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Summary

This thesis is part of the requirements for completion of a Master’s degree in
Computer Science at the Department of Human Media Interaction from the
University of Twente in the Netherlands. The subject of the thesis concerns
work done at the Institute for Creative Technology (ICT) in Marina del Rey in
California. The field of research is that of Virtual Humans, sometimes referred
to as agents. While staying at the ICT, the assignment was to improve upon
the modelling of attribution theory.

In order to solve this problem, a study was made of the field of attribution
theory and the computational models that implement it. After analyzing several
potential points for improvement, the choice was made to extend the model
presented by Mao by taking the aspect of negligence into account. Literature
pertaining to negligence was also examined, and a model that allows inference
of negligence by agents in a relatively simple agent environment was formed.
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Introduction

With the increasing complexity of computer systems, the need to provide a
more abstract representation of information processes is growing. At the same
time, these advances allow the translation process between the fundamental dif-
ferences in the way humans and computers process information to be offloaded
from the human to the computer. In it’s most extreme form, this translation
process will involve the computer presenting a manifestation that is for all in-
tents and purposes equal to the entity a human is used to communicate with on
a daily basis; Another human. These representations are referred to as Virtual
Humans.

Virtual Humans are logical entities, composed of many different subsystems.
There are components for the graphical representation of the human, it’s anima-
tion, ability to understand natural dialogue, speech, emotions, but also planning
and reasoning. The reasoning a Virtual Human does is often based on psycho-
logical research, reflecting the way humans themselves tend to reason about
their environment.

In this thesis, we will look at one such theory about human social everyday
reasoning called Attribution Theory. Attribution Theory was first developed
by Fritz Heider in 1958 [Heider 1958]. Since then, the theory has been refined
considerably, and an attempt has been made to adapt this style of reasoning
into a Virtual Human environment [Mao 2006].

We will explain some of the difficulties and points for improvement that can
be made in the model as sketched by Mao, paying considerable attention to the
way humans reason about negligence. We formalize a model of common sense
reasoning about negligence, and present some evidence indicating it’s correlation
with human data.

The main research question addressed is;
How can we extend the simulation of attribution theory to incorporate a model
of negligence and what are the requirements that this model poses on an agent
environment?

While Mao’s model of attribution theory focuses on causal attributions, it
leaves the concept of negligence untouched. In this thesis, we have expanded
the model of attribution theory by developing our own framework, specifically
designed for attributions of negligence from one agent to another.

This question can be divided into several subquestions, and the thesis is
organized so that each chapter should provide the answer to one of the subques-
tions.

Chapter one will answer the question what attribution theory is and give an
introduction to different human perspectives on the subject of negligence. In
chapter two, we will take a look at the current state of computational models of
attribution theory, chapter three will provide a discussion about possible avenues
for improvement. In chapter four we present our model of negligence and show
that it corresponds with human intuitions about negligence. In chapter five we
develop our agent framework, which allows an agent to reason about negligence
and describe some necessary conditions for any agent environment that allows
its agents do the same. Chapter six describes some directions for improvement
of the model and concludes this thesis.
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1 Theoretical background

In the first section of this chapter we will examine attribution theory by high-
lighting the work of some of its most well-known researchers. The second part
will present a more in-depth look at a part of attribution theory; Negligence.

1.1 Attribution theory

When people perceive an event, they ascribe a cause to it. This process is auto-
matic and occurs continuously. When the cause and event are both physically
related, for instance the sinking of a rock to the bottom of a pond because of the
effect of relative density and the law of gravity, we call this physical causality.
When the cause of the effect is attributed to the psychological state of a person
or agent, such as that the rock was thrown into the water by a boy because he
wanted to impress his friends, then we speak about social causality.

Attribution theory is a psychological theory that deals with social causality.
It tries to explain how people come to their conclusion about which cause is
related to a certain event.

In this chapter, we shall provide an insight into some of the details of attribu-
tion theory and highlight the theories of some of its most well-known researchers;
Heider, Kelley, Weiner and Shaver. After this, we shall focus on a component
in Shaver’s model, negligence, and discuss the current legal and psychological
theories surrounding the subject.

1.1.1 Heider

Attribution theory was first developed by Fritz Heider in 1958 [Heider 1958]. In
his work, ”‘The psychology of interpersonal relation”’, Heider presents a number
of factors that have an impact on the way we perceive another person, and gives
us some clues as to how we can deduce certain propositions from a number of
observations. In doing so, Heider gives us the first inference rules on which we
can base further reasoning regarding the state of an agent.

A clear example of this can be seen by Heider’s description of Attribution
of Induced Action (ch.9). Heider states that when an agent o is coerced to
commit an action x by agent p, we are less likely to attribute responsibility of
the outcome of this action to o than if o were to handle voluntarily.

Furthermore, Heider explains how humans attribute events to either internal
or external causes. Internal causes are causes within the actor itself, while
external or situational causes are causes outside of the actor.

This leads Heider to classify attribution in a number of distinct categories,
which Heider terms as stages or levels;

• I - Association: The agent is not causally connected to the event himself,
but is associated with the actual cause. Examples are being a supporter
of a winning soccer team or being a citizen of a country.

• II - Impersonal Causality: The agent unknowingly caused the effect to
happen.

• III - Responsibility: The agent has foreknowledge about the effect his
action will bring about, and therefore is attributed more responsibility
than an unknowing agent in level II.
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• IV - Intention: The agent acted in the knowledge and intention to bring
about the effect. Agents in this level are ascribed the most causal respon-
sibility of all levels.

• V - Coercion: While the agent is still a component in the causal structure
leading up the event, the agent will not be attributed all responsibility,
because he has been coerced by his environment. Responsibility in this
case is at least shared between the environment and the agent.

1.1.2 Kelley

Kelley expanded Heider’s model of attribution theory by specifying when people
assign internal or external causes based on the covariation principle.

The covariation principle maintains that there usually is a tightly-coupled
temporal relationship between the cause and effect. Attribution to internal or
external factors is then determined by three factors;

• consistency

• distinctiveness

• consensus

Consistency is the measure in which an agent will, given a specific stimulus,
always respond in the same way. Distinctiveness is measured by the way in which
the agent responds to the stimulus differs from the way the agent responds to
a different stimulus. Consensus is specified by the degree in which other actors
will react to the stimulus in the same way.

When all of these factors are present, actors will likely attribute the event
to an internal cause. As they diminish, the event is more likely to be attributed
to the situation.

1.1.3 Weiner

Weiner’s model is an extension to that of Kelley’s, where the internal and exter-
nal causes are referred to as the locus of causality. Weiner also adds two extra
dimensions called stability and controllability.

Stability is the perceiver’s notion of whether a cause will remain the same
for an extended period of time (such as gravity), or whether it will be subject
to fluctuations (the weather, for example). Controllability signifies whether the
cause is under control of the observer. Both controllable and uncontrollable
causes can be internal and external. Archetypical examples of internal control-
lable and uncontrollable causes are effort and ability, while external controllable
and uncontrollable causes are outside assistance and luck, respectively.

Weiner argues that attribution is not a ’cold’ process, but generates strong
emotions, and that the dimensions of stability and controllability of a cause help
explain which emotions are being generated. These emotions are then used to
determine the resultant action.

For instance, an act committed because of a controlable cause is likely to
elicit anger in an observer, while if the cause is uncontrollable, however, the
generated emotion in the observer will be sympathy or compassion.
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He also argues that mitigating circumstances play an important role in this
attribution. Weiner then uses these dimensions to formalize a model of how
people attribute responsibility and blame, and how mitigating circumstances
effect this judgment of responsibility.

This process is given in the diagram below, taken from Weiner [1995], p. 12.

Interestingly, Weiner argues that responsibility is lessened if the act was the
result of negligence rather than an intentional action (Weiner 1995, page 13).

1.1.4 Shaver

Shaver’s attribution theory extends that of Heider and adds the dimensions of
foreseeability and coercion.

Foreseeability is defined as an agent being able to possess foreknowledge that
allow the agent to judge whether a specific effect will occur when an action is
executed. Shaver argues that, even though an agent caused an effect, the agent
cannot be held responsible for it if the agent did not know the effect was going
to occur.

Coercion is desribed as an agent x acting on behalf of agent y, either by
request or command. In such cases, Shaver argues that we do not hold x re-
sponsible for actions that x didn’t intend himself. Instead, responsibility is
relayed to y. This process is recursive, and can be iterated until the agent that
gave the original order or request is found.

Shaver refers to the internal and external classification scheme as whether
there is human agency. Human agency is present whenever an agent is the cause
of an effect. Shaver also notes that this can include effects that have occurred
because the agent failed to act. Human agency is a necessary but not sufficient
condition for responsibility, which is in turn necessary but not sufficient for
blameworthiness.
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Similar to Weiner, Shaver presents a sequential model for determining the
degree to which an agent can be attributed as the cause of an effect, be held
responsible for it, and ultimately, when blame can be assigned to that agent.

Blame can be avoided or mitigated by providing a justification or excuse.
Whether or not this is succesful depends on the acceptance of the excuse by the
party that holds the agent responsible.

Diagram adapted from [Shaver 1975], p. 166

1.2 Negligence

As mentioned, Shaver presents human agency in his model as an agent being
potentially responsible for actions that the agent committed or for events that
were the result of failure of an agent to act. The latter is commonly referred
to as negligence, and we will discuss the phenomenon in closer detail in this
section.

We will start by looking at negligence from a legal and economical perspec-
tive, then examine some of the emotional consequences of when a person is
judged negligent, and end by summarizing negligence and its role in attribution
theory.

1.2.1 Legal Negligence

In the legal domain, negligence is an important concept, allowing people to
be held responsible for not acting in certain situations where a person can be
expected to have acted in order to prevent something bad from happening.

The definition of negligence in this domain is ’The failure to use reasonable
care’. While it is usually a straightforward process of finding out whether or not
a person did or did not commit an action, it is much harder to assess what a
person should have done in the given situation and how responsible this person
is for the outcome.

In American Law, tackling this problem is done using five stages;

• Duty of care

• Breach of duty

• Factual causation

• Legal causation
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• Damage

We will now discuss each of these five stages.

Duty of care The duty of care or standard of care is used to determine the
level of care or precaution that the defendant should have taken in order to
minimize expected damages suffered by the plaintiff.

The standard of care is highly context-sensitive, and in many cases preset
community standards of care based on the relationship between the defendant
and plaintiff exist. Examples of this include teacher/student, doctor/patient or
accountant/client relationships.

While the accountant will not be held liable due to medical costs associated
with an undiagnosed ailment, the doctor is expected to diagnose and treat his
patient. Failure to do so will expose the doctor but not the accountant to
liability.

When there is no community standard of care, the courts may refer to the
Hand Rule [Cooter 1991, Feldman 1998]. The Hand Rule or ’calculus of negli-
gence’ was first introduced by Judge Billings Learned Hand in the case of United
States v. Carroll Towing, 159 F.2d 169 (2d Cir. 1947).

The Rule states that when the cost of precaution for preventing an accident
or burden, B, is less than the probability p of the accident occurring multiplied
by the expected loss L, the party is deemed negligent.

B < p ∗ L

The case in fact was about a barge that was secured improperly and conse-
quently broke away. The barge drifted off and collided with a tanker. Not only
was the tanker’s cargo damaged, the barge had sunk.

Judge Hand used the now famous Hand Rule for deciding that the company
that owned the barge, Connors Marine Co., was negligent because it failed to
have a bargee on board at the time of the accident. Hand’s reasoning was that
the cost of having a bargee on board would have resulted in some damages, but
not in sinking and the loss of cargo. The company was negligent because the
personnel costs of having the bargee onboard were less than the expected costs
of the accident.

Breach of duty There is a breach of duty when it can be proven that the
defendant did not apply a duty of care towards the plaintiff. This means that
the harm must be reasonably foreseeable, the defendant did not appropriately
respond to address the issue, and demanding a compensation for the resulting
damage is deemed fair.

Factual causation It must also be proven that the negligence in fact caused
the damage, so that the damages would not have occurred had the defendant not
been negligent. This is a hard point to prove, because it involves counterfactual
reasoning in hindsight.

Legal causation Legal causation, also known as remoteness, is similar but
distinct from factual causation. While factual causation concerns itself with the
question of whether or not the negligence is the cause of occurred harm, legal
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causation addresses the question of whether the defendant can reasonably be
expected to have anticipated this effect given the circumstances. The purpose,
therefore, of legal causation is to put a limit on what people can be held ac-
countable for. If no-one could have anticipated the effects of something, than
nobody can be held responsible for it.

Damage Once it is determined the defendant is legally responsible for negli-
gent behavior, the only remaining point of interest is to determine how much
the victim of this negligence should be compensated for.

1.2.2 Economical models of negligence

Since it’s conception, the Hand Rule has been used as a rule of thumb in the
courts, but has also sparked considerable research interest in the field of eco-
nomics. The first economic evaluation of it has been made by J.P.Brown [Brown
1973]. Brown formalizes the notion of costs in terms of the social optimum. This
social optimum is defined as the minimum of total costs for all parties involved,
which consist of the precaution costs for both parties to prevent and mitigate
the accident, and the accident costs themselves in case of injury.

The social optimum is influenced by the application of liability rules, which
determine the distribution of costs given the level of precaution exerted by both
the defendant and plaintiff. Examples of liability rules are no liability, in which
the plaintiff pays for all costs, strict liability, where the defendant is responsible
for all costs, and the negligence rule, where the defendant pays only when he is
found negligent, and the plaintiff otherwise. This list of examples is by no means
exhaustive but should provide an idea of how the application of a given liability
rule influences decisions made by injurers to take a certain level of precaution.

Brown argues that the rule proposed by Judge Hand as a standard of care is
ambiguous and uses game theory to analyze a combination of different interpre-
tations of the Hand Rule and liability rules to see which if any will provide an
equilibrium that is equal to the social optimum. Combinations that gravitate
towards the social optimum are defined as efficient.

In Brown’s model, precaution exercised by either party is represented as a
continuous variable. Attribution of negligence is seen as a two-step process,
where first the standard of care defines a minimum amount of precaution, and
the second step is to determine whether both parties adhered to this standard.

In more recent work, however, Brown’s model has been criticized, argue-
ing that it doesn’t represent the way in which the courts apportion negligence
[Grady 1983]. Instead, Grady argues that the courts use a cost-benefit analy-
sis model, where they attribute negligence by looking for specific precautions
that the defendant could have taken but didn’t [Grady 1989]. Precautions that
would have benefits outweighing the costs of implementing them could be used
directly as proof that the negligent party did not observe the standard of care.

Feldman et al. [Feldman 1998] support this notion by argueing that many
precautions are not continuous by nature but discrete, and that the assump-
tion of continuously variable levels of precaution models some liability rules as
efficient which are not efficient under a discrete model.

Recent work by Gilles [Gilles 2002] suggests that in England, the actual
practice of the courts is a mixture of a variation on the Hand Rule and cost-
benefit analysis.
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1.2.3 Emotions in negligence judgements

While there is certainly a wealth of research done on the economic and legal point
of view of negligence attribution, as well as the emotional arousal in causality,
research that focuses on the emotional arousal of negligence attribution is almost
non-existant.

Part of this can be explained by assuming that people do not differentiate
emotionally between harm done by causality and harm done because of negli-
gence. In that case, the body of literature pertaining to emotional arousal in
causality or general attribution theory can be directly utilised to predict emo-
tional arousal in attributed negligence.

Some of the only work that does target the relationship between negligence
and emotion directly is that of Feigenson, Salovey and Park [Feigenson 2001].

In their research, jurors exhibited a strong correlation between emotional
arousal and the allocation of blame towards the defendant or plaintiff. While
sympathy is generated for the plaintiff who could not be held responsible for
any part of the negligent action which resulted in the sustained injury, anger
was the primary emotion targeted towards the defendant who did not apply the
appropriate measure of due care. Their work also showed a correlation between
ambiguity of the allocation of blame and the magnitude of generated emotions.

An explanation that attribution theory can offer us is that negligence can
be seen as a having an internal locus of control on the part of the negligent
actor, and an external locus in the neglected actor. Thus, the negligent party
caused harm through a controllable cause, and elicited anger in the observer.
The neglected party suffered from harm through an uncontrollable cause, and
consequently aroused sympathy in the observer.

1.3 Discussion

While Heider originally characterized attribution theory as ’common-sense’, to-
day it has expanded into an entire field of research and is able to explain a wide
spectrum of human behavior, from how to let students perform better academi-
cally [Noel 1987] to getting children to stop playing with magic markers [Lepper
1973].

While the attention to the role of negligence is overshadowed by that to the
role of causation in attribution theory, negligence still plays an important role in
people’s everyday judgments of responsibility. We can easily observe this when
imagining the placid bystander of a traffic accident or hear about one of the
many court-cases involving medical personnel not maintaining the standard of
due care.

In correspondence with general intuition and the works of Heider and Weiner,
Feigenson et al. show us that these scenarios often involve strong emotions, and
that they play a critical part in accurately modelling an actor’s assessment of
blame.
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2 Computational frameworks

In recent times, there have been some efforts to formalize attribution theory
into computational models. One of the most daunting challenges of converting
psychological theory into a computational model is to find a formal representa-
tion of the way an agent views the world. This is also called an agent model,
and one of the most succesful templates is Bratman’s [Bratman 1987].

First, we will discuss some efforts concerning formalization of attribution
theory, most notably Mao’s and Tomai-Forbus’s. We will end by discussing the
differences between these models.

2.1 Mao

Mao has developed a computational framework that establishes a foundation
for the way agents can reason about social causality. Based on both Weiner and
Shaver’s attribution theories, it lays the groundwork for an architecture which
is able to capture basic human notions of causality.

Agents follow Bratman’s BDI-model, and are able to make inferences about
causality based on the observation of actions of other agents, as well as the
information obtained from dialogues.

The following diagram gives an overview of how Mao’s model works.

Diagram from [Mao 2006], ch. 3, p. 21

2.1.1 Causal knowledge

The causal knowledge component specifies how an agent receives its information
regarding the way in which world state can be altered through the execution of
actions. In Mao’s model, this information is presented through a plan structure.

A plan structure is a hierarchy of plans, where each plan consists of actions.
Actions modify perceived world state by bringing about an effect, and optionally
have preconditions. As such, a plan can be represented as a graph, where actions
or plans are represented through edges and nodes are places where decisions can
be made which course of action to take. A node that has more than one outgoing
edge is called a decision-node or abstract node. Contrary to this, nodes that
have only one edge are called non-decision-nodes or primitive nodes.

A plan that contains abstract nodes is called an abstract plan. Plans that
do not contain any abstract nodes are called primitive plans. Each action in
the plan has both a performer and an authority assigned to it. The performer
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is the agent who can actually execute the plan, while the authority is the agent
who has to authorize the action.

2.1.2 Observations

The agent is able to make observations about the world in two ways. The first is
action execution, where the agent observes another agent executing an action.
The second is communication, which encodes information taken from dialogue
with and between other agents.

Mao represents communication using the form of speech acts as defined by
Austin [Austin 1962]. Austin differentiates between three different kinds of
communication; illocutionary, locutionary and perlocutionary.

Locutionary speech acts are used to make some general statement about
world state of saying something (e.g. ”The sun is shining”). Illocutionary
speech acts are used to encode an agent’s desires, knowledge and intentions in
saying something. Examples of illocution are asking a question or giving an or-
der. Finally, perlocutionary speech acts are intended to change the psychological
state of the hearer by saying something. Mao focuses mostly on illocutionary
speech acts in her work.

2.1.3 Inferences

Using the observed actions and speech acts, an agent in Mao’s model is able to
combine this with the causal knowledge by using a set of rules to derive a set
of attribution variables. These variables contain information about the causal
circumstances of an agent, such as whether an agent caused or intended an
action, if it had foreknowledge of the consequences and if it was coerced to take
action.

2.1.4 Attribution Process

In the second step of Mao’s algorithm, she uses the agents beliefs about the
attribution variables to come to a conclusion regarding who the primary re-
sponsible agent was, and if there were any secondary responsible agents. The
primary responsible agent is by default the agent who brought about or caused
a consequence. This agent is also known as the performer. If the agent was
handling in the face of coercion, the performer is given secondary or partial
responsibility and the coercing agent is given primary responsibility. Because
coercing agents can themselves be coerced too, this is a recursive step. Attri-
bution variables intention and foreknowledge are then used to determine the
degree of responsibility. An agent that intended a consequence to happen is
given a high degree of responsibility, while an agent that had no foreknowledge
of the consequence is given low responsibility.

2.1.5 Evaluation

Mao’s model presents a simple but effective model for attributing blame in an
agent environment. Corresponding to the psychological literature, the presence
of physical causality, intention and foreknowledge determine for a large part
whether or not an agent is found guilty. The addition of coercion makes the
model a lot more interesting, creating a differentiation between primary and
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secondary responsibility. Mao does not present a way to unify these two con-
cepts along one dimension of responsibility, but leaves them as two related, but
different entities. This forms a contrast with the models of Tomai and Forbus,
as we’ll see in the next section.

2.2 Tomai-Forbus

The second implementation we will discuss in this chapter is that of Tomai-
Forbus [Tomai 2007]. Tomai and Forbus used Qualitative Process Theory [For-
bus 1984] to step away from Mao’s discrete assigment of blame and create a
continuous assignment of responsibility across multiple agents.

First, we will provide a summary of Qualitative Reasoning and Qualitative
Process Theory, then we will discuss the way in which Tomai and Forbus have
implemented causal reasoning in their Qualitative framework, and we will end
by providing an insight into the similarities and differences their results when
compared with Mao’s model.

2.2.1 Qualitative Reasoning

Qualitative Process Theory (QPT) is a theory originally developed to facilitate
common-sense reasoning about physical processes. QPT aims to describe phys-
ical processes on a conceptual level. Systems are decomposed into collections
of objects, the relations between the different objects are the most important
part of the system. They allow the system to reason about the effects of various
processes throughout the entire system.

While originally designed to handle especially physical characteristics of ob-
jects, such as pressure and temperature, exerted force, researchers have found
QPT to be suitable to a much wider domain of problems, including education
[Bredeweg 2004] and medicine [Fink 1996].

2.2.2 The Qualitative model

The Qualitative model as presented by Tomai and Forbus is based on that of
Mao. The components in Mao’s model that make inferences from the dialogue
and action execution of other agents are left intact. Tomai and Forbus then use
these variables as inputs into their qualitative model of attribution theory.

The functionality in their model is distinct from that of Mao’s components
of beliefs, which are modelled by logical expressions that produce a boolean
outcome. Tomai-Forbus’ model allows continuous output results, allowing for a
much more fine-grained result. The authors have some evidence to suggest this
more closely resembles human attribution.

A judgment of causality is divided into four categories, ordered by increasing
amount of responsibility; Causality without foreknowledge, causality without
intent, coerced causality and causality with intention.

To differentiate between degrees of responsibility within each classification,
or views as they are called in their model, they use continuous variables from
the qualitative model, such as intention and foreknowledge.

Similar to Mao, Tomai and Forbus hold an agent with authority over another
agent responsible for the actions of the inferior agent, if the agent was ordered
to commit an action by his superior. In contrast, Tomai-Forbus also present
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inference rules which allow the superior agent to be held responsible for not
avoiding a bad outcome by instructing the inferior not to do something. This
lack of coercion to prevent will result in a lesser degree of responsibility than
coerced action to produce a bad outcome.

2.2.3 Evaluation

Evaluation is done by comparing the results of the qualitative model to those of
Mao and of human respondents as presented in an experiment held by Knobe
[Knobe 2003]. The experiment is called the ’company program’. In the company
program, two agents, a vice president (vp) and chairman (chm) of a company,
are discussing implementing a new program for the company. Implementation
of this new program will bring harm to the environment.

Four variations are presented, in which the chairman and vice president vary
according to their foreknowledge and concern about the harm to the environ-
ment. Respondents are asked to rate blameworthiness for implementing the new
program on a six-point scale. These results are then compared to the Qualita-
tive model and Mao’s model, which asserts only a binary answer to the question
of blameworthiness.

2.2.4 Results

In all scenarios, the human respondents attributed blame to both agents. The
highest amounts of blame were assigned to coercing agents, and agents that had
foreknowledge of the environmental harm but proceeded to go ahead anyway.

Diagram from [Tomai 2007]

Mao’s model correctly locates the agent with the highest amount of respon-
sibility, but fails to reveal a more fine-grained distribution of blame allocated to
each agent. The Qualitative model, on the other hand, is able to allocate blame-
worthiness to both agents, and correctly infers the ordering of responsibility in
most cases, even across scenarios.

Interestingly, humans attributed more blame to the agent that had no fore-
knowledge of environmental harm than to the agent that had foreknowledge but
was coerced. This is a violation of Shaver’s underlying theory, which classifies
an agent with foreknowledge as having more responsibility than one without.
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2.3 Discussion

Several attempts have been made to describe attribution theory in an agent
model. Mao’s agent model closely resembles Shaver’s psychological one, in that
attribution is a staged process; A set of factors are taken into account sequen-
tially, such as coercion, foreknowledge and intent. Every next step in the model
results in increasing responsibility and ultimately blame.

One of the most obvious shortcomings in this approach is the almost binary
selections Mao handles for her assignment of responsibility and blame. Tomai
and Forbus recognize this, and take a different approach, trying to quantify
these along one common dimension but in a finer resolution.

In their work lies the hint of a completely overlooked area of interest: They
put responsibility on an authoritative figure to instruct its subordinates not to
cause harm, introducing the first mechanism an agent can be held liable without
having executed any action, effectively blaming an agent for negligence. In the
next chapter, we shall revisit Mao’s model and highlight a few points where it
can be improved.
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3 Model evaluation

In this chapter we will discuss some of the points for improvement for Mao’s
model.

3.1 Coercion

In Mao’s work, two notions of coercion are presented. One is a strict notion
of coercion as an absolute quantity, whereby the coercing agent is seen as the
primary responsible, and the coerced agent as secondary responsible. The other
is a more fine-grained scale, where coercion is measured as a normalized differ-
ence in utility between different coerced outcomes. In order to understand the
differences between these approaches, we will have to take a closer look at the
mechanics of coercion attribution.

A coerced action can consist of an abstract plan, which can be decomposed
into a set of primitive plans. A primitive plan has a set of action effects. The
set of action effects that are present in the outcome of every primitive plan are
called the definite effect set. Since a coerced agent has no way of avoiding these
effects, coercion is attributed to the entire effect set, mitigating responsibility
for the executing agent.

The rest of the effects comprise the indefinite effect set. These can be
avoided, depending on which decomposition the executing agent chooses, and
therefore the executing agent is still seen as responsible for these outcomes.

In the probabilistic model, Mao argues that an agent that has to decompose
a coerced abstract plan will likely choose the primitive plan with the highest
aggregate utility. Any negative effects in this plan are therefore necessary evils,
and attribution of coercion in the probabilistic model is modified accordingly.
By looking at the range of expected utilities among the different primitive plans
available, an agent that chooses the primitive plan with the highest expected
utility among all possible coerced plans should not be blamed for causing a
negative effect.

The calculation of degree of coercion is done by way of linearly scaling co-
ercion from zero to one between the minimum and maximum expected utility
of all primitive plans. For example, an agent that can choose between three
plans with expected utilities of zero, six or ten, and that chooses the plan with
expected utility six will receive a degree of coercion equal to 0.6. Another agent
that chooses the plan with expected utility ten will be attributed a degree of
coercion equal to one, for he has tried to maximize utility under coerced cir-
cumstances.

Mao presents results of experiments using human subjects that suggest her
model is correct in assigning responsibility to a coercer or superior, but that
still could be improved. Evidence of this can be obtained from the fact that the
human subjects in the firing squad attributed less coercion than the model did.

We argue that a possible explanation for this is that the current model of
coercion fails to capture an essential facet of the way humans attribute coercion
to action outcomes; The choice of not obeying the coercer. In the current model,
coercion is seen as a binary force applied to an agent resulting in that agent
having a reduced choice of options. We argue that humans attribute coercion by
reasoning counterfactually about the consequences of not obeying the coercer.
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In order to achieve this in the current model, the search for primitive plans
with a higher expected utility will have to be expanded to include plans outside
of the coerced action. When examining any of these plans, one will have to take
into account what the consequences of disobedience are. This is certainly a hard
problem, but could be modelled as simply as a negative expected utility. The
expected utility of these plans is then decreased by the utility that the agent
expects to lose by not obeying a coercer.

The severity of disobeying a coercer can vary greatly. Therefore, the ex-
pected utility loss is highly context dependant. Disobeying a teacher’s request
to do one’s homework will have less negative utility than to disobey a direct
order from a general in wartime. This last point can be applied more generally,
and is the next subject of discussion.

3.2 Social norms

Social norms are not modelled and play an important role in many situations.
We can easily observe this when we take a closer look at the phenomenon of
coercion: When a child does a chore because it has been commanded to by
a parent, we can see this as a soft form of coercion. The situation is very
different however, when we look at coercion in a military sense: Disregarding
the intentions of a superior officer in the armed forces will have a much stronger
influence on one’s life, and the degree to which coercion is being effected should
be accounted for accordingly.

Likewise, we can look at the question of foreknowledge. In Mao’s model, an
agent can avoid having high responsibility by not knowing the consequences of
its actions. Regardless of whether such a strategy is a useful one in practice,
Mao’s (and Shaver’s) choice to let lack of knowledge form a reason for reduced
responsibility is a good one, as people often forgive each other for harm caused
when they were not aware of the consequences of their actions.

Nevertheless, situations in which we do hold each other responsible regard-
less of demonstrated foreknowledge exist in our daily lives too, the legal system
being a very good example. Other examples where one is expected to know
the consequences of its actions are plenty in professions where there is a risk of
harming a client: We expect our doctors to know the consequences of perform-
ing a treatment on us, mush as we expect a dive instructor to know the risks
associated with diving in unclear waters.

Clearly, we live in a world where not knowing is not always a free pass out
of responsibility. The circumstances under which one can, and one can not be
expected to be mindful of its actions are not clearcut, however, and we cannot
hold Mao responsible for not attempting to integrate the aspect of social norms
in her causal framework.

3.3 Negligence

From Shaver we have learned that humans attribute responsibility not only
when an actor causes an effect, but also when an actor ought to have caused
an effect. Shaver describes this as negligence, but does not elaborate much and
instead focuses like most attributional theorists on cause by causation, not on
the lack thereof.
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The impact of this is visible in the attributional model in Mao’s work. In
the current model, this aspect of negligent agents is not taken into account: An
agent that does not perform any actions cannot be blamed for anything in the
attributional model as defined by Mao.

Therefore, an optimum strategy for an agent that does not wish to be held
blameworthy can be to not execute any actions, and remain a passive observer.
The critique here is twofold: First, this is not the way people attribute respon-
sibility in reality, since humans attribute negligence often and swift. Examples
are legion and easy to come by; Think for instance of the child that did not
clean its room or the passive observer after a traffic accident has occurred.

Second, this is also not what one would generally desire from an agent (or
a human): While its a very easy strategy to let an agent choose its actions
conservatively and only execute when there is a near certainty of success in
order to limit potential blameworthyness, a more admirable approach would
probably be to judge an agent on its potential actions and blame them for
missed opportunities.

3.4 Discussion

Mao’s model makes a good approximation of attribution theory in general, al-
lowing an agent to draw inferences not only from the actions of another agent,
but also its dialogue with other agents. The modelling of both dialogue and
actions is essential, because humans use these two facets of reasoning as well,
and without either one, any serious attempt at modelling attribution theory
would be seriously handicapped.

However, human notions of attribution are complex, and as we can see from
the difference in opinions between psychologists who have pursued to study this
field for decades, even things that seem a priori to be clear cut, like intention,
turn out to be full of subtle issues when one tries to put them into a model.

In our opinion, the biggest hole to be filled here is that of negligence, since a
passive agent in Mao’s model can never be punished. A model that ameliorates
these difficulties is the subject of the next chapter.

21



4 A model of negligence attribution

After having discussed some of the points where Mao’s model can be improved,
we have chosen to model the attribution of negligence. Because of the inherent
differences in the type of reasoning that people do when compared to causality
attribution, we have chosen to build our own model. This model is presented
here.

4.1 Introduction

First, an overview of our framework and its origins is presented. To validate our
claims, this model is tested against human notions of negligence attribution.
After discussion of the results we will adapt our model to better match the
human data.

4.2 Framework overview

For the design of our negligence framework, we start by looking at the way
Shaver has modelled negligence in his theory of attribution, and extend it by
looking at other factors used in the causal section of attribution theory, like
intention and excuses. Also, we incorporate theory from the legal approach to
how negligence is determined, and merge this into a framework similar to the
way causal responsibility is established.

The most obvious resemblance to the causal framework as developed by Mao,
is the way an agent starts reasoning when a negative consequence of an action
is perceived; A number of discrete steps are taken, acting as filters. Finally a
judgment of responsibility & blame, or in this case, negligence, is made. Because
utility of effects can vary per agent, we define a negative outcome or negative
consequence as an effect from an action that is perceived by at least one agent
as being unwanted or having negative utility.

By starting with Shaver’s view of negligence, an agent is attributed increas-
ing negligence when the agent has foreknowledge of a negative outcome. Shaver
divides foreknowledge into two categories: ’should know’ and ’did know’. We
interpret these two conditions as follows; When an agent knows a negative out-
come is about to occur because of an action, this outcome can only be avoided
by direct action of the agent. In the case of ’should know’, however, the negative
outcome may also be avoided by different means outside of the direct influence
of the agent, but the agent is also capable of blocking the action.

We keep these two aspects, and extend them with that of intention; Anal-
ogous to the attribution of responsibility in causal attribution, an agent that
intends a bad outcome for another agent to happen is likewise attributed more
negligence than an agent that did not intend it.

The next factor we take into account in our model, is that of possibility. This
entails whether an agent was able to prevent or could know about the negative
outcome beforehand. An agent that could not have known about or prevented
a negative outcome from occurring is aquitted from negligence.

Excuses are another factor we borrow from Shaver’s model of causal attri-
bution. They play a prominent role in our framework, because we believe they
play a significant role in our everyday attribution of negligence as well. In our
model, an excuse is something an agent was doing while he could also have tried

22



to avoid the negative outcome. A good excuse is one with a greater amount of
potential utility than the negative outcome. A bad excuse contains less potential
utility than the negative outcome.

Even more inspiration can be drawn from legal studies. The subject of neg-
ligence attribution and compensation for the resultant damages is an important
and much studied subject, and is the source of a wide variety of economical mod-
els which strive to find a social optimum [Brown 1973]. Usually these models
focus the attribution of negligence on whether the agent has expended enough
effort to remove or reduce the risk of adverse effects. This is the last factor we
incorporate into our model.

Negligence can also be attributed when there is no bad outcome, but there
was a risk of something bad happening. These cases can be described as un-
realized negligence. Cases where the bad outcome is established can then be
referred to as realized negligence. In this thesis, we are only concerned with
realized negligence.

The resulting framework is represented graphically below:

It is important to note that this does not represent a decision-scheme, where
each decision is a binary true or false value. Rather, during each filter stage,
it is possible to apportion a ratio of the negative outcome to one of the filters,
allowing the rest to pass through to subsequent filters. This creates the possi-
bility of an outcome being attributed partially to different factors, allowing for
more fine-tuned control in the form of mitigation. A more detailed description
of each of these stages will be given later in this chapter.

4.2.1 Emotional impact

Similar to Weiner’s theory of attribution, we expect attributions of negligence
to generate emotions in the person who is being negligent, as well as those who
suffer the consequences from it. To describe the emotional state of a person,
Weiner uses seven emotions: pride, anger, pity, guilt, shame, gratitude and
hopelessness.

While we feel that the emotional impact of negligence attribution is certainly
related to that of causal attribution, we have opted for a different approach to
quantifying the emotional state of an actor. Starting with a very limited set
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of ’basic emotions’ [Ortony 1990]: we take sadness, happiness, anger and fear.
From Weiner’s model we then add shame, and guilt. The inclusion of both these
emotions is interesting because, although closely related, they are generated
under different circumstances, depending on how an event is appraised [Tracy
2006]. Guilt is associated with unstable and controllable causes, whereas shame
is associated with stable and uncontrollable causes. We have chosen to model
the intention of the agent as a stable, internal and controllable cause, while
effort corresponds with an unstable, internal and controllable cause.

The next emotion we take into consideration is sympathy; According to
Feigenson et al. [Feigenson 1997], people react with sympathy to a victim that
is not responsible for it’s own suffering, and with anger to a victim that is
responsible. Another advantage of sympathy is that it is less ambiguous than
pity, which can be classified into two different strands of emotion; benevolent
and condescending pity. To avoid questionnaire participant fatigue, we have
limited the number of emotions in this research to seven.

Due to the limited quantity of previous research on emotional arousal con-
cerning negligence attribution, the basic emotions allow us to get a general
feeling for arousal, while building on theory from Weiner and Feigenson et al.
According to Ortony [Ortony 2001], something good happening can lead to joy
or happiness, while something bad happening can lead to sadness or distress.
We use this and model emotional arousal after an outcome as the result of
negligence as follows;

Emotion Trigger / Conditions
Sadness The negligent agent suffers from the outcome (utility < 0)
Happiness The negligent agent benefits from the outcome (utility > 0)
Anger The agent perceives another agent’s negligence
Guilt Another agent suffers from the agent’s negligence (unstable cause)
Sympathy Another agent is perceived as suffering (from negligence)
Shame Another agent suffers from the agent’s negligence (stable cause)
Fear Another agent suffers from the agent’s negligence

4.3 Evaluation

After having decided on the factors we take into account in our model and the
expected emotional arousal, we must now attempt to validate our assumptions
by comparing them to human notions of negligence.

4.3.1 Method

To assess consistency between human reasoning and our framework we have
designed a questionnaire named The Goldfish. The Goldfish features a sce-
nario where two people, Andre and Bob, share an apartment. The scenario is
given in seven different variations, representing different decision points in the
framework. Sentences in the varying part of the scenario are numbered.

Users are asked to rate the amount of negligence, and to answer which of
these sentences contained the most important information to make this judg-
ment on. Also, the user is questioned for the expected arousal of seven different
emotions in both of the characters towards each other.
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By varying the circumstances under which certain events occur, we can get
an assessment of how people reason about negligence when a bad outcome is
realized. To detect possible ordering effects, two versions of the questionnaire
were distributed, which differ only in their ordering of the scenarios.

In the following diagram the scenarios in the questionnaire (version 1) are
represented through the numbers in the streams. For instance, scenario number
6 corresponds with a classic case of negligence; The agent knew about the pos-
sible bad outcome and was able to do something about it, but did not make an
effort and did not have an excuse. On the other hand, the agent did not intend
the bad outcome to occur, and therefore gets attributed less negligence than an
agent that willingly lets a bad outcome be realised, such as in scenario 7.

Below is a description of the first scenario.
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The next figure gives the varying parts of the other six scenarios.
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4.3.2 Predictions

If our model is correct, people will be influenced in the attribution of negligence
by the variation of factors present in the different scenarios. To show this, we
need to do three things:

1. Show that there is a significant difference in negligence attribution between
scenarios.

2. Show that the main reason for this difference is the deviant factor as
described in the scenario.

3. Show a correlation between predicted arousal and participant expectation.
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For the first item, we need to consider scenario 1. This is, in our model,
a very normal case of negligence; Bob noticed the fish was acting weird, and
therefore should have known something was wrong. He did not have an excuse,
and could have made an effort to save the fish, but didn’t. This case will act as
our baseline. By comparing the relative negligence ratings between scenario 1
and the other scenarios, we can establish if there is any significant influence of
any given factor in human reasoning. Scenario number seven is meant to test
one of the extremes of our model; Bob knew the fish was sick, had no excuse
and made no effort and actually disliked the fish. In our current model, Bob
should receive the highest negligence rating in this scenario.

Because scenario seven differs in two factors (foreknowledge and intention)
from scenario one, we cannot directly assess significance by comparing it to this
scenario. A comparison between scenarios six and seven allows us to infer the
contribution of intention under these circumstances.

In order to minimize workload on participants, we have not made a scenario
where there was no foreknowledge but there was intention, and will assume the
role played by intention in the case of foreknowledge is similar when there is no
definite foreknowledge.

Let the average amount of negligence attributed in each of the seven scenarios
be described as Nn, where n corresponds to the number of the scenario, and the
statement Nn < Nm carries the meaning that average negligence attribution in
scenario n is significantly lower than that of scenario m.

Then, in summary the predictions of the first item can be described as
follows;

1. N2 < N1 In scenario two, Bob is attributed less negligence because he
has a good excuse.

2. N3 < N1 Bob is attributed less negligence in scenario 3 than in scenario
1, because he has a weak excuse.

3. N2 < N3 Agents with good excuses are rated less negligent than weak
ones with weak excuses.

4. N4 < N1 Because Bob has made an effort, he is given a lower rating than
when he has done nothing.

5. N5 < N1 In this scenario, Bob could not have known the fish was in a
bad condition, and attributed less negligence.

6. N1 < N6 Having received explicit foreknowledge of the bad state of the
fish in scenario six, Bob is rated as more negligent here than in scenario
one.

7. N1 < N7 Bob knows about the bad state of the fish and dislikes it. Sce-
nario seven should receive the highest average rating in our questionnaire.

8. N6 < N7 We predict that intention of the bad outcome to occur will
contribute to negligence rating.

For the second item we will look at the second question in each scenario.
This question asks the user to answer which of the given pieces of information
in the varying part of each scenario has been most important to the user for
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making his attribution of negligence. We predict that in each scenario other
than one, the line of information containing the deviant factor compared to
scenario one will be identified most frequently as the most important piece of
information.

Thirdly, we need to assess consistency between predicted emotional arousal
and participant expectation. By looking at the conditions for emotional arousal
as presented earlier, we make the following predictions concerning correlations
between agent beliefs, attributions of negligence, and generated emotions. Con-
ditions with (neg.) behind them indicate negative correlations.

# Factor Corresponding emotion
1. Intention of the outcome Happiness
2. Intention of the outcome (neg.) Sadness
3. Negligence for another agent Anger
4. Negligence for oneself Guilt
5. Negligence for oneself Fear
6. Another’s intention of the outcome (neg.) Sympathy
7. Negligence for oneself Shame
8. Intention Shame
9. Intention (neg.) Guilt

According to this table, the factors of negligence and intention are primarily
responsible for emotional arousal. The correlation for negligence-based emotions
will be made based on all scenarios, whereas the correlations for intention-based
emotions will be computed based on the results of scenarios six and seven, since
they only differ in only one factor, intention.

4.3.3 Results

A total of thirty-one participants responded, of which 19 male (61%) and 12
female (39%). Ages ranged between 21 and 64, with an average of 30.87 and
a median age of 28. Participants were mostly staff and graduate students from
the ICT (Institute for Creative Technology), ISI (Information Sciences Institute)
and USC (University of Southern California). See also Appendix A.

In the diagram below, the average negligence rating for each scenario is given
by the horizontal bars, while the vertical bars signify a 95% confidence interval.
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In the previous section, we discussed a number of criteria to hold for our
model to be correct. To validate these criteria, we look at the difference in indi-
vidual negligence ratings between the two scenarios in each equation. For each of
these equations, we will test the null-hypotheses, stating that the samples from
both scenarios come from an equal distribution. Even though our equations
show a prediction in one direction, we are interested in significant deviations
in both directions, and will therefore apply a two-tailed t-test. Application of
this test yields p-values describing the likelihood of the null-hypothesis being
true. Low p-values allow us to reject the null-hypothesis and conclude a signifi-
cant difference between populations exists. Results are given below (values are
rounded to six figures):

Results
# relation p

1 N2 < N1 0,000000
2 N3 < N1 0,000060
3 N2 < N3 0,000000
4 N4 < N1 0,000000
5 N5 < N1 0,000000
6 N1 < N6 0,000252
7 N1 < N7 0,222844
8 N6 < N7 0,074088
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Using a 5% significance level, we have to reject most null-hypotheses, with
the exception of equation seven and eight. Also, our predictions in equation
two and eight are reversed. In equation two, we estimated that someone with
a bad excuse has less negligence than someone without any excuse. Finding a
significant difference in the other direction means our model has to take into
account that people will increase negligence ratings for a bad excuse, but de-
crease it for a good excuse. Also, people judged a person with foreknowledge
and intention of a bad outcome as slightly less negligent than a person with only
foreknowledge.

Next we will look at the information people have used in their attributions.
In the second question of each scenario, people are asked to suppply which
sentence(s) they thought was most important for the attributions they made
concerning negligence. The following diagrams show distributions for each sce-
nario of what people thought was the most important sentence each scenario.
Using the questionnaire descriptions in 4.3.1, we can determine which sentences
belong to which bars.
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As we can see, in scenario one, our base example, people value sentence
number three the most valuable, in which Bob is described as doing nothing
about the fish acting weird, followed by sentence two, where he notices the
fish is acting weird. These sentences correspond in our model to not making
any effort and having foreseeable knowledge. Scenario two is even more clear;
Sentence four is chosen by almost two-thirds of respondents. In this sentence,
Bob is called to the bed of his dying grandmother, corresponding to having
a strong excuse in our model. A similar effect can be seen in scenario three,
where people respond most strongly to Bob having the excuse of wanting to
play video games for a week. In scenario four, where we see a significantly
smaller attribution of negligence, people have chosen sentence three as being
most important. In this sentence, Bob makes an effort by replacing the fish’s
water and giving it some fresh food. People chose sentence two as being most
important in scenario five, where Bob is described as being away from the fish
for a period of time. This corresponds in our model to lack of ability. In scenario
six, people choose sentences four and three; Bob doesn’t do anything about the
sick fish but has definite foreknowledge. Scenario seven adds the component of
intention. The ratings are more evenly distributed between Bob disliking the
fish, and having knowledge about the fish being sick and not doing anything
about it like in scenario six.

Overall, as very few people rated the outcome of the scenario as the most
important piece of information, we can say that people are not so much inter-
ested in the results of the negligence, but more in the actions of the negligent
party and the circumstances under which they occurred. Furthermore, we see
that in every scenario where Bob’s foreknowledge and resulting actions are de-
scribed, both are perceived as important but participants more frequently chose
the resulting action as the most important piece of information. In scenarios
where excuses are present, the sentences describing the excuses are rated as
most important, strengthening our belief of the influence of this factor. All in
all, we can see that in most scenarios, the factor present in the sentence judged
by participants to be the most important corresponds with an expected change
in negligence rating for that factor, when compared with the base scenario, sug-
gesting the correct estimation of this factor. On the contrary, in scenario seven,
where Bob dislikes the fish, this factor is judged by participants as being the
most important sentence, but this is hardly reflected in the negligence rating.

Next, we shall look at the expected emotional arousal as reported by partici-
pants. Below are presented the average reported emotional states of participants
for both characters. These are followed by a diagram of the 95% confidence in-
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tervals of predicted correlations between selected factors and emotional arousal.

33



Correlation coefficients corresponding to predicted emotional arousal as
described in 4.3.2

A cursory glance on the diagram above tells us that most of the predicted
correlations were correct. Even though an agent might know a specific outcome
to be appreciated negatively by a fellow agent, if it was intended by the agent
himself, the outcome still brings considerable happiness. As shown in [Feigen-
son 2001], perceived negligence from another agent arouses anger towards that
agent. If the negligence is caused by oneself, the agent feels guilt, fear and
shame. Intention of an outcome that is negative for another agent reduces
guilt, but contrary to predicted also reduces shame. A possible explanation for
this is that participants valued an implicitly lazy agent such as in scenario six
as more shameful than an agent with explicit bad intentions such as in scenario
seven. From these results, it is not clear whether sadness and sympathy are
negatively influenced by the intentions of agents.
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4.4 Conclusions

Having taken inspiration from psychological, legal and economical theories as
well as common sense reasoning, we have developed a model that predicts how
certain factors in social environments influence human atributions of negligence.
After testing, we find that our model is able to predict most of these influences
correctly; Agents that had the ability or knowledge to prevent a bad outcome
are rated more negligent, just like agents that made no effort to prevent it versus
an agent that did.

More interesting is the case of having an excuse: According to the results in
the previous paragraph, humans respond both to weak as well as strong excuses,
but in different directions. While a strong or good excuse lowers negligence
ratings as expected, weak ones will increase it. We currently have no strong
indication why this is, but it is possible people perceive an agent with a bad
excuse as selfish or dishonest and project these unsocial character traits onto
the negligence rating.
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5 Computing negligence

Using the attributional model of negligence as developed in the previous chapter,
this chapter presents a model of negligence determination as implementable in
an agent system. Before we can define how an agent is to know and reason about
negligence concerning itself or other agents, we have to define the environment
in which the agent will function. Most of the data structures present in our
definition of this environment take on the form of relationships between various
entities. This makes our model well-suited to be expressed in terms like those
of tuple relational calculus [Codd 1970].

To illustrate this notation, we shall now provide a few examples. Let’s say
that we define an employee in our system consisting of a name, an address, and
a function. We then represent the structure of the employee record as a 3-tuple:

employee = (name, address, function)

The name of an individual employee e can be referenced using dot-notation:

e.name

When we then have a set of employees Emp, and we want to address the
subset of employees R that has a research position, we can describe this using
traditional set notation;

R = {e | e ∈ Emp ∧ e.function = researcher}

In the rest of this chapter, there will be a collection of examples to illustrate
the workings of our model. These examples provide the reasoning done by
an agent about another agent. By convention, let the agent that is doing the
reasoning be addressed as i, and the agent about whom the reasoning is being
done be referred to as g. It is possible but not becessary that i and g are the
same agent. In this case, i is thinking about his own actions.

In 5.1, we will start by describing our agents’ top-level data structure, the
world view. We will then continue by describing its components in more detail,
drilling down until we have a full understanding of an agent’s view of the world.

Section 5.2 will contain a bit more detail regarding the conclusions an agent
is able to draw from certain world states, and finally in 5.3 we will describe the
algorithm agents use to form opinions of negligence concerning one another.

5.1 The Agent Environment

The agent has a view of its environment which we shall refer to as world view.
This view is the interpretation of the world by the agent. Indeed, world view
needs not to be a complete or even correct representation of the world on which
the agent exerts its influence. We shall refer to the agent’s world view as Ag.
World view consists of a 3-tuple of a number of ordered World states W , past
and present, an action library actions, and a set of conditions.

Ag = ( World states, actions, conditions )
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A world state wn ∈ W is the representation the agent had of the world at
a single moment in time. One such state can be broken down into a 6-tuple of
the agent identity i, a set of agents G, a set of variables variables, a reference
to a point in time time, a set of mutations in relation to the previous world
state mutations and a set of partially completed actions partials at that point
in time.

wn = (i, G, variables, time, mutations, partials)

These will be discussed in further detail in the next sections.

5.1.1 Variables

A variable v ∈ wn.variables describes an aspect of world state that is relevant to
an agent, and is a named entity (a 2-tuple) that can take on a value, or have an
undefined value. Possible values for a variable needn’t be known to the agent
on forehand. Because a variable is central to a specific agent, it is possible
for multiple agents to have sets of variables that are completely or partially
overlapping, or disjoint.

Example of a set of variables V :

Variables
Name Value
Location home
Front Door closed
Lamp Undefined
Kittens 4
Current Time 14:01
Bedroom light off
Funds $200,-
Goldfish health Good
Fish water state Clean

World state is characterized by partial observability of these variables. Anal-
ogous to real life, an agent will not always be able to evaluate the value of a
variable right away: We are not omniscient, and cannot know what happens in
a place when we are not there. This is reflected in our model by associating an
aspect of visibility to variables, which influences the interpretation of a variable
by the agent. Given this aspect, it is possible for a variable to be in one of three
states:

1. Void: The variable has never been observed. It does not have to be clear
whether the variable can be observed.

2. Visible: The variable is visible to the agent, allowing the agent to evaluate
the current value of it.

3. Invisible: The variable used to be visible, but isn’t anymore. The agent
cannot inspect the current value.

In order to be able to describe how visibility of a variable is determined in
our model, we need to describe conditions, which we will discuss next.
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5.1.2 Conditions

A condition or variable-condition c ∈ conditions is a named triplet of a variable
name name, a relationship relation, and a value value. If the value of the
variable satisfies the relationship to the value (variable relation value evaluates
to true), then the variable-condition is defined as satisfied.

Example of a set of variable-conditions:

Variables-conditions
Name Variable Relationship Value
Have money Funds greater than $150,−
At home Location equals home
Bedroom light on Bedroom light equals on
Alice gone Location Alice unequals Home
Box lid open Box lid equals open
Water clean Fish water state equals clean
Water not clean Fish water state unequals clean
Water not dirty Fish water state unequals dirty
Water not very dirty Fish water state unequals very dirty
Water very dirty Fish water state equals very dirty
Fish healthy Goldfish health equals Good
Fish sick Goldfish health equals Sick
Fish dead Goldfish health equals Dead

Let us define a function evaluate which tests whether a condition is satisfied:

evaluate : Worldstate× condition 7→ boolean

Using the example conditions above, we can see that if the variable goldfish
health is equal to good, evaluate(fish healthy) evaluates to true.

5.1.3 Visibility

Variables that are void or invisible have, by definition, an undefined value.
Visibility of a variable for an agent is determined by zero or more visibility-
conditions, describing restrictions on world state to hold for the variable to
be visible to the agent. As such, visibility-conditions are part of the agent
description g ∈ G, which we will see later on in this chapter.

A visibility-condition can be described by a tuple of the variable name name
and a set of variable-conditions conditions. If an agent g has no visibility-
conditions for a specific variable then that variable is always visible for g. Below
is the protytype for a visibility-condition as well as a table of example conditions.

visbilitycondition = (name, conditions)

Example of a set of visibility-conditions V C for g ∈ G:
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Visibility-conditions
Variable Variable-conditions
Box lid {At home, Bedroom light on}
Box contents {Box lid open}
Front Door {In front of house}
Front Door {At home}
Goldfish {At home}
Fish water state {Water very dirty}

A visibility-condition is defined as satisfied when all of its variable-conditions
are. We can generalize the function evaluate from the previous section to apply
to visibility-conditions:

evaluate : Worldstate× visibilitycondition 7→ boolean

evaluate returns true for any visibility-condition vc in world state wn when
there are no unsatisfied preconditions:

evaluate(wn, vc) = true⇔ ¬∃c ∈ vc.conditions : evaluate(c) = false

In the previous example table, the agent can only observe the status of the
box lid when it is at home and the light is switched on. On the other hand,
a variable can also have multiple visibility-conditions. In the same example,
’Front Door’ has two of them. Contrary to visibility-conditions, which need
all of their variable-conditions to evaluate to true to be satisfied, a variable
needs only one visibility-condition to evaluate to true to be visible. Thus, in
the previous example, g is able to inspect the state of the front door when he
is at home, or when he is standing in front of his house. This nested approach
allows us to specify the visibility of a variable in a powerful way using logical
disjunctive normal form (DNF), and lets us use the function evaluate to define
the visibility of a variable as a function visible:

visible : Worldstate× agent× variable 7→ boolean

The definition of this function is given below:

visible(wn, g, v) = true⇔ ∃vc ∈ g.visibilityconditions : evaluate(wn, vc) =
true ∧ vc.variable = v

This is not all. In the previous section, we have defined visibility-conditions
as defining visibility of variables. However, visibility-conditions can themselves
be dependent upon invisible variables, in which case we cannot know whether
we can know the value of a variable.

An example of this can also be found in the previous section: In order to
inspect the box contents, the box lid must be open and the agent must be near
the box. But, when the agent is not at home or the light is not switched on, the
agent has no visibility over some of the variables needed to inspect the value of
the box lid. What is the current value of the box contents? The prudent solution
is to say that we cannot say anything about the box contents and define it as
undefined.
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In general, we state that any visibility-condition that relies on an invisible
variable in one of its variable-conditions is defined as undefined or invisible. By
recursion, any variables that have only invisible visibility-conditions are conse-
quently also defined as invisible.

When confronted with a problem that requires reasoning about invisible
variables, an agent can apply several strategies. The agent can simply maintain
the last known value, develop a statistical approach for a likely value, or infer
the value from other, visible variables in world state. Such functions fall out
side of the scope of this research.

5.1.4 Motivation

Agents are assumed to be goal-oriented creatures, wishing to set variables from
world state to a specific set of values. States that are desirable can be dis-
tinguished from undesirable ones by the utility or their variables. A higher
utilityrating means a state is more desirable than a state with a lower utili-
tyrating. Variables that are absent from the utility function are assumed to be
indifferent to the agent and receive a value of zero regardless of their value. An
example of a utility function for g is given below:

Example utility function for g:

Utility(g)
Name Value Utility
Health Good 1000
Health Bad 700
Health Dead 0
Fish Healthy 20
Fish Weird 18
Fish Sick 15
Fish Dead 0

To calculate the relative utility of a mutation, we shall introduce a new
function, named utility. This function takes as arguments an agent, a variable
name, and a value, and returns us the utilityrating this particular agent has
attached to that variable having that value. Its prototype is given below:

utility : agent× variable× value 7→ utilityrating

For example, when agent g is in good health (utility: 1000) and then gets
sick (utility: 700), the agent experiences a relative utility of utility(g, Health,
Good) - utility(g, Health, Bad) = -300.

5.1.5 Actions

The agent possesses a database of knowledge about named possible actions
actions. The information contained in in an action tells the agent about which
agent g is able to execute each named action name, what the preconditions
conditions on world state are and the actions’ effects can be, the cost, duration,
execution-visibility visible and the execution-likelihood p when its preconditions
are met. This can be represented by an 8-tuple:
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action = (name, agent, conditions, effects, cost, duration, visible, p)

The preconditions for a particular action are simply variable-conditions as
defined in the previous section. If there are no unsatisfied preconditions, the
action can be executed and can be referred to as possible. Let us also define a
new function with the same name:

possible : Worldstate× action 7→ boolean

possible returns true when there are no unsatisfied preconditions:

possible(wn, a) = true⇔ ∀c ∈ a.conditions : evaluate(wn, c) = true

5.1.6 Invisible actions and nature

Since we know that the contamination of the water is the result of a bacteri-
ological process, it would be elaborate to include an agent in our model that
represented the water-borne bacteria that cause the contamination. Instead,
this action is described as being executed by an impersonal agent nature. In
our design, the agent nature is a special, impersonal agent that is responsi-
ble for any actions that are normally not associated with an individual. These
actions may include any actions brought about by the laws of nature or bacte-
riological or chemical processes. For example: actions that are weather-related;
lightning, rain, floods, storms as well as fire hazards are typically actions that
would belong to nature.

Invisible actions are typically executable only by nature and cannot be di-
rectly observed. They can however afterwards be deduced from the occurrence of
their effects, or be expected beforehand when there is a high execution-likelihood
in combination with satisfied preconditions for a specific action.

The relevance of invisible actions comes forward when we revisit the actions
database. As we can see, the water for the fish can be clean or dirty. Dirty
water satisfies a precondition that allows the fish to become sick more easily.
While the agent cannot observe the water getting dirty (unless it gets really
dirty), the agent must still account for the likelihood of cleaning dirty water to
keep the fish healthy.

But how can we form an expectation about when such an action will be
executed? For an action that is associated with a normal agent, we may know
the intentions of the executing agent, or are able to identify them based on
previous observations. This gives us a way to estimate whether a certain action
is likely to be executed in the future. For actions executed by nature, we use
a different mechanism; likelihood. As can be seen in the actions database,
every action has a likelihood entered in the last column. This represents the
chance that a certain action will be executed by nature per unit of time if it’s
preconditions are fulfilled, and allows us to form an estimate of certain risks and
dangers involved.

Example:

For this example we will look at the actions database on the next page.
We pay special attention to two actions; a1: ’Fish becomes sick 1’, and a2:
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’Fish becomes sick 2’. These actions roughly represent the same thing; The fish
becomes sick, but they happen under different circumstances (this can be seen
by their preconditions): In #1, the fish has clean water. In #2 the fish has
water that is not clean.

Let’s say that agent g is going to go away for some time, and is going to
leave the fish alone for a while. This means the fish is not a visible variable for
g while away form home. If g wants to estimate the chance that the fish has
started to become sick after he returns, he can use these likelihoods to make
his calculation: If g assumes the water will stay clean and is away for n units of
time, using simple probability mathematics, the chance that the fish has started
to become sick when he returns will be equal to

1− (1− a1.likelihood)n.

For a visit of 3 units of time, this would translate into a chance of

1− (1− 0.02)3 = 0.06.

However, if g were to assume that the water wasn’t clean when he left, this
chance would be considerably higher:

1− (1− 0.15)3 = 0.39.

From this example, it is immediately clear that if g wants his fish to remain
healthy, that he should clean the fish water before he leaves on a long trip.

For actions that can be executed by other agents than nature, the likelihood
can be interpreted as the chance that the agent is successful in executing the
action when it attempts to do so. It still does not state, however, that the
succesfully executed action will have an effect that will result in an outcome
that changes world state.

5.1.7 Effects

Actions change world state by causing changes in variables. We can describe
the changing of a variable to a certain value as an effect. The moment at which
the variable changes we can say the effect is happening or occurring.

Every action has a non-empty set of effects effects associated with it. The
only time at which these effects may occur is at the moment when the action
is completed. The likelihood of an individual effect e occurring at this time is
encoded in the effect by a probability p. If e does occur, it generates a change
in world state wn called a mutation or outcome, thereby also triggering the
creation of a new world state, wn+1. This new world state will then have a
different value for the variable described in the effect. Below is our definition
for an effect and an example effect set:

effect = (name, variable, value, p)

Example of an effect set:
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Effects
Name Variable Value p
Arrive home Location Home 1.0
Arrive at city Location City 1.0
Get sick Health Bad 0.5
Fish gets sick Fish Sick 0.5
Fish gets better Fish Healthy 0.5
Fish dies Fish Dead 0.5

Note that a typical effect set for any action will probably not contain this
many entries, and just contain maybe one or two rows. The multitude present in
the previous table is mainly for illustration purposes. An effect may be present
in more than one action. To find the set of actions that can cause a certain
effect e, we shall create a new function:

causesof : effect 7→ {Actions}

This function is defined as follows:

causesof(e) = {a | e ∈ a.effects, where a ∈W.actions}

In other words, causesof returns the set of actions that can generate e.
When examining a certain world state, it might be useful to know whether it’s
possible to execute an action which generates effect e. For this purpose, we can
overload the function possible to also accept an effect as a second argument:

possible : Worldstate× effect 7→ boolean

with the associated function definition:

possible(wn, e) = true⇔ ∃a ∈ causesof(e) ∧ possible(wn, a) = true

When we combine an effect with a world state, we can calculate the expected
utility for an agent g:

utility : Worldstate× agent× effect 7→ utilityrating

utility(w, g, e) = (utility(g, v, e.value)− utility(g, v, v.value)) ∗ e.p, where v ∈
w.variables ∧ v = e.variable

In the next section, we will see how the occurrence of effects leads to the
creation of new world states.

5.1.8 Mutation of world state

As explained in the beginning of this chapter, W contains the set of world states,
describing the agent view of the world at a certain instant in time. Initially, W
contains only one element; w0. Initiation or completion of an action a in this
state triggers a change in world state, leading to the creation of a new state w1.
In general, we can say that initiation or completion of an action in state wn

leads to the creation of a new state wn+1, which is added to W .
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An example of this would be that if at state w0 at time t0 + interval agent
g initiated the action Go home from city, g would trigger the creation of a new
state w1 in which the action Go home from city is partially completed. This
action is then present in the list of partial actions w1.partials with the time at
which it was initiated, t1 = t0 + interval. For the rest, w1 is simply a copy of
w0.

Example of the partial action set w1.partials:

Partial actions:
Action Time
Go home from city t1

After a set amount of time (in this case, 0.02 units of time according to the
’Go home from city’-entry in the action database), the action Go home from
city completes and this triggers the creation of another world state, w2. We
model the creation of a new world state as the result of a set of mutations as a
function:

application : Worldstate× {Mutation} 7→Worldstate

This function changes the value of the variables denoted by the set of mu-
tations to their new values.

The new state w2 is a copy of w1, except that because the action has com-
pleted, the action does not appear in the new partial actions list, w2.partials.
Instead, the action has generated a mutation: The location of g, represented by
the variable Location, has changed state from ’city’ to ’home’. In this case, we
are certain that executing the action ’Go home from city’ will achieve the result
of changing the location from ’city’ to ’home’, as we can see by the probability
of 1.0 for this effect (traffic accidents and such have not yet been accounted for
in this model).

However, for some actions, the probability p will not be 1.0, and the world
state after the action is completed is not a priori clear. For these kind of actions,
an agent wanting to predict the outcome of an action will have to maintain a
probability distribution over a set of states instead of relying on a single state.
We will get to know more on this subject in 5.2.

The changing of location from ’home’ to ’city’ is represented in the set of
mutations w2.mutations, which is described below;

Example of the mutation set w2.mutations:

Mutations for state w2

Name Variable Old value New value
Arrive home Location city home

Note that the name of the mutation is always equal to that of the effect that
triggered the mutation. At this point the reader might wonder as to what the
difference is between an effect and a mutation. The answer to this question is
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that an effect describes a possible change of state with an estimated probability
with which this might happen, while a mutation describes a definite change of
state as the result of an effect triggering this change.

Nevertheless, even though an effect may be present in multiple different
actions, an effect can only generate one specific mutation and a mutation can
only be generated by one specific effect. When a mutation m is the result of an
effect e we shall say the following relation evaluates to true:

m = e

In this section, we have described how g is able to execute the action ’Go
home from city’ and change it’s location from ’city’ to ’home’. To summarize
the execution of ’Go home from city’ we can provide a trace that shows how
the action has developed through these three world states into an mutation and
has changed the value of the variable ’Location’:

Trace of the action ’Go home from city’
State Partial actions Mutations Location
w0 ∅ ∅ city
w1 {Go home from city} ∅ city
w2 ∅ Arrive home home

We are now ready to expand our utility function defined earlier. Instead
of having to write utility(g, variable, newvalue)− utility(g, variable, oldvalue)
every time we want to know the relative utility of a mutation, we shall define
the utility of a mutation m ∈ wn.mutations for agent g as follows:

utility : Agent×Mutation 7→ utilityrating

utility(g,m) =

utility(g,m.variable,m.newvalue)− utility(g,m.variable,m.oldvalue)

5.1.9 Opinions

In the previous sections we have explained how our agents view the world, the
actions that happen in it and how these actions affect their perceived environ-
ment. Combining this with a per-agent utility function gives our model the
ingredients it needs to let agents evolve a step further and let them develop
their own opinions about what’s going on in their world.

Because we concentrate on the subject of negligence, an opinion of an agent
g will always be associated with both a target agent h ∈ G and a mutation
m ∈ wn.mutations. Such an opinion reveals how g feels about h because of m
happening and consists of a negligence rating and a set of emotions. In some
cases, g and h may be the same agent. Because we shall make an opinion a
part of a target agent definition, we do not need to specify the target agent in
the definition of the opinion itself. We still need to include the reference to the
mutation, however. Below is our prototype for an opinion:

opinion = (mutation, negligence, emotions)
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Of course the mutation can only have occurred as the result of an action.
Because we are mainly interested in negligence here, the referenced mutation
need not be (and usually isn’t) caused by either agent for an opinion to be
formed by one agent about another.

The set of emotions present in the current model is, not by chance, the
same set of emotions we have studied in chapter four. The negligence rating is
encoded as a number between zero and five inclusive (like in the questionnaire).
The interpretation of a rating can be in one of four categories: Minimal, Low,
Medium or High. Minimal is reserved for ratings of 0.5 and lower, Low is for
ratings between 0.5 and 2.0, Medium is for everything in between 2.0 and 4.0,
and everything above 4.0 is considered High. Individual emotions are encoded
in the same way as variables; They are a 2-tuple of a name and a value. The
possible values for individual emotions are also a numeric value between zero
and five. Not all emotions need to be present in a single opinion.

Emotion prototype:

emotion = (emotion− type, value)

Like in most of this chapter, we accompany model descriptions with exam-
ples. In this example, we will concentrate on aspects that are related to opinions
and will leave out most of the other specifications of the enviroment.

Example:
We find agent g coming home after a weekend away to find his apartment

partially burned down (mutation ’apartment burned’). g, who lives together
with h, had asked h to let the faulty electric wiring be fixed before he would
return. Even though h did not set fire to the house (nature did), g develops an
opinion about h:

mutation negligence rating emotions
apartment burned 5 (High) {(anger, 5), (sadness, 4),

(sympathy, 1), (fear, 3)}

Now that we have defined how an opinion is related to agents and what is
happening around them, we are ready to put these pieces together and present
a complete definition for an agent’s idea of another agent in its world. This is
the subject of the next section.

5.1.10 Other Agents

Naturally, one of the most important data structures is an agents’ representation
of other agents. When we speak about an agent representation, we are talking
about the image an agent has of another agent, not the entire world view of
a single agent. In our system, we acknowledge that different agents can have
different utility functions, so these are included in the agent representation.
Furthermore, variables which are visible to some agents in state wn, will not be
visible to other agents (knowledge is not universal). This is encoded in the fact
that visibility conditions are also agent-dependent and thus part of an agent
description. We also model agents as being resource-bounded in the sense that
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they, like humans, will not have unlimited computational resources. This is
represented by a deliberation time delib, signifying the time an agent can spend
processing new information upon world state changes before it is expected to
react. This does not mean an agent will necessarily need this time to react
to an event, but rather an upper bound after which we can expect it to have
deliberated sufficiently to have formed a new plan. Lastly, an agent definition
also consists of a set of opinions about that agent as defined in 5.1.10.

After taking the above into account, we have come to the following definition
of an agent representation:

g = (name, utility, visibility conditions, delib, opinions)

Our next example is a rather special one, because it is the first time we define
a complete agent representation. Our agent’s name is Harry. His representation
is a part of Sue’s world view, so this is the way Sue thinks about Harry. Due to
the complexity of defining a complete agent representation, we will keep Harry
a rather simple agent.

Harry = (Harry, utilityh, viscondh, delibh, opinionsh)

where utilityh is defined as:

utilityh

Name Value Utility
Activity working 0
Activity sleeping 10
Activity watching television 20
Location home 15
Work-status employed 150
Work-status unemployed -150
Location home 20

From this we can see that Harry cares for only a few things in life: He
likes sleeping but ideally he wants to be watching television at home all day.
He really hates being unemployed, though, so we can expect that even though
Harry doesn’t like to work, sometimes we can find him working.

We’ve kept the visibility-conditions rather simple but sufficient for illustra-
tion purposes:

viscondh

Variable Variable-conditions
Harry’s television {Harry at home}

Harry’s deliberation time delibh is set to 15 minutes and the opinions Sue
has about Harry are captured in opinionsh:

opinionsh

mutation negligence rating emotions
Car broke down 3 {(anger, 3), (sadness, 3)}

48



From this we can see that Sue thinks Harry is fairly negligent because of a
mutation about a car that broke down. She seems to be quite angry at him over
this, but also feels quite sad, because she might have expected Harry to have
fixed her car but sadly, he let her down again.

At this point, however, we can only speculate as to the circumstances under
which this opinion has arisen, because this is just an agent representation. In
this example, we don’t have any information about the world states in which
this opinion has been formed.

Finally, it is also important to realize that an agent usually also has an
agent representation about itself, and that this agent representation can also
include opinions about the agent itself. For example, we might consider that
agent Harry has almost the same opinion about himself about the car breaking
down; He might consider himself negligent, and be both angry and sad about it.
However, because this is a case of an agent evaluating itself as feeling negligent,
we would also expect Harry to feel guilty and or ashamed of himself, creating
the following opinion:

opinionhh

mutation negligence rating emotions
Car broke down 3 {(anger, 1), (sadness, 2)

(guilt, 4), (shame, 2)}

Note that this last opinion, opinionhh, is an opinion which Harry has about
himself, and as such does not exist in Sue’s world view.

5.1.11 Discussion

In this section, we have explained how our agents model the world. We have
received an in-depth look at their datastructures and understand the way they
are able to model change in their environment. In the next section, we will use
this model to present some basic reasoning skills our agents will use to assess a
situation, and predict the occurrence of future events.
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5.2 Basic reasoning skills

In the previous section, we have concentrated on defining the data structures
needed for our agent to represent its world in sufficient detail for it to be able
to reason about negligence. In this section, we will define a few reasoning steps
or functions an agent can use to obtain a basic understanding of a certain
situation. We will introduce two new important concepts; blocking and the
negligent interval. These concepts will play a central role in 5.3, where we will
use it as a base to start making conclusions about possible negligence.

5.2.1 Blocking

In our model, when an action a is executed, this will likely lead to an effect that
will change world state. If world state can be changed by a in such a way that
successful execution of another action, b, is less likely to succeed than before a
was executed, we can say that a blocks b. In this section we will explain what we
mean by the phenomenon blocking, how we can find out when a certain action
blocks another, and why understanding blocking is important.

At its most basic level, blocking works by letting an effect invalidate a con-
dition. We incorporate this feature into our model by creating a new function:

invalidates : Worldstate× effect× condition 7→ boolean

with a straightforward definition:

invalidates(w, e, c) = true⇔ evaluate(w,c) = true ∧ e.variable-name =
c.variable-name ∧ evaluate(c.variable-name c.relation e.value) = false

invalidates returns true for a combination of a condition c and an effect e
in world state wn when both c and e reference the same variable, and the value
encoded in e.value invalidates the relation encoded in c. Note that invalidates
returns false when the condition is already unsatisfied: Only effects that change
a condition from true to false will receive a value of true from the invalidates
function. We can use invalidates to create another function that checks whether
one action blocks another:

blocks : Worldstate×Actions×Action 7→ boolean

again with a straightforward definition:

blocks(w, a, b) = true⇔ ∃e ∈ a.effects∧ ∃c ∈ b.conditions : invalidates(w, e, c)

A more difficult task, though is the evaluation of whether an action blocks
an outcome o. While it certainly would be easy to say that an action a blocks
another action which could cause o and therefore a blocks o, this would not
always be true. An outcome can be caused by more than one action. While the
changing of a variable might block one action that can cause o, another might
be unblocked by this change in state. When the unblocked action has a higher
execution chance than the action that was blocked, it is actually more likely
that o will follow than before.

Clearly, a better approach is needed. What we need is a function that allows
us to view the change in likelihood of o occurring as the result of an action. To
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accomplish this, we will first define a few helper functions. Because we are
only interested in negligence and in our model the relevant actions for this are
usually executed by nature, this allows us to simplify our calculation somewhat
by overlooking actions by other agents. Note that it is still possible to make this
calculation for actions executed by any agent once a model of the likelihood of
these actions is developed. However, developing such a model for other agents
is often agent-specific and falls outside of the scope of this thesis. First, we need
a function that evaluates the chance that o will occur as a result of an action
being executed in the next unit of time.

outcome probability : Worldstate×mutation 7→ probability

We can use the probabilities p encoded in the actions database to esti-
mate what nature will do. Using theory from probability calculus, we define
outcome probability as:

outcome probability(wn, o) =
1−

∏
{1− (a.p ∗ e.p) | a ∈ causesof(o) ∧ a.agent = nature ∧ possible(wn, a) =

true}

In this function, causesof gives us the set of actions that can cause o. Using
the product of the negated probability a.p from every action in this set multiplied
by the realization chance of the effect e.p we are able to estimate the chance
that none of these actions will cause e. Negation gives us the chance that at
least one of these actions will produce a realization of e.

outcome probability has given us the tools to compare the likelihoods of o
in different situations, but we are not there yet: execution of an action does a
not consistently produce the same end result in the same situation each time.
Instead, every effect e ∈ a.effects has a realization chance e.p, describing the
chance with which a mutation may or may not occur.

An a priori simulation of the execution of an action will therefore not reveal
a single state, but rather a set of states. Each of these states might have
a different set of possible actions which enable o, and therefore a different
outcome probability. To model this accurately and maintain readability, we
shall first introduce some more helper functions. Let us begin by defining the
set of possible future states and their likelihoods after an action a has been
executed in wn:

execution : Worldstate× action 7→ {(Worldstate, probability)}

We define this function as:

execution(wn, a) = {(w, p) | w ∈ application(wn, mutations), where
mutations ∈ P (a.effects) ∧ p = mutationprobability(a.effects, mutations)}

The P function here denotes the powerset operator, creating a set of all
possible sets of mutations that can occur as a result of the set of effects present
in a. mutationprobability is another helper function, signifying the probability
with which a set of effects will result in a given set of mutations.

mutationprobability : {effect} × {mutation} 7→ probability
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We define mutationprobability as:

mutationprobability(effects, mutations) =
achieved mutations(effects, mutations) ∗
unachieved mutations(effects, mutations)

As we can see, mutationprobability defines two helper functions of its own,
achieved mutations and unachieved mutations. These functions calculate the
probability of the mutation that have and have not been created out of a set of
effects.

achieved mutations : {effect} × {Mutation} 7→ probability

unachieved mutations : {effect} × {Mutation} 7→ probability

achieved mutations(effects, mutations) =
∏
{e.p | ∀e ∈ effects where

∃m ∈ mutations where e = m}

unachieved mutations(effects, mutations) =
∏
{1− e.p | ∀e ∈ effects where

¬∃m ∈ mutations where e = m}

Together, these functions allow execution to generate a set of possible world
states and their likelihoods based on a start state and an action. When we
combine execution with outcome probability, we are finally able to make an
estimate of the probability with which a certain outcome will be generated by
nature after execution of an action in a specific world state:

action outcome probability : Worldstate×Action×mutation 7→ probability

action outcome probability(w, a, o) =∑
{outcome probability(we, o) ∗ p | (we, p) ∈ execution(w, a)}

As we can see, action outcome probability generates a set of possible world
states following the execution of an action a. The likelihood of the outcome
o being generated in each of these states is multiplied by the probability that
the state itself will be generated. This creates a set of probabilities for o being
generated after each possible execution of a. The sum of these probabilities is
thus equal to the chance o will be generated despite (or because of) execution
of a.

When we compare the likelihoods of o occurring before (using outcome probability)
or after execution of a (using action outcome probability), we can observe whether
a is an action that really does block o. If o is less likely to occur after a has
been executed in state w, we can say that a blocks o in w:

blocks : Worldstate× action×Mutation 7→ boolean

blocks(w, a, o) = action outcome probability(w, a, o) <
outcome probability(w, o)

blocking is an important concept because it is needed to allow our agents
to evaluate factors like possibility and effort. We will read more about this in
5.3. First, we will define the negligent interval, which defines the domain of
worldstates for our agents’ reasoning.
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5.2.2 The negligent Interval

Fundamental to the idea of negligence is that of a bad outcome. We have defined
a bad outcome as a mutation that is perceived negatively by at least one agent.
In our agent environment we can identify a bad outcome o for agent g as follows:

utility(g, o) < 0, where o ∈ wn.mutations

Every bad outcome o has a negligent interval or NI(o) associated with it.
The negligent interval is the interval of time during which o was possible to
be produced by at least one action. It is represented by a set of continuous
world states previous to the realization of o, where in every state o is possible.
Searches for attributions of negligence to agents will be confined to this interval.

Before we identify the function that creates the negligent interval, we shall
create a few helper functions. To find the world state associated with a mutation,
we create the function:

statefrommutation : mutation 7→Worldstate

and define it as:

statefrommutation(m) = {wn | wn ∈W , where m ∈ wn.mutations}

The interval function returns a set of states between two points in time:

interval : time× time 7→ {Worldstate}

which is defined as:

interval(ta, tb) = {wn|wn ∈W, tb > wn.time > ta}

These helper functions let us create the negligent interval as follows:

NI : mutation 7→ {Worldstate}

which is defined as:

NI(o) = {wn | wn ∈W , where possible(wn, o) = true ∧ ∀wk ∈
interval(wn.time, statefrommutation(o).time) : possible(wk, o) = true}.

To put this in more human understandable terms: The negligent interval
is the continuous set of states where o was able to occur prior to o occurring.
Thus, non-contiguous sets of states where a certain outcome was possible will
not be counted as a single negligent interval, since they have states dividing
them in time in which it was not possible for this outcome to occur.

Example of a negligent interval:
This example is about a hospital and our agent g. First we will sketch the

environment and the way it is encoded in our model. Secondly, we will evaluate
the way in which the negligent interval is constructed.
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In our hospital, power is provided by the local city power supply and a
backup generator. The backup generator is only used when the main city power
supply fails. When both of these power sources fail, the hospital is left without
power and certain important functions fail.

In our model, this is encoded as follows: We start with the action backup
power supply failure. This action happens at random about once a year and
is executed by nature. When it is executed, it has an effect backup power off,
changing variable backup power from on to off. Reparation of the backup power
supply happens with repair backup power supply. This action is to be executed
by g and has an effect backup power restored that changes backup power back to
on. Another action called total power failure can only be executed when there
is a backup power failure. Consequently, it has a precondition backup power off,
that evaluates to true when variable backup power is equal to off.

Now, suppose the hospital has had a backup power failure last year, and
is experiencing another one this year. We start the model last year, at state
w0. In this state, backup power is on, so we have nothing to fear. Even though
these actions happen almost instantaniously, we still have to model them with
a beginning and an end, so every action produces two new states; one at the
beginning of the action when it is placed in the partial actions list, and one at
the end, when it generates an effect. At the first power failure, the execution of
backup power failure is initiated, putting this action in the partial actions list
and thus causing w1. Once it is completed, it causes power to fail and creates
state w2. In state w2, it is possible for total power failure to be executed.
However, backup power is restored and we are again two states ahead, in w4.
At the second power failure, we enter state w6, and again, total power failure
is possible. After a while, the city power fails, causing the action total power
failure to be executed and the effect power off to be realized in state w8. This
effect changes variable power from on to off and has a negative utility of -1000
for our agent g.

We shall now construct the negligent interval for the negative outcome power
off. We start by providing the state list, along with the evaluation of the pre-
condition backup power off and the partial actions list:

State trace
State Backup power off Partial actions
w0 false
w1 false Backup power supply failure
w2 true
w3 true Repair backup power supply
w4 false
w5 false Backup power supply failure
w6 true
w7 true Total power supply failure
w8 true

Application of the function negligent interval(power off) will now yield the
set of all states before w8 where backup power off evaluates to true and had
no states between them and w8 where backup power off was false: {w6, w7}.
Note that the negligent interval does not include the state where the negative
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outcome occurred. This is because it is not useful for our agent to reason about
this state when the has already happened.

The concept of a negligent interval is an important component in our agent
framework, because it specifies the domain of world states that our agent will
consider when making attributions about negligence. Now that we have specified
how our agent composes this interval, we are ready to discuss how it evaluates
the factors in our model for each of the states in it. This is the subject of the
next section.
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5.3 Evaluation of Factors

The attributional model presented in chapter four makes use of a number of
factors (possibility, effort, intention, excuses, etc.) that are used to make appro-
priate inferences for the attribution of negligence and emotional arousal. These
factors form the core of our framework, and after having defined the agent
environment and some basic reasoning skills, it is now possible to develop an
algorithmic interpretation for the evaluation of these factors, which is what we
will do in this chapter.

5.3.1 Overview

In this section we will give an overview of how an agent can construct an opinion
about another agent g regarding a negative outcome o. The end-result of such
a computation is an opinion about g as defined in 5.1, consisting of a negligence
rating and a set of emotions.

5.3.2 Context

The computations about to be described are not specific to either a negligent
agent, or an agent suffering from another’s negligence. Rather, the computa-
tions themselves remain largely agnostic to the perspective of which agent the
self is, except for the generation of emotional responses. The only thing that
is important here, is that the observing agent that we might refer to as the
observer, possesses a to the observer seemingly complete world view.

What we mean by this is that the observer must have an idea of the state
of relevant variables to be able to form an opinion about a certain agent g. An
example would be that in our goldfish scenarios, the observer must be aware
of g’s location and the state of the fish. If the observer lacks these kinds of
information, it is not possible to form an opinion of negligence.

Our algorithm starts by constructing the negligent interval NI(o). After
NI(o) is constructed, a number of steps are taken for each state to form an
evaluation about the behavior of g. These steps include checking if g possessed
the possibility of blocking o, if g could have been expected to have made a
stronger effort to prevent o, if g had an excuse, and to what extent g should
have foreseen that he was being negligent. Together, these factors allow an
agent to form an evaluation about g’s behavior in this state.

The next few sections will describe in detail how the various evaluation steps
mentioned above for a negative outcome o can be applied to a single agent g in
a single state w. Followed by this is a description of how we take these states
and combine them to form a single evaluation of g in state wn, consisting of a
negligence judgment and a set of related emotions. Finally, we present a method
to aggregate the evaluations from multiple states in a single negligent interval
into an opinion about g, which can then be added to g’s representation in our
agent’s world view.

5.3.3 Possibility

The first factor in our evaluation of the attribution of negligence is that of
possibility. Possibility is the determination of whether it was possible for g to
do anything about o from occurring. This issue is split up in two questions:
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1. Did the agent have foreknowledge of o?

2. If so, could the agent have done something to avoid o from happening?

Having foreknowledge of o means the agent knew about a way that o could
have occurred. For this to hold true, g needs two things: An action a that could
cause o. Secondly, g needs to be able to inspect the preconditions for a to make
sure a is possible. Of course, g can only do this when all variables involved in
the preconditions for a are visible to g:

preconditions visible : Worldstate× agent× action 7→ boolean

We define preconditions visible as:

preconditions visible(w, g, a) = true⇔ ∀c ∈ a.preconditions :
visible(w, g, c.variable)

preconditions visible returns true only when all variables needed for the
evaluation of the preconditions for a are visible to g. The answer to our first
question can then be given by a new function, foreknowledge(w, g, o):

foreknowledge : Worldstate× agent×mutation 7→ {action}

foreknowledge(w, g, o) = {a | a ∈
causesof(o) ∧ preconditions visible(w, g, a) ∧ possible(w, a)}

The function foreknowledge returns the set of actions that g knows are
possible and that can cause o. If this is an empty set, we already know that
g did not know about the possibility of o occurring. If the set is not empty
however, g knows o can occur through any element in foreknowledge(w, g, o).
We shall now look at the second question, which asks what g can do about the
possibility of o occurring. This is done by creating a new function, ability:

ability : Worldstate× agent×mutation 7→ {action}

ability(w, g, o) = {a | a ∈ actions, where blocks(w, a, o) = true ∧ a.agent = g}

ability returns a set of actions that g can execute to block o. If ability equals
the empty set, g cannot do anything about o occurring. Having answered our
two subquestions, we can now define the function possibility:

possibility : Worldstate× agent× outcome 7→ boolean

possibility(w, g, o) = true⇔ |foreknowledge(w, g, o)| > 0 ∧ |ability(w, g, o)| >
0

According to the definition above, possibility returns true when g both
knows o can occur and g is in the position to do something about it. In the
next section, we shall look at when an agent has made enough of an effort to
stop o from occurring.
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5.3.4 Effort

In this section, we look at the effort an agent has taken towards trying to
prevent o in state wn. There are two ways an agent can be deemed to have
made a sufficient effort: The agent was busy trying to block o in state wn or the
agent started to block o soon after this state as a result deliberating for a while.
Using the above information, we have split this factor up in two subquestions:

1. Was g trying to block o in wn?

2. Did g initiate a blocking action a within the deliberation time g.delib?

We will answer subquestion number one by looking at the partial actions set
wn.partials to find if there is an action in which g tried to block o:

made an effort : Worldstate× agent×mutation 7→ boolean

made an effort(w, g, o) = true⇔ ∃a ∈ wn.partials : a.agent =
g ∧ blocks(w, a, o)

made an effort returns true when there is an action in the partial actions
set that is being executed by g and blocks o. If made an effort returned false,
it is still possible that g was still deliberating its options and started to try to
block o somewhere nearby in the future. If this is true, then there exists a state
where g is trying to block o named wk which satisfies wn.time < wk.time <=
wn.time + g.delib.

started an effort : Worldstate× agent×mutation 7→ boolean

started an effort(wn, g, o) = true⇔ ∃wk ∈ NI(o) ∧ wn.time < wk.time <=
wn.time + g.delib ∧made an effort(wk, g, o)

If started an effort returned false too, then there was no action that g has
undertaken before or on wn or will undertake after wn to stop o from happening.
In this case, effort is false.

effort : Worldstate× agent×mutation 7→ boolean

effort(w, g, o) = made an effort(w, g, o) ∨ started an effort(wn, g, o)

5.3.5 Excuses

An excuse is something the agent was doing during the negligent interval that
was not related to the outcome o, but that the agent was doing for a different
reason. This reason might be to increase its own utility, that of another agent,
or even to help the agent that was suffering from the negligent outcome in
a different way. Excuses can be divided into good excuses and bad excuses.
We distinguish between a good and a bad excuse by looking at the size of the
expected utility compared to the expected loss of utility because of negligence.
A good excuse will gain more total utility than the expected loss of utility due
to o will be, and a bad excuse will gain less.

The first thing we need is a helper function that gives us the expected utility
of an action:
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expected utility : Worldstate× agent× action 7→ utilityrating

expected utility(w, g, a) =
∑
{utility(w, g, e) | e ∈ a.effects}

Next we want to know the aggregate utility for all agents for this action:

total expected utility : Worldstate× action 7→ utilityrating

total expected utility(w, a) =
∑

expected utility(w, g, a), ∀g ∈ G

Where G is our usual collection of agents. We also want to know the total
utility for all agents for the negative outcome:

total utility : mutation 7→ utilityrating

total utility(m) =
∑

utility(g,m),∀g ∈ G

Now that we have our utility functions, we are able to make an estimate
of the utility of both any action a and any negative outcome o occurring in w.
Better still, we can compare them to each other. But instead of using addition,
we use subtraction to see whether g’s action a really expects to bring more
positive utility into the world than o could take out:

positive action : Worldstate× action×mutation 7→ utilityrating

positive action(w, a, o) = total expected utility(w, a)− total utility(o)

What this tells us is that when positive action is positive, g had a strong
excuse, because he was doing something very good (at least in our agent’s eyes).
But when positive action is negative, g could have better been helping to stop
o instead of trying to do something which was not so important.

Because we must distinguish between good and bad excuses, the final func-
tions for this factor will be two: good excuse, and bad excuse:

good excuse : Worldstate× agent×mutation 7→ boolean

bad excuse : Worldstate× agent×mutation 7→ boolean

Their definitions are given below:

good excuse(w, g, o) = true⇔ ∃a ∈ w.partials : ¬blocks(w, a, o) ∧ a.agent =
g ∧ positive action(w, a, o) >= 0

bad excuse(w, g, o) = true⇔ ∃a ∈ w.partials : ¬blocks(w, a, o) ∧ a.agent =
g ∧ positive action(w, a, o) < 0
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5.3.6 Certainty

The factor of certainty represents the degree to which an agent knows that
intervention on the part of the agent is required to avoid letting a bad outcome
be established. In other words, when an agent is certain, it knows that to avoid
letting o happen, the agent must do something, whereas when the agent is not
certain (or uncertain), there is a realistic chance that o might not happen and
the conditions which enable o to be generated might well change to make o
impossible.

In our model, this means that g is able to block o, but there is no action
from nature which can block o. Before we define our certainty function, we will
define a helper function agentprevents:

agentprevents : Worldstate× agent×mutation 7→ boolean

agentprevents(w, g, o) = true⇔ ∃a ∈ actions where a.agent = g ∧ ∃ (s, p) ∈
execution(w, a) : ¬possible(s, o)

The function agentprevents describes whether it’s possible for an agent to
execute an action a in world state w whereby the result can be such that o is
not possible, thereby preventing o from occurring. This allows us to construct
our certainty function in a simple manner:

certainty : Worldstate× agent×mutation 7→ boolean

certainty(w, g, o) = true⇔
agentprevents(w, g, o) ∧ ¬agentprevents(w, nature, o)

The certainty function is defined rather straightforward using the agentprevents
function. Only when g is able to prevent o from happening and nature clearly
isn’t will certainty evaluate to true for g.

5.3.7 Intention

Intention is the easiest factor to determine, because we can simply use the
agent’s utility function to check whether the outcome has a positive utility for
the agent:

intention(g, o) = utility(g, o) > 0

This is the last factor in our model. In the next section, we will see how
these factors can combine together to form an evaluation of negligence.

5.4 Generating evaluations

By now our agent has done a great deal of reasoning, and is almost ready to
provide us with an evaluation of what it thinks of its fellow agents behavior. For
a particular negative outcome o, for a particular agent g, in a particular world
state wn, it has deliberated whether g possessed the possibility of preventing
o. It has evaluated whether g had made a good effort at trying to block o, or
had a good or a bad excuse for letting o happen. Finally, it has also evaluated
whether g was aware that g alone could have prevented o from happening, and
whether g might even have intended o to happen.
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The algorithm we are about to present is based on the results of the question-
naire in chapter four. It is split in two parts: In the first, evaluate negligence,
we will use the evaluations of the various factors to come to a negligence rat-
ing. In the second part, we will use the negligence rating combined with the
factor intention to select an emotional response, not necessarily only to g, but
perhaps to other agents as well. The result of this calculation will consist of
a set of evaluations, where an evaluation consists of a negligence rating to-
gether with an emotional response. We start by providing the prototype of
evaluate negligence:

evaluate negligence : Worldstate×mutation× agent 7→ negligence rating

The nature of this function is somewhat different than that of our other func-
tions, so we will step away from our usual mathematical, set-oriented notation,
and use a more imperative, pseudo-code notation this time.

evaluate_negligence(w,g,o) =
{

if(not possibility(w,g,o))
negligence_rating = 0 (Minimal);

if(effort(w,g,o) or good_excuse(w,g,o))
negligence_rating = 1 (Low);

if(bad_excuse(w,g,o) or certainty(w,g,o))
negligence_rating = 5 (High);

else
negligence_rating = 3 (Medium);

return negligence_rating;
}

For the second part of our algorithm, we will be attaching emotional evalu-
ations to these negligence ratings. Let an evaluation be defined as:

evaluation = (mutation, state, agent, negligencerating, emotions)

We can then define the second part of our evaluation function:

evaluate state : Worldstate× agent×mutation 7→ {evaluation}

Again, because of the nature of the function, we will use pseudo-code this
time. Comments start after a pound (#) sign .

evaluate_state(w,g,o) =
{

let eval be an empty set of evaluations
let em be an empty set of emotions
let em2 be an empty set of emotions

negligence = evaluate_negligence(w,g,o)

if(g = i)
{

# if we are the agent
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# If we are negligent, feel fear, guilt and shame accordingly
if negligence > 1
{

add (Fear, negligence / 3) to em
add (Guilt, negligence / 2) to em
add (Shame, negligence / 2) to em

}

# Happiness and sadness are generated according to our utility function.
if intention(w,g,m) = true
{

add (Happiness, 1) to em
}
if intention(w,g,m) = false
{

add (Sadness, 3) to em
add (Sympathy, 3) to em

}

# attach this evaluation to every agent who suffered from my negligence
forall agents h in G: if intention(w,h,m) = false
{

add (o, w, h, 0, em) to eval
}

} else
# if the agent under scrutiny is someone else

# If he is negligent, we are angry at him
if negligence > 1
{

add (Anger, 4) to em
}

# If he did not intend it, we are sad for him and have sympathy
if intention(w,g,o) = false
{

add (Sadness, 2) to em
add (Sympathy, 1) to em

}
add (o, w, g, negligence, em) to eval

# Feel sadness and sympathy for any agents that did not intend this.
if intention(w,g,m) = false
{

add (Sadness, 3) to em2
add (Sympathy, 3) to em2

}
# attach this evaluation to every agent who suffered from g’s negligence.
forall agents h in G: if intention(w,h,m) = false
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{
add (o, w, h, 0, em2) to eval

}
}
return eval;

}

The evaluate state function describes the way emotional responses are gen-
erated based on a negligence rating and the intentions of various agents. When
the agent turns out to be negligent itself, it feels shame and guilt towards all
agents that suffered from the negligent action.

When it is evaluating another agent and this agent turns out negligent, it
becomes angry with this agent. In the next section, we will see how the result
of evaluate state, a set of evaluations, can be combined to form opinions about
other agents, and about oneself.

5.5 Putting it all together

In the previous sections we have seen how to evaluate various factors in a certain
world state and come to an evaluation regarding a set of agents. However, a
negligent interval can quite often be composed of more than one state. In this
section, we will see how we can take a set of evaluations about a set of agents
and transform these into a set of opinions about these agents, rendering a final
verdict of negligence and emotional response.

We deal with multiple evaluations in our model by calculating the agent’s
opinion as a weighted average of the evaluations of all states in the negligent
interval. Since an evaluation for a state that existed for hours is most likely more
important than an evaluation for another state in the same negligent interval
that only existed for a few minutes, we regard the first evaluation as more
important and use the states’ existence lengths as weights in the calculation of
the average evaluation.

The time a state has existed can be measured by the time indices between
that state and it’s successor. Let the function statetime indicate the time the
state existed:

statetime : Worldstate 7→ time

Let totaltime be the set-equivalent of this statetime

totaltime : {Worldstate} 7→ time

and be defined as:

totaltime(states) =
∑
{statetime(s) | ∀ s ∈ states}

Using statetime and totaltime we can integrate a set of evaluations about a
single agent into an opinion about that agent for the entire negligent interval:

integrate : {evaluation} 7→ opinion
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The negligence rating as well as the emotions in this opinion are a time-
weighted average of the set of states.

The last function we will define in this thesis is called evaluate agent. It
evaluates the actions of an agent g over an entire negligent interval, and captures
all the resulting evaluations from the observing agent. It then uses integrate
to let the observing agent form opinions about the behavior of g during the
negligent interval.

evaluate agent : agent× outcome

evaluate_agent(g,o) =
{

let eval be an empty set of evaluations

construct the negligent interval NI(o)

forall states s in NI(o)
{

# here we collect the evaluations our agent makes
# regarding all affected agents in eval
add evaluate_state(s,g,o) to eval

}

forall agents g in G
{

# eval may contain evaluations for many agents,
# handle them one by one
take the subset gs of evaluations about g from eval

# we form an opinion for g after integrating
# all evaluations from all different states
# if we have evaluations about g, turn them into opinions.
if(|gs| > 0)
{

opinion op = integrate(gs)

# we add our opinion to g
add(g, opinion)

}
}

}

5.6 Discussion

In this chapter we have introduced our agent model and shown how it can be
used to let an agent form opinions about the behavior of other agents, including
itself, during an interval of time that led up to a negative outcome. The com-
putational model we have created is able to capture a decent subset of human
reasoning about negligence attributions, but it is not perfect:

Humans can attribute negligence based on broken agreements between each
other, but currently our model is not able to do this. For it to be able to
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incorporate these features, it would need to know about speech act theory, and
understand the concept of commitments.

Furthermore, an agent can still keep itself out of harms way by not knowing
about its environment. If an agent sticks its head in the sand, it has no view
of the world and cannot be blamed about being negligent. This is similar to
the problems encountered in Mao’s model, but less severe, since in our model
an agent will have to actively avoid contact to be judged non-negligent and can
not just stand on the sidelines.

Another area for improvement would be the inclusion of a social norms
system. Currently, our agents monitor aggregate utility as the prime good by
which to judge the actions of another agent, much like the learned hand rule.
The central idea behind the learned hand rule is not likely to need adapting,
but it is not improbable that humans might value certain sets of variables as
having different utility based on context.
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6 Evaluation

In the previous chapter, we have defined our agent environment and explained
how it is able to reason about negligence. It is able to consider a set of previous
world states, deliberate, and form a set of opinions regarding an agent that could
have prevented the negative outcome, as well as the agents that are suffering
from this outcome.

In this chapter, we are going to evaluate whether our model matches the
results we have obtained from our questionnaire in chapter four. We start by
providing a step-by-step trace for the evaluation process for the first scenario.
The results of this computation are discussed and then compared to the human
data.

Evaluation of our model can be done in tree steps: First, we describe how we
encode the scenario from the questionnaire into our agent environment. Second,
we analyze the computations performed for our agent to reach a result. Lastly,
we compare the results of our agent framework to that of the questionnaire.

6.1 Initializing the agent environment

Let us begin by defining our agent environment by looking at our agents them-
selves. Our agents’ names are Andre and Bob. Andre and Bob share an apart-
ment, but are able to leave as well. This makes it a wise choice to model their
location as variables. The center of attention for the questionnaire is Andre’s
goldfish. The goldfish’s health goes through a number of states and is a key
element to our attribution process, so that is going to be a variable as well. The
following table shows these variables along with their initial values:

Variables
Name Value
Location Andre home
Location Bob home
behavior goldfish normal
Health goldfish healthy
water conditions normal

Of course, things are not going to stay this way. We need to define a set of
conditions that we can use to define actions and their preconditions.

Conditions
Name Variable Relation Value
Andre home location Andre equals home
Bob home location Bob equals home
fish healthy behavior goldfish equals normal
fish weird behavior goldfish equals weird
fish sick health goldfish equals sick
water cleaned water conditions equals clean
water normal water conditions equals normal
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Next, we shall determine the actions that our agents are able to execute.
We start with the center of attention, the goldfish. Since the fish is not able to
execute any actions by itself, it sometimes gets sick. We model the transitions
between the various health states of the fish in the following way:

When the fish is healthy, it is able to get a little weird. In this case, the
fish can be expected to act weird too, but this is in itself nothing serious. The
fish can recover from this by having nature execute the action recover from
weirdness, or it can die from behaving unnaturally by having nature execute
the action die from weirdness. The fish is also able to become sick. This is a
far more serious ailment, as the chances that the fish will die are much greater.
When the fish is sick, this means something is wrong, and either Bob or Andre
will have to do something to save the fish from dying. Next, we will discuss what
the agents are able to do. It is possible for both Andre and Bob to leave the
apartment and come back. The actual length of their journey does not really
matter much, because they tend to stay out for an entire weekend at a time
anyway. When they are at home, however, they are able to feed the fish, and
to clean its water. We encode these actions into our database as follows:

Our action database:
Actions

Name Agent Precond. Effects
Andre leaves Andre {Andre at home} {Andre away}
Bob leaves Bob {Bob at home} {Bob away}
Andre arrives home Andre {Andre away} {Andre at home}
Bob arrives home Bob {Bob away} {Bob at home}
Andre cleans fish water Andre {Andre at home} {water clean}
Bob cleans fish water Bob {Bob at home} {water clean}
fish gets weird nature {fish healthy} {fish gets weird}
fish recovers from weirdness nature {fish weird} {fish gets healthy}
fish gets sick nature {fish healthy} {fish gets sick}
fish recovers from sickness nature {fish sick} {fish gets healthy}
fish dies 1 nature {fish sick} {fish dies}
fish dies 2 nature {fish weird, water cleaned} {fish dies}
fish dies 3 nature {fish weird, water normal} {fish dies}
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Actions, continued
Name duration visible likelihood
Andre leaves 1 hour true 1.0
Bob leaves 1 hour true 1.0
Andre arrives home 1 hour true 1.0
Bob arrives home 1 hour true 1.0
Andre cleans fish water 1 hour true 1.0
Bob cleans fish water 1 hour true 1.0
fish gets weird 5 hours false 0.02
fish recovers from weirdness 5 hours false 0.50
fish gets sick 5 hours false 0.02
fish recovers from sickness 5 hours false 0.10
fish dies 1 3 hours false 0.40
fish dies 2 3 hours false 0.04
fish dies 3 3 hours false 0.20

The preconditions and effects tables that accompany this actions database
are given below:

preconditions
Name variable relation value
Andre at home location Andre equals home
Andre away location Andre does not equal home
Bob at home location Bob equals home
Bob away location Bob does not equal home
Fish healthy behavior goldfish equals healthy
Fish weird behavior goldfish equals weird
Fish sick behavior goldfish equals sick

effects
Name variable value p
Andre at home location Andre home 1.0
Bob at home location Bob home 1.0
Andre away location Andre away 1.0
Bob away location Bob away 1.0
fish gets healthy behavior fish healthy 1.0
fish gets weird behavior fish weird 1.0
fish gets sick behavior fish sick 1.0
fish dies health fish dead 1.0

Now, we need to define the utility functions for Andre and Bob. For this
scenario, we will give them an identical utility function utility1:

utility1

Name value utility
behavior goldfish normal 100
behavior goldfish weird 90
health goldfish healthy 1000
health goldfish dead 0
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Having defined our agent environment for the simulation of scenario one, we
can now proceed to the second stage of our trace, where we trace through the
reasoning steps required for our agent to form its opinion about these agents.

6.2 Computational analysis

In this section, we will retrace the steps needed for our agent to make its at-
tributions of negligence. We start by giving a concise description of what has
happened in our scenario:

First, Andre and Bob are home alone. Then, Andre leaves, leaving Bob
alone with the fish. Bob notices the fish acting weird, but doesn’t do anything,
probably thinking the fish will revert back to normal any time. However, the
fish does not recover from its weirdness, and dies.

We can get a visual overview of the situation by providing a state trace,
along with the value of the precondition fish weird and any partial actions:

state trace for scenario1

State fish weird partial actions
w0 false ∅
w1 false {Andre leaves}
w2 false ∅
w3 false {fish gets weird}
w4 true ∅
w5 true {fish dies 3}
w6 true ∅

Again, any action that is initiated and completed triggers the creation of two
states: One for creation of the action and the other one for completion. What
we are interested in now, is what our agent thinks of the behavior of Bob, since
he seemed to be able to do something about the fish dying. To achieve this, we
let our agent execute the function evaluate agent:

Now the time has come for us to introduce a new concept, namely that
of the execution trace. An execution trace is similar to a state trace, except
that it traces the execution of functions. An execution trace consists of three
columns, providing us with an overview of what is happening while the agent
is deliberating. The first column mentions the currently executing function,
including its arguments. The second column mentions the function that is
being called inside the function in the first column. Finally, the third column
returns the result of the execution of the function in the second column. The
bottom line shows the result of the function itself. As an example, we will give
an execution trace of the function possible. This function is executed in state
w0 of our previous state trace and concerns the action Bob leaves.

execution trace for possible()
Function subfunction result

possible(w0, Bob leaves) evaluate(w0, Bob at home) true
possible(w0, Bob leaves) true
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In this case, we have chosen a rather simple function, as possible only needs
to evaluate one subfunction, evaluate. As evaluate returns true, so does possi-
ble. On the following page, we have provided a partial execution trace for the
function evaluate agent, where g = Bob and o = fish dies:

The table provides a chronological function call history, allowing us to trace
the execution of evaluate agent through its subfunctions. The negligent interval
is constructed at, #3, and yields two states: w5 and w6. These states are
evaluated at #3 and #37, diving deeper into their subfunctions and arriving at
the attribution factors of possibility at #4, followed by effort at #4, good and
bad excuses at #24 and #25, and finally certainty at #26.

The trace is partial because some of the lower-level functions such as negli-
gent interval and blocks are not entered in full depth. Also, #38 is not expanded
because the only difference with state #4 is a partially executed action by nature
that lets the fish die fish dies 3. This action has no effect on the underlying
calculation, and therefore we use the same return value as calculated in #4.
The final result of this calculation are two opinions for Andre and Bob, as can
be seen in the execution trace and is summarized here in tabular form again:

Final results for simulation of scenario 1:

Agent mutation negligence rating emotions
Andre fish dies 3 0 (Minimal) {(sadness, 3), (sympathy, 3)}
Bob fish dies 3 3 (Medium) {(anger, 4), (sadness, 2),

(sympathy, 1)}

6.3 Comparison and discussion

When we compare this to the results of our questionnaire, we see that our
model has made a correct estimation of both the negligence rating as well as
the emotional arousal.

Questionnaire results for scenario 1:

Agent negligence rating emotions
Andre 0 (Minimal) {(sadness, 2.8), (sympathy, 2.6)}
Bob 3.4 (Medium) {(anger, 3.0), (sadness, 2.1),

(sympathy, 0.8)}

The main differences in these results are the anger ratings. This is due to
the fact that human anger ratings vary more per scenario and our model only
uses a default value of three (medium) when an agent is deemed sufficiently
negligent. Parameterizing our anger ratings according to the negligence rating
and other circumstances is likely to improve this scenario, but this falls outside
of the scope of this research. In the next chapter, we will draw conclusions and
give suggestions for future research.
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7 Conclusions and future research

After having compared our model against the human data in the previous chap-
ter, we draw conclusions about our model and will end this chapter with sug-
gestions for further research.

7.1 Conclusions

In this thesis, we have made a successful first attempt at creating an agent model
capable of incorporating human attributions about negligence. The model is
based on psychological literature pertaining to attribution theory. Though there
is not a substantial amount of literature regarding negligence specific studies on
the subject, our survey results were sufficient: A model was formulated that
could be evaluated successfully against a human population by means of a field
study. The model we have created is only partially based on both Shaver’s theory
and Mao’s model; We have taken the staged approach of attribution theory,
and kept some of its factors, such as foreknowledge and intention. We have
then added negligence-specific factors such as lack of possibility and excuses,
two items that are capable of mitigating an attribution of negligence.

The resulting model places the following demands on an agent environment:
Agents are expected to have a reasonable amount of knowledge concerning pos-
sible actions that they and other agents are able to undertake. They must also
be able to perform hindsight reasoning about expected utility of actions in an
arbitrary world state. Furthermore, agents must be able to estimate the utility
of not performing an action in a certain situation, having knowledge about a
probable chain of events.

7.2 Further research

A few directions for further research have already been uncovered in chapters
five and six: Integration of speech act theory could allow understanding of the
concept of commitments. This is an important step towards letting an agent be
responsible for agreements and contracts.

Developing an aspect of social norms would allow an agent to become sen-
sitive to understanding the relative weight of negligent acts in a certain envi-
ronment. This is analogous to the concept of Duty of care in legal research
concerning negligence. Such a framework would allow agents to establish role-
specific negligence ratings: A role-specific agent such as a medical agent can then
be attributed more or less negligence based on the social norms and obligations
relevant to a certain class of agent.
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Appendix A - Questionnaire results
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