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Abstract

Floating point sparse matrix vector multiplications (SM×V) are kernel
operations for many scientific algorithms. In these algorithms, the
SM×V is often responsible for the biggest part of the processing time.
It is thus important to speed-up the processing of the SM×V. To use an
FPGA to do this is a logical choice since FPGAs are inherently parallel.

The core operation of the SM×V is to reduce arbitrarily many rows
of values of arbitrary length to a single value for each row by sum-
ming all values within a row. This operation is called a reduction
operation, the operator that implements this is called a reduction
circuit. Reduction operations can use any binary operator that is
commutative and associative. In the case of a SM×V this is a floating
point adder. Because of pipelining of the floating point adder, extra
complexity is introduced for reductions. Values need to be buffered
and additional control logic is required. Furthermore, a proof is
required to show that a certain buffer size is sufficient for every
possible input. Important aspects of reduction circuits are thus buffer
size, number of operators, latency, in-order output, area and clock speed.

In literature, many reduction circuit algorithms are proposed. How-
ever, none of these algorithms have met the design criteria I use
in this thesis. Most algorithms either require multiple operators or
have buffer sizes that depend on the input. The algorithms that do not
have these restrictions have large buffers and deliver output out-of-order.

In this thesis an algorithm is introduced that uses 5 simple rules to
check in which order values have to be reduced using a single associative
and commutative binary operator. The latency of the reduction circuit
is fixed and equals 2α + αdlog2 αe + 1 clock cycles, the buffer size is
2α + αdlog2 αe+ 1 for the output buffer and α + 1 for the input buffer.
This is an improvement compared to designs described in literature.
The buffer sizes and latency decrease if the minimal length of the input
rows increases.

The actual implementation is implemented on a Xilinx Virtex-4
4VLX160FF1513-10 FPGA (see appendix A). The total design runs
at 200 MHz and consists of 3556 slices, 9 BlockRAMs and 3 DSP48 slices.

Using this reduction circuit, the SM×V implementation is straightfor-
ward and requires a multiplier and a reduction circuit. Many of these
combinations of a multiplier with a reduction circuit can be implemented
in parallel. This results in a lot of processing power with the result that
I/O will become the bottleneck.
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Chapter 1

Introduction

The Finite Element Method (FEM) is a frequently used method to approxi-
mate the solution of partial differential equations. Because partial differential
equations have an infinite dimensional state space, it is hard or impossible to
solve these equations analytically.

Using the FEM, only a finite set of elements of the physical problem is
considered. For example, when calculating the stress on a building, only
certain elements of the building are taken into account. Therefor the problem
becomes finitely dimensional. The FEM uses a matrix to describe the ele-
ments, this matrix is called the system matrix. This results in a numerically
stable method to approximate the solution of the partial differential equation.
However, for complex problems, the system matrix will be very big and
computationally expensive to solve.

Some examples of problems that can be analyzed using FEM are calculating
stresses on constructions (eg. buildings, bridges, etc), car crash simulation
and Diffuse Optical Tomography (DOT). This thesis is based on earlier work
on the FEM for DOT [21].

Diffuse Optical Tomography is used to reconstruct tissue characteristics. This
technique is used in, but not limited to, breast cancer research. Near-infrared
light is used to measure optical properties of tissue [7]. Using DOT, all kinds
of properties of the tissue can be reconstructed. By using this information,
tissue problems can be located and thus diseases can be found.

In the case of DOT, the system matrix is quite big (138,000x138,000) and
requires a lot of multiplications. One of the characteristics of that matrix is
that is is sparse. A sparse matrix is a matrix which contains more zeros than
non-zeros. A key operation of the DOT process is to take the inverse of that
matrix. The kernel operation of the matrix inverse is iteratively multiplying
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8 CHAPTER 1. INTRODUCTION

a sparse matrix (filled with double precision floating point numbers) with
a vector. The overall DOT process takes about 15 hours on the Graphics
Processing Units (GPUs) used in [21]. In that research, one SM×V calculation
takes about 4.4 ms. The goal of our research is to bring back this processing
time to about 15 minutes, which is an acceptable time for a diagnostic.

To reach this goal, algorithms will be implemented on a Field Programmable
Gate Array (FPGA). FPGAs are inherently parallel and offer good perfor-
mance. Previous work has been done in this area in the form of a master
thesis[19]. One of the conclusions was that a partial result adder will
be needed for good performance of a sparse matrix vector multiplication
(SM×V). A partial result adder can sum series of (floating point) numbers.
These rows of floating point values do not need to have the same length,
which increases the complexity of the problem (see [10]). The partial result
adder is known as a reduction circuit in literature[23]. My goal is to make an
efficient implementation of the sparse matrix vector multiplication. One of
the key issues is to design and implement an efficient reduction circuit, which
is the main subject of this thesis.

In chapter 2, the SM×V and reduction circuits are introduced. It is shown that
reduction circuits are important and related work is studied in this chapter.
The streaming reduction circuit design and implementation are studied in
chapter 3. The results are evaluated in chapter 4. In chapter 5, conclusions
are drawn. This thesis is concluded with chapter 6, in which opportunities for
future research are discussed.



Chapter 2

Problem Analysis

2.1 Sparse Matrix Vector Multiplication

The implementation of an efficient sparse matrix vector multiplication
(SM×V) is the main motivation of this thesis. The SM×V can be imple-
mented in the same way as any other matrix multiplication. However, when
doing this, the characteristic properties of the sparse matrix are ignored. A
sparse matrix has more zeros than non-zeros, thus most processing time is
wasted by multiplying by zero. The matrix in figure 2.1 is an example of a
sparse matrix.



1 0 0 0 0 0 0 0 0 0
1 2 3 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 1 3 6 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 0 0 6 7 0 0 0 0 0
0 0 0 0 7 2 0 0 0 0
0 0 0 0 0 4 5 0 0 0
0 0 0 0 0 0 4 7 0 0
0 0 0 0 0 0 0 0 1 1


Figure 2.1: Sparse Matrix

This particular sparse matrix is dense around the diagonal. Outside a certain
distance from the diagonal, all values are 0. For DOT, a sparse matrix
with values close to the diagonal is used, so this example is representative.
The SM×V multiplies a matrix with a vector. In this simple example, the
operations shown in figure 2.2 effectively take place.

9



10 CHAPTER 2. PROBLEM ANALYSIS



1 0 0 0 0 0 0 0 0 0
1 2 3 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 1 3 6 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 0 0 6 7 0 0 0 0 0
0 0 0 0 7 2 0 0 0 0
0 0 0 0 0 4 5 0 0 0
0 0 0 0 0 0 4 7 0 0
0 0 0 0 0 0 0 0 1 1





2
3
6
1
9
5
3
6
3
2


=



y1
y2
y3
y4
y5
y6
y7
y8
y9
y10


=



1× 2
1× 2 + 2× 3 + 3× 6

5× 6
1× 3 + 3× 6 + 6× 1

5× 6
6× 1 + 7× 9
7× 9 + 2× 5
4× 5 + 5× 3
4× 3 + 7× 6
1× 3 + 1× 2



Figure 2.2: Sparse Matrix

This illustrates why a lot can be gained by taking special care when executing
a SM×V by only considering the non-zero elements. For the non-zeros,
multiplications and additions do not have to be calculated.

Often, matrices are stored in a two dimensional array. However, with that
representation it is not easy to discriminate between zeros and non-zeros.
Most importantly, a zero has to be fetched from memory, before it is possible
to determine that this is actually a zero. The memory bandwidth is the
most important bottleneck in SM×V implementations [19], thus it should be
avoided to read non-zero values.

Because of this, the Compressed Row Storage (CRS) Format is often used. It
only stores sequences of non-zero elements where every sequence corresponds
to the non-zero elements of a row in the matrix. This sequence of non-zero
values that origins from a single matrix row, will be called a row of values in
the remainder of this thesis. The matrix is stored in three vectors. The first
vector is val , which stores the actual floating point values inside the matrix.
The second is col , this vector stores the corresponding column the value is
in. This means that the val and col vectors form a value-column pair. The
elements in the vector row denote the positions in val and col where a new
row in the matrix starts. For the previous matrix, the val , row and col vectors
are:

val = (1 1 2 3 5 1 3 6 5 6 7 7 2 4 5 4 7 1 1)
col = (1 1 2 3 3 2 3 4 3 4 5 5 6 6 7 7 8 9 10)
row = (1 2 5 6 9 10 12 14 16 18)

When this is compared with the matrix, the val vector stores the non-zero
values of rows in the matrix from the top row to the bottom row. Every index



2.1. SPARSE MATRIX VECTOR MULTIPLICATION 11

in col can be matched with a value in val . For example, the 9 in col means
that the corresponding value 1 in val is stored in the ninth column. The
vector row holds the number of preceding values, before the corresponding
row of values begins. For example, the value 16 in row means that row 8 (16
is the eighth number in row) starts with index 16. Thus row 8 starts with the
value 4 at column 7, as it can be seen after looking up the value in val and
column in col of the sixteenth value.

In the example, it was shown that the SM×V can be implemented as a series
of multiplications. After these multiplications, all values that originate from
one matrix row have to be summed. Thus a row of many (n) input values is
summed, or reduced, to a single value. At the end, these reductions will result
in one single value. From now on this step will be called reduction. If a row of
n values has to be reduced using binary operations, at least n− 1 operations
take place. The reduction of n values can be visualized as a binary tree with
n leaves and n − 1 inner nodes. It is assumed in this thesis that every inner
node has exactly two children. Please note that this tree does not have to be
balanced, any binary tree with n leaves has exactly n− 1 inner nodes.

matrix value

vector value
Output value

row index

Figure 2.3: Multiplier

In hardware, floating point multiplication can be implemented using a double
precision floating point multiplier. The result produced by the multiplier is
a double precision floating point value. The delay caused by the pipeline of
the multiplier is not important, as this just adds a constant delay to the
system, this is illustrated in figure 2.3. To keep track of the rows, a row
index is used to uniquely identify each row. The row index corresponds with
a row inside the matrix and also indexes into the result vector in which the
end result of reduction is placed. Thus the value and the row index form a
pair as they traverse the SM×V implementation in the FPGA. In this thesis
the value-index pair will also be called a value. It will be apparent from the
context if value means a double precision floating point value or the pair
that was just described. In figure 2.3, the row index was added explicitly.
However, some implementations in literature add the row index implicitly
by counting the number of values instead of passing the row index through
the system. For example, if it is known at beforehand that a row contains
1000 values, the 5500th value belongs to the fifth row and thus has row index 5.
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The multiplications result in a row of values which have to be reduced. This
can be illustrated using the multiplication results of the example shown in
figure 2.2. The multiplications will produce the following values (floating
point value, row index):

(2,1), (2,2), (6,2), (18,2), (30,3), (3,4), (18,4), (6,4), (30,5), (6,6), (63,6),
(63,7), (10,7), (20,8), (15,8), (12,9), (42,9), (3,10), (2,10)

Thus the row of values (2,2), (6,2) and (18,2) means that the results of the
multiplications for row 2 in figure 2.2 are respectively 2, 6 and 18.

For reduction of these values, additional hardware is required. This hardware
is called a reduction circuit in literature.

matrix value

vector value
Reduction Circuit

row index

output value
output row index

Figure 2.4: Streaming Multiply Accumulate

A streaming reduction circuit can stream in rows of floating point values where
the reduction results will appear at the output. The reduction circuit will use
a double precision floating point adder. In the remainder of this thesis, a dou-
ble precision floating point adder is indicated where “adder” is written and
the combination of a floating point multiplier with a streaming reduction cir-
cuit will be called a Streaming Multiply Accumulate (SMAC), see figure 2.4.
The matrix is streamed into the SMAC, one value per clock cycle and after a
certain latency the result appears at the output. The SMAC can be used to
implement the SM×V efficiently. There are various ways to design a SM×V
implementation using floating point adders, floating point multipliers, reduc-
tion circuits and SMACs. The area and speed of the reduction circuit should
be taken into consideration in the design of the SM×V implementation. If area
and speed are known, it is known how many reduction circuits will fit in the
FPGA which determines the available parallelism. In section 2.2 the problems
that occur when implementing a reduction circuit are discussed.
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2.2 Reduction circuits

In section 2.1, the core of the SM×V calculation was brought back to the
reduction of rows of values. It was mentioned that a reduction circuit is
required for this reduction. However, it was not made clear why a reduction
circuit is hard to implement for floating point values (for integer values this
reduction is quite trivial as it will be shown below).

First a notation of the row of input values of the reduction circuit will be
introduced. Instead of using pairs for the values, a more abstract notation
can be used as the floating point value itself is not important for the order of
reduction, only the row index influences this order. The row index is added
to a value using a subscript. The superscript identifies the position of a value
within a row. The partial result of the reduction of the n values y1, y2, . . . , yn

will be written as y1,2,...,n.

An example of such row of values is: y3
3y

2
3y

1
3y

2
2y

1
2y

5
1y

4
1y

3
1y

2
1y

1
1 (read from right

to left: the right most value, is the first to enter the reduction circuit).

Here, the first row, row 1 has 5 values that have to be added. Row 2 has 2
values and row 3 has 3 values. Rows of arbitrary length should be supported
by the reduction circuit. For this example, the reduction circuit will produce
3 results: y1,2,3

1 , y1,2
2 and y1,2,3

3 .

x

q

y

Figure 2.5: Reduction circuit (α = 1)

In most integer accumulator designs, an adder without a pipeline is used.
The adder consist of combinatorial hardware only, where the result will be
available in the same clock cycle as the calculation begun. For reductions,
the partial result should be used during the next clock cycle and thus the
partial result has to be stored. One register, called an accumulator, is therefor
added. This way a small pipeline is created. In this thesis, the depth of the
pipeline equals the number of registers and will be designated as α. Thus
the integer accumulator design has α = 1. In the context of this thesis, the
main components of a pipeline are the registers and only these registers will
be shown in the figures in this thesis. The reason of not including the logic
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Cycle start Cycle ready Addition

1 2 y1
1+0

2 3 y2
1+y1

1

3 4 y3
1+y1,2

1

4 5 y4
1+y1,2,3

1

5 6 y5
1+y1,2,3,4

1

6 7 y1
2+0 The result y1 is available

7 8 y2
2+y1

2

8 9 y1
3+0 The result y2 is available

10 11 y2
3+y1

3

11 12 y3
3+y1,2

3

Table 2.1: Possible schedule for an adder with pipeline depth of one (α = 1)
for input y3

3y
2
3y

1
3y

2
2y

1
2y

5
1y

4
1y

3
1y

2
1y

1
1

between registers is that the delay is analyzed, not the logic of the adder (or
any other operator) itself. In figure 2.5 the accumulator design is shown, with
its single pipeline register shown as a box.

In figure 2.5, a value x enters the reduction circuit and y leaves the reduction
circuit. The example row of values that was introduced at the beginning of
this section enters this reduction circuit in sequence, one value every clock
cycle. This results in the schedule shown in table 2.1.

The algorithm to schedule a one stage pipeline as shown in figure 2.5 is: if the
values q and x have the same row index, these two values have to be reduced.
If these two values do not match, y will be the output of the reduction circuit,
q will be disconnected during this clock cycle and x will be stored in the
accumulator register. This can also be written as an addition of x and 0, like
it was done in table 2.1. In pseudo code (executed every clock cycle):
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if x.index == q.index then
add x, q
output nothing

else
add x, 0
output y

end if

2+3
0

1+8
0
0

x

q

y

Figure 2.6: Reduction circuit (α = 5)

A pipeline depth of one is not realistic when dealing with floating point
values. Floating point adders are quite complex compared to integer adders.
The floating point adder has to take care of aligning the decimal point of the
input values and normalizing the results, among other things. Every subtask
of the floating point adder requires one or multiple pipeline stages. When
optimizing for speed, pipelining can not be avoided. When dealing with deep
pipelines (α > 1), the adder schedule is not as trivial as it was in the α = 1
case. This results in scheduling complexity and additional buffers or logic. In
figure 2.6, a reduction circuit with a pipeline depth of 5 is shown. Assume the
values 1, 8, 2, 3 enter this simplified reduction circuit. As an example, 1 and 8
enter the pipeline during the second clock cycle. The next clock cycle, no pair
of values is available and nothing will enter the pipeline. The fourth clock
cycle, 2 and 3 enter the pipeline, resulting in what is shown in figure 2.6.
Values that enter the pipeline at time t shift through all registers within the
pipeline and will eventually leave the pipeline at time t+ 5, or generally t+α.
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Cycle start Cycle ready Addition
2 2+5 y1

1+y2
1 Wait for first two values

4 4+5 y3
1+y4

1 Next two values available

7 7+5 y1
2+y2

2 Start with row 2

8 8+5 y1,2
1 +y5

1 Add partial results of row 1

9 9+5 y1
3+y2

3 Start with row 3

13 13+5 y1,2,5
1 +y3,4

1 Add partial results of row 1

14 14+5 y1,2
3 +y3

3 Add partial result of row 3

Table 2.2: Possible schedule for an adder with pipeline depth of 5 (for input
y3
3y

2
3y

1
3y

2
2y

1
2y

5
1y

4
1y

3
1y

2
1y

1
1)

Two things should be noticed here. First, in case α = 5, there is more freedom
compared to the case where α = 1. Instead of waiting for two clock cycles,
values that appear at x can be added to zero and placed into the pipeline
directly. This would result in a design that approximates the accumulator
design since only the input is reduced together with values at the output
of the reduction circuit. The order and priority of reductions is called the
reduction schedule, which is one of the main subjects of the next chapter.
Because additions are commutative and associative, the order of reduction
can be chosen freely. Second, the reader should notice that gaps are formed
between values inside the pipeline. The values inside the pipeline have to be
further reduced, but partial results do not leave the pipeline every clock cycle.
Depending on the reduction schedule, instead of just gaps, values from many
rows might appear simultaneously, possibly interleaved, inside the pipeline.

Table 2.2, shows an example of how to reduce the values y3
3y

2
3y

1
3y

2
2y

1
2y

5
1y

4
1y

3
1y

2
1y

1
1

using a pipeline of α = 5. At clock cycle 13 (8 + 5), row 1 is still being
processed, while the last value of this row entered the reduction circuit at
clock cycle 4. Row 2 even finished before row 1 at clock cycle 12 (7 + 5).

At clock cycle 8, value y5
1 is used. But it was already available at clock cycle

5, so it had to be buffered. The same applied for the output, the result of the
addition at clock cycle 4 is available at clock cycle 9. Because it is used at
clock cycle 13, it has to be buffered.

In the previous example two design choices were implicitly made. The first
and most important choice is that multiple rows can coexist in the adder.
Although after reading this example, such an approach might seem logical. In
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literature many examples can be found where this is avoided, at all cost. Some
of these approaches are discussed in chapter 2.4. The second choice is that
for each value, the row index is known. This was introduced in chapter 2.1.
However, not all solutions in literature assume that this is the case (see
section 2.4). Keeping track of the row index is often required when multiple
rows can coexist in the adder.

When a single floating point pipelined adder is used, there will be partial
results in the adder pipeline that have to be reduced further after the last
value of a row of values enters the reduction circuit. Meanwhile a following
row can enter the reduction circuit. This means that either the values that
leave the adder have to be buffered for further reduction, and/or the incoming
values have to be buffered until they can be processed. The key design issues
are:

1. scheduling the adder efficiently

2. buffers should have a finite size

Buffers have to be added to the system. Because partial results are further
reduced, the input can temporarily not be processed. It has to be shown
that the buffer size for a chosen scheduling algorithm is sufficient for every
input sequence (that arrive consecutive and in sequence), especially when the
rows do not have a fixed (predetermined) length. Scheduling might become
complex, which can have serious impact on the speed of the hardware, the
number of buffers required and on the amount of logic required for the design.

Reduction Circuit
y1
3, y

1
2, y

3
1, y

2
1, y

1
1

(a) Input

Reduction Circuit
y3, y2, y1

(b) In-order output

Reduction Circuit
y1, y3, y2

(c) Out-of-order output

Figure 2.7: Examples of in-order and out-of-order output

Apart from the buffers that are always required, the reduction circuit will
have other characteristics as well. The major characteristics are the maximum
clock frequency and the area required. Besides that, out-of-order output
is produced by some schedules. An out-of-order output means that the
reduction result of a row can precede the reduction result of previous row.
The schedule in table 2.2 produces out-of-order output which is illustrated in
figure 2.7c. Some reduction circuits produce the results in-order (figure 2.7b).
Another characteristic of reduction circuits is the delay before the result of a
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row is available (counted from the moment on which last value of that row
has entered the reduction circuit). This delay can be a fixed value or it might
depend on the input. One other characteristic is the number of adders used
in a design. These characteristics will be used to compare several existing
reduction circuits.

For this project I state the following design goals:

• A reduction circuit clock frequency relatively close to the clock frequency
of the adder

• Use a single adder

• The reduction circuit should not be significantly bigger than the adder

• In-order output

• Low delay, independant of the input

Thus reduction circuits can have many characteristics and thus also many
shortcomings. For a further (alternative) introduction into reduction circuits,
see [23]. The PhD thesis of Gerald R. Morris gives an overview on both SM×V
and reduction circuits [10].

2.3 Implementations of SM×V

In literature there are several different approaches for implementing a SM×V
on an FPGA. The most important approaches will be summarized here. The
two criteria for the choice which algorithms I describe are: (1) can it be used
to implement a SM×V for the DOT matrix on a Virtex 4 FPGA and (2) its
efficiency, some algorithms do not effectively use all processing power.

2.3.1 Striping

Striping [6] is a method that avoids the reduction problem. A stripe is a
sequence of values from the matrix, chosen such that the next value in the
stripe is below or to the right and below the current value. Stripes with these
characteristics are called Strictly Row Increasing Order (SRIO) stripes. In
figure 2.8 two stripes are shown, one in light gray, the other in dark grey.
Values from the same row cannot occur in one stripe. The entire Sparse
Matrix is divided into such stripes. The SM×V is calculated using several
processing elements (PEs). Each PE calculates a stripe, thus the PEs do not
have to accumulate values from the same row. Instead of that, a systolic
array is used (for a description of systolic arrays, see [6]).
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1 0 0 0 0 0 0 0 0 0
1 2 3 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 1 3 6 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 0 0 6 7 0 0 0 0 0
0 0 0 0 7 2 0 0 0 0
0 0 0 0 0 4 5 0 0 0
0 0 0 0 0 0 4 7 0 0
0 0 0 0 0 0 0 0 1 1
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Figure 2.8: Striping

Although the reduction problem does not occur, the memory is read non-
linearly, which will result in a degradation of performance for some types of
memory. Utilization of PEs can be very low when striping is used depend-
ing on the input data according to [19], the utilization is between 3% and 80%.

The main reason of using SRIO stripes is to avoid the reduction problem.
In this thesis I would like to show that this problem can be solved efficiently.
Later it will be shown that with a straightforward design that uses a reduction
circuit, its utilization can be very close to 100% while retaining linear memory
access.

2.3.2 Plans

In [19] an alternative scheme is proposed. When striping is used, it is not
guaranteed that the PEs have a high efficiency. To increase the efficiency,
plans are used to schedule the PEs. A plan is a table filled with multiplications
that have to take place in a certain order. The plans can contain an optimal
schedule. However, plans require a lot of memory and memory bandwidth
and will degrade the performance that way. The memory access is non-linear,
which further degrades the performance. Furthermore, determining an efficient
schedule can be computationally intensive.

2.3.3 Straightforward approach for implementing the SM×V

Another alternative method mentioned in [19] to simply calculate the SM×V
is to use multiple SMACs in parallel. The number of SMACs that can be
used is limited by IO and area only. Further studies regarding multiplication
order are however still useful to reduce the required bandwidth. The discussion
about implementing the SM×V will be deferred to section 4.2.
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The advantages of such straightforward implementation are:

• Linear memory access

• Simple or no control logic for the SM×V itself

• The speed is easy to determine

• The utilization is almost 100%

• No pre-processing is required

• Easy to understand and design

• No overhead

• Works for all matrices

• Small buffers (< α× α)

• Works for any row length and any number of input rows

• Scalable: the area increases linearly and the clock frequency decreases
linearly as the pipeline depth increases

In [19] a reduction circuit that required eight adders was proposed, which was
one of the weak points of this design. However, when a reduction circuit as
described in section 2.2 is used, this drawback disappears. Because the weak
points disappear when using a reduction circuit, the straightforward approach
will be considered again in section 4.2.

2.4 Related work

2.4.1 Floating point adders

Various floating point adders that have been implemented in FPGAs are
described in literature. They are hard to compare because the area estimates
are given in different units, for information about FPGAs and how to compare
logic, see Appendix A. It is also possible to generate floating point adders
using Xilinx CoreGen. A list of adders can be found in table 2.3.

The adders generated by Coregen are the fastest of the compared adders.
They are not much bigger than the other adders. The fourth adder is smaller,
but has a significantly deeper pipeline. The logic to schedule this adder will
require more buffering, which might remove this advantage.

With the Xilinx CoreGen software it is very easy to generate a floating point
core. Because it is fast, not too big and licenses are already available, this
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Source FPGA Pipeline Speed Size
stages (MHz)

Paper [4] Virtex-II 8000-4 9 135.5 1292 LUTs
Paper [9] XC4036xlahq208-9 5 80 940 CLBs
Paper [9] XCV100epq240-2 5 150 1059 CLBs
Paper [24] Virtex-II Pro 21 220 910 LUTs
Paper [22] Virtex-II Pro 18 200 1140 LUTs
CoreGen 3.0(3x DSP48) Virtex-4 LX160 12 324 1220 LUTs
CoreGen 3.0(Logic) Virtex-4 LX160 14 284 1274 LUTs
CoreGen 2.0(Logic) Virtex-4 LX160 12 271 692 Slices
Xilinx DFPADD Virtex-4 LX160 6 166 512 Slices

Table 2.3: Floating Point Adders

adder will be used for the design of an SMAC.

The DSP48 enhanced adder will be used since it uses less logic and it is the
fastest Coregen adder. For every DSP48 enhanced adder, 3 DSP48 slices are
used. Because there are 96 DSP48 Slices available, this means that 32 adders
can be added if only DSP48 slices are considered.

2.4.2 Fully Compacted Binary Tree

a

b

d

h i

e

j k

c

f

l m

g

n o

Figure 2.9: FCBT (n = 8)

The Fully Compacted Binary Tree algorithm (FCBT) algorithm[23] uses two
adders for the reduction of rows of values. As the name of the algorithm
suggests, the algorithm works using a binary tree. The binary tree is a
complete binary tree of floating point additions. If n values have to be
reduced, n − 1 additions have to take place. An example of a binary tree of
additions is shown in figure 2.9. The values enter the reduction circuit at the
leaf level, level 3 in this example. The values at the other levels are partial
(intermediate) results that should be further reduced.
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Level Operations Pace Reductions per
(execution every ... clock cycles) 16 clock cycles

3 8 2 8
2 4 4 4
1 2 8 2
0 1 16 1

Table 2.4: FCBT

Since one value enters the reduction circuit at every clock cycle, at most one
addition has to take place at every clock cycle. So, in the case of a tree of
adders, only one adder is active on average, the other adders are not used.
The designers of the FCBT algorithm show that every clock cycle, at most
two additions take place in this adder tree. This is the reason why they use
two adders for this design.

Their algorithm maps the complete tree on two adders. They call this a
virtual adder tree. The lowest level (the leaf nodes, in the example this is
level 3) is handled by the first adder. Thus every two clock cycles it adds two
values producing one result. Thus at the input, only one value is buffered.

The other adder takes care of all other levels in the tree. For each level, a
small buffer is reserved. Results from level l are placed into the buffer of
level l − 1. A counter is used to cycle over all levels in the tree. The level
determines how many clock cycles the physical adder is used to reduce values
on this level. In the example of figure 2.9, the result of the reduction of values
h and i on level 3 are placed in the buffer at level 2.

In table 2.4, the pace of these reductions are shown for the example from
figure 2.9. For example, at level 0 only one reduction has to take place every
16 clock cycles. The number of reductions for all levels that are reduced
by the second adder is 4 + 2 + 1 = 7 reductions every 16 clock cycles. The
second adder executed the additions for all non-leaf nodes, so one addition is
scheduled for each node in the tree.

The algorithm requires a minimal row length of one and the maximum row
length has to be known at design time. This maximum length determines the
depth of the adder tree. Since the algorithm requires buffers at each level
of the tree, the buffers grow as the maximum length of the input rows increases.

Since two adders are used and the sizes of the buffers scale with the length of
the input buffers, this design does not meet the design criteria.
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2.4.3 Dual Strided Adder

The Dual Strided Adder algorithm (DSA)[23] also uses two adders for
reduction. Unlike the FCBT algorithm, the DSA algorithm is independant of
the number of input rows and the length of the input rows.

The algorithm uses three buffers. At the input, there is a buffer that stores
input values that have to wait because the adders are currently reducing the
partial results. There are two buffers for partial results. When a new row of
values arrives at the input, one adder starts to reduce it. The other adder is
reserved to reduce previous rows that are not fully reduced yet.

Since this design uses two adders, this does not meet the criteria.

2.4.4 Single Strided Adder

The Single Strided Adder (SSA)[23] algorithm is quite similar to the DSA
algorithm. The SSA algorithm uses one adder at the cost of increased required
buffer size. The algorithm used to schedule the adder is quite complex and I
would like to refer to [23] for a detailed description of the algorithm. For this
design, the buffers grow quadratically as the depth of the pipeline increases,
while the output of the reduction circuit is out-of-order.

2.4.5 Tracking Reduction Circuit

In Bodnar et al. [4], a reduction circuit is described that tracks all rows which
are being reduced by the reduction circuit. The number of rows that can
maximally coexist in the system is determined by simulation. For each row,
buffers are reserved. How the algorithm exactly works is not entirely clear from
the paper. It is not even clear whether the algorithm actually works correctly,
as the authors do not (formally) proof the correctness of the algorithm and
limited simulation results are given.

2.4.6 Adder tree with FIFO

In Morris et al. [11] another approach is discussed for computing sparse
matrix vector multiplications, although this research focuses on reconfigurable
computers. The reduction circuit uses an α×α buffer of floating point values.
A row in this buffer represents partially reduced values from a single matrix
row. Only α buffer rows are required to reduce an arbitrary number of rows
of arbitrary size.

When a value enters the system, this value is reduced together with a value
from this buffer row. The values in this buffer are initially set to zero. After α
clock cycles, the result will be written to this same buffer row. The position
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within the row circulates. At the end, the complete row is reduced to maxi-
mally α values. To reduce these values, the entire row is fed into an adder tree.
The disadvantage of this approach is obvious. In total α adders are required
together with a buffer size of α× α.

2.4.7 Group alignment

In He et al. [8], an alternative to reduction circuits is introduced. The main
focus of this article is that when floating point arithmetic is used, numerical
errors occur. Because of this, precision is lost when it is assumed that floating
point additions are commutative and associative. Instead of scheduling oper-
ations, the floating point adder is changed such that it accepts a value every
clock cycle. Internally fixed point arithmetic is used, thus the full range of
floating point values can not be reached. Thus floating point is only at the
interface such that it can be a drop in replacement for reduction circuits, the
adder is in reality just a fixed point adder. Numerical precision is not the fo-
cus of this thesis. For SM×V the full range of double precision floating point
values is required.

2.4.8 SIMD MDMX Instruction Set Architecture

In Corbal et al. [5], reductions using SIMD multimedia instructions are
discussed. SIMD instruction sets like MMX [15] on the Pentium Processor
and MIPS Digital Media eXtension (MDMX) for the MIPS are very popular
for multimedia applications. Many multimedia algorithms require reductions.
For example, motion estimation requires many accumulations and a minimum
operator. For another algorithm, IDCT, many additions are required. An
overview of algorithms and the number of reduction operations required can
be found in [5]. It is clear that reductions do not only cause design difficulties
when using FPGAs, but also when designing GPPs they can be problematic.

MMX instructions store their result in a special SIMD register. The MMX
registers do not have many bits, so in case of many multiplications or
additions, the register size is not sufficient. In such cases MMX applications
use promotion, to move partial results to bigger registers.

However, In MDMX, packed accumulators store their results in an accumula-
tor register which can be used for further reductions. The packed accumulator
reduces the accumulator register together with the input. This is mainly done
is to avoid data promotion, so more registers are available for parallel pro-
cessing. The accumulator register has more bits than the other registers. Only
partial results at the output of an operator are accumulated. Because of this,
the latency is significant.
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Algorithm Buffer sizes #adders Latency In-order
output

FCBT 3dlog2ne 2 2n+ (α− 1)dlog2ne Yes
DSA αdlognα+ 1e 2 αdlog2α+ 1e No
SSA 2α2 1 2α2 No
Tracking Unknown 1 Unknown Unknown

Table 2.5: Reduction circuits

2.5 Conclusion

The designs described in section 2.4 either require multiple adders or place a
limit of the length on the input rows. The summary of previous work is not
complete, a lot of research has been committed in this area, many requiring
multiple adders [18, 12, 23]. Other designs have been introduced which have
buffer sizes depending on the input [13, 14]. Some solutions can only reduce
a single row of values [17]. The design in [4] does not have these limits, but
it is not clear how it was implemented. Besides that, this last design doesn’t
meet the requirements placed on performance. The SSA design is the only
design that approximates the design requirements, but still does not meet
the demands because the buffer size is α×α while the output is out-of-order.
A summary of the algorithms discussed in this chapter is shown in table 2.5.

In the next chapter an alternative design that does not have the restrictions
(low clock frequency, multiple adders, large area, out of order output or a high
delay), will be proposed.





Chapter 3

Reduction Circuit

In the previous section, several designs of reduction circuits were discussed.
These designs did not meet the design criteria. In this section an alternative
design for a reduction circuit is introduced. First the algorithm is stated and
its correctness is proven. At the end of this chapter, an implementation is
discussed.

3.1 Algorithm

Figure 3.1 shows a reduction circuit with a operator pipeline (P), a buffer
(I) at the input and a buffer (O) at the output of the pipeline. Values enter
the reduction circuit from the left and are placed in the input buffer. As
mentioned in section 2.2, I assume that every clock cycle a value enters the
system. The values are grouped in rows, where each row has to be reduced
by a given commutative and associative binary operator. Immediately after
one row ends, the next row starts. Values are marked by a row discriminator
such that it is clear which value belongs to which row. A row discriminator
differs from the row index, the row discriminator identifies the row within the
reduction circuit, while the row index identifies rows globally in the system.
Keeping track of these row discriminators distinguishes this reduction circuit
from the reduction circuits that were discussed in section 2.4. Our algorithm
is such that only a limited number of row discriminators is sufficient, after a
certain number of rows the same row discriminators can be re-used, this is
discussed in detail in section 3.3. The size of the row discriminator depends
on the depth of the operator pipeline, for a deeper pipeline there are naturally
more values that will come out of the pipeline. When these values come out
of the pipeline and do not appear at the input anymore, these values have to
be reduced while the input is stalled. Because of this, the number of values
in the input buffer will increase. This will be further discussed and proven in
section 3.2.

27



28 CHAPTER 3. REDUCTION CIRCUIT

I O

P

Figure 3.1: Reduction circuit (α = 4)

Apart from the operator pipeline (denoted as P) there are two buffers (see
Figure 3.1): one for buffering the input (denoted as I) and one for storing
the output of the pipeline (denoted as O). The input buffer I is a FIFO,
the output buffer O is normal RAM memory. In fact, the input buffer is a
modified FIFO which can make two values available instead of one. For the
output buffer RAM memory is used, since that makes it possible to access
values directly.

Apart from these two buffers and the pipeline there also is a controller.
However, in this section and the next I abstract away from the controller.

Let us assume that the depth of the pipeline P is α. In section 3.2 it
will be proven that, to prevent hazards and buffer overflow, it is sufficient
to a choose size α+1 for the input buffer I, and a size α for the output bufferO.

Clearly, the operator pipeline has to be fed with two values at a time, so at
the start of reducing consecutive rows, every two clock cycles the first two
values from the input buffer (say x, y) can be entered into the pipeline, if
they have the same row discriminator. Suppose the depth of the pipeline is
α, then α clock cycles after x and y enter the pipeline, the (partial) result
z of x and y leaves the pipeline, where z carries the same row discriminator
as x and y. If the value u at the input at the moment z becomes available is
marked with the same discriminator, then z and u will be entered into the
pipeline, such that only one instead of two values will be taken out of the
input buffer.

A second possibility is that the next value u from the input belongs to
another row than the output z from the pipeline. In that case the output of
the pipeline z is stored in the output buffer, or, in case a value v with the
same row discriminator as z is already present in the output buffer, z and v
will be entered into the pipeline. Hence, in such situations no value from the
input buffer I will enter the pipeline.
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Typically, while a row of floating point values with row discriminator k is still
in the process of entering the system, outputs of the pipeline may have the
same row discriminator k or not. In case a pipeline output has the same row
discriminator, it will be combined with the first value of the input buffer and
together they will enter the pipeline. This may occur repeatedly, and values
in the input buffer may be “picked up” by the output of the pipeline to enter
the pipeline at the beginning.

Likewise, a value v in the output buffer O will be “picked up” by the output
z of P in case the row discriminators of v and z are the same.

When a row with a given row discriminator has been reduced to a single
value with that row discriminator, and no other value with the same row
discriminator is present in the system anymore, this value might be released
to the outer world as soon as it leaves the pipeline and its row discriminator
might be made available for reuse by a next row of input values. However,
to simplify the correctness proof somewhat (see section 3.2), we postpone
this moment of releasing a final result to the outer world for a while, and
store such a value coming from P into the output buffer O anyway. From
there it will be released when the last value of the row being processed
(denoted k) leaves the input buffer and enters the pipeline. At that moment
the corresponding cell in O will be “claimed” for values of row k. Since the
output buffer may contain the final results of more than one input row, the
choice for which final result is released has to be taken with care, to avoid
that some value will have to wait indefinitely.

Note that when no value from a given row is present in the system anymore,
values for this row will not reappear in the input buffer either. Note further,
that values carrying different row discriminators may be present in the
pipeline at the same time. Finally, note that there may be clock cycles at
which no value is ready to leave the pipeline.

To deal with the possible situations in a precise way, five rules are formulated.
In the formulation of these rules, the values of the input buffer whose turn it
is to be entered into the pipeline will be denote by I1, and possibly I2. The
value that leaves the pipeline will be the last one in the pipeline, thus it will
be denoted by Pα. As mentioned already, there need not exist a value Pα at
every clock cycle, i.e., cell Pα may be empty. If Pα is mentioned in the rules
below, it is assumed that it exists.

The rules are given in order of priority, i.e., starting from rule 1 the first
rule that is applicable has to be chosen. For a better understanding of the
rules we refer to figure 3.2. In all five parts of this figure, three buffers
are depicted. The left buffer is the input buffer I, the middle buffer is
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the pipeline P, and the right buffer is the output buffer O. The arrows
represent the step that the corresponding rule formulates. At each step, the
values within the pipeline will move one cell forward, i.e. upward in the picture.

The five rules, in order of priority, are:

1. If there is a value available in O with the same row discriminator as Pα,
then these two values will enter the pipeline.

2. If I1 has the same row discriminator as Pα, then I1 and Pα will enter
the pipeline.

3. If there are at least two values in I, and I1 and I2 have the same row
discriminator, then they will enter the pipeline.

4. If there are at least two values in I, but I1 and I2 have different row
discriminators, then I1 will enter the pipeline together with the unit
element of the operation dealt with by the pipeline (thus for example, 0
in case of addition, 1 in case of multiplication).

5. In case there are less than two values available in I, no values will be
entered into the pipeline.

Note that in case of rules 3–5 it may well be the case that the output Pα
exists. However, in those cases neither rule 1 nor rule 2 is applicable. That is
to say, if one of the rules 3–5 is applicable, it still is possible that Pα will be
stored into O waiting to be picked up, or waiting to be released to the outer
world in case it is the final result of its row.

As can be seen in the rules above, there are situations in which no value
from I will enter P. Thus values will accumulate in the input buffer. In the
next section it will be shown that sizes α+1 and α are sufficient for I and O,
respectively.

At this point we remark that some optimizations of the above algorithm are
possible. First of all, in case of rule 4, value I1 is a single last value of a row.
That value may be put directly into the output buffer such that the rather
useless combination with the unit element of the operation involved is not
performed.

Secondly, we remark that the above algorithm does not guarantee that the
results will come out of the system in the same order as the rows came in.
With a limited enlargement of the output buffer O, the results can be released
in-order, as will be shown in section 3.3.
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(a) Rule 1 (b) Rule 2

(c) Rule 3

0

(d) Rule 4

(e) Rule 5

Figure 3.2: Rules

3.2 Proof

3.2.1 Definitions

in

S1

rules

S2

Figure 3.3: States of the reduction circuit used in the proof

When proving the correctness of the reduction circuit design, it is easier
to split the design into two states. Figure 3.3 shows these two states as S1
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and S2. The actions in and rules occur between the states in the figure.
The system begins with the action in, which places an input value into I.
The number of values contained in I is notated as NI . Similar notations
are used for P and O where the number of values they contain is notated
as NP and NO respectively. Thus, during the input step, a value is placed
into I and as a result NI is increased by one and the system will reach state S1.

During the transition from S1 to S2 the actual rules, as discussed in sec-
tion 3.1, are executed inside rules. After this, the action in in take place
and the process repeats itself. In an implementation, both actions might be
executed simultaneously.

The output buffer has a capacity of α cells. Every cell corresponds to a row
discriminator used for a row of values inside P. Rows that occur in O can
not occur in I anymore. Since P has α cells, α cells is sufficient for O.

When the last value of a row enters the pipeline (in the context of the proof
that follows), the value will receive a row discriminator. Since there are as
many cells in O as there are in P, there is at least one cell with a reduction
result, call this cell i. The value just placed in P1 will receive the row dis-
criminator i (see section 3.1). The following theorem will be used later in this
chapter to proof that O is bounded and NI ≤ α+ 1.

Theorem 1 During state S1, the following statements are always true:

1. NI ≥ 1

2. NP +NO ≥ α

3. NI +NP +NO ≤ 2α+ 1

The induction proof immediately follows in two steps: the initial state and the
induction step:

3.2.2 Initial state

To make the proof easier to follow, it will be assumed that O contains α
dummy values. Since these values cannot be used by any rule, they will not
influence the algorithm. This means that the proof still holds if the dummies
would not be used in practice.

The first statement is true at all times since the input was just placed in I
before these statements are checked. The second statement holds since NP is
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zero and NO is α. It is easy to see that the third statement also holds. To
complete the proof of this theorem, the induction step will be checked next.

3.2.3 Induction step

The induction step shows that given that the statements are true during
the state S1, they also hold the next time this state is reached (S′1). The
number of values NI , NP and NO will change during the actions rules and
in (see figure 3.3) before the state S′1 is reached. The number of values in
I, P and O during the state S′1 will be written as N ′

I , N ′
P and N ′

O respectively.

As already mentioned for the initial state, the first statement is always true.

Since O starts with α dummies (NO = α) of which one is released
(N ′

O = NO − 1) when a new row enters the pipeline (N ′
P = NP + 1), this

means the total count (N ′
O + N ′

P) can never get below α, thus the second
statement is always true. Or in other words, NP increases when NO de-
creases and NO will increase again when the result of this row is placed into O.

To show that the induction step holds for the third invariant statement, the
state has to be checked for all five rules:

Rule 1
If there is a value available in O with the same row discriminator
as Pα, then these two values will enter the pipeline

This rule uses Pα and one value from O, thus NP and NO both decrease by
one. The rule will place one value in P1, thus P will increase by one. One value
will be placed in I. Thus during S′1, the number of values inside the buffers are:

N ′
I = NI + 1 = NI + 1

N ′
P = NP + 1− 1 = NP

N ′
O = NO − 1

And thus: N ′
I +N ′

P +N ′
O = NI +NP +NO

Thus statement three hold for this rule.
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Rule 2
If I1 has the same row discriminator as Pα, then I1 and Pα will
enter the pipeline

During this rule, one value from I and Pα are used, decreasing both NI
and NP by one. During this rule, O will not change. The number of values
in P will increase by one because of the value placed in P1. After rules took
place, in will put a value in I before S′1 is reached. During S′1, the number of
values inside the buffers are:

N ′
I = NI + 1− 1 = NI

N ′
P = NP + 1− 1 = NP

N ′
O = NO

And thus: N ′
I +N ′

P +N ′
O = NI +NP +NO

If the value from I was the last of its row, a result from O is released. In this
case, the number of values inside the buffers are:

N ′
I = NI + 1− 1 = NI

N ′
P = NP + 1− 1 = NP

N ′
O = NO − 1

And thus: N ′
I +N ′

P +N ′
O = NI +NP +NO − 1

In both cases it is easy to check that statement three still holds.

Rule 3
If there are at least two values in I, and I1 and I2 have the same
row discriminator, then they will enter the pipeline

Two values from I are used, thus NI decreases by two. After this, the
input is placed in I and NI increases by one. Because of the application of
this rule NP increases by one and O remains unchanged or decreases by one if
the value is released. During state S′1, the number of values inside the buffers
are, if no value from O is released:

N ′
I = NI − 2 + 1 = NI − 1

N ′
P = NP + 1

N ′
O = NO or N ′

O = NO − 1

And thus: N ′
I +N ′

P +N ′
O = NI +NP +NO
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If the value from I was the last of its row, a result from O is released. In this
case, the number of values inside the buffers are:

N ′
I = NI − 2 + 1 = NI − 1

N ′
P = NP + 1

N ′
O = NO − 1

And thus: N ′
I +N ′

P +N ′
O = NI +NP +NO − 1

It is easy to check that statement three holds.

Rule 4
If there are at least two values in I, but I1 and I2 have different
row discriminators, then I1 will enter the pipeline together with
the unit element of the operation dealt with by the pipeline

One value from I is used, thus NI decreases by one. After this, the input
is placed in I and NI increases by one. If this rule is applicable the value
from I is always the last value of a row. Thus NO decreases by one since a
value is released and one cell becomes free. During the state S′1, the number
of values inside the buffers are:

N ′
I = NI − 1 + 1 = NI

N ′
P = NP + 1

N ′
O = NO − 1

And thus: N ′
I +N ′

P +N ′
O = NI +NP +NO

It is immediately clear invariant statement 3 still holds.

Rule 5
In case there are less than two values available in I, no values will
be entered into the pipeline

When this rule is used, NI = 1. If NI > 1, either rule 3 or rule 4 would
have been used.

After the application of this rule and placing the input into I, N ′
I is 2. Since

NP < α since no value was placed in P1 during the application of this rule and
NO ≤ α it follows that NP +NO is maximally 2α− 1. Thus N ′

I +N ′
P +N ′

O ≤
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2α+ 1.
�

3.2.4 Conclusion

Since NI +NP +NO ≤ 2α+ 1 and NP +NO ≥ α, it follows immediatly that
NI ≤ α + 1. This means that if the input buffer has α + 1 cells, the input
buffer will never overflow.

It should be noticed that certain assumptions were made about the output
buffer. An assumption is made on when values are released and dummies were
placed in the output buffer. As noticed before, the dummies do not affect
the algorithm, thus they can be left out in the implementation. Furthermore,
the output buffer does not affect the algorithm as long as it does not release
values too soon. So even for another output buffer implementation than the
one assumed in this section, the proof still holds.

3.3 Discriminators

In section 3.1 it was mentioned that every row of values has a row discrimina-
tor unique within the reduction circuit. In the application of a matrix vector
multiplication, every row of values can get the row index as the row discrimi-
nator. For an actual implementation this is not desirable. One disadvantage
of using the row index as row discriminator is that it may require many bits,
depending on the matrix size. More bits will result in more hardware and
might result in a lower clock frequency due to the size of the comparators
which have to be used in the reduction circuit. Any fixed choice of number
of bits will result in a restriction of the number of rows that can be re-
duced by the reduction circuit if every row index would be uniquely identified.

The row discriminator is used to uniquely identify a row within the reduction
circuit. This means that the row discriminator can actually be reused after
the reduction result is released from O. The reduction circuit assigns a row
discriminator to every new row that enters the system. Thus values that
enter the system have to be marked in such way that the reduction circuit
can determine where a new row starts. As long as this row is being processed
by the reduction circuit, this row discriminator can not be reused.

The maximum number of rows in the system determines the size of the output
buffer. When the last value of a row has entered the reduction circuit, the
clock cycles have to be counted to determine when the row is fully reduced.
It was proven in section 3.2 that an input buffer size of α+1 is sufficient.
This implies that, when a value enters the input buffer every clock cycle, each
value can remain in the input buffer maximally α+1 clock cycles. Trivially,
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that also holds for the last value of a row. Now assume that the row was long
enough to completely fill the operator pipeline. The pipeline and the output
buffer together can maximally contain α values of a single row. In α clock
cycles, the number of values of this row is halved. To fully reduce α values
of the same row in the pipeline, dlog2 αe times α clock cycles have to take
place. After the last reduction begins, it takes another α clock cycles before
the final result leaves the pipeline.

This means that after the last value of a row enters the reduction circuit,
at maximum 2α + αd log2 αe + 1 clock cycles have to pass before this row
discriminator can be reused. After that, the final result is available in the
output buffer. This value will be sent to the output and its row discriminator
can be reused. It is possible to cycle over all possible row discriminators.
When doing this, it is guaranteed that the output of the reduction circuit is
in-order and the delay is 2α + αdlog2 αe + 1 counted from the last value of
a row that entered the pipeline. The output is in-order since the reduction
circuit cycles over all row discriminators and releases results in the same
order as they entered the reduction circuit.
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Figure 3.4: Number of bits required for unique identification of rows

In the case that every row has a length of one, which is the worst case, every
clock cycle a new row can enter the system. In that case, 2α + αdlog2 αe+ 1
row discriminators are required by the system, which will also be the size
of the output buffer. The number of bits required to identify a row directly
follows from the number of row discriminators and is shown in figure 3.4. If
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value y1
3 y1

2 y2
2 y4

1 y3
1 y2

1 y1
1

marker bit 1 0 0 1 1 1 1

Table 3.1: Rows marked using a marker bit

the minimal length of a row is greater than one, the number of rows that are
in the reduction circuit at the same time decreases and thus the number of
required row discriminators decreases. For large sparse matrices, the minimal
row length is often longer than 2α+αdlog2 αe+1 for practical values of α. For
example, for α = 10 a row will remain maximally 60 clock cycles in the system
after the last value of the row entered the reduction circuit. If the minimum
length of a row is 60, two row discriminators are sufficient to identify all rows
in the system.

3.4 Implementation

The Xilinx Virtex-4 LX Development Kit from AvNET was used for the imple-
mentation of the reduction circuit. This development board contains a Xilinx
Virtex-4 4VLX160FF1513-10 FPGA. In section 2.4, the choice was made to
use a floating point adder generated using the Xilinx CoreGen tool. After the
assignment of discriminators is discussed, I will introduce two implementa-
tions of the reduction circuit. The first implementation had some drawbacks
which I will discuss. The second implementation is the implementation that
will be used in the remainder of this thesis.

3.4.1 Assigning discriminators

Floating point values and row discriminators enter the reduction circuit in
pairs. First the reduction circuit assigns a row discriminator to each row.
This row discriminator requires less bits than the row index that was used
for the matrix, which was shown in section 3.3.

An alternative to using a row index to indicate the beginning of a new row,
is to add a single bit to each value that enters the system which is flipped
whenever a new is started. This is illustrated in table 3.1. In that case the
reduction circuit will be able to handle rows of any length. Because for the
SM×V application preserving row indexes is useful, row indexes are used
instead of a marker. Although this alternative is not very useful for the matrix
application, however it can be important for other applications that do not
want to restrict the number of input rows and thus this method is more generic.

The assignment of discriminators to rows of values can be implemented
efficiently. The current implementation detects new rows by comparing the
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row index of the current value with the row index of the previous value.
In case they do not match, the next row discriminator is determined. In
section 3.3 it was mentioned that a fixed number of these row discriminators
are required for a given α. If the number of row discriminators is a power of
two, operations on row discriminators can be implemented efficiently. Thus
the number of row discriminators is rounded upwards to a power of 2.

If b bits are used for row discriminators, a b bits counter can be used to
calculate new row discriminators. When a new row is detected, the counter
is increased by one. Because the number of row discriminators is rounded
upwards to a power of two, a simple counter is sufficient since the counter has
to calculate modulo the the number of row discriminators. The new value of
the counter is used as the row discriminator for the new row. The row index
is stored in a BlockRAM (see A.2), using the row discriminator as an index
into O.

For releasing values from O there are two alternative methods. The first
method uses new rows at the input to push out the results of previous rows.
If the row is fully reduced, the final result is held in the output buffer,
waiting for a signal that it can be released. The moment a row discriminator
is assigned, the row to which this row discriminator previously belonged is
ready and can be released. Although this might seem awkward at first, this
is true by definition, the number of row discriminators that are used were
carefully chosen such that this holds. The row index of this value is read from
the BlockRAM. The value is released from the output buffer and will appear
at the output of the reduction circuit together with its row index.

When a row is fully reduced, the row will not be released before another
row gets this same row discriminator. However, it might take a lot of time
before this happens. The disadvantage of this approach is that the latency
of the system is dependent on future rows. For example, if there are 128 row
discriminators, a result will not leave the reduction circuit before 128 rows
have entered the reduction circuit. The second method to release values solves
this disadvantage at the cost of more area. A value is released 2α+αdlog2 αe+1
clock cycles after the last value of the row entered the reduction circuit. Thus
this signal should be delayed for 2α+ αdlog2 αe+ 1 clock cycles. This can be
efficiently implemented using a shift register.

3.4.2 First implementation

Two implementations of the reduction circuit were tested. The first implemen-
tation did not separate the floating point values from the row discriminators.
The input FIFO was made using BlockRAM. Both the data for control (row
discriminators) and the data for the datapath (double precision floating point
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values) are stored in this FIFO. This approach is logical from the perspective
of the data. Data and row discriminators that belong together are stored and
processed together.

The longest path determines the maximum clock frequency. In this imple-
mentation, the longest path can be found in the controller. This longest path
starts at the input FIFO BlockRAMs, which have a long delay. This results in
a decreased performance. Furthermore, since the values for the datapath and
the row indexes for control are not separated, it might become harder for the
synthesis and Place and Route (PAR) tools to make optimizations.

3.4.3 Second implementation

Instead of considering a value as a single entity, it is also possible to
look at values as two separate streams of data. The row discriminators go
into the controller and the floating point values enter the datapath. This
means that there are two FIFOs, one for row discriminators and one for values.

In this implementation the row discriminators are stored in logic instead of
BlockRAMs. The controller is a separate entity that has a FIFO for row
discriminators which are used by the algorithm and sets the control signals
of the datapath. This has several advantages. The longest path will no longer
begin with a BlockRAM read, which reduces the initial delay. Furthermore,
this approach makes it easier for the synthesis and PAR tools to optimize the
design because the row discriminators and values are routed and processed
separately.
This design is shown in figure 3.5. The datapath consists of two BlockRAMs
(since 3 ports are required) that form the input FIFO, a double precision float-
ing point pipelined adder and two BlockRAMs for the output buffer (two ports
are required). The input of the pipelined adder is selected by two multiplexers
which are controlled by the controller. The control lines from the controller to
the buffers are not shown in this figure.

3.4.4 Controller triplication

To optimize the implementation for speed, the longest path has to be
analyzed. To get a good design, paths have to be balanced. This means that
other paths have a delay similar to the longest path. Thus if the current
longest path is removed from the implementation, the new longest path will
have a comparable delay and thus it will be hard to optimize this system by
analyzing a single longest path.

For the first implementation, the longest path was in the controller. One
method to decrease the delay of the path is by inserting a register in the



3.4. IMPLEMENTATION 41

I

P

Memory

0 0

Input Output

I2

P ′

I1

Controller

O′

Figure 3.5: Reduction circuit datapath (α = 4)

middle of this longest path. An easy way to do this is simply placing a
register somewhere in the path, the synthesis tool can use register retiming
to balance the path. However, adding a register will result in an undesirable
delay since the control signal is available one clock cycle late.

After inserting this register, the control signals are available one clock cycle
too late. Thus the controller should determine the control signals of the next
clock cycle to compensate for this delay. However, not all information for the
controller is available during the previous clock cycle. The controller has to
know which values from I are used. Thus it should know which values will
be present in I during the next clock cycle. The solution is to require that
always four values are present in I. At clock cycle t, the controller determines
the control signals for clock cycle t + 1. Obviously, the control signals for t
were calculated on clock cycle t − 1. Most notably is the control signal icnt,
the number of values removed from I during the current clock cycle. This is
also shown in figure 3.6.

An example of a possible scenario is that at time t, rule 3 (I1 and I2 are used) is
used and thus two values from I will be consumed (and thus icnt = 2). These
values will no longer be contained in I at clock cycle t+ 1. So if a prediction
at time t was made that rule 3 will have to be used at t+ 1 by looking at I,
the wrong rule might be used. Perhaps, at time t + 1, the values I1 and I2
might not match. Generally, three situations can be identified, depending on
icnt:
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icnt = 0 The controller can precisely determine the control signals for the
next clock cycle. The input buffer will not change, so the current state will be
the same at the next clock cycle.

icnt = 1 The controller will not give a good result if I1 and I2 will be used,
since one value (I1) will be consumed during the current clock cycle. At the
next clock cycle, the values in I will be shifted by one. Thus I2 and I3 should
be used as input for the controller instead of I1 and I2. In this case, the result
will be correct.

icnt = 2 Just like for icnt = 1, other inputs have to be used, since at the
current clock cycle two values will be consumed (I1 and I2). Now I3 and I4
have to be used as input for the controller, since these correspond to I1 and
I2 during the next clock cycle.

If icnt would be used to select the input of the controller, the longest path
will be extended further. This is not desirable. Instead, the controller can be
triplicated, such that at clock cycle t, three possible sets of control signals will
be available. At clock cycle t + 1, the value of icnt is used as a multiplexer
input to select the correct control signals. This multiplexer is located outside
the controller separated by a register and does not add to the length of the
longest path in the controller. This design is shown in figure 3.6.

Controller 2

Controller 3

Controller 1

icnt

Datapath

Figure 3.6: Reduction circuit controller (triplicated) (α = 4)

This approach was only used in the first implementation. In the second imple-
mentation another optimization was used that will be described next. However,
controller triplication might be usable in the second implementation to reduce
the length of the longest path. However, due to time constraints this option
was not explored.
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3.4.5 Fixed priority arbiter

In the second implementation, a fixed priority arbiter [20] was used as con-
troller. The fixed priority arbiter used in the reduction circuit has five request
signals as input, one for every rule defined in the algorithm. The requests
correspond with the conditions of the rules of the reduction algorithm. For
example, the conditions for the fourth rule are: I1 and I2 both exist, but
come from different rows. If the conditions for a request hold, the request
signal will be ‘1’. Otherwise it will be ‘0’.

The fixed priority arbiter has a single output, the grant signal. The grant
signal is essentially the rule that has to be executed. Thus the fixed priority
arbiter picks the request that has the highest priority and sets the grant signal
accordingly. The VHDL code to implement the fixed priority arbiter is simply:

grant <= ADD_OUT when rule_valid(0 downto 0) = "1" else
ADD_IN when rule_valid(1 downto 0) = "10" else
IN_IN when rule_valid(2 downto 0) = "100" else
IN_ZERO when rule_valid(3 downto 0) = "1000" else
IDLE;

The request signals are created using the following VHDL code:

rule_valid(0) <= ’1’ when adder_fifo(0).valid = ’1’
and adder_fifo(0).discr = nxt_output.discr
and nxt_output.valid = ’1’ else ’0’;

rule_valid(1) <= ’1’ when adder_fifo(0).valid = ’1’
and adder_fifo(0).discr = input_queue(0).discr
and input_queue(0).valid = ’1’ else ’0’;

rule_valid(2) <= ’1’ when input_queue(0).valid = ’1’
and input_queue(1).valid = ’1
and input_queue(1).eq2prev = ’1’ else ’0’;

rule_valid(3) <= ’1’ when input_queue(1).valid = ’1’ else ’0’;
rule_valid(4) <= ’1’;

The request signals are generated in parallel. In the first design, a big if-else
statement was used that calculated the grant signal directly. Although this is
also parallel, the fixed priority arbiter is a generic method to write this down
with the advantage that synthesis tools can easily optimize this.

3.4.6 Output buffer contents

When determining the request signals it is important to know that a value
is in the output buffer, to determine if the first rule has to be executed.
Depending on the design, it can be required that this information is available
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Row discriminator 1 2 2 3 3 3 4 4 4 4
Value (first approach) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Value (second approach) 1.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0

Table 3.2: Example input rows

one clock cycle earlier.

The output buffer is simply one or more BlockRAMs. To determine if a cer-
tain buffer position contains a value, it is not desirable to use BlockRAM as
it introduces an additional delay while BlockRAM has a limited number of
read/write ports. A std logic vector is used that contains a bit for each entry
in the output buffer to determine if it is valid. However, reading one bit from
a big std logic vector appeared to be very slow as a large demuxer is used to
do this. Currently this is the one of the longest paths in the system.

3.4.7 Testing

I used ModelSim [3] to simulate the reduction circuit. The first approach to
test the reduction circuit was to make the length of a row equal to its row
index, see table 3.2. Every floating point value is set to 1.0. For example, row
10 of length 10 will yield the result 10.0. The drawback of this approach is
that, if there is a delay at the input of the datapath, it will go unnoticed.
Any shift in time of the floating point value will not influence the outcome of
this test.

The second approach is more robust in this regard. The row index itself will
be used as a floating point value, instead of using 1.0 as the floating point
value, see table 3.2. The reduction result of any row will be the square of the
row index. Any delay in the datapath will now be noticed. Besides that this
method of testing is a useful testing tool during simulation, test values can be
easily generated inside the FPGA and checked inside the FPGA as well. In
my case, I used LEDs to show the status of the test. This test is plausible to
work if it shows success for the input row as just described. If this input row
is slightly altered, the test should fail. The reduction circuit was successfully
tested on the Xilinx Virtex-4 LX160 Development Kit by AVNet using the
techniques described here.

3.4.8 Results

The implementation of the reduction circuit was tested on the Xilinx Virtex-4
4VLX160FF1513-10 FPGA. The pipelined binary operator used is a floating
point adder (α = 12) which was generated using Xilinx CoreGen. The
available resources on the FPGA and the resources and characteristics of the
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Available on FPGA FP Adder
Slices 67584 n.a.
Clock Freq. (MHz) n.a. 253
BlockRAMs 288 0
DSP48 96 3
LUTs 135168 1220
FFs 135168 1139

Table 3.3: Characteristics adder and available resources (α = 12)

Reduction circuits (number of bits)
1 2 3 4 5 6 7

Slices 2587(3.8%) 2680(4.0%) 2752(4.1%) 2844(4.2%) 3043(4.5%) 3178(4.7%) 3556(5.3%)
MHz 253 253 253 251 220 210 200
BRAMs 9(3.1%) 9(3.1%) 9(3.1%) 9(3.1%) 9(3.1%) 9(3.1%) 9 (3.1%)
DSP48 3(3.1%) 3(3.1%) 3(3.1%) 3(3.1%) 3(3.1%) 3(3.1%) 3 (3.1%)
LUTs 1651 2962 3007 3060 2287 3237 2927
FFs 2936 1734 1840 1982 3257 2447 3437

Table 3.4: Reduction circuit (α = 12)

floating point adder (in isolation) are shown in table 3.3. The resources used
by the reduction circuit are shown in table 3.4. In this table, the pipeline
depth is kept fixed, while the number of bits for the row discriminator is
varied. For slices, BlockRAMs and DSP48 slices, the percentage of the total
number of the available resources is shown (see Appendix A for information
about FPGAs).

The clock frequency for 1, 2 and 3 bits is 253 MHz. In these cases the clock
frequency is limited by the clock frequency of the floating point adder. The
clock frequency can be increased by selecting a faster adder, however, this
faster adder will have a bigger delay. If 7 bits are used, all possible row lengths
can be reduced using this reduction circuit. Theoretically about 19 reduction
circuits fit in the FPGA independant of the number of bits. In practise FPGAs
are filled for about 50% such that the PAR tooling has enough freedom to place
and route. Thus, about 10 reduction circuits is a more practical estimation.





Chapter 4

Evaluation of Results

4.1 Reduction circuit evaluation

In section 3.4.8, characteristics like area and clock frequency were discussed. In
this section these results are further analyzed with an emphasis on scalability.
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Figure 4.1: Reduction circuit characteristics plotted against number of bits
(α = 12)

In figure 4.1a, the clock frequency is plotted against the number of bits
used for the row discriminator. This plot shows how the speed changes as
the number of bits used for the row discriminator increases. The number
of bits depends on both α and on the minimal row length, see section 3.3.
This makes the number of bits used for the row discriminator an important
variable for analysis.

In figure 4.1b, the number of slices is plotted against the number of bits. For
α = 12, 7 bits are sufficient to handle all row lengths and thus more bits

47
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have no practical application. Extending the row discriminator beyond 7 bits
can be used to study the scalability of the design, even for deeper pipelines
that require more than 7 bits. For this reason, the number of bits is extended
further than 7 bits for both plots.

The previous analysis shows how the slices and clock frequency changes when
the number of bits used for the row discriminator change. When using the
reduction circuit in SM×V, the effect of the pipeline depth on the area,
clock frequency, buffer size and latency are equally important. The effect of
different pipeline depths is plotted in figure 4.2. Instead of using a pipelined
adder, I replaced the pipelined adder by a binary and, such that every part of
the reduction circuit will be used and not optimized away, followed by a shift
register of α registers deep. This way, only the reduction circuit overhead is
measured, not that of the adder.

The clock frequency decreases slowly as the depth of the pipeline increases.
Even for very deep pipelines, the characteristics are very good compared to
related work. For example in [23], a recent study, clock speeds of 165 MHz
are shown for a faster FPGA. Pipeline depths that can be found in current
floating point adders on FPGAs are in the range of 10 to 20. Deeper pipelines
can be expected for future adder designs [5]. The number of slices increases
linearly. The number of buffers is simply calculated using 2α + αdlog2 αe+ 1
for O plus α + 1 for I. The latency is exactly 2α + αdlog2 αe + 1. Both the
buffer size and latency were discussed in section 3.3.

4.2 Sparse Matrix Vector Multiplication

In section 2.2, it was shown that reduction circuits can be used to calculate
the SM×V. When using an SMAC (figure 4.3) as introduced in section 2.1,
the SM×V can be calculated by streaming in the matrix and vector, the
output will be the result vector.

In figure 4.3, it is shown that the vector and matrix are streamed into the
SMAC. The multiplication of the floating point values take place in the
floating point multiplier, which is pipelined. Meanwhile, the row index is
delayed (this is not explicitly shown in this figure). The reduction circuit
reduces the input rows. The output of the reduction circuit is the result of
the sparse matrix vector multiplication.

The strength of this solution is that no additional control logic is required.
The matrix and the vector are streamed into the FPGA. Furthermore, multiple
SMACs units can be placed into the FPGA, yielding an increased performance.
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Figure 4.2: Reduction circuit characteristics plotted against pipeline depth (no
floating point adder)

4.3 Speculation on performance

In section 3.4.8, it was shown that, in theory 19, reduction circuits fit in the
FPGA that is used. However, a multiplier has to be added to the streaming
reduction circuit to form an SMAC. This was not tested in practise, but an
estimate of 8 SMACs already seems to be pessimistic, if multipliers that use
9 DSP48 slices are used. This means that 8 SMACs can be used to process
8 values at 200 MHz. Thus 1.6 billion values can be processed in a second,
if the available bandwidth is ignored. When expressing this in GFLOPS
(Giga Floating Point Operations Per Second), it should be taken into account
that a SMAC is 2 FLOPS. Thus the design of 8 SMACS has a guaranteed
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processing power of 3.2 GFLOPS. Although this is not a lot compared to
general purpose processors, there is no overhead, there are no pipeline flushes
or whatsoever.

The Diffuse Optical Tomography matrix discussed in [21] has 2,460,562
non-zero values. Since 8 SMACs can process 1600M values per second, the
calculation takes 1.37ms per SM×V. In [21] calculating a SM×V on a GPU
takes 3.4 ms. Thus using an FPGA gives an improvement of a factor 2.5 when
the bandwidth is ignored, thus the processing time of the DOT algorithm
is lowered to about 6 hours. As mentioned before, this is a pessimistic
estimation of the available processing power.

matrix value

vector value
Reduction Circuit

row index

output value
output row index

Figure 4.3: Streaming Multiply Accumulate

The memory bandwidth on the FPGA development board that was used
is limited. Therefor the actual problem that remains is getting the data to
be processed from memory into the FGPA (2 values per SMAC per clock
cycle) and writing results back to memory. Whenever a result is produced, it
has to be written to the result vector. Thus essentially three memories per
Streaming MAC are sufficient.

matrix value

Reduction Circuit
row index

output value
output row index

Cache

matrix value

Reduction Circuit
row index

output value
output row index

Cache

matrix value

Reduction Circuit
row index

output value
output row index

Cache
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Figure 4.4: SM×V with multiple SMACs and caching
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Further optimizations are possible to reduce the required IO bandwidth.
Since for each Streaming MAC, a value from the vector is read, bandwidth
might be wasted. Caching can be used such that the vector does not have
to be re-read for each matrix row, see figure 4.4. The maximum distance
between the first non-zero value on a row and the last is 22,393. This is called
the bandwidth of the matrix and is illustrated in figure 4.5. If 22,393 values
are cached, only one value has to be read from the input vector per clock
cycle, assuming maximally one row is processed per clock cycle. The row in
the matrix that is processed next is shown dashed in figure 4.5. The cached
vector is shown in figure 4.6 where the area of in the vector matched the rows
marked in figure 4.5. The area in marked figure 4.6 is the next state of the
cache, which matched the area marked in figure 4.5.

Figure 4.5: Sparse Matrix bandwidth

Figure 4.6: Cached vector

For s SMACs, s caches of each 22, 393 floating point values are used. Thus
22, 393×64× s bits of memory are required. When using 18kbit BlockRAMS,
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this means 78 × s BlockRAMS are required. Every SMAC requires 9 Block-
RAMs as buffers, see table 3.4. Thus for each SMAC, 87 BlockRAMs are
used when caching is used. Since the Xilinx Virtex-4 XC4VLX160 has 288
BlockRAMs, 3 SMACs fit into the FPGA if caching is used, this is shown in
figure 4.4. Since BlockRAMs can run at 500 MHz while the SMAC runs at
200MHz, the memory can be accessed two times every clock cycle. Because
of this two times the number of SMACs fit into the FPGA, thus 6 SMACs
fit in the FPGA. One external memory is used for the input vector, 6 for
the matrix. Additional memory has to be used for the row vector and the
results. I did not determine the number of accesses required for row and for
the results, although the memory bandwidth is very low and possible one
additional memory module is sufficient.

The Diffuse Optical Tomography matrix has 2,460,562 non-zero values.
Since 6 SMACs can process 1200M values per second, the calculation takes
2.05ms per SM×V. This is still a better performance than the performance
mentioned in [21].

The design easily scales to other FPGAs. On the Xilinx Virtex-5 the
SMACs can easily run at 300 MHz in the general case. The Xilinx Virtex-5
XC5VF200T has 912 BlockRAMs, which means means 10 SMACs will fit in
this FPGA when caching is used. Since these run at 300MHz, the SM×V
calculation will take 0.82ms, thus more than four times faster than the
GPU implementation. Likewise, the memory bandwidth can be increased by
using faster memory. The 200MHz DDR memory assumed is perhaps too
pessimistic.

Further studies regarding memory usage are still useful to reduce the required
bandwidth. I will come back to this in section 6.1.



Chapter 5

Conclusions

It was shown in literature that reduction circuits are important for the
implementation of many scientific and multimedia algorithms on FPGAs
[23]. It is possible to avoid using reduction circuits, but in my opinion
this will result in a design that is hard to understand and hard to rea-
son about. Since values have to be reordered when reduction circuits are
avoided, the complexity increases and the efficiency decreases. With an effi-
cient reduction circuit, it will no longer be required to avoid reduction circuits.

The performance of reduction circuits, measured in latency, speed, area,
buffers and the output order, will improve significantly if multiple rows
of values are reduced simultaneously by one reduction circuit. The most
important method to accomplish this performance gain is keeping track of
row discriminators. Most solutions found in literature count operations which
makes the algorithm dependant on the length of input rows (see section 2.4).
The number of row discriminators and thus the number of bits required for
comparators can be reduced by identifying how many rows can coexist in the
reduction circuit at the same time. The row indexes as they appear at the
input can be re-mapped to small subset of row discriminators.

To make sure the delay is kept to a minimum, rows that have been longer in
the system should get a priority in reduction. Because of this design choice,
buffers used at the output of the pipelined operator can be kept small. If
these buffers are slightly enlarged, results can be produced in-order, while the
buffers remain smaller than those of the SSA algorithm [23] which produces
results out-of-order.

The proposed algorithm is compared with work from literature in table 5.1.
The FCBT algorithm requires bigger buffers if the length of the input rows
(n) increases and thus it is not scalable. The DSA algorithm uses two adders,
while one of the design requirements was using a single adder. The SSA
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Algorithm Scalable Buffer #adders Latency In-order
sizes output

FCBT No 3dlog2ne 2 2n+ (α− 1)dlog2ne Yes
DSA Yes αdlognα+ 1e 2 αdlog2α+ 1e No
SSA Yes 2α2 1 2α2 No
Tracking Yes Unknown 1 Unknown Unknown
Proposed algorithm Yes 3α+ αdlog2αe+ 2 1 2α+ αdlog2 αe+ 1 Yes

Table 5.1: Reduction circuits

algorithm has the most favorable characteristics of all work described in
literature. However, the buffers grow quadratically while the pipeline depth
increases and has out-of-order output, thus it does not meet the design
criteria. The tracking algorithm from [4] is not described in detail and it
was not proven that it works correctly. The streaming reduction circuit
described in this thesis has a low delay, small number of buffers and is fast
when compared to reduction circuits described in literature. The proposed
algorithm does meet the design criteria. As it was mentioned in chapter 6,
there is even room for improvement of both the clock frequency and the area
usage.

The implementation of the reduction circuit runs at 200 MHz on a Xilinx
Virtex-4 LX160-10 FPGA in the generic case (see section 3.4). If assumptions
are made regarding the minimal length of rows of input values, less rows can
coexist in the reduction circuit and the number of bits to identify rows can
be brought back. As a result, the clock frequency increases while the area
of the reduction circuit decreases. When the pipeline depth increases, the
performance of the system (measured in clock frequency, area, number of
buffers and latency) decreases linearly by approximation.

Multiple SMAC units can be supplied with data in parallel, increasing perfor-
mance. It is estimated that eight SMAC units easily fit on the specific FPGA
(Xilinx Virtex-4 LX160-10), used in this project. Theoretically, a performance
improvement of a factor 2.5 can be achieved, if memory bandwidth limitations
are ignored. The effects of limited memory bandwidth has to be investigated
in further detail.



Chapter 6

Future work

6.1 Matrix implementation

In section 4.2 it was mentioned that more research effort is required to come up
with a better SM×V design. The speed of the SM×V is influenced by memory
bandwidth, the number of SMACs and caching. Furthermore, the SMAC and
the SM×V were not implemented yet.

6.2 Reduction circuit

As described in section 3.4.4, controller triplication can be used to improve the
speed of the controller. The current longest path is related to the output buffer
as was explained in section 3.4.6. If both issues can be improved, this might
result in an increase of the clock frequency. A lot of registers were inserted at
several places to help the synthesis and PAR tools to optimize the design (for
example, when register retiming is used). However, this increases the area of
the reduction circuit. It should be carefully investigated where and how many
registers have to be added. Registers that are not required should be removed
to bring back the area of the reduction circuit.

6.3 SIMD Adoption

In section 2.4, SIMD instructions were discussed in general and the MDMX
instruction set in particular. The disadvantage of this instruction set is
the high latency. Since the latency is α clock cycles per value, the total
latency is αn clock cycles for a row of length n. The reduction circuit
introduced in this thesis has a low and fixed latency independant of n
(significantly lower than αn, for n > α). Furthermore, it is generic and works
for any row length, where the length of rows may vary within a stream of rows.
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It might be worthwhile to investigate whether SIMD instructions can
be improved using reduction circuits. Special instructions exist that can
specify that an input value has to be added to the current contents of
the packed accumulator, even several accumulators can be selected. Es-
sentially, the accumulator can be related to the row discriminator of the
reduction circuit. There is an instruction that can be used to move the
accumulator result to a MDMX register after truncation, rounding and/or
clipping. This instruction can still be used, although the execution of this
instruction has to be postponed until the reduction circuit is ready and
can output the value. Thus 2α + αdlogαe + 1 clock cycles after the last
value of a row entered the system, the register with the result can be read.
Since values are packed, the reduction circuit can control multiple parallel
operators. Thus special instructions can be added to a SIMD processor to
send a row of input values to a reduction circuit and read the reduction result.

It seems pretty straightforward to replace the current reduction accumulators
in SIMD instruction sets by a reduction circuit as described in this thesis. How-
ever, a direct replacement is not possible since the values at the input of the
reduction circuit should be in sequence (thus rows should not be interleaved).
Furthermore, if at one clock cycle no value enters the reduction circuit, the
end of a row is assumed. This last problem can be solved by inserting zeros
as dummy values. However, the user should avoid interleaving rows. Since for
most applications values that belong together are grouped, this does not have
to be a problem. This requires more research, including benchmarking.

6.4 Expression Evaluation

Expression evaluation is not directly related to the main topic of this thesis.
Expression evaluation, as descibed in [16], is a form of reduction where
multiple kinds of operators are used. Expressions consist of binary operators
(for example +, -, / and *) and parenthesis. In [16], the assumption was made
that the expression tree is balanced. Expression evaluation is related to the
reduction problem stated in section 2.2, although for expression evaluation
the expressions are not always associative. Essentially, expressions should be
evaluated in a certain order.

The algorithm proposed in [16] is based on the FCBT algorithm described
in section 2.4, where the input is also processed in order, level by level. The
reduction algorithm cannot be used directly; operation 1 assumes associa-
tivity. The buffer size of log2n proposed in [16] that uses a complete binary
tree is acceptable, without associativity it is hard and perhaps impossible to
do better. In figure 6.1 a collection of operators is shown. The collection of
operators together work just like a single operator in the reduction problem,
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+

min

×

Input Output

operation

Figure 6.1: Collection of operators (replacement of a single operator)

with the difference that a control signal is required to notify the output
multiplexer which operator produces the correct result. When the expression
tree is not complete, they use an additional collection of operators.

Although the streaming reduction circuit algorithm cannot be used here, the
idea of using row indexes instead of counters to determine the position in the
expression tree can be used, this was described in section 2.4 for the FCBT
algorithm. Besides a row index for identifying the row (or now expression)
index, an identifier to indentify the position within the expression tree is
introduced, the node number. Nodes are numbered starting with the root
node, which has 1 as its row index. The left child of a node gets as node
number parent× 2, the right child gets 1 + parent× 2 as node number. Thus
to determine the node number of the parent, simply divide by two. From the
parent node, the operation is determined using a lookup table.

Now it does not matter if the expression tree is complete, or not, removing
the need of a second collection of operators. If the tree is balanced, this
approach will work. In [16] a balanced tree is assumed, there exist algorithms
for balancing according to this paper thus they only studied balanced trees.
The impact of balancing should be researched. Further work in this area
can aim at reducing the number of buffers, using unbalanced trees, stream-
ing the operator lookup table together with the tree and a proof of correctness.

To summarize, reduction circuits can not be used directly to implement expres-
sion evaluation. However, the knowledge about reduction circuits gives insight
into expression evaluation, as it is a related problem. The main improvement
that can be made is using identifiers to identify both the expression and the
position within the expression. A result of using identifiers is that only one
collection of operators is required. Since such collection of operators is very
big (only a few fit in an FPGA), this is a significant improvement.





Appendix A

Field Programmable Gate
Arrays

In this appendix, the terminology related to the Virtex-4 Field Programmable
Gate Array (FPGA) is explained.

A.1 Logic

Figure A.1: Configurable Logic Block [1]

The logic is the most characteristic part of an FPGA. The logic consists
of Configurable Logic Blocks (CLBs), see figure A.1. CLBs are connected
through an interconnect network. Each CLB consists of four slices. Slices
contain logic ceels like lookup tables (LUTs) and flip-flops. A lookup table
is used to construct logic functions. One CLB consists of 4 slices, 8 LUTs, 8
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flip-flops. A CLB can be configured as a 64 bits (distributed) RAM.

When mapping LUTs and flip-fops onto slices, it is not possible to determine
how many slices are used. For example, for 16 flip-flops and 16 LUTs, it is
possible to use one CLBs (4 slices). On the other hand, resources can not
always be shared, for example because of routing or simply because the logic
is not related. In that case, 2 CLBs (8 slices) are required instead of 4 slices,
one CLB for the flip flops and one CLB for the 16 LUTs. This makes it hard,
if not impossible, to compare area if they are not expressed using the same
types of logic.

A.2 BlockRAMs

A BlockRAM is a RAM resource on the Virtex FPGAs (see figure A.2). Each
BlockRAM has two ports. Two values can be read and two can be written ev-
ery clock cycle using these two ports, but only two addresses can be used. This
means one of the values that is read and one of the values that is written share
the address. If multiple ports are required, multiple BlockRAMs are used.
For example, to construct a memory with one write port and 3 read ports,
3 BlockRAMs are used. The data input and its address is connected to all
BlockRAMs. Which each of the 3 BlockRAMs supplies one of the 3 read ports.

A.3 Logic

Figure A.2: BlockRAM [1]

Each BlockRAM contains 18kbit memory. BlockRAMs can be configured as
RAM or as a FIFO. Pipelining is possible to increase the clock frequency, at
the cost of a clock cycle delay. It is even possible to use two clock domains
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for a BlockRAM, although I didn’t use this feature. The FPGA used for this
project contains 96 BlockRAMs.

A.4 DSP48 Slices

Figure A.3: DSP48 Slice (Simplified) [2]

DSP48 slices, or XtremeDSP slices, contain dedicated logic for arthmetic
calculations (see figure A.3). The DSP48 slice consists of a 18x18 bits 2’s
complement multiplier and a 36 bits adder. The input, adder, multiplier
and pipeline registers can be connected in several ways. The DSP48 can be
reconfigured at every clock cycle.

DSP48 slices can be connected to eachother to create bigger operators, filters
and floating point operators. For this project Coregen is used to create a
floating point adder that consists of 3 DSP48s and CLBs.
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