
University of Twente

EEMCS / Electrical Engineering
Control Engineering

 Redesign of the CSP execution engine

 Bart Veldhuijzen

MSc report

 Supervisors:
prof.dr.ir. J. van Amerongen

dr.ir. J.F. Broenink
ir. M.A. Groothuis

 February 2009

Report nr. 036CE2008
Control Engineering

EE-Math-CS
University of Twente

P.O.Box 217
7500 AE Enschede

The Netherlands

iii

Summary

Nowadays the world is getting “computerized”. Embedded systems are getting more numerous
and also become more complex. The formal language Communicating Sequential Processes
(CSP) was designed to aid developers of embedded systems.

At the Control Engineering (CE) group CSP is used in the graphical modeling tool called gCSP.
This tool allows to generate code from a gCSP model, which can be compiled against the Com-
municating Threads (CT) library into an executable. The CT library is an execution engine
for CSP constructs. This library has two major problems; execution of a blocking system call
will block the entire application, and the library does not provide the accurate timing required
for real-time applications. This assignment redesigns this library to solve these problems and
make the library future proof.

The blocking problem originates from the use of user level threads and scheduling in the li-
brary, which are invisible to the Operating System (OS). The inaccurate timing is caused by
the non-preemptive scheduler. Replacing the user level threads and scheduler by kernel level
threads and a priority-based preemptive OS scheduler solves these problems. To be able to
support real-time applications, the OS has to be real-time as well.

The CSP language is used to create formally correct software. To classify as dependable soft-
ware, the application has also to be safe and reliable. The OS must meet these requirements to
be able to create dependable systems. The currently used RTAI does not meet these require-
ments.

The analysis of different kernel architectures shows that the microkernel based platform is safe
and extensible. It has the benefit of using message passing as inter process communication,
which is very much like the CSP rendezvous method. QNX Neutrino is a microkernel-based
real-time operating system which uses channels for message passing, as does CSP. QNX is open
source, provides a great integrated development environment, an instrumented kernel, Adap-
tive Partitioning Scheduling (APS) and transparent distributed networking.

The new library is structured in such a way that the OS provides the implementation of the
API calls where possible. The CSP rendezvous communication is implemented using QNX
channels and processes run in parallel using POSIX threading. Kernel tracing using the in-
strumented kernel provides the tracing and monitoring functionality, while retaining the real-
timeliness of the application. APS is used to guarantee a group of processes a minimum amount
of CPU time, and make remote debugging possible even when the system is fully loaded.

Testing the library for functionality and timing accuracy shows that the new library and QNX
perform according to the specifications. The production cell setup is used to show the usability
of the library for real-time control of a mechatronic setup.

From these tests it is concluded that the new library in combination with QNX can provide the
necessary platform to develop real-time control applications using the CSP based toolchain
at the CE-group. The main recommendations are to implement the missing functionality in
the library and to research the use of multi-core platforms with the library. The possibilities of
APS should be further investigated. The kernel event tracing can be used to reimplement the
animation framework.

Control Engineering

iv Redesign of the CSP execution engine

Samenvatting

Computers maken steeds meer deel uit van ons dagelijks leven. Het aantal ’embedded’ syste-
men wordt groter en de systemen steeds complexer. Om ontwikkelaars hierbij the helpen is de
formele taal Communicating Sequential Processes (CSP) ontwikkeld.

De Control Engineering (CE) vakgroep gebruikt CSP in de grafische modellerings tool gCSP.
Deze tool maakt het mogelijk om van een gCSP model broncode te generen. Deze code kan
gecompileerd worden met de ’Communicating Threads’ (CT) bibliotheek tot een uitvoerbare
applicatie. De CT bibliotheek voert de CSP bouwblokken uit. De huidige biblotheek heeft twee
grote problemen; het uitvoeren van een blokkerende ’system call’ zorgt ervoor dat de hele ap-
plicatie blokkeert en de bibliotheek beschikt niet over de vereiste nauwkeurige timing voor real-
time applicaties. Deze opdracht omvat het herontwerpen van de biblotheek om deze proble-
men te verhelpen en de bibliotheek voor te bereiden op de toekomst.

Het gebruik van user level threading and scheduling in de huidige bibliotheek zorgt voor het
blokerende probleem. De user level threads en de scheduler zijn onzichtbaar voor het bes-
turingssysteem. De onnauwkeurige timing wordt veroorzaakt door het gebruik van een ’non-
preemptive’ scheduler. Het vervangen van de user level threading en de scheduler door kernel
level threads en een op prioriteit gebaseerde preemptive scheduler in het besturingssysteem,
verhelpt deze problemen. Om real-time toepassingen mogelijk te maken zal het besturingssys-
teem ook real-time moeten zijn.

CSP wordt gebruikt om formeel correcte software te ontwerpen. Software kan pas als betrouw-
baar bestempeld worden als het ook veilig is. Het besturingssysteem moet ook aan deze eisen
voldoen om betrouwbare systemen te kunnen realiseren. Het huidige RTAI voldoet niet aan de
eisen.

De analyse van verschillende kernel architecturen laat zien dat de microkernel betrouwbare
en uitbreidbare systemen mogelijk maakt. Microkernels maken gebruik van rendezvous com-
municatie als interprocess communicatie. Dit is vrijwel gelijk aan de manier van rendezvous
communicatie in CSP. QNX Neutrino is een real-time besturingssyteem gebaseerd op een mi-
crokernel. Het gebruikt kanalen voor communicatie, net als CSP. QNX heeft beschikbare bron-
code, een zeer goede geïntegreerde ontwikkelomgeving, een geïnstrumenteerde kernel, Adap-
tive Partitioning Scheduling (APS) en transparant gedistribueerde netwerk ondersteuning.

De nieuwe bibliotheek is zo opgezet dat de functionaliteit van het besturingssysteem gebruikt
wordt waar mogelijk. De rendezvous communicatie van CSP wordt verzorgd door QNX kanalen
en het parallel uitvoeren van processen wordt gedaan met behulp van POSIX threading. Kernel
tracing wordt gebruikt met behulp van de geïnstrumenteerde kernel voor tracing en monitor-
ing zonder het real-time gedrag van de applicatie aan te tasten. APS wordt gebruikt om een
groep van processen een gegarandeerde CPU tijd te geven. Hierdoor is debugging altijd mo-
gelijk, ook als het systeem volledig belast wordt.

The functionele en timing testen laten zien dat de nieuwe bibliotheek in combinatie met QNX
aan de eisen voldoen. The productie cell is gebruikt om de bruikbaarheid van de bibliotheek
aan te tonen voor het real-time regelen van een mechatronisch systeem.

Deze testen laten zien dat de nieuwe biblotheek, samen met QNX, het noodzakelijke platform
biedt voor de ontwikkeling van real-time regel applicaties in combinatie met de bestaande tools
van de CE vakgroep. De belangrijkste aanbevelingen zijn het implementeren van de nog mis-
sende functionaliteit in de bibliotheek en om onderzoek te doen naar het gebruik van meerdere
processoren. De mogelijkheden van APS moeten verder onderzocht worden. Het gebruik van
kernel tracing maakt het mogelijk het animatie framework opnieuw te implementeren.

University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Goals of the assignment . 1

1.3 Report outline . 2

2 Background 3

2.1 Design methodology . 3

2.2 Hardware architectures . 4

2.3 Software architectures . 5

3 Analysis 10

3.1 Requirements . 10

3.2 Current architecture and problems . 11

3.3 New architecture and approach . 12

3.4 Conclusions . 14

4 Design and implementation 16

4.1 Introduction . 16

4.2 Processes . 17

4.3 Constructs . 17

4.4 Channels . 18

4.5 Tracing and profiling . 20

4.6 Qnet . 21

4.7 Adaptive Partitioning Scheduler . 23

4.8 Conclusions . 23

5 Testing and Evaluation 25

5.1 Introduction . 25

5.2 Functional tests . 25

5.3 Timing test . 28

5.4 Production cell . 30

5.5 Conclusions . 32

6 Conclusion and recommendations 33

6.1 Conclusions . 33

6.2 Recommendations . 33

A gCSP models 35

Control Engineering

vi Redesign of the CSP execution engine

A.1 Functional test models . 35

A.2 Timing tests models . 38

A.3 Production cell model . 38

B Compiling the ct-library 41

B.1 Introduction . 41

B.2 Checking out the source . 41

B.3 Compiling the library . 41

B.4 Using the library . 41

C Kernel event tracing 42

C.1 Configuring the instrumented kernel . 42

C.2 Using the IDE for kernel tracing . 43

D Adaptive Partitioning Scheduler 46

D.1 Remote debugging . 46

D.2 Using APS from source code . 49

E Qnet 51

E.1 Configuring . 51

E.2 Using Qnet . 51

Bibliography 53

University of Twente

1

1 Introduction

1.1 Context

The world is getting “computerized”. In the industry this is going on for some time but nowa-
days most household appliances, kitchen utensils and even toys contain a small computer.
These devices evolve into so called embedded systems. An embedded system is a complete
device which not only contains hardware and mechanical parts, but also a special-purpose
computer, designed to perform one or a few dedicated functions to control the hardware. The
design of these systems becomes more and more complex since the requirements are growing.

At the University of Twente, the embedded control systems project of the Control Engineering
group deals with the realization of control schemes on digital computers. The process algebra
CSP (Communicating Sequential Processes) developed by Hoare (1985) and Roscoe et al. (1997)
forms the theoretical basis. It is used to describe systems with several computational processes
running at the same time, called concurrent systems. Embedded systems typically are such
systems.

To aid the modeling of these systems with CSP, a graphical tool called gCSP has been developed
(Jovanovic et al., 2004). This tool is able to generate code from a model which can be executed
on a hardware device. The generated code has to be compiled against the Communicating
Threads (CT) library (Hilderink et al., 1997), which is an execution engine for CSP constructs.
The application can be monitored in gCSP through an animation facility (van der Steen et al.,
2008). An overview is shown in figure 1.1.

gCSP
model

Code
generation

CT library

Executable+

Animation

gCSP Tool

Figure 1.1: Overview of gCSP & the CT library

The current CT-library is a product of many years of research and development. In the early
stages of development the decision was made to be platform independent where possible. That
decision was very reasonable at the time, but results in undesired behavior nowadays:
• The CT-library is designed to do everything involving scheduling and threading by itself to be

able to run on MS-DOS and DSP processors without an Operating System (OS). This means
that if an OS is present, it runs in one OS thread. If some process in the CT-program executes
a blocking system call the entire application is blocked. Furthermore the CT-library does not
make use of multiple processors or cores if they are available.

• The Operating System has no knowledge of the scheduler and threads running in the CT-
library. The CT-library has to deliver external events like timer interrupts to the appropri-
ate process in the CT-program. The current scheduler cannot guarantee when this event is
handled. This results in inconsistent and inadequate timing behavior (Maljaars, 2006; Deen,
2007).

1.2 Goals of the assignment

The goal of this project is to redesign the current CSP execution engine, the CT-library, to solve
the problems and make it future proof. To determine a set of requirements for the execution

Control Engineering

2 Redesign of the CSP execution engine

engine an analysis will be done to chart the needs for control software. From this set of require-
ments several software architectures will be investigated and a choice for a kernel architecture
will be made. From a comparison of several operating systems built on the chosen kernel ar-
chitecture an Operating System will be chosen. The new library is implemented on the chosen
OS and should be compatible where possible with the current code generation in gCSP.

1.3 Report outline

In Chapter 2 the used terms and environment are explained in more detail. Chapter 3 describes
the analysis and choices made resulting in the design of the new library as explained in Chapter
4. The new library is tested in Chapter 5 on the production cell setup.

Finally Chapter 6 summarizes the conclusions and presents the recommendations for further
development and research.

More information and instructions on the use of the new library, kernel tracing, APS and QNet
can be found in the appendices, including various gCSP models used throughout the report.

University of Twente

3

2 Background

This chapter discusses background information. The design methodology at the Control Engi-
neering (CE) group and the currently used software are discussed first (Section 2.1). In Section
2.2 an overview is given of the hardware which is used at the CE group.Finally, different software
architectures are explained in Section 2.3.

2.1 Design methodology

At the Control Engineering (CE) group embedded software is developed using the design tra-
jectory as defined by Broenink and Hilderink (2001); Broenink et al. (2007), see Figure 2.1. This
project falls in the Embedded Control System Implementation phase and the Realization phase.
The entire trajectory consists of the four phases shown in figure 2.1. In the Physical System
Modeling stage, models are made which describe the dynamic behavior of the system. The
controllers for the system are made in the Control Law Design stage. These first two stages are
performed in 20-sim (Broenink, 1999; Controllab Products, 2008). In the third Embedded Con-
trol System Implementation stage the control laws are implemented in software. This is done
with 20-sim and gCSP (Jovanovic et al., 2004). At last the software is implemented on the target
using the CT-library.

2.1.1 20-sim

20-sim is a graphical modeling and simulation program. It is possible to model a dynamic
system using graphical representations and to simulate and analyze the behavior of the en-
tire system. Using the Control Toolbox the controllers for the system can be designed. These
controllers can be used in gCSP by generating code using the 20-sim Code Generation Toolbox.

2.1.2 (g)CSP

The theory of Communicating Sequential Processes (CSP), introduced by Hoare (1985), is a
mathematical formalism for reasoning about patterns of communication in distributed sys-
tems. The system is represented by processes which engage in a sequence of events, which may
include communication with another process via a channel. The set of all events that a pro-
cess may engage in is called its alphabet. These can correspond to real-world occurences such
as sensor-input, output, and so so on. Processes can define themselves in terms of other pro-
cesses, including several processes running in parallel. The formalism provides for interprocess
synchronization each time an event occurs that is in their common alphabet. This implies that
processes synchronize around channel communication.

���������

	��
���

��������

��������
����

���

	�����
���

���
��������

������

��������
����

���

	�����
���

���������

���
����	��
���

��������
�
���

��������
����

���

	�����
���

�������
���

������
����

���� ��
���

Figure 2.1: CE design methodology (Broenink and Hilderink, 2001; Broenink et al., 2007)

Control Engineering

4 Redesign of the CSP execution engine

Figure 2.2: gCSP example model

Because performing manual analysis and verification of the system in CSP can be both tedious
and error prone, automated tools are developed to formally check a design. For example the
Failures-Divergence Refinement (FDR) tool developed by Formal Systems (Europe) Limited
(2008).

The following is a short example of a process which first reads from a channel, afterwards it
writes to another channel and then repeats itself.

P = channel1?a → channel2!b → P

At the CE group, CSP was first used on transputers using the Occam language (INMOS, 1988).
When the production of the transputer ceased, a few universities developed an Occam API in
libraries for mainstream programming languages. The Communicating Threads (CT) library
was developed at the CE group (Hilderink et al., 2000; Orlic and Broenink, 2003; Hilderink,
2005). Similar libraries are developed at the University of Kent (JCSP and C++CSP) (Moores,
1999; Welch, 2002; Brown and Welch, 2003; Brown, 2007).

Hilderink (2005) introduced a graphical way to represent the CSP language. In the CASE tool
gCSP (Jovanovic et al., 2004), systems can be modeled, visualized and animated (van der Steen
et al., 2008). In figure 2.2 the graphical model of the earlier mentioned CSP example is given.
From the model machine readable CPSm code can be generated for formal checking with FDR,
or C++ code can be generated for compilation against the CT-library.

2.1.3 CT-library

The Communicating Threads library was developed to bring the Occam constructs, and in-
herently the CSP constructs, to platforms other then transputers. It was first developed in Java
(Hilderink et al., 1997), after which versions in C and C++ were created. Later the Java and C ver-
sions were abandoned in favor of the C++ version. The library has been restructured a couple
of times (Orlic and Broenink, 2004).

2.2 Hardware architectures

At the CE group, various custom setups and demonstrators are used, which are controlled by
a few different standard hardware architectures. They can be divided in three categories, x86,
ARM and others. The x86 group contains devices based around an x86 cpu. These can be
normal PC hardware, or a PC104-stack, which is a small form-factor embedded computer con-
taining various I/O boards. The tendency of multi-core processors is also noticeable in newer
projects. The humanoid head and haptic demonstrator are both equipped with Intel Core2Duo
processors. ARM and AVR based boards are used in smaller projects and are small embedded
computing platforms. Research is also going on using FPGA chips containing PowerPC cores

University of Twente

Background 5

for controlling setups.

2.3 Software architectures

2.3.1 Real-Time

A system is said to be real-time if the total correctness of an operation depends not only on its
logical correctness, but also upon the time in which it is performed. In a hard real-time system,
the completion of an operation after its deadline is considered useless - ultimately, this may
lead to a critical failure of the complete system. A soft real-time system on the other hand will
tolerate such lateness, and may respond with decreased service quality (e.g., dropping frames
while displaying a video). This places some demands on the Operating System (OS) running on
the system. The basic requirements according to Silberschatz et al. (2004) and Cooling (2000)
of a Real-Time Operating System (RTOS) are:
- Preemptive, priority-based scheduling
- Preemptive kernel
- Fixed upper bound on latency
- Task structuring of programs
- Parallelism (concurrency) of operations

2.3.2 Kernel architectures

The kernel is the central component of most operating systems. Its primary purpose is to man-
age the resources available in the computer and allow other programs to run and use these
resources. Typically, the resources consist of one or more CPU’s, the memory and Input/Out-
put devices, such as keyboard, disk drives, display. The kernel has full access to the system
memory and must allow other processes to access safely this physical memory as they require
it. Each process is given a separate virtual memory space, which is mapped to available phys-
ical memory. This virtual addressing also allows the creation of virtual partitions of memory.
Typically, two partitions are available, one being reserved for the kernel (kernel space) and one
for applications (user space). The separation is strict and enforced by the hardware which com-
pares every address generated in user space to the allowed boundaries. An attempt to access an
address in kernel space from user space results in a trap to the operating system (Silberschatz
et al., 2004).

Nanokernel

Nanokernels are relatively small kernels which provide hardware abstraction, but offer no other
system services. The term nanokernel has become analogous to microkernel with modern mi-
crokernels. En example of a kernel which calls itself still a nanokernel is Adeos (Adeos Project,
2004), used by RTAI (DIAPM, 2008) and Xenomai (Xenomai, 2008).

Microkernel

A microkernel is closely related to nanokernels. The first well-known microkernel was Mach
(Rashid et al., 1989). It was intended to be a replacement for UNIX, but its performance was
extremely low compared to UNIX. Microkernels were considered useless because of the low
performance. Liedtke (1993) showed that the performance problems originated in bad design
and implementation in the Mach kernel and proved with the L3 kernel that microkernels could
perform very well. He formulated the minimality principle on which modern microkernels are
build:

A concept is tolerated inside the microkernel only if moving it outside the kernel,
i.e., permitting competing implementations, would prevent the implementation of
the system’s required functionality. (Liedtke, 1995)

Control Engineering

6 Redesign of the CSP execution engine

VFS

IPC, File System

Scheduler, Virtual Memory

Device Drivers, Dispatcher, ... Basic IPC, Virtual Memory, Scheduling

UNIX
Server

Device
Driver

File
Server

Application
IPC

System Call
Application

Hardware Hardware

user
mode

kernel
mode

Monolithic Kernel
based Operating System

Microkernel
based Operating System

Figure 2.3: Kernel architecture overview

This comes very close to the definition of a nanokernel and is why the distinction between
nanokernels and microkernels has faded. The minimality principle dictates that almost every-
thing has to run in userspace, except the services which provide the mechanisms needed for
the support of multiple processes:
- Managing memory protection
- Managing CPU allocation (threads or scheduling)
- InterProcess Communication (IPC)
All other OS services such as device drivers and filesystem drivers, run as normal tasks in user
space, as can be seen in the right half of figure 2.3. This architecture relies heavy on an efficient
means of communicating between different processes. The performance of the IPC implemen-
tation contributes for a great part to the performance of the entire OS. Existing microkernels
and operating systems using microkernels are Mach, L4, QNX Neutrino, Minix, OpenRTOS,
Drops, Symbian.

Monolithic kernel

The monolithic kernel design has all OS services running within the privileged mode (kernel
space) of the processor. This is schematically shown at the left in figure 2.3. This makes com-
munication between OS services efficient and fast because there are no switches between priv-
ileged mode and usermode. The drawback is that an error in a program in kernel space will
likely corrupt and crash the kernel, and thus the entire system. Examples of operating systems
using a monolithic kernel are Linux, FreeBSD, DOS, Windows 9x series.

2.3.3 Processes and threads

In Operating Systems terms, a process is a thread container. The process has its own address
space which boundaries are guarded by the memory management unit in the cpu. A process
groups the threads running in this address space. The threads themselves are the entities that
are scheduled on the cpu by the scheduling algorithm. In Figure 2.4 this is schematically shown.

Switching between threads in a process is considerably faster compared to switching between
threads in different processes. In the first case the address space in which the next thread runs

University of Twente

Background 7

One process, single thread One process, multiple threads

Multiple processes, single thread Multiple processes, multiple threads

Process (container)

Thread (in container)

Figure 2.4: Thread and process types

address space

Kernel kernel

User
space

Kernel
space

User
space

Kernel
space

Thread

library

kernel thread kernel threads

Figure 2.5: Diagram showing user level threads on the left and kernel level threads on the right

remains the same. When switching between processes the kernel has to change the address
space on top of performing a context switch.

Thread types

Apart from the OS threads, also called kernel level threads, there are also user level threads.
In Figure 2.5 the two types are shown. User level threads are unknown to the OS, and are all
mapped to one OS thread. Kernel level threads are independent entities to the OS.

2.3.4 POSIX

POSIX stands for Portable Operating System Interface and is the name of a family of related
standards specified by the IEEE. These standards define a standard operating interface and
environment (POSIX.1). Several extensions to the standards exist, including real-time exten-
sions (POSIX.1b) and threads (POSIX.1c, better known as pthreads). An operating system can
be POSIX conformant, Certified POSIX conformant or POSIX compliant. Conformance means
that the entire POSIX.1 standard is supported. Certified means it is accredited by an indepen-

Control Engineering

8 Redesign of the CSP execution engine

dent certification authority and compliance means it provides partial POSIX support, which is
indicated in its documentation.

Code which uses POSIX-calls can be compiled and run on any Operating Systems which is
POSIX conformant, resulting in the same behavior.

POSIX scheduling

The POSIX standard defines four different modes in which threads can be scheduled by the
OS: FIFO, Round-robin, Sporadic and Other. FIFO and round-robin only apply to threads at
the same priority level. When FIFO scheduling is used, threads run until completion, or until
preempted by a higher priority thread. Round-robin scheduling is identical to FIFO, but adds
timeslicing. A thread is allowed to run until its timeslice is consumed, after which it is put
at the back of the READY-queue. Sporadic scheduling can be used in combination with Rate
Monotonic Analysis. The other scheduling mode is unspecified in the standard and is left to
the OS.

2.3.5 Application profiling

Application profiling is used to investigate the behavior of a program using information gath-
ered while the application executes. For application profiling several techniques are available,
each with its strengths and weaknesses.

Sampling

Sampling uses the instruction pointer to record where the application is spending its time.
It gives a rough estimate by using a target agent which periodically samples the instruction
pointer. A separate tool, for example an IDE, can gather all the samples, aggregate them and
present the results in the form of a table or annotated code. The strengths and weaknesses can
be summarized as follows:
+ No recompilation of the application necessary
+ Low overhead
- Granularity depends on the periodic sampling
- Reliable results only over long period of time
- Possible incorrect results for timer based applications
- No call graph

Call count instrumentation

The call count technique requires instrumentation support in the compiler, linker, and libraries,
and a recompilation of the application. It provides a precise call count of all functions and all
function pairs. A separate tool can visualize the call graph and call counts. The strengths and
weaknesses can be summarized as follows:
+ Precise call count information
+ Call pair information, aggregated as call graph
+ Relatively low overhead
+ Can extend sampling profiling
- Requires instrumentation
- No information for non-instrumented libraries

Function instrumentation

Function instrumentation is able to record precise function execution times and the runtime
call graph. It uses hooks on entry and exit of each function, hence it needs a recompile of the
application. It supports the visualization of the function table, threads tree, call graph, call tree
and the annotated code. The strengths and weaknesses are:

University of Twente

Background 9

+ Complete runtime call graph, including call counts and stack-frames
+ Precise function execution time
- Requires instrumentation
- Higher overhead

Kernel event tracing

Kernel event tracing allows to observe the system as a whole. It uses hooks in each kernel
call to record each call. Together with the function instrumentation is provides a system-wide
perspective of the target behavior. The strengths and weaknesses can be summarized as:
+ System-wide perspective
+ Precise information on context switches
- Due to the amount of available data, only relatively small timeframes possible
- Higher overhead when capturing the trace
- Requires an instrumented kernel

Control Engineering

10 Redesign of the CSP execution engine

3 Analysis

In the first section an analysis is done of the requirements for the CT-library to support real-
time systems and still fit in the tooling used at the CE-group. The current architecture of the
library and its problems are discussed in Section 3.2 and proposed solutions are given. In Sec-
tion 3.3 a closer look is given to various Operating Systems and the best fit to the requirements
is chosen. The last section draws the conclusions from the earlier analysis.

3.1 Requirements

3.1.1 Real-time

The most important job of a real-time system is to run its real-time tasks. In control engineering
the control loop is the most important task. The constraints are determined in the Control Law
Design phase (figure 2.1) and are dictated by the controlled system. Typically, the control loop
is designed to run on each sample moment of the hardware sensors. This is a hard deadline. If
it does not finish before the next sample moment the controller could become unstable with
potentially catastrophic results.

Apart from the real-time tasks, the system may have to perform other tasks. For example log-
ging, handling a user interface and remote connections. These tasks could be classified as soft
real-time, or even not real-time at all. For example writing logdata to a physical medium takes
a long time, compared to sample times. This task should not influence the hard real-time tasks.

To be able to determine whether a system is real-time feasible, it is required to know the exe-
cution times of the tasks that are run. With this knowledge an analysis, e.g. Rate Monotonic
(RM) or Earliest Deadline First (EDF), can be performed which indicates real-time feasibility
(Marwedel, 2006). To determine the execution times the system has to be deterministic. This
way the system behaves in a predictable manner and RM or EDF analysis can be used.

3.1.2 Operating System

The use of an Operating System greatly helps in the process of software development. The OS
can take care of the most tedious tasks like booting the system, operating the hardware, man-
aging resources and so on. The drawback is that it creates an extra layer between an application
and the hardware, possibly affecting predictability and performance. An OS should therefore
be real-time, or support real-time software. To classify as a real-time OS it should fulfill the
requirements mentioned in Section 2.3.1.

3.1.3 CE-group

The new library should be backwards compatible with the old library where possible, to still be
able to use the existing tools used at the CE-group. This means it should be usable in combi-
nation with the code generation in gCSP. It should also be available for the most used hardware
platforms: x86, ARM and PowerPC.

3.1.4 Dependable software

The CSP theory is used to verify the correctness of the modeled application. To classify as de-
pendable software, it has to be correct, reliable and safe (Cooling, 2000). The implementation
of the application has to provide the reliability and safety, as does the system it is running on.
After all, a chain is as strong as its weakest link. Software engineering techniques can help in
developing, verifying and validating software parts. Safety layers can be provided through tra-
ditional operating system techniques, as well as language and compiler features.

University of Twente

Analysis 11

3.2 Current architecture and problems

In the introduction (Chapter 1) the main problems with the CT-library were mentioned in short.
In this section a more detailed analysis of the origin of the problems is given and where it fails to
meet the requirements set in the previous section. Based on this analysis a solution is proposed.

3.2.1 CT-library

Threading

The current CT-library employs its own scheduler and threading system using user level threads
(Hendriks, 1998; Hilderink, 2005). In Figure 2.5 the difference between kernel level threads and
user level threads is shown schematically. The advantages of user level threads are:
• Operating System independent
• Usable on OS-less targets
• No kernel privileges needed for switching threads
• Fast thread switching possible
Whereas the negative aspects of user level threads compared to kernel level threads can be
summarized as:
• All user level threads block when one thread does a blocking OS call
• Communication with non user level threads is hard to implement
• User level threads can not be distributed over multiple cores
The first two negative points make real-time dependable software nearly impossible to imple-
ment and outweigh the advantages the user level threads have to offer.

Scheduler

The internal user level scheduler in the CT-library is a prioritized FIFO scheduler without pre-
emption and follows the OCCAM way of scheduling. For CSP behavior this is sufficient, but the
lack of forced preemption causes non-deterministic behavior, which is unwanted for real-time
applications. When a high priority process waits for example, on an external timer event, it is
blocked and the scheduler will allow other processes to run (Figure 3.1). When the timer event
arrives, the waiting process will be set in the READY state, but has to wait for the currently
running process to finish before it can be scheduled to run. The CT-library has no means of
preempting the running process, or even to limit the execution time of a process. As a result
the latency to handling external events is unpredictable.

3.2.2 (Timed)CSP

CSP has no notion of timing. The current CT-library is based on CSP and has time support
added by writing to external linkdrivers which use an OS timer. No mechanism is available for
checking if the timing constraints are met.

There is substantial literature on Timed CSP (Hoare, 1985; Roscoe et al., 1997; Schneider, 1999),
which adds a continuous time dimension to CSP. The main disadvantage of continues time is
that it is infinite, which makes state verification impossible. Roscoe et al. (1997) therefore intro-
duced the explicit time event tock, which implicitly introduces discrete time. In Istin (2007) and
SystemCSP by Orlic (2007) the tock event is used to extend the CSP based models with timing.
The improvements suggested by Istin (2007) are partly implemented in gCSP. SystemCSP is not
yet implemented.

The tock event has been implemented in the CT-library by using TimerChannels, which use a
linkdriver to wait for a systemtick. Due to the lack of preemption, as already explained in the
previous section, acting on the timer event is undeterministic.

Control Engineering

12 Redesign of the CSP execution engine

Process1 (high priority) Process2 (low priority)
Timer

WaitForTimer()

TimerTick()

delay
Figure 3.1: Unpredictable latency without preemption

3.2.3 RTAI

The Real Time Application Interface (RTAI) is strictly speaking not a real-time operating system
but aims to add real-time capabilities to the standard Linux OS. It adds a hardware abstraction
layer (Adeos) which implements an interrupt pipeline (ipipe). The RTAI kernel modules over-
take Linux and are at the front of the interrupt pipeline. If RTAI does not handle the interrupts,
they are passed on to Linux. Linux is a background task for RTAI and runs at a low priority.
RTAI runs entirely in kernel space and real-time tasks run along RTAI, at a higher priority than
Linux. In kernel space there is no memory protection between tasks (Section 2.3.2) and as a re-
sult tasks can have a direct impact on each other. Applications based on the current CT-library
use LXRT to be able to use RTAI’s hard real-time system calls while running in user space. This
causes extra latency and the use of Linux system calls will cause undeterministic behavior. The
big advantage of Linux, the great software and driverbase, is not available for real-time tasks.

3.2.4 Proposed solution

The usage of a priority based OS scheduler allows the removal of the internal CT-library sched-
uler and the usage of kernel level threads. This solves the problem of blocking system calls
while still preserving the correct way of scheduling. The addition of a preemptive scheduler al-
lows to react to external events with a predictable latency. This will also allow the improvement
of the current implementation of the tock event.

The operating system for the CT-library should be reconsidered. RTAI fails to match the de-
pendable software criteria of Section 3.1 and there may be better alternatives at the moment.

3.3 New architecture and approach

The choice for a specific architecture and Operating System should fulfill the requirements set
in Section 3.1. In the next section different software architectures are examined. Section 3.3.2
inspects a number of operating systems based on those architectures, and set them out against
the requirements and their properties. Section 3.3.3 introduces the modular structure for the
new library.

University of Twente

Analysis 13

3.3.1 Software architecture

There are three main software architectures used in real-time operating systems. The real-time
executive, the monolithic kernel and the microkernel. A real-time executive is compiled as one
big monolithic binary containing all required functionality normally found in an OS and the
application. The significant downside to this approach is that all of the code, applications and
kernel reside in one large address-space without protection.

The services and drivers provided by a monolithic kernel design (Section 2.3.2) reside all in
kernel-space, without memory protection. This allows a high average throughput, and is easy
to implement, but is very fault sensitive. A programming error in one part could crash or cor-
rupt the entire system. The size of the kernel grows with the capabilities, in terms of binary size,
as well as code size, making it hard to maintain and test. Debugging programs in kernel space
requires special kernel debugging tools.

Microkernels (Section 2.3.2) have most services and drivers outside the kernel, running in user
space, along normal applications. As a result they are guarded by the hardware memory man-
agement unit, can be relatively easy developed like normal applications, and debugged with
regular debugging tools. The work of Molanus (2008) showed that the message passing paradigm
used in microkernels is similar to the synchronization method in CSP compositional constructs.

3.3.2 Available operating systems

There are quite a few available operating systems which claim to be real-time, or support real-
time applications. The ones mentioned in Table 3.1 are considered more closely because they
are already used at the CE-group, are freely available, or stand out with respect to the others.

Property RTAI Xenomai Open/FreeRTOS DROPS/TUD:OS QNX Neutrino
Hardware ++ ++ - -+ ++
Drivers ++ ++ - -+ -+
Real-time + + ++ + ++
Scheduler + + + + ++
Safe - - - + ++
Documentation - -+ ++ - - ++
Support + + + -+ ++
Open Source ++ ++ ++ ++ +
POSIX + + - + ++
Development tools - - + - ++
Debugging - - - -+ + ++

Table 3.1: Requirements of different Operating Systems

RTAI (DIAPM, 2008) and Xenomai (Xenomai, 2008) originate from the same code-base, but
have taken different paths. They support real-time applications in the monolithic kernel, but
provide non real-time support through a separate Linux instance. Real-time applications have
to run in kernel-space, and therefore they are not classified as safe and are hard to debug. Doc-
umentation for Xenomai is more up to date, but is not very extensive. They are both POSIX
compliant. A great amount of hardware drivers is available.

OpenRTOS (High Integrity Systems, 2008) and its open source counter part FreeRTOS are real-
time executives, but are mainly available for various microcontrollers. They provide a develop-
ment environment including special debugging tools and very extensive documentation.

DROPS/TUD:OS (Technical University of Dresden, 2008) combines a real-time microkernel
with a Linux instance. It is mainly used for research and has almost no documentation avail-

Control Engineering

14 Redesign of the CSP execution engine

able. It supports the x86 architecture, support for ARM is still unstable.

QNX Neutrino (QNX Software Systems, 2008) is a microkernel based OS, available for a variety
of hardware architectures. Specific hardware drivers may not be available, but driver develop-
ment is relatively easy. There is no differentiation between real-time and non real-time tasks.
Next to the normal priority based preemptive scheduler there is an additional and optional
Adaptive Partitioning Scheduler. Very extensive documentation is available on the website.
The source code is for a major part available, but is not licensed under a GPL-like license. It
has a hybrid license, which allows the developer the choice of sharing their code. QNX is POSIX
certified conformant. It offers an eclipse based development environment called Momentics
with various debugging, tracing, profiling and monitoring tools.

Proposed architecture and OS

The match between CSP and the microkernel architecture make it the best choice. From Table
3.1 it can be concluded that QNX Neutrino, QNX for short, is the best match. QNX is the most
extensive and mature microkernel based real-time operating system available. The drawback
of a commercial license is taken away by the availability of (free) academic licenses. The ex-
tensive documentation, IDE and detailed tracing, debugging and profiling functionality make
it absolutely superior to its competitors.

3.3.3 Library structure

The library provides the Application Programming Interface (API) to access the CSP execution
engine. The operating systems provides the implementation details for this API. By using an
OS which matches the CSP constructs, the implementation detail can be less. As seen in the
previous section and Chapter 2, QNX requires less work to implement than RTAI or Xenomai,
see Figure 3.2.

CT-library

QNX

Xenomai
RTAI

Im
pl

em
en

ta
tio

n
de

ta
il

ne
ed

ed

Other F
un

ct
io

na
lit

y
de

liv
er

ed
 b

y
th

e
O

S

Figure 3.2: Relative amount of work needed to implement the CT-library

3.4 Conclusions

The current problems in the CT-library can be resolved by removing the internal scheduler and
user level threading, and use the functionality offered by the operating system. This could result
in a lower performance, which can be a drawback. A priority-based preemptive scheduler in
combination with kernel level threads provides the same behavior as the current CT-scheduler
with user level threads, but does not suffer from the blocking system call problem. Preemption
is needed for deterministic interrupt latency.

The microkernel architecture depends on the message passing paradigm which is very similar
to the CSP style synchronization. The match between microkernels and CSP make it easy to
implement the CSP execution engine using the microkernel functionality. The design of a mi-

University of Twente

Analysis 15

crokernel provides a safe computing platform because almost all services and applications run
in userspace, guarded by the hardware mmu.

The microkernel based real-time OS QNX Neutrino fulfills the requirements for real-time sys-
tems and operating systems much better than the currently used RTAI. The available IDE and
tools support the developer in creating dependable software.

By implementing the API of the library with native OS functionality, a matching OS will require
less work than others.

Control Engineering

16 Redesign of the CSP execution engine

4 Design and implementation

4.1 Introduction

A typical model of an application used in Control Engineering is shown in Figure 4.1. Several
processes run in parallel and communicate with each other and interface with external hard-
ware. Each process contains more subprocesses and constructs. Figure 4.2 shows the most
used objects in gCSP and in control applications. The current CT-library and gCSP support
and implement all the items, channels and constructs shown in Table 4.1. The new CT-library
implements at this moment only the most used parts due to time constraints. In Table 4.1 is
indicated which items, channels and constructs are implemented and which are not yet imple-
mented.20 Analysing gCSP models using runtime and model analysis algorithms

Figure 3.28, Plotter model
READER17->WRITER4->READER16->WRITER3->READER13->WRITER2->READER8->WRITER1->READER12
->READER11->READER10->READER9->WriteToTimer->Safety_X->READER14->READER15->Safety_Y
->Safety_Z->READER1->READER2->READER3->WRITERX->PWMY_Safe_WRITER->READER19
->PWMZ_Safe_WRITER->READER20->PWMX_Safe_WRITER->READER18->READER4->WRITERY
->DoubletoShortConversion->WRITER11->WRITER12->WRITER13->READER5
->LongtoDoubleConversion->Controller->WRITERZ->(READER21)

READER21->DoubletoBooleanConversion->WRITER14
->VCCZ_Safe_WRITER->(READER17, HPGLParser)

WRITER1->READER8->WRITER2->READER13->WRITER3->READER16->WRITER4->READER17
->WriteToTimer->READER12->READER11->READER10->READER9->READER1->READER2->Safety_X
->READER14->READER15->Safety_Y->Safety_Z->READER3->WRITERX->READER4
->WRITERY->PWMY_Safe_WRITER->READER19->PWMZ_Safe_WRITER->READER20->PWMX_Safe_WRITER
->READER18->READER5->LongtoDoubleConversion->Controller->WRITERZ
->DoubletoShortConversion->WRITER11->WRITER12->WRITER13->(HPGLParser)

HPGLParser->(WRITER1, READER21)

[start]->HPGLParser->WriteToTimer->READER1->READER2->READER3->WRITERX->READER4
->WRITERY->READER5->LongtoDoubleConversion->Controller->WRITERZ->(HPGLParser)

Figure 3.29, Result of the analyser for the plotter controller

3.30. The last ‘HPGLParser’ references back to the first one and the loop is complete. This
complex order also is a result of the channel optimisations.

[start]->HPGLParser->WRITER1->HPGLParser->Reader21->READER17->READER21->(HPGLParser*)

Figure 3.30, Execution order of the chains

3.5 Conclusions
First of all the runtime analyser seems to work as expected. It is able to analyse most (pre-
compiled) models, only rare situations are known for which the analyser will stop prematurely.

The sets of rules are defined by using relevant tests containing most common situations. The
defined rules are sufficient for deterministic models and for simple non-deterministic models as
well. However, the rules are not proved to be complete. When new (non-deterministic) situations
are analysed it might be possible that new rules are required.

Currently, the results of the analysis are based on a single thread scheduler. When multiple-
cores are used and the scheduler is able to schedule for multiple threads the analysis results are
undefined. Processes will be running really parallel and received state changes are originating
from unknown threads. To solve this problem the received state changes should be accompanied
by thread information. The analysis algorithms can construct the chains for each thread separately
using this extra information.

Another usage possibility of the the current runtime analyser tool would be post-executing anal-
ysis. The executable is executed on a target system first and the trace is stored in a log. A small
tool could be created to replay the logged trace by using the animation protocol to connect to the

University of Twente

Figure 4.1: Typical gCSP model for control applications (Damstra, 2008)

In the next section, the design and implementation of Processes is presented, followed by the
various Constructs in Section 4.3. The different types of Channels are discussed in Section
4.4. To show the additional functionality available in QNX, tracing and profiling is discussed in
Section 4.5, while the possibility to use distributed systems with rendezvous channels is imple-
mented in Section 4.6. A first attempt in using the advanced partitioning scheduler of QNX is
explained in Section 4.7.

Model analyser 31

Thebuttonsbelow the restart button in panel 2 can beused to skip stepsof thealgorithm. When a
setting ischanged only apart of thealgorithmneedsto bererun depending on thechanged setting.
Thismay save rearranging thedependency graph when that step isskipped. On slower computers
or when using abigmodel, skipping algorithm stepsmight savevaluable time.

The User Interface also supports rearranging the dependency graph by selecting and dragging
(groups of) processes. It is able to store and reload the rearranged processes in the dependency
graph. It isalso able to export thecreated views in PNGandEPSformat and to changesettingsof
theavailablecoresand processes in order to influence thealgorithms.

6.2 Algor ithms

Thealgorithmcreatedby vanRijn (1990) will beused. It is themost suitableandclearly explained
algorithm found. The important parts are based on a set of rules that can be extended, in order
to create an even more sophisticated algorithm. The original algorithm was created to be used
for model equations run on transputers. The extended algorithm is usable for scheduling CSP
processeson availableprocessor coresor distributed system nodes.

Thealgorithmblocks, shown in Figure6.1, are independent blockschained together. So it is fairly
easy to extend the blocks or to add a new one in between without the need to rewrite following
blocks. Assuming that thedatasend to theexisting blocksstayscompatible. Thisdata isalso used
by the user interface to update its views after each step. This section will describe each separate
step or block of thealgorithm.

Unlessstatedotherwise, themodel of Figure6.3 isused tocreatetheshown resultsin thefollowing
sections.

Figure6.3, Exploded view of theProducerConsumer model

6.2.1 Creation of thestructure tree

The structure tree, shown in panel 1 of Figure 6.2, is only for informational use. The algorithm
doesnot use it. Thisalgorithm step issimple:

• It loads theselectedmodel
• Builds the treeby recursively walking trough all sub-models to add theavailableparts
• And sends the loadedmodel to thedependency graph step

6.2.2 Dependency Graph creation

The dependency graph is extensively used by the algorithm blocks to find and make use of the
dependencies of the processes. Thus creating a good and complete dependency graph is very
important.

Control Engineering

Figure 4.2: Most used gCSP constructs in exploded view

University of Twente

Design and implementation 17

Item Implemented Construct Implemented
Process Y Sequential Y
Reader Y Repetition Y
Writer Y Par Y

Pri Par Y
Channel Implemented Alt Y
Channel Y Pri Alt N
TimerChannel Y Input-guard Y
VarChannel Y Output-guard N
BufferedChannel N SKIP-guard N
ExternalChannel Y Watchdog N

Exception N

Table 4.1: Available gCSP constructs in the new CT-library

4.2 Processes

A process in CSP terms is an object which can be executed and has references to the channels
connected to it. The activity of the process is encapsulated in its run() method. Processes may
interact with their environments only through their communication interfaces. A process itself
can be composed of other processes and constructs. This implementation is equal to the one
found in the old CT-library.

4.2.1 Readers and Writers

The READER and WRITER objects in Figure 4.2 are process instances whose only functionality
is to communicate over a channel. The run() method is already filled. The WRITER puts a
variable on the channel, the READER puts the received value in a variable.

4.3 Constructs

Constructs are implemented as processes without channel interfaces. Their children, pro-
cesses composed in the constructs, are immediately connected to the channels. Each construct
can be given an execution time-limit. If the processes in the construct are not finished within
the time-limit, a notification is send to the construct.

4.3.1 Sequential

The sequential construct executes its child processes in sequence according to the order of
processes in the declaration list of the construct. It terminates after the last child process has
terminated.

4.3.2 Repetition

The repetition construct is a special form of a sequential construct. Instead of terminating after
the last child process, it evaluates a predefined condition whether it has to repeat the sequence
of processes or not.

4.3.3 Parallel

The parallel construct runs its child processes concurrently. To do so the child processes are
dispatched to OS threads. The scheduler can decide to run the threads concurrently on one
core, or real parallel on multiple cores, if they are available. The scheduler in the old CT-library
uses OCCAM based scheduling, which closely resembles FIFO scheduling. In the new library
threads are scheduled default according to the FIFO algorithm.

Control Engineering

18 Redesign of the CSP execution engine

A threadpool is created at the construction of the parallel construct which holds one thread for
each child process. All child processes are dispatched to their own thread, leaving the main
thread available for monitoring timeouts on the execution time. When a child process termi-
nates, the freed thread is returned to the pool. The threadpool is only destroyed on destruction
of the parallel construct. For consecutive executions of the same parallel construct (calling the
run() method), the threads in the threadpool are reused, eliminating the overhead of creat-
ing and destroying OS threads repetitively. This behavior differs from the old CT-library, where
creating and destroying user level threads is a much cheaper operation.

4.3.4 PriParallel

Instead of dispatching each child process to a thread with the same OS priority, the threads
are given a higher priority according to the order of processes in the declaration. This differs
slightly from the original implementation where priorities were relative to each other, whereas
in the new construct they are absolute OS priorities. To prevent overlapping priorities in nested
PriParallel constructs, the step size between priorities can be adjusted. There is a limit of 256
priority levels in QNX, 0 being the idle thread, 255 the highest priority. In most applications this
limit will not pose a problem.

4.3.5 Alt

The alternative construct offers the environment a choice between its child processes, based on
which process can accomplish a channel communication. Each child process has a guard lis-
tening on the associated channel. At the moment only ChannelInput guards are implemented.
Because ChannelOutput guards are difficult to implement without additional helper processes,
and output guards are rarely used, they are not yet implemented. When a writer on the other
end of a channel becomes ready to communicate, the alternative construct executes the child
process connected to the channel.

On construction a threadpool is created with one thread for each guard. The guards are dis-
patched to their own thread and try to establish channel communication on a specific chan-
nel. On success the alternative construct is notified, the connected child process is started and
given the established channel communication. The child process completes the rendezvous
communication with the sender. The other guards are canceled and the channels they were
listening on are released. The threads are returned to the threadpool. The pool is destroyed
only when the alternative construct is destroyed by its parent.

4.4 Channels

In CSP, processes can become blocked on communication events, which is indicated by its
state. A process can be RUNNING, READY, SEND blocked, or RECEIVE blocked. The thread
states used by QNX in channel communication are nearly identical, but the rendezvous behav-
ior differs from the CSP kind on one point. In QNX, the receiving end has to explicitly reply to
the sender it has received the message. When a process writes a message to a channel and no
reader is waiting, it is put in the SEND-blocked state as shown in Figure 4.3. When a reader be-
comes available the message is sent and the writer is put in the REPLY-blocked state, meaning
it is waiting for an answer from the receiving end of the channel. A process could wait until it
has finished its work before it sends the reply message. The CSP rendezvous does not support
this behavior, so in the library a reply is send back to sender as soon as the message is received.

When a process wants to read from a channel, and no message is available yet, it is put in
the RECEIVE-blocked state (Figure 4.4). After it is has received a message it has to reply to
the sender. This is a non-blocking operation which puts the writer back in the READY-state.
Multiple writers or readers on one channel are queued according to priority. Only one reader

University of Twente

Design and implementation 19

SEND
blocked

READY
REPLY
blocked

Writer does a
MsgSend(),

Reader not waiting

Reader does a
MsgReceive()

Writer does a
MsgSend(),

Reader is waiting

Reader does a
MsgReply() or

MsgError()

Legend:

This thread

Other thread

Figure 4.3: State changes in channel communication on the writer side (this thread)

READY
RECEIVE
blocked

Reader does a
MsgReceive(),

Writer not waiting

Writer does a
MsgSend()

Legend:

This thread

Other thread

Reader does a
MsgReply() or

MsgError()

Reader does a
MsgReceive(),

Writer is waiting

Figure 4.4: State changes in channel communication on the reader side (this thread)

and one writer can be active on a channel at all times.

A CSP channel supports multiple readers and writers concurrently. When they try to use the
channel at the same time, they are ordered by their priority on a first come, first served basis.
A QNX channel has the same properties as the required One2OneChannel, Any2OneChannel,
One2AnyChannel and Any2AnyChannel, which means only one implementation suffices.

The priority inversion problem is prevented by using the priority inheritance protocol. The
QNX kernel has this protocol standard implemented in the channels. This means that the pri-
ority of the process at the receiving end is temporarily boosted to the priority of the sender.
After the reply message is sent, the receiver has to take care itself of returning to the original
priority. In the new CT-library the priority is checked after each completed communication
event and the priority is adjusted when necessary.

A major benefit of using QNX native channels, is the support for timeouts. Each potentially
blocking operation can be guarded by a timeout, completely implemented in the QNX kernel.
In the new CT-library, the read and write actions on a channel are extended with an additional
timeout parameter. On a timeout, the kernel unblocks the thread and the read or write action
returns an error. The return value of a read or write action has therefore to be checked.

4.4.1 TimerChannel

Processes should have the possibility to explicitly synchronize with the tock event (Section
3.2.2). This event has to be based on the OS timer for accurate system wide timing synchro-
nization. QNX allows to program the system timer to deliver a message over a channel, send a
signal to a thread, or create a thread on the occurrence of a timer tick. Using a channel matches
with the CSP way of synchronizing with tock events.

Control Engineering

20 Redesign of the CSP execution engine

A TimerChannel is implemented as a special type of channel which will block until a timeout
has elapsed. It can be used to synchronize periodically on a tock event, or to wait for a specific
amount of time to elapse.

To wait a specific amount of time, the process writes the desired amount to the TimerChannel,
which programs the timer in one-shot mode. When the timer fires it delivers a message over
the channel to the waiting process.

For periodic synchronization the timer is programmed in periodic mode. This gives a more ac-
curate timing because it prevents the overhead of programming the timer multiple times. The
timer sends a message over the TimerChannel on every timer tick. These messages accumulate
on the channel, if they are not received by the process. It is not yet possible to check if there are
multiple messages waiting on a channel.

4.4.2 External channels

The communication with the outside world is usually performed using a hardware device. The
software driver provides the interface for applications to access the hardware device. QNX
drivers are normal user-space programs. They run in user-space and request from the OS low-
level access to the hardware they need. Because of the message passing used in QNX, the inter-
face from the driver to other programs has to go through messages. Therefore a driver registers
itself with a pathname (e.g. /dev/motordriver) by creating a channel. A program willing to
communicate with the driver simply connects to the channel and sends messages over it. The
driver replies with the appropriate response and activates the hardware.

This mechanism is very much like the normal channels described above, with the exception
that the channel does not need to be created, only connected to. The ExternalChannel behaves
after connecting exactly like a normal channel. The linkdrivers used in the old library are no
longer necessary because the driver already provides the message passing interface. It is not
yet possible to draw and use ExternalChannels directly in gCSP. The existing LinkDriver objects
still have to be used, but are nothing more than a link between a READER or WRITER and the
ExternalChannel.

4.5 Tracing and profiling

Tracing, monitoring (Posthumus, 2007) and animation (van der Steen et al., 2008) are used to
monitor and visualize the execution of a system or application. Two levels at which informa-
tion about the system is desired are the CSP level, and the code level. The CSP level uses the
processes, constructs and the synchronized communication to evaluate the correct behavior
of the system, according to its CSP specification. At code level it gives insight in the actual
behavior of the program, the functionality enclosed in the run() method of a process.

The functionality to trace and profile the behavior of the program should not influence the real-
time part. The facilities in the old library are not decoupled from the real-time parts, which
results in unpredictability and are therefore not suitable for real-time systems. The current
tracing functionality is putting messages on standard output, typically the screen. This is a
blocking system call, which does not influence the custom scheduler in the old library, but will
influence the QNX scheduler. A process which unblocks again will be put at the end of the ready
queue for its priority level. Writing to standard output is a very time consuming operation, so
it should be avoided in real-time applications.

The old tracing macros are still in place in the new library. They are a quick way to get a view
of what the program is doing, but due to the influence on the scheduler, they also change the
execution order of the processes slightly. In a relatively small program governed by communi-
cation events this will not be a problem, but the possibility exists that when a program relies
on accurate timing, undesired results can appear. A less invasive way of gathering information

University of Twente

Design and implementation 21

6 > QNX Neutrino Realtime Operating System

Instrumented kernel

The instrumented microkernel can monitor, record, and
time-stamp every system event, including kernel calls,
interrupts, messages, thread states, and scheduling activities.
It is, in effect, a software logic analyzer for your entire system.
If something goes wrong, the kernel will help you pinpoint
when the event occurred, which software modules were
involved, what those modules were doing, and, more
importantly, how to interpret the event.

A drop-in replacement for the standard QNX Neutrino
microkernel, the instrumented microkernel is nonintrusive,
so you don’t have to modify your code. Better yet, you can
use it in live production systems, since it’s only marginally
slower than the regular microkernel. Performance is affected
only when events are being traced, but even then, you can
perform event logging dynamically and filter information
at various levels to ensure the least possible impact on
your system.

With the instrumented kernel, you can:

3 capture system-level activity — The kernel can record
and time-stamp every system event, including kernel
calls, interrupts, messages, thread states, and scheduling.

3 create custom filters — If the stock event filters provided
by the instrumented microkernel don’t suit the behavior
you want to capture, no problem: the kernel supports
dynamic, user-defined filters for complex, application-
specific conditions. Your applications can also inject
custom events into the trace system to proactively
influence the event-collection process.

3 visualize system events — The instrumented microkernel
also gives you precise control over which events are
recorded and when, so you can focus on areas of interest.
The kernel works hand-in-hand with the QNX Momentics®

system profiler, which lets you graphically “zoom in” on
areas of interest and view complex interactions.

Instrumented Kernel
Using the instrumented kernel in the QNX Neutrino RTOS, you can quickly pinpoint timing

conflicts, deadlocks, logic flaws, software faults, and a variety of other system-level issues,

in both uniprocessor and multiprocessor systems.

Instrumented kernel

Using the instrumented kernel with the QNX Momentics system profiler, you can quickly pinpoint deadlocks, logic flaws, and a variety of other

performance-degrading hotspots.

Capture
utility

Circular
event buffers

Events

State changes

On/off Filters
Static event filters

User defined filters Network QNX Momentics system profiler
(Graphic visualization tool)

Log file

System calls

Interrupts

Process/thread
creation

Microkernel

Figure 4.5: QNX instrumented kernel overview (QNX Software Systems (2008))

can be found in instrumentation of the code.

4.5.1 Instrumentation

When a recompilation of the application is possible, call count instrumentation or function
instrumentation (Section 2.3.5) can provide a better way of tracing. The QNX Momentics IDE
can visualize the data collected from these methods. Examples are shown in the next Chapter
and in Figure C.2.

For a detailed view of the entire system, kernel event tracing has to be used. QNX has a special
instrumented kernel (Figure 4.5) which allows to record information about what the kernel is
doing, generating very precise time-stamped events that are stored in a circular linked list of
buffers. Not only system calls like thread creation, but also interrupts and read/write actions
on channels are recorded. In combination with the call count instrumentation or function
instrumentation, this gives a really detailed view of the system and the application. The in-
strumented kernel runs at 98% of the speed of the regular microkernel QNX Software Systems
(2008). The events can be captured by a tracelogger and visualized in the IDE. For an overview
of the possibilities of the instrumented QNX kernel see Molanus (2008) and QNX Software Sys-
tems (2008). This functionality allows to trace and visualize the behaviour of the program and
see the influence of other system parts on the application, without modifying the sourcecode
of the application.

The instrumented kernel allows to insert user-generated events into the stream of kernel events.
They are very small, integer-based events, which can replace the old tracing macros. To con-
vert the numbered events to more meaningful messages, the IDE can decode the events using
an XML-file which describes the events. There are no special functions to accomplish this im-
plemented in the library yet. Adding a user-event has to be done by hand by calling the QNX
TraceEvent() function. For more information about setting up the instrumented kernel and
using the IDE for tracing, see Appendix C. The QNX Foundation Classes (QFC) (Allen, 2008)
have preliminary support for using the instrumented kernel during runtime, but this is still a
proof of concept and therefore it is not used in the library. Further research is needed to asses
if the QFC is usable, or if the techniques used in the QFC can be reused in the CT-library.

4.6 Qnet

Distributed processing involves multiple nodes which have to communicate over some type of
network link. QNX has its own protocol for distributed networking called Qnet. It extends the
message passing architecture over a link, e.g. ethernet, resulting in transparent access to any
resource on any node (Figure 4.6).

In the new CT-library, Qnet is used to implement RemoteChannels. They make systems like the
one shown in Figure 4.7 possible. The reading end of the remote channel uses a QNX resource

Control Engineering

22 Redesign of the CSP execution engine

Message
queues

Message bridge
(Ethernet, fabric, bus, backplane)

Internet

Web
browser

Microkernel

Microkernel

Flash file
system

Flash file
system

Application

ApplicationDatabase

MESSAGE-PASSING BUS

Networking
stack

Web
server

Transparent distributed processing provides a framework
for the dynamic interconnection of hardware and software
resources located on remote nodes, using standard messages.
Processes running on a single CPU will continue to com-
municate with each other even if they are subsequently
distributed among multiple CPUs, enabling you to extend
resources and simplify the design of multi-node systems.

With this unique capability, you can create highly robust
and fault-tolerant systems that offer on-demand access
to resources on multiple CPUs.

Using transparent distributed processing, you can:

3 reduce hardware costs — Nodes can share resources
instead of duplicating them, eliminating redundant
hardware. For example, if one node has a large flash
file system, other nodes don’t need to; they can simply
use that node’s flash memory instead.

3 deliver built-in redundancy and load balancing —
Since QNX Neutrino inherently supports multiple links
between CPUs, data will automatically be re-routed over
the remaining links without loss of service. Network
traffic can be load-balanced over all available links,
resulting in significantly higher throughput.

3 gain location independence — Global name service
provides a central directory of global naming and
location services, enabling the flexible deployment
and portioning of the application at runtime.

3 implement centralized debugging — Query and collect
remote data via a single connection to multiple cards.

3 work with any transport — Since transparent distributed
processing operates above the transport layer, it works
well across LANs, backplanes, proprietary switch fabrics,
and vehicle buses such as MOST.

Transparent Distributed Processing
The QNX Neutrino RTOS’s transparent distributed processing replaces the traditional

custom messaging infrastructure required to enable inter-processor communications —

saving time and costs associated with custom development and incremental hardware.

Transparent distributed processing

5 > QNX Software Systems

Transparent distributed processing

Transparent distributed processing allows an application to access resources on any node in the network. Applications and services can become

instantly network distributed without special coding.Figure 4.6: Transparent distributed processing overview (QNX Software Systems (2008))

Figure 4.7: Remote channels in gCSP

University of Twente

Design and implementation 23

� �
#Create the reading end of a remote channel
Channel<int >* chan = new Channel<int > (REMOTEREAD, " /csp/channel") ;
#Normal read from the channel
i f ((r e t = chan−>read(&value , timeoutvalue)) != EOK)
{

std : : cout << "Read f a i l e d : " << s t r e r r o r (r e t) << std : : endl ;
}� �

Listing 4.1: Creating RemoteChannels, reading end

� �
#Create the writing end of a remote channel
Channel<int >* chan = new Channel<int >

(REMOTEWRITE, " / net /node1/csp/channel") ;
i f ((r e t = chan−>write (&value , timeoutvalue)) != EOK)
{

std : : cout << " Write f a i l e d : " << s t r e r r o r (r e t) << std : : endl ;
}� �

Listing 4.2: Creating RemoteChannels, writing end

manager to attach itself to a pathname (e.g. /csp/channel1) (Listing 4.1). The writing end of the
channel is able to open the pathname like a normal file (e.g. open /net/node1/csp/channel1)
and write to it (Listing 4.2), just like a regular ExternalChannel. The established channel works
like a normal local channel and can be used for rendezvous communication. The deterministic
behavior of the channel is determined by the network link between the nodes. The procedure
to setup Qnet is explained in Appendix E.

4.7 Adaptive Partitioning Scheduler

The QNX Adaptive Partitioning Scheduler is an optional thread scheduler that guarantees a
minimum percentage of CPU time to groups of threads, processes, or applications. This means
that even under full load, low priority processes in a different partition will still get their min-
imum percentage CPU time. In Figure 4.8 this is schematically shown. Each partition has its
own guaranteed CPU time. If the system is not fully utilized, a partition is allowed to utilize
more than its budget of CPU time, taken from other partitions.

In the new CT-library an application is started at default in a partition with a budget of 80%
CPU time, which can easily be changed. The system has furthermore a debugging partition
of 10%, which enables the posibility of remote or local debugging, even when an application
is requesting 100% CPU time. The remaining percentage is automatically given to the system,
and to all other programs which are eventually running. In Appendix D more information is
given about setting up APS, and how to properly configure the debugging partition.

4.8 Conclusions

The use of functionality already present in the Operating System has slimmed down the CT-
library compared to the old version. QNX provides the rendezvous channels, the threading
mechanism and the scheduler for the library. The most often used constructs are implemented
in the library.

The old tracing functionality should not be used anymore because of the negative influence
on the execution order and real-time behavior. The QNX instrumented kernel fills this gap
by offering detailed and precise tracing of events, which can be visualized in the IDE, without

Control Engineering

24 Redesign of the CSP execution engine

12 > QNX Neutrino Realtime Operating System

Using adaptive partitioning you can:

Build secure systems — Rogue software can prevent your
critical system functions from running by starving them
of CPU time or memory. To address this, QNX adaptive
partitioning allows you to construct compartments around
groups of applications and dedicate a portion of CPU time
and memory to each compartment.

Maximize CPU use — Unlike static partitioning approaches
with cyclical scheduling, adaptive partitioning recognizes
that CPU utilization is sporadic and systems can often
have idle time available. With adaptive partitioning, this
idle time is not wasted. Since unused CPU cycles from one
partition can be dynamically reallocated to other partitions,

overall CPU utilization is maximized. Standard priority-based
scheduling is in force when the system isn’t under full
load or attack. Adaptive partitioning provides a simple,
reliable solution for systems that are heavily processor
intensive and where task starvation is a design concern.

Get started quickly — Adaptive partitioning uses the
standard POSIX programming model so you can use
the same, familiar design, programming and debugging
techniques as in any embedded system. You can introduce
adaptive partitioning by simply defining the partition budgets
and deciding which applications and/or threads reside in
each partition. With QNX adaptive partitioning, applica-
tions and system services can simply be launched into
the appropriate partition.

Adaptive Partitioning
The QNX Neutrino RTOS is the only embedded operating system to provide secure,

guaranteed real time without compromising performance and flexibility. Using our patent-

pending adaptive partitioning technology, you can guarantee real time for your applications,

contain threats and protect your system.

Adaptive partitioning

Build secure compartments for your software using adaptive partitioning

Patent-pending adaptive partitioning by QNX Software Systems enforces CPU time partition budgets when the system is loaded and dynamically

allocates free CPU cycles during periods of low processor utilization.

Partition 1
20% Budget
10 MB RAM

Partition 2
40% Budget
30 MB RAM

Partition 3
Untrusted apps

40% Budget
24 MB RAM

CPU guarantees for
partitions at full

system load

CPU utilization
25% 50% 75% 100%

Dynamic allocation
of CPU during
low utilization

Microkernel

Application

ApplicationDrivers

File system

Application

Application

40%

60% 5% idle15%

20% 40%

Partition 1 Partition 2 Partition 3

Figure 4.8: Adaptive partitioning (QNX Software Systems (2008))

disturbing the real-timeliness of the system.

Distributed processing is made available through RemoteChannels, which use Qnet and re-
source managers to extend the normal rendezvous channels over a network link.

Adaptive partition scheduling is used to guarantee a specific percentage of CPU time to a group
of threads, meaning other applications cannot starve the critical threads. A special debugging
partition is created to allow debugging even when the system is fully loaded.

University of Twente

25

5 Testing and Evaluation

5.1 Introduction

The new library designed and implemented in Chapter 4 is tested using functional tests to
check the correct behavior of the library, and the timing subsystem is tested for performance. A
part of the production cell setup is used to test the real-time capabilities on a hardware setup.
The functional tests are presented in the next section, the timer tests are shown in Section 5.3.
The test on the production cell setup is presented in Section 5.4. Finally the conclusions are
presented in the last section.

All tests are performed on a PC104 stack, running QNX Neutrino 6.3.2 with the instrumented
kernel as explained in Appendix C. Advanced Partitioning Scheduling is activated and config-
ured as described in Appendix D. The stack is equipped with an Anything I/O board for the
connection with mechatronic hardware.

5.2 Functional tests

5.2.1 Description

The API of the new library is backwards compatible with the old one, meaning the existing test
examples in the old library can be reused easily. To validate the correct behavior, the following
simple and more complex testcases are modeled in gCSP. The generated code is compiled and
linked against the new library. The following tests are executed:
• Sequential (Figures A.1(a) and A.2)
• Parallel (Figure A.1(b))
• Priparallel (Figures A.1(c) and A.3)
• Producer consumer deadlock (Figure A.4(a))
• Producer consumer deadlockfree (Figure A.4(b))
• Alt (Figure A.5)
• Dining Philosophers problem (Figure A.6)
• ComsTime test (Figure A.7)
The used gCSP models can be found in Appendix A.1.

5.2.2 Results

Sequential and Parallel

All sequential and parallel models behave as expected. The trace of the simple sequential
model (Figure A.1(a)) is shown in Figure 5.1. The two black lines in the circles indicate the
moments where an userevent is injected in the kernel. The exact timestamps are shown in the
trace tab below the timeline. First Process1 injects a userevent (1) when it gets run, Process2
does the same (2) when it starts running.

Control Engineering

26 Redesign of the CSP execution engine

Figure 5.1: Sequential trace

In Figure 5.2 the trace from the simple parallel model (Figure A.1(b)) is shown. The application
consists of 3 threads, the main Thread1, and two pooledthreads for the parallel processes. The
black lines in the circles indicate again the userevents.

Figure 5.2: Parallel trace

The more complex sequential model of Figure A.2 is traced in Figure 5.3. The application runs
the display process in one thread, and the sequential processes 1-4 in the other thread. The
communication can be seen as the arrows between the threads. A process in the sequence
writes to the waiting display process (downward arrow in blue (1)). The display process runs,
receives the message and replies to the sending process (upward arrow in green (2)). When the
display process tries to receive on the channel again, it gets RECEIVE blocked, visualized as the
thin horizontal blue line (3). The REPLY blocked state of the sequential processes is indicated
with a thick horizontal blue line (4). Dark-green bars mean the thread is in the READY state (5),
lighter green indicates the RUNNING state (6).

Consumer Producer models

The deadlock free model (Figure A.4(b)) of the Consumer-producer system behaves as it should.
The deadlock in the model in Figure A.4(a) can already be seen by looking at the running appli-
cation in the System Information Perspective in the IDE (Figure 5.4). Both Consumer and Pro-
ducer are blocked, the producer SEND blocked on one channel, and the consumer RECEIVE-
blocked on another channel. Because the channels are different, the application is in deadlock
and will not make any further progress.

University of Twente

Testing and Evaluation 27

1 2 3

4 5 6

Figure 5.3: Complex sequential trace

Alt

The expected behavior of the alt example shown in Figure A.5 is as follows. The user gives in a
number corresponding to the channel a message is sent on. The process listening on the other
end of the channel is selected by the alternative construct, and runs. Displaying a message
when a process runs confirms the correct behavior.

ComsTime

The ComsTime test (Figure A.7) is used in the OCCAM community to measure the context-
switch and communication time. The new library on QNX performs one loop of the test in
63µs. In comparison, the old library on RTAI, on the same hardware, performs one loop in
35µs. The test has not yet support for measuring the context-switch and communication time
separately.

5.2.3 Discussion

The traces made of the sequential models show that they are executed according to the specifi-
cations. The two processes in the parallel model execute in two separate threads, but because
the PC104 has just one single core processor, only one thread can be running at any given time.

The ComsTime test indicates that the time it takes to switch threads in QNX is about two times
higher than the highly optimized user-level thread switch in the old library. When using a lot
of processes and short sampletimes, this could be a potential problem. The work of Bezemer
(2008) describes methods to optimize the gCSP models, reducing the number of parallel pro-
cesses, and thus the amount of necessary switching between threads.

During the design of the tests, the gCSP model in Figure 5.5 could be drawn. This is incorrect
and should never be allowed to be drawn in gCSP. Rendezvous communication between two
sequential processes is impossible and will deadlock. gCSP generates code from this model us-

Control Engineering

28 Redesign of the CSP execution engine

Figure 5.4: System information view indicating deadlock

ing a VarChannel (asynchronous communication), while the model still presents a rendezvous
channel. The generated code for this situation and for explicit modeled VarChannels is incor-
rect.

Figure 5.5: Incorrect gCSP model

5.3 Timing test

5.3.1 Description

The timing jitter of the TimerChannels using QNX timers is determined using kernel tracing.
For verification with an oscilloscope, an output pin on the Anything I/O board is toggled on
each period. A periodic timer of 1ms is requested. The used model is shown in Figure A.8.

5.3.2 Results

The exact timestamps of the timerticks are captured using kernel tracing and the jitter is plot-
ted in Figure 5.6. The bulk of the measurements are below 2µs, which is confirmed with the
oscilloscope. The latency from the point the hardware timer interrupt occurs, to the point the
thread waiting for the timertick is unblocked, is extracted from the kernel trace and is sum-
marized in Table 5.1. It averages around 7.7µs. Not displayed in the graph, but present in the
measurements, is the missing of a timertick every 6535ms.

Event ns
Interrupt entry 0
OS handler entry 600
OS handler exit 3100
Interrupt exit 4125
Timer pulse 6850
Thread running 7700

Table 5.1: Cummulative hardware interrupt latency

University of Twente

Testing and Evaluation 29

30%

20%

25%

15%

20%

10%

0%

5%

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

microsecond jitter

Figure 5.6: Jitter on a 1ms periodic timer (10000 samples)

5.3.3 Discussion

The timer test shows that the timing jitter is well below 1%, which is sufficient for most control
applications at the CE-group. A similar test has been done by Lootsma (2008) using the same
PC104 hardware, and thus the same hardware timer, but with RTAI as OS. His results are nearly
identical, so presumably the jitter is the result of the limitations of the hardware, not from the
OS. This shows that if the interrupt is handled immediately, the jitter is acceptable for most
control applications.

The tests showed the missing of a timertick every 6535ms. This can be explained by looking at
the timerchip used in x86 hardware. The timers are derived from a 1.1931816MHz clock which
is divided by an integer divisor, before it is offered to the OS. As a result, the requested 1ms tick
is not exactly 1ms, but 0.99847ms. After 6535 ticks, one tick will be missed, as can be seen in
Figure 5.7. The lower row is the expected sequence, the upper row is the actual sequence of
ticks. Tick 6535 will not be there, because internally the counter is still at 6534.999992. The
missing of a timertick every 6535ms might not be a great issue for the systems at the CE-group,
but for high accuracy applications like a waferstepper it could be a problem. If the design re-
quires really precise timing, the only choice is to request a timer event of .999847ms and not
1ms, or use a different hardware platform.

 if (last_cycles != -1) // --- don't print first iteration
 {
 // --- could get rid of timer by using more
 // --- clever timer setup
 float elapse = (current_cycles - last_cycles) / cpu_freq;

 // --- printf if request is 50us longer then requested...
 if (elapse > .00105)
 {
 printf("Elapse %f at %dn", elapse, time(NULL)-start);
 }
 }

 last_cycles = current_cycles;
 }
}

The program checks to see if the time between two timer events is greater then 1.05 milliseconds
(ms). Most people expect that given QNX Neutrino's great real-time behavior, such a condition
will never occur. But, surprise! It will; not because of an ill behaving kernel, rather because of the
limitation in the PC hardware. It's impossible for the OS to generate a timer event at exactly 1.0
ms. It will be .99847 ms!!! This has unexpected side effects.

Where's the catch?

There is a 153 nanosecond (ns) discrepancy between the request and what the hardware can
do. The kernel timer manager is invoked every .999847 ms. Every time a timer fires, the kernel
checks to see if the timer is periodic and, if so, adds the number of nanoseconds to the expected
timer expiring point, no matter what the current time is. This phenomenon is illustrated in the
following diagram:

The first line illustrated the real time at which timer management occurs. The second line is the
time at which the kernel expects the timer to be fired.

Note what happens at 6534! The next value appears to not have incremented by 1 ms, thus the
event 6535 will NOT be fired!

For anyone that knows a bit about signal frequency, this phenomenon is called beat. When two
signals of various frequencies are "added" a third frequency is generated. This is often seen if
you use your camcorder to record a TV image. Because a TV is updated at 60 Hz and
camcorders usually operate on different frequency, at playback, one can often see a white line
that scrolls in the TV image. The speed of that line is related to the difference in frequency
between the camcorder and the TV.

In this case we have two frequencies, one is 1000 Hz and the other is 1005.495 Hz. Thus, the
beat frequency is 1.5 micro Hz, or one blip every 6535 milliseconds.

© 2004, 2007, QNX Software Systems. All rights reserved.

Figure 5.7: Difference between a 0.98847ms and 1ms clocktick. (QNX Software Systems, 2008)

The code generation from the used TimerChannel test gCSP model shown in Figure A.8 is not
optimal. The modeled linkdrivers are not real processes, but are channel implementations.

Control Engineering

30 Redesign of the CSP execution engine

gCSP still generates the parallel construct, but can only place the writer process in it, so it has
only 1 child process. In the old library this does not cause extra overhead. In the new library
for each child process in a parallel construct, a new thread is created, causing needless runtime
overhead. For this test the generated code was edited by hand to remove the extra parallel
constructs.

5.4 Production cell

5.4.1 Description

To test the combination of the software, timing and mechatronic hardware, the part of the pro-
duction cell indicated by the red square in Figure 5.8 is used. The production cell setup is a
model of a realistic plant, designed by van den Berg (2006), having several actuators that need
to cooperate and synchronize their activities. The controllers are designed by Maljaars (2006)
and implemented using 20-sim and gCSP.
8 Controlling the Production Cell using Handel-C

FIGURE 2.3 - The production cell setup

The operation sequence begins by inserting a metal block at the feeder belt. This causes the
feeder belt to transport the block to the feeder which, in turn, pushes the block against the
closed molder door. At this point, the actual molding would take place. After this, the feeder
retracts and themolder door opens. This frees theway for the extraction robot, which can now
extract the block from themolder. The block is placed on the extraction belt, which transports
it to the rotation robot. Finally, the rotation robot picks up the block from the extraction belt
and puts it on the feeder belt. Now the cycle starts again.

The belts allow for multiple blocks to be buffered, such that every PCU can be provided with a
block at all times, allowing the setup to operate all axis simultaneously. The blocks are picked
up using an electromagnet at the end of the extraction robot and the rotation robot.

2.3.1 Previouswork
Several other softwarebased solutionshavebeen made to control theproduction cell, asshown
in table 2.1.

Who Method Loop-control ler design
van den Berg (2006) Time table based 20-sim
Maljaars (2006) gCSP 20-sim
Huang et al. (2007) POOSL 20-sim
Orlic (2007) SystemCSP Not implemented

TABLE 2.1 - Currently existing controllers

All the controllers in table 2.1 are CPU based and therefore use floating point as a numerical
standard. Van den Berg (2006) uses his own loop controllers, Huang et al. (2007) uses the loop
controllers from Maljaars (2006), Orlic (2007) has not implemented loop controllers. The im-
portant differences, however, lie within the design of the software structure.

J.J.P. van Zuijlen, April 21, 2008 University of Twente

Figure 5.8: The production cell setup

The 20-sim models can still be used to generate valid C++ code. The gCSP model however,
uses BufferedChannels, which are not yet implemented in the new library. The model lacks the
sequence controller, which was implemented by hand by Maljaars.

For this test only a part of the production cell setup is used, namely the rotation robot, the
feeder belt and the extraction belt. The belts are not actively controlled, just turned on or off.
Parts of the model from Maljaars are recreated in gCSP, and slightly adapted to replace the miss-
ing BufferedChannels. The BufferedChannels were used by Maljaars to decouple the control
loop from the motionprofile generator. This is at this moment accomplished using VarChan-
nels. The controller for the rotation robot and the motionprofile generators are generated from

University of Twente

Testing and Evaluation 31

the 20-sim models from Maljaars and added to the gCSP model. The sequence controller is
made by hand because gCSP is not suited for modeling sequence controllers. The gCSP model
can be found in Figures A.9-A.15.

5.4.2 Results

The production cell runs smoothly. A small part of the kernel trace is shown in Figure 5.9. The
control loop runs in the highlighted controller thread (1), at the highest priority. On every tock
event, or timertick, the thread becomes READY, the running thread gets preempted and the
controller runs. The loop finishes well before the next occurrence of a tock event. The control
loop finshes in 70µs, an entire cycle including the calculation of the motionprofile finshes in
650µs. Analysis of all the recorded timestamps show a jitter comparable to Section 5.3.

Figure 5.9: Timeline trace of the production cell setup

5.4.3 Discussion

The part of the production cell setup that has been implemented performs according to the
specifications. The most important task, the control loop, runs uninterrupted and other pro-
cesses are preempted if the control loop wants to run. This ensures the timing requirements of
the control loop are met.

The code generated from the gCSP submodel shown in Figure A.12 is not correct. The code
generator does not recognize the combination of an Any2One channel and a LinkDriver, and
only generates the Any2One channel. This part of the code was edited by hand.

The trace shows that the control loop, the submodel in Figure A.15, finishes in 70µs. The re-
mainder of the cycle time is spent calculating the next motionprofile output, and most of all
communicating the values towards the control loop. The gCSP model is not optimal and needs
to be optimized before the remaining part of the production cell can be implemented. The
output of the motion profile generator process is communicated in parallel over three separate
channels towards the controller, which is one process. Communicating the output over one
channel at once will save a lot of threadswitches and time. A container channel, or composite
channel could be used to make the communication more efficient.

The current total cycle time of 650µs prevents the implementation of the entire production

Control Engineering

32 Redesign of the CSP execution engine

cell, containing a total of 6 control units, on one PC104 using the new CT-library and QNX. If
the communication in the model can be optimized, the total cycle time for one controller will
go down to approximately 100-140µs. This is sufficient to implement the entire production cell
on one PC104.

The old library has timing problems while controlling the entire production cell when it be-
comes filled with blocks. To determine if the new library and QNX are able to perform better,
the entire setup has to be modeled again in gCSP. The model of Maljaars should be followed
more closely, but needs some adaptation before it can be compiled against the new library.

5.5 Conclusions

The functionality tests show that the new library executes the CSP constructs and communica-
tion events correctly and in the right order. Code generated from gCSP models can be compiled
directly against the new library. The kernel event tracing proved a valuable tool for tracing the
application and system and giving detailed information about the execution times and order.
Although the switching between threads is slower compared to the old library, this will only
be of concern when there are many different CSP processes running in parallel and the sam-
ple times are short. The work of Bezemer (2008) shows promising results in optimizing those
models.

The timing tests showed that the library and QNX can reliably implement the tock event, al-
though care has to be taken when a very high precision is needed on x86 hardware.The imple-
mentation of a part of the production cell setup showed that the original 20-sim models can be
used without adaptation on the new library. The gCSP models had to be adjusted to circumvent
the BufferedChannels, which are not yet implemented. Tracing the execution of the application
proved it met the timing requirements, however to compare it to the original implementation
using the old library and RTAI, the entire setup has to be modeled and deployed using the new
library.

University of Twente

33

6 Conclusion and recommendations

6.1 Conclusions

The goal of this project was to redesign the current CSP execution engine, the CT-library, to
solve the problems with blocking system calls and timing. Analysis of the problems results
in the choice to remove the threading and scheduler from the library, and hand it over to the
operating system. A priority based preemptive scheduler retains the correct CSP scheduling
behavior, and makes deterministic response to interrupts possible.

The microkernel architecture meets the requirements for dependable real-time software and
is compatible with the synchronization method of CSP. The choice is made for QNX Neutrino,
a microkernel based real-time operating system. Added benefits are an instrumented kernel,
an integrated development environment, adaptive partitioning scheduling and very extensive
documentation.

The new CT-library is structured to let the operating system provide as much functionality as
possible. QNX provides the rendezvous channels, the threading mechanism and the scheduler
needed for the library. The most often used CSP constructs are implemented in the library,
using the QNX functionality. It is shown that kernel event tracing using the instrumented ker-
nel is a non-invasive way to acquire information about an application, without affecting the
real-timeliness of the system. Qnet extends the rendezvous channels over a network link, mak-
ing the implementation of distributed processing using RemoteChannels easy. Finally APS is
used to give the control application a guaranteed percentage of CPU time, and make remote
debugging possible even if the system is fully loaded.

To demonstrate the correct behavior of the library, several functional tests are modeled in gCSP
and tested with the library. Using specific timer tests and the production cell setup it is shown
that QNX and the new library are suitable for real-time control using the design trajectory used
at the CE-group.

6.2 Recommendations

Not the entire feature set of gCSP and the corresponding CSP constructs are implemented.
Specifically the PriAlt and SKIP guards should be implemented because the more advanced
existing models use them.

The BufferedChannel is not implemented and should be reconsidered for adding asynchronous
communication, aside the existing VarChannels.

The model of the production cell setup should be completed and deployed using the new li-
brary to be able to make a better comparison between the old library and the new one.

During the tests performed in Chapter 5, some problems with the code generation of gCSP were
found which should be resolved:
• The generation of (parallel) constructs containing only one child process is needless, and

generates extra runtime overhead.
• gCSP allows to draw invalid models, which generates incorrect code
• Code generation of VarChannels is incomplete
• Linkdrivers with multiple readers or writers are not generated correctly
The use of kernel level threads make context switching a more expensive operation. The work
of Bezemer (2008) should be continued to optimize the amount of parallel constructs in a
model.

A benefit of kernel level threads is the possibility to use multi core, or multi processor systems.
The library supports true parallelism, but this has not been tested. Further research is needed

Control Engineering

34 Redesign of the CSP execution engine

on this subject.

Kernel event tracing provides a wealth of information about a running system. The QNX Foun-
dation Classes should be examined and used to give runtime information about the system and
eventually make it possible to use the animation framework of van der Steen et al. (2008) again.

The newest version of QNX Neutrino, 6.4.0 provides substantial performance improvements,
as well as major improvements in the IDE and tracing functionality. This new version should
be used in further development.

The use of Adaptive Partitioning Scheduling should be further investigated. In version 6.4.0 of
QNX Neutrino, the option is added to be notified when a partition exceeds its budget. This way
APS could be used for deadline monitoring.

University of Twente

35

A gCSP models

In this appendix the models can be found which are used in Chapter 5.

A.1 Functional test models

(a) Sequential (b) Parallel (c) PriParallel
Figure A.1: Simple construct examples

Figure A.2: Sequential with communication test

Figure A.3: Complex Pri-parallel test

Control Engineering

36 Redesign of the CSP execution engine

(a) Deadlock

(b) Deadlock-free
Figure A.4: Producer Consumer example

(a) Toplevel

(b) Producer (c) AltConsumer
Figure A.5: Alting with inputguards example

University of Twente

gCSP models 37

Figure A.6: Dining philosophers with butler test

Figure A.7: ComsTime test

Control Engineering

38 Redesign of the CSP execution engine

A.2 Timing tests models

Figure A.8: TimerChannel test

A.3 Production cell model

Figure A.9: Toplevel

Figure A.10: Sequence controller

University of Twente

gCSP models 39

Figure A.11: Motion generator

Figure A.12: Motion backward generator

Figure A.13: Control process

Control Engineering

40 Redesign of the CSP execution engine

Figure A.14: read motion process

Figure A.15: Controller

University of Twente

41

B Compiling the ct-library

B.1 Introduction

The library is developed in the QNX Momentics IDE 4.5, using the GCC 3.3.5 compiler. The
source can be found in svn, or in the files that come with this report. There is one dependency,
the QNX Foundation Classes (QFC) (Allen, 2008), which are still continuously improving.

B.2 Checking out the source

If you do want to check out the source, use the IDE. Switch to the SVN Repository (Window
-> Open Perspective) and add the repository. At this moment the source can be found in the
develop svn, or in the files deliverd with this report. Check out the ct-library.

Next, add the QFC repository, as mentioned in the tutorial on the website. Checkout the sigc++
and qfc projects. Switch to the C/C++ perspective and set the correct build configuration for the
two projects by right-clicking on the project and choosing Build Configuration and selecting
ntox86-gcc-3.3.5-debug. Now first build the sigc++ project, and afterwards the qfc project.
Transfer the two created libraries to the target and place them in /lib.

B.3 Compiling the library

The settings for the ct-library project should already be correct, otherwise add the the sigc++
and qfc library-headers to the configuration of the ct-library by opening the properties of the
project. The headers of the libraries should be added under C/C++ Build -> Settings -> QCC
Compiler -> Preprocessor and can be referenced from the existing projects. Add also the in-
clude directory of the ct-library to the Preprocessor. Next compile the ct-library.

B.4 Using the library

To create an application with the ct-library, create a new QNX C++ program. Give it a name in
the dialog and on the next window, select the required build variants. Finish the dialog. Next
edit the properties of the project. On the QNX C/C++ Project tab you can turn on profiling.
On the Compiler tab select the correct compiler and add as extra include paths from the ct-
library project the include directory, from the qfc and sigc++ projects the public directory. On
the Linker tab select the Extra Libraries from the dropdown and add the libraries from the ct-
library, qfc, and sigc++ libraries. Now the application can be compiled.

The basic BuildingBlocks used in the old library can still be used. They are available in the ct-
library source-tree. To use them, copy the directory to your project, and add the source and
header files to the build process.

Some examples are available in the examples directory in the ct-library source-tree. There is
not yet an easy way to build them, so copy the desired example to a new project and compile it.

Control Engineering

42 Redesign of the CSP execution engine

C Kernel event tracing

This appendix shows how to create a kernel image with the instrumented kernel and how to
use kernel event tracing from the QNX Momentics IDE.

C.1 Configuring the instrumented kernel

To see if the normal kernel or the instrumented version is running, look in /proc/boot for
the file procnto. If it is there, the normal kernel is running. If procnto-inst is there, the
instrumented kernel is running.

To create a bootfile with the instrumented kernel, the following buildfile can be used:� �
#
The build f i l e for QNX Neutrino booting on a PC
#
[v i r t u a l =x86 , bios +compress] boot = {

Reserve 64k of video memory to handle multiple video cards
startup−bios

PATH i s the * safe * path for executables (confstr (_CS_PATH . . .))
LD_LIBRARY_PATH i s the * safe * path for l i b r a r i e s
(confstr (_CS_LIBPATH))
i . e . This i s the path searched for l i b s in
setuid / setgid executables .
PATH=/proc/boot : / bin : / usr /bin : / opt/bin \

LD_LIBRARY_PATH=/proc/boot : / l i b : / usr / l i b : / l i b / d l l : / opt/ l i b \
procnto−i n s t r

}

[+ s c r i p t] startup−s c r i p t = {
To save memory make everyone use the l i b c in the boot image !
For speed (l e s s symbolic lookups) we point to l i b c . so . 2
instead of l i b c . so
procmgr_symlink . . / . . / proc/boot/ l i b c . so . 2 / usr / l i b /ldqnx . so . 2

Default user programs to p r i o r t y 10 , other scheduler (pri =10o)
T e l l " diskboot " t h i s i s a hard disk boot (−b1)
T e l l " diskboot " to use DMA on IDE drives (−D1)
S t a r t 4 t e x t consoles buy passing "−n4" to "devc−con" (−o)
By adding "−e" linux ext2 f i lesystem w i l l be mounted as well .
[pr i =10o] PATH=/proc/boot diskboot −b1 −D0 \

−odevc−con,−n4 −odevc−con−hid ,−n4
}

Include the current " l i b c . so " . I t w i l l be created as a r e a l f i l e
using i t s i nte r na l "SONAME" , with " l i b c . so" being a symlink to i t .
The symlink w i l l point to the l a s t " l i b c . so . * " so i f an e a r l i e r
l i b c i s needed (e . g . l i b c . so . 1) add i t before the t h i s l i n e .
l i b c . so
l i b h i d d i . so
libusbdi . so

University of Twente

Kernel event tracing 43

Include a l l the f i l e s for the default f i lesystems
libcam . so
io−blk . so
cam−disk . so
fs−qnx4 . so

USB for console driver
devu−ehci . so
devu−ohci . so
devu−uhci . so
devh−usb . so
devh−ps2ser . so

These programs only need to be run once from the boot image .
" data=uip" w i l l waste l e s s memory as the ram from the boot
image w i l l be used d i r e c t l y without making a copy of the data
(i . e . as the default " data=cpy" does) . When they have been
run once , they w i l l be unlinked from /proc/boot .
[data=copy]
seedres
pci−bios
devb−eide
diskboot
slogger
fesh
devc−con
devc−con−hid
io−usb
io−hid� �
To create the bootfile, execute the following command:� �
mkifs b u i l d f i l e bootimage . i f s� �
Replace the current boot image with the new one. First copy the current (working) bootfile to
the alternate bootimage, then copy the new one.� �
cp / . boot / . altboot
cp bootimage . i f s / . boot� �
Note that the .boot and .altboot files cannot be moved or deleted, only replaced. After a reboot
the system will be running the instrumented kernel.

C.2 Using the IDE for kernel tracing

You can gather trace events from the instrumented kernel in two different ways. You can run a
command-line utility (e.g. tracelogger) on the target to generate a log file, and then transfer that
log file back to the development environment for analysis. Or, you can capture events directly
from the IDE using the Log Configuration dialog.

The easiest way to use kernel even tracing is from the IDE. Make sure the target is connected to
the IDE, otherwise start qconn on the target.

Control Engineering

44 Redesign of the CSP execution engine

Figure C.1: Log Configuration dialog

In the Target Navigator view, right-click a target, then select Log With...–>Kernel Event Trace
from the menu. If you don’t have the Target Navigator view open, choose Window–>Show
View–>Other..., then QNX Targets–>Target Navigator.

The Log Configuration dialog as in Figure C.1 will show. Do not set the Period of time too long,
the amount of data will get very large. On the Event Filters tab you can specify what will be
traced. When you click Log, the logging will start and afterwards the logfile will be transfered to
the IDE. If it does not open automatically, open it and switch to the System Profiler Perspective.
There a summary of the tracelog is given. If you switch to the timeline view, a detailed view of
all the processes and threads can be seen, including the communication, threadstates, thread-
names etc. An example is given in Figure C.2. For more information about kernel tracing and
the IDE see the guides on the QNX website.

University of Twente

Kernel event tracing 45

Figure C.2: Kernel event tracing timeline

Control Engineering

46 Redesign of the CSP execution engine

D Adaptive Partitioning Scheduler

To use the adaptive partitioning scheduler the bootimage has to be modified. The buildfile
from Appendix C can be used. The attribute [module=aps] has to be added to the command
that launches procnto. In case of the mentioned buildfile it becomes:

[module=aps] PATH=/proc/boot:/bin:/usr/bin:/opt/bin \
LD_LIBRARY_PATH=/proc/boot:/lib:/usr/lib:/lib/dll:/opt/lib \
procnto-instr

Rebuild the bootimage and copy it to the target, as mentioned in Appendix C.

To see if APS is activated correctly use aps show. If it is it will show something like:

$ aps show
+---- CPU Time ----+-- Critical Time --

Partition name id | Budget | Used | Budget | Used
--------------------+------------------+-------------------
System 0 | 100% | 36.24% | 100ms | 0.000ms
--------------------+------------------+-------------------
Total | 100% | 36.24% |

At this moment there is only the default System partition which has a budget of 100%. From
the command line new partitions can be created. For example:� �
aps create −b10 Debug� �
will create a partition named Debug, with a budget of 10%. To start a program in the newly
created partition use the following command:� �
on −Xaps=Debug program� �
D.1 Remote debugging

APS can be used to ensure a system can always be reached and debugged remotely, even if
some high priority process is utilizing the entire system (Say 100% CPU time). Therefore we
need to edit the buildfile again, and add the following lines after ######� �
Create an example scheduler p a r t i t i o n
Create a 10% p "Debugging"
sched_aps Debugging 10

S t a r t qconn in the Debugging p a r t i t i o n
[sched_aps=Debugging] / usr / sbin /qconn
S t a r t t e l n e t in the Debugging p a r t i t i o n
[sched_aps=Debugging] / usr / sbin / telnetd −debug&� �
Because we want to use remote debugging, the io-net process has to be run in the debugging
partition as well. This requires a bit more work, a special executable has to be created. This is
the source code:� �
#include <stdio . h>
#include <sys /procmgr . h>

University of Twente

Adaptive Partitioning Scheduler 47

// s t a r t io−net for enumeration purposes , putting i t into a p a r t i t i o n

main(i n t argc , char * argv [])
{
system (" / bin/on −X aps=Debugging / sbin / io−net −ptcpip ") ;
system (" / bin/ waitfor /dev/ io−net ") ;

// move to background
procmgr_daemon (0 , 0) ;

sleep (6 0) ; // wait for 1 minute
e x i t (0) ;
}� �
Compile it with:� �
qcc s t a r t n e t . c −o s t a r t n e t� �
Copy the binary startnet to /sbin/startnet on the target. Next edit the file
/etc/system/enum/include/net and change the line set(IONET_CMD, io-net -ptcpip)
to set(IONET_CMD, "startnet").

This extra operation is required because every time that the enumerator code decides to start a
new network interface, it first looks to see if the program pointed to by IONET CMD is running
and starts it if it is not. If it is already running, then instead of starting a new instance, it uses
mount -Tio-net to add the new interface to the existing io-net process. If startnet did not
wait around, then it would get started again, and start up multiple io-net processes, which is
not desired.

The final thing you need to do is to move the line in the build file that creates the partition, so
that it is created before io-net gets started by diskboot. The bootfile will become:� �
#
The build f i l e for QNX Neutrino booting on a PC
#
[v i r t u a l =x86 , bios +compress] boot = {

Reserve 64k of video memory to handle multiple video cards
startup−bios

PATH i s the * safe * path for executables (confstr (_CS_PATH . . .))
LD_LIBRARY_PATH i s the * safe * path for l i b r a r i e s \
(confstr (_CS_LIBPATH))
i . e . This i s the path searched for l i b s in
setuid / setgid executables .
The module=aps enables the adaptive p a r t i t i o n i n g scheduler
[module=aps] PATH=/proc/boot : / bin : / usr /bin : / opt/bin \

LD_LIBRARY_PATH=/proc/boot : / l i b : / usr / l i b : / l i b / d l l : / opt/ l i b \
procnto−i n s t r

}

[+ s c r i p t] startup−s c r i p t = {
To save memory make everyone use the l i b c in the boot image !
For speed (l e s s symbolic lookups) we point to
l i b c . so . 2 instead of l i b c . so

Control Engineering

48 Redesign of the CSP execution engine

procmgr_symlink . . / . . / proc/boot/ l i b c . so . 2 / usr / l i b /ldqnx . so . 2

Create an example scheduler p a r t i t i o n
Create a 10% p a r t i t i o n named "Debugging"
sched_aps Debugging 10

Default user programs to p r i o r t y 10 , other scheduler (pri =10o)
T e l l " diskboot " t h i s i s a hard disk boot (−b1)
T e l l " diskboot " to use DMA on IDE drives (−D1)
S t a r t 4 t e x t consoles buy passing "−n4" to "devc−con" (−o)
By adding "−e" linux ext2 f i lesystem w i l l be mounted as well .
[pr i =10o] PATH=/proc/boot diskboot −b1 −D0 \

−odevc−con,−n4 −odevc−con−hid ,−n4

S t a r t qconn in the Debugging p a r t i t i o n
[sched_aps=Debugging] / usr / sbin /qconn
S t a r t t e l n e t in the Debugging p a r t i t i o n
[sched_aps=Debugging] / usr / sbin / telnetd −debug&

}

Include the current " l i b c . so " . I t w i l l be created as a r e a l f i l e
using i t s i nte r na l "SONAME" , with " l i b c . so" being a symlink to i t .
The symlink w i l l point to the l a s t " l i b c . so . * " so i f an e a r l i e r
l i b c i s needed (e . g . l i b c . so . 1) add i t before the t h i s l i n e .
l i b c . so
l i b h i d d i . so
libusbdi . so

Include a l l the f i l e s for the default f i lesystems
libcam . so
io−blk . so
cam−disk . so
fs−qnx4 . so

USB for console driver
devu−ehci . so
devu−ohci . so
devu−uhci . so
devh−usb . so
devh−ps2ser . so

These programs only need to be run once from the boot image .
" data=uip" w i l l waste l e s s memory as the ram from the boot
image w i l l be used d i r e c t l y without making a copy of the data
(i . e . as the default " data=cpy" does) . When they have been
run once , they w i l l be unlinked from /proc/boot .
[data=copy]
seedres
pci−bios
devb−eide

University of Twente

Adaptive Partitioning Scheduler 49

diskboot
slogger
fesh
devc−con
devc−con−hid
io−usb
io−hid� �
Create a new bootimage from the buildfile and transfer it to the target. Reboot and the new
remote debugging in a separate partition is available.

D.2 Using APS from source code

The partitions can be modified from an application and an application can put its threads in
specific partitions.

To create partitions and add the application to it the following code can be used:� �
// F i r s t join the System parti t ion , otherwise we can ’ t make new p a r t i t i o n s
sched_aps_join_parms join_data ;
memset(& join_data , 0 , s i z e o f (join_data)) ;
join_data . id = 0 ;
join_data . pid = 0 ;
join_data . t i d = 0 ;
i n t r e t = SchedCtl (SCHED_APS_JOIN_PARTITION , &join_data ,

s i z e o f (join_data)) ;
i f (r e t != EOK)
{

p r i n t f (" Couldn ’ t join p a r t i t i o n %d : %s (%d) . \ n" ,
join_data . id , s t r e r r o r (errno) , errno) ;

}
e lse
{

p r i n t f ("Now in p a r t i t i o n %d . \ n" , join_data . id) ;
}

// Create new p a r t i t i o n for ou rsel f
i n t p a r t i t i o n _ i d ;
sched_aps_create_parms creation_data ;
memset(& creation_data , 0 , s i z e o f (creation_data)) ;
creation_data . budget_percent = 80;
creation_data . critical_budget_ms = 10;
creation_data .name = "ControlLoop " ;
r e t = SchedCtl (SCHED_APS_CREATE_PARTITION, &creation_data ,

s i z e o f (creation_data)) ;
i f (r e t != EOK)
{

std : : cout << "Couldn ’ t create p a r t i t i o n \""
<< creation_data .name << " \ " : "
<< s t r e r r o r (errno) << " (" << errno << ") . "
<< std : : endl ;

// I f the p a r t i t i o n already e x i s t s ,
// we need to find out the id of i t

Control Engineering

50 Redesign of the CSP execution engine

sched_aps_lookup_parms lookup_data ;
memset(&lookup_data , 0 , s i z e o f (lookup_data)) ;
lookup_data .name = "ControlLoop " ;
r e t = SchedCtl (SCHED_APS_LOOKUP, &lookup_data ,
s i z e o f (lookup_data)) ;
i f (r e t != EOK)
{

std : : cout << "Couldn ’ t find p a r t i t i o n \""
<< lookup_data .name << " \ " : "
<< s t r e r r o r (errno) << " (" << errno << ") . "
<< std : : endl ;
// e x i t (−1);

}
p a r t i t i o n _ i d = lookup_data . id ;

}
e lse
{

std : : cout << "The new part i t ion ’ s ID i s "
<< creation_data . id << " . " << std : : endl ;

p a r t i t i o n _ i d = creation_data . id ;
}
// Join the ControlLoop p a r t i t i o n which we j u s t created , or lookup
memset(& join_data , 0 , s i z e o f (join_data)) ;
join_data . id = p a r t i t i o n _ i d ;
join_data . pid = 0 ;
join_data . t i d = 0 ;
r e t = SchedCtl (SCHED_APS_JOIN_PARTITION , &join_data ,

s i z e o f (join_data)) ;
i f (r e t != EOK)
{

p r i n t f (" Couldn ’ t join p a r t i t i o n %d : %s (%d) . \ n" ,
join_data . id , s t r e r r o r (errno) , errno) ;

}
e lse
{

p r i n t f ("Now in p a r t i t i o n %d . \ n" , join_data . id) ;
}� �

University of Twente

51

E Qnet

Qnet is the protocol used by QNX to implement transparent distributed processing. The pro-
tocol assumes a trusted network, so do not connect it directly to the internet or UTnet. For
information about the exact working of Qnet, look at the website of QNX.

E.1 Configuring

This how-to assumes a setup using ethernet as the network link.

The easiest way to start Qnet at boottime is by creating a useqnet file. Log in as root and
execute the following:� �
touch / etc /system/ config /useqnet� �
If you want to start Qnet yourself the following applies. To use Qnet over ethernet the driver
has to be started first, after which the Qnet driver can be started:� �
mount −Tio−net devn−<network−driver > &
mount −Tio−net / usr / l i b /npm−qnet . so &� �
At this point other Qnet enabled hosts appear in the /net directory. If the /net directory does
not exits, Qnet is not running. A listing of /net/node_name shows the pathname of the specific
node.

E.2 Using Qnet

To start a process on another node:� �
on −f none_name <command>� �
To gather diagnostic process information of qnet:� �
cat /proc/ qnetstats | grep −e "ok" −e "bad"� �
QNX allows for direct resource access across different nodes. To access a remote anything I/O
card a simple program will suffice. The file descriptor can be used as a channel for the msgSend
and msgRecieve as well as read(),write(),devctl(). The following codesnippet is an example:� �
/*Open a s e r i a l device on a d i f f e r e n t node
fd = open(" / net /node1/dev/ ser1 " , O_RDWR) ;
i f (fd == −1)
{

f p r i n t f (stderr , "Unable to open remote device : %s \n" ,
s t r e r r o r (errno)) ;
return EXIT_FAILURE ;

}

r e t = MsgSend(fd , &msg, s i z e o f (msg) , msg_reply , 255) ;
i f (r e t == −1)
{

f p r i n t f (stderr , "Unable to MsgSend () to remote device : %s \n"
, s t r e r r o r (errno)) ;

return EXIT_FAILURE ;
}

Control Engineering

52 Redesign of the CSP execution engine

p r i n t f (" c l i e n t : remote device replied : %s \n" , msg_reply) ;

close (fd) ;� �

University of Twente

Bibliography 53

Bibliography

Adeos Project (2004), Adeos.
http://home.gna.org/adeos/

Allen, R. (2008), QNX Foundation Classes.
http://community.qnx.com/sf/projects/qfc

van den Berg, B. (2006), Design of a Production Cell Setup, MSc Thesis 016CE2006, Control
Laboratory, University of Twente.

Bezemer, M. (2008), Analyzing gCSP models using runtime and model analysis algorithms,
MSc report 034CE2008, Control Laboratory, University of Twente.

Broenink, J. (1999), 20-Sim software for hierarchical bond-graph/block-diagram models,
Simulation Practice and Theory, 7, pp. 481–492.

Broenink, J. F., M. A. Groothuis, P. M. Visser and B. Orlic (2007), A Model-Driven Approach to
Embedded Control System Implementation, in 2007 Western Multiconference on Computer
Simulation, SCS, San Diego, CA.

Broenink, J. F. and G. H. Hilderink (2001), A structured approach to embedded control systems
implementation, in 2001 IEEE International Conference on Control Applications, Eds.
M. Spong, D. Repperger and J. Zannatha, IEEE, México City, México, pp. 761–766.
http://www.ce.utwente.nl/rtweb/publications/2001/pdf-files/042R2001.pdf

Brown, N. and P. Welch (2003), An Introduction to the Kent C++CSP Library, in Communicating
Process Architectures 2003, volume 61 of Concurrent Systems Engineering Series, Eds.
J. Broenink and G. Hilderink, IOS Press, Amsterdam, The Netherlands, volume 61 of
Concurrent Systems Engineering Series, pp. 139–156, ISBN 1-58603-381-6, ISSN 1383-7575.
http://www.cs.kent.ac.uk/pubs/2003/1784

Brown, N. C. C. (2007), C++CSP2: A Many-to-Many Threading Model for Multicore
Architectures, in Communicating Process Architectures 2007, Eds. A. A. McEwan, W. Ifill and
P. H. Welch, pp. 183–205, ISBN 978-1586037673.

Controllab Products (2008), 20-sim.
http://www.20sim.com

Cooling, J. (2000), Software Engineering for Real-Time Systems, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, ISBN 0201596202.

Damstra, A. (2008), Virtual prototyping through co-simulation in hardware/software and
mechatronics co-design, MSc report 005CE2008, Control Laboratory, University of Twente.

Deen, B. (2007), CT - I/O linkdriver with COMEDI, Pre-doctoral assignment-Report
009CE2007, Control Laboratory, University of Twente.

DIAPM (2008), RealTime Application Interface for Linux.
http://www.rtai.org

Formal Systems (Europe) Limited (2008), FDR2.
http://www.fsel.com/software.html

Hendriks, A. (1998), Design of a Realtime and Embedded Scheduler in Java, MSc 057R98,
Control Laboratory, University of Twente.

High Integrity Systems (2008), OpenRTOS.
http://openrtos.highintegritysystems.com

Hilderink, G., J. Broenink and A. Bakkers (1997), Communicating Java Threads, in Parallel
Programming and Java, Proceedings of WoTUG 20, volume 50, IOS Press, Netherlands,
University of Twente, Netherlands, volume 50, pp. 48–76.
http://www.ce.utwente.nl/rtweb/publications/1999/pdf-files/014_R99.pdf

Control Engineering

http://home.gna.org/adeos/
http://community.qnx.com/sf/projects/qfc
http://www.ce.utwente.nl/rtweb/publications/2001/pdf-files/042R2001.pdf
http://www.cs.kent.ac.uk/pubs/2003/1784
http://www.20sim.com
http://www.rtai.org
http://www.fsel.com/software.html
http://openrtos.highintegritysystems.com
http://www.ce.utwente.nl/rtweb/publications/1999/pdf-files/014_R99.pdf

54 Redesign of the CSP execution engine

Hilderink, G. H. (2005), Managing Complexity of Control Software through Concurrency, Phd
thesis, University of Twente, Netherlands.

Hilderink, G. H., A. W. P. Bakkers and J. F. Broenink (2000), A Distributed Real-Time Java
System Based on CSP, in ISORC ’00: Proceedings of the Third IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, IEEE Computer Society, Washington,
DC, USA, p. 400, ISBN 0-7695-0607-0.

Hoare, C. (1985), Communicating Sequential Processes, Prentice Hall International Series in
Computer Science, Prentice Hall.
http://www.usingcsp.com/cspbook.pdf

INMOS (1988), occam 2 Reference Manual, Prentice Hall.

Istin, C. (2007), Extend the link between modeling and formal verification for control systems,
MSc report 020CE2007, Control Laboratory, University of Twente.

Jovanovic, D. S., B. Orlic, G. K. Liet and J. F. Broenink (2004), gCSP: A Graphical Tool for
Designing CSP systems, in Communicating Process Architectures 2004, Eds. I. East, J. Martin,
P. H. Welch, D. Duce and M. Green, IOS press, Oxford, UK, pp. 233–251.
http://doc.utwente.nl/49238/1/jovanovic04gcsp.pdf

Liedtke, J. (1993), Improving IPC by Kernel Design, in Proceedings of the 14th Symposium on
Operating System Principles (SOSP-14), Asheville, NC.
http://l4ka.org/publications/

Liedtke, J. (1995), On micro-kernel construction, in SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, ACM, New York, NY, USA, pp. 237–250, ISBN
0-89791-715-4, doi:http://doi.acm.org/10.1145/224056.224075.

Lootsma, M. (2008), Design of the global software structure and controller framework for the
3TU soccer robot, Msc Thesis 014CE2008, Control Laboratory, University of Twente.

Maljaars, P. (2006), Control of the Production Cell Setup, MSc Thesis 039CE2006, Control
Laboratory, University of Twente.

Marwedel, P. (2006), Embedded system design, Springer.

Molanus, J. (2008), Feasibility analysis of QNX Neutrino for CSP based Embedded Control
Systems, MSc 032CE2008, Control Laboratory, University of Twente.

Moores, J. (1999), CCSP – a Portable CSP-based Run-time System Supporting C and occam, in
Architectures, Languages and Techniques for Concurrent Systems, volume 57 of Concurrent
Systems Engineering series, Ed. B.M.Cook, WoTUG, IOS Press, Amsterdam, the Netherlands,
volume 57 of Concurrent Systems Engineering series, pp. 147–168, ISBN 90 5199 480 X.
http://www.cs.kent.ac.uk/pubs/1999/753

Orlic, B. (2007), SystemCSP a graphical language for designing concurrent, component-based
embedded control systems, Phd-thesis, Control Laboratory, University of Twente.

Orlic, B. and J. F. Broenink (2003), Real-time and fault tolerance in distributed control
software, in Communicating Process Architectures 2003, Eds. J. F. Broenink and G. H.
Hilderink, IOS Press, Enschede, Netherlands, pp. 235–250.

Orlic, B. and J. F. Broenink (2004), Redesign of the C++ Communicating Threads Library for
Embedded Control Systems, in 5th PROGRESS Symposium on Embedded Systems, Ed.
F. Karelse, STW, Nieuwegein, NL, pp. 141–156.

Posthumus, R. (2007), Data logging and Monitoring for real-time systems, MSc report
015CE2007, Control Laboratory, University of Twente.

QNX Software Systems (2008), QNX.
http://www.qnx.com

Rashid, R., D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub and M. Jones (1989), Mach: A

University of Twente

http://www.usingcsp.com/cspbook.pdf
http://doc.utwente.nl/49238/1/jovanovic04gcsp.pdf
http://l4ka.org/publications/
http://www.cs.kent.ac.uk/pubs/1999/753
http://www.qnx.com

Bibliography 55

System Software kernel, in Proceedings of the 34th Computer Society International
Conference COMPCON 89.

Roscoe, A. W., C. A. R. Hoare and R. Bird (1997), The Theory and Practice of Concurrency,
Prentice Hall PTR, Upper Saddle River, NJ, USA, ISBN 0136744095.

Schneider, S. (1999), Concurrent and Real Time Systems: The CSP Approach, John Wiley & Sons,
Inc., New York, NY, USA, ISBN 0471623733.

Silberschatz, A., P. B. Galvin and G. Gagne (2004), Operating System Concepts, John Wiley &
Sons, ISBN 0471694665.

van der Steen, T. T. J., M. A. Groothuis and J. F. Broenink (2008), Designing Animation Facilities
for gCSP, in Communication Process Architectures 2008, York, United Kingdom, volume 66 of
Concurrent Systems Engineering Series, Elsevier, Amsterdam, volume 66 of Concurrent
Systems Engineering Series, p. 447, ISSN 1383-7575.

Technical University of Dresden (2008), TUDOS.
http://tudos.org

Welch, P. (2002), Process Oriented Design for Java: Concurrency for All, in Computational
Science - ICCS 2002, volume 2330 of Lecture Notes in Computer Science, Eds. P.M.A.Sloot,
C.J.K.Tan, J.J.Dongarra and A.G.Hoekstra, Springer-Verlag, volume 2330 of Lecture Notes in
Computer Science, pp. 687–687, ISBN 3-540-43593-X, ISSN 0302-9743, keynote Tutorial.
http://www.cs.kent.ac.uk/pubs/2002/1383

Xenomai (2008), Xenomai: Real-Time Framework for Linux.
http://www.xenomai.org

Control Engineering

http://tudos.org
http://www.cs.kent.ac.uk/pubs/2002/1383
http://www.xenomai.org

	Summary
	Samenvatting
	Contents
	1 Introduction
	1.1 Context
	1.2 Goals of the assignment
	1.3 Report outline

	2 Background
	2.1 Design methodology
	2.2 Hardware architectures
	2.3 Software architectures

	3 Analysis
	3.1 Requirements
	3.2 Current architecture and problems
	3.3 New architecture and approach
	3.4 Conclusions

	4 Design and implementation
	4.1 Introduction
	4.2 Processes
	4.3 Constructs
	4.4 Channels
	4.5 Tracing and profiling
	4.6 Qnet
	4.7 Adaptive Partitioning Scheduler
	4.8 Conclusions

	5 Testing and Evaluation
	5.1 Introduction
	5.2 Functional tests
	5.3 Timing test
	5.4 Production cell
	5.5 Conclusions

	6 Conclusion and recommendations
	6.1 Conclusions
	6.2 Recommendations

	A gCSP models
	A.1 Functional test models
	A.2 Timing tests models
	A.3 Production cell model

	B Compiling the ct-library
	B.1 Introduction
	B.2 Checking out the source
	B.3 Compiling the library
	B.4 Using the library

	C Kernel event tracing
	C.1 Configuring the instrumented kernel
	C.2 Using the IDE for kernel tracing

	D Adaptive Partitioning Scheduler
	D.1 Remote debugging
	D.2 Using APS from source code

	E Qnet
	E.1 Configuring
	E.2 Using Qnet

	Bibliography

