
University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science

Telecommunication Engineering Group

Context, Design and Implementation

of a Control System

for Ring Resonator-based

Optical Beam Forming Networks

by

Jan-Willem van ’t Klooster

Master thesis

Executed from May 7, 2007 to October 10, 2008.

Supervisor: Dr. Ir. C.G.H. Roeloffzen

Advisors: Dr. Ir. A. Meijerink

Dr. Ir. B.J.F. van Beijnum

Summary

This thesis reports on a Master assignment conducted at the Telecommunication Engi-

neering (TE) Group at the University of Twente. The task is to develop and implement

a control system for ring resonator-based Optical Beam Forming Networks (OBFNs).

Beam shaping and beam steering, together called beamforming, is needed when pro-

cessing radio-frequency signals from phased array antennas. This can be achieved in

the optical domain, by tuning an OBFN. The tuning of such a network is the task of

a control system. That system is the topic of research in this assignment. It enables

thermo-optical tuning of ring resonator based OBFNs.

In this thesis, the context, design and implementation of the control system are studied.

Measurements are described to show the correct working of the implemented prototype.

The control system may be used in the future in an airborne application. It may

form part of a system that provides services such as radio, television, and internet

access to en route aircraft. It is a challenge to make this possible.

The control system consists of a controller and an interface to operate it. The controller

has hardware and software aspects. The hardware is a modular set of components that

can easily be extended when necessary. The software in the controller operates the

hardware and provides the means for tuning OBFNs. A graphical interface is provided

on a PC to operate the controller. This can easily be adapted to future needs.

Two prototypes for the control system have been delivered in this assignment. The

first prototype met the most important requirements but was not very easy to operate.

The second implemented also met the more advanced requirements, enabled tuning of

larger OBFNs, and was provided with an easy-to-use Java interface.

The system has been used extensively in the TE lab and also at the Dutch Aerospace

Laboratory (NLR). In the future, the system can be extended to provide angle and

iii

iv Summary

azimuth steering (to steer the beam to a certain point) and tracking and tracing func-

tionalities (to find and keep focussed on a source).

Samenvatting

Dit afstudeerverslag doet verslag van een afstudeeropdracht bij de Telecommunication

Engineering (TE) Group van de Universiteit Twente. Het doel van deze opdracht is

om een aansturingssysteem te ontwerpen en te realiseren.

Beam shaping en beam steering, samen ook wel bundelvorming genoemd, is noodzake-

lijk vor het verwerken van signalen van meerdere antennes, zoals antenne-arrays. Deze

functionaliteit kan worden gerealiseerd in het optische domein, door middel van het

tunen van een optisch bundelvorm-netwerk (OBFN). Een aanstuursysteem zorgt voor

het correct afregelen van zo’n netwerk. Dit systeem is het onderwerp van onderzoek in

deze opdracht.

In dit verslag worden de context, het ontwerp en de implementatie van dit controlesys-

teem bestudeerd. Om de correcte werking van het geimplementeerde prototype aan te

tonen, worden tevens metingen beschreven.

In de toekomst kan het aanstuursysteem worden gebruikt in de luchtvaart. Het zou

onderdeel uit kunnen maken van een systeem dat zorgt voor diensten zoals televisie en

internet op vliegtuigen die onderweg zijn.

Het ontwerp van het aanstuursysteem bestaat uit een aansturend gedeelte en een in-

terface om het aansturende gedeelte te bedienen. Het aansturende gedeelte heeft zowel

hardware- als software aspecten. De hardware is een modulaire set componenten, die

gemakkelijk kan worden uitgebreid, indien noodzakelijk. De software in de controller

bedient de hardware en zorgt ervoor dat OBFN’s kunnen worden getuned. Op een

PC is een interface aanwezig waarmee de controller kan worden bediend. Deze kan

eenvoudig worden aangepast aan toekomstige eisen.

Tijdens deze opdracht zijn twee versies van het aanstuursysteem opgeleverd. Het eerste

prototype voldeed aan de belangrijkste eisen, maar was niet erg gebruiksvriendelijk.

De tweede implementatie voldeed ook aan de meer geavanceerde eisen, en maakte het

mogelijk om grotere OBFN’s af te kunnen regelen. De bediening van deze versie is

v

vi Samenvatting

een stuk gemakkelijker omdat voorzien was in een gebruiksvriendelijke, grafische Java-

interface.

Het systeem is veel gebruikt in het laboratorium van TE en tevens in het Nederlands

Lucht- en Ruimtevaartlaboratorium (NLR). In de toekomst kan het systeem worden

uitgebreid met functionaliteiten zoals hoek- en azimutsturing en het traceren en volgen

van een bepaalde zender.

Foreword

Welcome. In front of you is my Master thesis, written to accomplish my Master of Sci-

ence study in Telematics. Writing a thesis has parallels with the story of Theseus, the

ancient Greek hero, who faced and overcame a multifaceted problem and a labyrinth,

with some aid of good people.

The work on which this thesis reports is conducted within the Telecommunication

Engineering Group at the University of Twente. The assignment was to make a con-

troller for optical beamforming networks. You can read all about this in this thesis.

Now I am almost finished writing, I want to thank some people. First of all my daily

advisor dr. ir. Chris Roeloffzen, whose aid and ideas have really been useful. Chris

has the wonderful ability to really motivate tens or maybe even hundreds of people and

stil give them all personal attention. Moreover, he is one of the best down-to-earth

teachers explaining difficult topics in very clear language.

I want to thank prof. dr. ir. Wim van Etten for giving me the opportunity to

graduate at Telecommunication Engineering, and I also want to thank my advisors dr.

ir. Arjan Meijerink and dr. ir. Bert-Jan van Beijnum, for their useful ideas and the

good discussions. I would like to thank Jaco, Pieter, Adriaan and Harm from NLR for

their support.

Without the support of my family and girlfriend this result would never have been

possible, therefore a very big thank you to Anita and Kees and to Tabea, who are

always there for me. I also want to thank my father for his professional support and

ideas, and for motivating me to publish.

Leimeng, Eduard and Theo I want to thank for their assistance, mainly in the TE

lab and I want to thank my fellow (ex-)students Audrey, Roland, Dick, Liang, Sjoerd,

Nicolas, Martin, Roelof, Jack and Thomas for the good time at the group, as well as

all employees, PhD students and the secretary Lilian for their support. TE is a really

inspiring working environment to go to!

vii

viii Foreword

Another very good place to work is Menzing in Haaksbergen, I want to thank Erik

to being so flexible regarding my tasks there.

Last but not least I would like to thank my good friends Patrick, Wouter, Olivier,

Ivo, Evert, Vera, Gert, Martijn, Wilco, Emad and Rob for the good times.

Of course there are people I have forgotten. So do not worry if you are not listed,

I also want to thank you. You know why.

Jan-Willem van ’t Klooster, October 4th, 2008.

ix

x Foreword

Abbreviations

AE Antenna Element

CBB Connexion By Boeing

CDMA Code Division Multiple Access

COTS commercial of the shelf

CS Chip Select

DAC Digital to Analog Converter

DFD Data Flow Diagram

DSSS Direct Sequence Spread Spectrum

DVB-RCS Digital Video Broadcasting - Return Channel via Satellite

DVB-S Digital Video Broadcasting - Satellite

DVB-S2 Digital Video Broadcasting - Satellite 2

EDFA Erbium Doped Fiber Amplifier

EMI Electromagnetic Interference

EPG Electronic Programming Guide

FDC Frequency down conversion

FDMA Frequency Division Multiple Access

FHSS Frequency Hopping Spread Spectrum

FRAM Ferroelectric Random Access Memory

FSR Free Spectral Range

FTDI Future Technology Devices International

xi

xii Abbreviations

GES Ground Earth Station

GPRS General Packet Radio Service

GUI Graphical User Interface

IBM International Business Machines

IDE Integrated Drive Electronics

IETF Internet Engineering Task Force

ISDN Integrated Services Digital Network

IP Internet Protocol

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitting Diode

LEE Lammerink Electrical Engineering

LLC Logical Link Control

LNA Low Noise Amplifier

MAC Medium Access Control

MiSo Master In Slave Out

MES Mobile Earth Station

MoSi Master Out Slave In

MVC Model View Control

MZI Mach-Zehnder Interferometer

NIVR Nederlands Instituut voor Vliegtuigontwikkeling en Ruimtevaart

NLR National Aerospace Laboratory

OBFN Optical Beam Forming Network

opamp operational amplifier

ORR Optical Ring Resonator

xiii

OSBF Optical Sideband Filter

PAA Phased Array Antenna

PCB Printed Circuit Board

RISC Reduced Instruction Set Computer

SACK Selective Acknowledgement

SD Secure Digital

SPI Serial Perhiperal Interface

SSB-SC Single Sideband Suppressed Carrier

TCP Transport Control Protocol

TDMA Time Division Multiple Access

TE Telecommunication Engineering

TEC Temperature Controller

UART Universal Asynchronous Receiver and Transmitter

UDP User Datagram Protocol

UML Unified Modelling Language

UMTS Universal Mobile Telecommunications System

xiv Abbreviations

Contents

Summary iii

Samenvatting v

Foreword vii

Abbreviations xi

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 System overview . 2

1.2.2 Related work . 6

1.3 Research organization . 7

1.3.1 Research goals . 7

1.3.2 Methodology . 7

1.3.3 Research questions . 8

1.4 Thesis organization . 8

2 Context 9

2.1 OSI Reference model . 9

2.2 Motivation . 11

2.3 Designs . 11

2.3.1 A design employing a unidirectional satellite link 11

2.3.2 A design employing a bidirectional satellite link 12

2.4 Infrastructure . 13

2.5 Consequences . 15

2.5.1 Operational issues . 15

2.5.2 Hardware issues . 15

2.5.3 Software issues . 16

2.5.4 Network issues . 17

2.6 Discussion . 17

xv

xvi Contents

2.7 Summary . 18

3 Design of the Control System 19

3.1 Requirements analysis . 19

3.1.1 Hardware requirements . 19

3.1.2 Software requirements . 20

3.1.3 Performance requirements . 20

3.2 Use cases . 21

3.3 Design . 22

3.3.1 Hardware design . 22

3.3.2 Software design . 23

3.4 Summary . 25

4 Implementation of the Control System 27

4.1 Implementation approach . 27

4.1.1 Hardware . 28

4.1.2 Software . 28

4.2 Implementation of the Yeti controller 29

4.2.1 Motherboard . 29

4.2.2 Other components . 29

4.2.3 Communication between PC and controller 29

4.3 Implementation of the FlySmart controller 30

4.3.1 User interaction . 30

4.3.2 Speed improvement . 30

4.3.3 Addressing more channels . 31

4.4 Setting calculation . 32

4.5 Controlling the channels . 34

4.6 A reconsideration of the interface . 35

4.7 Extending the number of DAC PCBs 36

4.8 Summary and conclusions . 37

5 Measurements 39

5.1 Controller measurements . 39

5.1.1 FRAM measurements . 39

5.1.2 DAC measurements . 40

5.1.3 Discussion . 41

5.2 Channel measurements . 41

5.3 YETI chip . 44

5.3.1 Delay measurements . 44

5.3.2 Filter tuning . 44

Contents xvii

5.4 FlySmart chip . 46

5.4.1 Delay measurements . 46

5.4.2 Filter measurements . 47

5.4.3 Ring behavior measurements . 47

5.4.4 EMI measurements . 53

5.5 Discussion . 53

5.6 Conclusions . 54

6 Conclusions and directions for further research 57

6.1 Conclusions . 57

6.2 Directions for further research . 59

References 60

Appendices 63

A Controller Commands 65

B SPI Protocol 67

B.1 SPI overview . 67

B.1.1 Transmission: chip select . 68

B.2 Modes . 68

B.2.1 Different modes on the controller 69

B.3 Different chip select lines or daisy chain 69

B.3.1 SPI adjustments for three DAC PCBs 70

B.4 Suggestion with regard to SPI . 73

C Code Package 75

C.1 UML diagram . 75

C.2 Files . 75

D Channel Numbering on FlySmart chip 79

D.1 Ring, channel and waveguide data . 80

xviii Contents

Chapter 1

Introduction

A Phased Array Antenna (PAA) is an interesting alternative to a conventional dish

antenna because of its appealing properties such as flatness, electronical steering and

multi-beam capabilities.

Beam shaping and beam steering, together called beamforming, is needed when

processing radiofrequency signals from PAAs. This can be achieved by tuning an

Optical Beam Forming Network (OBFN). The tuning of such a network is the task of

a control system. That system is the subject of this Master assignment.

The purpose of this Thesis is to present the context, design and implementation of a

control system for ring resonator-based OBFNs. That control system was developed at

the chair of Telecommunication Engineering (TE), within in the context of the SMART

project: Smart Antennas for Radio Transceivers [1].

The chapter continues as follows. The motivation for this assignment is given in

Section 1.1. In Section 1.2, the background of this research is presented. The system

description is given and related work is discussed. Section 1.3 gives the research organi-

zation. The methodology that is used is presented, and the research goals and question

are formulated. This chapter ends with the structure of the Thesis in Section 1.4.

1.1 Motivation

There are two main reasons1 for conducting this Master assignment.

1. The development of the controller is a challenging engineering activity that is

not finished yet. Important parts of the controller still have to be designed, and

the complete control system has to be integrated and implemented as a part of

this assignment, in order to tune OBFNs.

2. The TE group is interested in the higher layer aspects of the beamforming

system. For example, what applications could be made available with such a

1Another main reason (outside this particular scope) is obtaining an MSc degree.

1

2 Chapter 1. Introduction

system, and are there any consequences for the infrastructures and protocols on

which these applications rely? The project results require higher level develop-

ments to reach production readiness eventually.

1.2 Background

The task is to make a controller for the beamformer used in the SMART project.

Beamforming is necessary when combining signals from multiple antennas, such as

PAAs.

When receiving, the beamformer is tuned, such that it combines the signals of the

antenna elements with the right delay. In that way, constructive interference and a

stronger signal is achieved.

When transmitting, the signal is split and delayed in the beamformer to a certain

extent, before radiated by the antenna elements in the desired direction. This work

focusses mostly on receive scenarios however.

Beamforming can be achieved in various ways, including digital beamforming, mi-

crowave beamforming, local beamforming, aerial beamforming and optical beamform-

ing [2].

We focus on optical beamforming. This technology provides compactness, large

bandwidth, frequency independence, Electromagnetic Interference (EMI) immunity,

low loss, potentially low costs, and no beam squinting, which is often a problem with

electronic beamforming. Hence it is possible to communicate in a tunable direction, in

a cost effective manner. It is possible to enable a large instantaneous bandwidth. So

the amount of information that can potentially be processed instantaneously, is large

when optical beamforming is employed. For applications such as broadband internet

access or mobile satellite television reception, this is a very useful feature.

1.2.1 System overview

The proposed SMART system is a system employing optical beamforming. It is shown

in Figure 1.1. For a receive scenario, it consist of the shown parts. The Antenna

Elements (AEs) receive satellite signals. These RF signals are intensity modulated

onto an optical carrier (E/O block) and fed into the OBFN, where they are delayed

and combined. This results in one strong optical signal, which is then converted back

to the electrical domain using a photodiode detector (O/E block). Afterwards, it can

be detected using for example a set top box.

The tuning of the OBFN is managed by a control system. Its input is information

belonging to the steering angle of the antenna array. Using this information, the OBFN

is tuned such that there is constructive interference for RF signals coming from the

1.2. Background 3

O/EAEs E/O OBFN

control

Rx

angle

Figure 1.1: System overview of the optical beamforming system for phased array receive

antennas.

desired direction.

At the heart of this system is the OBFN, produced on an optical chip. The next

part of this introduction discusses the OBFN.

Optical beamforming network

The optical chip in this system is manufactured using planar optical waveguide tech-

nology by Lionix B.V. [3]. It consists of the following building blocks: waveguides,

Mach-Zehnder Interferometers (MZIs), couplers and Optical Ring Resonators (ORRs).

ORRs are chosen because they provide true time delay when cascaded, so beam squint-

ing will not occur. The building blocks are combined to form an OBFN. A 1×8 OBFN

for a transmitter phased array is shown in Figure 1.2.

k
3k

2 k
16

f
3

f
2

2 3

k
1

f
1

out 21

k
4

f
4

4

k
15

out 1

out 4

out 3

k
14

k
19

k
9

f
9

out 69

k
12

f
12

12

k
18

out 5

out 8

out 7

k
17

k
10

k
11

f
10

10 11

k
5

k
6

f
5

5 6

f
7

f
6

7 8

k
13

in

k
7

k8

f
11

f
8

Figure 1.2: A 1×8 binary tree OBFN for a transmitter phased array antenna with 1 input,

8 outputs and 12 optical ring resonators.

It employs a binary tree topology, which has an efficient layout with respect to the

required number of ORRs. This puts restrictions on tuning freedom compared to a

parallel topology, but reduces tuning complexity. An ORR consists of a straight wave-

guide and a circular waveguide coupled to it. It has a periodic group delay response,

representing the effective time delay to the modulated RF signal. The group delay is

4 Chapter 1. Introduction

expressed by [4]

τg(f) =
(κT)

2− κ− 2
√

1− κcos(2πfT + φ)
(1.1)

It depends on the round trip time T , the power coupling coefficient κ and additional

round-trip phase shift of the ring φ. It is possible to control both the phase shift φ and

power coupling coefficient κ, thereby tuning the ORR peak value delay and resonance

frequency. There is a trade-off between peak delay and bandwidth. Therefore it is

required to cascade ORRs, creating broadband delay elements. This yields a group

delay response that is simply the sum of the individual ORR responses. Figure 1.3

clarifies this: the group delay response of three cascaded rings (shown in the inset) is

the sum of the three individual responses, marked with the three dashed lines. As the

resonance frequencies of the ORRs gets closer, the ripple becomes smaller. The group

delay then becomes more flat, but at the cost of a smaller bandwidth.

0

→
gr

ou
p

d
el

ay

f1 f2 f3 → f

in outTTT

κ1 κ2 κ3

φ1 φ2 φ3

Figure 1.3: Theoretical group delay response of three cascaded ORRs. The three dashed

lines in the graph show the group delay responses for the three individually

tuned ORRs. The solid line is the total group delay. The inset shows the

configuration and tunable elements of three cascaded ORRs. (picture taken

from [5]).

In our system, the OBFN is used to realign the individual AE signals, in order to

combine them with maximal constructive interference. The output of a single laser

is split, after which each AE signal is modulated using filter-based Single Sideband

Suppressed Carrier (SSB-SC) modulation, as discussed below.

The optical chip is tuned thermo-optically by electrically heating chromium resistors

on it. As a consequence, the optical waveguide heats up and its refractive index changes.

This allows for tuning of the resonance frequencies and power coupling ratios. The

tuning is performed by the control system, as discussed later in this Section. Thermo-

optical tuning itself is very well explained in Section 3.4 of [6].

1.2. Background 5

Modulation and demodulation

A more architectural view of the system is presented in Figure 1.4. After amplification

in the Low Noise Amplifier (LNA) and Frequency down conversion (FDC), E/O con-

version is done using a Mach-Zehnder Modulator (MZM). The Antenna Element (AE)

signals are then processed in the OBFN and enter an Optical Sideband Filter (OSBF).

This is used to reduce the optical bandwidth as it filters out one sideband and the

carrier of the optical signal, resulting in SSB-SC modulation. Because of this type

of modulation, balanced detection is used. A 2×2 directional coupler (combining an

unmodulated version of the optical signal and the OSBF output) and two photo diodes

as shown in the right part of the Figure serve as the balanced detector.

Figure 1.4: The system architecture (taken from [7]).

Control system

This part currently consists of an amplifier array Printed Circuit Board (PCB) and a

microcontroller. The microcontroller is a Rowley CrossFire LPC2138 equipped with

an LPC2138 Reduced Instruction Set Computer (RISC) microprocessor. It can be

programmed via an universal USB. It controls the amplifier PCB that actually heats

the chromium heaters on the OBFNs. This is done by sending commands to it via the

RS232 port of a PC. Part of the task is to integrate the chosen and existing hardware

onto a mother board, to provide the microcontroller with software such that it can

tune OBFNs, and to make an interface for it on a PC.

Case study

Throughout the assignment, usage of the SMART system on a passenger aircraft serves

as a case study. It is among the goals of the SMART project to provide the airplane

industry with antenna systems suited for broadband data communication in-flight.

This draws the need for weather-proof steerable antennas and high data throughputs.

6 Chapter 1. Introduction

When connected to orbiting satellites, data communication thus can be provided to of-

fer single unidirectional communication services such as live television, or bidirectional

services such as internet. This is a reason why special attention to these services is

given in Chapter 2.

1.2.2 Related work

This section covers achievements and other projects that are related to this work be-

cause of similarities.

Connexion By Boeing

Broadband full duplex connectivity was provided to airplanes via geostationary satel-

lites in the Connexion By Boeing (CBB) service. The antenna subsystem used PAAs

and conventional dish antennas for transmission and reception via commercial Ku-band

links. In this way it was possible to provide high speed internet connections to en route

aircraft passengers [8], [9].

There are quite demanding technical requirements for avionics (aviation electron-

ics). Airborne equipment should conform to RTCA/DO-160E [10]. This is usually

driving up the costs of installation. This was also one of the reasons Boeing shut the

initiative down: it was too expensive as a non-core business. Moreover, third parties

were not willing to invest in it. Boeing did not want to continue the service as the

market had not developed as was expected. CBB also carried out experiments us-

ing piconet GSM and CDMA2000 cells, providing mobile telephony access in-flight in

cooperation with Qualcomm. By closing down the CBB initiave, also this extension

stopped however.

Lufthansa

Lufthansa, interested in providing onboard internet access, used the CBB system until

2006 and called it SkyAccess. When CBB stopped, Lufthansa provided access to cus-

tomers via satcom provider Thrane & Thrane. Their solution includes a mobile access

router that is also capable of routing traffic via General Packet Radio Service (GPRS),

Wireless Local Area Network (LAN), and Integrated Services Digital Network (ISDN)

depending on the place of the aircraft. The WLAN interface is called GateLink, a

802.11g based connection to link aircraft to ground crew.

Starling MIJET

An Israelic company called Starling Advanced Communications offers an broadband

bidirectional Ku-band satellite link via its service called MIJET. Using this link it is

1.3. Research organization 7

possible to have full duplex internet access [11]. Ku-band is chosen for several reasons,

including the capability to deliver broadband access, and the use of mature existing

technology. Satellites are widely available and the ground infrastructure already exists.

It uses a integrated, mechanically steered 75 cm diameter, 15 cm heigh antenna that

supports bitrates up to 1.25 Mbps (uplink from the aircraft) and 10-15 Mbps (downlink

towards the aircraft). Peak test rates were even up to 5 Mbps (uplink) and 20 Mbps

(downlink).

1.3 Research organization

This section briefly states the research goals, the methodology used to conduct the

research, and the research questions that have to be answered when this assignment

is finished. Research goals define the ’what’ of an assignment, and the methodology

states the ’how’, how an assignment is conducted. As an aid for focus and guideline to

what should be answered in the conclusions, the research questions are formulated.

1.3.1 Research goals

The goals of this research are listed below in chronological order.

1. The software, hardware and performance requirements for the control system

should be made clear.

2. Based on the requirements, a modular design for the controller will be developed.

This design should be documented in this report.

3. Afterwards, it is a goal to develop a working prototype based on this design, and

based on current developments of the complete system.

4. It should be reported how the system could be used, what services should be

available, and how they could be made available.

1.3.2 Methodology

A methodology is used to identify distinct actions taken in the process of this assign-

ment. [12]. The following steps are taken in a more or less sequential order.

• Literature study. Related papers, theses and books are studied to get ac-

quinted with the subject.

• Definition of research questions. In this Thesis, several research questions

will be answered. These questions are given further on in this section.

• Requirements analysis. In order to present a proper design and implementa-

tion of a controlling system, the requirements have to be studied and get clear.

• Architecture design. The design of the controlling system is presented based

on which a prototype can build.

8 Chapter 1. Introduction

• Prototype implementation. A prototype implementation is developed to test

and verify the design, and to provide input for further research.

• Results and conclusions. The results are evaluated. Research questions will

be answered and conclusions will be formulated.

• Suggestions for further research. Indications in which further research could

be directed are pointed out.

This thesis documents the above mentioned steps.

1.3.3 Research questions

In this section, the research questions and subquestions for this project are presented.

The following questions and subquestions are identified in this research:

1. What would a design for a control system for OBFNs consist of?

2. To what extent is it possible to implement and evaluate a prototype for such a

controlling system, and how could this system be used in an airplane?

Separate Chapters address the main research questions as will be pointed out in

Section 1.4. The following subquestions are also addressed. Related to the first research

question, the following subquestions are defined:

1. Which software, hardware and performance requirements are important?

2. How can the control system be made in such a way that it is easily adaptable

to future needs, and such that it will be a flexible system?

Related to the second research question, the following subquestions are defined:

1. How to develop a prototype for the controller?

2. To what extent is it possible to evaluate the design using this prototype?

3. How could the system be used in an airplane once installed?

1.4 Thesis organization

This chapter provided an introduction to the project, its technology, related work, and

the organisation of this research. The rest of this thesis is presented as follows. In

Chapter 2, the context of the antenna controller is discussed. In Chapter 3, the design

of the control system is presented. In Chapter 4, the implementation of this design

is discussed. In Chapter 5, measurement results are presented. Finally, in Chapter

6, conclusions and answers to the research questions are given. Also suggestions for

further research are mentioned.

Chapter 2

Context

What if there is a working, fully operational PAA receive system available in an air-

plane, as described in the previous Chapter? What could one do with the composition

of the antenna front-end, modulation, beamformer, detection and controller subsys-

tems?

This Chapter is about the context for which this system is developed, or -said

differently- its possible applications. These main applications are the services of live

television, in case of only unidirectional communication (reception on the airplane

only), and internet access, in case of bidirectional communication. Of course the latter

one relies on a more complicated system - but we will see this later on. It is not the

purpose of this Chapter to be complete - the implementation of these services is worth

a study and some full time employees by itself. However this Chapter tries to provide

a little more insight in the details of these services and their dependabilities.

The Chapter starts with explaining the OSI model in Section 2.1, and giving a

relation between the SMART project and this reference model to show what steps still

need to be taken. In Section 2.2, a motivation for the television and internet services

is given. Then, Section 2.3 discusses two possibilities for a system design employing a

PAA with beamforming. Both designs (again, one for a unidirectional scenario and one

for a bidirectional scenario) are elaborated. Section 2.4 describes what infrastructure

is needed. Consequently, operational, hardware, network and software consequences

are mentioned in Section 2.5. The Chapter ends with a discussion and a conclusion in

Section 2.6 and 2.7, respectively.

2.1 OSI Reference model

The OSI Reference Model (Open System Interconnection Basic Reference Model) is

a standard reference model defined by the International Standards Organization ISO.

It is very useful when making decompositions of network infrastructures. It consist of

seven layers, shown in Table 2.1.

9

10 Chapter 2. Context

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Table 2.1: The OSI Reference Model

Discussing these layers is useful in this context, because the context of the control

system is the subject here. The network is part of that context. Therefore each layer

is described below:

• Application layer. This layer provides the interface to front-end application pro-

cesses. Example: the HTTP protocol for internet browsing applications.

• Presentation layer. Provides the representation and eventually encryption of the

data. Example: a service that makes a XML representation of application data.

• Session layer. Manages and administers a session between peers. Example:

secure sockets.

• Transport layer. Provides the transport of messages between peers. Example:

The Transport Control Protocol (TCP) protocol.

• Network layer. Provides the routing of datagrams. Example: The Internet

Protocol (IP) protocol.

• Data link layer. This layer provides both the Logical Link Control (LLC) and the

Medium Access Control (MAC), together providing data transfer in a network,

using an interface such as LAN, Wireless LAN or Bluetooth.

• Physical layer. This layer defines the means of transmitting raw bits onto the

hardware transmission medium, such as a cable or a radio frequency.

Though current network initiatives are not always bound to just one of these layers,

it is very interesting to show this model here. We use it to point out developments that

still have to be done to provide a fully operational system in an airplane (as meant in

the introduction of this Chapter).

At this moment, work has been done to provide a part of the physical layer interface

by means of an antenna array with optical beamforming. The physical layer has partly

been provided by means of modulating signals onto this interface, and demodulation

after the optical components. However, there is no MAC and LLC at this moment.

This Chapter points out that the development of that will not be a trivial task. Next

to this, also higher layer developments should be conducted in order to provide for

2.2. Motivation 11

example internet applications onto this system. For television this is a lot easier, since

there is no bidirectional communication, and a medium access function is not needed.

2.2 Motivation

Until now, live television or internet access on airplanes is only very sparsely available.

Market research however shows that customers are attracted to these forms of time

spending when flying [13]. Especially on long (for example transatlantic) flights this is

of interest to a large audience. Also when still docked, people appreciate this kind of

services. Next to this, crew and cabin personnel, but especially maintenance personnel,

rely on access to distant information for which bidirectional internet access would be

very useful. The airline could communicate flight data, electronic techlogs, aircraft

documentation, navigational data and more in this way. So both the customer (either

as consumer or as businessman) and the provider of the transport service would benefit

from live television and internet access.

2.3 Designs

In this Section two possible system designs are presented: a downlink-only design,

with unidirectional communication towards an airplane, and a bidirectional link, with

bidirectional communication between an airplane and a ground station.

2.3.1 A design employing a unidirectional satellite link

In the context of the FlySmart project a unidirectional communication link from a

geostationary satellite to a Mobile Earth Station (MES) is addressed, the MES being

an airplane. One of the intended and appealing applications is the live provisioning

of television via satellite using Digital Video Broadcasting - Satellite (DVB-S). The

architecture of this system is shown in Figure 2.1. A Ground Earth Station (GES)

center transmits the DVB-S signal to the satellite, where it is received, amplified and

transmitted to decoders such as set-top boxes. The MES is one of these receivers. Its

set-top boxes decode the signal and provide the passengers with the channel of their

choice, as well as auxiliary information such as an Electronic Programming Guide

(EPG). This can be displayed on the in-flight entertainment systems that most long-

haul aircraft nowadays have. Partly, it will also replace the back-end components such

as file servers of the entertainment systems, because the data can now be streamed to

the airplane instead of (costly) storing it in the plane.

12 Chapter 2. Context

Ground Earth Station

Ku-band satellite

Mobile Earth Station
(Airplane)

Figure 2.1: Unidirectional communication architecture.

2.3.2 A design employing a bidirectional satellite link

When a bi-directional link is employed, the above sketched service of live television is

still possible, but also duplex communication is now available. Hence internet, phone

calls, crew services and interactive television may be provided. In this idea two separate

system designs can be identified: a synchronous connection using the same frequency

band for uplink and downlink, and a asynchronous connection, using different frequency

bands via possibly different satellites. These two designs are presented in Figure 2.2

and Figure 2.3.

In Figure 2.2, the scenario is sketched in which the transmission of data (from MES

to GES) is achieved via the same link as the reverse link, using the geostationary satel-

lite’s Ku-band. However internet traffic is typically asynchronous (the downlink is used

more than the uplink). Also the complexity of sharing a single transponder amongst

many MESs needs to be regarded. A multiplexing technique must be offered when mul-

tiple MESs get data via the same transponder on the satellite. This channel accessing

can be achieved using time multiplexing using Time Division Multiple Access (TDMA),

code multiplexing as in CBB using Code Division Multiple Access (CDMA) or fre-

quency multiplexing using Frequency Division Multiple Access (FDMA), eventually

combined with frequency spreading techniques such as Frequency Hopping Spread

Spectrum (FHSS) or Direct Sequence Spread Spectrum (DSSS). However when also

the link from the MES to GES is built using a transponder on the same satellite, an

increased coordination is needed to address portions of that link to the different MESs.

2.4. Infrastructure 13

Ground Earth Station

Ku-band satellite

Mobile Earth Station
(Airplane)

Figure 2.2: Bidirectional communication architecture with broadband uplink via Ku-band

satellite.

Therefore a system is proposed in which the MES-GES link is a smaller-bandwidth,

individual link from each MES to a GES, without sharing. This link is established

using an L-band connection for which a number of antennas is already available, as

well as ongoing research related to the integration of Ku- and L-band antennas [14].

The proposed system is shown in Figure 2.3. Another advantage of this system is

that transceive functionality for L-band is already common and available for airplanes,

whereas for Ku-band it is not. So not to end up with double bidirectional connections

as shown in Figure 2.4, for both Ku-band and L-band, the system as described in

Figure 2.3 is in favor.

2.4 Infrastructure

This section discusses the in-plane and supporting infrastructure needed for both sys-

tem designs. First of all, the RF signals should be received by the MES, preferable

using a conformal PAA mounted on the fuselage skin on the aircraft. Its signals are

downconverted, amplified and processed as discussed in Subsection 1.2.2. The received

signal is then sent to a series of set-top boxes for reception of DVB-S or Digital Video

Broadcasting - Satellite 2 (DVB-S2) [15, 16]. It may also be processed by a router

in case of just internet (IP) data. The DVB-S2 protocol stack can be used as it is

capable of both television and IP data. The return channel for internet and interac-

14 Chapter 2. Context

Ground Earth Station

Ku-band satellite

Mobile Earth Station
(Airplane)

Ground Earth Station

L-band satellite

Figure 2.3: Bidirectional communication architecture with uplink via L-band only.

Ground Earth Station

Ku-band satellite

Mobile Earth Station
(Airplane)

Ground Earth Station

L-band satellite

Figure 2.4: Bidirectional communication architecture with uplink via Ku-band and L-band.

tive television can be provided using Digital Video Broadcasting - Return Channel via

Satellite (DVB-RCS). However an adaption needs to be made with regard to the stan-

dard solution, in case a different satellite transponder is used for the communication

from the airplane to the ground. This is not a problem in the sense that DVB-RCS is

designed to be frequency and frequency band independent [17]. Also, crew services and

maintenance data should be separated from eventual communication with the television

operator, which is generally the only practice with DVB-S2 and DVB-RCS. Therefore,

the Satellite Operator as discussed in the next Section, should be a trustable party

taking care of the separation of these streams. The advantage however of integration

of television and IP services into DVB-S2, is that it makes the complete system (which

is already quite complex) a little less complex, and already more equipment is available

2.5. Consequences 15

which is capable of the necessary functions.

2.5 Consequences

Some of the consequences of bringing such kinds of infrastructures to airplanes, are

worth mentioning. Firstly we look at some practical aspects, then at hardware aspects,

then at some software aspects.

2.5.1 Operational issues

Considering the practical issues, it is sure that the systems sketched above involve

multiple parties and multiple desires, rules, targets and working procedures. This

will make installing and maintaining such systems quite a complex task. To give an

overview of the participants, Figure 2.5 lists all the stakeholders and their relations.

The customers, paying to both the Airline (tickets) and the Service provider making the

wireless services possible are the main participants. The latter one may be a subsidiary

of the airline. It has ties with Taxation entities for billing and administration purposes.

The Airport operator is mentioned since it also is in this business, albeit at the airport.

Together with the Airline it may provide combined services. The Aircraft manufacturer

may include and advertise for wireless services in its planes, and operate them (such as

in the CBB subsidiary). The Satellite operator operates the link between the MES and

the ground, where it is connected to one or more Content providers to supply content

to show in the plane, and to gateways of various Terrestrial networks.

Next to this, airline maintenance processes can now be improved, because mainte-

nance data can now be gathered and communicated via the internet link of the aircraft,

and maintenance personnel can update their findings using this connection, reducing

administration, paperwork and grounding time of aircraft for maintenance.

2.5.2 Hardware issues

Installing electronical equipment in aircraft is bound to strict regulations, in Europe

issued by EASA. Because of this, and because of practical issues, it is recommended

to conduct the installment of the hardware in cooperation with, or outsourced to,

suppliers of in-flight entertainment systems.

Regarding the test procedures that have to be fulfilled before the equipment can be

certified, RTCA/DO-160E provides a set of regulations with respect to requirements on

the products and precise procedures for testing these requirements [10]. The hardware

for such systems shall be tested before it can be said certifiable, the complete certifi-

cation is conducted on an aircraft as-a-whole. When properly designed, the complete

system would not have very big issues in such kind of tests, however some problems

16 Chapter 2. Context

Figure 2.5: Stakeholders in a possible value chain for provisioning of wireless in-plane

services (taken from [13]).

that arose in the design of the controller, such as EMI, show that still the requirements

for these tests need to be considered along the development process.

Another issue regarding the antennas is the following. Typically, transatlantic

flights for which the abovementioned services are interesting, are carried out at a high

latitude. The geostationary satellite to point at for television service, is above the

equator, so very south. Hence in order to have a large effective aperture, the PAA

needs to be very large, (from the left side from the airplane all the way to the right

side seen from the fuselage) or two antennas must be placed. Another quite unlikely

mechanical rotation mechanism could also be placed (but this is not recommended

due to is small mean time between failures). The most feasible option is placing two

antennas, but still this increases the complexity of the system and the costs.

2.5.3 Software issues

As for hardware, also for software in aircraft there are regulations. RTCA DO 178

states classifications and requirements with different levels of severeness based on the

importance of the software, and danger once shut down. Also here, it would not be

an impossible goal to have the software running on the controller (and the tracking

mechanism needed for tracking the right satellite) certified, but there need to be taken

more steps to reach this level. For example, the software itself must be checked on

completeness, code coverage, thread safety and correctness. But also the compiler and

eventually other tools used when developing the code must be certified. In order for the

2.6. Discussion 17

compete system, still functions for tracking satellite, angle calculation and amplitude

tapering functions have to be added to the control system before a certification must

be started.

2.5.4 Network issues

When communicating via satellites, one mentions longer delays than using landlines,

because of the extra distance travelled by the data. For satellite television this is not

too much of a problem, but for internet access this is certainly the case. The per-

formance is affected by large and changing delays, occasionally varying error rates,

band and path asymmetries and large round trip times. This affects both the Trans-

port Control Protocol (TCP) and User Datagram Protocol (UDP). These problems

are well described in [17] (Section 2.5.3). They are a reason for various enhance-

ments proposed by the Internet Engineering Task Force (IETF) working group TCP

over Satellite. Amongst them is the implementation of larger TCP windows (needed

for more underway data), acknowledgement of only correctly received TCP packets

(Selective Acknowledgement (SACK)) instead of cumulative acknowledgements, and

proxying of data.

2.6 Discussion

A big issue when discussing such kind of systems is the feasibility of the systems

discussed here. Already the CBB service was discontinued because at that time the

market did not develop as expected. Not only were there very large development

costs involved, also the number of paying customers did not cover enough costs. This

makes it questionable whether or not such services will be viable. This will mainly

have to do with installing costs, maintenance and contracts with satellite operators. A

difference in this regard compared to roughly 10 to 5 years ago, is that more and more

people are willing to pay to have mobile internet access, as can be seen for example with

mobile data subscriptions using Universal Mobile Telecommunications System (UMTS)

technology. A drawback is that such kind of systems are rather complex and it will

take some more development exercises to make the system robust.

Starting in 2008, airlines were beginning to include piconets in their aircraft, to

provides cellular connectivity aboard. Such services can in future be integrated with

internet connectivity and crew communication services aboard.

18 Chapter 2. Context

2.7 Summary

The motivation for airborne connectivity was given and different designs for communi-

cation between an airborne MES and a GES were presented. The discussion was based

on the OSI Reference Model, which was introduced in Section 2.1. Both unidirectional

designs and bidirectional designs for different purposes were introduced in Section 2.3.

Their advantages and disadvantages were discussed. Some of the consequences of these

infrastructures were given in Section 2.4. Issues regarding the stakeholders and their

relations, the hardware, the software and the network were given in Section 2.5. Finally,

the feasibility was discussed in Section 2.6.

Chapter 3

Design of the Control System

The OBFN should be controlled thermo-optically, by means of a control system. This

chapter presents the design of the control system, consisting of a controller and an

interface for the controller, which is running on a PC. Firstly, the requirements have

to be clear; they are presented in Section 3.1. As illustrative examples for the desired

functionalities, some use cases are elaborated afterwards in Section 3.2. In Section 3.3

the design itself is given, consisting of a hardware and a software design. In Section

3.4 a summary is presented.

3.1 Requirements analysis

In this section the requirements for the OBFN control subsystem are presented. Soft-

ware, hardware, and performance requirements are identified. For each of them, the

requirements are mentioned and explained.

3.1.1 Hardware requirements

1. The hardware used should have low costs, using commercial of the shelf (COTS)

components where possible, and should be fast enough to execute tasks, such

as the calculation of voltages for the tuning of the optical chip, with delays in

the maximal order of milliseconds.

2. The hardware should be able to provide the operator of the system with infor-

mation, by means of a screen and status Light Emitting Diodes (LEDs).

3. The hardware should be easily connectible using standard plugs and cables.

4. The hardware should be designed in a modular way, so that it is easy to add

parts as other parts of the total system grow, for example if the OBFN expands

with more tunable elements.

5. A storage place is needed to store information about the optical chip such as off-

sets, number of heaters, and voltages corresponding to different tuning settings.

19

20 Chapter 3. Design of the Control System

This storage should be fast, random accessible, rewritable and large enough for

current OBFNs, and also for OBFNs of near future.

6. The hardware should be accessible using a PC but also able to operate indepen-

dently.

7. In a final stadium, the hardware should conform to avionics requirements listed

in DO 160/E and other relevant requirements for aviation systems.

8. In a final stadium, the complete system should be compact, packaged in a small

sized box.

3.1.2 Software requirements

Next to being able to handle the use cases presented in the next Section, the control

system should be able of the following software requirements:

1. The software running on the control system should make it possible to tune

the OBFN, given a set of κs and φs, (for the tunable elements described in

Subsection 1.2.1) or voltages corresponding to these κs and φs.

2. The software should be able to communicate fast enough with the hardware

parts involved in tuning, according to the performance requirements stated be-

low.

3. The software should be able to present operational information on what it is

doing to the user.

4. The software should be easily upgradeable.

5. Debugging and logging data produced by the software, must be stored if needed.

6. The software should include drivers necessary to communicate with the storage

device or devices it communicates with.

7. In a final stadium, the software should conform to avionics software requirement

listed in RTCA DO 178B.

3.1.3 Performance requirements

Below, the most important performance requirements are addressed.

1. The system should be able to perform tuning within 1 ms, as this is the maxi-

mum speed of the heaters.

2. The system should boot reasonably fast, within 60 seconds.

3. The accuracy of tuning should be within 1 mV to be able to tune precisely

enough. Voltages applied on the optical chip should match inputted values on

the microcontroller.

4. The applied voltages should be stable and not oscillate.

3.2. Use cases 21

3.2 Use cases

The system may be used as follows, although usage is not limited to the use cases

presented below. They are presented as illustrative examples. The use cases below are

given as from a user perspective. Note that the user may either be, initially, a human

being, but in a later stadium, the user should be a software process.

Use case 1. Initialization, tuning and shutting down

1. Initialization. After turning the system on, the user may verify that the system

starts. He may also see the number of tunable channels.

2. Setting values. After initialisation, the user may set values for the individual

heaters.

3. Recall values. After initialisation, the user may set values for the heaters stored

from memory.

4. Shutting down. After initialization, the user may shut down the system. The

user may verify that the system exits properly.

Use case 2. Calculation

1. Initialization. See use case 1.

2. Setting phase values. After initialisation, the user may set desired phases for a

given number of rings. The system then calculates the corresponding voltages

and the user may verify that the system tunes the OBFN accordingly.

3. Shutting down. See use case 1.

Use case 3. Calibration

1. Initialization. See use case 1.

2. In order to make use case 2 possible, crosstalk parameters should be put in the

system. The user may store these parameters in the controller.

3. Shutting down. See use case 1.

Use case 4. Loading and saving

1. Initialization. See use case 1.

2. Loading. The user may recall a set of values that form a setting for tuning of

the OBFN.

3. Saving. The user may save a similar set of values. The last settings are auto-

matically saved.

4. Shutting down. See use case 1.

22 Chapter 3. Design of the Control System

3.3 Design

In this section the actual design of the controller is elaborated. This consists of both

hardware and software aspects. The actual hardware design is presented first. Conse-

quently, the software that runs on the microprocessor is presented in global. Previous

work on both hard- and software have been conducted by [18], [19], and [20]. In this

assignment their works have been revised, extended and integrated. The rest of this

Section discusses the hardware design (Subsection 3.3.1) and software design (Subsec-

tion 3.3.2) of the control system.

3.3.1 Hardware design

The controller will be built as a modular piece of hardware. Globally, it consists of a

mother board with the following properties:

• A bus architecture for stackable Digital to Analogue (D/A) converter PCBs;

• A socket to place the processor board;

• The processor board itself;

• Non-volatile memory;

• A connection to a PC.

The next part discusses the controller design in more detail.

Controller design

The first design of the controller has been published in [21].

In detail, it consists of a PCB Board, on which the D/A chip as designed by [18]

is placed, equipped with an ARM7 microprocessor, the NXP LPC2138 (actually on an

evaluation processor board from Rowley Associates). For proper powering there is some

power circuitry. For monitoring the software on the microprocessor, and for flashing the

microprocessor, there are two USB connectors. The first one actually is a USB to RS232

connector, which is connected to UART1 of the LPC2138. For nonvolatile storage,

an 512kb Ferroelectric Random Access Memory (FRAM) module from RAMTRON is

used, a follow up module on the FRAM memory used in [20] and [19]. However the same

driver and memory structure is used. To be more explicit, the FRAM communicates

with the microprocessor using the well known Serial Perhiperal Interface (SPI) protocol.

This protocol is also in use for communication between the microprocessor and the DAC

PCB. An actual photograph of it is shown in Figure 3.1.

The layout of the control system is shown in Figure 3.2. The ARM7 microcontroller

runs its control software stored on the LPC2138 in flash memory. An Liquid Crystal

Display (LCD) display may be used to display some status information. The dedicated

D/A converter and amplifiers are combined on a PCB. They consist of 32 channels of

3.3. Design 23

Figure 3.1: FlySmart controller with DAC PCB, (top) power circuitry, (lower left) proces-

sor board (lower middle) and USB connection towards PC (lower right). The

FRAM is placed under the DAC PCB and can therefore not be seen.

14-bit resolution each. Each channel is connected to an operational amplifier (opamp)

which boosts the voltage level 6 times. In this way, 0 to 30 volt can be addressed with

14 bit resolution.

The D/A converter is connected to the microcontroller. Choosing SPI here allows

for tuning of larger optical systems in the future. This is not only because SPI eas-

ily allows individual addressing of duplicate slave modules, but it is also a lot faster

than its alternative, I2C. Storage should be provided to store and recall tuning set-

tings. It was chosen to do this in a nonvolatile FRAM. The control system is able

to communicate with a PC using USB, via the Universal Asynchronous Receiver and

Transmitter (UART) of the microcontroller. It may however operate in standalone

mode as well.

When this design is implemented, it is a more featured, more channel, higher preci-

sion follow-up heater driver of International Business Machines (IBM) boxes that are

currently in use in the TE laboratory to conduct thermo-optical tuning.

3.3.2 Software design

From a very abstract point of view, the functionality of the control software in the mi-

crocontroller can be described by the Data Flow Diagram (DFD) as displayed in Figure

3.3. Firstly, initialisation takes place in the Initialise process. The system component

drivers for the UART, FRAM and DAC are initialised, and connections to these com-

ponents are made. Then, the program will start to listen to an external device issuing

tuning commands in the next process, Receive Tuning Parameters. These commands

24 Chapter 3. Design of the Control System

Figure 3.2: Architecture of the control system. In the left part, the microcontroller is

shown, with a connection to a display and a PC via its UART. Flash memory

is used for the controlling software storage. A DAC PCB is shown on the right,

connected to the microcontroller using SPI. It consists of a 32-channel DAC

and an amplifier for each channel; the amplifier outputs go to the OBFN. For

storage of tuning parameters, an FRAM is used.

are actuated in the process Actuate Tuning, after which the reception of tuning param-

eters usually will be repeated. Otherwise, the system may close connections, turn off

the DAC chip and close down in the Shut Down process.

Initialise

Receive

Tuning

Parameters

Actuate

Tuning
Shut Down

Figure 3.3: Controller software DFD.

Software on PC

To make a complete control system, an interface is needed to provide the means of

operating the controlling. Regarding the software running on the PC to issue com-

mands to the microcontroller, our initial strategy will be to reuse the software that

was developed to control the IBM boxes. This is LabView software that contains

VISA (Virtual Instruments) blocks to communicate over RS232. In the next Chapter,

the implementation of these functionalities is discussed in detail.

3.4. Summary 25

3.4 Summary

This chapter presented the design and design decisions of the control system. The

control system consists of a controller and an interface to operate the controller. The

requirements for the system were addressed for hardware, software and performance

aspects in Section 3.1. Some illustrative use cases were presented in Section 3.2. In

Section 3.3 the system design was addressed. Both the hardware design and the soft-

ware design were discussed. A detailed architecture of the components composition

was given in Subsection 3.3.1 as firstly presented in [21].

26 Chapter 3. Design of the Control System

Chapter 4

Implementation of the Control System

This Chapter discusses the process of the implementation of the control system. During

this project, three consecutive releases of the controller have been delivered: a basic

version aimed at tuning the 4×1 Yeti1 optical chip and a more advanced version with

graphical interface for the 8×1 FlySmart2 optical chip. Finally a version that could

calculate channel values had been implemented and tested. In this Chapter both

the preliminary version and its two follow-ups are discussed, though we would like to

note that this division into versions is not because the controllers are very different.

They are more identifiable milestones in the development process and therefore nicely

describable sequentially.

The remainder of this Chapter is divided as follows. Firstly, the implementation

approach is given in Section 4.1. Then, the three versions of the controller are described.

At the end of this Chapter, we discuss the Graphical User Interface (GUI) on the PC

separately, and the steps taken to drive multiple Digital to Analog Converter (DAC)

Printed Circuit Boards (PCBs). Finally a summary with conclusions is presented.

4.1 Implementation approach

In this section the implementation approach is discussed. The high level functionality

of the controller was decribed in Section 3.3.2. Figure 4.1 describing the data flow

(the DFD) from that Section is repeated below , to refresh the to-be-programmed

functionality.

The main task here is to implement this functionality and to provide an interface

1Yeti is the given name of a optical chip produced with funding of the Nederlands Instituut voor

Vliegtuigontwikkeling en Ruimtevaart (NIVR) project ’OBFNSys’. It is named after an extinguished

animal species,which has become -without any reason- usual in products made with NIVR fundings.
2The FlySmart chip is an OBFN chip produced for and named after the ’FlySmart’ project, a

collaboration between NLR, UT, Lionix BV and Cyner Substrates. The FlySmart project is the

Dutch part of the European ’SMART’ project.

27

28 Chapter 4. Implementation of the Control System

Initialise

Receive

Tuning

Parameters

Actuate

Tuning
Shut Down

Figure 4.1: Controller software DFD.

to operate it. Firstly the hardware and software that are needed to implement this are

reviewed. The next Sections discuss the milestones of this process..

4.1.1 Hardware

The hardware consists of a few main components, which are a microcontroller, a DAC

PCB and a mother board. The motherboard contains power circuitry, an FRAM,

and sockets for the microcontroller and DAC PCB as discussed in Section 3.3.1. The

implementation of the individual hardware components was already conducted, but the

components still had to be integrated and tested where necessary, which was firstly done

when developing the Yeti controller. After discussing the implementation approach for

the software, the Yeti controller is discussed in detail.

4.1.2 Software

The software running on the microprocessor should communicate with the PC (from

which it receives tuning parameters) and control the different hardware elements in

the control system (actuate the tuning). These two processes are usually repeated,

otherwise the program may shut down in the Shut Down process. The software to

accomplish these tasks, is written in C and is implemented following a Model View

Control (MVC) design principle. For the LCD and SPI driver functionality, two li-

braries from Lammerink Electrical Engineering (LEE) were used as a starting point.

This forms the heart of the control part of this design principle. The data is stored in

the FRAM and accessible via a virtualization layer that addresses the actual storage

and retrieve functions. In this way, the user of the data model is not bothered with

the data location and the protocols to retrieve or store the data. The view part of the

design principle is running as a LabView program on a PC. This program is separately

discussed in Section 4.5.

The files and a detailed Unified Modelling Language (UML) diagram listing all code

content, is given in Appendix C. Now we will discuss the steps taken to come to this

final code package, via the versions of the controller that were developed subsequently.

4.2. Implementation of the Yeti controller 29

4.2 Implementation of the Yeti controller

This section discusses the implementation phase of the controller for the Yeti chip in

detail. The motherboard, the other components and their drivers, and the communica-

tion between PC and controller is discussed sequentially in the next three Subsections.

4.2.1 Motherboard

When all components were available we started measuring the mother board, which

houses a socket for the microcontroller, voltage level conversion circuitry, the FRAM

and a socket for the previously designed DAC PCB. The initial idea was to use a

30 V power supply, from which 8 V is taken for the low-voltage components (FRAM,

microcontroller, DAC). This did not work because the voltage level converter had to

dissipate to much energy. Therefore both 30 V voltage supply (for the opamps on the

DAC PCBs) and 8 V supply for the before-mentioned low voltage components were

installed. As decided earlier in [18], both negative and positive voltage supplies are

used to mitigate the ground.

4.2.2 Other components

Having a properly fed mother board, firstly the FRAM functions were implemented

and tested. Measurements to verify this were done with an oscilloscope (see Subsec-

tion 5.1.1), and procedures were programmed to verify successful storing and loading

of values.

Afterwards, the same was done for the DAC PCB, firstly without 30 V supply to

the opamps, and when the SPI was properly set up, the voltage supply to the opamps

was turned on to verify output voltage adjustment functionality. The measurements

regarding this component are discussed in Section 5.2.

4.2.3 Communication between PC and controller

The next step was to enable interaction between a PC and the controller, so func-

tionality to provide this, using RS232, was implemented. This way the USB-RS232

conversion module FT232R from Future Technology Devices International (FTDI) [22]

could be verified. It provides a USB Serial Port when turned on, for which drivers need

to be get from FTDI. It is implemented without support for flow control, and used at

115200 bps, which is a lot faster than the 9600 bps used in the IBM boxes.

Now we are able to operate the controller interactively, so the next step is to

add functionality to control the channels of the DAC PCB. This is implemented

in a backwards compatible way with the IBM boxes, such that current LabView

programs as discussed in 4.5 could still be used. Therefore the ASCII command

30 Chapter 4. Implementation of the Control System

wrch CHANNEL,VALUE←֓ is implemented as the method to set channels of the con-

troller to specific values. The carriage return to end the command is denoted by the

←֓ sign.

4.3 Implementation of the FlySmart controller

This section discusses the implementation of the controller for the FlySmart chip in

detail. This controller is a follow-up of the controller discussed in the previous Section.

Some parts were changed; these parts are described in this Section. There were a few

targets for improvement for this version:

• User interaction. It should be easier for the user to set the controller to the right

properties.

• Speed improvement. Setting the right properties should be completed much

sooner.

• More channels. For the FlySmart chip, 38 channels need to be controlled, which

cannot be handled by a single DAC PCB.

• Setting calculation. This version of the controller should be able to calculate

voltages, when phase shift and coupling numbers are given by the user.

These improvements are discussed in the next four Subsections.

4.3.1 User interaction

In the first version of the controller the user had to input the channel number and the

desired voltage value in a terminal screen. Not only this works slowly, but it also lacks

possibilities to input complete settings for multiple channels and quickly reset or adjust

values. In this version, the strategy as described in Section 3.3.2 will be implemented,

using a GUI to enable a user easy access to the control functions. This is discussed in

more detail in Section 4.5.

4.3.2 Speed improvement

Speed improvement was one of the targets for this version. This was reached by first

omitting all unnecessary delaying code statements, after which refreshing voltages, the

DAC chip still took 3 till 4 seconds before its registers were updated. Hence it is

interesting to discuss a technique used to gain a speed-up by increasing the protocol

efficiency. Since all channel values may be known on forehand when starting the tuning,

there is no explicit need to iteratively issue commands to the microcontroller to set

just one channel at a time. So instead of sending a wrch command for each channel,

one may send just one command wrAll followed by multiple channels and their values.

4.3. Implementation of the FlySmart controller 31

After all, one knows all channel values when issuing this set. The speed-up of this

loop-lifting technique can easily be seen, using the definition of protocol efficiency ηp

ηp =
I

I + O
(4.1)

in which I is the actual protocol information, the useful protocol data, and O is

the protocol overhead, which is the overhead data of the protocol, such as command

identifiers.

For the single write command statement wrch channel, value, the efficiency is

ηp,1 = 6/(6 + 7) = 0.46 (4.2)

since the number of informational characters is 6 (2 for the channel number and 4 for

the value to set), and the overhead, which is the number of characters of wrch ,←֓ ,

is 7. A space and newline should be added as one ASCII command, the latter one is

again denoted by the ←֓ sign.

For the loop-lifted wrAll command, the protocol efficiency is

ηp,2 =

∑n

i=1 I(i)

O +
∑n

i=1 (I(i) + O(i))
(4.3)

in which i iterates from channel 1 to n. The efficiency now is 0.73 for 32 channels

(n = 32, O = 6, I(i) = 6 and O(i) = 2) and will increase for more channels. When

this method is implemented, the command sent to the microcontroller would look

like wrAllCHANNELi,VALUEi;CHANNELi+1,VALUEi+1;←֓ which will be a sequence up to

n channel-value pairs long.

After this bulk tuning (tuning set values at a single time) it is still possible to tune a

single channel, sending just 1 channel-value pair. Next to speed-up, another advantage

of bulk tuning is its application to the functionality described in the next Section.

4.3.3 Addressing more channels

For the FlySmart chip, more channels need te be controlled when the complete chip

(as shown in Figure D.1 in Appendix D) is tuned. There are 48 heater bondpads, 42

of them are actually used on the optical chip itself. Four of them are ground, so there

are 38 channels needed to tune the complete chip. A single DAC PCB can only drive

32 channels. Hence another DAC PCB is needed for this chip. The actual extension

needed in the hardware to control multiple DAC PCBs, is discussed in Section 4.7.

The FlySmart controller finally used is shown below in Figure 4.2. It consists of a

motherboard, microcontroller, and 2 DAC PCBs, so all 38 channels of the FlySmart

chip can be tuned.

32 Chapter 4. Implementation of the Control System

Figure 4.2: FlySmart controller with stack of two DAC PCBs.

4.4 Setting calculation

So far, the basic controller with terminal input and the improved controller with more

advanced tuning options have been discussed. Now we shall discuss the final controller,

for which setting calculation functionality has to be included. After this part, the

extension in tuning range (from 32 to 96 channels) is discussed. Firstly, we look at the

setting calculation functionality.

This functionality is implemented using the following step plan:

1. The user provides a desired φ value for a ring.

2. The controller system takes these values and calculates voltages for these values

using a mathematical model, with stored parameters, as explained afterwards.

3. The controller shows the calculated values, and the user may apply or discard

them.

The background of this step plan discussed sequentially now.

Tuning

The group delay behavior of ORRs can be tuned using κ and φ, setting the peak delay

and the resonance frequency, respectively. The peak delay itself is actually tuned using

a tunable phase shifter in a MZI. The resonance frequency is tuned using a phase

shifter in the ring resonator.

It is desirable to provide high level tunability for this. Therefore in this project

a functionality has been created to set the per-ring desired phases to implement one

part of this high-level tunability. With this functionality, the position of the resonance

frequency can be set. The rings have periodic behavior, so there are multiple resonance

frequencies, which are all one Free Spectral Range (FSR) apart. Therefore it makes no

4.4. Setting calculation 33

sense to tune more than one FSR. We may now speak about tuning the phase of the

ring. Tuning it to a phase of π is the same as tuning it exactly in the middle of two

resonance frequencies, or in the middle of two original FSRs. For example: when the

FSR of the ring is 16 GHz, and we tune the ring with a phase shift of π/2, it is tuned

16/4 = 4 GHz, the first resonance is shifted 4 GHz.

The control system has to translate this phase shift into proper voltages. So, the

per-ring desired phases are sent to the microcontroller, using one of the commands

listed in Appendix A. When the microcontroller receives such a command, it calculates

the corresponding voltages for the ring belonging to these 2 channels. We will now

explain how this is performed, first in a scenario without crosstalk, then in a scenario

where crosstalk between voltage applied to different rings is taken into account.

No crosstalk

The calculation for the ORR φdesired is related to the voltage Vout as follows:

φring = aVphi
2 + φoffset (4.4)

In which a is the directional coefficient and φoffset is the phase offset needed to com-

pensate for fabrication process differences. When the a and φoffset are calibrated, the

voltage Vout that has to be applied can easily be calculated (in case there is no crosstalk):

Vout =
√

(φdesired − φoffset)/a (4.5)

Vout can become negative using equation 4.5, which should be prevented by choosing

φoffset right.

With crosstalk

However, the phase change of a ring is not only dependent on the a from the ring

itself. It can also be affected by heat dissipated by, and current flowing through other

heaters.3 Therefore it is necessary to address this crosstalk from other heaters in matrix

form:

~φdesired = A~V 2
out + ~φoffset (4.6)

in which ~φdesired is the vector with the desired phase values. A is a two-dimensional

square matrix sized the number of tunable rings. On its diagonal, the as of the heaters

belonging to the ring itself are written. On the other positions, the crosstalk factors

are put (for example, on position A2,4 the crosstalk effect factor on ring 2 coming from

3 For better understanding, the effect of this latter phenomenon, electrical crosstalk, needs more

study than conducted and planned in the framework of this project.

34 Chapter 4. Implementation of the Control System

ring 4 is put). ~V 2
out are the squared voltages, and ~φoffset now is the vector with phase

offsets φoffset. Both are similar to the previous paragraph, but now written as vectors.

Since we like to have the voltages calculated, it is convenient to rewrite (4.6) to

~V 2
out = A−1 ∗ (~φdesired − ~φoffset) (4.7)

A−1 is the inverted matrix A, so the condition

det(A) 6= 0 (4.8)

should hold which is the case if the effect of the heaters on the diagonal is greater

than the effect of the crosstalking effects in the matrix A. (This can easily be seen in

a 2×2 matrix M, where (M1,1, M2,2) is the diagonal, and

det(M) = M1,1M2,2 −M1,2M2,1 (4.9)

For larger matrices Laplace expansion may be used.

Having the squared voltages, it is easy to put them onto the right channels once

the mapping between rings and channels is known. However, the squared voltage in

4.7 may not be negative, which can be prevented by rightly choosing the offset values

in ~φoffset. [19]

Next steps

For formula (4.7), functionality has been added to the microcontroller to calculate

voltage values while compensating crosstalk effects. Using the measured data presented

in Section 5.4.2, these effects were measured, calculated and stored in the FRAM. Now

the microcontroller is able to calculate a set of outputs given a desired set of phases

for the rings. All commands that can be isued to operate the controller, including the

commands related to the tuning and the calculations described above, are listed in

Appendix A.

4.5 Controlling the channels

A LabView program has been made to set the voltage values for the channels of the

controller. The philosophy is that the LabView programs is a graphical layer on top of a

process that sends plain text commands to the controller using RS232. This makes tun-

ing easier, and settings can be stored in the program. For this, the Virtual Instrument

(VISA) functionality (a standard I/O language for instrumentation programming) of

LabView has been used. The GUI is shown in Figure 4.3. The main part consists of

sliders to set the channels of the controller to a specific value. The values can eventually

4.6. A reconsideration of the interface 35

be saved in order to store complete tuning settings. The LabView progam has the op-

tion to set the COM-port and the flow control (in default mode, no flow control is used

for communication with the controller). Moreover it shows status information and the

data that is written over the RS232 connection towards the controller. As shown, the

GUI is quite large, which is not a problem for up to 40 channels, but was reconsidered

after the addition of more channels. The program is very extendable though, because

adapting it to set more channels is very easy: only the width of the slider panel in the

middle needs to increased (then more sliders will appear and they can be enabled by

double-clicking) and the iterator in the block diagram must be set accordingly to the

number of channels.

Figure 4.3: GUI for setting the channels of the controller.

4.6 A reconsideration of the interface

Regarding Figure 4.3, it is clear that this interface is not very user friendly for a very

large number of slider bars. Also, from a technical point of view LabView was not

the most ideal solution, as it did not work event-based (so each time a slider was

adjusted, in the worst case this update is only sent after first processing all other slider

values first, which consumes unneeded time) and it also issued commands when nothing

changed. Moreover, due to the fact that LabView implements RS232 communication

using VISA with native code, some closing statements did not work as wanted, as the

controller is not a VISA device, but LabView thought it was, resulting in ’blue screens’.

Therefore, a new Java interface was implemented, whose GUI is shown in Figure 4.4.

This Java program is named (after its purpose) Heater Controller. It is implemented

using a Model View Control (MVC) pattern and an Observer/Observable pattern. The

main classes are shown in the UML diagram in Figure 4.5. The Model View Control

pattern and the Observer / Observable pattern can clearly be identified.

The Observer is the GUI model class, which registers to two Observers: the control

class for the data model and the control class that represents the communication with

the RS232 interface. The control class for the data model stores and loads data from

XML files representing persistent Java Properties, so tuning settings can be stored

36 Chapter 4. Implementation of the Control System

Figure 4.4: Novel Java GUI for setting the channels of the controller.

and loaded. The Property framework is also used for persistent GUI settings such

as the number of slider bars. The control class for the RS232 interface is the only

Windows specific part in the program, as it uses the Windows specific com32.dll-based

javax.comm library for InputStream- and OutputStream-connections with a COM-

port. Because this program is event-based, it actuates changed channels faster, and

the need to implement the loop-lifting algorithm was not there anymore.

4.7 Extending the number of DAC PCBs

The possibility to extend the number of connected DAC PCBs was implemented in

a late stadium of this assignment. The final result is shown in Figure 4.6. It makes

use of the bus structure of the PCBs, to stack them on top of each other. This bus

structure is also used to feed each PCB with the same data lines of the SPI protocol.

On the PCBs, the wiring is the same for each board, except for the Chip Select (CS)

data line. So each PCB shares the clock, input and output data lines of the 4-wire SPI

protocol. To address a single board however, only the CS line of that specific board

4.8. Summary and conclusions 37

+show()

+handleEvents()

-ps : PersistentSettings

-rs : RS232

GUI

+refreshData()

«interface»

Observer
+hasChanged() : bool

+notify()

+register()

+unRegister()

«interface»

Observable

+connect()

+send()

+receive()

-javax.comm.SerialPort

RS232

+load()

+save()

-Properties props

PersistentSettings

View Control Model

Figure 4.5: UML class diagram showing the main Java classes of the Heater Controller

software package.

should be put low. To address all PCBs in parallel, the software puts all CS lines

low, so all PCBs will listen to the next command. Whereas the individual addressing

is useful for setting voltages to certain channels, the parallel addressing is useful for

commands that hold for all PCBs, such as initialisation and reset. The implementation

of this extension was done by adapting only the SPI Mod.c driver file, in such a way

that it is backwards compatible with the rest of the program. So it does not affect the

other process steps in the software. The mother board was adapted with extra wiring

for the new CS lines, this should be integrated in the PCB in a new version.

4.8 Summary and conclusions

The implementation of the controller was presented. This chapter discussed the hard-

ware and software aspects of implementation approach. The subsequent versions of

the controller were described, for the Yeti and FlySmart chips. The extensions for

speed-up, crosstalk calculation, the interface on PC, and finally multiple DAC PCBs,

were discussed in detail. A Java interface replaced a LabView interface for more user

friendliness, and better performance. Therefore the loop-lifting algorithm was not im-

plemented. Extra wiring and driver modifications were added to drive up to three DAC

PCBs, enabling the controlling of 96 channels of 14-bit each, with the system shown

38 Chapter 4. Implementation of the Control System

Figure 4.6: Controller with stack of three DAC PCBs.

in Figure 4.6.

Chapter 5

Measurements

This Chapter describes measurements conducted on components of the controller, on

the complete controller, and on a 4×1 and an 8×1 optical beamforming chip. The

optical chip measurements were conducted using the hardware designed and imple-

mented in this project. The following Section (5.1) describes the measurements on

the electronic controller components. The measurements on the output channels of

the controller are presented afterwards in Section 5.2. Then, the tuning measurements

are given for the 4×1 Yeti chip in Section 5.3. Next in Section 5.4, measurement

results for the FlySmart1 8×1 chip are presented, including crosstalk measurements.

A short discussion is then given in Section 5.5, in which some issues that turned up

during the measurements are described. This Chapter closes with conclusions on the

measurements in Section 5.6.

5.1 Controller measurements

During the implementation of the controller, the SPI protocol implementation (for

communication between the microcontroller and the DAC and FRAM) was verified.

Also, the DAC output register voltages were measured using a multimeter, to check the

behaviour of all channels. The next two Subsections describe firstly the FRAM and

secondly the DAC measurements. The SPI protocol itself is very thoroughly explained

in Appendix B.

5.1.1 FRAM measurements

The SPI protocol is used in both the communication and controlling of the FRAM

and the DAC chip. To debug the mother board of the set-up and the SPI protocol

implementation, the correct working of these two components had to be verified. This

was done using an oscilloscope. Because there are different modes in the SPI protocol,

1See the footnotes at the beginning of Chapter 4 for an explanation on ’Yeti’ and ’FlySmart’

39

40 Chapter 5. Measurements

and the FRAM uses mode 0 or 3, which are -unexpectedly- other modes than the DAC,

it was time-consuming to debug this part of the hardware. The modes and all the wire

namings of the SPI protocol are given in Appendix B.2.

In Figure 5.1 an operation to store data in the FRAM is shown. It shows the clock

signal above, the CS in the middle, and the Master Out Slave In (MoSi) below. In three

consecutive write cycli when CS is low, the following happens: an opcode bitword to

indicate a write action is sent, the address is sent, and at last the value 31 is written.

(The most significant bit is a don’t care due to the limit of the number of bits per

address (6 bits needed for 32 channels). The sweep afterwards is below the threshold

for a logic 1).

Figure 5.1: Measurement of the SPI protocol at the FRAM. Above: clock signal. Middle:

chip select signal. Three times the CS goes from high to low. Below: MoSi.

In three consecutive write cycli when CS is low, the following happens: an

opcode to write is sent, the address where to store the value is sent, and finally

the value to store in the FRAM is written.

In Figure 5.2 a closer look at the synchronization timing of the signals of the SPI

protocol between microcontroller and FRAM is shown. It can clearly be seen that the

value of the MoSi signal is stable at the rising edge of the clock signal.

5.1.2 DAC measurements

The DAC chip uses a different version of the SPI protocol, version 1.2 In Figure 5.3 a

write statement to set a channel to a specific value is issued to the DAC chip. Three

clock periods of 8 bits each are shown. Channel 13 (first clock period) is set to 0. The

2Again, for the different versions of this protocol, we refer to Appendix B.

5.2. Channel measurements 41

Figure 5.2: Detailed oscilloscope measurement of the SPI communication between micro-

controller and FRAM. Above: CS signal. Middle: clock signal. Below: MoSi.

With the CS low, the value on the MoSi line is stable on the rising edge of

the clock signal.

second and third part of MoSi are all logic 0, except for bits 15 and 16 which are don’t

care since the DAC is 14-bit.

In Figure 5.4 a detailed version of the right part of this measurement is given. It

can be seen that the stability of the clocked bits of the MoSi line is now at the falling

edge of the clock signal.

5.1.3 Discussion

Because the 2 components using the SPI protocol (FRAM and DAC chip) use different

protocol modes, the SPI driver had to be adjusted to change the mode each time one

of the two components is used. It was chosen to initialise the SPI driver for proper

DAC operation, and to change the mode whenever the FRAM would be used. When

the FRAM is ready, the driver changes back the mode for the DAC. This way it is

assured that the component that needs to be addressed most quickly (the DAC), can

be addressed with minimal delay. More on the C code implementation of the SPI

protocol can be found in Appendix B.

5.2 Channel measurements

After implementation, testing and debugging of the software and the SPI driver (dis-

cussed in Chapter 4), it was possible to test the voltage outputs of the channels of

42 Chapter 5. Measurements

Figure 5.3: Oscilloscope measurement of the SPI communication between microcontroller

and DAC. Above: CS signal. Middle: clock signal. Below: MoSi. Three clock

periods of 8 bits each are shown. Channel 13 (first clock period) is set to 0.

the DAC PCB. A cable had to be made to make a connection between the DAC PCB

and the optical chip. For the Yeti controller, this was done via a LED Box, useful for

check which was connected to which heater. This box has 32 LEDs, indicating positive

voltage supply with red light and negative voltage supply with green light. This way

it could be checked which opamp and which channel on the DAC PCB, corresponded

to which wire in the cable, and what its number and voltage polarity were. The soft-

ware in the microcontroller was programmed to assure that LED 1 on the LED Box

corresponded to Channel 1 on the controller. This is wrong, but we will see that in

a minute. First the mapping of the Yeti controller is briefly shown below, then the

FlySmart controller, where the error was fixed. The cable for the connection was made

out of a computer industry standard Integrated Drive Electronics (IDE) 40-pin flat

cable. The first 8 wires have positive polarity (channel 1-8), and then 8 have nega-

tive polarity (channels 9-16). Then, 8 wires are ground (GND), and wires 17-32 again

have positive and negative polarity. On the connector on the DAC PCB this looks

as shown in Figure 5.5. Looking from the opamp side with the DA converter on the

bottom of the PCB, the upper-right above pins are channel 1-8 with positive polarity.

Below them, channels 9-16 are situated with negative polarity. Next to this, 8 pins are

denoted ground (4 on the upper row, 4 on the lower row). Left below, channels 17-24

are put (negative polarity). Above these, the last 8 channels, 25-32, are situated with

positive polarity.

All channels were tested separately for one DAC PCB. When doing the channel

output tests with the FlySmart controller, with 2 DAC PCBs stacked, the LED Box

5.2. Channel measurements 43

Figure 5.4: Detail of oscilloscope measurement of the SPI communication between micro-

controller and DAC. Above: CS signal. Middle: clock signal. Below: MoSi.

With the CS low, the value on the MoSi line is now stable on the falling edge

of the clock signal.

32

24 17

25 8 1

916-

+

Figure 5.5: Schematic of the IDE Connector (only for the Yeti contoller) with the key

pin numbers on the DAC PCB. The grey pins are ground, the upper row has

positive polarity, the lower row negative polarity. Note the strange channel

mapping, to comply with the LED Box.

was not used anymore. It only then turned out that the mapping of the channels in the

LED Box was wrong, not that of the DAC PCB. Therefore the software was adjusted

such that the upper row of the DAC PCB connector was 1-16 (positive supply) and

the lower 17-32 (negative supply). Actually, the adjustment was just to remove the

previous channel changes in the software. The connector for the FlySmart controller

is shown in Figure 5.6.

After recording voltage levels for all channels of three delay settings and two filter

settings, stability over time was shown by a rebuild of the measurement set-up at

the National Aerospace Laboratory (NLR) premises. It turned out that the same

voltage level settings should be used to reach the same settings as recorded at the

TE laboratory. This means the tuning is stable in time: after finding a set of voltage

levels, one can store this and use it for tuning later on, for both delay and filter settings.

However at NLR some voltage oscillation problems were found; they are discussed in

Subsection 5.4.4.

44 Chapter 5. Measurements

16

32 25

9 8 1

1724-

+

Figure 5.6: Schematic of the IDE Connector (only for the FlySmart contoller) with the key

pin numbers on the DAC PCB. The grey pins are ground, the upper row has

positive polarity, the lower row negative polarity. Now the channel numbering

is normal.

The tuning settings were entered on a terminal emulator program on a PC, inter-

facing with the microcontroller via USB. This process is documented in Section 4.3.

The voltage settings were entered and verified with the LED Box and a multimeter.

This showed very good agreement with the level expected after issuing it on the PC.

So, when the user issues a command to set a channel to 14 V, that channel will also

operate at 14 V. Once all channels operate, it is possible to conduct tests on optical

chips. These are discussed afterwards. Similar to the delay measurements presented

in [23], the measurements on the optical chips are conducted using the phase shift

approach, by means of the network analyzer shown in Figure 5.13.

5.3 YETI chip

The Yeti chip was the first chip used for obtaining measurement results in this assign-

ment. The chip consists of a 4×1 OBFN and an OSBF. This section discusses delay

and filter measurements conducted on the Yeti chip.

5.3.1 Delay measurements

In Figure 5.7, measurement results of group delay responses of the 4×1 OBFN Yeti

chip are given. The rings are tuned, such that a flat group delay spectrum is obtained

over a signal bandwidth of roughly 1.5 GHz. The largest delay value is approximately

1.3 ns (corresponding to 39 cm in air). The maximum ripple is about 0.05 ns. The

measurements show already that a sufficient delay bandwidth can be reached for satel-

lite TV communication (10.7 – 12.75 GHz). However this chip is not meant for this

frequency range, whereas the FlySmart 8×1 OBFN chip is.

5.3.2 Filter tuning

The optical sideband filters of the discussed chips are also tuneable with the control

system as they rely on the same components: ORRs and tuneable couplers. They can

thus be set using some channels from the controller. In Figure 5.8, the filter response is

shown with a periodic response behavior, measured with a ’sweep’ time of 0.5 s. This

5.3. YETI chip 45

Figure 5.7: Measured group delay responses at the 4 outputs of the Yeti 4×1 OBFN.

measurement was conducted with the set-up of Subsection 5.4.3. The laser output

current varies (sweeps) over time, and with it its output frequency. So at time t = 0 s

the laser has its lowest current and frequency, and and time t = 0.5 s it has its highest

current and frequency. This explains the increasing power response in the three pass

bands in the Figure. Since it cannot directly be measured, it is not exactly known

which frequency corresponds to which point on the x-axis. (A way to get to know this

is using laser heterodyning.) The measured suppression is in the electrical domain, so

the suppression is (-25 dB - -75 dB) = 50 dB.

0 0.1 0.2 0.3 0.4 0.5
−80

−70

−60

−50

−40

−30

−20

Time (S)

F
ilt

er
 p

ow
er

 r
es

po
ns

e
(d

B
)

Figure 5.8: Filter output power response in time domain of the Yeti OSBF.

46 Chapter 5. Measurements

5.4 FlySmart chip

The FlySmart chip was also measured. The next part discusses delay measurements,

and again filter measurements. Then an extensive look at the behavior of the rings

taken, and crosstalk between the rings are measured and described.

5.4.1 Delay measurements

In Figure 5.9 delay measurement results conducted on the FlySmart chip are shown.

This Figure shows both the group delay (in the inset) and the signal phase shift. In

the inset, three group delay curves are shown, for 0 ns, 0.75 ns, and 1.5 ns, which are

all more or less flat over a bandwidth of 1 GHz (enough for satellite TV tuning, after

downconversion). In the Figure itself, the recovered RF signals, over the frequency

range from 1 to 2 GHz, are shown in terms of RF-to-RF phase response. Hence this is

the response after modulation, delaying, and detection. The phase response for the 0

ns group delay has zero phase response over the signal frequency, the other two show

good agreement to the corresponding delay values. The ripple in the responses mainly

has to do with the optical phase fluctuations, which comes from slight fluctuation

in temperature and position of the fibers. In future implementations, integration of

modulators, lasers and splitters onto a single chip will solve this problem.

Figure 5.9: Phase delay and group delay response of the FlySmart 8×1 OBFN (taken

from [24]).

5.4. FlySmart chip 47

5.4.2 Filter measurements

The filter was tuned using the same method as discussed in Subsection 5.3.2. In Figure

5.10 the optical power response is shown. Note that now the relative frequency is put

on the horizontal axis. This was measured using laser heterodyning. This means using

a second, fixed-frequency laser. The superposition of it on the modulating laser can be

measured, and so the exact frequency of the modulating laser is known. This way it can

be seen what the final result of the sweeping is in terms of frequencies instead of time,

as in Figure5.8. The OSBF is tuned resulting in a pass band and a stop band. The

dotted line shows the simulated filter behavior with 0.3 dB/cm losses. The continuous

line follows the dotted line closely as can be seen in the Figure.

Figure 5.10: Filter response of the FlySMart 8×1 chip.

5.4.3 Ring behavior measurements

Some important parameters of each of the ORRs in the OBFN of the FlySmart chip

were measured. This was done to obtain the behavior of the rings. These parameters

are:

• ∆V φ2π. With zero voltage applied as reference, this is the voltage needed to

obtain a shift of 1 FSR, or said differently, 2π phase shift. The values are

obtained at a κ (coupling) of 14.00 V. This κ should be the same for each ring to

obtain results that can be mutually compared. It cannot be set to zero, because

then no light is coupled in the ring and the resonance frequency cannot be seen.

Therefore it should be a fixed value for all rings. All other phase and coupling

heaters for other rings should be set to zero for no crosstalk.

• ∆V φref . The reference voltage, needed to obtain a pre-set reference phase. This

voltage corresponds to the phase in which all rings have the same initial phase

48 Chapter 5. Measurements

ring no. 1 2 3 4 5 6 7 8

∆V φ2π 24,6 25,8 24,6 24,2 26,2 24,8 25,43 25,3

∆V φref 11,45 14,2 21 9,15 14 20,4 11 8,43

Table 5.1: Voltage measurements on ORRs in the FlySmart chip.

shift. Said differently, this is to align the resonance frequencies of the rings, being

the values φoffset in equations (4.4) to (4.7).

With these measured values, listed in Table 5.1, the parameters for the algorithm

described in Section (4.4) can be calculated.

It is repeated from Section 4.4 that if there is no crosstalk:

φring = aVphi
2 + φoffset (5.1)

The initial a value per ring is calculated as:

a =
2π

∆V φ2π
2

(5.2)

This gives the slope of the relation phase versus squared voltage. The a-value

determines, at a κ of 14.00 V, the factor needed to calculate a desired phase or a

desired voltage. We come back to this after stating that the initial offset b is calculated

as

b = φoffset = a∆V φref
2 (5.3)

which is needed to align the resonance frequencies of the rings as explained at the

beginning of this subsection.

Now we have all information to set a single ring using Formula 5.1, since a and

φoffset are now known. So with (5.1) and the a-values in Table 5.1, individual ring

phases can be related to their corresponding voltage.

Crosstalk measurement

However, there is crosstalk in the system. This means that when tuning one ring, it

not only affects the to-be-tuned ring but also there is a (smaller) influence on other

rings. This effect can be both negative and positive: it may lead to a phase addition

on another ring, or to a phase substraction. In both cases, a compensation has to be

made.

Various aspects of this crosstalk effect are described in [20]. However, due to thermal

instability of previous chips it was not possible yet to quantify this effect. The Yeti and

FlySmart chips are very stable in thermal sense, and they are mounted on a copper

plate kept to 30◦C by a Peltier element, with a water-cooled 20◦C (room temperature)

5.4. FlySmart chip 49

copper plate under it to guide away all heat produced in the optical system, including

the heat produced by the heaters. The copper plates are clearly seen in Figure 5.11.

Figure 5.11: Copper footprint of the optical chip to guide heat. Below the lower plate,

tubes can be seen, used for the water cooling. The water pump with fan is

shown behind the copper parts. The wires on top and at the right are for

the controlling of the heaters.

Because the chips are stable, they allow for measurements on the effect of crosstalk

between the rings. This is discussed in the next part of this Chapter.

Crosstalk measurement setup

This measurement was done using the set-up using laser current ramping, to see the

response of the system for multiple FSRs. It is shown in Figure 5.12 and it works as

follows: the laser current source is ramping between a lower and a higher current, such

that the optical frequency of the laser changes over a certain bandwidth. This is tuned

such that the network analyzer, measuring a time window more or less in phase with

the ramping, shows the power response at each frequency. The ramping is set to include

multiple FSRs, so on the network analyzer we see multiple resonance frequencies of the

rings when they are tuned. The laser temperature is kept stable using a Temperature

Controller (TEC). The modulator modulates an RF signal onto the optical carrier.

This goes through the optical chip, (DUT) after which it is amplified by means of an

Erbium Doped Fiber Amplifier (EDFA). Then the signal is detected and fed to the

second port of the network analyzer. Here the forward transmission in the system, S21,

is measured and plotted. It shows a non-linear frequency domain (horizontal axis) and

the received power (vertical axis). At the resonance frequencies of the measured ring,

a dip is visible, due to the roundtrip losses in the ring. Hence at these places, the

50 Chapter 5. Measurements

measured power is about 15 dB lower.

N
e

tw
o
rk

a
n

a
ly

z
e
r

100 MHz

mod

DUT

1

2

EDFA

laser

RF out

optical
detector

PMF

ContrPC

CurrTEC

Ramp

Temp.
Stab.

Figure 5.12: Measurement setup. TEC = Temperature Controller for the Laser. Curr =

Current controller for the laser. Its current is sweeping, controlled by the

Network Analyzer. DUT = Device under test, the optical chip in the photo

between the laser and the Contr block. Mod = modulator. PC = computer,

interfacing the controller (Contr). EDFA = Erbium Doped Fiber Amplifier.

For illustrational purpose only, a photo of a measurement on the network analyzer

is shown in Figure 5.13. On a x-axis (which is not linear), three resonance frequencies

of an ORR can be identified. On the y-axis the measured power in dB is shown.

Crosstalk measurement execution

The measurement was done as follows: given the a-value (from Table 5.1) of some

OBFN ring i, this ring i is shifted by 2π. Its offset b nor the filter is taken into account

because that would make it unnecessarily complicated (we need this later on however).

Another ring j (the crosstalker) is tuned to its 2π voltage. Now we may see a phase

change in i due to this crosstalker being turned on. This effect is, when there is only

thermal crosstalk, independent of any other rings. So when all other rings are tuned

to zero V, we may quantify the crosstalk effect of j. Its effect is compensated, using

the control system, by adjusting the voltage i is set to. The factor that belongs to

this effect, is then stored on the (i, j) position in the A−1 matrix. The numbers of the

measured rings in the OBFN of the Yeti chip are numbered as labeled in Figure 5.14.

5.4. FlySmart chip 51

Figure 5.13: Network analyzer plotting a result of a delay measurement.

Figure 5.14: Numbering of the OBFN ORRs for the crosstalk measurements The thin

black lines are the waveguides. The short, thicker black lines are the resistor

used for the tuning. The two circles on the right indicate waveguide crossings.

Crosstalk: electrical and thermal

When measuring the crosstalk between phase shifters of the ORRs, it turned out that

there exists not only negative but also positive crosstalk. In the normal case, a ring

will get an extra phase shift when other phase shifters (on other rings) are also turned

on, because it heats up more than when the crosstalker is turned off. Between rings 5,

6, 7 and 8 however, this effect was the other way around. Let us explain this with two

examples:

1. When ring 5 is tuned at 20 V, and ring 6, 7 or 8 is also tuned to 20 V, the phase

shift of 5 becomes less and 20 V has to be increased to 20.3V to compensate.

This was not expected.

2. When ring 5 is tuned at 20 V, and ring 1, 2, 3 or 4 is also tuned to 20 V,

the phase shift of 5 becomes more due to thermal crosstalk and 20V has to be

decreased to compensate the thermal crosstalk, which was as expected.

This effect could not have to do with a falldown of the voltage supply to ring 5, as

this was measured to be stable. All ground bondpads of the chip are connected to the

52 Chapter 5. Measurements

ground of the connector shown in Figure 5.6. It is suggested therefore to rewire the

heater wires to verify this problem. Other effects that could cause this problem are

interference of the other stage, or a small voltage decrease. Most likely a reshuffle of

the wires will help, because rings 2 and 5 are supplied with negative voltages and rings

7 and 8 with positive voltages. The layout and the connection of the chip are found in

Appendix D. More import in the scope of this assignment is however, that the control

system can cope with both crosstalk forms (electrical and thermal) so from that point

of view it is not a problem.

Crosstalk matrix

The crosstalk matrix finally looks as shown in Table 5.2. It is an 8 × 8 matrix since it

describes behavior for the 8 rings in Figure 5.14, so apart from the self-tuning, there

are 7 possible crosstalking OBFN rings for each ring. The self-values, which means the

effect from a heater on the ring itself (no crosstalk), are in bold. This is the diagonal

of the matrix. The other values are all crosstalk factors. They are either negative due

to thermal crosstalk, or positive due to electrical crosstalk. In the latter case they are

in italics to show that this effect is only there between rings 2, 5, 7 and 8. It shows

therefore that both positive and negative crosstalks can be taken into account.

It is clear that in the matrix, ring 7 and 8 do not have influence on ring 1, 3, 4

and 6 and viceversa. This is because they are geographically ’far’ away, as shown in

Figure 5.14. 2 and 5 are closer to 7 and 8, they do have influence on each other. 1

and 3 are very close to each other. Therefore, their thermal crosstalk effect is high. 3

and 6 and 4 are also close to each other, which also gives a reason for high thermal

crosstalk. The matrix itself is not symmetric because the non-diagonal factors depend

on the size of the bold value in the same row, which is different for each row, and

also because of measured differences that is not yet explained. Moreover, it should

be measured whether indeed thermal crosstalk is proportional to V2, and electrical

crosstalk is proportional to V. Also, the exact resistance of the heaters should be

measured for better understanding.

Doing this measurement and obtaining these values was nontrivial, due to the time

consumption (it took 3 days) and the sensitivity of the optical chip to temperature.

The self-values had to be adjusted on day 2 with respect to day 1 of measuring because

different values were measured, due to measurement setup changes. However it is not

exactly known how large the error of the compensation may be as it leads to a ripple

error in the delay bandwidth tuning and the tolerance to this error is dependent on

the application.

Moreover, it is laborious to do this measurement for a complete chip with 8 rings

at once. It is therefore suggested to use this algorithm for smaller tuning scenarios.

The OSBF is a very good option here.

5.5. Discussion 53

1 2 3 4 5 6 7 8

1 97.89 -2.11 -7.11 -1.4 -1.4 -2.11 0.00 0.00

2 -2.21 107.59 -1.6 -1.11 -1.6 -1.11 2.50 2.50

3 -4.6 -1.11 100.27 -0.61 0.00 -3.61 0.00 0.00

4 0.00 0.00 -0.61 97.99 -0.61 -7.11 0.00 0.00

5 -0.61 -2.11 -0.61 -2.11 107.59 0.00 2.50 2.50

6 -1.61 -0.51 -2.91 -3.51 -1.61 101.07 -1.11 -0.61

7 0.00 2.50 0.00 0.00 2.50 0.00 100.00 2.50

8 0.00 2.50 0.00 0.00 2.50 0.00 2.50 95.00

Table 5.2: A−1 matrix self-values (in bold) and crosstalk values (electrical crosstalk stated

in italics

In Appendix D it is stated which controller channels and input versus output chan-

nel combinations were used to measure the rings.

5.4.4 EMI measurements

Both in the power supply line towards the controller, and on the DAC PCB at the

opamps, voltage oscillations were found. Also because no decoupling capacitors were

added at the opamps, voltage oscillations arised at the DAC PCBs.

During tests at NLR, it turned out that these oscillations had negative impact on

the optical phase in the chip. This problem was tackled by adding a 33 nF decoupling

capacitor between ports 4 and 7 of a positive supplied opamp. Later on, the other

DAC PCBs at the TE laboratory were also supplied with decoupling capacitators on

both the positive supplied opamps and the negative supplied op-amps of 100 nF as

also stated in the datasheet of the opamp. It is suggested to follow these statements

in a next design of this DAC PCB for each of them. The addition of the decoupling

capacitor for the positive supplied opamp is illustrated in Figure 5.15. Decoupling with

more capacity should also be added at the end of the power supply wires.

After this addition, the EMI source was much lower, but at the TE laboratory this

has never caused a problem, and it was not possible to provide clear measurements

(and figures) on that.

5.5 Discussion

It turned out that the tuning using LabView and the Java GUI was fast enough (less

than 0.5 s) for all the measurements with respect to the results being plotted on the

network analyzer. Hence it was chosen not to implement the loop-lifting algorithm

(discussed in Section 4.3) but instead focus on other developments of the microcon-

54 Chapter 5. Measurements

+V

heat

R30
100k

R46
20k

-V

3

2
6

7

4 8

-

+

OPA551

outin

100nF

Figure 5.15: Addition of a 100 nF decoupling capacitor between V+ and ground in a

opamp.

troller, such as the interface on the PC and the extensions to multiple DACs. With

regard to the crosstalk measurements, this certainly need more research to give input

to more detailed discussions, which was not in the scope of this research. However

the modeled framework provides possibilities to both describe electrical and thermal

crosstalk, so this framework can be used for research on both phenomena. Moreover,

it should be measured whether indeed thermal crosstalk is proportional to V2 , and

electrical crosstalk is proportional to V. Also, the exact resistance of the heaters should

be measured for better understanding of the differences in the self-values in the matrix.

5.6 Conclusions

It is shown that the controlling system designed for tuning the OBFN is able to tune 32

channels between 0 and 30 V for the Yeti chip, and 64 for the FlySmart chip. In general,

96 channels can now be tuned and this is expandable by minimal wiring and software

additions. These optical chips can successfully be tuned with the control system: both

stable and fast enough. The speed of updating the tuning settings (about 1 ms), is

within the speed of measuring it (0.5 s).

Both measurements on the filter and the delay sections of two optical chips were

shown. Also crosstalk measurements were performed and the effect of the crosstalk

5.6. Conclusions 55

was quantified using the control system. It can cope both with electrical and thermal

crosstalk.

Tuning with recorded settings showed the same results in different premises, so there

is stability in this sense. This also showed that the control system can be transported

without getting damaged.

Oscillations in the output voltage were minimised by adding decoupling capacitors.

Once actuated, the tuning is then very stable.

56 Chapter 5. Measurements

Chapter 6

Conclusions and directions for further

research

This chapter presents the conclusions of this work and directions for further research.

The conclusions are related to the research questions stated at the beginning of this

Thesis (Section 1.3.3). They are presented in Section 6.1. The directions for further

research are presented in Section 6.2. These are based on the current phase in which

this work and the project resides. It is noted that not all suggestions made here, are

fully in the direct context of this assignment.

6.1 Conclusions

In this assignment a control system has been designed and implemented to tune ring

resonator-based optical beamforming networks (OBFNs). Such an OBFN forms the

heart of the SMART system that was introduced in Chapter 1. The hardware and

software that was integrated in this assignment, provide the means to tune different

OBFNs and other optical chips by means of thermo-optical tuning. This thesis doc-

uments on the assignment to conduct this tuning. The design of the control system

was discussed in Chapter 3. The implementation was discussed in Chapter 4. Dif-

ferent measurements and demonstration showed the correct working of the system.

Measurement results were given in Chapter 5.

The software, hardware and performance requirements for the control system have

been made clear. The design is elaborated and documented. It is a modular design

which can easily be extended. A working prototype has been used extensively in

the Telecommunication Engineering lab. It has also been used for measurements and

demonstrations at the Dutch Aerospace Laboratory. The thesis also described how the

system could be used, what services should be made available and how this can be

achieved. This contextual part of the assignment was reported in Chapter 2.

The next part will focus on answers to the research (sub)questions stated in 1.3.3.

57

58 Chapter 6. Conclusions and directions for further research

What would a design for a control system for OBFNs consist of?

The control system comprises a integrated piece of modular hardware components,

the controller, and an interface on a PC to operate the controller. The controller

consists of a motherboard with connection and power functions, a programmed micro-

controller, and one or more D/A Converter boards. A bus architecture is used to stack

one or more of these D/A Converter PCBs. These PCBs provide 32 channels with 14-

bit resolution each. A RS232 connection, available via USB, connects this controller

to the PC. A Java application is used to tune an adaptable number of channels. It is

possible to load and store settings. The controller also allows for crosstalk calculations

using a mathematical model, to calculate tuning settings for optical chips.

For quick tuning, it is desirable that the tuning speed is in the same order of the

speed of the heaters on the optical chips. 1 ms is easily feasible with processing in the

order of a MHz, event-based tuning and communication speed in the order of kilobytes

per second, and D/A actuating in the order of MHz as well.

Also important is that the software on the microcontroller is easily adaptable with

respect to addition or removal of commands. Also adding wiring is easily reflected

in the drivers. The software on the PC can also easily be maintained as it is object-

oriented, and designed using very well-known software patterns. Both packages are

well documented.

The controller can be modified to increase the number of channels. Also a display

can be added. This was removed in this assignment due to its slow update speed.

Moreover, logging functionality was already available on the PC. Also switches can be

added to the hardware. For a display and for switches, space is already available on

the mother board.

To what extent is it possible to implement and evaluate a prototype for such a con-

trolling system, and how could this system be used in an airplane?

The prototype has been used extensively for research within the Telecommunication

Engineering group, and also for demonstration purposes. A redesign to cope with

technical findings (see next section) should be made before it can be installed in an

airplane. Also tracking functionality needs to be added. When ready, various RTCA /

Eurocae tests need to be passed. Moreover, other parts of the system from the SMART

project should be delivered as well.

The system may then be used to provide live broadcast services (television and

radio) and, in a bidirectional scenario (with inherent more challenging infrastructural

complications) internet access. This is described in Chapter 2.

6.2. Directions for further research 59

6.2 Directions for further research

It is suggested to research evolutionary versions of the control system. They will be used

a lot in the future and will be an important part to show results that are expected from

already approved research projects. The following points can be modified to improve

the system.

With respect to the controller:

• Add decoupling capacitors where needed, following best practices for PCB design

in general, and the datasheet of the opamps specifically.

• Remove the FRAM and replace it with an industry standard SD Card slot. This

also works with the implemented SPI protocol1.

• Integrate a ventilator on the motherboard and reconsider the power circuitry.

Then pack the controller to prevent it from damage. Make it such that compo-

nents can be interchanged easily.

With respect to the software:

• Conduct research to provide the means for azimuth and angle steering.

• Remove the virtual COM port and use D2XX to communicate with the controller.

• Currently, for backward compatibility reasons a tuning range of 0 to 3000 centi-

Volt is used. The centiVolt measure is not needed anymore, hence it can be set

to Volt (with millivolt precision) units. Moreover, the full resolution of the 14

bit DA conversion is then available.

• Research the effect of the crosstalk (electrical and thermal) and integrate the re-

sults in the tuning software. Take the effect of crosstalking rings (phase shifters

and couplers) and splitters/combiners into account. The mathematical model

and measurement approach and execution can be used as a starting point for

this. The last point is certainly not a trivial study. Due to the inherent disad-

vantages of thermo-optical tuning, other means of tuning should therefore also

be researched, as well as the proposition that the control system can still be used

for that.

Next to these tasks, on a longer term, one should also research the integration of the

hardware and software functions in a system that can be used in an airplane. This

research should include a requirement analysis for airworthiness.

1See Section B.4

60 Chapter 6. Conclusions and directions for further research

References

[1] Various writers, “Smart full project proposal,” Euripides, Tech. Rep., 2005.

[2] T. Ohira, “Adaptive array antenna beamforming architectures as viewed by a

microwave circuit designer,” 2000 Asia-Pacific Microwave Conference, vol. 1, pp.

828–833, 2000.

[3] H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. Roeloffzen,

L. Zhuang, D. Marpaung, W. van Etten, R. Heideman, A. Leinse, A. Borreman,

M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical

beam forming for airborne satellite communication,” Aerospace Conference, 2008

IEEE, pp. 1–17, March 2008.

[4] G. Lenz, B. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on

optical filters,” Quantum Electronics, IEEE Journal of, vol. 37, no. 4, pp. 525–532,

Apr 2001.

[5] L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van

Etten, “Single-chip optical beam forming network in LPCVD waveguide tech-

nology,” in International Topical Meeting in Microwave Photonics (MWP’2006),

Grenoble, France, 3–6 Oct. 2006, p. F1.4.

[6] C. Roeloffzen, “Passband flattened binary-tree structured add-drop multiplexers

using sion waveguide technology,” Ph.D. dissertation, University of Twente, 2002.

[7] A. Meijerink, C. Roeloffzen, L. Zhuang, D. Marpaung, R. Heideman, A. Borreman,

and W. van Etten, “Phased array antenna steering using a ring resonator-based

optical beam forming network,” in 13th IEEE/CVT Symposium Benelux, Liège,

Belgium, 23 Nov. 2006.

[8] C. Adler, A. Monk, D. Rasmussen, and M. Taylor, “Two-way airborne broad-

band communications using phased array antennas,” Aerospace Conference, 2003.

Proceedings. 2003 IEEE, vol. 2, p. 5, 2003.

61

62 REFERENCES

[9] A. D. Monk and C. Adler, “Calibration and rf test of connexion by boeing airborne

phased arrays,” IEEE International Symposium on Phased Array Systems and

Technology, vol. 405-410, p. 10, 2003.

[10] E. J. Borgstrom, “EMC requirements for avionics: RTCA/DO-160e,” Interference

Technology, vol. 1, pp. 1–7, 2004.

[11] D. Mansour. The airborne broadband dream - is it just another bub-

ble? online. Starling Advanced Communications. [Online]. Available:

http://www.starling-com.com/imgs/uploads/white%20paper%202002.pdf

[12] W. D. Shoaff, “How to write a master’s thesis in computer science,” Department

of Computer Sciences, Florida Institute of Technology, vol. 1, pp. 1–10, 2001.

[13] A. Jahn, M. Holzbock, J. Muller, R. Kebel, M. de Sanctis, A. Rogoyski, E. Tracht-

man, O. Franzrahe, M. Werner, and F. Hu, “Evolution of aeronautical communi-

cations for personal and multimedia services,” Communications Magazine, IEEE,

vol. 41, no. 7, pp. 36–43, July 2003.

[14] (2008) Anastasia. Project Website. [Online]. Available:

http://www.anastasia-fp6.org/

[15] Digital Video Broadcasting (DVB); Framing structure, channel coding and modu-

lation for 11/12 GHz satellite services, European Telecommunications Standards

Institute (ETSI) Std. EN 300 421.

[16] U. Reimers, DVB - The family of international standards for Digital Video Broad-

casting, 2nd ed. Springer, 2005.

[17] S. L. Kota, “Quality of service for broadband satellite internet - ATM and IP

services,” Ph.D. dissertation, University of Oulu, 2003.

[18] M. Ruiter, “Design of a system for driving heaters on optical ring resonators,”

2006.

[19] T. Vrijmoeth, “Implementation of a heater-driving system,” 2006.

[20] T. Jansen, “Implementing a heater controller for optical beam forming networks,”

2007.

[21] J. W. van ’t Klooster, C. Roeloffzen, A. Meijerink, L. Zhuang, D. Marpaung,

W. van Etten, R. G. Heideman, A. Leinse, H. Schippers, J. Verpoorte, and M. Win-

tels, “Design of a ring resonator-based optical beam forming network for phased

http://www.starling-com.com/imgs/uploads/white%20paper%202002.pdf
http://www.anastasia-fp6.org/

REFERENCES 63

array receive antennas,” in Proceedings of the 30th ESA Antenna Workshop on An-

tennas for Earth Observation, Science, Telecommunication and Navigation Space

Missions, 2008.

[22] Future Technology Devices International Ltd. [Online]. Available:

http://www.ftdichip.com

[23] L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and

W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network

in CMOS-compatible waveguide technology,” IEEE Photonics Technology Letters,

vol. 19, no. 8, pp. 1130–1132, Aug. 2007.

[24] L. Zhuang, A. Meijerink, C. G. H. Roeloffzen, D. A. I. Marpaung, R. G. Heideman,

M. Hoekman, A. Leinse, and W. van Etten, “Novel ring resonator-based optical

beamformer for broadband phased array receive antennas,” Proceedings of the

LEOS Annual Meeting, vol. MB, p. 3, 2008.

[25] (2007) SMart Antenna systems for Radio Transceivers

(SMART). Telecommunication Engineering. [Online]. Available:

http://www.el.utwente.nl/te/research/SMART/SMART.htm

http://www.ftdichip.com
http://www.el.utwente.nl/te/research/SMART/SMART.htm

64 REFERENCES

Appendix A

Controller Commands

This Appendix lists the commands which can be sent to the controller. The implemen-

tation of the software runned on the controller itself is discussed in Chapter 4.

• wrch nn,xxxx ”Write Channel.” Writes the channel nn with centiVolt1 value

xxxx Example: wrch 3,456 writes 4,56V to channel 3.

• SNHnn ”Set Number Heaters.” Sets the number of heaters (the value repre-

sented by nn) to drive, in the FRAM. Also defines the dimensions of vectors and

matrix in the algorithm.

• GNH ”Get Number Heaters.” Gets the number of heaters to drive from the

FRAM and displays it.

• SOHnn,ppp.ppp ”Set Offset Heater.” Sets the offset of the heater represented

by nn with the value represented by ppp.ppp in the FRAM.

• GOHnn ”Get Offset Heater.” Gets the offset of the heater represented by nn

from the FRAM and displays it.

• SOLppp.ppp ”Set Offset Laser.” Sets the offset of the laser with the value

represented by ppp.ppp in the FRAM.

• GCO ”Get Complete Offsets.” Gets all the offset of the heater from the FRAM

and displays it on the PC.

• GOL ”Get Offset Laser.” Gets the offset of the heater represented by nn from

the FRAM and displays it.

• SMNxx,yy,pp.pppp ”Set Matrix Number.” Sets the value of matrix entry

(xx,yy) with the value represented by pp.pppp to the FRAM.

• GMNxx,yy ”Get Matrix Number.” Gets the value of matrix number (xx,yy)

from the FRAM and displays it.

• GCM ”Get Complete Matrix.” Gets the matrix content from the FRAM and

displays it on the PC.

• SAHnn,ppp.ppp ”Set Angle Heater.” Sets the desired angle of the heater rep-

1The centiVolt measure is used for backwards compability with the old IBM boxes and LabView

programs used in the laboratory.

65

66 Appendix A. Controller Commands

resented by the number nn to the value represented by ppp.ppp. This value is

being saved in the RAM of the microprocessor and in the FRAM as well.

• DAnn ”Display Angle.” Displays the angle of the heater represented by the

number nn.

• GCA ”Get Complete Angles.” Gets all set angles from the flash memory And

displays it on the PC.

• DVnn ”Display Voltage.” Displays the voltage of the heater represented by the

number nn.

• CV ”Calculate Voltages.” Calculates the voltages to output as a function of the

desired phases.

• CE ”Check Execution.” Control method to check the execution of the method

functionality.

Appendix B

SPI Protocol

Thix Appendix gives some background information on the Serial Perhiperal Interface

(SPI) protocol. This protocol is used in the controller for both the non-volatile FRAM

memory, and the DAC chip. Both are hardware components that communicate with

the microprocessor of the controller. This Appendix dicusses the details of the protocol

this communication relies on. The wiring and the different configurations possibilities

are discussed. Then the implementation regarding SPI in the controller is discussed.

Finally, a suggestion for future implementations is given.

B.1 SPI overview

Serial Perhiperal Interface (SPI) is a data link named by Motorola. It is a synchronous

link, which can operate in full duplex mode. Hence the behaviour of the communicating

partners, either a Master or a Slave, is synchronized, and they may both send and

receive at the same time. For a single Slave, the SPI protocol uses four wires: a clock

line (SCLK), a chip select line (CS), a data output line and a data input line. The latter

two are named as seen from the Master side, hence data out is also called Master Out

Slave In (MoSi), and data in is also named Master In Slave Out (MiSo). In SPI, also

more Slave devices can be utilized, with either individual addressing lines connected

to the Master (the Chip Select (CS) line), or a daisy chain, as explained later on. The

wiring for the connection between a Master and a Slave is shown in Figure B.1.

SCLK
MoSi SPI
MiSo Slave
_CS

SCLK
SPI MoSi
Master MiSo

_CS

Figure B.1: SPI configuration with a single Slave.

67

68 Appendix B. SPI Protocol

B.1.1 Transmission: chip select

As seen in Figure B.1, the CS has a bar below the ’C’; it is an inverted wire in the

sense that its logic value is low or zero when it is active, in contrary to the other data

lines (MoSi and MiSo). Therefore it is normally mentioned CS. When the Master

initiates a transmission, it therefore firstly pulls the CS low to inform the Slave that

a transmission will begin. When a transmission ends, the Master pulls the CS high

again. This is shown in Figure B.2, which is the same as Figure 5.2. After the CS is

brought low, the SCLK starts alternating and the data on the MoSi line is interpreted

by the Slave.

Figure B.2: SPI communication measurement between microcontroller and FRAM.

Above: CS signal. Middle: clock signal. Below: MoSi. After the CS is

brought low, the SCLK starts and the value on the MoSi line is interpreted

by the Slave.

B.2 Modes

Regarding the clock wire, a sawtooth pattern can be identified to dictate the speed of

the transmission to the Slave. There are 4 modes in which Slaves may operate with

respect to this clock. This has to do with the base polarity value of the clock (CPOL),

and its falling or rising edge when the clock value goes from 0 to 1 or from 1 to 0

(CPHA). Both CPOL and CPHA have two modes, so in total there are 4 different

modes of operation for the SPI protocol:

• Mode 0: CPOL=0, CPHA=0. In mode 0, the base value of the clock is zero.

Data is read on the rising edge of the clock (transition from 0 to 1) and data is

B.3. Different chip select lines or daisy chain 69

changed on a falling edge.

• Mode 1: CPOL=0, CPHA=1. In mode 1, the base value of the clock is zero.

Data is read on the falling edge of the clock and data is changed on a rising edge.

• Mode 2: CPOL=1, CPHA=0. In mode 2, the base value of the clock is one.

Data is read on the falling edge of the clock and data is changed on a rising edge.

• Mode 3: CPOL=1, CPHA=1. In mode 3, the base value of the clock is one.

Data is read on the rising edge of the clock and data is changed on a falling edge.

The 4 modes are summarized in Table B.1.

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

Table B.1: Modes of the SPI protocol

B.2.1 Different modes on the controller

Since the FRAM and DAC operate in different modes, it was chosen to adapt the

driver such that each time the FRAM is addressed, the mode changed to FRAM-

compatibility. Whenever the FRAM-related operation is finished, the driver changes

back to the DAC-compatible mode. This was done to be able to use both components,

with the minimal delay for the DAC operations since they need to be executed as fast

as possible, whereas a small delay for the FRAM-related operations is not a very big

issue.

B.3 Different chip select lines or daisy chain

When more than one Slave is used, such as in this project, one can either use multiple

CS lines to select a single or multiple Slaves, or employ a daisy chain configuration.

Both configurations are shown below in a configuration with three Slaves. The con-

nection with three different select lines is shown in Figure B.3, and the daisy chain

configuration is shown in Figure B.4. The advantage of the usage of multiple CS lines

is the possibility to do both singlecasting and multicasting or broadcasting. Also, it is

better upgradeable since only a single wire should be added for each new slave. The

cost of course is that the number of wires may get to high when many Slaves are needed.

In a daisy chain configuration, the Slaves behave as a shift register and therefore it

takes more time for the propagation of a command to the last Slave in the chain. It is

70 Appendix B. SPI Protocol

also more difficult to address just a single Slave in the daisy chain, since there are no

individual select lines.

SCLK
MoSi SPI
MiSo Slave 1
_CS

SCLK
MoSi SPI
MiSo Slave 2
_CS

SCLK
MoSi SPI
MiSo Slave 3
_CS

SCLK
MoSi

SPI MiSo
Master _CS1

_Cs2
_Cs3

Figure B.3: SPI configuration with 3 Slaves selectable by their corresponding CS lines.

SCLK
MoSi SPI
MiSo Slave 1
_CS

SCLK
MoSi SPI
MiSo Slave 2
_CS

SCLK
MoSi SPI
MiSo Slave 3
_CS

SCLK
SPI MoSi
Master MiSo

_CS

Figure B.4: SPI configuration with 3 Slaves in a daisy chain configuration.

B.3.1 SPI adjustments for three DAC PCBs

In this project both the hardware and the software of the controller have been adjusted

to be able to 3 DAC PCBs, or 96 channels. It was chosen to use two extra CS lines

because of the advantages given in the previous Section. Since the other lines are fed

through a bus structure to the DAC PCBs, this drew only the need for two extra wires

on the mother board, and a connection from the bus structure to the CS connection

of the DAC on the individual PCBs. Hence now these PCBs are not anymore identical

to each other (whereas they used to be before the extension).

The code used for this adjustment is given in Listing B.1 and B.2. It consist of

statements to (de)select a DAC PCB by alternating its CS value (Listing B.1), and,

B.3. Different chip select lines or daisy chain 71

once setting an output channel to a voltage value, some logic to test the channel number

and select the according DAC PCB (Listing B.2).

72 Appendix B. SPI Protocol

Listing B.1: SPI code for initialising and switching the CS

lines for the DAC PCBs� �

// Initialyzes first CS for DAC PCB1

void I n i t i a l i z e CS 2 (void)

{
PINSEL1 &= ˜(0x00FFF000) ; // Initialyzes P0.22 as an output pin

IO0SET = 1 << 22 ; // make pin an active output

IO0DIR |= 1 << 22 ; // Pin 0.22 defined as output

I n i t i a l i z e CS 2 2 3 () ; // also initialize 23 as a GPIO CS

I n i t i a l i z e CS 2 2 7 () ; // also initialize 27 as a GPIO CS

}

// Initialyzes P0.27 (=CS for board 2) as an output pin

void I n i t i a l i z e CS 2 2 7 (void)

{
PINSEL1 &= ˜(0x00FFF000) ; // Initialyzes GPIO-output pins

IO0SET = 1 << 27 ; // make pin an active output

IO0DIR |= 1 << 27 ; // Pin 0.27 defined as output

}

// Initialyzes P0.23 (=CS for board 3) as a GPIO-output pin

void I n i t i a l i z e CS 2 2 3 (void)

{
PINSEL1 &= ˜(0x00FFF000) ; // Initialyzes P0.22 and P0.23

IO0SET = 1 << 23 ; // make pin an active output

IO0DIR |= 1 << 23 ; // Pin 0.23 defined as output

}

// function to invert the a CS-value 0 ¿ 1 or 1 ¿ 0 (idem for other CS)

void Pin CS2 27 (unsigned int l e v e l)

{ i f (l e v e l) {
IO0SET = 1 << 27 ; //cs op pin 0.27

}
else IO0CLR = 1 << 27 ;

}

� �

B.4. Suggestion with regard to SPI 73

Listing B.2: SPI code for selecting the DAC PCB based

on the channel number.� �

//Write the given voltage value for the given channel number to DAC 1, 2 or 3

void DAC spi write (unsigned int adr , unsigned int value) {
i f (adr < 32) { //channel 0..31

Pin CS2 (0) ; //Select DAC-chip 1

SPI1 Byte (adr & 0x1F) ; //Write address

SPI1 Byte ((va lue | 0xC000) >> 8) ; // Write value

SPI1 Byte (va lue & 0xFF) ;

Pin CS2 (1) ;

}
else i f (adr > 31 && adr < 64) { //channel 32..63

Pin CS2 27 (0) ; //Select DAC-chip 2

SPI1 Byte ((adr−32) & 0x1F) ; //Write address

SPI1 Byte ((va lue | 0xC000) >> 8) ; // Write value

SPI1 Byte (va lue & 0xFF) ;

Pin CS2 27 (1) ;

}
else i f (adr > 63 && adr < 96) { //channel 64..95

Pin CS2 23 (0) ; //Select DAC-chip 3

SPI1 Byte ((adr−32−32) & 0x1F) ; //Write address

SPI1 Byte ((va lue | 0xC000) >> 8) ; // Write value

SPI1 Byte (va lue & 0xFF) ;

Pin CS2 23 (1) ;

}
}

� �

B.4 Suggestion with regard to SPI

Since SPI is a well spread de facto standard for memory extension nowadays, it is

suggested to replace the FRAM with for example a Secure Digital (SD) memory slot

in future versions of this controller. SD is also SPI-compatible, and its advantages

are better market adoption, a better price-quality tradeoff (more storage space for less

money), and the possibility to take out the SD card to read or fill log files or other

information on a computer.

74 Appendix B. SPI Protocol

Appendix C

Code Package

This Appendix shows a UML diagram of the code package developed for the controller

in Figure C.1 and describes the files of the code package1.

C.1 UML diagram

The diagram is complete, in the sense that it shows all C files of the software, except

from the libraries and header files being used. Though not specifically for C code in

the first place, the UML diagram below shows at least the separation of functionalities

and stresses the central role of the main file and the ASI Exec handler file, in which

the handling of the received commands takes place.

C.2 Files

Below a listing is given of the files that compose the software, followed by the main

responsibilities of the files.

• SPI Mod.c. This files handles the SPI communication between computer and

controller.

• System Functions.c. This files implements various methods to do type conver-

sions.

• Lookup.c. This file is a virtual layer for the data entries in a lookup table. It

lists all methods to address these values stored in the FRAM.

• Utils Mod.c. This file contains utility functions for the controlling all hardware

components of the controller.

• Asi Mod.c. This file respresents the protocol put on top of the SPI protocol. In

this file the high level communication between the computer and the controller

is conducted.

1To obtain a copy of the code package, contact the TE group [25].

75

76 Appendix C. Code Package

• LCD Mod.c. In this file, the LCD functionality is written.

• main.c. This is the initialisation and main loop of the control cyclus. For com-

pactness, it calls the next file for the control cyclus.

• Asi Exc Handler.c. This is the control cyclus for the main loop. It also manages

the calculations done by Calculate.c file.

• Calculate.c. In this file the calculations and actuations for the mathematical

function are implemented.

C.2. Files 77

+main()

Main

+char SPI1_Byte()

+Initialize_SPI1()

+Initialize_CS0()

+Initialize_CS1()

+Initialize_CS2()

+Initialize_CS2_23()

+Initialize_CS2_27()

+Initialize_LDAC()

+Pin_CS0()

+Pin_CS1()

+Pin_CS2()

+Pin_CS2_23()

+Pin_CS2_27()

+Pin_LDAC()

+SPI1_Byte()

+FramWriteBytes()

+FramReadBytes()

+initDAC()

+DAC_Spi_Write()

+DAC_soft_reset()

+DAC_write_cr()

+DAC_LDAC()

+int DAC_read()

+testFRAM()

SPI_Mod

+LCDGPIOInit()

+NibbleWrite()

+ByteRead()

+LcdByteIo()

+WaitLcdBusy()

+Character2Lcd()

+ByteToNibbles()

+HeartbeatCharacter()

+LcdInitialize()

+GotoXy()

+ClrScr()

+CursOn()

+CursOff()

+CursBlink()

+Lcd_str()

+Lcd_int()

+Lcd_int2()

+Heartbeat()

+Lcd_dig()

+Lcd_hex()

+HeartBeat()

+Lcd_int3()

+Lcd_float()

+printfl2()

+Lcd_ClrScr()

+Lcd_HeartbeatInit()

+Lcd_HeartBeat()

+Lcd_Busy()

+Lcd_CmdWr()

+Lcd_CharDef()

+Lcd_DataWr()

+Lcd_Char()

+Lcd_Xy()

LCD_Mod

+setChannel()

+float innerProd()

+float[] calculate_voltage_sq()

+int add()

+write_dac_voltages()

Calculate

+Str_hex()

+char CharToBits()

+int CharsToByte()

+Convert_int()

+Read_InStrDecimal()

+Convert_float()

+ConvertAint()

+RFormatAint()

+convert_string_float()

System_Functions

+set_number_heaters()

+get_number_heaters()

+get_offset()

+set_offset()

+get_row_lookuptable()

+set_row_lookuptable()

+get_value_lookuptable()

+set_value_lookuptable()

+get_value_offsetlaser()

+set_value_offsetlaser()

+get_angles()

+set_angle()

+printconnector()

Lookup

+M_StateEngine()

+Process_RX()

+Process_TX()

+Byte0()

+Byte1()

+AsiKillMessage()

+AsiTerminateResponse()

+AsiCheckHostCall()

+Initialize_Asi0()

+Initialize_Asi1()

+Response_dig()

ASI_Mod

+calculate_voltages()

+AsiMessages()

+initTalking()

ASI_Exc_Handler

+DefaultISR()

+ExtInt0ISR()

+UARTReadAvailable()

+uartISR()

+Timer0ISR()

+Timer1ISR()

+VIC_Slot_Assign()

+Initialize_T0()

+Initialize_T1()

+IsTimeExpired()

+delay()

+IsMarkerPassed()

+SetMarker()

+int ProcessorClockFrequency()

+IntervalInit()

+int PerhiperalClockFrequency()

+UARTWriteChar()

+IoWriteChar()

+char UARTReadChar()

+char ___getChar()

+___putChar()

+upcase()

+Adc_Value()

+PWMInitialize()

+PWMDutySet()

+str_i()

+ToggleLED()

+UART1ISR()

+get_ch_tot()

+get_ready()

+get_val_tot()

+reset_ch_vals()

Utils_Mod

Figure C.1: UML diagram for the source code package for the controller.

78 Appendix C. Code Package

Appendix D

Channel Numbering on FlySmart chip

In Subsection 5.4.3, all rings of the OBFN of the FlySmart chip were labeled. In this

Appendix, the related Figure is repeated (Figure D.1) and all channel numbers on the

controller for each ring are listed.

Figure D.1: Numbering of the OBFN ORRs for the crosstalk measurements The thin black

lines are the waveguides. The short, thicker black lines are the resistor used

for the tuning. The two circles on the right indicate waveguide crossings.

The waveguides on the left (input) are numbered 8 (top) to 1 (bottom), on

the right there is the output, 1 (top) to 8 (bottom).

Though difficult to see, since the waveguide are very thin in real, the waveguides on

the left (input) are numbered 8 (top) to 1 (bottom), on the right there is the output, 1

(top) to 8 (bottom). Normally all 8 eight inputs would be guided to 1 of these outputs

in case of a receive scenario (8×1 beamforming). All rings were measured at waveguide

output 6, since it is the output to which all input waveguide can be coupled. The input

had to be chosen according to a path that passed the to-be-tuned rings.

A 32 channel controller was used for the crosstalk measurements from Chapter 5,

hence the measurements are obtained using controller with one DAC PCB. This was

sufficient for these measurements, since not all of the 48 heater pins of the Yeti chip

were connected.

79

80 Appendix D. Channel Numbering on FlySmart chip

D.1 Ring, channel and waveguide data

Below an enumeration is given of the voltage sign per ring, their channels for φ and κ

tuning, and the used input waveguide.

1. +, φ channel 1, κ channel 2, input waveguide 7.

2. -, φ channel 15, κ channel 16, input waveguide 5. Normally, input waveguide 6

would have been used but this waveguide was damaged.

3. +, φ channel 3, κ channel 4, input waveguide 5.

4. +, φ channel 7, κ channel 8, input waveguide 2.

5. -, φ channel 17, κ channel 18, input waveguide 3.

6. +, φ channel 5, κ channel 6, input waveguide 4.

7. -, φ channel 21, κ channel 22, input waveguide 2.

8. -, φ channel 23, κ channel 24, input waveguide 2.

	Summary
	Samenvatting
	Foreword
	Abbreviations
	Introduction
	Motivation
	Background
	System overview
	Related work

	Research organization
	Research goals
	Methodology
	Research questions

	Thesis organization

	Context
	OSI Reference model
	Motivation
	Designs
	A design employing a unidirectional satellite link
	A design employing a bidirectional satellite link

	Infrastructure
	Consequences
	Operational issues
	Hardware issues
	Software issues
	Network issues

	Discussion
	Summary

	Design of the Control System
	 Requirements analysis
	Hardware requirements
	Software requirements
	Performance requirements

	 Use cases
	Design
	Hardware design
	Software design

	Summary

	Implementation of the Control System
	Implementation approach
	Hardware
	Software

	Implementation of the Yeti controller
	Motherboard
	Other components
	Communication between PC and controller

	Implementation of the FlySmart controller
	User interaction
	Speed improvement
	Addressing more channels

	Setting calculation
	Controlling the channels
	A reconsideration of the interface
	Extending the number of DAC PCBs
	Summary and conclusions

	Measurements
	Controller measurements
	FRAM measurements
	DAC measurements
	Discussion

	Channel measurements
	YETI chip
	Delay measurements
	Filter tuning

	FlySmart chip
	Delay measurements
	Filter measurements
	Ring behavior measurements
	EMI measurements

	Discussion
	Conclusions

	Conclusions and directions for further research
	Conclusions
	Directions for further research

	References
	Appendices
	Controller Commands
	SPI Protocol
	SPI overview
	Transmission: chip select

	Modes
	Different modes on the controller

	Different chip select lines or daisy chain
	SPI adjustments for three DAC PCBs

	Suggestion with regard to SPI

	Code Package
	UML diagram
	Files

	Channel Numbering on FlySmart chip
	Ring, channel and waveguide data

