
University of Twente

Faculty of Electrical Engineering, Mathematics, and
Computer Science

Master Thesis

Context Discovery Adapter (CDA)
Protocol

Author: Graduation Committee:
Hanga Boros Dr. Ir. Geert Heijenk
Date: Fei Liu
August 14, 2008 Pravin Pawar

Abstract

Context Discovery Adapter or CDA as we call it is designed and
implemented as a proof of concept to demonstrate ability to discover
and exchange context-specific information across disparate networks.
The implementation adopts Mobile Service Platform (MSP) and Ahoy,
two context management frameworks with greatly different proper-
ties. MSP is a JINI-based middleware capable of supporting connec-
tivity across cellular and fixed networks. Ahoy on the other hand is
a lightweight context discovery framework designed for mobile ad-hoc
networks and built with the help of Bloom filters. The project demon-
strates that heavyweight context interchange frameworks like MSP and
lightweight frameworks similar to Ahoy with limited context sensitivity
can establish mutual and transparent context exchange. CDA proves
not only a possibility for more pervasive context-aware applications,
but also provides a platform for further research.

Contents

1 Introduction 1

1.1 Goal of the Thesis . 1

1.2 Research Questions . 2

1.3 Requirements . 3

1.4 Research Approach . 4

1.5 Relevance and Applications 5

1.6 Document Structure . 6

2 Related Literature 7

2.1 Ahoy . 7

2.1.1 Attenuated Bloom Filter 7

2.1.2 Framework Components 8

2.1.3 Protocol Specification 9

2.2 Mobile Service Platform . 11

2.2.1 Nomadic Mobile Service 12

2.2.2 Framework Components 12

2.2.3 Protocol Specification 14

2.3 Related Work . 16

2.3.1 Context Distribution Framework 16

2.3.2 Web Services . 16

2.3.3 CORBA . 17

2.3.4 JXTA and Peer-to-peer Frameworks 17

2.3.5 EgoSpaces and Mobi-Blog 18

i

3 Design and Architecture 19

3.1 Guidelines . 19

3.1.1 Bridge-like Design Paradigm 19

3.1.2 Prototype CDA Framework 19

3.2 CDA Architecture . 21

3.2.1 Announcing Ahoy Context Sources to MSP 21

3.2.2 Announcing MSP Context Sources to Ahoy 25

3.2.3 Discovery of Ahoy Context Sources by MSP Clients . 29

3.2.4 Discovery of MSP Context Sources by Ahoy Clients . 30

3.2.5 Context Distribution Between Ahoy and MSP 33

3.3 CDA Architecture: Final Conclusions 38

4 Protocol Specification 39

4.1 Functional Description . 39

4.1.1 CDA Device Service 39

4.1.2 CDA Surrogate . 42

4.1.3 CDA Service Proxy 43

4.1.4 Broker Service . 44

4.1.5 CDA Daemon . 46

4.2 Message Types . 47

4.2.1 Channel 1: CDA Device Service and CDA Daemon . . 47

4.2.2 Channel 2: HTTP Interconnect Protocol 48

4.2.3 Channel 3: Java RMI in MSP 50

4.2.4 Channel 4: Client-Server Communication 50

ii

5 Implementation Report 51

5.1 Implementation Steps . 51

5.2 Implementation Tools . 54

5.3 Test Report . 55

5.3.1 Test Scenarios . 55

5.3.2 Test Measurements . 55

5.3.3 Test Results . 57

6 Conclusions 61

6.1 Contribution . 63

6.2 Future Work . 63

7 Glossary 65

iii

1 Introduction

Today we witness increasing demand for adaptive applications that deliver
context-sensitive information. For instance, GPS/GPRS based applications
like the novel Zipcar project[1] already incorporate location-aware context
information across ad-hoc mobile and fixed networks like the Internet. Hand-
held devices like PDAs and Smartphones are already network-enabled paving
way for personalised context-aware applications.

A main challenge these adaptive applications face is the free movement and
intermittent connectivity of users and context sources. Ideally, the applica-
tions should be able to cross different network transports seamlessly, in a
manner transparent to the user. Bridging across network environments of
different kinds, however, is not a simple task. The specifics of wired networks
(e.g. Internet) are fundamentally different from mobile ad-hoc communica-
tion technologies (e.g. Bluetooth) and of wireless (e.g. WIFI) and cellular
(e.g. GPRS) transports. There are numerous challenges that context-aware
computing has to overcome before an all-pervasive, truly ubiquitous appli-
cation environment becomes reality. This thesis project acts as the stepping
stone toward achieving that.

1.1 Goal of the Thesis

As suggested in the introduction, an important motivation in context-aware
computing is to develop increasingly pervasive and adaptive application
frameworks. That research goal has been the motivation for the Freeband
AWARENESS project[2] and the current thesis work.

The goal of the AWARENESS project has been to research different paradigms
for context management frameworks that would be capable of realizing
pervasive context discovery and exchange across disparate network envi-
ronments. A number of frameworks have emerged from the study, two of
which have served as inspiration for this Master’s thesis: The Mobile Service
Platform[3] (MSP) and Ahoy[4]. The two frameworks at hand rely on greatly
different communication and context exchange mechanisms. They have been
designed to work in different network environments: One is specific to mo-
bile ad-hoc networks, while the other one is designed for fixed/cellular net-
working environment. Overcoming their differences and interlinking them
to enable mutual and seamless context information transfer raises a number
of challenges that this thesis work wishes to answer.

MSP is a relatively heavyweight JINI-based service oriented middleware
capable of supporting connectivity across cellular and fixed networks. Ahoy

1

on the other hand is a lightweight context discovery framework designed
for mobile ad-hoc networks and built with the help of Bloom filters. The
two frameworks have different degrees of context awareness: While MSP
supports both the discovery and distribution of context information, the
current implementation of Ahoy supports only context discovery and offers
no mechanism for context distribution. This property and other aspects of
Ahoy make it less suitable for context-aware computing than its counterpart
MSP.

This thesis proposes to interlink Ahoy and MSP in such manner that the
new framework preserves the characteristics of the underlying networks and
application environments. In other words, the new framework is required to
keep the lightweight character of Ahoy as much as possible unaltered, yet
also interface it with the service-oriented architecture of MSP. We envision
the new framework as a bridge between Ahoy and MSP that leaves the
two end points as much as possible intact. If the thesis project succeeds
in bridging Ahoy and MSP in spite of their fundamental differences, new
perspectives and motivation can be brought to context-aware computing.
We would get one small step closer to the vision of a fully transparent
environment of context-sensitive applications.

The bridge framework or protocol set that this thesis aims to design is called
Context Discovery Adapter (CDA).

1.2 Research Questions

Having described the goal of this thesis, in this section we formulate the
research questions:

- What should the CDA protocol architecture be like? What design
paradigm should be used to keep the modifications to Ahoy and MSP
minimal?

- What representation format should be used for context sources in the
CDA protocol so that both Ahoy and MSP can read it?

- What modifications are needed to the default Ahoy and MSP con-
text announcement and discovery protocols to enable registration and
discovery of CDA context sources across Ahoy and MSP?

- What modifications are needed to the default Ahoy and MSP context
exchange (i.e. distribution) protocols to ensure mutual exchange of
context information between CDA clients and services across the two
frameworks?

2

- Is it possible to implement a protocol prototype which has feasible real-
life performance and resource utilization? What does the prototype
tell us about the scalability, modularity and extensibility of the CDA
protocol? Does the implementation ensure truly transparent context
discovery and exchange?

1.3 Requirements

This section summarizes the list of requirements the CDA protocol is desired
to fulfill while attempting to answer the formulated research questions.

- Context discovery and exchange between Ahoy and MSP should
be mutual.

- The communication between the two frameworks should be seam-
less. In other words, the differences between the two original frame-
works should stay hidden from the end user and the context exchange
should not be in any way disrupted when crossing framework bound-
aries.

- The CDA protocol should impose minimal changes and overhead onto
the protocols of the two original frameworks. We refer to this property
as the minimal impact requirement.

- We expect the CDA protocol architecture to be modular, extensible
and scalable. Modularity ensures that modifications can be easily in-
tegrated and that different functional modules stay grouped together.
Extensibility is meant to allow future expansion of the CDA proto-
col with new frameworks other than Ahoy and MSP. By scalability
we mean that the observed properties of CDA should stay unchanged
when the components of Ahoy and MSP increase in number, whether
statically or during runtime.

- For a successful proof of concept it is expected that the CDA pro-
tocol has a feasible implementation prototype. The implementa-
tion should show realistic performance, robustness and resource
utilization features. The platform-, hardware- and software-related
requirements of the implementation should be also feasible in the tech-
nological context of our times.

These requirements play an important role in the verification of the CDA
protocol design and test results. They are further elaborated on in the
Conclusions (Section 6).

3

1.4 Research Approach

The thesis work has been carried out in a series of steps, as listed below:

- Study of related literature. This phase comprises literature re-
search on Ahoy, Jini, MSP and other related topics.

- Analysis of design alternatives. In this phase we decide about the
architecture and design guidelines and consider a number of alternative
solutions for the CDA protocol architecture within the chosen design
paradigm.

- Selecting the final CDA protocol architecture. The final archi-
tecture is selected from the list of alternatives obtained in the previous
step. This phase concludes with a detailed specification of the emerged
CDA protocol, which includes a list of its components, communication
channels and message formats.

- Implementation of the CDA prototype. In this phase a prototype
of the CDA protocol is implemented. The chosen protocol architecture
serves as blueprint. If the blueprint cannot be implemented as is, the
protocol architecture is modified accordingly.

- Test scenarios and test measurements. In this phase the test
scenarios are designed and executed. The obtained test measurements
get processed.

- Evaluation and discussion. This phase consists of a discussion
and evaluation of the properties of the design, the implementation
prototype and the obtained test results. The evaluation is performed
against the initially formulated research requirements. Requirements
that are quantifiable, e.g. resource utilization and performance values,
get evaluated based on test results. Requirements criteria that are
not quantifiable, like robustness, extensibility, modularity and alike,
get evaluated through qualitative discussion. This phase closes with
conclusions about the CDA protocol, its contribution, benefits versus
drawbacks and suggestion for future work.

- Thesis report. The last phase is writing the thesis report, which is
the document at hand. The report includes the results of each research
phase listed above.

4

1.5 Relevance and Applications

To grasp better the contribution of the CDA protocol, in this section we
consider two plausible real-life applications that would make use of it.

The first scenario is volcano eruption monitoring. Bluetooth or WI-FI de-
vices establish an ad-hoc network and are spread in the endangered area
to collect and process data. Some of them offer their own measurements
as Ahoy service. Other devices post-process measurements received from
others and offer the computed results as Ahoy service. The type of mea-
surements can be temperature, air pressure, shock values and others. A
monitoring center can request the different measurements and perform ad-
vanced data processing that eventually leads to an escape strategy. Between
the endangered area and the monitoring center the measured data traverses
a variety of communication channels, among which there could be infrared,
WIFI, GPRS, Ethernet or others. The data sent by the devices would have
to travel uninterrupted through the various network transports. The MSP
framework would be able to cover areas of the fixed and GPRS networks,
yet it would not cover the areas of the ad-hoc network. This problem could
be surmounted by the CDA protocol. Figure 1 visualizes this scenario.

Figure 1: Vulcano eruption monitoring system.

In a second scenario the context source could be located at the other end
of the network spectrum in the fixed network. In this scenario an ad-hoc
network is used to monitor a flood-endangered area. When the sensor ad-hoc
nodes detect alarming water levels, they can request strategic advice from
a remote monitoring center that post-processes the received measurements.
The ad-hoc nodes could be given instructions, for instance, to open up safety

5

claps and guide the water flow. In this scenario the service we are interested
in originates in the fixed network, in an MSP-like environment, and is used
to govern ad-hoc clients.

These two calamity monitoring applications have a highly adaptive nature
and can perform decision making without human attendance. There are, on
the other hand, also numerous human-oriented applications of CDA. Exam-
ples would be remote patient or criminal monitoring systems, or conference
applications that provide context-specific information to the participants.

1.6 Document Structure

In the current chapter (Chapter 1) the reader got introduced to the re-
search context, goal of the thesis, research questions and adopted research
methodology. The rest of the paper is organized as follows:

Chapter 2 presents related literature introducing the Ahoy and MSP frame-
works, and it presents other works with similar research interest as
the current thesis: Context management frameworks developed by
AWARENESS project, some federation projects and state of the art
context-aware mobile frameworks.

Chapter 3 describes the design guidelines, presents a list of feasible bridging
points between Ahoy and MSPand it lists alternative design consider-
ations for the CDA protocol. The chapter concludes with suggestions
for the final CDA protocol architecture model.

Chapter 4 gives an account of the specifications of the CDA protocol ar-
chitecture. It gives an overview of all the CDA protocol components
and describes the communication channels, message types and event
flows.

Chapter 5 gives a report of the implementation process involving the CDA
prototype. It also presents the design of test scenarios and the obtained
test results.

Chapter 6 presents the evaluation of the CDA protocol prototype against
the research requirements and it discusses the benefits/drawbacks of
the protocol. The chapter closes with conclusions regarding the achieved
thesis goals and suggestions for future work.

Finally, there are a number of add-on sections: A glossary which contains a
list of abbreviations and bibliographical references.

6

2 Related Literature

In this section we introduce Ahoy and MSP and discuss several frameworks
that offer alternative solutions to the cross-platform context interchange
issues this thesis studies.

2.1 Ahoy

Ahoy[4], developed as part of the AWARENESS project, is a lightweight
protocol designed to discover services in resource-poor, wireless multi-hop
ad-hoc networks. Compared with MSP and other AWARENESS project
frameworks Ahoy has reduced context-awareness. Its current implemen-
tation has no support for context exchange (i.e. distribution), it supports
only the registration and discovery of context sources. Extending Ahoy with
an appropriate exchange protocol is certainly possible and this thesis work
considers alternatives for that.

2.1.1 Attenuated Bloom Filter

Attenuated Bloom Filter (ABF) is a unique adaptation by Ahoy to represent
the availability of context sources. ABF is an array of Bloom filters[5][6]. A
Bloom filter provides hash-based, compressed representation for the identi-
fier (i.e. unique name) of context sources. A Bloom filter initially has all its
bits set to 0. After hashing the string identifier of the context source, some
of the bits get set to 1 in a pattern unique to that identifier. Every context
source is associated with a unique hash or filter. Multiple context sources
can be mapped to the same filter by combining the bits of their individual
filters through a logical ”OR” operation. When an Ahoy component com-
putes the ABF, it is done the following way: The context sources that are
at the same hop distance from the component at hand get mapped to the
same filter through the logical OR operation. Context sources that are at
a different hop distance get mapped to a different filter, through the same
mechanism. If we stack these Bloom filters together based on the increasing
hop distance, we obtain an ABF array. Thanks to the characteristics of
the ABF, Ahoy is able to store proximity and routing information about its
context sources in a highly efficient way. This property contributes greatly
to Ahoy’s lightweight nature.

Figure 2 visualizes the computation of an ABF.

A known side-effect of Bloom filters is the occurrence of false positives. False
positives happen when the filters of multiple context sources get merged

7

Figure 2: Computation of a simple ABF. Nodes A and B both have an ABF,
which contains service hashes up to two hop distances. For node C the new ABF
is calculated. The top layer of the filter contains the hashes of services that the
node itself offers. Node C puts in the second layer the services that are offered by
its one-hop neighbors (A and B), joining them with a logical OR operation. The
bottom layer in node C gets the services that are one-hop away from node A or B,
hence two hops away from C. The blue and red color coding helps understand which
service hashes comes from which node. The number of stacked filters in one ABF is
depth +1, where depth is a configurable Ahoy parameter. Original image borrowed
from[4].

through the logical ”OR” operation to a new filter and accidentally create
bit patterns that might overlap with the hash of a service identifier that is
not known within the network. If a client queries for that particular context
source, it is made to believe that the service exists, while in reality it does
not. There is no known remedy to false positives, except trying to minimize
their occurrence.

2.1.2 Framework Components

Ahoy has been developed and tested on Unix-like (GNU/Linux) platforms.
Its stand-alone modules are written in Ruby programming language[7]. The
two distinct architectural components of Ahoy are its clients and the Ahoy
daemon.

8

Ahoy daemon: The core component of Ahoy is the daemon. Each Ahoy
node requires one daemon to run to be able to participate in Ahoy discov-
ery. The Ahoy node and daemon are therefore synonyms. The daemon
supports two different communication types: It communicates with other
Ahoy nodes through UDP sockets and with local clients running on the
same node through Unix-specific AF LOCAL sockets. Due to the usage of
the AF LOCAL sockets, the current implementation of Ahoy runs only on
Unix-like systems.

Ahoy client: One or more Ahoy clients can run on an Ahoy node. Their
presence is not essential, like that of the daemon. The Ahoy client (also
called user) can announce and revoke a service of its own and can initiate
query for Ahoy services. Clients never communicate with other Ahoy nodes
directly, they do all communication through the local Ahoy daemon.

Figure 3 shows an Ahoy node with its two main components and their
functionality.

Figure 3: Main components of the Ahoy protocol. In this figure only one client
component is shown. In reality there can be multiple clients running on one node,
but never more than one daemon.

2.1.3 Protocol Specification

Throughout this report we split context management protocols into three
distinct functional units. The first unit is context announcement. This is the
protocol segment which registers context sources. At the end of this step the
context sources are published and available to clients. The second functional
unit is context discovery. This segment enables users (i.e. clients) to query

9

for context sources and receive their contact information. The third and final
functional unit is context distribution or context exchange. By this we mean
the dialog in which a context source transfers its context information to the
client(s). For context exchange to happen the client first has to successfully
discover the context source.

Occasionally other terms might be used to refer to these three units. By con-
text discovery we frequently mean also context announcement and context
exchange is occasionally used to refer to all three functional units together
in a more generic sense.

As stated earlier, Ahoy does not support context distribution. The two
other units that it supports are described below.

Context Announcement: In Ahoy every node keeps track of its own
services announced by the local clients, and of the services offered by the
neighbors that are within configurable hop distance defined by the depth
parameter. The information on all these context sources is encoded in the
ABF. Upon any change that effects the list of context sources the Ahoy
node re-calculates a new ABF and sends it as announcement to its neighbors
one hop away. Those neighbors, subsequently, send their own re-calculated
ABF to all the nodes that are one hop away from them. This leads to
an incremental announcement distribution, one hop at a time, as shown in
Figure 4 in a grid-like network.

Figure 4: The distribution pattern of Ahoy announcements in a grid-like network,
width depth=2. In this scenario the node in the center is sending an announcement.
After the first step, the announcement reaches the four direct neighbors. Each of
those four nodes calculate their own announcement and send it to their own direct
neighbors. After that step all nodes that have received the announcement are colored
orange. The non-orange nodes are further than two hops from the original node,
they do not get to hear the announcement. Image borrowed from[4].

10

Context Discovery: When an Ahoy node wishes to find a context source,
it checks first its local service list. If the service is not offered locally, the
daemon checks the last ABFs it received from its neighbors to find a match
in one of the filters for the context source it is interested in. If matches
are found, which might be a false positive, the node sends a query to the
neighbors whose ABF showed a match. The neighbors either offer the service
and send a query reply or forward the query to their neighbors, the ones
whose ABF revealed a match. If the querying node receives a query reply, it
discards all other replies arriving after that. The node that offers the service
replies to the querying node by sending a query reply through direct unicast.
Figures 5 and 6 illustrate the routing of an Ahoy query and its response.

Figure 5: The routing of Ahoy context query to the node that offers the context
service. The nodes marked by purple get to receive the query message. The node
offering the service is the one in the middle, the node querying is the purple node
on the left-most image. Image borrowed from[4].

Figure 6: The routing of Ahoy context query response. The response travels along
the nodes colored in black. It is a unicast message targeted to the node where the
query initiated from. The route is chosen by the underlying routing protocol and is
random when more alternatives exist. Image borrowed from[4].

2.2 Mobile Service Platform

Mobile Service Platform[3][8] (MSP) is the other context management frame-
work from the AWARENESS project that we study. MSP is a relatively

11

heavyweight framework designed on top of JINI middleware. JINI[9] is a
service oriented, Java-based technology designed to provide a programming
framework for large distributed systems consisting of federations of network
services and clients. JINI, as well as MSP, are systems of loosely coupled ser-
vices. JINI uses Java Remote Method Invocation (RMI) as communication
layer between its services and clients.

MSP, essentially, is an extension of JINI. It is implemented according to the
JINI Surrogate Architecture Specification[10][11] (JSAS), which is an ex-
tension of the JINI standards designed to interlink JINI-type fixed networks
with mobile environments. Thanks to JSAS and MSP, resource-limited mo-
bile devices can participate in JINI-based applications hosted in the fixed
network.

2.2.1 Nomadic Mobile Service

Nomadic Mobile Service (NMS) is how MSP terms the service running on a
mobile device that can connect to the JINI network only through a third-
party connector module specified by the JSAS standard. NMS is also syn-
onym for the JSAS-based model that MSP uses to interlink cellular/mobile
and fixed networks. The type of embedded mobile devices (i.e. PDA, cell-
phone) that MSP models as NMS usually communicate with the Internet
through wireless networks like Infrared, Bluetooth, WI-FI, GSM or UMTS.
Services running on such devices are nomadic because they roam relatively
freely from one mobile communication service to another.

We look at the NMS properties more in detail in the overview of the MSP
framework components.

2.2.2 Framework Components

Figure 7 shows the main components of MSP.

Surrogate Host: The Surrogate Host is the helper component defined by
JSAS as the third-party connector enabling mobile services to connect to
JINI networks. MSP reuses Sun’s implementation of Surrogate Host known
as Madison.

MSP Service: We use the term MSP service to denote any JINI-based
service application that participates in an MSP-enabled framework. These

12

Figure 7: The main components of MSP: NMS (consisting of Device Service and
Surrogate), Surrogate Host, JINI Lookup Service and client. A regular MSP (JINI)
service is also included for comparison with the NMS. The difference between the
NMS and a regular MSP service is that the NMS consists of two subcomponents and
that its registration mechanism contains a few extra steps. The NMS first has to
register its Surrogate with the Surrogate Host. Once that done, the NMS Surrogate
acts like a regular JINI service and performs the same registration mechanism as
JINI services do. The NMS Surrogate is hosted in the fixed network, while the
Device Service is hosted on the mobile device. These two communicate with each
other through the JSAS Interconnect Protocol.

are usually regular JINI services except for the NMS, which is a special kind
of MSP service.

NMS: Nomadic Mobile Service, or NMS, is the JSAS-based model MSP
uses to interlink JINI-based frameworks with mobile/cellular environments.
NMS consists of two subcomponents: Device Service (DS) and Surrogate.
The DS runs on the mobile device, while the Surrogate is a virtual repre-
sentation of the DS and runs in the fixed JINI network. The registration of
an NMS differs from standard JINI service registration in a few steps. The
NMS has to find a Surrogate Host first and register its Surrogate with it.
Once that done, the NMS Surrogate behaves like a regular JINI service.

Device Service: The Device Service (DS) is the software component of
NMS which runs on the mobile device. Sometimes the Device Service and
NMS are used as synonyms.

13

Service Surrogate: The Service Surrogate is the software component
of the NMS which runs in the fixed JINI framework and offers a JINI-
compatible representation for the NMS. It acts like a helper for the mobile
Device Service, e.g. it offloads the DS by caching and computing data. The
NMS Surrogate, once activated and registered with the Surrogate Host, is
just like any regular JINI service.

HTTP Interconnect Protocol: The HTTP Interconnect Protocol is an
MSP component implemented conform the JSAS Interconnect protocol spec-
ification. The NMS Surrogate and Device Service use this protocol to com-
municate and stay synchronized.

Service Proxy: When MSP services register with the JINI network they
are required to submit a proxy object. This object we call the Service Proxy.
The proxy’s Java interface serves as the unique identifier of the service in
the JINI network. Clients establish connection with a service through its
Service Proxy: They obtain a handle on the proxy during service discovery
and call remote methods on it, which the proxy relays to the service.

MSP Client: We use this term to denote any JINI-based client applica-
tion that participates in an MSP-enabled framework. An MSP client queries
the same way for regular MSP services and for NMS. An MSP client that
queries for NMS-type services we sometimes call an NMS client.

Lookup Service (LS): The LS is a standard JINI component, also used
by MSP. The LS is essential for service registration and discovery. It is
like a name directory that stores and provides information about registered
services.

2.2.3 Protocol Specification

In this section we look at how MSP implements the three context manipu-
lations: context announcement, context discovery and context distribution.

Context Announcement: Regular JINI services register themselves through
the following procedure: The service locates available lookup services and
sends to them its Service Proxy and optionally, some service attributes.
Each LS creates a unique entry for the service.

14

The registration of NMS-like services has a few extra steps in the beginning:
The NMS finds a Surrogate Host and registers its Service Surrogate with
it. When doing so, the Surrogate Host downloads the Java byte code of
the Surrogate from a public URL and activates the Surrogate. Once the
Surrogate is registered, it behaves like a regular JINI service and follows the
registration procedure described above, namely it registers its Service Proxy
and service attributes with the found lookup services.

Context Discovery: The discovery of context sources in MSP follows
the standard JINI discovery procedure: Clients find available lookup ser-
vices and to each found LS they send a number of service parameters that
are meant to identify the service of their query. The service parameters can
be of different types: They can be the unique Java type of a service, in
which case that specific service is expected in return; They can be the Java
type of a class of services, in which case multiple matches are found; They
can be a service name or any other service attribute, and they can also be
the combination of all of the above. The service attributes that services
get filtered on can also be user-defined. JINI discovery returns the matches
to the client, which selects the service it wishes to set up connection with.
For the selected service the client downloads the Service Proxy and initiates
communication. Though this procedure describes the standard JINI discov-
ery, we note that MSP uses the very same discovery mechanism. Clients
do not notice any difference between querying for a JINI service and for an
NMS whose Surrogate acts like a JINI service.

Context Distribution: MSP, contrary to Ahoy, has support for context
distribution. The distribution mechanism is fully JINI-based and uses Java
RMI between clients and services. When a client finds a service, it downloads
its Service Proxy and starts calling remote methods on the proxy, which the
proxy relays to the actual service.

When the service is NMS-like, context distribution is only slightly different.
For some methods that the client calls on the Service Proxy of the NMS
Surrogate, the Surrogate would have to contact the Device Service. In those
instances the Surrogate and Device Service exchange user-defined HTTP
messages across the Interconnect protocol until the Surrogate is able to
send a reply to the client. To a number of other methods the Surrogate
might be able to send a reply itself, offloading the Device Service.

15

2.3 Related Work

To put the current thesis in research context we discuss a few frameworks
that deal with cross-platform context interchange issues of the kind that
CDA addresses.

2.3.1 Context Distribution Framework

Context Distribution Framework[12] (CDF) has been developed as a part
of the AWARENESS project. CDF is essentially an advanced extension of
MSP. It fully integrates MSP architecture and reuses the NMS model for
interlinking cellular and fixed networks.

CDF surmounts MSP by enhancing the basic MSP framework with context-
awareness and advanced context manipulations. An example is the CDF’s
context representation system which enables both mobile services and mo-
bile clients to participate in context exchange. CDF is able to differenti-
ates between resource-rich and resource-constrained clients. To resource-
poor mobile clients the CDA provides an offload mechanism. Offloading
is accomplished by CDF’s Context Distribution Service (CDS). In case of
resource-poor clients the CDS performs the required context manipulations
and returns only the final match to the client. In case of resource-rich clients
the CDS performs partial or no context computations at all, allowing the
client to take a more active part in the process.

In addition to the context representation system the CDF also offers a clas-
sification system for context sources. For that it uses Quality of Context
(QoC) principles.

CDF’s contribution with regard to interlinking heterogeneous network envi-
ronments is not much different from that of MSP. Both CDF and MSP use
the NMS model to bridge cellular and fixed networks, yet their cross-network
coverage stops there.

2.3.2 Web Services

Web services[13][14] are a set of emerging standards that enable interlink-
ing between heterogeneous IT processes and systems. In other words, they
offer a framework to link together applications regardless to the underlying
network technology. Similarly to JINI, web services are designed according
to the SOA paradigm. The similarities with JINI do not end here: Both
web services and JINI depend on a number of central networking compo-
nents like HTTP servers, where remote objects or service definitions can

16

be downloaded from. Web services seem, however, more flexible and easier
to extend to diverse network environments. The reason for that is their
platform-independent XML-based messaging mechanism. JINI systems do
not have an equally flexible messaging solution, they use Java RMI for client-
server communication.

Web services are not being used extensively for mobile networks. The rea-
son for that relies in their high dependence on centralized components and
configuration parameters, similar to JINI. Current research is addressing
that and of the late attempts have been made to extend web services to
the mobile realm. An example for this is the project titled Cascading Web
Services, which interlinks Bluetooth mobile devices with web services from
the fixed network.

2.3.3 CORBA

CORBA[15] (Common Object Request Broker Architecture) is an open
protocol standard designed to interlink applications (i.e. clients, services)
distributed over a heterogeneous environment. CORBA’s so-called broker
object (ORB) locates and activates objects, somewhat similar to how the
Lookup Service works in JINI, yet the ORB has more complex functionality.
The ORB is able to hide platform differences, yet that alone does not make
CORBA suitable for interlinking application frameworks that span across
wired and mobile environments. CORBA’s heavyweight middleware solu-
tion is what constitutes a problem for extending it to mobile networks. Of
the late a new trend of CORBA-based research has been emerging: Projects
investigating real-time and embedded CORBA solutions.

CORBA is comparable in many ways with JINI and MSP: It is relatively
heavyweight, it is not fully self-configurable and relies on central networking
components. CORBA’s ORB uses a technology similar to the Java RMI used
by JINI. Given the similarities between CORBA and JINI systems it would
be interesting for future work on CDA to compare the design paradigms
used in agile CORBA implementations with the paradigms designed in this
thesis work.

2.3.4 JXTA and Peer-to-peer Frameworks

JXTA(TM)[16][17] is a Java technology suitable to create large distributed
application frameworks based on peer-to-peer (P2P) communication model.
JXTA is essentially a set of open protocols which enable devices, whether
mobile or fixed, to communicate and collaborate in a P2P manner, forming

17

self-organized and self-configured peer groups without the need of a cen-
tralized management infrastructure. JXTA can incorporate devices with
non-ideal network locations, like being behind firewalls, NAT servers, in
public vs. private address spaces. The mechanism that makes this possi-
ble is dynamic routing built into the JXTA protocols. Routing informa-
tion is included in the messages, as well as in the local caches of peers.
JXTA supports communication between devices that run on different net-
work transports. The JXTA protocols use an open messaging standard,
which is usually implemented in XML. The generic message format ensures
platform-independence.

JXTA and P2P frameworks offer a radically different alternative to the ser-
vice oriented infrastructures that we are dealing with in the current project
(i.e. MSP, JINI, CDF).

2.3.5 EgoSpaces and Mobi-Blog

We find numerous related projects on service oriented federation systems,
yet there is scarcely anything on solutions that study the interlinking of
wireless/mobile networks with fixed environments in the field of context
aware computing. EgoSpaces and Mobi-Blog are examples for the latter,
though both of them give little attention to the interlinking of mobile and
fixed frameworks and concentrate more on the context management aspects.

EgoSpaces[18] project has developed a middleware framework that delivers
context information in an abstract form to applications running in context-
aware mobile networks. The EgoSpaces solution helps programmers to focus
on high-level interactions between programs and it helps to employ abstract
context specifications in transient and opportunistic mobile network environ-
ments. Implementing EgoSpaces on mobile nodes is as simple as extending
a couple of API classes. EgoSpaces abstracts away from the actual network
topology by using the Source Initiated Context Construction (SICC) proto-
col and its network abstraction. The EgoSpaces projects refers also to other
context-aware middleware solutions applied in mobile networks, e.g. LIME,
TuCSoN, GAIA, etc.).

Mobi-Blog[19] represents another example of a highly pervasive, highly context-
dependent mobile application framework. Mobi-Blog claims to implement
ubiquitous context sharing for applications running on hand-held devices.

Though neither EgoSpaces, nor Mobi-Blog adopt JINI-based service oriented
approach like the current project does, it might be valuable to study their
context management infrastructure and apply it to enhance CDA, more
specifically Ahoy, with context-aware modules.

18

3 Design and Architecture

In this section we present the design steps and decisions that have guided
the development of the CDA architecture. We begin with design guidelines
and by making a choice for the design paradigm. Following that we analyze
differences and overlaps in Ahoy and MSP regarding the processes of context
announcement, context discovery and context distribution. For each of the
three processes we decide on a mutual CDA-specific solution, creating in the
process the final CDA architecture.

3.1 Guidelines

3.1.1 Bridge-like Design Paradigm

As we have seen in earlier sections, different design paradigms could be
adopted to address the framework interoperability challenges dealt with by
this thesis. The question remains: Which design paradigm to choose for the
CDA protocol?

The nature of differences between Ahoy and MSP make our choice diffi-
cult. A CORBA-like federation system would be too much overhead for
lightweight Ahoy. The peer-to-peer approach of JXTA does not fit natu-
rally with MSP’s middleware design, though the paradigm might hold some
potential. A service-oriented design seems most promising since MSP com-
plies with that paradigm already. Ahoy, however, does not seem well suited
for service oriented architecture. A strictly SOA-based approach would be
too much overhead for Ahoy. Keeping in mind the essential requirement
that Ahoy and MSP should be left as much as possible unaltered, we are
left with one choice: A hybrid, bridge-like architecture design, which com-
bines MSP’s heavyweight SOA-based architecture with Ahoy’s lightweight
modular programming interface.

The bridge-like design implies that we modify the existing protocols only
where absolutely necessary. By doing so we keep the overhead caused by
the new CDA protocol minimal.

3.1.2 Prototype CDA Framework

By prototype CDA framework we mean a CDA network consisting of the
minimum necessary components capable to model the key properties of
CDA. We use the same prototype framework throughout the project with
minor extensions added to it in the testing phase.

19

The CDA prototype framework as we define it contains the following com-
ponents: A CDA node, a regular Ahoy node, an MSP service, an MSP
client, a Surrogate Host and a JINI Lookup Service. Figure 8 illustrates the
components of the CDA prototype framework.

Figure 8: The components of the CDA prototype network: CDA Service hosted
on the CDA node, modeled after NMS; A regular Ahoy node; Surrogate Host; JINI
Lookup Service; MSP client and MSP service. The components are described in the
text.

CDA node: The CDA node is the physical bridge between Ahoy and
MSP and is part of both frameworks. It interlinks with MSP through an
NMS module, the solution ready offered by MSP. The NMS model has been
described earlier in Section 7. In Figure 8 we can see its subcomponents:
CDA Device Service, CDA Surrogate and the Interconnect protocol. For
the CDA node to also interlink with the Ahoy network it must act like an
Ahoy node, so it is implied that the CDA node must have an Ahoy daemon
running (with optional Ahoy clients). The daemon we call CDA Daemon.
The CDA node needs sufficient hardware to support both the NMS and
Ahoy bridging modules.

Ahoy node: A regular Ahoy node is also part of the CDA prototype
framework. Together with the CDA node they form a minimal two-node
Ahoy network on which we can run tests. Both this and the CDA node can
host Ahoy clients and services.

MSP client: In the context of CDA by MSP client we mean a client
application that queries for context sources located in Ahoy. Regular JINI

20

clients that participate in CDA we would also call MSP clients, yet they are
not relevant for studying CDA mechanisms. A different name for the MSP
client is CDA client. Ahoy clients that query for MSP context sources are
also CDA clients, so to avoid confusion, the framework of origin is used to
refer to each CDA client.

JINI Lookup Service: The JINI Lookup Service is essential to context
announcement and discovery in both JINI and MSP, and also in CDA.

MSP service: In the context of CDA by MSP service we mean a JINI
service that can be discovered by Ahoy clients. With this new definition we
do not consider the NMS an MSP service. Or rather, the NMS is a very
special kind of MSP service. We also do not use the term MSP service for
regular JINI services that are not meant to be discovered by Ahoy clients.

Surrogate Host: The Surrogate Host is a necessary helper component.
Its properties have been described earlier.

3.2 CDA Architecture

In this section we study differences and overlaps in the context manipulation
mechanisms of Ahoy and MSP. The goal is to find mutually feasible CDA
mechanisms that can replace or complement the protocols of the two under-
lying frameworks. The context manipulation mechanisms that we consider
are context announcement, context updates, context discovery, and context
distribution. Our study is guided by the requirements and research questions
as defined in the introduction.

3.2.1 Announcing Ahoy Context Sources to MSP

In this section we concentrate on Ahoy context sources and alternative so-
lutions for how to register them with the MSP framework.

3.2.1.1 Can we use MSP’s announcement mechanism to register
Ahoy context sources with the MSP framework?

Services in MSP are required to provide their Java interface upon registra-
tion. If we wanted to register Ahoy context sources the same way, they
would need to have Java interface definitions. Regular Ahoy services do not

21

have Java interfaces and even if they had, the current Ahoy implementation
does not have a message format to transport the interface definitions. CDA
nodes, however, have a ready made solution for this: They run an NMS
module which interlinks them with MSP.

The NMS Surrogate allows CDA nodes to register with MSP like any regular
JINI service would. If the NMS model solves the problem of registration,
why not use it as solution for all Ahoy nodes? The answer is simple, yet
it leads to further questions: NMS technology is too heavyweight for the
resource-constrained ad-hoc devices, only few nodes with enhanced hard-
ware can host it. Those few NMS-compatible hosts are the CDA nodes.
That being the case, would it suffice to register CDA nodes only and have
MSP clients query for Ahoy services through the registered CDA services
as bridges? Without a CDA Service storing explicit references to individual
Ahoy services the MSP clients cannot know which Ahoy service they can
access through which CDA Service and that would lead to highly inefficient
context discovery. We conclude therefore that each CDA Service should
store explicit references to the individual Ahoy services they know about.

We now face the questions: How can the CDA services collect information
about the individual Ahoy services and how can they register that informa-
tion with MSP?

Each CDA node has an Ahoy daemon running locally. The daemon stores
the latest Ahoy announcement. What we need to do is to transfer that
knowledge from the Ahoy daemon to the locally running NMS module, which
is the CDA Device Service. Initially, however, the Ahoy daemon and CDA
Device Service cannot communicate with each other. How can we interlink
them? We know that the Ahoy daemon uses two types of communication: It
uses local Unix sockets to communicate with the Ahoy clients and uses UDP
ports to communicate with other Ahoy daemons residing on different nodes.
The Java-based NMS implementation does not support communication over
Unix sockets, so we are left to attempt communication through the UDP
sockets. As solution to this we propose that the CDA Device Service and
the Ahoy daemon communicate with each other through UDP sockets across
the loopback network interface. That way we keep the Ahoy daemon mostly
unaltered and the messaging between the two stays local, not affecting other
segments of the Ahoy network.

The other question we have not answered yet: How to register the infor-
mation about individual Ahoy services with the MSP framework? The Sur-
rogate of the CDA Service registers with MSP like regular JINI services
would do, through the JINI Lookup Service. When it registers, it can pro-
vide a number of optional service attributes that get registered in its service
entry. It can store the references to Ahoy services in one such attribute.

22

JINI mechanisms exist to keep the service attributes up-to-date. The CDA
Surrogate, however, first needs to obtain the Ahoy service references from
the CDA Device Service, which at its turn received it from the Ahoy dae-
mon running on the CDA node. Figure 9 illustrates the complete flow of
announcing Ahoy context sources in MSP.

Figure 9: Announcing Ahoy context sources with MSP. 1: When initializing, CDA
Device Service sends an Ahoy update message to the CDA Daemon. 2: CDA Dae-
mon replies with a response message containing the latest announcement. 3: CDA
Device Service registers its Surrogate and sends the Ahoy service information. 4:
CDA Surrogate registers with the JINI Lookup Service the CDA Service Proxy and
service attributes, among which the information on Ahoy services.

3.2.1.2 In what format should the Ahoy service information be
transferred to the MSP framework?

In the previous section we have seen that the announcement of Ahoy context
sources starts with a dialog between the CDA Device Service and Ahoy
daemon. As result of this dialog the CDA Device Service obtains the latest
announcement from the Ahoy daemon. The latest announcement is an ABF
array. Knowing that, we need to consider two options: Either the CDA
Surrogate registers with the JINI Lookup Service that ABF array as service
attribute, or, somewhere on the path between the CDA Device Service and
the JINI Lookup Service the ABF array gets converted to another format.

Registering the ABF seems to be the simplest solution, since it would require
no extra conversion or computation. The MSP framework, however, would
have to deal with the ABF format when handling queries for Ahoy context
sources. The ABF representation format not being native to MSP, we ex-

23

pect this to cause numerous difficulties. The consequences are discussed in
Section 3.2.3).

If we chose the other alternative and wanted to convert the ABF to another
format, only one choice would be rewarding: If we converted the ABF to a
format that MSP supports. When MSP clients discover context sources they
commonly search for services by their string-based name. If we could convert
the ABF to a list of the Ahoy service names that it represents, we are sure
that MSP client queries could deal with the new format. The conversion is
however not possible. The computation of ABF involves one-way hashing,
which cannot be reversed to obtain back the initial string-based service
names. In lack of this option we are left with the alternative to register the
ABF itself with the JINI Lookup Service.

3.2.1.3 How to keep the registered Ahoy service information up-
to-date in MSP?

The registered Ahoy service references need to be kept updated. Every time
the latest announcement of the Ahoy daemon on the CDA node changes,
the MSP framework needs to be notified. We assume that the Ahoy service
references are kept in ABF format in the Lookup Service.

The update flow of Ahoy services in MSP is illustrated in Figure 10.

A second update mechanism is required to make sure that the CDA Service
is not removed from the JINI Lookup Service. The mechanism is imple-
mented by MSP’s NMS model and it involves continuous keep-alive dialog
between CDA Device Service and CDA Surrogate. If the keep-alive dialog
is disrupted, the Surrogate unregisters with the MSP framework.

3.2.1.4 Should we apply filtering on the Ahoy services that get
registered with the MSP framework? If yes, what mechanism
should we use?

A concern why we would not want to have too many CDA services registered
with the MSP framework is that the MSP clients querying for Ahoy services
would have a long list of CDA services to iterate through, slowing down
the query process. No mechanism is in place for this, yet it should be
considered for future research. The regulation can be done in two places:
Either during registration of CDA services in the JINI Lookup Service or
during the response to an MSP client query.

Changing the number of regular non-CDA Ahoy services, however, does not
have any drastic affect. An increase in the number of Ahoy services could

24

Figure 10: The update flow of Ahoy services registered with MSP. 1: CDA dae-
mon broadcasts its latest announcement. 2: CDA Device Service receives the lat-
est announcement and sends an HTTP Interconnect message to CDA Surrogate
containing the received announcement. 3: CDA Surrogate caches the new latest
announcement and updates its service entry in the Lookup Service through built-in
JINI mechanism. 4: JINI lookup service notifies all listeners of the CDA Service
about the state change through built-in JINI notification mechanism.

cause an increase in the probability of false positives, since the ABF array
would be more densely packed. It is Ahoy’s responsibility to deal with this
phenomenon.

Finally, we consider the filtering capabilities of Ahoy. The question is
whether Ahoy supports any mechanism for classifying its context sources.
That is not the case. The current implementation of Ahoy offers no support
for context classification, with one exception: The ABF array, by its design,
allows to represent the approximate distance of services. Ahoy has therefore
a built-in property that can be used to qualify services in function of their
proximity values. For Ahoy to become more context aware, it would require
a number of extensions.

3.2.2 Announcing MSP Context Sources to Ahoy

Having looked at the announcement flow of Ahoy services we now consider
the registration of MSP context sources with the Ahoy framework. Our
study is guided by the same questions that we had for the Ahoy context
sources.

25

3.2.2.1 Can we use Ahoy’s announcement mechanism to register
MSP context sources with the Ahoy framework?

In Ahoy the announcement of context sources happens in two ways, at two
different levels: At a local level an Ahoy client announces its service to the
daemon. At the network level a node sends its latest ABF to the one-hop
neighbors, announcing them about a change.

In analogy with the local announcement the CDA Device Service could pre-
tend to be a client and announce MSP context sources one by one, sending
their service identifier to the local daemon. The problem with this solution
is that the Ahoy client queries would fail to find the MSP services. The
daemon would return its own IP address to the query, since it registered
the MSP services as offered locally. For the queries to work we would need
to modify the Ahoy daemon interface significantly. Given these drawbacks
we believe that the MSP context source identifiers should be converted to
ABF before they reach the daemon. That being the case, the CDA Device
Service can pretend to be a neighbor of the local Ahoy daemon and an-
nounce the MSP context sources in ABF format through the local network
interface. One implication is that MSP context sources must each have a
unique service name or else they cannot be represented in ABF form. An-
other implication is that somewhere along the announcement path the MSP
service names have to be converted to ABF.

In the hope that simpler alternatives exist, we consider two options when
we do not convert MSP context information to ABF. For instance, we can
make the CDA node pretend to offer all services and have the Ahoy daemon
forward incoming Ahoy queries to the CDA Device Service, which can decide
alone or with its Surrogate whether an MSP context source is available.
It is not difficult to see that this solution would create many redundant
queries and unnecessary waste of resources. Another drawback is that we
purposefully generate false positives. Another option is if the CDA Service
announces itself in Ahoy as a special service through which Ahoy clients can
gain access to MSP context sources. This would imply, however, that Ahoy
clients discover Ahoy and MSP context sources differently, introducing lack
of transparency, which is unwanted.

Not having a better alternative we settle with the option to register MSP
context sources with Ahoy in ABF format.

3.2.2.2 In what format should the MSP service information be
transferred to Ahoy?

It has become clear from the previous section that MSP context sources
should be represented in ABF form and that the conversion from the service

26

identifiers to ABF should happen before the ABF reaches the Ahoy daemon.
In this section we study each component along the announcement path and
choose a location for ABF conversion. The components we consider are:
JINI Lookup Service, CDA Surrogate and CDA Device Service.

It is not feasible to have the JINI Lookup Service perform the ABF conver-
sion. The LS is a core element of JINI and should stay unaltered. Making
the CDA Device Service perform the conversion is also not an ideal solu-
tion, since the computations would likely exhaust the resource-constrained
device on which the DS is running. The component we are left with is the
CDA Surrogate. The Surrogate is indeed quite suited for the work. It is
not affected by resource constraints like the CDA Device Service is and we
can extend its functionality without affecting Ahoy or MSP. In the current
CDA architecture the CDA Surrogate is best suited for this purpose.

The mechanism of announcing MSP context sources has been cleared down
to its details. Figure 11 illustrates the complete announcement flow.

Figure 11: Announcing MSP context sources with Ahoy. 1: CDA Device Service
activates and registers its Surrogate. 2: CDA Surrogate registers its Service Proxy
with the LS and initiates a query for MSP context sources. 3: CDA Surrogate
receives the MSP context source references from the LS and it creates a local cache
to store them. 4: CDA Surrogate sends the computed ABF to the CDA Device
Service as an HTTP Interconnect message. 5: CDA Device Service announces the
ABF to the CDA daemon through the local network interface. 6: CDA daemon
recomputes its latest announcement and broadcasts it to its neighbors.

3.2.2.3 How to keep the registered MSP service information up-
to-date in Ahoy?

27

We have assumed in the previous section that the CDA Surrogate queries
for MSP context sources and stores them in a local cache. That solution
would not allow to keep the list of MSP services up-to-date in real-life. JINI
offers a better solution instead. JINI components can register as service
listeners and receive change events about the services of their interest. We
believe this mechanism should be used by the CDA Surrogate. The Sur-
rogate can register as service listener for MSP context sources and receive
events from the JINI LS every time such a service has been added, removed
or modified. This change affects one step in the announcement flow of MSP
services: When the CDA Surrogate registers with the LS it also registers as
service listener to MSP context sources. The update flow of MSP services
is essentially the same as their announcement flow (steps 3-6 in Figure 11),
except for one detail: CDA Device Service is required to send regular Ahoy
keep-alive messages to the local daemon or else the registered MSP context
sources get removed. In addition we note that an update flow is initiated
when the CDA Surrogate receives a service listener event from the LS. The
same event makes the Surrogate update its local service cache.

3.2.2.4 Should we apply filtering on the MSP services that get
registered with the Ahoy framework? If yes, what mechanism
should we use?

When the number of MSP services registered in Ahoy is high we face a
problem: The MSP services would all get mapped to the same filter in the
ABF array leading to increased occurrence of false positives. The reason why
MSP context sources get mapped to the same filter is because they are all
considered to be one hop distance away from the Ahoy network originating
from the fake Ahoy neighbor which is the CDA Device Service.

One solution is to limit the number of MSP services that get cached in the
CDA Surrogate. We can choose between at least two options. One option is
to filter all eligible MSP context sources by some of their service attributes.
Another option is to use an adjustable threshold value beyond which the
Surrogate does not accept new MSP context sources. The threshold would
need to be a function of the Ahoy filter size configuration parameter, since
it is known that the larger the filter and the less services mapped to it, the
less the probability of false positives. Implementing these ideas is future
work.

For the CDA architecture our choice went for a different filtering solution.
We screen MSP services for Quality of Context (QoC) parameters and in
function of those parameters the services get mapped to different rows in
the ABF. Less desired QoC values get mapped to lower rows, while more
desired QoC values map to higher rows. This way we translate QoC values

28

to virtual proximity of services. The mapping algorithm is not fine-tuned in
this project, yet the capability to introduce this kind of context awareness
has been integrated with CDA.

3.2.3 Discovery of Ahoy Context Sources by MSP Clients

Having dealt with the announcement of context sources until now, in this
section we turn our attention to the discovery of context sources. In par-
ticular, we consider alternative CDA mechanisms for the discovery of Ahoy
context sources by clients in the MSP framework.

3.2.3.1 What discovery mechanisms fit the established announce-
ment of Ahoy context sources in CDA?

It has been concluded in earlier sections that Ahoy context sources should
be represented in the MSP framework in ABF format. The ABF is stored
as service attribute in the Lookup Service.

Problems arise when the LS receives an MSP client query. The MSP client,
being in search for a specific Ahoy service, discovers registered CDA services
and when it finds one, it checks its ABF service attribute to locate whether
the service it is looking for is known to that CDA Service or not. To perform
the last step the client must compute the Bloom filter of the queried service
name and match the computed filter against the found ABF. A match indi-
cates that the CDA Service has knowledge about the contact details of the
specific Ahoy service. It is a concern for us that every MSP client has to
implement the Bloom filter computations and perform those computations
during each query. The solution seems to lack modularity and scalability,
and it would exhaust resource-poor clients. We therefore consider alterna-
tives.

The Lookup Service and CDA Device Service cannot perform the Bloom
filter computations for the same reason why they were not suitable to do
the conversion of MSP service identifiers to ABF. Regarding the LS it is not
desirable to alter its interface, while the CDA Device Service has limited
resources. The same arguments that made us choose for the CDA Surrogate
to compute the ABF from MSP service identifiers also hold here. Hence, the
best candidate to perform Bloom filter conversion and query string matching
during the discovery of Ahoy services is the CDA Surrogate. There is one
disadvantage of this solution: When MSP clients discover the CDA services
they do not know which of them store reference to the Ahoy context source
the client is interested in. To find out which CDA service offers the chosen
Ahoy context source the Surrogate must compute the Bloom filter of the

29

query string and match it against the stored ABF. That means for all CDA
services that do not offer the Ahoy context source the computations are
redundant.

In the hope to find a more efficient solution, we consider a radical alternative.
We design a new JINI service from scratch with the capability to offload
both the CDA Surrogate and the MSP clients. The new component has
much functionality in common with the Context Distribution Service (CDS)
offered by the CDF framework as described in Section 2.3.1. We call this
component the CDA Broker service. The Broker service takes over the
functions of the CDA Surrogate that play a role in the discovery of Ahoy
context sources. Hence, instead of the CDA Surrogate the Broker will handle
incoming queries from MSP clients. The change implies that MSP clients,
when initiating a query, first have to discover the Broker service. When
found, the client calls a remote method on the Broker service which returns
the contact information of the queried Ahoy service. The client does not
need to know about CDA services, neither about Bloom filter computation,
since all steps are performed by the Broker and the client only gets the end
result. The Broker keeps a local cache of CDA services, so that when it
receives a query, it can look through the list and match the query string’s
Bloom filter with the stored ABF. For finding a match the Broker service
should not make any remote calls to the CDA services, it should rely instead
on the cached list of services and their attributes. The Broker registers with
the Lookup Service as a listener to CDA services. Every time when a listener
event is received, the cached list gets updated.

With the Broker Service added the previously established mechanisms of
Ahoy service announcement and update require modifications. Figures 12,
13 and 14 illustrate the announcement, update and discovery flows, respec-
tively, after having added the Broker Service to the architecture. The designs
shown in these figures have been obtained after we created the implemen-
tation prototype and found out that the user-defined service entries were
not recognized. The announcement and update flows have been ulteriorly
modified to be in line with the implementation. Without the user-defined
service attributes the Ahoy announcements and updates reach the Broker
Service through a callback interface.

3.2.4 Discovery of MSP Context Sources by Ahoy Clients

Having considered in the previous chapter the discovery of Ahoy context
sources, in this section we concentrate on how MSP context sources are
discovered by Ahoy clients.

30

Figure 12: Announcement flow of Ahoy services, with CDA Broker. 1: CDA
daemon broadcasts its latest announcement. 2: CDA Device Service sends the ABF
to CDA Surrogate over the Interconnect protocol. 3: CDA Surrogate registers itself
with the Lookup Service. 4: The Lookup Service sends service added event to the
Broker Service and the Broker adds the new CDA Service to its cache. 5: Broker
Service registers a callback interface with the CDA Surrogate.

3.2.4.1 What discovery mechanisms fit the established announce-
ment of MSP context sources in CDA?

We concluded in earlier sections that MSP context sources should be rep-
resented in Ahoy in ABF format and that the best suited component to
convert the MSP service information to ABF is the CDA Surrogate. Now
we follow the path how Ahoy clients discover the registered MSP context
sources.

The Ahoy client query originates in the Ahoy framework and eventually
reaches the Ahoy daemon that runs on the CDA node. Thanks to how the
MSP service references get registered, the daemon believes that the MSP
services are offered by a direct neighbor, one that has the local network
interface as address. Hence, the daemon forwards the query to this neighbor
of his, which is how the query reaches the CDA Device Service. From
there the query travels to the Surrogate. Since the Surrogate has a list of
cached MSP context sources, it seems logical that the Surrogate answers
the query. This can be done in the following way: The Surrogate iterates
through the list of MSP context sources and matches the received query
string against their names. When a match is found, the Surrogate calls
a remote method on the respective MSP context source and obtains its
contact details. The matching should not involve any remote calls except
for obtaining the contact details.

31

Figure 13: Update flow of Ahoy services, with CDA Broker. 1: CDA daemon
broadcasts its latest announcement. 2: CDA Device Service sends the ABF to CDA
Surrogate over the Interconnect protocol. 3: CDA Surrogate updates the Broker
Service through its callback interface.

The Surrogate seems to handle the discovery of MSP context sources well.
We would not look any further for alternatives if we had not introduced a
new component while we were optimizing the discovery mechanism of Ahoy
services. This new component is the Broker Service. We believe that the
Broker can also prove useful in the discovery of MSP context sources. It is
required for the discovery of Ahoy context sources that the Broker registers
as listener to CDA services and keeps a cached CDA Service list. It is also
required that the Broker performs Bloom filter computation for incoming
MSP queries, matching the computed filter against ABF arrays stored with
the CDA services. The CDA Surrogate performs mostly the same functions
for MSP context sources. In addition it also computes the ABF for MSP
service representation. We believe that implementing the same functional-
ity in two distinct components is redundant and error-prone. Also, it affects
the scalability of the CDA protocol and is unwelcome for code maintenance.
We believe that the Broker component should implement all functions and
handle the discovery of both Ahoy and MSP context sources. Another ad-
vantage of this design is that the CDA Broker, by having access to both
CDA and MSP service lists, can enhance query results with context clas-
sification. In other words, the Broker could perform ranking and selection
among multiple matches and return always the optimal one.

Figures 15 and 16 show the announcement and discovery flows of MSP
services after having added the Broker Service to the CDA architecture.
The update flow of MSP services is same as the announcement flow, only

32

Figure 14: Discovery flow of Ahoy services by MSP clients, with CDA Broker. 1:
MSP client queries the JINI LS for CDA Broker service. 2: MSP client receives
the proxy of CDA Broker service. 3: MSP client starts query. 4: Broker service
iterates through its cached CDA Service list and for each service matches the query
string’s Bloom filter against the found ABF. 4: If a match is found, CDA Broker
contacts the CDA Surrogate and passes on the query string. 5: The query string
reaches the Device Service over the Interconnect protocol. 6: Device Service sends
query to the CDA daemon. 7: CDA daemon forwards the query to knowledgeable
neighbors. 8: CDA daemon receives a query response. 9: CDA daemon sends query
response to the CDA Device Service. The response travels back the same road where
it came until it reaches the MSP client.

the Broker receives a service change event from the Lookup Service instead
of a service added event. It has been assumed that MSP services do not
require user-defined entries. If they were to require them, either we need to
make sure that user-defined entries are integrated with CDA or, the Broker
Service would need to register a callback interface with the MSP services
the same way how it does it with the CDA services.

3.2.5 Context Distribution Between Ahoy and MSP

In previous sections we have considered each of the CDA announcement,
update and discovery mechanisms. The topic of the current section is CDA
context distribution.

We take as starting point the context distribution mechanisms of Ahoy and
MSP. The current Ahoy implementation does not support context distribu-
tion. Ahoy discovery returns the IP address and port number of the queried

33

Figure 15: Announcement of MSP services in Ahoy, with CDA Broker. 1*: MSP
services register with LS. 1*: CDA service registers with LS. 1*: Broker registers
with LS and registers as listener for both CDA and MSP services. 2: LS sends
service added event to Broker. 3: Broker Service updates its caches, registers a
callback interface with all active CDA services, computes the ABF representation
of MSP services and sends the ABF to CDA Surrogate. If we were also interested in
receiving updates from the MSP services, in this step the Broker Service would have
to register a callback interface with them. That is required because the user-defined
service attributes are not recognized. 4: CDA Surrogate sends ABF-based MSP
announcement to Device Service through Interconnect protocol. 5: Device Service
announces ABF of MSP services to CDA daemon. 6: CDA Daemon recomputes
its latest announcement and sends it to neighbors. The steps marked with asterisk
(*) happen independent from each other.

service and stops there. MSP on the other hand has Java RMI-based dis-
tribution mechanism. As return value to service discovery an MSP client
receives the Java interface (i.e. proxy object) of a remote server. The client
can set up a dialog with the server by calling remote methods on the proxy
object. RMI offers a flexible solution for context distribution. Knowing
that Ahoy context distribution must be built from ground, it seems like a
practical solution to have Ahoy adopt the mechanism used by MSP, namely
Java RMI.

Implementing Java RMI on top of Ahoy raises numerous challenges. Firstly,
relatively heavyweight Java RMI modules would need to run on each node
putting the resources of the mobile device at risk. Secondly, the Ahoy proto-
col would need to be modified to transfer serialized objects or the reference
to a public URL where the RMI service proxy can be dynamically down-
loaded from. Thirdly, the transfer of serialized objects would cause increased

34

Figure 16: Discovery flow of MSP services by Ahoy clients. 1: Ahoy client sends
query for MSP service that the daemon knows about. 2: CDA daemon forwards
the query to CDA Device Service. 3: Device Service sends the query to Surrogate
through Interconnect protocol. 4: Surrogate calls remote method on CDA Broker
callback interface. 5: CDA Broker checks the query string against cached MSP
services and sends response. 6: Surrogate forwards the query response to Device
Service through Interconnect protocol. 7: Device Service sends the response to CDA
daemon. 8: CDA daemon forwards the response to Ahoy client.

network traffic which is also a potential hazard to mobile devices with lim-
ited resources. Furthermore, if RMI was used, MSP clients would require
to know the Java interface definition of every Ahoy service to be able to
find them. In other words, the Java interface definition of the Ahoy services
would have to be compiled into the MSP client modules. A work-around
to this problem would be to implement all Ahoy services by extending one
generic Java interface, in which case only that interface needs to be compiled
into the MSP client modules. There are some more issues that make Java
RMI little suited for Ahoy. RMI sessions are sensitive to end-point mobility,
so they are expected to drop frequently in a mobile environment. Also, it
is known that RMI-based communication has high latencies, an undesired
property in mobile networks where quick adaptation is required. Given the
list of these issues, we are confident that standard Java RMI should not be
considered for CDA context distribution.

An alternative is to use lightweight RMI technologies. We found only few
promising projects in this area (see [21] and [22]). Since none of the projects
wished to disclose the source code of their solution, we have also disregarded
this option.

A final alternative that we considered is Remote Procedure Call (RPC).

35

RPC is in fact the precursor of RMI, a lightweight, non object-oriented
communication technology. The simplest and most lightweight RPC design
is XML-RPC[23]. Of the numerous implementations we selected Apache
XML-RPC [24] with the intention to integrate it with CDA. An XML-RPC
client requires the following parameters to establish connection with a server:
The name of the remote method(s) that the server offers, the URL location
of the host where the server is running and the port number on which the
server is listening. The last two parameters, an IP address and port number,
are the return value of an Ahoy query. As long as the RPC server runs in the
document root, it can be found based on the IP address only. If, however,
it runs in a subdirectory of the web server, then the URL location would
require text elements, which value can currently not be transferred by Ahoy.
To avoid having to change the Ahoy discovery mechanism, we prescribe for
CDA services that the RPC server module runs in the document root and
that a generic method name is used for all RPC servers. The method name is
getContext. With these assumptions neither Ahoy, nor MSP discovery need
to be modified. The CDA discovery mechanism returns to both Ahoy and
MSP client queries an IP address and a port number, which are sufficient to
establish connection between an RPC client and server. It should be noted
that Ahoy supports only IPv6 addresses and so does CDA. The returned IP
address can refer to some central web server or to a specific MSP or Ahoy
node. Without further modification Ahoy nodes can return only their own
IP address. MSP services can be designed freely to return the IP of some
central server, yet for them it is of no relevance. The Ahoy nodes would
benefit more from returning the address of a central web server, since it
would mean they themselves need not run web servers locally. In the current
setup, if an Ahoy service wants to run an RPC server, it must have a web
server running. XML-RPC implements a web server which is light enough to
run on a mobile device, yet more test results are needed before we can surely
state that. In the current project the RPC server and client templates have
been developed and tested independently, yet they have not been integrated
with CDA due to lack of time and unforeseen implementation difficulties.
Due to that we cannot say anything conclusive about how the XML-RPC
web server performs on a mobile node.

3.2.5.1 Routing Challenges

Both Java RMI and Java RPC are one-to-one communication models. The
client and server communicate directly, without intermediary components.
An important requirement for both RPC and RMI is that the server compo-
nents have a publicly available, routable IP address. RMI and RPC servers
behind a Network Address Translation (NAT) do not work, since they are
unable to send response to the client.

36

In numerous real-life scenarios mobile networks have only one gateway to
the public Internet and use local IP addresses within the network. Ahoy
has kept consideration with this problem and supports only IPv6 addresses,
in which case all nodes have public addresses and routing problem due to
NAT or other hindrances do not occur. We have followed the same design
for CDA: All CDA components are required to have IPv6 addresses and
IPv6 routing must be enabled in the networks where CDA is running. If
we were not to do this, we would be required to implement complex NAT
and routing functionality in the CDA nodes to make sure protocol messages
can cross the border of MSP and Ahoy. With IPv6 addressing that is not
necessary. For the Ahoy network it is necessary to have routing in place,
since Ahoy queries rely on an underlying routing protocol.

This project has not gone in further detail about routing issues that can
become a hindrance, since it would take away focus from the main goal of
the project.

3.2.5.2 Relayed Context Distribution Mechanisms

Relayed context distribution mechanisms are an alternative to the one-to-
one models we considered until now, namely RMI and RPC.

Relayed context distribution would mean that clients and services are not
having a direct dialog like they have with RMI and RPC, rather, they would
communicate indirectly, passing the messages through each component along
the way. Looking at the MSP framework first, the messages would likely
have to cross through the CDA Broker, the CDA Surrogate and the CDA
Device Service. In Ahoy they would cross from node-to-node. Ahoy would
require an entirely new protocol layer implemented, since in its current form
it does not support any context distribution. We believe that instead of
developing new protocols that are unique to the problem at hand we rather
reuse existing industrial or open standards.

Another argument against relayed communication model is the problem of
interpreting the returned end values. The data types returned by the con-
text distribution protocol can be diverse, e.g. numeric, textual, streaming
video or other. We would need to make sure that the various data types get
interpreted and processed correctly by all components involved, most impor-
tantly by the clients. A textual template-based (e.g. XML) representation
would prove flexible enough for this purpose. If, however, we are ready
to choose an XML-based technology, we better choose one of the numer-
ous established solutions instead of implementing yet another new protocol.
Other, more general disadvantages of the indirect communication model are
that it results in a more centralized, less flexible architecture.

37

Relayed context distribution mechanisms do not seem to have advantages
over one-to-one solutions. We are convinced that the XML-RPC solution
we chose is the best we get.

3.3 CDA Architecture: Final Conclusions

In the previous sections we covered all functional segments of the CDA
protocol. In the process the CDA architecture has gained final shape. The
core components of the CDA protocol are: (CDA) Broker Service, CDA
Service and CDA Daemon.

Broker Service: Its main task is to handle Ahoy and MSP client queries
and to maintain, i.e. update, the cached CDA and MSP service lists.
It performs ABF and Bloom filter computations and classifies context
sources.

CDA Service: It consists of the CDA Surrogate and CDA Device Service.
Its main role is to interconnect the mobile and fixed environments
through the Interconnect protocol and to interconnect MSP with Ahoy
by exchanging Ahoy messages with the CDA Daemon across the local
network interface of the CDA node.

CDA Daemon : It is the Ahoy daemon running on the CDA node. Since it
interacts directly with the CDA Device Service, this daemon is differ-
ent from regular Ahoy daemons, it has slightly enhanced functionality.

The core CDA components, their events and supported message types, are
described in further detail in Section 4.

Two third-party helper components also form an essential part of the CDA
protocol: Lookup Service and Surrogate Host. Other user-defined helper
components are MSP clients, MSP services, Ahoy clients and Ahoy services.

38

4 Protocol Specification

4.1 Functional Description

In this section the CDA protocol is described in terms of the events and
actions associated with its components. The three core components for
which we discuss the event-response cycles are: 1. CDA Service, which
we split into CDA Device Service , CDA Surrogate and CDA Service
Proxy ; 2. Broker Service and 3. CDA Daemon.

4.1.1 CDA Device Service

Startup

The startup of the CDA Device Service is the moment when the CDA Service
becomes alive. The Device Service performs the following actions before
entering idle state:

- It reads the service properties file to obtain parameters required for
setting up connection with the Surrogate Host and to obtain the Ahoy
parameters that are not distributed by the Ahoy protocol. These Ahoy
parameters are the hash function, keep-alive timer and keep-alive jit-
ter. The initial values of the Ahoy depth and Bloom filter parameters
are also taken from the file. Parameters required for the surrogate
connection are the IP address of the Surrogate Host, the URL where
the JAR files of the Surrogate are published, the keep-alive parame-
ters needed to maintain the Surrogate Host connection and some other
optional ones.

- It sends an Ahoy update request on the loopback network interface,
port 5000 to the CDA Daemon, expecting the daemon to respond by
sending its latest announcement.

- It registers its Surrogate with the Surrogate Host. The Surrogate Host
activates the Surrogate and registers it with the JINI Lookup Service.

- It sends a one-way HTTPInterconnect message to the Surrogate con-
taining the latest Ahoy announcement and the non-distributable Ahoy
parameters.

- It starts a thread to listen to the periodic Ahoy announcements coming
from the CDA Daemon on the loopback interface at port 5555. It starts
a second thread that listens to the incoming Ahoy client queries, this
too on the loopback interface, port 5556.

39

- It enters idle state.

Idle State

The following events can occur to the CDA Device Service while in idle
state:

- Ahoy announcement from CDA Daemon (Section 4.1.1.1)

- MSP announcement from CDA Surrogate (Section 4.1.1.2)

- Query for Ahoy context source from CDA Surrogate (Section 4.1.1.3)

- Query for MSP context source from CDA Daemon (Section 4.1.1.5)

- Response to MSP client query from CDA Daemon (Section 4.1.1.4)

- Response to Ahoy client query from CDA Surrogate (Section 4.1.1.6)

- Keep-alive timer expires (Section 4.1.1.7)

4.1.1.1 Ahoy announcement from CDA Daemon

The Ahoy announcement is received from the CDA Daemon on port 5555
on the loopback interface. Upon receiving the announcement, the CDA DS
does the following: It extracts the width, depth and ABF values from the
announcement and updates with those values its local variables that have the
same name. It creates a one-way HTTP Interconnect Ahoy announcement
message containing the received values and sends the message to the CDA
Surrogate. Section 4.2.2.1 describes the message format in detail.

4.1.1.2 MSP announcement from CDA Surrogate

The MSP announcement is a one-way HTTP Interconnect message orig-
inating from the CDA Surrogate. When the CDA DS receives the MSP
announcement, it takes the following actions: It extracts from the received
message the ABF that contains the filters of the MSP service names, it cre-
ates a regular Ahoy announcement message in which it includes the received
ABF and sends it to the loopback IPv6 interface to port 5000, where the
CDA Daemon is listening.

40

4.1.1.3 Query for Ahoy context source from CDA Surrogate

The query for Ahoy service reaches the CDA DS as the request segment of a
two-way HTTP Interconnect message originating from the CDA Surrogate.
Upon receiving the query, the DS performs the following actions: It extracts
the string parameter from the received message, creates a regular Ahoy
query message with the extracted string as service name and sends the
query message to the loopback IPv6 interface to port 5000, where the CDA
Daemon is listening. The thread that sends the query message is blocked
until it receives a response event or until socket timeout occurs.

4.1.1.4 Response to MSP client query from CDA Daemon

The response message from CDA Daemon is received on a random port
on the loopback interface, the port being the same where initially the DS
sent the query from. Upon receiving the response, the following actions
happen: The CDA DS sends the entire byte array to the CDA Surrogate in
the response segment of the initially received two-way HTTP Interconnect
query message. The format of the HTTP Interconnect response message is
described in section 4.2.2.6.

4.1.1.5 Query for MSP context source by CDA Daemon

The DS receives the query message on port 5556 on the loopback IPv6
interface. It performs the following actions: It extracts from the message
the query ID and the query string (i.e. queried service name). It saves the
query ID as a local variable since it will be needed for the query response.
Then, the DS creates a two-way HTTP Interconnect message and sends the
query string in the request segment of that message expecting a response
to it. The format of the HTTP Interconnect query message is described in
section 4.2.2.3.

4.1.1.6 Response to Ahoy client query from CDA Surrogate

The response message reaches the CDA DS as the response segment of a
two-way HTTP Interconnect message which the DS itself initiated. Upon
receiving the message, the DS reads from local variables the query ID be-
longing to that response and the IP address and port number of the Ahoy
node that initially sent the query, the so-called destination address and des-
tination port. The DS creates two Ahoy response messages, both of them
reusing the same query ID and the service address (byte array) received in
the HTTP Interconnect response message. One of the Ahoy response mes-
sages gets sent to the loopback IPv6 interface and the stored destination

41

port. The other Ahoy response message gets sent to the stored destination
address and port. The significance of sending two response messages is that
the CDA DS does not know whether the initial Ahoy query came from the
CDA Daemon or another Ahoy node. If it sends the response to the stored
destination address, the response gets discarded when the destination ad-
dress is the public IP of the CDA Daemon. To prevent that from happening
the response message is sent twice and once to the loopback interface. The
CDA Daemon only receives the response once, since a second response to
the same query ID is always discarded.

4.1.1.7 Keep-alive timer expires

The initial values of keep-alive timeout and jitter are obtained during startup
from a configuration file. When the timer expires, the DS sends a new keep-
alive message to the CDA Daemon and resets its keep-alive timer to the
value: keepalive-time +/- (keepalive-time*keepalive-jitter/100), conform the
Ahoy specification. The format of the keep-alive message is the same as in
Ahoy.

4.1.2 CDA Surrogate

The events of the CDA Surrogate are either default NMS events or they
are events specific to the CDA protocol. We only consider those that are
specific to the CDA protocol.

- Ahoy announcement from CDA Device Service (Section 4.1.2.1)

- Query for MSP context source from CDA Device Service (Section
4.1.2.2)

4.1.2.1 Ahoy announcement from CDA Device Service

The Ahoy announcement reaches the Surrogate as a one-way HTTP In-
terconnect message sent by the CDA Device Service. Upon receiving the
message, the Surrogate does the following: It extracts from the message the
Ahoy hash, depth, width and ABF values and calls a method on the CDA
Service Proxy passing the extracted values and its own service ID as argu-
ments. The Surrogate’s service ID is required so that the Broker Service can
identify uniquely the cached CDA Service proxies.

42

4.1.2.2 Query for MSP context source from CDA Device Ser-
vice

The query message for MSP context source reaches the CDA Surrogate as
the request segment of a two-way HTTP Interconnect message sent by the
CDA Device Service. In response to the event the Surrogate extracts the
query string from the message and calls a method on the CDA Service Proxy
with the query string as argument. It expects the method to return a byte
array containing the address of the queried MSP service. It reads the return
value and sends the byte array to the Device Service in the response segment
of the two-way HTTP Interconnect message which initiated this event.

4.1.3 CDA Service Proxy

The CDA Service Proxy is instantiated by the CDA Surrogate. It is also the
Surrogate that registers the Service Proxy with the JINI Lookup Service.

- Ahoy announcement from CDA Surrogate (Section 4.1.3.1)

- MSP announcement from CDA Broker (Section 4.1.3.2)

- Query for Ahoy service from CDA Broker (Section 4.1.3.3)

- Query for MSP service from CDA Surrogate (Section 4.1.3.4)

4.1.3.1 Ahoy announcement from CDA Surrogate

By Ahoy announcement we mean the local method call on the CDA Service
Proxy initiated by the Surrogate. When the method call is executed the
Service Proxy checks whether the callback interface of the CDA Broker Ser-
vice is not null and calls a remote method on it passing all the arguments it
received from the Surrogate: The ABF array, depth, width, hash parameters
and the Surrogate’s service ID.

4.1.3.2 MSP announcement from CDA Broker

By msp announcement we mean a remote method call initiated by the CDA
Broker. The Service Proxy does the following when the call is executed: It
creates a one-way HTTP Interconnect message which takes as parameter the
ABF byte array that it received as argument and sends the message to the
CDA Device Service. The ABF contains the Bloom filters of the MSP service
identifiers that the Broker Service knows about. Section 4.2.2.2 presents the
HTTP message format.

43

4.1.3.3 Query for Ahoy service from CDA Broker

The query event for an Ahoy context source is a remote method execution
initiated by the CDA Broker. The method has as argument a string value
which encodes the name of the queried Ahoy service. The Service Proxy
reacts to the event by creating a two-way HTTP Interconnect message and
encoding the received query string in its request segment. It then sends the
two-way message to the CDA Device Service awaiting the response segment
to arrive. When the CDA Service Proxy reads the response segment, it
decodes the byte array and returns it immediately to the Broker Service.

4.1.3.4 Query for MSP service from CDA Surrogate

The query event for MSP context source is initiated by a local method call
that the CDA Surrogate executes. Upon call execution the CDA Service
Proxy calls a remote method on the callback interface of the CDA Broker
passing the received query string as argument. It expects a byte array as
return value. When the Service Proxy reads the return value it immediately
returns it to the CDA Surrogate.

4.1.4 Broker Service

Startup

The CDA Broker Service is modeled after a regular JINI service. It therefore
consists of a server and a proxy object. We do not distinguish the events of
these two components, they get discussed as being the events of the Broker
Service.

Startup

The following events are performed by the Broker Service at startup:

- It initializes two hash maps to store the CDA and MSP service lists
and initializes a third hash map for the JINI lookup services.

- It discovers lookup services. In function of the provided command line
arguments either unicast or multicast discovery is performed. If a valid
IP address is provided, the Lookup Service located at the given address
is discovered. Otherwise, the Broker Service registers as discovery
listener and waits for lookup services to announce themselves.

- Register as service listener to the CDA and MSP context sources.

44

Idle State

In idle state the following events can occur in the Broker Service:

- Listener event from Lookup Service (Section 4.1.4.1)

- Listener event from CDA or MSP service (Section 4.1.4.2)

- Query request for Ahoy context source from MSP client (Section 4.1.4.3)

- Query request for MSP context source from CDA Service Proxy (Sec-
tion 4.1.4.4)

- Callback event: Ahoy service update (Section 4.1.4.5)

4.1.4.1 Lookup Service listener event

This event happens when a new JINI Lookup Service appears or an existing
one gets removed. For the event to happen the CDA Broker must have
initially used multicast LS discovery. When the even occurs, the Broker
Service adds the found Lookup Dervice to its local cache of lookup services
and registers its Service Proxy and service attributes with the newly found
LS.

4.1.4.2 CDA or MSP service listener event

This event occurs when new CDA or MSP context sources get registered
with the lookup services or when existing ones get removed or modified.
Upon receiving this event the CDA Broker does the following: It checks
whether the received event is a CDA or MSP service event.

If the event is an MSP service event the CDA Broker performs an appropriate
action with the service (e.g. adds to, removes from or updates the MSP
service cache) and then it sends a new MSP announcement to the CDA
Service Proxy. When no MSP services are left in the cache an empty ABF
array is sent. That notifies Ahoy that all MSP services have been revoked.

If the event is a CDA service event, the Broker performs other actions. If
the CDA service is a new one gets added to the service cache and the Broker
Service registers itself as a callback interface with it. This is required so that
the Broker Service can receive ABF updates from the CDA services and so
that the CDA Service Proxy can relay to the Broker incoming Ahoy client
queries.

45

4.1.4.3 Query request for Ahoy service by MSP client

This event is initiated by the MSP client in form of a remote method call
which has the query string as argument. The Broker does the following as
response to the event: It iterates through all CDA services it has stored in
its local CDA service list, for each service it reads their Ahoy parameters
(e.g. depth, width, hash function) and stored ABF value and using those
values computes the Bloom filter of the received MSP query string. For each
found CDA service it checks whether the Bloom filter of the query string
matches with the stored ABF or not. If a match is found the Broker calls
a remote method on the respective CDA Service Proxy expecting a byte
array as return value. The byte array contains the IP address, port number,
address type and address size of the queried Ahoy service conform the Ahoy
specification. The CDA Broker reads the return value and passes it on to
the MSP client.

4.1.4.4 Query request for MSP service by CDA Service Proxy

This event occurs when the CDA Broker receives a remote method call from
the CDA Service Proxy querying for the address details of an MSP service.
The method has a query string as argument. When the CDA Broker detects
the event it iterates through the MSP services stored in its MSP cache and
for each service it checks whether their service name equals the provided
query string. If a match is found, the Broker calls a remote method on the
MSP service requesting its full address. The returned byte array is passed
on immediately to the CDA Service Proxy which called the remote method.

4.1.4.5 Callback event: Ahoy service update

This event occurs when the CDA Service Proxy receives an Ahoy announce-
ment from the Device Service and calls a remote method on the Broker
Service callback interface. The Broker deals with the event the following
way: Based on the received service ID it searches its local CDA service
cache for a match and it replaces the stored service attributes of the found
key. This event was implemented as a work-around, because we did not suc-
ceed to implement the user-defined service entries which would have offered
a more generic solution.

4.1.5 CDA Daemon

As stated earlier, the CDA Daemon is different from regular Ahoy daemons,
since it has enhanced functionality. We do not consider the regular Ahoy

46

events only the ones that are CDA-specific.

The CDA-specific daemon events are the following:

- Latest announcement changed (Section 4.1.5.1)

- Query for MSP context source by Ahoy client (Section 4.1.5.2)

4.1.5.1 Latest Announcement Changed

Whenever the latest announcement in the CDA Daemon is different from
the previously stored latest announcement the standard Ahoy event flow
is that the daemon broadcasts the latest announcement to its neighbors.
The CDA protocol requires however that the CDA Device Service also gets
notified. Hence, the default Ahoy event flow got modified the following way:
When the daemon broadcasts the latest announcement to its neighbors it
also sends it to port 5555 on the loopback IPv6 interface. The CDA Device
Service is required to listen for announcements on that port.

4.1.5.2 Ahoy Client Query

When the CDA Daemon receives a query and does not offer the service the
default Ahoy event flow demands that the daemon forwards the query to the
default Ahoy port (5000) of all its neighbors that know about the queried
service. In case of the MSP services this neighbor is the CDA Device Service
and its address is the loopback interface. According to default Ahoy behavior
the daemon would have to forward the query to port 5000 on the loopback
interface. There, however, the daemon itself listens and not the CDA Device
Service. To solve this issue the default Ahoy event flow was modified for the
CDA Daemon. The CDA Daemon checks the address of the neighbor before
it forwards the query. If the address is the loopback address, it forwards the
query to the reserved CDA port with number 5556.

4.2 Message Types

4.2.1 Channel 1: CDA Device Service and CDA Daemon

The messages in this group are UDP messages exchanged by the CDA Device
Service and the CDA Daemon across the loopback IPv6 interface of the CDA
node. The message formats are conform the Ahoy protocol specification and
are described in [4].

47

4.2.2 Channel 2: HTTP Interconnect Protocol

This group consists of HTTP messages with a format specified by the MSP-
Project’s Interconnect protocol implementation[8]. The messages are iden-
tified by their type and operation code. In CDA two message types are
used: One-way and request messages. One-way messages are useful when
no reply is expected. Request messages are two-way, consisting of a request
and response segment.

4.2.2.1 Interconnect Ahoy Announcement Message

The Interconnect Ahoy Announcement (IAA) message is a one-way HTTP
Interconnect message sent by the CDA Device Service to the CDA Surrogate
to announce the latest Ahoy service updates. The message contains the hash,
depth, width and ABF array extracted from the Ahoy announcement that
the DS received from the CDA Daemon. Table 1 shows the message format
in detail.

Size (byte) Description Java type
1 opcode byte
4 hash int
2 depth short
4 width int
depth*width/8 ABF byte[]

Table 1: Format of Interconnect Ahoy Announcement (IAA) message.

4.2.2.2 Interconnect MSP Announcement Message

The Interconnect MSP Announcement (IMA) message is a one-way HTTP
Interconnect message sent by the CDA Service Proxy to the CDA Device
Service to announce the latest MSP service updates. The message consists
of the ABF calculated from the MSP service identifiers. Table 2 shows the
message format in detail.

Size (byte) Description Java type
depth*width/8 ABF byte[]

Table 2: Format of Interconnect MSP Announcement (IMA) message.

4.2.2.3 Interconnect MSP Service Query Message

48

The Interconnect MSP Service Query (IMQ) message is a two-way HTTP
Interconnect message sent by the CDA Device Service to the CDA Surrogate
to request the contact details of an MSP service. Table 3 shows the request
message format in detail.

Size (byte) Description Java type
service name length service name String

Table 3: Format of Interconnect MSP Service Query (IMQ) message.

4.2.2.4 Interconnect Ahoy Service Query Message

The Interconnect Ahoy Service Query (IAQ) message is a two-way HTTP
Interconnect message sent by the CDA Service Proxy to the CDA Device
Service to request the contact details of an Ahoy service. The format of this
message is the same as the format of the IMQ message, they even have the
same opcode. Only their direction is different.

4.2.2.5 Interconnect MSP Service Response Message

The Interconnect MSP Service Response (IMR) message is the response seg-
ment of the two-way IMQ message. The IMR is sent by the CDA Surrogate
to the CDA Device Service as reply to the Ahoy client query. It is not a
stand-alone message. In CDA, in line with the Ahoy specification, this mes-
sage consists of 20 bytes in total, comprising the address type and address
size, as well as the IP address and port number of the queried service. Table
4 illustrates the format of this response message.

Size (byte) Description Java type Default Value
1 IP address size byte 20 (IPv6)
1 IP address type byte 1 (IPv6)
2 port number byte[]
16 IP address byte[]

Table 4: Format of the Interconnect MSP Service Response (IMR) message.

4.2.2.6 Interconnect Ahoy Service Response Message

The Interconnect Ahoy Service Response (IAR) message is the response
segment of the two-way IAQ message. The IAR is sent by the CDA Device
Service to the CDA Service Proxy as reply to the MSP client query. The
format of this message is the same as the format of the IMR.

49

4.2.3 Channel 3: Java RMI in MSP

Java RMI is used as communication channel in MSP, hence Java RMI is to
some extent also integral part of the CDA protocol. In the context of Java
RMI we cannot speak of message types, since it is not a message passing
technology, it uses remote method calls instead. The service interface defi-
nitions of the respective CDA components that use Java RMI technology is
included in the documentation of the project.

4.2.4 Channel 4: Client-Server Communication

Initially we designed the CDA protocol to use XML-RPC for cross-framework
client-server communication and context exchange. In the end the XML-
RPC client and server modules have not been integrated with CDA, there-
fore we do not discuss them.

50

5 Implementation Report

5.1 Implementation Steps

This section gives a chronological account of the implementation of the CDA
protocol, mentioning turning points and challenges encountered through the
implementation.

The implementation followed a bottom-up approach. We created a basic
JINI client with simple GUI and a skeleton CDA Service interface modeled
after a regular JINI service to test some standard JINI functions with them.
Such as service registration with the LS and service discovery. In this phase
the MSP back-end was not being used. A Lookup Service was running on
the local machine.

In a second phase we began to interface the CDA JINI service with Ahoy.
Scrutiny of the Ahoy protocol revealed that the best way to interface the
Ahoy daemon and the CDA Service was through the loopback network inter-
face, using UDP sockets. First the Ahoy update and response messages were
implemented, enabling the CDA Service to obtain an initial announcement
from the Ahoy daemon. We found out that socket timeout was necessary
for the update request message, or else the CDA would pend waiting. Later
socket timeouts proved necessary in more than one place.

A second interfacing with Ahoy was to make the CDA Service listen to pe-
riodic announcements from the daemon. The daemon sends the announce-
ments to the IPv6 multi-cast network interface, an artificial construct on
which the CDA Service could not listen to messages. Neither could it listen
for announcements on the default Ahoy port 5000, since that port was taken
by the daemon. To solve this we made port 5555 the mandatory port for
the CDA Service to listen on. At that point the Ahoy daemon required a
modification: Before it broadcasts its latest announcement it forcibly sends
the announcement to port 5555 on the loopback IPv6 network interface,
where the CDA Service receives it.

The message passing between the daemon and the CDA Service required
that we program various bit and byte operations in Java, which were placed
in a utility package. At that stage we implemented and tested extensively
our Java implementation for Bloom filters. The dummy JINI client was
made to query the CDA Service for Ahoy services, for which the Bloom
filter of the query string had to be computed. The CDA Service needed to
send Ahoy query messages and read the response to it. The query-response
Ahoy interaction caused no surprise.

Next we expanded the JINI components and created the Broker service,

51

making the JINI client query the Broker service instead of the CDA Service.
The Broker was made to store the CDA Service reference in a hash map,
which was to become the future local cache for CDA services. Around that
time we implemented two new JINI services which were serving as MSP
services to be announced to Ahoy. The computation of ABF in the Broker
had to be throughly tested. The Broker started using a second hash map
for the MSP services. The CDA Service was made to send announcement
messages to the daemon. The end result was that the MSP services could be
successfully announced to Ahoy. The daemon automatically registered the
CDA Service as its neighbor, logging the loopback network interface address
as the neighbor’s reference.

New challenges appeared when we tried to run Ahoy queries for the an-
nounced MSP services. We found that the daemon would forward the query
to itself by sending it to the loopback interface port 5000, as demanded by
the Ahoy specification. To make the query reach the CDA Service, another
modification of the daemon interface was necessary. It got hard coded in the
daemon that whenever it would forward a query to the loopback interface,
it would use port 5556 and the CDA Service would listen there expecting
query messages. We faced another difficulty when the response to the Ahoy
query was sent to the daemon. We realized that the CDA Service had no
way to know whether the initial Ahoy query came from the local node (a
local client query) or from another Ahoy node. The CDA Service was im-
plemented such way that it returned the response message to port 5000 to
the address of the query sender. When this address was the public IP of
another node, the node would receive the response fine. When, however, the
address was the public IP of the local daemon, the query response would
be discarded, since the daemon considered the query inactive. We provided
a work-around for this by requiring the CDA Service to send all response
messages to both the loopback network interface and to the IP address of
the sender. This way the daemon always receives the response through the
loopback interface, but can read it only when itself initiated the query. In
other cases the response is discarded.

Until that point we have not used the MSP backend. A new phase began
when we transformed the CDA Service from a simple JINI service into an
NMS-like service. The conversion was painful and took up much time, be-
cause various configuration issues (e.g. Linux hosts file entries, NMS-bound
keep-alive timers), broken module dependencies, RMI security and code base
issues as well as clashing module version problems prevented the CDA De-
vice Service from registering and keeping alive its Surrogate for more than
a few seconds. Once all issues got solved and the Surrogate could stay alive
for stable time, thorough testing took place to make sure that all previous
functionality of the JINI-like CDA Service was unaltered in the NMS-like

52

CDA Service.

When the CDA Service proved to function well as NMS, we pursued to add
service listener properties to the Broker Service. The goal was to have the
Broker Service automatically receive updates about CDA and MSP services.
The implementation would not work without any indication about the rea-
son. After experimenting with the alternative of the Broker service polling
regularly the LS for service information, the root of the problem was found:
It was a missing RMI code base that was supposed to point to an external
JINI module that contained the Java classes required to activate the service
listener functionality. That phase of development ended with success when
the Broker successfully started to receive the service updates. One observed
anomaly was that the Broker would never receive actual update events, only
events about adding and removing CDA and MSP services. The answer for
this is in the JINI specification. Another issue, however, might explain the
lack of updates. That issue is what we discuss next.

The initial design of the CDA protocol assumed that the ABF array and
other Ahoy parameters could be stored as service attributes of the CDA Ser-
vice in the JINI Lookup Service. The reason for this was primarily that JINI
offers automatic updating of these service attributes. We envisioned that
every time the ABF of a CDA Service changes, the JINI would receive the
automatic update and by being a service listener the Broker Service would
receive the same update in almost real-time. To be able to store the ABF
and other Ahoy parameters as service attributes user-defined Java Entry ob-
jects need to be implemented that comply with the JINI specification. This
we have performed, yet the Lookup Service would ignore them. Scrutiny re-
vealed that the Lookup Service requires a code base parameter which points
to a JAR package containing the user-defined Entry classes. We attempted
to modify the code base parameter of the Lookup Service running on the
virtual MSP back-end, yet the service attributes were still ignored. Another
attempt was to use a different Lookup Service, on the local machine. We
modified its code base and it accepted the new Java Entry types, yet the
solution caused problems with the registration and discovery of the CDA
Service, which relied heavily on the MSP back-end. The solution adopted
in the end was to not use the user-defined entries. Instead, we made the
Broker Service register itself as callback interface to the CDA Service. This
way the updates are sent directly to the Broker Service and the ABF is not
registered in the LS. Solving this issue is a challenge for future work.

A few more challenges were addressed toward the end of the implementation:
The CDA Service was made to send keep-alive messages to the daemon to
prevent the MSP services from being unregistered prematurely. Various hard
coded parameters (IP addresses, port numbers, Ahoy parameters, etc.) were
made configurable to facilitate the final performance testing of CDA.

53

Performance testing was first performed in the implementation environment,
which implied a rather artificial setup: CDA Device Service, Broker Service,
MSP and Ahoy client, as well as MSP services were all running on the same
host. Only the CDA Surrogate was running on the virtual host. We have
modified this by creating a model of the MSP framework on the virtual host
and a model of the CDA node on the local machine. In the new setup the
CDA Surrogate, Broker Service, MSP client and MSP services run on the
virtual host, while the CDA Device Service, CDA Daemon and Ahoy clients
run on the local host. The latter is a more realistic setup, which is why we
only report those test measurements.

5.2 Implementation Tools

As seen in the previous section, the implementation environment consists
first of one machine, known as the local host or host platform. Initially,
a Lookup Service was running on the local machine, but in later phases
the Lookup Service only runs on the MSP back-end. The MSP back-end is
referred to as the virtual host. The full-blown implementation environment
consists of the following:

- Linux (Ubuntu 2.6.9.12) host platform.

- Eclipse[26] SDK version 3.1 for Linux on the host platform. Eclipse is
an advanced development kit with powerful Java/Ant plug-ins. Ant
was used as Java building tool instead of the default Eclipse Java
Builder.

- VMWARE Player[25] hardware simulation engine running on the host
machine.

- MSP back-end[8] virtual application running with the help of the
VMWARE engine. The two of them together are referred to as the
virtual machine or virtual host. The MSP back-end is an Ubuntu-
based virtual image with JINI 1.2 environment installed and with the
following MSP components running: JINI Lookup Service, Surrogate
Host, web server and RMI daemon.

- Various MSP, Ahoy, JINI and XML-RPC libraries. The packages are
described in detail in the Installation instructions provided with the
documentation of the project. Environment settings, configuration
parameters and package dependencies are also documented.

- Apache2 and JINI default web servers and an RMI activation daemon.

54

5.3 Test Report

5.3.1 Test Scenarios

Tests have been carried out throughout the CDA protocol implementation.
With the help of tests we were able to catch design, programming and config-
uration errors. Most tests have been run in the implementation environment,
which initially consisted of a host machine only and later got extended with
a virtual machine.

The final performance tests have been performed in the following test setup:

MSP back-end: Broker Service, Lookup Service, MSP client, MSP ser-
vices, CDA Surrogate and Surrogate Host run on the virtual host,
also known as the MSP back-end. These components form a symbolic
MSP framework.

Host machine: CDA Device Service, CDA Daemon and Ahoy clients run
on the host machine forming a symbolic CDA node.

The advantage of the chosen test scenario is that it creates a virtual sepa-
ration of the MSP components from the components meant to run on the
CDA mobile node. The web server that hosts the CDA Surrogate and other
essential JAR files is running on the host machine, though it could just as
well be running on a remote machine.

Each test run consists of the following steps: 1) Announcing 10 different
Ahoy services; 2) Announcing 10 different MSP services; 3) Querying 10
times for 10 different Ahoy services; 4) Querying 10 times for 10 different
MSP services.

The order of the four steps was varied arbitrarily, with step 3 always follow-
ing step 1 and step 4 always following step 2. Otherwise, the queries were
not successful. In total ten such test runs were carried out during the inter-
val of one day. After every test run the results were collected from different
log files and merged into a data spreadsheet where further processing was
performed with them.

5.3.2 Test Measurements

The following values have been measured:

55

- The time it takes to register Ahoy and MSP context sources with the
MSP and Ahoy frameworks, respectively.

- The time it takes an Ahoy and MSP client to query for MSP and Ahoy
context sources, respectively.

- The size of extra modules required on a CDA node compared to the
size of modules required by a regular Ahoy node. This value is not
time-dependent, it has been calculated independently.

To be able to collect the test data a few modifications were required in the
CDA Daemon, the Broker Service and in the generic MSP service.

To measure the announcement time of MSP services the MSP service logs
the system time stamp when it receives a service ID from the JINI LS and
the CDA Daemon logs the time stamp and sender’s ID when it receives
a network announcement. The announcement time of MSP services is the
time elapsed between the two.

To measure the announcement time of Ahoy services the CDA Daemon logs
the system time stamp upon receiving a local client announcement and the
Broker Service logs the time stamp when it receives a service update from
the CDA Surrogate. The time elapsed between the two gives the value we
are interested in.

To measure the duration of queries for MSP services the CDA Daemon logs
the time stamp upon receiving a local client query and it logs the time
stamp when it receives a query response from the network. The elapsed
time between the two time stamps gives the query time. We only measure
the time of queries initiated by local clients on the CDA node, since non-
local Ahoy queries follow the same path within the CDA Daemon. If their
queries take longer it is due to Ahoy.

To measure the duration of query for Ahoy services the Broker Service logs
the time stamp when it sends the query string to the selected CDA Service
Proxy and it logs the timestamp when it receives the response to that same
query. The elapsed time between the two time stamps gives the value we
are looking for.

To get an estimate of the extra load on the CDA node compared to regular
Ahoy nodes we added up the sizes of modules required for the CDA Service to
run. These modules include the JAR files required for the NMS functionality,
as well as the libraries needed for the XML-RPC client and server.

56

5.3.3 Test Results

Announcement time of Ahoy and MSP context sources in CDA

Figure 17 shows the mean announcement times of Ahoy and MSP context
sources obtained for ten discrete test runs. The relative position of the
graphs shows that the announcement of MSP context sources takes on av-
erage longer than the announcement of Ahoy context sources.

Figure 17: Measured mean announcement times of Ahoy and MSP context sources
obtained from ten discrete test runs. The X axis displays the number of test runs
and the Y axis displays the measured mean values (seconds) per test run and type
of context source.

Figure 18 illustrates the mean announcement time computed from the same
data set only this time averaged across all of the then test runs. We see from
this second figure that the obtained mean value for Ahoy announcements
is 0.94612 seconds (946.12 milliseconds), while for MSP announcements the
mean value is 1.69767 seconds (1697.67 milliseconds). The data confirms
what we already saw in the first figure, namely that announcing MSP context
sources in CDA takes on average longer than announcing Ahoy context
sources. The standard deviation of the Ahoy announcement values is very
large, with a value of 0.93633 seconds, which amounts to the same value as
the computed mean announcement time. This suggests that we cannot rely
much on the results obtained for Ahoy service announcement. The standard
deviation of the MSP service announcement values is within normal range,
with a value of 0.85498 seconds compared to the mean value of 1.69767

57

seconds.

Figure 18: Measured mean announcement time of Ahoy and MSP context sources
obtained from accummulated data of ten test runs. The X axis illustrates the two
types of context sources and the Y axis gives the mean announcement time (seconds)
per type of context source.

Among the announcement times of Ahoy context sources we repeatedly
found negative values. The likely explanation is that the announcement
took such a short time (say ten or hundred milliseconds) that it was shorter
than the clock difference between the local and virtual machines on which
the tests have been run. The two clock were however synchronized by the
same network time server, which is why the outcome is surprising. Another
explanation might be that logging performed by the CDA Daemon intro-
duced some time anomaly. If that is the case, the time anomaly affected
all test results, so it must be the very short announcement time of Ahoy
services which made the negative values appear in this particular data set.

In spite of the measurement errors the results clearly suggest that the an-
nouncement of Ahoy context sources takes less than the announcement of
MSP context sources. We believe the main reason for the difference is that
announcing MSP services requires that the Broker Service calculates a new
ABF every time. While, when announcing Ahoy services the received ABF
is transferred unaltered from the CDA Daemon all the way to the Broker
Service. The results suggest that Java-based ABF computation introduces a
delay factor. To obtain conclusive results, more tests should be performed.

58

Query time of Ahoy and MSP services in CDA

Figure 19 shows the mean discovery times of Ahoy and MSP context sources
obtained from ten discrete test runs. The relative position of the graphs
suggests that discovering MSP services takes less time than discovering Ahoy
services.

Figure 19: Measured mean discovery times of Ahoy and MSP context sources
obtained from ten discrete test runs. The X axis shows the number of test runs and
the Y axis gives the mean discovery times (seconds) per test run and type of context
source.

Figure 20 shows the mean discovery time obtained from the same data set
only this time computed from the accummulated data across ten test runs.

The standard deviation for both Ahoy and MSP discovery falls within nor-
mal range. The results suggest that the discovery of MSP context sources
takes measurably less than the discovery of Ahoy context sources. It is dif-
ficult to explain these findings. The only obvious difference between the
two discovery paths is that for MSP service query no Bloom filter computa-
tions are required contrary to query for Ahoy services. During MSP service
discovery the Broker Service matches the received query string against the
cached MSP service names, while during Ahoy service discovery the Bro-
ker computes the Bloom filter of the received query string and matches it
against the ABF array of available CDA services. The results suggest that
the Java-based bit array computations involved in the latter process intro-
duce delay. To be conclusive about these findings more accurate tests should
be performed.

59

Figure 20: Measured mean discovery time of Ahoy and MSP services obtained from
accummulated data of ten test runs. The X axis shows the context source types and
the Y axis gives the mean discovery time (seconds) per context type.

CDA-specific load

The various JINI and MSP modules required by the current implementation
of CDA Service to be able to run amount to a total of 3398.5 KB volume.
The volume of the CDA Service Java byte code is about 70 KB. In total, the
NMS-specific modules and the CDA Service itself require about 3500 KB,
about 3.4 - 3.5 MB.

If we wanted the CDA node to be capable of offering services or to act as
client in CDA context exchange, the XML-RPC client and server modules
are necessary. These add another 800 KB to the total volume. A fully
fledged CDA node would require about 4-5 MB hard disk space.

With new generation PDAs on the market that have a few GB hard disk
size[27], the 5 MB demand of the CDA modules is definitely feasible. Besides
the crude volume estimate it would be also interesting to know the RAM
requirements of the CDA Service. For those measurements real-life tests
should be carried out with the CDA Service installed on mobile device.
Such advanced test setups go beyond the scope of the current project.

60

6 Conclusions

The successful implementation of CDA shows that interlinking between
Ahoy and MSP is, indeed, feasible. With only few changes applied to Ahoy
and MSP the two frameworks are now capable to share context information
with each other. The protocols that announce and discover cross-framework
context sources have been implemented and tested. The test results have
shown that context sources get registered and discovered within realistic
time limits across CDA, regardless whether they originate from Ahoy or
MSP. The mechanism how CDA context sources can distribute context in-
formation to clients has been designed and implemented as a stand-alone
module, yet due to time constraints it did not get integrated with CDA.
The choice of design for the context exchange protocol has changed over the
time and that has played a role in the delay. Our first choice was a Java RMI-
based solution which, given the JINI-based architecture of MSP, would have
integrated transparently with MSP. Standard Java RMI implementations,
however, are not suitable for applications running in mobile networks, like
the Ahoy component of CDA. The search for lightweight Java RMI imple-
mentations has revealed two promising projects, yet their implementations
were unavailable. That has led us to consider the XML-RPC based solution.
There we encountered difficulties of a different kind. The lightweight web
server that comes with the XML-RPC modules displayed anomalies during
tests performed with IPv6 addresses and remote CDA clients, while it would
run correctly when a local client was used. We suspected Java security is-
sues to cause the problem, yet policy changes would not help. With more
suitable XML-RPC documentation we might have overcome the hindrance,
but in lack of that we had no other choice than to leave out the XML-RPC
integration.

We have met numerous other challenges during the design and implementa-
tion process. Most of them we have documented in other sections of this re-
port. We now propose to view the CDA protocol from a broader perspective
and consider to what extent its properties fulfill the research requirements
we formulated at the start of this project.

An important requirement was the minimal impact principle, namely to
preserve the characteristics of Ahoy and MSP as much as possible. We
believe that the CDA has been designed accordingly. Every decision we
took had to comply with this requirement. The difficulty lay in deciding
which properties and components were suitable to change and which not,
especially, when not modifying a property had negative consequences for
CDA. An illustration for that is the JINI Lookup Service. It being a core
component of JINI and MSP it was undesirable to modify it. This has
resulted in a non-transparent discovery path for MSP clients. To discover

61

Ahoy context sources the MSP client cannot query the Lookup Service in
one step as the JINI protocol demands it, rather it has to query in an indirect
way through the Broker Service. It would be a more transparent design if
the Lookup Service was able to make an extra call while answering an MSP
client query and be capable to perform ABF computations.

The above example is also relevant for the transparency requirement. Ac-
cordingly, the CDA design is expected to support transparent (or seamless)
communication. By transparency we mean that CDA components hosted
either in Ahoy or MSP need not distinguish between entities of their own
framework versus entities of the other framework while they participate in
CDA context announcements and discoveries. Most CDA mechanisms suc-
cessfully comply with this requirement, exceptions from it are MSP client
queries and the designed XML-RPC solution for context exchange.

Further requirements demand that the CDA protocol architecture should be
robust, modular and extensible. With respect to robustness the CDA pro-
tocol grades well. The SOA-like design gives room for redundancy, allowing
multiple instances of the same service to be active, providing some degree of
fault tolerance. Multi-threaded processing and race conditions could, how-
ever, reduce robustness. We tried to minimize the usage of such constructs
by introducing asynchronous communication wherever possible.

With regard to modularity and reconfigurability we would not grade the
CDA high. We remain on the whole skeptical about the reconfigurability
and scalability of the CDA protocol. The numerous configuration param-
eters used by Ahoy and MSP, the various Java classpath and codebase de-
pendencies add up to a long list that requires thorough maintenance and
continuous human attendance. These issues are an impediment to reconfig-
urability and scalability.

Since the CDA protocol was intended as a proof of concept in general not
too much attention has been given to testing. It is our belief that to obtain
reliable test results the CDA protocol should be tested in real-life environ-
ment with a multi-hop Ahoy network. Extensive testing has never been the
goal of this project.

Another bottleneck that can hinder the practical usability of CDA are its
platform requirements. The CDA nodes must run on Unix-like operating
systems since the current Ahoy implementation supports Unix platform only.
We found that for the marketed hand-held devices very limited Unix support
is available. Even if we were to find a Unix-based mobile device, configuring
it with the required MSP and Ahoy modules is a considerable effort. Until
these limitations exist, the CDA protocol remains peripheral to the consumer
market and benefits only the research community.

62

6.1 Contribution

This project brings in significant contribution to research on context-aware
computing. It is a pioneering solution which succeeded to interlink context-
sensitive wired and wireless networks at the application level. CDA offers
a light-weight bridge-like framework capable to interlink SOA-like wired
frameworks like JINI and MSP with Ahoy-based mobile ad-hoc networks.

We believe that CDA offers a promising paradigm for research on pervasive
context-aware applications and it also offers a platform for further research.

6.2 Future Work

It would be a major benefit for CDA if it gets extended with a context
exchange protocol. The current design supports only context announce-
ment and discovery, which limits the full potential of CDA. The XML-RPC
modules developed in this project are one alternative that can be made op-
erational. We believe, however, that an even better solution is lightweight
Java RMI. Lightweight Java RMI would integrate transparently with the
current Java RMI-based context discovery mechanism of MSP and would
provide a flexible solution. For RMI support the Ahoy protocol requires
significant extensions, since it would be required to transfer either the full
URL of the RMI proxy where it can be downloaded from or, it would have
to transfer the serialized proxy objects.

The current CDA implementation had to use a work-around for CDA and
MSP service updates, because the integration of user-defined service at-
tributes with the Lookup Service was not possible. The current implemen-
tation of CDA has a few remote calls which would not be required if user-
defined entries are used. This is something worthwhile investigating since
the resulting CDA architecture would be simpler than the one we have now.

Furthermore, it would be a welcome improvement to make the CDA archi-
tecture more reconfigurable and scalable. In order to do so, the Ahoy and
MSP frameworks would also require changes, since it is necessary to solve
the configuration issues of the underlying frameworks first. An example for
such a change in MSP is to remove from the Surrogate interface the need
for a hard coded IP of the web server where the Surrogate JAR file can be
downloaded from. Or, consensus protocols in Ahoy could resolve the current
need for initial width, depth and other configuration parameters.

Another aspect of CDA that can be improved is the classification of MSP
services that get announced to Ahoy. As discussed in the report, large num-
bers of MSP services contribute to higher occurrence of false positives. To

63

prevent that problem, a classification and filtering mechanism could be de-
signed. The current implementation of CDA provides a starting point for
that: It maps MSP context sources to different layers of the ABF announce-
ment in function of their Quality of Context attributes.

The current project has not concentrated much on tests and performance
evaluations. The test results presented in this report have been measured
in a relatively artificial test setup and hence they are not reliable. An in-
dication of this is the large standard deviation value we obtained for the
announcement time of Ahoy services. Large number of diverse (including
real-life) tests should be carried out with CDA if we wanted representative
performance evaluation. The large number of tests should help reduce mea-
surement errors. Tests should be also performed with a more complex CDA
framework, one that has more components than the CDA prototype we used
in the current project. The tests would give an insight into the scalability
and robustness of CDA.

Implementing support for IPv4 addresses in CDA would be also quite bene-
ficial. The usage of either address should be configurable. Currently not all
routers and networks are IPv6 capable. In any such environment the cur-
rent CDA implementation cannot function, neither can Ahoy for the same
matter. Together with IPv4 support solutions should be studied for po-
tential routing risks so that CDA services behind NAT and firewall remain
functional.

In CDA no attention has been given to security aspects with regard to
context access. In a pervasive environment of context-aware applications
consideration should be given to user privacy. In the future CDA could be
extended with context security management.

A final, rather challenging future adaptation of CDA would be to integrate
with it other frameworks besides the already integrated Ahoy and MSP.
This might lead to a radically different CDA design.

64

7 Glossary

ABF = Attenuated Bloom Filter
CDA = Context Discovery Adapter
DS = Device Service
GUI = Graphical User Interface
JSAS = JINI Surrogate Architecture Specification
LS = Lookup Service
MSP = Mobile Service Platform
PDA = Personal Digital Assistant
SOA = Service Oriented Architecture

65

References

[1] ”ZipCar Project”. [Online]. Available at:
http://www.zipcar.com/about/

[2] ”Freeband AWARENESS”. [Online]. Available at:
http://awareness.freeband.nl

[3] Mobile Service Platform: A Middleware for Nomadic Mobile Service Pro-
visioning. Aart van Halteren, Pravin Pawar. Department of Computer
Science, University of Twente

[4] ”Ahoy”. [Online]. Available at: http://inglorion.net/software/ahoy/

[5] Service Discovery Using Bloom Filters. Patrick Goering, Geert Heijenk.
Department of Computer Science, University of Twente

[6] Context Discovery Using Attenuated Bloom Filters in Ad-hoc Networks.
Fei Liu, Geert Heijenk. Department of Computer Science, University of
Twente

[7] ”Ruby Programming Language”’. [Online]. Available at:
http://www.ruby-lang.org/en/about/

[8] ”MSP Tutorial Site”. [Online]. Available at:
http://janus.cs.utwente.nl:8000/twiki/bin/view/MSP

[9] ”JINI”. [Online]. Available at:
http://java.sun.com/developer/products/jini/index.jsp

[10] ”JSAS”. [Online]. Available at:
http://surrogate.dev.java.net/doc/api/overview-summary.html

[11] ”JINI Surrogate Specification”. [Online]. Avail-
able at: http://www.sun.com/smi/Press/sunflash/2001-
05/sunflash.20010530.5.xml

[12] Enabling Context-Aware Computing for the Nomadic Mobile User: A
Service Oriented and Quality Driven Approach, Pravin Pawar, Aart van
Halteren, Kamran Sheikh, Department of Computer Science, University
of Twente

[13] ”Web Services”. [Online]. Available at: http://www.w3.org/2002/ws/

[14] ”Web Services IBM Specification”. [Online]. Available at: http://www-
128.ibm.com/developerworks/webservices/standards/

[15] ”CORBA”. [Online]. Available at:
http://www.omg.org/technology/documents/corba spec catalog.htm

66

[16] ”JXTA”. [Online]. Available at: https://jxta.dev.java.net/

[17] ”JXTA Specification”. [Online]. Available at: https://jxta-
spec.dev.java.net/

[18] ”Egospaces Project”. [Online]. Available at:
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=
/dl/trans/ts/&toc=comp/trans/ts/2006/05/e5toc.xml&DOI=
10.1109/TSE.2006.47

[19] ”MobiBlog Project”. [Online]. Available at:
http://www.ee.duke.edu/r̃omit/pubs/micro-blog.pdf

[20] ”JINI Service Entry Tutorial”. [Online]. Available at:
http://jan.newmarch.name/java/jini/tutorial/Entry.xml

[21] Efficient Support of Java RMI over Heterogeneous Wireless Networks.
Cheng-Wei Chen, Chung-Kai Chen, Jyh-Cheng Chen, Chien-Tan Ko,
Jenq-Kuen Lee, Hong-Wei Lin, Wang-Jer Wu. Department of Computer
Science, National Tsing Hua University

[22] Performance Enhancing Proxies for Java 2 RMI over Slow Wire-
less Links. Stefano Campadello, Heikki Helin, Oskari Koskimies, Kimmo
Raatikainen. Department of Computer Science, University of Helsinki

[23] ”XML-RPC Introduction”. [Online]. Available at:
http://www.ibm.com/developerworks/xml/library/j-xmlrpc.html

[24] ”Apache Project XML-RPC”. [Online]. Available at:
http://ws.apache.org/xmlrpc/

[25] ”VMPlayer”. [Online]. Available at:
http://www.vmware.com/products/player/

[26] ”Eclipse”. [Online]. Available at: http://www.eclipse.org/

[27] ”LifeDrive Palm PDA”. [Online]. Available at:
http://news.softpedia.com/news/LifeDrive-is-the-first-PDA-with-hard-
disk-2078.shtml

67

