

.NET integration TEAHA
Yoeng Woey Ho

y.w.ho@alumnus.utwente.nl

University of Twente

Dept. of Electrical Engineering, Mathematics and Computer Science
Pervasive Systems (PS)

PB 217, 7500 AE Enschede
The Netherlands

August, 2008

Graduation Committee
ir. J. Scholten

ir. P.G. Jansen

Mr. Antonio Kung

.NET integration TEAHA

iii

Abstract

The European Application Home Alliance (TEAHA) is a global project addressing networked
home control applications, consumer electronics and A/V networked devices. It currently
provides a central gateway that offers Service Discovery (SD) and interconnects different
technologies in a secure way.

 With the advent of Microsoft’s .NET Framework an increasingly large number of devices
are becoming .NET enabled. Devices ranging from portable Smartphone’s, organizers,
tablet PCs to full-blown computers are now including .NET technology. Microsoft’s .NET
offers programming language and OS independency, the latter due to the efforts of the
open-source community. TEAHA’s support for .NET technology must therefore not be
neglected, as it is a valuable addition to the long list of supported technologies.
 In order to compose a design that enables secure interaction between .NET and TEAHA

devices, only communication protocols are used that are supported within both frameworks.
After several protocols have been reviewed (including .NET Remoting, Web Services and
Sockets), the UPnP SD protocol is considered to be the most suitable protocol; UPnP is

supported on both frameworks through the UPnP OSGi bundle and Intel UPnP .NET stack.
 Seeing that regular UPnP does not provide authentication or encryption, the concept of
Security Modules (SMs), and an authenticated version the Diffie-Hellman (DH) key
exchange protocol were introduced to enable secure UPnP communication. The adapted SM

provides several service hooks that are attached and integrated within the UPnP bundle
and UPnP stack. Depending on the security settings the SM intercepts incoming and
outgoing messages and applies cryptographic processing.
 Moreover, if the SM is implemented in hardware, protection against cloning is offered
while resource-restricted devices are relieved from intensive encryption and authentication
processing.

 The resulting design based on the UPnP SD protocol, SM concept and STS Key
Exchange Protocol offers transparent and secure communication with policy enforcement
between .NET and TEAHA devices and service. Furthermore, the design relies on open
internet and non-propriety standards and software, and offers support for both action and
event driven service interaction.
 Seeing that policy enforcement, and conversion of service requests and responses is
entirely handled by the central TEAHA gateway, the design is considered to be limited in

terms of scalability. The increase of the number of connected TEAHA and UPnP devices will
eventually require expanding the resource capabilities of the central TEAHA gateway or by
distributing the service load amongst additional TEAHA gateways.

.NET integration TEAHA

iv

Samenvatting

The European Application Home Alliance (TEAHA) is een Europees project dat tracht om de
onderlinge communicatie tussen netwerkapplicaties, audiovisuele netwerkapparaten en
consumentenelektronica te bevorderen. TEAHA biedt een centrale gateway aan met als
kern, ondersteuning voor Service Discovery (SD) en daarnaast de mogelijkheid om

verschillende technologieën op een beveiligde manier met elkaar te laten communiceren.
 Sinds de introductie van Microsofts .NET-technologie, heeft deze in korte tijd veel
draagvlak en populariteit verkregen. Thans wordt .NET door vele apparaten ondersteund;
reikend van Smartphone’s, organizers, tablet pc’s tot aan de huiscomputer.
 Het .NET-raamwerk biedt een platform aan dat programmeertaal-onafhankelijk is en
de communicatie tussen verscheidene apparaten met behulp van Web Services (WSs) en
.NET Remoting aanzienlijk vereenvoudigt. Dankzij de snelle groei en opkomst van .NET, is

de ondersteuning voor .NET-technologie inmiddels onmisbaar geworden in TEAHA.
 Het ontwerp, welk beveiligde communicatie mogelijk maakt tussen .NET en TEAHA-
apparaten, is enkel gebaseerd op communicatie protocollen die ondersteund worden door

de beide eerdergenoemde raamwerken. Na diverse protocollen met elkaar te hebben
vergeleken (waaronder .NET Remoting, Web Services en Sockets) is het UPnP protocol het
meest geschikte communicatie protocol gebleken; UPnP wordt door beide raamwerken
ondersteund middels de UPnP OSGi bundle en Intel UPnP .NET stack.

 Gezien het feit dat UPnP echter geen ondersteuning biedt voor authenticatie en
encryptie, is er gebruik gemaakt van het Security Module (SM) concept en een
geauthenticeerde versie van het Diffie-Hellman sleutel-uitwisselings protocol (STS) om
beveiligde UPnP communicatie mogelijk te maken.
 Het toe- en aangepaste SM concept biedt enkele service hooks aan die geïntegreerd
worden in de UPnP bundle en UPnP stack. De SM voert, aan de hand van de toegepaste

Security Mode, de vereiste cryptografische transformaties uit op binnenkomende en
uitgaande berichten. Voorts, indien de SM in hardware is geïmplementeerd, zal deze naast
het aanbieden van beveiliging tegen cloning ook resource-restricted apparaten ontlasten
van intensieve encryptie en authenticatie handelingen.
 Het uiteindelijke ontwerp is gebaseerd op het UPnP SD protocol, SM concept en STS
sleutel-uitwisselings protocol om transparante en beveiligde communicatie met policy
enforcement tussen .NET en TEAHA-apparaten en services te faciliteren. Bovendien, maakt

het ontwerp gebruik van open Internet en non-propriety standaarden en software, en
worden action alsook event driven service interactie ondersteund.
 Aangezien policy enforcement en de conversie van service requests en responses
volledig wordt afgehandeld door de centrale TEAHA gateway, wordt het ontwerp
gekenmerkt als minder schaalbaar. De uitbreiding van het aantal aangesloten UPnP en
TEAHA-apparaten zal uiteindelijk een toename van de resource capabilities van de TEAHA
gateway of een toename van het aantal TEAHA gateways vereisen.

.NET integration TEAHA

v

Preface

This report reflects the results of my master’s thesis during my Computer Science studies
at the University of Twente. The research leading to this report was done under
supervision of ir. J. Scholten.
 My gratitude goes to Hans Scholten (University of Twente) for supervising, and

providing me with useful knowledge and his support, ir. P.G. Jansen (University of Twente)
and Mr. Antonio Kung (Trialog, Paris, France) for being members of the graduation
committee. I would also like to thank my family, friends and all whom have given me
advice and support.

Yoeng Woey Ho

Amsterdam, August 2008

.NET integration TEAHA

vii

Contents

1 INTRODUCTION ... 1

1.1 ASSIGNMENT ... 1
1.2 APPROACH .. 1
1.3 STRUCTURE OF THE THESIS ... 2
1.4 DEFINITIONS AND ABBREVIATIONS ... 2

2 REQUIREMENTS ... 5

2.1 .NET BUNDLE REQUIREMENTS .. 5
REQUIREMENT 1: DISCOVERY AND ACCESS OF TEAHA DEVICES AND SERVICES 5
REQUIREMENT 2: DISCOVERY AND ACCESS OF .NET DEVICES AND SERVICES 5
REQUIREMENT 3: .NET COMPACT FRAMEWORK SUPPORT ... 5
REQUIREMENT 4: POLICY ENFORCEMENT .. 5
REQUIREMENT 5: USER-SERVICE INTERACTION .. 6
REQUIREMENT 6: NO PROPRIETARY SOFTWARE ... 6
REQUIREMENT 7: SUPPORTED PROTOCOLS .. 6
REQUIREMENT 8: SCALABILITY ... 6

2.2 PROJECT BOUNDARIES .. 7

3 SERVICE ORIENTED ARCHITECTURE ... 11

 FRAMEWORKS .. 13

3.1 OSGI .. 13
3.1.1 Implementations ... 13
3.1.2 Framework ... 13
3.1.3 Security ... 15
3.1.4 Bundles ... 16
3.1.5 Services ... 16

3.2 .NET FRAMEWORK ... 17
3.2.1 .NET Architecture .. 17
3.2.2 Assemblies ... 19
3.2.3 Metadata ... 19
3.2.4 Namespaces and Class Library .. 19
3.2.5 Security ... 19
3.2.6 Windows Forms .. 19

3.3 .NET COMPACT FRAMEWORK.. 20
3.3.1 .NET CF Architecture ... 20
3.3.2 .NET Comparison .. 20
3.3.3 WCF support .. 23

3.4 ALTERNATIVE .NET FRAMEWORKS .. 24
3.4.1 Mono ... 24
3.4.2 .NET CF Alternatives .. 24

 COMMUNICATION .. 25

3.5 HTTP/HTTPS .. 25

3.6 XML ... 25

3.7 OBJECT DISTRIBUTION ... 25
3.7.1 Remote Procedure Call ... 25
3.7.2 CORBA .. 26
3.7.3 Java RMI .. 26
3.7.4 DCOM .. 26
3.7.5 SOAP ... 26
3.7.6 XML-RPC .. 27

.NET integration TEAHA

viii

3.8 WEB SERVICES ... 28
3.8.1 Web Services Architecture .. 28
3.8.2 WSDL .. 29
3.8.3 Interaction ... 30
3.8.4 Asynchronous Calls ... 31
3.8.5 WS-Eventing .. 32
3.8.6 WS-Policy .. 32
3.8.7 Framework Support ... 32
3.8.8 WSE .. 33

3.9 .NET REMOTING .. 33
3.9.1 Remote object .. 34
3.9.2 DCOM .. 34
3.9.3 .NET CF support .. 34
3.9.4 Java support .. 34

3.10 WCF ... 34
3.10.1 Channels... 35
3.10.2 Performance .. 35

3.11 SOCKETS .. 35
3.11.1 Raw socket ... 35
3.11.2 .NET and Java Sockets.. 35

3.12 COMMUNICATION COMPARISONS .. 36
3.12.1 SOAP and XML-RPC .. 36
3.12.2 Web Services and OSGi Services .. 36
3.12.3 Web Services and .NET Remoting .. 36

 SERVICE DISCOVERY ... 38

3.13 JINI ... 38

3.14 WEB SERVICE DISCOVERY ... 38
3.14.1 UDDI .. 38
3.14.2 WS-Discovery .. 38

3.15 UPNP .. 39
3.15.1 Devices, Services and Control Points .. 40
3.15.2 UPnP Protocol Stack ... 41
3.15.3 Security .. 45
3.15.4 Intel UPnP stack .. 46

 SECURITY .. 47

3.16 SECURITY CONCEPTS ... 47

3.17 DIGITAL SIGNATURES .. 47

3.18 XML SECURITY STANDARDS ... 48

3.19 WEB SERVICES ... 49
3.19.1 Security Measures .. 49
3.19.2 WS-Security .. 49
3.19.3 Web Services and SSL .. 51

3.20 DIFFIE-HELLMAN PROTOCOL ... 52

3.21 STATION-TO-STATION PROTOCOL .. 52

4 DESIGN CONCEPTS ... 55

4.1 DESIGN APPROACH ... 55

4.2 CONCEPTS ... 56
4.2.1 UPnP ... 56
4.2.2 Web Services.. 57
4.2.3 WS + WS-Discovery .. 58
4.2.4 WS + UPnP .. 58
4.2.5 .NET Remoting + UPnP .. 60
4.2.6 Sockets + UPnP .. 61

.NET integration TEAHA

ix

4.3 DESIGN SELECTION ... 62

4.3.1 Reviewing .. 62
4.3.2 Concluding ... 64

5 DESIGN ... 67

5.1 IMPLEMENTING UPNP .. 67

5.2 SECURING UPNP .. 67
5.2.1 Secure SD architecture .. 67
5.2.2 Security Module .. 68
5.2.3 Security modes ... 69
5.2.4 Replay Attacks .. 69

5.3 CENTRALIZED POLICY ENFORCEMENT ... 70

5.4 INTEGRATING STS.. 70

5.5 CONCLUDING .. 76

6 IMPLEMENTATION ... 77

6.1 APPROACH ... 77

6.2 CLASS DIAGRAMS ... 78
6.2.1 Session Management ... 78
6.2.2 Policies .. 79
6.2.3 Crypto ... 80
6.2.4 Secure Storage ... 81
6.2.5 Bridge Controller ... 81

6.3 EXTENDING UPNP MESSAGES ... 82

6.4 CODE STRUCTURE .. 83

6.5 IMPLEMENTATION ... 83
6.5.1 Service Hooks ... 83
6.5.2 Initializing Security Module ... 84
6.5.3 DH .. 84
6.5.4 Certificates ... 85

7 CONCLUSIONS ... 87

8 RECOMMENDATIONS FOR FUTURE WORK .. 89

9 BIBLIOGRAPHY .. 91

10 APPENDIX ... 97

10.1 WS-* SUPPORT IN MICROSOFT DEVELOPER PLATFORM .. 97

10.2 PERFORMANCE COMPARISON MONO/.NET ... 97

10.3 USAGE EXAMPLE INTEL UPNP STACK ... 98

10.4 PSEUDOCODE IMPLEMENTATION ... 99

10.5 UPNP MESSAGES ... 102
10.5.1 Notification ... 102
10.5.2 Discovery .. 102
10.5.3 Subscription .. 103
10.5.4 Event Notification ... 103
10.5.5 Service Request ... 104

10.6 CERTIFICATES ... 104

.NET integration TEAHA

1

1 Introduction

A quiet and relaxing evening at home, watching a recorded movie on TiVo that aired last
night. Unfortunately, you receive an incoming call on your mobile phone. A small window
fades in on the corner of your screen, showing the name and picture of the calling person.
You choose to accept the call using the remote control, while the recording automatically

pauses and the mobile phone streams a live audio and video feed to the TV. After finishing
the call, the TV switches back to the recording and continues playback.
 Not unimaginable in today’s modern world, where technology has taken a ubiquitous
role in daily life. The global expansion of the Internet has indicated the growing need for
worldwide information distribution and connectivity. However, on a more smaller and local
scale, interconnectivity between home appliances, consumer electronics and multimedia
applications is also becoming more popular; allowing personal media and device services

to be accessed and controlled from anywhere within the home environment.
 The European Application Home Alliance (TEAHA) is a global project addressing
networked home control applications, consumer electronics and A/V networked devices.

TEAHA’s objective is to develop an open, secure, interoperable, and seamless global home
platform. TEAHA’s approach is to define a suitable middleware platform that allows the
seamless interworking of a wide variety of appliances found in a home environment. It
currently provides a central gateway that offers Service Discovery (SD) and interconnects

different technologies in a secure way.
 With the advent of Microsoft’s .NET Framework an increasingly large number of devices
are becoming .NET enabled. Devices ranging from portable Smartphone’s, organizers,
tablet PCs to full-blown computers are now including .NET technology. .NET offers
programming language and OS independency, the latter due to open-source community
efforts. TEAHA’s support for .NET technology must therefore not be neglected and is a

valuable addition to the long list of supported technologies.
 The thesis revolves around .NET and TEAHA devices being able to discover and access
each other’s services. SD is an important concept as it covers the automatic detection of
devices and services on a computer Network.
 The design and prototype implementation of a .NET bundle for TEAHA, which enables
interoperability between TEAHA and .NET, will be discussed. After discussing the

requirements and relevant technologies, some design concepts will be introduced. Based

on these design concepts a final design is composed that enables secure discovery and
access between .NET and TEAHA devices and services. Concluding, a prototype is created
that will implement the concepts depicted in the final design.

1.1 Assignment

The project’s main intention is to offer a solution for enabling secure communication
between TEAHA [1] and .NET [2] devices. The development of a .NET bundle, which is a

software component for the Open Services Gateway initiative (OSGi) framework [3], will
provide this functionality.
 The TEAHA project uses the Java OSGi framework as a base for its own framework.
Consequently, to design the .NET bundle, communication essentially needs to be realized
between .NET and Java. Communication methods that may be of help, such as sockets,
Web Services (WSs), and .NET Remoting [4] are discussed in the technology overview.

 As secure communication plays an important role in a distributed environment, the
.NET bundle will also need to provide support for authentication and encryption.

 Additionally, for demonstration purposes, a client application utilizing the .NET bundle
is implemented in .NET Compact Framework (.NET CF); which is a specialized version of
the .NET Framework intended for mobile devices.

1.2 Approach

The .NET bundle enables communication between .NET and other devices connected to a
TEAHA gateway. To develop a .NET bundle for TEAHA, an in-depth knowledge about .NET
Framework and OSGi is required. Research on .NET Framework and OSGi is necessary to
collect information about supported network and communication technologies.

.NET integration TEAHA

2

 Furthermore, requirements and limitations for using certain protocols need to be
examined, in order to provide a base for the design and implementation of a prototype.
 Several related technologies will be discussed in the technology overview. By
examining current related available technologies, one can avoid dealing with problems

which have already been solved. Furthermore examining these technologies offers insight
on how to approach the design and which technologies should be included. After
introducing existing standards and techniques related to this project, some design
concepts will be provided and discussed. Based on these design concepts and examining
the consequences of a certain design, a final design can be composed.

1.3 Structure of the Thesis

This report starts with introducing a set of requirements (chapter 2), which acts as a
guideline for this project. Although, the requirements are stated in the beginning of the
report, they were determined after an extensive research on .NET, OSGi and related
communication technologies as depicted in the technology overview (chapter 3).
 Based on a few of these technologies, several design concepts could be composed

(section 4.2). Further by taking the requirements into account, the most suitable design

concept can be chosen as a solid base for the final design (chapter 5) and eventually be
implemented (chapter 6).
 Lastly, this report provides a final conclusion (chapter 7) and several recommendations
on future work (chapter 8).

1.4 Definitions and abbreviations

This section provides a list of abbreviations that are frequently used throughout this

report.

API Application Programming Interface

ACL Access Control List

AKC Agreement with Key Confirmation

BCL Base Class Library

BSD Berkeley Software Distribution

CA Certificate Authority

CAS Code Access Security

CIL Common Intermediate Language

CLI Common Language Infrastructure

CLR Common Language Runtime

CLS Common Language Specification

COM Component Object Model

CORBA Common Object Request Broker Architecture

CTS Common Type System

DCOM Distributed Common Object Model

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Server

DTD Document Type Definition

GENA General Event Notification Architecture

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

HTTPMU HTTP Multicast over UDP

HTTPU HTTP Unicast over UDP

IDL Interface Description Language

.NET integration TEAHA

3

IP Internet Protocol

JIT Just-In-Time compilation

JVM Java Virtual Machine

KHMAC keyed-Hash Message Authentication Code

.NET CF .NET Compact Framework

OASIS Organization for the Advancement of Structured Information Standards

OS Operating System

OSGi Open Services Gateway initiative

PDU Protocol Data Unit

PKI Public Key Infrastructure

REST Representational State Transfer

RF Radio Frequency

RMI Remote Method Invocation

RPC Remote Procedure Call

SAML Secure Assertion Markup Language

SD Service Discovery

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

SSL Secure Sockets Layer

SSO Single Sign-On

STS Station-to-Station

TCP Transmission Control Protocol

TEAHA The European Application Home Alliance

TLS Transport Layer Security

TTP Trusted Third Party

UDDI Universal Description, Discovery and Integration

UDN User Device Name

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identifier

URL Uniform Resource Locator

USN Unique Service Name

UUID Universally Unique Identifier

XML Extensible Markup Language

W3C World Wide Web Consortium

WCF Windows Communication Foundation

WS Web Service

WS-Discovery Web Services Dynamic Discovery

WSDL Web Services Description Language

WSE Web Services Enhancements

XACML Extensible Access Control Markup Language

.NET integration TEAHA

5

2 Requirements

This chapter discusses the requirement specification in order to structure and guide the
project. The goal of this project is to come up with a feasible design for a .NET bundle for
the THEAHA framework.

2.1 .NET Bundle Requirements

A summary of the requirements is given below, followed by a more detailed description.

1. The design must allow .NET devices to transparently access and discover TEAHA
services and devices.

2. The design must allow TEAHA devices to transparently access and discover .NET

services and devices.

3. Support for .NET devices and services must include .NET Compact Framework.

4. The design must allow enforcement of policies on service access and discovery.

5. The design must support action and event driven user-service interaction.

6. The design must not be based or use proprietary standards and software.

7. The design preferably uses protocols that are well supported by the .NET and
THEAHA framework; natively or by means of external software components.

8. The design must be scalable in order to support expansion of the number of

devices for simultaneously accessing, discovering and offering services.

Requirement 1: Discovery and access of TEAHA devices and services

The design must allow .NET devices to transparently discover and access TEAHA devices

and services. This requirement states that .NET devices must be able to locate and access
TEAHA devices and services, regardless of the underlying technologies that the devices use
to offer their services. .NET devices may for example need to access Bluetooth or ZigBee

TEAHA devices and services.

Requirement 2: Discovery and access of .NET devices and services

The design must allow TEAHA devices to transparently discover and access .NET devices
and services. Similar to the first requirement this requirement states that .NET devices
must be able to offer their services to TEAHA devices, regardless of the underlying
technologies that TEAHA devices are using.

Requirement 3: .NET Compact Framework support

The design must include support for .NET Compact Framework (.NET CF) devices and
services. The .NET CF is targeted for mobile devices and will be discussed in more detail in
section 3.3. The framework is adapted to the resource constrains and special functionality

of handheld devices. Mobile devices are an important device category, as they are very

suitable for offering an all-round mobile interface between users and TEAHA services. For
that reason it is important to include support for .NET CF on TEAHA.

Requirement 4: Policy enforcement

The design must allow the policy enforcement on service access and discovery. Delivering
secure service discovery is one of the important goals of the TEAHA project. The project
provides security using enforcement of policies, which are rules that state under what

conditions a service can be discovered or accessed.

.NET integration TEAHA

6

The requirement for policy enforcement leads to the following detailed requirements:

4.a Checking of user- and service identification, encryption and authentication settings
must be supported.

4.b Regular, encrypted as well as authenticated communication must be supported.

4.c Communication involving .NET and TEAHA devices and services must use special

channels that provide hooks for policy and security enforcement.

Requirement 5: User-service interaction

The design must support action and event driven user-service interaction.
Within the Service Oriented Architecture (SOA)-model, there are entities requesting and
entities providing a service. Generally speaking the entity requesting a service is called
user while the entity providing a service is often referred to as server. Services can be
divided into two types of user-service interaction: event based and action driven.

 Communication initiated by the occurrence of events in the service is called event

based. A user normally subscribes to a service, to receive notifications when a particular
service event occurs. Within the context of the example, provided in the introduction, the
mobile phone provides an event based incoming_call service. When the device registers on
the network, the central gateway subscribes to the incoming_call service. If an incoming call
is received, the mobile phone notifies all incoming_call subscribers. This type of event based
communication plays an important role on Universal Plug and Play (UPnP) networks.
 Communication initiated by the user performing an action is called action driven.

Within the context of the provided example a hidden central gateway provides an action
driven answer_incoming_call service. Upon receiving the incoming call, the person presses
the ok button on the TV-remote to answer the call. The TV-remote (user) will then send a
request to the answer_incoming_call service, which will trigger the sequence of events.
Action driven is the default type of communication within networks like ZigBee and on
frameworks like OSGi.

5.a The design must support event based communication.

5.b The design must support action driven communication.

Requirement 6: No proprietary software

The design must not use or be based on proprietary standards or software in order to

avoid the payment of royalties or licensing problems. Open software with licenses like the
GNU General Public License (GPL), Berkeley Software Distribution (BSD), or Apache license
is thus recommended.

Requirement 7: Supported protocols

Preferably the design uses protocols that are well supported by the .NET and THEAHA
framework. This includes native support or by means of available existing software
components. Current supported protocols may be well developed, suitable and sufficient to

offer communication between .NET and TEAHA devices. It would not be wise to create a
design using on-the-edge unsupported protocols, just for the sake of using a new
technology, unless they offer some distinct benefits.

Requirement 8: Scalability

The design must be scalable in order to support expansion of the number of devices for
simultaneously accessing, discovering and offering services. The used protocols must be
lightweight enough to support mobile and resource-constrained devices. They should

however not restrict complex devices, such as personal computers, in their functionality.
The designed system should also be scalable enough to fully service both small embedded
as well as large complex devices.

.NET integration TEAHA

7

2.2 Project boundaries

Aside from determining what the requirements are, it is also important to state the
boundaries of the project in order to limit the scope of this project.

1. Taking requirement 4 into account, the design will provide security related hooks
that can be used for adding security. Security is an important aspect of the design,
and communication should be authenticated and encrypted if necessary.
Furthermore, these security hooks will also offer a clear separation between
security and basic communication functionality. The actual security and policy
enforcement implementation will however be outside the scope of this project.

2. The final product of this project is a proof of concept, to demonstrate the
possibility of integrating .NET into TEAHA. Therefore it is not necessary to work out
all the minor irrelevant details.

.NET integration TEAHA

9

Technology Overview

.NET integration TEAHA

11

3 Service Oriented Architecture

The concept of Service Oriented Architecture (SOA) is an important aspect of this project.
TEAHA/OSGi is an excellent example of a SOA that revolves around providing secure
dynamic services. Moreover, the .NET framework also offers a SOA approach by including
full support for Web Services (WSs).

SOA is a style of information systems architecture that enables creating applications that
are built by combining interoperable and loosely coupled services. It supports integration
and consolidation activities within complex enterprise systems, but it does not specify or
provide a methodology or framework for defining capabilities or services.

 This style of architecture promotes reuse at the macro service-level, rather than the

conventional micro object-level, and simplifies interconnection and usage of existing IT
legacy assets. The SOA is not tied to a specific technology and may be implemented using
a wide range of technologies.
 The key is independent services with defined interfaces that can be called to perform
their tasks in a standard way, which maximizes the reuse of services. SOA separates the
users from the service implementations, by using interface definitions that hide the

implementation of the language-specific services. As a result, SOA-based systems are
independent of development technologies and services can run on various distributed
platforms and be accessed across networks.

The following guiding principles define the ground rules for development, maintenance,
and usage of the SOA:

 Standards compliancy
 Reuse, granularity, modularity, composable, componentization and interoperability
 Services identification and categorization, provisioning and delivery, monitoring

and tracking

SOA

Application

frontend

Service

repository
Service bus

Contract Interface

Business

logic
Data

Service

Implementation

Figure 1: Service Oriented Architecture

.NET integration TEAHA

12

In addition to the aforementioned guiding principles, SOA services should exhibit the

following service principles [5]:

 Encapsulation
Existing WSs can be consolidated and enclosed into SOA services, in order to be
used under the SOA.

 Loose coupling

Services maintain a relationship that minimizes dependencies and only an
awareness of each other.

 Service Contract
Services conform to a communications agreement, as defined by one or more
service description documents.

 Abstraction

Aside from what is described in the service contract, services hide logic from the
outside world.

 Reusability
Logic is divided into services with the intention of promoting reuse.

 Composability

Form composite services by coordinating and assembling collections of services

 Autonomy
Services have control over the logic they encapsulate.

 Optimization
Services should be optimized as consumers generally consider high-quality
services more preferable to low-quality ones.

 Discoverability

Services are outwardly descriptive in order to be found and accessed via SD.

SOA and Web Service protocols
SOA is often defined as services exposed using the WS architecture. WS standards can be
used to provide interoperability and some protection from lock-in to proprietary software,
however, SOA is not limited to a specific technology and can be implemented using any
service-based technology such as Corba, Jini and Representational State Transfer (REST).

 In sections 3.5-3.11 several communication methods including WSs are depicted, the
latter are aside from .NET Remoting one of the main communication technologies for the
.NET Framework.

Monitoring/Event Management

Process/Orchestration

Services

Data Services/Messaging

Data Abstraction

S

e

c

u

r

i

t

y

G

o

v

e

r

n

a

n

c

e

Data Internet Based

Services

New Services

Figure 2: SOA Meta Model

.NET integration TEAHA

13

Frameworks

This section introduces the two main important frameworks of this report. Seeing that
TEAHA has been based on the OSGi framework specification, the first part will discuss
OSGi and the dynamic services that are provided through software components. These
software components are more commonly referred to as bundles.

 Following, the .NET Framework, its mobile predecessor .NET Compact Framework
(.NET CF) will be introduced; including support for mobile devices in TEAHA is regarded as
a priority. As the .NET CF specifically targets the area of resource-restricted mobile
devices, and primarily consists of a subset of the full .NET Framework, this project will
consider the .NET CF as the framework for representing .NET.
 Concluding, several alternative open-source Compact and full .NET Framework
implementations will be introduced.

3.1 OSGi

This section describes the OSGi Framework and is based on the information provided by
the OSGi Service Platform - Technical Whitepaper [6] and OSGi Technology overview [7].

The OSGi Alliance, formerly known as the Open Services Gateway initiative (OSGi), is an
open standards organization that has specified a remotely manageable Java-based service

platform. The OSGi specifications define a standardized, component oriented, computing
environment for networked services. The service platform offers life cycle management of
software components in a networked device, from anywhere in the network.

A selection of ongoing OSGi work [6] that relates to this thesis:

 Web Services – Amazon, Google, Microsoft.NET, and many more WSs are
becoming more popular each day. The OSGi Service Platform is an excellent
platform for WSs. Its dynamic update facilities, the rich software environment that
Java and the cooperative facilities that the OSGi Service Platform offers are an
ideal combination with WSs.

 Connectivity – Embedded applications are ever more confronted with portable

devices. IPods, mobile phones, PDAs are only a few examples of devices that
people expect to collaborate with their car and home computers. Managing this
complexity is one of the main goals of the OSGi Alliance.

3.1.1 Implementations

Currently there are a few open source implementations of the OSGi specification available:
Oscar [8], Knopflerfish [9] and Equinox [10], the latter is also used in the popular Eclipse
Integrated Development Environment (IDE) [11]. Currently Knopflerfish and Equinox are

implementations of the OSGi R4 core framework specification.
TEAHA uses the Oscar implementation of the OSGi framework which is compliant with a
large portion of the OSGi 3 specifications. Certain compliance work still needs to be
completed [12]; although since the release of Oscar 1.05 in May 2005, further
development seems to have been halted. Oscar also provides an incubator and repository
for OSGi bundles that can be easily deployed into existing OSGi frameworks, called Oscar

Bundle Repository [13].

3.1.2 Framework

The core of the specifications is the OSGi framework that defines an application life cycle
model and a service registry. In addition, the framework can be extended with software
components, which are called bundles. These bundles can be remotely installed, started,
stopped, updated and uninstalled without requiring a reboot.
 A large number of OSGi services have already been specified: HTTP servers,
configuration, logging, security, user administration, XML and many more. Standard OSGi

framework-related service implementations are also provided, such as Package Admin and
Start Level, but other non-framework related services are only available separately.

.NET integration TEAHA

14

 The OSGi Framework is the core component of the OSGi Specifications and provides a
standardized environment for applications. As OSGi is intended for embedded device
applications, the OSGi framework is small and reasonable lightweight, which makes it well
suited for small devices.

 The framework is also ideally suited for component- and service-oriented computing
and can be easily embedded into other projects and used as a plug-in or extension
mechanism; it serves this purpose much better than other systems that are used for
similar purposes, such as Java Management Extensions [14].

The Framework is divided in a number of layers with an additional security system that is
deeply intertwined:

- Execution Environment
- Modules
- Life Cycle Management
- Service Registry

Execution environment

Java Virtual Machine (JVM) provides the basis for the OSGi specifications, as it was the
most logical choice when the OSGi Alliance was founded. The Java environment offers all
the required features for a secure, open, reliable, well supported and portable computing
environment.
 Currently a possible candidate might be Microsoft .NET because it can provide similar
features. However Microsoft .NET is mainly only available from one source, while a widely

accepted open standard, for as many environments as the OSGi Alliance is targeting,
requires an open multi-vendor platform such as Java.

Modules

The OSGi Modules layer is fully integrated with the security architecture and defines the
class loading policies and adds private classes for a module as well as controlled linking
between modules. The OSGi Framework is a powerful and rigidly specified class loading

model and is based on top of Java but adds modularization. In Java, there is normally a
single classpath that contains all the classes and resources.

 OSGi bundles are dynamic software components that provide additional services. The
main contents of bundles are the class files, which are the executable part of a bundle. In
Java, classes are grouped in packages that have unique names.
 Bundles can export and import packages; exporting packages makes them available to
other bundles, therefore in order to import packages they need to be exported by other

bundles. In case of multiple bundles exporting different versions of the same package, the
framework selects an appropriate version for each bundle importing that package.
 A package is always exported with a unique version; the importer can specify a range
of compatible versions. The framework tries to minimize the number of exports, but it
supports multiple class spaces where multiple versions of the same class can be in use at
the same time. It also thoroughly verifies that a bundle cannot inadvertently get class cast
exceptions to prevent clashes.

 If a bundle exports a Java package and is subsequently uninstalled, then the
framework ensures that importers are restarted so they can bind to a new package
exporter. This whole process is transparent to the bundles because it happens when they
are stopped.

Life Cycle

This layer adds bundles that can be dynamically installed, started and stopped, updated

and uninstalled. Bundles rely on the module layer for class loading but add an API to
manage the modules in run time. Extensive dependency mechanisms are used to assure
the correct operation of the environment.
 Installing (and uninstalling) bundles in a remote JVM provides the basis for networked
services. Installing a bundle has two important aspects:

- The file format of a bundle

- Access to the install function

.NET integration TEAHA

15

A bundle is typically stored in a Java Archive (JAR) file. Every JAR contains a Manifest,
which stores information about the contents of the JAR in headers. The OSGi Alliance has
defined a number of additional Manifest headers to allow the JAR file to be used in an OSGi
Service Platform. Some headers are pre-defined by the JAR Manifest specification but the

total set of headers is extendable and the values can be localized.
 Access to the bundle installation function is done with an API that is available to every
bundle. The Initial Provisioning specification or command line parameters can be used to
install the first bundle and start an OSGi Framework implementation.
 The API of the OSGi Framework is defined in the BundleContext object. The framework
supplies this context object to the bundle when it is started. The context object has a
number of methods to install new and list existing bundles.

 The installBundle method takes a Uniform Resource Locator (URL) or InputStream as a
parameter. The OSGi Framework inspects the headers and the code and installs the code
in the OSGi Service Platform. After the bundle is installed, a Bundle object is returned.
Once a bundle is installed, it can be started, but before classes in the bundle can be
executed, the bundle must be resolved.

Service registry

The Service Registry enables the OSGi Service Platform to support applications built on the
principles of SOA and allows objects to be shared between bundles. It allows application
programmers to develop small and loosely coupled components, which can adapt to the
changing environment in real time. The platform operator uses these small components to
compose larger systems, while the Service Registry binds these components seamlessly
together; it dynamically links bundles together while logging their state and dependencies.
 Active bundles can use all standard Java mechanisms to implement their functionality.

A bundle can become active at any time and provide a function that could be useful for
other parts in the system. This makes the OSGi Service Platform, due to its dynamic
nature, very suitable for many dynamic scenarios found in home automation, mobile and
vehicle environments. A mobile phone might have an accessory plugged in, a residential
gateway could detect a new media server or a car could detect the presence of a Bluetooth
mobile phone that comes into range.

With aid of the Service Registry, bundles can:

- Register objects with the Service Registry.
- Search the Service Registry for matching objects.
- Receive notifications when services become registered or unregistered.

Objects registered with the Service Registry are called services. Services are always
registered with an interface name and a set of properties. The interface name represents
the intended usage of the service. The properties describe the service to its audience.
 The OSGi Log Service would be registered with the org.OSGi.service.log.LogService
interface name and provide properties such as vendor=acme, for example.
Discovering services is done with notifications, or by actively searching for services with

specific properties. A filter language is used to select exactly the services that are needed.
The Service Tracker utility class makes it easy to write code for this dynamic environment.
 Registrations are dynamic and are dependent on the execution state of the bundles.
The OSGi Framework automatically unregisters all services from a stopped bundle,
notifying all its dependents.

3.1.3 Security

One of the goals of the OSGi Service Platform is to run applications from a variety of
sources under strict control of a management system. A broad security model, present in
all parts of the system, is necessary for running components in a shielded environment.

 The OSGi specifications use the following security mechanisms:

- Java 2 Code Security

- Minimized bundle content exposure
- Managed communication links between bundles

.NET integration TEAHA

16

Permissions

Security is based on Java and the Java 2 Code Security model. The language limits many
possible constructs by design, like buffer overflows. In addition, it provides the concept of
permissions that protect resources from specific actions. Permission classes take the name
of the resource and a number of actions as parameters. Each bundle has a set of

permissions that can be changed on the fly. Changing existing or setting new permissions
is immediately effective. Permission assignments can also be done prior to, or just in time
during the install phase.
 When a class wants to protect a resource, it asks the Java Security Manager to check if
there is permission to perform an action on that resource. The Security Manager then
ensures that all callers on the stack have the required permissions. Checking the callers on
the stack protects the resource from attackers. If for example, A calls B, and B accesses a

protected resource, both A and B will need to have access to the resource.
 The access modifiers in Java classes are used to protect access to code. Classes,
methods, and fields can be made public, private, package private (accessible only by
classes in the same package) or protected or (accessible only by sub-classes). The OSGi
Service Platform adds an extra level of module privacy by making packages only visible

within the bundle. These packages are freely accessible by other classes inside the bundle,

but hidden from other bundles.
 Package-sharing between bundles raises possible security vulnerability for malicious
bundles. The OSGi specifications therefore contain Package Permissions to limit exports
and imports to trusted bundles. It is a fine-grained permission that allows importing or
exporting for a specific package, or for all packages.
 Another security mechanism is Service Permission that allows bundles to register or
get a service from the Service Registry. The permission is extensively used to ensure that

only the appropriate bundles can provide or use certain services.

3.1.4 Bundles

Bundles are libraries or Java applications, packaged in a standard Java Archive (JAR) file,
that can dynamically discover and use other components through the use of the service
registry. Furthermore bundles can be remotely installed, started, stopped, updated, or
removed on-the-fly without disrupting the operation or rebooting the device.
 The OSGi Alliance has developed many standard component interfaces that are

available from common functions like HTTP servers, configuration, logging, security, user
administration, XML, and many more.

3.1.5 Services

The OSGi Alliance has defined many services that are specified by Java interfaces, which
are implemented by bundles. Bundles register services with the Service Registry to allow
clients to find these services, or react to them, when services appear or disappear. Each
service is defined abstractly and is independently implemented by different vendors.

.NET integration TEAHA

17

3.2 .NET Framework

This section is based on information provided by [15], [16] and [17].

Microsoft’s .NET Framework is a new software platform which largely unifies the

development of web and client applications. It is a common environment for building,
deploying, and running WSs and Web Applications; easing development of computer
applications and reducing the vulnerability to security threats. Systems ranging from
servers, Smartphone’s to wireless palmtops can use different versions of the .NET
Framework in order to transparently interact with each other.

The following list shows the benefits and goals of .NET:

- Shared code and increased efficiency
- Robust code
- Secure execution
- Automatic deployment
- Rapid application development that requires fast time-to-market

- Ability to call Win32 DLLs without having to rewrite them
- Debugging and development can be done by Visual Studio.NET
- Code is not prone to fail due to uninitialized variables
- JIT compilation is not interpreted and runs code as processor native code
- Garbage collection greatly minimizes memory leaks by cleaning up inactive objects
- Support for encryption

3.2.1 .NET Architecture

The framework offers a layered, extensible and managed implementation of Internet
services that can be quickly and easily integrated into applications. It provides a large
body of pre-coded solutions to cover a large range of programming needs in areas
including: user interface, data access, database connectivity, cryptography, numeric
algorithms, network communications and web application development. Common class
libraries, like ADO.NET, ASP.NET and Windows Forms are provided for including advanced
standard services into a variety of computer systems.

Microsoft .NET Framework was designed with several intentions:

 Simplified Deployment
Installation of computer software must be carefully managed to ensure that it does
not interfere with previously installed software and that it conforms to security

requirements. The .NET framework includes design features and tools that help
address these requirements.

 Interoperability
The .NET Framework provides means to access functionality that is implemented in
programs that execute outside the .NET environment. Access to COM components
is provided in the System.EnterpriseServices namespace of the framework, and

access to other functionality is provided using the Platform Invoke (P/Invoke)
feature.

 Common Runtime Engine

Programming languages on .NET Framework compile into the intermediate
language CIL, which is not interpreted but compiled into native code, in a manner
known as Just-In-Time compilation (JIT). The combination of these concepts is

called the Common Language Infrastructure (CLI); Microsoft's CLI implementation
is known as the Common Language Runtime (CLR).

 Language Independence

The Common Type System (CTS) specification defines all possible data types and
programming constructs supported by the CLR and how they are allowed to

interact with each other. Because of this feature, the .NET Framework supports
development in multiple programming languages.

.NET integration TEAHA

18

 Base Class Library
Base Class Library (BCL) is a library of types available to all languages using the
.NET Framework. It provides classes which encapsulate a number of common
functions, including file reading and writing, graphic rendering, database

interaction and XML document manipulation.

 Security
.NET allows for code to be run with different trust levels without the use of a
separate sandbox, which is a security mechanism for safely running programs.

By isolating .NET applications (assemblies) from the Operating System (OS), applications
can be made processor and OS independent, and to be written in several programming
languages while allowing seamless cooperation. First the source code is compiled to an
executable that contains Common Intermediate Language (CIL); formerly also known as
Microsoft Intermediate Language (MSIL). During execution, CIL is translated to native code
for the particular processor and linked with the appropriate OS libraries.

Common Language Infrastructure

The most important component of the .NET Framework lies in the Common Language
Infrastructure (CLI). The purpose of the CLI is to provide a language independent platform
for application development and execution; including components for exception handling,
garbage collection, security and interoperability. Microsoft's implementation of the CLI is
called the Common Language Runtime (CLR).

Common Language Runtime

.NET applications execute in a software environment that manages the program's runtime
requirements. The CLR provides the appearance of an application virtual machine and also
other important services such as security mechanisms, memory management and

exception handling. The CLR and class library together compose the .NET Framework.

 Common Type System (CTS)
Set of types and operations, shared by all CTS-compliant programming languages.

 Common Language Specification (CLS)
Set of base rules to which any language targeting the CLI should conform in order
to interoperate with other CLS-compliant languages.

 Just-In-Time Compiler (JIT)

Compiler which compiles code into native code during execution.
 Virtual Execution System (VES)

Figure 3: .NET CLI

Common Language Infrastructure

Application Code

Compiler

Common Intermediate Language

Common Language Runtime

Machine Code

.NET integration TEAHA

19

The VES loads and executes CLI-compatible programs, using the metadata to
combine separately generated pieces of code at runtime.

3.2.2 Assemblies

The intermediate CIL code is housed in .NET assemblies, which are the .NET unit of

deployment, versioning and security; for the Windows implementation this is analogous to
Portable Executable files (EXE or DLL). An assembly consists of one or more files, and one
of these must contain the manifest that carries the metadata.
 The complete name of an assembly exists of the simple text name, version number,
culture and public key token; the text name is required while the others are optional.
 The public key token is generated when the assembly is created and uniquely
represents the name and contents of the assembly file; therefore two assemblies with the

same public key token are guaranteed to be identical. In the event of an assembly being
tampered with, the public key can be used to detect the tampering.

3.2.3 Metadata

All CIL is self-describing through .NET metadata. The CLR checks on metadata to ensure
that the correct method is called. Metadata contain all the information about assemblies
and is usually generated by language compilers, but developers can also create their own

metadata through custom attributes.

3.2.4 Namespaces and Class Library

The .NET Framework consists of a set of class library assemblies that contains hundreds of
types and provide access to system functionality. The purpose of these class libraries is to
provide a hierarchical namespace structure. These classes are language independent in
order to accomplish cross-language inheritance and debugging.
 System is the root namespace for the set of functionality that is part of this CLR

platform. The System namespace contains the base Object that all others are derived from.
The namespace also includes types for exception handling, garbage collection, tool types,
console I/O, format data types, random number generators and mathematical functions.

3.2.5 Security

.NET has its own security mechanism, with two general features: validation and verification
and Code Access Security (CAS).

 When an assembly is loaded, the CLR performs validation and verification. During
validation the CLR checks that the assembly contains valid metadata and CIL, it also
checks that the internal tables are correct. The verification mechanism checks to see if the
code does anything that is unsafe. Unsafe code will only be executed if the assembly has
the skip verification permission, which generally means code that is installed locally.
 CAS is based on evidence that is associated with a specific assembly. Typically the
evidence is the source of the assembly (whether it is installed locally or downloaded from

the Intranet/Internet). CAS uses evidence to determine the permissions granted to the
code. Other code can demand that calling code is granted a specified permission. The
demand causes the CLR to perform a call stack walk: every assembly of each method in
the call stack is checked for the required permission and if any of them does not have the
proper permission then a security exception is thrown.

3.2.6 Windows Forms

.NET Framework enables rich client-side applications using Windows Forms, which is a
subset of Windows Forms class library. By using Windows Forms, the underlying
functionality of Windows User and Graphics Device Interface can be accessed.
 Furthermore, elements of the Graphical User Interface can be dragged and dropped
within Visual Studio.NET.

.NET integration TEAHA

20

3.3 .NET Compact Framework

The Microsoft .NET Compact Framework (.NET CF) is the smart device development
framework for Microsoft .NET, bringing managed code and XML WSs to mobile devices.
 The framework is a subset of the .NET Framework class library and also contains

features and classes specific to mobile and embedded development; as a result it
implements approximately only thirty percent of the full framework [16].
 As most portable handheld devices have limited processing, memory and storage
capacity, the .NET CF has been specially adapted to the capabilities of these resource-
restricted devices. The framework is optimized for battery-powered systems and avoids
heavy use of RAM and CPU cycles. Binary sizes have also been largely reduced as the .NET
Framework binary size is about 30MB, whereas the .NET CF is about 1.5MB.

3.3.1 .NET CF Architecture

.NET CF consists of the BCLs and a few additional libraries that are specific to mobility and
device development, and runs on a high performance JIT Compiler. The CLR is built to be
specific to the .NET CF for running more efficiently on small targeted devices that are
limited in memory, resources, and must conserve battery power.

 The execution engine runs on top of the Platform Adaptation Layer (PAL) and Native
Support Libraries (NSL). The PAL contains a variety of subsystems that expose
functionality of the underlying OS and hardware to the execution engine using an API set.
 This allows the Compact Framework to be easily ported to various hardware platforms
by vendors who provide platform-specific PALs. The NSLs are lower-level services which
provide features that the execution engine requires but that might not be available on the

OSs [18].

Besides the benefits and goals listed in section 3.2, .NET CF additionally provides:

- A portable subset of .NET Framework
- Same naming conventions as in .NET Framework.
- Simple Object Access Protocol (SOAP) support.

- Binary deployment runs on various CPUs on same platform without recompilation.
- Because recompilation is not necessary across .NET CF, controls, applications, and

services can be easily moved from one device to another.

3.3.2 .NET Comparison

Both the .NET CF and the .NET Framework provide a consistent and familiar programming
model. There are key similarities such as namespaces, classes, method names, properties,

and data types. Programming is simplified and more secure due to the architecture and
design of these platforms.
 However, as the .NET CF targets handheld devices, one has to considerate the inherent
memory, processing and storage constraints during design and implementation. Some
guidelines on efficient programming and performance optimization, for the .NET CF
environment, are available at [19].

Figure 4: .NET Compact Framework Class Architecture

OEM Applications Applications

Managed

Code

Native Code

Compact Framework Class Libraries

Execution Engine

Platform Adaptation Layer (PAL)

Native Support Libraries (NSL)

.NET integration TEAHA

21

Support for several important key features is missing in .NET CF:

- Advance Graphics Device Interface (GDI+)
- ASP.Net

- Asynchronous Delegates
- Multimodule assemblies
- Printing functionalities
- .NET Remoting
- Hosting WSs
- XML Schema validations and XML Path Language (XPath)
- No support for System.Reflection.Emit namespace.

- No interoperability with COM objects; however the P/Invoke method can be used to
call native DLLs which in turn can access COM DLLs.

Communication

Communication within .NET Framework can be established by using WSs, .NET Remoting,

Windows Communication Foundation (WCF), or sockets. However, there are some

important differences between the two framework versions regarding communication. On
the .NET CF there is no support for .NET Remoting and raw sockets [20] [21], while WS
support is limited to only WS access.
 WSs, .NET Remoting, WCF, and sockets will be discussed in sections 3.8-3.11.
Moreover, in [22] a list of issues regarding sockets programming on .NET CF is given:

- Not all socket options are supported on all device OS’s.

- The .NET CF is designed to be able to be ported to any number of OS’s, each with

their own levels of functionality. Therefore, the .NET CF does not limit the
availability of socket options based on any particular level of support of an OS.

- Raw sockets are not supported.

- In .NET CF applications, the following options are supported but do not work
without Transmission Control Protocol (TCP) / Internet Protocol (IP) stack

modification and are reserved for future use: AcceptConnection, ReceiveLowWater,
ReceiveTimeout, SendLowWater, SendTimeout, and Type [22].

Namespace

Some key features of .NET CF namespaces relating to section 3.2.4:

- The .NET and .NET CF use the same naming conventions for namespaces.

- Creates a logical, consistent namespace hierarchy that makes it easier for
developers targeting the runtime to find and use.

- The same namespace can exist in different DLLs or assemblies and can contain
multiple namespaces.

- Long namespaces have little impact on metadata bloat because the common prefix

can be folded so that it is stored only once.

Windows Forms

.NET enables rich client-side applications using Windows Forms, which is a subset of
Windows Forms class library. The .NET CF also supports Window Forms:

- All common features of Windows Forms in .NET Framework are present in .NET CF.
As the framework targets mobile devices, these features are differently
implemented to make them more efficient for size and performance.

- Windows Forms applications will not run managed forms that host native ActiveX

controls as in the .NET Framework.

.NET integration TEAHA

22

- Support for processor intensive features in .NET Framework is not present in the
.NET CF to optimize size and performance; including GDI+ features.

Networking

The System.Net.Sockets namespace is used to provide an interface for accessing the
transport layer of protocol stacks. To simplify common developer tasks, .NET CF provides
additional classes that encapsulate much of the necessary code that is common across TCP
client/server applications:

- TCPListener
- TCPClient

- UDPClient

The HttpWebRequest and HttpWebResponse classes offer a rich HTTP client, and support many
standard encryption and authentication mechanisms, such as Secure Sockets Layer (SSL) /

Transport Layer Security (TLS) and basic HTTP authentication. For implementing other

Web requests the following interfaces can be used:

- WebRequest interface
- WebResponse interface
- IwebRequestCreate interface

These networking classes provide a synchronous and asynchronous development model,
which simplifies the development model for programming by leveraging threads.

Threading

Threading is implemented in the System.Threading namespace, including support for
creating and destroying threads. To find the current thread, the property of the

CurrentThread on System.Threading.Thread is used. System.Threading.ReaderWriterLock provides
synchronized access to data; System.Threading.ManualResetEvent provides control of flows

from outside. Additionally, GetHashCode can be used for identifying a thread.

 Applications can be started using the System.Threading.Thread class, while
System.Threading.ThreadPool can be used for service applications that use threading to
handle multiple client connections or client jobs simultaneously. JoinMethod is used to notify

when a thread has terminated, however it is not supported in .NET CF.

Native Code InterOp

As most code is not written in managed code, there are occasions when code written in C
or C++ (Win32 DLL or COM object) needs to be called. When .NET CF does not provide
the required functionality, direct access to the OS or existing DLLs may be required.

The .NET CF supports a subset of the .NET Framework for direct OS and DLL access:

- P/Invoke is used to call Windows DLLs. P/Invoke functions and attributes are found
in the System.Runtime.InteropServices namespace.

- COM Interoperability offers interaction with COM objects. However, because this

feature is too memory and processor intensive, it is not available on the .NET CF.
To interact with COM objects a wrapper written in eMbedded Visual C++ needs to
be provided, which is generally used to write DLLs for Windows CE.NET devices.
Also, special care needs to be taken of not invoking features of Windows CE.NET
that are unsupported on the Pocket PC.

.NET integration TEAHA

23

 There are times when manual Marshaling (serialization), may be needed in the .NET CF
due to control crosses from managed to unmanaged boundaries. Marshalling is required
whenever an object needs to be transformed to a data format that is suitable for storage
or transmission. The framework offers no automatic Marshaling for COM components

except for those provided by P/Invoke.
 The framework only supports one API calling convention called WINAPI, which is used
by the Windows API for specific platforms.

XML

XML is supported on the .NET CF by the XmlReader and XmlWriter classes. In order to use
these classes, the System.Xml namespace must be imported.

 XmlReader is a class that only offers a forward motion reading of XML documents as a
sequence of nodes; each node representing an element, attribute, text value or other
component of the document. The Boolean value returned by XmlTextReader indicates
whether the end of the document has been reached.
 If other non-forward navigation is required, DOM functionality that is offered by the

XmlDocument class needs to be included. While the class is supported in the .NET CF, due to

performance and memory considerations this is not encouraged.
 XmlWriter class is used to provide forward-only and non cached XML file or stream
output. The XmlTextWriter class can also be used, besides writing XML data; it also has
support for namespaces and translating special characters into text entities. In addition,
XML data can be exactly specified where it should be written to. The Indentation property
may also be used to make XML documents easier to read.

Functions of XML that are not supported in .NET CF:

 XmlDataDocument Class
Relational and hierarchical view of a XML document

 XML Path Language (XPath)
Query over unstructured XML data

 Extensible Stylesheet Language Transformation (XSLT)

Transform XML data to other format

 XML Validation (XmlValidatingReader)
Validate XML correctness of a XML document

3.3.3 WCF support

A subset of WCF is included into .NET CF version 3.5 [23]. The framework does not include
the Service Model, which handles service hosting and calling, but only message-level WCF
in which messages need to be crafted manually as serialized objects. Also, it will only
support the basicHttpBinding, with optional transport and message level security.
 A command-line tool will be included that will automatically generate a proxy class for

easy calling WCF services running on desktops.

.NET integration TEAHA

24

3.4 Alternative .NET Frameworks

The Microsoft .NET Framework has only been created for the Windows platform. Due to
this constraint, the open-source community has implemented several other alternative
.NET Frameworks that also operates on Linux, Solaris, Mac OS X and Unix.

3.4.1 Mono

The Mono project [24] overcomes the single biggest shortcoming to using .NET, the
requirement to run on the Windows platform. The project brings the shared source release
of .NET to multiple platforms and then builds an open source project around extending it.
 The Mono Framework provides the necessary software to develop and run .NET client
and server applications on Linux, Solaris, Mac OS X, Windows and Unix. The framework is
almost fully functional and features nearly complete implementations of ASP.NET,
ADO.NET and Web Forms, along with almost all of the System namespace [25].

Following is a short list of Mono-features [24]:

- Multi-platform

- Based on the ECMA/ISO standards
- Runs ASP.NET and Winforms applications

- Can run .NET, Java, Python and more

Performance

A performance comparison between Mono and .NET has been included in appendix 10.1.
The performance test comparison shows an overall of 17.77% performance lead for .NET.
However, the results between the tests do vary greatly and in two cases the results show a
significant performance advantage for Mono. During the nested loop and exception tests

the results respectively show a 617.59% and 114.93% performance differences and
thereby favoring Mono over .NET for these kinds of operations.

3.4.2 .NET CF Alternatives

Besides alternatives for the .NET Framework, there are also several open source

alternatives available for the .NET Compact Framework.

OpenNETCF

OpenNETCF [26] is an open-source alternative for .NET CF which was started as an
independent source for Compact Framework development information working under the
spirit of the open-source movement.
 The OpenNETCF Compact Framework Library offers many enhancements such as
support for WSE2.0 features that provide support for the WS-Addressing, WS-Security,
and WS-Attachments specifications. Also included are enhancements for debugging and
tracing as well as added graphics controls.

DotGNU Portable.NET

DotGNU Portable.NET [27] includes support for compiling and running C# and C
applications that use the BCLs, XML, and Systems.Windows.Forms.
 Whereas OpenNETCF only targets the Windows CE platform, Portable.NET supports
several CPUs and OS’s:

- CPU: x86, PPC, ARM, PA-RISC, S/390, IA64, Alpha, MIPS and SPARC.
- OS: GNU/Linux , *BSD, Cygwin/Mingw32, Mac OS X, Solaris and AIX.

.NET integration TEAHA

25

Communication

While computing begins to move away from desktop computers toward Internet enabled
devices, such as hand-held computers and cell phones, many distributed applications
depend on the Internet. As the vision of .NET is globally distributed systems, the Internet
plays an important role. Several Internet standards are used to create a foundation for the

.NET Framework to accomplish this vision.
 Two of these standards will first be introduced that are essential to WSs and UPnP
(HTTP and XML). Following, the concept of Remote Procedure Calls (RPCs) and
asynchronous WS calls, and several important communication technologies will be
described. Finally, this section will conclude with a communication review comparison.

3.5 HTTP/HTTPS

Hypertext Transfer Protocol (HTTP) is the standard for communication over the Internet
and defines a set of rules for transferring files (text, graphic images, sound, video, and

other multimedia files). According to the Open Systems Interconnection (OSI) seven layer
model: HTTP is categorized as an application layer protocol running over TCP/IP.
 HTTPS: is a Uniform Resource Identifier (URI) scheme syntactically identical to the
HTTP: scheme. The scheme is used for normal HTTP connections, but adds an encryption
layer of SSL/TLS to protect traffic. SSL is especially suitable for HTTP, as it can provide

some protection even if only one side of the communication is authenticated; with most
HTTP Internet transactions, generally only the server side is authenticated.

3.6 XML

Extensible Markup Language (XML) is the universal format for storing, carrying and
exchanging data on the Web. XML was designed to describe data and to focus on what

data is; it is a cross-platform, software and hardware independent tool for transmitting
information. Due to these characteristics, the standard will be important to the future of
the Web and be the most common tool for data manipulation and data transmission.
 Like HyperText Markup Language (HTML), XML uses tags and attributes, although they

are not globally defined to their meaning but interpreted within the context of their use.
Moreover, as XML tags are not predefined, custom tags need to be provided, while
Document Type Definition (DTD) or XML Schema is used to describe data.

3.7 Object distribution

The following section is based on information provided by [28].

Within the SOA and TEAHA context, independent services are offered to consumers that
are generally provided by objects located on remote systems or devices. Invoking methods

or services on remote objects are called Remote Procedure Calls (RPCs). The concept of
RPC will be explained in more detail in the following section, followed by a few technologies
that facilitate RPC, including SOAP, Web Services (WSs) and .NET Remoting.

3.7.1 Remote Procedure Call

A Remote Procedure Call (RPC) is a call of a procedure on objects, located on remote

devices. RPC extends conventional local procedure calling and enable the construction of
distributed, client-server based applications. The calling and called procedures may be on

the same or on different network-interconnected systems.
 By using RPC, the details of the interface with the network can be avoided. As RPC is
transport independent, the application is isolated from the transport layer, which allows
the application to use a variety of transport protocols.

.NET integration TEAHA

26

The above figure shows the activity flow during a RPC. The client program initiates a
procedure call that sends a service request to the remote server. The client calling thread
is blocked from processing until either a reply is received from the server, or a timeout has
occurred. When the server receives the request, it calls a dispatch routine that performs
the requested remote service and the result is send to the client. After the RPC has
completed, the calling thread is resumed and the client continues program execution.
 The creation and dispatching of a PRC is handled by so called stubs, which are proxy

objects that implement interfaces identical to the interfaces offered by the remote objects.
The client stub intercepts method calls and is responsible for packing call parameters into a
request message, after which the message is send to the server. At the server side, the
message is delivered to the server stub, which unpacks and dispatches the message and
calls the actual function on the object.

3.7.2 CORBA

The Common Object Request Broker Architecture (CORBA) [29] is a platform independent
specification that describes how to access remote objects. With CORBA, objects can be

discovered and accessed through the interfaces defined by the Object Management Group

(OMG) Interface Description Language (IDL). The layer between clients and objects is
called the Object Request Broker (ORB). Within CORBA the client stub is called stub, while
the server stub is called skeleton.

3.7.3 Java RMI

Java Remote Method Invocation (RMI) is a Java Application Programming Interface (API)
allowing Java applications to call methods on objects, running on remote virtual machines.

As Java RMI is part of the Java 2 Standard Edition (J2SE) most existing Java programs are
able to use RMI. Java RMI relies on marshalling (serialization) of objects over the network.
Similar to CORBA, the client stub is called stub while the server stub is called skeleton.

3.7.4 DCOM

Distributed Common Object Model (DCOM) is a low-level extension of the standard
Component Object Model (COM), used in the Microsoft Windows system. Comparable to
CORBA, DCOM also uses proxies to offer RPC. The protocol used for connecting the proxies
and stubs is called Object Remote Procedure Call (ORPC). Contrary to CORBA and Java

RMI, within DCOM the client stub is called stub and the server stub is referred to as Proxy.

3.7.5 SOAP

Simple Object Access Protocol (SOAP) is a lightweight and language neutral
communication protocol that allows programs to communicate via standard Internet HTTP.
SOAP defines the use of Extensible Markup Language (XML) and HTTP to execute RPCs,
and is becoming the standard for RPC over the Internet and used for accessing a WS.
 Using the Internet’s existing infrastructure, SOAP can work with firewalls and proxies.

SOAP can also use SSL for security, and HTTP’s connection management facilities [30].

client

program

program

continues

Client

return reply

request

completes

execute

request
call service

service

executes

call_rpc()function

Server

Figure 5: RPC Mechanism

.NET integration TEAHA

27

<?xml version="1.0"?>
<SOAP:Envelope
Xmlns:SOAP="http://www.w3.org/2001/12/SOAP-envelope"
SOAP:encodingStyle="http://www.w3.org/2001/12/SOAP-encoding">
<SOAP:Header>
 ...
</SOAP:Header>
<SOAP:Body>
 ...
 <SOAP:Fault>
 ...
 </SOAP:Fault>
</SOAP:Body>
</SOAP:Envelope>

Figure 6: SOAP Message

3.7.6 XML-RPC

XML-RPC is a specification and a set of implementations that allow software, independent
of the OS and its environment, to make procedure calls over the Internet. It uses HTTP as
transport mechanism and XML for the encoding of RPC. XML-RPC is designed to be as
simple as possible, while allowing complex data structures to be transmitted, processed

and returned [31].
 The procedure parameters of the RPCs can be of the following types: int, double,
string, boolean, dateTime.iso8601, base64, array or struct. An overview of these types
accompanied with corresponding examples is available at [32].

Java

Apache XML-RPC [33] is a Java implementation that is compatible with the XML-RPC
specification, while allowing users to enable several vendor extensions. These features are

only available, if a streaming version of Apache XML-RPC operates on both sides. Both
server and client have a Boolean property enabledForExtensions in their respective
configuration, for enabling these extensions:

- All primitive Java types are supported, including long, byte, short, and double.

- Calendar objects are supported.

- DOM nodes, JAXB objects or objects implemented with the Java.io.Serializable
interface can be transmitted.

- Both server and client can operate in a streaming mode, which preserves resources
much better than the default mode that is based on large internal byte arrays.

OSGi

Oscar’s OSGi includes a bundle [34] that provides an XML/RPC service, which other

bundles in the OSGi environment can use to register their XML/RPC handlers.
 The OSGi bundle provides a servlet bridge from the standard OSGi HTTP Service and
the Java Apache XML/RPC implementation, which has been discussed in the previous
section. Furthermore, the Apache XML/RPC implementation is included as an embedded jar
within the bundle.

.NET Framework

XML-RPC.NET is a library for implementing XML-RPC services and clients in the .NET

environment. The library package and several examples on accessing the library are
available at [35]. In addition, the library is CLS-compliant and can be called from any CLS-
compliant language such as C# and VB.NET, and includes the following features:

- Interface based definition of XML-RPC servers and clients
- Code generation of type-safe client proxies

- Support for .NET Remoting
- ASP.NET WSs that support both XML-RPC and SOAP
- Client support for asynchronous calls
- Client support for various XML encodings and XML indentation styles

(Some other XML-RPC implementations only accept certain indentation styles)
- Built-in support for XML-RPC Introspection API on server

.NET integration TEAHA

28

- Dynamic generation of documentation page at URL of XML-RPC end-point
- Support for mapping XML-RPC method and struct member names to .NET-

compatible names
- Support for Unicode XML-RPC strings

- Support for optional struct members when mapping .NET and XML-RPC types

.NET Compact Framework

The XML-RPC.NET distribution contains an assembly named CookComputing.XmlRpc.CF.dll,
which provides support for the .NET CF. Because .NET CF does not support reflection, it is
necessary to implement XML-RPC.NET proxies manually. However, the assembly has been
marked as an experimental version and is mostly untested.

3.8 Web Services

This section is based on information provided by [36], [37] and [38].

XML Web Services (WSs) are small units of code designed to handle a limited set of tasks
and enable applications to offer their services over a network using Internet technologies.

They are main building blocks in the .NET programming model and are language and
platform independent and based on open protocols such as HTTP, SOAP, and XML.
 Large websites providing WSs, such as eBay and Amazon, extend APIs that essentially
turn its Web site into a platform. The WSs they provide are available to developers to build
applications that can connect to those services. The growth and use of APIs across the
Web illustrate the rapid growth of WSs.
 WSs still miss many important features like security and routing that are defined in the

WS specifications. Although, these important features will be supported once SOAP
becomes more advanced.

3.8.1 Web Services Architecture

WSs support HTTP access remotely or locally on the device, and are a simplified way of
exposing services across network computer or server to connect to a Web browser that
supports XML. When a call is made to a WS, the server returns a response in XML.
 WSs can be accessed using standard Web formats (HTTP, SOAP, and XML), without

needing to know how the WS is implemented. Official Web standards (XML, UDDI, and
SOAP) are used to describe what Internet data is, what WSs can do, and help users to
locate specific services.
 An important characteristic of WSs is that they have a document/procedure-oriented
architecture instead of an object-oriented architecture. They do not support an object
reference-model; all data in a document is passed by value.

WS Components

There are three major components that make up a WS:

- The WS on the Server side
- The client application calling the WS via a Web Reference
- A WSDL WS description, describing the functionality of the WS

 A variety of specifications are associated with WSs that may complement, overlap, and
compete with each other. These specifications may relate to topics such as directory
access, service description, messaging and function calls and security specifications. The
WS specifications are also occasionally referred to as WS-*, for the reason that many
specifications use "WS-" as prefix for their names. An overview of several categorized

specifications is available at [39].

Benefits and future

By using WSs, existing services are encapsulated and allow applications to publish their
functions or messages on the Internet. Furthermore, they offer important SOA
characteristics such as interconnectivity and reusability. Also, unlike other remote access
methods, WSs are able to cooperate with firewalls without requiring special setup or

.NET integration TEAHA

29

diminishing the effectiveness of firewalls. They simplify the communication between
different applications and provide an easy way to offer services and distribute information
to a large number of consumers.
 An application calling a WS will send its requests using XML, and get its answer

returned as XML. The calling application will therefore never be concerned about the
underlying programming language or OS running on the other computer; data can be
exchanged between different applications and different platforms while developers are able
to reuse existing services instead of writing new ones. Using XML based communication
protocols the independency of both OS and programming language is assured and
increases the interoperability, interconnectivity and reusability of WSs.
 Following the SOA principles of reusability and composability, a new development of

Web-based applications called mash-ups, mix at least two different services from different,
competing Web sites to compose new services. A mash-up could for example overlay
traffic data from one source on the Internet over maps from Microsoft or Google. This
capability to mix and match data and applications from multiple sources into one dynamic
entity is considered to represent the promise of the WS standard.

3.8.2 WSDL

Web Services Description Language (WSDL) documents provide the description of a WS
interface. WSDL is based on XML and is used to define WSs, describe how to access them,
and to specify the location of the service and the methods it exposes.
 The WSDL defines the restrictions on the format of the SOAP messages, which are
used by a WS client to communicate with a WS provider. A top-down approach is typically
used for developing WS clients, to generate code from a WSDL. Whereas a bottom-up
approach, is used for developing WS providers and to generate a WSDL from code.

A WSDL document describes a WS using these major elements:
Element Defines

<types> The data types used by the WS

<message> The messages used by the WS

<portType> The operations performed by the WS

<binding> The communication protocols used by the WS

Table 1: WSDL Elements

 Types

Defines the data type that is used by the WS. For platform neutrality, WSDL uses
XML Schema syntax to define data types.

 Message
Defines the data elements of an operation, and can consist of multiple parts, which
are similar to function call parameters in traditional programming language.

 PortType

This is the most important WSDL element and defines a WS, allowed operations,
and messages that are used. The port defines the exposed WS interfaces and the
connection point to a WS. It can be compared to a function library in traditional
programming languages, while each operation can be compared to a function.

 Binding

Defines the message format and protocol details for each port.

There are several operation types available, for defining in the PortType section. WSDL
defines the following operation types, including the most common request-response type:
Type Definition

One-way The operation can receive a message but will not return a response

Request-response The operation can receive a request and will return a response

Solicit-response The operation can send a request and will wait for a response

Notification The operation can send a message but will not wait for a response

Table 2: WSDL Operation Types

.NET integration TEAHA

30

Given the previous major elements, the main structure of a WSDL document is as follows:

<definitions>
 <types>
 definition of types...
 </types>

 <message>
 definition of a message...
 </message>

 <portType>
 definition of a port...
 </portType>

 <binding>
 definition of a binding...
 </binding>
</definitions>

Figure 7: WSDL Structure

A WSDL document can also contain other elements, like extension- and a service- element
that offers grouping of definitions of several WSs in one single WSDL document.
 [40] provides a full example of a WSDL Document and several examples of one-way
and request-response operations. Furthermore, it describes how to define the
communication protocol used by the WS and bind to SOAP.

3.8.3 Interaction

A client interacts with a WS through SOAP packages, which are generated and processed
by a client proxy. The WSDL document that describes the target WS is needed to create
the proxy.
 First, the client proxy receives a service request from the client, after which the proxy
processes the request and serializes it into a corresponding SOAP request package.

Following, the SOAP package is forwarded to the remote WS, which dispatches and
executes the requested method. A SOAP response package, containing the results from the

method call, is then send back to the client proxy, which finally deserializes the SOAP
package and forwards the actual method results to the client.

Service Description

Web Service.asmx?wsdl

Get Type Info

(XML schema)

Web Server

ASP.NET Handler

Web Service.asmx

Subclasses

System.Web.Web Service

Class

Your code

Web Service.cs
.NET class

Code implemented in

methods

Client App

VB.Net, C#,

ASP.Net

Native Proxy/

SOAPreader

VFP, VB6, C++

MISSSOAP,

wwSOAP

XML Parser

HTTP

GET/POST

Network Boundary

Parameters

SOAP Protocol
XML over HTTP

Return Value

Server Client

Figure 8: Web Service Server/Client Interaction

.NET integration TEAHA

31

3.8.4 Asynchronous Calls

This section is based on information provided by [41].

An asynchronous call to a WS, allows the calling thread to continue executing while it waits
for the WS to respond. The call is made on a different thread than the one that is running

the user interface, which allows users to continue interacting with an application without it
locking up.
 When calling WSs asynchronously, multithreaded programming techniques are
required to avoid problems when multiple threads try to access the same data
simultaneously. Within the C# .NET environment, a common method for obtaining
exclusive access to an object is the lock statement. Another solution is to use the Monitor
class and Control.Invoke to make applications thread-safe.

 Calling WSs asynchronously is a two-step operation. For every synchronous method in
the proxy class, there is a corresponding Begin and End method. For example, if the name
of the WS method is GetItems, the asynchronous methods would be BeginGetItems and
EndGetItems. The Begin method initiates the Web method call, while the End method
completes the call and retrieves the WS response.

Conversational

A WS is conversational if the series of messages transmitted between the two endpoints
are tracked with a unique conversation ID, with specific operations flagged to start and
end the flow of messages. WSs that provide callbacks are, by definition, conversational.
The initial operation initiated by the client and the callback operation made by the WS are
related to each other and must be tracked with a unique conversation ID. If this is not
done, there is no way for the client to differentiate between callback operations relating to
different initiating calls.

Callbacks

Clients may need WSs to respond to a client defined endpoint. These callback operations
require the WS clients to provide a callback endpoint that is capable of asynchronously
receiving and processing callback operation messages.
 The following diagram shows the main entities involved, in case a client uses a WS
with a callback operation:

Because callbacks are separated from the original request, to which the callback is a
response, they appear as unsolicited messages. Many hosts refuse unsolicited network

traffic, because they reject the unsolicited message or are protected by firewalls. Clients

that run in such environments are therefore not capable of receiving callbacks.
 Another requirement for handling callbacks is that the client is persistent by being
conversational. If the client is a web application, or a non-conversational WS, it cannot
handle callbacks.

Polling

To avoid the complications of having to provide callback endpoints, a technique known as
polling may be used as alternative.
 In order to allow clients that can't accept callbacks to use WSs, a polling interface can
be supplied as an alternative. In a polling interface, one or more methods are provided
that a client calls periodically to determine if the result of a previous request is ready.

Client

Web Service

endpoint

Callback

endpoint

Web Service

Client initiated

operations (calls)

Callback

operation (call)

Figure 9: Web Service Callback

.NET integration TEAHA

32

 Although the WS or Java control will still be asynchronous in design, the interactions
with a client are handled with synchronous, unbuffered methods. A guideline for
implementing WS polling interfaces has been given in [42].
 However, this technique requires the client to periodically call the server to check for

callback events. The overhead of these calls can therefore be significant if the event does
not occur frequently [43].

3.8.5 WS-Eventing

This section is based on information provided by [44].

WS-Eventing defines a protocol for WSs to subscribe, or to accept a subscription from
another WS. WSs often want to receive notifications when certain events occur in other

services and applications.
 A mechanism for registering events is required because the set of WSs interested in
receiving those event messages is often unknown in advance, and will most likely change
over time. The WS-Eventing specification defines a protocol for a WS (subscriber) to

subscribe to another WS (event source) in receiving event messages.
 Currently WS-Eventing is only supported on the .NET CF using external code [45].

3.8.6 WS-Policy

This section is based on information provided by [46].

The WS-policy specification allows WSs to use XML for advertising their policies, and for
WS clients to specify policy requirements. WS-policy is a set of specifications that describe
the capabilities and constraints of the security and business policies on intermediaries and
end points, and how to associate these policies with services and end points.

 WS-Policy provides a single policy grammar, and defines a policy as a collection of one
or more policy assertions. Some of the assertions specify traditional requirements and
capabilities, such as the authentication scheme and transport protocol selection, while
others specify requirements such as privacy policy and Quality of Service (QoS).

WS-PolicyAttachment

Defines two general-purpose mechanisms for associating policies with the subjects to

which they apply. This specification also defines how these general-purpose mechanisms
can be used to associate WS-Policy with WSDL and UDDI descriptions.

WS-PolicyAssertions
This specification defines a common set of policy assertions for WSs. The assertions
defined by the specification cover text encoding, natural language support, versioning of
specifications, and predicates.

3.8.7 Framework Support

Many frameworks include support for hosting and consuming WSs, and allow an easy
implementation of WS functionality in client and server applications. However, if WS
support is not available, offering WSs from a web page can be easily achieved by including
support for reading and generating XML documents.
 Instead of clients generating SOAP requests, there is a much simpler alternative for

calling WSs. With REST techniques [47] a request can simply be plain URL parameters on a
HTTP GET, instead of bulky complex SOAP messages. In either case, the result of the
request operation will always be the return of an XML document.

 .NET

The .NET Framework has support for creating and consuming WSs. Furthermore, the proxy
class that Visual Studio .NET generates when a Web Reference is added, includes methods
for synchronously or asynchronously accessing the WS.

 However, WS support on .NET CF is limited and does not allow hosting but only the
calling of WSs. In addition, large parts of the WS-* suite, including security related and the
WS-Discovery specification are also not supported. Moreover, several examples on
accessing WSs from the .NET CF are available at [41].

.NET integration TEAHA

33

Java

There are several technologies that offer Java support for enhanced, secure, legacy and
core WSs [48]. They enable development of enhanced WSs using features such as reliable
messaging and atomic transactions, and provide solutions for the processing of XML
content, data binding and the development of SOAP based and REST-ful WSs.

OSGi

The Knopflerfish Axis port provides SOAP/WS access to any OSGi bundle, both for
exporting OSGi services as WSs and for importing WSs into an OSGI framework [49].
 The Axis-OSGi bundle offers the ability to export services, registered on the OSGi
framework service registry, as SOAP services. The exported objects must only expose data
types supported by SOAP. In order to export a service object as a SOAP service, it only

requires the SOAP.service.name property to be set on the registered service.
 The Axis-OSGi bundle depends on an installed and started commons-logging bundle.
Furthermore, the JRE must support XML or be provided with an XML parser. Client and
WSDL related Axis classes are optional; depending on the need for Axis clients on the OSGi
framework, or necessity of server-generated WSDL for the SOAP services.

3.8.8 WSE

The Web Services Enhancements (WSE) for Microsoft .NET [50] and [51] is an add-on for
.NET Framework and Visual Studio that enables developers to develop secure,

interoperable WSs based on open industry specifications.
 The add-on implements the WS-* specifications to provide benefits such as end-to-end
message level security, content-based routing, and policy by leveraging WS-Addressing,
WS-Security, and WS-Policy.
 WSE introduces a set of turnkey security assertions, securing common SOAP message
exchange patterns. Instead of applying security to SOAP messages on a per SOAP
message basis, these security assertions are designed to be applied to SOAP message

exchanges that are based upon the distributed application's scenario.
 Furthermore, WSE enables developers to use declarative files to specify behavior,
including security requirements, when receiving and sending messages from a client or a
service. The files consist of a collection of named policies, each of which defines a set of
requirements, including security for a SOAP message exchange.
 Additionally, WSE 3.0 is wire-level-compatible with WCF, using the HTTP protocol and

the corresponding turnkey security scenarios [52]. However, interoperability is not
guaranteed with other protocols such as TCP.

3.9 .NET Remoting

This section is based on information provided by [53].

.NET Remoting uses the .NET concept of an Application Domain (AppDomain), which is an

abstract construction for ensuring isolation of data and code. A process may contain
multiple AppDomains, while an AppDomain can only exist in exactly one process.

Figure 10: .NET Remoting Call

Server Domain

Client Domain

Proxy

Formatter

Transport

Channel

Method invocation Client call
Proxy

Formatter

Transport

Channel

.NET integration TEAHA

34

A client uses a proxy object to invoke public remote methods on a remote object. A remote
object class always inherits from System.MarshalByRefObject, as it provides the core
foundation for enabling remote access of objects across AppDomains.
 Two formatters are offered by .NET Remoting: binary and SOAP. The former is fast and

encodes method calls in a proprietary, binary format. The latter is slower, due to increased
package sizes and complexity, but encodes method calls in an open format. Additionally, a
custom formatter may be provided if neither do suffice.
 The lower-layer Channels are used to physically transport the messages to and from
remote objects. The standard included TcpChannel and HttpChannel can be extended, or if
the existing channels do not suffice, a custom channel can be used.

3.9.1 Remote object

The remote object can be defined as client-activated or server-activated.

 A client-activated object is created and destroyed by the client, and will be subject to
garbage collection once it is determined that no other clients need it. Server-activated
objects are managed by the remote server, and are only created when a client actually
invokes a method on the proxy.

Additionally, server-activated objects can be defined as:

 Singleton, stateful object that retain state across multiple method calls.
 Single-call object, handles only a single client request, where each call is made on

a new object instance and no state is held between calls.

3.9.2 DCOM

Previously, DCOM was used to handle interprocess communication between applications.
As DCOM relies on a proprietary binary protocol that is not supported by all object models,

enabling interoperability across platform is complicated. In addition, DCOM uses a range of
ports that are generally blocked by firewalls, and prohibits easy usage over the Internet.
 .NET Remoting removes the difficulties of DCOM by supporting a variety of transport
protocol formats and communication protocols, which allows it to be adaptable in many
different network environments.

3.9.3 .NET CF support

.NET Remoting is not natively supported by the .NET CF, however [54] introduces a design

for bridging .NET CF and .NET Remoting.
 Additionally, [55] provides several .NET Remoting coding examples. The coding
examples show how to create a Remotable Object, the server that exposes the object and
a Remoting client that access the Remotable Object on the server.

3.9.4 Java support

Java offers no native functionality for accessing .NET using .NET Remoting. However, the
specification that governs .NET Remoting was released to Ecma International as part of the
CLI specification [56], resulting in several available commercial products that offer Java

Remoting bridging. These Remoting engines generate proxies that allow .NET applications
to invoke Java/J2EE systems, and Java/J2EE to invoke .NET applications [57].

3.10 WCF

This section is based on information provided by [58].

Windows Communication Foundation (WCF), formally named Indigo, is a communication
subsystem to enable applications to communicate using the network. It is one of the four
major API’s in .NET Framework 3.0 that unifies Microsoft communication technologies:
WSs, .NET Remoting, Distributed Transactions and Message Queues into a single SOA
programming model for distributed computing. It is intended to provide Rapid Application
Development (RAD) to WSs, with a single API for inter-process communication in a local
machine, Local Area Network (LAN), or over the Internet. WCF runs in a sandbox and

provides the enhanced security model that all .NET Framework applications provide.

.NET integration TEAHA

35

 When a WCF process communicates with a non–WCF process, XML-based encoding is
used for the SOAP messages. However, when the process communicates with another WCF
process, the SOAP messages are encoded in an optimized binary format. Both encodings
conform to the data structure of the SOAP format, called XML Information Set (Infoset).

 In .NET CF, the WCF programming model support will not include service model, but
only channel layer messaging support. This means the program will send and receive
messages and it will be up to the application to correlate messages with each other, as
there are no RPC semantics.

3.10.1 Channels

The actual sending and receiving of messages to a network resource is performed by
Transport Channels. Whereas Layered Channels perform a function based on the input
message and delegate further modification and transmission to other channels in the

channel stack; examples include Protocol Channels that use message headers and
infrastructure messages to establish a higher-level protocol, such as WS-Security.
 Furthermore, all necessary extensibility points are exposed to allow custom transport
and layered channels to be used, while maintaining a unified programming model.

3.10.2 Performance

There is a clear performance advantage when using WCF compared with .NET Remoting
and ASP.NET WSs [59]. Although the performance tests show a distinct performance

advantage for WCF, they were conducted on an IIS hosted WSs and .NET Framework
system environment.
 The test results might therefore not represent the performance-level on a client device
using the .NET CF. Moreover, the tests do not take disk space or memory usage into
account, which are important software characteristics on resource-constrained devices,
such as routers and portable devices.

3.11 Sockets

A socket is a unique end-point of a communication link between two programs running on
an IP-based network, allowing applications to read and write from/to the network.
 To send a message over a socket, the target machine's IP address and the process

identifier of the application is needed. The process identifier of an application is a unique
number, which is also referred to as port.

3.11.1 Raw socket

Raw sockets are sockets that allow access to packet headers on incoming and outgoing
packets and are usually used at the transport or network layers.
 Usually raw sockets receive packets with the header included as opposed to non-raw
sockets, which strip the header and receive just the payload. They are not a programming
language-level construct, but are part of the underlying OS networking API. Most socket
interfaces are based on the BSD socket interface and therefore support raw sockets.

3.11.2 .NET and Java Sockets

In .NET, System.Net.Sockets.Socket can be used as a socket in server and client applications,

and allows both synchronous and asynchronous operations. Java provides the Java.NET
package, which offers the Socket and ServerSocket class that respectively implement the
client and the server side of the connection.

 Furthermore, several coding examples are available at [60] that illustrate how server
and client programs can read from and write to sockets.

.NET integration TEAHA

36

3.12 Communication Comparisons

This section includes several comparisons of the communication technologies introduced in
the previous sections, and provides an overview of the benefits and drawbacks. However,
the prime focus of attention will be on .NET Remoting and WSs, as they are the main .NET

communication technologies.

3.12.1 SOAP and XML-RPC

This section is based on information provided by [61].

SOAP and XML-RPC are specifications that are both intended for remote procedure calling.
While SOAP is a World Wide Web Consortium (W3C) standard, XML-RPC is proprietary and
frozen; however both specifications are platform independent.

 XML-RPC excels in being lightweight, but is often too simple for enterprise usage and
there is less agreement on error messaging. SOAP is more complex, but also more
extensible and has better support for complex data expressiveness. Additionally important
communication characteristics such as security, authentication, and encryption are also

supported with help of WS-Security or XML security standards.
 Furthermore, a new specification that starts to emerge is REST, which handles

requests through URL parameters on a HTTP GET instead of the bulky messages used by
SOAP and XML-RPC.

3.12.2 Web Services and OSGi Services

The key difference between WSs and OSGi services is that WSs always require some
transport layer, which makes it remarkable slower than OSGi services that use direct
method invocations. Also, OSGi components can directly react on the appearance and
disappearance of services [7].

3.12.3 Web Services and .NET Remoting

This section is based on information provided by [53].

Although both .NET Remoting and WSs can enable cross-process communication, they are
designed to support different audiences. WSs are part of .NET Remoting, but have a
simplified programming model and are intended for a wide target audience, while .NET

Remoting provides a more complex programming model and has a much narrower reach.

The following table comprises a comparison overview of both technologies.

 ASP.NET Web Services .NET Remoting

Protocol Can only be accessed over HTTP.
Can be accessed over any protocol

(including TCP, HTTP and SMTP)

State

Management
Work in a stateless environment.

Supports stateful and stateless environments

through Singleton and SingleCall objects.

Type System

Supports only data types defined in XSD

type system, limiting the number of
serializable objects.

Supports rich type system,

by using binary communication.

Interoperability
Support interoperability across platforms,

and are ideal for heterogeneous

environments.

Requires the client be built using .NET, enforcing

homogenous environment.

Reliability
Highly reliable due to the fact that WSs are

always hosted in IIS.

Takes advantage of IIS for fault isolation. If IIS

is not used, application needs to provide

plumbing to ensure application reliability.

Extensibility

Offers extensibility by allowing to intercept

SOAP messages during serialization and

deserialization.

Very extensible by customizing the different

components of the .NET Remoting framework.

Ease-of-

Programming
Easy-to-create and deploy. Complex to program.

Table 3: Web Services VS .NET Remoting

.NET integration TEAHA

37

Serializing

WSs serialize objects using XML and can only handle items that can be fully expressed in
XML. .NET Remoting relies on the existence of the CLR assemblies that contain information
about data types. This limits the information that must be passed about an object, and
allows objects to be passed by value or by reference.

State Management

WSs are stateless and they handle each incoming request independently. Also, each time a
client invokes an ASP.NET WS, a new object is created to service the request and is
eventually destroyed after the method call completes. To maintain state between requests,
session and Application objects can be used. However, maintaining state can be costly with
WSs as they use extensive memory resources.

 .NET Remoting supports a range of state management options and has three types of
remote objects, as opposed to one with WSs. The ability to mix and match the various
object types facilitates creation of solid architectural designs, and more efficient, scalable
applications.

Performance

Comparing to the performance of .NET Remoting with a SOAP formatter, the performance
of ASP.NET WSs is better. The usage of XML can cause SOAP serialization to be many

times slower than a binary formatter. Additionally, string manipulation is very slow when
compared to processing of the individual bits in a binary stream. Therefore, .NET Remoting
provides a clear performance advantage over ASP.NET WSs when TCP channels with binary
communication are used.

Security

.NET Remoting does not provide support for securing cross-process invocations. However,

a Remotable Object hosted in IIS can access all the same security features provided by
IIS. If the TCP channel is used, or the HTTP channel is hosted in a container other than
IIS, authentication, authorization and privacy mechanisms need to be provided.
 ASP.NET WSs hosted in IIS, benefit from IIS features such as support for secure SSL
communication, authentication and authorization services.

Type Fidelity

ASP.NET WSs favor the XML schema type system and offer a simple programming model

with broad cross-platform reach. .NET Remoting favors the runtime type system and offers
a more complex programming model with a much more limited reach.

Reliability

.NET Remoting allows hosting of remote objects in any type of application including
Windows Forms, managed Windows Services, console applications and the ASP.NET worker
process. The ASP.NET worker process holds all AppDomains in which every instance of an

ASP.NET application is created.
 If remote objects are hosted in a Windows service, or a console application, features
like fault tolerance within the hosting application are necessary to safeguard the reliability
of the remote object. However, when remote objects are hosted in IIS, advantage can be
taken of the fact that the ASP.NET worker process is both auto-starting and thread-safe.
As for ASP.NET WSs, they are always hosted in IIS, and take advantage of IIS security
abilities, therefore reliability is not an issue.

Extensibility

Both the ASP.NET WS and .NET Remoting infrastructures are extensible. Inbound and

outbound messages can be filtered, and aspects of type marshaling and metadata
generation can be controlled. Additionally, .NET Remoting extensibility allows the
implementation of custom formatters and channels.
 Furthermore, as ASP.NET WSs rely on the System.Xml.Serialization.XmlSerializer class for
marshalling data to and from SOAP messages, the marshaling can be easily customized by

adding a set of custom attributes for controlling the serialization process. This offers fine-
grained control over the XML being generated when an object is serialized.

.NET integration TEAHA

38

Service Discovery

Computing power is ever more being added to smaller, more common portable devices,
while they are extended with connectivity and networking that is easy to use and
configure. Service Discovery (SD) protocols play an important role in providing the latter.
 There are many SD protocols such as WS-Discovery, Jini, Salutation, Simple Lookup

Protocol (SLP) and Bluetooth Secure Discovery Protocol (SDP); one of the SD protocols
that has gained much popularity is Universal Plug and Play (UPnP).
 UPnP offers easy access and discovery of distributed multimedia files, devices and
services on the network and thereby offering the consumer a better product experience.
The protocol is based on Internet protocols and is simple enough for being implemented on
small appliances, while also being powerful enough to be scaled to the global Internet.
 One of TEAHA’s main objectives is the development of advanced residential gateway

subsystems. For this purpose, the OSGi framework with UPnP support has been proven to
be a suitable foundation. Although there are many SD protocol available, the focus of
attention in this chapter will be mainly on UPnP, seeing that the TEAHA framework also

relies on UPnP for discovering TEAHA devices and the services they provide.

3.13 Jini

Jini technology [62], currently developed under project Apache River [63], follows the

principles of SOA and defines a programming model that both exploits and extends Java to
create secure, distributed systems consisting of network services and clients. It can be
used to build adaptive network systems that are scalable, evolvable and flexible, as
generally required in dynamic computing environments.
 The SOA is Java-based and adds distribution to the JVM, and offers a number of
capabilities such as SD and mobile code. Jini combines Java with look-up services and a

method for discovering services to provide SD. Furthermore, it relies on the transportation
of Java interfaces over the network; if a device wants to use a remote service, it will
receive a proxy that forwards the interactions to the service.
 The Jini surrogate technology, which is built upon Jini and the Java platform, allows
small devices to upload a small piece of Java code to another device. Using this code, the
device can intermediate and act as a translator to allow services from small devices to be

offered on the Jini network.

3.14 Web Service Discovery

There are several standards available for discovering WSs. This section will introduce the
UDDI directory service and the WS-Discovery multicast SD protocol, the latter is intended
for ad-hoc networks with a minimum of networking services.

3.14.1 UDDI

Universal Description, Discovery and Integration (UDDI) is a directory service where
businesses can register and search for WSs. It is a platform-independent framework for

describing services, discovering and integrating business services by using the Internet.
UDDI communicates via SOAP and uses Internet standards such as XML, HTTP, DNS
protocols and it also uses WSDL to describe interfaces to WSs

3.14.2 WS-Discovery

This section is based on information provided by [58] and [64].

Web Services Dynamic Discovery (WS-Discovery) defines a multicast SD protocol that

enables advertisement and dynamic discovery of services on ad-hoc and managed
networks. The specification is part of the WS-* suite and relies on other WS specifications
to provide secure, reliable, transacted message delivery and to state WS and client policy.
 The protocol is not intended to support Internet-scale discovery, to provide extended
information on services, to define a data model for service description or rich queries over
that description. It is meant to support discovery of services in ad hoc networks with a
minimum of networking services (e.g., no DNS or UDDI directory services), and enable

smooth transitions between ad hoc and managed networks.

.NET integration TEAHA

39

 In order to scale to a large number of endpoints, the protocol defines the multicast
suppression behavior if a discovery proxy is available on the network. To minimize the
need for polling, services that wish to be discovered send an announcement when they join
and leave the network. Clients can query for services by type as well as scope without

heavy administrative costs. Search messages are sent to a multicast group, if services
match the search query they return responses directly to the requester.

3.15 UPnP

This section offers the reader insight on the basic workings and usage of the Universal Plug
and Play (UPnP) standard. It is based on and inspired by several official documents offered
by the UPnP community available at [65], [66], [67], [68] and [69].

UPnP is a distributed, open networking architecture, intended for peer-to-peer network
connectivity of wireless devices, intelligent appliances, home entertainment equipment and
computers. It is designed to bring easy-to-use, flexible, standards-based connectivity to
ad-hoc or unmanaged networks and to simplify the implementation of networks in the

home and corporate environments.

 In addition to control and data transfer among networked devices, UPnP enables
seamless networking by defining and publishing UPnP device control protocols, built upon
open, Internet-based communication standards. These standards are able to span different
physical media, and enable multiple-vendor interoperation, and synergy between the
Internet and home or office intranets. Further, via bridging, UPnP accommodates media
and connected devices that are running non-IP protocols, when reasons of cost, technology
or legacy prevent them from running IP.

 The architecture is designed to support zero-configuration, "invisible" networking and
automatic discovery for a wide range of device categories. This means that a device can
use the UPnP defined common protocols to dynamically join a network, obtain an IP
address, convey its capabilities on request and learn about the presence and capabilities of
other devices. It enables data communication between any two devices under the
command of any control device on the network. Furthermore, it allows a device to leave a
network smoothly and automatically without leaving any unwanted state behind.

 Because UPnP uses no device drivers and is defined by the common protocols it uses,
it is independent of OS, programming language and physical medium. It does not specify

the APIs applications will use, allowing OS vendors to create APIs that will meet their
customer needs. Thereby, allowing vendor control over device User Interface (UI) and
interaction using the browser as well as conventional application programmatic control.

 Media and device independence
UPnP technology can run on any medium including phone lines, power lines (PLC),
Ethernet, IR (IrDA), Radio Frequency (RF) - (Wi-Fi, Bluetooth), and FireWire. No
device drivers are used; common protocols are used instead.

 Common base protocols
Base protocol sets are used, on a per-device basis.

 User interface control

UPnP allows vendor control over device UI and interaction using a web browser.

 OS and programming language independence

Any OS and programming language can be used to build UPnP products.

 Internet-based technologies
UPnP technology is built upon IP, TCP, UDP, HTTP, and XML, among others.

 Programmatic control

UPnP architecture also enables conventional application programmatic control.

 Extendable
Each UPnP product can have value-added services layered on top of the basic
device architecture by the individual manufacturers.

.NET integration TEAHA

40

3.15.1 Devices, Services and Control Points

The UPnP architecture can be divided into three elements: devices, services and control
points. The figure below gives a context overview of these elements that will be discussed
in the following section.

Devices
A UPnP device is a container of services and may also include nested devices. For instance,
a TV/VCR combo offers TV services and also contains a nested VCR device.
 Different categories of UPnP devices will be associated with different sets of services
and embedded devices. Consequently, different working groups standardize on the set of

services a particular device type provides. This information is captured in an XML device

description document that is hosted by the device. In addition to the set of services, the
device description also lists properties associated with a device, such as the device name
and icons.

Services
The smallest unit of control in a UPnP network is a service. A service exposes actions and

models its state using state variables. For instance, a clock service could be modeled as
having a state variable current_time, which defines the state of the clock, and two actions
set_time and get_time, which allow control of the service.
 Similar to the device description, service information is part of an XML service
description that is standardized by the UPnP forum. The device description document
contains an URL pointer to these service descriptions.
 A UPnP service consists of a state table, control server, and an event server. The state

table models the state of the service through state variables and updates them when the
state changes. The control server receives action requests, such as set_time, executes
them, updates the state table and returns responses. The event server publishes events to

interested subscribers anytime the state of the service changes. For instance, a fire alarm
service would send an event to interested subscribers when its state changes to ringing.

Control Points

A control point is a controller capable of discovering and controlling other devices in a UPnP
network. After a control point has discovered another device, it is able to:

- Retrieve the device description and get a list of associated services.
- Retrieve service descriptions for interesting services.
- Invoke actions to control a service.

Figure 11: UPnP Control Points, Devices and Services

 Device

Control Point

UPnP Enabled Device

UPnP Enabled Device

Control Point

UPnP Enabled Device

Service

Root Device

State

Table

Control

Server

Event

Server

Device

Service B

Embedded Device

Service A

Service

Service B Service A

.NET integration TEAHA

41

- Subscribe to a service’s event source, to receive an event from the event server
whenever the state of the service changes.

3.15.2 UPnP Protocol Stack

The next figure shows the UPnP protocol stack, which consists of higher layers defined by

UPnP vendors, working committees and the device architecture. The lower layers provide
necessary services to the higher layers and are based on several open Internet standards.

The protocol stack accommodates UPnP devices to perform the following actions:

- Respond to search requests issued by control points.

- Parse SOAP and HTTP control commands from control points and return the
responses to control points.

- Submit events to subscribing control points.
- Publish information about the device and its services and nested devices.
- Respond to device queries from control points.

- Respond to control requests from control points.

Next, the protocol stack will be discussed in a top-to-bottom approach.

3.15.2.1 Vendor, Committee and Architecture Defined Layers

UPnP vendors, UPnP Forum Working Committees and the UPnP Device Architecture

document define the highest layer protocols used to implement UPnP. Vendors can deliver
UPnP on a variety of hardware platforms and physical networks that support IP.
 The UPnP Device Architecture layer defines a schema or template for creating device
and service descriptions for any device or service type.

 The UPnP Forum templates, created by UPnP Forum working committees on top of the
UPnP Device Architecture, define domain- and device-specific meanings and the format of
data. Various device and service types are standardized and a template is created for each

individual device or service type.
 The UPnP vendor-specific layer contains the application, user interface, and vendor-
specific hardware. Vendors add their own extensions on top of the aforementioned Forum
templates and fill them in with device or service specific information, such as device name,
model number, manufacturer name and the URL service description. This data is then
encapsulated in UPnP-specific protocols, defined in the UPnP Device Architecture
document, such as the XML device description template.

Figure 12: UPnP Protocol Stack

UPnP Forum Working Committee Defined

UPnP Device Architecture Defined

SOAP (Control)

HTTP (description)

IP

UDP TCP

UPnP Vendor Defined

HTTPU

(Discovery)

SDDP

HTTPMU

(Discovery)

SDDP GENA

HTTP

GENA

(Events)

.NET integration TEAHA

42

3.15.2.2 Lower Protocol Layers

The network media, the TCP/IP protocol suite and HTTP provide basic network connectivity
and addressing. On top of these open, standard, Internet based protocols, UPnP defines a
set of HTTP servers to handle discovery, description, control, events, and presentation.
Moreover, UPnP uses HTTP over User Datagram Protocol (UDP), known as HTTPU and

HTTPMU, for unicast and multicast communication.

Networking Media for UPnP

Devices on a UPnP network can be connected using any communication media, including
wireless RF, phone and power line, IrDA, Ethernet and IEEE 1394. However, other
technologies could also be used to network devices together like HAVi, CeBus, LonWorks,
EIB or X10. These technologies can participate in the UPnP network through a so called

UPnP bridge or proxy.

TCP/IP

The Transmission Control Protocol (TCP) / Internet Protocol (IP) protocol stack serves as
the base for the UPnP protocol, and enables network connectivity between UPnP devices.

By using the standard TCP/IP protocol suite, UPnP is able to span different physical media,
and ensure interoperability with multiple vendors.
 UPnP devices can use many of the protocols available in the TCP/IP stack, including

TCP, UDP, IGMP, ARP and IP; as well as services such as DHCP and DNS. Since TCP/IP is
one of the most ubiquitous networking protocols, it is relatively easy to create or locate an
implementation for a UPnP device that is adjusted for footprint and performance.

HTTP, HTTPU and HTTPMU

HTTP is a core part of UPnP as all aspects of UPnP are built on top of HTTP. HTTPU and
HTTPMU are variants of HTTP, defined to deliver messages on top of UDP/IP instead of

TCP/IP. The basic message formats used by these protocols are similar with that of HTTP
and is required both for unicast and multicast communication, and when message delivery
does not require reliability and the overhead associated with it. These protocols are used
by SSDP, which will be discussed next.

SSDP

Simple Service Discovery Protocol (SSDP) defines how network services can be discovered

on the network. SSDP is built on HTTPU and HTTPMU and defines methods for a control

point to locate network resources, and for devices to announce their availability on the
network.
 Similarly, a device connecting to the network will send out multiple SSDP presence
announcements, advertising the services it supports. Both presence announcements and
unicast device response messages contain an URL location pointer of the device description
document, which has information on the set of device properties and services.
 By defining the use of both search requests and presence announcements, SSDP

eliminates the overhead that would be necessary if only one of these mechanisms is used.
As a result, every control point on the network has complete information on network state
while keeping network traffic to a minimum.
 In addition to the discovery capabilities, SSDP also provides a way for a device and
associated services to gracefully leave the network and includes cache timeouts for purging
old information for self healing.

GENA

Generic Event Notification Architecture (GENA) was defined to provide the ability to send

and receive notifications using HTTP over TCP/IP and multicast UDP. GENA formats are
used in UPnP to create the presence announcements to be sent using SSDP and to provide
the ability to signal changes in service state for UPnP eventing.
 GENA defines the concepts of subscribers and publishers of notifications to enable
events. A control point, interested in receiving event notifications, subscribes to an event

source by sending a request that includes the service of interest, a location to send the
events to and a subscription time for the event notification. The subscription must be
renewed periodically and can be canceled using GENA.

.NET integration TEAHA

43

3.15.2.3 UPnP Function Layers

UPnP devices provide services that can be initiated by the device itself or by a control
point. Some objects on the network can be both a control point and a device, which is the
case for most home audiovisual devices.
 The previous section discussed the UPnP protocol in terms of its protocol layers. In this

section, UPnP will be discussed in terms of the six basic function layers that offer the
services to create SD functionality.
 The protocol is reviewed in a bottom-to-top approach, starting with the lower three
layers that exist in all devices and control points, followed by three optional higher layers.

The six basic UPnP function layers:

1. IP addressing
2. Device discovery
3. Device description

4. Action invocation or control

5. Event messaging

6. Presentation or user interface

The lower function layers (1, 2, and 3), the higher layers (4, 5, and 6) are optional.
 Control points (layer 4) can initiate an action on a device. Most devices will have event
messaging (layer 5) but not control or presentation; they will create an event message,
while a control point listens for these event messages.

 Some devices might just provide a user interface to the control point (layer 6). The
control point will display the user interface of the device, for displaying events, status or
controlling the device. Since every UPnP device has a Web server, the browser in a control
point can be used as the front panel of the device. The presentation layer is required
because a pointer to the presentation URL is part of the device description. However, this
layer is not required if the control point is handling the device programmatically and not
through a Web browser.

Addressing

The addressing layer handles the assignment of IP addresses to control points and devices.
The first thing a device needs to do is to obtain an address in order to connect to the
network. The IP addresses can come from a Dynamic Host Configuration Protocol (DHCP)
server, from a range of addresses handled by Auto IP, or be hard wired.
 A DHCP server assigns IP addresses to devices from a user defined range. Each device

must have a DHCP client and search for a DHCP server when it is initially connected to the
network. If the DHCP client does not get a response from a server after a time-out, it will
retry to make sure the server has a chance to respond.
 If the network does not contain a running DHCP server, the client uses Automatic-IP
addressing to choose an appropriate address. Auto-IP assigns an IP address from a set of
reserved private addresses. The address must then be tested to determine if the address is
already in use. Otherwise another address must be chosen and tested, up to an

implementation dependent number of retries. If the address is assigned using Auto-IP, the
device will periodically check if a DHCP server becomes available on the network, to ensure
connectivity is maintained among devices.
 At this point, the device either has a DHCP, or an Auto-IP assigned address. In either
case, the device can communicate with other devices on the network using TCP/IP. Once

the device has a valid IP address for the network, it can be located and referenced on that

network through that address. If during the DHCP transaction, the device obtains a domain
name through DNS, the device should use that name in subsequent network operations, or
otherwise use its own IP address.

Discovery

The discovery layer is where control points search for UPnP devices on the network, or
UPnP devices advertise their presence. In both cases the discovery message contains a
few, essential specifics about the device or its services, such as its type, identifier and an

URL pointer to its XML device description document.

.NET integration TEAHA

44

Search
When a control point is added to the network, it multicasts a SSDP discovery message
using HTTPMU to search for devices and services available on the network. The control
point can refine the search to find only devices of a particular type, services or device.

These search messages contain vendor-specific information, such as device or service
types and identifiers.
 All devices must listen to the standard multicast address for these messages. If any of
their embedded devices or services matches the search criteria in the discovery message,
they will send a unicast SSDP response to the control point using HTTPU. These responses
contain the same information as discovery advertisements and are sent to the IP address
of the control point that initiated the search.

Advertisement
Whenever a UPnP device connects to the network, it will send GENA advertisements for
each embedded device and service, announcing its presence through multicast HTTPMU.
Any interested control point can listen to the standard multicast address for notifications

when new services are available. Since these messages are sent using UDP, an unreliable
transport, they could be resend several times to ensure they are received correctly.
 The discovery messages include a time stamp to indicate how long the advertisement
is valid. Before this time expires, the device must resend its advertisement. The device
should also send a message to tell the network it is going away before disconnecting.

Description

Once a control point discovers a device, it still knows little about the device. To inform

about the device and its capabilities, or to interact with the device, the control point must
retrieve the device's description from the URL contained in the discovery message.
 To retrieve a UPnP device description, the control point issues an HTTP GET request on
the description URL. Also, service descriptions can be retrieved in the same way, using
service description URLs that are part of the device description.
 The UPnP device description is an XML document that contains several pieces of
vendor-specific information, definitions of all embedded devices, presentation URL of the

device, and an enumeration of all services, including their URLs for control and events.
It also contains information regarding device type, manufacturer, icons, serial number,

model name and number, product code, and other similar information.
 Device types are defined by the UPnP Forum and can have one or more UPnP
templates to define the content and presentation of data. Additionally, devices can contain
other, logical devices and services.

 For each service, the service description includes a list of commands or actions, and
the parameters or arguments for each action to which the service responds. In addition,
the service description also includes a list of variables that models the state of the service
at run time. The state variables are described in terms of their data type, range, and event
characteristics.

Control

After a control point retrieves a description of a device, actions can be sent to a service

provide by the device. Control messages are sent to the control URL of a service, and any
effects of the action are modeled by changes in the state variables. Also, control points can
query state variables of a service, but only a single variable with each query sent.
 The UPnP Forum working committee defines the action names, argument names and
variables contained in control messages. This information is encapsulated in UPnP specific

formats and formatted using SOAP.

 A device must respond to control requests within 30 seconds. The response could
indicate that the action is still pending, while an event will signify completion and return
any results or errors.

Event Messaging

Within the event messaging layer, control points can listen for notifications of UPnP device
state changes. Because there can be multiple control points and UPnP enabled devices on a
network, eventing was designed to keep all control points equally informed about the

effects of any action. As a result, state variables that are described in a service description
can all be evented.

.NET integration TEAHA

45

 To get event messages, control points subscribe to event messages for a particular
service by sending a subscription message. The receiving device may accept the request
and respond with a duration for the subscription. Once subscribed, the subscribed devices
are able renew the subscription during that period, or cancel the subscription if it is no

longer interested.
 If the event occurs, the service sends an event message to all current subscribers of
the event. Furthermore, when a device leaves the network gracefully, it will send an
advertisement that it is leaving. The sub- and un-subscribing of events allow control points
to listen to events in a selective way.
 Event messages use GENA, which is defined to send and receive notifications using
HTTP over TCP. Event messages contain the names of one of more state variables and the

current value of those variables.
 A special initial event message is sent when a control point first subscribes, and
contains the names and values for all evented variables and allows the subscriber to
initialize its model of the state of the service.

Presentation

The presentation layer is used to give users control over the UPnP device, and requires the

completion of the first three layers: getting an address, discovering the device, and
obtaining the device description.
 The presentation page URL is contained in the device description. After issuing an HTTP
GET request to the URL, the device will return a presentation page that can be loaded into
a web browser, and allow a user to control the device and/or view device status. There are
no constraints on the use of the page, while an unlimited number of linked presentation
pages are permitted.

 The capabilities of the presentation page are completely specified by the UPnP vendor;
there is no UPnP Forum element defined in presentation. To implement a presentation
page, the vendor may wish to use UPnP mechanisms for control and/or events, leveraging
the device's existing capabilities.
 However, HTML-based management has its limitations, as it has no simple proper way
to asynchronously report status changes to clients. Therefore, these changes are reported
using event messaging and control points.

3.15.3 Security

This section is based on information provided by [70], [71] and [72].

Regular UPnP

Regular UPnP offers no facilities for encryption or authentication and falls short in providing
a secure way for communication. Using UPnP as such, might therefore allow eavesdropping
and unauthorized control of network devices.

 UPnP does not have a lightweight authentication protocol, while the available security
protocols are complex. As there is no authentication or authorization used in UPnP, every
device on the network is able to control another UPnP device.
 Therefore, using UPnP does introduce some security issues. Especially UPnP enabled
routers are a security threat to the network as they can be exploited by malicious software.
Local computers that are infected with malicious software might send UPnP commands to
the router and open specific ports to the Internet. Opening ports could possibly allow

outsiders to gain network control or access to local computers. Nevertheless, when UPnP
services are used in a controlled and trusted environment, the security risks of using UPnP
can be minimized.

Secure UPnP Version 1

UPnP defines a suite of protocols that enable home networking without a traditional
network administrator. UPnP V1 Security defines a pair of secure services: DeviceSecurity

and SecurityConsole.

 DeviceSecurity needs to be added to any device that needs to be access-controlled.
 SecurityConsole needs to be offered by the administrative application or device at

which the homeowner makes security decisions known to the home network.

.NET integration TEAHA

46

The UPnP V1 standard categorizes components into the following classes:

 Devices - Offering services and holding resources
 Control Points - Discover Devices (SSDP), request services (SOAP), receive event

notifications (GENA).

Additionally, UPnP V1 Security, it adds a third component, the SecurityConsole, which is both
a Device and a Control Point. It discovers all security-aware components, lets the user to
name them, and allows the user to:

 take or share ownership, edit a device's Access Control List (ACL), of user's devices
 edit ACL of any owned device, grant authorizations to certain Control Points
 (optionally) generate certificates for defining named groups of control points or for

delegating authorization

Each security-aware component has its own RSA key pair and a Device or Control Point is
known to the Security Console by its public key hash. For the ease-of-use, the user is able
to name any component in his/her personal network and use that name instead.
 The basic architecture of UPnP V.1 is client-server, with the client called a Control Point
and the server called a Device. As mentioned before, UPnP uses three protocols to let
components interact with each other: SOAP, SSDP, and GENA.
 SOAP is secured by allowing only authorized Control Points to invoke any secured

action within a Device. This is accomplished by an ACL in each secured device, each of the
entries lists a unique Control Point ID, a name of a group of Control Points, or the universal
group <any/>, and the actions that are allowed on the device.
 SSDP is a protocol that is regarded as difficult to secure. It is vital for authorized users
to discover other network devices, but it is also desirable that an attacker is not able to
take an inventory of the network devices. Therefore, to secure SSDP, any existence of
Devices are announced as generic Devices, and are not described in any detail except in

response to requests from authorized Control Points. However, even if all traffic was
completely encrypted, an attacker would still be able to take an inventory of a home
network just based on timing and length of messages.

3.15.4 Intel UPnP stack

Intel has provided a UPnP stack that is available with a royalty free license to copy, modify
and create derivative works of the source code, and which operates on the .NET and .NET

CF. An overview of the Intel UPnP stack and a device implementation is included in
appendix 10.2, while the Intel UPnP stack and an evaluation toolkit is available at [73].

.NET integration TEAHA

47

Security

Secure communication is very important within distributed environments. The .NET bundle
will therefore also need to provide support for policy enforcement, authentication and
encryption; depending on the level of security that is required. In this section some
important security concepts, XML security standards and the Diffie-Hellman (DH) secret

key exchange protocol will be described.

3.16 Security Concepts

Following, several important basic key concepts will be described that are essential to
providing secure communication [74].

Authentication

The process of verifying an identity claimed by or for a system entity, which may be
services, clients or central directories.

 There are several ways that authentication can be used: client or server
authentication. The former requires clients to authenticate to use a service, while the latter
requires Service Agents and Directory Agents to prove their identity to clients. Another
possibility is that endpoints have to authenticate to each other. Achieving authentication
include username and password methods and stronger ones such as digital signatures.

Authorization
The right or permission granted to an entity, to access a system resource. Achieving
authorization include the usage of capabilities or ACLs. Credentials can also be used for
establishing either a claimed identity or the authorizations of a system entity.

Confidentiality
The property that information is not disclosed to an unauthorized entity. Usually
encryption, such as public and symmetric key encryption, is used to achieve
confidentiality.

Trust

Means the extent to which someone, who relies on a system, can have confidence that the

system meets its specifications. Protocols may use certificate authority-based trust models
that provide public key infrastructures to secure transactions.

Integrity
The property that data has not been changed, destroyed, or lost in an unauthorized or
accidental manner. Message integrity can be achieved through verification mechanisms,
such as hashes.

Non-repudiation
A security service providing protection against false denial of involvement in a
communication. For non-repudiation purpose, data hashes may be used and signed before
encryption.

Privacy
Privacy is the right of an entity to determine the degree to which it will interact with its
environment, including the degree to which it is willing to share information about itself.

3.17 Digital Signatures

Digital signatures, as used in SSL, consist of a private and public part that enables
authenticated communication. The public part of a device certificate (X.509) is available to

all network devices and includes a public key that is used to authenticate and verify the
data integrity of messages.
 The signature of a message, a keyed-Hash Message Authentication Code (KHMAC), is
generated by encrypting the hash of the message with the private key. Accordingly, the
message integrity can be verified by decrypting the signature using the public key and
comparing the result with the computed message hash.

.NET integration TEAHA

48

 Moreover, certificates must be signed by a Trusted Third Party (TTP), such as a
Certificate Authority (CA) to allow verification of the certificate itself. The arrangement that
binds public keys with respective user identities by means of a CA is referred to as a Public
Key Infrastructure (PKI).

 However, caution is required when generating and choosing device certificates. Several
popular hash methods are subject to collision attacks and should not be used in certificate
generation, as they enable public keys and valid certificates to be crafted for misabuse, as
described in [75].
 While, the hash methods can still be safely used for generating HMACs [76], it is still
advisable to omit using hash methods that are subject to collision attacks in order to
protect against any security vulnerabilities that may arise in the future.

3.18 XML Security standards

WS and UPnP communication are both based on the SOAP XML standard. Some of the
important XML-based security specifications include the following [38]:

XACML

eXtensible Access Control Markup Language (XACML) is a framework for defining a set of
privileges required to perform an operation, including identity information and external
factors, like access policy and time of day.

XML digital signature
XML Signatures (XML DSIG) provide integrity, message authentication and/or signer
authentication services for data, whether located within the XML that includes the

signature or elsewhere.

XML Encryption
Offer data confidentiality using encryption techniques. Encrypted data is wrapped inside
XML tags defined by the XML Encryption specification. A deliverable has been made
available that defines how to encrypt (portions of) an XML document.

XKMS

XML Key Management Specification (XKMS) consists of two parts:

 XML Key Information Service Specification (X-KISS)
Defines a protocol for a trust service that resolves public key information contained

in XML-SIGelements. The protocol allows a client of such a service to delegate part
or all of the tasks required to process elements.

 XML Key Registration Service Specification (X-KRSS)

Defines a protocol for a WS that accepts registration of public key information.
The public key may be used in combination with other WSs, including the
abovementioned X-KISS.

SAML
Secure Assertion Markup Language (SAML) is an XML-based framework for exchanging
identification information, user authentication, entitlement, and attribute information.

 The framework allows entities to make assertions on the identity, attributes, and
entitlements of a subject to other entities. A Trusted Third Party (TTP) could provide a

signed set of assertions identifying an identity.
 SAML allows partner applications to share user authentication and authorization
information, which is essentially the Single Sign-On (SSO) feature offered by all major
vendors’ e-commerce products.
 In the absence of any standard protocol on sharing authentication information, vendors
generally use HTTP cookies to implement SSO. With the advent of SAML, this data can be

wrapped inside XML, so that cookies are not needed and interoperable SSO is possible.

http://en.wikipedia.org/wiki/Public_key

.NET integration TEAHA

49

3.19 Web Services

Security has become a hot topic for WSs, it is important for WS security to address topics
such as access control, authentication, data integrity and privacy. WS technology has been
moving towards different XML-based security schemes.

 In the WS context, security means that a message recipient will be able to do some or
all of the following:

- Verify the integrity of a message.
- Receive a message confidentially.
- Determine the identity of and authenticating the sender.
- Determine if sender is authorized to perform the operation in request message.

 In a distributed environment these requirements are met by using cryptography. Two
of the most fundamental security operations, signing and encrypting, can directly meet the
first two needs. The other two requirements, and all supporting infrastructure that they
need, are built on top of those operations.

3.19.1 Security Measures

The following list [77] depicts common classes of attacks and prevention the mechanisms:

- Message alteration
Prevented by including signatures of the message information using WS-Security.

- Message disclosure
Confidentiality is preserved by encrypting sensitive data using WS-Security.

- Address spoofing

Prevented by ensuring that all address are signed by an authorized party for the
address.

- Key integrity
Maintained by using the strongest algorithms possible, by comparing secured
policies.

- Authentication

Established using the mechanisms in WS-Security and WS-Trust. Each message is

authenticated using the mechanisms in WS-Security.

- Accountability
Function of the key type, strength of the key and algorithms that are being used.
Strong symmetric keys in general provide sufficient accountability. However, in
some environments, strong Public Key Infrastructure (PKI) signatures are required.

- Availability
Reliable messaging services are subject to availability attacks. Replay detection is a
common type of attack that is to be addressed by the mechanisms described in
WS-Security and/or by caching message identifiers. Moreover, care should be

taken to ensure that minimal state is saved prior to any authenticating sequences.

- Replay

Mechanisms should be used to identify replayed messages such as the
timestamp/nonce outlined in WS-Security. Alternatively, other technologies, such
as sequencing, can also be used to prevent replay of application messages.

3.19.2 WS-Security

WS-Security specifies how to sign and encrypt SOAP messages. At the simplest level, it

says to put the XML DSIG signature in a SOAP Header element with a specific name:

.NET integration TEAHA

50

<SOAP:Envelope xmlns:SOAP='http://schemas.xmlSOAP.org/SOAP/envelope/'>
 <SOAP:Header>
 <wsse:Security xmlns:wsse='http://schemas.xmlSOAP.org/ws/2002/07/secext'>
 <Signature xmlns='http://www.w3.org/2000/09/xmldsig#'>
 ...defined below...
 </Signature>
 </wsse:Security>
 </SOAP:Header>
 <SOAP:Body id='Body'>
 ...message body...
 </SOAP:Body>
</SOAP:Envelope>

Figure 13: WS-Security

Unfortunately WS-Security only allows one instance of this header, making multiparty
signatures (for example an online auction with buyer, seller, and auctioneer) a little

awkward. Nevertheless, if the tamper-evident proof for the application message is kept,
only the SOAP message need to be kept.
 The Signature contains three parts: a number of references to what is being signed, a
signature value that covers the references, and information about the signing keys.
 The SignedInfo element mainly contains references to data, a description of how to
process and generate a hash for, and what that hash (message digest) value is.

<SignedInfo>
 <CanonicalizationMethod Algorithm='http://www.w3.org/TR/2001/REC-xml-c14n-20010315'/>
 <SignatureMethod Algorithm='http://www.w3.org/2000/09/xmldsig#rsa-sha1'/>
 <Reference URI='#Body'>
 <Transforms>
 <Transform Algorithm='http://www.w3.org/TR/2001/REC-xml-c14n-20010315'/>
 </Transforms><DigestMethod Algorithm='http://www.w3.org/2000/09/xmldsig#sha1'/>
 <DigestValue>riJUygbyupbDqcIiV+jgIdHe7WQ=</DigestValue>
 </Reference>
</SignedInfo>

Figure 14: SignedInfo

This fragment states that the signed data is canonicalized and then hashed and signed with
an RSA key. The node with a "Body" ID attribute is XML data that is canonicalized and has
the specified hash value.
 The signature value itself is a hash of the SignedInfo element, it is important to realize,

however, that XML DSIG gains its flexibility by always doing an indirection; the data itself
isn't signed, a reference that specifies the data's digest is.

<SignatureValue>fHP...ZOA=</SignatureValue>

Figure 15: Signature

Finally, we have information about the key that generated the signature, which in this case

is an X.509 digital certificate.

<KeyInfo>
 <X509Data>
 <X509Certificate>MII...AABvi</X509Certificate>
 </X509Data>
</KeyInfo>

Figure 16: X.509 Digital Certificate

.NET integration TEAHA

51

3.19.3 Web Services and SSL

This section is based on information provided by [74], [77] and [78].

Secure Sockets Layer (SSL) may be used in certain, restricted cases for securing WSs as it
has a number of limitations when used with WSs.

Message and Transport-level security
The type of technology used to protect a message determines to which extent the message
remains protected while it is in transition.
 SSL is a point-to-point protocol operating between communication endpoints and only
provides transport-level security as described in the below figure. At each step a message
will be decrypted and a new SSL connection set up. Therefore, if a message goes through

multiple intermediates, as is the case with WSs, it will be exposed to each intermediate.

To ensure that a message is fully protected along its entire message path, message-level

security is required. Security measures are applied to the message itself; regardless of
where the message may travel, the applied security measures go with it.

 As a result, securing WS communication requires message-level security that operates
at the same layer as the message, and which is part of the SOAP message itself. For this
purpose, SOAP headers fit nicely with detached signatures to make secure WSs possible.

 Moreover, when using SSL/TLS, the message cannot be saved for later to prove that it
has not been altered; the fundamental architecture of SSL/TLS makes it impossible. If for
example, a service intermediary intercepts a message, it can easily alter its contents,
which is a severe vulnerability.
 In addition, when a connection is established, parties exchange a transient session key
for encrypting the communication data between them. Both parties have the same key

that is only intended to be used for a short period of time. In case of a dispute, it is
impossible for either party to prove that it has the unmodified message.
 Also, SSL encrypts the whole message, whereas WS-security supports efficient
encryption of only selected parts of a message. In addition, SSL does not support
authorization, while there are WS specifications available that specifically support
authorization, such as XACML.

Concluding
WS-security is more efficient, XML based, and a more matching fit with WSs. However,
there are times when SSL is an alternative, and is recommended to be used in combination
with WS-Security in certain cases.

protected

intermediary

service

service

requestor

Figure 18: Message-Level Security

service

requestor

Figure 17: Transport-Level Security

protected

service

requestor

protected

intermediary

service
service

requestor

not

protected

.NET integration TEAHA

52

3.20 Diffie-Hellman protocol

Diffie-Hellman (DH) is a widely used secret key exchange protocol that provides mutual
key and entity authentication. Although, DH is vulnerable to man-in-the-middle attacks,
using authentication can solve this security vulnerability.

Assumptions

 Let A and B be users that want to exchange a secret key.
 Let GF(p) be a finite field (p is a prime and can be public).

Procedure

1. A selects a secret random number Ra
2. B selects a secret random number Rb
3. A and B choose a common public number (generator), g ∈ GF(p)

4. A sends XA = [gRa mod p] to B
5. B sends XB = [gRb mod p] to A

6. A calculates K = [XB

Ra mod p]
7. B calculates K = [XA

Rb mod p]
8. A and B now share secret key K

3.21 Station-to-Station protocol

The Station-to-Station (STS) protocol is a cryptographic key agreement scheme based on
DH. It entails two-way explicit key confirmation, making it an Agreement with Key
Confirmation (AKC) protocol. In addition to protecting the established key from an
attacker, the STS protocol uses no timestamps.
 STS introduces authentication to DH by the addition of a function SX(M) that signs
message M for user X, and requires users to be able to validate signs.

Assumptions

 Let A and B be users that want to exchange a secret key
 Let GF(p) be a finite field (p is a prime and can be public).

 Let SX(M) be a function that signs message M for user X

 Let EK(M) be the encryption function using key K
 Let CX be the digital certificate for user X

Procedure

1. A selects a random secret number Ra
2. B selects a random secret number Rb
3. A and B choose a random public number (generator), g ∈ GF(p)

4. A sends XA = [gRa mod p] to B
5. B sends [XB, CB, EK(SB(XB, XA))] to A, XB = (gRb mod p)
6. A sends [CA, EK(SA(XA, XB))] to B

7. A calculates K = [XB

Ra mod p]
8. B calculates K = [XA

Rb mod p]

9. If both signs are validated A and B now share secret key K

.NET integration TEAHA

53

Design and Implementation

.NET integration TEAHA

55

4 Design Concepts
In chapter 3 a technology overview was given, discussing several frameworks,
communication technologies and security concepts. As there are currently no existing
solutions available that enable secure interaction between .NET and TEAHA, a few design
concepts will be introduced in section 4.2.

Moreover, several additional resources, concepts and additional requirements will be

discussed that are essential for composing a suitable design.

4.1 Design Approach

This section describes several resources and concept elements that are either of help, or
which are essential for designing a suitable solution.
 While taking the requirements in chapter 2 into consideration, several design concepts
will be introduced and reviewed. After which, eventually, a final design can be composed

that allows OSGI and .NET devices to discover and access each other’s services in a secure
and transparent manner.

 In order to provide a final design that is suitable for a broad variety of .NET devices,
the design must enclose classes, methods and external code that are available on both
.NET CF and .NET Framework. Seeing that, the .NET CF is used on resource restricted
mobile devices, it is primarily consisting of a subset of .NET namespaces, classes and
methods. Therefore, to ensure a higher degree of compatibility, the restricted .NET CF is

taken to represent the .NET platform.

OSGi Bundles
Bundles form an important part of the OSGi framework specification and allow a diversity
of services to be dynamically added or removed. As there are existing bundles covering
several networking standards, a selection is made of available bundles that may be of help

for implementing communication between .NET and TEAHA/OSGi.

 The Domoware UPnP base driver
Implements the UPnP base driver specification standard defined by OSGi.

 Axis bundle

Knopflerfishs Axis servlet bundlefication, makes objects automatically available as

WSs when they are registered with the OSGi lookup and when the property
SOAP.service.name is set.

 XML RPC

Provides an XML/RPC Service that bundles within the OSGi environment can use to
register their XML/RPC handlers. The bundle provides a servlet bridge from the
standard OSGi HTTP Service and the Apache XML/RPC implementation.

TEAHA and .NET Communication
For realizing communication between .NET and TEAHA, the possible solutions are restricted
to using communication methods that are supported in .NET. However, as a few of these
methods in sections 3.8-3.11 do not offer SD, additional protocols are required in order for

devices to be able to search and discover other network devices. Moreover, SD is also of
essence when a .NET device enters the network, and tries to locate and initiate
communication with the TEAHA gateway.

 As TEAHA relies on UPnP for discovering, controlling, describing devices and services,
UPnP could be an appropriate choice. However, if WSs are used for implementing
communication, WS-Discovery would instead be a more congruent choice for applying SD.

Remote proxy
The design of the .NET bundle requires an implementation of the remote proxy pattern.
Proxies are classes that function as interfaces to another object, such as a network
connection, a large object in memory, a file, or some other resource that is expensive or
impossible to duplicate. A remote proxy provides a reference to an object located in a
different address space on the same or different machine.

.NET integration TEAHA

56

 As devices and services enter and leave the TEAHA network, proxy objects are
respectively created and destroyed. The proxy objects act as translating interfaces
between .NET and TEAHA devices and allow interaction with .NET devices in a TEAHA
manner, while TEAHA devices can be approached as regular .NET devices. [79]

Data conversion
Serialization is the process of encoding an object or class into a persistent or transportable
state. Unfortunately, according to [80], streaming serialized objects between the Java and
the .NET serializer is not possible due to incompatibility. Therefore, explicit data conversion
of Java and .NET data will be required.
 With SOAP or XML, communication will be independent of the OS and programming

language. XML serialization converts data into a transferable XML stream, which can be
deserialized into the original data at the receiving end. Due to the available XML serializers
for both .NET and Java, a custom data conversion implementation can be avoided.
 There are, however, a few disadvantages of using regular (non-binary) XML
serialization, such as increased data sizes and processing overhead; data needs to be
converted to size inefficient SOAP/XML. Moreover, communication on mobile devices

should be bandwidth efficient, as they often depend on wireless connectivity that are
considered expensive; both financially and in terms of processing and power consumption.
 In addition, the exchange of certain data types introduces several serialization
problems. Aside from the exchange of primitive data, which are components based on the
underlying type system for .NET or Java, there are two other categories of data types that
impose other serialization problems that are difficult to solve [80]:

 Non-existent data types
A certain data type is only available in one architecture; there is no obvious,
apparent mapping between the data types.

 Complex data types
All the data types that differ from the common primitive ones, and are made up of
numerous or nested primitive data types. The XML serialization and mapping of

complex data types can be problematic and less evident.

4.2 Concepts

Having set out a suitable design approach in the previous section, several design concepts
can be composed that will be introduced in the following section. The designs are based on

communication technologies and protocols that have been discussed previously in the
technology overview.
 The introduced design concepts will all rely on the TEAHA gateway for policy
enforcement on service interaction, which is described in section 5.3. Moreover, many of
these design concepts rely on UPnP for including support for SD.
Although, WCF has been discussed in section 3.10 it is not included as a viable
communication technology, due to the limited support on the .NET CF.

4.2.1 UPnP

TEAHA uses UPnP for discovering, controlling and describing devices and services.
Therefore, UPnP could be an appropriate choice for including SD and communication

support in the .NET bundle.
 In comparison to raw sockets and even .NET Remoting, UPnP can be regarded as a
high-level communication protocol. Several changes to the UPnP protocol are however
necessary in order to comply with the security requirements stated in chapter 2.

 Furthermore, an UPnP interface is defined that declares security and other
communication management services. The interface is needed for offering the required
security features, and to facilitate secure communication between .NET and TEAHA
devices; it allows .NET clients to discover and access TEAHA services in a secure manner,
while TEAHA devices are able to access .NET devices using the UPnP protocol.

.NET integration TEAHA

57

OSGi support
Oscar’s OSGi offers a bundle that implements a UPnP base driver, the Domoware UPnP
base driver bundle [81], which maps UPnP devices to the OSGi Service Registry and OSGi
services to the UPnP network. The bundle can be used as an appropriate base for

implementing secure UPnP communication in OSGi.

.NET support
The design also requires UPnP functionality to be included in the .NET client application.
For this purpose, the Intel UPnP stack [73] can be used that offers a UPnP implementation
for the .NET Framework, as well as conveniently for the .NET CF. With help of the Intel
UPnP stack, .NET devices are able to be serviced as UPnP control points, servers or

renderers, and interact with other UPnP devices and services on the network.

4.2.2 Web Services

To enable communication between .NET and TEAHA using WSs, the .NET bundle has to
host and expose WSs. The WS design must enable .NET devices access TEAHA devices and

services using regular WS requests, while TEAHA devices are allowed to interact with .NET
devices in a TEAHA manner. Moreover, a Registration WS is to be provided by the gateway

that enables .NET devices and services to register to the TEAHA network in a secure way.

OSGi support
In section 4.1 an OSGi bundle is described that offers WS support, which can be used for
designing and implementing the .NET bundle. The bundle enables OSGi devices to invocate
WSs, and OSGi services to be exported as WSs.

.NET support
As aforementioned, the .NET CF does not support the hosting, but only consuming of WSs.
However, this does not dismiss WSs as being a suitable design solution. It may suffice to
only host WSs on the OSGi gateway, while .NET devices take on the role of WS clients.
 Due to this fixed client-server model and missing support for WS hosting and WS-
Eventing, it is important that asynchronous WS calls are possible. This type of call allows
server-side initiated service requests to be sent properly to .NET clients.

 Asynchronous WS calls can be implemented in .NET CF, following the procedure

described in [41].

Security
Since WSs use HTTP, SSL could be used to provide secure communication on less secure
public networks. However, as SSL only provides transport-level security, any intermediates

in the message chain can potentially intercept the message and alter its contents.
Whereas, XML-security standards on the other hand, provide message-level security that is
more suitable when using WSs.
 Although WSE is not natively supported on the .NET CF, WSs can be extended with
WS-Security using external code [45].

Eventing

This section shows several approaches for extending WSs with eventing, which is required
to enable notification of subscribed network devices when a certain service event occurs,
or whenever devices and services enter or leave the network.

WS-Eventing

The WS-Eventing specification has been defined to extend WSs with eventing. Even though
WS-Eventing is not natively supported on the .NET CF, an implementation of the WS-

Eventing specification is given by [45].

Polling

When polling is used, the .NET client will periodically call a WS on the gateway that collects
all eventing information from connected TEAHA devices. Whenever a service event occurs,
the event will be cached by the WS for a predefined period of time. A subsequent polling
call will return all cached instances of a particular service event.
 However, as events do not occur frequently and SOAP is complex and size consuming,

polling is regarded as inefficient that results in a great amount of processing overhead.

.NET integration TEAHA

58

Eventing Socket

Eventing can also be implemented with dedicated eventing sockets that transport eventing
data between event sources and subscribers. The eventing sockets are set up during
communication, and are available during the entire session for exchanging eventing data.
 However, the requirement for a free and open port can cause problems, as ports may

be blocked by firewalls, used by applications, or disabled for security reasons.
Furthermore, without taking additional safety measures, socket communication is
unauthenticated, unencrypted and unsecure.

Asynchronous Web Services

Asynchronous WSs [81] may be used for implementing eventing, while the implementation
of asynchronous WSs in .NET CF has been described in [82].

 A first device issues an asynchronous WS call to an Event Subscription Service on the
eventing device to receive certain event notifications. The service call includes subscription
information, such as the subscribing device, and the event it subscribes to.
 When the event occurs, a notification message is generated and sent as a reply to the
asynchronous WS calls. Whenever a subscriber receives an event message, it will issue a

new asynchronous WS call to continue receiving the event notifications.
 Alternatively, callback endpoints can be provided that are able to asynchronously

receive and process callback operation messages. When an event occurs, the eventing
device sends eventing data to the subscriber’s WS callback points.

4.2.3 WS + WS-Discovery

WS-* specifies WS-Discovery as a WS extension, which can add SD to enable .NET WS
clients to search and discover other devices and the TEAHA gateway. WS-Discovery is,
compared to UPnP, a more congruent fit with WSs. However, the extension is not
supported on the .NET CF.

4.2.4 WS + UPnP

As WS-Discovery is not supported on the .NET CF, UPnP may be used as an alternative
protocol for supplying SD support. The design depends on UPnP for advertising the
Registration WS on the TEAHA gateway.

 By allowing TEAHA services to be accessed through WS-Security extended WSs,
encrypted and authenticated service interaction is possible. Consequently, unauthorized

users are unable to intercept information about, or access TEAHA services.

 During the communication setup, a .NET device broadcasts an unencrypted UPnP
discovery message to locate the TEAHA gateway. The gateway then responds with
information on how to access the Registration WS in a secure way. To protect against
eavesdropping, the unencrypted UPnP messages do not contain any specific information
about devices or services; any existing device is referred to as generic device.

Figure 19: Mapping Web Services on TEAHA Services

3. service discovery

TEAHA Gateway

 1. communication
 setup

on setup

gateway

UPnP

Bundle

Web Service host

Bundle

UPnP Web Service client

2. device and service

 registration

.NET Device

.NET framework

OSGI
TEAHA device

 4. service usage

.NET integration TEAHA

59

 Next, the .NET device registers itself and its services using the Registration WS on the
TEAHA gateway. After which, the gateway updates the Service Registry, generates the
corresponding .NET device proxy, and finally sends a registration confirmation back to the
.NET device. Also, an asynchronous Eventing WS call is made to facilitate service requests

to be issued by TEAHA devices.

 When a .NET or TEAHA device searches for a particular device or service, the device

correspondingly sends a WS or TEAHA search request to the TEAHA gateway. The gateway
will then use the Service Registry to determine whether a device or service is available that
satisfies the search request. If a successful match is found, the gateway will send a
confirmation response back to the requesting device.

 During service usage, if a .NET client accesses a TEAHA service, the client will send an
asynchronous WS request to the TEAHA gateway. Following, the gateway translates the

request into a TEAHA service call and forwards it to the TEAHA device that offers the
service. Once the request has been dispatched by the TEAHA device, any service result or
error is returned to the gateway. The gateway will then convert the result back into a WS
response and send it to the .NET client as a reply to the initial asynchronous WS call.
 In a very similar setting, if a TEAHA device wishes to access a .NET service, the device
will send a TEAHA service request to the gateway. Next, the gateway converts the request
and sends it as a response to an asynchronous Eventing WS call, which has been send to

the gateway previously by the servicing .NET device. Following, the .NET device dispatches
the request and any results or errors are included into a new asynchronous Eventing WS
call that is send to the gateway. Finally, the gateway converts the response into a TEAHA
result and forwards it to the initial requesting TEAHA device.

Figure 20: Communication Setup and Device/Service Registration

TEAHA Gateway

1. communication setup

2. device and service registration

TEAHA device .NET Device

UPnP

UPnP

Web Service client

Web Service host
[Register]

UPnP
UPnP Search Response

UPnP Search Gateway

(SSDP: TEAHA Gateway)

Register device, services

and subscribe eventing

Web Service client
Register Response

Figure 21: Communication Setup and Device/Service Registration

TEAHA Gateway TEAHA device .NET Device

Web Service client

Web Service host

[SD]

Search service

Web Service client
Search response

3. service discovery

.NET integration TEAHA

60

4.2.5 .NET Remoting + UPnP

.NET Remoting specifies a client-server model in which a Remoting client has access to a
Remotable Object that is hosted on a Remoting server. Consequently, if the .NET client
requires to access and host Remote Objects, it must be able to take the role of both
Remoting client and server.

 As stated before, .NET Remoting and other .NET communication technologies that have
been reviewed in sections 3.7.6-3.11, do not offer SD. Hence, to facilitate the initial
communication setup and to offer the required capability of searching and discovering

devices and services, an additional SD protocol such as UPnP is necessary. Moreover, as
.NET Remoting can use binary, SOAP or custom formatters, support for both
communication formats may also need to be included.
 The design uses a similar approach as the WS design, and relies on UPnP for .NET to
search and discover the TEAHA gateway. After discovering the gateway, the .NET device
registers itself and its services through a Remotable Object that handles registration.
Moreover, the Remotable Object offers several other security and SD related services.

 In addition, .NET Delegates and Events can be used with .NET Remoting to include
eventing, and implemented according to a detailed tutorial available at [83].

OSGi support
In [84] a solution is given for accessing RMI/IIOP-based CORBA objects using .NET
Remoting; it involves the mapping of Java types to IDL, and IDL to Common Language

Specification (CLS) using a compiler. Moreover, in [85] an OSGi bundle is provided with a

service that enables objects to be served remotely, by using CORBA Dynamic Skeleton
Interface (DSI). Combining the OSGi bundle with the aforementioned solution may provide
a viable solution for adding .NET Remoting support to OSGi.

.NET support
.NET Remoting has been defined as an integral part of the .NET platform, however,

support on the .NET CF is currently non-existent. Although, a solution is given for bridging
.NET CF and .NET Remoting in [54], the provided solution does not enable real .NET
Remoting support on the .NET CF, as it achieves bridging by adding additional extensions
to the .NET Remoting server- and the .NET CF’s WS-channels. Therefore, connecting a
.NET CF device to a regular, non-extended .NET Remoting server is currently impossible.

Figure 22: Service Usage

 TEAHA Service Response

.Net initiated

Server side initiated

TEAHA Service Response

WS Response
(Eventing WS Call)

WS Request

(Eventing WS Result)

Asynchronous WS

Request

Asynchronous WS

Response

TEAHA Service Request

Web Service host

[Serv Request]

Web Service client
 TEAHA Service Request

TEAHA

Service

 4. service usage

Web Service client

Web Service client

TEAHA Gateway TEAHA device .NET Device

Web Service host
[Serv Request]

Web Service host
[Serv Request]

Web Service host

[Serv Request]

.NET integration TEAHA

61

Java Remoting Bridging

According to [86], the specification that governs .NET Remoting was being released to
Ecma International as part of the CLI specification [56]. As a result, there are now several
commercial products available that offer Java Remoting bridging. These Remoting engines
generate proxies that allow .NET applications to invoke Java/J2EE systems, and Java/J2EE

to invoke .NET applications [57].
 As OSGi is based on Java, adapting commercial .NET Remoting bridging solutions into
OSGi is presumably feasible. However, as OSGi is also destined for usage on resource-
restricted devices, important factors such as memory, disk space and processor usage also
need to be taken into concern.
 Moreover, the design requirements do not allow usage of proprietary commercial
standards or software.

Flexible Proxy Object Creation

.NET Remoting applications must include references to the Remotable Object Classes to
compile successfully. Therefore, if a .NET device wishes to access a Remotable Object, the
Remotable Object’s Class is required by the .NET device in advance.

 After compiling, .NET Remoting access is limited to object instances that are inherited
from the Remotable Object Class. As the Remoting client must be able to access different

devices during runtime, access that is restricted to a specific device may be problematic.
Therefore, a dynamic way of generating Remotable Objects is highly recommended.
 A solution can be offered by using dynamic proxy objects, which are proxy objects that
can be created during runtime. A requirement for using dynamic proxy objects is that each
proxy class must implement a particular interface, which has to be known in advance.
 For creating dynamic proxies in Java, the Code Generation Library (CGLIB) [87] or the
Java Dynamic Proxy API [88] can be used, while the .NET Framework can make use

DynamicProxy.NET [89]; support for .NET CF is however not available.

4.2.6 Sockets + UPnP

Sockets are low-level communication methods that can enable communication between
.NET and TEAHA. Besides sockets, which facilitate the actual transfer of data, UPnP is used
for providing SD for discovering the TEAHA gateway and exchanging parameters for
setting up sockets between endpoints.

 Furthermore, additional security measures and proper conversion of data types and
values between .NET and TEAHA will be required.

Data types and values within .NET are expected to be byte-incompatible within Java.

Previous proposed design concepts include communication methods that are based on
SOAP/XML, which enables interoperability between different OS’s and programming
languages. SOAP formatters, which are part of the Java API or available through external
.NET code, can be applied to include SOAP communication [90].
 In order for .NET devices and services to be discovered by other TEAHA devices, .NET

devices and services need to be registered within the TEAHA Service Registry. Information
regarding .NET devices and services will be securely transferred to the gateway using
secure sockets. As sockets do not provide secure communication; additional security
measures are required to offer authenticated and encrypted communication.

Figure 23: Sockets + UPnP Design

.NET Device

UPnP

TEAHA Gateway

Socket

UPnP Socket

data discovery

.NET integration TEAHA

62

 Moreover, a design solution that is based on sockets and UPnP is somewhat
questionable. Seeing that UPnP can already solely provide SD, service eventing, and
interoperability between .NET and TEAHA devices, it may suffice to only use UPnP for
enabling communication.

4.3 Design selection

Several design concepts have been introduced and discussed comprehensively in the
previous section. While considering the requirements that have been defined earlier in
chapter 2, one of these concepts is eventually selected as the most suitable solution for
composing the final design:

[R1] The design must allow .NET devices to transparently access and discover TEAHA

services and devices.

[R2] The design must allow TEAHA devices to transparently access and discover .NET

services and devices.

[R3] The design must include support for .NET CF.

[R4] The design must allow enforcement of policies on service access and discovery.

[R5] The design must support action and event driven user-service interaction.

[R6] The design must not be based or use proprietary standards and software.

[R7] The design preferably uses protocols that are well supported by the .NET and

THEAHA framework; natively or by means of external software components.

[R8] The design must be scalable in order to support expansion of the number of

devices for simultaneously accessing, discovering and offering services.

4.3.1 Reviewing

To select a final design, the design concepts in section 4.2 will be reviewed against the
design requirements.

Web Services

Two designs based on WSs are introduced that allow TEAHA and .NET devices to access

and discover each other’s services. The designs only differ in the protocol being used for
the initial communication setup. While the WS design using WS-Discovery is a more

congruent design UPnP is, contrary to the former protocol, supported on the .NET CF.
 WS communication is based on SOAP, which enables transparent access and
interoperability between different OS’s and programming languages [R1] [R2].
 Support for WSs is available on the .NET Framework; and with a few restrictions also

on the .NET CF. While UPnP is fully supported using the Intel UPnP stack, WS-Discovery is
not supported on the .NET CF [R3].
 WS-policy allows WSs to use XML for advertising their policies, and for WS consumers
to specify their policy requirements. WS-Policy is not natively supported on the .NET CF,
but can be included with help of external code [45]. Additionally, regular WS-Discovery
and UPnP do not support the enforcement of policies on SD. However, as SD requests are
handled by the TEAHA gateway, a design can be composed that regulates and allows the

enforcement of policies from a single central point [R4].

.NET integration TEAHA

63

 Native WS-Eventing and WS hosting are not supported on the .NET CF. However,
support for eventing and server initiated communication can still be included using external
code [45], asynchronous WSs, dedicated eventing sockets or polling; which have been
discussed in section 4.2.2. Polling is however regarded as an inefficient and unsuitable

approach, as it leads to communication overhead, while dedicated eventing sockets require
ports that are free and not blocked by firewalls [R5].
 WSs and UPnP are based on Internet-based standards, which are promoted by W3C
and Organization for the Advancement of Structured Information Standards (OASIS) as
open standards. Additionally, all of the related WS-* specifications, including WS-
Discovery, are also defined by W3C or OASIS as open standards [R6].
 As mentioned earlier, WSs are natively supported on the .NET Framework, and also

partly on the .NET CF. Available OSGi bundles can extend the TEAHA framework to enable
objects automatically be available as WSs, or allow WSs to be imported into an OSGI
framework. While WS-Discovery is only supported on the .NET Framework, UPnP is also
supported on the .NET CF with help of the Intel UPnP Stack [R7].
 The design concept introduces a solution for enabling communication between .NET
and TEAHA devices through the use of a central TEAHA gateway that is responsible for the

enforcement of policies, creation of device proxies, and enabling of SD. Therefore, the
number of devices that connect to and are serviced by the gateway is restricted. To handle
and distribute the service load, usage of additional gateways is required. This approach will
introduce several new problems that are less trivial to solve. Problems that will arise are
for example the distribution and update of encryption keys, distributed enforcement of
policies, timing problems caused by latency, forwarding requests to the proper gateway,
and discovery of services that are located on a remote gateway [R8].

UPnP

UPnP is supported by TEAHA as part of the OSGi specification, and implemented through
available OSGi bundles, such as the Domoware UPnP Base Driver bundle. Furthermore,
Intel has released a UPnP stack that enables UPnP support in .NET applications. By using
UPnP, TEAHA and .NET devices are capable of transparently accessing and discovering
each other’s services [R1] [R2].
 The design also offers support for .NET CF, since implementations of the Intel UPnP

stack are available for both .NET and .NET CF [R3].
 Additionally, regular UPnP does not support enforcement of policies on SD. However,

as SD requests are handled by the TEAHA gateway, a design can be composed in which
enforcement of policies is regulated by the gateway [R4].
 By design, UPnP implements support for action as well as event driven user-service
interaction. UPnP devices are able to offer services, and allow other network devices to

subscribe to particular service events [R5].
 Similar to WSs, UPnP is also based on Internet standards and defined as an open, non-
proprietary standard. Furthermore, the Intel UPnP stack, which enables UPnP support in
.NET, is distributed with a royalty free license to copy, modify and create derivative works
of the source code [R6].
 As mentioned before, UPnP can be implemented with help of the available OSGi
bundles and Intel UPnP stack that both have been discussed in section 4.2.1 [R7].

 Comparable to the WS design, within the UPnP design concept, the TEAHA gateway
handles policy enforcement, and conversion of service requests and responses between
UPnP and TEAHA. Despite UPnP being designed to be scalable, adding TEAHA and UPnP
devices to the gateway increases service load, which eventually can only be processed by
distributing the service load between multiple gateways [R8].

.NET Remoting

Comparable to other design proposals, the .NET Remoting design uses UPnP to allow .NET
clients to search and discover the TEAHA gateway. Moreover, the .NET devices and their
services also register through a Registration Service offered by a Remotable Object.
 Devices can search or access other devices and services by sending a TEAHA or .NET
request to the gateway. The gateway processes the request and uses the Service Registry
to determine whether the device or service is available [R1] [R2].
 The .NET CF does not support .NET Remoting, while available solutions require adding

extensions to the .NET Remoting channels on the client and server-side [R3].
 Similar to other designs, enforcement of policies may be implemented on, and handled
by the central TEAHA gateway [R4].

.NET integration TEAHA

64

 Support for action and event driven communication can be included with use of .NET
Delegates and Events [R5].
 In section 4.2.5, a non-proprietary solution [84] has been discussed that enables .NET
Remoting applications to access CORBA objects, while the bundle available at [85] allows

CORBA objects to be serviced from OSGi [R6].
 For bridging .NET Remoting and .NET CF, a solution has been introduced that adds
extensions to the .NET Remoting server and WS client channels. However, the solution
does not truly enable .NET Remoting support. As a result, to allow .NET CF access OSGi
CORBA objects, a custom .NET Remoting implementation on the .NET CF is required [R7].
 Due to the necessity of the TEAHA gateway to convert TEAHA and .NET Remoting
service requests and responses, the .NET Remoting design will face the same scalability

problems as all other designs. Enabling service load processing by multiple interconnected
gateways is crucial for achieving scalability [R8].

Sockets

Sockets are considered to be a low-level communication technology that does not offer SD.
Hence, the communication setup is handled by UPnP to allow .NET devices to discover the

TEAHA gateway. Also, proper conversion of data-types is required for enabling transparent

service access and discovery. For this purpose, existing SOAP formatters can be used to
establish OS and programming language independent communication [R1] [R2].
 The .NET CF does not offer support for raw sockets, nevertheless regular sockets are
still supported [R3].
 Enforcement of policy enforcement on service access and discovery is handled by the
TEAHA gateway [R4].
 As sockets offer two-way communication, devices are able to send and receive data in

both directions. As a result, adding support for both action and event driven user-service
interaction is most likely to be feasible [R5].
 The sockets design requires UPnP and SOAP support to be included, by utilizing custom
or external code, such as the royalty free Intel UPnP stack, OSGi UPnP bundle, and
available SOAP formatters [R6].
 Regular sockets are well supported in Java and .NET, while UPnP and SOAP
functionality is included with help of the aforementioned external code [R7].

 The scalability of the design is low, due to the central policy enforcement and
processing of SOAP based communication, which is regarded to be processing-intensive.

In addition, the distribution of the service load amongst multiple gateways, introduce
problems that are less trivial to solve [R8].

4.3.2 Concluding

While reviewing the design concepts and taking the design requirements into account, a

suitable design is chosen.

Sockets

The Sockets design requires implementing basic functionality that is mostly already part of
several alternative communication technologies. Important design requirements such as
eventing, SD, programming language and OS independent communication, and
transparent service access are already provided by UPnP. Therefore, the sockets design is
considered to be the least suitable choice.

.NET Remoting

Contrary to UPnP and WSs, .NET Remoting is not supported by OSGi or the .NET CF.

Although several solutions for adding .NET Remoting were introduced, they were
commercial and only available for Java. Furthermore, the proposed solution for adding
.NET Remoting to the .NET CF is only an intermediate solution; it does not truly implement
or utilize .NET Remoting, and requires adding extensions to the .NET Remoting server and

WS client channels. Moreover, the .NET Remoting design requires additional SD protocols
to be included, rendering it as a less suitable design solution.

Web Services

This leaves the WS and UPnP design concepts as remaining solutions that bear several
similarities. Both UPnP and WS communication depend on HTTP and SOAP, which allows
communication to be programming language and OS independent. Additionally, while UPnP
revolves around providing SD, WSs can be extended with WS-Discovery.

.NET integration TEAHA

65

 Although, WSs are very popular and extensible, some important functionality is still
missing on the .NET CF; such as support for WS-Eventing and WS hosting. Moreover,
alternative solutions, such as polling, cause communication and processing overhead.
While, dedicated eventing sockets may lead to problems, due to the requirement for open

free ports and a possible custom firewall setup.
 Unless native support for WS-Eventing and WS-Discovery is included, WSs are
considered as a less suitable and preferred communication technology.

UPnP

Contrary to WSs, UPnP is part of the OSGi specification and supported by means of
available UPnP bundles. In addition, UPnP includes eventing by design and has support for
service advertising; devices can be discovered on the network and services can be listed.

As a result, standard UPnP already largely complies with the design requirements.

Conclusion

In conclusion, and in view of the alternatives, a final design based on UPnP can be
regarded as the most suitable and preferred choice for enabling communication between

.NET and TEAHA devices. In addition, .NET clients will be able to offer services to other
network devices within non-TEAHA environments using regular UPnP communication.

.NET integration TEAHA

67

5 Design

The previous section concluded with a design based on UPnP being the most suitable and
preferred choice for enabling communication. Following, the UPnP design will be defined in
more detail and several additional security concepts will be introduced to provide secure
communication.

5.1 Implementing UPnP

As described in section 4.2.1, implementation of UPnP is eased due to the availability of
the OSGi Domoware UPnP base bundle and Intel UPnP .NET stack. The latter is a royalty
free UPnP protocol stack, which can operate on both the .NET Framework and conveniently
also on the .NET CF.
 Compared to other design alternatives, UPnP is a more complete and suitable

specification as it already covers many of the design requirements.

5.2 Securing UPnP

To provide secure communication with UPnP between .NET and TEAHA, changes to the
UPnP protocol are necessary.
 Several solutions are available for securing UPnP, including the proposed UPnP V1
Security specification, which has been discussed in section 3.15.3. The specification

enables secure communication by providing authentication, encryption, and authorization.

5.2.1 Secure SD architecture

The UPnP V1 Security specification is considered to be less secure, compared to the secure
SD architecture [91] that is based on STS. The architecture uses a separate Security
Module, consisting of software and hardware, for handling authentication, encryption, and
policy enforcement.
 Although, the UPnP V1 Security specification offers a more congruent fit with UPnP,

TEAHA’s policy enforcement may be too complex or specific to be properly handled.
Moreover, the secure SD architecture has proven to be a working concept within TEAHA. A

design based on the Security Module and STS is, compared to a design that uses UPnP V1
Security, more congruent with the proposed secure SD architecture and TEAHA.

Figure 24: UPnP + Security Module Design

TEAHA Gateway

UPnP

Bundle

UPnP Stack

(Secure) UPnP Protocol

Seurity Module

TEAHA

Device

TEAHA Protocol

UPnP

Device

(Secure) UPnP Protocol

.NET TEAHA Device

Seurity Module

Authentication

Encryption Policymanager

Authentication

Encryption Policymanager

.NET integration TEAHA

68

 A clear separation between security and basic UPnP functionality, allows the original
Intel UPnP stack and UPnP OSGi bundle to be used requiring minimal changes, and future
updates and revisions of the UPnP stack and bundle to be adapted more easily.
 Including the secure SD architecture into the UPnP design will require two different

implementations of the Security Module, one suited for .NET and the other one suited for
TEAHA. The following table shows an overview on the allowed communication security
between Standard UPnP and Secure UPnP Stacks.

UPnP Stack Standard Secure

Standard Not secure Not secure/Unauthorized *

Secure Not secure/Unauthorized * Secure

Table 4: UPnP Communication Security

* Depending on device settings, communication between standard and secure UPnP stacks
may be prohibited or be permitted to allow regular unsecure UPnP communication.

5.2.2 Security Module

The Security Module, as described in [91], contains four submodules that each may
independently be implemented in either software or hardware. However, contrary to
software, hardware is considered less likely to be forged and therefore more suitable for
implementing critical security components such as the secure storage and crypto engine.

Independent of the number of offered device services, each TEAHA device only requires a
single Security Module.

Security Session Manager

The Security Session Manager module allows management of sessions and registration of
session data. Each session may consist of a reference to an accessed remote service, or a
set of references to network devices that accesses one of the services on the device.
 Each session defines an encryption key that allows devices, to use authenticated

and encrypted communication with a remote service or devices that access a local service
provided by the device.

Security Policy Manager

The Security Policy Manager module is responsible for administrating and enforcing
policies, and determines if a particular device has privileges to request a service action
given a set of policy rules.

 The policy manager may store a table that contains a device or service ID, a type that

indicates whether the id refers to a service or device, required security mode, service
action, default permission, and a list of devices that are granted or revoked to perform the
service action.

Service ID

(USN)

Security Mode

<auth., enc.>

Service Action Default

(allow/deny)

Allow List

(UDN)

Deny List

(UDN)

SERV1 <> <discovery> allow [] [D2, D2]

SERV1 <auth> <description> deny [D0] []

SERV1 <auth, enc> <invoke> deny [D3] []

Table 5: Service Policy Table

TEAHA Device Security Module

Crypto Engine

Secure Storage

Security Policy Manager

Security Session Manager
Services

Security Module

Figure 25: Security Module

.NET integration TEAHA

69

 As an alternative to storing service permissions in a conventional table, a tree based
approach, as discussed in [91], can be used to allow service permissions to be defined in a
hierarchical and more logical manner. Each node within the permission tree represents a
device or a service, and may access equal or lower level nodes.

 In case a lower node requires access permission to a higher node, a permission pointer
to the higher level node may be created at the lower node. The design will require multiple
permission trees, each representing the service permissions for a particular service action.

Secure Storage

The Secure Storage module enables secure storage of critical data, such as private keys
and user- and service-credentials. Hardware based secure storages are preferred above
software based storages as they are more secure, tamperproof and less likely to be forged.

Crypto Engine

The Crypto Engine module is required for encrypting, decrypting, validating and signing
Protocol Data Units (PDUs). In order to perform decryption and encryption operations, the
engine requires access to the private key stored within the secure storage. Hence,

hardware based secure storages should be used with hardware based encryption engines.
 As shown in [91], current smart-cards provide built-in secure storage and encryption

functionality. They offer secure storage for credentials, and allow messages to be signed
and encrypted on request. As both security information and encryption are internally
processed within the smart-card hardware, exposure hazard of critical information is kept
to a minimum.
 Additionally, hardware based secure storage and crypto engines can relieve low-level
processors from intensive encryption and decryption tasks.

5.2.3 Security modes

Three different security levels are defined, each applicable according to the required level
of security.

Unsecure

Using the unsecure mode, standard UPnP protocol will be used; communication will not be
encrypted or authenticated. UPnP devices will broadcast and send regular unencrypted and

unauthenticated UPnP messages.

Authenticated

Authentication is the process of verifying the identity of an entity, such as services, clients
or central directories. Security policies and access lists rely on the identity of entities for
defining permissions on devices and services. Hence, when using authentication it is crucial
that other devices or services cannot forge other entities.
 Clients may have to authenticate in order to use a service, or servers may have to
prove to clients that they are what they pretend to be. Options for achieving authentication

include username and password methods, and stronger ones such as digital signatures.
Once the identity of a device or service has been verified, authorization methods are used
to determine the access and usage privileges of an entity.

Full Security

Enabling authentication and encryption offers full secure communication. Options for
achieving authentication and encryption are STS and digital certificates. The latter include

public keys that solve the problem, which adheres to symmetric encryption, of secure

distribution of encryption keys. Public keys can be used for authentication, encryption and
also for the secure exchange of symmetric session keys.

5.2.4 Replay Attacks

Standard unmodified UPnP PDUs do not contain timestamp or sequence information; if
these were to be sent encrypted, the UPnP architecture would still be vulnerable to replay
attacks. Hence, aside from adding a signature to protect message integrity, including a

timestamp or sequence attribute, and caching is also a requirement to provide secure
communication. In the event of a PDU being intercepted and reissued, the device offering
the service will notice that the PDU is already cached and accordingly ignore the request.

.NET integration TEAHA

70

Time Discrepancies

A common problem in the area of distributed computing is the time discrepancies that
occur between the internal clocks of different devices. These discrepancies lead to
unpredictable and inconsistent behavior; network devices may incorrectly deny PDUs with
valid timestamps and remove them from cache too soon, or accept expired PDUs and keep

them unnecessarily stored in cache.

Time Synchronization

Applications and communication that depend on timestamp information require time
synchronization protocols such as Network Time Protocol (NTP) or Simple Network Time
Protocol (SNTP) to minimize the effects of time discrepancies. The protocols have,
depending on the network environment, an error margin of several milliseconds that needs

to be considered with during the process of verification and caching.
 Alternatively, if the allowed error margin is set large enough (a few seconds), network
devices may simply use the gateway’s timestamp to synchronize time. This approach does
not require additional time synchronization protocols and may suffice for this design.

Sequence Attributes

Implementing sequence attributes will introduce several problems. Two separate devices
or services could simultaneously send a PDU containing the same sequence number.

Additionally, whenever a device is reinitiated, for example after a power-loss, the sequence
number must continue from its last value. If the sequence number would simply be reset
to zero or not restored correctly, expired PDUs could incorrectly contain valid sequence
numbers and simply be reissued by a third party. Hence, sequence numbers require
frequent expensive non-volatile write operations. Alternatively, less write operations are
required if only future sequence values are stored instead, which do not get updated until
the stored value is reached after a certain number of increments.

5.3 Centralized Policy Enforcement

The gateway is responsible for controlling policy enforcement, to allow policies to be
conveniently managed from a central point, and consistency amongst policy rules easier to
be attained.
 If no custom policy rules have been defined for a device, the gateway will apply a

general policy rule that is defined for all devices or for the particular device type. However,
in case no policy rules have been defined by the gateway, the device should default to its
own set of predefined policy rules. Moreover, device services for which custom policy rules
have also not been defined are treated in a similar fashion.

5.4 Integrating STS

The STS protocol, as introduced in section 3.20, will be used for establishing common

agreed keys for providing authentication and encrypting messages between two devices.
During device initialization, a device will generate a secret random number that can be
used for all future STS communication

Communication Procedures

In the following section a detailed overview is given of the events that take place during

authentication, registration, and service requests. Each event has been defined as a
device, followed by the action, and the unicast or multicast message it sends.

 While full STS is used, encryption can easily be turned off, in case the required security
mode only prescribes authenticated communication.
 Furthermore, hashing can be used for referencing devices and previous issued PDUs to
attain reduced PDU sizes. However, several hash methods have proven to be subject to
collision attacks, as has been mentioned earlier in section 3.17.

.NET integration TEAHA

71

Abbreviations
CX Public Certificate of DX containing public key KX and STS establishment parameters
DX Device X
DGW Gateway

EX-Y Encrypted by using common agreed key of two parties (DX and DY)
KX Public Key of DX

KSES Symmetric Session Key generated and provided by DGW
Rx Secret Random Number generated by DX

SX Signed by DX
SERVX Service X
XX gRx mod p

SX adds a timestamp that marks the message only valid for a period of length, while the
serial of CX links to the signing device.

Assumptions

STS
 GF(p) is a finite field (p is a prime and public)
 g is a random public number (generator), g ∈ GF(g)

DX

 has a digital certificate containing a matching KX and private key pair
 uniquely identified and referenced by CX
 uses a dedicated protocol, or timestamps received from DGW to synchronize time

 able to sign, verify, decrypt and encrypt a PDU with a key
 able to generate a random number Rx

DGW (in addition to the above assumptions)

 able to manage policy rules
 able to announce policy rule changes

 able to verify and authorize service request using policy rules

SERVX

 is uniquely identified and referenced by its Unique Service Name (USN) and KX

KX

 (and therefore also the serial of CX) uniquely identifies DX

CX

 Digital certificate containing public key, signed by a TEAHA CA
 Key establishment parameters are included within digital certificates.
 Key establishment parameters are included within digital certificates.

Advertisement
When a .NET device connects to the network, it will send a regular UPnP advertisement
message extended with the modulus of its secret random number, required security mode,
signature, and device certificate. The latter includes key establishment parameters and a
public key which allows devices to verify the authenticity and integrity of messages.
 Instead of broadcasting the certificate using unreliable HTTPMU, the certificate can be

hosted separately while its URI location is included within the advertisement message.

 Device DA enters network

1. DA Advertises on network SA(PDUSDDP), XA, CA (HTTPMU)

 Figure 26: Device Advertising

DGW DA 1. Advertise on network

.NET integration TEAHA

72

Policy Checks
As policy rules are managed on the gateway, if an action is invoked on a servicing device,
the device will send a policy check to the gateway. The gateway then determines if the
action is granted or revoked, based on the policy rules. Finally, the check result and a

reference to the check request are sent back to the device. In case no policy rules have
been defined on the gateway, the device will apply its own set of default policy rules.

 Registered device DX checks policy with gateway DGW

1. DX Checks policy with DGW SB(EB-GW(PDUCHECK))
2. DGW Grant/Revoke action SB(EB-GW(PDUCHECKRESULT ,#PDUCHECK)

Authentication
After receiving the initial advertisement message of a device, the gateway uses the policy

rules to determine whether to continue authentication and secure communication setup.
 Following, the gateway uses the included key establishment parameters to calculate
the modulus of its own secret random number. If the required security mode can be met
by the network, both modulus numbers are concatenated, signed, encrypted, extended
with the gateway’s modulus number and certificate, and then sent back to the gateway.
Similar to advertising, the certificate can be hosted separately and its URI location included
within the message to avoid unreliable HTTPMU transfer.

 Finally, the device concatenates both modulus numbers in a reverse order, then signs
and encrypts the result, and sends it back to the gateway. After verification, both parties
have a common agreed key for enabling authenticated and encrypted communication.

 Device DA sets up secure communication with gateway DGW

1. DGW Authenticates to DA EA-GW(SGW(XGW, XA)), XGW, CGW

2. DA Authenticates to DGW EA-GW(SA(XA, XGW))

Secure communication setup
In a similar way to devices that authenticate to the gateway, network devices can set up
secure communication with other registered devices. The only real difference with the
previous procedure is the policy check that can only be performed by the remote gateway.

 Registered device DX sets up secure communication with device DA

1. DX Authenticates to DA EA-X(SX(XX, XA)), XX, CX
[DA Checks policy with DGW]
[DGW Grants/revoke action]

2. DA Authenticates to DX EA-X(SA(XA, XX))

 Figure 29: Secure Communication Setup

Figure 28: Device Authentication

Figure 27: Policy Check

DX DA

2. Authenticate to DX

1. Authenticate to DA

DGW DX
2. Grant/Revoke action

1. Check Policy

DGW DA

2. Authenticate to DGW

1. Authenticate to DA

.NET integration TEAHA

73

Registration
After secure communication has been established, the gateway commences device and
service registration and requests device information from the device. The request is
extended with a generated symmetric session key, which allows registered devices to

encrypt messages that are broadcasted on the network. The gateway then encrypts, signs
and finally sends the information request to the registering device.
 Once the device receives the request, the device encrypts and signs the UPnP device
description document and sends it back to the gateway.

 Gateway DGW registers device DA and its services

1. DGW Requests DevInfo DA SGW(EA-GW(PDUDEVINFO, KSES))

2. DA Sends DevInfo to DGW SA(EA-GW(PDUDEVINFO DA))

Device information request

In a similar way, to devices that registers to the gateway, network devices can request
device information from other registered devices. The only differences with the previous
procedure are the policy check, performed by the gateway, and the removed session key.

 DA registers device DA and its services

1. DX Requests DevInfo DA SX(EA-X(PDUDEVINFO))

[DA Checks policy with DGW]
[DGW Grants/revoke action]

2. DA Sends DevInfo to DX SA(EA-X(PDUDEVINFO DA))

Service Discovery
Once a device has been registered by the gateway, it may securely search other devices
and services. The device first multicasts an encrypted and signed search request using
correspondingly the received session key and its own private certificate.

 Device DA searches service SERVX

1. DA Searches service DX SA(ESES(PDUSDDP)) (HTTPMU)
[DX Checks policy with DGW]

[DGW Grants/revoke action]
2. DX Notifies DA SA(EA-B(PDUSDDP))

Figure 32: Service Discovery

Figure 31: Device Information Request

Figure 30: Device Registration

DGW DA

2. Send DevInfo DA

1. Request DevInfo DA

DX DA

2. Notifies DA

1. Search SERVX

DX DA

2. Send DevInfo DA

1. Request DevInfo DA

.NET integration TEAHA

74

 However, as registered devices are able to decrypt the search request, despite the
notification being encrypted, it may still reveal the service capabilities of the device.
 To protect service capabilities, the search request could be unicasted directly to the
gateway instead and encrypted using the agreed key. The gateway will then first execute a

policy check and respond with the location of the searched service. As an added benefit, a
separate policy check is avoided rendering it a more bandwidth-efficient approach.
 Alternatively, devices may issue device information requests to all registered network
devices. Although, this may also provide protection of service capabilities, on large
networks this approach is a bit cumbersome. In addition, devices may not have abundant
resources to store multiple device description documents.

Service Usage
Registered devices can encrypt and sign service requests and issue them to devices that
provide the services. After the policy check grants the service request, the servicing device
will dispatch the request and then encrypt, sign and eventually send the result back to the
requesting device.

 Device DA requests service SERVX on device DX

1. DA Sends request to DX SA(EA-X(PDUSOAP))
[DX Checks policy with DGW]
[DGW Grants/revoke action]

2. DX Sends result to DA SX(EA-X(PDUSOAP))

Service Subscription

Depending on the security requirements and policy rules, each service may need an
individual symmetric service key.

 After the subscribing device has sent the subscription request to the event source, a
policy check is once again issued and handled by the gateway. If the gateway has granted
the service subscription, the event source will send the service key to the subscriber.
Service notifications can then onwards be encrypted and only be decrypted by the
subscribed devices that have received the symmetric service key.
 In addition to the above, a symmetric key must also be revoked in case a subscriber is
banned from using a particular service.

 Device DA subscribes to service SERVX on device DX

1. DA Subscribes to SERVX SA(EA-X(PDUGENA))
[DX Checks policy with DGW]
[DGW Grants/revoke action]

2. DX Sends result to DA SX(EA-X(PDUGENA, KSERVX))

3. DX Broadcasts event notification SX(ESERVX(PDUGENA)) (HTTPMU)

Figure 34: Subscription

Figure 33: Service Usage

DX DA

2. Service result SERVX

1. Request SERVX

DX DA

2. Service result

3. Event Notification

1. Request SERVX

.NET integration TEAHA

75

Policy Update
When policy rules are updated, the gateway sends the policy updates to the servicing
device for which the policy rules have changed. After receiving the policy update, the
device can determine if any necessary actions are to be taken.

 Whenever a subscriber is banned from a particular service, the service provider must
revoke the service key and notify all subscribers of that service. First, using the old service
key, the subscribers will receive a secure multicast notification message that includes a list
of devices that are being banned. After which, the service provide will generate a new
service key and redistributed the key within unicast messages.

 Gateway DGW broadcasts a policy update

1. DGW Sends policy update to DX SA(EGW-X(PDUPOLICY))
2. DX Sends ban notification SA(EOLDSERVX (PDUBANNED)) (HHTPMU)
3. DX Sends new key to subscribers SX(EC-X(PDUNEWKEY, KNEWSERVX))

Alternatively, instead of sending the new service key to subscribers using multiple unicast
messages, the service key could also be encrypted using the STS agreed keys of
subscribers to create multiple individual encrypted instances of the key. Each version

instance is then linked to the corresponding subscriber and added to the update message.
 After the multicast message has been received, a subscriber will search for its own
encrypted instance and decrypt it with the STS key. This approach may however introduce
problems due to the unreliable nature of HTTPMU broadcasts.

Composed Services
Services that impose a serious security problem are device services that encapsulate or
are composed of remote services. Without taking appropriate safety precautions, these
services could allow devices to evade policy enforcement.
 For example, device DA has valid access rights for service SERVB, but is prohibited
from accessing SERVC. However, as SERVB is also composed of a remote call to SERVC,
DA should consequently also be prohibited from accessing SERVA.

 Since SERVC is only requested by DB, which has valid access permissions, DC has no
reason to deny the service request. As a result, this will leave DB responsible for denying
the service request issued by DA.

Similar to the OSGi permission model, described in section 3.1.3, a solution can be offered

by including a stack. The call stack consists of a sequence of calling device identities and
denotes the forwarded path of the current service request. Upon DC receiving the request,
it will notice DB being listed as a caller and consequently deny the operation.
 Alternatively, during registration, device information can be extended and sent to the
server to fully inform about any composed services. As a result, the gateway will be able to
determine that DA has no valid access rights for accessing the composed service SERVB.

Figure 35: Policy Update

DGW DA DX 2. Ban notification

DC
3. Send new key SERVX

1. Policy update SERVX

DA DB 1. Request SERVB DC 2. Request SERVC

Figure 36: Composed Service SERVC

.NET integration TEAHA

76

5.5 Concluding

In the previous section a design has been introduced that provides secure interaction
between .NET and TEAHA devices. The design is based on the UPnP SD protocol, the
concept of Security Modules and an authenticated version of the DH key exchange protocol

(STS) to enable secure communication. The latter adds authentication to DH with help of
certificates and digital signatures.
 In addition, timestamps are included within UPnP messages to protect against replay
attacks. As internal clocks of distributed devices generally cope with time discrepancies,
time synchronization is considered mandatory when relying on timestamps.
 Moreover, the design facilitates policy updates and policy enforcement that can be
centrally managed by the TEAHA gateway. While, the policy update procedure allows

symmetric keys to be updated and redistributed to subscribers in a secure manner.

.NET integration TEAHA

77

6 Implementation

This chapter describes the prototype implementation of the final design introduced in the
previous chapter. The general context overview diagram below describes how TEAHA
devices communicate in a secure way, and how internal components control data and
interact with other device components.

 Unfortunately, the Intel does not provide a class diagram or a clear structure
description of the Intel UPnP stack. However, contrary to the Intel stack, a sequence
diagram is available as a future reference for the Domoware UPnP base driver [81].

Figure 37: Overview Secure UPnP

6.1 Approach

Seeing that the final design consists of a .NET and OSGi implementation of the SM, the
prototype implementation will be divided into two corresponding parts.
 Guided by the context diagram, several class diagrams are first composed that will
primarily relate to the SM. Subsequently, the diagrams are used for generating
pseudocode, which abstracts and generalizes code in order to avoid being locked into code
structures that are specific to a particular programming language. The generated

pseudocode will therefore define the general code structure of both .NET and OSGi SM
implementations.
 Following, the code and data types are transformed into a custom .NET and OSGi
prototype implementation. Because, the Intel UPnP Stack is written in C#, the .NET SM
implementation will also be coherently done in C#.
 Although, the SM is preferably realized in hardware, as data is securely stored and

authentication and encryption may be solely handled by security chips, for practical
reasons a software implementation is chosen. Nevertheless, converting the solution into a
hardware based implementation is most likely to be feasible and eased due to the Crypto
Engine and Secure Storage can be replaced by.

.NET integration TEAHA

78

6.2 Class diagrams

The modules that compose the Security Module (SM), introduced in section 5.2.2, and the
data structures they operate on, are translated into separate class diagrams. The resulting
diagrams are described in the following section.

 In addition, a Bridge Controller is introduced that initiates and interlinks the
submodules with help of a general init method that is defined by each submodule.
Moreover, the Bridge Controller provides a set of service hooks that connects the SM with
the Intel UPnP Stack and OSGi UPnP Base Driver.

6.2.1 Session Management

The Security Session Manager allows management of sessions, which are instances of the
Session structure. Moreover, each session also references a unique key that is described as
an instance of the Key structure.

Figure 38: Session Management

Sessions

A session is defined as a communication agreement between several devices or services
for a particular set of service actions. In addition, each session references to a single

encryption key that is used for secure communication in the set of devices and services.
 The Session structure defines two arrays of devices and service IDs, correspondingly

mDevices and mServices, which may contain remote and/or own device and service
references. The mDevices array will therefore consist of the serials of certificates that
uniquely reference devices.
 Furthermore, a session also defines a set of service actions, and security mode values,
indicating if authenticated and/or encrypted communication is applied.

 If only device references have been declared within a session, it will imply that the
enlisted devices communicate and interact with each other and each other’s embedded
services using the referenced encryption key. This type of session declaration can be
interpreted as a communication agreement of a default encryption key between the listed
devices for a set of service actions.
 However, in case service references have also been defined, the listed devices will use

the referenced key for accessing the set of services. Therefore, the referenced key will be
used for the particular set of services instead of any aforementioned default key.
 In case a session does not contain any device references, it will imply that the list of
services have not yet been requested or accessed by devices. The services are however
already linked to a particular encryption key that is used for future secure communication.

Keys

Omitting actual key data and storing their references in sessions, allows confidential

encryption keys to be separately stored in secure storage. Seeing that cryptographic
processing is entirely handled by the Crypto Engine, if the key for a session is inquired by
the Crypto Engine, the Session Manager will only need to return a reference to the actual
key. As a result, only the Crypto Engine module and Secure Storage manager will require
and granted sole access to secure storage, which in turn benefits security.
 Similar to a session instance, referenced encryption keys are also instances of a
structure. The Key structure defines a mKeyHash and mProtocol attribute. The first attribute

references the key instance and consists of the mKey’s computed SHA-1 hash, while the
second one defines the key protocol used for generating the key.

.NET integration TEAHA

79

 In addition, if a session references a DH key, the mDHParams attribute will also include
key establishment parameters, the generated secret random number mSecretRnd, and its
public modulus number mInterKey. The latter is provided to other devices for initiating
secure communication in order to perform secure service actions.

Manager

The Session Manager declares several methods that are provided to the Crypto and Policy
Manager.
 The getCryptoParams method is invoked by the Crypto Manager to acquire all necessary
data for performing cryptographic processing. Aside from the general init method, the
remaining methods will be accessed by the Policy Manager.
 The addSession method adds a new session to the Session Manager if no sessions have

yet been declared for the given keyHash value. Moreover, sessions that are being added
may not result in inconsistency with existing sessions.

6.2.2 Policies

The policy manager enforces and manages a set of instances of the Policy Rule structure,
and provides a checkPolicy function that is exported on the TEAHA gateway as an UPnP
service.

Figure 39: Policy Management

Policy Rules

The above Policy Rules are similar to the ones that were introduced in the policy table of
section 5.2.2. Policy Rules are uniquely identified by the tuple: mService and mServiceAction,

and contain a mAllow and mDeny array that include certificate serials of devices that are

either allowed or denied to perform the stated service action. In case a device has not
been listed in either one, the default policy action mDefault will be applied.
 Moreover, policy rules also include a mSecurityMode attribute, which is more or less
similar to the one defined within the Session structure. However, whereas the
mSecurityMode attribute within a session defines the actual applied security mode, the
attribute within a policy rule is to be interpreted as a minimum condition requirement for

performing the set of service actions.
 Therefore, the security mode defined in a policy rule may differ from the actual
security mode declared in a session. For example, a policy rule may define an
authenticated security mode, while the session could apply authenticated and encrypted
communication.

Policy Manager

The Policy Manager provides several basic methods that are accessed by the Session
Manager and exposed through the Intel UPnP stack and OSGi UPnP Base Driver.

 The checkPolicy method, depicted earlier in section 5.3, is exported by the gateway as a
UPnP service to offer centralized policy enforcement. Once a checkPolicy method call leads
to a positive result, the Policy Manager will request the Session Manager to either include
the device and service ID to an existing session, or to create a new one.

 Similar to Sessions, adding a new Policy Rule must not lead to ambiguity with the
existing set of policy rules.

.NET integration TEAHA

80

6.2.3 Crypto

The Crypto Engine handles all cryptographic processing and initializes different encryption
protocols. The Crypto Protocol base class consists of a list of cryptographic methods that is
common to encryption protocols.

Figure 40: Crypto Management

Crypto Protocols

The DH and the SymmetricKey classes represent encryption protocols that extend the
CryptoProtocol base class. Both protocols define a generateKey method, which produces a key
based on a set of key establishment parameters.
 The list of common cryptographic methods contains a decrypt, encrypt, sign and verify
procedure. The aforementioned methods all request a msg and key parameter, while the
latter one defines an additional signature value that is verified against the other two input
values.

 The first two methods correspondingly receive an encrypted and an unencrypted
message as input, and use the provided key value to process the message and
subsequently return a decrypted and an encrypted result.
 Finally, the last two complementary methods respectively return a message signature
and a Boolean that indicates whether the message has a valid signature.

Crypto Engine

The Crypto Engine provides several methods that will be accessed by the Intel UPnP stack

and Domoware UPnP Base Driver. The provided methods verifyCert and processMsg
correspondingly verifies a certificate against a TEAHA Certificate Authority, and allows
cryptographic processing of encrypted and unencrypted messages.
 Both processMsg methods declare a type input parameter, which indicates whether the
second id attribute refers to a device or a service. While the processRcvMsg method may
need to decrypt incoming messages and verify their signature, the complementary
processSndMsg may encrypt and sign the message depending on the applied Security Mode

that is applied in the session.
 In order to obtain the used encryption key, the id and type parameters are send to the
Session Manager, which will then return a mKeyHash reference. The Crypto Engine can then
proceed requesting the actual key data from the Secure Storage for further processing.
 Additionally, a verifyTimeStamp method has been declared that takes an Unix UTC
Timestamp string as input value, and compared against the current Unix UTC value of the

local device’s system time. Moreover, mTimeSkew contains a correction value that is applied
during comparison, and is computed by subtracting the local timestamp from the ones
provided by the gateway.

.NET integration TEAHA

81

6.2.4 Secure Storage

The Secure storage Manager stores confidential information, such as the device’s digital
and TEAHA CA certificate, and instances of the key structure.

Figure 41: Storage Management

Certificates

Even though the digital certificates have been modeled as a class, in reality they will
consist of local files that will contain the private or public parts of certificates.
 The classes have only been added for the purpose of providing an overview on the
internal data structures of certificates. As described by the diagram, DH key establishment

parameters are included within digital certificate in order for receiving devices to initiate
DH key agreement. However, the key establishment parameters may also be provided as
predefined constant parameters that do not change over time. Moreover, the mCASign
attribute represents the certificate signature generated by a TTP TEAHA Certificate
Authority. Receiving devices can use this signature to verify the validity and authenticity of
the certificate against the CA’s public certificate.
 Aside from storing digital certificates, the Secure Manager also manages instances of

the key structure, which has been described previously in the Session Management class
diagram. Also, as mentioned before, access to confidential data kept in secure storage is
only granted to the Crypto Engine. Hence, the methods defined by the Secure Storage will

solely be available to the Crypto Engine.
 Besides methods for getting the public and private part of the device certificate, the
Secure Storage manager also defines a setCertificate method, which references the public
and complementary private part of a certificate. Concluding, for adding newly generated

keys, the Crypto Engine provides the addKey method.

6.2.5 Bridge Controller

The SM Bridge Controller is responsible for initiating and interlinking the SM submodules.
Moreover, the controller also bridges with the UPnP OSGi bundle or Intel UPnP Stack by
providing service hooks to them.

Figure 42: Bridge Controller

The Bridge Controller contains several private members that each consist of a pointer to a

SM submodule after initialization. In addition, the service hooks provided to UPnP are
implemented in the classes that provide the corresponding services.

.NET integration TEAHA

82

6.3 Extending UPnP Messages

This section describes how to facilitate secure communication by processing UPnP
messages that are extended with additional security information. For reference purpose,
several examples of regular UPnP messages are available in appendix 10.4.

To enable secure communication, an additional set of HTTP message headers are required:

<SIGN> Denotes signature of the message.

<ID> Contains the serial of the certificate referencing the sending device.

<KH> Contains a keyhash reference to the key used for decrypting and verifying the
message, which uniquely identifies a session.

<TS> Contains a (time skew corrected) timestamp value, defined in Unix UTC.

<IK> Contains device’s DH interkey (public modulus of the secret random number).

When a message is send, the corresponding session is first determined in order to acquire
the applied security mode. If the security mode does not set encryption or authentication,

the message will be send unprocessed.

 M-SEARCH * HTTP/1.1
 ST: upnp:rootdevice
 MX: 10
 MAN: "ssdp:discover"
 HOST: 239.255.255.250:1900

Figure 43: Regular UPnP Message

Authenticated
In case authentication is to be used, then a TS header is first added, after which the
signature of the extended message is generated.
 Following, the message is extended with the SIGN and ID headers, which
correspondingly enclose the generated signature and the serial reference to the certificate

for validating the signature.
 Upon receiving the message, the receiver will first fetch the corresponding certificate
that is referenced by the enclosed ID header. Next, the TS value is compared with the
current Unix UTC timestamp on the local device to verify if the message is still valid.
 After the timestamp has been validated, the receiver removes the SIGN and ID headers
and verifies the remainder of the message against the SIGN value. In case the TS or ID
headers have been tampered with, the signature verification will simply fail.

 M-SEARCH * HTTP/1.1
 ST: upnp:rootdevice
 MX: 10
 MAN: "ssdp:discover"
 HOST: 239.255.255.250:1900
 TS : 1057550400
 ID: 2C41963FF4BC60B9451E2A8E66A24AE
 SIGN: chIKzL59oxeJEnC2epDpX5pdnUY=

Figure 44: Authenticated UPnP Message

Encrypted
If encryption is also applied, then the message will first be entirely encrypted. Following,
the ID, TS, KH and SIGN header are added after which the message is send.
 Upon receiving the message, the TS value and the message signature are verified after
which the encrypted message in the message body will be decrypted.
 ID: 2C41963FF4BC60B9451E2A8E66A24AE1
 TS : 1057550400
 KH: S+P2CA0gKUtT5Gk/yGxg0hEhQgY=
 SIGN: chIKzL59oxeJEnC2epDpX5pdnUY=
 <DATA> ZQAPAGkAEQAEAAQAZwACAA4AEQ……………….D0ASQAVABIAZAALABQARAAyACoANQB+

Figure 45: Full Secure UPnP Message

.NET integration TEAHA

83

6.4 Code Structure

Based on the previous class diagrams, pseudocode can be created that eventually is fitted
into a separate .NET and OSGi implementation. An overview of the created pseudocode,
which depicts the general code structure, is provided in appendix 10.3.

 The referenced code defines several object members, such as the mSessions member
declared in SessionManager, which are similar to Hashtables in Java. However, C#, the
matching equivalent of Java Hashtables are called Dictionaries.

 Public Dictionary<string, Session> mSessions = new Dictionary<string, Session>();

Figure 46: C# Dictionary Type

The Session and Key structs are defined in Java as regular classes while the struct type is
provided in C#.

 public struct Key{
 public string mKeyHash;
 public byte[] mKey;
 public CryptoProtocol mProtocol;
 public DHParams mDHParams;
 }

Figure 47: C# Structs

 Also Set variables such as mAction that may have multiple values declared, are defined

in C# as enum with an additional [flags] attribute to allow bitwise operations. The declared
enumeration are always powers of two, consequently, each bit position represents a single
enum option.

 [Flags]
 public enum ServiceAction{
 discovery = 1,
 description = 2,
 subscription = 4,
 invoke = 8,
 }

 ServiceAction action = ServiceAction.discovery | ServiceAction.description;

Figure 48: C# Enum Sets

6.5 Implementation

This section discusses how to attach the service hooks provided by the SM within UPnP and
how to implement DH and Certificates within .NET and OSGi.

6.5.1 Service Hooks

All service hooks provided by the Crypto Engine are attached, according to the OSI Seven
Layer model, in the most upper layer: The Application Layer.
 Upon receiving a secure message, the SM verifies and restores the original UPnP
message by removing the additional security headers, and decrypting the data stored in

the message body if encryption is used. Subsequently, the SM forwards the resulting UPnP
message back to the UPnP stack or bundle for further UPnP processing and dispatching.

 In the event of a UPnP message being send, the SM will use the included message
headers and content to determine what parameters to apply for cryptographic processing.
 Seeing that both receiving and sending messages require reading and writing header
tags, the service hooks must be attached somewhere in the transport chain that allows
message-level processing.
 Consequently, service hooks that process received messages must be placed right
after an incoming message has been converted from a lower-level transportable byte into

its internal UPnP message representation. Whereas, service hooks that handle outgoing
messages must be attached right before a message is serialized into its transportable byte
representation.

.NET integration TEAHA

84

 Intel UPnP Stack

The service hooks, provided by the Bridge Controller, are primarily placed in the UPnPDevice
class of the UPnP stack. The class offers methods for creating and managing UPnP Devices,
and procedures for sending and processing received UPnP messages. Additionally, the
service hooks must also be placed in the following classes: UPnPService, UPnPControlPoint,

UPnPComponent, HTTPRequest, HTTPSession and UPnPDeviceFactory

 OSGi UPnP Bundle

The OSGi bundle relies on the CyberLink UPnP Java library [92] for creating UPnP Devices,
and handling sent and received UPnP messages. The aforementioned Service Hooks
provided by the Bridge Controller are placed in the following UPnP Java Library classes:
HTTPSocket, HTTPMUSocket, HTTPUSocket.

 Furthermore, the HTTPPacket class is extended with a removeHeader procedure that
facilitates the removal of the additional security header tags, which have been described in
section 6.3.

6.5.2 Initializing Security Module

Upon creating a UPnP Device, the SM must be initialized and managed through the central
Bridge Controller with a required Security Mode.
 Within the Intel UPnP stack, the Bridge Controller is instantiated in the public

constructer of the UPnPDevice class; whenever a UPnP Device is created, the SM will be
initialized with the required security mode.
 Furthermore, in order to properly close the application process and release memory,
the UPnPDevice.dispose() method must be invoked upon exiting the application.
 As for the OSGi UPnP bundle, the Bridge Controller is instantiated within the BuildDevice
class of the aforementioned CyberLink UPnP Java Library.

6.5.3 DH

The authenticated version of DH (STS) is implemented in the .NET and OSGi framework
and relies on certificates for authenticating devices. In order to use DH, suitable key
establishment parameters (Generator and Prime) need to be selected. Instead of including
these parameters within the certificates a set of predefined establishment parameters will

be used for TEAHA devices.

.NET

Contrary to the full .NET Framework, .NET CF does not include the ECDiffieHellmanCng class
to perform DH key exchange operations. As a result, sample code available at [93] have
been converted and applied for including DH support. However, as the main purpose of the
sample code was to demonstrate the basic concepts of DH, the resulting generated
exchange keys were considered far too small to be suitably used for cryptographic
processing.
 Eventually, the package available at [94] had been used for providing DH. Initially, the

package had been imported, compiled and accessed by the SM classes as a separate
external module, which however lead to severe performance issues.
 Nevertheless, by integrating the necessary classes (BigInteger) directly into the SM, and
by removing unnecessary parts and performing code optimization; the average
initialization time of the SM was successfully being reduced from fifty to merely eight
seconds.

Java

Java provides support for DH through the additional javax.crypto.KeyAgreement and
javax.crypto.spec.DHParameterSpec package. However, the key establishment parameters
used in [94] have been declared as byte array values, whereas Java only accepts key
establishment parameters that are defined as decimal values.
 Nevertheless, [95] describes both decimal and corresponding HEX values of the
generator and prime parameters as applied in [94].

.NET integration TEAHA

85

6.5.4 Certificates

Certificates are essential to enabling authentication with DH (STS). RSA-SHA1 has been
selected as the signing algorithm with certificates. Although 1024-bit asymmetric RSA keys
are possible, according to [96] only RSA keys with a key size larger than 2048-bit are
considered as to be secure.

 .NET

In [97] has been described how to generate X.509 CA certificates and certificates that are
signed by these CA certificates, while [98] describes how certificates can be installed on
Windows Mobile-based devices. Moreover, both .NET Frameworks provide the
System.Cryptography.X509Certificates namespace for processing X509 Certificates.
 Within .NET, the private keys of certificates are stored within secure key containers

that are referenced by a unique container name. In order to utilize a certificate’s private
key for creating signatures, the corresponding container name must be known.
Unfortunately, contrary to the full .NET Framework, the .NET CF does not provide methods
for retrieving the container name of a certificate.
 As an alternative solution, the container name of the private key could be parsed from

the X509Certificate.ToString(true) procedure that provides information about the a
certificate’s private key container. However, this turned out to be an unsuitable solution as

the .NET CF implementation of the procedure does not include key container information.
 Although, P/Invoke could be used to access the OS’s underlying CryptoAPI library, this
approach relies on specific Windows OS libraries that renders the solution only suitable for
the Windows (Mobile) environment.
 Fortunately, a Windows CE utility is available at [100] for importing private keys (PVK)
files into a predefined custom container name. As the SM only needs to store one private
key at a time (the certificate’s private key of the device itself), the private key can always

be referenced with the predefined container name.
 In appendix 10.5 the commands are depicted that are used for creating the required
TEAHA Root CA and TEAHA Device certificates that can be used with [100].

 Java

In Java the corresponding certificate stores are referred to as Java Keystores (JKS), which
are in essence password protected files that store keys and certificates. For the purpose of

importing (PFX) certificates, which can contain both public and private keys, into Java

Keystores, the procedure depicted in [101] can be used.
 In addition, similar to .NET, Java provides the java.security.cert.X509Certificate packet for
validating, verifying and processing X509 certificates.

.NET integration TEAHA

87

7 Conclusions

Transparent and secure communication between .NET and TEAHA devices and services is
feasible using the design introduced in chapter 5, which incorporates the Station-to-Station
(STS) Protocol, UPnP and the concept of Security Modules (SMs).
 Prior to composing the final design, several .NET communication protocols have been

reviewed as potential solutions, including .NET Remoting, WSs and Sockets. The focus of
attention has primarily been on the aforementioned technologies as they are the main
communication protocols that are natively supported by the .NET platform. Although,
many of these protocols seemingly offer viable solutions for implementing communication
between .NET and TEAHA, during the design and implementation process the protocols
introduced several unforeseen problems.

.Net Remoting Concept
Because .NET Remoting does not provide SD, a design concept had been introduced that
combines .NET Remoting and UPnP. However, support on the .NET CF is nonexistent while

available solutions do not enable true .NET Remoting.
 Moreover, currently the OSGi framework does not provide support for .NET Remoting.
Although, several commercial .NET Remoting bridging solutions are available for Java and
.NET, in view of the project requirements and available alternatives, the protocol has been

regarded as unsuitable for implementing communication.

Web Services Concept
WS support on the .NET CF is limited and only partially implemented; WS hosting is not
supported, while the WS-Discovery, WS-Security and WS-Eventing specification have not
been implemented. Nevertheless, with help of external code, the .NET CF can still be

extended with WS-Security and WS-Eventing.
 Seeing that support for WS-Discovery on the .NET CF is not available, a design has
been introduced that has been based on both WSs and UPnP. The design requires the
TEAHA gateway to host WSs, while .NET devices correspondingly take the role of WS
clients. Although, the design is a viable and feasible solution, it was eventually regarded as
a less suitable approach when compared to the design that is solely based on UPnP.

Sockets Concept
The Sockets design requires implementing basic functionality that is mostly already part of
several alternative communication technologies. Important design requirements such as
eventing, SD, programming language and OS independent communication, and
transparent service access are already provided by UPnP. Therefore, the sockets design is
considered to be the least appropriate choice.

Final Design
As TEAHA relies on UPnP for discovering, accessing and providing services, the UPnP
protocol is considered as a congruent choice for enabling communication between .NET
and TEAHA devices. Furthermore, the available Intel UPnP stack is conveniently suitable
for both the .NET CF and full .NET Framework.
 In addition, contrary to the other design proposals, the UPnP design is based on a

single communication protocol, which results in a design that is comparatively less difficult
to implement.

Security

In order to offer secure interaction between .NET and TEAHA, the concept of Security
Modules (SMs) described in section 5.2.2, has been incorporated into the final design.
 The SM concept defines a set of hard- and software based submodules that provide

authentication, encryption and policy enforcement through service hooks. Furthermore, the
SM is extended with an additional SM Bridging Controller module, whose purpose is to
initialize and interlink the separate SM submodules, and to forward and attach the service
hooks within the OSGi UPnP Base Driver and Intel UPnP Stack.
 Moreover, if the SM is implemented in hardware, protection against cloning is provided
while resource-restricted devices are relieved from intensive encryption and authentication
processing.

.NET integration TEAHA

88

Design Requirements
Seeing that many of the design requirements in section 2 relate to typical SD
characteristics, a design that is based on the UPnP SD protocol will consequently largely
comply with the aforementioned set of requirements:

[R1, R2] The design enables transparent access and discovery of .NET and TEAHA

services with help of UPnP SD protocol.

[R3] The design provides support for the .NET CF, as the design relies on the Intel

UPnP stack that can be used on the .NET CF as well as the full .NET Framework.

[R4] The design offers policy enforcement on service access and discovery through

policy tables that are managed by the Policy Manager module.

[R5] The design supports action as well as event driven user-service interaction,

which is a design requirement that is already a fundamental feature of the UPnP

protocol specification. As a result, the UPnP design allows TEAHA and .NET
devices to offer services, and enable other network devices to subscribe to
specific service events.

[R6] The design is based on non-proprietary standards or software; UPnP is based on

Internet standards and defined as an open standard, while all used external
code are provided with licenses to copy, modify and create derivative works of

the source code.

[R7] The design uses protocols that are well supported by the .NET and TEAHA

framework; UPnP can be implemented with help of the available OSGi bundles
and Intel UPnP stack.

[R8] The current proposed design is less suitable in terms of scalability. Within the

UPnP design, the TEAHA gateway handles policy enforcement, and conversion of
service requests and responses between UPnP and TEAHA. Consequently,
increasing the number of connected TEAHA and UPnP devices will eventually

result in a service load that can only be handled by multiple gateways or
increasing current processing capabilities.

Concluding
The introduced design based on the UPnP SD protocol, SM concept and STS Key Exchange
Protocol offers transparent and secure communication with policy enforcement between
.NET and TEAHA devices and services. Furthermore, the design relies on open internet
and non-propriety standards and software, and offers support for both action and event

driven service interaction.
 Seeing that policy enforcement, and conversion of service requests and responses is
entirely handled by the central TEAHA gateway, the design is considered to be limited in
terms of scalability. The increase of the number of connected TEAHA and UPnP devices will
eventually require expanding the resource capabilities of the central TEAHA gateway or by
distributing the service load amongst additional TEAHA gateways.

.NET integration TEAHA

89

8 Recommendations for future work

This section discussed recommendations on future work and alternative designs using
previous introduced communication technologies to improve the current design.

WCF

As has been often depicted, WS support is still limited on the .NET CF and therefore
currently not suitable for implementation. However, as the .NET CF is still under major
development and WCF support is slowly being added, it may eventually be advisable to
reevaluate the possibility of using WCF instead.
 WCF offers benefits over regular WSs in terms of performance and added security
features. However, seeing that UPnP is being used in TEAHA, designs based on UPnP may
still provide a more congruent fit with TEAHA.

Bandwidth-efficiency
In [99], compression of mobile WS interactions have proven to reduce message sizes and

increase bandwidth-efficiency and WS performance when using slow and expensive
connectivity, such as GPRS. At the expense of consuming CPU cycles at both the server
and client, applying compression may be worth considering as both WSs and UPnP greatly
rely on bandwidth-inefficient SOAP/XML based communication. Moreover, compressed and

reduced message sizes also leads to less data that requires cryptographic processing,
which also benefits overall performance.

UPnP Security
Although a UPnP design based on STS and the Security Module concept was chosen for
implementing secure communication, a design based on UPnP Security V1 may offer a

more congruent solution. Seeing that the specification enables the user to only encrypt
parts within a SOAP message that are considered as confidential, a more efficient security
solution is provided to the current one as it requires encryption of full-length messages.
However, feasibility will largely depend on TEAHA’s requirements for policy enforcement as
they may be too complex to be properly defined and handled with UPnP Security V1.

Policy Enforcement

Several policy enforcement design proposals have been introduced, although feasible, the
proposals are a bit cumbersome. A more communication-efficient design can be realized if
policy rules are not solely stored and managed by the gateway, but also cached on devices
that provide the services and enforce policies. This approach will however introduce
several new problems such as managing cache renewal, available cache storage space,
and acquiring consistency amongst policy rules distributed on several remote devices.

Encryption Protocols
The actual level of security provided depends largely on the encryption protocols being
applied. Moreover, encryption protocols heavily influences performance and likely also PDU
sizes. An in-depth comparison overview is required to select the most suitable protocol
that offers an adequate level of security, acceptable performance requirements and that do
not excessively decreases bandwidth-efficiency.

 The actual level of security provided depends largely on the encryption protocols being
applied. Moreover, encryption protocols heavily influences performance and likely also PDU
sizes. An in-depth comparison overview is required to select the most suitable protocol
that offers an adequate level of security, acceptable performance requirements and that do

not excessively decreases bandwidth-efficiency.

Hardware Based Security Module

While the Security Module concept has only been implemented in software due to practical
reasons, depending on the operational environment, a hardware based implementation
may be more suitable. However, as this solution requires additional hardware, and unless
vendors are willing to incorporate such facilities, providing a suitable implementation on
existing mobile devices is less easy to achieve while guaranteeing device portability.
 In addition, existing available security chips may already autonomously provide most
of the required cryptographic processing, and relate to most of the recommendation topics

above.

.NET integration TEAHA

91

9 Bibliography

[1] TEAHA Consortium: TEAHA IST
 http://www.teaha.org/

[2] Microsoft Corporation: .NET Framework Developer Center
 http://msdn.microsoft.com/netframework/

[3] OSGi Alliance: OSGi - The Dynamic Module System for Java
 http://www.osgi.org/

[4] Microsoft Corporation: .NET Remoting
 http://msdn.microsoft.com/en-us/library/72x4h507.aspx

[5] Wikipedia: Service-Oriented Architecture (SOA)
 http://en.wikipedia.org/wiki/Service-oriented_architecture

[6] OSGi Alliance: About the OSGi Service Platform - Technical Whitepaper (Rev 4.1), Jun 2007
 http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf

[7] OSGi Alliance: OSGi Technology
 http://www.osgi.org/osgi_technology/

[8] OW2 Consortium: Oscar - OSGi framework
 http://oscar.objectweb.org/

[9] The Knopflerfish Project: Knopflerfish - Open Source OSGi
 http://www.knopflerfish.org/

[10] The Eclipse Foundation: Equinox
 http://www.eclipse.org/equinox/

[11] The Eclipse Foundation: Eclipse - an open development platform
 http://www.eclipse.org/

[12] Open Source Zone: Oscar
 http://oszone.org/project/1210

[13] SourceForge: Oscar Bundle Repository
 http://oscar-osgi.sourceforge.net/

[14] Sun Microsystems, Inc.: Java Management Extensions (JMX) Technology
 http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

[15] Wikipedia: .NET Framework
 http://en.wikipedia.org/wiki/.NET_Framework

[16] Microsoft Corporation:
 Differences between the .NET Compact Framework and the .NET Framework
 http://msdn2.microsoft.com/en-us/library/2weec7k5.aspx

[17] Denise Barnes: Fundamentals of Microsoft .NET Compact Framework Development for the

Microsoft .NET Framework Developer, Dec 2003
 http://msdn2.microsoft.com/en-us/library/aa446549.aspx

[18] Dan Fox: The .NET Compact Framework, May 2003
 http://www.samspublishing.com/articles/article.asp?p=31693

[19] .NET Compact Framework Team:
 .NET Compact Framework version 2.0 Performance and Working Set FAQ, May 2005
 http://blogs.msdn.com/netcfteam/archive/2005/05/04/414820.aspx

[20] Microsoft Corporation: Remoting
 http://msdn2.microsoft.com/en-us/library/2weec7k5.aspx#Remoting

[21] Microsoft Corporation: Socket Programming
 http://msdn2.microsoft.com/en-us/library/ms172494.aspx

http://www.teaha.org/
http://msdn.microsoft.com/netframework/
http://www.osgi.org/
http://msdn.microsoft.com/en-us/library/72x4h507.aspx
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf
http://www.osgi.org/osgi_technology/
http://oscar.objectweb.org/
http://www.knopflerfish.org/
http://www.eclipse.org/equinox/
http://www.eclipse.org/
http://oszone.org/project/1210
http://oscar-osgi.sourceforge.net/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://en.wikipedia.org/wiki/.NET_Framework
http://msdn2.microsoft.com/en-us/library/2weec7k5.aspx
http://msdn2.microsoft.com/en-us/library/aa446549.aspx
http://www.samspublishing.com/articles/article.asp?p=31693
http://blogs.msdn.com/netcfteam/archive/2005/05/04/414820.aspx
http://msdn2.microsoft.com/en-us/library/2weec7k5.aspx#Remoting
http://msdn2.microsoft.com/en-us/library/ms172494.aspx

.NET integration TEAHA

92

[22] Microsoft Corporation: SocketOptionName Enumeration
 http://msdn2.microsoft.com/en-us/library/system.net.sockets.socketoptionname.aspx

[23] Mark Prentince: Introduction to Windows Community Foundation for the .NET Compact

Framework Messaging Stack, March 2007
http://blogs.msdn.com/markprenticems/archive/2007/03/27/introduction-to-windows-
communication-foundation-for-the-net-compact-framework-messaging-stack.aspx

[24] Mono
 http://www.mono-project.com/

[25] Richard Smith: DOT NET (or Mono) and Web Services, Jun 2004
 http://www.novell.com/coolsolutions/feature/11227.html

[26] OpenNETCF Consulting, LLC
 http://www.opennetcf.org/

[27] DotGNU Project: DotGNU Portable.NET
 http://www.gnu.org/software/dotgnu/pnet.html

[28] Dave Marshall: Remote Procedure Calls (RPC), May 1999
 http://www.cs.cf.ac.uk/Dave/C/node33.html

[29] OMG: CORBA

 http://www.corba.org/

[30] Refsnes Data: SOAP Tutorial
 http://www.w3schools.com/soap/

[31] Scripting News, Inc: XML-RPC Home page
 http://www.xmlrpc.com/

[32] Wikipedia: XML-RPC
 http://en.wikipedia.org/wiki/XML-RPC

[33] The Apache Software Foundation: Apache XML-RPC
 http://ws.apache.org/xmlrpc/

[34] Oscar Bundle Repository: XML RPC
 http://oscar-osgi.sourceforge.net/repo/xmlrpc/

[35] Charles Cook: XML-RPC.NET, Apr 2008
 http://www.xml-rpc.net/

[36] Rick Strahl:
 Creating and using Web Services with the .NET framework and Visual Studio.Net, Mar 2002
 http://www.west-wind.com/presentations/dotnetwebservices/DotNetWebServices.asp

[37] Refsnes Data: Web Services Tutorial
 http://www.w3schools.com/Web Services/default.asp

[38] Vangie Beal: Understanding Web Services, Oct 2005
 http://www.webopedia.com/DidYouKnow/Computer_Science/2005/web_services.asp

[39] Wikipedia: List of Web Service specifications
 http://en.wikipedia.org/wiki/List_of_Web_service_specifications

[40] Refsnes Data: WSDL Tutorial
 http://www.w3schools.com/wsdl/

[41] Neil Cowburn: Consuming Web Services with the Microsoft .NET CF, Mar 2003
 http://msdn2.microsoft.com/en-us/library/Aa446547.aspx

[42] Bea Systems: Using Polling as an Alternative to Callbacks, Version: 2006.0314.123656
 http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

[43] Reza Shafii: Creating Callback Enabled Clients for Asynchronous Web Services, Mar 2005
 http://dev2dev.bea.com/pub/a/2005/03/callback_clients.html

http://msdn2.microsoft.com/en-us/library/system.net.sockets.socketoptionname.aspx
http://blogs.msdn.com/markprenticems/archive/2007/03/27/introduction-to-windows-communication-foundation-for-the-net-compact-framework-messaging-stack.aspx
http://blogs.msdn.com/markprenticems/archive/2007/03/27/introduction-to-windows-communication-foundation-for-the-net-compact-framework-messaging-stack.aspx
http://www.mono-project.com/Main_Page
http://www.novell.com/coolsolutions/feature/11227.html
http://www.opennetcf.org/
http://www.gnu.org/software/dotgnu/pnet.html
http://www.cs.cf.ac.uk/Dave/C/node33.html
http://www.corba.org/
http://www.w3schools.com/soap/
http://www.xmlrpc.com/
http://en.wikipedia.org/wiki/XML-RPC
http://ws.apache.org/xmlrpc/
http://oscar-osgi.sourceforge.net/repo/xmlrpc/
http://www.xml-rpc.net/
http://www.west-wind.com/presentations/dotnetwebservices/DotNetWebServices.asp
http://www.w3schools.com/webservices/default.asp
http://www.webopedia.com/DidYouKnow/Computer_Science/2005/web_services.asp
http://en.wikipedia.org/wiki/List_of_Web_service_specifications
http://www.w3schools.com/wsdl/
http://msdn2.microsoft.com/en-us/library/Aa446547.aspx
http://edocs.bea.com/workshop/docs81/doc/en/core/index.html
http://dev2dev.bea.com/pub/a/2005/03/callback_clients.html

.NET integration TEAHA

93

[44] Don Box (Microsoft), Francisco Curbera (IBM) et al.: Web Services Eventing, Mar 2006
 http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/

[45] Casey Chesnut: Compact Framework and WSE 2.0 Release, Jul 2004
 http://www.mperfect.net/cfWse2/

[46] Wikipedia: WS-Policy
 http://en.wikipedia.org/wiki/WS-Policy

[47] Roger L. Costello: Building Web Services the REST Way
 http://www.xfront.com/REST-Web-Services.html

[48] Sun Microsystems, Inc.: Metro Web Services Technologies
 http://java.sun.com/webservices/technologies/

[49] The Knopflerfish Project: The Knopflerfish Axis server
 http://www.knopflerfish.org/repo/

[50] Microsoft Corporation: Web Services Enhancements 2.0
 http://msdn.microsoft.com/en-us/library/aa894200.aspx

[51] Microsoft Corporation: Web Services Enhancements 3.0
 http://msdn.microsoft.com/en-us/library/aa139619.aspx

[52] Microsoft Corporation: What's New in Web Services Enhancements (WSE) 3.0
 http://msdn2.microsoft.com/en-us/library/ms977317.aspx

[53] Thiru Thangarathinam: NET Remoting Versus Web Services
 http://www.developer.com/net/net/article.php/11087_2201701

[54] Bert Vanhooff, Davy Preuveneers, (K.U. Leuven, Department of Computer Science):
 .NET Remoting and Web Services: A Lightweight Bridge between the .NET Compact and Full
 Framework, .NET Technologies 2005 Conference, April 2006
 http://www.jot.fm/issues/issue_2006_04/article3.pdf

[55] Mark Strawmyer: .NET Remoting, Oct 2002
 http://www.codeguru.com/csharp/csharp/cs_syntax/Remoting/article.php/c5871/

[56] Ecma International: Standard ECMA-335 - Common Language Infrastructure, Jun 2006
 http://www.ecma-international.org/publications/standards/Ecma-335.htm

[57] Mohammad Adil Akif: J2EE and .NET interoperability through .NET Remoting, Dec 2005
 http://blogs.msdn.com/mohammadakif/archive/2005/12/26/507416.aspx

[58] Payam Shodjai: Web Services and the Microsoft Platform, Jun 2006
 http://msdn2.microsoft.com/En-US/library/aa480728.aspx

[59] Saurabh Gupta:Performance Comparison of Windows Communication Foundation (WCF) with

existing distributed communication technologies, Feb 2007
 http://msdn2.microsoft.com/en-us/library/bb310550.aspx

[60] Budi Kurniawan: Using .NET Sockets, Oct 2002
 http://www.ondotnet.com/pub/a/dotnet/2002/10/21/sockets.htm

[61] Dean Stringer, Mike Vallabh: Summary - SOAP vs XML-RPC vs Others
 http://webteam.waikato.ac.nz/Talks/WebServices/slide15-0.html

[62] Wikipedia: Jini
 http://en.wikipedia.org/wiki/Jini

[63] The Apache Software Foundation: Apache River
 http://incubator.apache.org/river/RIVER/index.html

[64] Robin Cover:
 Microsoft Releases Web Services Dynamic Discovery Specification (WS-Discovery), Feb 2004
 http://xml.coverpages.org/ni2004-02-17-b.html

[65] Tom Fout: Universal Plug and Play in Microsoft Windows XP, Aug 2001
 http://technet.microsoft.com/en-us/library/bb457049.aspx

http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://www.mperfect.net/cfWse2/
http://en.wikipedia.org/wiki/WS-Policy
http://www.xfront.com/REST-Web-Services.html
http://java.sun.com/webservices/technologies/
http://www.knopflerfish.org/repo/
http://msdn.microsoft.com/en-us/library/aa894200.aspx
http://msdn.microsoft.com/en-us/library/aa139619.aspx
http://msdn2.microsoft.com/en-us/library/ms977317.aspx
http://www.developer.com/net/net/article.php/11087_2201701
http://www.jot.fm/issues/issue_2006_04/article3.pdf
http://www.codeguru.com/csharp/csharp/cs_syntax/remoting/article.php/c5871/
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://blogs.msdn.com/mohammadakif/archive/2005/12/26/507416.aspx
http://msdn2.microsoft.com/En-US/library/aa480728.aspx
http://msdn2.microsoft.com/en-us/library/bb310550.aspx
http://www.ondotnet.com/pub/a/dotnet/2002/10/21/sockets.htm
http://webteam.waikato.ac.nz/Talks/WebServices/slide15-0.html
http://en.wikipedia.org/wiki/Jini
http://incubator.apache.org/river/RIVER/index.html
http://xml.coverpages.org/ni2004-02-17-b.html
http://technet.microsoft.com/en-us/library/bb457049.aspx

.NET integration TEAHA

94

[66] Microsoft Corporation: Understanding Universal Plug & Play – whitepaper, Jun 2000
 http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc

[67] Edward F. Steinfeld:
 Home Entertainment Automation Using UPnP AV Architecture and Technology
 http://www.go-embedded.com/UPnP White Paper.pdf

[68] UPnP Forum: UPnP Device Architecture 1.0, Jul 2006
 http://www.upnp.org/specs/arch/UPnP-DeviceArchitecture-v1.0.pdf

[69] Wikipedia: Universal Plug and Play (UPnP)
 http://en.wikipedia.org/wiki/Universal_Plug_and_Play

[70] Robin Cover:
 UPnP Forum Releases New Security Specifications for Industry Review, Aug 2003
 http://xml.coverpages.org/ni2003-08-22-a.html

[71] UPnP Forum: DeviceSecurity:1 Service Template, Nov 2003
 http://www.upnp.org/standardizeddcps/documents/DeviceSecurity_1.0cc_001.pdf

[72] UPnP Forum: SecurityConsole:1 Service Template, Nov 2003
 http://www.upnp.org/standardizeddcps/documents/SecurityConsole_1.0cc.pdf

[73] Intel Corporation: Intel® Tools for UPnP Technologies

 http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/upnp/tools/index.htm

[74] Rich Salz, Securing Web Services, Jan 2003
 http://webservices.xml.com/pub/a/ws/2003/01/15/ends.html

[75] Arjen Lenstra (Lucent Technologies), Benne de Weger (Technische Universiteit Eindhoven):
 On the possibility of constructing meaningful hash collisions for public keys,
 http://www.win.tue.nl/~bdeweger/CollidingCertificates/ddl-full.pdf

[76] Cryptography Research: Hash Collision Q&A, Feb 2005
 http://www.cryptography.com/cnews/hash.html

[77] Martin Gudgin (Microsoft Corp), Marc Hadley (Sun Microsystems, Inc), Tony Rogers (Computer

Associates International, Inc):
 Web Services Addressing - SOAP Binding (W3C Recommendation), May 2006
 http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

[78] Ben Wright: Why can't I just use SSL to protect my Web Services?, May 2003

http://searchwebservices.techtarget.com/ateQuestionNResponse/0,289625,sid26_cid532568_t
ax294320,00.html

[79] Wikipedia: Proxy pattern
 http://en.wikipedia.org/wiki/Proxy_pattern

[80] Microsoft Corporation: Interoperability Fundamentals, Dec 2003
 http://msdn2.microsoft.com/en-us/library/ms978757.aspx

[81] DomoWare: Documentation – UPnP base driver

 http://domoware.isti.cnr.it/documentation.html

[82] Christian Forsberg: Use Threading with Asynchronous Web Services in .Net Compact

Framework to Improve User Experience, Feb 2004
 http://msdn2.microsoft.com/en-us/library/aa446572.aspx

[83] Dmitry Belikov: .NET Remoting - Events. Events? Events!, Nov 2003
 http://www.codeproject.com/csharp/RemotingAndEvents.asp

[84] ELCA: Accessing a RMI/IIOP-based CORBA object with .NET Remoting
 http://iiop-net.sourceforge.net/rmiAdderDNClient.html

[85] Didier Donsez, CORBA Remote Service Impl (corbaservice.jar)
 http://www-adele.imag.fr/users/Didier.Donsez/dev/osgi/corbaservice/readme.html

[86] Kenn Scribner: .NET/Java Interoperability: Apply the Proper Tool for the Job
 http://www.developer.com/java/ent/article.php/10933_3351451_3

http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc
http://www.go-embedded.com/UPnP%20White%20Paper.pdf
http://www.upnp.org/specs/arch/UPnP-DeviceArchitecture-v1.0.pdf
http://en.wikipedia.org/wiki/Universal_Plug_and_Play
http://xml.coverpages.org/ni2003-08-22-a.html
http://www.upnp.org/standardizeddcps/documents/DeviceSecurity_1.0cc_001.pdf
http://www.upnp.org/standardizeddcps/documents/SecurityConsole_1.0cc.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/upnp/tools/index.htm
http://webservices.xml.com/pub/a/ws/2003/01/15/ends.html
http://www.win.tue.nl/~bdeweger/CollidingCertificates/ddl-full.pdf
http://www.cryptography.com/cnews/hash.html
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://searchwebservices.techtarget.com/ateQuestionNResponse/0,289625,sid26_cid532568_tax294320,00.html
http://searchwebservices.techtarget.com/ateQuestionNResponse/0,289625,sid26_cid532568_tax294320,00.html
http://en.wikipedia.org/wiki/Proxy_pattern
http://msdn2.microsoft.com/en-us/library/ms978757.aspx
http://domoware.isti.cnr.it/documentation.html
http://msdn2.microsoft.com/en-us/library/aa446572.aspx
http://www.codeproject.com/csharp/RemotingAndEvents.asp
http://iiop-net.sourceforge.net/rmiAdderDNClient.html
http://www-adele.imag.fr/users/Didier.Donsez/dev/osgi/corbaservice/readme.html
http://www.developer.com/java/ent/article.php/10933_3351451_3

.NET integration TEAHA

95

[87] cglib: Code Generation Library
 http://cglib.sourceforge.net/

[88] Sun Microsystems, Inc.: Dynamic Proxy Classes
 http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html

[89] Jeppe Cramon: DynamicProxy.NET, Oct 2003
 http://www.cramon.dk/dynamicproxy.htm

[90] Angelo Scotto: CompactFormatter -A generic formatter for the .NET Compact Framework
 http://www.freewebs.com/compactFormatter/About.html

[91] Hans Scholten , Hylke van Dijk (University of Twente),
 Danny De Cock, Bart Preneel (KU Leuven), Michel D’Hooge, Antonio Kung (Trialog):
 Secure Service Discovery in Home Networks,
 http://eprints.eemcs.utwente.nl/1649/01/ICCE2006-all.pdf

[92] Cyber Garage: CyberLink – Development Package for UPnP Devices for Java
 http://www.cybergarage.org/net/upnp/java/index.html

[93] Lee Griffiths, Diffie-Hellman Key Exchange Example, Jan 2004
 http://www.codeproject.com/KB/security/DiffieHellmanExample.aspx

[94] The Mentalis.org Team: DiffieHellman

 http://www.mentalis.org/soft/class.qpx?id=15

[95] The Internet Society, H. Orman (University of Arizona):
 RFC2414 - The OAKLEY Key Determination Protocol, Nov 1998
 http://www.ietf.org/rfc/rfc2412.txt

[96] Wikipedia: Key size
 http://en.wikipedia.org/wiki/Key_size

[97] Manu Cohen-Yashar: Creating X.509 Certificates using makecert.exe, Apr 2008

http://blogs.microsoft.co.il/blogs/applisec/archive/2008/04/08/creating-x-509-certificates-
using-makecert-exe.aspx

[98] Microsoft Corporation: How to install root certificates on a Windows Mobile-based device
 http://support.microsoft.com/kb/915840

[99] M. Tian, T. Voight, T. Naumowicz, H. Ritter, J. Schiller (Freie Universität Berlin):
 Performance Considerations for Mobile Web Services
 http://page.mi.fu-berlin.de/~tian/pdf/tian_et_al_aswn_elsevier_journal.pdf

[100] Jacco de Leeuw:
 Personal Certificate Import Utility for Pocket PC 2003 and Windows Mobile, Jun 2007
 http://www.jacco2.dds.nl/networking/crtimprt-org.html

[101] Chris Barber: Converting PFX Certificates to Java Keystores, Apr 2007
 http://www.cb1inc.com/2007/04/30/converting-pfx-certificates-to-java-keystores

References in Appendix

[102] Payam Shodjai: Web Services and the Microsoft Platform, Jun 2006

 http://msdn2.microsoft.com/En-US/library/aa480728.aspx#wsmsplat_topic32

[103] Henk Tiggelaar, Benchmark Results - Mono vs .Net, Apr 2007

 http://readlist.com/lists/lists.ximian.com/mono-list/0/4079.html

[104] ToMMTi-Systems: Performance comparison C++, C# and Java

 http://www.tommti-systems.de/main-Dateien/reviews/languages/benchmarks.html

[105] John Tertin: Mono vs. .NET Framework Benchmark Results

 http://students.uwsp.edu/jtert146/monoframeworktest.xls

http://cglib.sourceforge.net/
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
http://www.cramon.dk/dynamicproxy.htm
http://www.freewebs.com/compactFormatter/About.html
http://eprints.eemcs.utwente.nl/1649/01/ICCE2006-all.pdf
http://www.cybergarage.org/net/upnp/java/index.html
http://www.codeproject.com/KB/security/DiffieHellmanExample.aspx
http://www.mentalis.org/soft/class.qpx?id=15
http://www.ietf.org/rfc/rfc2412.txt
http://en.wikipedia.org/wiki/Key_size
http://blogs.microsoft.co.il/blogs/applisec/archive/2008/04/08/creating-x-509-certificates-using-makecert-exe.aspx
http://blogs.microsoft.co.il/blogs/applisec/archive/2008/04/08/creating-x-509-certificates-using-makecert-exe.aspx
http://support.microsoft.com/kb/915840
http://page.mi.fu-berlin.de/~tian/pdf/tian_et_al_aswn_elsevier_journal.pdf
http://www.jacco2.dds.nl/networking/crtimprt-org.html
http://www.cb1inc.com/2007/04/30/converting-pfx-certificates-to-java-keystores
http://msdn2.microsoft.com/En-US/library/aa480728.aspx#wsmsplat_topic32
http://readlist.com/lists/lists.ximian.com/mono-list/0/4079.html
http://www.tommti-systems.de/main-Dateien/reviews/languages/benchmarks.html
http://students.uwsp.edu/jtert146/monoframeworktest.xls
http://students.uwsp.edu/jtert146/monoframeworktest.xls

.NET integration TEAHA

97

10 Appendix

The appendix includes a WS-* support and .NET performance comparison, several coding
examples, Pseudocode and short descriptions on several types of UPnP PDUs.

10.1 WS-* Support in Microsoft Developer Platform

The following comparison overview is provided by [102].

10.1 Performance comparison Mono/.NET

The table below shows the results [103] of a performance comparison between .NET and

Mono, using C# benchmark code [104]; other comparisons are available at [105].
 Mono 1.2.3.1 .NET 2.0 Percentage (%)

Int arithmetic 8094 5812 + 39.26

Double arithmetic 12141 7249 + 67.49

long arithmetic 26406 16265 + 62.35

Trig 2749 2281 + 20.52

IO 3204 2499 + 28.21

Array 406 203 + 100.00

Exception 3719 26687 - 617.59

HashMap 234 124 + 88.71

HashMaps 5265 3999 + 31.66

HeapSort 609 531 + 14.69

Vector 9953 9890 + 00.64

Matrix Multiply 71562 33687 + 112.43

Nested Loop 10359 22265 - 114.93

String Concat.(fixed) 578 359 + 61.00

Total C# benchmark 155279 131851 + 17.77

Category Protocol / Technology
ASMX

2.0

WSE

2.0

WSE

3.0
WCF

Windows Remote

Mgmt (WinRM) on R2

WS for Devices

(WSDAPI) on Vista

Core Basic Profile 1.1 X X X X

 SOAP 1.1 X X X X

 SOAP 1.2 X X X X X

 WS-Addressing 1.0 X X X X X

Binary Data

Transfer
DIME X

 MTOM X X X

Other Transports

& Encodings
TCP X X X

 UDP X

 HTTP 1.1 X X X X X X

 Text-XML X X X X X X

 Binary-Encoded XML X

 Binary Serialization X X

Security WS-Security 1.0 X X X

 WS-Security 1.1 X X

 WS-SecureConversation 2005/02 X X X

 WS-Trust 2005/02 X X X

 Basic Security Profile 1.0 X X X

 WS-Security SAML Token Profile 1.0 & 1.1 X

Reliability WS-ReliableMessaging 2005/02 X

Transactions WS-Coordination 2005/08 X

 WS-AtomicTransaction 2005/08 X

 WS-BusinessActivity

Metadata, Policy

& Binding
WS-MetadataExchange 2004/09 X X

 WSDL 1.1 X X X X X X

 WS-Policy 2006/03 X

 WS-PolicyAttachment 2006/03 X

 WS-SecurityPolicy 2005/07 X

Management &

Devices
WS-Management 1.0 X

 WS-Transfer 2004/09 X

 WS-Enumeration X

 WS-Eventing X X

 WS-Discovery X

 Devices Profile X

.NET integration TEAHA

98

10.2 Usage example Intel UPnP stack

UPnPLightDevice = UPnPDevice.CreateRootDevice(200,1,"web\\");

UPnPLightDevice.HasPresentation = false;

UPnPLightDevice.FriendlyName = this.Text;

UPnPLightDevice.Manufacturer = "Intel Corporation";

UPnPLightDevice.ManufacturerURL = "http://www.Intel.com";

UPnPLightDevice.ModelName = "Intel CLR Emulated Light Bulb";
UPnPLightDevice.ModelDescription = "Software Emulated Light Bulb";

UPnPLightDevice.ModelURL = new Uri("http://www.Intel.com/xpc");

UPnPLightDevice.ModelNumber = "XPC-L1";

UPnPLightDevice.StandardDeviceType = "BinaryLight";

UPnPLightDevice.UniqueDeviceName = Intel.Utilities.Guid.NewGuid().ToString();

//LightService

UPnPLightService =

 new UPnPService(1,"SwitchPower.0001","SwitchPower",true,this);

UPnPLightService.AddMethod("SetTarget");
UPnPLightService.AddMethod("GetStatus");

//get command

UPnPStateVariable UPnPStatusVar =

 new UPnPStateVariable("Status",typeof(bool),true);

UPnPStatusVar.AddAssociation("GetStatus","ResultStatus");

UPnPStatusVar.Value = false;

UPnPLightService.AddStateVariable(UPnPStatusVar);

//set command

UPnPStateVariable UPnPTargetVar =

 new UPnPStateVariable("Target",typeof(bool),false);

UPnPTargetVar.AddAssociation("SetTarget","newTargetValue");

UPnPTargetVar.Value = false;

UPnPLightService.AddStateVariable(UPnPTargetVar);

UPnPLightDevice.AddService(UPnPLightService);

// Dimmable device

UPnPDimmerService =

 new UPnPService(1,"DimmingService.0001","DimmingService",true,this);

UPnPDimmerService.AddMethod("SetLoadLevelTarget");

UPnPDimmerService.AddMethod("GetLoadLevelStatus");

//get command

UPnPStateVariable UPnPLevelStatusVar =

 new UPnPStateVariable("LoadLevelStatus",typeof(byte),true);
UPnPLevelStatusVar.AddAssociation("GetLoadLevelStatus","RetLoadLevelStatus");

UPnPLevelStatusVar.Value = (byte)100;

UPnPLevelStatusVar.SetRange((byte)0,(byte)100,null);

UPnPDimmerService.AddStateVariable(UPnPLevelStatusVar);

//set command

UPnPStateVariable UPnPLevelTargetVar =

 new UPnPStateVariable("LoadLevelTarget",typeof(byte),false);

UPnPLevelTargetVar.AddAssociation("SetLoadLevelTarget","NewLoadLevelTarget");

UPnPLevelTargetVar.Value = (byte)100;
UPnPLevelTargetVar.SetRange((byte)0, (byte)100, null);

UPnPDimmerService.AddStateVariable(UPnPLevelTargetVar);

UPnPLightDevice.AddService(UPnPDimmerService);

UPnPLightDevice.StartDevice();

.NET integration TEAHA

99

10.3 Pseudocode Implementation

Package sm.parameters
 /**
 * Contains a list of parameters that have predefined set of values
 **/
Type ServiceAction { discovery, description, subscription ,invoke }
Type SecurityMode { authentication, encryption }
Type DeviceService { device, service }
Type AllowDeny { deny, allow }
Type Protocol { dh, symmetric }

Package sm.structs

Import SM.Parameters

Struct Session {
 mKeyHash: string

 mDevices: array
 mServices: array
 mAction: ServiceAction
 mSecurityMode: SecurityMode
}

Struct Key {
 mKeyHash: string
 mKey: string
 mKeyProtocol: Protocol
 mParams:array
}

Struct PolicyRule {
 mID: string
 mType: DeviceService
 mAction: ServiceAction
 mSecurityMode: SecurityMode
 mDefault: AllowDeny
 mAllow: array
 mDeny: array
}

Struct CryptoParams {
 mKeyHash: string
 mSecurityMode: SecurityMode
}

Struct Certificate {
 publicPart: string
 privatePart: string
}

Package sm.session

Import sm.parameters
Import sm.structs

Public Static Class SessionMgr {
 Private Session[keyHash] mSessions

 /**
 * Accessed by PolicyManager for adding a session based on allowed policy rules
 **/

 Public bool addSession(string keyHash, string id, DeviceService type, ServiceAction action){
 * Check if keyHash exists in session pool, if not add the session to the pool *
 return boolean indicating if session was added
 }

.NET integration TEAHA

100

 /**
 * Accessed by CryptoEngine for adding a session based on allowed policies
 **/
 Public CryptoParams getCryptoParams(string id, DeviceService type, ServiceAction action){
 * Perform search in session for service or device id, based on type. Return CryptoParams *
 return fetched CryptoParams (if available)
 }

 /**
 * Accessed by Accessed by CryptoEngine if a particular key is getting updated
 **/
 Public bool updateKey(string oldHash, string newHash){
 * Get session with oldHash reference and replace value with newHash *
 return boolean indicating if key was updated
 }
}

Package sm.policy

Import sm.constants
Import sm.structs

Public Static Class PolicyMgr {

 Private PolicyRule[] mPolicyRules

 /**
 * Forwarded as UPnP service for checking policy for a particular service, device and service action
 **/
 Public bool checkPolicy(string device, string service, ServiceAction action){
 * Search for rules with ServiceID and action as key and perform check and return result *
 return boolean indicating if action is allowed
 }

 /**
 * Forwarded as an UPnP service allowing authorized devices to manage policy rules
 **/
 Public bool addRule(array authParams, PolicyRule rule){
 * If authorized, add rule to mPolicyRules *
 return boolean indicating if rule is added
 }
 Public bool delRules(array authParams, string ServiceID){
 * If authorized, search for rules and remove from PolicyRule *
 return boolean indicating if rule is removed
 }
 Public PolicyRule[] getRule (array authParams, string ServiceID){
 * If authorized, search for rules with ServiceID and return as result *
 return fetched rules (if available)
 }
}

Package sm.crypto

Import sm.crypto.protocol
Import sm.crypto.protocol.sts
Import sm.crypto.protocol.symmetric

Public Static Class CryptoEngine {
 Private mKeyParams
 Private static Protocol STS
 Private static Protocol Symmetric

 Public CryptoEngine(){
 STS = new STS()
 Symmetric = new Symmetric()
 }

 Public bool verifyCert(string cert, string certCA){
 return boolean indicating if certificate is valid
 }

.NET integration TEAHA

101

 /**
 * Accessed by controller for processing messages based on input parameters
 **/
 Public string processMsg(string msg, string id, type type){
 SessionMgr->getCryptoParams()
 return string consisting of the processed message
 }
}

Package sm.crypto.protocol

Interface Protocol{
 Public string decrypt(string msg, string key)
 Public string encrypt(string msg, string key)
 Public string sign(string msg, string key)
 Public bool verify(string msg, string key, string signature)
 Public array generateKey(array params)
}

Package sm.crypto.Protocol.DH

Class STS implements Interface Crypto Protocol{
 Public string generateKey(array params){

 STS
 return string
 }
…
}

Package sm.crypto.protocol.symmetric

Class Symmetric implements Interface Crypto Protocol{
 Public string generateKey(array params){
 return array with the encryption key as a single element
 }
…
}

Package sm.storage

Class SecureStorage{
 Private array mStorage
 Private TeahaCertificate
 Private DeviceCertificate

 Public string getCertificatePrivate(){
 return string
 }

 Public string getCertificatePublic(){
 return string
 }

 Public string getKey(string keyHash){
 return string consisting of
 }

 Public bool addKey(string key){
 return boolean indicating if key is added
 }
}

.NET integration TEAHA

102

10.4 UPnP Messages

Several examples of UPnP messages that are sent during UPnP communication are
described in the following section. The listed message examples are sent by the UPnP light
and control point application, which are included within the Intel UPnP stack package.

 Most UPnP messages that start with a NOTIFY or M-SEARCH header are multicasted
using HTTPMU, while other messages rely on unicast HTTP or HTTPU. Due to the unreliable
nature of UDP, multicast messages are advice to be sent more than once.
 A complete overview of the UPnP architecture and description of UPnP messages is
provided by [68].

10.4.1 Notification

When a UPnP device enters the network it will multicast multiple messages, one for the

root device and one for each service or embedded device it may contain.
 The Notification Sub Type (NTS) sddp:alive indicates that the device is available on the
network. The Unique Service Name (USN) uniquely identifies the device or service and
consists of a Unique Device Name (UDN) and its Notification Type (NT).

 In addition, the device is required to resend a notification message within the max-age
expiration value, defined in seconds, to notify that the device or a service is still available.
 NOTIFY * HTTP/1.1
 NT: upnp:rootdevice
 USN: uuid:cbc7208e-b395-4e61-acd0-9883071ef021::upnp:rootdevice
 NTS: ssdp:alive
 SERVER: Windows NT/5.0, UPnP/1.0, Intel CLR SDK/1.0
 LOCATION: http://10.0.1.1:61342/
 HOST: 239.255.255.250:1900
 CACHE-CONTROL: max-age=900
 Content-Length: 0

Figure 49: Enter Network

When a device leaves the network or is no longer available, it will multicast a ssdp:byebye

message for each previous sent sddp:alive message that has not yet expired. If however
the device would abruptly leave the network, the max-age expiration value will still enable
UPnP devices to eventually conclude that the device and its services can no longer be

accessed.
 NOTIFY * HTTP/1.1
 NT: upnp:rootdevice
 USN: uuid:cbc7208e-b395-4e61-acd0-9883071ef021::upnp:rootdevice
 NTS: ssdp:byebye
 HOST: 239.255.255.250:1900
 Content-Length: 0

Figure 50: Leave Network

10.4.2 Discovery

M-SEARCH messages are search requests that are multicasted using HTTPMU and include a
Search Target (ST) for a particular device, device type, service, service type or all devices.
Moreover, sddp:all can be used as ST value to discover all available root or embedded
devices and services on the network.

 Devices or services that match the ST value should wait a random number of seconds,
up to the MX indicated value, in order to avoid flooding the requesting device with search
responses from multiple devices.
 M-SEARCH * HTTP/1.1
 ST: upnp:rootdevice
 MX: 10
 MAN: "ssdp:discover"
 HOST: 239.255.255.250:1900

Figure 51: Search Root Devices

M-SEARCH responses messages are unicasted using HTTPMU and follows the same pattern
as for the aforementioned NOTIFY advertisements. In case devices wish to interact with the
responding device, the UPnP device description referenced by LOCATION header will be
required.

.NET integration TEAHA

103

 HTTP/1.1 200 OK
 LOCATION: http://10.0.2.3:64270/
 EXT:
 SERVER: PPC2002, UPnP/1.0, Intel MicroStack/1.0.1186
 USN: uuid:MJWTWVBTBMRIZCOOION::upnp:rootdevice
 CACHE-CONTROL: max-age=1800
 ST: upnp:rootdevice

Figure 52: Search Response

10.4.3 Subscription

Subscription messages are sent using HTTP TCP/IP and contain the service that is
subscribed to, and a HOST header that references the location the message is send to. The
CALLBACK defines the location that event messages must be sent to.
 SUBSCRIBE /SwitchPower/event HTTP/1.1
 NT: upnp:event
 TIMEOUT: Second-300
 HOST: 10.0.2.3:8085
 CALLBACK: <http://10.0.1.1:9696/KYRJDHIGICCOYNCKYWC/SwitchPower.0001>

 Content-Length: 0

Figure 53: Subscribe

If the subscription request has been processed, a subscription response is sent back to the
subscriber using HTTP TCP/IP. The Subscription Identifier (SID) header is a unique id.
 HTTP/1.1 200 OK

 SERVER: PPC2002, UPnP/1.0, Intel MicroStack/1.0.1181
 SID: uuid:1
 TIMEOUT: Second-300
 Content-Length: 0

Figure 54: Subscribe Response

10.4.4 Event Notification

Event notification messages are sent using HTTPU and contain a HOST header to which the
notification is sent to, and a NOTIFY header defining the method that notifies the subscriber

about the particular event. Moreover it contains the Subscribers ID (SID) and a SEQ
header that defines a sequence number in order for subscribers to distinct events.
In addition, the event value is also enclosed and attached as a SOAP message.
 NOTIFY /KYRJDHIGICCOYNCKYWC/SwitchPower.0001 HTTP/1.0
 HOST: 10.0.1.1:9696
 Content-Type: text/xml
 NT: upnp:event
 NTS: upnp:propchange
 SID: uuid:1
 SEQ: 1
 Content-Length: 156

 <?xml version="1.0" encoding="utf-8"?>
 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
 <e:property>
 <Status>true</Status>
 </e:property>
 </e:propertyset>

Figure 55: Event Notification

A subscriber must respond within 30 seconds to the eventing device, after it has correctly
received the event notification.

 HTTP/1.1 200
 OK
 Content-Length: 0

Figure 56: Received Event Notification Confirmation

.NET integration TEAHA

104

10.4.5 Service Request

Finally, service requests are issued as a SOAP message that is send via HTTP TCP/IP. The
request message contains a POST header which defines the control URL for the requested
service and a SOAPACTION header that defines the action to be performed. In adition it
contains a HOST header that defines the location to which the message is sent to.
POST /SwitchPower/control HTTP/1.1
SOAPACTION: "urn:schemas-upnp-org:service:SwitchPower:1#GetStatus"
CONTENT-TYPE: text/xml ; charset="utf-8"
HOST: 10.0.2.3:8085
Content-Length: 282

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Body>
 <u:GetStatus xmlns:u="urn:schemas-upnp-org:service:SwitchPower:1" />
 </s:Body>
</s:Envelope>

Figure 57: Service Request

Responses to service requests are also enclosed within a SOAP message. The body of the
soap message contains the service reference and the status value of the service.
HTTP/1.0 200 OK
EXT:
CONTENT-TYPE: text/xml
SERVER: PPC2002, UPnP/1.0, Intel MicroStack/1.0.1181

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Body>
 <u:GetStatusResponse xmlns:u="urn:schemas-upnp-org:service:SwitchPower:1">
 <ResultStatus>0</ResultStatus>
 </u:GetStatusResponse>
 </s:Body>
</s:Envelope>

Figure 58: Service Response

10.5 Certificates

The following commands depict the creation of the TEAHA Root CA Certificate, adding the
certificate to the store and the export of the private key to the (PFX) certificate.
makecert.exe -n "CN=TEAHA Root CA,O=The European Application Home Alliance" -pe -ss my -sr
LocalMachine -sky signature -m 96 -a sha1 -len 1024 -r TEAHA_Root_CA.cer

certutil.exe -f -addstore Root TEAHA_Root_CA.cer

certutil.exe -privatekey -exportpfx "TEAHA Root CA" TEAHA_Root_CA.pfx

Figure 59: TEAHA Root CA Certificate

The next example shows the creation of the TEAHA Device Certificate, and export of the
private key to the (PFX) certificate.
makecert.exe -n "CN=TEAHA Device,O=The European Application Home Alliance" -pe -ss my -sr
LocalMachine -sky signature -m 96 -in "TEAHA Root CA" -is my -ir LocalMachine -a sha1 -eku
1.3.6.1.5.5.7.3.1,1.3.6.1.5.5.7.3.2 TEAHA_Device.cer

certutil.exe -privatekey -exportpfx "TEAHA Device" TEAHA_Device.pfx

Figure 60: TEAHA Device Certificate Signed by TEAHA Root CA

The following commands enables the created TEAHA Root CA and Device certificates to be
imported into the Java KeyStore.
keytool –importcert –file “TEAHA Root CA.cer” –alias “TEAHA Root CA”
keytool –importcert –file “TEAHA Device.cer” –alias “TEAHA Device”

Figure 61: Import into Java KeyStore

