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Abstract

Spectrum Analyzers (SAs) are measurement instruments able to decompose a time signal
into its frequency components. Due to non-idealities, SAs add noise and distort the signal
to be measured. The ratio between the the largest signal and the noise floor level in a
measured spectrum, without any distortion components rising above the noise floor, is called
the Spurious-Free Dynamic Range (SFDR).

In a CMOS-integrated SA the SFDR is limited to around 60 dB by technology, while it
needs to be 70 dB (at a frequency resolution of 1 MHz) to be competitive with commercial
SAs. A method called crosscorrelation is introduced to lower the noise floor at the cost
of measurement time. It relies on two equivalent measurement paths in which the noise
produced in one path is uncorrelated with the noise produced in the other path, such that
the noise in the final spectrum tends to cancel out. Although the noise level is only lowered
by 1.5 dB if measurement time is doubled, it allows the SA to be designed for high linearity.

This design involves the use of digital hardware to compute the crosscorrelation. Con-
sequently Analog-to-Digital Converters (ADCs) are required, but they also limit the SFDR
due to the non-linear effect of quantization. New approximations to the relation between the
number of quantization levels and the SFDR are found. These approximations show that
every additional bit improves the SFDR by 8 dB. A simulator of the Montium 2 processor,
which is still under development, is used to implement the digital correlation. Its fixed-point
arithmetic proves sufficient for an SFDR of 87 dB.

An RF-frontend with a frequency range of 0 GHz to 6 GHz is designed for maximum lin-
earity by moving amplification to IF. It provides impedance matching, variable attenuation
and mixing. Its performance figures are a Noise Figure (NF) of 14 dB and a Third Order
Input-referred Intermodulation Intercept Point (IP3) of +23 dBm, which gives a theoretical
SFDR of 82 dB.

In order to obtain estimates on the feasability of an integrated SA, other parts, such as the
IF-circuitry and local oscillators, are briefly reviewed. The estimated power consumption of
the entire correlation SA is 0.5 W at a sample rate of 200 MS/s, and the estimated chip area
is 6.5 mm2. The largest power consumers are the VCO (0.2 W), followed by the IF-circuitry
(0.1 W) and the ADCs and digital correlator (each 0.08 W). Chip area is dominated by
SRAM-memory (36%), ADCs (25%) and the VCO (20%).
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As our circle of knowledge expands,
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Chapter 1

Introduction

Sines and cosines are well-known mathematical functions. They have the special property
that after a certain interval they repeat themselves, i.e. these functions are periodic. This
interval is generally referred to as the period, and the inverse of the period is known as the
frequency.

This notion of periodicity became especially important when in 1807 Baron Jean Baptiste
Joseph Fourier (1768–1830) had written down his idea that an arbitrary function could be
represented by a(n) (in)finite sum of sines and cosines, which he used to solve heat equations
[1]. This possibly infinite series is commonly known as the Fourier series. It can be regarded
as a method to convert a function from the time-domain to the frequency-domain.1 Since
then, many closely related mathematical operations or transforms were introduced, such as
the continuous-time Fourier transform or the Discrete Hartley Transform. In short, Fourier
theory describes the conversion between the discrete or continuous time domain and the
frequency domain.

Periodicities play an important role in economical, geological and technical disciplines.
Finding those periodicities or frequencies in a stream of data is the area of spectrum analysis.
Knowing periodicities can be very important and has many applications, which can be
observed from the following examples.

• Economic activity about a long-term growth trend appears to follow a superposition
of so called business cycles of different length, ranging from 3 to 60 years [2]. This
knowledge is used by central banks to ‘stabilize’ the economy and prevent another
Great Depression.

• Knowledge of the frequency or frequencies of undesired mechanical vibrations in ma-
chinery can be used to find the cause or to derive appropriate measures to mitigate
them.

• In many applications of telecommunications, several transmitters are sending data
at the same time but at different frequencies. Authorities governing the spectrum
dictate which frequencies and under which circumstances one is allowed to transmit,
and spectrum analysis can indicate whether a device is adhering to these standards.

• Music contains frequencies ranging from roughly 0–20 kHz. Many people cannot really
hear any difference when frequencies close to 20 kHz are removed, and this fact is used
to compress music to create MP3-files.

• Spectral measurements of the light received from stars indicate their velocity and di-
rection of movement, the elements they are composed of and their surface temperature.

1The terms time domain and frequency domain are used even though it is not necessarily limited to a
period in seconds or a frequency in Hz; it might as well be a period in meters and a frequency in m−1 or
any other quantity for that matter.

1
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Figure 1.1: Approximation of a periodic square wave with a (truncated) Fourier series.

Figure 1.2: Another way of looking at Fourier theory is that it relates two different perspec-
tives, time and frequency, on the same object (reproduced from [3]).

1.1 Spectrum analyzers

A Spectrum Analyzer (SA)2 is a device able to determine the spectral contents of a time
domain signal. An SA is limited to a certain frequency range, and this frequency range
determines its architecture. An SA for visible light (f ≈ 300 THz−800 THz) has a structure
completely different from an SA for audible sound (f ≈ 20 Hz− 20 kHz). SAs usually work
on Electromagnetic (EM) input signals, which include for example radio waves, X-rays and
light (see fig. 1.3). Determining the spectral contents of other types of signals is mostly
done by first converting the signal to the electrical domain and then analyze it using an SA.
In the case of audio this function can be performed by a microphone, while light can be
converted to the electrical domain by means of an optical diode.

Nowadays, numerous manufacturers offer commercially available SAs, each designed to
excel in one or more areas. The specifications of high-end SAs are really good in terms of
linearity and absolute amplitude accuracy for instance, but not every application requires
such high-quality information. Of course, having excellent specifications comes at a high
price (in the order of e10,000 to e100,000 [4]), making the high-end systems far too ex-
pensive for many applications. Furthermore, these high-end systems are often bulky and
consume a lot of power, making measurements outside of the lab difficult. To accommodate
these discrepancies, handheld and budget SAs are also readily available. Coming with lower

2The British-English spelling is ‘spectrum analyser’; this thesis adheres to American-English.
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Figure 1.3: The RF-range is part of the EM-spectrum.

(a) High-end SA (b) Portable SA

Figure 1.4: Two commercial SAs

specifications, prices still range from e1,000 to e10,000 [4], which prevents their use where
many of them are required.

The price is mostly set by the high requirements of the components used inside of an
SA. These high requirements demand the use of exotic and expensive techniques, which do
not benefit from the tremendous progress made in the mass production of mainly digital
electronics.

1.2 Integrated circuits

Digital electronics are usually made out of Metal-Oxide-Semiconductor (MOS)-transistors.
A combination of n-type MOS (NMOS) and p-type MOS (PMOS)-transistors, also referred
to as Complementary MOS (CMOS)-technology, allows a lot of circuitry to be put into a
small area with a low power consumption. Because it is so widely used and so much effort
has been put into research, the price of a single transistor has gone down by a factor of ten
million in the last forty years [5].

Analog electronics designers often try to take advantage of this cheap production process,
even though CMOS is optimized for digital circuits. Some disadvantages of CMOS for analog
circuits include:3

3It is interesting to note that with the ever-decreasing size and operating voltage of CMOS-transistors,
digital circuitry is starting to suffer from the same disadvantages, as it is inherently analog [6, 7].
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Figure 1.5: Power consumption of analog and digital CMOS implementation as a function
of the SNR (adapted from [9]).

• Spread in component sizes and doping levels, which changes the characteristics of the
components in a statistical sense;

• A large threshold voltage, decreasing the usable voltage range;

• Low-Q components (capacitors and inductors with a large resistance), which makes it
very difficult to make highly selective filters;

• A noise level higher than in e.g. bipolar circuits, which decreases attainable specifica-
tions;

• Relatively low speed, which makes it unsuitable for certain high-frequency applications
(although progress is being made in this area).

These disadvantages have led designers to explore other architectures for ‘old’ problems
[8]. One very good example is the Σ∆-modulator, which can be used in Analog-to-Digital
Converters (ADCs) or Digital-to-Analog Converters (DACs). In many ADC and DAC archi-
tectures, the matching of components4 limits the attainable specifications. Better matching
requires less relative variation of component parameters in the production process. Vari-
ation can be reduced by increasing the size of the components, but this increases power
consumption and reduces the speed because of larger capacitances. The Σ∆-modulator re-
duces matching requirements by using quantizers with only a few quantization levels. By
means of oversampling, noise shaping and digital filtering, very high specifications can be
obtained. Besides using the digital capacities of CMOS for filtering, oversampling requires
a high switching speed, something at which CMOS is also rather good.

Because digital circuits are so cheap nowadays, more and more parts of SAs are digital.
Nature is still analog though, so an analog frontend will always be necessary. As both
analog and digital circuits can be fabricated in the same process, they can be combined to
form mixed-signal circuits. This naturally raises the question of what parts should be made
analog and what parts digital.

In analog circuits one is usually interested in the Signal-to-Noise Ratio (SNR), which
defines the ratio between the power of the desired signal and the noise. In digital circuits
the SNR is indirectly defined by the number of bits used, so a natural way of comparing
analog and digital implementations would be to determine the amount of power required
to get a certain SNR, and select the implementation that requires the least power. This
approach has led to the graph shown in fig. 1.5.

Physical considerations lead to a fundamental limit on the analog power consumption,
while practical circuits currently require about three orders of magnitude more in power.

4The degree to which components can be made equal.
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Doubling the SNR (increasing it by 3 dB) requires twice the amount of power for an analog
system. In the digital domain, however, each extra bit gives an increase of 6 dB in SNR,
while requiring only a little extra power. The break-even point moves to lower SNR as newer
technologies tend to decrease the power consumption required by digital circuits, but have
(almost) no effect on analog circuits.

It is important to note that the graph does not take into account the power required
to transform a signal from the analog to the digital domain or vice versa. Constantly
switching from one domain to the other is definitely not better, and therefore the trade-off
is application-specific.

Another question is whether it is possible to let the analog or digital part solve some
issues of the other part. This is still an active area of research, and will also be touched
upon in this thesis.

1.3 Applications

There is no doubt that an all-CMOS, and therefore cheap, implementation of an SA is
possible as [10–12] show. In fact, patents have already been filed [13, 14]. The question is,
what kind of specifications will be attainable if the frequency range is extended to higher
frequencies to include applications like FM-radio (f ≈ 100 MHz), GSM-phones (f ≈ 1 GHz),
Wireless LAN, Bluetooth (f ≈ 2.4 GHz) and HiperLAN (f ≈ 5.8 GHz), or even further up
into the microwave region. With good specifications, such an SA would have many ‘new’
applications, such as:

• Cognitive Radio (CR). CR is a technique under development to utilize unused parts of
the spectrum, for example to allow better and more reliable communication between
emergency services, which currently rely on public networks [15, 16]. In order to know
which parts of the spectrum are unused, an SA integrated with the device is required.
As most of the communication will be through mobile devices, the power consumption
and size of the SA needs to be kept low, while at the same time it should still be able
to detect modern noise-like digital communication signals.

• instrument tuning. With the use of an SA, musical instruments can be tuned to any
setting without the need for tuning forks or hiring a professional instrument tuner.
In fact, the instrument may be able to tune itself with the addition of some tuning
mechanism. Gibson introduced such a guitar, the Robot Guitar, in December 2007,
because “every music lover and performer has had to suffer through the showhalting,
mood-killing atonal droning of a loudly amped guitar being brought into tune”,5 with
an additional cost of $900.6

• Built-In Self-Testing (BIST). Circuits do not only suffer from degradation, but circuit
parameters also drift over time. A built-in SA would be able to detect, and with some
control circuitry perhaps even correct, these drifts. It might also give warnings or shut
down (part of) the system in case certain (safety) limits are exceeded.

• measuring on-chip signals. This application is closely related to BIST. The idea
is to use the SA to provide a common port to externally read out the spectrum of
internal signals. Without this common port, every signal on the chip that needs to
be measured at some point in time requires its own pin on the package. Moreover,
the pins and associated bondwires can give problems at high frequencies because of
parasitic inductance. Therefore, an internal SA may not only reduce the number
of pins required on the package, but can also reduce measurement problems at high
frequencies. The internal SA can process the internal analog or digital signals and

5Gibson website: http://www.gibson.com/robotguitar/story.html
6ABC News website: http://abcnews.go.com/Technology/wireStory?id=3949313

http://www.gibson.com/robotguitar/story.html
http://abcnews.go.com/Technology/wireStory?id=3949313
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output them in digital form at a suitable rate. In both cases, the SA should be fully
integrable and power-efficient.

• a PC plug-in card. With a computer as a digital signal processing backend, many
plug-in components, including TV-tuners, ADCs, oscilloscopes and SAs, are available.
They usually come in the form of a PCI-card or USB-peripheral. With an integrated
SA, such a device would become affordable to more people.

1.4 Previous research

In his Master’s Thesis, Rovers [4] investigated the problems and limitations a wideband
all-CMOS SA would have, where wideband should be interpreted as f ≈ 0− 3/6 GHz. This
large frequency range prohibits the use of direct Analog-to-Digital (AD)-conversion, as it
is not yet technically possible. Even if it would have been possible, it would require (by
extrapolating from current state-of-the-art designs) in the order of 2 W for 8-bit conversion
at 10 GHz sampling rate [17], which is not low-power.7 This limitation means that frequency
conversion is necessary.

Frequency conversion is usually done by a mixer which multiplies the signal with a sine
or block wave, such that the information that was present at some frequency is present at
another frequency after the multiplication. The eventual goal is to get the desired frequencies
low enough to be able to sample them. This can be done in one or multiple stages. In each
stage the desired signal (which is a fraction of the total input band) is converted to some
frequency, called the Intermediate Frequency (IF). Each IF is above, within or below the
input signal range, or at 0 Hz. These are known as high-IF, mid-IF, low-IF and zero-IF
respectively. Each of these architectures has advantages and disadvantages.

High-IF is the architecture often used in commercial SAs with a comparable frequency
span [3, 19]. It has the advantage that RF-feedthrough8 in the mixer does not interfere
with the signal of interest, which is the main problem of mid-IF. The downside of high-IF is
that a high-Q filter9 is required to remove the images10, which is not feasible with a CMOS-
implementation. For mid-IF the filter-Q requirement is less stringent than for high-IF, but
in general it is still too high for a CMOS-implementation. Low-IF suffers from images that
are originally close to the desired frequency, because before conversion the image is separated
from the desired signal by only twice the IF. Filtering this image before conversion is not
possible because it requires a high-Q filter, and the only way to get rid of them afterwards
is to use a quadrature architecture.11 Using a quadrature architecture, image rejection is
typically limited to 40 dB because of mismatch, but may be increased to 60 dB [4]. Zero-IF
does have less problems with images as the signal is its own image, but it suffers from DC-
offsets (caused by self-mixing which distorts the signal and saturates subsequent stages),
I/Q mismatch (corrupting the signal), even-order distortion and flicker noise12.

Analysis of the advantages and disadvantages of each of these architectures led Rovers to
the conclusion that zero-IF and low-IF are the best options for full integration, which is in
accordance with literature for integrated wideband receivers [17, 20–23]. In either case, the
disadvantages and the practical limitations of CMOS limit the maximum difference between

7The theoretical minimum power consumption for an 8-bit converter sampling at 10 GHz is around
10 µW [18], which is five orders of magnitude lower than the extrapolation done by [17], consistent with
observations made on practical implementations [18].

8part of the signal directly appears at the output
9The Q of a filter specifies the ratio between the center frequency of the passband and the width of this

passband. Filters with higher Q are therefore better at removing signals close in frequency to the desired
signal.

10Images are signals at other frequencies that, because of the frequency conversion, are mapped to the
same frequency as the desired signal.

11A quadrature architecture splits the signal into two paths which are 90◦ out of phase. This allows
the differentiation of positive and negative frequencies, and hence differentiation between desired signal and
image.

12low-frequency noise which can be a major issue in CMOS
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Figure 1.6: The SFDR is limited by the noise floor and the non-linearity of the SA: (1)
DC-term because of non-linearity, (2) signal lost in noise, (3) signal detected, (4) signal lost
by non-linearity, (5) signal detected.

a larger signal and a smaller signal such that they can still both be observed. Increasing
the power of the larger signal causes harmonics introduced by non-linearities in the circuit
to obscure the smaller signal, while decreasing the power of the smaller signal makes it
indistinguishable from the noise floor. This is visualized in fig. 1.6, where a clean signal
consisting of four sinusoids of different amplitudes is processed by an SA. Two sinusoids
are detected, but the weakest sinusoid is obscured by the noise, and one of the others is
obscured by a harmonic of the strongest sinusoid.

This maximum difference, limited by the noise floor on one side and by linearity on the
other side, is called the Spurious-Free Dynamic Range (SFDR), and is a very important
property of SAs. The noise floor is lowered, thereby increasing the SFDR, if the Resolution
Bandwidth (RBW) (the width of each frequency bin) is chosen smaller, because the total
amount of noise power in each bin is proportional to its width in Hz. Commercial SAs
typically have an SFDR of 70 dB for an RBW of 1 MHz, while for CMOS it is limited to
roughly 60 dB [4].

1.5 Project description

SAs are instruments used to scan a specific frequency range and output the measured power
or amplitude (and possibly phase) into some form, usually a human-readable display. Com-
mercially available SAs are expensive and, because of stringent requirements for different
parts of the analyzer, not integrable on one chip.

An initial study on the front-end of an integrated low-cost SA showed that the SFDR is
limited in standard CMOS-technology. Linearity can be improved at the cost of noise and
vice versa. One solution proposed is the use of two measurement paths in which the signal
is correlated and the noise is not, such that the noise may be removed in the digital domain
and the system can be designed for high linearity.

The aim of this project is to:

• Explore the effects and possibilities using two measurement paths

• Explore the effect on SFDR of different blocks in the chain

• Design (part of) the analog frontend and digital backend to maximize SFDR in com-
bination with two measurement paths

• Estimate the required power consumption and attainable specifications of the entire
system and pinpoint the bottlenecks
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1.6 Thesis outline

The idea of this thesis is to break the tradeoff between noise and linearity using two mea-
surement paths. Chapter 2 investigates the mathematical properties of this architecture
with respect to spectral estimation, and compares it to the traditional approach using one
measurement path. Because the crosscorrelation itself is done in the digital domain, an ADC
is necessary. Correlation between the noise sources in both measurement paths will ulti-
mately limit the reduction of the noise floor. Since an ADC also introduces ‘noise’ because
the digital values do not exactly represent the analog values, the effects of quantization on
SFDR are discussed in chapter 3.

Using the results from chapters 2 and 3, a high-level system design of a correlation SA is
discussed in chapter 4. Power consumption and chip area of all the analog components are
estimated. Because usually the RF-part of a receiver limits the linearity, an RF-frontend is
designed and simulated in chapter 5 to investigate the maximum attainable linearity of a
correlation SA. The implementation and simulation of the digital correlator is discussed in
chapter 6, which also estimates the required power consumption and chip area.

In chapter 7, the results of all the preceding chapters are summarized, and an overview
is given of the power and chip area requirements of all the different blocks in the correlation
SA. It finishes with the most important topics for future research.



Chapter 2

Correlation

As explained in the introduction, the SFDR in the proposed SA is limited by the noise floor
and linearity. Increasing linearity of analog components inadvertently means increasing the
noise floor, while lowering the noise floor of components results in a decrease of linearity. For
example, adding a Low-Noise Amplifier (LNA) in front of a highly linear but noisy mixer
leads to a better Noise Figure (NF), but makes the nonlinearity contribution of the mixer
larger. Therefore, the maximum dynamic range is limited by technology. In order to break
this trade-off between the noise floor and linearity, another technique is needed.

One of the possibilities is the use of crosscorrelation, which will be investigated in this
chapter. It will be shown that crosscorrelation has the effect of lowering the NF at the input
of the SA, but at the cost of longer measurement time. It is important to note that the use
of crosscorrelation to lower the noise floor of an SA is not new, see for example [24].

To compare this approach with that used by ‘regular’ SAs, which is shown to be related
to crosscorrelation, the mathematical properties of crosscorrelation estimation will be dis-
cussed. Asymptotic expressions are derived using results found in literature, and compared
to simulations, which show a good match. Based on practical limitations, crosscorrelation
ultimately allows smaller signals to be detected than using the method of standard SAs.

This chapter involves the use of some signal theory, stochastic processes and statistics,
of which the relevant basics and further references are covered in appendix D. Furthermore,
some knowledge of Fourier theory is required to understand the line of reasoning (see for
example [1, 25]).

2.1 Introduction

Crosscorrelation of two signals gives information on the relation between the first signal
with a time-delayed version of the second signal. Informally, the result of crosscorrelation
is a function that shows the degree of resemblance between two signals as a function of the
delay-time of the second signal.

Any measurement system adds noise to the signal to be measured, which can corrupt,
and, in case the signal is very weak, even completely obscure the signal. Crosscorrelation
has the property that if the noise sources in both signal-paths are uncorrelated, the noise
tends to cancel out and only the crosscorrelation of the signal(s) remains.

This important property is used in arrays of radiotelescopes where signals are well below
the noise floor. An additional advantage of crosscorrelation is that it also gives a phase
relation, which allows one to calculate the position of the source. One practical aspect is
that this correlation may go on for hours or even days to lower the noise floor to negligible
levels. This was also the case in an experiment performed by Sampietro et al. [26] where
the crosscorrelation technique was used to measure the thermal noise of a resistor. The
measurement results are reproduced in fig. 2.1.

9
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(a) Measurement results (b) Correlation time

Figure 2.1: Measurement results of resistor noise performed by Sampietro et al. [26] shows
that crosscorrelation works and that performance increases with measurement time. The
one-channel measurement mimics a standard spectrum analyzer, where the internally gen-
erated noise obscures the resistor noise.

For some applications, such as radioastronomy, this long measurement time is not an
issue, but for spectrum analysis it is. The correlation time completely depends on the specific
application. Many signals have a finite duration, which automatically puts a constraint on
the allowed measurement time.

2.2 Correlation functions

The crosscovariance function of stochastic processes X(t) and Y (t) is defined as

γXY (t, τ)
4
= E

[(
X(t)− E

[
X(t)

])
(Y (t+ τ)− E [Y (t+ τ)])

]
where X(t) denotes the complex conjugate of X(t). Note that some authors use a slightly
different definition with respect to the complex conjugate or the delay, but this has no
consequences to the general idea. The crosscorrelation function (ccf) is defined as

ρXY (t, τ)
4
=

γXY (t, τ)
σX(t)σY (t+ τ)

which is just a scaled version of γXY . The terms ‘covariance function’ and ‘correlation
function’ are sometimes used interchangeably, which may be because scaling is not necessary
for spectral estimation (in fact, σX and σY are generally not known in measurements and
need to be estimated themselves). For now it is assumed that all signals have a mean value
of 0; corrections for this will be given later on.

Because in general only one realization can be observed, the ccf of stochastic processes
cannot be measured. Therefore, it is often assumed that the processes are jointly ergodic
in the first and second order moments. The first consequence of having ergodic processes
is that the first and second order moments do not change in time (i.e., they are wide-sense
stationary (wss)). Hence the ccf is independent of absolute time:

γXY (τ)
4
= E

[
X(t)Y (t+ τ)

]
(2.1)

which will be the definition of the ccf used in this document. Setting Y = X yields the
autocorrelation function (acf) of X(t).
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The second consequence of being ergodic is that the time average of one realization equals
the ensemble average:

γXY (τ) = lim
T→∞

1
2T

∫ T

−T
x(t)y(t+ τ) dt

This means an estimate of the ccf can be made by observing one realization for a certain
amount of time.

It is easy to prove that |γXX(τ)| ≤ γXX(0) for all τ , and γXY (−τ) = γY X(τ). It is
assumed that X(t) and Y (t) are real stochastic processes, and as a result any realization
x(t) and y(t) is real-valued. This means that the acfs of X(t) and Y (t) and of any realization
x(t) and y(t) are even functions.

2.3 The spectrum

Determining the spectrum is the ultimate goal of an SA. Transforming a continuous time
domain signal to a frequency domain signal can be done using the Continuous-Time Fourier
Transform (CTFT). In literature several definitions are in use for the CTFT, each differing
in the factors before the integral. In this thesis, the CTFT is defined as:

G(f)
4
= F(g(t))

4
=
∫ ∞
−∞

g(t)e−j2πft dt (2.2)

and its inverse is

g(t)
4
= F−1(G(f))

4
=
∫ ∞
−∞

G(f)ej2πft df (2.3)

which in radians (with ω = 2πf) becomes

g(t) = F−1(G(ω)) =
1

2π

∫ ∞
−∞

G(ω)ejωt dω

The term |G(f)|2 should be interpreted as the Power Spectral Density (PSD) of the function
g(t), i.e. the amount of power per Hertz at each frequency.

A discrete version of the CTFT also exists, which is known as the Discrete-Time Fourier
Transform (DTFT). It is constructed from the CTFT by sampling the continuous-time
signal, which in the frequency domain corresponds to a convolution with a series of δ-pulses.
The result is

G(f)
4
=

∞∑
n=−∞

g[n]e−j2πfn

It immediately follows that G(f) is periodic in f with period 1.
As can be seen, the CTFT and DTFT range over infinite time. In a practical digital

system, only a finite number of values are available, simply because both measurement
time and sampling rate are limited. Therefore, it would be useful to be able to digitally
compute (an approximation of) the CTFT and/or DTFT. This transformation is known as
the Discrete Fourier Transform (DFT). The definition used in this thesis for the DFT is

G[k]
4
= DFT (g)

4
=
N−1∑
n=0

g[n]e−j
2π
N nk (2.4)

where g[n] denotes the n-th sample of the sequence g and N the length of the sequence g.
Its inverse transform is

g[n]
4
= IDFT (G)

4
=

1
N

N−1∑
k=0

G[k]ej
2π
N nk (2.5)
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An important property of autocorrelation is the fact that the power spectrum ΓXX(f)
and the acf γXX(τ) form a CTFT pair, which is captured by the Wiener-Khinchin theorem
[27, 28]1:

ΓXX(f) =
∫ ∞
−∞

γXX(τ)e−j2πfτ dτ

γXX(τ) =
∫ ∞
−∞

ΓXX(f)ej2πfτ df
(2.6)

The function ΓXX(f) has the following properties (note that it is assumed that X is
real)

• ΓXX(−f) = ΓXX(f)

• ΓXX(0) is the DC-power of the process X

• ΓXX(f) ≥ 0

Fourier-transforming the ccf instead of the acf results in a so-called cross power spectrum
(or simply cross-spectrum) ΓXY (f). The cross-spectrum is not necessarily a real function
of frequency like the power spectrum is; in fact, it may not have any physical meaning
at all (although it will be shown that the cross-spectrum will converge to a true power
spectrum in the situation discussed in this thesis). The function ΓXY (f) has the property
ΓXY (−f) = ΓY X(f).

2.4 Correlation function estimation

Estimating the correlation function is the first step towards estimating the spectrum, al-
though for some applications other than spectrum analysis it may also be of interest by itself.
The estimation can be done in either the analog or the digital domain. It requires delays,
additions and multiplications. Because additions and multiplications add their own noise
(which will not be correlated away due to the fact that the two paths have been combined
at this point), only the digital domain implementation, and hence only the digital domain
estimation process, is considered. This does not mean that analog correlation is not a good
choice, see e.g. [31].

Two estimation functions widely used are

cXY [k] =
1
N

N∑
n=1

x[n]y[n+ k] (2.7)

ĉXY [k] =
1

N − |k|

N∑
n=1

x[n]y[n+ k] (2.8)

where N is the total number of samples taken, k the lag (delay) in number of samples, and
the summation is not carried out for terms which contain a sample that does not exist (for
instance, for k = N−1, the summation reduces to a single term). These estimators are used
because of their intuitive appeal, not because they possess the best mathematical properties.
Determining the optimal estimator proves to be intractable [32].

A third estimator, which is often used in radioastronomy, is very similar to eq. (2.7).
Instead of directly starting the correlation process at the first sample, one first waits until
a sample is available for all desired lags. It has the advantage that each lag is calculated
using the same number of samples, which makes all lags equally reliable. Other advantages
are that each lag can be divided by the same number, and that the digital cells doing the

1Apparently, Albert Einstein already derived these equations, albeit without a rigorous mathematical
proof [29, 30].
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calculation can be switched on and off at the same time. The main disadvantage is that
not all available information is used, but that effect is negligible in radioastronomy where
measurement times are very long. The properties of this estimator are not further explored.

ĉXY [k] is an unbiased estimator as it divides by the exact amount of overlapping samples
for a given lag k. However, the variance grows to such high values for k close to N , that
the mean-squared error (mse) is larger than the mse of cXY [k], even though the latter is
biased. We will therefore restrict ourselves to this biased estimator. It will turn out that for
spectral estimation both estimators can be treated in exactly the same way, which makes
this choice justified.

Converting the results derived in [32] from continuous- to discrete-time (see sections B.1
and B.2), the expected value of cXY [k] is

E [cXY [k]] =
(

1− |k|
N

)
γXY [k] (2.9)

and its variance is

var (cXY [k]) =
N − |k|
N2

N−|k|∑
n=−(N−|k|)

(
1− |n|

N − |k|

)
× (γXX [n]γY Y [n] + γXY [n+ k]γY X [n− k]) (2.10)

such that the bias is

B [cXY [k]] =
|k|
N
γXY [k] (2.11)

Clearly, the estimator is consistent and asymptotically unbiased.

2.4.1 Correlation and convolution

It is possible to rewrite the biased estimator to another familiar and useful form. Defining
discrete convolution as

(f ∗ g)[m]
4
=
∑
n

f [n]g[m− n]

and discrete correlation as
(f ? g)[m]

4
=
∑
n

f [n]g[n+m]

it immediately follows
f [n] ? g[n] = f [−n] ∗ g[n] (2.12)

Note that in the above definitions constant factors were omitted. Since both operations are
linear, they can easily be incorporated.

2.4.2 Non-zero mean

So far the possibility of the process having a mean unequal to zero was neglected. In the
general case a non-zero mean value will have an influence on the estimation.

The ccf defined in eq. (2.1) is a simplified version where it is already taken into account
that the mean is zero. The adaptation for the general case is straightforward:

γXY (τ)
4
= E

[
(X(t)− E

[
X(t)

]
)(Y (t+ τ)− E [Y (t+ τ)])

]
When the mean is known beforehand, it can simply be subtracted from the data of an

observation and all the previous results still hold. When the mean is unknown, it needs
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to be estimated before it can be subtracted. The natural and most used estimator for the
mean is

MX =
1
N

N−1∑
n=0

X[n]

It can be shown to be unbiased and having a variance of var (X) /N [32].
Plugging in this estimate into cXY [k] changes the amount of bias of cXY [k] to [32]:

B [cXY [k]] =
|k|
N
γXY [k] +

(
1
N
− |k|
N2

) N−1∑
n=−(N−1)

(
1− |n|

N

)
γXY [n]

For virtually all statistical processes, γXY (τ) will be close to 0 for |τ | > τ0, where τ0 is
some constant. Therefore, if the number of samples is high enough, this extra bias can be
neglected.

2.5 Spectral estimation techniques

For an SA it is of the utmost importance that the estimates it makes are statistically
meaningful, i.e. that the resulting values have a certain degree of accuracy and repeatability.
Over the years, many techniques for spectral estimation have been developed, each with its
own advantages and disadvantages.

These techniques can be divided into three main categories: classic non-parametric es-
timation, parametric estimation and subspace spectral estimation. Some alternatives, such
as using a neural network for spectral estimation [33, 34], wavelets [35] or non-uniform
sampling [36–38], are not included in any of these categories and are not considered for
implementation in this MSc project.

2.5.1 Classic non-parametric estimation

Non-parametric estimation makes no assumption on the type of spectrum it tries to estimate.
It generally uses some form of the DFT to go from the time domain to the frequency domain,
and is relatively computationally efficient.

Because it makes no assumptions, it works reasonably well for a large class of signals.
Disadvantages include a low frequency resolution, which makes it impossible to distinguish
between two closely spaced signals, and spectral leakage, which causes power in some fre-
quencies to ‘leak’ to other frequencies, thereby giving incorrect spectral values.

Spectral leakage is caused by time-windowing the sampled sequence in combination with
the mathematical property of the DFT to assume the signal to be periodic in the given
measurement time. The leakage can be reduced by using tapering windows which usually
go to zero at the edges, such that the discontinuities disappear. Unfortunately, reducing
spectral leakage comes at the cost of loss in frequency resolution, see fig. 2.2. Many windows
exist for which spectral leakage and frequency resolution have been calculated and tabulated.
The window should be chosen to suit the situation.

The frequency resolution in Hz is reciprocal to the time interval in seconds over which
sampled data is available: a higher frequency resolution requires longer sampling and more
points in the DFT. Because the Fast Fourier Transform (FFT), which is an efficient im-
plementation of the DFT, has a computational complexity of O (n log n) and a memory
complexity of O (n) [25], there is a practical upper limit to the number of points in the
FFT.

Longer sampling is not always an option, as some processes are simply of finite duration
or have time-varying spectra.2 In these cases, the non-parametric estimation methods can

2A time-varying spectrum is a contradictio in terminis as a true spectrum is defined over infinite time.
However, one can imagine that it is useful to measure the spectrum of a frequency-hopping protocol such as
Bluetooth during the time it is using one of the frequency slots.
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Figure 2.2: Windowing is a tradeoff between frequency resolution and spectral leakage.

prove insufficient, and one resorts to other types of estimation.

2.5.2 Parametric estimation

In many situations one can estimate the values of the signals outside of the observed period
because some properties of the signal to be measured are known. The use of a priori
information allows better estimation of the spectrum.

In parametric estimation, a model with some parameters is used. This model is usually a
linear system with frequency response H(f), where the parameters determine this frequency
response. By using the equation ΓXX(f) = |H(f)|2 ΓWW (f) (in which ΓWW (f) is the
power spectrum of white noise) the parameters are estimated by observing the signal. The
estimated frequency or impulse response of the system provides all the information for the
power spectrum estimation.

The main advantage of this way of estimation is the higher frequency resolution that can
be obtained as compared to non-parametric estimation, because with parametric estimation
the acf is not set to zero outside the measurement range. The obvious disadvantage is that
a model is required that reflects the process well enough.

A commonly used model is the Auto-Regressive Moving Average (ARMA)-model, which
is a rational transfer function from input samples to output samples. In other words, the
ARMA-model is a system with transfer function H(z) = B(z)

A(z) where the coefficients in the
polynomials are the parameters. Setting B(z) = 1 results in an Auto-Regressive (AR)-
model; setting A(z) = 1 results in a Moving Average (MA)-model.

It turns out that any ARMA-model can be represented by an AR-model, although it
may require more parameters. The choice in practice is usually an AR-model, because it
yields simpler equations and it can detect narrow peaks.

2.5.3 Subspace estimation

Subspace methods use eigendecomposition or eigenanalysis of the correlation matrix to es-
timate frequency components. These methods are also known as high-resolution or super-
resolution methods, as they are best suited for spectra with sinusoidal components, espe-
cially when sines are buried in noise and the SNR is low. Examples of these methods are
Multiple Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT), which are described for example in [28].
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Listing 2.1: Matlab-code alternative following (2.14) for estimating the spectrum. x and y
are equal-length arrays of samples.

l = length(x);

ccf = xcorr(x,y,’biased ’); % yields result of length (2l-1)

CCF = fft(ccf , 2*l); % fft using 2l points: zero -pad ccf with one 0

angles = exp(-i*2*pi*[0:l-1]/l);

spectrum = CCF (1:2: length(CCF)).* angles/l;

Listing 2.2: Matlab-code alternative following (2.15) for estimating the spectrum. x and y
are equal-length arrays of samples.

spectrum = fft(x).*conj(fft(y)) / length(x)^2;

2.6 Spectral estimation

Since an SA is generally used for all kinds of applications, it cannot assume anything about
spectra, making non-parametric estimation the natural choice. Harmsen [39] experimen-
tally verified classic non-parametric estimation to outperform parametric estimation in case
nothing is known about a spectrum.

In the time-discrete domain, spectra of signals are periodic in 2π radians, and therefore
any continuous range of 2π radians suffices to describe the spectrum. In this thesis, fre-
quencies in the time-discrete domain are normalized to − 1

2 ≤ f < 1
2 , where the sampling

frequency fs is normalized to 1; in effect − fs2 ≤ f <
fs
2 .

Although the definition of G[k] in eq. (2.4) implies a discrete function of frequency,
it is possible to evaluate it at any frequency. The result is just a (convenient) form of
interpolation. Using − 1

2 ≤ f <
1
2 , f can be set to f = k/N to arrive at

G(f) =
N−1∑
n=0

x[n]e−j2πfn (2.13)

Taking the DFT of the biased correlation estimator yields an estimate for the cross-
spectrum:

CXY (f) =
N−1∑

n=−(N−1)

cXY [n]e−j2πfn (2.14)

Using eq. (2.7), this can also be expressed as

CXY (f) =
1
N
X(f)Y (f) (2.15)

where X(f) and Y (f) are the DFTs of x[n] and y[n]. The proof follows directly from
the convolution theorem [1] by using eq. (2.12). Equations (2.14) and (2.15) show two
mathematically equivalent ways to estimate the cross-spectrum. With Y = X, this latter
form is also known as the periodogram [28]. The equivalence of both methods is illustrated
in listings 2.1 and 2.2.3

3The reader may be confused by the fact that eq. (2.14) takes a (2N − 1)-point summation while X(f)
and Y (f) are the result of N -point summations. The answer to this problem is that essentially any fre-
quency may be calculated using the DFT, as this is merely a matter of interpolation (see eq. (2.13)). For
computational efficiency usually only equally spaced frequencies are calculated. In fact, using the FFT and
the Decimation-In-Frequency (DIF)-algorithm [25], the same number of calculations are required for the
DFT for both methods, yielding the exact same results.
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Figure 2.3: The triangular bias wB [k] (Bartlett window) and its amplitude response |WB(f)|
for correlation of 8 and 64 samples, where the shown amplitude should be multiplied by the
number of samples to obtain the true values.

Similar to cXY [n], the statistical properties of CXY (f) can be derived. All calculations
are completely analogous to the calculations for continuous-time correlation discussed in
[32], and are elaborated in sections B.3 and B.4. The expectation is

E [CXY (f)] = WB(f) ∗ ΓXY (f) (2.16)

where

WB(f) ∗ ΓXY (f)
4
=
∫ 1/2

−1/2

WB(f)ΓXY (f − g) dg

denotes the linear convolution of WB(f) and ΓXY (f), and WB(f) is the DTFT of the
triangular bias (also known as the Bartlett-window, hence the subscript B)

wB [k] = 1− |k|
N
, |k| ≤ N

WB(f) =
(

sinπfN
sinπf

)2

The bias therefore is

B [CXY (f)] = ΓXY (f)−WB(f) ∗ ΓXY (f)

and the variance (under the assumption that the spectrum is smooth, i.e. it has a bounded
derivative) is

var (CXY (f)) = ΓXX(f)ΓY Y (f)
(

sin 2πfN
N sin 2πf

)2

+ |ΓXY (f)|2 (2.17)

Note that WB(f) needs to be a δ-function to be unbiased for any ΓXY (f), but this
requires infinite measurement time. CXY (f) is an inconsistent estimator, because

lim
N→∞

var (CXY (f)) = |ΓXY (f)|2 (2.18)

So, even though cXY is a consistent estimator of the ccf, its DFT is not a consistent estimator
of the cross-spectrum!

In other words, if x[n] and y[n] are realizations of stochastic processes, CXY (f) does
not converge in any statistical sense to a limiting value as N tends to infinity. This can
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Figure 2.4: Smoothing of the correlation function allows the computation of fewer lags.

be intuitively explained by the fact that more samples give more information, but using all
values of the correlation function estimate (or, equivalently, all samples in the DFT) gives
equally more frequency point estimates. Therefore, the amount of information per frequency
point remains constant. As a result, the variance of each of these points does not decrease.

2.6.1 Improving the estimation

Because an SA should provide statistically meaningful results, the variance should be de-
creased. There are several methods to do this.

The first, known as the Bartlett-method, is to split the N samples into K sequences of
M = N/K samples. Averaging the power spectral estimations as defined in eq. (2.15) for
each of these K sequences reduces the variance of the final estimate by a factor 1/K, at the
cost of a loss in frequency resolution by a factor K. The result is a consistent estimator.4

An extension to the Bartlett-method was proposed by Welch [41] to allow partial overlap
of the segments and any windowing function. The bias and variance of the power spectrum
estimation are a function of this overlap and the window used. Typically, selecting a window
means a trade-off between bias, variance and frequency resolution of the spectral estimate.
More overlap requires more computations, and stops giving significant improvements at some
point, depending on the window used. Typical overlap values range from 25% to 75%. A
very similar effect can be obtained by averaging adjacent frequency bins, which is equivalent
to periodogram averaging with a rectangular spectral window applied to the data series,
also known as the Daniell window [42].

The second method is to put a window on the correlation function estimate to miti-
gate the effects of the unreliable estimates for large lags. This method of smoothing the
periodogram was proposed and analyzed by Blackman and Tukey, and is known as the
Blackman-Tukey method. One small disadvantage of this method is that for certain win-
dows the power spectrum estimate can have negative values, which is physically impossible.
It turns out that these negative values are in practice so small that they can be considered
zero [42].

The latter method seems very convenient for the purpose of crosscorrelation, as a smooth-
ing window wS , centered at k = 0 (or, if wS has even length, centered at k = −1/2),
reduces the number of lags for which the ccf estimate has to be calculated (see fig. 2.4).
This smoothing window is the reason why the estimators cXY and ĉXY can be treated in
the same way for spectral estimation: one can transform cXY into ĉXY by applying the
Bartlett-window to cXY . Applying wS [k] to the correlation function results in a total win-

4One might wonder why the spectrum |X(f)|2 is averaged, and not the frequency domain representation
X(f). The reason is that in general the phase of the desired signal will be different in each measurement, so
the signal is also canceled out. Only if one knows the (approximate) phase of the signal can this be done,
such that the signal contributions in each measurement add up coherently. This property is exploited in a
signal analyzer made by Rohde & Schwarz [40] to perform high-sensitivity phase noise measurements.
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Figure 2.5: For large K, the effective window in AC and XC tends to a rectangular window
when a rectangular smoothing window is used.

dow wT [k] = wB [k] · wS [k], where samples are considered 0 in case one window is shorter
than the other.

2.7 Correlation in a spectrum analyzer

As eqs. (2.14) and (2.15) show there are (at least) two approaches to determine the (cross)-
spectrum. These methods can be used for two identical signals, i.e. X = Y , or for two
different signals, i.e. X 6= Y . This means there are effectively four different situations:

• Autocorrelation method (AC), which follows eq. (2.14) and X = Y .

• Crosscorrelation method (XC), which follows eq. (2.14) and X 6= Y .

• Spectrum Averaging method (SAVG), which follows eq. (2.15) and X = Y .

• Cross-spectrum Averaging method (XSA), which follows eq. (2.15) and X 6= Y .

Without any modifications with respect to improving the estimation, AC and SAVG
are mathematically equivalent, and so are XC and XSA. Of course, XC and XSA are
generalizations of AC and SAVG respectively, but it turns out that it is not so easy to
generalize their properties.

As was discussed in section 2.6, the estimation procedure needs to be improved to obtain
a lower variance. This is where AC and XC start to differ from SAVG and XSA. In AC
and XC, one windows the correlation function, while in SAVG and XSA different (possibly
windowed) spectral estimates are averaged. This difference is shown in fig. 2.5; for SAVG
and XSA the effective window remains the window of fig. 2.5a, due to the biased estimation.

A system model for an SA using the two main approaches is schematically depicted in
fig. 2.6. The system is modeled as a signal source S, split up into two paths (X and Y ),



20 CHAPTER 2. CORRELATION

s(t)

a(t)

b(t)

+

+ k

× 1
N

N∑
1

w[k] DFT

2N − 1 lags

2M − 1 lags

M points

(a) AC and XC window the correlation function (Blackman-Tukey method)

1
K

K∑
1

s(t)

a(t)

b(t)

+

+

DFT

DFT

w[k]

x

×

s(t)

a(t)

b(t)

+

+

DFT

DFT

w[k]

x

×

s(t)

a(t)

b(t)

+

+

DFT

DFT

w[k]

x

×

s(t)

a(t)

b(t)

+

+

DFT

DFT

w[k]

x

×

s(t)

a(t)

b(t)

+

+

DFT

DFT

w[k]

x

×

M points

(b) SAVG and XSA average multiple spectra (Bartlett method)

Figure 2.6: Two different spectral estimation methods to lower the variance. For AC and
SAVG a(t) = b(t).

where each path contributes a certain amount of additive noise, which are named A and
B respectively. The resulting signals X = S + A and Y = S + B are then crosscorrelated.
A and B have equal variance (which in the case the noise is Gaussian, as assumed here,
is equal to the noise power), because the two chains are copies of each other, and will
therefore contribute a similar amount of noise. It is assumed that A, B and S are ergodic
for the duration of the measurement, and all fully uncorrelated. In practice this will not
be completely true, because noise sources such as power supply and substrate bounce will
(at least partially) be correlated. The signals a(t), b(t) and s(t) are realizations of these
stochastic processes. In the case of AC and SAVG, the two noise sources are now fully
correlated, i.e. a(t) = b(t). To be able to distinguish between these noise sources, this source
is now called C with realization c(t).

To allow a fair comparison, the total number of samples (per branch) are equal for all
four methods. The number of samples taken in each branch to perform a spectrum estimate
for AC and XC is denoted as N , such that the estimated correlation functions (before
smoothing) have a length of 2N − 1. The number of samples taken to perform a spectrum
estimate using SAVG and XSA is denoted by M . The smoothing window in AC and XC
has a length equal to 2M − 1 and is centered around lag k = 0. The number of averages for
SAVG and XSA is denoted by K, with K = N/M .

From the definition of crosscorrelation, it can be easily shown with X = S + A and
Y = S +B that

γXY (τ) = γSS(τ) + γSB(τ) + γAS(τ) + γAB(τ)



2.7. CORRELATION IN A SPECTRUM ANALYZER 21

and hence for the spectrum, using linearity of the Fourier-transform family,

ΓXY (f) = ΓSS(f) + ΓSB(f) + ΓAS(f) + ΓAB(f)

Because the signal and the noise are uncorrelated, for Y = X the result (with ΓAB =
ΓCC)

ΓXX(f) = ΓSS(f) + ΓCC(f) (2.19)

is found, while for Y 6= X the noise sources A and B are also uncorrelated, yielding

ΓXY (f) = ΓSS(f) (2.20)

which is exactly the desired spectrum.
SAVG is the method that is usually available in commercial SAs. XC and XSA allow

determining the cross-spectrum, which is the main idea of this thesis. AC is included as a
reference method. Deriving the properties of these methods enables a comparison between
them. This should show whether crosscorrelation is a feasible method.

2.7.1 Asymptotic properties

Important properties of the estimators are the expected value and the variance. The closer
the expected value to the true value, and the lower the variance, the more accurate the final
results. Here the results are given for the situation in which tapering windows are all equal
to a rectangular window.

Spectrum averaging (SAVG)

Only the results are shown; for the derivation see section B.5.

E [CXX(f)] ≈WB(f) ∗ ΓXX(f) ≈ ΓXX(f) (2.21)

where the final step is valid if M is large enough, i.e. if WB(f) tends to a δ-function.

var (CXX(f)) ≈ 1
K
|ΓXX(f)|2 (2.22)

Autocorrelation (AC)

The asymptotic expressions for spectral estimation using autocorrelation are given by Jenk-
ins & Watts [32]. The expectation, under the assumption that the total number of samples is
much larger than the number of lags used for the spectral estimation, such that the influence
of the Bartlett-window becomes negligible (see fig. 2.5), is [32, p. 245, eq. (6.3.35)]:

E
[
C̃XX(f)

]
≈WS(f) ∗ ΓXX(f)

where WS(f) is the spectrum of the smoothing window. If M is large enough, i.e. when
WS(f) (in this case the frequency response of a rectangular time window), tends to a δ-
function, this simplifies to

E
[
C̃XX(f)

]
≈ ΓXX(f) (2.23)

The asymptotic variance is [32, p. 251, eq. (6.4.12)]:

var
(
C̃XX(f)

)
≈ I

N
Γ2
XX(f) ≈ 2

K
Γ2
XX(f) (2.24)

where

I =
∑
m

w2
S [m] =

∫ 1
2

− 1
2

W 2
S(g) dg (2.25)
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and I/N can be simplified to 2/K because, if M and K are large enough, K = N/M and
I = 2M − 1 ≈ 2M .

It can be observed that although the expectation of AC is very similar to the expectation
of SAVG, the variance of AC is twice as large. This is caused by the different effective
windows as shown in fig. 2.5. The effective window will have an influence on the frequency
resolution as shown in fig. 2.2. Although this comparison may not be the fairest, it certainly
shows that the dependency as a function of the number of samples is equal.

Cross-spectrum averaging (XSA)

Only the results are shown; for the derivation see section B.6. For XSA the estimator is
denoted as

∣∣∣ÃXY ∣∣∣ for reasons discussed in section B.6.

E
[∣∣∣ÃXY ∣∣∣] ≈√Γ2

SS +
β

K
(ΓSSΓAA + ΓSSΓBB + ΓAAΓBB) (2.26)

and

E

[∣∣∣ÃXY ∣∣∣2] =
K + 1
K

Γ2
SS +

1
K

(ΓSSΓAA + ΓSSΓBB + ΓAAΓBB) (2.27)

with

β =
π

4K

(
Ξ
(
K + 1

2

)
Ξ(K)

)2

1− Γ2
SS

E

[∣∣∣ÃXY ∣∣∣2]
+

1
2

Γ2
SS

E

[∣∣∣ÃXY ∣∣∣2] (2.28)

where

Ξ(x) =
∫ ∞

0

e−ttx−1 dt

is the mathematical Gamma-function, but written as Ξ to avoid confusion with the spectra.
The variance can then be calculated using the well-known formula

var
(∣∣∣ÃXY ∣∣∣2) = E

[∣∣∣ÃXY ∣∣∣2]− E2
[∣∣∣ÃXY ∣∣∣] (2.29)

β will always be between 1
2 (for the extreme ΓSS � ΓAA,ΓBB) and π

4 (for the extreme
ΓSS � ΓAA,ΓBB), so for back-of-the-envelope calculations one can use e.g. β = 2

3 or√
β = 4

5 , whichever comes in handy.

Crosscorrelation (XC)

Exploiting the resemblance between SAVG and AC on one hand and XSA and XC on the
other hand, one may be inclined to guess that the variance of XC will be related to the
variance of XSA by a factor of 2. Indeed, simulation results (discussed later) indicate that
replacing all K in eqs. (2.26)–(2.28) by K/2 yields a good approximation for the expectation
and variance of XC. No attempt has been made to mathematically verify this substitution.

Simulation

To validate the formulas, the asymptotic approximations are compared to simulation results
as shown in fig. 2.7. The simulations are performed up to K = 200 (but only shown for low
K).

For all four methods the approximations and simulation results converge. Simulations
(not shown) were also performed for much higher and much lower noise levels, which both
show convergence. This indicates that the asymptotic approximations can be used to assess
the performance of the four methods.
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Figure 2.7: Comparison of simulation results (markers) and asymptotic approximations
(solid lines) for expectation and standard deviation. Simulations were performed 500 times
and averaged using bandpass-filtered white noise as signal with ΓSS(f) = 1 and a white
noise floor with ΓNN (f) = 4.

The derived trends are very important. For all methods the variance decreases linearly
with the number of samples, which means that the standard deviation scales with the square
root of this number. For SAVG and AC the expected value does not change with the number
of samples, while for XSA and XC the expected value of the uncorrelated parts decreases
with the square root of the number of samples. This means that using crosscorrelation, in
order to lower the noise floor by 3 dB, a four times longer measurement time is needed.

2.7.2 Signal detection

The SFDR was defined as the ratio between the largest and the smallest signal that can be
detected at the same time. This smallest signal is usually set equal to the noise floor level
[4, 19]. With that definition, the SFDR cannot be improved with AC or SAVG, but it can
with XC and XSA. Intuitively, this is not a satisfying situation, because AC and SAVG
reduce the variance of the noise, thereby increasing the ability to detect a signal. In the
limiting case (with an infinite number of averages), the noise floor will be completely flat
and any signal can theoretically be detected, no matter how far it is below the noise floor.

There are several practical issues possibly limiting this averaging, other than the limited
time the input signal is present. These include the finite set of values that can be represented
in the digital domain, measurement errors/uncertainty, a not-completely-white noise floor,
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and instability of the receiver chain (all components in the analog domain) which changes
the noise level in time. Whether any of these effects has a significant influence requires
further research.5 Nevertheless, to be able to make a fair comparison, a definition is needed
which incorporates the variance of the noise to determine whether a signal is observable.

A general rule in radioastronomy is that the smallest signal that can be measured equals
the standard deviation at the output of a filter in case no signal is present [43]. In that case,
signals are discovered by comparing the output in time, but in the current situation it could
just as easily be compared in frequency.

The smallest signal that can be observed will be defined as a signal with a mean value
of the power inside the frequency bins that is at least equal to the average value plus the
standard deviation of the noise:

Definition 2.1 (Observability). Let X be a band-limited stochastic proces and Y a white
noise process. Let X(f) and Y (f) denote their respective spectra. Let Z = X + Y be the
sum of X and Y , and C(f) the spectral estimator of Z. Let f1 denote a frequency for which
X(f1) = 0 and let f2 denote a frequency for which X(f2) > 0. If

E [C(f1)] +
√

var (C(f1)) < E [C(f2)] (2.30)

then X is observable at frequency f2.

This definition is depicted in fig. 2.8. Note that this is not the same as the general
definition of sensitivity of a receiver, which is the minimum input signal required to produce
an output signal of a given SNR [44]. The reason for deviating from this definition is that
the correlation process makes the sensitivity a function of the number of samples taken.
This is equivalent to stating that the NF of the system goes down, because sensitivity and
NF are directly related [3, 44]. This result allows a correlation SA to perform extremely
sensitive measurements [45, 46].

2.7.3 Simulation

To validate whether the asymptotic results obtained for the four aforementioned methods
can be used to predict the measurement time needed to observe a signal, simulations were
performed to determine whether a signal is observable or not. The signal consists of a band-
pass filtered white noise source with PSD = 1, and the noise source(s) consist(s) of white
noise with PSD = 10, which means that the signal is buried 10 dB below the noise floor.
With M = 28, the minimum number of samples is N = M = 28. The results are shown in
fig. 2.9.

5The latter two effects, a not-completely-white noise floor and instability of the receiver chain, were
observed first-hand in a linearity measurement of a Tayloe mixer using an Agilent SA, the results of which
will be published on ISSCC2009.
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Figure 2.9: Simulation results (lines) and expected values (circles) for observability for
SAVG, XSA, AC and XC, with M = 28, a rectangular smoothing window and N = KM
the total number of samples used.

Because the signal is a band-pass filtered signal, there is a noise floor on either side.
The noise levels on both sides do not necessarily have to be the same in that particular
realization. The signal is considered observable if the definition applies to both sides, not
observable if the definition does not apply to either side, and half observable if the definition
applies only to one side. With many simulations, the percentage of times at which the signal
is observable is calculated and plotted. M = 28 is chosen as a trade-off between simulation
speed and effect of non-ideal Finite Impulse Response (FIR)-filtering (a perfect brickwall
filter is not realizable). To reduce the influence of the sidebands of the bandpass signal in
calculating the average value and variance in each section, it is made sure that frequencies
near the transition are not taken into account.

Using the asymptotic approximations, it can be calculated when the signal becomes
observable. In the stochastic simulation, this would be the point at which the signal is
observable 50% of the time (note that all formulas deal with ensemble averages). Using
definition 2.1, the equation

E [C(f1)] +
√

var (C(f1)) = E [C(f2)] (2.31)

needs to be solved for all four methods.
This will be worked out for XSA; only the results will be given for the others. Using

eq. (2.26) and ΓAA = ΓBB = ΓCC = 10 and ΓSS = 1 one finds at a frequency f1 where only
noise is present that

E
[∣∣∣ÃXY ∣∣∣] ≈√β1

K
ΓAAΓBB ≈

√
25π
K

(2.32)

because β1 (the β-factor is different for both frequencies, hence the subscript) tends to π/4
for large K. From eq. (2.29) follows

var
(∣∣∣ÃXY ∣∣∣) ≈ 100

K
− 25π

K
(2.33)

At a frequency f2 where both signal and noise are present eq. (2.26) gives

E
[∣∣∣ÃXY ∣∣∣] ≈√K + 1

K
+

80
K

(2.34)

when taking β2 = 2
3 . Substituting eqs. (2.32)–(2.34) into eq. (2.31) and solving for K yields

K ≈ 101.
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Figure 2.10: Spectra obtained (M = 212) for an input signal (black) using crosscorrelation
(light gray) and spectrum averaging (dark gray) for different number of samples.

Doing similar calculations for the other methods yields K ≈ 100 for spectrum averaging,
K ≈ 200 for autocorrelation, K ≈ 101 for cross-spectrum averaging and K ≈ 202 for
crosscorrelation. From fig. 2.9 one finds K ≈ 99 for spectrum averaging, K ≈ 198 for
autocorrelation, K ≈ 105 for cross-spectrum averaging and K ≈ 206 for crosscorrelation,
all very close to the values predicted by the approximation.

If one takes a look at the spectra obtained using SAVG and XSA, shown in fig. 2.10, one
cannot deny the fact that the spectra obtained using XSA more clearly show the signals,
while SAVG requires a good eye to distinguish a signal level 10 dB below the noise floor
(and hence only a 0.4 dB increase in the level displayed on the screen).

The reason for the difference is the fact that the signals are displayed on a dB-scale,
while the calculations are on a linear scale. A practical issue with modern SAs is the
relative amplitude accuracy, which is the accuracy of the difference between two spectral
values of a measurement. The relative amplitude accuracy is typically in the order of 0.1 dB
to 1 dB [3]. One might therefore require at least 1 dB difference between a signal and the
surrounding noise. An adaptation to eq. (2.30) could then be

10
1
10

(
E [C(f1)] +

√
var (C(f1))

)
< E [C(f2)]

As a result of this adaptation, a signal more than 5.9 dB below the noise floor can never
be observable using AC or XSA. Provided enough noise is uncorrelated, XC and XSA can
enable the detection of those signals, which is in accordance with [47].
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2.8 Conclusions

Correlation is a mathematical technique to relate a signal with itself or another signal. This
can be done in the analog or digital domain, but, because of noise requirements and ease of
implementation, only the digital approach has been considered.

Several categories of spectral estimation techniques exist, but a classical approach is
chosen as it does not require any prior knowledge of the signal to be observed. A spectrum
can be obtained by first correlating and then taking a DFT, or by taking a DFT directly on
the obtained samples and then squaring the result. The two are mathematically equivalent
in their basic form. In case one uses techniques such as windowing and averaging, they are
no longer mathematically equivalent, but still very similar in their properties.

By splitting the signal to be measured into two equivalent paths, the noise introduced
by each path will be highly uncorrelated. Using crosscorrelation (in the form of XC or XSA)
the effective noise level can be reduced at the cost of measurement time. Most commercially
available SAs offer SAVG, which only smoothens the noise floor. Although all methods have
the effect of allowing smaller signals to be detected, AC and SAVG hit a hard stop because of
limited relative amplitude accuracy. Crosscorrelation does not suffer from this problem and
therefore allows much smaller signals to be detected, which can be a significant advantage.

To assess the improvement using crosscorrelation, asymptotic expressions for the expec-
tation and variance of all four spectral estimation methods are obtained. Fortunately these
asymptotic approximations seem to converge rather fast, such that there is no significant
difference in a situation where signals are buried in noise, which is the most important rea-
son to use crosscorrelation. Simulations confirm that the asymptotic expressions accurately
predict the number of samples required to observe a signal.

An important conclusion is that the noise floor using XC or XSA goes down with the
square root of the number of samples. To lower the noise floor by 3 dB, the measurement
time goes up by a factor of 4. In short, crosscorrelation works, but it is still important to
have a device with a relatively low noise floor.

2.9 Recommendations

The asymptotic approximations provide good insight into the number of averages or the
number of samples that need to be taken to observe a signal given the current definition. In
the simulation results of fig. 2.7, it looks as if the asymptotic approximations provide a kind
of upper bound on expectation and variance. Although this could be a coincidence for this
particular situation, if it turns out to be true for all situations, the approximations become
much more useful.

From the simulation results in fig. 2.9 the approximations can be seen to ‘fail’ for AC and
XC for a low number of samples. This is probably due to the fact that it takes some time
before the effective window really approximates a rectangular window. It may be possible to
include the effect of the partial Bartlett-window (see fig. 2.5) such that the approximations
also hold for a lower number of samples.

Biasing effects and spectral leakage were all disregarded and made insignificant in the
simulation by taking enough points for the FFT. In practical situations one might want to
take a 16-point FFT, and in that case these effects come into play. An approximation that
works for all cases would be much more useful.

Asymptotic approximations have been established for the situation in which both the
noise sources and the signal to be measured are stochastic processes. If the common signal
is deterministic, the situation will be different. If S is deterministic, the factor Γ2

SS will not
introduce a variance, but because A and B are noise sources, the terms ΓSSΓAA, ΓSSΓBB
(or ΓSSΓCC for SAVG and AC) still do. This could make an important difference for the
amplitude accuracy in measuring sinusoids. It would be useful to find out if the derived
formulas can be easily adapted to this situation, and if so, what that adaptation would be.





Chapter 3

Quantization

A necessary operation in a system that processes a signal in both the analog and the digital
domain is AD-conversion. The continuous range of values of an analog signal needs to be
converted to a finite set of discrete levels. This process is called quantization.

In this chapter the effects of quantization of a sinusoid on the SFDR will be discussed.
This is important to know, because the SA-design as a whole needs an SFDR of 70 dB.

Sampling introduces aliasing, i.e. frequencies with f > fs/2 will alias back to a frequency
0 ≤ f < fs/2. It is assumed that anti-alias filters remove all such components to a negligible
level, such that the only aliasing effects that remain are caused by signal distortion due to
quantization.

3.1 Introduction

Digital processing of an analog signal requires the analog signal to be converted from the
analog to the digital domain. This conversion process is called analog-to-digital conversion
and is performed by an ADC. AD-conversion consists of two steps: Sample & Hold (SH)
followed by quantization, which is depicted in fig. 3.1.

The performance of ADCs is mainly limited by noise due to the SH-circuit, and signal
distortion due to quantization [48]. A higher performance (less noise, higher resolution,
higher linearity) generally requires a higher power consumption [49]. Power consumption
is decreasing over the years, but sampling rate and resolution improve only slowly [49],
although this is disputed by others [48].

Quantization limits the output to a finite set of discrete values, which in general will
not exactly represent the input signal. In most cases the quantization levels are at uniform
distance, known as the Least Significant Bit (LSB).

The quantization error is the difference between the output and the input signal of the
quantizer. It is usually assumed that the error is uniformly distributed between − 1

2LSB and
1
2LSB with an equal amount of power for each frequency, i.e. it is modeled as white noise
and independent of (and hence uncorrelated from) the input signal. The total power ε of
this quantization noise can then be calculated to be

ε =
1

LSB

∫ 1
2 LSB

− 1
2 LSB

x2 dx =
LSB2

12
(3.1)

With the above assumptions and a full-scale sinusoid as input signal, one can derive the
SNR at the output of a b-bit quantizer. A sinusoid with amplitude A has power 1

2A
2, so

Large parts of this chapter have been submitted to IEEE Transactions on Circuits and Systems
II: Express Briefs as “Spurious-Free Dynamic Range of a Uniform Quantizer” by M.S. Oude Alink,
A.B.J. Kokkeler, E.A.M. Klumperink, K.C. Rovers, G.J.M. Smit and B. Nauta.
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Figure 3.1: Graphical representation of analog-to-digital conversion. Sampling and quanti-
zation can theoretically be performed in arbitrary order, but usually the sampled signal is
quantized.

when it is full-scale the power is 1
2 (LSB · 2b−1)2. The SNR then is

SNR =
1
2

(
LSB · 2b−1

)2
LSB2

12

=
3
2

22b (3.2)

which expressed in dB becomes

SNR = 10 log
3
2

22b = 6.02b+ 1.76 [dB] (3.3)

In reality the quantization error will not be uniformly distributed and can be correlated
with the input signal. If the input signal is a noise source with known probability density
function (pdf), the effects of quantization can be removed by correcting the resulting acf. A
famous example is the correction of 1-bit quantization of a Gaussian noise source, known as
the Van Vleck-correction [50]. Note that corrections fail if the noise has a different pdf or if
it is not noise, and therefore this correction cannot be used in a general purpose SA.

If the input signal is a deterministic signal, uniform quantization gives rise to distortion,
resulting in a spectrum different from the input signal plus an additive white noise floor. The
total power of the distortion components is still relatively well approximated by eq. (3.3),
especially for a larger number of quantization levels.

For a sinewave input without noise, uniform quantization results in pure harmonic dis-
tortion. This has been analyzed by Blachman [51], resulting in formulas that involve infinite
and slowly converging summations of Bessel functions. The distortion power is not dis-
tributed evenly over the harmonics as the reader will see later. Because the quantized signal
will be sampled in an ADC, aliasing will cause all distortion components to fall in the 0 to
fs/2 frequency region, and therefore all distortion components need to be considered. The
power of the distortion peaks decreases when the resolution of the quantizer is increased, but
the resolution of ADCs is limited by the required sampling rate and the maximum allowable
power consumption [48]. It would be useful to have simple design equations to allow for
exploration of the design space and optimize between resolution, SNR and SFDR.

Although not directly of concern for SAs, it is useful to note that everything in this
chapter applies equally well to zero-order hold DACs. The zero-order hold DAC is an
important type of DAC. It retains the sample value until the next sample, so for uniformly
quantized digital signals the result is a uniformly quantized analog signal, and the same
situation is obtained as after quantizing an analog signal.

As was discussed in chapter 2, crosscorrelation makes it possible to lower the noise
floor when the noise is uncorrelated. With each branch having its own ADC, this is a
valid assumption for the thermal noise. In case the ADCs are triggered by separate clocks,
the effects of clock jitter may also be mitigated by the correlation process. However, the
distortion introduced by quantization will be partially correlated as the signal is present in
both branches. As a result, the correlation process will not lower them, and the SFDR will
be limited by this distortion. If an SFDR of 70 dB is required, the distortion components
caused by quantization need to be more than 70 dB below the desired signal component. It
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is important to know the lowest amount of bits required, as this allows a higher sampling
rate [48], lower power consumption [49] and simpler digital hardware. The downside of using
fewer bits is the increase in quantization noise, which requires a longer correlation time if
the quantization noise is not negligible compared to the noise introduced by the analog part
of the system.

3.2 Quantization of a sinusoid

Multilevel quantization of a sinusoid without noise has been investigated mathematically by
Blachman [51]. It was shown that for a midriser quantizer (i.e. a quantizer with a threshold
exactly at 0) only odd-order harmonics are produced due to the odd-symmetric nature of the
quantization staircase. To simplify calculations, all amplitudes in this chapter are expressed
in LSB, and one LSB is normalized to 1. The resulting output signal then is equal to [51]

Ap = δp,1A+
∞∑
m=1

2
mπ

Jp(2mπA) (3.4)

where Ap is the output amplitude of the p-th harmonic, δi,j is the Kronecker delta function,
A is the input amplitude and Jp is the p-th order Bessel function of the first kind.

Using the quantization staircase q(x) as shown in fig. 3.2, eq. (3.4) can be generalized
to uniform quantizers by writing it as a linear transfer plus the quantization error. This
quantization error is periodic with a period of 1 LSB. Hence, q(x) can be written as the sum
of x and the Fourier series of the quantization error (note that for notational convenience a
minus-sign is used for the cosine part).

q(x) = x+
∞∑
m=1

am sin(2πmx)−
∞∑
m=1

bm cos(2πmx) (3.5)

where the coefficients can be found by straightforward calculation:

am =
2
T

∫
〈T 〉

(q(x)− x) sin
2πmx
T

dx

= 2
∫ ∆+1

∆

(
1
2

+ ∆− x
)

sin(2πmx) dx =
2 cos2 (∆πm)− 1

πm

bm = − 2
T

∫
〈T 〉

(q(x)− x) cos
2πmx
T

dx

= −2
∫ ∆+1

∆

(
1
2

+ ∆− x
)

cos(2πmx) dx =
sin 2∆πm

πm

where ∆ is the offset in LSB.
Using the same method as Blachman [51] one finds

Ap =



∞∑
m=1

bmJ0(2πmA) p = 0

2
∞∑
m=1

amJp(2πmA) + δp,1A p odd

2
∞∑
m=1

bmJp(2πmA) p even

(3.6)

which reduces to eq. (3.4) for ∆ = 0.
Because A is expressed in LSB, the number of quantization levels n directly depends on

the amplitude A of the sinusoid. Thus n does not need to be a power of two. A real-life
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Figure 3.2: The quantization staircase of uniform quantizer can be decomposed into a
straight line and a repetitive quantization error. The black lines represent ∆ = 0, corre-
sponding to a midriser quantizer.
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Figure 3.3: Partial spectrum of a full-scale sinusoid after 8-bit quantization.

situation where this is the case is a sinusoid that does not cover the whole input range of
the quantizer.

Figure 3.3 shows the spectrum of a full-scale sinusoid quantized with 8 bits (A = 128),
obtained by simulation and by numerical evaluation (both in Matlab) of eq. (3.4). For the
harmonic p with the highest power, p equals 795, which is close to 256π as deduced by
Blachman [51], where it was shown that the highest spurious harmonic is around p ≈ 2πA.
Numerical evaluation (not shown here) indicates that the approximation of the strongest
harmonic being located roughly at 2πA is only valid for at least 20 quantization levels. In
other cases the third harmonic is the strongest.

Pan & Abidi [52] simulated the effect of quantizing a sinusoid using a midriser quantizer.
They constructed two linear fits for the power of the most powerful harmonic as a function
of the number of bits, both with a slope of 9 dB/bit, but with different offsets. Although
these fits were intuitively explained, it can be seen from their simulation results [52, fig. 3]
that the true slope is somewhat less than 9 dB/bit.

The SFDR was determined by numerical evaluation for a full-scale sinusoid with ∆ = 0
for all even n (to keep symmetry around zero) up to 13 bits, as shown in fig. 3.4a. A linear
fit (also shown in fig. 3.4a) of these points results in

SFDRσN=0 = 8.07b+ 3.29 [dB] (3.7)

where b = log2 n. The subscript σN = 0 is added to denote absence of noise. Because
n is not necessarily a power of 2, b is not necessarily an integer. This approximation has
a mean absolute error of 0.25 dB and a standard deviation of 0.31 dB, with a maximum
error of 1.56 dB occurring for 58 quantization levels. Numerical evaluation showed this
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(a) SFDR for a full-scale sinusoid as a function of the number of quantization
levels for a midriser quantizer (points) and linear fit (line).
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Figure 3.4: The SFDR in dB after quantizing a full-scale sinusoid with b bits can be ap-
proximated by a straight line.

approximation to hold up to at least 25 bits.
There is one ambiguity in the definition of the SFDR that needs to be clarified. In the

case of only a few quantization levels, the first harmonic (or fundamental component) is lower
in amplitude at the output than at the input. For example, in case of 1-bit quantization of
a full-scale sinusoid, the power of the output fundamental is 3.8 dB lower than the input
power. One could define the SFDR with respect to the input amplitude (which is the usual
definition) or with respect to the output amplitude. The difference is shown in fig. 3.5. It
can be seen that for 4 bits or more the difference is negligible. The linear fit of eq. (3.7) uses
the SFDR with respect to the output fundamental, which seems to be in accordance with
the choice made by Pan & Abidi [52].

For arbitrary ∆, both even-order and odd-order harmonics are present, which means
the distortion power is distributed over more distortion components. One would expect the
peaks to decrease by roughly 3 dB if even-order and odd-order harmonics are equally strong.
Setting am in eq. (3.6) equal to bm for m = 1 (for reasons to be discussed in section 3.3):

2 cos2 (∆π)− 1
π

=
sin 2∆π

π
(3.8)

yields, using the identities [53]

cos
π

8
=

1
2

√
2 +
√

2 cos
5π
8

=
1
2

√
2−
√

2 (3.9)
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Figure 3.5: Difference in dB between SFDR related to the input power and related to the
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760 800 840

−85

−80

−75

−70

−65

P
o
w

e
r 

[d
B

c
]

Harmonics

Full−scale − 0.65 LSB

(a) Full-scale minus 0.65 LSB.
SFDR is 69.85 dB.

760 800 840

−85

−80

−75

−70

−65

P
o
w

e
r 

[d
B

c
]

Harmonics

Full−scale − 0.85 LSB

(b) Full-scale minus 0.85 LSB.
SFDR is 67.60 dB.

Figure 3.6: Zoom-in on spectrum for 8-bit quantization of a sinusoid with near-full-scale
amplitude. The ‘holes’ in the spectra contain values below the range shown.

the solutions ∆ = 1
8 and ∆ = 5

8 . Numerical evaluation then indeed shows that the SFDR
increases by roughly 3 dB as compared to eq. (3.7).

In practice, the amplitude will never be exactly full-scale. Numerical evaluation shows
that the SFDR changes randomly with the same magnitude as shown in fig. 3.4 in the case
the amplitude is somewhere in the range between full-scale and full-scale minus 1 LSB. An
example is shown in fig. 3.6. This suggests that approximations to the theoretical value may
be off by 1 dB or 2 dB without compromising practical relevance.

3.3 Mathematical derivation of the trend

In this section the trend observed in the previous section will be mathematically derived.
It will turn out that it enables generalization to multitone inputs and the quantization of a
sinusoid in the presence of noise.

Blachman [51] showed that the harmonics for p� 2πA decrease by 3.01 dB per bit. In
his case, the LSB remains 1. In practice the maximum amplitude is often given and one
would like to see what happens if the resolution is increased. An extra bit means that the
LSB is divided by two. This corresponds to another 6.02 dB/bit decrease, so the net result
is a decrease of 9.03 dB/bit. This was also the conclusion drawn by Pan & Abidi [52].

Here, however, it is found that the harmonics around p ≈ 2πA decrease by only 2 dB/bit
(leaving the LSB at 1). This will be derived from the exact analytic formula as given in
eq. (3.6) by using approximations to the Bessel function and showing that only the first
term in the summation contributes to the trend.

As suggested in [51], the Bessel functions can be approximated by Airy functions in the
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Figure 3.8: Numerical evaluation of p̂
2
3 ζ(πn/p̂) for a midriser quantizer with n ranging from

20 to 1024.

region where p ≈ 2πA [54, p366, eq. (9.3.6)]:

Jp(pz) ≈
(

4ζ(z)
1− z2

) 1
4 Ai

(
p

2
3 ζ(z)

)
p

1
3

(3.10)

where

ζ(z) = −
(

3
2

√
z2 − 1− 3

2
arccos

1
z

) 2
3

(3.11)

With the strongest harmonic p̂ located at p̂ ≈ 2πA, eq. (3.4) in combination with
eq. (3.10) yields

Ap̂ ≈ 2
∞∑
m=1

cm

(
4ζ(z)
1− z2

) 1
4 Ai

(
p̂

2
3 ζ(z)

)
p̂

1
3

(3.12)

where cm = am if p̂ is odd, cm = bm if p̂ is even, and z = 2πmA/p̂.
The cases m = 1 and m > 1 of eq. (3.12) are considered separately. It will turn out

that only the m = 1 term in the summation contributes to the trend, while the other terms
merely act as ‘random’ deviations from this trend.

Apart from the bell-shaped curve at the peaks, the quantization error of a quantized
sine-wave resembles a sawtooth waveform with a modulated period, where the maximum
frequency (at the zero-crossings) equals 2πA times the frequency of the sine [52]. From
numerical analysis it is seen that p̂ is always slightly smaller than 2πA, but tends to get
closer to 2πA for larger A. For m = 1 one numerically finds z ∈ (1; 1.1) if n ≥ 20, see
fig. 3.7a. In this region the factor 4ζ(z)/(1− z2) is virtually constant, see fig. 3.7b.

The parameter p̂
2
3 ζ(2πA/p̂) of the Airy-function was numerically evaluated for a midriser

quantizer quantizing a full-scale sinusoid for n = 20 to n = 1024 and is shown in fig. 3.8.
Obviously this parameter stays roughly -1, indicating that Ai(p̂

2
3 ζ(2πA/p̂)) can also be

considered a constant.
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Removing constants, one obtains for the first term in the summation of eq. (3.12)

Ap̂(m = 1) ∝ 1
p̂

1
3

(3.13)

which corresponds to a p̂−
2
3 dependency in the power spectrum, equivalent to a decrease of

2.01 dB/bit.
For m ≥ 2, the Airy-function can be approximated using [54, p449, eq. (10.4.83)]

Ai(−x) ≈
sin
(

2
3x

3
2 + π

4

)
√
πx

1
4

(3.14)

for x � 1. Figure 3.9 shows that this approximation is quite close for x > 1.2 (error less
than 0.013).

Plugging this and the approximation z = 2πmA/p̂ ≈ m into eq. (3.10) and simplifying
one obtains

Jp(pz) ≈ Jp(pm) ≈
(

4
m2 − 1

) 1
4 sin

(
− 2

3pζ(m)
3
2 + π

4

)
√
πp

1
2

(3.15)

There doesn’t seem to be a relation between the number of quantization levels and the
phase of the sinusoid in eq. (3.15). Hence, the sine-term can be considered as a random
variable assuming values between -1 and 1 with an expectation of 0.

Concluding, only the first term in the summation of eq. (3.12) is important for the overall
trend, while the other terms provide more or less random deviations. This randomness
explains the erratic behaviour around the trend of the SFDR in fig. 3.4. Combining the
2.01 dB/bit for the m = 1 term and the 6.02 dB/bit from halving the amplitude of the
quantization error, a trend of 8.03 dB/bit increase in SFDR is expected, which is very close
to the 8.07 dB/bit obtained from numerical evaluation.

3.4 Quantization of a sinusoid with noise

Adding noise decorrelates the input signal and the quantization error [55]. The effect only
depends on the univariate pdf of the noise, and not on its spectrum [51]. The resulting
frequency response is the product of the frequency response of the quantization error as
given in eq. (3.4) and the Fourier transform of the pdf of the noise [51, 55].

A general formula of the output spectrum of a crosscorrelator using quantization was
derived by Kokkeler & Gunst [56] for arbitrary signals with arbitrary wss noise sources.
This model can be used to determine the output spectrum of a single quantizer, because,
according to the Wiener-Khinchin theorem, the Fourier transform of the acf of a signal is
equal to the spectrum of this signal.
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Figure 3.10: Contour plot of the error made in dB by the approximation given in eq. (3.17).

Because thermal noise has a Gaussian pdf and is often the most important noise contri-
bution, the effect of this noise on the SFDR will be studied in more detail. The resulting
spectrum is found to be [51, 55, 56]:

Ap = δ1A+
∞∑
m=1

cmJp(2mπA)e−2π2σ2
Nm

2
(3.16)

where σN is the standard deviation of the noise in LSB.
Using the previously derived result that only m = 1 contributes to the trend of the SFDR

as a function of the number of quantization levels, it can be observed that the increase in
SFDR in dB depends quadratically on the noise level in LSB. Given as an equation:

SFDRσN = SFDRσN=0 + 20 log10 e
−2π2σ2

N = 8.07b+ 3.29 + 171.5σ2
N [dB] (3.17)

The result is that adding more noise increases the SFDR, which may look counter-intuitive.
This is simply a matter of definition of the SFDR for a quantizer; only spurious peaks are
considered. The SFDR of an SA does take the noise level into account, but this is only
possible because the (effective) noise bandwidth is known.

Figure 3.10 shows a contour-plot of the error in dB between the approximated and
calculated SFDR as a function of the number of quantization levels and the amount of
noise. A negative error means the approximation underestimates the SFDR given by theory.
Clearly the approximation is quite close over the whole range of values shown. The difference
of less than 2 dB in virtually all cases bears no practical relevance as discussed in section 3.2.

Because the instantaneous amplitude of the noise can assume any value, practical quan-
tizers will sometimes clip, resulting in (additional) distortion of the spectrum. Gaussian
noise has an amplitude of less than 3σ in 99.87% of the time. Simulations show that in
case the amplitude is full-scale minus 3σ, clipping effects have no visible influence on the
spectrum.

3.5 Multitone quantization

Using the derivation of the 8 dB/bit trend for quantization of a single sinusoid, it turns out
to be rather straightforward to generalize it to an arbitrary number of sinusoids. Suppose
N sinusoids of frequency fi and amplitude Ai are present at the input, where i ranges from
1 to N . The output will contain peaks at frequencies

∑
i pifi, with

∑
i pi > 0 (note that

any individual pi can be negative), the amplitude of which is denoted by Ap1,...,pN . This
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amplitude can be derived using the identities [51]

ejz sin(θ) =
∞∑

p=−∞
Jp(z)ejpθ J−p(z) = (−1)pJp(z) (3.18)

resulting in

Ap1,p2,...,pN =
N∑
i=1

δpi,1Ai∏
j 6=i

δpj ,0

+
∞∑
m=1

(
cm

N∏
i=1

Jpi(2πmAi)

)
(3.19)

Note that if (some of) the input frequencies are commensurate, i.e. ∃k, lj ∈ Z such that
kfi =

∑
j 6=i ljfj , multiple amplitudes Ap1,...,pN will occupy the same frequency, and need to

be added while taking into account their respective phase relations to get the total amplitude
at that specific frequency. This gives a much more complicated expression for the general
case and is not discussed here.

In the derivation of the trend in SFDR for a single sinusoid, a p−
1
3 amplitude dependence

was found in the case the LSB was kept equal to 1. Since the summation now contains the
product of N of these Bessel-functions, one finds a p−

N
3 amplitude dependence when the

frequencies are non-commensurate. This results in a 6.02+2.01N dB/bit increase in SFDR.
Simulations with two non-commensurate tones confirmed a trend of roughly 10 dB/bit.

For more tones, simulation results become unreliable because the limited number of bins
in an FFT cause multiple non-negligible intermodulation products to fall into the same
frequency bin.

3.6 Example

The approximation given in eq. (3.17) allows a quick evaluation of the trade-off between
resolution of the ADC on one side and SNR and SFDR on the other. If the signal applied
to a quantizer contains a sinusoid plus noise with a given SNR, σN can be readily evaluated
by making use of the fact that a sinusoid with amplitude A has power A2/2:

σN =
n

2
√

2
10−

SNR
20 [LSB] (3.20)

Consider the situation where the input of the quantizer has an SNR of 70 dB, and the
demands are that the SNR at the output must be at least 65 dB, while the SFDR should be
at least 90 dB. It is then found that the SNR of the quantizer needs to be at least 66.7 dB,
which using eq. (3.3) yields n ≥ 1753. For an SFDR of 90 dB, eqs. (3.20) and (3.17) are
used to find n ≥ 1273. In this case, the SNR-requirement is the limiting factor.

Consider the same situation with the SNR set to 60 dB with the demand that it must
be at least 55 dB at the output. Using eq. (3.3) one finds n ≥ 554. In this situation the
requirement on the SFDR yields n ≥ 698, which makes it the limiting factor. Numerically
evaluating n = 698 using the exact formulas, the SFDR is found to be 91 dB.

This example clearly demonstrates the accuracy and ease of use of the approximation.

3.7 Practical considerations

All the above calculations assume ideal ADCs, where the center of the quantization steps
are all on a straight line. If they are not, such that Differential Non-Linearity (DNL) and
Integral Non-Linearity (INL) are not equal to zero, there will be non-linear distortion, which
can be “significant” [51], although no attempt was made to analyze this.

In a practical implementation, an FFT of the correlation function will generally have
a limited number of points, usually in the order of 24 to 212. This means that many
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harmonics may fall into the same frequency bin, thereby adding their powers. As a result,
the SFDR is decreased. The combination of harmonics falling into the same frequency bin
is fully dependent on the fraction f0/fs, where f0 is the original sinusoidal frequency and
fs the sampling frequency, which makes a general expression very hard to derive. Therefore
it would be better to require the highest harmonic to be several dB lower than strictly
necessary given the desired SFDR.

Except for the harmonics, quantization noise in both branches is uncorrelated, and can
be lowered by the correlation process. Since lowering the noise floor by 3 dB already requires
a 4 times longer correlation time, it would be advantageous if the noise floor is not increased
significantly by the quantization noise. For evaluating the effect eq. (3.3) can be used. With
an analog SNR of SNRanalog, quantization noise can be considered insignificant if it increases
the noise by less than x dB, where x is a design parameter. This means that

SNRADC ≥ SNRanalog − 10 log10

(
10

x
10 − 1

)
[dB] (3.21)

As an example, taking x = 0.5 dB and SNRanalog = 40 dB, it follows SNRADC ≥ 49 dB,
which requires 8 bits. This extra 0.5 dB in noise power requires 25% longer integration time
to obtain the same noise level as before quantization. Taking x = 1.5 dB requires 7 bits,
and 100% longer integration time, while taking x = 0.1 dB requires 9 bits, and 4.7% longer
integration time.

3.8 Conclusions

Quantization of a sinusoid introduces harmonic distortion, of which the most powerful com-
ponent goes down by about 8 dB/bit. This trend was also mathematically verified by
showing that only the first term in the analytical formula contributes to the trend. These
results were then used to derive the effects of additive Gaussian noise and multitone inputs
on SFDR. Both noise and multitone inputs decrease the correlation between input signal
and quantization error, and hence increase SFDR. It can be regarded as a form of dithering.

The SFDR increases linearly with the variance of the Gaussian noise. If the standard
deviation of the noise is equal to 1 LSB, the SFDR is increased by 171.5 dB. When a
quantizer is excited by N sinusoids of non-commensurate frequencies, the SFDR increases
by 6 + 2N dB/bit.

These results can be applied in designing systems without having to use the exact for-
mulas, which can save a lot of time. It relates the SNR, the SFDR and the number of
quantization levels; knowing two of them allows easy calculation of the third.

3.9 Recommendations

Pan & Abidi [52] showed through simulation that the SFDR is influenced by INL in a not-
so-straightforward way. In virtually all of their formulas they use their trend of 9 dB/bit,
while here a trend of 8 dB/bit is found. It would be interesting to see if the effects of INL
and DNL can be incorporated into the approximations derived in this chapter, for example
by following the approach of [57]. This would make the approximations in this chapter even
more useful in modern circuits and systems design.





Chapter 4

Design of the spectrum analyzer

The mathematical analysis of crosscorrelation in chapter 2 shows that crosscorrelation is a
promising way to lower the noise level. In this chapter an SA will be designed that puts this
effect to use to increase the SFDR. With the results of chapter 3, the minimal resolution
of the ADC to obtain a desired SFDR can be calculated. Key properties of the system are
linearity, NF, power consumption, cost and chip area, but as always trade-offs between them
are unavoidable.

4.1 System design

Because crosscorrelation lowers the noise floor, a system with a very high linearity is de-
sired. Lowering the noise floor by 3 dB using crosscorrelation requires a fourfold increase in
measurement time, so the NF should not become too large.

Traditional receiver architectures start with an LNA at the input to limit the total NF
of the system. For an SA, a wideband LNA would be required, but their Third Order Input-
referred Intermodulation Intercept Point (IP3) is typically limited to a few dBm [58] (the
most linear wideband LNA found has an IP3 of +9 dBm [59]); much lower than desired.
Moreover, it requires an even more linear mixer because its effective IP3 is decreased by the
gain of the LNA. Therefore an architecture is envisioned without a wideband LNA, which
increases linearity at the cost of noise.

On-chip filters cannot achieve very high specifications due to low-Q components and
inductors that occupy a large area. External filters are expensive and may require extra
pins on the package. An architecture that uses as little external filters as possible is preferred.
Since their use can probably not be completely avoided, they are preferred directly after
the antenna, where the pins on the package and impedance matching are required anyway.
Any required filtering action after this initial external filter should be dimensioned such that
they can be implemented on-chip whenever possible.

The external filters need to be connected to a matched load of 50 Ω. An attenuator
at some point is desirable, as it can optimize SFDR. The maximum attainable SFDR is a
function of several variables, including attenuation of the input signal, as will be discussed
later in this section. Moreover, if the attenuation is put before any components that have
a limited input-swing, it can increase the measurement range. Thus, attenuation very close
to the input is preferrede.

Because the bandwidth of the system ranges from 0 GHz to 6 GHz, direct AD-conversion
is not possible, which means that a frequency converter is required. Because the system is
designed for high linearity, a switching mixer looks like a very good solution [60]. Switching
mixers are operated using a square wave, so harmonics of the oscillator frequency fLO are
created. These harmonics of fLO downconvert harmonic images of the desired frequency to
be downconverted to the same frequency. Moreover, they introduce harmonics of the desired
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Figure 4.1: An HR-mixer approximates an ideal sinewave by superposition of square waves
(reproduced from [61]).

signal itself.
Several techniques exist to mitigate these problems. One concept is the use of Harmonic

Rejection (HR)-mixers [61]. These mixers try to approximate the ideal situation, a pure
sine wave, by a superposition of square waves. Superposition is achieved by putting several
mixers in parallel and summing the results (see fig. 4.1). Which images and harmonics are
removed depends on the combination used to approximate a pure sine wave.

A second concept is Polyphase Multipath (PM) [62, 63], which will be explained later in
more detail. Unfortunately this technique does not remove all harmonics and images. The
first image that is not canceled is situated at (W + 1)fLO before mixing, where W is the
number of PM-paths used. These remaining images should be removed beforehand by the
external filters at the input. It is thus possible to use a bank of external low-pass (or band-
pass) filters, each with a cut-off frequency that is W times as high as the cut-off frequency
of the previous filter. The canceling of harmonics and images is schematically depicted in
fig. 4.2. Filtering and the cancellation of harmonics and images is a very common problem
and not the focus of this thesis, and is therefore not fully worked out.

A block diagram of the resulting system design is shown in fig. 4.3. Each block will be
discussed below, while some parts of the system are worked out in more detail in chapters 5
and 6. The difference between the two designs concerns the oscillator, which will be discussed
later on.

4.1.1 Antenna

In many RF-systems, an antenna is used to receive signals. For the SA it serves as a
model for the signal source, because SAs are often directly connected to the Device Under
Test (DUT). In RF-systems the wave-like nature of the signals cannot be neglected, and
impedance matching is required to prevent reflection of the waves. It is customary practice
to use an impedance of 50 Ω. The antenna or signal source is not part of the system, and is
not further discussed.

4.1.2 External filter bank

In the envisioned system, the filter bank consists of R low-pass filters, each having a cut-off
frequency W times larger than the previous one. The first filter has a cut-off frequency
at half the sampling frequency of the ADC, because then it can be immediately sampled
without aliasing.1

Before a measurement, a specific filter is connected to the antenna and to the CMOS-
chip using some kind of switch. If the first filter is connected, no frequency conversion

1The current design involves a low-IF receiver. In a zero-IF receiver with I/Q-mixers the bandwidth is
equal to the sampling frequency.
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100 MHz 400 MHz 1.6 GHz
(a) The input consists of a desired signal (dark arrow) and many images.

100 MHz 400 MHz 1.6 GHz
(b) One filter (darkest) is used to remove many images.

100 MHz 400 MHz 1.6 GHz
(c) PM cancels the remaining images.

100 MHz 400 MHz 1.6 GHz
(d) After plain mixing many harmonics of the desired signal are also present.

100 MHz 400 MHz 1.6 GHz
(e) PM cancels many of the harmonics, but not all; they should be removed by an addi-
tional filter after conversion.

Figure 4.2: Schematic depiction of the cancellation of unwanted images and harmonics using
filters and PM (for HR-mixers the idea is similar). The schematic picture is oversimplified
as in the real world images and harmonics are not completely removed but only attenuated.
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Figure 4.3: Two main designs of the correlation spectrum analyzer.
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is necessary and the input signal can be directly sampled. If any of the other filters is
connected, frequency conversion is necessary, and the problem with images and harmonics
comes into play. The filter removes all images > W before downconversion, while PM
removes all images and harmonics ≤W ‘during’ downconversion.

With a total bandwidth B of the SA, a sampling frequency fs of the ADC, and a first
harmonic W not removed by PM, the number of filters R required is

R = 1 +
⌈

logW
2B
fs

⌉
(4.1)

which clearly illustrates the trade-off between the number of filters and the number of
branches in PM.

Several types of external filters exist, such as Surface Acoustic Wave (SAW)-filters, Bulk
Acoustic Wave (BAW)-filters, ceramic and crystal resonators, microstrip lines and filters
consisting of discrete lumped elements (which do have a high Q). The exact operation of
these filters is not important in this context, so it will not be discussed. The main reason to
use the external filters is their higher frequency-selectivity, their much steeper roll-off, and
their higher suppression in the stop band.

External filters typically have an Insertion Loss (IL) of several dB (ceramic 1 dB to
2 dB2, crystal 2 dB to 3 dB and SAW 3 dB3), which directly translates to NF. Because
the external filters are expensive, they are not duplicated, and all noise added will be fully
correlated. Hence, provided all other noise will be uncorrelated, this noise will ultimately
limit the noise floor.

4.1.3 Matching & Attenuation

With 65 nm technology, the maximum gate-oxide voltage is 1.2 V. With a threshold voltage
of roughly 0.2 V, this leaves only about 1 V as input range. The maximum power then
is equal to A2/2R, where A is the maximum amplitude of a sine (0.5 V in this case). At
R = 50 Ω this is equal to 4 dBm. The attenuator needs to be designed such that higher
input powers can also be handled with standard technology.

Moreover, the maximum attainable SFDR is a function of several variables, such as
Second Order Input-referred Intermodulation Intercept Point (IP2), IP3, NF and oscillator
phase noise [19]. Attenuation of the input signal increases IP2, IP3 and NF, but each with a
different factor, see fig. 4.4. The option to choose between different attenuation levels allows
optimization of the SFDR.

Using crosscorrelation, the NF can be lowered, and therefore the optimum attenuation
changes with measurement time. Nevertheless, the need for variable attenuation remains.

To maximize linearity the use of only resistors and switches in the matching and at-
tenuation network is attempted, consuming (virtually) no power. Chip area is very hard
to predict, but is expected to be negligible compared to components such as the Voltage-
Controlled Oscillator (VCO), the ADCs and the digital hardware.

4.1.4 Mixer & PM

In a recent Master’s thesis from Soer [60], a very linear mixer referred to as a Tayloe mixer
was investigated and shown to be very linear. An implementation was made on chip in
65 nm technology with a supply of 1.2 V. The most recent worst-case figures are an IP3
of +11 dBm, an NF of 6.5 dB and a gain of 19 dB. The power consumption is 67 mW,
of which around 15 mW is consumed by the buffers driving the switches. The other power
consumer is the LNA at IF. The active chip area is less than 0.13 mm2: 0.04 mm2 for the
IQ-mixer, 0.08 mm2 for the two IF-amplifiers and the remaining area for a clock-divider.

2http://www.t-ceram.com/ceramic-filters-diplexers.htm
3http://www.vanlong.com

http://www.t-ceram.com/ceramic-filters-diplexers.htm
http://www.vanlong.com
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Figure 4.4: The SFDR is a function of IP2, IP3, NF, oscillator phase noise and attenuation
of the input signal (graph from the Excel-sheet referred to in [19]).

These figures will be published at the ISSCC of 2009. Linearity is severely limited by the
LNA at IF. The Tayloe mixer itself in simulations showed an IP3 of +27 dBm. Because of
the high linearity, this will be the frequency converter of choice.

The Tayloe mixer uses switches to perform the frequency conversion. Multiplication is
therefore performed by a square wave with a certain duty cycle, resulting in many harmonics
of the fundamental oscillator frequency. Only one of these harmonics yields the desired IF,
while the others result in unwanted signal components. Traditionally these unwanted signal
components are removed using filters, but for low-IF the closest unwanted signal component
is so close to the desired signal component that on-chip filtering becomes impossible.

A recent development called PM [62, 63] (partly) solves this problem by canceling some of
the harmonics. Canceling of harmonics is achieved by replicating the system to create several
paths, applying a phase-shifted version of the input signal (or oscillator signal) to each of
these paths, reverse the phase-shift at the output of each path and add all the signals. This
process is schematically depicted in fig. 4.5. By making sure the first non-canceled harmonic
is far enough from the desired IF, an on-chip filter can be used. Some additional techniques
to suppress undesired images and harmonics are discussed in the recommendations.

4.1.5 Oscillator

The oscillator generates a signal that can be used to operate the Tayloe mixer and the
sampling moments of the ADC. In most systems, a quartz-based oscillator (which is an
off-chip device) is used to generate a very stable reference frequency . It relies on piezo-
electricity to transform mechanical resonance, determined by the shape of the crystal, into
a voltage waveform. The oscillating frequency is temperature dependent. This temperature
dependency is usually compensated, but some residual dependency always remains. With
high absolute frequency requirements even this residual dependency results in too much
inaccuracy, which is why many commercial SAs thermally stabilize the oscillators [64]. This
in turn means that SAs require a warm-up time after power is switched on to meet the
specifications listed in the datasheets.

Because many systems need a more tuneable frequency range than can be directly pro-



4.1. SYSTEM DESIGN 47

Figure 4.5: The principle of PM to cancel unwanted harmonics and images (reproduced
from [63]).

vided by the crystal (which is almost always the case because their tuning range is just
enough to compensate for loading effects), one usually employs a VCO in the form of an LC-
or ring-oscillator, connected with the crystal through a frequency divider in a Phase-Locked
Loop (PLL) [65]. For the SA under design, the bandwidth ranges from 0 GHz to 6 GHz. It
is thus necessary to be able to generate a frequency ranging from fs to (6 GHz− fs).

Below 1 GHz, on-chip inductors are too large and suffer from too much internal resistance
to be of practical interest. Above 1 GHz however, they provide a far more energy-efficient
oscillator than can be provided by ring-oscillators, which have a Q ≤ 1 because there
is no energy reuse. A better energy efficiency than that of ring-oscillators is necessary,
because Rover’s [4] phase noise requirement of −134 dBc/Hz at 1 MHz offset at an oscillator
frequency of 1 GHz (which is also a typical specification of commercial SAs [19]) requires a
power consumption of roughly 2.5 W for a ring-oscillator, while an LC-oscillator requires only
8 mW (see section B.7 for the derivation). These numbers only reflect the power required
for the oscillator itself, and do not include power for the buffers. The power consumption
of LC-oscillators increases if tunability is required [66].

The previous power estimates are based on the assumption that a 1 MHz offset is (just)
outside of the PLL bandwidth. To a first-order approximation, the noise spectrum inside
the PLL bandwidth is flat, while outside of this bandwidth it follows the plain phase noise
of the VCO until it hits the white noise floor generated by components such as the buffer.
This white noise floor can usually be neglected. Many cheap crystals run at a frequency of
10 MHz or 30 MHz, and the bandwidth of a PLL is usually set to roughly 10% of fref for
various reasons, which makes the assumption that the phase noise of the VCO itself should
be −134 dBm/Hz at a 1 MHz offset justified.

For smaller RBW, the phase noise may be higher to achieve the same SFDR: an RBW
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Figure 4.6: The influence of phase noise on maximum attainable SFDR as a function of
RBW or offset frequency.

of 10 kHz gives a phase noise requirement of −114 dBc/Hz at 10 kHz offset. In commercial
SAs the SFDR usually increases for smaller RBW. Using a PLL this effect is achieved due
to the flat noise spectrum within the PLL bandwidth. At some point the floor will start to
rise due to flicker noise, and the SFDR will saturate.

Oscillator design proposal

An oscillator design is proposed and worked out to some extent to obtain a reasonable
estimate of the required power consumption.4 An LC-VCO tunable from 10 GHz to 12 GHz
is designed and created in [67] and is shown in fig. 4.7. It uses 0.18 µm CMOS-technology
operating at a 2.2 V supply. The measured phase noise is −125.33 dBc/Hz at 1 MHz offset
at a power consumption of 50 mW. The Figure-of-Merit (FoM) is −188 dBc/Hz, which is
among the best available at these frequencies [66].

Before continuing, a few assumptions have to be made:

• The same specifications can be attained with a 65 nm process. This seems reasonable
as [66] suggests performance improves with technology, but the system under design
uses a lower supply voltage. A 1.2 V supply voltage can still easily handle the required
overdrive voltages of the transistors used for providing negative resistance (see fig. 4.7).

• Phase noise can be scaled the same way as thermal noise: doubling the power con-
sumption lowers the phase noise by 3 dB. This is more or less true for fixed oscillators,
but at least questionable for tunable oscillators [66].

• Multiple oscillators can be safely put on a single chip without significant coupling.
Because the entire SA will be integrated onto a single chip, the chip will be relatively
large. This means the inductors can be placed far apart, which decreases mutual
coupling significantly [68].

By making a second LC-VCO, tuneable from 8 GHz to 10 GHz, the total tuning range
covers 8 GHz to 12 GHz. Both VCOs need to have −134 dBc/Hz phase noise at 1 MHz
offset, which is 9 dB better than the implementation in [67]. The frequency will be divided by
at least a factor two, which decreases the phase noise requirement by 6 dB. The net results

4Another idea for an oscillator architecture, which is more power-efficient but may have some significant
drawbacks, is presented in appendix C.
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Figure 4.7: The tuneable LC-VCO (reproduced from [67]).

is that the power consumption needs to be two times higher, giving a total of PVCO =
2 · 2 · 50 = 200 mW. Note that these numbers include the buffer power.

In the case of crosscorrelation however, these specifications may be lowered. When a
separate oscillator is used for both branches, any uncorrelated phase noise will be removed,
again at the cost of longer measurement time. In that case it is extremely important that
their frequencies are equal, because otherwise both the signal and the noise will be corre-
lated away (unless a fixed frequency difference is corrected for in the digital domain, see
section 4.2). This can be done e.g. by locking them to some external crystal through the
use of separate PLLs. In this case, the only correlated noise comes directly from the crystal,
which can be really low [64].

Using integer frequency dividers one can generate any frequency desired from the 8 GHz
to 12 GHz combined tuning range of the VCOs. With some ‘puzzle solving’ a way was
found to do this using only two divide-by-2 and four divide-by-3 integer dividers. This
is important because higher prime numbers require more logic and are more difficult to
implement operating at rates of 12 GHz. An overview of how to acquire the full tuning
range is shown in table 4.1. It should not be a problem to let the control-unit set the right
connections between the frequency dividers.

The architectures of divide-by-2 and divide-by-3 frequency dividers are shown in fig. 4.8.
Another implementation is given in [69]. Note that all of these architectures produce an
output signal with a 50% duty cycle. Using Current-Mode Logic (CML), these circuits can
be made very fast, even up to 40 GHz using 80 nm CMOS [70], so it should not be a problem
to operate them at 12 GHz using 65 nm CMOS.

An upper bound on the power consumption of the frequency dividers will be calculated
to comply to the phase noise requirement. This upper bound gives a value much lower than
the power required for the VCO, which means that a more detailed analysis is not required.

The total phase noise introduced by the cascade of frequency dividers should not exceed
−134 dBc/Hz at an offset of 1 MHz. The phase noise of frequency dividers has a flat
spectrum from 0 to fout/2 [71]. Since maximally four dividers are cascaded, the phase noise
of each divider should not exceed −140 dBc/Hz. Based on table 4.1, one divide-by-2 and
one divide-by-3 is required to operate at an input frequency of 12 GHz, one divide-by-2 to
operate at 6 GHz and one divide-by-3 each to operate at 4 GHz, 4

3 GHz and 4
9 GHz.
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Table 4.1: Frequency generation using a VCO, tunable be-
tween 8 GHz and 12 GHz, and integer frequency dividers.

Factor Div-by-2 Div-by-3 flow [GHz] fhigh [GHz]

1 0 0 8.000 12.000
2 1 0 4.000 6.000
3 0 1 2.667 4.000
4 2 0 2.000 3.000
6 1 1 1.333 2.000
9 0 2 0.889 1.333
12 2 1 0.667 1.000
18 1 2 0.444 0.667
27 0 3 0.296 0.444
36 2 2 0.222 0.333
54 1 3 0.148 0.222
81 0 4 0.099 0.148

The current consumption per latch can be calculated using [71]

LW = 8π2

(
1 +

γ

α
+
γT gmTRL

2αT

)
kTCL
I2

fout [dBc/Hz] (4.2)

CL is taken as 20 fF, just as in [69]. Based on a conservative value of 2 for the noise
factor of a transistor, a voltage swing of 0.6 V and an overdrive voltage of 0.2 V [73], the
factor between parentheses is roughly equal to (1 + 2 + 3) = 6. From this equation and a
−140 dBc/Hz phase noise requirement follows

Idiv-by-2 = 2.75× 10−9
√
fout [A] (4.3)

This means that the latches in the divide-by-2 frequency divider operating at an input
frequency of 12 GHz require a current of 213 µA. Since a divide-by-2 has two latches in
cascade, the total power consumption at a supply voltage of 1.2 V becomes 0.51 mW (note
that this is a conservative value because the first latch does not contribute to phase noise if
it obeys the setup- and hold-times of the second latch).

Divide-by-3 frequency dividers also have additional logic gates. To be on the safe side,
a divide-by-3 is treated as consisting of six latches. The longest path from clock to output
consists of three ‘latches’. Because phase noise adds incoherently, the phase noise of each
latch needs to be 10 log 3 ≈ 5 dB lower, or equivalently −145 dBc/Hz. Hence

Idiv-by-3 = 3.46× 10−9
√
fout [A] (4.4)

The power consumption of the divide-by-3 running at an input frequency of 12 GHz has a
power consumption 1.58 mW.

The total power consumption of the frequency divider then becomes (0.51+0.37)+(1.58+
0.91+0.53+0.30) = 4.2 mW. All these numbers are upperbound numbers, especially for the
divide-by-3 dividers, because not all components contribute in the same amount to the phase
noise, and can therefore run at a lower current. Nevertheless, the total power consumption
of the frequency dividers is insignificant compared to the VCO.5

The chip area is severely dominated by the inductors and does not scale significantly
with technology. In [67] the VCO occupies an area of 0.67 mm2. In the current design two

5Note that it is assumed that flicker noise is not an issue, but this requires verification.
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Figure 4.8: Architecture for integer frequency dividers.

VCOs are required to cover the whole tuning range, occupying a total area of 1.33 mm2.
This might be reduced by placing parts of the VCO underneath the inductors [66]. The size
of the frequency divider network is negligible.

4.1.6 IF-circuitry

The IF-circuitry is the circuitry between the output of the mixer and the input of the ADC.
It should be made very linear, and because it is assumed that the IF-frequencies only range
up to 100 MHz, a switched-capacitor implementation seems most promising.

In this design the RF-frontend does not amplify the incoming signals, so amplification
should be done at IF. Harmonics introduced by the switching mixer should be filtered out
using a Low-Pass Filter (LPF). Finally, the interface to the ADC should contain an SH to
provide a steady signal.

It is hard to estimate the power consumption, especially because the required gain (range)
of the LNA and the implementation of the LNA are not known. Soer [60] found a power
consumption of 50 mW for the LNA at IF. The filter might require some extra power,
as well as the interface to the ADC. Therefore a total power consumption of 100 mW is
assumed.

The area occupied by the two IF-amplifiers of the test chip designed by Soer is 0.08 mm2.
A conservative estimate is a total area of twice this size: 0.16 mm2.

4.1.7 Analog-to-Digital Converter

The ADC will convert the analog input signal to a digital output. The effects of quantization
have been elaborately discussed in chapter 3, leading to the conclusion that 9 bits is required
for an SFDR of 70 dB. It is better to have some extra margin, especially because the ADC
is not the only non-linear factor. Also, it may not be possible using automatic gain control
to fully utilize the input range of the ADC. Therefore 10 bits is the resolution opted for.

A pipelined ADC-architecture gives the required resolution at a sample rate of 200 MS/s,
see [48]. Based on [74] the FoM at 10 Effective Number of Bits (ENOB) is about 0.2 pJ
per conversion. At a sample rate of 200 MS/s a power consumption of 40 mW is expected.
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An ADC with specifications very close to what is desired (10 bits, 200 MS/s) is discussed
in [75], with a power consumption of 61 mW, so it seems like a reasonable assumption.

Although not completely fair because it is a different architecture, an on the chip area
can be obtained using another recently designed ADC [76]. The ENOB is around 10 bits for
sample rates up to 200 MS/s, and the FoM is 0.6 pJ per conversion. The chip area is 1.6 mm2

in a 0.13 µm CMOS-process, but will probably not scale much in a 65 nm CMOS-process due
to matching and noise requirements. It uses interleaving with 16 identical time-multiplexed
ADCs, all using the same time-interleaved track & hold. For a sample rate of 200 MS/s, the
16 channels may be reduced to 1, 2 or 3 channels. Based on the chip photograph, this would
bring the total area down by about 50%, resulting in approximately 0.8 mm2. The chip
area of the ADC in [75] is 1.0 mm2, so again the value thus obtained seems like a reasonable
assumption.

4.1.8 Correlator

After AD-conversion, digital signal processing is required to obtain the spectrum. The
spectrum is to be obtained using crosscorrelation. In order to maintain a logical flow of
information in this thesis, the different digital correlators, and the estimation on power
consumption and chip area, will be discussed in chapter 6.

4.1.9 Control

The control unit will control all the analog and digital components to comply to demands
from a user or running application. It is most likely a fully digital piece of hardware that
outputs the correct signals to select the external filter, the attenuator-setting, the oscillator
frequency for downconversion, the sampling rate of the ADC, the number of correlation
samples to calculate and the moments to start and stop measuring or calculating. It may
also include methods for calibrating the different parts. It will receive the desired functional
behavior of the block from an external source.

During a measurement the control unit does not have to do much, so its power consump-
tion will form a negligible contribution to the total power consumption. It is assumed that
most of the control operations can be performed by the same core that handles the digital
correlation, so (virtually) no additional chip area will be needed.

4.2 Cascading suppression mechanisms

Based on Rover’s research [4], a low-IF topology is chosen. The high requirements on
SFDR however could become a problem. Based on all the non-idealities like feedthrough,
mismatch and non-ideal filters (for simplicity it is assumed that each mechanism gives 40 dB
suppression, which is achievable [20, 23, 77]), the desired 70 dB suppression of all undesired
signals and spurs can never be met in one step, but a cascade of suppression mechanisms is
needed to achieve the desired SFDR.

For a 40 dB suppression per mechanism, two suppression mechanisms in cascade are
enough to allow the SFDR to reach 70 dB. We will take a look at fig. 4.3 to determine
which parts may become a problem.

The external filters suppress many images by 40 dB, because of feedthrough and non-
ideal frequency characteristics. Because they are low-pass filters, they will not suppress
the images close to the desired frequencies and the signals below the desired frequencies.
Harmonic distortion in external filters is negligible.

The mixer suppresses many harmonics and images by only a few dB, as the harmonics of
the square wave function only slowly decay in amplitude. For simplicity this small suppres-
sion is ignored as it is insignificant for the problem at hand. The mixer converts the images
to baseband. Because of feedthrough, signals present at IF before frequency conversion will
still be present at IF after frequency conversion, although suppressed by 40 dB.
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The PM-part suppresses many harmonics and images by 40 dB, but not all. The phase-
shifters will have feedthrough, but this feedthrough is not phase-shifted. The second set of
phase-shifters will suppress them by another 40 dB, either by feedthrough or PM (because
in that case they are phase-shifted only once and thus canceled by the summation).

This means that at IF the following signals are present:

1. The desired signal (unsuppressed)

2. Images suppressed by external filters (40 dB suppressed)

3. Images suppressed by PM (40 dB suppressed)

4. Harmonics suppressed by PM (40 dB suppressed)

5. Images suppressed by both external filters and PM (80 dB suppressed)

6. Signals originally present at IF (80 dB suppressed)

Of all these signals the ones that are only 40 dB suppressed form a problem.
An on-chip filter can suppress the harmonics another 40 dB if they are located far

enough from IF, which need not be the case if the oscillator frequency is just above the
cut-off frequency of the first external filter. This would be enough to tackle item 4, but
would leave items 2 and 3 at 40 dB suppression, as the images are already at baseband and
cannot be distinguished from the original signal.

A very interesting and very recent development by Moseley [78] is to use crosscorrelation
to remove the images that are converted to baseband by harmonic downmixing. This will
suppress all harmonics and images. It uses virtually the same structure and same ideas as
in this design, and so it may be possible to integrate this solution at virtually no extra cost.
The idea is to have the second VCO operate at a slightly different frequency with offset ∆f ,
such that the harmonic images in one path are not equal to the images in the other path.
By digitally correcting the offset frequency through simple multiplication with a sine wave,
the images in both paths will be uncorrelated and only show up as noise, which means that
with long enough measurement time they can be completely removed.

4.3 Power consumption and chip area

In the analog world there is a tradeoff between power consumption, noise, linearity, band-
width, speed, gain and voltage headroom. Virtually all of the power consumption goes into
biasing of the transistors. For a desired SNR the power consumption is more or less technol-
ogy independent [9]. Taking into account only thermal noise, the SNR can be increased by
3 dB while keeping the same bandwidth if all capacitances are doubled and all resistances
are halved.6 This leads to a doubling in analog power consumption and an increase of chip
area. This scaling cannot be applied to the ADCs as they still have to deliver the same
resolution.

Since crosscorrelation has two paths, whereas the standard SA needs only one path, this
method requires twice as much power and roughly twice as much area under the assumption
that the amount of noise in each branch needs to be kept equal to the standard case. Under
the assumption that for equal power consumption the noise in each branch is increased by
3 dB, the measurement time needs to be increased by a factor 4 to get rid of this extra 3 dB
of noise.

However, power consumption alone does not provide the whole picture if the analog
circuit can be switched off after a measurement is complete. Note that when the noise level
goes up by 3 dB and in the end the same requirement holds for the measurement result, the

6Several factors limit this approach, such as the maximum currents transistors can handle before they
break down, and the maximum current certain topologies can handle before they run out of voltage head-
room.
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total energy consumption of the analog part increases by a factor of 2 and of the digital part
by a factor of 4. The battery in a battery-powered device will be drained faster in terms
of number of measurements. So if energy consumption is the main limitation, it would be
best to lower the noise as much as possible. This is an important consideration in a more
detailed design.

4.4 Measurement time

A measurement time that is 100 times longer than without correlation does not say very
much as often only the absolute measurement time is relevant. An increase from 1 µs to
100 µs will in many applications be tolerable, while an increase from 1 s to 100 s may not be
tolerable. Some applications mentioned in chapter 1 will be used to illustrate this, followed
by some other applications.

4.4.1 Cognitive Radio

For CR, a draft exists to define the standard [79], which states that signals as low as
−116 dBm need to be detected in a 6 MHz bandwidth during a fine scan, which is allowed
to take roughly 25 ms. With a NF of 0 dB, the noise level in a 6 MHz bandwidth will
be −114 dB, so it will be very difficult to detect such signals and in this respect the pro-
posed standard seems somewhat odd. The paper focuses mainly on the TV-bands (54 MHz
to 800 MHz) in combination with base stations, while other CR-designs consider ad-hoc
connections.

In the case of ad-hoc connections, the frequency band to scan goes up to 6 GHz [16],
which is rather wide, such that the scanning-FFT based spectrum analysis as suggested in
[15] may be a good choice. Assuming the ADCs run at 20 MHz for this application, roughly
500 analyses need to be made, such that the total time per analysis is in the order of 2 ms,
which allows 40.000 samples to be taken.7 If a frequency resolution of 10 kHz is required
(which is about the minimum channel width used in any modulation scheme), a 1000-points
DFT needs to be calculated. Using all of the 40.000 samples, instead of the minimum of
1000 samples, increases the measurement time by a factor 40, but also decreases the noise
floor by 8 dB.

While transmitting, CR needs to respond relatively fast to changes in the spectrum,
because interference with licensed users is not allowed. The large distances (> 100 km)
that can be covered [79] also makes collisions between CR-users possible. The maximum
interference time allowed, as suggested in [79], is 2 s. Transmission needs to be interrupted
in order to be able to scan, so to achieve an efficient spectral usage, the scanning time
should be much less than transmission time. Because now only the range in which the radio
is transmitting needs to be scanned, this should not pose any problems.

In any case, the only ‘danger’ is a false positive on a frequency band being used, in which
case no real harm is being done. When the SA gives a false positive (i.e. there is apparently
a lot of noise in this band), it is very likely that the radio itself will also have difficulty using
this frequency range, because parts of the front-end will most likely be shared by the radio
and the SA. A false positive in this context may not be such a bad thing at all.

4.4.2 Built-in Self-Testing

Although on-chip frequencies already range up to 60 GHz [80], most signals still are below
6 GHz, which allows the envisioned SA to measure them. In case BIST uses a built-in signal
generator, measurement time is allowed to be rather long, as long as that part of the chip
is not needed for the application it is built for. If it only uses true application signals, it

7This is not entirely true. Filters etc. require some time to settle, so the amount of useful samples will
be lower.
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completely depends on the application and the type of signal. Taking CR as an example,
the signals it sends will probably use Orthogonal Frequency Division Multiplexing (OFDM)
[15], which may be sent in bursts. With time gating, measurement time may also be rather
long, as samples are taken only during transmission.

4.4.3 Phase noise measurements

When measuring phase noise of an oscillator using an SA, the phase noise of the VCO in the
SA should be significantly lower than the phase noise of the oscillator to be measured. If two
frequency-locked VCOs are used in the correlation SA, correlation will lower the effective
phase noise of the internal VCOs, allowing detection of virtually arbitrarily low phase noise
of the DUT. Measurement time in this case is only limited to days or maybe even weeks, so
very sensitive phase noise measurements may be obtained. Note that phase-locking to the
DUT, such as done in [40], allows faster reduction of the noise.

4.4.4 Linearity measurements

Just like measuring phase noise requires an SA with extremely low noise phase noise, mea-
suring the linearity of a circuit requires an SA that is significantly more linear than the
DUT. The linearity of the SA can be artifically improved by using an external attenuator,
but this of course means that the noise level goes up. Using crosscorrelation, this noise can
then be lowered. A requirement then becomes that the attenuation is performed separately
in each path, because otherwise it would introduce noise correlated in both paths. Again
measurement time is only limited by practical constraints.

4.5 Conclusions

Signals significantly below the noise floor will not be detected by a regular SA because
of measurement errors and a not-completely-white noise floor. Although these effects will
also be present in crosscorrelation, crosscorrelation lowers the noise floor itself, allowing
detection of smaller signals. Therefore, a high-level system design of an SA is proposed that
uses crosscorrelation.

The design uses low-IF as suggested by Rovers [4]. An external filterbank with logarith-
mically distributed cut-off frequencies is placed directly after the antenna to prevent crossing
the chip-boundary more than once. Impedance matching is required to let the filters operate
properly. Variable attenuation is put close to the input to lower linearity requirements of
active components. Mixing the RF-signal to IF is done before any amplification, again to
improve linearity.

Since highly linear mixers are switching, mixing is also performed with many harmonics
of the oscillator signal. Image rejection is required to suppress this undesired effect. Some
images are rejected by the external filters at the input; the other images are removed by
techniques such as HR-mixing and/or PM. For both methods there is an important trade-off
between the number of external filters on one hand and the number of paths in PM or the
approximation of the sinusoid in HR-mixing on the other hand. Harmonics of the desired
signal are removed by PM or HR-mixing in combination with on-chip or off-chip filtering.
Non-idealities in all mechanisms makes a cascade of two techniques necessary to achieve an
SFDR of 70 dB.

The main power consumer of the analog front-end is the VCO. The suggested imple-
mentation uses two 20%-tuneable LC-oscillators with integer frequency dividers to cover the
whole frequency range from 100 MHz to 6 GHz, requiring an estimated 0.2 W.

Decreasing the noise in the analog frontend by 3 dB increases the analog power consump-
tion by a factor of 2 (except for the ADCs), while the digital power consumption remains the
same. Decreasing the noise by 3 dB using correlation does not change the analog and digital
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power consumption, but increases measurement time by a factor of 4. It is thus advisable
to decrease the noise in the analog frontend by power scaling whenever possible.

To allow correlation to reduce the noise, as much noise as possible should be uncorrelated.
For component noise this should not be a problem. Correlated noise can originate from
ground bounce and power supply, so the analog parts should be designed with a high rejection
ratio against these variations.

A solution to lower power consumption is to use two identical VCOs locked in frequency
(using for example another PLL). Their phase noise would then be uncorrelated and can
be reduced through correlation. This could also lower the phase noise requirements and
hence the power consumption of the oscillators, but of course at the cost of increase in
measurement time.

Using correlation as a means to lower the noise floor allows the SA to be used as a very
sensitive phase noise and linearity measurement instrument, because in these situations
there is no strict limit on measurement time.

4.6 Recommendations

There are several possible improvements to the current design, which are discussed here.

4.6.1 ADC resolution

The required ADC-resolution for a general-purpose SA to obtain an SFDR of 70 dB is 10
bits. For certain applications one may need less, and not just for reasons of SFDR. Kokkeler
[43] points out that coarse quantization does not give an accurate representation of a signal,
but does show its characteristics. This may be useful in CR. One could include additional
ADCs or reuse the existing ones with a much lower power consumption. Similarly the digital
hardware can become much less power-consuming. A similar approach is discussed in [81].

Bitstream processing is another idea to lower the requirements on digital hardware [82].
The operations are performed on the low-resolution output of e.g. a Σ∆-modulator instead
of higher resolution words as in regular ADCs. More research is required to determine the
effects of bitstream processing on properties such as the SFDR and the complexity and
power consumption of the digital hardware.

4.6.2 Lowering VCO power consumption

The phase noise requirement of −134 dBm/Hz at a 1 MHz offset results in a relatively high
power consumption of the VCO because the frequency offset is approximately at the outer
edge of the PLL bandwidth. This bandwidth is roughly 10% of the reference frequency
provided by an external crystal. A crystal with a higher reference frequency can therefore
lower the phase noise requirements of the oscillator: phase noise has a 1/f2 PSD-dependency,
so (to a first-order approximation) if the PLL bandwidth can be increased by a factor of 10,
the power consumption of the VCO can go down by a factor of 100.

4.6.3 Regular spectrum analysis

Being able to lower the noise floor is a good thing, but it is not always necessary. Sometimes
it is more important to quickly measure a quantity, or it is desirable to be able to see the
respective phases of components. With correlation, phase information is lost because the
input signal is directly transformed from the time domain to the power domain.

It would be desirable to have the option of performing regular spectrum analysis using
a single stream of data, where the FFT of the data gives amplitude and phase information.
The expected costs are low, because all of the required components are already needed in
crosscorrelation measurements. It may be possible to perform two measurements at once at
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two different VCO-frequencies (when two separate VCOs are used), or it may be possible
to shut down one branch to save power.

When two VCOs are present for correlation, it might be possible to use them as quadra-
ture oscillators for regular spectrum analysis or for any other application that requires it.

4.6.4 Correlation with one measurement path

Instead of using two measurement paths it may also be possible to use one measurement
path. The idea is to interleave the single measurement path in time to mimic two paths.

One issue is that the signal to be measured needs to be highly correlated in time or the
correlation will yield meaningless results. A signal that obeys this correlation in time is a
sinusoid, while a signal that does not obey this correlation in time is white noise. This idea
may not work for general-purpose usage, but it could come in handy for certain applications
where there simply is not enough chip area or power available to allow two measurement
paths.

4.6.5 Suppressing harmonics and harmonic images

As was discussed in section 4.2, direct downconversion cannot guarantee an SFDR of 70 dB,
simply because some undesired signals cannot be attenuated enough. One possible solution
mentioned was the frequency-offset method from Moseley [78]. As commercial SAs generally
implement a superheterodyne architecture with high-IF, it might also be interesting to see
if that could work, even though it may require additional off-chip filters [23].

4.6.6 Combining correlation and PM

It is possible to combine correlation and PM by giving one branch one extra path for PM
as shown in fig. 4.9. This means different harmonics and images are canceled by the paths;
some are canceled by both, others are canceled by only one branch, while the first image or
harmonic that is not canceled by either is much further away in frequency than in the case
where both branches have an equal number of paths. In the case where the number of paths
p1 and p2 in both brances are coprime, i.e. they share no common factor other than 1, the
first non-canceled harmonic or image is 1 + p1p2.

Because of mismatch, PM only suppresses images and harmonics by roughly 40 dB, or
equivalently, a factor 100 in voltage. When the image or harmonic is suppressed by only one
branch, it will still be present at the output with a 20 dB suppression (in one correlation
branch it is suppressed by a factor 100, while in the other branch it ‘suppressed’ by a factor
1, which after multiplication gives a suppression by a factor 100). In combination with other
suppression mechanisms, it may be possible to suppress all images and harmonics by the
required 70 dB. The remaining images and harmonics are so far away that filtering should
not be a problem anymore.

In either case, harmonics and images suppressed by only one branch will act as noise
in the other branch. They will appear as noise at their specific frequencies after frequency
conversion. A longer measurement time will be required to remove the effect altogether.

4.6.7 Combining PM and frequency conversion

Mixers are almost ideal phase-shifters [62]. If the Tayloe mixer is used as one phase-shifter,
then another mixer is required for reverse phase-shifting because the result is again relatively
wideband. The problem is that this will give another frequency conversion. Therefore it may
be better to have the Tayloe mixer convert to an IF that is not at baseband. The second
mixer then converts the signal to baseband. This solution might also work for (additional)
suppression of images and harmonics.
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Figure 4.9: Correlation and the PM-technique form a unique opportunity to suppress a lot
of images and harmonics at very little cost.



Chapter 5

Analog frontend

In order to obtain a good estimate on the possible linearity (IP3) in combination with the
NF and power consumption of the system, an initial implementation of the analog frontend
was made. Unfortunately, due to lack of time, not all functions could be implemented.
It was conjectured that the High Frequency (HF)-part up to and including the frequency
conversion will dominate linearity restrictions and NF, because it is more wideband and
operating at higher frequencies than the IF-part. Therefore only the HF-part is discussed
in this chapter.

The signal to be measured first goes through an external filter before it enters the chip.
Since external filters generally require a 50 Ω matched load, the first stage on the chip should
be an impedance match to the filter. A tunable attenuation is then required to optimize the
SFDR (see fig. 4.4). At the same time, it is desirable to increase the measurement range of
the SA to allow a larger range of signals to be measured. After impedance matching and
attenuation, frequency conversion is performed. Because the proposed design combines these
functions, they will be discussed as being one. For simplicity, this circuit will be referred to
as the attenuator.

At IF, (variable) amplification is required, as well as filtering and an SH circuit to be
able to enter the ADC. This is not discussed in this thesis.

5.1 Attenuator

Using crosscorrelation, the NF can be lowered, and hence the optimum attenuation in terms
of SFDR changes with measurement time. Nevertheless, variable attenuation is still needed.
If the circuit is designed properly, it may also improve the measurement range of the SA.

In ADCs and DACs a well-known design principle is the R–2R-ladder, which is a regular
structure consisting of resistors of R Ω and resistors of 2R Ω. This structure is shown in
fig. 5.1. It has the nice property that at every node the impedance seen looking away from
the input is R Ω. The effect is that the voltage at each node is half the voltage of the node
one step higher. In power this means each step has an attenuation of 6 dB.

In theory, this structure can be extended to arbitrary length, but in practice mismatch
between the resistor values limit the applicability for DACs and ADCs. Moreover, the
standard R–2R-ladder assumes each branch to be connected to (virtual) ground. For an
SA, the resistor mismatches and a load unequal to 0 are not a problem. For absolute
accuracy, the attenuation at each node needs to be calibrated anyway (e.g. by applying a
reference voltage, measuring the attenuation and storing the value in a register) to correct
for tolerances in the production process. Nevertheless, this structure can be used to provide
a stepwise attenuation with steps of approximately 6 dB.

A schematic depiction of the attenuator is shown in fig. 5.2. Since it uses only resistors
and switches, it is expected to be extremely linear. The attenuator will be connected to
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Figure 5.1: The R–2R-ladder has a very regular structure and can be used for ADCs as well
as DACs.
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Figure 5.2: The attenuator works by connecting one of the branches to the load, and the
other branches to ground.

the load, which in this case is a Tayloe mixer (the Tayloe mixer will be discussed on page
63). This means that one of the branches will be connected to the load, while the others
will be connected to ground. This is symbolized by the switches. During a measurement,
this assignment is static, i.e. it does not change. Since a Tayloe mixer has an almost infinite
input impedance [60], the input impedance of the R–2R-ladder is not R Ω, and depends on
the branch connected to the load.

To simplify analysis it is assumed that the Tayloe mixer has an infinite impedance.
Numbering branches from top to bottom, starting at 1, the branch connected to the load is
denoted by s. The impedance looking into the attenuator is denoted with Zin[s], see fig. 5.3.

It can then be observed that Zin[1] of the attenuator is 2R Ω. When the infinite load is
connected to the lowest branch, the input impedance is only slightly larger than R Ω. In
the general case, the input impedance varies between R Ω and 2R Ω. The input impedance
can be calculated using the recursion relation that is obtained directly from figs. 5.2 and 5.3
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Figure 5.3: Definition of input impedance Zin[n] and node voltage Vk,n.

with ZL →∞:

Zin[1] = 2R [Ω]

Zin[n] = 2R
R+ Zin[n− 1]
3R+ Zin[n− 1]

[Ω]

yielding as general solution (see section B.8)

Zin[n] =
4n + 2
4n − 1

R [Ω] (5.1)

which quickly converges to R Ω.
The attenuation depends on the branch the load is connected to. The voltage Vk,n is

defined as the voltage on node k when the load is connected to branch n, see fig. 5.3. From
fig. 5.3 follows

V1,n =
Zin[n]

Zin[n] + ZA
Vin [V]

Vk,n =
Zin[n− k + 1]

Zin[n− k + 1] +R
Vk−1,n [V]

where ZA is the antenna impedance and Vin the voltage received by the antenna. The
general solution then is

Vk,n =

k−1∏
i=0

Zin[n− i]

(Zin[n] + ZA)
k−1∏
i=1

(Zin[n− i] +R)

Vin [V] (5.2)

and the attenuation for branch n can then be found by calculating Vn,n.
For impedance matching, a general design rule is that the reflection coefficient S11 should

be less than −10 dB [58, 83, 84]. The scattering parameter can be calculated using

S11 =
∣∣∣∣Zin − Zout

Zin + Zout

∣∣∣∣ (5.3)

where Zout is the output impedance of the antenna/filter and Zin is the input impedance of
the attenuator. With Zout = 50 Ω and S11 < −10 dB, it follows 26 Ω ≤ Zin ≤ 96 Ω.
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Figure 5.4: Nominal S11 for R = 50 Ω and R = 35 Ω and whole range of possible S11-values
if process variations can give a difference of 25%. S11 should be < −10 dB which makes
R = 50 Ω a bad choice.
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Figure 5.5: Input impedance and gain of the attenuator with R = 35 Ω and R = 50 Ω as a
function of the selected branch (without mixer but with infinite load).

To allow for mismatch and the effect of absolute offsets introduced by the production
process, it is desirable to design Zin to be as close to 50 Ω as possible, where R Ω ≤
Zin ≤ 2R Ω. Hence, ideally R = 50/

√
2 ≈ 35 Ω. With this value, for any load impedance

connected to any branch (of course, all the other branches need to be connected to ground),
S11 < −10 dB. Without mismatch and an infinite load, S11 < −15 dB, while even a 25%
change in the resistor-values still keeps S11 below −10 dB, see fig. 5.4.

Figure 5.5 shows the input impedance and attenuation of the attenuator for the first six
branches using eqs. (5.1) and (5.2) for R = 35 Ω and R = 50 Ω. The attenuation is calculated
as −20 log(Vn,n/Vin) + 6, where the term (+6) comes from the definition of Conversion
Gain (CG) which is defined in terms of power and not voltage. Perfect impedance matching
transfers all power, and gives a CG of 0 dB. At the same time the voltage is halved, so in
terms of voltage one loses 6 dB. From fig. 5.5 it can be observed that the price paid for
impedance matching is a slightly lower gain.
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Figure 5.6: Principle of operation of a Tayloe mixer. The switch is operated with a 25%
duty cycle.

Table 5.1: Calculated input impedance Zin,
resistor network gain (RNG) and total con-
version gain (CG) of the designed RF-
frontend.

Branch Zin [Ω] RNG [dB] CG [dB]

1 70.0 1.32 0.41
2 42.0 -4.33 -5.24
3 36.7 -10.26 -11.17
4 35.4 -16.25 -17.16
5 35.1 -22.27 -23.18
6 35.0 -28.29 -29.20

5.1.1 Tayloe mixer

A mixer is a device that performs frequency translation. Many implementations achieve this
function by either passing or blocking the input. The fraction of time per period the signal
is passed is called the duty cycle d.

The Tayloe mixer is extensively discussed in [60], and is a mixer that operates with a
duty cycle of 25% (d = 1

4 ) in combination with an RC-time, which makes it a specific case
of a switching mixer. The resistance R is the resistance seen from the capacitor, and C is
the capacitor value itself. To differentiate between this R and the R used for the resistor
network, the resistance seen from the capacitor is referred to as RC , see fig. 5.6. Because
the voltage difference depends on the entire history of the input signal (the Tayloe mixer is
not stateless), a closed form expression of the transfer is very difficult to obtain. Soer found
an expression in the frequency domain using Ström & Signell theory for Linear Periodically
Time-Variant (LPTV) systems [85], from which some of the results are used here.

The RC-time of the Tayloe mixer acts as an LPF, with a cut-off frequency of [60]

f−3dB =
d

2πRC
[Hz] (5.4)

Note that this differs by a factor of two compared to [60] because of different definitions of
R and C. The expression is only valid in case f−3dB � fLO.

Soer plotted the NF and conversion gain as a function of d for this type of mixer, which
are reproduced in fig. 5.7. The specific case of d = 1

4 which defines the Tayloe mixer yields
a good balance between Conversion Loss (CL) (0.9 dB) and NF (3.9 dB). CL is important
for the total NF of the SA (because of the noise added by the IF-part). Together with the
attenuation, the total calculated CL of this RF-frontend is shown in table 5.1.

Note that the NF shown in fig. 5.7 is for a balanced switching mixer. This balancing re-
moves all even harmonics, so without balancing the NF will be 3 dB higher (see section B.9).
Similarly, with I/Q-mixing, the undesired sidebands will be removed, lowering the NF by
3 dB.
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Figure 5.7: Conversion loss and NF of a balanced switching mixer as a function of the duty
cycle (reproduced from [60]).
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Figure 5.8: The implemented RF-frontend combining the impedance match, attenuator and
Tayloe mixer.

5.2 Circuit implementation

Requirements the circuit has to meet for any attenuation level are a frequency range of
0 GHz – 6 GHz and S11 < −10 dB. An RC-bandwidth of 100 MHz is chosen because a
sampling rate of 200 MS/s for the ADC seems like a reasonable speed (see page 51). For
simplicity the circuit designed is unbalanced and does not use I/Q. Because the attenuator
uses switches to connect either to the load or to ground, and the Tayloe mixer uses a switch
for blocking or passing the signal, they can be conveniently combined in one device. The
schematic is shown in fig. 5.8 and in this specific implementation has five branches, where
the horizontal transistors A1 to A5 are the combined devices. The vertical transistors B1 to
B5 connect their branch to ground if the capacitor C is not connected to that branch.

The oscillator-signal is applied to switch An, where n ∈ {1, 2, 3, 4, 5}, and the gate of Bn
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is connected to ground. The gates of switches Aj , j 6= n, are connected to ground, and the
gates of Bj are connected to VDD (in the simulation this is implemented using some simple
Verilog-A code).

The resistors with a value of 2R Ω shown in fig. 5.2 have been split up into three
contributors. One is the switch to ground, one is a resistor (denoted with subscript a) in
series with the mixing switch, and one is a resistor (denoted with subscript b) in series with
the switch to ground. This allows correction for the different impedances seen from the
load capacitor looking into any of the branches. Keeping the impedances equal results in
equal filter-characteristics for all branches. If they were not the same, one would have to
digitally correct for the differences to keep amplitude accuracy. Because correction factors
are already required for the attenuation of all branches, one would need a two-dimensional
correction table.1

The drain-source voltage VDS of an NMOS used as switch modulates the resistance of
that switch, and hence reduces linearity [86]. One would prefer an ideal switch with zero
resistance. However, making the switches bigger to lower the resistance increases parasitic
capacitances, which reduces the system bandwidth (which should be 6 GHz). This limits
the maximum size of the switches.

To reduce the body effect, the bulk connections of all switches are connected to the
source/drain [87]. For the A-switches, the choice was made to connect it to the terminal
connected to the same node as the load capacitor. This reduces the influence of the parasitic
capacitance.

The B-switches are placed below the b-resistors, because if they were interchanged, VGS

would be lower and linearity would be reduced. The bulk is connected to ground, which as
an additional advantage allows for easy layouting.

The bandwidth of the mixer directly depends on the RC-time. If the mixer is connected
to branch n, the resistance RC [n] seen from the capacitor needs to be calculated. To do
this, it is necessary to find the impedance seen from node n (see fig. 5.3) looking up and
looking down. Looking down is easy, because that is simply 2R Ω. The impedance Zup[n]
can be found in a recursive manner, similar to the calculation of Zin[n].

Zup[1] = ZA [Ω]

Zup[n] = R+
ZAZup[n− 1]
ZA + Zup[n− 1]

[Ω]

from which the general expression can be derived (in a similar way as for Zin[n])

Zup[n] = 4R
(4n − 4)R+ (4n + 2)ZA

(4n + 8)R+ (4n − 4)ZA
[Ω]

which quickly converges from ZA Ω to 2R Ω.
The total result then is

RC [n] = Ron +Rn,a +
2RZup[n]

2R+ Zup[n]
[Ω] (5.5)

which varies from Ron + R1a + ZAR/(R + ZA) for n = 1 to Ron + Rn,a + R for n → ∞.
With ZA = 50 Ω and R = 35 Ω the difference is 5.8 Ω, which can be corrected for by setting
R1a = R∞,a + 5.8 Ω.

1Note that another solution would be to keep the RC-product low enough such that any difference would
still not have a significant influence on the desired IF-bandwidth. The downside then is that an integrated
filter is effectively lost, requiring more filtering in the IF-part.
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Figure 5.9: RF-frontend with component values used for simulation.

5.3 Simulation results

With the topology of fig. 5.8, the impedance seen from the loading capacitor ranges roughly
from 30 Ω to 35 Ω in case the a-resistors are set to 0 Ω. To maximize linearity, one wants the
switches to be as large as possible, while still adhering to the bandwidth specifications. Using
ProMost, one can find that W/L = 100/0.06 µm yields an on-resistance of Ron = 5 Ω.2 This
means the resistance seen from the loading capacitor is 40 Ω. For a bandwidth of 100 MHz
this results in C = 10 pF.

Simulations using these values show that the impedance seen from the capacitor changes
about 10% when the frequency changes from 400 MHz to 6 GHz.3 This difference is ex-
plained by the overlap capacitances of the switches, which makes the impedance seen from
capacitor C frequency dependent. Reducing the dimensions of the switches to W/L =
50/0.06 µm reduces this problem to a 5% change in impedance over the whole frequency
range, which is considered a better starting point. The on-resistance is doubled to 10 Ω,
reducing the loading capacitance to C = 8.8 pF. The entire system is shown in fig. 5.9.

RC-bandwidth

The RC-bandwidth was determined using SpectreRF’s PSS and PAC-analysis. Simulations
of the RC-bandwidth for different attenuation settings showed that R1a should be set to
5 Ω, and R2a to 2 Ω, while Rk,a, k > 2, can be set to 0 Ω. The RC-bandwidths found in
this case are shown in table 5.2, and they are clearly very close to the desired 100 MHz.

2For the technology used, the on-resistance of a minimum-length NMOS (L = 0.06 µm), with VGS =
1.2 V and VDS = 0 V, can be approximated by 490/W Ω, where W is given in µm. This equation is simply
derived by observation and is also used in simulations when circuit parameters depend on the on-resistance
of the switches.

3400 MHz is chosen because of the constraint f−3dB � fLO, see eq. (5.4).
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Table 5.2: RC-bandwidth found for different at-
tenuation settings, where 100 MHz is the de-
sired value.

fLO BW [MHz] using branch
[GHz] 1 2 3 4 5

0.4 99.0 96.4 98.5 97.7 97.4
6.0 101.7 99.6 101.7 101.2 100.7

Table 5.3: CG found for different attenuation set-
tings and the pre-calculated values.

fLO CG [dB] using branch
[GHz] 1 2 3 4 5

0.4 0.42 -5.26 -11.25 -17.37 -23.63
6.0 0.26 -5.45 -11.45 -17.58 -23.84

Calc. 0.41 -5.24 -11.17 -17.16 -23.18
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Figure 5.10: Simulation results for the S11-parameter.

Conversion gain

The conversion gain was determined using the same simulation as for determining the RC-
bandwidth. The simulated CG of the entire system is shown in table 5.3. It is very close to
the expected CG shown in table 5.1 (and repeated in table 5.3 for convenience). The lower
CG at 6 GHz is caused by the Bandwidth (BW) of the system.

Impedance matching

The scattering parameter S11 was simulated using SpectreRF’s QPSP-analysis and is shown
in fig. 5.10. The value varies somewhat over the whole frequency range, but always stays
below −14.9 dB for any attenuator setting, which is clearly better than the desired −10 dB,
and very close to the theoretically calculated −15.1 dB. One can also see that S11 starts to
deteriorate fast near 6 GHz, which indicates the BW of the system is not much higher than
6 GHz.
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Figure 5.11: Simulation results for the NF at an offset of 1 MHz.

Noise Figure

The NF was determined using SpectreRF’s PNOISE-analysis. The simulated NF (with the
input frequency equal to the oscillator frequency and looking at a 1 MHz offset) is shown in
fig. 5.11.

The NF is around 11.2 dB for branch 1 at higher frequencies, which is equal to the
expected 11.2 dB (see section B.10 for the derivation). For the other branches, the NF goes
up in steps of about 6 dB (17.1, 23.1, 29.2 and 35.5 dB respectively), which is as expected
as the signal power is decreased in steps of approximately 6 dB, while the amount of noise
remains roughly the same.

The NF clearly goes up for lower frequencies. In CMOS, flicker noise usually causes
the NF to go up at low frequencies, because it has a power spectrum inversely proportional
with frequency. At some point, known as the corner frequency fC , flicker noise drops below
the thermal noise. Because VDS is very low and the transistor is in the triode region, fC
is expected to be rather low. Simulations show fC to be in or below the kHz-region (an
example for fLO = fin = 300 MHz is shown in fig. 5.12), so flicker noise does not explain
the increase in NF for frequencies below 1 GHz.

Using SpectreRF’s Noise Summary, the switch noise contribution for any branch is about
25% at 3 GHz. The flicker noise contribution indeed is insignificant. At 100 MHz, the
relative noise contributions of all the components are the same as at 3 GHz, only all of them
are about twice as large. This corresponds with the increase in NF of about 3 dB.

It is conjectured, that the cause of the increase of the noise is the transfer function of
the Tayloe mixer. Equation (5.4) only holds for f−3dB � fLO, and this is precisely violated
in the region where the NF increases. At lower frequencies, the voltage on the capacitor
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Figure 5.12: NF as a function of offset-frequency for fLO = fin = 300 MHz.

Table 5.4: IP3 found for different attenua-
tion settings

fLO IP3 [dBm] using branch
[GHz] 1 2 3 4 5

0.4 25.6 32.0 38.0 39.5 38.6
6.0 23.7 29.9 32.5 38.0 36.4

will be much better at following the input voltage, thereby reducing the filtering effect. The
Tayloe mixer starts to act more like a sampling mixer, which has a higher NF. This would
also explain why the relative noise contributions of the various components do not change.

Because the simulated circuit is unbalanced and does not use I/Q-mixing, it is expected
that the NF can be brought down by 6 dB if both methods are included. However, both
balancing and I/Q-mixing require extra switching transistors, which may influence linearity
and BW because of parasitic capacitances, and careful simulations should show whether
requirements can still be met (see recommendations).

Linearity

Linearity was determined using SpectreRF’s QPSS-analysis. The simulated IP3 is shown
in table 5.4 for fLO = 400 MHz with two input tones of 410 MHz and 411 MHz and for
fLO = 6.0 GHz with two input tones of 6.010 GHz and 6.011 GHz. An example is shown in
fig. 5.13.

For minimal attenuation, IP3 is roughly +25 dBm at low frequencies. This is very close
to the value found by Soer [60, fig. 6.12], which is to be expected as the circuits are very
similar except for the matching network.

A more detailed IP3 as a function of frequency is shown in fig. 5.14. An important
observation is that IP3 goes down for higher frequencies. This is caused by the oscillator
buffer, which is implemented in the simulation as an inverter, consisting of a PMOS with
dimensions W/L = 100/0.06 µm and an NMOS with dimensions of W/L = 45/0.06 µm. In
the simulations it is being driven by a near-ideal oscillator with a rise and fall time of 1 fs.4

The relative size PMOS:NMOS=20:9 gives an equal rise and fall time. The oscillator buffer
is depicted in fig. 5.15.

4In retrospect it would have been better to give the oscillator a rise and fall time realistic to 65 nm
CMOS to better resemble a real oscillator.
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Figure 5.13: Simulation results for IP3 using branch 1 at fLO = 400 MHz.
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Figure 5.14: IP3 as a function of frequency.
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Figure 5.15: The oscillator buffer is an inverter scaled for equal rise and fall time, and is
driven by a near-ideal pulse source.
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Figure 5.16: Simulation results for IP3 using branch 1 at 6 GHz for different oscillator buffer
sizes with ratio PMOS:NMOS=20:9.

Table 5.5: IP3 at fLO = 400 MHz found for branch 5 when
all switches, except for A5 and one other switch (shown in the
table), are replaced by ideal short-circuits and open connec-
tions.

IP3 [dBm] using switch A5 and
A1 A2 A3 A4 B1 B2 B3 B4 B5

35.2 43.9 49.9 51.2 36.7 42.9 49.2 51.5 51.3

At 6 GHz and a duty cycle of 25%, the time the signal is high is about 42 ps. With a
rise and fall time in the order of 10 to 20 ps, the duty cycle can be heavily influenced as the
switch turns on somewhere near 400 mV. Moreover, VGS is less than 1.2 V and is changing
most of the time, which changes the on-resistance and thus introduces a nonlinear element
in the circuit. A larger inverter can change the gate-voltage of the switches faster, reducing
this nonlinear effect. The size of the inverter was swept to determine the smallest size for
which linearity is not significantly affected. The results are shown in fig. 5.16.

Apparently, the oscillator frequency of 6 GHz is simply too high to obtain a linearity
comparable to that at lower frequencies for this 65 nm technology. With a PMOS-size of
100 mm (not shown), IP3 at 6 GHz is +24.7 dBm, only a few tenths of a dB better than at
200 µm. Even without loading, the rise and fall time of the inverter is about 10 ps. Some
extra tweaking with the relative sizes of the PMOS and NMOS may improve IP3 a little
bit more, but not much. Because of the small improvement in IP3 by greatly increasing the
size of the inverter, the buffer size is kept at W = 100 µm for the PMOS and W = 45 µm
for the NMOS, just as in the previous simulations.

Going back to table 5.4, one would expect IP3 to increase by the same amount as the
input signal is attenuated. It can be seen from the simulation results that this is the case
for branches 2 and 3, but not for branches 4 and 5.

Since the only nonlinear elements in the circuit are the switches, it was conjectured that
the switches limit linearity, even when they are fully on (VGS = 1.2 V) or fully off (VGS =
0 V). Simulations were performed using branch 5 and switch A5. When all other switches
are replaced by an ideal short or open connection, IP3 was simulated to be 51.5 dBm,
roughly 4 · 6 = 24 dB better than using branch 1, which is to be expected as the signal is
attenuated by an extra 24 dB. Replacing all other switches except one by an ideal short or
open connection gave the IP3 values shown in table 5.5.

Although all switches are limiting linearity, the switches in the first branch limit it most.
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Figure 5.17: Simulation results for IP3 for different W at fLO = 400 MHz with WPMOS =
100 µm.

40 50 60 70 80 90 100

25.6

25.8

26

26.2

26.4

26.6

26.8

27

27.2

27.4

R
C
 [Ω]

IP
3
 [
d
B

m
]

Figure 5.18: Simulation results for IP3 for different RC at fLO = 400 MHz.

This is not surprising as they receive the largest signal swings.
Since non-linearity is present in both the resistance and the capacitance of the switches,

it is expected that linearity can be optimized by changing W . The complete circuit was
simulated for different W with the attenuation set to branch 1. Because a different W
changes the on-resistance of the switches, C was changed as well to keep the RC-bandwidth
at 100 MHz . For example, with W = 80 µm, Ron ≈ 6 Ω, so RC ≈ 41 Ω and C = 9.7 pF.
The results are shown in fig. 5.17 and do not change if WPMOS is increased to 1000 µm,
which means the size of the oscillator buffer is not limiting linearity here. From these results
it can be concluded that W = 50 µm gives a linearity only 1 dB from the optimum value,
while still adhering to the 6 GHz BW of the entire system.

RC-product

A degree of freedom in the circuit is the relative value of R and C in the RC-product. Using
W = 50 µm, RC was swept by changing the a-resistors (see figs. 5.6 and 5.8). Because the
a-resistors cannot have a resistance larger than 60 Ω due to the on-resistance of the switches
and the impedance matching requirement, and R1,a is already 5 Ω to start with, RC can be
swept from 45 Ω to 100 Ω. C is changed accordingly to keep RC at the 100 MHz bandwidth.
The results are shown in fig. 5.18

From these results one would conclude that increasing RC is beneficial. Inspection of the
circuit reveals that increasing the a-resistors increases the noise at the output, increasing
the NF. The NF has also been simulated, and is shown in fig. 5.19a. For the SFDR only
the value IP3 minus NF is important, and can therefore be thought of as some sort of FoM
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Figure 5.19: Simulation results for NF and the FoM (IP3-NF) for different RC at fLO =
400 MHz.

Table 5.6: 1-dB CP found for dif-
ferent attenuation settings at fLO =
400 MHz.

1-dB CP [dBm] using branch
1 2 3 4 5

-3.6 +0.2 +2.1 +4.0 +8.6

(note that, unlike the SFDR, this FoM is independent of RBW, and hence provides a good
measure for comparison). It is shown in fig. 5.19b. Note that correlation cannot reduce the
noise here, because this is a single attenuator. The attenuator for a correlation SA will be
discussed in ??.

Measurement range

The measurement range is the range of signals that can be measured, but not necessarily at
the same time.

The largest signal can be defined as the signal that is just below blowing up the circuit,
but the choice made here is the 1-dB Compression Point (CP) of the circuit. The reason
for this is, that at the 1-dB CP the gain error becomes 1 dB and harmonic content is
introduced, making the resulting spectrum unreliable. The 1-dB CP simulation results are
shown in table 5.6. Clearly the 1-dB CP goes up for larger attenuation, with the maximum
at +8.6 dBm. This maximum corresponds (at 50 Ω) to a sinusoid with an amplitude of
850 mV, so the limit is simply set by the supply voltage.

The smallest signal that can be measured can be defined as being equal to the noise floor
level. The minimal NF is 11.2 dB. To determine the total NF of the system, Friis’ equation
[44] can be used

Ftotal = F1 +
F2 − 1
G1

+
F3 − 1
G1G2

+ · · ·+ Fn − 1
n−1∏
k=1

Gk

(5.6)

where Fi denotes the noise factor and Gi the available power gain of the i-th stage. Although
this formula requires the noise factor of a stage to be tailored for the output impedance of
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Figure 5.20: Schematic of the RF-frontend for a correlation SA using two paths. This
example has only three branches.

the stage driving it, it can be (ab)used to get an estimate on the influence of the IF-part of
the system.

Since IF-circuits are generally easier to make than RF-circuits, a reasonable assumption
is that the IF-part has an NF of 5 dB. With an NF of 11.2 dB and a CG of 0.4 dB of the
RF-part, the total NF becomes 11.8 dB.

The sensitivity of an SA goes up if the RBW is lowered [3], which is also logical if one
takes in mind that the power of a sinusoid (or any other signal that is narrowband enough
for that matter) in that BW remains the same, while the noise power scales with the RBW.
Although RBW-specifications are not used in this frontend, the specifications from [4] will
be used, where a minimum RBW of 10 kHz is specified. The noise power in a 10 kHz
bandwidth is kTB = 4 × 10−17 W, so with an NF of 11.8 dB (F = 15.1) the equivalent
input-referred noise power is kTBF = 6.1 × 10−16 W. The smallest signal that can be
detected is equal to this noise level: −122 dBm.

Power consumption

The entire simulated circuit is passive, except for the oscillator. Because an ideal oscillator
is used, the only part consuming power is the oscillator buffer. This was simulated using
transient analysis and integrating the current through the source of the PMOS. The energy
per cycle is 0.42 pJ, so at 6 GHz the power consumption is roughly 2.5 mW It is assumed that
the static power consumption of the buffer is negligible, such that its power consumption
scales linearly with the oscillator frequency.

5.4 Two attenuators

In crosscorrelation, two paths are required. The earlier the input signal is split, the better,
because all noise added before the split will be fully correlated and therefore cannot be
correlated away. In this section the frontend is redesigned with two identical attenuators in
parallel, both directly connected to the antenna, as shown in fig. 5.20.

5.4.1 Circuit design

Two attenuators in parallel means that R needs to be doubled to 70 Ω to achieve impedance
matching. With two attenuators, one needs to recalculate all important parameters.
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Per attenuator the input impedance still is

Zin[n] =
4n + 2
4n − 1

R [Ω]

The total input impedance then is

Ztot[n] =
1
2

4n + 2
4n − 1

R [Ω] (5.7)

For the voltage at a node one finds

V1,n =
Ztot[n]

Ztot[n] + ZA
Vin [V]

Vk,n =
Zin[n− k + 1]

Zin[n− k + 1] +R
Vk−1,n [V]

from which can be calculated that with R = 70 Ω, the attenuation is equal to the situation
with one attenuator and R = 35 Ω.

To determine the RC-bandwidth, it is important to know whether one or two switches
are open at the same time. If two switches are open, the capacitors ‘see’ each other. This
will influence the impedance seen from the capacitors, and thus change the RC-bandwidth.

Consider the input impedance of a single attenuator when switch A1 is open. It can
then be observed that this is equal to 2R Ω in parallel with Ron +R1,a + 1/jωC. Now, with
R = 70 Ω, Ron = 10 Ω, R1,a = 41 Ω and C = 5.0 pF (these values will be derived later),
the impedance is 140 Ω at DC and only 51 Ω at 6 GHz. Although this difference is less
for branches with a larger attenuation, because the capacitors ‘see’ each other to a lesser
extent, it still means that the RC-bandwidth depends on the input frequency.

As discussed before, making the RC-bandwidth large enough to cope with the fluctu-
ations may be a solution. The solution presented here is to pass the signal in one branch
when it is not passed in the other. With a duty cycle of 25%, the oscillator phase in one
path can be shifted anywhere between 90◦ and 180◦ with respect to the oscillator phase in
the other path. This phase difference gives a phase difference between the two paths, but
that can be corrected for in the digital domain.

A disadvantage is that for I/Q systems and balanced systems, one also requires 90◦

or 180◦ phase shifts of the oscillator. Because four different oscillator phases occupy all
available time, neither of these techniques can be used if the oscillator has a phase shift of
something other than 90◦ or 180◦. Only one of them can be used if the phase shift is 90◦

or 180◦. An important advantage of having one switch open at a time is that all thermal
noise added by the circuit will be completely uncorrelated in the branches. Flicker noise
changes only slowly, so there is still some correlation among the branches. Because flicker
noise concentrates around DC and fC is so low, this will most likely not be a big practical
problem. It will however introduce a limit on noise reduction.

An important observation is that in case no correlation is required, both paths can be
used as a balanced pair, decreasing NF by 3 dB. This requires twice the amount of energy,
but reducing NF by 3 dB using correlation requires four times the amount of energy.

Using the fact that only one switch is open at the same time, one can calculate the
impedance looking up from one voltage node. Defining Zup[k, n] as the impedance seen
looking up from node Vk,n, one finds

Zup[1, n] =
ZAZin[n]
ZA + Zin[n]

[Ω]

Zup[k, n] = R+
2RZup[k − 1, n]

2R+ Zup[k − 1, n]
[Ω]

The total result then is

RC [n] = Ron +Rn,a +
2RZup[n, n]

2R+ Zup[n, n]
[Ω] (5.8)
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Figure 5.21: RF-frontend of a correlation SA with component values used for simulation.
Only one of the two attenuators is shown as they are equal.

which varies from Ron +R1a+ZAR/(R+ZA) for n = 1 to Ron +Rn,a+R for n→∞. With
ZA = 50 Ω and R = 70 Ω the maximum difference is 41 Ω, which can again be corrected for
by properly setting the a-resistors.

The results found through simulation are R1,a = 41 Ω, R2,a = 13 Ω, R3,a = 4 Ω,
R4,a = 1 Ω and R5,a = 0 Ω. With W/L = 50/0.06 µm of the switches, Ron = 10 Ω, and
hence for a 100 MHz bandwidth C = 5.0 pF.

One attenuator of the resulting circuit is shown in fig. 5.21. The S11-parameters, at-
tenuation, RC-bandwidth and IP3 are expected to be very comparable to the case with
one attenuator. NF is expected to increase due to larger resistors in series with the mixing
switch. In fact, in an RC-circuit it can be calculated that the noise power on a capacitor is
equal to kT/C [27], and since C has changed from 8.8 pF to 5.0 pF, an increase in NF of
10 log10(8.8/5.0) = 2.5 dB is expected.

5.4.2 Simulation results

All simulations are identical to the simulations with one attenuator. Some results are shown
in table 5.7.

The CL changes 0.7 dB over the whole bandwidth and is slightly higher than the case of
one attenuator. The RC-bandwidth spreads more due to the increase in number of switches,
which increases parasitic capacitances. It is comparable to the simulation results with one
attenuator and switches with W = 100 µm. It is still pretty close to the desired 100 MHz
though.

While IP3 at 400 MHz is slightly higher, IP3 at 6 GHz is somewhat lower than with one
attenuator. It is not clear what causes this difference.

All other values are comparable to the situation with one attenuator, except the NF,
which is 2.5 dB higher, as expected. Note for example the NF of 14.1 dB for RC = 80 Ω in
fig. 5.19a, which is exactly equal to the 14.1 dB found here. It does not make any significant
difference for CL, BW and NF whether the oscillator phase is 90◦ or 180◦ shifted. For IP3
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Table 5.7: Simulation results with two attenuators in parallel. NF is de-
termined at 1 MHz offset.

f ∆φ Branch
[GHz] [◦] 1 2 3 4 5

CG [dB]

0.4 90 0.39 -5.30 -11.32 -17.50 -22.89
0.4 180 0.40 -5.30 -11.32 -17.50 -22.90
6.0 90 -0.32 -5.91 -11.93 -18.13 -23.50
6.0 180 -0.26 -5.89 -11.93 -18.13 -23.50

BW [MHz]

0.4 90 95.4 96.2 95.7 96.1 96.0
0.4 180 95.0 96.3 95.7 96.0 96.2
6.0 90 106.2 106.0 106.0 106.5 105.7
6.0 180 105.5 105.6 105.8 106.5 105.6

IP3 [dBm]

0.4 90 26.1 32.0 36.8 37.9 35.5
0.4 180 26.5 32.1 36.8 38.1 35.4
6.0 90 21.1 25.6 31.1 34.1 33.4
6.0 180 22.0 25.7 31.1 34.0 33.4

NF [dB]

0.4 90 14.1 19.8 25.9 32.0 38.5
0.4 180 14.1 19.8 25.9 32.0 38.5
6.0 90 14.2 19.8 25.8 32.0 38.4
6.0 180 14.2 19.7 25.8 32.0 38.4
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Figure 5.22: Simulation results for S11-parameter with two attenuators in parallel.

the difference is a few dB, but since the IF-circuitry will most likely limit linearity somewhat
more, it is not expected to have a significant impact on overall system linearity. This means
that in a design one still has the freedom to choose between balancing and I/Q-mixing.

Simulation results for impedance matching are shown in fig. 5.22. It is only slightly worse
than with one attenuator, but still S11 < −14.5 dB in all cases over the whole frequency
range.

IP3 as a function of frequency is shown in fig. 5.23. Again a slight degradation for
higher frequencies can be observed, just as in the case with one attenuator. An important
observation is that the degradation is higher for a 90◦ phaseshift. This can be explained by
the fact that the higher the frequency, the more relative overlap there is between the two
oscillator phases, due to the finite transition time of the switches.

The effect of increasing the oscillator buffer to mitigate the loss in linearity at higher
frequencies is again simulated. The results are shown in fig. 5.24. Linearity at 6 GHz is
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Figure 5.23: Simulation results for IP3 as a function of frequency with two attenuators in
parallel.
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Figure 5.24: Simulation results for IP3 as a function of oscillator buffer size
(PMOS:NMOS=20:9) with two attenuators in parallel.
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Figure 5.25: Simulation results for IP3 at 400 MHz as a function of W with two attenuators
in parallel and 180◦ phase difference.

obviously lower than at 400 MHz. Increasing WPMOS to 1000 µm (not shown) increases IP3
to +22.4 dBm at 90◦ and +22.8 dBm at 180◦, so only a little more can be gained at the
expense of a lot of power. At 400 MHz increasing WPMOS to more than 200 µm does not
increase linearity.

Changing the width of the switches results in the graph shown in fig. 5.25. The chosen
W = 50 µm is about the optimum in terms of linearity.

Just as with the single attenuator case, the impedance seen from the capacitor can be
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(a) IP3 as a function of RC at 400 MHz with W = 50 µm
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(b) NF as a function of RC at 400 MHz
with W = 50 µm
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Figure 5.26: Simulation results for IP3, NF and the FoM (IP3-NF) for different RC at
fLO = 400 MHz with two attenuators in parallel.

Table 5.8: 1-dB CP found for dif-
ferent attenuation settings at fLO =
400 MHz.

1-dB CP [dBm] using branch
1 2 3 4 5

-3.3 +1.1 +3.1 +3.9 +7.7

varied. Looking at fig. 5.26, increasing RC shows a decrease in IP3 and an increase in NF,
so keeping RC at the lowest possible value, 80 Ω, is the best option. The FoM is 1.5 dB less
than in the case where only one attenuator is present in the system, but with correlation
this 1.5 dB can be gained at the cost of a twofold increase in measurement time.

For determining measurement range, the 1-dB CP is determined for all attenuation
settings, see table 5.8. The largest signal that can be detected is +7.7 dBm, roughly equal
to the single attenuator. The smallest signal that can be detected is a signal with a power
equal to the residual correlated noise, which at this moment is still unknown, but it is
certainly smaller than in the case of a single attenuator.

The power consumption is now simply twice that of a single attenuator, because two
oscillator buffers are required, so it is 5.0 mW.
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5.5 SFDR of analog frontend

The goal of the analog frontend design is to make it as linear as possible to maximize the
SFDR, as the noise can be reduced by correlation. Because correlation may not always
be an option, for instance due to limited available measurement time, a first estimate of
the SFDR can be given by using the simulated results on noise and linearity of the single
attenuator. It is assumed that third-order modulation is the limiting factor, and not second-
order modulation or any other type of non-linearity.

The estimation formula for the SFDR is [19]

SFDR =
2
3

(IP3 − LN ) =
2
3

(IP3 + 174− 10 logB −NF) [dB] (5.9)

where LN is the noise level, consisting of the thermal noise floor of kT = −174 dBm/Hz in
combination with the NF, integrated over the bandwidth B. It can be used to estimate the
maximum SFDR this frontend can achieve. The NF is assumed to be 11.8 dB as derived in
section 5.3. With B = 1 MHz, the SFDR of this frontend can be 84 dB at low frequencies,
and 82 dB at 6 GHz, both far beyond the goal of 70 dB.

Using this information, the required number of bits of the ADC can be determined to
also achieve 84 dB of SFDR. It is assumed that 100 MHz of bandwidth is passed through
the ADC and the input signal only contains thermal noise. Worst case, the total input noise
power equals −174+80 = −94 dBm, or 4.0×10−13 W. With a NF of 11.8 dB, the total noise
power equals −94 + 11.8 = −82.2 dBm, or 6.0 × 10−12 W. Assuming the maximum input
amplitude of a sine wave is 0.5 V, its power (at 50 Ω) is 5×10−3 W. The SNR then is 89 dB.
Using the results from chapter 3, the required number of bits for an SFDR of 84 dB is 9.7
bits. With 9.7 bits however, the SNR of the ADC is only 60 dB (see eq. (3.3)), which will
increase the NF of the system at the minimum attenuation setting by a staggering 29 dB.
A 15-bit ADC has an SNR of 92 dB and would therefore not increase NF significantly.

5.6 Comparison with other spectrum analyzers

To put the derived simulation results in perspective, table 5.9 compares the figures obtained
using the current circuit to the figures obtained from several commercial SAs, as well as some
SAs from literature. This comparison is only preliminary, as many other factors not taken
into account here may negatively influence the results obtained in this thesis. Moreover,
other important aspects such as measurement time, phase noise, amplitude accuracy and
IP2 are not even considered here. Nevertheless, it gives a clue as to some of the limitations
and opportunities of an integrated SA using this RF-frontend.

The Voltage Standing Wave Ratio (VSWR) is another measure to indicate impedance
matching, and is related to the S11-parameter by (note that it is customary to define S11 in
dB by using 20 logS11, which is also what has been done in this thesis)

VSWR =
1 + S11

1− S11
(5.10)

This gives the current implementation a VSWR of less than 1.5, and therefore quite com-
parable to the impedance matching of the commercial SAs. In case the 25% spread in R is
incorporated, a VSWR of less than 1.8 is obtained.

The most significant difference is the NF, which is 7 dB better than the next best in the
list. A low NF implies a larger measurement range and a higher SFDR, which can also be
observed from the table. It must be noted that phase noise will lower the SFDR (from the
data presented in [4] by about 7 dB), which makes the difference in SFDR smaller.

Linearity of the designed frontend is among the best in the list, but as stated previously,
the IF-part will be very hard to design with such high linearity.

The 1-dB CP was chosen as the upperbound on measurement range, while the commercial
SAs use a different definition. Because 65 nm CMOS has a supply voltage of 1.2 V, which is
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also the maximum constant voltage over the gate-oxide, the highest amplitude at the input
of a transistor is 0.6 V, which at 50 Ω is 1

2A
2/50 = 3.6 mW, or +5.6 dBm. This means that

in this specific case the 1-dB CP also roughly equals the maximum input power, which is
definitely less than the other SAs. To obtain the same upper bound on measurement range
as the commercial SAs, external attenuators are required.

5.7 Conclusions

The RF-part of an analog frontend for an SA was designed to maximize linearity. It has
impedance matching over the entire range of 0 GHz to 6 GHz, with a selectable attenuation
with steps of roughly 6 dB, starting at a gain of 1.3 dB. The system uses a Tayloe mixer
for frequency conversion with an RC-bandwidth of 100 MHz. The Tayloe mixer introduces
0.9 dB loss. The idea is that gain will be provided in the IF-part, because then it can be
done at lower frequencies and therefore using less power and achieving higher linearity.

Two implementations of the RF-part were designed, one for a regular SA (with only one
path), and one for a correlation SA, which has two paths, each containing an attenuator.
The only active part is the oscillator buffer. With the chosen topology, each oscillator buffer
consumes 2.5 mW at 6 GHz, which means a power consumption of 5 mW for the variant
with two attenuators.

With a single attenuator, the NF is 11.2 dB at minimum attenuation. IP3 varies from
+25.6 dBm at 400 MHz to +23.7 dBm at 6 GHz. At low frequencies linearity is limited by
nonlinearity in the NMOS-switches, while at high frequencies it is limited by the oscillator
buffer. Both limitations are expected to improve by newer technologies, as smaller features
reduce on-resistance, parasitic capacitance and switching speed of an inverter. IP3 saturates
at roughly +38 dBm for larger attenuation, which limits the useful amount of attenuation
steps.

For the pair of attenuators, the NF is 2.5 dB higher. To prevent any problems with
respect to the RC-bandwidth of the first-order filter inherent in a Tayloe mixer, the switches
in both attenuators cannot be on at the same time (see the recommendations). The oscillator
signal in the two attenuators can have a phase difference of 90◦ or 180◦. Performance figures
are roughly the same for both options: IP3 varies from +26.3 dBm at 400 MHz to +21.5 dBm
at 6 GHz.

Comparing to commercial SAs, the IP3 of this design is among the best, the NF is much
better, impedance matching is comparable and the 1-dB CP is worse. The latter is caused
by the limited voltage supply of 65 nm CMOS, which also limits the maximum input power
to levels more than 20 dB lower than that of commercial SAs. The low NF, which can be
made even lower with correlation, allows much smaller signals to be detected, and allows a
larger SFDR.

Using the assumption that the NF at IF is 5 dB and linearity is not limited by the
IF-circuitry, the SFDR of this frontend can be 82 dB to 84 dB (with an RBW of 1 MHz)
without correlation, far more than the required 70 dB. With correlatio,n and under the
assumption that there is no correlation between the noise realizations in both paths, the
SFDR could be increased to 92 dB (the situation where the effective NF has been brought
down to 0 dB), provided enough measurement time is available. The ADC should have
at least 9.7 bits to achieve the same SFDR, but this will increase the NF significantly, for
branch 1 by a staggering 29 dB. A 15-bit ADC does not significantly increase the NF and
may therefore be a better option.

5.8 Recommendations

The current implementation works, but there are still certain aspects that can be worked
out in more detail or that require some attention.
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5.8.1 Increasing linearity of RF-frontend

The IF-part is neglected in the discussion. Using the approximate formula for cascaded
stages [44, p.24 eq. (2.47)]

1
IP2

3total

≈ 1
IP2

31

+
G1

IP2
32

+

n−1∏
i=1

Gi

IP2
3n

(5.11)

it can be calculated that with an IP3 of +26 dBm and a CG of 0.4 dB, the IF-circuitry needs
to have a linearity of at least +20.3 dBm to accommodate a system linearity of +20 dBm.
This is by no means an easy problem, especially because for proper AD-conversion of small
input signals an amplifier is needed. Although the IF-part will most likely limit system
linearity, there are still some possibilities to increase linearity of the RF-frontend, which
may or may not be useful.

In simulations it was observed that the first switches limit linearity, such that the prac-
tical number of attenuation steps is limited. One solution may be to use a CMOS-switch
(also known as a transmission gate) such that the switch resistance is more constant over a
larger voltage range, and hence more linear [86].

Another solution might be to use bootstrapping to keep the gate-source voltage at a
constant value [86]. A practical problem to bootstrapping is that it only works well with
switching transistors. This is because bootstrapping circuits usually use a capacitor to keep
the voltage difference constant. The capacitor voltage will slowly decrease and needs to be
reset every once in a while. In the discussed circuit the switches that are constantly on also
limit linearity, and it may be very hard to design a bootstrapping circuit for them.

In combination with the use of CMOS-switches and/or bootstrapping, the number of
attenuation steps may be optimized such that there is more design room in choosing W of
the switches before the system bandwidth drops below 6 GHz.

The duty cycle was chosen to be 25% because a Tayloe mixer has a good NF and CG.
In this particular situation maybe a different duty cycle can help to improve linearity.

5.8.2 Increasing the measurement range

The upperbound on the measurement range is dictated by the supply voltage. External
attenuators could be used to improve it, but another solution may be to use on-chip resistors
on thick oxide before entering the attenuator, see fig. 5.27. This would require separate pins
on the chip-interface because internal switches cannot be used at those input voltages. An
important question is how far the upper limit on input power can be stretched, and what is
required to retain impedance matching.

5.8.3 Towards a real implementation

The current implementation serves mainly as a proof-of-concept. To make this easier, an
unbalanced system is designed. In reality, one would want to be less sensitive to crosstalk and
power and ground bounce, as these can cause distortion, or, if they can be regarded as noise,
introduce correlated noise in the branches, which cannot be correlated away. Therefore, the
design of a balanced circuit is recommended. An I/Q-implementation would also come in
handy as some signals may be converted to DC.

PM or HR-mixing was suggested in chapter 4 as a solution to remove unwanted images
and harmonics caused by the blockwave nature of the oscillator. An important problem is
how this can be implemented. As discussed in section 5.4, multiple attenuator/mixer circuits
having mixer-switches open at the same time gives a frequency-dependent bandwidth of the
RC-filter in the Tayloe mixer. The current design uses a constant RC-bandwidth, but
given the fact that filters at IF are required anyway, it may also be a solution to make the
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Figure 5.27: On-chip resistors may be used to stretch the upper limit of the measurement
range beyond the supply voltage.

RC-bandwidth wide enough such that any change in bandwidth does not filter the desired
bandwidth. Because the resistance cannot be made smaller due to the impedance matching
requirement, the capacitor needs to be smaller. This will have a detrimental effect on the
NF, as kT/C increases.



Chapter 6

Digital Backend

After the signal is downconverted to IF and filtered, it will be digitized by the ADC. The
samples then need to be processed to obtain the spectrum.

This chapter starts with an overview of the possible implementations of a digital cor-
relator.1 It focuses on the computational complexity, because that is the most significant
contribution to the power consumption. Based on these numbers and some simulations, the
favored correlator-type is chosen. Section 6.2 gives an overview of the different hardware
architectures. The hardware architecture is chosen in section 6.3, and elaborated in sec-
tion 6.4. The mapping of the chosen correlator-type onto the chosen hardware architecture,
and simulation results thereof, are described in section 6.5. Finally conclusions are drawn
and some recommendations are given.

6.1 Digital correlators

There are two main algorithms for digital correlation, and both have their advantages and
disadvantages. They are known as the FX-correlator (FXC) and the XF-correlator (XFC).
The naming convention stems from the order in which crosscorrelation (denoted by X) and
the Fourier transform (denoted by F) are calculated. The FXC calculates the spectrum
following eq. (2.15), while the XFC calculates the spectrum following eq. (2.14).

6.1.1 FX-correlator

The FXC calculates the cross-spectrum by first transforming the two sequences of samples
x[n] and y[n] to the frequency-domain X[f ] and Y [f ]. This is usually done using the efficient
FFT-algorithm. It then takes the complex conjugate Y [f ] of Y [f ] and calculates the product
X[f ]Y [f ]. The results is a complex cross-spectrum. The process is schematically depicted
in fig. 6.1.

Figure 6.1 also shows some extensions to the basic idea, such as windowing the incoming
data samples and averaging the results of several spectral measurements, both of which are
discussed in chapter 2.

6.1.2 XF-correlator

The XFC calculates the cross-spectrum by first calculating the ccf cXY [k] and then taking
the Fourier transform of cXY .

1Note that, in the curent system design, each ADC generates real numbers, and that each path only has
one ADC. For I/Q-mixing, each path would have two ADCs, and the samples from each path need to be
considered as complex numbers, which will require some changes in the algorithms discussed.
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Figure 6.1: The FXC first calculates the Fourier transforms of the incoming samples to
arrive at the cross-spectrum.

Calculating the ccf can be done using e.g. eq. (2.7) or eq. (2.8). Again, extensions to the
basic idea, such as windowing the ccf, are discussed in chapter 2.

6.1.3 Computational complexity

Deriving computational complexity implies the use of a specific implementation, which is
in general not desired when looking at it from a system point of view. However, the basic
operations of both correlators are so common that this should not be a problem. The
derivation will refrain from delicate optimizations, as this is very implementation-specific.
Real arithmetic operations, like additions and multiplications, require a certain amount of
dedicated hardware or, if some processing unit is used, a certain number of clock cycles.
Complex operations are broken down into real operations, and real operations are broken
down into additions (which includes subtractions), multiplications and divisions.2 Memory
requirements are not discussed in this comparison, because neither method requires an
excessive amount of memory and the exact amount required is again very implementation-
specific. Per functional block of the correlator, the computational complexity will be derived,
followed by an overview of the complexity for a complete correlator.

Phase shifting

As discussed in chapter 5, the two paths may be phase-shifted with respect to each other. A
mixer acts as a constant phase-shifter, which can be easily seen by looking at the important
first harmonic fLO of the mixer (the other harmonics of the mixer are undesired anyway
and suppressed by the techniques discussed in chapter 4):(∑

i

cos(2πfit+ φi)

)
· cos(2πfLOt+ θ) =

1
2

∑
i

cos (2π (fi − fLO) t+ φi − θ)︸ ︷︷ ︸
−θ is a constant phase-shift

+ cos (2π (fi + fLO) t+ φi + θ)︸ ︷︷ ︸
undesired, removed

 (6.1)

For proper correlation, this constant phase-shift needs to be undone in the digital domain.
Since the plan is to use FFTs in the calculation process, a constant phase-shift is just one
complex multiplication per output bin of the FFT of the signal that needs to be phase-
shifted.

2Some instruction sets, such as SSE3 [96], have instructions suitable for complex arithmetic, but under
the hood the operations are still broken down into real operations, so the use of real arithmetic operations
provides a better starting point for comparison.
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Figure 6.2: The XFC first calculates the ccf of the incoming samples to arrive at the cross-
spectrum.

Complex numbers

A complex addition is equal to two real additions. The straightforward calculation of com-
plex multiplication requires four real multiplications and two real additions, while a different
way of calculating a complex multiplication requires three real multiplications and five real
additions [97]:

x · y = (a+ ib) · (c+ id)
= (ac− bd) + i(ad+ bc)
= (ac− bd) + i ((a+ b) (c+ d)− ac− bd)

(6.2)

Which alternative to choose depends on the situation.
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Windowing

Windowing real samples requires one real multiplication per sample. It is assumed that
the window-values themselves do not need to be calculated but are available somewhere in
memory.

FFT

For an M -point complex FFT, where M is a power of two and 2L = M , one requires M − 4
real multiplications, 2LM − 4 real additions and 1

2LM − 2M + 4 complex multiplications
(see section B.11). Note that only the standard radix-2 FFT is considered, which is the
most common, but not always the best solution [98]. Because the sequences of samples are
real, the fact that the result of the FFT is Hermitian can be exploited. It can then be done
in half the number of additions and multiplications [98].

Complex conjugation

Complex conjugation requires the imaginary part of a complex number to be negated. This
could be considered as a subtraction. In that case, complex conjugation requires one sub-
traction. For the FXC, complex conjugation is only necessary right before a complex multi-
plication (the XFC does not need conjugation). Similar to regular complex multiplication,
these two operations can be rewritten into one:

x · y = (a+ ib) · (c− id)
= (ac+ bd) + i(bc− ad)
= (ac+ bd) + i ((a+ b) (c− d)− ac+ bd)

(6.3)

Complex conjugation in this case does not involve any additional computation.

Crosscorrelation function

Calculating the ccf is only done in an XF-implementation. To be comparable to the FX-
correlator, 2M − 1 lags need to be calculated. For lag k = 0, one multiplication and one
addition per pair of samples can be calculated. For lag k = ±1, the same situation arises,
except that the number of pairs of samples is one less than for lag k = 0. In general for lag
k, one needs |k| multiplications and additions less than for lag k = 0.

Assume a total of KM samples are available to calculate 2M − 1 lags. Then

M−1∑
k=−(M−1)

KM − |k| = 2KM2 −M2 +M −KM (6.4)

multiplications and additions need to be calculated. Finally, when the correlation is finished,
2M − 1 divisions are required.

Averaging

Averaging n real numbers requires n− 1 real additions and 1 division.

6.1.4 Complexity of the correlators

In the end one desires an M -point spectrum. It is assumed that a total of KM samples per
ADC are available.

For the FXC this means that per spectral estimate one needs to window 2M samples,
calculate two M -point FFTs on real numbers, take the complex conjugate of M points and
perform M multiplications. When averaging K spectral estimates, 2(K−1)M additions and
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Table 6.1: Computational load of an FXC with KM samples per ADC and an M -point
result.

Operation Complex Mult. Real Mult. Add. Div.

Windowing 2KM
F-part KM( 1

2L− 2) + 4K K(M − 4) 2K(ML− 2)
X-part KM

Averaging 2M(K − 1) 2M

Total 1
2KML+K(4−M) 3KM − 4K 2KM(L+ 1)− 4K − 2M 2M

Table 6.2: Computational load of an XFC with KM samples per
ADC and an M -point result.

Operation Complex Mult. Real Mult.

Windowing 2M − 1
F-part M( 1

4L− 1) + 2 1
2M − 2

X-part M2(2K − 1) +M(1−K)
Averaging

Total M( 1
4L− 1) + 2 M2(2K − 1)−MK + 7

2M − 3

Table 6.3: Computational load of an XFC with KM sam-
ples per ADC and an M -point result.

Operation Add. Div.

Windowing
F-part LM − 2
X-part M2(2K − 1) +M(1−K) 2M

Averaging

Total M2(2K − 1) +M(L−K + 1)− 2 2M

2M divisions are required (the factor 2 comes from the fact that the entities are complex-
valued).

For the XFC one only has one spectral estimate, so windowing only needs to be done
once. Similarly only one (2M − 1)-point FFT needs to be calculated, which using DIF
can be reduced to an M -point FFT. It is assumed that the computations involved with
the decimation can be neglected. Before calculating the FFT one needs to calculate the
(2M − 1)-point correlation function.

Tables 6.1 and 6.3 show the computational load of both correlators, where complex
multiplications are not converted to real operations.

Figure 6.3 compares the values from tables 6.1 and 6.3 graphically, where the complex
multiplications are rewritten as 4 real multiplications and 2 real additions. Note that a
fractional K is possible for the XFC, but not for the FXC (unless overlapping is used, as
discussed in chapter 2).

For relatively large M and large K it can be seen that the number of real multiplications
(again regarding a complex multiplication as four real multiplications) for the XFC is approx-
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Figure 6.3: Comparison of computational load between an XFC and an FXC for two values
of M . MFXC and MFXC represent the number of real multiplications in these correlators,
and AFXC and AFXC represent the number of real additions.

imately 2KM2, while for the FXC it is 2KML. The XFC has to perform M/L = M/ log2M
more multiplications than the FXC. For M = 210 this factor is 100. In fig. 6.3 one also finds
this value, even for K as low as 5.

6.1.5 Comparison

Although both methods are mathematically equivalent3, their implementation and compu-
tational loads were shown to differ significantly.

A comparison based on such abstract computational load, however, is not always com-
pletely fair. In radioastronomy for example, samples from the telescopes are often only two
bits [99]. When an FXC is used, an FFT on 2-bit samples requires 6 bits at the output
[99]. The multipliers after the FFT therefore need to have 6-bit inputs, which makes them
much bigger and more complex than the two-bit multipliers that can be used in an XFC.
For radioastronomy another, far more important, argument often shifts the balance to an
XFC-implementation, and that is interconnection costs [99]. Six bits simply require three
times more capacity than two bits.

Taking the product of two spectra (as done in the FXC) to generate the correlation
causes aliasing in the lag domain. This decreases the signal-to-noise ratio by an estimated
factor of 1.22 or equivalently 0.86 dB for spectral line observations [99]. A hybrid form of
both correlators, known as an FXF-correlator, also exists, which trades off the advantages
of the FXC and the XFC [99]. A more detailed analysis is presented in [99], which also
presents some other issues not discussed here. The complicated interaction between all the
possibilities in the design of a correlator requires more understanding of all the processes
involved and is left for future research.

Interconnection costs are not an issue on-chip, but the number of bits required in each
stage is. Finite wordlength effects, as present in practical implementations, will be different
for the XFC and the FXC. For now the power consumption of both alternatives is the most
interesting part, and it is assumed that the effect on all other properties is negligible.

It was calculated (see chapter 4) that the ADCs need to sample with a resolution of 10
bits. For the XFC this means (10× 10)-bit multipliers need to be used. Rovers [4] already

3Smoothing the ccf in the XFC cannot be mapped one-to-one to windowing in the FXC, but the effects
that one achieves are very similar.
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showed that performing an FFT using 16 bits gives the required 70 dB SFDR. In the FXC
and XFC, the FFT thus needs to be computed using 16 bits. In the FXC, multiplications
need to be performed after the output of the FFT, requiring (16× 16)-bit multipliers.

6.1.6 Digital power consumption

CMOS digital circuitry consumes power, which is commonly divided into static and dynamic
power. Static power consists of all kinds of leakage currents, of which subthreshold current
and gate leakage current are the main contributors [100, 101]. Dynamic power is subdi-
vided into switching power (currents flowing to charge the load capacitances), short-circuit
power (currents flowing from power supply to ground when both the NMOS and PMOS are
conducting) and glitches (gates making several transitions before settling), sometimes also
referred to as toggle power [102], although some authors consider glitches to be part of the
switching power [103] or consider short-circuit power separately [104].

Before the invention of CMOS, mostly only NMOS-transistors were used, which means
that half of the time they short-circuited their outputs, with large static power consump-
tion as a result. When CMOS was introduced, static power consumption suddenly became
negligible compared to dynamic power consumption. Well into the 1990’s, research focused
mainly on reducing this dynamic power consumption. Nowadays, with lower voltages and
gate lengths and widths decreasing, static power consumption is an important factor again,
and it is predicted to dominate within a few years [100, 101]. Optimizations on the periph-
eral level (coolers to reduce the leakage current), system level (pipeling, multiple voltage
supplies), software level (compilers for efficient hardware usage), circuit level (sleep tran-
sistors) and technology level (lower supply, multiple threshold voltages, high-k dielectrics)
may reduce this power consumption [100].

Static power consumption can be easily determined using simulation when a design is
complete, but it is not easy to estimate it beforehand. It can for example be reduced by
time-multiplexing parts of the hardware, but depending on other constraints this may not
always be possible. Therefore, although static power consumption becomes more and more
important, we will focus on dynamic power consumption.

Estimating dynamic power consumption is difficult because it is input-dependent [102].
Several estimation procedures exist [102, 105, 106], many of which rely on the determination
of circuit activity (the fraction of clock cycles that gates switch). The switching power
consumption can be written as Pswitch = αfCV 2, where f is the clock frequency, C the load
capacitance, V the supply voltage and α the activity [100–104]. Empirical measurements
showed that activity on true data ranges from 0.01 to 0.25 [104].

Dynamic power and minimum feature size

In the expression for Pswitch, the load capacitance depends on the technology used, which
is important if circuits, realized in different technologies, are compared. To be able to
compare digital circuits produced in different CMOS-technologies, approximate expressions
for scaling rules need to be derived.

It is well known that for two parallel plates the capacitance is C = εA/d, where ε is
the dielectric constant of the material between the plates, A the area of each plate and d
the distance between the plates. To a first-order approximation, the gate-capacitance of a
transistor resembles a parallel-plate capacitor.

A reduction of the minimum-feature size by a factor of 2 reduces the capacitance by
a factor of 4 because the area A scales by a factor of 4. In older technologies the supply
voltage was brought down to reduce power consumption. To prevent short-channel effects
from ruining the desired operation of the transistor, the gate-oxide thickness d had to scale
down as well. The gate-oxide was scaled down roughly in proportion to the minimum
feature-size, which means A/d scaled linearly as well. Starting approximately at 0.13 µm
CMOS-technology, leakage currents prevented the oxide from being scaled down any further,
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Figure 6.4: Raw power consumption results using QuestaSim for the FXC running at
100 MHz.

so from then on A/d scaled quadratically with minimum-feature size (and the supply voltage
stayed at 1.2 V).

Power consumption of an XF-correlator

An initial design of an XFC was implemented in VHDL. The designed circuit is shown in
fig. 6.2, and contains only the correlator (registers and Multiply-Accumulate (MAC)-units).
In this implementation the multipliers are (8 × 8)-bit (it was constructed and simulated
before it became known that 10 bits are required for the multiplications). It is synthesized
twice; once with accumulators with a width of 24 bits and 7 MAC-units, and once with
accumulators of 48 bits and 257 MAC-units.

The model is synthesized using the Synopsys Design Compiler for a 90 nm TSMC-process
operating at 1.2 V. Because power consumption of digital circuits heavily depends on toggle
rate (activity) of internal nodes [102, 103, 105, 106], three input streams are created. The
first stream contains a slowly varying sine with a period of slightly more than 5215 samples,
the second a fast varying sine with a period of slightly more than 31 samples. Non-integer
number of samples for a period were chosen to avoid the streams to be repetitive. The
third stream contains full-scale uniformly distributed random noise. All streams contain 214

samples.
The power consumption is determined using QuestaSim. The raw results are shown in

fig. 6.4. The dynamic power consumption of the fast sine is used for further calculations.
The static power consumption clearly is much lower than the dynamic power consumption,
which makes our choice to focus on dynamic power consumption justified.

The results need to be scaled to our situation, which is a 65 nm process, 2047 MAC-units
(for a 1024-point FFT) and (10× 10)-bit multipliers. All formulas involving scaling use the
following order (see table 6.4 for the scaling rules and the meaning of the variables):

Pafter scaling = Pbefore scaling ·
yf
xf
·
(
yv
xv

)2

· yL
xL
·
(
yl
xl

)2

·
(
ym
xm

)2

· yc
xc

where factors are omitted if they are not needed.
The final estimated dynamic power consumption then at 200 MS/s is the average of the
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Table 6.4: Scaling rules for dynamic power consump-
tion when going from quantity x to quantity y.

Quantity Scaling factor

Frequency yf/xf
Voltage (yv/xv)2

Minimum-length (x, y ≥ 130 nm) yL/xL
Minimum-length (x, y ≤ 130 nm) (yl/xl)2

Multiplier-width [107] (ym/xm)2

Correlation-stages yc/xc

two powers found:

Pdyn,1 ≈ 0.108 · 200
100
·
(

65
90

)2

·
(

10
8

)2

· 2047
257

= 1.40 [W]

Pdyn,2 ≈ 0.0024 · 200
100
·
(

65
90

)2

·
(

10
8

)2

· 2047
7

= 1.14 [W]

resulting in Pdyn = Pdyn,1/2 + Pdyn,2/2 ≈ 1.3 W.

Power consumption of an FX-correlator

The main computational load of an FXC consists of calculating the FFTs. Since the samples
are real-valued, two real FFTs can be calculated using one complex FFT [98]. At a sample
rate of 200 MS/s and 1024-point FFTs, the SA needs to calculate 2 × 105 complex FFTs
per second.

An Application-Specific Integrated Circuit (ASIC)-implementation of an FFT was made
by Heysters [108]. The required energy per 16-bit 1024-point FFT is 1938 nJ using a 120 nm
process with a voltage supply of 1.2 V. Following the scaling rules in table 6.4, this boils
down to 569 nJ per FFT, or at a sample rate of 200 MS/s, 0.11 W.

Heyster’s ASIC-implementation is not optimal in the sense that its architecture resembles
the Montium-implementation. A more optimized FFT-processor is discussed in [109], which
uses 1240 nJ per 16-bit 1024-point real FFT using a 180 nm 1.2 V process. At 65 nm, 1.2 V
this becomes 526 nJ per 1024-point complex FFT, and at 200 MS/s the estimated power
consumption is 0.10 W. Note that an 8 times more efficient FFT-processor was designed
in [109] using subthreshold operation of CMOS. This is beyond the capabilities of current
synthesis tools, and therefore this value is not used.

Using the results from the previous section, one can estimate the required power for the
MAC-operations that need to be performed after the FFT. In the XFC, M2(2K − 1) +
M(1 −K) MAC-operations are computed (see table 6.3), while in the FXC, KM complex
multiplications and additions are computed, or, using four real multiplications per complex
multiplication, equivalently 4KM real MAC-operations. The XFC has to perform 4.1×1011

MAC-operations per second (K = fs/M , with fs = 200 MHz and M = 1024), while the
FXC only needs to calculate 8.0×108 MAC-operations per second, which is a factor 500 less.
The power consumption of these operations for the FXC therefore corresponds to 2.5 mW.
Scaling from 10 to 16 bits, this becomes 6.5 mW, indeed insignificant compared to the power
required by the FFTs.

With respect to the number of multiplications that need to be performed by the FXC
and the XFC, tables 6.1 and 6.3 suggest that for M = 1024 (and thus L = 10) and large
K, the power consumption of the FXC is 2.10× 106/2.25× 104 ≈ 93 times less than of the
XFC, while the power estimations suggest a factor 1.3 W/0.10 W = 13. Note that, first of
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Figure 6.5: Schematic overview of the power-efficiency and flexibility of different hardware
architectures.

all, the XFC performs multiplications with 10-bit samples, while the FXC multiplies 16-bit
samples. This gives a power consumption reduction of (16/10)2, so the net difference would
be a factor 36 instead of 93. The dynamic power consumption is very input-dependent as
can be seen in fig. 6.4, and the same would hold for the FFT-ASIC. This could easily result
in an additional factor 2 difference in the estimation process. Another important aspect may
be the wiring; even though the FXC has to perform far fewer multiplications, the wiring is
as complex as, if not more complex than, that of the XFC. A factor 13 difference in power
consumption therefore seems like a reasonable number.

6.2 Hardware architectures

In embedded systems there often is a trade-off in system design between power consumption
and flexibility. Different hardware architectures serve different parts of the spectrum.4 Flex-
ible architectures can be reused for different tasks and are often relatively easy to program,
while highly specialized hardware can only do one thing, but can do so with the minimum
amount of power required.

An architecture that is flexible and easy to program implies a short time-to-market,
but flexibility comes at the cost of higher power consumption, see fig. 6.5. The optimum
depends on the application. The four main categories will be very briefly discussed here;
a more detailed overview is given in [108]. Note that exceptions define the rule, and that
there are many architectures adopting parts from several categories.

6.2.1 ASIC

An ASIC is developed specifically for the task at hand, and can be highly optimized. Design,
layout and testing costs are very high. Production costs are more or less fixed (in the order
of a million euro for a mask set), so it only becomes affordable if produced in large numbers.
Since it is purpose-built for the application at hand, it is the most power-efficient solution.

4Pun intended
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If any design parameters change, the entire ASIC must be refabricated (which includes
designing a new mask set), a process that consumes months and a lot of money.

Many vendors sell ASICs, which, because they are produced in large quantities, are
relatively cheap. That is why one finds them in abundance in all kinds of equipment, such
as mobile phones, routers and cars. Of course, they still are inflexible.

6.2.2 GPP

The General Purpose Processor (GPP) did not get this name without a reason. It can
pretty much do anything, which makes it the most flexible solution. The downside is that
all this flexibility implies a lot of hardware and control which is not necessary for any single
application. It is therefore also the least power-efficient solution.

6.2.3 DSP

Many embedded systems applications involve the processing of large streams of data. The
required operations are often quite simple (think of multiplications and additions), but
they need to be performed very fast and very often. These processors are optimized for
this kind of operations, although a significant part of commercially available Digital Signal
Processors (DSPs) can also do a lot of other operations (but not everything a GPP can).
These other operations usually require a lot more time than the simple multiplications and
additions. Because a DSP is optimized for number crunching, it can do so with a power-
efficiency between that of an ASIC and a GPP. The flexibility is also between that of an
ASIC and a GPP.

6.2.4 Reconfigurable architectures

Reconfigurable architectures are architectures that can be configured into a mode of op-
eration, but, at the cost of some overhead, can be reconfigured to operate in a different
mode. One often distinguishes between fine-grain reconfigurability (bit-level) and coarse-
grain reconfigurability (word-level) [108]. An example of a fine-grain reconfigurable device
is a Field-Programmable Gate Array (FPGA); an example of a coarse-grain reconfigurable
device is the Montium.

FPGA

An FPGA is a device that, in its elementary form, consists of many Lookup Tables (LUTs),
memory elements and interconnects. By describing a digital circuit in a language like VHDL
and programming the FPGA with the result, the digital circuit functionality is implemented
by connecting the LUTs and memory elements through the interconnects.

Because modern FPGAs have quite a lot of LUTs, many calculations can be performed
in parallel. The LUTs are usually only a few bits wide, so many LUTs need to be combined
to form the required logic for more complex structures such as (16× 16)-bit multiplications.
This is one of the reasons why more expensive FPGAs also contain dedicated arithmetic
units and/or DSPs or GPPs.

In short, FPGAs can be reconfigured, can be used for a lot of applications, and are
especially good at parallel computations and bit-level manipulation. Once it is configured
for a specific application, it is relatively expensive (with respect to time) to reconfigure it
for other applications. Furthermore, the relatively long interconnects between all the LUTs
and memories make FPGAs power-hungry. Moreover, FPGAs are rather expensive, which
makes them a good choice for prototyping, but not for mass-production.
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Montium

The Montium has a special architecture that can be configured to operate almost as an
ASIC, so very efficient but not very flexible. Special care was taken to make the system
quickly reconfigurable, so that again it can run almost as efficiently as an ASIC, but then
for another algorithm. Its instruction set is comparable to that of a DSP, but only a small
subset of the instructions can be used in a single configuration. It combines the efficiency
of an ASIC with the flexibility of a DSP.

6.3 Design of an FX-correlator

From section 6.1.6 follows that the FXC is much more power efficient. The choice for
implementation is therefore easily made.

In section 4.6 the option of also allowing regular spectrum analysis with the proposed SA
was discussed. For the implementation, only the crosscorrelation mode is considered here,
because that is the main research topic.

6.3.1 Signal processing

The digital part is fed with two streams of real-valued samples coming from the ADC. It
is assumed that the signal to be measured is available in-phase, which means that phase-
shifting is not needed.

The two streams of real-valued samples, denoted by x and y, first need to be translated
to the frequency domain by means of an FFT. Since the samples are real-valued, the fact
that its Fourier transform is Hermitian can be exploited, i.e. if X represents the Fourier
transform of x, X[k] = X[−k] = X[M − k], where the last step follows from the definition
of the DFT. Both FFTs can be calculated in one single complex FFT.

Define z[n] = x[n] + iy[n], then [98]

X[k] = DFT (x[n]) =
1
2

(R {Z[k]}+ R {Z[M − k]}) +
i

2
(I {Z[k]} − I {Z[M − k]}) (6.5)

Y [k] = DFT (y[n]) =
1
2

(I {Z[M − k]}+ I {Z[k]}) +
i

2
(R {Z[M − k]} −R {Z[k]}) (6.6)

where indexing wraps around, i.e. X[M ] = X[0]. Note that the conjugate Y [k] can be
calculated by negating the imaginary part of Y [k], so it comes at no extra cost.

After the FFTs, the product X[k]Y [k] needs to be calculated. This can be rewritten as

X[k]Y [k] = X[M − k]Y [k] = X[M − k]Y [N − k] = X[M − k]Y [M − k] (6.7)

so this product is also Hermitian, which means X[k]Y [k] only needs to be calculated for
k = 0 . . . M2 .

Define a = R {Z[k]}, b = I {Z[k]}, c = R {Z[M − k]} and d = I {Z[M − k]} for nota-
tional convenience. Then

X[k]Y [k] =
[

1
2

(a+ c) +
i

2
(b− d)

]
·
[

1
2

(b+ d) +
i

2
(a− c)

]
=

1
2

(ad+ bc) +
i

4
(a2 + b2 − c2 − d2)

(6.8)

The total process is schematically depicted in fig. 6.6.
Assuming the noise sources and the signal are all uncorrelated, with an input signal S

in both paths, a noise source A in path 1 and a noise source B in path 2, one finds

X(f)Y (f) = (S(f) +A(f))(S(f) +B(f))

= |S(f)|2︸ ︷︷ ︸
real

+S(f)A(f) + S(f)B(f) +A(f)B(f)︸ ︷︷ ︸
complex

(6.9)
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Figure 6.6: Two real data streams can be correlated using one complex FFT.

In the crosscorrelation one effectively only wants to measure the signal that is present in
both paths. Based on the assumption that there is no phase shift between the paths, the
wanted result in a real spectrum, so the imaginary part of eqs. (6.8) and (6.9) can be safely
disregarded.

Using this route, only 1
2 (ad + bc) needs to be calculated, involving 2 multiplications,

1 addition and 1 bitshift. If one would first calculate the complex entities X and Y , and
then multiply, it would require 4 additions and 4 bitshifts to obtain X and Y , and then 2
multiplications and 1 addition to calculate XY . Concluding, the method derived above is
more efficient.

6.3.2 Choice of hardware architecture

With the discussion of section 6.2, the hardware architecture best fitting to the problem can
be determined.

In any SA, user input, for example by manually turning the knobs or by communication
using a computer, requires calculations to be performed to determine correction factors,
optimum settings, filters to be selected, coefficients to be calculated, etc. Moreover, some of
the envisioned applications, such as CR, do not sense the spectrum all of the time. When
spectrum analysis is not performed, it would be a waste of chip area and time not to use
the computational power available. An architecture that can handle different kinds of tasks
is therefore preferable.

On the other hand, power consumption is also very important. First of all, chips require
expensive packages or need to be actively cooled in case they produce more than roughly
1 W, which is not preferable because of additional cost and size. Secondly, mobile devices
run on batteries, which would quickly drain, if these batteries can deliver the amount of
power required in the first place. It was already discussed in section 6.1.6 that a highly
optimized ASIC for the FXC would require approximately 0.1 W. It is interesting to see
whether a flexible architecture can do the calculations without becoming the dominant power
consumer in the entire SA.

Based on [109], a low-power microprocessor requires roughly 40 times more power than
the ASIC, which is far beyond reasonable power consumption in the system under design.
Hence a GPP is out of the question. An FPGA is not very good at word-level opera-
tions, which makes it unsuitable for 16-bit FFT and (16 × 16)-bit multipliers as required
in our application. The best candidates therefore are DSPs and coarse-grain reconfigurable
hardware.

The Montium has 16-bit words and a 32-bit accumulator, and usually performs within
a factor of 1 to 5 as compared to ASICs in terms of energy efficiency [110–112], but not
always [113]. Based on the assumption that 16-bit FFTs are required, multiplying two FFTs
results in 32 bits. The accumulator in the Montium is also 32 bits wide, so in order to allow
accumulation, the multiplication of two FFTs needs to be rounded or truncated by several
bits, depending on what number of accumulations the design finally allows for. After multi-
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plication of the two FFTs, the values represent power, so in order to have 70 dB of dynamic
range at least 24 bits are required.5 This would allow at least 256 accumulations before the
accumulator overflows, which means the Montium may be an option. Unfortunately, in the
current version, the output of the accumulator is only 19 bits wide [114], so the Montium
cannot be used.

The successor of the Montium, aptly named Montium 2, is currently being designed.
In the specifications used in this thesis (October 2, 2008), it can work with 16-bit and
32-bit words, and the accumulator has a width of 40 bits. Its design better resembles a
traditional DSP than the Montium 1 does, but it still tries to keep the energy-efficiency of
the Montium 1. Therefore it looks like an ideal candidate to map the algorithm to. It is
even more interesting because it is still under development, and mapping algorithms to it
may help in improving the final design.

Alternatives

Choosing the Montium 2 as the first option to map the algorithm to is based on the avail-
ability of tooling and available knowledge on this processor. This does not mean that the
Montium 2 is necessarily the best option. The range of DSPs and coarse-grain reconfigurable
hardware architectures is so large that it would require months to select the most promising
candidate.

Some other coarse-grain reconfigurable hardware architectures are discussed in [108].
Of these, the RCP is not designed for low-power, disqualifying it as a good candidate.
Promising candidates mentioned there are Pleiades, QuickSilver, XPP and the Avispa. No
final conclusions can be drawn from the brief overviews given, and more effort is required
to select the right candidates.

There are many different DSP-vendors, of which the most famous are Advanced Devices,
ARM, Analog Devices, Freescale Semiconductor, Infineon Technologies, NXP, STMicroelec-
tronics and Texas Instruments. Each of these vendors has a whole range of DSPs, differing
in target applications, performance characteristics and power consumption. It is very time-
consuming to find the most appropriate DSP for the current application and has not been
attempted.

6.4 Montium 2

The Montium 2 is the planned successor of the Montium 1. Both are being developed by
Recore Systems, a spin-off of the University of Twente. Whereas the Montium 1 is really a
hybrid between an ASIC and a DSP because of its reconfigurability and architecture, the
Montium 2 tends much more towards a regular DSP. A block diagram is shown in fig. 6.7.

The architecture of the Montium 2 is not fixed yet; the processor is still under de-
velopment and only part of the simulation tools work. It is very likely that the memory
configuration and the bus structure will be different in the final version. The version used
in this thesis dates from October 2, 2008.

The Montium 2 is a 32-bit fixed-point processor with a target clock speed of 200 MHz
and a target area of 1.4 mm2 in 90 nm technology. Without interconnects, one would expect
the area scales roughly quadratically with minimum feature size, giving 0.7 mm2 in 65 nm
technology. However, including interconnects, it is probably better to assume a safer value
of 1.0 mm2. The power consumption is not yet known, and Recore Systems does not yet
dare to give an estimate. This issue will be discussed later during the power estimation
process.

The processor contains five memories (MEM0 to MEM4), each containing 1024 words of
32 bits, four register banks (RA to RD), each containing 8 words of 32 bits, a loop counter
structure for iterative procedures (LC), an 8-bit boolean flag register for software-defined

570 dB corresponds to a factor 107, which is approximately equal to 223.25.
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Figure 6.7: The Montium 2 architecture (reproduced from [115])

flags (B), an interface to communicate with the outside world (EI and EO), and several
different Arithmetic Logic Units (ALUs) (S0 to S3, P0, P1, M0 and M1). Each clockcycle
one 32-bit word can be read from some external source, and one 32-bit word can be written
to some external sink. It is possible to consider one 32-bit word as two packed 16-bit words.

There are three types of ALUs, which all finish their operations in a single clockcycle.
They can all operate in two modes: a mode in which they consider each input as one 32-bit
word (the 40-bit words of the S-units are a special case and will be discussed later), and a
mode in which each input is considered as two 16-bit words. Their operations are briefly
summarized here; for more details see [115].

• Two M-units. Each M-unit has two 32-bit inputs and two 32-bit outputs. Its basic
operation is to multiply the lower 16 bits of the two inputs, giving a 32-bit result.
When considering the 32-bit input words as two 16-bit numbers, there are effectively
four inputs (a, b, c and d). The M-unit can produce the combinations (ab, cd), (ac,
bd) or (ad, bc), whatever desired, or simply concatenate without multiplying, giving
results as (a|c, b|d) or (a|d, b|c).

• Two P-units. Each P-unit has two 32-bit inputs and one 32-bit output. It can ad-
d/subtract the two inputs (with or without saturation and with or without a final
single bitshift to prevent overflow) or determine the maximum or minimum. It can
also negate the first input, perform bitwise logical functions with the two inputs or
determine the exponent.6 In 16-bit mode, it can combine any 16-bit word from the
first input with any 16-bit word from the second input (referred to as a pack-operation,

6The exponent can be used for dynamic scaling to achieve higher accuracy with fixed-point numbers
without the hardware overhead of floating-point numbers, but at the cost of more clock cycles and higher
memory requirements.
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hence the name P-unit) and perform compare and select operations. Finally, it can
also determine the absolute value and do all the arithmetic operations on 16-bit words
that it can also do on 32-bit words.

• Four S-units. The S-units are somewhat similar to the P-units. The S-units have a
40-bit accumulator and cannot do pack-operations. They can also perform logical,
arithmetic and rotational bitshift on the first input with the number given by the
second input.

Note that the 40-bit output of the S-units can only fully be used in any S-unit, because
all other wordwidths are 32 bits. None of the S- and P-units provide overflow-bits, because,
in Recore’s opinion, fixed-point algorithms should be designed without overflow-detection
requirements. Possibility of overflow can be detected using the exponent extract instruction,
which gives the number of sign extended bits. If this is 0, the next addition could result in
overflow. Saturation can be used to mitigate the effects of overflow without overhead.

Code can be written in MontiumC, which can be considered a library with C-functions
that map more or less one-to-one onto Montium assembly instructions. Because there is
no Montium 2 compiler available yet, MontiumC code cannot be compiled to Montium 2
assembly. MontiumC is plain C, so the code can be compiled to x86-assembly. This provides
the possibility to test an algorithm for bugs, functionality and accuracy, but it does not
allow scheduling of the ALUs or anything like that, which makes it very hard to estimate
the Montium 2 performance when looking at MontiumC code. To assess performance to a
higher degree of accuracy, the algorithm should be written in assembly by hand. This can
also be compiled to x86-assembly, so it too can be tested. Furthermore, clockcycles have to
be explicitly stated in the assembly, so counting clockcycles is possible (although error-prone
in case of loops / jumps). At the time of writing, no mechanism is available to automate
the counting of clockcycles when executing the algorithm.

6.5 Mapping the FX-correlator onto the Montium 2

The design and instruction set of the Montium 2 are not finalized yet, so an implementation
in assembly would be quickly outdated. Therefore only an implementation in MontiumC is
made. This allows finding bottlenecks in the Montium 2 functionality and the computational
accuracy with respect to this particular algorithm. Recore Systems already delivers an
efficient radix-2 FFT-implementation both in MontiumC and assembly. Since the main part
of the FXC-algorithm consists of calculating FFTs, it is still possible to be pretty accurate
with respect to the number of clockcycles required.

In the implementation a few assumptions are made:

• Twiddle factors in the FFT-computation do not have to be calculated but can be read
in from some external memory.

• The samples from both ADCs are combined into 32-bit words as shown in fig. 6.8.
Because overflow cannot be detected, the FFT-implementation scales the words in
every stage. The bits from the ADC are put into the most significant bits of their
16-bit parts to achieve maximum accuracy in the computations. For simplicity it is
assumed that the ADCs output their bits in 2-complement form, such that it is directly
compatible with the representation used by the Montium 2.

• The 10-bit samples from the ADCs are stored in an external memory. This memory
will always have enough free memory available to store the samples required.
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Figure 6.8: The samples of the two 10-bit ADCs are combined into a single 32-bit word,
which is interpreted as consisting of a 16-bit real part and a 16-bit imaginary part.
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Figure 6.9: The FFT-results are stored out-of-order to allow efficient computation of the
correlation.

6.5.1 Phase shifting

As discussed on page 86, phase shifting may be required if the two paths in the correlator
are phase-shifted. One approach could be to multiply each bin of the FFT of y with the
complex factor eiθ to acquire a constant phase shift θ, see eq. (6.1). Phase shifting has not
been implemented in the current implementation.

6.5.2 FFT and correlation

A implementation of an FFT, written in MontiumC, accompanies the toolset given by
Recore. That implementation writes the final FFT-results in-order to two internal memories:
results 0 to M

2 − 1 in the first memory and results M
2 to M − 1 in the second memory.7 In

the implementation of the FX-correlator, the final stage outputs the results in a different
order (see fig. 6.9). This is done because it allows for easier correlation between the bins.

Calculating the complex multiplications has been combined as in eq. (6.8), where the
implementation only calculates the real part and discards the imaginary part. The FFT
gives 32-bit outputs, of which both the real part and the imaginary part are 16 bits. It can
then be observed that the result of the real part in eq. (6.8) fits in 32 bits because of the
multiplication with 1

2 . The MontiumC code following eq. (6.8) is shown in listing 6.1, where
the line involving the mul v-instruction is visualized in fig. 6.10.

The M
2 + 1 results of the correlations are exported to external memory.

7Starting counting at zero better corresponds to the nature of the code.
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Listing 6.1: MontiumC code for calculating the correlation (binwise multiplication) in the
implemented FXC.

void binmult(dword M2, dword *mem0 , dword *mem1 , dword *memres) {

mul_h(mem0[0],mem1[0],PSL1S ,& memres [0],& memres[M2]);

for (idx i = 1; i < loopidx(M2); i++) {

mul_v(mem0[i],mem1[i],SWAP_B ,&mem0[i],&mem1[i]);

memres[i]=add(mem0[i],mem1[i],NONE);

}

}

a b

Mem 0

c d

Mem 1

× ×

SWAP B

Figure 6.10: The mul v-instruction of listing 6.1 visualized.

6.5.3 Averaging

The results of every correlation are stored in external memory, because accumulation after
every FFT is not possible. There are four accumulators, which are all used in the FFT-
process. All intermediate accumulation results need to be stored somewhere during the next
FFT-computation. All values to accumulate are already 32 bits, and no words of more than
32 bits can be directly stored in local memory or exported to external memory.

After all correlations have been calculated, the averaging process reads in the results one
bin at a time and performs the accumulation. Finally it divides the result by the number
of correlations and outputs the results to external memory. This is schematically depicted
in fig. 6.11.

In the current implementation the number of correlations is given as input. In a general
measurement application, it is not known beforehand how many correlations need to be
averaged, and a counter needs to be incremented with every FFT. This would also allow
averaging any integer number, while in the current implementation only powers of two are
allowed. This is done for two practical reasons:

• A division operation requires extra code, and is not easily implemented for the S-units,
because a division-step instruction is only available for P-units (a division-step is an
instruction needed as part of the divison process). Division by a power of two is a
simple bitshift, which can be easily implemented on an S-unit.

• Every factor of two decreases the noise floor by 1.5 dB. It is not likely that any
application would require smaller steps in noise reduction.
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Figure 6.11: The correlation results are read in from external memory, averaged, and written
back.

Listing 6.2: MontiumC code for averaging single correlation measurements in the imple-
mented FXC.

void average(dword L, dword logK , dword start) {

dword K = lsl(int2dword (1),logK); // number of averages

dword M = lsl(int2dword (1),L); // number of samples per FFT

dword M2 = lsr(M,int2dword (1)); // M/2

dword M2_plus1 = add(M2 ,int2dword (1),NONE); // M/2+1

dword meme; // external memory address

dword v; // content of external memory

dword addr_start = int2dword (0);

accum acc;

for (idx j=0; j<loopidx(M2_plus1); j++) {

meme=addr_start;

acc = int2accum (0);

for (idx i=0; i<loopidx(K); i++) { // accumulate

v = rd(meme);

acc = add_a(acc , v, SAT);

meme = add(meme ,M,NONE);

}

acc = asr_a(acc , logK); // divide by #averages (power of 2)

wr(acc ,addr_start);

addr_start = add(addr_start , int2dword (1), NONE);

}

}

In the case division really is required, it gives a constant overhead, because it only needs
to be calculated once for M

2 + 1 numbers.
The maximum number of averages is limited by accuracy. Each correlation result con-

tains 32 significant bits. The accumulators have a width of 40 bits, so only 256 32-bit
numbers can be accumulated before there is a chance of overflow. It is possible to shift one
or more bits to the right to increase the maximum number of averages, but this comes at
the cost of accuracy. With the exponent operation, the accuracy can be improved by only
shifting when there really is a chance of overflow, i.e. when the Most Significant Bit (MSB) of
the accumulator word is unequal to the signal bit, but this comes at the cost of overhead in
each cycle to check for the exponent. In the current implementation overflow is not checked;
if overflow occurs the results will simply be wrong.
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6.5.4 Logarithm

The current implementation gives the power spectrum on a linear scale, while it is usually
given on a dB-scale. This means the results need to be converted using a logarithm operation.
The Montium 2 does not have a logarithm instruction, so it either has to be emulated using
the available instructions, or another processor needs to perform this function.

For a stand-alone SA, a user interface needs to be implemented, which generally requires
a GPP. It is also likely that a GPP is available in a mobile phone, or that for applications
such as BIST the device can be connected to a regular PC. The GPP can then simply handle
the logarithm-instructions.

When a GPP is not available, some common techniques to emulate a mathematical
operation like the logarithm are the use of a Taylor series approximation and the use of
LUTs. In the Taylor series approximation the logarithm is expanded into a polynomial of
order n, where n is a design parameter. With higher n the approximation is better but the
number of calculations increases.

With a measurement range of (say) 100 dB and a desired accuracy of 0.1 dB, a LUT
needs 1000 entries. This fits in the Montium 2, so a LUT-implementation seems feasible.
The implementation however is not trivial because of the 32-bit input to the LUT; some
(possibly complicated) arithmetic needs to be performed as well to know what entry in the
table to select.

An alternative would be to directly map some amount of bits of the input to a memory
location, but this results in a very large LUT. A large LUT can be split into several smaller
LUTs occupying less total memory [116]. The downside is that the results from each table
needs to be added.

It is important to note that only M
2 + 1 logarithms need to be calculated, so just like

division the time allowed to calculate the logarithm is not really strict. In conclusion, there
are several alternatives to a logarithm implementation and more research is required to find
a suitable solution.

6.5.5 Memory requirements

Because it is not possible to accumulate on-the-fly, the results of each correlation need to
be stored in memory. This memory should be integrated on-chip because it allows a higher
bandwidth and lower power consumption [117].8 With 32-bit results of the multiplication
and 40 bits in the accumulator, one can accumulate 256 results without risk of overflow.
This means one needs to be able to store 255 · (M/2 + 1) words in external memory. With
M = 1024 and each word equal to 32 bits or 4 bytes, 4.2× 106 bits of memory are needed,
or equivalently 511 kB.

An estimate of the required chip area for this amount of memory can be made for the
two most widely used types of Random Access Memory (RAM): Static RAM (SRAM) and
Dynamic RAM (DRAM). The traditional architectures of both types of RAM are shown in
fig. 6.12. Many different variations have been proposed, each with its own advantages and
disadvantages.

The properties of the SRAM-cells in [118] will be used, as this is a very recent design
in 65 nm CMOS operating at 1.2 V. Each cell occupies 0.54 µm2, while control overhead
is about 4%, so the total area occupied by the memory is 2.36 mm2.9 The leakage current
per cell is 750 pA, bringing static power consumption to 3.8 mW. The read current of a cell
is 27 µA, which, using 32-bit words and constant utilization of the memory, translates to a
power consumption of 1.0 mW. Total power consumption of the memory then is 4.8 mW.

8The question is whether this is really necessary, as the Montium 2 only operates at 200 MHz. Further-
more, the samples from the ADCs need to be buffered as well, which is not taken into account here.

9Each SRAM-cell in the internal memory of the Montium 2 in 90 nm technology currently is about
2.4 µm2. This would be roughly 1.2 µm2 in 65 nm, so a lot can be gained here with respect to chip area of
the Montium 2.
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Figure 6.12: The SRAM-cell is about five times as large as a DRAM-cell, but consumes less
power.

The area of the memory is quite significant compared to the area occupied by other
components of the SA. The SRAM can run at 470 MHz, so it may be possible to decrease
the area of each cell, because in the current design only a speed of 200 MHz is required.
A better solution could be to use DRAM, as its single transistor plus capacitor per cell
occupies an area that is roughly five times smaller than traditional six-transistor-per-cell
SRAM [117, 119]. The general thought is that the power consumption of DRAM is higher
than that of SRAM, but this is disputed by [117]. Because we do not have any hard numbers
on DRAM we will use the SRAM-numbers.

Another option to reduce the memory requirements is to use an additional Montium 2.
Even though there will be significant overhead in storing and retrieving the 40-bit accumu-
lator values into and from two 32-bit memory cells, if the Montium 2 only performs this
accumulation, it is expected that it can do this real-time. This would completely remove
the memory required to store intermediate results. Because the Montium 2 is much smaller
than 2.36 mm2, it will save chip area, but most likely requires more power.

6.5.6 Computational power

The computational power of the Montium 2 with respect to this algorithm needs to be
determined by looking at the number of clockcycles required to calculate the different parts
of the algorithm.

An FFT-implementation in assembly is given by Recore Systems. It is difficult to see
whether the reordering in the last stage requires additional clockcycles, or that it may be
calculated at no extra cost. We assume the latter and count the clockcycles of the original
implementation to arrive at the cycle count of this slightly changed FFT. These numbers
are shown in table 6.5. Reading in twiddle-factors only needs to be performed once (one of
the five memories will be constantly reserved for the twiddle-factors), so that is a constant
term 3 +M .

The next phase is the correlation. The MontiumC code for the correlation in the current
implementation can be mapped one-to-one onto assembly, requiring M/2 clockcycles. Writ-
ing the correlation results to external memory costs M/2 + 1 clockcycles, but this can be
done simultaneously with the correlation itself. The total number of clockcycles will then
be M/2 plus a few additional clockcycles for overhead.

Averaging the results requires external samples to be read in again. With K averages
and M points in the FFT this requires KM clockcycles, because only one word can be
read in per clockcycle. Accumulation, bitshifting and exporting the result can be done while
reading in the next value from external memory. In total averaging requires KM clockcycles
plus a few additional clockcycles overhead.
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Table 6.5: Number of clockcycles for different parts of the
M -point FFT for the implementation given by Recore.

Phase Clockcycles

Read in twiddle-factors 3 +M
Read in samples 7 +M
Initialize FFT 5

First stage FFT 3 +M/2
Middle stages FFT (4 +M/2)(log2(M)− 2)

Last stage FFT 1 +M/2
Write samples to ext.mem. 9 +M

Table 6.6: Estimated number of clockcycles for different parts of the
correlation algorithm.

Phase Clockcycles M = 1024 Streaming

Twiddle 3 +M 1027 0
FFT (M/2 + 4) log2(M) + 8 6192K 6192K

Crosscorrelate M/2 + 10 522K 0
Average KM + 10 1024K + 10 0

Streaming total 6192K

The number of clockcycles can be optimized by simultaneously exporting the results
from the correlation to external memory and importing samples from external memory for
the next FFT (provided the external memory can handle it). The correlation requires a
little over M/2 clockcycles, while reading in the samples requires slightly more than M
clockcycles. The correlation can therefore be calculated without a penalty in clockcycles.

The results are summarized in table 6.6 where an overhead of 10 clockcycles is assumed
where no number of clockcycles is known for the overhead. This is expected to be on the
safe side.

The streaming total in table 6.6 denotes the number of clockcycles required for doing all
calculations except those that only need to be performed once.10 Operations that only need
to be performed once are reading in the twiddle factors before the start of a measurement
and averaging the results after the end of a measurement. The streaming total is not the
sum of the FFT and crosscorrelate entries in the table due to parallelism in the algorithm
(see fig. 6.13). Provided enough external memory is available, 32300 1024-point FFTs can
be handled per second at a clock frequency of 200 MHz, or equivalently a little over 33 MS/s
per ADC.11

Assuming K = 256 and the ADCs running at 200 MS/s, only 42 FFTs will be finished
when the ADCs have delivered all samples. The others still need to be calculated, which
takes 6.62 ms. Finally, the averaging process takes 1.31 ms. So with a maximum of 256
averages, one requires 8 ms after stopping the measurement to arrive at the final results.
For lower sampling rates the time will be less.

10For the Montium 1, a streaming implementation of the FFT is available, which greatly reduces the
overhead caused by reading and writing samples. At this moment such an implementation is not available
for the Montium 2.

11To handle 200 MS/s real-time, one would require 7 Montium 2’s (the algorithm is inherently parallel).
In the CRISP-project (http://www.crisp-project.eu) a chip is designed using 9 Montiums, which could do
the job.

http://www.crisp-project.eu
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Figure 6.13: Scheduling of the FXC-algorithm during streaming.

In most applications this additional 8 ms will probably not be a problem. For a stand-
alone SA, pushing a button to stop a measurement will cost more time. When observing
Time Division Multiplexing (TDM)-systems, the ADC-samples may not be delivered in a
continuous stream, but only in bursts (when a specific sender is sending). The Montium 2
can simply continue the computation during the quiet intervals, reducing the additional
computation time even more. The averaging process however will always remain, because
that can only be done at the end of a measurement.

Assume a user can wait for 1 s after the measurement, which could be reasonable when
using a stand-alone SA for all kinds of measurements. In that case K can be increased to
215, provided the accumulator can handle it and external memory is large enough.

6.5.7 Power consumption

Because the architecture of the Montium 2 is not fully fixed yet, let alone that the hard-
ware has been synthesized, the power consumption has to be estimated based on other
architectures.

In section 6.1.6 it was derived that an ASIC, able to handle 200 MS/s real-time, requires
0.10 W.

The Montium 1 requires 577 µW/MHz when calculating 1024-point complex FFTs [108].
It was synthesized in 0.13 µm CMOS-technology, which makes the power consumption
equivalent to 145 µW/MHz in 65 nm CMOS. Assuming it can calculate the FFTs in the
same number of clock cycles as the Montium 2 can do it, the power consumption for real-
time handling (by scaling linear with frequency or by putting multiple Montiums in parallel)
is 145× 10−6 · 200 · 6192/1024 = 0.17 W.

A little search on the sites of DSP-manufacturers for DSPs with an architecture com-
parable to that of the Montium 2 resulted in the TMS320C6421 Fixed-Point Digital Signal
Processor from Texas Instruments [120]. It has 64 32-bit registers, six 32/40-bit ALU’s, two
multipliers, each supporting two (16×16)-bit multiplications with 32-bit outputs and 16 kB
of internal memory. It is manufactured in 90 nm CMOS and operates at a frequency of
700 MHz with a supply of 1.2 V. Its nominal power consumption is 0.72 W, but it is not
known whether this is an accurate figure when it comes to calculating FFTs. It is never-
theless the best estimate currently available. Under the assumption that it can process the
algorithm with the same number of clockcycles as the Montium 2, it can handle a stream of
1024/6192 · 700 × 106 = 115.8 MS/s. For 200 MS/s the power consumption then becomes
0.72·200/115.8 = 1.24 W. Scaling down to 65 nm one finally arrives at a power consumption
of 1.24 · (65/90)2 = 0.65 W.

According to Recore, the Montium 2 will distinguish itself from other architectures by
its energy-efficiency, just as the Montium 1 does. Because the Montium 2 looks more like
the TMS320C6421 than the Montium 1, it is estimated that its power consumption will be
closer to the power consumption of the DSP from TI than to the power consumption of
the Montium 1. We therefore estimate the power consumption through weighted averaging:
(1 · 0.17 + 2 · 0.65)/3 ≈ 0.5 W.

With only one Montium 2, the power consumption is 0.5 · 33/200 = 0.08 W. Compared
to the power consumption of the analog components this is not insignificant, but also not



108 CHAPTER 6. DIGITAL BACKEND

dominating. Implementing the crosscorrelation algorithm using one Montium 2 thus seems
like a reasonable solution.

6.5.8 Dynamic range

Rovers already showed that 16-bit FFTs manage a dynamic range of about 86 dB. In the
current implementation, the multiplication following the FFT is not rounded or truncated,
so this should still give a dynamic range of 86 dB. The averaging process is not expected to
influence this significantly, because it does not change the range of numbers used. It is there-
fore expected that the dynamic range of the current implementation of the crosscorrelation
algorithm is also around 86 dB.

The MontiumC code is compiled, and the results for different spectra are compared
to two reference implementations in Matlab. One reference implementation uses the non-
quantized samples, while the other reference implementation uses the same 10-bit quantized
samples as those that are fed into the Montium program. Both reference implementations
use 64-bit precision floating-point operations for all calculations. The MontiumC results are
on a linear scale; converting to dB-scale is done in Matlab’s 64-bit floating-point precision.
All samples are generated before execution, and are scaled such that the highest absolute
value is equal to 1, making full use of all the bits available.

In all simulations three parameters are used: M , the number of points in the FFT, K,
the number of averages and NL, the PSD of the uncorrelated noise (relative to that of the
sinusoid12) injected in each path.

Figure 6.14 shows an example. The signal in each path consists of three components:
the sinusoidal signal, correlated band-limited noise and uncorrelated white noise. In this
situation, the uncorrelated white noise in both paths has a PSD of −40 dB, just as the
band-limited noise that is fully correlated between both paths. With K = 1, one cannot
see the band-limited noise due to the high mean value and variance of the white noise. At
K = 256, the band-limited noise is clearly visible. The white noise level has gone down by
12 dB, corresponding to the

√
K dependence derived in chapter 2.

At some points there is a gap in the black line of the Montium 2. This is because the
fixed-point implementation of the algorithm occasionally gives 0 as a result, which in dB
becomes −∞ and cannot be shown in this graph. The difference between the Montium 2
result and the two reference implementations is negligible for this example.

The desired SFDR is 70 dB. In fig. 6.15 an input sinusoid and uncorrelated white noise
with a relative PSD of −65 dB is measured. The SFDR is clearly higher than the desired
70 dB.

The maximum SFDR is shown in fig. 6.16, where the initial noise level is chosen low
enough. The reference implementation in Matlab using the same quantized samples gives
lower values, so this limit is solely due to the fixed-point implementation. The lowest value
that can be represented corresponds with −87.19 dB, while the highest value (the peak of
the sinusoid) is only 0.001 dB different from the reference floating-point implementation at
0.000 dB. The maximum SFDR therefore is 87.2 dB, very close to the 86 dB observed by
Rovers [4].

In reality a sinusoid will never fall exactly into the center of a bin such as in the previous
simulations. If its frequency is slightly off, the result is spectral leakage. This leakage is also
a limitation to the SFDR. Windows should be used to reduce the leakage, but, as discussed
in chapter 2, at the cost of loss in frequency resolution. Some very good windows with a
sidelobe suppression of more than 90 dB (such that spectral leakage does not limit SFDR)
are discussed in [121].

In chapter 3 the effects of quantization on the SFDR were discussed. Using 8-bit or
9-bit quantization of a full-scale sinusoid gives the result shown in fig. 6.17. In fig. 6.17a the

12This includes a correction factor for M , because the PSD of a sinusoid scales with the bin-width, while
for noise this is not the case.
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Figure 6.14: The crosscorrelation algorithm executed on the Montium 2.

highest peak has a magnitude of −65.8 dB, relatively close to the value of −67.9 dB predicted
by eq. (3.7) on page 32. For 9-bit quantization an SFDR of 70.5 dB is found, while 75.9 dB
is predicted by eq. (3.7). The difference is explained by the fact that now only 1024 points
are used in the FFT, such that many harmonics fall into the same bin. In fact, because of
the aliasing effect, many harmonics fall directly on top of each other. Unfortunately it is
not possible to simulate it with a sinusoid, that does not have a frequency fitting exactly
into 1024 samples, because spectral leakage prevents the detection of the small peaks; the
current implementation cannot perform a 220-point FFT on the Montium 2 to remove the
spectral leakage effect to a negligible level. The same simulation with 10-bit quantization
gives a SFDR of 74.3 dB, which justifies the initial choice to use 10-bit quantization.

6.6 Conclusions

Of the two general approaches to implement a correlator, the FXC performs much better in
terms of computational load and power consumption. Because correlation is not the only
digital processing part in a SA, a suitable platform would be a more flexible device than an
ASIC. At the same time power consumption is an important issue.

Based on these requirements and the precision needed in the calculations, the Montium 2
is selected as the device to map the algorithm to. The Montium 2 is a 32-bit DSP under
development with (16 × 16)-bit multipliers running at a target speed of 200 MHz. The
implementation of the correlation including FFTs is quite straightforward, but requires
external memory because intermediate 40-bit accumulation results cannot be (easily) moved
around. 0.5 MB of external memory is required to buffer these intermediate values when
256 averages are made; memory requirements to buffer samples from the ADCs before they
can be processed by the Montium 2 are not included. The Montium 2 can process a sample
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Figure 6.15: The fixed-point implementation of the crosscorrelation algorithm on the Mon-
tium 2 gives an SFDR better than the desired 70 dB.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency

N
or

m
al

iz
ed

 P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 [d

B
]

N=1024, K=256, NL=−75.0dB

 

 
Ref
Quant. Ref
Montium2

Figure 6.16: The fixed-point implementation gives a maximum SFDR of 87.2 dB.
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(a) 8-bit quantization
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(b) 9-bit quantization
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(c) 10-bit quantization

Figure 6.17: Quantization shows distortion peaks, which should be well below 70 dB to
obtain the desired SFDR.
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rate of 33 MS/s per ADC in real-time. Therefore only one Montium 2 is required in the SA.
The penalty is an 8 ms of additional processing after the measurement is finished, which is
not expected to be a problem in the majority of applications. The estimated chip area of
the Montium 2 is 1.0 mm2 and its power consumption, based on figures for the Montium 1
and a DSP from Texas Instruments with roughly the same architecture, is estimated to be
0.08 W. The SRAM-memory (unfortunately, no reliable figures for DRAM have been found)
requires an estimated chip area of 2.36 mm2 with a power consumption of 5 mW.

The correlation algorithm on the Montium 2 limits the SFDR to 87.2 dB as observed in
simulations. Other simulations show that 10-bit resolution in the ADC indeed is about the
minimum required number of bits to achieve an SFDR of 70 dB when no noise is present.

6.7 Recommendations

The current implementation is far from complete, so there are still some parts that need
to be worked out. Furthermore, a few changes to the Montium 2 architecture and current
tooling are suggested. Finally a general recommendation with respect to measurement time
is given.

6.7.1 Algorithm

Several parts of the digital processing have been simplified or omitted. This concerns phase-
shifting to correct for the relative phaseshift introduced by the mixers, windowing to reduce
spectral leakage, division by an arbitrary number instead of a power-of-two (and averaging
by a power-of-two) and calculating the logarithm.

In certain situations it is beneficial to average on a logarithmic scale, i.e. one first converts
each spectral estimate to dB-scale and then averages the dB-values. For a deterministic
signal, linear or logarithmic averaging makes no difference, but for stochastic processes it
does. For example, for Gaussian noise the average value using logarithmic averaging is
2.5 dB lower than using linear averaging [122, 123] (at the cost of an increase in variance
by a factor 1.64 [123]). Including this option in the software may improve the capability of
the SA in measuring small sinusoids, which may be useful in IP3 measurements.

In many SAs the user has to choose parameters such as RBW and the window to use.
The processing power available may be used to construct an intelligent analyzer which
determines the optimal settings [124].

In the current design the FFTs are windowed and the results are averaged. Windowing
gives a fundamental tradeoff between frequency resolution and spectral leakage. An alter-
native implementation is discussed in [125] which achieves a high dynamic range and at
the same time a high resolution, while still being able to efficiently process the data. This
alternative looks a lot like the polyphase filter bank implementation discussed in [126]. The
downside is a reduced transient response.

Correlation is not always necessary, and with all the analog building blocks available, one
can also perform regular spectrum analysis. With two branches, twice as many averages can
be obtained in the same measurement time, or one branch can be shutdown to lower power
consumption. Performing an FFT on the samples from one branch, one obtains complex
numbers which contain phase and amplitude information. An algorithm that can do this
conversion is known as the Coordinate Rotation Digital Computer (CORDIC)-algorithm,
which is an algorithm that does not use multipliers. Using the availability of multipliers in
the Montium 2, an implementation that efficiently combines these with regular CORDIC is
discussed in [127]. The accuracy of the phase information also depends on the phase transfer
of the analog frontend, so some corrections may be necessary.
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Figure 6.18: Setting overflow bits and one additional bit to combine the overflow bits allows
for much more efficient checking for overflow.

6.7.2 Montium 2 architecture

Because the Montium 2 is still under development, its architecture is not fully fixed yet.
Here some suggestions are presented that could make the correlation algorithm perform
better. It should be kept in mind that such alterations could make performance worse for
other applications, but decisions on that level are up to Recore Systems.

Overflow

The current implementation does not check for overflow because that cannot be easily de-
tected. The exponent extract instruction only indicates whether overflow could occur, but
adding a 32-bit word to the 40-bit signed word 0100 · · · 00 will never result in overflow. The
net result is that one shifts sooner than strictly required, decreasing numerical accuracy. It
may be possible to detect overflow by calculating the addition twice: once with saturation
and once without. Comparing the two results can indicate whether an overflow has oc-
curred. Comparing the two results is not trivial, because they are 40-bit wide and all buses
are 32-bit wide. The overhead would be substantial.

Our suggestion is to let the ALUs set an overflow bit. The Montium 2 already has a
boolean register for flags, so all that needs to be done is add a few more flags which are
read-only and set by the ALUs. There are 6 ALUs that can give an overflow, so 6 additional
bits in the boolean register are required. An additional optimization may be to add another
bit that is an OR of the 6 overflow bits of the 6 ALUs, see fig. 6.18. The optimization lies in
the fact that in 99.9% of the time there will be no overflow, and with only one bit to check,
the overhead is kept to a minimum. Once overflow is detected, it requires some additional
cycles to detect which ALU has overflown.

The same registers can be used for saturation, since any operation can either overflow or
saturate, but never both at the same time. The programmer knows which one it is because
saturation is explicitly set in an ALU.

Storing accumulator values

The accumulators internally work with 40 bits, which allows accumulation of 256 32-bit
words. There are only four accumulators, while in the correlation algorithm for an M -point
FFT M accumulators are required. Of course it is not possible to put 1024 accumulators in
the Montium 2, but currently it is not possible to store intermediate results without 8 bit
loss of precision. It might be possible (with a significant overhead) to store the 40 bits into
two 32-bit memory-cells and put them back into the accumulator with another significant
overhead. In the current implementation the decision is made to store the 32-bit values that
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need to be accumulated into external memory, such that the entire accumulation can be
performed at once.

If one of the five internal memories would be scaled to 40 bits (introducing only a 5%
penalty on the total chip-area of the memories) and the required interconnects are scaled to
40 bits (because the interconnect structure is not known, it is not possible to reason about
the increase in chip-area or complexity of the bus), it becomes possible to store the words
as if they were regular values. With some clever circuitry, the 40-bit memory can also be
used as a regular 32-bit memory, such that any algorithm not requiring storage of 40-bit
accumulator values is totally oblivient to this change in architecture.

This architectural change may also give the opportunity to occasionally provide a user
with an intermediate spectral estimate such that a measurement can be stopped as soon as
the user is satisfied.

External I/O

In the current design the Montium 2 can simultaneously read from and write to the outside
world, but both the read and the write operation allow one word to be communicated
per clockcycle. In the current implementation many samples need to be read into internal
memory for the FFT, many need to be written out into external memory, and finally many
values need to be read in again to be accumulated. With a streaming-FFT implementation
this overhead may be mitigated, but it is not certain whether such an implementation
is possible with the current architecture, so for now the current FFT-implementation is
assumed.

With two memories used for the FFT-samples, the speed of reading in samples can be
doubled if more words can be read in one clockcycle. The same holds for writing samples
to external memory. With one word per clockcycle, only one accumulator can be kept busy,
while four accumulators are available. The speed can be quadrupled if four words can be
read in per clockcycle.

As an example, consider the situation that two words can be read in at the same time.
From tables 6.5 and 6.6, reading in two words at a time reduces the streaming total from
6192K to 5690K, a speed-up of 8%. The averaging process will go down from 1024K to
512K, a speed-up of 50%. In total, the number of clockcycles will go down from roughly
6192K + 1024K = 7216K to 5690K + 512K = 6202K, an improvement of 16%.

Of course, the actual speed-up depends on the external bus and memory architectures.
In other words, the network-on-chip needs to be able to handle it. Nevertheless, with the
Montium 2 running at a target speed of 200 MHz, it is not unlikely that external buses or
memories can run at much higher speeds, allowing a small buffer in front of the memory to
provide the Montium with multiple words per clockcycle. Furthermore, it is not unlikely that
certain architectures may have several buses and memories. Extending the I/O capabilities
of the Montium thus seems like a promising improvement.

External memory

The Montium 2 will be designed as intellectual property, i.e. chip designers can include one
or more instances of the Montium 2 in their design. If external memory is present to buffer
samples as in the current implementation of the correlation algorithm, an option might be
to include the memory in the Montium 2 by increasing the number of words in each memory.
Each memory now has 1024 words, but as addresses are sent over 32-bit buses, the address
space can be much larger. So most likely all that needs to change is the size of the memory
and the internals of the A-units (see fig. 6.7).
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Figure 6.19: The XFC can be easily accommodated for oversampling by adding delays
between taps, in this example for O = 2.

6.7.3 Montium tooling

Building all the tools required to work efficiently with the Montium is of course a lot of
work. With the current tooling, manually written assembly can be compiled and run on a
regular PC. Determining the number of clockcycles required to run an application needs to
be done by hand and is error-prone. It would be nice if some profiling is possible, even if it
only gives the total number of clockcycles for an entire program. This is most likely not too
difficult because clockcycles are explicitly given in Montium assembly by writing an empty
line. This allows cycle-counting without requiring the full cycle-accurate simulation tooling
to be finished.

6.7.4 Oversampling

Because the noise floors goes down only slowly, a large measurement time may be required
to detect very weak signals. To speed up the measurement process, oversampling may come
in handy.

Suppose a signal with a bandwidth B needs to be analyzed. The Shannon-Nyquist-
criterium states that fs ≥ 2B to prevent frequency-aliasing. Under the assumption that the
ADCs and the power budget can handle it, it is possible to sample faster than this.

Given an Oversampling Ratio (OSR) of O, which means fs = O · 2B, O spectrum
averages can be computed in the FXC in the same time by simply using the set of samples
k · O as one spectral measurement, the set k · O + 1 as another spectral measurement, etc.
until k · O + O − 1. The number of samples for estimating each point in the correlation
function as performed in an XFC is also (roughly) multiplied by O. The implementation
would be rather straightforward in both cases. For (cross)-spectrum averaging one simply
requires more memory to store O times more samples. For calculating the correlation lags
O delays need to be present between the taps, as shown in fig. 6.19.

At first sight, this lowers measurement time, or equivalently, allows more noise suppres-
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sion in the same amount of time. The drawback is the higher power consumption required
by the ADC and the digital signal processing part, but the analog part will consume the
same amount of power. As a result the energy consumption for a measurement goes down.

However, several issues can mitigate the benefits of oversampling, or may even make it
worse than not oversampling.

First of all, oversampling by a factor of two also doubles the noise bandwidth if no
appropriate measures are taken. In that case, the noise floor is increased by 3 dB, which
requires four times more samples, while O is only 2. So in this case oversampling only
decreases performance.

The alternative is to use the same anti-alias filter. In that case the same amount of
noise is sampled as in the original case. Unfortunately, because the noise is bandlimited
and it is being oversampled, samples are correlated in time. The noise in two branches is
still uncorrelated though, so using the asymptotic approximations for the variance of the
noise, this should pose no problem. Assuming the correlation in time poses no problem,
oversampling seems like a good possibility. Intuitively, correlation in time in each branch
(or equivalently a noise acf that does not go to zero fast enough) increases the noise in the
ccf estimation because subsequent multiplications tend to have similar values.

Oversampling is not explicitly discussed in [128], but from the text it does look as if
oversampling has some effect. More research on this topic is required to understand the
effect of oversampling.



Chapter 7

Summary & Conclusions

The SFDR of an SA is limited by non-linearity and noise. Improving linearity of the analog
part usually introduces additional noise, for example from the additional components used
for linearization. In CMOS the SFDR is typically limited to approximately 60 dB for an
RBW of 1 MHz and typical mW-range power consumption. For a CMOS-SA, an SFDR of
70 dB is desired to be competitive with commercial SAs.

Crosscorrelation reduces the noise level without affecting linearity, thereby breaking the
tradeoff between noise and linearity. It requires the use of two similar measurement paths
in which the noise introduced by each path is uncorrelated as much as possible. The uncor-
related noise contributions will average out at the cost of an increase in measurement time.
The effect is that the NF of the SA is lowered. The DANL scales with the square root of
the measurement time: a two times longer measurement time lowers the DANL by 1.5 dB.

Crosscorrelation in the analog domain is very difficult due to the correlated noise intro-
duced when the two paths are brought together again. For a digital implementation the
resolution of the data samples is very important. If the resolution is too low, the SFDR is
limited by distortion due to quantization. If the resolution is too high, the ADCs will be
too slow and too power-hungry, and the digital hardware needs to be too complex. Novel
equations, which are much easier and faster to use than existing analytical formulas, are
derived in this thesis, which allow the SFDR to be determined as a function of the resolution
of the ADCs. Based on these equations, the ADCs need a resolution of 10 bits. This number
was later confirmed in the digital implementation.

A first system design for a frequency range of 0 GHz to 6 GHz has a low-IF architecture,
and is optimized for linearity, because crosscorrelation can remove the noise. However, due
to the slow reduction of the noise floor through crosscorrelation, the NF of the system is still
important. The basic idea is to amplify at IF for two reasons: amplification at RF reduces
the effective linearity of subsequent components such as a mixer, and amplification at IF
can be made more linear, due to the use of switched capacitors and the higher loopgain that
can be achieved using feedback without stability problems.

The SA has a single input, which is split as early as possible to minimize the amount
of correlated noise. The two paths after the split are identical. Before the signal enters the
integrated SA, it goes through a filterbank. In this external filterbank a number of lowpass-
or bandpassfilters are present with a (higher) cut-off frequency increasing exponentially per
filter. In combination with techniques such as PM and HR-mixing, all undesired harmonics
and images should be sufficiently suppressed.

The RF-input is a 50 Ω-match. In combination with an R–2R-network, variable atten-
uation with steps of 6 dB is provided. This selectable attenuation is necessary to optimize
SFDR, because it is a function of the input power. A Tayloe-mixer, which is very linear,
uses this R–2R-network as the resistive part of its RC-bandwidth. The IF-circuitry should
be made as linear as possible, for example by using switched capacitor techniques. It should
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Table 7.1: Estimated power consumption of the designed SA per
functional block at a sample rate of 200 MS/s.

Block Power [W] Amount Total power [W]

Impedance match <0.01 1 <0.01
Attenuator <0.01 2 <0.01

Mixer 0.01 2 0.02
VCO 0.20 1 0.20

IF-circuitry 0.10 2 0.10
ADC 0.04 2 0.08

Correlator 0.08 1 0.08
SRAM Memory <0.01 1 <0.01

Control <0.01 1 <0.01

Total 0.49

contain amplification and a suitable interface to the ADC. In the current design a sample
rate of 200 MS/s has been chosen, as this is approximately the state-of-the-art sampling
speed at the required resolution of 10 bits. The digital crosscorrelation needs to be accurate
enough to still allow an SFDR of 70 dB. Of the two possible main architectures for digital
crosscorrelation, namely the FXC and the XFC, the FXC is chosen because of its power
consumption being more than an order lower than that of the XFC.

For downconversion a VCO is needed, which, for the frequency range of 0 GHz to 6 GHz
and a sampling rate of 200 MS/s, needs to be tunable from 100 MHz to 6 GHz. The
proposed implementation of the VCO uses two parallel LC-oscillators, one tunable from
8 GHz to 10 GHz, the other from 10 GHz to 12 GHz. Using a few integer frequency
dividers, the whole range of desired frequencies can be generated.

The RF-frontend with a frequency range of 0 GHz to 6 GHz has been designed and
simulated in 65 nm CMOS. It shows good impedance matching, even when component-
spread is taken into account. The simulated IP3 ranges from +21 dBm to +26 dBm as a
function of frequency. The simulated NF is 14 dB, which gives an SFDR of approximately
82 dB. With correlation, the NF can be reduced, thereby improving the SFDR. These
numbers do not include the noise contributions and linearity limitations of the IF-circuitry,
VCO and ADC, so the final SFDR will be somewhat lower. The current figures can compete
with those of expensive commercial SAs.

For the digital implementation of crosscorrelation, the Montium 2 architecture was cho-
sen for reasons of power consumption and flexibility. Flexibility is important because cross-
correlation is not the only digital processing required. It was found that the Montium 2 can
handle a stream of 33 MS/s per ADC in real-time. At the maximum sampling speed of the
ADCs, the additional processing time required, after the actual measurement is finished, is
in the order of 8 ms for a 12 dB reduction in DANL, which makes an implementation with
only one Montium 2 feasible. Only 0.5 MB of memory is required to buffer intermediate
results, but using SRAM the chip area occupied is significant. Unfortunately no reliable
values for DRAM were found. The SFDR attainable with the Montium 2 is 87 dB.

Table 7.1 shows the estimated power consumption per functional block at a sampling
frequency of 200 MS/s when one VCO is used that obeys the phase noise requirements. The
power consumption of the ADC and the correlator scale roughly linear with the sampling
frequency. As a rule of thumb, using a standard low-cost package, a chip can dissipate up to
about 1 W without thermal problems, which shows that an integrated SA with competitive
specifications is possible.

Table 7.2 shows the estimated chip area per functional block. The design is relatively
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Table 7.2: Estimated chip area of the designed SA per functional
block.

Block Area [mm2] Amount Total area [mm2]

Impedance match <0.01 1 <0.01
Attenuator <0.01 2 <0.01

Mixer 0.02 2 0.04
VCO 1.33 1 1.33

IF-circuitry 0.08 2 0.16
ADC 0.80 2 1.60

Correlator 1.00 1 1.00
SRAM Memory 2.36 1 2.36

Control <0.01 1 <0.01

Total 6.49

Mixer

IF

ADC

Corr.
Mem.

VCO

(a) Power consumption

MixerIF

ADC

Corr.

Mem.

VCO

(b) Chip area

Figure 7.1: Tables 7.1 and 7.2 summarized in pie diagrams.

large, but when produced in large quantities, the cost per SA will still be low.
In tables 7.1 and 7.2, techniques such as PM and HR-mixing are not taken into account.

These techniques will probably make the power consumption and chip area somewhat higher.
Because it will not involve the VCO or ADCs, the increase will most likely not be too
significant. Figure 7.1 summarizes the values found.

7.1 Conclusions

Crosscorrelation can be used to reduce the noise without affecting linearity, thereby increas-
ing the SFDR of the SA. A two times longer measurement lowers the noise floor by 1.5 dB.
Approximations have been derived to estimate the measurement time to observe signals
buried in noise.

The correlator is implemented in the digital domain. Because AD-conversion is necessary,
the effects of quantization on maximum attainable SFDR were investigated. The SFDR
increases by 8 dB/bit for quantization of a sinusoid, and by 6 + 2n dB/bit for quantization
of n equal-amplitude sinusoids. Gaussian noise added by the analog frontend decorrelates
the quantization error from the input signal, decreasing the distortion. If the standard
deviation of the noise σN = 1 LSB, the SFDR increases by 171.5 dB. To be able to obtain
an SFDR of 70 dB in every situation, the ADCs should sample with a resolution of 10 bits.
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The correlator is implemented as an FXC, because it requires less than 10% of the
power required by the alternative XFC. At a sample rate of 200 MS/s per ADC, an ASIC
can handle the data stream real-time, consuming 0.1 W. The Montium 2 can handle only
33 MS/s real-time, requiring an estimated 0.08 W. Averaging the different spectra can only
be done afterwards due to architecture restrictions. This requires 0.5 MB of memory for
256 averages of 1024-point spectra. The additional 8 ms required for processing after the
actual measurement is complete is not expected to be a problem, making a solution with
one Montium 2 feasible.

A linear RF-frontend, designed for the 0 GHz to 6 GHz region for both a regular SA (with
one measurement path) and for a correlation SA, provides impedance matching, variable
attenuation to optimize the SFDR, and frequency conversion, but not amplification. Both
implementations achieve an IP3 around +23 dBm. The implementation for the regular SA
has an NF of 11.2 dB, while the NF of the frontend for the correlation SA is 2.5 dB higher.
Both NF and IP3 increase by about 6 dB per attenuation step, although IP3 saturates
around +38 dBm due to nonlinearity in NMOS-switches. The achievable SFDR of both
implementations is higher than 82 dB, which means, provided the IF-circuitry can be made
linear enough, it may not even be necessary to use crosscorrelation at all to obtain an SFDR
of 70 dB.

A total system design of the correlation SA was made, giving a total power consumption
of 0.5 W (for a sample rate of 200 MS/s) and a total chip area of 6.5 mm2. The largest
power consumer is the VCO due to the high phase noise requirements, while the largest
chip area consumer is the memory required for storing intermediate spectra. These numbers
indicate that an all-CMOS implementation of an SA with good specifications seems like a
very good possibility.

7.2 Future Research

The design of the SA is not complete yet. A number of ideas have been presented to
achieve an SFDR of 70 dB with respect to images and harmonics, but they have not been
exhaustively covered. Unforeseen problems may be lurking under the surface, so more
research is required.

The current design is based on a sample-rate of 200 MS/s, but in certain situations it
may be better to sample at a lower sample rate. It is not yet clear what effect this will have
on the requirements of the cut-off frequencies of the external filterbank or the RC-bandwidth
of the Tayloe mixer.

The external filterbank is probably going to be an expensive part of the SA, and using
the frequency-offset technique introduced by Moseley [78] it may be possible that they will
not be needed anymore. The images and harmonics will show up as noise, so if they are
relatively strong, a much longer measurement time is needed to remove them.

The designed RF-frontend does not include buffers, i.e. the different paths load each
other. This makes it non-trivial to include for example I/Q-mixing or techniques such as
PM. More research is needed to improve this frontend.

The IF-circuitry has been almost fully neglected in this thesis, even though it is an
essential part of the SA. It requires (variable) gain, filtering and an interface to the ADC.
There is a great deal of uncertainty about the attainable specifications, especially with
respect to linearity and NF. Flicker noise may be a serious concern at low frequencies, not
only because of the noise level itself, but also because subsequent samples tend to have
similar values [129], which probably implies that correlation will reduce this noise more
slowly. Techniques such as switched biasing [130, 131] or subsampling [132] may reduce the
effect.

Using a single VCO, the phase noise will be correlated in both branches, which means
that its phase noise needs to be very low, requiring a significant percentage of the total
power consumption of the SA. An alternative implementation is to use two VCOs locked in
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frequency in some way, such that their phase noise is uncorrelated. This may relax phase
noise requirements at the cost of measurement time, lowering the power consumption of the
VCO.

With respect to linearity, this thesis focuses completely on IP3, because in traditional
designs this is usually the limiting factor. However, with the somewhat unconventional
architecture presented here, it may very well be that the IP2 becomes the limiting factor.
Therefore the attainable IP2 deserves attention as well.

The number of bits in the ADCs was determined purely based on ideal quantization,
while practical ADCs suffer from non-ideal effects such as INL and DNL. The practical use
of the equations derived in this thesis relating the SFDR and the resolution of a quantizer
will be greatly increased if this is taken into account.

The effects of oversampling on the reduction of the noise floor are not clear. It is
important to know this, because it may greatly influence measurement time and hence
attainable specifications for certain applications. Directly related to oversampling is the
real-time handling of the calculations by one or more Montium 2’s. There is a definite
tradeoff between the number of Montium 2’s, the sampling rate of the ADCs, the amount
of memory needed to store samples from the ADCs and the intermediate spectral values,
the chip area and the total power consumption.

Determining phase relationships between different frequencies of an input signal makes
the SA suitable for more applications. Since the hardware and software required for this
type of analysis matches that for crosscorrelation to a great extent, it may be possible to
incorporate this functionality at a minimum of effort and cost.
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List of acronyms

AC Autocorrelation
method

acf autocorrelation
function

AD Analog-to-Digital

ADC Analog-to-Digital
Converter

ALU Arithmetic Logic
Unit

AR Auto-Regressive

ARMA Auto-Regressive
Moving Average

ASIC Application-Specific
Integrated Circuit

BAW Bulk Acoustic Wave

BIST Built-In
Self-Testing

BW Bandwidth

ccf crosscorrelation
function

CG Conversion Gain

CL Conversion Loss

CLT Central Limit
Theorem

CP Compression Point

CR Cognitive Radio

CML Current-Mode Logic

CMOS Complementary
MOS

CORDIC Coordinate
Rotation Digital
Computer

CTFT Continuous-Time
Fourier Transform

DA Digital-to-Analog

DAC Digital-to-Analog
Converter

DANL Displayed Average
Noise Level

DIF Decimation-In-
Frequency

DFT Discrete Fourier
Transform

DNL Differential
Non-Linearity

DRAM Dynamic RAM

DSP Digital Signal
Processor

DTFT Discrete-Time
Fourier Transform

DUT Device Under Test

EM Electromagnetic

ENOB Effective Number
of Bits

ESPRIT Estimation of
Signal Parameters via
Rotational Invariance
Techniques

FIR Finite Impulse
Response

FFT Fast Fourier
Transform

FoM Figure-of-Merit

FPGA
Field-Programmable
Gate Array

FX Fourier transform -
Multiplication/Correla-
tion

FXC FX-correlator

GPP General Purpose
Processor

HF High Frequency

HR Harmonic Rejection

IF Intermediate
Frequency

IL Insertion Loss

INL Integral
Non-Linearity

IP2 Second Order
Input-referred
Intermodulation
Intercept Point

IP3 Third Order
Input-referred
Intermodulation
Intercept Point

LNA Low-Noise Amplifier

LPF Low-Pass Filter

LPTV Linear Periodically
Time-Variant

LSB Least Significant Bit

LUT Lookup Table

MA Moving Average

MAC
Multiply-Accumulate

MEMS Micro
Electro-Mechanical
System

MOS Metal-Oxide-
Semiconductor

MSB Most Significant Bit

mse mean-squared error

MUSIC Multiple Signal
Classification

NF Noise Figure

NMOS n-type MOS

OSR Oversampling Ratio

OFDM Orthogonal
Frequency Division
Multiplexing

pdf probability density
function

PLL Phase-Locked Loop

PM Polyphase Multipath

PMOS p-type MOS

PSD Power Spectral
Density

RAM Random Access
Memory

RBW Resolution
Bandwidth

RF Radio Frequency

SA Spectrum Analyzer

SAVG Spectrum
Averaging method

SAW Surface Acoustic
Wave

SH Sample & Hold

SFDR Spurious-Free
Dynamic Range

SNR Signal-to-Noise
Ratio

SRAM Static RAM

TDM Time Division
Multiplexing

VCO Voltage-Controlled
Oscillator

VSWR Voltage Standing
Wave Ratio

wss wide-sense stationary

XC Crosscorrelation
method

XF
Multiplication/Correlation
- Fourier transform

XFC XF-correlator

XSA Cross-spectrum
Averaging method
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Appendix B

Derivations

This appendix contains some derivations of which the results are used in the main text.

B.1 Expectation of ccf estimator

With a crosscorrelation function estimator

cXY [k] =
1
N

N−1∑
n=0

x[n]y[n+ k]

where x[n] and y[n] are considered zero outside the range [0 . . . N − 1], the expected value
is readily calculated:

E [cXY [k]] = E

[
1
N

N−1∑
n=0

x[n]y[n+ k]

]

= E

 1
N

N−1−max(0,k)∑
n=max(0,−k)

x[n]y[n+ k]


=

1
N

N−1−max(0,k)∑
n=max(0,−k)

E
[
x[n]y[n+ k]

]

=
1
N

N−1−max(0,k)∑
n=max(0,−k)

γXY [k]

=
N − |k|
N

γXY [k]

=
(

1− |k|
N

)
γXY [k]

(B.1)

B.2 Covariance of ccf estimator

In Jenkins & Watts [32], pp. 336–337, the covariance of the biased crosscorrelation function
(ccf) estimator is calculated for continuous-time correlation, i.e. without sampling. The
result is repeated here for convenience:

Cov [cXY (τ1), cXY (τ2)] =
T ′

T 2

∫ T ′

−T ′
φ(r)

(
1− |r|

T ′

)
dr − T ′′

T 2

∫ T ′′

−T ′′
φ(r)

(
1− |r|

T ′′

)
dr (B.2)
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where

T ′
4
= T − |τ1|+ |τ2|

2
T ′′
4
=
|τ2| − |τ1|

2

and

φ(r)
4
= γXX

(
r − τ2 − τ1

2

)
γY Y

(
r +

τ2 − τ1
2

)
+ γXY

(
r +

τ1 + τ2
2

)
γY X

(
r − τ1 + τ2

2

)
+K(r, τ1, τ2)

where K(r, τ1, τ2) is the joint cumulant of the random variables X(t), X(t + τ1), Y (t + r)
and Y (t + r + τ2).1 The fourth order cumulant is 0 in case X(t) and Y (t) are Gaussian,
which is what was assumed in the main text, and according to [32] can be neglected for
non-Gaussian processes.

A direct translation to the time-discrete domain by replacing integrals with summations
yields

Cov [cXY [k1], cXY [k2]] =
N ′

N2

N ′∑
n=−N ′

φ[n]
(

1− |n|
N ′

)
− N ′′

N2

N ′′∑
n=−N ′′

φ[n]
(

1− |n|
N ′′

)
(B.3)

where

N ′
4
= N − |k1|+ |k2|

2
N ′′

4
=
|k2| − |k1|

2

and

φ[n]
4
= γXX

[
n− k2 − k1

2

]
γY Y

[
n+

k2 − k1

2

]
+ γXY

[
n+

k1 + k2

2

]
γY X

[
n− k1 + k2

2

]
+K[n, k1, k2]

It can be seen that ∀k1, k2 ∈ Z the parameters of the correlation-functions in φ[n] are
integers. At first sight, the summations seem inconsistent, as they iterate through 2N + 1
values for k1 = k2 = 0. However, due to the (1 − |n| /N ′)-factor, the two extremes are per
definition equal to 0. Similar results hold for arbitrary k1 and k2.

Whether replacing the integrals by summations is allowed needs to be verified. Simula-
tions, however, are consistent with these results.

B.3 Expectation of cross-spectrum estimators

The general definition of the cross-spectrum estimator is

C̃XY [f ] = DFT (c̃XY [k]) =
N−1∑

n=−(N−1)

c̃XY [n]e−j2πfn =
N−1∑

n=−(N−1)

wS [n]cXY [n]e−j2πfn

where C̃XY (f) is the smoothed version of CXY (f), with wS [k] the smoothing window. In
the case where no smoothing is used, wS [k] = 1 for all |k| ≤ N , with N the number of

1Note that the formula given in [32] contains a sign error for φ(r)
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samples taken. Therefore, the expectation is

E
[
C̃XY (f)

]
= E

 N−1∑
n=−(N−1)

wS [n]cXY [n]e−j2πfn


=

N−1∑
n=−(N−1)

wS [n]E [cXY [n]] e−j2πfn

=
N−1∑

n=−(N−1)

wS [n]
(

1− |n|
N

)
γXY [n]e−j2πfn

=
N−1∑

n=−(N−1)

wT [n]γXY [n]e−j2πfn

= DFT (wT [n]γXY [n])
= WT (f) ∗ ΓXY (f)

(B.4)

where wT [k] can be regarded as the total window, which includes both the bias and the
smoothing window. In case there is no smoothing, WT (f) = WB(f), with WB(g) the
Discrete Fourier Transform (DFT) of the triangular bias (Bartlett-window), and eq. (2.16)
is found.

B.4 Variance of cross-spectrum estimator

The covariance of the spectral estimator CXY (f) and its smoothed version C̃XY (f) for
continuous-time are given by Jenkins & Watts [32], pp. 414–418. In the calculations for the
smoothed version they make an approximation that is not valid everywhere in our situation.
Therefore a few of the steps will be repeated here.

The final exact formulation given by [32] for the covariance of a cross-spectrum estimator
is

Cov [CIJ(f1), CKL(f2)] =∫ T

−T

∫ T

−T

∫ ∞
−∞

∫ ∞
−∞

2
T 2

sin 2πf(T − |τ1|)
2πf

sin 2πf(T − |τ2|)
2πf

×
(

ΓIK(f + g)ΓJL(f − g)ej2πg(τ1−τ2)

+ ΓIL(f + g)ΓJK(f − g)ej2πg(τ1+τ2)
)

× e−j2π(f1τ1+f2τ2) df dg dτ1 dτ2

(B.5)

which can be rewritten as

Cov [CIJ(f1), CKL(f2)] =
1
T 2

∫ ∞
−∞

ΓIK(x)
sinπT (f1 − x)
π(f1 − x)

sinπT (f2 + x)
π(f2 + x)

dx

×
∫ ∞
−∞

ΓJL(−y)
sinπT (f1 + y)
π(f1 + y)

sinπT (f2 − y)
π(f2 − y)

dy

+
1
T 2

∫ ∞
−∞

ΓIL(x)
sinπT (f1 − x)
π(f1 − x)

sinπT (f2 − x)
π(f2 − x)

dx

×
∫ ∞
−∞

ΓJK(−y)
sinπT (f1 + y)
π(f1 + y)

sinπT (f2 + y)
π(f2 + y)

dy

(B.6)

Now, the first simplification is made by assuming that the spectra are approximately
constant over the range f1 to f2, allowing the Γ-factors to be taken outside of the integral.
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Since we are only concerned with the variance, i.e. f1 = f2, this is not a problem. The result
then is given for continuous-time:

Cov [CIJ(f1), CKL(f2)] ≈ ΓIK(f1)ΓJL(−f1)
(

sinπT (f1 + f2)
πT (f1 + f2)

)2

+ ΓIL(f1)ΓJK(−f1)
(

sinπT (f1 − f2)
πT (f1 − f2)

)2

(B.7)

and discrete time:

Cov [CIJ [f1], CKL[f2]] ≈ ΓIK(f1)ΓJL(−f1)
(

sinπN(f1 + f2)
N sinπ(f1 + f2)

)2

+ ΓIL(f1)ΓJK(−f1)
(

sinπN(f1 − f2)
N sinπ(f1 − f2)

)2

(B.8)

With I = K = X, J = L = Y and f1 = f2, this simplifies to

var (CXY [f ]) = ΓXX(f)ΓY Y (f)
(

sin 2πNf
N sin 2πf

)2

+ |ΓXY (f)|2 (B.9)

which is the result given in eq. (2.17), and also found in Proakis [28] for the autocorrelation
case.

For the smoothed spectral estimator the last exact formula given by [32] is

Cov
[
C̃IJ(f1), C̃KL(f2)

]
=
∫ T

−T

∫ T

−T
w(τ1)w(τ2)Cov [c̃IJ(τ1), c̃KL(τ2)]

× e−j2π(f1τ1+f2τ2) dτ1 dτ2 (B.10)

where w(τ) is the smoothing window used. If w(τ) = 1 for all τ the results for the non-
smoothed version follow.

At this point, Jenkins & Watts [32] make a simplification based on the fact that w(τ) = 0
for |τ | > M , with M � T . The reason is that in that case the triangular bias 1 − |τ | /T
is approximately a constant 1 for |τ | � T . This means that in the frequency domain the
bias (sin(2πfT )/(πfT )) as used in eq. (B.3) can be approximated by δ(f)/2T , and therefore
eq. (B.10) simplifies to

Cov [cIJ(τ1), cKL(τ2)] =
1
T

∫ ∞
−∞

ΓIK(g)ΓJL(−g)ej2πg(τ1−τ2)

+ ΓIL(g)ΓJK(−g)ej2πg(τ1+τ2) dg (B.11)

This simplification then results in

Cov
[
C̃IJ(f1), C̃KL(f2)

]
≈∫ T

−T

∫ T

−T

∫ ∞
−∞

w(τ1)w(τ2)
T

e−j2π(f1τ1+f2τ2)

×
(

ΓIK(g)ΓJL(−g)ej2πg(τ1−τ2) + ΓIL(g)ΓJK(−g)ej2πg(τ1+τ2)
)

dg dτ1 dτ2

=
1
T

∫ ∞
−∞

W (f1 − g){ΓIK(g)ΓJL(−g)W (f2 + g)

+ ΓIL(g)ΓJK(−g)W (f2 − g)}dg

(B.12)

where W (f) is the Fourier transform of w(τ). Although this may be a reasonable approxi-
mation in case many samples are available, it definitely does not suffice in the general case,
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i.e. if one is interested in any relation between M and N (of course M is never larger than
N).

The next simplification made by [32] is the assumption that the Γ-factors are smooth
over the width of the spectral window, because in that case they can be taken outside of
the integrals. The result then is

Cov
[
C̃IJ(f1), C̃KL(f2)

]
≈ ΓIK(f1)ΓJL(−f1)

T

∫ ∞
−∞

W (f1 − g)W (f2 + g) dg

+
ΓIL(f1)ΓJK(−f1)

T

∫ ∞
−∞

W (f1 − g)W (f2 − g) dg (B.13)

The assumption that the spectra are smooth is somewhat of a restriction in spectrum analy-
sis, because stable oscillators and sharply filtered signals have quite abrupt changes in their
spectrum. The results given by these formulas are not perfectly valid at or near such an
abrupt change. A practical solution is to increase the frequency resolution of the window,
for example by using more points in the Fast Fourier Transform (FFT).

Setting f1 = f2, the factor
∫∞
−∞W (f1 − g)W (f2 − g) dg can be rewritten:∫ ∞

−∞
W 2(f − g) dg =

∫ ∞
−∞

W 2(g) dg =
∫ ∞
−∞

w2(τ) dτ =
∫ M

−M
w2(τ) dτ (B.14)

where the transition from W to w is by virtue of Parseval’s theorem. Also setting I = K = X
and J = L = Y , the variance of the smoothed spectral estimator becomes

var
(
C̃XY (f)

)
=

1
T

(
ΓXX(f)ΓY Y (f)

∫ ∞
−∞

W (f − g)W (f + g) dg
)

+
1
T

(
|ΓXY (f)|2

∫ M

−M
w(τ) dτ

)
(B.15)

If the window is narrow enough the integral
∫∞
−∞W (f−g)W (f+g) dg tends to zero (except

at f = 0). When converted to the discrete-time situation and setting X = Y one finds
eq. (2.24).

B.5 Asymptotic properties of SAVG

The expectation of the cross-spectrum was given in eq. (2.16) and repeated here for conve-
nience:

E [CXY (f)] = WB(f) ∗ ΓXY (f)

For a relatively large number of samples per spectral estimate, the Bartlett-window tends
to a delta-function, and hence eq. (2.16) reduces to

E [CXY [f ]] ≈ ΓXY (f)

The variance as given in eq. (2.17) (repeated here for convenience)

var (CXY (f)) = ΓXX(f)ΓY Y (f)
(

sin 2πfN
N sin 2πf

)2

+ |ΓXY (f)|2

for large number of samples reduces to

var (CXY [f ]) ≈ |ΓXY (f)|2

When the total number of samples taken is N , K = N/M averages of the estimate
can be made. Averaging K times simply reduces the variance by a factor K and leaves
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the asymptotic expectation intact. The asymptotic variance of the Spectrum Averaging
method (SAVG) is

var (CXY [f ]) ≈ 1
K
|ΓXY (f)|2

Note that these results suggest that for frequencies where there is no correlation between
X and Y the variance will be zero. That is unacceptable when the Cross-spectrum Averaging
method (XSA) is used to lower the noise, because it is also very important to know the noise
level as a function of the number of averages at those frequencies. This issue will be discussed
in section B.6, but here the equations are stated only for SAVG (i.e. with Y = X).

E [CXX [f ]] ≈ ΓXX(f) (B.16)

var (CXX [f ]) ≈ 1
K
|ΓXX(f)|2 (B.17)

B.6 Asymptotic properties of XSA

Obtaining asymptotic results for XSA turns out to be rather tricky. Two sources have been
found discussing the problem at hand, at first sight giving quite different results for our
system. We will first show the results of both methods, and then link them together.

B.6.1 The approach of Jenkins & Watts

The asymptotic expectation of spectral estimation using crosscorrelation is given by Jenkins
& Watts [32] in a rather complicated way. This is necessary because crosscorrelation of two
arbitrary signals yields a relation between the amplitudes and the phases.

The cross-spectrum ΓXY can be split into a co-spectrum ΛXY and a quadrature spectrum
ΨXY :

ΓXY (f) = ΛXY (f)− jΨXY (f)

or in ‘polar’ form into a cross amplitude spectrum αXY and a phase spectrum φXY

αXY (f) = |ΓXY (f)| =
√

Λ2
XY (f) + Ψ2

XY (f) (B.18)

φXY (f) = arctan
(
−ΨXY (f)

ΛXY (f)

)
A convenient factor is the squared coherency, defined as

κ2
XY (f) =

α2
XY (f)

ΓXX(f)ΓY Y (f)

The estimator of ΓXY was already introduced as CXY in eq. (2.14). AXY will be defined
as the estimator for estimating αXY . Smoothing the result yields another estimator C̃XY .
It can be shown that, under the assumption that the total number of samples is so much
larger than the number of lags used for the spectral estimation, the influence of the Bartlett-
window becomes negligible [32, p. 375, eq. (9.2.4)]2

E
[
C̃XY

]
≈
∫ 1

2

− 1
2

WS(f)ΓXY (f − g) dg

which will be defined as Γ̃XY .

2Note that under this assumption the same asymptotic approximations for all three ccf-estimators dis-
cussed in chapter 2 are found.
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Similarly, the smoothed version ofAXY , ÃXY , is introduced as the estimator for α̃XY (f) =∣∣∣Γ̃XY (f)
∣∣∣. It can be shown that [32]

E
[
ÃXY

]
≈ αXY (B.19)

Jenkins & Watts further show that

var
(
ÃXY

)
≈ I

2N
α2
XY

(
1 +

1
κ2
XY

)
(B.20)

where

I =
∑
m

w2
S [m] =

∫ 1
2

− 1
2

W 2
S(g) dg

Using the system model of chapter 2 and eqs. (B.18) and (B.19) these equations can be
rewritten as

E
[
ÃXY

]
≈
∣∣∣Γ̃XY ∣∣∣ ≈ ΓSS

and with eq. (B.20)

var
(
ÃXY

)
≈ I

2N

(
|ΓXY |2 + ΓXXΓY Y

)
=

I

2N
(
2Γ2

SS + ΓSSΓAA + ΓSSΓBB + ΓAAΓBB
)

B.6.2 The approach of Briaire & Vandamme

Briaire & Vandamme [133] derived approximations in two extreme cases, one where the
signal dominates the noise (ΓSS � ΓAA,ΓBB), and one where the noise dominates the
signal (ΓSS � ΓAA,ΓBB). During a crosscorrelation measurement the signal will start to
dominate at some point, so neither of the extremes provides an accurate approximation.
Using interpolation, this error between the real situation and the two extreme cases is
mitigated. The result is (where the estimator of the cross-spectrum is denoted by SXY
following [133]):

E
[
S2
XY

]
=
K + 1
K

Γ2
SS +

1
K

(ΓSSΓAA + ΓSSΓBB + ΓAAΓBB) (B.21)

and

E [SXY ] ≈
√

Γ2
SS +

β

K
(ΓSSΓAA + ΓSSΓBB + ΓAAΓBB) (B.22)

with β providing the interpolation between the two extremes:

β =
π

4K

(
Ξ
(
K + 1

2

)
Ξ(K)

)2(
1− Γ2

SS

E [S2
XY ]

)
+

1
2

Γ2
SS

E [S2
XY ]

(B.23)

where

Ξ(x) =
∫ ∞

0

e−ttx−1 dt

is the mathematical Gamma-function, but written as Ξ to avoid confusion with the spectra.
The variance can then be calculated using the well-known formula

var
(
S2
XY

)
= E

[
S2
XY

]
− E2 [SXY ] (B.24)

β will always be between 1
2 (for the extreme ΓSS � ΓAA,ΓBB) and π

4 (for the extreme
ΓSS � ΓAA,ΓBB), so for back-of-the-envelope calculations one can use e.g. β = 2

3 or√
β = 4

5 , whichever comes in handy.
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B.6.3 Linking the two approaches

In the specific case that there is only noise and no signal in the crosscorrelation, one can use
the results from Jenkins & Watts [32] to arrive at the results of Briaire & Vandamme [133].

Starting with the latter, eq. (B.22) simplifies to

E [SXY ] ≈
√
β

√
1
K

√
ΓAAΓBB (B.25)

while eq. (B.24) simplifies to

var (SXY ) ≈ (1− β)
1
K

ΓAAΓBB (B.26)

Proceeding with Jenkins & Watts, at frequencies where there is only noise, E
[
ÃXY

]
= 0,

but because there is a variance, negative and complex values are also possible. For a large
number of samples, the Central Limit Theorem (CLT) states that the distribution of ÃXY
is approximately Gaussian. Taking the absolute value of the result yields a χ-distribution
with one degree of freedom. Although this allows immediate calculation of the mean and
variance [134], it can also be directly derived:

E
[∣∣∣ÃXY ∣∣∣] ≈ ∫ ∞

−∞
|x| 1√

2πσ2
Ã

e
−

(x−µ
Ã

)2

2σ2
Ã dx

=

√
2
π

√
I

2N

√
ΓAAΓBB ≈

√
2
π

√
1
K

√
ΓAAΓBB (B.27)

where µÃ denotes E
[
ÃXY

]
and σ2

Ã
denotes var

(
ÃXY

)
. In the last step, the factor I/2N

is simplified to 1/K using I ≈ 2M and M/N = K. Calculation of the variance can be done
in a similar way:

E

[∣∣∣ÃXY ∣∣∣2] ≈ ∫ ∞
−∞
|x|2 1√

2πσ2
A

e
− (x−µA)2

2σ2
A dx =

I

2N
ΓAAΓBB

resulting in

var
(∣∣∣ÃXY ∣∣∣) = E

[∣∣∣ÃXY ∣∣∣2]− E2
[∣∣∣ÃXY ∣∣∣]

≈
(

1− 2
π

)
I

2N
ΓAAΓBB ≈

(
1− 2

π

)
1
K

ΓAAΓBB (B.28)

Substituting SXY (f) by
∣∣∣ÃXY ∣∣∣ in eqs. (B.21)–(B.24) gives very similar results for the

formulas of Briaire & Vandamme [133] and the adapted formulas of Jenkins & Watts [32].
The only differences are the constant factors. Note that Briaire & Vandamme use XSA for
determining the cross-spectrum, while Jenkins & Watts use the Crosscorrelation method
(XC). It is shown in chapter 2 that without averaging or smoothing these two methods are
equivalent.

If K = 1 and ΓSS = 0, one finds from eq. (B.23) that β = π2/16. For the expectation,
eq. (B.27) has a factor

√
2/π ≈ 0.798, which is very close to the factor

√
β = π/4 ≈ 0.785

in eq. (B.25). For the variance, eq. (B.28) has a factor
(
1− 2

π

)
≈ 0.363, which is again very

close to the factor (1− β) for K = 1 in eq. (B.26): (1− π2/16) ≈ 0.383.
Because the results of [32] and [133] match so well for this simple situation, and the

system model of [133] resembles the system model of chapter 2 perfectly well, we will adopt
the approximations of Briaire & Vandamme [133].
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Table B.1: Input impedance calculated for connecting an infinite impedance to a branch.

Zin[n] using branch
1 2 3 4 5 6

2
1
R

6
5
R

22
21
R

86
85
R

342
341

R
1366
1365

R

B.7 Oscillator power

A general model for oscillator phase noise is discussed in [135]. The most important quan-
tity is the single sideband noise spectral density L{∆ω} in dBc/Hz, which is a normalized
quantity based on the shape of the phase noise [4, 135].

The oscillator number is defined as

Nosc = 10 log

(
L (∆f)

(
∆f
fosc

)2
)

[dBc/Hz] (B.29)

where ∆f denotes the offset frequency and fosc the oscillator frequency.
Based on Rover’s specifications of −134 dBc/Hz at 1 MHz offset at a frequency of 1 GHz

[4], one finds Nosc = −194 dBc/Hz.
The power of an oscillator can be estimated using a Figure-of-Merit (FoM) defined as

FoMosc = 10 log
(
Nosc

Posc

1mW

)
[dBc/Hz] (B.30)

For a ring-oscillator a good FoM is 160 dBc/Hz [136], while for an LC-oscillator 185 dBc/Hz
can be achieved [65]. Using these FoMs and eq. (B.30), the power consumption of the ring-
oscillator is 2.5 W, while the power consumption of the LC-oscillator is only 8 mW.

B.8 Input impedance of RF-frontend

The recurrence relation is

Zin[1] = 2R [Ω]

Zin[n] = 2R
R+ Zin[n− 1]
3R+ Zin[n− 1]

[Ω]

Evaluating this for several n gives the values of table B.1. From these values it can be
observed that the numerator coefficient is always one more than the denominator coefficient.

For the numerator p we postulate just by looking at the numbers that

pn = 4pn−1 − 2

This is a simple first-order difference equation which can be solved using standard techniques,
resulting in the solution (with p1 = 2 as initial condition)

pn =
4n + 2

3

With the denominator coefficient q one less than the numerator coefficient p, one can simply
subtract 1 from the solution for the numerator:

qn =
4n − 1

3
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The factors 1
3 cancel, yielding as general solution

Zin[n] =
4n + 2
4n − 1

R [Ω]

All that needs to be done now is prove that this is indeed a correct solution, which will
be done using mathematical induction. For n = 1 one finds Zin[n = 1] = 2R, which is
correct. Now assume the solution is correct for n = k. Filling in the solution for n = k + 1
gives

Zin[k + 1] = 2R
R+ Zin[k]
3R+ Zin[k]

= 2R
R+

4n + 2
4n − 1

R

3R+
4n + 2
4n − 1

R

= 2R
(4n − 1)R+ (4n + 2)R
(4n − 1) 3R+ (4n + 2)R

= 2R
2 · 4n + 1
4 · 4n − 1

= R
4n+1 + 2
4n+1 − 1

which proves the solution is correct for all n ∈ N.

B.9 Noise Figure of a Tayloe mixer

A Tayloe mixer is a mixer with a 25% duty cycle. Because the oscillator is a block wave, it
contains many harmonics and therefore a lot of noise is folded to the Intermediate Frequency
(IF), which increases the Noise Figure (NF).

The NF can be calculated by expanding the 25% duty cycle block wave s(t) into its
Fourier components. Here the complex notation is chosen because it is more convenient.

s(t) =
∞∑

n=−∞
cne

j2πnt
T

where cn can be calculated using

cn =
1
T

=
∫
〈T 〉

s(t)e
−j2πnt
T dt

Evaluating cn gives

cn =
1
T

∫ T
4

0

e
−j2πnt
T dt =

j

2πn

(
(−1)−

n
2 − 1

)

=



1
4

if n = 0,

0 if n = 4k, k ∈ Z,
1

2πn
+

1
j2πn

if n = 1 + 4k, k ∈ Z,
1
jπn

if n = 2 + 4k, k ∈ Z,

− 1
2πn

+
1

j2πn
if n = 3 + 4k, k ∈ Z

(B.31)
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Figure B.1: Schematic for calculating total NF of cascaded noisy stages (reproduced from
[44]).

For the NF one needs to calculate the noise factor as

F =

∞∑
n=−∞

|cn|2

|c−1|2
(B.32)

Using Parseval’s theorem it can be seen that the numerator is simply the average power
of the signal, which with a duty cycle of 1

4 is 1
4 . |c−1|2 = 1/2π2, which means F = π2/2,

resulting in an NF of 6.9 dB, in accordance with [60].
When the circuit is balanced, all even harmonics are removed. For a duty cycle of 25%

one removes all harmonics n = 2 + 4k, k ∈ Z, because the other even harmonics are already
zero. Evaluating the total power of the even harmonics gives

∞∑
k=−∞

|c2+4k|2 =
1
8

(B.33)

which is exactly half the total power of all harmonics. This means that in a balanced circuit
the NF is decreased by 3 dB as compared to the unbalanced case, resulting in a NF of
3.9 dB.

B.10 Noise Figure of RF-frontend

The NF of the Tayloe-mixer is 6.9 dB if no balancing and I/Q-mixing is present [60]. The
noise factor therefore is F ≈ 4.898. This is defined for impedance-matched systems, but in
the designed Radio Frequency (RF)-frontend the matching depends on the branch the mixer
is connected to. Furthermore, the mixer is not the only part; there is a two-stage cascade
of the resistor-network and the Tayloe mixer. This requires the use of a couple of formulas
from [44] to derive the total NF. Some of the variables used are defined in fig. B.1.

The first equation is the well-known Friis equation [44, p. 45, eq. (2.107)]:

Ftotal = F1 +
F2 − 1
G1

+
F3 − 1
G1G2

+ · · ·+ Fn − 1
n−1∏
k=1

Gk

(B.34)

where Fi is the noise factor with respect to the source impedance driving stage i, i.e. the
output impedance of stage i − 1. Gi is the available power gain of stage i [44, p. 45, eq.
(2.104)]:

Gi =
(

Rini

Routi−1 +Rini

)2

A2
v,i

Routi−1

Routi

(B.35)

with Rout0 = RS , in the current design the antenna impedance. Av,i is the voltage gain of
stage i, Rini the input impedance of stage i and Routi the output impedance of stage i.
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Table B.2: Calculational complexity for an (M = 2L)-
point radix-2 complex FFT.

Complex mult. Computations
Mult. Add. Mult. Add.

3 3 3
2LM − 5M + 8 7

2LM − 5M + 8
4 2 2LM − 7M + 12 3LM − 3M + 4

Next, a formula is needed to convert a given NF at one impedance to a NF at another
impedance. This is given in [44, p. 201, eq. (6.36)]:

(FA − 1)RSA = (FB − 1)RSB (B.36)

where FA is the noise factor of the stage if driven by a source impedance RSA , and FB the
noise factor if driven by RSB .

The NF of the first stage (the resistor network) can be calculated using [44, p. 42, eq.
(2.88)]:

F = 1 +
RS
RP

(B.37)

where RS is the source impedance and RP the input impedance of the stage.
This design always has RS = RSA = 50 Ω. If the Tayloe mixer is connected to the

first branch, eq. (5.1) gives RP = Rin1 = 70 Ω. The voltage gain of the resistor network is
Av1 = 1 because the input is the output in this case. The output impedance follows from
eq. (5.5) and is Rout1 ≈ 29.17 Ω. One finds G1 ≈ 0.583, F1 ≈ 1.714 and F2 ≈ 7.682 and as
a total noise factor Ftotal ≈ 13.175. This is equal to NFtotal = 11.2 dB.

B.11 Algorithmic complexity of complex FFT

Sorensen et al. [98] show a table where the required number of real additions and real
multiplications are given for calculating an M -point complex FFT. They do this when
calculating a complex multiplication using 4 real multiplications and 2 real additions, and
when calculating a complex multiplication using 3 real multiplications and 3 real additions.3

The table is reproduced for convenience in table B.2.
Given the fact that the number of calculations for both ways of calculating a complex

multiplication contain a fixed number of real additions and multiplications, one can use the
figures in table B.2 to calculate the number of complex multiplications for an (M = 2L)-
point radix-2 complex FFT. Denote x1 as the fixed number of real multiplications, x2 as
the fixed number of real additions and y as the number of complex multiplications. The
following system of equations then has to be solved:

x1 + 3y =
3
2
LM − 5M + 8 x2 + 3y =

7
2
LM − 5M + 8

x1 + 4y = 2LM − 7M + 12 x2 + 2y = 3LM − 3M + 4

of which the solution is

x1 = M − 4 x2 = 2LM − 4 y =
1
2
LM − 2M + 4

3Sorensen et al. claim a method exists to calculate a complex multiplication with three real multiplica-
tions and three real additions, but neither the calculation nor any other reference to this method has been
found.



Appendix C

Low Power VCO Idea

An oscillator design is proposed in chapter 4, but with a relatively high power consumption.
A solution is to lower the phase noise requirement of the oscillator and reduce it through
correlation, but because measurement time is increased fourfold if the noise is increased by
3 dB, it is desirable to fulfil the phase noise requirement with less power.

The required tuning range covers the 100 MHz to 6 GHz area, while the phase noise
requirement derived in [4] is −134 dBc/Hz at an offset of 1 MHz with an oscillator frequency
of 1 GHz. In section B.7 it is calculated that for this noise performance a ring-oscillator
would require 2.5 W, while an LC-oscillator requires only 8 mW. These numbers are for
the oscillator only, and do not include the power consumption required for the buffers. The
high power consumption immediately rules out the use of only a ring-oscillator to generate
the frequencies. The very limited tuneability of the LC-oscillator immediately rules out its
standalone use. A solution is proposed here that uses the tunability of the ring-oscillator in
combination with the superior phase noise of an LC-oscillator. This design sketch is far from
worked out, and more analysis is needed to obtain a good understanding of the properties
and feasability of the concept, which is left as future work.

The block-level design of the proposed solution is shown in fig. C.1. It consists of a High
Frequency (HF) LC-oscillator, connected through a frequency divider to a Phase-Locked
Loop (PLL), that is locked to a reference crystal resonator. The LC-oscillator is designed
to meet the phase noise requirements of [4], but is not tunable. In this PLL the Voltage-
Controlled Oscillator (VCO) is implemented using a ring-oscillator. The VCO can be rather
noisy as will be explained further on. The detector and Low-Pass Filter (LPF) are standard
elements in a PLL.

The PLL makes sure that the two inputs of the detector are in phase (and hence have the
same frequency fref). This means fout = Nfref = N

M fLC, which provides us with a means to
create a fraction of the frequency of the LC-oscillator. Depending on the range N and M
can handle, one can pretty much set any desired frequency below fLC. Phase noise of the
frequency dividers can be kept to a minimum by using re-clocking [71]. The input signal
of the divider, which is not affected by the accumulated phase noise of the different stages
in this divider, is also used as output of the divider. The lower frqeuency generated by the
divider is used as ‘enable’ signal for the final stage, such that the output phase noise is only
affected by the phase noise added in the last stage.

As a rule of thumb, the bandwidth of a PLL is usually set to roughly 10% of fref [87].
Within this bandwidth, the LPF ideally filters all noise, because of the high-pass transfer
characteristic to fout. The only remaining noise then is the noise from the LC-oscillator,
which was within specifications. Outside of the bandwidth the filter does not reduce the
noise; the noise level there comes from the RC-oscillator, which is not within specifications.
A sketch of the output spectrum is shown in fig. C.2.

Any measurement done using the Spectrum Analyzer (SA) should not use frequencies
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Crystal

LC osc
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Figure C.1: Block-level schematic of the proposed oscillator design
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Figure C.2: Output spectrum of the proposed oscillator design.

further away than fref/10. Since fref = fout/N , the measurement bandwidth is limited to
fref/(10N). This means that if N = 10, one can only measure a 1 MHz bandwidth around
100 MHz within specifications. Therefore, the maximum relative measurement bandwidth
available is 10% for N = 1.

This proposed solution combines the good phase noise of an LC-oscillator with the good
tunability of an RC-oscillator, at the cost of a reduction in measurement bandwidth. Even
when it does not meet the −134 dBc/Hz requirement, every improvement means less noise
is added that needs to be correlated away.



Appendix D

Stochastic Processes

In this appendix, a few basic statistic principles are briefly presented, as well as some signal
and estimation theory. They should provide enough information to be able to understand
the main text. Definitions provided here are much more formal than the main text, but this
is only to avoid any confusion. More information can be found in any book on statistics and
signal theory, such as [27, 28, 32, 42].

Deterministic signals are predictable, e.g. one can exactly predict the future values. An
example is sin(x). Stochastic, or random, variables on the other hand, are not exactly
predictable. An example is the number thrown with a die. The sample space is the set of
all possible outcomes of the experiment.

Definition D.1 (Stochastic variable). Let S be the sample space of an experiment and V
be some value space. The function X : S → V that assigns to each outcome s ∈ S a value
X(s) = v, v ∈ V , is called a stochastic variable.

If V ⊂ R, X is numeric, otherwise it is categorical. If the number of elements in V is
finite or countably infinite, X is discrete. Hereafter, it is assumed that X is numeric.

In the case X is the number thrown with a die, the sample space is

{1 eye thrown, . . . , 6 eyes thrown}

and the value space is {1, 2, 3, 4, 5, 6} (with X providing the obvious mapping).
The cumulative distribution function FX(x) gives the probability P (X ≤ x). Similarly,

the probability density function fX(x) gives the probability P (X = x), which in the case
of discrete variables amounts to a series of Dirac pulses (δ(x)). fX(x) can be regarded as
dFX(x)

dx , where the Dirac impulse is considered the derivative of a step.
The expected value E [X], or expectation, of a stochastic variable X, is the probability-

weighted average of all outcomes.

Definition D.2 (Expectation). Let X be a discrete stochastic variable and Y a continuous
stochastic variable. Then

E [X] =
∑
x∈SX

xP (X = x)

(with SX the sample space of X) is the expectation of X, provided the summation is
absolutely convergent, and

E [Y ] =
∫ +∞

−∞
yfY (y) dy

is the expectation of Y , provided the integral is absolutely convergent.

Another commonly used word for expectation is mean. The mean of X is then denoted
as µX . Other commonly used ways of writing the expectation E [X] are X and 〈X〉. Note
that in this thesis X does not denote the mean of X, but the complex conjugate of X.
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Although different variables can have the same mean, they may exhibit completely dif-
ferent deviations from this mean. One way of characterizing this is using the variance, which
is defined as the average quadratic deviation from the mean.

Definition D.3 (Variance). Let X be a complex stochastic variable. The variance of X,
var (X), is defined as var (X) = E

[
|X − E [X]|2

]
.

If X is numeric, rewriting using the definition of E [X] gives var (X) = E
[
X2
]
−E2 [X].

A stochastic process (or random process) is a process which value at each instant of time
is a random variable. It can therefore be considered as a collection of random variables.
These random variables may have any relation with respect to each other, but they all have
the same domain S and image V .

Definition D.4 (Stochastic process). Let T ⊂ R and Xt : S → V be a random variable
indexed with t. A stochastic process X is a collection {Xt : t ∈ T}.

In this thesis the convention is used that X[k] denotes (an element of) a discrete stochas-
tic process, and X(t) (an element of) a continuous stochastic process, where it will be clear
from the context whether the process as a whole or an element of the process is meant.

The cumulative probability distribution function and probability density function are
also defined for stochastic processes:

FX(x1, . . . , xn; t1, . . . , tn)
4
= P (X(t1) ≤ x1, . . . , X(tn) ≤ xn)

fX(x1, . . . , xn; t1, . . . , tn)
4
=
δnFX(x1, . . . , xn; t1, . . . , tn)

δx1 · · · δxn

One can imagine that if process characteristics do not change in time, absolute time is
not important. Difference in time however can still be important. This time-independence
can be captured with the concept of stationarity.

Definition D.5 (First-order stationary process). Let T ⊂ R and X be a stochastic process.
If ∀τ ∈ T the equality fX(x1; t1) = fX(x1; t1 + τ) holds, then X is a first-order stationary
process.

A consequence of this property is that E [X(t)] is a constant.

Definition D.6 (Nth-order stationary process). Let T ⊂ R and X be a stochastic process.
If the equality fX(x1, . . . , xn; t1, . . . , tn) = fX(x1, . . . , xn; t1 + τ, . . . , tn + τ) holds ∀τ ∈ T ,
then X is an Nth-order stationary process.

Note that (N + 1)-th order stationarity implies N -th order stationarity. For a second-
order stationary process it follows that fX is only a function of the time difference t2 − t1,
usually denoted as τ .

Because even second-order stationarity places severe constraints on a process, and one
would like to treat as many different processes at once, it is useful to introduce the concept
of wide-sense stationary (wss) processes.

Definition D.7 (Wide-sense stationary process). Let X(t) be a stochastic process. If
E [X(t)] is a constant, and E [X(t)X(t+ τ)] is independent of t, then X(t) is a wss process.

Note that all second-order stationary processes are wss, but the converse is not true.
Similarly, one can define two processes to be jointly wss.

Definition D.8 (Jointly wide-sense stationary processes). Let X(t) and Y (t) be two wss
processes. If E [X(t)Y (t+ τ)] is independent of t, then X(t) and Y (t) are jointly wss
processes.
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A stochastic process has a(n) (in)finite amount of possible values at a certain point of
time. These possible values together are called an ensemble. The expected value E [X]
therefore is an ensemble average. Because only one realization of such an ensemble can be
measured, the expectation cannot be measured.

However, if one assumes that the process is wss and the statistical properties of one
realization over time are equal to the ensemble average of the stochastic process at one
instant of time, it can be measured. A process that has these two properties is called
ergodic. The time average of a stochastic process is defined in the same way as expectation.

Definition D.9 (Time average of a stochastic process). The time average A [X(t)] of a
stochastic process X(t) is written as A [X(t)] and is defined as

A [X(t)]
4
= lim
T→∞

1
2T

∫ T

−T
x(t) dt

Because taking a time average involves only one realization of the stochastic process,
A [X(t)] is itself a random variable. For ergodic processes however it is assumed that
A [x(t)] converges almost surely (i.e. with probability 1) to E [A [X(t)]]. Hence one may
write A [X(t)] instead of E [A [X(t)]].

The definition of time average allows the definition of an ergodic process.

Definition D.10 (Ergodic process). Let X(t) be a wss process. Then if

A [X(t)] = E [X(t)]
A [X(t)X(t+ τ)] = E [X(t)X(t+ τ)]

X(t) is an ergodic process.

It must be noted that it is often impossible to prove that a process is ergodic, but for
simplicity of measurement this is often assumed.

Similarly, one can define two processes to be jointly ergodic.

Definition D.11 (Jointly ergodic processes). Let X(t) and Y (t) be two ergodic processes.
If A [X(t)Y (t+ τ)] = E [X(t)Y (t+ τ)], then X(t) and Y (t) are jointly ergodic processes.

Properties of stochastic processes need to be estimated by measurements. Functions or
rules that estimate parameters based on an observation are called estimators. Estimators
have several important properties. Because these functions act on stochastic processes, they
are stochastic themselves, and therefore have an expectation and variance.

Ideally, an estimator has an expectation equal to the property it tries to determine,
which leads to the definition of bias:

Definition D.12 (Bias). Let Θ be an estimator for unknown θ. If E [Θ] = θ, then Θ is

unbiased, otherwise it is biased with bias B [Θ]
4
= E [Θ] − θ. If N denotes the number of

samples or the observation time, then if limN→∞E [Θ] = θ, Θ is asymptotically unbiased.

Ideally, the variance of an estimator is zero. In general, the variance of an estimator is
a function of the number of samples or observation time

Definition D.13 (Consistency). Let Θ be an estimator for unknown θ. If limN→∞ var (Θ) =
0, Θ is consistent, otherwise it is inconsistent.

An often-used way to determine the quality of an estimator is the mean-squared error
(mse), which uses both the bias and the variance.

Definition D.14 (Mean-squared error). Let Θ be an estimator for unknown θ. Then

mse (Θ)
4
= E

[
(Θ− θ)2

]
is the mse of Θ.

This can also be rewritten as mse (Θ) = (B [Θ])2 + var (Θ).
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