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Summary

Current popular web search engines, such as Google, Live Search and Yahoo!,
rely on crawling to build an index of the World Wide Web. Crawling is a contin-
uous process to keep the index fresh and generates an enormous amount of data
traffic. By far the largest part of the web remains unindexed, because crawlers
are unaware of the existence of web pages and they have difficulties crawling
dynamically generated content.

These problems were the main motivation to research distributed web search.
We assume that web sites, or peers, can index a collection consisting of local
content, but possibly also content from other web sites. Peers cooperate with
a broker by sending a part of their index. Receiving indices from many peers,
the broker gains a global overview of the peers’ content. When a user poses a
query to a broker, the broker selects a few peers to which it forwards the query.
Selected peers should be promising to create a good result set with many relevant
documents. The result sets are merged at the broker and sent to the user.

This research focuses on collection selection, which corresponds to the selec-
tion of the most promising peers. The use of highly discriminative keys is em-
ployed as a strategy to select those peers. A highly discriminative key is a term
set which is an index entry at the broker. The key is highly discriminative with
respect to the collections because the posting lists pointing to the collections are
relatively small. Query-driven indexing is applied to reduce the index size by only
storing index entries that are part of popular queries. A PageRank-like algorithm
is also tested to assign scores to collections that can be used for ranking.

The Sophos prototype was developed to test these methods. Sophos was eval-
uated on different aspects, such as collection selection performance and index
sizes. The performance of the methods is compared to a baseline that applied
language modeling onto merged documents in collections. The results show that
Sophos can outperform the baseline with ad-hoc queries on a web based test set.
Query-driven indexing is able to substantially reduce index sizes against a small
loss in collection selection performance. We also found large differences in the
level of difficulty to answer queries on various corpus splits.





Preface

My first steps in the field of Information Retrieval were with a course of the same
name. During that course, Matthijs Ooms and I developed an image retrieval
system for young children and wrote a paper about its evaluation. Djoerd en-
couraged me to improve the paper to get it accepted for a conference, resulting
in my first publication and my first visit to a conference.

During this conference, Djoerd and I were walking through the streets of
Maastricht when heavy rainfall set in. We took shelter and started talking about
my career plans. That conversation changed my view on academic research, mak-
ing it a serious option as a next career step. Being at that conference also had a
strong motivational impact in completing this research. I would like to express
my gratitude to Djoerd for his big and positive role in the last part of my study.

I would also like to thank my other two supervisors for their added value. I
have got to know Pavel as a knowledgeable person with great insight in Informa-
tion Retrieval. And, although I know Almer for a relatively short but enjoyable
period of time, his quick and direct feedback really improved this thesis.

This research benefited from discussions with Harold van Heerde, Matthijs
Ooms, Robin Aly and Viet Yen Nguyen, but most notably Simon de Hartog. Simon
also taught me some lessons in efficient coding; a coding match for a small tool
was miserably lost by me (C#) in favor of Simon (C++). Special thanks go out
to Ander de Keijzer, who put his machine at my disposal so that I could run my
experiments.

I would also like to thank my fellow lab rats: Bertold, Erwin, Kien, Matthijs
(Abma and Ooms), Maurits, Michiel, Peter, Remko and Sven. They were always in
for serious helpful talk or some relaxing fun chat. I will miss those conversations,
but most of all, I will miss our pleasant “4-uur Cup-a-Choco”.

This thesis would never have existed without the unconditional support of
my parents Jos and Yvonne: mom, dad, thank you from the bottom of my heart.

Enschede, February 2009 Sander Bockting





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Information retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 General introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Centralized search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Problems with centralized search . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Distributed information retrieval . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Short introduction to highly discriminative keys . . . . . . . . . . . . . . . . . 4
1.4 Research scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature about distributed information retrieval . . . . . . . . . . . . . . . . . . 9
2.1 Collection selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Vector space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Cue validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Inference networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Language modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Highly discriminative keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Distributed hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Indexing rare keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Query-driven indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Query-adaptive partial distributed hash table . . . . . . . . . . . . . 16
2.3.2 Pruning a broker index using a query log . . . . . . . . . . . . . . . . . 17
2.3.3 Indexing based on query popularity . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Distributed PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Google PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Distributed calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



XII Contents

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Sophos: a highly discriminative key prototype . . . . . . . . . . . . . . . . . . . . . 23
3.1 Highly discriminative keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Local indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Global indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Query-driven indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 ScoreFunction: ranking the HDK query results . . . . . . . . . . . . . . . . . . . 25

3.3.1 Identifying query result parameters . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Desired ranking properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 ScoreFunction: the formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Assigning weights to formula components . . . . . . . . . . . . . . . . 29

3.4 ColRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 ColRank with highly discriminative keys . . . . . . . . . . . . . . . . . 30

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Evaluation of collection selection methods . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Data collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 WT10G corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Splitting WT10G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 WT10g retrieval tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4 AOL query log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.5 Excite query logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Evaluations of collection selection methods . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Collection selection method specific settings . . . . . . . . . . . . . . 39

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Sophos index implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 Unique term index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Corpus term analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Technical explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.3 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Multi-level term index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Structure of the index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Contents of the index nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Points of attention before looking at the graphs . . . . . . . . . . . . . . . . . . 55
6.2 Corpus splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Random splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.2 IP based splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Query-driven indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Contents XIII

6.4 Discussing the effects of highly discriminative key parameters . . . . 72
6.5 ColRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.6 Results of different scoring formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.7 Difference between types of recall graphs . . . . . . . . . . . . . . . . . . . . . . . 78

6.7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.8 Scalability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.8.1 Global index size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.8.2 Local index size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.8.3 Network traffic requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.8.4 Using a larger test corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1 Corpus splits and query types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Highly discriminative keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3 Query-driven indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4 ColRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1 Implementing an optimized distributed system . . . . . . . . . . . . . . . . . . 91
8.2 Improving collection selection results . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3 Query-driven indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Zipf in corpus splits based on IP address . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B Merit in corpus splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C Random collection selection performance . . . . . . . . . . . . . . . . . . . . . . . . . 99
C.1 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
C.2 Cumulative recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
C.3 Detecting random selection in a cumulative recall graph . . . . . . . . . 101

D Index size with QDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113





1

Introduction

Knowledge is of two kinds. We know a subject ourselves, or
we know where we can find information on it.

– Dr. Samuel Johnson (1709–1784)

1.1 Information retrieval

1.1.1 General introduction

Nowadays, almost everybody has used Internet search engines. Although the
goals may vary widely – obtaining stock information, writing a paper or just
getting some recipes for dinner – all users have something in common: they
start with an information need. A user can describe the information need by for-
mulating a query. A query is a set of terms, or keywords, which enables a search
engine to find relevant documents that help fulfilling the users’ information need.
Generally, it does so by matching the query terms to the words contained in the
documents. Instead of comparing queries with all documents, an index is distilled
from all documents in the corpus and this is used for the matching process. This
index is comparable to the index in the back of a book. Models and techniques
have been developed to optimize the retrieval of those documents in the corpus
that best answer the queries. Using those models, the result set of retrieved doc-
uments is ranked such that the most relevant documents are put on top of the
result list.

A popular approach for ranking is looking at the frequency of term occur-
rences in documents of a collection. If a query term occurs frequently in a doc-
ument, that document can be a relevant document. However, if that query term
occurs in many documents of the collection, the specific documents may be-
come less relevant. The latter concept is often referred to as inverse document
frequency and is calculated by dividing the total number of documents in the
collection with the number of documents in which the query term occurs. By
taking the logarithm of this fraction, and multiplying this with a (normalized)
term frequency, a reasonable ranking mechanism has been created. The combi-
nation of term frequency and inverse document frequency is often referred to
as TF.IDF [74]. It ranks documents with high term frequencies higher when no
other documents have high frequencies of those terms. More sophisticated ap-
proaches are also used, such as counting the number of links referring to web
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pages or language models that calculate the probability that a document could
have generated the query terms. Hiemstra gives a more elaborate description of
Information Retrieval and frequently used models for information retrieval [33].

1.1.2 Centralized search

Search engines like Google, Yahoo! and Live Search are examples of centralized
search engines. Their approach amounts to crawling, indexing and searching.
Crawling is a systematic approach of visiting and copying web pages from the
Internet. All downloaded pages are stored in centralized data centers. There,
the downloaded pages are indexed and stored on index servers. When the user
searches by posing a query, the query is sent to the index server. There, a lookup
is performed in the index on the query terms. The result of this lookup is sent
to the document servers that actually retrieve the documents. This is done to
generate snippets that shortly describe the results. These snippets are sent to the
user as the query result.

This approach of search is called centralized, because all activities (crawling,
indexing and searching) are controlled and performed at locations where all sys-
tems are clustered, and the number of locations is relatively limited. Just to give
an impression: according to estimates, Google uses 450,000 servers racked up
in thousands of clusters in dozens of data centers around the world [15]. These
servers are comparable to the average consumer PC.1

1.1.3 Problems with centralized search

The amount of data on the web is estimated to grow exponentially [78]. This
growth poses problems for traditional, centralized web search engines. The con-
tinuously changing and growing data requires frequent visits by crawlers, just to
keep the index fresh. This crawling should be done often, but generates a huge
amount of traffic, making it impossible to do frequent crawls. With an estimated
four weeks update interval, updates are performed relatively slow [60, 81].

Besides index freshness problems, it is simply impossible to index everything.
In 1999, the estimated indexable web size was 800 million pages [41]. The index-
able web, also known as the visible web, consists of web pages that are accessi-
ble by search engines. In 2002, this estimate increased to 8.9 billion pages [45].
In January 2005, the visible web was estimated to be 11.5 billion pages [30].
These are large numbers, but they are tiny when compared to the estimated
deep web size: 4,900 billion pages [45]. The deep web contains items such as
databases and dynamic web sites. In November 2004, Google indexed 8 billion
pages2 which is a tiny number, compared to the total estimated web size.

1 More technical information on Google is available at http://www.google.nl/
intl/en/corporate/tech.html.

2 Claimed on http://www.google.com/intl/en/corporate/history.html as
of April 2008.

http://www.google.nl/intl/en/corporate/tech.html
http://www.google.nl/intl/en/corporate/tech.html
http://www.google.com/intl/en/corporate/history.html
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Centralized search engines also introduce social problems. They have a
monopoly in search, almost entirely controlling web search and largely influenc-
ing what can be found on the Internet. As centralized web search engines require
large server farms, it is unlikely that new competitors will enter the search mar-
ket, unless a different approach will produce promising results.

1.1.4 Distributed information retrieval

To search in a decentralized fashion, the centralized control will have to be
removed and different actions have to be performed in a distributed fashion.
Callan [12] identified a set of problems that need to be addressed to enable de-
centralization of search. The identified problems came to be known as distributed
information retrieval and comprise the following problems:

Resource description: Instead of downloading the collections of documents
(websites) to a centralized location, documents are left at their place. To
be able to search those documents, a description of each of the document
collections will have to be made.

Resource selection: When a user has formulated a query, the document collec-
tions will have to be found that are most promising for answering that query.
The resource descriptions for each collection can be used for that purpose.
In this research, a resource is defined as a collection of documents; resource
selection and collection selection are interchangeable concepts.

Result merging: Once the most promising collections have been identified, the
query is issued on those collections to find the best matching documents
from those collections. Each of the collections produces a result list, which
will have to be merged and ranked.

Distributed information retrieval solves the main problems of centralized
search by removing the need to crawl the entire document collection. Each
document collection can be indexed frequently – possibly whenever something
changes – and it can be indexed better. For example, it could be possible to in-
dex relational databases as local indexers can have direct access to this type of
information. It seems to be a promising approach, under the reservations that a
scalable solution can be built that yields good retrieval performance.

The next section describes a scenario of a distributed information retrieval
system. This scenario will act as a basis for this thesis in evaluating the retrieval
performance of such a system.

1.2 Scenario

Figure 1.1 shows three types of entities: peers, brokers and clients. Every peer
runs a web server with a search engine. The search engine indexes the local
website(s), but is not limited to those as it may also index other websites. There
can be many millions of peers. When a user has an information need, he can
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pose a query at the client. The client sends the query to the broker. In response to
that, the broker tries to identify the peers that seem to be the most promising in
answering that query. This will be a small amount of peers, e.g. five to ten peers.
The query is routed to those peers and the results are returned to the broker. The
broker merges the results and sends it to the client. There is a limited amount
of brokers, e.g. one per world continent. The brokers can operate independently
from each other.

Client

Peer 1 Peer 2 Peer i Peer n-1 Peer n

1. Query

2. Query 2. Query

3. Result 3. Result

4. Merged result set

Broker

Fig. 1.1. Peers are accessible via a broker to answer queries from clients

Cooperation between peers and brokers is required to enable brokers to iden-
tify most promising peers. Therefore, every peer sends a small part of its index
to the broker. This part of the index cannot be too small, as this renders it impos-
sible to make good judgments about the ability of a peer to satisfactory answer
queries. However, it also cannot be too large, as this imposes scalability issues
in terms of data traffic when scaling the sketched scenario to the entire web.
A balance between the two extremes is required. The next section describes a
technique to balance the amount of index data sent to the broker.

1.3 Short introduction to highly discriminative keys

A book index can be created by writing down all interesting words, together with
the page numbers where every word occurs. When this is done for every word,
it is possible to retrieve every word occurrence in the book. When looking for
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multiple terms, every term can be looked up and the intersection of the page
number sets gives the pages where all terms occur on one page.

Instead of indexing pages of a book, a similar approach can be used for col-
lections in a corpus, resulting in an index for the corpus. An index that is created
in this way is known as a standard inverted index. There are a number of disad-
vantages to this approach:

• There may be terms that are rarely queried for. These terms are probably
infrequent, so the list of occurrences of those terms is not so large for every
term. However, the sum of all those terms may add up noticeable in the index.

• Multi-term queries will always require an intersection with single term occur-
rences. This is usually slower than doing this with an index that also contains
multi-term entries. It also requires storage of all term occurrences for the
intersection to work.

Another negative consequence is that the index will become large, which is un-
desirable when it should be sent to a broker.

It is possible to reduce the index size by only storing entries that are use-
ful. Highly discriminative keys (HDKs) are keys that may consist of one or more
terms and are chosen in such a way that they only select a limited number of
documents, i.e. they are discriminative for collections in the corpus [44]. For
example, ‘red’ and ‘car’ are both less discriminative than ‘red car’. Only storing
the locations that contain ‘red car’ will result in a smaller index than storing the
locations that contain ‘red’ or ‘car’. The amount of discrimination for a key (the
number of stored locations) acts as a way to regulate the index size. When a key
selects too many collections, it is discarded as a highly discriminative key at the
broker, as the global index would otherwise become too large. This is comparable
to TF.IDF working at peer level.

Highly discriminative keys will be explained in depth in the next chapter and
are a pivotal concept in this research.

1.4 Research scope

This research will focus on resource description and resource selection using
HDKs. Indices will be built to estimate which collections will be most promising
for answering queries. This research will look at the quality of those estimates.
It will not investigate actually sending the query to those collections to get a
ranked list of results, i.e. result merging, as described in section 1.1.4. Neither
will the focus of this research be on the efficiency of selecting the collection.
Although efficiency is important as well – an unscalable solution has only limited
applicability, namely for small collections – this research will first look at whether
the techniques are worth optimizing at all.



6 1 Introduction

1.5 Research questions

Section 1.1.3 described several problems with centralized search. An efficient
implementation of the scenario from Section 1.2 may solve those problems. HDKs
may provide the required efficiency. By removing the need for crawling, building
compact indices at each peer and sending those indices to one broker, distributed
information retrieval may become a promising alternative to centralized search.
This research will investigate the feasibility of such an approach by looking at the
quality of collection selection. This will be done by combining HDKs with several
popular information retrieval techniques.

One of the techniques is query-driven indexing, which prunes the index by
removing all index entries that are not queried for. These entries are identified
by analysis of a search engine query log. This helps in reducing the index size and
communication overhead, hopefully without affecting retrieval performance.

Another technique is a distributed variant of Google PageRank [10]. Page-
Rank assigns importance judgments to web pages by counting the number of
hyperlinks referring to that page. More hyperlinks referring to a page implies
higher importance, which can be used to rank the results. A comparable algo-
rithm can be created to assign importance judgments to collections, instead of
pages. Such an algorithm will be tested in this research.

In earlier research, HDKs pointed to a number of documents in one or more
collections [44, 51]. In the scenario from Section 1.2, storing the pointers to the
actual documents is not required, as peers fulfill the role of finding the actual doc-
uments. It suffices to store the number of key occurrences at a peer. We propose
the novel technique of applying HDKs for collection selection; every HDK that is
stored at the broker contains a list of peers with the number of key occurrences
at those peers. This results in the following research question:

In which ways can web search be improved with collection selection from
distributed information retrieval using a combination of highly discrimina-
tive keys and 1) query-driven indexing, 2) distributed PageRank?

An obvious performance indicator for improvement is looking at the quality of
the selected collections. A large set of documents, a corpus, can be split in several
collections. A collection is a subset of the documents in the corpus. The way the
corpus is split in collections affects the distribution of relevant documents and on
the ability to select the collections with the most relevant documents. This leads
to the following question:

Research question 1: What is the effect of splitting the document corpus?

Five scenarios of document corpus splits will be analyzed: per peer (by IP
address), clusters of peers, overlapping collections (adding duplicates), and two
splits with either a large or small amount of randomly created collections.

Given a query, collection selection is all about ranking the collections in such
a way that the collection with the largest amount of relevant documents is ranked
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on top. This is important, because the user query is routed to a small amount of
peers to get an answer. This results in the following question:

Research question 2: What factors are important to assign the highest score
to the collection with the largest amount of relevant documents?

Query logs contain queries submitted to a search system. The index of the
search system may contain a lot of keys that are never queried for. Pruning the
index using query logs removes unpopular keys from the index. This makes the
index smaller, hopefully without affecting the retrieval performance for the ma-
jority of searches. These thoughts lead to the following question:

Research question 3: What is the effect of pruning highly discriminative key
indices using query logs?

Using links in web pages, Google PageRank can assign authority scores to
web pages to enable ranking of those pages. This research focuses on collection
selection, so the granularity of items to find is at collection level. It would be
interesting to see if a link-based ranking algorithm works on collection level:

Research question 4: What is the effect of using distributed collection-level
“PageRank” scores of peers to rank and select them?

1.6 Thesis outline

The next chapter describes related work on distributed information retrieval that
is relevant for this research. It describes several well-known collection selection
methods, explains the concept of HDKs, introduces query-driven indexing tech-
niques and describes distributed PageRank.

Chapter 3 describes the prototype that has been developed in order to an-
swer the research questions. Chapter 4 explains the evaluation approach that
was used to compare the collection selection performance of the prototype’s dif-
ferent collection selection methods. Chapter 5 gives technical details about the
index structure of the prototype that is capable of storing tens of millions of index
entries.

Chapter 6 presents the evaluation results and interprets those results from
various viewpoints. The thesis ends with a conclusion in Chapter 7 and a de-
scription of promising research directions in Chapter 8.
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Literature about distributed information retrieval

Copy from one, it’s plagiarism; copy from two, it’s research.

– Wilson Mizner (1876–1933)

This chapter describes work related to distributed information retrieval in gen-
eral, and collection selection in particular. The chapter starts by describing sev-
eral well-known collection selection methods. It is followed by what can be called
the foundation of this research: highly discriminative keys. As indexing with
highly discriminative keys can result in large indices, the succeeding section dis-
cusses some approaches to reduce the index size using queries. The final section
discusses distributed versions of the PageRank algorithm.

2.1 Collection selection

The essence of collection selection is selecting those collections that contain the
documents that are relevant to the query of a user. Different methods can be em-
ployed to select such collections. This section describes four collection selection
methods that are used by well-known collection selection systems.

2.1.1 Vector space model

The vector space model represents index items and user queries as weight vectors
in a high dimensional Euclidean space [58]. Applied to the area of collection
selection, the index items are document collections. The model uses the weight
vectors to calculate the distance (or similarity) between document collections
and queries. The collections with the smallest distance to the query are ranked
highest.

GlOSS stands for Glossary-Of-Servers Server and is a system that uses sta-
tistical metadata about collections to create summaries [29]. These summaries
can be used for collection selection. The system was extended by using the
vector space model, resulting in the generalized Glossary-Of-Servers Server
(GGLOSS) [28]. To measure the distance between a document collection and
a query, gGlOSS needs two vectors for each collection ci with:



10 2 Literature about distributed information retrieval

1. The document frequencies df i, j for term t j in collection ci is the number of
documents in ci that contain t j .

2. The sum of the weights of t j of all documents in ci: wi, j . The weight of a
term in a document is typically a function of:
• the number of times that t j occurs in a document, and;
• the number of documents in ci that contain t j .

2.1.2 Cue validity

The cue validity can be seen as a the likeliness that given a cue, an object falls
within a particular category [27]. CVV is a collection selection method that uses
cue validity [85]. The cue validity CV i, j of query term t j for collection ci measures
the extent that t j discriminates ci from the other collections. It compares the ratio
of documents in ci containing t j to the ratios of documents in other collections
containing t j . The cue validity is calculated as follows:

CV i, j =
DFi, j

Ni
/


DFi, j

Ni
+

∑|C |
k 6=i DFk, j∑|C |

k 6=i Nk




DFi, j is the document frequency of t j in ci . Ni is the number of documents in
ci and |C | is the total number of collections.

The cue validity variance CVV j is the variance of cue validities for all collec-
tions with respect to t j . A large variance in cue validities means that t j is more
suitable to differentiate collections. This notion is used to measure the goodness
of a collection regarding a query q with n terms. The calculation only requires
document frequencies and the total number of documents in the collections. The
collection goodness is used for collection ranking. The goodness of ci with respect
to query q is calculated for all terms t j where j ∈ q.

Gi,q =
n∑

j=1

CVV j ·DFi, j

The approach is criticized for its improper handling of rare query terms [64].
Rare query terms will have a low variance in cue validities, and those terms will
likely have low document frequencies. Those query terms are in fact very useful
for collection selection, but their effect on collection selection is mitigated by the
goodness formula.

2.1.3 Inference networks

CORI [14] is a collection ranking algorithm for the INQUERY retrieval system [13],
and uses an inference network to rank collections. Fig. 2.1 shows a simple doc-
ument inference network in which the leaves d represent the document collec-
tions. The terms that occur in those collections are represented by representation
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nodes r. Flowing along the arcs are probabilities that are based on document
collection statistics. Opposed to TF.IDF, the probabilities are calculated using doc-
ument frequencies df and inverse collection frequencies icf (DF.ICF). The inverse
collection frequency is the number of collections that contain the term. An in-
ference network with these properties is called a collection retrieval inference
network (CORI net).

d1 d2

Document

Network

Query

Network

dj-1 dj...

r1 r2 r3 rk...

c1 c2 c3 cm...

q

Fig. 2.1. A simple document retrieval inference network (figure from Callan et al. [14])

Given a query q, the network is used to obtain a ranked list of collections us-
ing a modified version of the INQUERY ranking algorithms. The query is forwarded
to the top ranked collections, in order to obtain result lists that can be merged to
get a ranked document list. Obtaining the ranked collection list is done by calcu-
lating the belief p(rk|ci) in collection ci due to the observation of query term rk.
The belief is calculated using Formula 2.4. Table 2.1 presents the parameter ex-
planations. The collection ranking score of ci for query q is the sum of all beliefs
p(rk|ci), where r ∈ q.

To improve retrieval, the component L is used to scale the document fre-
quency in the calculation of T [13, 56]. L is made sensitive to the number of
documents that contain term rk (using b) and is made large using l. L should be
large, because df is generally large. Tuning of these two parameters is required
for every data set. According to D’Souza et al. [25], proper tuning is impossible
because correct settings are highly sensitive to data set variations; the value of
l should be varied largely even when keeping the data set constant while only
varying the query type. The authors conclude that standard CORI is not justified
as a collection selection benchmark.
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L = l · ((1− b) + b · cwi/cw) (2.1)

T = dt + (1− dt) ·
log (df)

log (df + L)
(2.2)

I =
log
(
|C |+0.5

cf

)

log |C |+ 1.0
(2.3)

p(rk|ci) = db + (1− db) · T · I (2.4)

b constant that is varied between 0 and 1
l constant that controls the magnitude of L
cwi number of words in ci

cw mean number of words in the collections
|C | number of collections
df number of documents containing rk

cf number of collections containing rk

dt minimum term frequency component when rk occurs in ci , default is 0.4
db minimum belief component when rk occurs in ci , default is 0.4

Table 2.1. Parameters for belief computation in CORI

2.1.4 Language modeling

A language model can be used to assign a probability to the likeliness that a
phrase has been generated using a modeled language. For example, there is a
higher probability that “knowledge is of two kinds” was generated by an English
language model as opposed to “of is kinds two knowledge”. Language models
were first used in speech processing, and were later used for Information Re-
trieval in 1998 [34, 52]. Language models have also been used for collection
selection [67, 83]. One language model can be used to model one document
collection. With such language models, probabilities can be calculated that col-
lections generated a given query.

INDRI is part of the Lemur project1 and is an improved version of the IN-
QUERY retrieval system [77]. Compared to INQUERY, INDRI is capable of dealing
with much larger collections, and allows for more complex queries due to new
query constructs. The most important improvement is the formal probabilistic
document representations that use language models instead of TF.IDF estimates.
The combined model of inference networks and language modeling is capable of
achieving more favorable retrieval results than INQUERY [47].

The different probabilistic document representation means that the term rep-
resentation beliefs are calculated different compared to CORI (as described in
Section 2.1.3):

1 http://www.lemurproject.org/

http://www.lemurproject.org/
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P(r|D) =
tf r,D +αr

|D|+αr + βr

The belief is calculated for representation concept r of document node D
(in document collection C). Examples of representation concepts are a term in
the body or title of a document. D and r are nodes in the belief network. The
term frequency of representation node r in D is denoted by tf r,D. αr and βr are
smoothing parameters.

Smoothing is used to make the maximum likelihood estimations of a lan-
guage model more accurate, which could have been less accurate due to data
sparseness, because not every term occurs in a document [86]. Smoothing en-
sures that terms that are unseen in the document, are not assigned zero proba-
bility.

The default smoothing model for INDRI is Dirichlet smoothing, which affects
the smoothing parameter choices. In setting the smoothing parameters, it was
assumed that the likeliness of observing representation concept r is equal to
the probability of observing it in collection C, given by P(r|C). This means that
αr/(αr + βr) = P(r|C). The following parameter values were chosen:

αr = µP(r|C) (2.5)

βr = µ(1− P(r|C)) (2.6)

This results in the following term representation belief, where the free parameter
µ has a default value of 2500:

P(r|D) =
tf r,D +µP(r|C)
|D|+µ

A more detailed explanation can be found in the Indri Retrieval Model
Overview [46]. Note that the formula described above is intended for document
retrieval, in which case there is only one collection. It is possible to use INDRI

for collection selection, by merging all documents of one collection to one sin-
gle large document, and considering many of such large merged documents as
the collection. The effectiveness of this use of INDRI has been demonstrated by
several researchers [3, 63].

2.1.5 Discussion

Section 2.1.3 already described that it was not possible to set the parameters
of CORI such that the retrieval results are consistently good. D’Souza et al. en-
forced their arguments by showing that HIGHSIM outperformed CORI in 15 of 21
cases [24]. Si and Callan [66] also found limitations with different collection
sizes. Large collections are not often ranked high by CORI, although they often
are the most promising collections.

Despite those issues of effectiveness, CORI remains an algorithm that has out-
performed other algorithms like CVV and GGLOSS [20, 54].
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Although INDRI is relatively new compared to the other discussed approaches,
it shows favorable results in recent experiments [6, 16, 63, 84]. INDRI has a better
formal probabilistic document representation than CORI and INDRI is an improved
version of INQUERY. The INQUERY search engine forms the basis of the CORI col-
lection retrieval model and CORI has outperformed many other algorithms. That
is why we will use the language model as implemented by INDRI as our baseline
collection selection system.

2.2 Highly discriminative keys

This section discusses a scalable indexing approach for document retrieval in a
structured peer-to-peer network. In a structured peer-to-peer network it is possi-
ble to quickly reach a peer using efficient routing facilities.

2.2.1 Distributed hash table

A collection is a set of documents, where each document contains many terms.
To provide fast search, an index can be implemented using a hash table. A hash
table maps every key (term) to a posting list. A posting list contains the locations
of the documents in which the associated term occurs.

Such an indexing structure can be distributed over many peers in a peer-to-
peer network and is called a distributed hash table [55, 57, 76]. Every peer is
responsible for a small number of keys and associated posting lists. To answer a
multi-term query of a user, the peers are contacted that manage the requested
keys. The corresponding posting lists are retrieved from the peers. The intersec-
tion of those posting lists gives the document locations that contain all query
terms.

The vocabulary of a distributed hash table is defined by the different keys
that are stored in the index. The vocabulary is relatively small if single terms are
used, but the posting lists can be large due to the many term occurrences in the
different documents. Whenever a query term is requested, the entire posting list
will have to be transmitted, which is inefficient in a peer-to-peer network and
does not scale to web search.

2.2.2 Indexing rare keys

Luu et al. proposed indexing of rare keys to reduce the storage and communi-
cation cost in a peer-to-peer network by increasing the vocabulary, but reducing
the posting list size [44]. The rare keys can consist of one or multiple terms. The
keys and associated posting lists are obtained as follows:

1. Local vocabulary generation (selection of keys): possible keys are generated
by making combinations of terms occurring in one document. To limit the
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number of combinations, a proximity filter is applied that only allows com-
binations of terms appearing close to each other.
The main idea is that locally rare keys are selected, assuming that those keys
will have a higher probability of being globally rare. Selected keys should not
be redundant, which means that all subset keys must be frequent keys. The
selected keys can not be globally frequent, so the peers are informed about
this information.

2. Local selection of postings for the keys in the vocabulary: to keep the system
scalable, the global posting list for a key is limited to DFmax documents. The
peer will have to identify its DFmax documents with the highest key occur-
rences. Those documents are added to the posting list, which is used for the
global selection of postings.

3. Global selection of postings: a posting list with at most DFmax postings is stored
for every globally rare key. The stored postings have the highest number of
key occurrences. A globally rare key is a key that occurs at a predefined max-
imum number of peers. A globally rare key is called a highly discriminative
key, because such a key is very good in selecting a small number of peers that
may contain relevant documents for a given query.

Later work on highly discriminative key indexing comprised improvements
for retrieval performance and more efficient multi-term query answering [51].
It became possible to add locally frequent keys to the global index when those
keys are highly representative for a document. Also, peers are able to store full
posting lists for globally rare keys. Peers could also send a posting list with DFmax
postings when a key was globally frequent, but locally rare.

As this significantly increases the index size, query-driven indexing was ap-
plied to reduce the vocabulary and posting lists were truncated to only store
the postings with the highest key occurrences. The next section discusses query-
driven indexing in more detail.

2.2.3 Discussion

Research results demonstrated that the retrieval performance is comparable to
a state-of-the-art centralized relevance computation scheme (BM25) on three
different test corpora, namely the TREC WT10g corpus, Wiki pages and Google
cache results [51, 71]. Scalability analyses provided evidence of the plausibility
that the approach would work in large scale peer-to-peer text retrieval system,
because the index growth is bounded by a maximum posting list size [69, 72].

Tinselboer confirmed good scalability properties and tested the retrieval per-
formance by measuring the top x overlap of the result lists of two systems [79].
Overlap measurement was also used in earlier evaluations of HDK based index-
ing [51, 69, 71]. Keeping all other variables the same, the first system used a
centralized single term index with full posting lists and the second system used
an index with rare keys with truncated posting lists. Based on low overlap ratios,
he concluded that the retrieval performance was poor. We believe this conclu-
sion is too premature, because the result list overlap only shows whether two
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approaches produce comparable rankings. It is not even unlikely that the rare
key indexing approach produced better document rankings, because it exploited
query term proximity in documents. A good way to test such claims is by using
relevance judgments of documents.

2.3 Query-driven indexing

In the process of creating HDKs, many keys will be created that are never queried
for. By pruning those keys from the index, it is possible to reduce the index size.
Care must be taken in removing keys, as retrieval performance can be reduced
when too many keys are removed [22, 43].

2.3.1 Query-adaptive partial distributed hash table

Klemm et al. calculate whether it is worth to store a key in a distributed in-
dex in a peer to peer network [38]. The decision to store keys is based on a
minimum query frequency of a key. The minimum query frequency is calculated
using Equation 2.7 which depends on three variables:

cIndKey: The cost of storing the key in the index for a fixed period of time.
Compared to a centralized index, the distributed index cost may be higher
due to peers joining and leaving the network. This introduces costs such as
routing table maintenance costs and update costs for inserting, overwriting
and deleting keys at peers.

cSUnstr: The cost of searching a key in the (unstructured) network without the
aid of an index by flooding the network with a query.

cSIndex: The cost of searching the key in the index.

fQryk >
cIndKey

cSUnstr− cSIndex
(2.7)

The minimum query frequency fMin is set to the smallest number of fQryk for
which Equation 2.7 still holds. Klemm et al. assume that the query frequency for
all n unique keys follows a Zipf distribution with parameter α. When the keys are
ordered by query frequency, every unique key has a rank r. Equation 2.8 gives
the optimum number of keys that is worth indexing.

1−

(
1−

r−α∑n
x=1 x−α

)qt

≥ fMin (2.8)

In this equation, qt is the total number of queries that are posed to the system
per fixed period of time. The left hand side of the equation models the probability
that a key is queried at least once per fixed period time. The rank r is chosen as
high as possible such that the equation still holds. This gives r as the maximum
number of keys worth storing in the index.
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2.3.2 Pruning a broker index using a query log

Shokouhi et al. propose to prune a broker index by removing the keys that do
not occur in a query log [65]. Their motivation is that terms not appearing in
the query log can be removed from the index without affecting retrieval perfor-
mance. Although this is true, it requires additional effort to deal with new unseen
queries.

Also, they argue that – in a distributed information retrieval scenario with
a broker index – query based pruning is more preferable than pruning based on
global collection statistics. Pruning based on global collection statistics is deemed
unreasonable because a term frequency can be low in one local collection, but
high and critical for another collection.

However, at the expense of an acceptable decrease in retrieval performance,
it is possible to reduce the global index size using collection statistics, by only
maintaining the term posting list entries for the top x collections with the highest
term frequencies. This has been demonstrated by Podnar et al. with HDKs [50].
Compared to a centralized system, they were able to achieve almost 94% overlap
of the result lists by only storing the locations of the top 500 documents. Besides
index size reduction, it also helps in limiting the number of transmitted postings
(only 7.6% compared to the non-pruned centralized system).

Shokouhi et al. tested their pruning strategy in an uncooperative environ-
ment. Therefore, they took query-based samples of the collections. They removed
all terms from the samples that did not occur in the query log and the remaining
terms were used for indexing. Their results show a broker index size reduction
of 22%–28% compared to an unpruned index, while maintaining equal retrieval
performance.

2.3.3 Indexing based on query popularity

Skobeltsyn et al. extended HDK indexing by making the index generation depen-
dent on the user queries [72]. They start by identifying three types of index
items:

Basic index item: A single term key with its associated full posting list. The full
posting list is stored at the peer responsible for that key.

Candidate index item: A multi-term key k with 2 to smax terms, where smax is
the maximum number of terms in a HDK. The key has an associated query
frequency counter. A candidate key is created when all smaller subkeys are
already stored in the global index as basic or active index items.

Active index item: A multi-term key with a query frequency counter and a trun-
cated posting list. A candidate key is activated when the query frequency
counter exceeds a minimum query frequency (making it a popular key).

Global index construction starts with adding basic index items for all single
terms in the document collection. The rest of the index construction is entirely
driven by user queries; candidate index items are created as soon as they meet
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the criteria for creation and candidate index items are activated as soon as the
query frequency for the corresponding keys are high enough. A truncated posting
list should be generated as soon as an item is activated. Peers are notified about
this using the opportunistic notification mechanism [70]. This efficient broadcast
method ensures that a peer receives a notification only once and forwards it
to at most log n peers, where n is the number of peers in the network [21].
Notification messages are low priority messages that can be appended to high
priority messages. Peers wait for high priority messages needing to be sent, or
they send the low priority message when a time period expires.

Index updates are also driven by queries. Index items that become unpopular
over time are deactivated. Postings in the index are removed when a document
in a result set is inaccessible, thereby keeping the index up to date.

2.4 Distributed PageRank

In Information Retrieval, only finding the relevant documents is not sufficient;
documents will have to be ranked in such a way that the most relevant docu-
ments appear on top of the result list. Several link-based algorithms have been
developed for this goal, such as PageRank [10], HITS [37] and SALSA [42]. PageR-
ank is the best known, so more research has been directed at using this algorithm
in a distributed way. This section describes several of those algorithms.

2.4.1 Google PageRank

Google PageRank [10] is a static ranking algorithm, meaning that the rank of
the documents is fixed, independent of the actual search terms. The general idea
is that web pages contain links to other pages, thereby conferring importance to
the linked pages. When important pages link to other pages, more importance is
conferred. This gives an estimate of the relative importance of web pages.

This notion is captured in a model with a random surfer. A random surfer
randomly clicks on links and visits a new page once he gets bored of clicking
on links. When a page has many incoming links, the probability is higher that a
random surfer ends up at that page. These concepts can be used to assign scores
to pages. The scores, or PageRanks, can be precomputed for all pages and can be
used to rank pages from a result set. The PageRank of page A is calculated using
Formula 2.9.

PR(A) = (1− d) + d
(

PR(T1)
C(T1)

+ · · ·+
PR(Tn)
C(Tn)

)
(2.9)

In this formula, pages T1 . . . Tn have links to page A and PR(T ) is the PageR-
ank of page T linking to page A. C(T ) is defined as the number of links going out
of page T . The formula uses a damping factor d, which models the probability
that a random surfer keeps clicking on links, instead of visiting a random new
page.
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Power iteration is an algorithm to calculate the eigenvalue with the greatest
absolute value of a matrix: the principal eigenvector. PageRank uses an adjacency
matrix to store the link structure of the World Wide Web graph. The components
of the principal eigenvector of such a matrix are the PageRanks. The power iter-
ation converges relatively slow, making it interesting to distribute or optimize its
calculation.

2.4.2 Distributed calculation

The link structure of the World Wide Web can be plotted with an adjacency matrix
A, in which entry ai j is 1 if page i links to page j and 0 if no such link exists.
There are many billions of web pages, but pages only link to a small number
of them. This results in a sparse link matrix. Web pages tend to link to multiple
pages that reside on the same host. This results in a sparse link matrix with a
block structure when the pages in the matrix are grouped by host [36]. Several
distributed approaches exploit this sparsity and block structure in the link matrix
to accelerate PageRank calculation:

• Local PageRanks scores can be calculated using the link structure of each
host, assuming that links to pages outside the host do not exists. Kamvar
et al. [36] calculate a BlockRank to estimate the relative importance of the
hosts (or blocks) in the global link matrix. The BlockRank is used for weight-
ing the local PageRanks. The weighted local PageRanks are used as starting
PageRanks values for the regular iterative PageRank algorithm. This reduces
PageRank computation by about a factor two due to faster convergence of the
local PageRanks and BlockRanks, but it still requires centralized storage and
computation of the global PageRank.

• Wang and De Witt have a comparable approach with ServerRanks that are
used to refine local PageRanks [81]. As they do not compute the global
PageRanks, the local PageRank scores are no true PageRank scores, but it
reduces computation time, communication cost and storage cost. The “Page-
Rank” scores are stored locally at the node in a distributed retrieval system,
and are included with the result set when that node is queried. The scores
can be used to merge and rank results from multiple result lists.

• Also starting with local PageRank computation, Zhu et al. use iterative
aggregation-disaggregation with Block Jacobi smoothing for distributed global
PageRank score computation [87]. It is an efficient way to compute ergodic
probabilities of large Markov chains and can calculate PageRank scores about
5-7 times as fast as the traditional power iteration method.

• Bradley et al. use hypergraph partitioning to test two link matrix decompo-
sitions [9]. The first approach makes 1-dimensional matrix decompositions,
which means that either rows or columns of the matrix are sent to proces-
sors to compute the vector products. The different processors cooperate to
calculate the PageRanks. The second approach makes 2-dimensional matrix
decompositions, which means that blocks of the matrix are assigned to a pro-
cessor. The matrix decompositions are done in such way that interprocessor
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communication is minimized while balancing the load on the different pro-
cessors. Although their method has been developed for parallel PageRank
computation, it would be interesting to see if it could be applied for dis-
tributed PageRank computation.

Sankaralingam et al. [59] proposed a method to distributedly calculate true
PageRank scores. All documents on all peers start with an initial value. Next, the
PageRanks are sent to out-linked peers that calculate updated PageRanks for their
documents. Out-linked documents existing on the same peer are updated with-
out additional network traffic. This procedure is asynchronously iterated until the
PageRanks converged. Tests showed that 17 update messages per document were
required for convergence in a test network with 40 peers and 2,000 documents.
When the number of documents in the network was gradually doubled, 8.6 mes-
sages per document were required to converge the scores. This approach allows
for continuous updated PageRank scores using incremental PageRank computa-
tion.

Overlap in collections may be an important factor in distributed information
retrieval. Documents can be duplicated across the network to increase document
availability in a peer to peer network. In our scenario, as described in Section 1.2,
it is possible that search engines index documents from other sites. In both cases,
the same documents can be found via multiple peers, which has consequences
for the PageRank calculation. This can be solved by deduplicating documents in
the network before starting PageRank calculation, or modifying the algorithm for
PageRank calculation to deal with the effects of duplicates.

Parreira and Weikum developed the JXP algorithm that is capable of deal-
ing with overlap to compute PageRank-like authority scores [48]. The algorithm
starts by calculating PageRanks for the pages in the locally available web graph.
The web graph uses a world node to model the unknown external nodes. The
resulting local scores are called PageWeigths. Next, peers randomly meet with
other peers. The two local web graphs are temporarily joined. Duplicate nodes
are merged to one node, taking an average of the two PageWeigths. The Page-
Rank algorithm is used to calculate new PageWeigths. PeerWeigths can optionally
be used in the algorithm to compensate PageWeigths. This could be desirable for
several reasons, such as a large difference in local index size or more knowledge
about the rest of the world because a peers has had more meetings.

For collection selection, it is not required to have PageRank scores for the
actual documents. It suffices to have scores for the collections that contain the
relevant documents. Wu and Aberer introduced SiteRank which is an authority
based scoring that works at the granularity of web sites [82]. Their research
found evidence for a correlation between PageRank and SiteRank, making it rea-
sonable to assume that many pages of important sites are important and a site is
probably important when it has many important pages.
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2.4.3 Discussion

Much research has been directed at parallel or distributed PageRank calculation.
Many solutions decompose the problem of calculating the eigenvectors of the
huge link matrix by splitting the matrix in smaller matrices. The smaller matrices
are based on the links in documents that exist in one host, peer or site. Hosts,
peers and sites can be seen as a collections of documents

In 2000, Savoy and Rasolofo tested four link-based retrieval systems on doc-
ument collections [61]. The WT10g test corpus was split in four 2.7GB collec-
tions. Each of the four collections were queried and the results were merged by
employing different merging strategies, such as raw score merging and CORI. The
results showed that merging based on link information is only marginally useful,
compared to other merging strategies.

Hawking and Thomas tested two link-based server selection methods (high-
est anchor ranked page and anchor weighted sum) on the TREC .GOV corpus
which has 7792 servers [31]. The methods were compared to well-known se-
lection methods such as CORI [14], Kullback-Leibler [67] and REDDE [66]. They
concluded that link-based approach gave the best overall performance. This is in-
teresting, because Kullback-Leibler is comparable to the baseline language mod-
eling approach that was described in Section 2.1.4 [67].

Tsaparas tested several link-based algorithms and was surprised to find that
simpler algorithms, such as InDegree – counting the number of incoming links,
produced better rankings than more sophisticated algorithms such as Page-
Rank [80]. He concluded that most link-based ranking algorithms favor the
wrong parts in the link graph; the favored parts are not strongly correlated with
the largest number of relevant documents in a collection. These findings were
endorsed by Amento et al. [2], who found that ranking pages using the number
of pages on a site works almost as good as link-based ranking.

Even though PageRank is not undisputed on document level, it remains in-
teresting to see how higher level abstractions of PageRank perform in selecting
collections with many relevant documents; especially when the number of col-
lections is large.

2.5 Summary

This chapter started by describing several popular collection selection methods.
Language modeling was introduced and the need for smoothing in those models
was explained. Language modeling with Dirichlet smoothing will be used as the
baseline collection selection method in this research.

Next, the chapter explained how HDKs were used for selection of relevant
documents. This research will apply the same technique for collection selection,
which will be explained in the next chapter. Three query-driven indexing ap-
proaches were described, of which the simplest approach by Shokouhi et al. will
be used in our research. This simplest approach uses the query log as a filter for
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interesting index items. It can be quickly implemented and can give a good idea
about the obtainable index size reduction.

Finally, many distributed PageRank approaches exploit the block structure in
the adjacency matrix of the World Wide Web link graph. The matrix contains
blocks of links because many pages from one site link to many pages of a small
number of other sites. This shows a link-based relationship between sites, which
can be exploited to speed up PageRank computation. This suggests that a dis-
tributed link-based ranking algorithm can be made to rank collections instead of
pages.
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Sophos: a highly discriminative key prototype

It is common sense to take a method and try it. If it fails,
admit it frankly and try another. But above all, try something.

– Franklin D. Roosevelt (1882–1945)

Sophos1 is a prototype of a collection selection system that uses HDKs to index
collections. The keys are used to answer queries by assigning scores to the col-
lections to enable collection selection. Using a scoring function, the scores are
used to generate a collection ranking for a given user query. Optionally, the pro-
totype can use PageRank-like collection scores. A general overview is depicted in
Figure 3.1.
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ScoreFunction
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Index
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Fig. 3.1. General overview of indexing and collection selection system

This chapter starts by describing how the HDK index is created and then ex-
plains how the index size is kept manageable using a simple form of query-driven
indexing. After that, ColRank – a PageRank-like collection ranking algorithm – is
introduced. The chapter concludes with a detailed discussion about ScoreFunc-

1 Sophos stands for “Sanders OnderzoeksPrototype: Hoogst Onderscheidende Sleutels”
(which translates to Sanders Research Prototype: Highly Discriminative Keys). The an-
cient Greek word sofoc means wisdom or knowledge.
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tion; a function that ranks the collections using the scores from the query results
generated by querying the HDK index.

3.1 Highly discriminative keys

Building an index based on HDKs consists of two phases. The local indexing
phase consists of building indices for each collection and is performed locally at
every peer. In the global indexing phase, peers send a part of their local index to
a broker. The broker constructs a global index from all local indices, which can
be used to answer queries.

3.1.1 Local indexing

Local indexing starts with the generation of term sets statistics. First, single term
statistics are generated by looking at the term frequencies of every word in the
collection, without looking at document boundaries in the collection. A term set
is called frequent when it occurs more times than a term set frequency maximum
tfmax. Every infrequent single term is added to the local index together with its
frequency count. The frequent keys are stored for further analysis.

The next step in local index building is the generation of term sets consisting
of two terms. The basis of every double term set is a frequent term. For every
frequent term in the collection, frequency statistics are created for combinations
of terms that occur in a particular window size ws. The window size denotes the
number of words after a particular word with which combinations of term sets
can be made with the first word. The concept is best explained by an example.

• We start with the following sentence: “The driver with the most gold medals
at the end of the season becomes world champion.”

• When earlier analysis revealed ‘gold’ to be a frequent term, and the window
size is set to 4, the following 4 term sets are created: “gold medals”, “gold
at”, “gold the” and “gold end”. Term set frequency statistics are maintained
for all generated sets.

This procedure is repeated for every frequent single term. The result is a list
of double terms with corresponding frequency counts. Once again, the term set
frequency maximum defines which term sets are frequent and will be used for
further analysis, and which term sets are infrequent and will be stored in the
local index. This procedure can be repeated up to the moment that the maximum
window size has been reached or when a predefined maximum number of terms
in a term set has been reached. This maximum is denoted by hmax.

Summarizing, the local index consists of tuples with term sets and frequency
counts.
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3.1.2 Global indexing

The infrequent term sets from the local indices are sent to the broker. The broker
stores the term set with an associated posting list in its global index. A posting
list contains tuples with collection identifiers and corresponding term set fre-
quencies.

When a term set is inserted into the global index, it is called a highly discrim-
inative key. The global index will contain a maximum number of collections per
HDK, denoted by the collection maximum cm. As soon as the maximum number
of collections is reached for a particular HDK, the cm collections with the largest
term set frequencies will be stored in the global index.

The global index consists of tuples with term sets and an associated set of
collection identifier counters. A collection identifier counter is a combination of a
collection identifier and a term set frequency counter. A collection identifier is a
short representation of a collection where the term set occurs.

3.2 Query-driven indexing

A list of popular keys can be created by extracting all unique queries from a query
log. The global index with HDKs can be reduced in size if keys are pruned that
are not queried for. Every locally infrequent key that occurs in the unique query
list will be inserted in the global index, the other keys are filtered out.

By pruning the index in this manner, we employ the strategy as described by
Shokouhi et al. [65]. This is not the most desirable approach for query-driven
indexing, because it is unable to deal with unseen query terms. However, it will
give a good idea about the possible index size reduction and the loss of retrieval
performance.

3.3 ScoreFunction: ranking the HDK query results

3.3.1 Identifying query result parameters

Once the global index has been built, the system is ready to be queried. The
global index contains HDKs with h terms, where h varies from 1 to hmax. In
Sophos, hmax is set to 3. Every key has an associated posting list, which contains
tuples of collection identifiers and counters. A counter indicates the number of
occurrences of a certain key within the corresponding collection. The value of
that counter can never be higher than the term set frequency maximum, tfmax,
as a key would otherwise have been locally frequent and new HDKs would be
generated when the maximum number of terms, hmax, was not yet reached.

When a user poses a query with q terms, e.g. abcde with q = 5, the query
is first decomposed in query term combinations with length hmax (i.e. abc, abd,
. . . , bde, cde). This results in

(q
h

)
combinations. Each combination is looked up
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in the global index. The results of each of those smaller queries are merged by
summing the number of occurrences per collection. The sum of all counters, c,
has a potential maximum of

(q
h

)
· tfmax. It may happen that this procedure results

in little or no collections where an HDK occurs. The procedure is then repeated
for smaller term sets; first term sets of two terms will be looked up in the index.
When even this gives too few results, single terms will be looked up in the index.
In the case that one collection contains two different combinations, e.g. both abc
and bce occur in collection X, the number of occurrences are summed (this is
c that was just introduced). However, it also interesting to note that 4 out of 5
query terms can be found in collection X. The number of query terms that can be
found using HDKs of a particular length is indicated by n.

The query procedure as described above introduces a number of different
parameters that can be relevant for result ordering. For convenience, the different
parameters are displayed in Table 3.1.

c the sum of term set occurrences within one collection, where every term set has
an equal value of h

h number of terms in an HDK
hmax maximum number of terms of which an HDK can consist
q length of the query
n number of distinct terms from a query term set found in a collection
tfmax maximum frequency of a term set in a collection

Table 3.1. Parameter definitions for query result handling

3.3.2 Desired ranking properties

To produce a desirable ranking, the query scores will have to be calculated in
such a way that they enforce the desired ranking. Collection selection using HDKs
should provide hints of good collections to forward a query to. The system is not
built for exhaustive search giving the best possible answers. This is inherently
impossible using HDKs, as whenever a term set appears too frequently in a col-
lection, it is not included in the index. This phenomenon has consequences for
the desired ranking and thus for the required score formula. In order of impor-
tance, we define the desired result ranking factors as follows:

1. If a longer HDK occurs in one or more collections, those collections should
be ranked higher than collections that only have smaller HDKs appearing in
them, e.g. collections that are found after querying abc (h = 3) should be
ranked higher than collections that can only be found after querying ab and
bc (h= 2).

2. More distinct query terms within a collection should produce a higher col-
lection rank than a collection with less distinct query terms. So if the query
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is abcde, collection X contains abcd (n = 4), and collection Y contains cde
(n= 3), then collection X should be ranked higher than collection Y.

3. More occurrences of query term sets within a certain collection should result
in a higher collection ranking.

An important detail to mention about querying and ranking is that collec-
tion X can be found after looking for HDKs with length h. When the same col-
lection X is found after looking for HDKs with length h− 1, those results are
discarded as the collection was already found using larger HDKs: the collection
count remains unchanged. Counts c are only compared with other counts that
are retrieved after looking for HDKs of the same length. The motivation for this
behavior is that smaller HDKs tend to have higher counts. The latter is easily
explained by the fact that a smaller term set has a higher chance of occurring in
a certain window size than a larger term set. Therefore, it is unfair to compare
counts obtained by looking for HDKs with different lengths.

3.3.3 ScoreFunction: the formula

To ensure the desired ranking, the scores will have to be generated in such a way
that the most desirable property has the most influence on the score. In fact, the
influence that the second desirable property should have, should never be bigger
than the smallest increment in score that the first desirable property is able to
make. The same holds for the second and third property. ScoreFunction has been
devised to calculate a score s for a query result that ensures the desired behavior:

s = log10





h− 1+

n− 1

q
+

√
c

(hmax+1−h)·(nh)·tfmax
·α(q−n)

q


/hmax


 (3.1)

The formula can be broken down into three components – each responsible
for one desirable property. The three components are between the square brack-
ets and will be described below. The logarithm in the formula ensures that the
scores can be combined with other score formulas, such as ColRank. The remain-
der of the section discusses component score properties.

Property 1: Higher ranking with longer HDKs

The first component is h − 1. This component will have a higher value when
longer HDKs are used to find collections. The minimum component value is 0 (as
the minimum value of h is 1). The maximum component value is hmax − 1.

Property 2: Higher ranking with more query terms in collection

The second property is expressed as (n − 1)/q. The component value will be
higher when more query terms are found, so when n is higher. As n will be equal
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to or smaller than q, the component value will never be higher than q−1
q
= 1− 1

q
.

The minimum value is 0, because the minimum values of n and q are 1.

Property 3: Higher ranking with more term set occurrences

The final component is larger and needs a more detailed explanation, so it will
be explained in three steps.

√
c

(hmax+1−h)·(nh)·tfmax
·α(q−n)

q

• Starting with c/
(
hmax + 1− h

)
, this part corrects the sum of term set occur-

rences within one collection (denoted by c). This is required, because an
index can contain multiple keys that contain a particular query term.
The keys in the index are ordered by term. For example, an index can contain
the following keys: efg, ae, be, cef and bce. This example shows that the
query term e can occur multiple times and at different positions, because a
key can consist of up to hmax terms. A single term can occur at any of the hmax
positions in a key. This means that the sum of scores can be hmax times higher
than a query term set with hmax terms. A key with hmax terms can occur only
once in the index, due to the ordering of the terms in the index; only one
count c can be found per collection when h= hmax.

• The maximum value of c (after application of the correction that was just
described) is

(n
h

)
· tfmax. By dividing the count with this number, the fraction

will never exceed 1.
• The last part, α(q−n), is used to lower the scores when not all query terms

have been found. It ensures that good scores (with high values of c) become
relatively more important when more query terms have been found in a col-
lection. This increases the gap between good collections (with many relevant
documents) and mediocre collections in favor of the good collections. The
value of α should be between 0 and 1; 0.1 seems to be a reasonable value
as this still keeps differences in counts noticeable in the final scores. Smaller
values, e.g. 0.001 produce final scores that make it hard to see differences in
query result scores when h and n are equal.

Finally, the square root is taken over the resulting score. Its purpose is to
increase the sensitivity within the scores for lower counts, e.g. the difference in
c of 1 and 10 will be more noticeable in the score than a difference between 291
and 300.

Effect of three properties on the scores

The sum of the maximum values of the property components is listed in Table 3.2.
The sum of the values is hmax. Formula 3.1 divides the sum of the component
values by the same value, so the maximum score s is log10(hmax/hmax) =−1. The
score will be more negative when at least one of the component values will be
lower, ensuring a correctly ordered collection ranking.



3.4 ColRank 29

Maximum component value
Component for property 1 hmax − 1
Component for property 2 1− (1/q)
Component for property 3 1/q
Sum of maximum component values hmax

Table 3.2. Minimum and maximum values of the three formula components

3.3.4 Assigning weights to formula components

The previous section described ScoreFunction; a formula with three components
representing three properties. It is the standard scoring formula and will be used
in most Sophos tests.

Another formula was created by modification of the standard formula to ex-
perimentally derive which component should have the highest contribution in
the score to rank the collections with many relevant documents on top of the re-
sult list. Using a β- and γ-parameter, the component score weights can be shifted.
The component weights are assigned as follows:

Property 1: (1− β − γ) · component1
Property 2: β · component2
Property 3: γ · component3

This results in a modified weight shifting ScoreFunction:

s = log10



(1− β − γ) · (h− 1) + β · n−1

q
+ γ ·

√
c

(hmax+1−h)·(nh)·tfmax
·α(q−n)

q

hmax


 (3.2)

A general idea about the importance of the different components can be ob-
tained by testing collection selection ranking with different values of β and γ.
We will test all different parameter combinations of 0 ≤ β < 1 and 0 ≤ γ < 1
with 0.05 step increments of the parameters.

3.4 ColRank

In order to answer the fourth research question about the effect of distributed
PageRank scores for collections, the PageRank algorithm was modified to work
on collection level. Section 2.4 described that it is possible to distribute PageRank
calculation over peers. The section also described that the SiteRank algorithm –
PageRank on web site level – can be distributed. This supports the notion that
a PageRank-like algorithm on collection level can be distributed as well, so we
focused on a centralized algorithm that will be faster to implement and less prone
to errors.
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The PageRank algorithm was introduced in Section 2.4.1 and is repeated for
easy reference:

PR(A) = (1− d) + d
(

PR(T1)
C(T1)

+ · · ·+
PR(Tn)
C(Tn)

)

To make a centralized collection ranking algorithm, pages can be substituted
for collections. Inspired by the original PageRank algorithm, we define our col-
lection ranking formula, creatively named ColRank, as follows:

C(A) = (1− d) ·
1

# sites
+ d

# sites∑

j=1

C j,old

NA(C j)
(3.3)

This formula calculates the ColRank for collection A. It uses a damping factor
d and it uses the old ColRank scores of all collections. The old ColRank score of
the jth collection is denoted by C j,old. The number of links from the jth collection
to collection A is denoted by NA(C j). The ColRank formula looks a bit more com-
plicated, but the only real difference with the PageRank formula is the fraction
with the number of sites. This ensures that all ColRank scores together sum up
to 1. This is not the case with the PageRank formula: the PageRank scores sum
up to 1 per link-connected graph of pages. The effect of adding this fraction is
that unconnected collections or collections in small connected collection graphs
do not receive relatively high scores.

This formula is used iterative over all collections, until the ColRank scores
stabilize. Stabilization of scores is detected by looking at the differences. After
calculating the new ColRank scores for every collection, two scores are known
per collection: the new C(A) and the old C j,old, where A is the jth collection. The
Euclidean distance can be calculated between both scores and this distance can
be calculated for every collection. When the sum of those distances is smaller
than a threshold ε, the scores have stabilized and the calculation is stopped.

We will use the same value for the damping factor that was used in the origi-
nal Google PageRank algorithm: 0.85 [10]. We will use a threshold ε of 1e− 10.

3.4.1 ColRank with highly discriminative keys

ColRank is a static ranking algorithm, so each collection will have the same score
for every query. To make ColRank query-dependent, its scores can be combined
with scores from another collection selection method.

To combine the ColRank scores with the scores from HDKs with query-driven
indexing, both query result sets will have to be merged. Each result set contains
top 1,000 results, when there were that many query results. The result lists do
not need to have the same collections. When a collection occurs in both result
sets, the average of both corresponding scores is calculated. Otherwise, the score
counts for 100%.

It is unfair to count a collection score for 100% when it appears in only one
result list, because it ‘punishes’ other collections for appearing in both result lists;
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their good score is lowered by a worse score. It is not straightforward to find a
substitute score for the missing result. It can not be replaced by 0, because that
is the score of an infinitely good collection (due to the logarithm in the score
calculation formulas). It cannot be replaced by the lowest score in the result list,
because the scores can vary much per query. It can even be that the missing col-
lection score appeared to be extremely low when more than 1,000 query results
were generated. The variance per query and the possibly large variance between
scores also make it hard to use a fixed minimum score. More research is required
to find a more fair score combination.

3.5 Summary

Sophos has two approaches to rank collections: ColRank and several HDK
based methods. ColRank is a PageRank-like query-independent collection rank-
ing method. In the HDK based methods, every peer starts by building its local
index. It does so by generating a large amount of term sets. A term set in a
collection is sent to a broker when it meets the following conditions:

1. The term set has a collection frequency lower than tfmax, and;
2. when query-driven indexing is enabled: the terms of the term set are a subset

of the terms of any query in the query log.

Whenever such a term set is globally rare – so when it occurs in less than cm
collections or when it has the top-cm highest term set frequency – it is called a
highly discriminative key. Sophos also has a scoring algorithm (ScoreFunction)
that ranks collections according to three properties. In order of importance, col-
lections are ranked higher when:

1. collections contain longer HDKs.
2. more query terms can be found in a collection.
3. HDK occurrences have higher frequencies.
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Evaluation of collection selection methods

Success has always been easy to measure. It is the distance
between one’s origins and one’s final achievement.

– Michael Korda

This chapter describes the research approach and starts with a description of
the data collections that will be used for the experiments. It describes the docu-
ment corpus, the corpus splits and the accompanying test queries. Three different
query logs will be covered as well. The chapter concludes with an explanation of
the settings used for the different collection selection methods and a description
of the evaluation procedure.

4.1 Data collections

4.1.1 WT10G corpus

The Web Track 10GB corpus (WT10g) was developed for the Text REtrieval Con-
ference.1 It is a subset of the 100GB Very Large Corpus, which is a subset of a
320GB Internet Archive crawl from 1997. The WT10g corpus consists of 10GB
of processed web pages. The processing consisted of removing non-English and
binary data documents. A large amount of redundant or duplicate data has been
removed as well. Compared to regular TREC corpora, this web corpus should
be more suited for distributed information retrieval experiments, due to the ex-
istence of hyperlinks, differences in topics, variation in quality and presence of
duplicates [5, 19]. According to Ian Soboroff, WT10G is a good reflection of the
web [73].

Some statistics on the WT10G test corpus were obtained from the web page
describing the corpus2:

• 1,692,096 documents on 11,680 servers
• average of 144 documents per server with a minimum of 5 documents per

server
• 171,740 inter-server links (within the corpus)

1 http://trec.nist.gov/
2 http://ir.dcs.gla.ac.uk/test_collections/wt10g.html

http://trec.nist.gov/
http://ir.dcs.gla.ac.uk/test_collections/wt10g.html
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• 9,977 servers with inter-server in-links (within the corpus)
• 8,999 servers with inter-server out-links (within the corpus)
• 1,295,841 documents with out-links (within the corpus)
• 1,532,012 documents with in-links (within the corpus)

4.1.2 Splitting WT10G

To answer the first research question about the effect of document corpora on
the collection selection, five splits of the WT10G document corpus were used for
evaluation. Every split is a set of collections, every collection is a set of docu-
ments. The list below describes how the corpus splits were created. The names
between parentheses indicates how the corpus splits are called in the rest of this
thesis. The numbers 100 and 11512 indicate the amount of collections in the
corpus split.

Split per IP (IP Split): Documents are put in collections based on the IP ad-
dresses of the site where a document was residing. This results in 11,512
collections, which is a little less than the 11,680 servers in the corpus. This
means that multiple servers run at one IP address.

Split using clusters of peers (IP Merge 100): A cluster is created by grouping
up to 116 collections, which results in 100 collections. Grouping is done in
order of IP address. This corpus split simulates the scenario of indexing the
search engines that index many servers.

Random splits (Random 100 and Random 11512): Two random splits are cre-
ated: a split with 100 collections and another one with 11,512 collections.
Every document is randomly assigned to one collection. The number of
11,512 collections was chosen to be able to compare a random split with
the IP Split.

Split with overlap (Overlap3 11512): The split with overlap is an extension
to the random split; every document is randomly assigned to three of the
11,512 collections.

Fig. 4.1 and Fig. 4.2 show the document distribution for the different splits.
In the graphs, the collections of each split are ordered on amount of documents
in the collections. The number of documents is plotted logarithmic due to larger
differences between and within splits. Fig. 4.3 and Fig. 4.4 depict the size distri-
bution in bytes of the collections in each split. In these graphs, the collections are
ordered on collection size. The size is plotted logarithmic.

The graphs show that the collections of the random splits do not vary much
in number of documents and size. This can be attributed to the uniform probabil-
ity distribution of documents being assigned to collections. Fig. 4.2 and Fig. 4.4
show that the IP Merge 100 corpus split shows a strong drop in both size and
number of documents for the smallest collection. This smallest collection is the
100th collection within the split, which contains documents of the last 88 collec-
tions from the original IP split (in contrast to the 116 collections for every other
clustered collection).
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Despite this drop, there remains a large difference in number of documents
and sizes of the collections. This is typical for the Internet, as there exist both very
large and very small sites; the number of documents per server follows a Zipf dis-
tribution on the Internet [1]. The IP based splits show signs of conformance to a
Zipf distribution, especially for the IP Merge 100 split (as shown in Appendix A).
This means that the IP based splits can be compared to the Internet in terms of
distribution of the number of documents and the sizes of the collections.

The merit of a collection is the number of relevant documents in a collection
for a particular query. Appendix B: Merit in corpus splits shows that IP based cor-
pus splits have a larger deviation in merit among the collections. This contrasts
with random splits, which by approximation have the same amount of merit for
each collection within the splits.

4.1.3 WT10g retrieval tasks

Broder identified three types of user intent in queries on the Internet: navi-
gational, transactional and informational [11]. Navigational queries are about
finding home pages. Transactional queries are concerned with buying things and
informational queries are about finding information about topics.



36 4 Evaluation of collection selection methods

Overlap3 11512
Random 11512

IP Split

collection number

si
ze

(b
yt

es
)

100007500500025000

108

107

106

105

104

103

102

101

Fig. 4.3. Collection size distribution in bytes
for splits with 11,512 collections

Random 100
IP Merge 100

collection number
si

ze
(b

yt
es

)

100806040200

109

108

107

106

Fig. 4.4. Collection size distribution in bytes
for splits with 100 collections

The WT10g test collection is accompanied with query sets, of which a selec-
tion was used for our evaluation. The selected query sets are divided in two types
of queries:

• 145 navigational ‘homepage-finding’ queries: query numbers 1–145.
• 50 informational ‘ad-hoc’ queries: query numbers 501–550.

The navigational queries in the query set have a query number and a query
text. The informational queries in the query set have a query number, a title, a
description and a narrative description of the result that is considered relevant.
The title is a small set of words which was used as the query text. The narra-
tive descriptions of relevant results were used by humans to assign relevance
judgments to documents for each query. The relevance judgments can be used to
count the number of relevant documents in the collections, which in turn can be
used to measure collection selection effectiveness.

The relevance judgments for the navigational query set classifies documents
as either not relevant (indicated with a 0) or relevant (indicated with a 1). The
informational query set has three types of relevance judgments: not relevant (0),
relevant (1) or authoritative (2). There can be multiple authoritative documents
in the document corpus for each main query, but some queries have no author-
itative documents. Authoritative documents are always relevant documents, but
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not vice versa. All authoritative judgments are converted to 1, so documents are
either relevant or not relevant. This allows for evaluation of the collected amount
of relevant documents.

4.1.4 AOL query log

AOL published a large query log, giving researchers the opportunity to do in-
formation retrieval experiments with a large data set. The AOL query log data
consists of 21,011,340 queries from 657,426 users [49]. The queries were issued
in a time span of three months from March 1, 2006 until May 31, 2006. The
collection has been anonymized and consists of the following data fields:

AnonID: The anonymous user ID number.
Query: The issued query, converted to lower case and with removal of most

punctuation.
QueryTime: The query submission date and time.
ItemRank: The rank of the clicked result (if the user clicked on a result).
ClickURL: The domain of the clicked result.

Although every user was assigned a unique ID, it remained possible to create
user profiles about them. It has even been proven possible to link an ID to a
real person. The release of the anonymized data set led to dissatisfaction on the
Internet, forcing AOL to take it down on June 8, 2006.3 In an ethical discussion
about the use of query logs, Bar-Ilan states that academic researchers are eager
to use the query logs, but hesitate to do so because of concerns regarding the
privacy of the users [7]. We used a stripped version of the query log that only
contains the actual queries issued (and none of the other metadata).

4.1.5 Excite query logs

Excite4 has also published query logs. We used two Excite query logs. The first
query log contains queries that were issued on September 16, 1997. It contains
1,025,907 queries of 211,063 users. Besides the actual queries, the log contains a
time stamp and an anonymous user code per query. An extensive analysis of this
query log is provided by Spink et al [75]. The second query log contains queries
from 1999 and has 1,777,251 queries by 325,711 users. This log contains the
same metadata per query as the Excite 1997 query log, but it also shows the
number of additional result pages that were viewed by the Excite users.

Only the actual queries were used from both query logs; all additional infor-
mation is discarded.

3 More information on the AOL Search Query Log Release Incident can be found on
http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

4 http://www.excite.com/

http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html
http://www.excite.com/
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4.2 Evaluations of collection selection methods

This section describes the approach followed for the evaluation of the different
collection selection methods. First, a description of the general test procedure
is given. This is succeeded by a description on the collection selection method
specific settings. The evaluations were performed with every corpus split that
was described in Section 4.1.2. The collections in the corpus split are used to
simulate the contents at peers. Therefore, ‘peers’ and ‘collections’ can be used
interchangeably.

4.2.1 Test procedure

Obtaining query results

The first evaluation step is calculating the merit for each of the 195 queries. A
collection ranking can be created by descendingly ordering them on merit. This
ranking is the best possible ranking and is the ranking that retrieval algorithms
should produce.

The next evaluation step consists of indexing the collections and is covered
in more detail in the next section. Once the index has been created, the retrieval
system is ready to answer the queries. A total of 1,000 ranked query results (if
available) is stored per query and used for further processing. The processing
consists of adding merit values to the ranked query result lists to enable perfor-
mance evaluation of the collection selection.

Traditional precision and recall

Most of the time, information retrieval works at document level. Metrics have
been created to measure the retrieval quality of document selection systems. The
best known metrics are precision and recall. Precision is defined as the ratio of
relevant documents to all selected documents. Recall is defined as the ratio of
selected relevant documents to all relevant documents in the corpus. Selecting
all documents will give maximum recall, but results in a low precision. Select-
ing a small amount of relevant documents – only when the retrieval system is
convinced they are relevant – gives a high precision, but a low recall if there are
many more relevant documents. Therefore, obtaining a high precision and recall
is usually a trade-off.

Our research aims at collection selection. One collection can contain many
relevant documents. The performance metrics will have to be adapted for this
scenario. This will be covered in the remainder of this section.

Performance metrics for distributed collection selection

After processing the query results, the retrieval system ranking (S) and best rank-
ing (B) are known and statistics about them can be calculated. Inspired by metrics



4.2 Evaluations of collection selection methods 39

from Gravano et al. [28], French et al. [26] use metrics to evaluate the perfor-
mance of collection selection. The same metrics will be applied here, as they
are a good approximation of the traditional precision and recall metrics. Before
describing the metrics in formulas, several variables will be introduced.

Given query q and collection ci , the merit within a collection can be expressed
using merit(q, ci). The merit of the ith ranked collection in rankings S and B is
given by Si = merit(q, csi

) and Bi = merit(q, cbi
). Using these two variables, the

performance of retrieval systems can be compared to the best possible ranking.
The obtained recall after selecting n collections can be calculated by dividing

the merit selected by the retrieval system with the merit that could have been
selected in best case. Gravano et al. defined the following metric for this purpose:

Rn =

∑n
i=1 Si∑n
i=1 Bi

(4.1)

This metric was slightly modified by French et al. to:

R̂n =

∑n
i=1 Si∑n∗

i=1 Bi

(4.2)

where n∗ =max k such that Bk 6= 0

In this modification the denominator is changed to the constant total merit
of all collections. Therefore, R̂n is the fraction of the total merit that has been
accumulated by the top n selected collections, making R̂n comparable to the tra-
ditional recall metric. The difference between Rn and R̂n is that Rn can be 1
from the beginning (when the retrieval system results are equal to best possible
ranking), whereas R̂n gradually increases to 1 (at which all relevant collections
have been selected). We will call Formula 4.1 with its increasing denominator
cumulative recall. Formula 4.2 with the total merit within the collection in the
denominator will be called total recall.

A metric for precision was also defined by Gravano et al. Pn gives the fraction
of top n collections that have non-zero merit:

Pn =

∣∣{sc ∈ Topn(S)|merit(q, sc)> 0
}∣∣

∣∣Topn(S)
∣∣ (4.3)

In this formula, the counter of the fraction counts the number of selected
collections sc that have a merit higher than 0 and occur in the top n of the
ranked result list S (Topn(S)).

4.2.2 Collection selection method specific settings

Now that the evaluation metrics have been explained, the remainder of this chap-
ter describes the collection selection systems specific settings. It will begin with
language modeling with Dirichlet smoothing, which was used for baseline eval-
uation. The description will then continue with explaining the settings for the
custom built collection selection systems.
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Language modeling with Dirichlet smoothing: the baseline

The INDRI search engine was described in Section 2.1.4. The section described
that its default implementation of language modeling with Dirichlet smoothing
can be used to model the large merged documents (collections). Using these
models, the system can serve as a centralized search engine that has knowledge
about all the terms in the corpus. The section also described that this approach
has been used before with good results, so we will use this method as our baseline
collection selection method.

According to Donald Metzler [46], the recommended smoothing type for IN-
DRI is Dirichlet, which has one free parameter µ. We will use the default param-
eter value of µ= 2500, which appears to be a good value [18].

For indexing the collections, we will use Krovetz word stemming which is
provided as part of the Lemur toolkit. Stemming is a technique to reduce different
words to common roots, e.g. ‘doing’ is converted to ‘do’. It is a way to increase
recall, especially when queries and documents are short as this is the hardest
situation to match query terms to document terms [35, 39]. The combination of
Krovetz stemming with our settings of INDRI is no uncommon approach [17, 18,
23].

In the rest of this thesis, this approach is referred to with the abbreviation
LMDS (Language Modeling with Dirichlet Smoothing).

Sophos

The remainder of this section describes the evaluation specific decisions that were
made to evaluate the retrieval performance of Sophos. The section starts with the
collection and query preprocessing, continues with HDK indexing parameters and
concludes with query driven indexing.

Collection and query preprocessing

Before local indexing begins, stop words are removed from the collection. Stop
words are words that frequently occur in natural language text, such as ‘the’, ‘and’
and ‘by’. The frequently occurring stop words make up almost 50% of the number
of words in the WT10g corpus. Removing the stop words has the advantage that
the corpus size is reduced. It also has two other advantages regarding term set
generation:

1. Stop words are frequently occurring words. When those words are not re-
moved from the corpus, many term sets would be made with those words.
For example, the word “the” occurs on many places in a document. A term
set would be generated for every infrequent word that is near “the”, just to
find term sets that are infrequent and do contain the frequent word “the”.

2. As stop words make up almost 50% of the words in the corpus, we can ef-
fectively half the window size to get the same amount of combinations with
more intrinsic words. This speeds up term set generation and drastically re-
duces the number of combinations that will be generated.
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The disadvantage is that certain queries can not be answered anymore. A good
example of such a query is finding information about the English pop group “The
The”.

Besides stop word removal, all words are converted to lower case and punc-
tuation is removed from the collections. The collection will also be subjected to
a word stemming algorithm. We used the Porter stemmer [53], because the offi-
cial code is readily available on the Internet5, in contrast to the Krovetz stemmer
that is used for the baseline. The use of official code ensures that no errors are
introduced by improper word stemming.

The downside of choosing another word stemmer is the possible introduction
of differences in retrieval performance. Porter is a more aggressive stemming al-
gorithm, which means that more words are stemmed to the same word stem.
This could lower precision and recall for Sophos compared to the baseline. We
think that the difference will be small, due to the nature of HDKs. The possible
negative effect of a more aggressive stemmer is an increase of term set frequen-
cies for particular term sets; if the effect is noticeable at all, it could be countered
by increasing the term set frequency maximum tfmax.

The same collection preprocessing steps are applied to the queries. It consists
of stop word removal, converting everything to lower case, punctuation removal
and word stemming. The processed queries are used for querying to test recall
and precision of Sophos. An important part of querying is the ScoreFunction that
was described in the previous chapter. The modified formula that was described
in Section 3.3.4, will be used to test which element of the scoring formula is the
most important to obtain the best ranking for a given query.

Highly discriminative key parameters

Section 3.1 introduced three local index parameters: the maximum key length
hmax, the maximum key frequency before calling a key frequent (tfmax) and the
window size ws. The only global indexing parameter was the collection maximum
cm.

The test values for tfmax and window size ws are based on the numbers that
were used in the HDK study of Luu et al. [44]. We use the following settings:
tfmax = {250,500, 750} and ws= {6, 12,18}.

Several researchers measured the average query length on the Internet and
found it to be 2.3 [40, 68]. We use these observations to set hmax to 3. Setting
it smaller would require many intersections of term sets (with associated collec-
tions) to answer queries. Setting it larger would result in many term sets that are
rarely queried for.

The tested global indexing parameter values for cm are 5, 10, 20 and 50.

5 The official home page for Porter stemming algorithms can be found at: http://
tartarus.org/~martin/PorterStemmer/index.html.

http://tartarus.org/~martin/PorterStemmer/index.html
http://tartarus.org/~martin/PorterStemmer/index.html
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Query driven indexing

To answer the third research question about the effects of pruning the global
index, three query logs will be used to filter keys: the AOL query log, the Excite
1997 query log and the Excite 1999 query log. A fourth query log will be created
by removing all queries from the AOL query log that were issued only once. This
fourth query log will also be used for filtering.

Besides looking at the actual index size reduction, the collection selection
performance will be monitored. The latter is done by looking at precision and
recall for the navigational and informational queries.

4.3 Summary

This chapter introduced modified versions of the precision and recall metrics to
measure collection selection performance. The two formulas will measure the
performance of five methods:

1. Language modeling with Dirichlet smoothing (the baseline)
2. Collection selection using HDKs
3. Collection selection using HDKs with query-driven indexing
4. Collection selection using HDKs with query-driven indexing and ColRank
5. ColRank

The metrics are used to measure the performance of the five methods on five
different corpus splits, where the corpus splits have 100 or 11512 collections
and where the collection composition is based on random document assignment
or IP based document assignment. The chapter also described several query logs
of which we will solely use the actual queries for pruning indices.
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Sophos index implementation

Science is organized knowledge. Wisdom is organized life.

– Immanuel Kant (1724–1804)

This technical section is intended for developers that like to gain insight in a
possible approach to efficiently store keys and associated information. As the
amount of generated keys can become very large, a special structure is required
to efficiently store keys, collection identifiers and counters. The chapter describes
how every term of a key can be stored in 3 bytes. Next, the multi-level term index
is described which is the base of local and global indices.

5.1 Unique term index

5.1.1 Corpus term analysis

The WT10g corpus contains 493,993,716 terms, of which 2,421,319 are unique
terms. As the corpus is a crawl of the web, it contains a small percentage of
insensible terms. Examples are character repetitions (like hundreds a’s) or a large
amount of concatenations of one of the most popular web queries. Because such
terms are not likely to be queried for, we decided to cut off the corpus terms and
the query terms to a length of 12 characters. This resulted in 2,380,958 corpus
terms with 12 or less letters, which is a 1.7% decrease in terms.

All letters have been converted to lowercase, which gives an alphabet of 26
letters. The amount of possible letter combinations with terms up to 12 letters is
261 + 262 + · · ·+ 2612 ≈ 9.9 · 1016. Five bits are required to encode 26 letters.
This means that every 12 letter term uses 5 · 12= 60 bits or almost 8 bytes. Eight
bytes can encode 264 ≈ 1.8·1019 letter combinations, which is much more than is
required for the 2,380,958 unique terms. Most letter combinations will never oc-
cur in the corpus, because they are not normal terms. Therefore, term identifiers
can be smaller than 8 bytes when a mapping is found that only assigns identifiers
to terms that are likely to occur in a corpus.
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5.1.2 Technical explanation

This section explains how every unique corpus term can have a unique 3 byte
identifier, which is useful because it takes up less space than the term. This helps
in reducing the size of the local and global indices that store the keys. This section
distinguishes between terms with a length of five or less letters and terms with
six of more letters.

Terms with five or less letters

An identifier is calculated immediately for every term that has five or less letters.
These terms can be mapped to 275 numbers, because there are 26 lowercase
letters and there is one ‘no-token’ letter. This ‘no-token’ letter is used as suffix
padding to make every term 5 tokens long. For example, the three letter term
dog__ has three normal letters and two no-token letters to make it five letters
in total. The letter d is the fourth letter in the alphabet, so it is represented by 4.
This can be done for every letter. The ‘no-token’ is represented by 0. Every term
identifier for a five letter term (ti5) is calculated using the following formula:

ti5 = (letter1 · 274) + (letter2 · 273) + (letter3 · 272) + (letter4 · 27) + letter5

For the example of the term dog, this becomes:

ti5 = (d · 274) + (o · 273) + (g · 272)
= (4 · 531, 441) + (15 · 19, 683) + (7 · 729) = 2, 426,112

A term identifier that has been calculated using this formula will be called a five
letter encoding.

Terms with six to twelve letters

Every unique term that consists of six or more letters has a unique term identifier
that is assigned in order of term appearance. The first unique term gets the num-
ber 275 = 14, 348,907. The term identifier is incremented by 1 for every new
unseen unique term. An index stores the term identifier assignments and can be
used to retrieve the term identifier that represents a term. Three bytes gives 224

possible term identifiers. 14,348,907 of those possibilities are reserved for terms
up to five letters, so three bytes contain space for 2, 428,309 term identifiers.
This is enough to store every unique term in the WT10g corpus.

Before explaining the index structure, two definitions are introduced. Two
consecutive letters of a term is a duplet. Three consecutive letters of a term is a
triplet. The procedure that is used to calculate a five letter encoding can also be
applied to calculate encodings for duplets and triplets. For example, the following
formula is used to calculate a triplet encoding:

ti3 = (letter1 · 272) + (letter2 · 27) + letter3
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The unique term index consists of an array and many small trees that are built
using duplets, triplets and five letter encodings. Fig. 5.1 shows a small piece of
a unique term index. It shows how the terms photos, phonetic, photocell,
photoflash, photography and photographer have been added to the unique
term index in such way that the term identifiers can be retrieved for the terms.
Terms and their identifiers are put in the unique term index using a procedure
that is described below. The description uses examples of calculations that can
be found in the figure.

0 ... 11,893 11,894 11,895 11,896 11,897 ... 19,682

_ _ _ p h m p h n p h o p h p p h q z z z
Array with triplet

encoding pointers

to trees

Root nodes of trees,

pointed to by triplet

that corresponds to

the first three letters

of terms

(10,937,916)
t o s _ _ 14,348,907

(10,937,916)
n e t i c 14,348,908

Five letter encodings Unique term id

(555)t oDuplet encodings:

Nodes of trees, pointed

to by duplets that

correspond to the fourth

and the fifth letters of

terms

Nodes of trees, pointed

to by duplets that

correspond to the sixth

and the seventh letters

of terms

(1,701,810)
c e l l _ 14,348,914

(3,426,092)
f l a s h 14,349,086

Five letter encodings Unique term id

(207)g rDuplet encodings:

(852,876)
a p h y _ 14,348,913

(852,354)
a p h e r 15,073,550

Five letter encodings Unique term id

Duplet encodings:

Fig. 5.1. Unique term index showing one branch of one tree that stores term identi-
fiers for the terms photos, phonetic, photocell, photoflash, photography and
photographer.

• Calculate the triplet encoding for the first triplet of the term. For example,
the first triplet of phonetic is pho and its encoding is 11,895. The encoding
number is used to find a pointer in the array that references to a root node
of a tree (as shown in the top of Fig. 5.1). A root tree node is created if it did
not exist before and a pointer to it is stored in the array at the position of the
calculated triplet encoding.
Is the term length 6, 7 or 8 characters?
yes Calculate the five letter encoding for the remaining letters, e.g. the

five letter encoding for the remaining letters of phonetic (netic) is
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7,553,415. The five letter encoding is stored in the root node together
with a unique term identifier which has the value of the previous highest
term identifier value incremented by 1.

no Calculate the duplet encoding for the next set of letters (fourth and fifth
letter), e.g. for photography the next duplet is to and its encoding is
555. A pointer from the root node to a new node and the new node itself
are created for the duplet to if they did not exist yet.
Is the term length 9 or 10 characters?
yes Calculate the five letter encoding for the remaining letters. Store the

five letter encoding in the duplet node, together with a unique term
identifier by using the value of the previous highest term identifier
and incrementing this value with 1.

no Calculate the duplet encoding for the next set of letters (seventh and
eighth letter), e.g. for photography the next duplet is gr and its
encoding is 207. A pointer from the previous duplet node to a new
node and the new node itself are created for the duplet gr if they did
not exist yet.
The final step consists of calculating the five letter encoding for the
rest of the term, e.g. the five letter encoding of photography is
852,876 (for aphy_). This five letter encoding is stored in the duplet
node, together with a unique term identifier by using the incremented
value of the previous highest term identifier.

Discussion

The procedure description above explained that the longest terms are split in a
triplet (letter 1–3), a duplet (letter 4–5) and another duplet (letter 6–7), before
a five letter encoding is calculated. There is nothing that prevents this system
from using more duplets before calculating a five letter encoding. Therefore, the
system is also capable of dealing with longer terms.

The strength of the unique term index lies in exploiting the overlap of term
letters to reduce the amount of space required for the term and the term iden-
tifier. The index sample showed six terms starting with pho. Those three letters
need to be stored only once (using an entry in the array). This overlap occurs
with many terms and on many levels in the term (first triplet, first duplet and
second duplet), which reduces the number of nodes required to store the term
identifiers.

We could have chosen to reserve more space in the array for longer letter
combinations, e.g. using quadlets. This is a trade-off between speed and storage.
There are three factors that come into play with this consideration. Longer first
letter combinations results in:

A larger array The array needs space for more pointers. The fill percentage of
the array decreases when the number of letters is increased, because many
longer letter combinations are not valid starts of terms. The terms of the
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WT10g corpus start with 18,177 different three letter combinations (out of
26·27·27= 18,954 possible combinations). This is an array fill percentage of
92%. With 240,946 four letter combinations – out of 26·27·27·27= 511, 758
combinations – the fill percentage drops to 45%.

Shallower trees and less nodes in the trees The root nodes can store term iden-
tifiers for longer terms. This advantage is passed on to underlying nodes,
resulting in less deeper nodes for the longest terms.

More trees When the array stores pointers for the first four letters of a term, the
root nodes store the term identifiers for all terms with a length between 6
and 9 letters (79% of all unique terms longer than 5 letters in the WT10g
corpus). When triplet encodings are used to address the array, all terms with
a length between 6 and 8 letters are stored in the root nodes (65% of all
unique terms longer than 5 letters in the WT10g corpus).

The space wasted by empty entries in the array is marginal compared to the
space requirement for extra nodes; a node needs to store tuples of five letter
encodings and term identifiers and it needs to store tuples of duplet encodings
with pointers to child nodes. The node structure itself uses more space than an
unused array entry (which has the size of one pointer). Therefore, the trick is
to keep the amount of nodes low, while also ensuring that the average number
of encodings in a node stays low (otherwise the retrieval of term identifiers will
take too much time).

The optimal settings cannot be calculated, because the settings are dependent
on the diversity of the terms in the corpus. The optimal settings can be obtained
by experimentation. Our experiments showed that the use of triplets for array
addressing resulted in enough trees. Together with the use of duplets, the overlap
of terms was exploited such that the memory footprint was acceptable with a
50MB unique term index. For reference, the size of the plain text file with all
unique terms is 20MB. The retrieval rate was 4.5 million term identifiers per
second on a 2.5GHz machine.

5.1.3 Alternatives

Hashing

An alternative for the unique term index is a hash function that maps terms
to term identifiers. A hash function maps every term to a 32-bit integer. This
integer can be used to find a data item (term identifier) that is associated to the
term. This integer based search can be performed much faster than a term based
search.

A 12 letter term with lower case letters requires 60 bits for encoding. Map-
ping these 60-bit encodings to 32 bits can cause duplicates; two different terms
can be hashed to the same 32-bit integer. The entire term needs to be stored
to detect these “hash collisions”. Hash collision tests have to be performed for
every calculated hash. If a collision occurred, it needs to be resolved by finding
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the entry that corresponds to the original term. This typically requires one extra
lookup. Hash collision do occur with 2,380,958 terms, even though there are 4.3
billion integers to map terms to. The C# hash function has 691 collisions with
2,380,958 unique terms, so storing the actual terms is really required.

The average corpus term length is six letters and can be encoded with ASCII.
This means that the average term uses 10 bytes: 6 bytes for the letters and 4 bytes
for an integer denoting the string length. Every term has a unique term identifier
which is stored as an integer (4 bytes). This means that every term uses 14 bytes.
With 2,380,958 unique terms, the data itself uses 33MB. Additional storage is
required for the hash table structure that stores the terms and their identifiers.
The total amount of data comes down to 128MB for 20MB of unique terms. The
storage requirement is more than twice as much as the unique term index. Term
identifier lookups are slower than with the unique term index: 3.9 million term
identifiers per second on a 2.5GHz machine. We used a C# test implementation
to obtain these numbers.

Perfect hashing

A perfect hash function is a hash function that has no collisions when mapping
terms to integers. It takes about one hour on a 1 GHz machine to create a perfect
hash function for 2,380,958 keys using gperf [62]. The perfect hash function
calculation can be sped up by distributing it over many machines; Botelho et al.
can calculate a perfect hash function for 1.024 billion keys in four minutes using
14 commodity PC’s [8].

A new perfect hash function will have to be calculated when new unique
terms are added. This means that all indices will have to be updated as well.
This requires that all unique terms in the index have to be stored separately,
because hash functions are one way functions. Using the list of unique terms, the
old hashes can be calculated and converted to new hashes using the new hash
function.

Perfect hash functions are larger than regular hash functions, but the total
memory footprint can be smaller. Perfect hash functions can be an interesting
option if the memory usage should be minimized.

5.2 Multi-level term index

The multi-level term index is an index structure that stores term sets with ad-
ditional information about those terms sets. The type of additional information
depends on the application of the multi-level term index. The index can be used
to store information about a local collection or it can be applied to store global
information about collections at a broker. This section starts with a description
about the technical structure of a multi-level term index and is followed by the
two applications for the index structure. The section concludes with a discussion
about alternatives for this index.
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5.2.1 Structure of the index

The structure of the multi-level term index is comparable to the unique term
index, as it also uses an array with relatively shallow trees to store nodes. The
difference is that the multi-level term index uses the nodes to store information
about the terms, instead of information about letters of a term. One branch in a
tree corresponds to one set of terms.

Array with term

identifier pointers

to trees

Nodes for single

terms

Nodes for double

term sets

Nodes for triple

term sets

16,777,2160 ... ... ...12,531,838 15,073,578

Node for:

world

15,073,578

Node for:

driver

16,123,498

Node for:

champion

Term identifiers:

Term identifiers:

Term identifiers:

Node for:

driver

16,123,498

Node for:

champion

Term identifiers:

Term identifiers:

16,624,026

Node for:

season

Term identifiers:

This node contains 

information about the term 

set “champion driver 

world”

Fig. 5.2. Small part of a multi-level term index that shows how term sets are stored.

A small part of a unique term index is depicted in Fig. 5.2. The figure shows
that the array can store 16,777,216 entries. This is equal to the amount of num-
bers that can be encoded with 3 bytes (224), and it is the maximum value of a
term identifier. Storing and retrieving term sets and associated information in
the multi-level term index does not differ much from storing and retrieving term
identifiers in the unique term index. The concept is explained using an example
of inserting information about the term set “driver world champion”.

Using the unique term index, term identifiers can be obtained for each of
the three terms. The term identifier for world can be calculated, as the term
length is 5 characters: the term identifier is 12,531,838. The term identifiers for
driver and champion were assigned in order of addition to the unique term
index. The same will hold for any other term that has a length longer than five
letters. The following terms and term identifiers are used in Fig. 5.2: champion
(16,123,498), driver (15,073,578) and season (16,624,026).

The term identifiers are sorted once they have been retrieved from the unique
term index. This means that the order of terms in a term set does not matter, i.e.
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for Sophos “driver world champion” and “champion driver world” are
the same. This reduces the index size and it speeds up search, because one lookup
suffices. However, it can negatively affect collection selection performance when
one particular ordering appears frequently in many collections (in at least as
many collections as defined by the collection maximum parameter) and another
ordering appears less frequent in the collections. The less frequent ordering can
not be found in the term order independent approach.

The ordered term identifiers (12,531,838; 15,073,578; 16,123,498) for the
term set “driver world champion” can be used to traverse the tree and, if
non-existent, construct the nodes and pointers along the way. This is done in
the same way as with the triplet and duplet encodings from the unique term
index. Every node stores pointers to child nodes. Every node can store additional
information that applies to that particular term set. For example, Fig. 5.2 shows
a node for driver with one child node. That node contains information for the
term set “world driver”; it contains no information about longer term sets
(other than the pointers to the nodes that can make longer term sets).

5.2.2 Contents of the index nodes

The nodes in the trees of the local indices contain one term set frequency counter.
It counts the occurrences of the term set that is represented by that node (for
example, a node on the third level in the tree represents a triple term set). The
term set frequency counters need to be able to store large numbers, because
single terms can occur very often (even though stop terms have been removed
from the corpus); a counter is a four byte integer.

The nodes in the global index store collection identifier counters. As the
global index only contains infrequent term sets (with occurrences below the
term set frequency maximum), the counters can be smaller: two bytes can al-
ready count up to 65,536 occurrences. This is enough for our tests, as the largest
tested term set frequency maximum is 750 occurrences. Section 3.1 introduced
the collection maximum. This defines the maximum number of collection identi-
fier counters in a global index node.

5.2.3 Alternatives

Storing and quickly accessing large amounts of information is a common problem
in the area of Information Retrieval. A popular solution is the use of a database.
This section starts by exploring the option of a relational database as an alter-
native to the multi-level term index and concludes with a discussion about the
search cost with tree structures.

Database

Table 5.1 shows a sample of a database that stores global index information
for single, double and triple term sets. The byte size of the attributes is shown
between brackets. The database size can be reduced in two ways:
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• When the term set consists of one term, the tuple will still use the space for
three terms. Separate tables for each amount of terms in the term sets will
solve this problem.

• There is a lot of redundancy for the term set identifiers. This can be solved
by replacing the collection identifier and frequency counter attributes by one
attribute, which contains a variable amount of collection identifier counters.
A variable size attribute needs some bytes to store the size of a data item, but
this is a small overhead compared to the largely reduced amount of tuples
in the table. We will assume two bytes to indicate the number of collection
identifier counters in the data item.

term_id_1 (3) term_id_2 (3) term_id_3 (3) collection_id (2) frequency_counter (2)
12,531,838 5 742
12,531,838 6 692
12,531,838 15,073,578 1 742
12,531,838 15,073,578 2 321
12,531,838 15,073,578 16,123,498 3 173
12,531,838 15,073,578 16,123,498 4 432

Table 5.1. Example of database content for global index

Table 5.2 up to Table 5.4 show the improved database tables using the
suggestions from above. Instead of 6 · 13 = 78 bytes, the data would require
13+ 16+ 19= 48 bytes.

term_id_1 (3) collection_id_counters (variable size)
12,531,838 2:3-173;4-432

Table 5.2. Example of database content for global index that store single term sets. The
data uses 3+ 2+ 8= 13 bytes.

term_id_1 (3) term_id_2 (3) collection_id_counters (variable size)
12,531,838 15,073,578 2:3-173;4-432

Table 5.3. Example of database content for global index that store double term sets. The
data uses 3+ 3+ 2+ 8= 16 bytes.

Simply putting all information in tables is not enough, as a good index is
required to quickly retrieve the stored information. This index will take up a lot
of additional space and will have to be kept up to date. Furthermore, tables are
unable to exploit overlap in term sets to reduce the amount of stored data. The
table shown in Table 5.1 stores the term identifier 12,531,838 six times. The
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term_id_1 (3) term_id_2 (3) term_id_3 (3) collection_id_counters (variable size)
12,531,838 15,073,578 16,123,498 2:3-173;4-432

Table 5.4. Example of database content for global index that store triple term sets. The
data uses 3+ 3+ 3+ 2+ 8= 19 bytes.

improved database tables stores the same identifier three times. The multi-level
term index will store that identifier only once. Note that this was a small sample
of a database; a real global index can easily contain tens of millions of term sets,
so the space reduction achieved by exploiting overlap is significant.

Tree structures

Tree structures do not need an additional index and can maximize the overlap
of term identifiers. This will result in a space efficient solution to store term sets
with corresponding information. There are many tree types, such as B+ trees,
binary trees, red-black trees and radix trees.

The multi-level term index, depicted in Fig. 5.2, can also be looked upon as a
tree. The array can be considered as the “root node” that contains no additional
information. All nodes have a theoretical maximum of 16,777,216 branches, but
for our tests the maximum number of branches (in the root node) is 2,380,958, as
that is the amount of unique terms in the corpus. In practice, the non-root nodes
of frequently occurring terms will contain several hundreds of child nodes, be-
cause the number of term combinations is limited when the window size is small.
This means that those nodes can have a list with hundreds of term identifiers.
Searching term identifiers in these lists is the largest search cost component with
the multi-level term index.

The search cost for term set associated information can not be calculated
when the term set contains more than one term, because the number of child
nodes is highly dependent on the text and the window size. We assume the fol-
lowing amount of term sets in a global index: 500,000 single terms; 5,000,000
double terms and 5,000,000 triple terms. Some single terms are infrequent by
themselves, so they will have no child nodes. Other single terms are frequent
and will have many children to make infrequent multi-term sets. This also ap-
plies to term nodes on the second level in the multi-level term index. The lack of
precise numbers means that we can only make a worst case estimate for a triple
term search.

The first term of a term set can always be found instantly by one lookup
in the array. The search cost for the next terms depend on the number of term
identifiers in the node. We assume that a popular term has a set of 500 term
identifiers with pointers to child nodes. Binary search is used to find the child
node pointer corresponding to the second term in the term set. Approximately
log2(500)≈ 10 comparisons are needed to find the pointer that leads to the next
child node. The same amount of operations is required for every next term in the
term set. The multi-level term index can have an unlimited number of children,
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which means that the structure can store term sets with an unlimited number of
terms. This is where the multi-level term index differs from other tree structures.

Most regular tree structures are well suited for fast lookup of term associ-
ated information when the number of unique terms is very large, but there are
only single terms as keys. For example, a B+ tree with a fan-out of 8 can store
16,777,216 term identifiers in 8 levels. The term related information is stored in
the leaf nodes at the bottom level. The worst case search requires 24 compar-
isons to find the term associated information, because log2(8) = 3 comparisons
are required per level. The average case search requires 8 · 2.5= 20 comparisons.
This is worse than the amount of comparisons required with the multi-level term
index.

A key can also contain multiple terms, which makes it harder to apply tradi-
tional tree structures. There are two options to store multiple terms with trees:

1. Increase the key space. Every term can be encoded with 24 bits. A term
set can consist of three terms, resulting in a key space with 23·24 possibil-
ities. The term information can be indexed using B+ tree with a fan-out
of 16 and 18 levels. The worst case search needs 72 comparisons, because
log2(16) = 4 comparisons are required per level. The average case search re-
quires 3.3 comparisons per level, so 60 comparisons are required on average.
This number of comparisons is required for single, double and triple terms.
This solution does not scale well when the maximum number of terms in a
term set is increased.

2. Use multiple levels of trees, similar to the multi-level term index. A first tree
is used to find the node that corresponds to the first term. This node can
point to a tree that stores the nodes for the second terms. This concept can
be extended to store an unlimited number of terms in a term set. The search
costs are multiples of the previously calculated search costs, e.g. a term set
with three terms needs 72 comparisons in worst case and 60 comparisons in
the average case. This is the same as the previous solution, but the advantage
is that single term searches still take 24 comparisons in worst case.

We have shown that the multi-level term index is faster for single term
searches than a B+ tree: a worst case of 1 array lookup versus 24 comparisons.
Multi-term searches are also performed with less comparisons, with an estimated
10 comparisons per term for the multi-level term index versus 24 comparisons
for the B+ tree.

5.3 Conclusion

This chapter described the Sophos index structure. It introduced the unique term
index as a data structure to create small 3-byte representations for the terms. The
unique term index appeared to be a better alternative than hashing in terms of
retrieval speed (4.5 million versus 3.9 million lookups per second) and storage
requirements (50MB versus 128MB).
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The same conclusions were drawn with respect to the multi-level term index
for storing term sets and their associated information. The multi-level term index
was compared to relational databases and the B+ tree. The multi-level term in-
dex is better capable of exploiting the term overlap in term sets than a relational
database. Furthermore, the storage cost for a relational database will exceed that
of the multi-term index, because the relational database stores the index and data
separate, which introduces additional overhead. Compared to the B+ tree, the
multi-level term index is capable of retrieving term sets in less operations.
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Results analysis

Don’t tell people how to do things. Tell them what to do and
let them surprise you with their results.

– George Patton (1885–1945)

This chapter describes the results of all experiments. In total, 8400 separate ex-
periments have been executed. For readability purposes, only a selection of the
results of those experiments is presented. This chapter is divided in different top-
ics. Each topic starts with a selection of relevant results – if they are required and
not already presented – and is followed by a discussion. The first topic is about
corpus splits and presents the best results that were obtained by the different re-
trieval methods. That section will often be referred to while discussing the other
topics.

6.1 Points of attention before looking at the graphs

Abbreviations are used in the graphs to keep them surveyable. The abbrevia-
tions are listed in Table 6.1. An example that can be found in several graphs is
tf250cm5. This means that the parameter setting of 250 has been chosen as term
set frequency maximum, combined with a collection maximum of 5.

cm Collection maximum
ColID counters Collection identifier counters
ColRank The PageRank-like collection ranking algorithm
LMDS Language modeling with Dirichlet smoothing
QDI Query-driven indexing
QDI AOL Query-driven indexing using the AOL query log
QDI Combined Query-driven indexing using the AOL query log combined with ColRank
tf Term set frequency maximum
ws Window size

Table 6.1. Abbreviations used in result graphs
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It is important to note that all precision related graphs in the following section
have a range of 0 to 0.5, except for the IP Split and IP Merge 100 graphs that
involve navigational queries.

Sometimes it seems that the result graphs for ColRank or QDI Combined
appear to be missing. In this case, those two graphs are exactly the same and
they overlap each other.

6.2 Corpus splits

This section discusses the effects of the two types of corpus splits on the collec-
tion selection performance. First the results with three random corpus splits are
presented. Those results are concluded by a discussion on the collection selec-
tion performance. Second, the IP based corpus split results are presented and
followed by a discussion about them.

Per corpus split, four graphs are shown. The first two graphs cover the naviga-
tional queries, the second two graphs cover the informational queries. Every pair
consists of a precision graph and a cumulative recall graph. The precision was
calculated using Formula 4.3. The recall was calculated using Formula 4.1. All
graphs are obtained by taking averages for multiple queries: 145 queries for the
navigational queries, 50 for the informational queries. Every collection selection
system produces a ranked result list per query. Every graph shows the average
precision or recall at position n of those result lists, where n is the number of
selected collections up to that point.

6.2.1 Random splits

Random 100 result graphs

Fig. 6.1 shows the precision for the navigational queries. The graph shows that
every collection selection method is unable to achieve a high precision. The av-
erage precision is 0.025 when all collections are selected (n = 100). This means
that there is an average of 2.5 relevant collections in the Random 100 corpus
split for the 145 navigational queries. All precision figures are close to this value.
ColRank and the combination of query-driven indexing with ColRank have the
exact same precision figures.

Fig. 6.2 shows the recall for the navigational queries. ColRank and the com-
bination of query-driven indexing with ColRank seem to approximate the linear
line y = x/100. The two have the same recall figures. LMDS and HDKs with
query-driven indexing are above that line, LMDS being the best.

Fig. 6.3 shows the precision for the informational queries. The average preci-
sion is 0.19 at n = 100, i.e. on average there are 19 relevant collections for the
50 informational queries. ColRank, and the combination of query-driven index-
ing, have a precision that stays lower than 0.19. The two are exactly the same.
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Fig. 6.1. Corpus split: Random 100; query type: navigational; graph: precision.
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Fig. 6.2. Corpus split: Random 100; query type: navigational; graph: recall.

LMDS and query-driven indexing are better, but looking at the average number of
relevant collections, the precision is not that high as well.

The recall for the informational queries is depicted in Fig. 6.4. Both ColRank
and the combination with query-driven indexing seem to behave linear from
n = 13. The two are exactly the same. Query-driven indexing has a better recall
for the first 14 selected collections. LMDS is better from n = 14 with a slightly
higher recall. All graphs appear to increase linear from n= 20.
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Fig. 6.3. Corpus split: Random 100; query type: informational; graph: precision.
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Fig. 6.4. Corpus split: Random 100; query type: informational; graph: recall.

Random 11512 result graphs

Fig. 6.5 shows the precision for the navigational queries. The precision achieved
by LMDS starts at 0.05 and drops from there on. This score may give the im-
pression that precision is dramatically bad, but this conclusion is too prema-
ture. There are 11,512 collections and approximately 2 relevant collections per
query. Random collection selection would have a constant precision value around
0.0002. This is explained in more detail in Appendix C.

Fig. 6.6 shows the recall that is achieved for the same test setting. This graph
shows that LMDS and QDI AOL are in fact able to select relevant collections, as
the recall keeps increasing. LMDS has selected half of the available merit after
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selecting 1000 collections. Such numbers indicate that all collection selection
methods are not very useful, but they also show that the precision graph from
Fig. 6.5 may be misleading at first glance.

The two graphs also show the difference between no query-driven indexing
and query-driven indexing. Pruning keys from the index decreases selection per-
formance with this experiment.
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Fig. 6.5. Corpus split: Random 11512; query type: navigational; graph: precision.
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Fig. 6.6. Corpus split: Random 11512; query type: navigational; graph: recall.

The precision for the informational queries is depicted in Fig. 6.7. The graph
shows that LMDS is at least twice as precise as all other collection selection sys-
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tems. This is also reflected in the recall graph that is shown in Fig. 6.8. The two
graphs also shows the effect of pruning keys from the index (No QDI versus QDI
AOL). Pruning decreases selection performance within the first ten selected col-
lections, but the difference is smaller than with the navigational queries. Once
90 or more collections were selected, selection performance also decreased.
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Fig. 6.7. Corpus split: Random 11512; query type: informational; graph: precision.
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Fig. 6.8. Corpus split: Random 11512; query type: informational; graph: recall.
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Overlap3 11512 result graphs

Fig. 6.9 shows the precision for navigational queries. The graph shows that LMDS

performed best. Using this large corpus split, it was impossible to run the test
with normal query-driven indexing. Therefore, the test was run with query-
driven indexing that pruned all keys that occurred less than two times in the
query log. The selection performance is less good than with LMDS, but much bet-
ter than that of ColRank. ColRank has a precision close to 0. The same relation
between the three collection selection systems is also reflected in the recall graph
for navigational queries, shown in Fig. 6.10.
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Fig. 6.9. Corpus split: Overlap3 11512; query type: navigational; graph: precision.

Fig. 6.11 and Fig. 6.12 respectively show the precision and recall for the
informational queries. When the two graphs are compared with the previous
two graphs for navigational queries, the relations between the three collections
selection systems remain unchanged: LMDS is the best, followed by QDI AOL2
and tailed by ColRank. But the difference is that precision and recall start much
higher for informational queries than for navigational queries.

Discussion on random corpus split results

When documents are randomly assigned to the collections, we expect an equal
distribution of the merit in the sense that there are no high merit collections.
Some collections have most query terms and are relevant, while other collections
will contain some query terms but are not relevant. These distribution properties
require that a collection selection system must have good knowledge of the exact
contents of each collection to be able to achieve high precision. The cumulative
recall will also be high when the precision is high, because random corpus splits
have low merit collections.
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Fig. 6.10. Corpus split: Overlap3 11512; query type: navigational; graph: recall.
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Fig. 6.11. Corpus split: Overlap3 11512; query type: informational; graph: precision.

Fig. 6.5 up to Fig. 6.12 show that LMDS performs better with random splits
when the number of collections is large (11,512 collections). LMDS is a central-
ized system that has all knowledge about all collections, so this result could be
expected; it knows exactly which collection contains which query terms.

LMDS is not always better than query-driven indexing when the number of
collections is smaller (100 collections). When LMDS is better with the Random
100 corpus split, it is not much better than query-driven indexing, as is illustrated
by Fig. 6.1 up to Fig. 6.3. This supports the conclusion that collection selection
on a random corpus split with a small amount of collections is very hard. The
collections probably contains too many different topics, and too many similar
topics are spread over different collections.
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Fig. 6.12. Corpus split: Overlap3 11512; query type: informational; graph: recall.

Not many tests have been done with the Overlap3 11512 split, because the
split was simply too large for most systems. When comparing the Overlap3 11512
with Random 11512, we expect the following effects on retrieval performance:

• Precision can be higher for Overlap3 11512, because there are more relevant
collections.

• Precision can be lower for Overlap3 11512, because more query terms can
co-occur at non-relevant collections.

• As there are more collections with merit, and merit is still distributed equally,
the cumulative recall will show better results.

The Overlap3 11512 collection selection figures were generally worse than with
Random 11512. This was unexpected for the recall graphs. The cause may be
found in the random assignment of documents. The experiment should be re-
peated to verify whether this effect is representative for all random corpus splits.

6.2.2 IP based splits

IP Merge 100 result graphs

Fig. 6.13 and Fig. 6.14 respectively show the precision and recall for the naviga-
tional queries with IP Merge 100. The precision graph shows that LMDS is very
capable of selecting the most relevant collection. This is especially good as the
average number of relevant collections per query is two. The rapid decrease in
precision is not misbehavior of LMDS; there are simply no more relevant collec-
tions to select with such a good start.

It is interesting to compare the two graphs with their Random 100 coun-
terparts (Fig. 6.1 and Fig. 6.2). The relations between the collection selection



64 6 Results analysis

QDI Combined tf750 cm5 ws6
ColRank

QDI AOL tf750 cm5 ws6
LMDS

n

P n

100806040200

1

0.8

0.6

0.4

0.2

0

Fig. 6.13. Corpus split: IP Merge 100; query type: navigational; graph: precision.
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Fig. 6.14. Corpus split: IP Merge 100; query type: navigational; graph: recall.

systems are the same, but both precision and recall are much higher with the IP
Merge 100 corpus split.

Fig. 6.15 and Fig. 6.16 respectively show the precision and recall for the in-
formational queries with IP Merge 100. The graphs show that ColRank comes
much closer to LMDS and query-driven indexing in terms of precision and recall
after selecting 10 collections. The difference is big within the top 10 of selected
collections. The top 10 is the most important part to perform well as user queries
should not be forwarded to too many collections for query answering in dis-
tributed information retrieval.

Once again, it is interesting to compare the precision and recall figures to the
Random 100 informational counterpart that are shown in Fig. 6.3 and Fig. 6.4.
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The absolute differences in precision and recall are not so big between the two
corpus splits: recall is higher with the IP Merge 100 corpus split. But a closer
look at the precision graphs show that the Random 100 corpus split has approxi-
mately 19 relevant collections per query, against 12 for the IP Merge 100 corpus
split. Based on the number of relevant collections, collection selection with the IP
Merge 100 corpus split should be a harder task, but precision and recall figures
are better.
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Fig. 6.15. Corpus split: IP Merge 100; query type: informational; graph: precision.
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Fig. 6.16. Corpus split: IP Merge 100; query type: informational; graph: recall.
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IP Split result graphs

Fig. 6.17 shows the precision for navigational queries. LMDS is the best, having
precision values that are at least twice as high as the best query-driven indexing
approach. The query-driven indexing approaches all have precision values that
are relatively close together. They follow the trend that when the amount of
pruned keys increase, the precision drops. ColRank is also plotted, but has a
precision that is nearly 0 for every n. The combination of query-driven indexing
with ColRank is much better than ColRank alone, but it is not better than the
least performing query-driven indexing approach.
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Fig. 6.17. Corpus split: IP Split; query type: navigational; graph: precision.

The recall graph for the navigational queries is shown in Fig. 6.18. The recall
figures show the same relations between the collection selection systems as with
the precision figures: LMDS is the best, ColRank is the worst, all variations of
query-driven indexing are somewhere in between. Within the top 10 selected
collections, LMDS has collected 80% of the merit that it could have collected up
to that point against 50% for the normal query-driven indexing approach.

Fig. 6.19 shows the precision for the informational queries. The graph shows
that query-driven indexing is able to achieve the highest precision. Two things are
noteworthy in the graph. The first is that query-driven indexing with the (much
smaller) Excite query logs produces results that are almost as good as the other
query-driven indexing approaches. The second is the precision of LMDS, which is
worse than with navigational queries (shown in Fig. 6.17 with a different y-axis
range).

The recall graph for the informational queries (shown in Fig. 6.20) is more
suited for showing the mutual relations between the collection selection systems
than Fig. 6.19. The mutual relations are comparable for the precision and recall
graphs, except for query-driven indexing approaches that use Excite query logs.
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Fig. 6.18. Corpus split: IP Split; query type: navigational; graph: recall.
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Fig. 6.19. Corpus split: IP Split; query type: informational; graph: precision.
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Fig. 6.20. Corpus split: IP Split; query type: informational; graph: recall.

Discussion on IP based corpus split results

A side effect of IP based document clustering is that relevant documents are
clustered, as shown in Appendix B: Merit in corpus splits. This is especially true for
informational queries, where the split resulted in low and high merit collections.
It is important for a collection selection system to be able to identify collections
that cover a topic that is queried for, i.e. is able to identify collections with many
relevant documents (high merit). We expect that this is more important than
finding the most relevant document, as the most relevant document can also
reside in a collection with low merit. For navigational queries – where there is a
little number of relevant collections – we expect that it is more important to be
able to find the relevant documents in the collections.

Looking at the collection selection results, HDKs in combination with query-
driven indexing is the best system for answering informational queries in IP based
splits. LMDS performs exceptionally well with navigational queries. This can be
contributed to the fact that LMDS has all the terms in its index which help in
selecting the low number of relevant collections – typically less than 5. But this
does not explain why the precision and recall degraded with LMDS for the infor-
mational queries. Query-driven indexing appears insensitive to the query types
as it performed constant on both types. This means that query-driven indexing
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did not perform better on informational queries, but LMDS’s performance was not
as good as expected.

Finally, precision and recall was higher for IP based corpus splits than with
random corpus splits.

6.3 Query-driven indexing

Results

No query-driven indexing versus query-driven indexing

Fig. 6.21 shows the number of term sets in the global index for the Random
11512 corpus split. It shows the numbers for no query-driven indexing versus
standard query-driven indexing. The parameters with standard query-driven in-
dexing are a term set frequency maximum of 500 and a collection maximum of
20. All graphs in this section use these query-driven indexing settings. The num-
ber of term sets are split in single terms, double terms and triple terms. The graph
shows that the number of term sets is reduced by almost 95% by applying query
driven indexing.
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Fig. 6.21. Global index size by number of term sets stored per QDI strategy for Random
11512 corpus split

Instead of the number of term sets, Fig. 6.22 shows the number of collection
identifier counters in the global index. The graph shows a 70% reduction in num-
ber of collection identifier counters when query-driven indexing is applied. The
proportional reduction is less than with the number of term sets.
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Fig. 6.22. Global index size by number of collection identifier counters stored per QDI
strategy for Random 11512 corpus split

Varying query-driven indexing strategies

The index size is reduced by pruning keys in the index that do not occur in a
query log. Several pruning strategies have been tested in this research: prun-
ing has been done using the query logs from AOL (QDI AOL), Excite 1997 (QDI
Excite 97) and Excite 1999 (QDI Excite 99). Furthermore, the index has been
pruning using the AOL query log by removing all keys from the index that oc-
cur less than two times in the query log (QDI AOL2). Fig. 6.23 and Fig. 6.24
respectively show the number of terms sets in the global index and the number
of collection identifier counters in the global index for those different strategies.
The numbers are obtained by analyzing the global indices that were created for
experiments on the IP Split. The graph shows that QDI AOL2 results in less term
sets and collection identifier counters than using standard query-driven indexing
(QDI AOL). The use of the Excite query logs results in a larger reduction. The two
graphs show a decrease in number of term sets and number of collection iden-
tifier counters that is proportional to the chosen query-driven indexing strategy.

Discussion

Query-driven indexing has been introduced to reduce the index size. This is re-
quired, as the number of generated HDKs explodes. A good estimator for the
actual index size is the number of collection identifier counters, because all coun-
ters together take up the most space in the global index. Fig. 6.22 showed that
the reduction was almost 70%, which means that the index size will be reduced
by almost the same amount. The index size reduction comes at the expense of
collection selection performance. Fig. 6.7 and Fig. 6.8 show that the loss in preci-
sion and recall is minimal for informational queries. Fig. 6.6 shows that the loss
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Fig. 6.23. Global index size by number of term sets stored per QDI strategy for IP Split
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Fig. 6.24. Global index size by number of collection identifier counters stored per QDI
strategy for IP Split

in recall for the navigational queries is much; almost no merit has been collected
at n = 10 by the query-driven indexing approach. At n = 100, the query-driven
indexing approach has collected about half the amount of merit compared to no
query-driven indexing.

The sizes of the indices generated by the different query-driven indexing
strategies can be estimated using the number of collection identifier counters that
are depicted in Fig. 6.24. Even though not all strategies have been employed on
every corpus split, a trend emerged from the results: pruning more keys results in
a decrease of collection selection performance. This can be seen by looking at the
precision and recall for navigational queries on the IP Split, shown in Fig. 6.17
and Fig. 6.18. It shows that QDI AOL is better than QDI AOL2, and QDI AOL2 is
better than the two QDI Excite approaches. This is inversely proportional to the
number of collection selection counters.
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An estimation from Fig. 6.17 and Fig. 6.18 shows a 10% decrease in collec-
tion selection performance between QDI AOL and QDI AOL2. This is contrasted
by a reduction of the index size by roughly 30 percent. The difference becomes
even larger when the Excite 1997 and Excite 1999 query logs are considered:
compared to QDI AOL, a 75 percent size reduction is achievable at the expense
of about 30% collection selection performance loss. However, there was one par-
ticular setting with informational queries – depicted in Fig. 6.20 – where the
Excite 1999 query log achieved the best recall of all QDI strategies. Although this
can be contributed to chance that the query log works better with the IP Split, it
shows that there is room to improve collection selection while reducing the index
size.

6.4 Discussing the effects of highly discriminative key
parameters

There are two ways to look at the effects of HDK parameters: index size and
collection selection performance. The HDK parameters are: term set frequency
maximum, collection maximum and window size.

Index size

Appendix D shows the effects of the term set frequency maximum and the col-
lection maximum on the number of term sets and the number of collection iden-
tifiers in a global index. This paragraph discusses the effects and describes the
generic trends that can be concluded from those numbers.

The number of term sets depends on the term set frequency maximum. Low-
ering the maximum means that more keys become too frequent within a collec-
tion. This results in the generation of more multi-term keys. The number of col-
lection identifier counters is limited by the collection maximum. This parameter
limits the number of collections that are stored per term set. For our experiments,
this means that the number of collection identifier counters can be at most 5, 10,
20 or 50 times as large as the number of term sets, depending on the chosen
collection maximum.

Analysis of the graphs shows that the total number of term sets decreases
when the term set frequency maximum is increased. The collection maximum
has no effect on the number of term sets in the global index. For the number of
collection identifier counters (the better estimate for the index size), the effect
differs by the number of collections in the corpus splits:

100 collections The number of counters doubles when the collection maximum
is increased from 5 to 50. The number of counters hardly decreases when the
term set frequency maximum is increased.

11512 collections The number of counters hardly increases when the collection
maximum is varied, but the number of counters decreases when the term set
frequency maximum is increased.
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Collection selection performance

Test results can be aggregated by plotting different graphs in one figure. Trends
may emerge from the aggregated graphs when all but one HDK parameter are
fixed. For example, decreasing the collection maximum improves the recall for
informational queries in the Random 100 corpus split. These analyses can be
done for every type of corpus split, every query type and every highly discrimina-
tive parameter type. The graphs that are required to perform this analysis have
been left out of this thesis, as at least 20 graphs are required per parameter type.

Table 6.2 shows the effects of term set frequency maximum and collection
maximum on the collection selection performance. The table shows how the two
parameters should be altered to improve precision and recall considering the
different query types and corpus splits. The Overlap3 11512 has question marks
for the collection maximum. Varying the collection maximum was impossible
due to memory limitations for the resulting global index. A minus sign behind a
parameter denotes no influence.

Improve precision Improve recall
Navigational Informational Navigational Informational

Random 100 tf - cm - tf - cm - tf - cm - tf down cm down
Random 11512 tf - cm - tf - cm up tf up cm down tf - cm up
Overlap3 11512 tf down cm ? tf down cm ? tf down cm ? tf down cm ?
IP Merge 100 tf up cm down tf - cm - tf up cm down tf up cm -
IP Split tf up cm - tf down cm - tf up cm up tf down cm up

Table 6.2. HDK parameter effects on collection selection performance.

The table shows that it is not possible to conclude anything sensible from
this information. This can be contributed to the corpus split properties. To find
relations for parameters, tests would have to be repeated by generating many
random corpus splits, preferably also with different numbers of collections.

Window size

Varying the window size appeared to be infeasible due to memory limitations.
Increasing the window size from 6 to 9 terms results in a rapid increase of gen-
erated term sets. With a window size of 6, the worst case amount of keys added
to the index is

(6
3

)
= 20. In this worst case, every single term and double term set

is frequent, and every triple term set is infrequent. The infrequent term sets are
added to the index. When the window size is increased to 9, the worst case num-
ber increases to

(9
3

)
= 84. These numbers show the potential increase in number

of keys that can be generated within each window. With a small relatively small
increase in window size, too many keys become infrequent and will be added to
the index, resulting in an index that is too large. Tests showed that a window
size of 6 was the limit for which most generated indices fitted in 28GB of main
memory with our query-driven indexing system.
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6.5 ColRank

Results

The collection selection performance of the ColRank method can be compared
to other collection selection methods in Section 6.2. The graphs in that section
show that ColRank is outperformed by LMDS and Sophos.

Table 6.3 shows the mean and standard deviation of the scores that were
generated by standard query-driven indexing and ColRank. The standard query-
driven indexing scores are stated for navigational queries and informational
queries. The selected standard query-driven indexing settings (a term set fre-
quency maximum of 500 and collection maximum of 20) were chosen arbitrarily.
As ColRank is a static ranking algorithm, the scores are equal for both query
types.

QDI navigational QDI informational ColRank
Mean σ Mean σ Mean σ

Random 100 -1.2378 0.41941 -2.4041 1.2757 -2.0000 5.7467e-13
Random 11512 -3.7285 1.0013 -5.0855 1.4178 -3.6854 0.19630
Overlap3 11512 N/A N/A N/A N/A -4.2181 0.054631
IP Merge 100 -1.4178 0.64258 -2.3757 0.90809 -2.7893 0.0014132
IP Split -2.6728 1.3071 -3.4337 0.97330 -3.7023 0.30218

Table 6.3. Mean and standard deviation (σ) of scores for navigational and informational
queries with query-driven indexing (QDI AOL tf500cm20) and for ColRank.

Fig. 6.25 shows the total recall graph for ColRank on the Random 100 and
the IP Merge 100 corpus splits with the informational queries. The graph shows
that the recall is better when ColRank is used for collection selection with the
IP Merge 100 corpus split. For reference, the graph also shows the query-driven
indexing performance on the IP Merge 100 corpus split.

Discussion

Collection selection performance

For the conceptual idea of ColRank to work, collections would need to have
clusters with:

• relevant documents and many incoming links from high ranked collections
• non-relevant documents and less incoming links from high ranked collec-

tions.

It is hard to motivate why ColRank would work with random corpus splits,
as documents are clustered randomly. This means that the links between the
collections are also random, making it impossible to motivate when and why a
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Fig. 6.25. Corpus split: Random 100 and IP Merge 100; query type: informational; graph:
total recall.

collection should be ranked higher. This is reflected in the collection selection
performance for all random corpus splits as shown in Section 6.2.1; ColRank is
not able to outperform random collection selection.

To motivate the latter, we can take a look at the cumulative recall graph where
ColRank seems to achieve the best recall of all random corpus splits: the Random
100 corpus split with informational queries (depicted in Fig. 6.4). The simplest
way of showing why this is equal to random collection selection is by looking at
the total recall graph of the same experiment; this graph was shown in Fig. 6.25.
The graph shows a linear collection of merit; this is exactly what can be expected
for random collection selection.

In case of splits based on IP address, we may presume that the link structure
should be comparable to the Internet. On the Internet, PageRank is believed to
do a good job in selecting documents. More links to a document means that it
is more important. This idea makes sense on document level, but on collection
level “high value” links can point to important documents, but those documents
can be clustered with many unimportant documents, that also have “low value”
incoming links. Following this reasoning, ColRank will work if high ranked col-
lections mostly contain important documents, and low ranked collections mostly
contain unimportant documents. Research is required to see whether the exis-
tence of important documents on web sites is correlated with the authority of a
website.

Fig. 6.25 shows that ColRank does perform better on the IP Merge 100 corpus
split than on the Random 100 corpus split, where its performance was on par
with random collection selection. The same difference is shown between the IP
Split and Random 11512 in Fig. 6.8 and Fig. 6.20. This is evidence that ColRank
performs better on IP based splits. However, ColRank performs less good than all
other approaches. Maybe, playing with the decay factor in the ColRank algorithm
may positively affect the scores.
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Collection scores

Better ranking scores is one requirement to successfully combine ColRank scores
with other scores to improve ranking. Another requirement for successful score
combination to improve ranking is an algorithm that is able to deal with score
differences. This requires careful tuning of the scores; scores need to be in the
same order of magnitude, but at the same time the differences should be large
enough to really be able to make differences in ranking. When the scores are
not carefully combined, the scores produced by one collection selection system
will overpower the scores of the other system. In this research, this happened for
all splits with 100 collections. The combined scores were different with 11,512
collection corpus splits, but did not improve collection selection.

Table 6.3 in the results above shows that the standard deviation of the scores
is much smaller than the standard deviation of query-driven indexing scores.
This is especially true for the corpus splits with 100 collections. This explains
why the scores between ColRank and the combined scores were not different:
the ColRank scores were too close to make a difference when combined with
other scores.

There are two likely causes for the differences in the standard deviation of
the scores:

• The link structure may actually have influenced the scores. The standard de-
viation is larger for the IP based corpus splits when compared to random
splits with the same amount of collections.

• The differences in collection sizes may have influenced the scores. The IP
based corpus splits have larger deviations in collection size. This was shown
in Fig. 4.3 and Fig. 4.4. Fig. 4.3 also shows that the size difference is larger for
Random 11512 than Overlap3 11512. This is also reflected in the standard
deviation of the scores. Larger collections are likely to have more incoming
links.

Both explanations sound plausible. Either way, more research is required to
see if ColRank actually ranks collections better. The results on the IP based corpus
splits motivate that an improved version of ColRank may actually improve the
collection ranking scores when it is combined correctly combined with another
collection selection method.

6.6 Results of different scoring formulas

This section describes the effect of different scoring formulas by assigning
weights to different parts of the scoring formula. This is done by varying two
parameters β and γ, as described in Section 3.3.4. That section also introduced
the weight shifting ScoreFunction (Formula 3.2), of which a simplified version is
given below:
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s = log10

(
(1− β − γ) · comp1 + β · comp2 + γ · comp3

hmax

)

Table 6.4 repeats the intended behavioral properties of the components and gives
the weight assignment to the components.

Component number Property Weight
comp1 Length of HDKs in which query is split 1-β-γ
comp2 Number of query terms found in one collection β
comp3 Sum of HDK frequencies in one collection γ

Table 6.4. Weight assignment to components/properties

The experiments were run with the IP Split in combination with query-driven
indexing using the AOL query log. Term set frequency maximum values of 250,
500 and 750 were used. The collection maximum was fixed to 50. There were
two different query types, three different evaluation metrics and 400 parameter
combinations, which resulted in 7200 graphs. Obviously, most of those graphs
are omitted from this thesis.

Movies were made to detect patterns in the result graphs. One movie frame
is depicted in Fig. 6.26, showing the effect on precision of varying γ when n
collections are selected. The figure shows the results for the informational queries
with tfmax = 250 and β = 0.6.

The collection selection performance is comparable to the results obtained
with the unmodified ScoreFunction and stays constant for every combination of
β and γ, except when γ is around 0.4. This behavior recurred in other frames
as well; when the sum of β and γ came close to 1, precision and recall dropped
in most test settings. However, in two test settings precision and recall slightly
increased for informational queries, namely when tfmax was set to 500 or 750.
The performance even stayed comparable to the unmodified ScoreFunction when
β and γ were both set to 0.

These observations support the notion that the length of HDKs (the first prop-
erty) is important; the effect of the first component on the score calculation us-
ing the formula above is mitigated, when the sum of β and γ is close to one. The
query result lists – not included in this thesis – showed that collections containing
longer HDKs are no longer ranked on top of the result list when the performance
dropped.

No conclusive evidence was found whether number of query terms found in
one collection is more important than the sum of the frequencies of the HDK
occurrences in one collection.
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Fig. 6.26. Corpus split: IP Split; query type: informational; graph: precision; tfmax: 250;
β: 0.6. The surface plot on top of the figure shows the same information as the graph
below it: the different gradients represent different values of precision.

6.7 Difference between types of recall graphs

6.7.1 Results

Section 4.2.1 described two approaches to calculate recall. The first approach
divided the collected merit with the maximum obtainable merit for the num-
ber of selected collections (cumulative recall). The second approach divided the
collected merit with the total merit available in the corpus split (total recall).
Fig. 6.27 shows the recall that was calculated using cumulative recall (with For-
mula 4.1). Fig. 6.28 shows the recall that was calculated using total recall (with
Formula 4.2).

6.7.2 Discussion

The majority of all result graphs showed that total recall graphs did not reveal
more detail than cumulative recall graphs. The reason is that most cumulative
recall graphs start low, which means that total recall graphs will start even lower.
This makes it harder to see what recall is obtained by selecting the first collec-
tions. Despite that, there are some differences between the two approaches of
recall calculation, which are demonstrated by Fig. 6.27 and Fig. 6.28.
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Fig. 6.27. Corpus split: IP Split; query type: informational; graph: cumulative recall.
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Fig. 6.28. Corpus split: IP Split; query type: informational; graph: total recall.

Cumulative recall graph

The cumulative recall graph from Fig. 6.27 shows that one particular configura-
tion (tf750, cm50, ws6) performs good with at least 40% recall all the time. It
may also look like much merit has been gathered from the beginning. However,
this is not the case as is shown by the total recall graph in Fig. 6.28. The cu-
mulative recall graph does not give information about the fraction of total merit
collected, until the result list positions have been reached that are larger than the
number of non-zero merit collections. From this point on, the cumulative recall
graphs are equal to the total merit graphs.
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The cumulative recall graph shows that the recall can drop. This is possible
when the merit that is selected by a collection selection system is lower than the
merit that could have been selected by the best possible selection system. When
recall drops in a cumulative recall graph, it does not mean that no relevant collec-
tions are selected. This is shown by the total recall graph, which keeps increasing
in the same area where the cumulative recall graph drops. The cumulative recall
graph can only drop when the best possible retrieval system has not yet retrieved
all non-zero merit collections.

Total recall graph

The total recall graphs are able to show the absolute recall, but they do not indi-
cate how good that recall is. It can be that the retrieved recall is low according to
the total recall graph, but when there are only low merit collections, the perfect
collection selection system may not be able to do better than that. This informa-
tion is missing in the total recall graph. This problem also exists the other way
around. This was demonstrated in the discussion about ColRank in Section 6.5.
There we showed that the cumulative recall graph was misleading when it came
to judging whether the obtained recall was better than random collection selec-
tion. Section C.3 describes that it is hard to use the cumulative recall graph to see
whether a collection selection system is better than random collection selection.

6.8 Scalability analysis

Good precision and recall is important for a collection selection system, but scal-
ability is at least as important. This section discusses the global and local index
size, the network bandwidth requirements and the expected performance in a
more realistic setting.

6.8.1 Global index size

Appendix D shows the number of term sets and collection identifier counters
in the global indices that were created for different corpus splits and different
parameter combinations. The two numbers can help in estimating the global
index size. As the IP Split is the corpus split that most closely resembles the
characteristics of the Internet, we look at the number of term sets and collection
identifier counters that were created for that split. Those numbers are shown
in Fig. D.7 and Fig. D.8. The graphs show different parameter combinations for
query-driven indexing. The best collection selection performance was obtained
with a term set frequency maximum of 750 and a collection maximum of 50.
The total number of collection identifier counters for this parameter combination
was 6.6 ·107. The total number of term sets was 5.9 ·106. With these numbers, a
minimal global index size can be calculated.
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A collection identifier counter consists of a collection identifier and a counter
that counts the number of term set occurrences. There are 11,512 collections in
the IP Split, which is more than 28 (1 byte), but less than 216 (2 bytes); hence a
collection identifier needs 2 bytes. The counter also needs 2 bytes as the term set
frequency maximum is 750. As a result, every collection identifier counter needs
4 bytes. Every term is identified by 4 bytes. When the maximum number of terms
in a key is set to 3, every term set needs at most 12 bytes. Only looking at the
term sets and collection identifier counters, the worst case size of the data in the
global index is:

(5.9 · 106 · 12bytes) + (6.6 · 107 · 4bytes) = 320MB

Unfortunately, storing and retrieving the data items does not come for free.
Our Java implementation used a separate index to store the mapping of a real
term to a 3 byte term identifier (which was internally stored using 4 bytes). This
structure is 50MB. To speed up search, our implementation used the multi-level
term index, as described in Section 5.2. This first level in this structure is an
array that stores pointers for all possible single terms. There is room for 1.6 ·107

unique terms. Every pointer uses 8 bytes, as we used a 64-bit machine. This first
level pointer array uses 16MB. Whenever a term is present, a pointer points to a
node of a tree. This node contains two Java TreeMap objects: one storing all next
level terms (for the multi-term keys) and one storing the collection identifier
counters. The number of nodes is equal to the number of term sets. A node
is estimated to be 60 bytes (this is a rough estimate). All nodes require 335MB
(= 5.9·106 ·60bytes). Finally, we also need a pointer (8 bytes) for every collection
identifier counter, which takes up 500MB.

The sum of the data structure space requirement is 900MB. The total global
index space requirement is estimated to be 1.2GB. The corpus size is 10GB, which
is reduced to 3GB after cleaning, stop word removal and word stemming. The
actual index data of the processed split was estimated to be 320MB.

6.8.2 Local index size

The local index size is dependent on the collection properties:

• Large collections are likely to generate more keys.
• Many term sets will be generated if the text contains many different words in

a window size.

The local index is almost the same as the global index, but it does not have
to store a collection identifier; it only needs to store counters for every term set.
However, it does need to store more term sets, because the local index needs to
keep track of the term sets that are too frequent.

The combination of these characteristics makes it hard to theoretically esti-
mate the local index size. Experiments showed that the local indices were small
for the Random 11512 corpus split with its many small collections, but were
larger than the global index for the collections in the 100 collection corpus splits
and for the large collections in the IP Split.
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6.8.3 Network traffic requirements

Two major communication cost components are involved to create a global index
at a broker that can answer the users’ queries:

• The query log is required at the site that wants to build a local index. The log
is used to reduce the number of generated term sets. The biggest query log
that we used in our implementation was the 175MB AOL query log (without
additional metadata). That log can be compressed to 35MB. When the log
only contains queries that occur at least two times in the original query log,
the log size can be reduced to 75MB (15MB compressed).

• In our test scenario, the local indices could become bigger than the actual
global index. Not all of the information in the local index will have to be
sent to the broker. Only the keys that are locally infrequent will be sent to
the broker. We assume that one collection contains no more than half the
amount of unique terms that exist in all collections. We also assume that the
amount of local index data to send to the broker is at most half the size
of the global index. As the IP Split was a realistic view on the Internet, we
can roughly estimate that sending the local index to the broker requires at
most 160MB for large sites. This estimated 160MB is just numbers, so we can
expect compression to reduce this number by at least 50%.

The estimated network traffic is required for every participating site. Once
the information is sent to the appropriate places, the communication cost is much
smaller than traditional web search systems when it comes to keeping the index
up to date. Query log updates can be sent incremental. The same approach can
be used for changes to the local index. Changes to the local index can also be sent
in batches. The big advantages of local index updates in our scenario is that they
can be done as soon as the local index has been updated to reflect the changes
in the site(s). This results in the freshest global index possible.

6.8.4 Using a larger test corpus

Using Heaps’ law, this section theoretically analyses the Sophos index effects if
the test corpus size is increased from 10GB to 1TB. Heaps’ law, V = K · nβ , is
an empirical law that predicts the number of distinct words – the vocabulary V
– given a corpus with n words [32]. The formula has two parameters K and β ,
that depend on the text. For English texts, K varies from 10 to 100 and β varies
from 0.4 to 0.6.

For web data, β typically is larger due to the existence of multiple languages
and typing errors [4]. We assume β = 0.6, which gives K = 14.5 for the WT10g
corpus (n = 500,000, 000 and V = 2, 400,000). Assuming that K and β remain
constant with increasing corpus size, the number of unique terms in a 1TB collec-
tion can be estimated: V = 14.5 · (500,000, 000 · (1TB/10GB))0.6 ≈ 38, 000,000.
This is about 16 times more unique terms.
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As 38,000,000 possibilities can be represented using 26 bits, the unique term
index can assign a unique term identifier to every term using 26 bits. This can
be stored using 4 byte integers, which is the same amount as our prototype was
working with. Assuming that the new terms have the same overlap ratio, we
estimate a unique term index increase with a factor 16, resulting in an 800MB
unique term index at the broker.

The local index sizes will remain relatively constant with a larger corpus. Of
course, there will be a small amount of collections that are significantly larger
than the current largest collection, but the average collection size will be the
same. This contrasts with the global index size, which will become larger.

The global index uses the multi-level term index to store term sets and collec-
tion identifier counters. To deal with the larger amount of terms, the multi-level
term index array can be increased to store 48,000,000 unique terms. This in-
crease the array size from 16MB to 48MB. This is neglectable compared to the
space requirement for new term sets and collection identifier counters. It is hard
to make a good estimate of the new term sets that will be created. Using Zipf’s
law, we can predict that the number of very frequent term sets will increase.
The additional storage required for these very frequent keys is bounded by the
collection maximum, which limits the number of additional collection identifier
counters. However, the long tail of infrequent keys will increase as well. These
keys cause an increase in space required for the global index. Whether the two
will level out is a subject for further research. If we assume that they do, the
global index size increases by a factor 16, which means that is will be 19GB.

Concluding, we estimated the space requirement at the broker to be 1.2GB
for the 10GB WT10g (roughly 10%). A 1TB corpus is estimated to have a 20GB
space requirement at the broker (5%).

6.9 Summary

This chapter described many effects of the collection selection experiments that
were performed with LMDS and Sophos. The corpus splits and query types signif-
icantly affect collection selection performance; Sophos performed best with in-
formational queries in the most realistic collection split resembling the web, but
had an overall lower collection selection performance in other situations when
compared to LMDS. Query-driven indexing significantly reduced the index size up
to 90% with the Excite 99 query log, with an estimated loss in performance of
about 30%. ColRank did not outperform LMDS and Sophos, but it did appear to
perform better than random collection selection on IP based splits.

Varying the different HDK indexing parameters revealed no univocal relation
for collection selection performance. The number of term sets decreased when
the term set frequency maximum was increased. There is thin evidence that the
number of collection identifier counters is inversely related to the number of col-
lections and the collection maximum. There may also be an inverse relationship
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between the number of collection identifier counters and the number of collec-
tions with the term set frequency maximum.

Tests with the weight shiftable ScoreFunction supported the notion that the
key length – of the keys that are used to find the collections in the index – is the
most important ranking attribute for collection ranking.

This chapter also described the difference between cumulative and total recall
graphs. The cumulative recall graph reveals the most detail when it comes to
comparing recall of collection selection systems. However, the total recall graph
is required to show the absolute performance in terms of recall.

The scalability of Sophos was theoretically analyzed, showing an estimated
index space requirement of 10% of a 10GB corpus, which drops to 5% for a 1TB
corpus. A more detailed estimate of the space and traffic requirements showed
that the broker will end up having 320MB of term sets and collection identifier
counters with a 50MB unique term index. The estimated space requirement at
the broker is 1.2GB with the index structure required to store the actual data.
The peers will have a larger local index, of which the largest peers need to send
an estimated 160MB. They also need a query log which can be compressed to
15MB.
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Conclusion

There’s two possible outcomes: if the result confirms the
hypothesis, then you’ve made a discovery. If the result is
contrary to the hypothesis, then you’ve made a discovery.

– Enrico Fermi

This research compared the following collection selection methods:

• Language modeling with Dirichlet smoothing (LMDS)
• HDKs
• HDKs with query-driven indexing
• A PageRank-like algorithm to rank collections (ColRank)
• HDKs with query-driven indexing in combination with ColRank.

The first method acted as a baseline to see whether HDKs (in combination
with other approaches) would be a viable approach to select collections. The
WT10g corpus was used to assess the performance of the five methods. The
WT10g corpus is a crawl from the Internet and has been split in five different
ways. Three of them were random splits and two of them were based on IP ad-
dress. The selection performance was measured in terms of precision and recall
using queries that were issued on WT10g corpus splits. Two types of queries were
used: navigational (home-page finding) and informational (ad-hoc). This chapter
describes the conclusions that can be drawn from the results of the experiments.

7.1 Corpus splits and query types

Research question 1: What is the effect of splitting the document corpus?

Although corpus splits were made once per type of split, e.g. no n-fold cross
validation, we can still compare collection selection systems with each other, be-
cause we used 145 navigational and 50 informational queries on every corpus
split. The choice of corpus split and query type influenced the precision and re-
call of the collection selection systems. The differences produced by the those
two test properties were consistent for all collection selection methods. For ex-
ample, the precision degraded for all collection selection methods when random
corpus splits were used instead of IP based corpus splits. The effects of these
properties are described and analyzed in Sect.6.2. We can draw two conclusions
from changing the corpus splits and the query types.
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1. The combination of random corpus splits and navigational queries proved to
be difficult for collections selection methods based on HDKs. LMDS showed
that it is possible to achieve precision and recall figures that are better than
random collection selection in that scenario.
As random corpus splits have the (relevant) documents randomly divided
over all collections, the collections do not have many relevant documents.
The navigational queries have a low amount of relevant documents. This is
evidence for the conclusion that HDKs is not suited for finding small pieces
of relevant information in the corpus.

2. On the Internet, every web site – running on a certain IP address – contains
many documents (web pages). The IP Split is a corpus split where the web
site based document partitioning based remained intact, i.e. every collection
in that split contains the documents that came from one IP address. This was
our most realistic test scenario.
HDKs with query-driven indexing outperformed LMDS when it came to infor-
mational queries. The informational queries have relatively many relevant
documents. In the IP Split, relevant documents are merged in collections (as
shown in Appendix B). This is evidence for the conclusion that HDKs with
query-driven indexing is suited for selecting collections that contain many
relevant documents with respect to one query.

The Overlap3 11512 corpus split – the split where every WT10g document
was randomly assigned to three of 11,512 collections – was a huge corpus split.
HDKs with query-driven indexing was only capable of running tests when a query
log was used to prune keys that occurred less than two times in the query log.
Even then, query-driven indexing was only able to finish two out of twelve tests;
all other tests ran out of 28GB of memory. Large splits are useful to analyze the
scalability of a collection selection system. LMDS was able to run all tests.

7.2 Highly discriminative keys

Research question 2: What factors are important to assign the highest score
to the collection with the largest amount of relevant documents?

A highly discriminative key is a term set that occurs in a limited number
of collections, thereby acting as a discriminator to select those collections. The
keys are generated by looking at all possible combinations of terms within a
particular window size of terms in a document. This window size is moved from
the beginning to the end of the document. The maximum window size was 6.
A larger window size resulted in too many possible combinations making the
system run out of memory.

If a term set occurs more times than the term set frequency maximum, it is
called frequent key. Every infrequent key is sent to a global index. In the global
index, a collection maximum defines the number of collections (and correspond-
ing frequency counter) that is stored per key. The term set frequency maximum
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and collection maximum were the two parameters that were varied to see the ef-
fect on collection selection performance and index size. Our tests did not reveal
a trend for the collection selection performance when varying the two parame-
ters. Section 6.4 discusses the effects on the global index size. Depending on the
number of collections in a corpus split, the effect on the global index size could
be summarized as follows:

100 collections The index grows when the collection maximum is increased and
shrinks when the term set frequency maximum is increased.

11512 collections The collection maximum hardly influences the index size.
The index shrinks when the term set frequency maximum is increased.

The global index stores term sets of one, two or three terms. Every stored term
set has a maximum number of collections with an associated term set frequency
within that collection. When a user has a query of three terms, the global index
may contain a key with all query terms. In that case, the length of the key used
to select collections is three. But it may also use three single term keys. Using
an intersection of the collection list, it can also select collections that contain all
three query terms. The length of the keys is one in that case. It is important to
mention that our system did not look for keys with a smaller length if one key
was found.

The length of keys used to select a collection, the number of query terms
found in a collection and the term set frequency for the keys within a collection
are three properties that were used in a formula that creates scores to rank the
collection. Our test results, described in Section 6.6, provided evidence that the
length of the key is the most important variable to select collections. No conclu-
sive evidence was found about the importance of the other two properties.

7.3 Query-driven indexing

Research question 3: What is the effect of pruning highly discriminative key
indices using query logs?

Query-driven indexing can be applied on top of the HDK paradigm to reduce
the global index size. Section 6.3 shows that the index size can be reduced by
70% when all keys are removed that do not occur in the AOL query log. Fur-
ther index size reductions are possible by application of other strategies, such as
pruning keys that occur less than two times in the AOL query log. Other query
logs, such as the Excite query logs, can also decrease the index size (75% com-
pared to standard query-driven indexing). The general trend was that a reduced
global index size resulted in degraded precision and recall. There was one ex-
ception with the Excite query log, which gave the best results of all collection
selection systems. This proves that strong index size reduction does not have to
affect collection selection performance.
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The latter conclusion is important, as indexing with HDKs without any form
of index size reduction is infeasible. Only a small selection of tests with the Ran-
dom 11512 corpus split was able to run without query-driven indexing. The rest
of the tests, with all other corpus splits, were unable to run due to memory limi-
tations.

7.4 ColRank

Research question 4: What is the effect of using distributed collection-level
“PageRank” scores of peers to rank and select them?

The calculation of Google PageRank scores can be distributed. The same ap-
proach can be used to distribute the calculation of scores for collections. As this
should not affect the scores, a centralized version of a collection ranking algo-
rithm has been implemented and tested. This algorithm is called ColRank. There
is no test where ColRank – or the combination of ColRank and HDKs with query-
driven indexing – is able to outperform any other approach. ColRank performs
better than random collection selection on IP based corpus splits, but it is not as
good as any other collection selection method. Changing the decay factor in the
ColRank algorithm may improve the collection ranking.

The results on IP based corpus splits do motivate further research. However,
it will also be interesting to see whether ColRank will outperform size-based
ranking of collections or a simple link-based algorithm such as InDegree which
counts the number of incoming links in a collection.

7.5 Scalability

There are three types of queries on the Internet: navigational (find a home page),
transactional (buying objects) and informational (ad-hoc search). We created a
corpus split that closely resembled the Internet. We have shown that HDKs with
query-driven indexing was able to outperform a centralized information retrieval
system in one particular scenario. The results was observed with informational
queries on an Internet-like corpus split. This supports the idea that distributed
web search can benefit from HDKs with query-driven indexing in terms of collec-
tion selection performance (precision and recall).

We have also shown that it is vital to apply query-driven indexing to the
concept of HDKs. Not applying this technique results in too many generated term
sets, leading to an unscalable solution. Query-driven indexing can reduce the
global index size with 80%. We showed that the Excite query log could further
reduce the index size by another 75%. We found weak evidence that ranking
collections using an algorithm like PageRank may work at the web site level.

HDKs with query-driven indexing needs more work in reducing the physical
size of the local and global indices. Our prototype ran out of memory while index-
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ing the 9GB Overlap3 11512 corpus split on a machine with 28GB of main mem-
ory. The prototype also ran out of memory when the window size was increased
or when no query-driven indexing was applied. The most common query-driven
indexing tests on the 3GB corpus splits would also run out of memory when the
memory limit was set to 25GB. We can give several remarks about this undesir-
able situation:

• The global index data itself is estimated to be less than 5% of the corpus size
(320MB on a 3GB corpus split). The data structure to store this data was
estimated to be almost 3 times as large (900MB). Possibly, the Java imple-
mentation on a 64-bit machine introduced extra overhead for the estimated
data storage requirements.

• The entire indexing and querying was done in main memory; nothing was
written to disk. This increased indexing and querying speed. Local and global
indexing was typically performed in three hours. Writing intermediate results
to disk would reduce main memory requirements at the expense of indexing
speed.

• Everything was done on one machine. The machine stored multiple large
local indices and a global index in main memory. Distributing this to multiple
machine would significantly reduce main memory usage on every machine.

We can conclude that there still is room for improvement on the memory
usage of our prototype.

The initial upload traffic for a site participating in the distributed web search
scenario with HDKs and query-driven indexing is less than with the traditional
centralized web search approach. The local index data can be smaller than the
size of a web site, which would have to be crawled (uploaded) in the traditional
approach. The approach does require an initial estimated download of 15–35MB
for the query log. Any updates to the local index and query log can be done
incremental.

7.6 Summary

In which ways can web search be improved with collection selection from
distributed information retrieval using a combination of highly discrimina-
tive keys and 1) query-driven indexing, 2) distributed PageRank?

We have shown that HDKs can be used for collection selection. It is desirable
to combine it with query-driven indexing for a substantial index size reduction.
Index pruning usually decreases collection selection performance, but this was
not always the case. The essence of index pruning is to keep the longest HDKs
that are most queried for. A good query log helps in the bootstrap problem of
creating good initial local indices.

We have also shown that the combination of HDKs with query-driven index-
ing is suitable for answering informational queries on IP based splits. We have
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seen that it is much harder for the combination to create good indices of ran-
dom collections, especially when tested with navigational queries. This can be
contributed to the large diversity of documents (and topics) in those collections
and the low number of relevant documents. The majority of web pages on the
Internet will not look like random collections, but HDKs and query-driven index-
ing should be able to cope with such collections when globally operating search
engines are taking part in the distributed web search scenario. Globally operating
search engines are not limited to indexing their own site; they can index sites of
a particular domain (in which we may get collections like the IP Merge 100) or
they can have the aim of finding the best web sites for a large portion of queries.
This demonstrates the significance of testing with different types of corpus splits
and query types.

Finally, we did not find conclusive evidence that ColRank does not work.
More research is required to see if ColRank differs from size based ranking or
InDegree. The ColRank scores should improve as well: relevant collections should
get a higher score with more deviation from other scores. The scores will also
have to be matched better with scores from other collection selection systems to
positively influence ranking.
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Future work

To make no mistakes is not in the power of man; but from
their errors and mistakes the wise and good learn wisdom for
the future.

– Plutarch (46AD–120AD)

Collection selection using HDKs seems to be a promising approach, which mo-
tivates further research. This chapter sketches some possible research directions
focusing on increasing the effectiveness of the method in a test setting of larger
scale.

8.1 Implementing an optimized distributed system

It took about three hours to build the local and global indices for most corpus
splits. An intermediate global index acted as a buffer to batch process index addi-
tions to the real global index. This was desirable, because inserting index entries
one by one slowed down as the global index size increased. All tests ran on one
machine, where the unique term index was built only once and where it was
used for all indices.

A possible approach to drastically decrease the index generation time is to
distribute the index generation using many machines, thereby simulating a more
realistic environment. In Sophos, global index generation took three hours for
up to 11,512 collections, so one local index can be constructed in just under
a second. Even if we construct the unique term index for every collection, one
collection could be indexed in under 5 seconds. The load on the global indices
can be divided by splitting the global index in multiple parts, where each part is
responsible for a set of keys.

This approach exploits parallelization and lowers memory requirements per
machine, which makes it possible to test more different indexing settings in sig-
nificantly less time. It will also enable testing with larger IP based corpora, which
is required to see in practice how collection selection using HDKs scales.

8.2 Improving collection selection results

Several approaches can be investigated to improve the collection selection re-
sults:



92 8 Future work

Collection-dependent parameter tuning: Appendix A showed that the collec-
tion sizes varied from hundreds of bytes to hundreds of megabytes. It may be
a better idea to do collection-dependent parameter tuning, because smaller
collections are likely to have less frequent keys.

Improved scoring algorithm: There is still room to improve the scoring algo-
rithm. One way is to give independent weight factors to every scoring com-
ponent that was introduced in Section 3.3. The ColRank scores can be in-
cluded as another scoring component. The optimal weight mixture can be
discovered by experimentation.

When a query only consists of locally frequent keys, our solution is able to
retrieve collections containing the query terms by finding multi-term keys that
contain those query terms. This approach will not give the best possible results.
It may be a better idea to allow some locally frequent keys into the global in-
dex. The amount of keys can be related to the collection size. Using only local
information it is hard to decide which frequent keys are globally rare by only us-
ing local collection knowledge. Possibly the following approaches help in finding
locally frequent keys that are discriminating with respect to other collections:

• After detection of collection language, a Part-of-Speech tagger for that lan-
guage could be used to detect nouns and verbs. Frequent keys are only al-
lowed to be sent to the broker when they contain nouns and/or verbs.

• A peer can use language modeling to build a language model of its own col-
lection. This can be used to model the probability distribution of term set
occurrences. A ‘universal corpus’ language model can be constructed by ana-
lyzing a huge amount of web text. This model can be sent to every peer. The
peer can use its own language model and the universal language model to
discover which term sets occur more frequent in comparison to the universal
corpus. Those term sets are candidates to send to the broker.

Queries can help in identifying locally frequent keys that are interesting to
add to the index, as explained in the next section.

8.3 Query-driven indexing

Sophos used the query log as a filter to discard keys not occurring in the query
log. After creation of the reduced global index, Sophos was tested using eval-
uation queries. This approach gave a good idea about the possible index size
reduction and loss in collection selection performance, but also showed that the
loss was relatively large compared to the results with the non-pruned index. This
was caused by the removal of several evaluation query terms. It demonstrates
the need for query log updates at the local peers to deal with new unseen terms.
It would be interesting to use another indexing strategy, based on the popularity
of queries as described in Section 2.3.3.

When a new peer joins in the distributed web search system, it starts by
downloading the latest query log summary containing the most popular queries.
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After local key generation, the query log can act as a filter to send popular keys to
the broker. With the use of such a query log to filter keys, it may become feasible
to also send locally frequent keys to the broker. Once the initial bootstrapping
has been completed, the peer receives (a few) queries. Based on the queries that
it receives, it can decide to activate new keys that are sent to the broker. The
broker can also opt to send a popular query to presumed promising collections
that are not yet represented in the global index. When those collections contain
relevant documents, they will generate a result list that is sent to the broker and
they may active corresponding keys. This approach will gradually improve recall
and precision when more users pose queries.





A

Zipf in corpus splits based on IP address

The graphs in this section show the document distribution for the IP Split
(Fig. A.1) and the IP Merge 100 corpus split (Fig. A.2). The x-axis shows the
ranked order of the collections by number of documents. The graph is scatterplot-
ted with both axes plotted logarithmic. The collection size distribution is plotted
in the same way for the IP Split (in Fig. A.3) and the IP Merge 100 corpus split
(in Fig. A.4).

In case a scatterplotted log-log graph can be estimated by straight line, the
data conforms to Zipf’s law. The IP Merge 100 graphs (Fig. A.2 and Fig. A.4)
can be estimated with straight lines when the last collection is left out (the last
collection consists of 88 collections, instead of 116 collections). The document
distribution for the IP Split can be estimated by a straight line for collection 100–
11512. The size distribution is a bit harder to estimate by a straight line: the 50th

up to the 7000th collection can roughly be estimated by a straight line.
Possible explanations for the decreased ability to estimate the IP Split graphs

with a straight line are that the corpus is not large enough and that the long tail
is not existing as the original corpus has an artificial minimum of 5 documents
per server.

Having said that, the graphs do show that the IP based splits are reasonably
conforming to Zipf’s law.
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Merit in corpus splits

Fig. B.1 shows the amount of merit in the collections from the corpus splits that
consist of 11,512 collections. This merit is calculated for the navigational queries.
It is calculated by summing the merit per collection for all 145 queries. The
collections are then sorted descending by amount of merit. Note that the axes
are plotted logarithmic. This makes is it harder to see how many collections have
non-zero merit. This information is displayed more clear in Table B.1. This table
shows the amount of non-zero collections for each of the corpus splits and query
types. Fig. B.2 shows the merit for the 50 informational queries for the corpus
splits with 11,512 collections. Similar information is displayed in Fig. B.3 and
Fig. B.4 for the corpus splits with 100 collections.

The most obvious difference between the corpus splits based on IP address
and the random corpus splits is that the merit deviation is larger for splits based
on IP address; the IP Split and IP Merge 100 have some collections that contain
a large amount of merit.

Corpus split #non-zero merit collections #non-zero merit collections
(navigational queries) (informational queries)

IP Split 169 900
Random 11512 251 2851
Overlap3 11512 731 6601
IP Merge 100 76 100
Random 100 91 100

Table B.1. Non-zero merit collections within corpus splits
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C

Random collection selection performance

This appendix explains the expected collection selection performance when col-
lections are selected randomly. The collection selection performance will be de-
scribed in terms of precision and cumulative recall. The explanation uses an
imaginary test corpus split to make the expected performance more insightful.
The corpus split properties are:

• 100 collections
• 20 relevant collections (collection with non-zero merit)
• 5 collections with high merit (a merit value of 4)
• 15 collections with low merit (a merit value of 1)
• total merit value of 35.

This appendix concludes with an analysis on the recall performance of Col-
Rank on the Random 100 corpus split.

C.1 Precision

The hypergeometric distribution is a discrete probability distribution that can be
used to model the expected precision. The distribution can be used to calculate
the probability of selecting a collection with merit in a sequence of n selections
from a finite population of 100 collections without replacement. It can also be
used to calculate the expected value of the number of selected collections with
merit after selecting n collections.

The formula for the expected value in a hypergeometric distribution is n R
N

,
where n is the number of selected collections, R is the total number of collections
with merit and N is the total number of collections. The fraction of that expected
value and n is the expected precision, which is a constant: R

N
The expected pre-

cision for every n in the test corpus split is 20
100
= 0.2. This is shown in Fig. C.1.
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Fig. C.1. Expected precision for random collection selection.

C.2 Cumulative recall

In case of random collection selection, we define the cumulative recall after se-
lection of n collections as the fraction of merit collected by a random collection
selection system and the merit collected by the best possible selection system.
The expected merit for a random collection system will have to be calculated
before the cumulative recall can be calculated.

This can be done using a multivariate hypergeometric distribution. The ex-
pected collected merit after selection of n collections is defined as:

E(Xn) =
mmax∑

i

nmi i

N
(C.1)

In this formula, mi is the number of collections with a merit value of i and mmax
is the maximum merit value that is present within a collection. N is the total
number of collections. The expected merit for the test corpus split is shown in
Fig. C.2. That figure also shows the collection of merit by the best possible col-
lection selection system.

Fig. C.3 depicts the fraction of the two merit graphs; it shows the expected
recall for the test corpus split. The graph is constant in the beginning, because the
collection selection systems have a constant increase in selected merit. The high
merit collections all have the same merit value of 4. The best possible ranking
system has a constant increase in selected merit for the first five collections. The
random collection selection system also has a constant increase in selected merit
(of 0.35 per collection). This results in a constant fraction. The rate of merit
accumulation will drop for the best possible collection select system as soon as
all highest merit collections have been selected. From that moment, the recall
graph shows a rise. It will increase linear once the best possible collection system
selected all relevant collections.
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Fig. C.3. Expected recall for random collection selection.

C.3 Detecting random selection in a cumulative recall graph

The rest of this appendix analyses the cumulative recall of the ColRank collec-
tion selection method, which was used with the Random 100 corpus split with
50 informational queries. The cumulative recall graph is shown in Fig.6.4. We
will show that it is hard to use the cumulative recall graph to detect whether a
collection selection system is doing better than random collection selection.

On average, there are 19 relevant collections in the Random 100 corpus split
for the informational queries; the number of non-zero merit collection, n∗, is 19.
Using Fig. B.4 in Appendix B, we can derive that the average merit is 35 per
collection in the Random 100 corpus split. This merit value is the sum of the
number of relevant documents for all queries in one collection. There are 100
collections and 50 informational queries, so the average total merit per query
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is 35 ∗ 100/50 = 70. The merit per collection per query is 0.7. This is the ex-
pected amount of merit collected per collection when collections are selected us-
ing random collection selection, denoted by mexp-random. The best possible ranking
system can select a merit of 70 within 19 collections: an average 3.7 merit per
collection. This is denoted by mexp-best.

We can now define the cumulative recall for random collection selection as
the fraction between the expected collected merit and the best possible amount
of collected merit at the selection of n collections. In a formula, this becomes:

Rn,random =
n ·mexp-random∑n∗

n=1 mexp-best

(C.2)

Note that this formula uses average merit values to calculate mexp-random and
mexp-best. This is not realistic, as the merit in collections is not uniformly dis-
tributed. If a list of merit values per collection per query for the different collec-
tions is known, we can substitute mexp-random for Formula C.1 and use the list to
calculate the expected values. We can also substitute mexp-best for the sum of the
top n merits of the ordered collection merit list. As such a list will not positively
influence the cumulative recall scores for random collection selection, we will
use Formula C.2 to calculate the cumulative recall for random collection selec-
tion. The resulting graph has been plotted in Fig.C.4. For easy comparison, this
figure also shows the cumulative recall graph of ColRank.
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Fig. C.4. Estimated random collection selection versus ColRank on Random 100 with
informational queries.

The figure shows that both graphs are not equal. One reason is that the es-
timated random collection selection graph has been calculated with the formula
that uses average values for the merits. Earlier, we stated that this would not
positively influence the scores, so this means that the difference would only be
bigger. We think the difference is caused by the use of one average number of
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relevant collections per query (19). In practice, one query can have many more
or much less relevant collections. Using the average value for the number of
collections can negatively influence the scores.

The lesson to be learnt from this appendix: using a cumulative recall graph
it is impossible to see whether a collection selection system is performing better
than random collection selection. Section 6.5 showed that ColRank had the same
total recall graph that could be expected from random collection selection, but
this section fails to theoretically reproduce that observation for cumulative recall.
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Index size with QDI

Fig. D.1 up to Fig. D.8 show how the global index size varies by changing the
HDK indexing parameters. The effects are displayed for different types of corpus
splits. The graphs show two ways to look at the global index size: the number of
term sets and the number of collection identifier counters (ColID counters). Every
graph shows those number of occurrences for single terms, double terms and
triple terms. The numbers are grouped per parameter combination. The numbers
are plotted against logarithmic axes.

We can look at each graph to discover the trend that is shown by it. For exam-
ple, Fig. D.2 shows the number of collection identifier counters for the Random
100 corpus split. The graph shows a small decrease in number of collection iden-
tifier counters when the term set frequency is increased. It also shows a medium
increase in numbers when the collection maximum is increased.

The trends that can be spotted by this analysis have been summarized in Ta-
ble D.1. The trends are grouped by corpus split. The table shows seven effects on
the number of term sets and collection identifiers, ranging from strong decrease
to strong increase: −−−, −−, −, 0 (no effect), +, ++, +++. The trend anal-
ysis is subjective and coarse grained, but this is no problem as we are trying to
discover relationships between the parameters and the corpus splits.

Random 100 Random 11512 IP Merge 100 IP Split
tf up cm up tf up cm up tf up cm up tf up cm up

# term sets − 0 −− 0 − 0 − 0
# ColID counters − ++ −− 0 − ++ −−− +

Table D.1. Effects of term set frequency maximum and collection maximum on number
of term sets and collection identifier counters with different corpus splits.

The table clearly shows that the number of term sets decreases when the term
set frequency is increased. The number of term sets remains unchanged when
the collection maximum is increased. The table also shows a symmetry relation
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for the number of collection identifier counters for corpus splits with a similar
amount of collections. For example, the number of collection identifier counters
shows a small decrease when the term set frequency is increased for corpus splits
with 100 collections.
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Fig. D.1. Number of term sets with Random 100.
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Fig. D.3. Number of term sets with Random 11512.

Triple terms
Double terms
Single terms

#
C

ol
ID

C
ou

nt
er

s
in

gl
ob

al
in

de
x

tf750cm
50

tf750cm
20

tf750cm
10

tf750cm
5

tf500cm
50

tf500cm
20

tf500cm
10

tf500cm
5

tf250cm
50

tf250cm
20

tf250cm
10

tf250cm
5

108

107

106

105

Fig. D.4. Number of collection ID counters with Random 11512.
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Fig. D.5. Number of term sets with IP Merge 100.
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Fig. D.6. Number of collection ID counters with IP Merge 100.
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Fig. D.7. Number of term sets with IP Split.
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Nomenclature

cm The collection maximum is a global indexing parameter. It de-
notes the maximum number of collections that are stored for
a term set in the global index.

tf or tfmax The term set frequency maximum is a local indexing parame-
ter. It denotes the maximum number of term set occurrences
before a term set is called frequent.

ws The window size denotes the number of words after a partic-
ular word with which combinations of term sets can be made
with the first word.

LMDS Language modeling with Dirichlet smoothing
ColID counter The collection identifier counter is a global index component.

A particular term set may occur in multiple collections. The
collection identifier counter is a tuple that stores a collection
identifier and a frequency counter for a term set.

HDK Highly discriminative key
merit The number of relevant documents within a collection. The

merit is calculated per query.
QDI Query-driven indexing
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