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Abstract

This thesis describes the advantages and disadvantages of using architectures
consisting of multiple different (types of) processors. Such architectures are
better known as heterogeneous architectures. The research is focussed on de-
termining processing power and energy efficiency, based upon the mapping of
a Reed Solomon (RS) error correcting decoder on a reconfigurable architec-
ture. Parts of the RS decoder that are not implemented, will be executed on
a General Purpose Processor which can communicate with the reconfigurable
hardware, which is better known as a heterogeneous architecture. The GPP
used, is an ARM, and the reconfigurable architecture used is a Montium.
The RS algorithms are implemented to derive conclusions as to which archi-
tecture is favorable for implementation of the different RS sub-blocks, and how
processing power and energy efficiency relate to other architectures.

The research focusses on RS applied for the Digital Media Broadcasting
(DMB) standard. This standard prescribes several parameters of the RS cod-
ing, such as packet-size(n), and the amount of parity symbols per packet (k).
To facilitate in the reception and processing of DMB, the algorithms are tai-
lored to fit its requirements.

To be able to derive conclusions, two sub-blocks of RS are implemented on
the Montium. These are the syndrome calculator and the error locator. The
syndrome locator has to be executed for each incoming RS data-packet, and
determines if the packet is error-free or not. If it is not, the other RS blocks
are executed which determine the errors and their locations. The error locator
is the part which calculates the locations of the errors. Together, the syndrome
calculator and the error locator use almost 90% of the average calculation time
on an ARM, which makes them the most computationally intensive parts. To
get acquainted with the hardware and familiar with its tools, also an RS encoder
has been designed. The implementation and mapping of these three algorithms
is explained in this thesis.

Conclusions are based on a comparison of the Montium to other archi-
tectures. These are the ARM (GPP), the Intel R© Pentium R© M (GPP) and
a Xilinx IP Core. The Montium performs well on the implemented decoder
blocks, even though its clock frequency is relatively low. It is capable of per-
forming the calculations faster than the ARM and the Pentium, and is much
more energy efficient. The Xilinx core is much faster than the Montium, but
comparison on energy performance is difficult. When flexibility on reconfigu-
ration level is an issue, the Montium is the best choice.
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1
Finite Fields

The mathematical basis of Reed Solomon is based on the theory of finite fields.
Finite fields are based on a prime number p and consist of p elements. As
their existence and importance have been discovered by Éveriste Galois [10],
they are denoted GF (pm),m ∈ Z+. Perhaps the most characterizing feature
of Galois Fields is that they are ring-structured. They are finite sets, closed
under addition and multiplication; the results of these arithmetic operations
always result in values that are members of the field.

Galois Fields consist of a field of pm elements. For the construction of
Reed-Solomon codes, symbols from the extension field GF (2m) are used.

The extension field consists of the values 0 and 1, and additional values that
are powers of a symbol αi ∈ pm. This results in an infinite set F . To create
a finite subset a closing condition is needed which is defined by the irreducible
polynomial α(2m−1) + 1 = 0. The set F ′ is thereby reduced to:

F ′ = {0, α0, α1, ..., α2m−2} (1.1)

The actual field consists of elements that are a power of a primitive poly-
nomial. Such a polynomial is obtained by selecting an irreducible polynomial
from the set of GF (pm). This set contains every polynomial of degree m and
arithmetic operations are done modulo p. Then consider a root α of this irre-
ducible polynomial. The powers of α, ranging from α to αpm−1

, are the possible
polynomials and thus the elements of the field. All arithmetic operations are
performed under the modulo of the generator polynomial (G(X)). If a result
is out of the field, taking the modulo maps it back to the original field.

− αy ≡ αy (1.2)
bαy (mod b) ≡ 0 (1.3)

This ensures that the result is always a member of the field. Primitive
polynomials are usually depicted as a single integer number. For example, 37,
which in binary is 100101, represents the polynomial f(α):

α5 + α2 + 1 (1.4)

1



1. Finite Fields

When converting to and from the field, the same primitive polynomial must
be used.

1.1 Addition and subtraction

Addition and subtraction in a Galois Field is done modulo p. For polynomials
this means that they can be added and subtracted, but the coefficients of the
resulting polynomial must be taken modulo p. This also implies that there is
no need for a carry-flag or bit. Because of the modulo, coefficients are limited
to a number of p. As messages in hardware are composed of bits, p is 2 by
standard. The polynomials then are no more than strings of bits. Adding or
subtracting their strings whilst taking each resulting bit modulo p is a simple
but effective XOR operation.

Example:

101→ α2 + ...+ 1
011→ ...+ α1 + 1

α2 + 1 α2 + 1
α1 + 1 + α1 + 1 −
α2 + α1 + 2 α2 + α1

α2 + α1 + 2 (mod 2) ≡ α2 + α1

α2 + α1 −→ 110 = 101 XOR 011

1.2 Multiplication

Multiplication in Galois Fields is more difficult than addition or subtraction.
It is defined as multiplying the polynomials. In order to let the result remain
in the field, a modulo with the generator polynomial is then performed. The
following formula specifies the multiplication of f(α) and g(α) of degrees n and
m, and coefficients fi, gj ∈ {0, 1}:

f(α) · g(α) =

 n∑
i=0

fi

 m∑
j=0

gjα
i+j

 mod p

 mod G(α) (1.5)

Example:

Let f(α) =
∑
fiα

i of degree n = 5 and g(α) =
∑
giα

i of degree m = 4,
and let f(α) = 58, g(α) = 29 and the generator G(α) = 285, so

f(α) = α5 + α4 + α3 + α

g(α) = α4 + α3 + α2 + 1

G(α) = α8 + α4 + α3 + α2 + 1

2



Multiplication

f(α) · g(α)
= (α5 + α4 + α3 + α) · (α4 + α3 + α2 + 1)
= α9 + α8 + α7 + α5 + α8 + α7 + α6 + α4 + α7 + α6 + α5 + α3 + α5 + α4 + α3 + α1

= α9 + 2α8 + 3α7 + 2α6 + 3α5 + 2α4 + 2α3 + α1 (mod 2)
= α9 + α7 + α5 + α1

The result of the multiplication modulo G(α):
= α9 + α7 + α5 + α1 (mod G(α))

Calculating the modulo by repeated longdivision with G(α) · αy results in:
α9 + α7 + α5 + α1

α9 + α5 + α4 + α3 + α1 −
α7 + α4 + α3

α7 + α4 + α3 = 10011000 = 152
So 58 · 29 = 152

As a real Galois modulo operator is difficult to implement on hardware, and
polynomial multiplications are computationally expensive, other algorithms
have been discussed in literature that use different approaches.

Direct implementation

The direct implementation is the most standard method for implementing a
multiplication. It uses the basic multiplication technique of equation 1.5. It
recognizes that the modulo can be substituted for a maximum of one division.
The remainder is the result of the multiplication. Note this only holds if the
generator polynomial is larger than pm, which is always the case [15].

If the degree of the pm polynomial is m, the polynomials in the field also
have a maximum degree of m. Therefore, it can be easily concluded that mul-
tiplying two polynomials of the field and dividing that result by the generator
polynomial (with degree ≥ m), results in a polynomial with a maximum degree
of m. This is why after the multiplication, the modulo operation consists in
fact of at most one divisions. Taking the remainder of this division is the final
result of the modulo operation.

This method has the advantage that the number of steps that need to be
taken to acquire the result is always known. The drawback is that multiplying
and dividing two polynomials is computationally expensive.

Multiplication table

An obvious but less elegant solution is the use of a multiplication table. This is
a table in which all possible multiplications and its outcomes are entries. In the
case of Reed Solomon, the parameters are bytes, thus having x = 256 possible
values. A multiplication table would then consist of 1

2x
2 = 16384 entries, or

16kB.

3



1. Finite Fields

α0 α1 α2 α3

α0 α0 α1 α2 α3

α1 α1 α2 α3 α0

α2 α2 α3 α0 α1

α3 α3 α0 α1 α2

Table 1.2: Multiplication LUT with p = 2,m = 4

Logarithm table

The method with the logarithmic lookup table (LUT) requires less memory.
The theory is based upon the mathematical expression: log(a · b) = log(a) +
log(b).

Every element of the field is expressible as a power of the primitive poly-
nomial α (section 1).

(αi) · (αj) = αi+j mod pm−1 (1.6)

Using this formula, multiplications can be calculated by knowing the exponent i
and j of the values that need to be multiplied. Since αi = x, i can be referred to
as the ”discrete logarithm” of x. By constructing the table for these logarithmic
values, the multiplication can be reduced to a repeated look-up operation in
this table.

There needs to be at least a table containing the log of every element of the
set F ′. In that table the log of a and b can be easily selected and added. The
result can be easily read from a second table containing the exponents. Another
option would be to reversely look it up in the log table, by finding the index of
the value that equals the result. Because the tables can be determined based
upon G(α) they can be loaded into memory and do not have to be calculated.
Therefore, the approach using two tables uses more memory, but discards the
need for a cycle-consuming reverse lookup. A simple index-based lookup would
then suffice.

Generating the LUT

Generating the lookup table is a procedure that only has to be done once for
a specific field. The lookup table has to define the discrete logarithm of all of
the values [0, 1, ..., pm − 1]. More formally: take a primitive element α from
a finite field F . Define β of F as its discrete logarithm. This leads to the
following simple statement: find the smallest m ∈ F for which αm = β. A
practical approach to generate the table is to add the coefficients of the α
values, mod pm− 1. Table 1.2 contains an example multiplication table. The
inverse table (exponent table) is simply an index-value switched inverse of the
logarithm table.

4



2
Introduction to Reed Solomon

Reed-Solomon (RS) codes were firstly described in 1960 by Irving S Reed and
Gustave Solomon [15]. The theory is based upon the theory of Bose-Chaudhuri-
Hocquenghem (BCH) codes. RS codes are members of the Forward Error
Correcting codes (FEC). In principle they add redundant parity symbols to
the end of a message. When the Signal to Noise Ratio (SNR) is low, bits could
get flipped during transmission. By using the redundant parity symbols, the
original message can, up to a certain point, be recovered (Figure 2.1). This
thesis will be based on the RS specification of the Digital Media Broadcasting
(DMB) standard. For mobile communication, DMB channels are used that
support up to a maximum of 1.152Mbps [18]. The high data-rate DVB-H
specification supports up to a maximum of 15Mbps. The properties of the
used RS code is defined by the used standard, and is discussed in section 2.1.

2.1 Applicational and mathematical properties

RS codes are non-binary cyclic codes [15]. This means that p ≥ 2. When
applied on digital systems p is chosen to be 2, so its values can be expressed
in a binary representation. The symbol size is m bits where m is an integer
and at least 2. RS codes are denoted as RS(n, k) where k is the number of
symbols that is encoded and n is the total number of symbols in the encoded
block. Figure 2.2 illustrates the structure of an RS codeword.

N
oise/E

rrors

Reed Solomon

encoder

Reed Solomon

decoder

Communication

channel or

medium

Figure 2.1: Typical Reed Solomon setup
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2. Introduction to Reed Solomon

k n− k
message parity

n

Figure 2.2: Reed Solomon codeword

symbol1 symbol2 symbol3 symbol4 symbol5 symbol6 symbol7 symbol8 symbol9 symbol10

ok error error error error error error error error ok

Figure 2.3: Datablock containing an error of 8 up to 64 bits (m=3)

The n and k must satisfy the following equation:

0 < k < n < pm − 1 (2.1)

The number of parity symbols that are added can be obtained by n− k = 2t,
where t denotes the number of symbol errors this specific code can correct. t
can then be expressed as

t =
⌊
n− k

2

⌋
(2.2)

When evaluating codes, the minimum distance between codewords should
be as large as possible. For non-binary codes this is defined by the Hamming-
distance d; the number of symbols in which two codewords differ. For RS codes
this minimum distance is

dmin = n− k + 1 (2.3)

Because of equation 2.2 this means that

d > 2t (2.4)

Burst errors

RS codes are designed for correcting errors on noisy channels. This is partially
due to the fact that noisy channels (e.g. low SNR) create so called ”burst
errors”. A burst error is a sequence of continuous erroneous bits that possibly
affect multiple symbols. The DMB standard uses an RS(204, 188) code, where
each symbol is made up of m = 8 bits (1 byte). Equation 2.2 states that this
code can correct 8 erroneous symbols in a block of 204. If a burst error occurs of
for example 57 bits, it would corrupt at least d 57m e = 8 symbols. The power of
non-binary codes lies therefore in the fact that if a symbol contains an error it
might as well be completely erroneous. As noisy channels usually create burst
errors, a large number of bit-errors only affect a few symbols. Figure 2.3 shows
how a continuous 64 bits error can corrupt 8 symbols, or how 8 non-continuous
bit errors can cause the same 8 symbols to be corrupted.

Interleaving can also be used to further reduce error-rates. This is partic-
ulary useful when burst-erroneous behaviour is expected. After RS encoding
the data, the resulting symbols are interleaved. If a burst error occurs, several

6



Encoder structure

small parts of a large number of blocks are malformed, thus increasing the
chance of every packet being decodable. An example, applied in the Compact
Disc standard, is given in [12].

Galois Fields and RS codes

Reed solomon codes are codes that ”exist” in a certain Galois Field. To encode
and decode messages, G(X) is needed. The generator polynomial is of the
following form:

G(X) = g0 + g1X + g2X
2 + ...+ g2t−1X

2t−1 +X2t (2.5)

The degree of G equals the number of parity symbols. Because G is of degree
2t, there are exactly 2t successive powers of α that are roots.

G(X) = (X − αm0)(X − αm0+2)...(X − αm0+2t) (2.6)

m0 is usually chosen to be zero or one. Note that m0 is to indicate that any
2t successive powers of α can be used. In this thesis, m0 is chosen to be 1.

The more formally written equation of G(X):

G(X) =
2t−1∏
i=0

(X − αm0+i) (2.7)

2.2 Encoder structure

Encoding cyclic RS codes is done in the same way as encoding binary codes
[15]. To be able to perform mathematical operations on codewords and code
blocks, they are represented in a polynomial form. This happens in the same
way as with the generator polynomial. A message (data) of for example α1,
α6, α2 is represented by a polynomial

D(X) = α1 + α6X + α2X2 (2.8)

As RS codes are systematic codes, the code blocks consist of a message D
and parity P , that together form the codeword C. The message part of the
codeword is the actual message D, and therefore remains untouched. The
parity has to be calculated.

More formally, C(X) consists of P (X) and D(X). To create C, D has to
be placed in the rightmost part of C, or, multiplied by Xn−k. This means
right-shifting D by n− k positions.

The P can be calculated by dividing the right-shifted D by the generator
polynomial G and taking its remainder.

P (X) = Xn−kD(X) mod G(X) (2.9)

Combining the expressions for P (X) and D(X) yield the expression for the
codeword

C(X) = P (X) +Xn−kD(X) (2.10)

7



2. Introduction to Reed Solomon

Formal encoder structure

This section will describe the encoder structure in a more formal mathematical
way.

Define a message (data) polynomial, and its encoded codeword polynomial
as

D(X) = dk−1X
k−1 + dk−2X

k−2 + ...+ d1X + d0 (2.11)
C(X) = cn−1X

n−1 + cn−2X
n−2 + ...+ c1X + c0

Each codeword is a multiple of the generator polynomial G(X). The 2t consec-
utive powers of αm0 , αm0+1, .., αm0+2t−1 are roots of G(X), and because C(X)
is a multiple of G(X), they are roots of C(X) as well.

Encoding D(X) into a C(X) polynomial requires the calculation of a parity
polynomial P (X). If Q(X) and P (X) are seen as a quotient and remainder,
the equation for C(X) can be written as

Xn−kD(X) = Q(X)G(X)− P (X) (2.12)

Referring to the previous section of this chapter; the right-shifter polynomial
D(X) is divided by G(X), with P (X) as a remainder. C(X) can then be
derived as follows

Q(X)G(X) = Xn−kD(X) + P (X) = C(X) (2.13)

This also shows that C(X) is a multiple of G(X) which is a property that
simplifies the decoding process later on. The codeword C(X) is then of the
form

(cn−2, cn−1, ..., c1, c0) = (dk−1, dk−2, ..., d1, d0, pn−k−1, pn−k−2, ..., p1, p0)
(2.14)

where the negative values of p can be taken absolute because of the the property
given in equation 1.2.

2.3 Decoder structure

Decoding RS codes is far more complicating than encoding them. When a
transmission channel is noisy, it leads to a compromised message which has
been affected by a certain error E(X). As flipping bits is essentially the same
as adding them (without carry), it can be concluded that the received word is
actually the codeword with an added error (Figure 2.4).

R(X) = C(X) + E(X) (2.15)

in R(X) there are 2t unknowns. In the more easy binary versions of BCH
codes, the only required information is the location at which the error has
occurred. By knowing the error location and the current value of the bit, it is
simply a matter of flipping that bit. In RS codes not only the location has to
be known, but also the error value. Since there are 2t unknowns, 2t equations
are needed for the solution.
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Decoder structure

E
(X
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10100

Encoder DecoderMedium
Data in

C(X)

01111

C(X) + E(X)

11011 Data out

Figure 2.4: Example of introduced error vector

E(X) is defined as the error polynomial:

E(X) = R(X)− C(X) = e0 + e1X + e2X
2 + ...+ en−1X

N−1 (2.16)

where ei = ri − ci is a symbol of the Galois field.
Assume that R(X) has v errors in positions i1, i2, .., iv. E(X) can then be

written as
E(X) = ei1X

i1 + ei2X
i2 + ...+ eiv

Xiv (2.17)

Using the E(X), the error locations and the error values can be calculated.
Define βk = αik , k ∈ {1..v} to be the error location numbers. The actual error
values are

ei1 , ei2 , ..., eiv
(2.18)

The next sections will explain how these values can be calculated.

Syndromes

To verify whether a received word R(X) is a valid codeword, the syndrome
of R(X), referred to as S, needs to be calculated. If R(X) is indeed a valid
codeword, the syndromes will be zero. An RS code has 2t syndromes, sj , j ∈
(1, ..., 2t).

As the structure of the code is based upon (see equation 2.2):

C(X) = D(X)G(X) (2.19)

It can be seen that the roots of G(X) are also roots of C(X). As E(X) is
supposed to be zero, the condition C(X) = R(X) should hold, meaning that
the roots of G(X) are also roots of R(X). Therefore, syndromes si are the
outcomes of si = R(rootsG(X)). If they are not zero, the R(X) is not a valid
codeword. More formally, the syndrome values can be expressed as

sj = R(αj), j ∈ (1, ..., 2t) (2.20)

Since equation 2.19 holds, we can derive these relations:

R(αj) = C(αj) + E(αj) = E(αj) (2.21)
sj = R(αj) = E(αj) (2.22)

sj = ei1β
j
1 + ei2β

j
2 + ...+ eivβ

j
v (2.23)

9
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When the sequence of the 2t syndrome equations is expanded, we obtain

s1 = ei1β1 + ei2β2 + ...+ eiv
βv (2.24)

s2 = ei1β
2
1 + ei2β

2
2 + ...+ eiv

β2
v (2.25)

... =
...

s2t = ei1β
2t
i1 + ei2β

2t
i2 + ...+ eiv

β2t
iv

The syndromes can be expressed as a syndrome polynomial, where the sj values
are the coefficients:

S(X) = s1 + s2X + ...+ s2tX
2t−1 (2.26)

Error locations

To find the location of the errors the error locator polynomial Λ(X) is derived
from the syndrome equations. The roots of Λ(X) are the inverses of the error
locators βi.

Λ(X) =
2t∏

j=1

(1− βjX) = 1 + λ1X + λ2X
2 + ...+ λ2tX

2t (2.27)

If there are v distinct non-zero λ coefficients where v ≤ t, the codeword is
correctable. The number of errors v in the codeword is also known at this
point.

An efficient algorithm for calculating Λ(X) is described by Berlekamp-
Massey [15]. When Λ(X) is calculated, the error locations are the roots of
Λ. This means the α values for which Λ(αi) = 0, i ∈ {1..2m}.

Error values

The error values ei can be found by Forney’s algorithm. Forney’s algorithm
requires the calculation of Λ(X) a priori. The error magnitude polynomial is
defined as follows:

Ω(X) = (1 + S(X))Λ(X) (2.28)

Forney’s algorithm defines the error values as:

eil
= −

XlΩ(X−1
l )

Λ′(X−1
l )

(2.29)

where Λ′(γ) is the derivative of Λ(γ).
Once the error locations and error values are known, the error value can

be added to R(X) at the given location to correct the received word. Forney’s
algorithm is not used in this research. For further documentation we refer to
[15].

10



3
Reconfigurable heterogeneous architectures

The demand on today’s embedded architectures are high. It is impossible to
achieve the highest level of performance, energy-efficiency, real-time proper-
ties, reliability and flexibility at the same time. Therefore, different structured
architectures have been developed, each with its own unique trade-off of prop-
erties.

Because all architectures’ trade-offs are different, their ability to be applied
in different types of systems is limited.

Target devices, such as Mobile devices; mobile phones, PDAs and multime-
dia players, have their own set of requirements. They try to achieve a maximum
of performance but are restricted by energy-efficiency requirements which keep
the battery from draining within the hour. Computational intensive image-
render farms, on the other hand, are not bound by energy usage and therefore
use architectures that maximize performance.

The algorithm domain also limits the designer´s architectural choice. Some
algorithms are computational intensive, memory intensive or control intensive.
To achieve maximum performance while staying in bound of the target-device
requirements, choices have to be made. Mapping computationally intensive al-
gorithms on an architecture which design favored memory intensive algorithms,
could lead to poor performance.

This chapter discusses both the different types of algorithm and the different
architectures available.

3.1 Common architectures

There are several architectures available with specific properties. The four
most common types are:

• general-purpose processors (GPPs)

• digital signal processors (DSPs)

• Field programmable Gate Arrays (FPGAs)

• application specific integrated circuits (ASICs).
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3. Reconfigurable heterogeneous architectures

(a) Harvard architecture (b) Von Neumann architecture

Figure 3.1: Harvard and Von Neumann architectures [11]

General-Purpose Processor

The GPP is best known for its application in Personal Computers (PCs), al-
though it is also widely used in embedded systems. The instruction set of
the GPP is very basic, but allows for any algorithm to be implemented. The
downside is that programming complex algorithms on instruction-level (as-
sembly) is hard. Due to the wide extent in which the GPP is used, many
high-level compilers and languages are available for the GPP. This makes pro-
gramming for the GPP a breeze compared to programming devices in assembly
language. Disadvantages of the GPP are its relatively poor performance and
its low energy-efficiency due to its optimization for flexibility.

GPPs were designed using only one memory component. This memory
contained both instructions and data. In this architecture, programs could
span the entire memory, thus without further restrictions. The drawback of
this architecture (Von Neumann architecture [20], Figure 3.1b) is that both
data and instructions reside in the same, usually single channeled, memory.
Performing operations on data requires at least two cycles because they can not
be loaded at the same time. Furthermore, ALU speeds increased much faster
than memory speeds therefore resulting in blocking reads from memory. This
bottleneck is referred to as the Von Neumann bottleneck. A possible solution
to (part) of this problem is splitting the memory into an instruction- and a
data part (Harvard Architecture, figure 3.1a). Another method for increasing
the fetching of data or instruction from memory is using caches. General
improvements to the GPP are the use of pipelining, multiple data memories
(Dual Harvard architecture) and extending its functionality by adding function
units (e.g. Floating Point unit).

Digital Signal Processor

DSPs are optimized for digital signal processing. A DSP often assists a host
GPP by acting as a real-time stream processor. The instruction set of a DSP
is usually larger than the instruction set of a GPP, because it is extended with
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Figure 3.2: Structure of an FPGA [11]

additional specialized DSP instructions. Very Long Instruction Word DSPs
are available, packing multiple regular instructions into a very long instruc-
tion word. Energy efficiency and performance of the DSP are higher than the
GPP. Reasons for this, include: more combinatorial hardware instead of control
hardware, and no traditional time-sharing.

Field Programmable Gate Array

The FPGA (Figure 3.2) is an integrated circuit which consists of a two-dimensional
array of logic-cells. Both the logic-cells and the interconnecting switches and
wires can be programmed. Complex algorithms can be executed by combin-
ing switches, paths and logic-cells to form complex structures (e.g. adders
and shifters). The outside of the logic-cell matrix consists of I/O cells and
additional control, to make communication to the outside world possible.

The programmability of an FPGA is fairly hard compared to a GPP. Be-
cause of the structure of the FPGA, programs do not only have to be compiled.
It is also required that a synthesis step is made which maps the program onto
the hardware. This is in contrast with the GPP, which hardware does not
need to be adapted to the program. Programs can be written in a Hardware
Description Language (HDL) such as VHDL[3] and Verilog [2]. After program-
ming, the synthesization tool creates a mapping onto the specific target FPGA.
This takes a considerable amount of time, due to the optimizations the tool
has to exploit for the FPGA. Due to the fact that every switch, path and logic-
cell-structure has to be bit-wise configured, the amount of configuration data
is very large (order of Mb). Configuring an FPGA is therefore relatively slow,
and runtime reconfiguration takes a considerable amount of time. Modern FP-
GAs often have the ability to be partially reconfigured, which is an advantage
if only a small part of the algorithm changes.

Where the GPP needs consecutive cycles to perform repetitive operations,
the FPGA can often implement them in parallel. Therefore, they are capable of
achieving high performance and can efficiently implement algorithms that ma-
nipulate bits and have parallelism. On the other hand, word-level operations
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3. Reconfigurable heterogeneous architectures

are expensive because of inefficient use of the logic cells and the limitations
of internal routing. Modern FPGAs often introduce word-level processing ele-
ments to facilitate in word-level operations.

Application Specific Integrated Circuit

As its name implies, the ASIC is an IC designed for a specific application, or
algorithm. This is in contrast with the GPP, DSP and FPGA which can be
re-configured instead of configured only once. The non-reconfigurable nature
of the ASIC enables synthesization at maximum performance. An advantage of
the ASIC is therefore that, for any algorithm, the ASIC can beat the other pro-
grammable architectures by size, speed and energy-efficiency [11]. The down-
side is its inflexibility; for each algorithm, or update to an algorithm, a new
chip has to be produced.

Conclusion

The trade-off among performance, flexibility and energy efficiency still is a
decision based upon the target device. Mobile devices for example, require
energy-efficiency on a sufficient level, whilst maximizing performance. Ideally
the properties of the ASIC would be used, but since the ASIC can only perform
one particular algorithm that is not always an option. Both the FPGA and
the DSP are often too domain specific to be implemented in a general mobile
device.

Reconfigurable architectures try to find the best compromise between these
properties. They maintain their flexibility by being reconfigurable, whilst being
energy-efficient and fast at the same time. Nevertheless, in the end a choice
will always have to be made, because even different reconfigurable architectures
have their own properties when it comes to specific algorithm domains [8].

3.2 Reconfigurable architectures

Reconfigurable architectures are defined as architectures with an adaptive in-
struction set. A subset of the instruction set can be defined as a ”program”
which can be executed by the hardware. Due to this reconfigurable nature,
algorithms can be implemented using software, for running on these architec-
tures. This saves costs and need for developing an algorithm-specific chip.
Reconfigurable architectures have some distinct properties by which they can
be identified and classified. Different algorithms require different approaches;
as fully programmable architectures are inherently inefficient, each reconfig-
urable architecture targets a specific algorithm domain to achieve the desired
trade-off.

Domain specific

Each algorithm is made up of different substructures. Fast Fourier transforms
(FFTs) for example have a kernel that consists of an FFT butterfly, while
the kernel of a Finite Impulse Response (FIR) filter consists of a Multiply
Accumulate (MAC) operation. If the architecture is domain-specific it can
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facilitate in such arithmetic by hardware. The more an architecture is domain
specific, the more it can be optimized.

Reconfigurability

The frequency in which architectures have to switch configurations can range
from mere seconds to once an hour or less. Infrequent reconfigurations are
known as static reconfiguration, while frequent reconfigurations are known as
dynamic reconfiguration. For dynamic reconfiguration it is required that the
architecture can switch configurations quickly. Configuration data therefore
has to be small. By sacrificing chip area, a second configurable space can
be created which can be loaded in the background. The actual switching of
configurations can then be performed instantly.

Granularity

Granularity is determined by the width of the components in its datapath.
Heysters [11] considers an architecture to be fine-grained when the datapath is
four bits wide of less. Having a width of more than four bits is considered to
be a coarse-grained architecture. FPGAs are fine-grained because their logical
units are optimized for bitwise operations. Fine-grained architectures therefore
require a larger set of configuration data because of its ”high resolution” of
configurability.

Design automation

High-level design languages are of great importance when reducing the design-
cycle. Low-level design tools such as HDLs or assembly, require a high level of
knowledge of the underlying architecture. Exploiting parallelism and efficient
routing is left to the programmer. High-level languages obscure the details of
the architecture and rely on the compiler to extract and exploit parallelism
of the architecture. Because compilers are nog always capable of delivering
optimal solutions, the programmer still needs to direct the compiler. A solution
is using a high-level language in which it is still possible to control the mapping
of the algorithm, when desired.

3.3 Heterogeneous architectures

Heterogeneous architectures are architectures that are composed of different
sub-architectures (e.g. a chip with a GPP and an other reconfigurable proces-
sor). Because different algorithms perform differently on various architectures,
combining multiple architectures in one design has advantages. This could, if
designed correctly, increase both performance and flexibility.

Mobile devices are used for a broad variety of applications. A mobile phone
for example is capable of sending and receiving data on a cellular network. Fur-
thermore it is capable of receiving and decoding video-streams, locally playing
audio, and so on. The algorithms of these tasks vary from computational in-
tensive to memory intensive ones. To accommodate for all of these in one
architecture, whilst securing the performance requirements, is a challenge. A
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dynamic reconfigurable architecture could perform all algorithms, ranging from
the network data link level to the application layer [1].

The workload of mobile devices is ordinarily very diverse. Streaming and
displaying video from a wireless network for example, is much more intensive
than being in standby while only maintaining a network connection. Therefore,
different parts of a heterogeneous architecture need to be put in low-power
mode.

Heterogeneous architectures are architectures from which a set of sub-
architectures can be enabled which is most suitable for the particular job.
On low load multiple parts of the architecture can be switched off or put in
low power mode. This aids in securing the performance and energy-efficiency
requirements, while being very flexible.

3.4 Montium Architecture

In this thesis the Montium Tile Processor (TP) architecture is used [11]. This
is done to provide a proof of concept for RS on this architecture. The Montium
TP is a domain specific reconfigurable core (DSRC) that can be embedded in
a coarse-grained reconfigurable processing tile.

The core of the Montium (Figure 3.3) contains five Arithmetic Logical
Units (ALUs), capable of integer as well as fixed point calculations. Each ALU
has its own register file containing four banks of four 16-bit values. Every ALU
is connected to two memories via a local interconnect. A single memory has a
capacity of e.g. 1024 16-bit values. The combination of the ALU, its registers
and its two memories is known as a processing part (PP). The five processing
parts are known as the processing parts array

The size of the memories, as well as the datapath width are parameterizable
and can be configured on design-time. This thesis relies on the parameters of
the ”Annabelle” chip (section 3.4), for further explanation of the Montium.
(PPA).

Since each register file consists of four banks, four values can be used simul-
taneously as input for the ALU (Figure 3.4). n− 1 ALUs also have an ”east”
input, which is routed directly from the combinatorial part (”west” output) of
the neighboring ALU.

The ALU also has two standard outputs. The internal part is divided into
two levels. Level 1 consists of function units which are capable of executing
standard logical, and simple arithmetical operations. Due to the way the reg-
isters are connected, not every input is available in every function unit. Level
2 of the ALU consists of a multiply-accumulate (MAC) followed by a butterfly
structure.

Communication among PPs is provided by 10 global busses, which also
allow for inter-PP communication. The busses can also be used to communi-
cate with external components via the Communication and Configuration Unit
(CCU). The CCU interfaces the Network on Chip (NoC). The CCU provides
as many in- and output lanes to the Network on Chip (NoC) as is required by
the network.

The Montium is controlled by its sequencer, which contains up to 256
40-bit instructions (Figure 3.5). Every instruction contains the directives for
the ALU, registers, memories and interconnects. If an algorithm requires over
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Figure 3.3: Structure of the Montium TP [11]

Figure 3.4: Structure of an ALU of the Montium [11]
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Figure 3.5: Sequencer instruction format [11]

256 instructions, the Montium is subject to reconfiguration. Through the use
of sequencer-instructions the sequencer can perform conditional jumps, create
loops, and enabling for self-modifying code.

The sequencer operates like a state machine, which decodes the states into
hardware instructions in several stages. Due to the staged decoding of hard-
ware instructions the configuration space and time is small. The sequencer
instruction invokes a decoder instruction which selects the correct hardware
instruction. The hardware instructions, as well as the decoder instructions, are
stored in registers. Due to the limited capacity of these registers, not every
combination of instructions is possible with a single configuration. This results
in a subset of the possible instructions per configuration. Every ALU for exam-
ple, has eight configuration registers, leading to a reconfiguration when more
than eight are required.

Implementation

There are currently two Montium implementations available.

• FGPA Implementation

The European 4s (Smart Chips for Smart Surroundings [5]) project is part
of the Sixth EU’s Framework Programme for Research and Technological
Development. In this project, pushing the limits of CMOS was considered
a priority. The Montium has been prototyped for this project, resulting
in a BCVP (Basic Concept Verification Platform). In the BCVP the
Montium was prototyped using a Xilinx XC2V8000 FPGA.

This implementation of the Montium is limited to 6.6 MHz, worst-case
path speed. This results in an input/output throughput of maximally
422 Mb/s.

• ASIC Implementation

The ”Annabelle” is an ASIC implementation of the Montium, devel-
oped by Recore Systems in cooperation with Atmel. The Annabelle is
currently limited to 100 MHz. The input/ouput streams therefore have
a throughput of 6.4 Gb/s. The type of CMOS used to create the ASIC
is 130nm.

These figures indicate that the Montium is suitable for algorithms with
high computational and bandwidth requirements.
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Encoder design and implementation

The RS encoder is capable of encoding data blocks. This encoding comes down
to performing calculations which result in n−k parity symbols. These symbols
are then appended to the original message symbols to create a message of length
n (Figure 2.2). The coefficients that are produced by the encoder (P (X)) are
appended to the data (D(X)) to create C(X). This section discusses the design
and implementation of the RS encoder.

4.1 Structure

There are two different approaches that are commonly used to implement the
functionality of an RS encoder.

Standard Encoding

Standard encoding can be used to calculate P (X) by essentially using equation
2.9. This requires n−(2t+1)+1 = n−(n−k) = k divisions between D(X) and
G(X). 2t+1 refers to the number of coefficients of the generator polynomial. A
division in a Galois Field can be done by subtracting the values in the LUT of
the field. This procedure can be described as dividing the first coefficient of D
by the first coefficient ofG, and subtracting that many timesG ofD. This is the
very essence of a modulo operation. In short, the entire equation 2.9 procedure
takes k individual Galois divisions, (2t + 1 − 1) · k Galois multiplications and
(2t+ 1) · k Galois subtractions.

Linear Feedback Shift Register

A common implementation is the use of the Linear Feedback Shift Register
(LFSR), also referred to as an i-Stage Shift Register (SSR). The LFSR is
a shift register in which the new state is a linear function of its input and
previous state. The LFSR is commonly implemented in both hardware as well
as software environments. The initial value of the LFSR is referred to as the
”seed”. The consecutive input symbols that are feeded to the LFSR are known
as the ”tap sequence”.
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g0 g1 g2 g3

k input symbols

Switch 2

Switch 1
X0 X1 X2 X3

Figure 4.1: Structure of an n− k = 4 LFSR

In contrast to the ordinary LFSR, the Galois LFSR is not binary, yet com-
prises Galois symbols and arithmetic. The values of gi represent the ith co-
efficient of the generator polynomial G(X). The α values represent the tap
sequence i.e. the ordered message symbols. As the number of coefficients of
G(X) is n − k = 2t, the number of tabs is also 2t. After processing the input
(D(X)), the shift-registers contain the 2t-sized P (X). An example of an LFSR
encoder for RS is given in figure 4.1. The structure is similar to the structure of
a binary LFSR. The steps that are taken during the application of this LFSR
can be described as follows:

1. Switch 1 is closed during the first k clockcycles in which the tap sequence
is shifted in to the (n− k)-SSR.

2. Switch 2 connects the input directly to the output during the first k
clockcycles, leading the input symbols directly to the output.

3. Once the kth message symbol has passed the second switch, switch 1 is
opened. Switch 2 then connects the output of the LFSR to the global
output.

4. The remaining (n − k) clockcycles shift the parity symbols in the shift-
registers and moves them to the output. Because the input is zero the
multiplication will result in the value zero, thus not adding anything while
shifting the shift-register-values to the output.

The result of these operations is that the output of the LFSR contains the
parity symbols (P (X)) and the message polynomial (D(X)). More formally
specified as P (X) +Xn−kD(X) = C(X).

Structure of choice

The structure of choice for RS encoding in this thesis is the LFSR. Design-
ing and implementing the encoder was originally meant as an exploratory and
introductionary try-out. Therefore it makes sense to try a different approach
while designing. In this case the design is not based on a software- or math-
ematical model, yet a hardware structure. It can not be guaranteed that the
solution itself is most efficient. It will be tried to achieve a simple one-on-
one hardware-to-Montium mapping without special optimizations, which will
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most likely introduce overhead. A single clockcycle in a hardware encoder
could trigger numerous events at once, while the Montium is only limited
to five ALUs and limited memory-to-memory interaction per clockcycle. This
would increase the number of required iterative steps, introducing predictable
overhead. It is stressed that this design originates from a goal different than
achieving the industries fastest and most optimal RS encoder.

Mapping and implementing a Reed-Solomon encoder on the Montium has
been done before in [14], based upon an iterative C implementation. Taking
this under consideration yields an opportunity to test a different approach.
Translating a hardware- instead of a software-construction on a Montium-
mapping has not been done for the encoder.

4.2 Design and implementation

The LFSR job can be split, like virtually any algorithm, into an input part,
computation part and output part. This section will discuss the mapping of
the LFSR to the Montium target hardware.

LFSR steps

The steps that an LFSR takes in more detail, are derived from the general
description in section 4.1.

1. During the first k clockcycles, the input symbols are streamed into the
LFSR. The values are stored in the first computational unit which will
add (XOR) the result of the previous LFSR state. At the same time,
they are forwarded to the output.

2. The input symbol is added to the previous state of the LFSR, the result
of which is copied to all inputs of the Multiply-accumulate (MAC) parts.

3. The MAC-parts will multiply the input with its generator coefficient.
Such a Galois multiplication will be done by seeking the corresponding
values for the generator coefficient and the input, in a LUT. The results
are then added, and a reverse lookup takes place. The result is stored in
a register.

4. After all MAC-parts have finished their computation, the shifting takes
place. Every result takes the result of the previous MAC unit, and adds
(XOR) that value to itself.

5. After the first k clockcycles there is no input left. Instead of moving the
input values directly to the output, the LFSR is shifted empty. This is
done by repeating step 4 n− k times until all values have cleared.

These are the operations that need to be performed in order to calculate the
RS message. To map this sequence of operations onto the Montium requires at
least assigning the memories, registers and PPs. There are almost an unlimited
number of possibilities to map a sequence to a Montium, but the final design
will have to be optimized for performance and energy. To achieve performance
parallelism needs to be exploited as much as possible. The design of the LFSR
itself already provides support for parallelism; all MAC-units can be calculated
in parallel.
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Figure 4.2: Example of a TDM design in a Montium [11]

Spatial distribution of ALU tasks

As there are only five ALUs, not every MAC-unit can be calculated at the
same time. There are n − k MAC-units meaning they have to be calculated
in at least d((n − k)/5)e subsequent clockcycles. The technique that can be
used can be thought of as time division multiplexing (TDM). It resembles the
technique described in chapter 6.3 of [11]. A large serial structure is then split
up into smaller parts, which are calculated sequentially in time. When using
ALU 1..5, the output value of ALU 5 can be feeded back to the input of ALU
1 in the next clockcycle, thus simulating serial behavior (Figure 4.2).

If the five ALUs are all used for the MAC operations, the other operations
have to happen before or after. The only remaining operation is the input-state
addition, which can be done by one ALU. To minimize configurations whilst
not sacrificing flexibility, performance and energy-efficiency, an 4-ALU design
is preferred. The remaining ALU can perform the input-state addition, while
the other PPs can focus solely on MACs. The design choice can be justified
by two means. Firstly the number of configurations is reduced. Because every
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PP has its own specific task, there is no need for extensive contact switching.
Every PP does need reconfiguration, otherwise it could only perform one single
task every clockcycle. Because the Montium supports partial reconfiguration
this is not a costly operation. Secondly it can be noticed that the 4-ALU
approach leaves one ALU idle most of the time. Research into the applications
of RS codes has shown that most implementations use 2 or 4i, i ⊆ {1..4} parity
symbols, with a maximum of 16. DVB also requires 16 parity symbols. A
4-ALU design therefore does not cause overhead when regarding clockcycles
(d 2t

4 e=d
2t
5 e, 2t = 2x). Together with the reconfiguration reflection it leads

to the conclusion that the chosen design does not violate any of the primary
requirements of the system.

As discussed the Montium implementation requires a strategy for TDM. As
there are up to 16 MACs and just four ALUs, the original LFSR-1-clockcycle-
MAC-operations need to be split up. As the LFSR shifts from the left to the
right, the most suitable approach is to divide the MACs as follows:

1. PP1..4 handle the four leftmost MACs

2. After that the last PP sends its result to the input of the first PP, to
calculate the next 4 MACS

3. This continues untill all MACs have been calculated

Using this strategy enables the Montium to divide serialized structures in to
semi-parallel structures.

PP steps

PP 1..4 perform the MAC operations. These operations are almost identical
for every MAC and ALU, with two exceptions. These exceptions concern the
first and last of the MACs. In the first case the MAC does not contain an
addition (section 4.1), because there is not previous neighbour to add data to.
In the last case the output can not simply be past to the next MAC in line,
but needs to be routed to different locations depending on whether the k input
symbols have already been processed. This is actually not an ALU exception
but a difference in the configuration of the crossbar. To minimize the amount
of configurations, a special approach is introduced. The first MAC does not
have a previous neighbour, but this can be faked by passing a zero into the
addition-part of the MAC. This reduces the number of ALU reconfigurations
because an ordinary identical MAC can then be used.

The steps PP 1..4 take can be schematically identified as:

1. Load the input value

2. Retrieve the log of this value

3. Retrieve the log of the generator coefficient gi

4. Add the logs to perform a Galois multiplication

5. Retrieve the log−1 of the result

6. Add (XOR) the retrieved result to the just received result of the previous
MAC
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7. Send that result to the next PPs memory for temporary storage, or output
if the PP is the last MAC

As the log-table operations require a large amount of resources, optimiza-
tions could seriously increase efficiency as well as performance. The following
optimizations are therefore recognized and implemented:

1. The log value of the input of every MAC is the same during one LFSR-
clockcycle. The input on the feedbackline is distributed to every MAC.
Having every MAC retrieving the log of this value is therefore unneces-
sary. The log is retrieved immediately after the feedback is calculated,
and stored in the register instead of its original value (which is never used
anyway).

2. The log of every generator coefficient gi is retrieved every clockcycle by
every MAC. The actual value of the gi is never used, but only the log
value. Therefore this value can be retrieved once, and be used without
any further lookups. As the Montium needs to be reconfigured if an-
other type of RS is used, the gi values have to be loaded on initialization.
Instead of loading the original values, the log values could be loaded re-
ducing overhead in the Montium. As the used code is known in advance,
these small number of values can easily be precalculated before loading
into the Montium.

The steps PP 5 takes are:

1. Read input

2. Add (XOR) input to result of the MACs to create feedback

3. Output the feedback to the log lookup table so the MACs can use it.

PP and memory configuration

This section discusses the exact memory- and register management which is
used to facilitate the application and its implementation.

The PP 1..4 are all almost identical units regarding memory layout. The
PPs need to be able to perform two separate tasks; the multiplication and
addition. Both multiplication and addition require two parameters. The mul-
tiplication requires the log of the gi and the log of the input, while the addition
requires the result of the previous MAC and the result of its own multiplica-
tion. As the first PP functions as both the first MAC as well as intermediate
MACs (every 1 + 4n, n ⊆ {0..3}) it needs both the result of PP 4 as well as a
0 initially. A graphical representation can be found in figure 4.3.

PP 5 also requires two inputs; the result of ALU 4 when it is the last MAC,
and the input (see Figure 4.4).

To be able to store the input, output and lookup tables, the memories
are used. As every memory can only retrieve one value at a time, every log-
lookup needs a separate memory. PP 1..4 all need a log−1 table. A log table is
not required, due to the fact that the gi coefficients are externally calculated
and thus being log values in the Montium from the beginning. PP 5 does
require a log table to lookup the log value of the feedback. Furthermore,
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Figure 4.3: configuration of PP 1..4
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Figure 4.4: configuration of PP 5

a memory is used for the input and output to facilitate testing procedures
without streaming capabilities. The memory-locations are labeled A..J with
two consecutive memories belonging to one PP (i.e. PP1 has A and B, ...).

Implementation details

This subsection discusses two relevant implementation details, which may not
be trivial. Firstly, the structure of the Montium code is discussed. Secondly,
a note will be given explaining the problems and implementation of a one-
clockcycle-RS-multiplication.

The Montium code consists of two nested loops. The outer loop loops k
times, to process all input symbols. After some processing there is another loop
which automates the TDM. Using loops like this stimulates the conservation
of configurations and sequencer instructions.

RS multiplication

Performing an RS multiplication is less intuitive than it may appear. A multi-
plication is defined as follows, where A and B are the values to be multiplied:

if (A==0 || B==0) 0
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# Hex Value
0 0000
1 0000
2 0001
3 0019
4 0002
... ...

7−→

# Hex Value
0 0000
1 0400
2 0401
3 0419
4 0402
... ...

Figure 4.5: Modification to the log table for validity checking, incorrect imple-
mentation

else exp(log A + log B)

To verify if one of the original input values is zero or not, is complicated.
The actual calculation (addition) is done using the log of the input values,
not the original values. But log 0 = 0 and log 1 = 0, which causes some
problems. In the first case, the algorithm should return zero, no matter what
the second argument of the multiplication would be. In the second case the
actual computation would be valid. It turns out there is no way to conclude
from a log value whether its original value was zero or not, therefore making it
impossible to decide whether to return zero or to do the actual calculation. As
the input of the Montium ALU consists of the log values, an RS multiplication
can not be performed.

A possible work around would require that based upon the log values, the
ALU must be able to conclude whether the original value was zero. A solution
has been found in the exploitation of a design choice in the Montium hardware.
The memory interface uses 10bit for addressing lookup-values. As the interface
uses only the LSBs of the addressing value, higher values can be used to form a
validity-check. The first implementation of both the RS encoder and decoder,
used a multiplication algorithm based on this technique, which was then proven
to be incorrect. As the algorithm appeared to be valid, the next paragraph
will explain its design and its shortcomings. After that, a correct algorithm is
proposed.

Incorrect implementation We use the 11th bit of every log value to indi-
cate that its original value was not zero. So, in the log table, 1024 is added
to every value except the 0th (see figure 4.5). It can be seen that log 1, al-
though still seeming zero to the 10bit LSB addressed lookup table, can now be
distinguished from log 0 by the ALU.

This approach makes it possible to verify whether a value was originally zero
or not. The Montium however, is not capable of performing the instruction

if(A >= 1024 && B >= 1024)

as it can only compare one value per clockcycle. This means the approach
would only work if it can be guaranteed that A or B is never zero. This is
generally not the case. To counter this problem the comparison has to be
reduced to a single one.

Figure 4.7 shows the layout of the bits in one of the entries of the log table.
The 10th bit (bit 9) is, as discussed, used for indicating the validity of the
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# Hex Value
0 0001
1 0002
2 0004
3 0008
4 0016
... ...

7−→

# Hex Value
0 0000
1 0002
2 0004
3 0008
4 0016
... ...

Figure 4.6: Modification to the exp table

15 0910

valueunused

Multiplication validity bit Validity bit

Figure 4.7: Layout of the bits in a 16-bit word, incorrect solution

A B logA logB logA+ logB AND 2048 Final exp(result)
0 0 0 0 0 0 0
0 1 0 1024 1024 0 0
1 1 1024 1024 2048 2048 0
1 2 1024 1025 2049 2048 2

Table 4.1: Calculation examples of the incorrect solution

value. The 11th bit is used for the validation of the multiplication. If both
arguments were not originally zero, they will have the 10th bit set. If they
are then added, the 11th bit will be set. If one of the arguments however was
initially zero, the 11th bit will not be set. As the Montium can only compare
values to zero, masking can be used for the comparison. By performing an
AND operation between the result and 2048 it can be concluded that if that
result > 0, the multiplication is valid. Otherwise it is invalid. To make sure
that the final output of the multiplication is zero, the exp table needs to be
altered. The first entry is set to zero (see figure 4.6). This enables the ALU
to output zero if the final result should also be zero. Remember that the first
entry of the table is normally never used, as only A+B = 0 only is A = 0 and
B = 0.

if( (A + B) AND 2048 ) > 0, then A + B, else 0

Unfortunately this algorithm is faulty for exactly one multiplication. Consider
the case of the multiplication 1 · 1. This would translate into log 1 + log 1 =
0x0400 + 0x0400. The ALU notices that the addition is valid, because both
10th bits are set. Unfortunately the ALU will return zero, which makes the
output exactly the same as the output of 0 · 0. Therefore, a distinction can not
be made between 0 · 0 and 1 · 1 (see table 4.1), whereas the result should not
be the same. The next paragraph proposes a solution to this problem.
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A B logA logB logA+ logB ALU result Final exp(result)
0 0 0 0 0 512 exp(512)=0
0 1 0 16384 16384 512 exp(512)=0
1 1 16384 16384 0 (with overflow) 0 exp(0)=1
1 2 16384 16385 1 (with overflow) 1 exp(1)=2

Table 4.2: Calculation examples of the correct solution

15 089

valueunused

Validity bit

Figure 4.8: Layout of the bits in a 16-bit word, correct solution

Correct implementation The problem with the incorrect algorithm is that
the addition-results 2048 and 0 will both lead to a final outcome of zero due to
the AND. This makes it impossible to distinguish between a valid and an invalid
multiplication. A solution is to use the overflow of the ALU. To facilitate the
overflow, instead of the 11th bit, the MSB is set to 1 (value 16384) (see figure
4.8). The advantage is that after the addition, it is now possible to check for
the overflow bit of the ALU. If it is set, the addition was valid. The difference
to the previous incorrect solution is that here the AND is not required. As
the Montium can only compare values to zero, it was not possible in the
incorrect algorithm to check whether the resulting value was >= 2048, which
would make sure that a distinction existed between 0 ·0 and 1 ·1. By using the
overflow however, it is possible to perform such a check. The pseudocode is as
follows:

if overflow (A + B), then (A + B), else 512

For this algorithm, the log table is altered to represent figure 4.9. The exp
table is the original one, but with an appended value of zero on address 512
(see table 4.10). Table 4.2 shows the correct behavior of the algorithm.

The previous incorrect algorithm would work with the correct log and exp
tables, if it was rewritten to:

if( (A + B) AND 2048 ) > 0, then A + B, else 512 //instead of 0

The Montium ALU however, is not able to perform the calculations and addi-
tionally pass the 512 value down from a register to the output. Generating the
0 internally is supported. Due to this limitation, the incorrect solution could
not be fixed by replacing the ”else” value.
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# Hex Value
0 0000
1 0000
2 0001
3 0019
4 0002
... ...

7−→

# Hex Value
0 0000
1 0800
2 0801
3 0819
4 0802
... ...

Figure 4.9: Modification to the log table for validity checking, correct imple-
mentation

# Hex Value
0 0001
1 0002
2 0004
3 0008
4 0016
... ...

7−→

# Hex Value
0 0001
1 0002
2 0004
3 0008
4 0016
... ...
512 0000

Figure 4.10: Modification to the exp table
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5
Decoder design and implementation

An RS decoder is capable of correcting errors by using the added parity sym-
bols of the message. If no more than t errors are found, the decoder can correct
the message to retrieve the original content. If there are more than t errors,
the decoder can not reconstruct the original content. If the message has er-
rors in such a way that the received message resembles another codeword, it
could be corrected wrongly. In that case, the decoder outputs a corrected code-
word without the ability to determine its validity. The decoder can be split
up in several parts. The next section will discuss the structure of the decoder.
The decoder is implemented in C [13], and conforms to the DMB/DVB stan-
dard n = 204, k = 188. Any absolute figures in this section are based upon
RS(204, 188),m = 8.

5.1 Structure

An RS decoder can be split up in five parts (figure 5.1). Each part is connected
through edges which resemble values or polynomials needed by the next part.

Syndrome calculator

The first part is the syndrome calculator (section 2.3). Syndrome calculation
needs to be done for every R(X) to determine its validity. The input of the
syndrome calculator therefore is R(X). The 2t syndromes are calculated by
using Horner’s scheme [16] or the check matrix [17]. Horner’s scheme is selected
because it evaluates a polynomial, whereas the check matrix relies on calcu-
lating the matrix and successively performing a matrix multiplication. If the
syndrome polynomial S(X) equals zero, then the decoding procedure is com-
plete, and the message is considered valid. If one or more monomials si 6= 0 the
RS decoder will start a search for the closest polynomial R′(X) that does meet
this criteria. Horner’s scheme performs 4080(255 · 16) Galois multiplications
and 4080(255 · 16) Galois additions per R(X) (table 5.2).
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5. Decoder design and implementation

Error Polynomial

This part of the decoder calculates the error locator polynomial Λ(X). The
Berlekamp-Massey algorithm is an improvement of the Berlekamp algorithm,
and well studied. It is therefore considered to be an efficient algorithm for
implementation [17]. Another available algorithm is Euclid’s algorithm [16].
Unfortunately there is no algorithm which supports parallelism, so all calcula-
tion have to be done sequentially. The C code contains the Berlekamp-Massey
algorithm. Using Berlekamp-Massey takes 592 additions and 848 multiplica-
tions.

Error Locations

The error locations can be found by localizing the roots of Λ(X). As creating
equations to solve this problem takes much more effort than brute forcing,
the latter is preferred. This ”Chien” search [17] calculates Λ(X) for every
α ∈ GF (2m). A zero result indicates a root, thus an error location, has been
found. As an RS code can only correct t errors, the output has a maximum of t
symbols. Because of the independence of α the algorithm can be executed in 2m

parallel paths. The Chien search takes 4335 additions and 4335 multiplications.

Error Magnitude

The error magnitude block consists of two internal blocks. Forney’s algorithm
[15] describes a fast way to determine the error magnitudes based on the under-
lying mathematical structures. As his research has shown that the algorithm
requires less calculations than the original Vandermonde matrix calculations
[15] his algorithm is preferred. The first part is to calculate the error-evaluator
polynomial Ω(X) (section 2.3). After that is done, Forney’s algorithm can be
used to derive the error values by equation 2.29. Constructing Ω(X) takes 2048
additions and 1024 multiplications. Forney’s algorithm 392 additions and 392
multiplications.

Error Corrector

The error corrector corrects the actual R(X) to C(X). As its input consists of
both the error magnitudes X and the error locations Y , the error magnitude
Xi can be added to the Y th

i monomial of R(X) to correct that particular error.
The output is the original reconstructed codeword C(X). As there are only a
maximum of t errors to correct, the error corrector uses up to 8 additions and
0 multiplications.

The polynomials that are calculated by each part have a predetermined
maximum degree (table 5.1). Not all degrees are always required. For example,
polynomial Yi contains the error locations. If only two errors have occurred the
polynomial will consist of just two monomials. As the forward communication
among the blocks consists of these polynomials the size of this communication
therefore depends on the actual number of errors.

To indicate the relative execution time of the different blocks, profiling in-
formation is available [9]. A DMB compliant RS implementation was profiled
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Polyn. Max. Degree
R(X) 2t
S(X) 2t
Λ(X) 2t
Ω(X) 2t
Xi t
Yi t

Table 5.1: Polynomials and their maximum degrees

Block Additions Multiplications Parallel paths
Syndrome calculator 4080 4080 16
Error polynomial 592 848 1
Error locations 4335 4335 255
Error magnitude: evaluator 2048 1024 16
Error magnitude: errata 392 392 8
Error corrector 8 0 8

Table 5.2: Number of GF additions and multiplications per RS block [9]

Block Time slice
Syndrome calculator 61.5 %
Error polynomial 6.01 %
Error locations 26.4 %
Error values 5.58 %
Error corrector 0.49 %

Table 5.3: Relative calculation time per RS block on an ARM7TDMI [9]

on an ARM (table 5.3), showing the relative execution time per block with a
maximum number of errors. As the number of additions and multiplications
influence these parameters, the results are as expected. Both the syndrome
decoding and the error locator (Chien search) are found to be most time con-
suming.

5.2 Design and implementation

The goal of mapping RS to the Montium is to establish ideas on how to
organize the internal structure of both the algorithm and the Montium to
make full use of the efficiency and performance the Montium has to offer.
As the Montium has five different PPs, making parallel processing one of its
key features, the implemented algorithms should make full use of that. To be
able to derive the proposed conclusions, two RS blocks have been selected and
implemented on the Montium. The first block is the syndrome calculator.
The syndrome calculator supports parallelism in 16 paths, and is computa-
tionally intensive. Furthermore, the syndrome calculator needs to be executed
for every received R(X). Having the Montium take care of this operation
could therefore save a lot of execution time, thus optimizing overall through-
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Figure 5.1: Computational parts of the RS decoder

put. The second implemented block is the Chien search which takes care of the
error locations. This block is second in line concerning execution times, and
is computationally the most intensive. Furthermore it supports a vast amount
of parallel execution paths, making it ideal for Montium execution. If the
Montium can efficiently take care of these two blocks, a combined 87.9% of
the ARM execution-time would be taken care of. Depending on the efficiency
and performance difference achieved by the Montium this might reduce over-
all execution time drastically, and thus increase the overall performance of the
entire implementation.

While mapping, there are several constraints which have to be respected.
Firstly, the inter operability between Montium and external processor. As
the Montium itself is not capable of capturing RS data directly to memory,
the data needs to be provided by an external source. Usually, an ARM is
connected that can stream (configuration)data into the Montium. Every RS
block can be implemented independently from the other blocks. This would
mean that every block requires a reconfiguration of the Montium to load the
algorithms. This would require the ARM to take care of the communication
among the blocks, thus providing the system with a lot of communication
overhead. A more ideal solution would be to have the ARM supply R(X)
just once to the Montium, and handling the entire decoding process in the
Montium. The implementation will only support the syndrome calculator and
the Chien search to be performed on the Montium. The design nevertheless
needs to support the implementation of the other blocks as well. Therefore,
the memories and ALUs need to be designed such that their configurations and
data can be re-used by other blocks. The next section will discuss the mapping
of the syndrome calculator, in which the memory design will be presented too.

Syndrome calculator

The syndrome calculator will in essence be an implementation of Horner’s
scheme. The major enhancement to the scheme will be the introduction of
Galois arithmetic. This section will discuss Horner’s scheme, mapping Horner’s
scheme to the Montium including Galois arithmetic, and general ideas on
memory-design.
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Horner’s scheme

Horner’s scheme is a method for evaluating a polynomial and its derivative at
a constant value β. Note that we do not require, nor calculate the derivative.
After the formal definition, an example will be given to illustrate how the
algorithm actually works. Let f(x) be a polynomial of degree m and β the
constant to evaluate. Consider fk to be the kth-degree coefficient.

c0 = fm

ci = fm−i + βci−1

thus ck =
∑m

i=m−k β
i−m+kfi

And eventually cm = f(β)

As the formulae show, Horner’s scheme consists of a recurrent relation that
needs to be solved. To clarify the way in which the algorithm functions, an
example is given. For clarification, the example is of Horner’s scheme applied
to standard mathematics. No fields are involved.

Example:

Consider the function f(x) = 2x4 + x3 − x+ 1, and β = −1. Write
the coefficients in descending order in a row:

f4 f3 f2 f1 f0

In this case the coefficients are as follows:

2 1 0 −1 1

β should be written on the left side of the table. The highest co-
efficient fm is copied as the first entry c0 of the second row. Later
entries shall be written as ci = fi + βci−1. The last entry is f(β).

f4 f3 f2 f1 f0
c0 = f4 c1 = f3 +βc0 c2 = f2 +βc1 c3 = f1 +βc2 c4 = f0 +βc3

The result of Horner’s scheme with β = −1 is:

2 1 0 −1 1
2 −1 1 −2 3, the result

In this example, fi translates to the ith coefficient of R(X), and ci is the re-
currently calculated syndrome byte. The C implementation of Horner’s scheme
can be found in source code 5.1. For the mapping of Horner’s scheme to the
Montium the structure of the scheme must be unfolded to a sequential or
parallel list of operations. Stripping the code of unnecessary features results in
the pseudo code of source code 5.1.
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Sourcecode 5.1: syndrome calculator
1 //Function to c a l c u l a t e the syndrome o f data [ ] us ing Horners ’

Scheme
2 get syndrome (unsigned char data [ ] , int nbytes )
3 {
4 // i n i t i a l i z a t i o n v a r i a b l e
5 int i , j , sum ;
6 int nMults = 0 ;
7 int nAdds = 0 ;
8 //NPAR i s number o f p a r i t y b y t e s : 16
9 // nby te s i s a t o t a l o f n by t e s

10

11 // loop f o r every b i t o f data
12 for ( i =0; i<nbytes ; i++){
13 // loop f o r every syndrome by t e
14 for ( j =0; j<NPAR; j++){
15 //Horners ’ Scheme :
16 synBytes [ j ]=gadd ( data [ i ] , gmult ( gexp [ j +1] , synBytes [ j

] ) ) ;
17 // update s t a t i s t i c s
18 nMults++;
19 nAdds++;
20 }
21 }
22 }

Sourcecode 5.2: Pseudo code of Horners’ scheme
1 for i =0. .255
2 for j =0. .16
3 syndromebyte [ j ] = data [ i ] + ( gexp [ j +1] ∗ syndromebyte [ j ]

) ;

Multiplication and addition

The design of adding multiplications, and performing the multiplications itself,
is similar to the design used in the implementation of the encoder (section 4.2).

Design and re-usability

As the structure in source code 5.2 is used frequently in the RS decoder, its
design must support re-usability to a certain extent. Apart from saving ALU
configurations, a predefined way of mapping these structures will reduce the
design cycle by offering a default approach. Furthermore, it assists in deter-
mining the best location of the log and exp tables. Studying the structure leads
to the following conclusions:

• There are usually one or two loop counters that are used. They are only
used for traversing arrays or indexing. Their actual value is mostly of
no importance and is not referred to. There is an exception in the error
locator, which can be dealt with in the design (see section 5.2).
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• Multiplications: At most one of the arguments of the multiplications
in the decoder must be calculated first. The other value is one that is
already available, usually from memory.

• Addition: the result of the multiplication is always added to a value that
is already available, usually from memory.

• The global structure is such that there is recurrence, which presents itself
in two ways:

A = A+ (B · C) (5.1)
C = A+ (B · C) (5.2)

The order of execution is obvious as the result of the multiplication needs
to be known before the addition can be performed. As one of the arguments
of the multiplication may require pre-processing, this tops the execution order
list:

A. Calculate the multiplication’s unknown argument

B. Multiplication

C. Addition

These three components will be referred to as A, B C, and ”components”.
There are basically two different approaches that can be used for implementing
this model on a Montium.

• Data parallel approach This means having every PP executing its own
subset of data of the entire set. The drawback of that method is that
every PP needs to reserve enough ALU configurations to suit the entire
decoding model. Furthermore, it will not be possible to have five PPs
execute the model in parallel, because too many memories (i.e. log, exp
a.o.) have to be accessed simultaneously. Shifting the algorithm in time,
by having each PP start its own iteration on a different clockcycle, could
potentially solve part of this problem. Another drawback is that the
addition (C) requires the exp value of the result of the multiplication (B).
As this look-up takes one additional clockcycle, every PP’s execution of
every iteration of the algorithm will contain a one-clockcycle idle period
for the ALU.

• Functional parallelism approach This approach is based on the struc-
ture of a waterfall. Every PP has its own designated task and passes its
result on to another PP for further processing. The advantages of this
method are that the number of ALU configurations is restricted, and that
only a few instances of the lookup tables are required. The problem of
the addition requiring the exp-result of the multiplication, is intrinsically
solved. A drawback of the approach could be that other tasks that need
to run in parallel to this algorithm, have less PPs at their disposal. How-
ever, the used RS decoder does not require any processing to take place
whilst calculating syndromes.
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PP1 PP2 PP3 PP4 PP5

1

Cycle↓

A1

2 B1

3 C1

Figure 5.2: Example of ’waterfall’ model on PP1..5

PP1 PP2 PP3 PP4 PP5

1

Cycle↓

A1 A′1

2 B1 B′1

3 C1 C′1

Figure 5.3: Example of mirrored ’waterfall’ model on PP1..5

The selected approach, is the multi PP approach. The execution-order list
contains three different components. Each of these components can reason-
ably be performed in one clockcycle as far as the ALU is concerned. This
means the waterfall model requires the use of at least three PPs (figure 5.2).
Further optimizations are possible when considering the internal structure of
the PP and the requirements of the algorithm. The addition is an XOR of
two operands, both coming from memory. If designed correctly, a PP is ca-
pable of performing two of these additions every clockcycle, reducing the total
mount of required PPs for the algorithm to 2.5 PPs. As the Montium contains
five PPs it is possible to execute two instances of this algorithm in parallel, a
”mirrored”-waterfall structure (figure 5.3).

Memories

The memories need to contain the log-table, exp-table and temporary results
of the components. To prevent memories from being inefficiently accessed (e.g.
located far way from the ALU), or unnecessarily duplicated, a generic design of
the specific tables and results is required. The required tables per component
are:

A. The calculator, which calculates the input-value for the multiplication,
does not always have the same requirements as to which tables are re-
quired. Researching the C implementation shows that only the exp-table
is needed, and always in the following way:

gmult( gexp[A], B )

This shows that the presence of an exp table for A is required. B however,
uses the log of both its arguments as its input. By realizing that:

log(exp(A)) = A, (5.3)

the exp lookup becomes unnecessary. A therefore requires no specific
tables of its own.
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M1 input data/not used
M2 log
M3 Temporary sum
M4 Temporary sum
M5 exp
M6 exp
M7 Temporary sum
M8 Temporary sum
M9 log
M10 not used

Table 5.4: Content of memories

B. The multiplication requires the log of both arguments. Hence two log
tables seem to be required, but as component A’s output is already a log
value, the number is reduced to one. Furthermore an exp table is needed
to convert the result of the multiplication back to the original domain.

C. The addition component requires no initial memories for its operation.
However, due to the recurrence that occurs, two temporary storage facil-
ities are required per C (See subsection 5.2).

It can be concluded that the mirrored-waterfall design requires a total of
eight memories, four of which are used by B and B′. Optimization can be
achieved by looking more closely at the arguments of the multiplication. A
usually already outputs the log of its calculation; looking it up is therefore not
needed. There is one exception (Berlekamp Massey) in which the log of the
syndrome bytes is required as input to the multiplication. For this particular
instance a log table should be available. However, converting these 16 bytes
to their log values in prior to executing the Berlekamp Massey algorithm that
uses them, generates negligible overhead. The memories contain the content
as specified in table 5.4. Their usage is explained in the next section.

Implementation

Horner’s scheme iterates over 0..2m−1 and within over 0..2t−1, and performs
the syndrome calculation. As the model supports two independent syndrome
bytes to be calculated in parallel, a choice has to be made as to how the loops
are traversed. There are two possible options:

• Divide the inner loop Dividing the inner loop means looping 2m − 1
times, and performing the inner loop in two parallel paths.

for(i=0;i<nbytes; i++){
for(j=0; j<NPAR/2; j++){ for(j=NPAR/2; j<NPAR; j++){

synBytes[j]=... synBytes[j]=...
} }

}
E.g. the inner loop for 2t = 16 is divided in 0..7 and 8..15.
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• Divide the outer loop Dividing the outer loop means splitting the
entire algorithm into two parts.
for(i=0;i<nbytes/2; i++){ for(i=nbytes/2;i<nbytes; i++){
for(j=0; j<NPAR; j++){ for(j=0; j<NPAR; j++){
synBytes[j]=... synBytes[j]=...

} }
} }

For the implementation the first construction is used. As the inner loop´s
contents are in both cases the same, this is no argument to support any of
the choices. However, the loop construction and its properties are influential.
The advantage of the first construction is that the external data is processed
one-by-one and in sequential order. The other construction would require two
inputs to be available at the same time and in every clockcycle. To reduce
the absolute difference in the index of the required input bytes, the algorithm
could function in an ”interleaved” way, by processing input-byte one and two,
then three and four, etcetera. Due to the input-streaming advantages the first
construction has, is has been selected for implementation.

The structure of the Montium mapping of A, B and C for the syndrome
calculator is given in figure 5.9. The actual design is discussed below. The
clarification of why the components are not incrementally ordered from A1...A8
, is given in the discussion of component C below. A detailed description of the
components:

A. The task of A is calculating the argument of component B. The argument
of the multiplication is exp[j+1], which as previously discussed in section
5.2, results in the calculation of j+1. Due to splitting the inner loop, A
needs to result in an output of 1..8 and A′ in 9..16. Because of the way C
requires the components to be ordered (see figure 5.9), the calculation is
not a standard j+1. In the figure, Ax needs to produce x on the output,
while A′x needs to produce x+ 8 on its output. Four different functions
have to be supported:

• (previousvalue+ 1)
• (previousvalue− 1)
• (previousvalue− 4)
• (previousvalue+ 7)

For A′, 8 needs to be added to this result. To save an ALU, and thus
energy, both A and A′ can be performed on one PP. The configuration
of this PP look like figure 5.4.

B. The multiplication requires two arguments. The first argument is the
output of A which is received into the register. The second argument
consists of an entry in one of the memories. In this case it is the jth

syndrome byte, that must be sent to the log table in advance. The
multiplication is performed as previously discussed, and will therefore
result in the Montium pseudo-code:

if overflow (registerA + registerB) then (registerA +
registerB) else registerD -> output1
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prev. 8
7
1
4

Level1

Level2

+/-

+

output 1 output 2

Figure 5.4: Configuration of PP for both A and A′ on one single ALU

The next section on C will explain that there periodically is a value from
C that will not be written to the SUM memories. This value will be
temporarily stored in register D of B. Because this value later needs to
be used as input of the multiplication, the suggested configuration does
not suffice. Therefore, another configuration will be introduced, which is
in fact a mirrored version of the current configuration:

if overflow (registerC + registerD) then (registerC +
registerD) else registerB -> output1

The multiplication can be performed in one clockcycle. The arguments
have to be present in register A and B, or register C and D. Figure 5.5
shows the two configurations of the PP for this approach.

C. The addition requires two arguments, and may use only half of a PP.
The first input value is the exp value of the result of B. Figure 5.8
shows the configuration of the PP for component C. As the result is
only available at the output of B in the clockcycle after its calculation,
the look-up adds another clockcycle to the operation. This introduces a
two-clockcycle delay for C with respect to B in the waterfall model. The
other argument of C consists, in this case, of the previously calculated
value of syndrome byte j. As there are 16 syndrome bytes, temporary
storage in the registers is a problem. Memory M3, M4, M7 and M8 are
reserved for this purpose. The process consists of these basic steps:

1. Load previous sum from memory

2. Perform addition

3. Store new sum back in memory
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A Arg2 512

Level1

Level2

+

if overf. else

output 1

(a) Standard multiplication

512 A Arg2

+

else if overf.

output 1

(b) Periodical exception

Figure 5.5: Configuration of PP for B and B′

The Montium can only write/read from one address per memory every
clockcycle. If an address is specified, a write-operation to that address
can be performed in the same clockcycle. A read-operation however,
needs to be performed in the clockcycle after the address specification, as
the value is only then available. The memories are designed to support
read-after-write, meaning a value can be written as well as read in the
same clockcycle. In that case, the newly written value will be the value
that is read. This presents itself as a problem when wanting to use a
single memory for both retrieval and storage of the temporary sums. To
facilitate in both read and write operations every clockcycle, two mem-
ories have been reserved; one for writing and one for reading. While all
2t/2 = 8 values are read from table A, their sums will be stored in table
B. Therefore, every iteration both A and B need to switch with respect
to read/write functionality. This will however introduce idle cycles in the
process. Figure 5.6 illustrates the memory-interaction in combination
with the components. The notation ”(#x)” will denote the xth clock-
cycle of this figure. The ”critical path” of one syndrome byte-iteration
is six clockcycles. As B (#3) requires the log of the syndrome byte to
be read, its address must be specified to the AGU two clockcycles ahead
(#1). The specification of the write address, and the actual write, will
occur in the clockcycle after C, as its result is then available on the out-
put of the PP (#6). This introduces a ∆5-clockcycle difference in the
addressing of A and B, meaning that after the last value is read from
table A (#1), it takes five clockcycles for its result to be available for
writing into B (#6). After that operation, the memories need to switch
functionality, and the first syndrome byte needs again to be read, but
now from table B. Addressing the AGU for this can only happen in the
clockcycle after that last write. It then takes an additional clockcycle for
the first syndrome byte to be available for reading. This means that B1
(#9) can only begin four clockcycles after C8 (#5). In short, this will
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PPs

1

Cycle↓

Request value for B8 from read-memory

2 A8 Write value for B8 as address into log table

3 B8 Read value for B8 from log table

4

5 C8

6 Result of C8 available on output of PP3 and written to memory

7 Request value for B1 from write-memory (Which now is read-memory)

8 A1 Write value for B1 as address into log table

9 B1 Read value for B1 from log table

10

Figure 5.6: Overview of memory interaction on read-write task-switch of
memory

introduce an extra ∆5-clockcycle delay in the execution of each iteration
(see figure 5.7). (Ideally B1 would be executed in the clockcycle after B8.
Using this technique B1 is delayed for five additional clockcycles). The
efficiency of the algorithm will suffer, as every eight clockcycles, five idle
cycles are required (62.5% overhead).

The solution to the problem is to use memory A and B for a disjunct
group of the syndrome values. Memory A will store syndrome values
1..4 and B 5..8. The same will hold for C′, for which memory A′ will
store 9..12 and B′ 13..16. Using this approach ”as is” will still introduce
an idle cycle every four clockcycles, because switching the read/write
functionality takes one additional clockcycle. This would still mean an
overhead of 25%. Solving this problem requires not storing/reading all
values in memory, thereby creating an idle cycle in the process in which
the memories can switch. Figure 5.9 shows the mapping of the syndrome
calculator. On the right, the addressing of the sum memories for either C
of C′ is shown. As can be seen, the left memory only handles syndrome
bytes 1..4 and the right memory 5..8. Consider clockcycle 8. Instead of
writing the result of C4 of cycle 7 to memory, it is directly written to
a log table. A clockcycle later, the log value is available, which is then
stored in register D of B. In clockcycle 10, this log value is used by B4.
As has been explained in the discussion about B above, this is where B
uses the mirrored version of its original configuration. Hereby being able
to process the just stored syndrome byte 4. This reduces the idle cycles
from 25% to 0%, making optimal use of the Montium.

To save sequencer space, the actual implementation contains loops to enable
iterative execution without specifying each iteration on its own. The ”intro” of
the construction (cycles 0 to 3) shows dissimilarities from further cycles, in the
sense that there is no intermediate execution on PP2 and PP3. The ”outtro”
of the construction (25 till end) has no need to invoke another iterative step,
and is therefore only required to finish up. To make the best use of a sequencer
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PP1 PP2 PP3 PP4 PP5

9

Cycle↓

A8 B7 C5 C′5 B′7 A′8

10 B8 C6 C′6 B′8

11 C7 C′7

12 C8 C′8

13

14

15 A1 A′1

16 A2 B1 B′1 A′2

17 A3 B′2 B′2 A′3

18 A4 B3 C1 C′1 B′3 A′4

Figure 5.7: A five clockcycle delay per memory-switch

B Mem B′ Mem’

ALU 2/4

xor xor

output 1 output 2

Figure 5.8: Configuration of PP for C

loop, an intermediate part has been designated for looping (cycle 9 to 24).
Repeating this part n−2

2 times is similar to expanding the figure and drawing
the part n−2

2 times. The A′ can be combined with A as discussed. The actual
implementation implements this design to prove that it is possible to cope with
four ALUs. Section 5.2 will discuss an example of a five-ALU-design.

Design and mapping of Error Locator

The error locator will in practice be an implementation of a Chien search. The
major difference with respect to the regular version of Chien’s algorithm is the
application of Galois arithmetic instead of regular arithmetic. This section will
discuss Chien’s algorithm and its mapping to the Montium. Chien’s algorithm
is designed for finding the roots of a polynomial. Chien proposes an intuitive
way, which resembles a brute-force approach. The basic idea is to evaluate the
polynomial for all possible values of the used mathematical field. All results of
zero are roots of the evaluated polynomial. Consider Λ to be the error locator
polynomial, λj its jth coefficient and r the value to evaluate Λ for. Evaluating
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PP1 PP2 PP3 PP4 PP5 Read Write To log

0

Cycle↓

1

1 A1 A′1 2

2 A2 B1 B′1 A′2 3

3 A3 B2 B′2 A′3 4

4 A4 B3 C1 C′1 B′3 A′4 Write 5

5 A5 B4 C2 C′2 B′4 A′5 1 6

6 A6 B5 C3 C′3 B′5 A′6 2 7

7 A7 B6 C4 C′4 B′6 A′7 3 8

8 A8 B7 C5 C′5 B′7 A′8 Read Write 4

9 A4 B8 C6 C′6 B′8 A′4 3 5

10 A3 B4 C7 C′7 B′4 A′3 2 6

11 A2 B3 C8 C′8 B′3 A′2 1 7

12 A1 B2 C4 C′4 B′2 A′1 Write Read 8

13 A8 B1 C3 C′3 B′1 A′8 4 7

14 A7 B8 C2 C′2 B′8 A′7 3 6

15 A6 B7 C1 C′1 B′7 A′6 2 5

16 A5 B6 C8 C′8 B′6 A′5 Read Write 1

17 A1 B5 C7 C′7 B′5 A′1 2 8

18 A2 B1 C6 C′6 B′1 A′2 3 7

19 A3 B2 C5 C′5 B′2 A′3 4 6

20 A4 B3 C1 C′1 B′3 A′4 Write Read 5

21 A5 B4 C2 C′2 B′4 A′5 1 6

22 A6 B5 C3 C′3 B′5 A′6 2 7

23 A7 B6 C4 C′4 B′6 A′7 3 8

24 A8 B7 C5 C′5 B′7 A′8 Read Write 4

25 A4 B8 C6 C′6 B′8 A′4 3 5

26 A3 B4 C7 C′7 B′4 A′3 2 6

27 A2 B3 C8 C′8 B′3 A′2 1 7

28 A1 B2 C4 C′4 B′2 A′1 Write Read 8

29 A8 B1 C3 C′3 B′1 A′8 4 7

30 A7 B8 C2 C′2 B′8 A′7 3 6

31 A6 B7 C1 C′1 B′7 A′6 2 5

32 A5 B6 C8 C′8 B′6 A′5 Read Write 1

33 B5 C7 C′7 B′5 8

34 C6 C′6 7

35 C5 C′5 6

36 5
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Figure 5.9: Mapping of the elements of the syndrome calculator
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the polynomial once can be done using the following equation:

Λ(r) =
2t∑

j=1

(λjr
j) + 1 (5.4)

A polynomial representation fchien of the result of the entire Chien algo-
rithm can also be mathematically derived:

fchien(X) =
n∑

r=1

 2t∑
j=1

λjr
j

Xr−1 (5.5)

The Λ polynomial has 2t+ 1 λ coefficients. In practice however, it contains
only as much successive non-zero λj values as there are errors in R(X), thus
λj , j ∈ 1..v. This has a minimum of 1 (otherwise calculating Λ would be
useless), and a maximum of t. If it contains more than t errors, the R(X)
would be uncorrectable, making the Chien search unnecessary. This means the
equation can be rewritten to:

Λ(r) =
v∑

j=1

(λjr
j) + 1 (5.6)

The C implementation of the Chien search can be found in source code
5.3. For the mapping to the Montium the structure of the algorithm must
be unfolded to a sequential or parallel list of operations. Converting it to
pseudo code leaves source code 5.4, where NPAR denotes the number of parity
symbols. Note that in this research the worst case of v = t will be discussed.

There is a difference between source code 5.3 and 5.4. As can be seen in
equation 5.4, the λ0 is known a priori to be 1. This can be taken advantage of
in the first iteration of the algorithm, see line 14 of 5.3. As ktemp is zero, the
gexp[(ktemp*r)%255] will always result in 1. Lambda[ktemp] will also result
in 1. As the multiplication will then also result in 1, the sum will be always 1
after the first iteration. By initializing the sum to 1, and limiting the iteration
over ktemp to 1..8 instead of 0..8, an iteration can be saved.
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Sourcecode 5.3: Chien search
1 /∗ Finds a l l the roo t s o f an error−l o c a t o r po lynomia l wi th

c o e f f i c i e n t s
2 ∗ Lambda [ j ] by e v a l u a t i n g Lambda at s u c c e s s i v e va l u e s o f r .
3 ∗ This a l gor i thm i s worst case in the sense t ha t i s

e v a l u a t e s f o r t+1 c o e f f i c i e n t s i n s t ead o f v+1
4 ∗/
5 void Find Roots (void ) {
6 int sum , r , ktemp ;
7 NErrors = 0 ;
8 int nMults = 0 ;
9 int nAdds = 0 ;

10

11 for ( r = 1 ; r < 256 ; r++) {
12 sum = 0 ;
13 /∗ e va l ua t e lambda at r ∗/
14 for ( ktemp = 0 ; ktemp < t+1; ktemp++){
15 sum = gadd ( sum , gmult ( gexp [ ( ktemp∗ r ) %255] , Lambda [

ktemp ] ) ) ;
16 }
17 }
18 }

Sourcecode 5.4: Chien search pseudo code
1 //This a l gor i thm i s worst case in the sense t ha t i s e v a l u a t e s

f o r t c o e f f i c i e n t s i n s t ead o f v
2 for r =1. .255
3 sum = 1
4 for ktemp=1. . t
5 sum = sum + ( gexp [ ( ktemp∗ r ) \%255] ∗ Lambda [ ktemp ] ) )

The design of the syndrome calculator, as explained before, has already
taken the global structure of this algorithm into account. Despite the similar-
ities of the MAC operation, there are two key differences.

• Whereas the syndrome calculator performs equation 5.2, the Chien’s al-
gorithm consists of repeated adding to the same variable (equation 5.1).
This means a slightly different approach should be chosen than used for
the syndrome calculator.

• The calculation of the argument for the multiplication is less trivial than
it is for the syndrome calculator. The modulo operation, with a value
that is not expressible as a power of 2, means a dedicated ALU is required.

As the syndrome calculator implementation already has taken all MAC
operations into account in its design, very little needs to be changed. The
memories shall be kept the same (Table 5.4), including the global structure of
the mapping (waterfall).

The Chien search iterates 1..2m − 1 times over 1..t and evaluates the error
locator polynomial for every value 1..255. The model supports two independent
evaluations to take place at the same time. It will also support the independent
evaluation of the left and right part of the polynomial. In that case however,
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the results of both have to be added to obtain the final result. The two con-
structions are:

• Divide the inner loop Dividing the inner loop means looping 2m − 1
times, and performing the inner loop in two parallel paths.

for(r=1; r<256; r++){
for(ktemp=1; ktemp<v/2+1; ktemp++){ for(ktemp=t/2+1; ktemp<v+1; ktemp++){
sum = ... sum=...

} }
sum=sumleft+sumright

}
E.g. the inner loop for t = 8 is divided in 1..4 and 5..8.

• Divide the outer loop Dividing the outer loop means splitting the
entire algorithm into two parts.

for(r=1; r<256/2; r++){ for(r=256/2; r<256; r++){
for(ktemp=1; ktemp<v+1; ktemp++){ for(ktemp=1; ktemp<v+1; ktemp++){

sum=... sum=...
} }

} }

The first option introduces overhead in the form of an extra addition of
the result. Another problem presents itself in calculating the initial value of A
for the rightmost loop, which is discussed in the detailed description of A (see
below). Furthermore, if v is uneven the amount of iterations on the left and
right would not be the same. An advantage of the second option is that both
the left and right part require the same Λj value at the same time, making
reading it from memory less complicated. The problem of an uneven v is of no
significance in this option. This second option has therefore been selected for
implementation.

The design of the application for the Montium implements the worst case
scenario of having v = 8 errors. Section 5.4 will discuss the case of a variable
v.

The components A, B and C serve the same purpose and have the same
layout as for the syndrome calculator. In fact, the design was originally made
to fit multiple algorithms including the Chien search. The same preconditions
still apply, due to the loading of parameters which is caused by log conversions
in memory. The structure of the components A, B and C for the Chien search
is given in figure 5.13. The actual design and clarification of the idle cycles is
explained below, in the detailed description of the components:

A. The task of A is calculating the argument of component B. The argument
of the multiplication is exp[(ktemp*r)%255] which, as discussed in the
section of the syndrome calculator, results in (ktemp*r)%255. A regular
one-clockcyle calculation of this result is not possible on the Montium.
ktemp*r can be calculated, but a multiplication is only possible in level 2
of the ALU. A solution for the modulo operator is then beyond the capa-
bilities of the hardware. Optimization of the structure of this calculation
can be achieved by realizing how the different components of the calcula-
tion are related. Every execution of A, ktemp increases by 1. r will only
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increase once for every calculated sum (i.e. iteration). This can therefore
be set on the ”initialization” of every sum calculation. ktemp is the only
value that changes during the execution of one sum calculation. It is also
known in advance that ktemp increases by 1 every time A is executed.
Therefore ktemp*r does not need to be calculated as a multiplication. It
can be rewritten to an addition with a recurrent relation, where βi is the
result of the sum the ith execution of A:

β0 = rprevious + 1 (5.7)
βn = βn−1 + r, n ∈ {1..t− 1}

Because the first calculation of ktemp*r needs to be calculated for ktemp=1,
the first result of A needs to be r. Therefore, the first execution of a new
loop will output rprevious + 1.

If 255 would have been expressible as a power of two, the problem of
the modulo operation could be solved by bit masking. As this is not the
case, a different approach must be taken. Every execution of A performs
an addition, and must be able to take the modulo of this addition in
the same clock cycle. Good use can be made of the observation that
r ranges from 1..255. If any r is added to a certain correct value of
β, the result might be out of the field (thus > 255), but never over
510 (2 · 255). Therefore the modulo operation can be replaced by a
conditional subtraction. If βnew < 255 nothing needs to happen. If
however βnew ≥ 255, a subtraction by 255 will be sufficient. As the
Montium is not able to determine if a value is above a certain non-zero
value, the entire computation needs to be rewritten to a form in which
the comparison can be done by zero. The final solution is to determine
if βnew − 255 ≥ 0. If so, βnew was originally out of its original field, and
βresult is βnew − 255. Else βresult is βnew.

Summary: On the first execution of every loop of the sum-calculation,
r will be increased by one(rinit = rprevious loop + 1). This results in the
correct output for the first iteration. Both the register that contains β,
and the register that contain r, will in the second clockcycle be set to
that value. Every next execution of A the regular computation will be
performed, and sent to the output. The output can then be read by
B, but will also be lead back to A as it is required for the recurrent
calculation. Figure 5.10 shows the configurations of the PP for A.

This approach creates a problem with respect to the multiplication. As
every argument of the multiplication needs to have the 16th bit set for
validation, this solution does not suffice. There is however no solution
possible that is also capable of having the 16th bit set appropriately. In
this case, the multiplication has to be redesigned in order to support the
absence of this bit.

B. The multiplication is different from the one in the syndrome decoder, due
to the reason given in the discussion of A above. The multiplication has
two arguments; the output of A (argument A) and the log(λ) (argument
B). Because A is not capable of producing the validation bit, another
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method needs to be implemented. In this case a solution has been found
in the ”static” Λ array. If it can be guaranteed that there is no 0 in this
array, only the input from A has to be checked. To ensure that there is
no 0 in the Λ array, all zeroes need to be set to 256 before executing the
Chien search. At the log table, address 256 is set to 511. Address 256
is originally not used, and therefore available. The log value of 256 will
then be 511, resulting in a log vale of 511 for every Λ value that was zero.
The Montium then executes:

if A equals 0, then -1, else A+B

If A is zero, -1 is outputted. This can be generated internally in the ALU
as logic true. This results in a lookup of address 1023 in the exp table,
which must be set to 0. If A is not zero, a normal addition is performed. If
the Λ was originally zero, B is set to 512. As the exp table has length 511,
any addition to 512 will result in a value 512 ≤ result ≤ 766(511 + 255).
The exp table must therefore be extended to address 766 with zeros.
The memory can not be used for other purposes than the exp table,
because that table is used every clockcycle. It is therefore not a problem
to allocate more of this memory to the exp table. Figure 5.11 shows the
ALU configuration for B.

C. The addition is almost the same as for the syndrome calculator. Inter-
nally, the design remains the same. However, due to the structure of
equation 5.1 the sum of the previous clock cycle serves as input for the
new sum. Therefore a feedback from the output to the input register
needs to exist (Figure 5.12). On initialization of every iteration, the sum
needs to be set to 1. To realise this, the first iteration of every loop not
the regular sum value will be read, but a different register that contains
1.

To save sequencer space, the actual implementation contains loops to enable
iterative execution without specifying each iteration itself. The ”intro” of the
construction (cycles 1 to 3) are not similar to cycles 10 to 12, because there
is not intermediate execution on PP2 and PP3 of another iteration. Cycles
4 to 12 contain the loop that is executed pm

2 = 128 times, which is the total
amount of iterations over r divided by 2 because of parallelism. As there are
only pm − 1 executions necessary, one too many is done. To save sequencer
space, this value is calculated anyway so as to prevent it from being a special
case. Cycle 1028 is added as ”outtro” because it is used to write the result of
the last C8 to memory.

5.3 Decoder integration to streaming application

To make the implemented decoder feasible for deployment on actual hardware,
some changes and integrations need to be made. First of all, the implementa-
tions must be adapted to accept data from outside the Montium. Secondly,
both the syndrome calculator and the error locator should be fit into a sin-
gle configuration. The first section will discuss communication. The second
section will discuss the integration of both implementations into one.
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β
1

r 255

Level1

Level2

+

1

output 1 output 2

(a) Configuration of first cycle

β
1

r 255

Level1

Level2

+

−

else if>0

β

output 1

(b) Configuration of remaining cycles

Figure 5.10: PP configuration for component A

A Arg2

Level1+

else if A==0

logic true

output 1

Figure 5.11: Configuration of PP for B and B′ for Chien search
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B Sum B′ Sum’

ALU 2/4

xor xor

output 1 output 2

Figure 5.12: Configuration of PP for C of Chien search

P1 P2 P3 P4 P5

1

Cycle↓

A1 A′1

2 A2 B1 B′1 A′2

3 A3 B2 B′2 A′3

4 A4 B3 C1 C′1 B′3 A′4

5 A5 B4 C2 C′2 B′4 A′5

6 A6 B5 C3 C′3 B′5 A′6

7 A7 B6 C4 C′4 B′6 A′7

8 A8 B7 C5 C′5 B′7 A′8

9 A1 B8 C6 C′6 B′8 A′1

10 A2 B1 C7 C′7 B′1 A′2

11 A3 B2 C8 C′8 B′2 A′3

1028

(128) times

Figure 5.13: Mapping of the elements of the Chien search

Streaming application

The CCU of the Montium is capable of communicating over 4 external 16-bit
lanes. There are two different ways to communicate data to the Montium:

• In DMA mode. The data is sent to the Montium as address data pairs
and subsequently stored into the memories. This is similar to loading a
partial Montium configuration.

• In streaming mode. The data is received while the Montium is executing
the sequencer code. This way the program itself has to provide for read
and write instructions, and directives as to where to place the data. The
program could for example store the incoming words in a memory, or use
them directly as input to one of the registers of a PP.
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6.6MHz 100MHz
Syndrome calculator 1,611 kB/s 24,416 kB/s
Error locator (burst mode) 12,900 kB/s 195,320 kB/s

Table 5.5: Data transfer rate (doubled) to decoder

The disadvantage of the DMA mode is that the Montium needs to be
stalled in order to receive the data. When receiving large data blocks that
need to be available prior to the execution of the program, this might be a
desired choice. Furthermore, no input-processing sequencer instructions are
required, thus saving sequencer- and configuration space. If on the other hand,
the data communication takes the form of streaming, the second approach is
preferred. This way it is possible to have the Montium receive a value when
it is actually needed by the program. The output the Montium generates,
can be streamed out externally as soon as it becomes available on the ALU’s
output.

Syndrome calculator

The input characteristic of the syndrome calculator favors the streaming ap-
proach. The design of the algorithm is specifically chosen for this approach
as discussed in section 5.2. The syndrome calculator requires every symbol of
every n-sized RS-block to be received in order. Every 8 clockcycles the next
symbol is needed (Figure 5.9 illustrates this). Table 5.5 shows the required
transfer rate of the data to the Montium in kB/s. There is however a catch.
The algorithm uses bytes, whereas the Montium external lanes transfer data
in words. If the data is to be processed immediately on arrival, this means
the bytes should be sent to the Montium with eight prepended zeros, to fill
the whole 16 bits, effectively doubling the transfer rate of the algorithm. The
values in table 5.5 are therefore doubled to prevent misconception. The result-
ing 16 values of the syndrome calculator reside in memories 3,4,7 and 8, all
of which contain four values. As the CCU has four lanes, it will take only 4
clockcycles to output 4 · 4 values to the external lanes.

Error locator

The error locator has an input characteristic which is quite different from the
syndrome calculator. The error locator only requires 1..8 of the 17 coefficients
(bytes) of the Λ polynomial (the first has always value 1 and is therefore not
needed). The drawback is that it repeatedly requires these bytes for its cal-
culation. Streaming data introduces overhead and energy loss; the external
system needs to repeatedly send the same data, and the Montium needs to
receive it. It is therefore desired to store the received bytes so reception can
be limited to only once. The problem can be solved by selecting one of two
possible solutions:

• Start the algorithm by receiving the 8 bytes and storing them in memory.

• Use the first iteration to receive the 8 bytes, and simultaneously storing
them in memory. The next iterations shall use the values from memory.
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The first approach requires a 1..8 clockcycle overhead per execution. The en-
tire Chien search takes 1028 clockcycles, which results in an overhead of 0.10%
to 0.78% clockcycles and only one internal bus configuration. The second ap-
proach requires no clockcycle overhead, but requires extra configurations. The
second iteration then differs from the first, meaning extra sequencer space and
bus-configurations are required. For this implementation, the first approach is
selected. The main reason is that both sequencer and configuration space is
saved. Although this is generally not an issue, and optimization for speed is
desired, it nevertheless leaves more space for implementing and testing other
parts of the RS decoder in the same configuration. Table 5.5 shows the burst
speed for the both the first and second approach. In both cases the imple-
mentation requires the reception of one byte every clockcycle, for a total of
8 clockcycles. Whichever method is selected does not influence the overhead
caused by a delay in reception of the data. If the bus to the Montium is
not capable of delivering the bytes on time, the Montium will block and its
execution will be stalled. Due to the fact that both approaches require one of
the 8 bytes every clockcycle, the performance will suffer equally much at both
approaches.

The output of the resulting sums is sent to the external lanes. As two
separate results become available in C at once, two lanes can be used to handle
the results. The check for a syndrome byte being zero is not performed in the
Montium. To do this, the Montium should check whether the resulting root
is zero, and accordingly output the accompanying value of r on the lanes. The
idle cycle of PP3 is not sufficient to handle the two comparisons. Furthermore,
r is only available in PP2, which then also should be available in PP3. All in
all, it is not feasible to do this without sacrificing speed.

Streaming implementations

The design of the syndrome calculator and the error locator already foresee a
streaming approach. They have therefore been designed by using memory 1 of
PP1 from which to retrieve their data. In case of the syndrome calculator the
read operation on this memory can be rewritten to a read operation from the
external lane:

From (mov p1m1 -> destination) to (mov ext1 -> destination)

Writing the results to the external lane needs to happen after the results have
been calculated. It can therefore be done by appending a four-clockcycle write
from memories 3,4,7 and 8 to the four external lanes.

The implementation for the error locator also reads its Λ values from mem-
ory 1. Adapting the implementation to the extent in which the data is received,
is straightforward. Before the execution of the implementation, 1..8 reads from
the external lane are performed, and subsequently written into memory. The
original implementation can then be run to calculate the error locations. Once
the result of the summations become available on the output of C they can be
sent to the external lane instead of the memory. Replacing

(mov p3o1 -> memory, p3o2 -> memory) by (mov p3o1 -> ext1, p3o2 -> ext2)

in the cycle after C8 of figure 5.13, will make sure the summation is directed
to the output of the Montium CCU.
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Decoder integration

Suppose an external system (e.g. a GPP) uses the Montium to calculate the
syndromes and error locations of its RS packets. If the packet contains errors,
and the syndrome is not found to be zero, the error locator will have to be
initiated. If both implementations are kept separate, this would introduce a
Montium reconfiguration in between. To prevent this from happening, the
entire RS Montium implementation will have to reside in one configuration.
As the design of both implementations take the re-usage of each others internal
configurations (i.e. ALU configurations, bus configurations, etc) into account,
overlap occurs which will prevent the Montium from running out.

The solution for having both implementations integrated into one, is to have
the external system decide which one he chooses to execute. This is achieved
by letting the external system sending a zero or a one prior to the execution,
which will trigger either the syndrome calculator or the error locator (Source
code 5.5).

Sourcecode 5.5: Task switcher of the integrated decoder implementation
1 BEGIN: clock
2 mov ext1 −> p5a2
3 alu p5a2 eq 0 −> p5sb // i f the bus was 1 . . .
4 clock
5 jcc p5sb CHIEN // . . . jump to CHIEN search . Else continue running the

syndrome ca l cu l a t o r
6 clock

5.4 Discussion

This section will discuss the possibilities to extend the implementation to fa-
cilitate an entire Reed Solomon solution for the Montium.

As can be seen in figure 5.1, there are still blocks that are not implemented.
These include the calculation of the error polynomial Λ, the two error magni-
tude blocks, and the actual error corrector. Implementing these blocks could
potentially lead to an overall improvement of performance in terms of energy
consumption and speed. Furthermore, the actual external GPP will be able to
perform other intermitted tasks.

Implementing remaining blocks

Every block will need to be assessed as to its ability to be implemented. Fur-
thermore an assessment needs to be made as to how many clockcycles are re-
quired for its execution. The assessments will be made by using table 5.2 and
the reference implementation. The gathered information on the implemented
blocks show that this assessment can be quite accurate:

Example:

Table 5.2 shows that the syndrome calculator uses 4080 Galois ad-
ditions and 4080 Galois multiplications. The algorithm can be exe-
cuted in 16 parallel paths, giving the advantage of parallelism. The
additions and multiplications only exist in MAC operations, which
can be performed in one pipelined clockcycle. Furthermore it is
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proven that two MACs can be executed in parallel. Therefore the
estimated number of clockcycles used for the syndrome calculator
is 4080

2 = 2040. The actual implementation uses 1642 clockcycles
due to the described optimizations (section 5.2).

• Error polynomial The error polynomial is calculated using the Berlekamp-
Massey algorithm. As can be seen in table 5.2, there is no support for
large sequences of parallelism. The Berlekamp-Massey algorithm intro-
duces a fairly large amount of control, which will have a negative influence
on the number of required internal Montium configurations. As for ex-
ample the discrepancy calculator does support parallelism and features
a MAC, the actual number of required clockcycles will be a little less
than the total number of Galois additions and multiplications combined
(592 + 848 = 1440). Depending on the number of erasures, an amount of
1200 clockcycles seems a fair worst-case estimation.

• Error evaluator The error evaluator features 16 parallel paths. The
additions and multiplications are executed sequentially and contain no
MAC operations. There are 2048 + 1024 = 3072 sequential calculations
which can be executed in 16 parallel paths. Due to the requirement of
reading and writing the polynomials to and from memory, parallelism on
five ALUs is probably not possible. If only two ALUs are used, which
is a safe, worst-case estimation, this will lead to 3072

16/2 = 1536 clockcycles
being required for execution. Depending on the configuration space that
is available, and the amount of memories that are required and available,
a choice has to be made as to how the parallelism is actually dealt with.

• Errata polynomial Calculating the errata polynomial requires 392 ad-
ditions and 392 multiplications, all of which are MACs. Due to the
parallelism of eight, again two MAC operations can be performed at the
same time on the Montium. This means that the errata polynomial can
be calculated in a maximum of 392

2 = 196 clockcycles.

• Error corrector The error corrector only requires a maximum of eight
additions, all of which could be done in parallel. As the input data is
probably located in only one or two memories, five parallel paths can not
be efficiently used. Therefore a safe estimation is made which results in
a maximum number of eight clockcycles.

Table 5.6 shows the number of clockcycles of each block, which leads to
an estimation of 5618 clockcycles. Memory interaction possibly introduces idle
cycles or limits the way in which the algorithms can be implemented. As each
estimation does not take this into account, the actual estimation should be
higher. We believe it should be possible to implement a Reed Solomon decoder,
if configuration space is adequate, that runs within 6500 clockcycles. Note that
the precondition includes the worst case of eight errors being corrected. Also,
possible reconfiguration is not taken into account.

Optimizing Chien search

The optimization of the dynamic number of λ coefficients in the Λ polyno-
mial can increase the speed of calculation. The v = 8 approach requires 1028
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Clockcycles
Syndrome calculator 1642
Error polynomial 1200
Error locations 1036
Error evaluator 1536
Errata polynomial 196
Error corrector 8
Total 5618

Table 5.6: Estimated clockcycles for Reed Solomon algorithm blocks

clockcycles c, but will scale linearly:

c = 3 + 128v + 1 = 128v + 4 (5.8)

This holds if the current design is implemented for a variable v. Unfortunately
designing such an implementation is not trivial. Figure 5.13 looks regular, but
in fact is not runtime scalable to dynamically support a certain v. Memory
lookups have to be initiated up to two clockcycles before they are required, and
the addressing the correct Λ coefficient requires resetting in time. This way,
the smaller the v, the more the different iterations will need to overlap per
clockcycle. Furthermore, runtime variable execution requires evaluating a loop
counter which requires an ALU operation, or manipulation of an existing loop
counter in the sequencer. This could introduce control gaps in the execution
of the algorithm which can severely influence speed. Due to insufficient time
and late discovery of this principle, a design for this application is not made.
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6
Results

This section presents the results of the implementations on the Montium.
The first section discusses the implementation of the encoder, while the second
section discusses the implementation of the decoder.

6.1 Encoder

The amount of required calculation clockcycles by the encoder can be found in
table 6.1. As there is no external I/O implemented, these figures only indicate
the actual calculation time. In order to be able to compare the results to the
results in [14], also the non-standard RS(255,239) is considered. The encoder
of [14] is capable of encoding an RS(255,239) block in 1920 clockcycles, which is
87% more efficient than the implementation described in this research. As our
goal was to simply map an existing hardware implementation one-on-one to a
Montium in its most basic form, optimizations to the algorithm or calculation
itself were not made. Our implementation for example introduces idle ALU
cycles because of the log and exp retrieval. [14] uses these idle cycles to perform
other calculations.

Our implementation is capable of calculating 2345 RS(204,188) blocks per
second on a 6.6MHz Montium ( 86.016

13 MHz), and 35,448 blocks on a 100MHz
Montium. This leads to a calculation throughput of 3, 363 kb/s on a 6.6MHz
Montium, and 52, 064 kb/s on a 100MHz Montium. Due to the fact that
results of the encoder are of no major importance in this research, no further
results are available.

RS(204,188) RS(255,239)
Processing-intro 1 1
Processing-loop 2820 3585
Processing-outtro - -
Total 2821 3586

Table 6.1: Number of clockcycles of the encoder using the Montium
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Cycles 6.6MHz 100MHz
Syndrome calculator 1642 248µs 16µs
Error locator 1028 156µs 10µs

Table 6.2: Number of clockcycles, and processing time using the Montium for
RS(204,188)

Syndrome Error loc.
Input reception 8
Processing-intro 9 3
Processing-loop 1616 1024
Processing-outtro 12 1
Output transmitting 5 0
Total 1642 1036

Table 6.3: Number of clockcycles with I/O using the Montium for RS(204,188)

6.2 Decoder

The amount of required calculation clockcycles by the syndrome calculator and
the error locator can be found in table 6.2. The table also contains information
about the amount of milliseconds the calculation of one RS block requires. The
total amount of clockcycles consists of several sub-tasks. Table 6.3 shows the
sub-tasks of both decoding processes and indicates the number of clockcycles
that are used. With these figures, the performance of the Montium can be
calculated.

The amount of required clockcycles can also be expressed as formulae of n
and k. For the syndrome calculator calculation (excluding pre- and postcalcu-
lation I/O):

Cycles =
n− k

2
· n+ 5 (6.1)

And for the error locator:

Cycles = 128t+ 4 (6.2)

Using these formulae it is possible to calculate the required cycles for any n
and k, given that n−k is even. This is a precondition, because of the mirrored
design of the implementations.

As chapter 5.3 describes, the selection between syndrome calculator and the
error locator takes two clockcycles per ”choice”. This is included in table 6.4,
which shows the number of RS data blocks that both the syndrome calculator
or the error locator can handle per second. If a continuous stream of packets
contain no errors, only the syndrome decoder is invoked. If in a worst case sit-
uation, every packet contains errors, the error locator will be invoked for every
packet. The Montium decoder is then capable of handling the throughput
as given in table 6.5. Note that after the syndrome decoder has finished, an
external process should calculate the Λ. This calculation delay is not taken
into account in the table.
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6.6MHz 100MHz
Syndrome calculator 4029 60,901
Error locator 6386 97,276

Table 6.4: Number of RS blocks processed per second, with I/O, using the
Montium for RS(204,188)

6.6MHz 100MHz
No errors packets 6,272 kb/s 94.79 mb/s
All errors packets 3,938 kb/s 23.94 mb/s

Table 6.5: RS throughput that the Montium can handle for RS(204,188)

The decoder has been tested using the simulator. The test bench of the
syndrome calculator consists of 50 packets, half of which are modified to contain
errors. Special packets have been designed for specific flaws the decoder may
have. This way, during an early test the 0 · 0 6= 0 bug was found (section 4.2).
As zero, and calculations that exceed the field, are in fact the only exception
in the normal range, no other specific packets were designed. The tests were
performed by manually writing the data into memory, running the decoder, and
reading the result from memory. The final test showed no flaws or shortcomings
with respect to the syndrome calculator. The error locator also has been tested.
This test consists of changing the Λ coefficients, and letting the error locator
search for its roots. As with the syndrome calculator, the error locator has
been tested with 50 pseudo random polynomials, which were written to the
memory of the Montium before executing the test. Several polynomials were
modified to contain zeroes at several places. The results were again read from
a memory. The final test showed no flaws or shortcomings with respect to the
error locator.

Comparison to other architectures

The Montium has been compared to other architectures with respect to exe-
cution speed. The architectures that were used are the

• ARM946 E-S, running at 86.016MHz

• Montium, running at 6.6MHz

• Montium, running at 100MHz

• Personal Computer, running at 1.59GHz Intel R© Pentium R© M processor.
It uses Microsoft Windows XP on 1GB internal memory.

• Xilinx DVB1 Reed Solomon Decoder, IP Core [7].

The figures for the ARM and the Pentium R© are actually measured. To achieve
this, the original C code was rewritten to contain only the actual calculation
loops. It is ensured that every execution of the decoding process is unique, to
make sure the compiler does not optimize by ”a priori” knowledge.

61



6. Results

5738,3

248,2

16,4

95,2

0,1

1,0

10,0

100,0

1000,0

10000,0

ARM 86MHz Montium 6.6MHz Montium 100MHz Pentium M
1.59GHz

Architectures

m
s/

10
00

 b
lo

ck
s

Figure 6.1: Syndrome calculator throughput speed comparison
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Figure 6.2: Error locator throughput speed comparison
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On the PC the code was executed under Microsoft Windows XP whilst
minimizing the amount of other processes. The implementation for the ARM
was executed on BasOs[19]. To minimize overhead of the operating system,
the scheduler has been disabled. By timing 200, 000 executions of each de-
coding process, the calculation times were derived. The execution-time of the
Montiums (including data transportation from an external architecture) are
based on the assumption that there is no delay in transportation. Figure 6.1
and 6.2 show the result of the execution of 1000 invocations of the algorithms.

The Xilinx DVB1 IP Core is built by the same standard as the other de-
coders presented in this research [7]. This means it has the same n, k, t, has
a fixed block length and processes the blocks serially. It can therefore be used
in a comparison with the other architectures. The processing delay is the time
between the arrival of the first symbol of a block on the input, and the arrival
of the first symbol of the next block. Using the processing delay and the fre-
quency of the hardware it runs on, enables the calculation of the throughput.
The latency of the Xilinx DVB1 IP Core is 620 symbol periods [7], which re-
sults in 620 clockcycles as a symbol can be clocked in in one clock cycle. The
maximum frequency is given to be 266MHz when FPGA Speed Optimizing
instead of Area Optimizing is set. Comparing the Xilinx core to the individual
syndrome and error locator measurements is difficult. It is only known that
the syndrome decoder uses 61.5% of the calculation time on an ARM, and the
error locator 26.4% (table 5.3). In 5.4 it is derived that an entire RS decoder
implementation would be feasible within 6500 clockcycles on the Montium.
The Xilinx core is able to decode 1000 blocks in 1

266MHz · 620 = 2, 331ms. The
100MHz Montium will decode 1000 blocks in 1

100MHz · 6500 = 65ms. Figure
6.3 contains these findings.

It can be concluded that the Montium is not able to decode RS blocks
as fast as an FPGA implementation. We stress that this comparison, however
true, does not mean that the Montium is a bad choice. The Montium still is
fast enough to decode up to 20 DMB (23.94mb/s

1.152mb/s ) channels worst case, simulta-
neously. It is also capable of decoding according to the DVB-H standard (15
mb/s).

The Montium has been designed with specific functionality in mind, and
is very energy efficient. The algorithms within the decoder that the Montium
design targets, have been implemented. Together the syndrome decoder and
the error locator perform 87,9% of the total amount of time of an ARM, in 3819
clockcycles. This means that the remaining 12,1% requires 2681 cycles, clearly
showing that there are areas in which the Montium can not be efficiently
applied. Due to suspected parallelism of calculation paths in the Xilinx core,
no comparison can be made between the current implemented Montium parts
and 87,9% of the calculation time of the Xilinx core.

Energy performance

This section the energy requirements are estimated, to give an idea of the
differences in energy consumption. To do this, we make an estimation of the
energy consumption of the ARM, the Intel R© Pentium R© M and the Montium.

The energy consumption of the ARM946 E-S is 0.46mW/MHz [6], or 0.46
nJ per clockcycle. As the decoder takes 5738.3ms to calculate 1000 syndromes,
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Figure 6.3: Decoder speed comparison

the energy consumption can be calculated;

5.7383
1000

· (86 · 106) · (0.46 · 10−9) = 227µJ

per RS block. The energy consumption for the error locator can be calculated
in the same way, and is 283µJ .

The energy consumption of the Montium is estimated on the basis of tests
in [11]. By assuming that effective clock gating is possible, the energy con-
sumption of the Montium is negligible when idle. The energy consumption
of the Montium when calculating syndromes is estimated to be equal to the
FFT64 implementation in [11]. The required resources on average resemble the
memory addressing and used ALUs of the FFT64. The multiplier however is
not used. Therefore, the energy consumption of the syndrome decoder is esti-
mated to be maximally 0.500mW/MHz, or 0.500nJ per clockcycle. As the error
locator is quite similar, concerning resources, the same figure is used. The en-
ergy consumption excludes the CCU of the Montium and the communication
between external hardware and the Montium. The energy consumption is cal-
culated by multiplying the energy per clockcycle by the amount of clockcycles,
and can be found in table 6.6.

The energy consumption of the 1.6GHz Intel R© Pentium R© M processor is
estimated to be 24.5W on maximum clock frequency [4]. As the PC performed
100, 000 syndrome blocks in 9514ms, its energy consumption can be calculated.
The PC uses 24.5 · 9514

1000 = 233.1J for 100, 000 blocks. Therefore one block
requires 2331µJ. The energy consumption for the error locator is derived in
the same way, and also listed in table 6.6.

Figure 6.4 shows a graphical representation of the energy consumption.
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Figure 6.4: Energy consumption per RS block

ARM Pentium Montium
Syndrome calculator 227µJ 2331µJ 0.821µJ
Error locator 283µJ 3312µJ 0.518µJ

Table 6.6: Energy consumption per RS block
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7
Conclusions, recommendations and future work

This chapter summarizes the most important conclusions and will give some
recommendations for future work.

7.1 Conclusions

1. Reed Solomon arithmetic can best be implemented in the Montium by
using a lookup-table. Other approaches are possible, but they perform
worse considering speed and energy consumption.

2. The Reed Solomon multiplication and addition arithmetic require only
one ALU configuration and clockcycle. The multiplication requires hav-
ing the log values of the arguments as input, and has the log value as
output.

3. It is at least possible to perform 76% of the additions and multiplications
of Reed Solomon on the Montium. It is also at least possible to let
87.9% of the average ARM calculation time per Reed Solomon block, be
performed on the Montium.

4. Simulating an LFSR on the Montium is much slower than a combina-
torial implemented LFSR. It is also slower than another, more optimized
implementation for the Montium.

5. It should be possible to have a complete Reed Solomon decoder in the
Montium running in maximally 6500 clockcycles per block. This as-
sumes that eight errors are present that need to be corrected.

6. The 100MHz Montium can calculate the syndromes of 60,900 blocks, or
the error locations of 96,524 blocks, per second. Therefore it is able to
decode up to 20 DMB channels simultaneously, and 1 channel DVB-H,
worst case.

7. The Montium performs the implemented algorithms much faster than
the ARM or the Pentium R© GPP, which both have a much higher clock
frequency.
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8. The Montium is much more energy efficient for the implemented al-
gorithms, than the ARM or the Pentium R© GPP, in the implemented
algorithm domains.

9. The Montium is a good choice when combined with a GPP, because
calculation intensive tasks can be done much faster and more energy
efficient, if the communication bandwidth is sufficient.

7.2 Recommendations and future work

1. There should be looked into the possibilities of FFT based Reed Solomon
decoders. The Montium performs well on FFTs and it is well possible
that such algorithms could benefit overall performance.

2. There should be looked closer into the possibilities of an entire Reed
Solomon implementation in the Montium. So far, only the proof of
concept and initial design has been done. Also an estimation of the
maximum amount of required clockcycles is performed, but it needs to
be proven. The error locator should be designed so that it is dynamically
capable of adapting itself to the number of errors that have occurred.

3. To gain performance in the current implementation, the implemented
algorithms itself could possibly be pipelined. By pipelining for example
different executions of the syndrome calculator, it is likely that clockcycles
are saved.

7.3 Problem statement

”Does the Montium TP enable an efficient implementation of Reed
Solomon, with respect to speed and energy efficiency?”

The 100MHz Montium decodes correct RS packets faster than the evaluated
ARM and Pentium. If errors have occurred, the calculation of the error loca-
tions is also fastest on the Montium. For the entire decoding process, assuming
t errors have occurred, this is different. As the Montium requires 2681 of its
6500 cycles to calculate only 12,1% of the calculation time the ARM requires,
it is easily seen that the selected ARM performs better on certain parts. The
Xilinx is much faster than the Montium when it comes to clockcycles. The
Montium is much more energy efficient than the ARM and Pentium, but un-
fortunately these figures are not available for the Xilinx implementation. The
conclusion is that it is possible to create an efficient implementation of Reed
Solomon, depending on the required flexibility of the application. When the
algorithm should run on flexible, reconfigurable hardware, the Montium shows
good energy efficiency as well as performance. However, if very high speeds are
required, a dedicated solution (e.g. Xilinx) will be a better choice.
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