not fare well across the board. It is immediately apparent

from table 16 that sentence based lexical similarity performs dramatically poorly, with

both precision and recall being disappointingly low. Corpus based lexical similarity

performs better, but still well below par. Simple NER tagging, however, outperforms

even Conditional Random Fields in terms of the 1F -score.

The most noticeable aspect of the results for NER is that none of the NER algorithms

decreased the AER score, which means every algorithm introduced more errors than it

solved. This effect can be attributed to a precision problem. As shown in table 15, the

precision scores for all algorithms are below 80%. The false positives significantly

distort the EM algorithm’s process, resulting in a worse alignment.

The simple algorithm scores very poorly in terms of AER because words in English and

in Dutch aren’t capitalized in the same way. In English, many significant words such as

names are capitalized, while in Dutch they often are not. Therefore, the simple

algorithm will tag a significant number of words in the English corpus while not tagging

their corresponding translations in the Dutch corpus. The precision and recall scores for

the simple algorithm support this observation. This tagging behavior causes the EM

algorithm to prefer alignments that do NOT align the words in question to their

translations, which hurts the AER score. This experiment clearly shows that the simple

algorithm is extremely sensitive to the language on which it is performed. While in

Dutch the algorithm has low recall and low precision, it is likely to yield a high recall

by a very low precision on a language like German, which capitalizes all nouns.

In the case of the lexical similarity algorithm the result is highly dependent on the

language pair on which it is performed. While it is theoretically sound, it is prone to

incorrectly tagging word pairs that just happen to be lexically similar while not being

translations of each other. This effect is likely to be strong between language pairs that

bear similarity to each other, as is the case with Germanic and Romantic languages.

Arguably it will be less pronounced between lexically different languages, such as

Germanic languages versus East-European languages. However, because lexical

similarity is based on the alphabet, it will be useless on languages that do not make use

of the alphabet, such as Arabic or Asian languages.

6.2 Using bilingual data for preprocessing
The second goal of this work was to research if the use of bilingual data could improve

on preprocessing that normally is applied to monolingual data. Given the results, the

conclusion must be that this approach does not look promising. On its own, a bilingual

NER tagging algorithm such as lexical similarity is not a substitute for monolingual

tagging such as CRF.

The use of bilingual data in the context of tokenization and stemming is not helpful.

Both forms of preprocessing apply to aspects of a language that bear no relationship to

the same aspects in the other language. In both cases we test for certain syntactic

properties of the text, which differ between language pairs almost by definition.

The results do show that reclassification by lexical similarity on the uniform CRF

tagging performs comparable to the original CRF classification. This indicates that

reclassification by lexical similarity can constitute a gain in AER score relative to an

unclassified tagging. The AER scores for simple and reclassified simple confirm this.

This means that given an NER algorithm that focuses on obtaining a high precision

without regard to classification, the use of bilingual data can improve on such an

algorithm.

6.3 Future research
This thesis examined a select number of preprocessing steps, those steps being basic

stemming, basic tokenization and NER. Further research into the effect of preprocessing

on SMT performance could expand the borders into other techniques offered by the

field of NLP. These techniques include:

• Chunking

By breaking sentence pairs into multiple smaller sentence pairs, each of which is

a contained translation, the complexity of the alignment task can be significantly

reduced. Roughly 70,000 out of the 120,000 sentences in the English corpus are

longer than 50 words, and about 1,400 sentences are over 100 words, which is

the maximum amount of words GIZA++ will accept before truncating the

sentence. A good chunking algorithm is likely to produce considerable gain in

training times, and possibly alignment quality.

• Part-of-speech Tagging

Part-of-speech tagging in itself is unlikely to contribute to SMT training directly,

as translations typically don’t use the same amount of noun phrases, verbs or

other types of words, nor do the patterns in which such word classes occur

generally match. However, Part-of-speech Tagging might be helpful as part of

another type of preprocessing, such as Named Entity Recognition.

• Decompounding

Some languages such as Dutch and Finnish feature compounded words where

other languages tend to use the compound words separated by spaces. By

analyzing the compound words it may be possible to either decompounds the

words into their components, or alternatively arrange for the word-level

alignment to take compounded words into account. Alignment quality could

increase as a result, and decompounding a compounded word is likely to reduce

the complexity of the alignment task as well.

• Number recognition

Numbers can be written in a variety of ways, including written-out words,

numeric characters and Roman numerals. By standardizing the way numbers are

represented in the corpus it may be possible to improve alignment accuracy.

• Named Entity Recognition

Though the experiments in this thesis failed to attain an improvement in

alignment quality by means of NER, there is merit in further research into this

type of preprocessing. As the decline in AER scores can be largely attributed to

low precision, an attempt could be made at a system that attains 100% precision

at any nonzero recall.

• Using bilingual data for preprocessing

The use of bilingual data has not shown promising results in the experiments

described in this thesis. However, there are many other ways to use bilingual

data, and future research may produce an approach that produces better results.

For example one could use cross-reference information between gazetteers in

NER. In addition it may be worthwhile to research an adaptation of monolingual

algorithms such as CRF that makes use of bilingual data directly.

7 References

[1] John Chandioux, METEO, an operational system for the translation of public

weather forecasts, In: FBIS Seminar on Machine Translation, 8-9 March 1976, Rosslyn,

Virginia. American Journal of Computational Linguistics, microfiche 46; pp.27-36

[2] (1984) Makoto Nagao, A framework of a mechanical translation between Japanese

and English by analogy principle, Artificial and human intelligence: edited review

papers presented at the international NATO Symposium, October 1981, Lyons, France;

ed. A. Elithorn and R. Banerji. Amsterdam: North Holland, 1984; pp. 173-180

[3] Miki Sasaki & Toshiki Murata, A pattern-based machine translation system -

Yakushite Net MT engine, International Workshop on Spoken Language Translation:

Evaluation Campaign on Spoken Language Translation [IWSLT 2005], 24-25 October,

2005, Pittsburgh, PA, USA

[4] Hiyan Alshawi & Shona Douglas, Speech translation performance of statistical

dependency transduction and semantic similarity transduction, ACL-2002 workshop

"Speech-to-speech translation",11 July 2002, Philadelphia, USA; pp. 31-38

[5] European Parliament - Plenary debates: Note to the reader,

http://www.europarl.europa.eu/cre/info_en.htm

[6] P. Brown et al, 1993, The Mathematics of Statistical Machine Translation:

Parameter Estimation. Computational Linguistics Volume 19 , Issue 2 (June 1993)

[7] F.J. Och and H. Ney 2000, Improved Statistical Alignment Models. Proceedings of

the 38th Annual Meeting on Association for Computational Linguistics, pages 440-447

[8] F.J. Och and H. Ney 2003, A Systematic Comparison of Various Statistical

Alignment Models. Association for Computational Linguistics, 2003

[9] Habash, N and Sadat, F, Arabic preprocessing schemes for Statistical Machine

Translation, Proceedings of Human Language Technology Conference/North American

Chapter of the Association for Computational Linguistics (HLT/NAACL) 2006. New

York City, New York, USA.

[10] G. Leusch, N. Ueffing, D. Vilar, & H. Ney: Preprocessing and normalization for

automatic evaluation of machine translation. ACL-2005: Workshop on Intrinsic and

Extrinsic Evaluation Measures for Machine Translation and/or Summarization,

University of Michigan, Ann Arbor, 29 June 2005; pp. 17-24.

[11] Kevin Knight, A Statistical MT Tutorial Workbook, JHU summer workshop, April

30, 1999

[12] Matthias Eck, Stephan Vogel, & Alex Waibel, Language model adaptation for

statistical machine translation based on information retrieval, LREC-2004: Fourth

International Conference on Language Resources and Evaluation, Proceedings, Lisbon,

Portugal, 26-28 May 2004; pp.327-330

[13] Y. Al-Onaizan and J. Curin and M. Jahr and K. Knight and J. Lafferty and I. D.

Melamed and F. J. Och and D. Purdy and N. A. Smith and D. Yarowsky, Statistical

Machine Translation, Final Report, {JHU} Workshop, 1999

[14] Jonathan J. Webster & Chunyu Kit. Tokenization as the initial phase in NLP

Proceedings of the 14th conference on Computational linguistics - Volume 4 pp 1106 –

1110, 1992

[15] C.J. van Rijsbergen, S.E. Robertson and M.F. Porter, 1980. New models in

probabilistic information retrieval. London: British Library. (British Library Research

and Development Report, no. 5587).

[16] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic

models for segmenting and labeling sequence data. In International Conference on

Machine Learning, 2001.

[17] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005.

Incorporating Non-local Information into Information Extraction Systems by Gibbs

Sampling. Proceedings of the 43nd Annual Meeting of the Association for

Computational Linguistics (ACL 2005), pp. 363-370.

[18] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing

Surveys, 33(1):31–88, 2001.

[19] P. Koehn, A Parallel Corpus for Statistical Machine Translation, MT Summit

2005

Appendix A: Dutch list of non-breaking prefixes
#Anything in this file, followed by a period (and an upper-case word),

does NOT indicate an end-of-sentence marker.

#Special cases are included for prefixes that ONLY appear before 0-9

numbers.

#any single upper case letter followed by a period is not a sentence

ender. U can be an exception, but we leave it in.

#usually upper case letters are initials in a name.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

#List of titles. These are often followed by upper-case names, but do not

indicate sentence breaks

#Source: http://taaladvies.net/taal/advies/tekst/21/

LADM

gen

VADM

lgen

SBN

genm

bgen

KTZ

kol

KLTZ

lkol

LTZ1

maj

LTZ2OC

kap

ritm

LTZ2

elnt

LTZ3

tlnt

DR

Dr

dr

Drs

drs

Prof

prof

Prof.dr

prof.dr

Dhr

dhr

Mevr

mevr

kand

bacc

ir

mr

dr

dr.h.c

ds

ing

bc

BA

BSc

MPhil

LLB

MA

MSc

PhD

#misc - odd period-ending items that NEVER indicate breaks (p.m. does

NOT fall into this category - it sometimes ends a sentence)

vs

b.v

bv

n.b

dwz

mbt

c.q

#Numbers only. These should only induce breaks when followed by a

numeric sequence

add NUMERIC_ONLY after the word for this function

#This case is mostly for the english "No." which can either be a sentence

of its own, or

#if followed by a number, a non-breaking prefix

Art #NUMERIC_ONLY#

Nr

pp #NUMERIC_ONLY#

