
Thesis report

A Data Transformation Walkthrough

Final research project, Universiteit Twente

name R.J.G. van Bloem
student nr.: 9912347
cluster: Databases
graduation advisor: dr. M.M. Fokkinga
2nd graduation advisor: dr. A. Wombacher
external company: InDialoog, Enschede
external advisor: Ing. J. Posthuma
date: 30/10/2008

1

Summary
Data transformation has been an important issue since the beginning of the it era. And
with an ever growing amount of data and all the different forms it comes in, data
transformation and standardization is still a hot issue.

With the use of XML many companies claim to have found a way to interchange there data
fairly easy. Of course XML is now widely accepted and is used in many connections as a
bridge between multiple parties.
But still XML is only a standardized structure which leaves its filling to the creator. Which
leaves us with the old problem: You say "potato," I say "potahto...". One might call an
element 'E-mail' while another calls it 'email', and these are still fairly alike and in the same
language.
With the fast amounts of data today, also fast amount of naming variations exist. One
solution would be to let al people agree on the naming of elements, which of course in
practice is impossible. Although it would be good practice if people would consider naming
conventions, which will make semantic matching a bit easier.

Semantic matching is the key in data transformation. The meaning of elements must be
known in accordance with its context. Getting semantically correct matches is still a tricky
undertaking, especially in an open context. People all still the best judges in this matter,
but are of course losing it to computers on raw processing speed. Therefore it may be
concluded that we need the best of both worlds to solve data transformation issues as
efficiently as possible.

This thesis report aims to provide a clear and workable data transformation method. The
focus will not be on technical solutions but on creating a user friendly and efficient data
transformation prototype. A setting where people can easily input there semantic
knowledge and the computer can use this knowledge in its fast processing.

After a look at data transformation insights, the system is designed with as key feature the
matcher which uses automated and manual matching in an iterative feedback setting.
Following three iterations will be done to produce a basic data transformation prototype.
In iteration one the system base will be designed and developed which is to provide a
solid/flexible base for semantic matching. Reusability and flexibility are important in this
phase so that system components can easily be altered if ever needed later on. Iteration
two aims to provide a better user interaction for visual transformations. This will be done
by the visualization of the leading XML transformation language XSLT. VisualXSLT will
provide a component based gui to build transformations on the fly. Iteration three
addresses partial mapping reuse though transitive matching and ranking based on
semantic knowledge.

2

Table of contents
1. Introduction..5

1.1 Background..5
1.2 Objectives..5
1.3 Overview..6

2. Project overview...7
2.1 Assignment formulation...7
2.2 Research questions...7
2.3 Goals..8
2.4 Project approach..8

3. Data transformation...10
3.1 Transformation parts..10
3.2 Matching..13

3.2.1 Automated schema matching...14
3.2.2 Schema matching survey...16
3.2.3 Human interaction and efficiency...18

3.3 Input, Output and Intermediate data..19
3.3.1 Input and output data...19
3.3.2 Intermediate data...20

4. Main design..21
4.1 Scalability...21
4.2 Data overview..23
4.3 Data stores...24

4.3.1 Raw & output XML schema store...24
4.3.2 Personal schema store...25
4.3.3 Data store...25
4.3.4 Mapping store...25

4.4 Element overview..26
4.4.1 Connection layer...26
4.4.2 Schema valid parser...27
4.4.3 Matcher...27

5. First iteration, basic system...30
5.1 Goals / Requirements..30
5.2 Required components ...30
5.3 Research questions...30
5.4 Design..31

5.4.1 Parser rules, schemas and meta data...31
5.4.2 Mapping format...32
5.4.3 Manual matching..33
5.4.4 Non-partial mapping store reuse..34

5.5 Implementation..35
5.6 Evaluation..35

6. Second iteration, Visual XSLT..37
6.1 Goals / Requirements..37

3

6.2 Visual aiding survey...37
6.3 Required components...40
6.4 Research questions...41
6.5 Design..41

6.5.1 Visual elements..41
6.6 Implementation..48
6.7 Testing...49

6.7.1 Test Goals..50
6.8 Evaluation..50

6.8.1 Comparing the prototype..51
6.8.2 Test results...52
6.8.3 Conclusion..54

7. Third iteration, Partial mapping reuse...56
7.1 Goals / Requirements..56
7.2 Research questions...57
7.3 Research..57

7.3.1 Reuse in Coma...57
7.3.2 Discovering mappings..58

7.4 Design..61
7.4.1 Storing partial matches ..61
7.4.2 Match candidate discovery...63

7.5 Evaluation..70
8 Conclusions & Recommendations...71

8.1 Conclusions...71
8.2 Recommendations...72

Appendix A. References..74

Appendix B. Data conversion example...75

Appendix C. Parse rules, schemas, meta data...79

Appendix D. Connection and driver classes..81

Appendix E. Visual classes...82

Appendix F. Test results E1..83

4

1. Introduction
This thesis report is about data transformation [1], in particular data transformation that
aims to generate many different forms of documents out of a single source. The aim of this
document is to provide a clear and workable data transformation method. This means a
complete walk through from data input to data output. The focus will not be on technical
solutions but on creating a user friendly and efficient data transformation. Of course
technical solutions can be a part of this.

This chapter will give background information on the project and set its global goals. A
short overview of the thesis chapters will be given at the end.

1.1 Background
Data transformation is widely used in IT businesses. There are numerous data types and
many ways of converting on type to another. Also the context of data will not always be
clear, meta data might be missing or be in an unknown legacy or binary format. Because
of this diversity, data transformations can be time consuming. They are likely to involve a
lot of manual interaction, are hard to reuse or can only be done by users with programming
experience. A new data type like XML [2] is far more friendly for data transformation,
because it contains meta data, is human readable and has a widely accepted standardized
structure.

There are businesses that use 1-on-1 transformations as a base for their systems. 1-on-1
transformations can be done quickly and are relatively easy to do. A 1-on-1 transformation
system has the drawback that it will grow quadratically with every added data format. This
will make such a system poorly scalable and costly to maintain and expand. Building a true
many-to-many transformation system will take more time at first but will repay its effort in
scalability, reusability and maintainability.

InDialoog is a communication / IT company implementing a range of web based systems.
These systems use different sources as external data which have to be stored, processed
and presented in different formats. Transformation are now manually implemented to fit
the main system used, the content management system 'Ariadne' [3]. This is time
consuming and does not fit future needs for expansion. Therefore a central storage system
has to be build which covers the aspects of data communication, transformation and
storage.

1.2 Objectives
The objective of this project is to investigate and prototype a data transformation method
for a many-to-many data transformation. The goal is to create a workable and efficient
transformation walk through rather than creating a 100% technical solution. Of course
technical solutions will be a part of the project, but their function will be to aid in user
friendliness and a more efficient total.

5

To build a scalable many-to-many transformation system the 1-on-1 transformation idea
has to be thrown overboard. If an intermediate data store is used transformation options
can be reduced from n2-n to 2n. This intermediate data must be easy to process and have
enough meta data to feed an automated transformation to multiple output types. When
designing the system key features like re usability, interchangeability must be kept in mind
to create a flexible system. A flexible system must leave the system open for later change,
so no major redesigning has to be done when new features or problems arise.

The proposed method should incorporate a modular buildup of different components in an
ETL (Extract, Transform and Load) [4] environment. There will probably always be the
need of manual analysis and mapping for the simple reason that a computer does not
know the context of standalone data. But to reduce manual operations the system can use
automatic matching methods, for instance element matching and structure matching. Also
manual operations can be simplified by using support features like visual aided mapping.
The result of transformations can be made reusable by storing them for later
transformation-by-example processing. [5][6][7][8]

1.3 Overview

Chapter 2, Project overview:
Describes the project formally and gives insight in the approach taken to tackle this
project.

Chapter 3, Data transformation insight:
Gives an insight of the parts needed for data transformation and usable techniques that
are currently on the market.

Chapter 4, Main design:
Describes the main design of the system, which will be used as basis for the prototype.

Chapter 5, First iteration, basic system:
Describes the basic system which will be used for the other iterations.

Chapter 6, Second iteration, Visual XSLT:
Describes a visual representation of XSLT which will be used to visually aid users in the
system.

Chapter 7, Third iteration, Partial mapping reuse:
Describes the partial mapping reuse based on previously stored matches.

Chapter 8, Conclusions & Recommendations:
Gives conclusions about the project and recommendations for re-enacting and further
development this project.

6

2. Project overview
This chapter describes the project formally and gives insight in the approach taken to
tackle this project. The project assignment, research questions and goals are formulated
and the iterative approach used in this project will be explained.

2.1 Assignment formulation

Design and implement a many-to-many data transformation prototype. This will
embody the design and implementation of a user friendly, low effort / high
efficiency, transformation walkthrough based on ETL (Extract, Transform and Load)
processing with a intermediate data store.

2.2 Research questions
Out of the assignment formulation keywords are selected. These keywords represent the
main subjects of this assignment. These keywords are then used to construct the research
questions, which are used to divide the assignment in smaller research parts.

Keywords:

1. ETL processing
2. many-to-many data transformation
3. intermediate data store
4. low effort / high efficiency
5. user friendly

Out of these keywords the research questions are constructed. The questions are chosen
to cover the important aspects of that research part. The answering of these questions
must result in the information needed to perform the assignment formulated.
A numbered reference between keywords and research questions is shown below.

nr. research question chapter
1 What element are necessary for ETL processing? 3.1
2 What information is useful for data transformation? 3.1
2, 3 What are common / useful data formats? 3.1 / 3.3
3 What format can be used for the intermediate data? 3.3
4 How can low effort / high efficiency be realized? 3.2
4, 5 What is a good optimum between automated and manual

matching?
3.2

7

nr. research question chapter
4, 5 How can user interaction be used? 3.2
4 What forms of (automated) transformation can be used? 3.2

2.3 Goals
To produce a system conform the assignment formulation the following goals will have to
be met:

goal chapter
Design and implement a basic ETL system 3.1 / 4
Define a intermediate data format 3.3
Design an automated matching element within the base system 3.2 / 4.3.3
Incorporate reusability in data, matching and programming 5.4 / 7
Design and implement a user interface for visual aided mapping 6
Evaluate user friendliness, user efforts and efficiency. 3.2.3 /

4.3.3 /
5.4.4 / 6 /
7

2.4 Project approach
To tackle this project an iterative approach will be taken. This is done to keep the project
more easy to handle and less vulnerable for major time consuming errors. At every
iteration goals and milestones will be set to build up the system step by step. After every
iteration the system must be analyzed to see if the goals have been met and the
milestones are reached.

The development phase of the project will be divided into three iteration steps. Every
iteration step will take approximately four weeks. A single iteration will consist of the
following parts:

• setting goals
• making choices and setting boundaries
• designing the parts
• implementation of the designed parts
• evaluation of the goals

The project will be split up in three iterations. The idea is to start with a broad and simple
system and to add more difficult parts on top of that piece by piece. This means that with
every iteration a functional system will be the result. The benefit of these functional
iteration results are that the system can be evaluated as a whole with every iteration. The
main goals of the three iterations are:

8

Iteration 1: Implement a broad base system able to import, store and output data. Data
transformation will be manual in this iteration.

Iteration 2: Expand the base system with visual aided matching. Research, design and
implement a visual representation for data matching.

Iteration 3: Expand the system with non-partial mapping reuse. Research, design and
implement a non-partial mapping reuse prototype.

9

3. Data transformation
Data transformation [1] is a large domain, the objective of this chapter is to give an insight
of what is important and what is useful within this domain for this project. The subjects
described in this chapter are referenced from the research questions in chapter 2.2 and a
part of the goals in chapter 2.3. The different elements and information needed in data
transformation and ETL [4] processing will be shown. Common and useful data formats will
be reviewed and the format possibilities for the intermediate data will be discussed.
Matching will be discussed as an important feature within data transformation. The use of
human interaction and user friendliness will be discussed in combination with automated
transformation and in comparison with efficiency and effectiveness.

3.1 Transformation parts
To be able to design and implement a basic ETL system it is first necessary to get an
insight of important features of such a system. To get an insight of what these important
features are the following research questions will be answered:

What elements are necessary for ETL processing?
What information is useful for data transformation?
How can user interaction be used?

System overview
A global view of a transformation system can be divided into three main areas of interest:

• input/output data formats
• ETL processing
• intermediate data store

These three main areas of interest can of course be refined into smaller areas. If we walk
through the system from input to output we will encounter the different key components.
The first component is the external data that will be presented to system to be
transformed. The external data can be delivered to the system by a variety of data
containers. External data can be contained in files, streams, databases, etc. To keep the
connection to the external data transparent a connection layer will be needed to connect
and read/decode data in a uniform way from an internal perspective.

10

Illustration 1: main areas

The goal is to read data and transform it into a format suitable for intermediate storing. The
external data will be delivered in a variety of data formats, these different formats must be
transformed into the data format suitable for intermediate storing. After reading the data
we have raw data in many different formats. The first objective is to transform this data to a
shared format that can easily be processed for further use. For this shared format XML [2]
will be used because there are many tools available to processes it and it is widely used in
open communication. The transformation of the read data to the shared format will require
parsers for the different external formats. A parser will transform the read data to a raw
XML format.

The next step is to process the raw XML to match the data format of the intermediate
store. This can be done by the use of matchers. Matchers can find similarities between
the raw XML and the intermediate format. Automated matchers will not give a 100% result
so it must be possible for a user to adjust matching manually. The end result of the
matching will be the representation of the external data in the intermediate data format
and the mapping used for this transformation.

After the data has been stored, the data can be requested to be outputted in a specific
output format. To make writing to a specific data output format easier and to give a user
options to manipulate the data, the stored data will first be transformed to a XML
representation of the output format. This transformation will be done by a matcher, which
again can be adjusted by the user. The end result of the matching will be a XML
representation of the output data and the mapping used for this transformation.

The XML representation can be transformed to the output data format by parsers. A
parser will transform the XML to the specific output data format which than can be written
to its requested output. This writing will be done by a connection layer responsible for
encoding and outputting the data.

The parts named above can be bound together into a main design for the system, see
illustration 2. When looking at illustration 2 it is obvious that the left side of the system is a
mirror image of its right side. Individual parts, connection layer, parsers and matchers are
defined on either side. This suggests re usability, this will be kept in mind when designing
the individual system part. [5][6][7][8]

11

Useful data information
There are steps in the design that can provide useful information for the data
transformation. Of course information can be found in the processed data itself. Depending
on the format of the data, data may contain meta data giving extra information about the
data, its context, references etc.

Useful information about the data can also be gotten from the data environment. This
information can be found in references within the data domain. For example creation data
of a file or keys of a database table. Another way to obtain useful information is by user
input, a user can be given the opportunity to add additional meta data, hereby describing
parts of the data environment and semantics.

When the data is matched by the system the result of this matching can give extra
information about the data. The total mapping can be stored for reuse, more specific the
elements matched within the mapping can be used to describe references between
elements and semantics. Also user interaction of what matches are good and what not are
very useful since they produce a realistic semantic reference. These references and
semantics can later be reused to aid in new matchings. [5][6][7][8]

12

Illustration 2: the big picture

Conclusion
What elements are necessary for ETL processing?
Main elements necessary for ETL processing are: Connection layers, parsers, matchers
(manual & automatic) and data stores.

What information is useful for data transformation?
Useful information for data transformation can be found in the input data and its meta data,
the mapping result and possible user input. These sources give information about the
data's context, references and semantics and thereby aid the understanding of the data.
This information can be useful within a mapping process, it can provide more complete
data and extra references for better matching. The context, reference and semantic
information can also be stored to aid future mapping processes, this re usability can
improve future matching results because it provides additional information to the mapping
process which then is evolving with every mapping.

How can user interaction be used?
User interaction can be used to input additional information to the system and judge
matching results.

3.2 Matching
A key feature of the system is the matching. The goal of matching is to get the right
semantic match between elements. Matches can be found in a variety of ways, manually,
through automated algorithms, learning networks, iterative approaches, etc. With all kinds
of different techniques at hand, the goal is to get the best semantic results at the lowest
effort. To get an insight how to reach this goal, the following questions will be answered.

What forms of (automated) transformation can be used?
How can user interaction be used?
What is a good optimum between automated and manual matching?
How can low effort / high efficiency be realized?

An important part of data transformation is matching. Matching is the process of finding
elements that are alike and classifying their relation. A structured form of matching is
schema matching. Schema matching compares two schema's with each other and tries to
find semantic correspondences between the schema elements. The result of this matching
is called a mapping, this mapping contains possible matches found between elements of
the different schema's.

Schema matching is very common nowadays, it is used in many applications working with
multiple data sources. Major application domains of schema matching are: Data
warehousing, Search engines and E-commerce. But schema matching is also done at a
large scale by many smaller applications in need of synchronizing and merging data. With
the introduction of XML, schema matching has become more widely and openly used, a lot
of open source tools can be found aiding XML matching and transformation.

13

Schema 1

Cust
 C#
 CName
 FirstName
 LastName

Schema 2

Customer
 CustID
 Company
 Contact
 Phone

Table 1: schema matching example

Whether a matching result is semantically correct can in the end only be judged by an end
user. So there is still a lot of manual matching done by domain experts. This will of course
be a time consuming undertaking. Automated schema matching can be used to lighten the
matching process.

3.2.1 Automated schema matching
There are many different schema matching approaches and many different forms of
schema matchers. Schema matchers usually use some kind of algorithm to walk through
the schema's and match information between them. A new approach here is the use of
machine learning techniques a.k.a. artificial intelligence.

The LSD (Learning Source Description) [13] system is such a matcher, it uses previous
acquired data to learn from and improve its matching results. The LSD system is build up
out of three basic elements:

1. a training phase, training a matcher with test data
2. a multi learning strategy, selecting and combining different matching candidates

from different matchers
3. a ranking step, resulting in the favouring of matchers that gave a good result

Schema's can be matched by using many different criteria and approaches. Two main
approaches are:

• schema based matching
• instance based matching

Schema based matching looks at information that can be derived from the schema itself. It
looks at the structure of the elements, relations, element names, data types, etc. Instance
based matching looks at the information available in the contents of instances (data
values).

Different individual matchers can also be combined to try to get a better matching result.
Two main approaches are:

• hybrid matching
• composite matching

14

Hybrid matchers are a combination of different matching techniques working together in a
fixed predefined way. This approach has the power of combining the best of multiple
worlds, eliminating individual weaknesses. Composite matchers combine different
individual matcher. They all compute their own result which will be evaluated and
combined into one end result. This approach is very flexible, different matchers (individual
and hybrid) can be brought together for a specific task at hand.
These matchers can be implemented in different ways. A generic matching implementation
is shown in illustration 3.

Rahm and Bernstein [15] came up with the graphical representation of schema matching
approaches show in illustration 4. The characteristics of these individual matchers will not
be further discussed here.

15

Illustration 3: high level architecture of generic match [15]

Illustration 4: classification of schema matching approaches [15]

3.2.2 Schema matching survey
Nowadays a lot of development is done in data transformation, especially schema
matching is popular. Schema matching maps elements form a source schema to elements
from a target schema. Still a lot of work within schema matching is done manually because
automated matching cannot jet give a satisfactory result since it lacks the semantic view of
an end user.
A lot of work is done in improving automated schema matching. The major approaches for
schema matching are visible in illustration 4. It is proven that single match algorithms will
not always generate good results on a wide domain range. To make matching more
flexible and thus more efficient the trends is to use multiple match algorithms or matchers.
This allows users to select matchers for specific application domains which will optimize
the matching result.

For individual matchers, the following classification criteria are considered:
[9][13][15]

Instance vs schema: matching approaches can consider instance data (i.e., data
contents) or only schema-level information.

Instance data can give insight in the semantics of schema elements. This can be valuable
when useful information cannot be retrieved from a schema. Instance data can be used to
aid constructing schemas when a schema is missing or help in analysing the correctness
of a schema interpretation. With instance data and possible auxiliary data a better
semantic view can be made because it gets its knowledge from the actual contents.

Schema matching only gets its information out of the properties of schema elements
(name, description, data type, relationship type, constraints, structure). This means
semantic values of the content can only be derived if these properties reflect their content.
If this is not the case user interaction or some form of artificial intelligence is needed.
Different approaches of schema matching are: element matching, structure matching,
linguistic based matching and constraint based matching.

Matcher will in general find multiple match candidates. These candidates can be compared
and normalized to identify the best match candidates. The use of different simultaneous
matching approaches can give extra insight in the correctness of match candidates.

Element vs structure matching: match can be performed for individual schema
elements, such as attributes, or for combinations of elements, such as complex schema
structures.

Element matching matches individual elements form one schema to individual elements
from another schema without considering their under laying elements. Structure matching
matches element by fully or partial matching elements and their sub elements. For more
complex matchings the effectiveness of structure matching can be enhanced by
considering known equivalence patterns. For element matching effectiveness can be
enhanced by knowledge of element equivalence, which of course can also be applied
within structure matching.

16

Language vs constraint: a matcher can use a linguistic based approach (e.g., based on
names and textual descriptions of schema elements) or a constraint based approach
(e.g., based on keys and relationships).

Linguistic matchers use names and text of elements to find semantic similarities. A good
investment is the use of thesauri or dictionaries. By exploiting synonyms, hypernyms and
homonyms better semantic references can be made.
Constraint matchers use data types, value ranges, uniqueness, optionality, relationship
types and cardinalities etc. to determine similarities between elements. This will often lead
to imperfect matches, as there may be several elements with similar constraints. But
constraints can still be used to limit possible match candidates.

Matching cardinality: the overall match result may relate one ore more elements of one
schema to one or more elements of the other, yielding four cases: 1:1, 1:n, n:1, n:m. In
addition, each mapping element may interrelate one or more elements of the two
schemas.

Matching cardinality can be viewed in two ways, globally and locally. Global cardinality
looks at the cardinality of all the elements within a matching. Local cardinality looks at the
cardinality of individual elements. When matching multiple elements at ones, expressions
are used to specify the more complex relation between these elements. Most existing
approaches use 1:1 local matches and 1:1 or 1:n mappings. More work is needed to
explore more sophisticated criteria for generating local and global n:1 and n:m mappings,
which are currently hardly treated at all

Auxiliary information: most matchers rely not only on the input schemas but also on
auxiliary information, such as dictionaries, global schemas, previous matching decisions
and user input.

Auxiliary information like thesauri, dictionaries and user input can provide useful
(miss)match information at a low effort. The reuse of common schema components and
previous mapping are also promising reuse oriented approaches. Often schema's matched
are in some way similar to a previous matching, so reuse can improve efficiency. Names,
types, key, constraints and schema fragments can be reused, especially when working in
a local domain these elements will have some form of standardisation which will improve
re usability. Matches and schema fragments can be stored for reuse, but this will only be
functional is there is the possibility to check them for similarities. This of course is a match
problem in itself.

The different features mentioned can be found in schema matching programs on the
market: SemInt, LSD [13], SKAT, TranSCm, DIKE, ARTEMIS, CUPID [9], COMA [16].
Especially COMA looks interesting for its flexible approach towards schema matching and
its match iterations.

17

3.2.3 Human interaction and efficiency
Automated matchers nowadays do not have the capability to give a full satisfactory result,
so it must be possible for a user to adjust matching manually. Since automated matching
will not work 100% stand alone it must be treated as an aiding tool in the transformation
process. Automated matching is then a tool to create a higher efficiency.

The manual matching can also be adapted to create a higher efficiency. By using a
graphical user interface the matching process can be made more comprehensive, easier
to adapt and thereby more efficient. The design of the graphical user interface and its
under laying function is of great importance for the efficiency. The design must be clear to
the user and must try to “push” the user in the right direction.
A commonly used design is a two view layout. On the left side of the screen the current
schema is shown, on the right side the preferred output schema shown. The mapping is
visualized by drawing lines between the schema elements that are linked. This view gives
a good overall perspective of the matching between both schema's.

Besides the matching of elements the graphical user interface can be used to manage the
automated matching process. The automated matching process can be aided by giving
certainties and options about the schema matching. This can result in a reduction of the
mapping space and thus in a higher efficiency.

Also user interaction can be used to grade the matching result. This feedback can be used
to optimize the matching process in the future. This feedback can include an advisory for
semantics so matchers can get a better insight on semantics. [13][15][16]

Conclusion
What forms of (automated) transformation can be used?
Schema matching is a good form of transformation between schemas at a low effort.
Instance matching can be used for auxiliary data, on its own it will not yield as much
matches as schema matching at the same effort. Element matching is a easy way to
construct simple matchings. Structure matching is more difficult and will have fewer results
but is not bounded to simple matchings.
Language matching is useful, especially within specific domains. Dictionaries and thesauri
are forms of auxiliary data that can be used to aid language matching. Auxiliary data is
very useful within transformations, it can aid processing and can be used to learn from
earlier transformations.

How can user interaction be used?
User interaction can be used for simple matchings, more complex matching can of course
also be done but this will require a domain expert / programmer. User interaction can be
used to judge the outcome of automated matches. User interaction can provide a set of
definite matches and non-matches which can be excluded in automated matching and can
give semantic value to language elements. When using a combination of automated
matchers a user can make a good choice between different matchers.

What is a good optimum between automated and manual matching?
Manual matching is a sure solution but can be time consuming and lacks reusability.
Manual matching can be used to match the simple cases and the rest can be matched

18

using automated matching. Automated matching can be used as an aid which can learn
from previous matchings. Manual interaction can then be used to judge the automated
processing and improve future automated matchings. Is this setting both forms of matching
can support one and another.

How can low effort / high efficiency be realized?
Low effort / high efficiency can be realized by choosing components that give good result
at a low cost, both in development and user time. Good options to use are:
– A graphical interface for manual matching, this can save time and give an easy access

to more complex matchings.
– Automated element / language matching, this can yield fast results and is not very

complex to build.
– Reuse of matchings by storing element and language matches. The use of thesauri

and dictionaries will prove very useful.
– A possibility for combining matchers will give more flexibility and better results. Useful

combinations can also be reused.

3.3 Input, Output and Intermediate data
The goal of the system is data transformation. Therefore the data itself is an important
subject. In this paragraph the following questions are answered to provide an
understanding of what kind of data is handled.

What are common / useful data formats?
What format can be used for the intermediate data?

3.3.1 Input and output data
As input and output data all kinds of formats should be possible. Of course it would be
unwise to try to implement them all at the first try. A good idea is to start off with a basic
set of data formats which will be supported. This set should incorporate some commonly
used data formats. The basic set must be easy to expand later on, so this should be kept
in mind when designing the system. A good option for a expandable design is the use of
managers. Managers locate and assign resources so that only new resources have to be
added to such a manager for a system extension.

To select the data formats for the basic set supported by the system it is a good idea to
choose data format within the first application domain of the system. The application
domain here will contain data formats applicable for data transformation and data formats
used in the InDialoog domain.

Data formats useful in the data transformation domain are: XML, XML Schema, XSLT and
Xquery. Data formats useful in the InDialoog domain are: TXT, CVS, Excel, MySQL
database, XML, (X)HTML.

19

3.3.2 Intermediate data
The intermediate data format will have to be a fully open, structured and hierarchical
format. This will ensure that the data is easy readable, easy to process and it will help
future development and compatibility. Also a very large portion of the input and output data
formats will in one way or another be structured or hierarchical.

XML fits these needs perfectly, XML is open, structured and hierarchical. The openness
makes the data easy the exchange between all sorts of different systems. The structure
and hierarchy makes the data easy to read, understand and process. Besides these
features XML is already widely used in data transformation.

A survey has been done to determine what this intermediate XML should look like. First a
view on data was divided into categories: actual data, structure, styling and layout.
Different data contexts have different needs in these categories, text documents will need
structure elements as paragraph, page, etc; a address file will need structure elements as
name, address, phone number, etc. So will every specific data format add its needed
elements to the intermediate XML. It is clear to see that this will not work out, endless
elements will have to be added making the intermediate XML too hard to handle in every
way.

Since one all consuming intermediate XML will not work out, the choice has been made to
define the intermediate XML as a combination of a valid XML and its describing schema.
The schema must contain clear element and attribute names which are unambiguous, so
the context of the data will be clear for any user. This combination of a XML with a schema
will give a clear intermediate data format, which will be easy to process. Also the schema
can be useful for matching re usability, if a personal schema matches an already used
intermediate data schema a stored mapping can be reused, letting the user skip parts of
the matching process.

Conclusion
What are common / useful data formats?
Data formats useful in the data transformation domain are: XML, XML Schema, XSLT and
Xquery. Data formats useful in the InDialoog domain are: TXT, CVS, Excel, MySQL
database, XML, (X)HTML.

What format can be used for the intermediate data?
The combination of XML data and a XML schema defining the XML data. This will give a
structured and flexible intermediate data format, which will be easy to process and reuse.

20

4. Main design
Now that the main functions and options of the system have been discussed a main
design can be made. This main design will define the system at a global level, which will
be the main reference for further design and implementation choices.

4.1 Scalability
When designing a system scalability is a desired property. Scalability can be defined as
followed: “the ability of a system to accommodate an increasing number of elements or
objects, to process growing volumes of work gracefully, and/or to be susceptible to
enlargement” [21]

But scalability itself is not one single property. Scalability can be desired in different
specific parts of a design. There are different types of scalability that apply to different
parts of a system. Bondi [21] considers four general types of scalability:
– Load scalability

The ability to function gracefully, I.e., without undue delay and without unproductive
resource consumption or resource contention at light, moderate, or high loads while
making good use of available resources.

– Space scalability
The ability to not let memory requirements grow to intolerable levels as the number of
items that are supported increases.

– Space-time scalability
The ability to continue to function gracefully as the number of objects that are
encompasses increases by orders of magnitude.

– Structural scalability
The ability to not impede the growth of the number of objects it encompasses, or at
least will not do so within a chosen time frame that are implemented or standardised.

In the main design of this prototype structural scalability is an important factor. Designing
with structural scalability in mind aims to reduce costs and effort in long terms. Designing
a system which only performs the present tasks needed can be made very efficient and
effective on short term. But when new tasks arise in the future, adapting the system will
proof to cost a lot more effort than it would have cost if more scalable design had been
made on forehand. The cost of changes after release can be 60 to 100 times higher than
changes during the definition phase. Changes during development can be 1,5 to 6 times
higher than changes during the definition phase [22]. So it is fair to say that structural
scalability pays off in long term.

21

To design for structural scalability means designing for present needs and keeping an
open mind for future needs. This does not mean that a design should keep options open
for every possible future change. That could just produce the inefficient design avoided.
The aim is for a balanced design structure which is efficient for current needs but which is
open enough to support changes in the future at low effort.
Such a balanced design can be helped by taking a good look at the system goals. When
examining system goals it is important to realise what the short term goals are and what
the long term goals are. Or to realise that some short term goals could need expansion in
the future.

To make the prototype structural scalable the design should have a good dividing of
functional elements. Dividing functionalities helps keeping a system manageable by
creating different sub-systems. A sub-system performing a specific task is easier to
replace and reuse. When looking at it from a black box point of view it can be replaced by
any another component having the same in- and output definition.
Besides the replacement and reuse of elements it is useful to see which elements have to
be expandable. When new input, output or processing types are needed a plug-in
structure will have major advantages. This means that functional elements do not have to
be adapted, but can be extended by placing new elements beside them which define new
options within the existing system.
The features mentioned are concentrated on the single use of functional elements. There
can however be different elements which have changing contents and still have to work
together. When using a plug-in structure different output values might not be normalized.
To keep this cooperation structural scalable a framework has to be set up which unifies
different contents in such a way that they still can be used together. Such a framework
should for example be able to combine and normalize different values. On the other hand
it is also a good idea to define guidelines for the use of plug-ins. This will help to have
more control over the plug-in interacting with the system. To create plug-ins within certain
limits API's are commonly used. An Application Programming Interface provides a
collection of definitions which can be used within save boundaries of the system
consuming the plug-ins.

22

4.2 Data overview
Out of paragraph 3.1 an overall view of the data within the system can be made. The
system will be fed a data input (dinput) which will be read by the connection layer. The
parser will then transform this data into a XML perspective (draw xml) which is valid according
to a specific schema (sraw xml). This schema can then be matched to a personal schema
(spersonal) which represents the data format wish of the user. The matching of these
schema's will result in a specific mapping (m) which will be stored for later reuse. This
mapping will be used to transform the draw xml into an intermediate data (dintermediate) which will
be stored for later output use.

The output of data is analogue to its input. The intermediate data is represented by the
personal schema and the output data is represented by an output XML schema (soutput xml).
These schema's are matched and will result in a mapping. This mapping will be used to
transform the intermediate data into a XML representation of the output data (doutput xml) and
will be stored for later reuse. The doutput xml can then be parsed into its output format and
written to the data output (doutput).

23

Illustration 5: Data overview

see ill.8 see ill.8

An example of this data overview can be found in Appendix B. Appendix B demonstrates a
conversion from input to intermediate data using a TXT input format and a user defined
XML personal schema. The actual format of the mapping used will be discussed together
with the data store.

4.3 Data stores
The data stores are used to store data within the system for later direct or indirect reuse.
Direct reuse can for example be seen as the full reuse of a raw XML schema for
transforming input data. Indirect reuse can for example be seen as the reuse of element
mapping information in a new mapping process.

The data will be stored in a relational MySQL database. Relational databases are fast and
scalable. Since the system will not be working with large payloads it will not need a large
commercial database. MySQL will suffice in the storing needs.

4.3.1 Raw & output XML schema store
The raw XML schema store and the output XML schema store serve exactly the same
purpose, so they will be identical of design. Therefore only the raw XML store is discussed
here.
The raw XML schema store is meant for storing and retrieving the XML schemas which
define the XML representation of the input data. These raw XML schemas define the
output of the parsers who parse the input data to raw XML data.

The raw XML schema store only has to store XML schemas. These schemas revere to
specific data formats which can be parsed by the parsers. So to retrieve the data is it wise
to also store the reference between the schemas and the data formats.
The data format can be represented by a mime type. A mime type consists of a type and a
subtype revering to a specific data format. Mime example: image/jpg, text/plain,
application/msword. When input data is read its mime type has to be extracted so that a
valid parser can be selected which supports that mime type and thus outputs data
according to the revering XML schema. To keep the schema easy manageable a name
will be given to a schema for human reference. This results in the following relational
database table:

Raw XML schema
id int(11) primary key
schema text
mimes text (comma separated)
name varchar(32)

Table 2: Raw XML schema store

24

4.3.2 Personal schema store
The personal schema store is meant for storing and retrieving the personal schemas which
define the intermediate data format. The personal schemas are used in the mapping
process, they define the target schema on the input side of the system and the source
schema on the output side of the system.

The personal schemas only represent internal data of the system, so it does not need any
outside reference like a mime type. To keep the schema easy manageable a name will be
given to a schema for human reference. This results in the following relational database
table:

Personal schema
id int(11) primary key
schema text
name varchar(32)

Table 3: Personal schema store

4.3.3 Data store
The data store is meant for storing and retrieving the intermediate data. The intermediate
data consists of two parts, the XML data and a XML schema defining it. Since the XML
schema is already stored in the personal schema store only a reference to it has to be
stored with the XML data. To keep the data easy manageable a name will be given to the
data for human reference. This results in the following relational database table:

Data
id int(11) primary key
ps_id int(11) foreign key
data text
name varchar(32)

Table 4: Data store

4.3.4 Mapping store
The mapping store is meant for storing and retrieving mapping results and is thereby the
source of re usability in the matching process. The mapping store must be able to provide
the system with useful information for matchings. To provide this information the mapping
store must contain the mapping results but also auxiliary data like a dictionary or thesauri.

25

It must be possible to get relevant data out of mapping results. This means that it must be
possible to retrieve partial data out of a full mapping result so it can be matched with a
particular matching case at hand.

Further insight about the mapping store ((partial) matching reuse and thesauri/dictionaries) will be
given in the iteration steps.

4.4 Element overview
The system consists of a few key elements, these elements and their functions and
options will be discussed. Important features are re usability and user friendliness

4.4.1 Connection layer
The function of the connection layer is to provide a connection object on request. By
providing a specific connection type and url in that request a connection manager will
select a specific connection driver. The connection driver will return a connection object for
that specific connection type able to perform functions necessary within that connection
domain.

The connection manager receives connection requests with containing a type and a url.
Type describes the source type, like 'file' or 'mysql'. The url describes the location of the
source. A file type for example can be located locally '/var/www/html/index.html' or remote
'ftp://www.indialoog.nl/index.html'. Both are file types but they require a different
connection driver to connect to.
Drivers can be registered in the connection manager. The connection manager searches
within these registered drivers for a suitable driver for the connection request. The chosen
driver will return a connection object for that connection type. The connection object
contains functions for retrieving data out of the connection through the driver.

26

Illustration 6: Connection Layer

The driver is responsible for the retrieving of the data. For the data transformation we are
not only interested in the data but also in possible meta data. Meta data can give extra
information about the actual data which can be useful for the data transformation or for the
end user. The aim is to get as much meta data out of a data source as possible. This
means that functions for meta data retrieval must be present within the connection
object/driver. Different data sources will have different meta data, so a when a driver is
build an overview must be made of which meta data will be available.

4.4.2 Schema valid parser
The function of the parser is to read the input data through the connection manager and
parse it into raw XML data. The parser is called with a connection, the parser manager
identifies the connection type and selects a parser suitable for this type. The parser is fed
the data and meta data (mdinput) from the connection which will be parser into a raw XML
format. This raw XML data will be valid with a raw XML schema included in the parser. The
parser will return the raw XML data and schema as its result.

4.4.3 Matcher
The function of the matcher is to match the raw XML schema with the personal schema.
This can be done in different ways, manually with the aiding of a graphical interface and
automatically by using automated matchers and auxiliary data. Both of these ways can
influence one another by using iterations, so they must both have the same definition of
what a matching is.

27

Illustration 7: Schema valid parser

The matching proposed is a flexible combination of schema matchers aided by a graphical
interface. The matcher combination approach from the COMA [16] system has been
adopted. Automated matching will generate a mapping, if this mapping is correct can only
be judged by the end user. So after the mapping process it must be possible for the user
to give feedback and adjust the mapping (m'). In a simple situation this can be a onetime
adjustment, but in more complex cases this can be a process with many re matchings and
feedbacks. To implement this no serious changes have to be made in the system when
using match iterations. In every iteration the same matching and feedback loop can be
walked through similar to the single run matching. As a part of the feedback the user can
already define certain matches (m'') or exclude parts of the matchings (s'raw xml, s'personal) to
reduce matching complexity. To aid the manual adjusting a graphical interface can be
used to shorten the human interaction time as well as the comprehension of the mapping
result.

28

Illustration 8: Matcher (see ill.5)

The combined matchers will give different matching results. Individual results can be
combined and corresponding values can be ranked by similarity, this can be done by using
a similarity cube. The similarity cube will create two sets of match results (schema1--
>schema2 and schema2 --> schema1) defining the match candidates per schema
element. Out of these two schemas a combined result mapping can be produced by
aggregating the individual similarity values using chosen similarity strategies.

The result mapping can be used to transform the draw xml into dintermediate. Also the mapping
will be stored in the mapping store so it can be reused later. Partial or full mappings out of
the mapping store can be feed to automated matchers or can be used for manual
processing. A part of these partial mappings are mapping which are present in the
dictionary or thesauri.

Conclusion
In this chapter the main design of the system has been discussed. The design has been
made at a global level, which contains all main elements necessary for the functionalities
within this project. The main design is set up with large functional blocks which can later
on be further designed at a more detailed level.

The main design (ill. 5) is functional symmetrical so functionalities will be easy to reuse on
both the input and output side of the system. The connection and parser manager provide
a flexible environment where new connections and parsers can be added to the system
relatively easy. The matcher is designed to contain the possible future needs for flexible
matching so no big changes will have to made later on.
These features provide structural scalability within the design of the system at a global
level, which will be a good base to start from for now and for further development.

29

5. First iteration, basic system
This chapter describes the first development iteration of this project. The goal of the first
iteration is to build a base system to use in the further development. Important in this step
is to keep an open structure in mind that can be used to interchange different elements
later on.
Another important goal of the first iteration is getting a better view of what are good and
what are bad options for efficient data transformation.

5.1 Goals / Requirements
The first development iteration has the following goals:

• design and implement a basic transformation system capable of simple manual
matching

• supported input data formats must be: txt, cvs and relational database
• getting as much as possible information out of input data
• ability of storing and recovering internal data for non-partial re usability
• supported output data formats must be: txt, cvs and relational database
• putting as much as possible information into the output data

5.2 Required components
The following system elements will have to be designed and implemented to let the system
meet its goals:

• a connection layer which also reads possible environmental meta data
• a parser able to parse txt, cvs and relational database data with an output valid

according to a specific schema
• a schema store holding the parser schema's
• a schema store holding personal schema's
• a manual matcher, outputting intermediate data and the mapping used
• a data store holding the intermediate data
• a data store holding the mappings

The elements mentioned are able to transform the input data to the intermediate data.
Since the system is symmetrical the same elements will be needed to transform the
intermediate data to output data.

5.3 Research questions
Most of the main elements in the design are already designed in chapter 4, namely the
stores, the connection layer, the parser manager and the matcher. In this first iteration a
simplified manual matcher will be used.

30

This leaves the following parts open for research/design:

1. parser rules and schemas with meta data for txt, cvs and relational database
2. mapping format
3. manual matcher
4. non-partial re usability design

The following research questions are constructed. A numbered reference is made with the
list above:

1 What specifications make a parser a valuable addition to this system?
2 What are key features for a mapping format?

What mapping format should be used in this system?
3 What functionalities are necessary with manual matching?

How can manual matching be tested and valued?
4 What is important data for non-partial re usability?

How can non-partial re usability be offered to the user?

5.4 Design
The four system parts named above will be discussed with respect to the research
question named.

5.4.1 Parser rules, schemas and meta data
What specifications make a parser a valuable addition to this system?

The function of a parser is to parse the input data format to an output data format. To do
so a set of rules must be defined which describe how the input data is parsed to the output
data. The appliance of these rules must produce a result valid according to a specific
schema, so that consistency is guaranteed.

Extra benefit can be gained in including meta data in the parsing process. This meta data
can describe environmental knowledge not existing within the data. Thus the parsing of
meta data can hereby provide extra insight in processing the output data.

Meta data will differ between different data sources. To be able to process the meta data it
must be stored in a uniform way, independent of the actual data stored. This is done by
defining a meta element at the top of each schema. The meta element can contain any
number of meta data represented by a key and value tuple. The meta data is defined as
followed:

31

<meta>
 <key title=”keyname”>data value</key>
 <key title=”keyname”>data value</key>
 ...
 ...
</meta>

Table 5: Meta data

Parser rules define how source data is parsed. Parse rules are triggered by a specific
sequence and generate predefined output data. The parsed output data will be valid to the
corresponding XML Schema (Sraw xml) of that parser. The parser rules, schemas and meta
data can be found in Appendix C.

Conclusion
What specifications make a parser a valuable addition to this system?
A parser in this system gives extra value in being schema valid. The parser provides a
schema on the parsed data which can be used in the further transformation matching.
Extra meta data produced by the parser gives extra information about the data source and
reduces for user interaction.

5.4.2 Mapping format
What are key features for a mapping format?
What mapping format should be used in this system?

The data transformation is defined within a mapping. This mapping defines how a target
element is formed out of a combination of source elements, conditions and functions. This
mapping has to be stored within a defined mapping format which has to be structured and
is fairly easy to process. XSLT is such a mapping format, it is a widely used transformation
language. XSLT is based on XML and is thereby well structured, human readable, easy to
process and widely supported.

The resulting XSLT can be stored for later reuse if the same transformation has to be
redone. Because of the XML format of XSLT it is probably very good possible to retrieve
parts out of the full XSLT for reuse.

Conclusion
What are key features for a mapping format?
A mapping format should be capable of mapping a source format to a target format. In
practice this means that a mapping format should be a flexible format to be able to serve a
large range of source and target data. This flexibility will also mean a more easy
interaction with other systems.
What mapping format should be used in this system?
XSLT should be used as the mapping format of this system. It is widely used, based on
XML and is thereby well structured, human readable and easy to process. This will also
provide easy interaction with other systems of InDialoog.

32

5.4.3 Manual matching
What functionalities are necessary with manual matching?
How can manual matching be tested and valued?

The first step in the matching process is a simple manual matching. This can later be
expanded to more complex iterated matching with automated functions and user
interaction.

The matching used is a schema matching which matches target elements form one
schema to source element from another schema. In this simple matching rules are applied
that define the transformation of one source element to one target element with possible
application of a condition or a function.
rule = (source element, condition, function, target element)

These rules can be applied directly without generating XSLT in between. This is done in
the first iteration to save time and to research to benefits and shortcomings of manual
matching.

Conclusion
What functionalities are necessary with manual matching?
Manual matching must provide a way of defining a mapping between a source and target
schema. This can be done by defining connection between source and target elements.
Functions and conditions expand the expressing possibilities of the matching.
How can manual matching be tested and valued?
Since this is the first iteration and the matching will be further developed, no extensive
testing will be done on this manual matching. An evaluation is given in 5.6 based on
personal interaction with the system by the domain specialist.

33

Raw XML schema
elements

Personal schema
elements

Illustration 9: manual matcher rules

(source element, condition, function, target element)

5.4.4 Non-partial mapping store reuse
What is important data for non-partial re usability?
How can non-partial re usability be offered to the user?

The mapping produced can be stored so that when the same input schemas are
encountered it can be reused. The mapping is a product of the combination of the raw
XML schema and the personal schema so the mapping reuse can be stored as a link
between these two.
Full mappings can be stored as data as shown in table 6. To keep the data easy
manageable a name will be given to the mapping for human reference. The naming is very
important for later reference, so user must be encouraged to use naming that expresses
the meaning of the mapping.

Mapping
id int(11) primary key
xslt text
name varchar(32)
rxs_id int(11) foreign key
ps_id int(11) foreign key

Table 6: Mapping store

The related id's of the personal and raw XML schema used to generate the mapping are
also stored for later references, because multiple mappings are possible between the
same schemas. Multiple mappings between these two occur when different interpretation
are asked form the same data.

The schema relation within the mapping table can be used to offer the user an insight of
possible mapping that can be reused. By querying the mappings with the id's from the
personal and raw XML schema used at that time. Or it could even be used to give a
suggestion on what schemas to use with certain mappings.
This suggests that this will only work when the user wants to reuse a mapping without any
changes. This is only true when the mapping is processed directly after selection. It is also
possible to load the mapping and the related schemas so that the mapping can be edited
before processing it. This will save the user a lot of time when alike mappings are needed.
The user can then load a mapping, slightly alter it and process or save it. Only the time for
the alterations is needed, main mapping time is reduced to a minimum.

Conclusion
What is important data for non-partial re usability?
Important data for non-partial re usability is the XSLT data and the schemas used to create
the mapping. The total of these three must be named so an easy reference can be made
when mapping are reused.
How can non-partial re usability be offered to the user?
Non-partial re usability can be offered to the user in two forms. By loading a mapping and
directly processing the mapping. Or by loading a mapping and giving the user the
opportunity to edit it before processing or saving it.

34

5.5 Implementation
For the implementation Java is used as programming language. In addition to the common
packages extra XML and w3c libraries are used to support the processing of XML data.

For the processing of the XML data the Document Object Model is used instead of SAX.
This is done because DOM is easier to use because it can access tree nodes at random
whereas SAX goes through data sequentially. This will make implementing more flexible
although SAX is potentially faster. Although SAX might be faster, DOM is now chosen
above it, because the system will not require an optimum working speed. This is because
of the incidental need for transformation within InDialoog. When optimization is needed a
change to SAX can be suggested.

The Class Diagram of the connection and driver elements of the basic system can be
found in appendix D.

5.6 Evaluation
Design and implement a basic transformation system capable of simple manual matching.
The simple manual matching implemented with the use of rules works good for simple
matchings, but leaves little room for more complex matchings. Only 1:1 Element
matchings can be done and there is no way to aggregate matching elements.
A good option would be to step away from the rule approach and use an object oriented
approach to the matching. The matching elements can then be seen as object which can
be connected to one another to present a more flexible way of building matchings. This will
make aggregation possible and 1:n and n:1 cardinality. To incorporate this approach with
the XSLT mapping format, these matching element can represent XSLT element from the
XSLT standard.

Supported input/output data formats must be: txt, cvs and relational database.
The supported data formats work well and are easy to expand by adding new parsers and
connections. Specific parsers and connections extend form their parent object so they are
easy to implement, the including of new parser and connections can be made even easier
by the use of dynamic class loading. Dynamic class loading makes it easy to introduce
new classes by other parties.

Getting as much as possible information out of input data.
Getting meta data from the connection in the parsing process proofs to be an easy way to
get basic environmental data. It would be useful to make the manual adding of meta data
available, so that more semantic values are added.
Putting as much as possible information into the output data
Meta data is now put into the parsed data but they are potentially lost in the resulting data.
To reduce lost of semantic data a construction has to be found to store the meta for the
processed data. This may be done within the data itself which will make it easier to access
but may not be possible if it compromises the schema definition of that data. Otherwise a
linking will have to be made to keep the reference between data and meta data.

35

Ability of storing and recovering internal data for non-partial re usability.
The storing of mapping results linked to their source schemas used works well when using
exactly the same mapping multiple time. When variations have to be made it is time
consuming when a totally new mapping must be made. So a good new option would be
the possibility to derive new mappings from existing ones.
Non-partial re usability will contribute very little to none to automated schema matching
because no individual element can be retrieved. The next logical step is to expand re
usability by adding possibilities for partial recovery of mapping results. As a part of partial
mapping recovery a dictionary or thesauri can be introduced to aid automated matching.

36

6. Second iteration, Visual XSLT
This chapter describes the second development iteration of this project. The goal of the
second iteration is to expand the base system to improve efficiency in matching. To
improve this efficiency the development of visual aiding has been chosen.

The development in visual aiding has been chosen above the choice of automated
matching and re usability. This is done because of the environment in which the
application will be deployed. The application will at first run in an environment where
mappings will be relatively small and processing will be at a low frequency.
In this setting visual aiding in the interface will most likely create more direct efficiency than
automated matching and re usability. So visual aiding is given preference in this iteration.

6.1 Goals / Requirements
The second development iteration has the following goals:

• evaluate good and bad points in visual aided mapping
• design and implement a visual aided matching environment
• testing and evaluating the visual aided matching implementation

6.2 Visual aiding survey
Before the specifications can be described a better insight on visual aided matching has to
be gotten to determine what elements have to be incorporated. To get this insight on visual
aided matching a survey has been done. The object of this survey is to get a view of
systems on the market and their workings. The good and bad points will be listed resulting
in an advice which elements to use in the second iteration.

In this survey two widely used commercial matching programs will be evaluated. The 'Data
Transformation Server' from Adeptia and 'Stylus Studio 2007 XML' from Stylus Studio.
Both offer a wide range of data transformation tool and support them with visual aided
mapping.

Adeptia
The visual matching by Adeptia is done by the hierarchical representation of the source
schema on the left and the target schema on the right. The elements within the schemas
are connected by lines only. The lines represent rules which are further specified within a
different panel.

Adeptia defines four types of rules:

• mapping rules, made up of visual xslt building blocks (nodes)
• textual rules, made up of textual xslt rules
• local variables, made up of xslt variable definitions to be used in other rules
• properties, provides the for-each functionality

37

Adeptia provides a large number of nodes for the visual mapping rules, this reduces the
need for the manual typing of rules. The nodes provide a preview of their working. If the
node is connected the connections are used in the preview. The preview of node workings
can be a time saver because a user doesn't have to wait until completion to evaluate its
result. It is possible to set the value of a connection instead of really connecting a node,
which makes it possible to manually add values or functions which otherwise would need a
lot of extra nodes.

It is possible to define templates which contain predefined matchings. The use of
templates will create re usability and a less complex visual view. Also global XSLT data
can be defined which can be placed at the beginning or the end of the resulting mapping.
This can be a good feature for re usability when data contains fixed headers and footers.

The for-each node is not visually displayed but resides within the property rules. This
makes very little sense because all other XSLT element can be found within the visual
mapping rules. Beside the fact that this is not logical for the user, it emits the use of the
for-each node within a mapping, thereby reducing flexible looping of elements.

The nodes in the mapping rules receive inputs (attributes, nodes, values) and produce
outputs (XSLT elements). This produces an intuitive flow from source to target, but also
depicts a linear approach. It focuses on the generating of XSLT elements and their
content, this excludes the view on the exterior of XSLT elements.
In some cases it is more intuitive to approach a mapping with an external condition. Such
a problem will also be solvable by using only internal conditions, but this will force a user in
a specific modelling pattern which can be less efficient, comprehensible and flexible.

The visual matching produces a XSLT code as its result. Although it is possible to alter the
generated XSLT code, it is incapable to translate the alterations back to a visual matching.
This is not a very important feature because this direction is not taken in the normal work
flow. But it might be of value when trying to fine-tune matchings.

38

Altova
The visual matching by Altova is done by the hierarchical representation of the source
schema on the left and the target schema on the right. The elements within the schemas
are connected by lines and nodes. Lines represent the connection between source
elements, nodes and target elements. Nodes represent XSLT elements (instructions,
functions, conditions).

Altova does not define textual rules, but does support the use of templates. All of the
matching is done visual which works very easy, unfortunately not a very large set of nodes
are presented. The missing of axis nodes (following, sibling,...) is especially a big loss,
because they provide many relational functionalities. The XSLT generation of the visual
matching can be previewed directly so results can be judged immediately.

Besides the standard connection for input and output the nodes can be extended with
other possible connection ports like sorting ports. Another important feature of the nodes is
the presence of a so called 'flow port'. Each node can posses one flow port which defines
the exterior condition of a XSLT element. This makes it possible to set a condition on the
external side of the current node. The possibility of using both inside and outside
conditions gives a more flexible and less linear approach to the visual match building.

Altova can transform the visual matching to XSLT, but is also capable of transforming valid
XSLT back to a visual matching. This does not help in the normal work flow, but can give
extra insights when making adjustments.
Since all the nodes are displayed between the source and target elements this will soon
become complex. A solution given to reduce this complexity is the possibility of hiding
links. This does reduces complexity but also removes the global match overview.

39

Conclusion
Both of the systems reviewed have their advantages and disadvantages. To give a good
overview of both, the pros and cons of the visual matching are displayed in the table
below:

Adepatia
pros cons

hierarchical schema presentation non-consistent for-each construction
non-complex use of linking lines linear, content oriented view
easy to use visual mapping rules four different rule options to manipulate the

matching
large amount of nodes to use
node previews

Stylus
pros cons

hierarchical schema presentation small amount of nodes to use
easy to use visual mapping nodes
node previews
flexible, non-linear view by the use of flow
ports
two way transformation possible

Concluding, good options for visual aided matching are:

• a hierarchical schema presentation
• non-complex linking
• visual mapping nodes for all possible XSLT elements
• code previewing
• the use of flow ports

6.3 Required components
The following system elements/functionalities will have to be designed and implemented to
let the system meet its goals:

• visual mapping node object, representing XSLT element
• containing linkable input, output and flow ports
• capable of code generation

• hierarchical schema presentation with schema elements
• linking between schema elements and visual mapping node objects

40

6.4 Research questions
1. How can the XSLT standard be transformed to a uniform valid visual

representation?
2. What properties are necessary for user and system functionality on visual mapping

nodes?
3. What possibilities and constraints must linking incorporate?
4. How must (nested) linking be handled?
5. How can the user be aided in its visual interaction?

6.5 Design
The elements and functions mentioned in the previous chapter will be designed. The main
goal of the visual elements is the aiding of the efficiency for the system user. Because of
this goal not only technical aspect will be looked at, but also user interaction related
issues.

6.5.1 Visual elements
Visual mapping nodes are the main building blocks for visual aided mapping. The nodes
describe the XSLT transformations that will be performed. Therefore the nodes must be a
logical presentation of XSLT elements. Another important aspect is that the nodes must
have a clear way working and connection with each other. This must guarantee an easy
working for the system user.

First an analysis is made of XSLT 2.0 to see how it is build up and what characteristics are
involved. After that a visual interpretation can be designed which supports both XSLT and
a user friendly interface.

XSLT characteristics
How can the XSLT standard be transformed to a uniform valid visual representation?
What properties are necessary for user and system functionality on visual mapping
nodes?
A XSLT 2.0 element format will look like the following example which is displaying the for-
each element:

<xsl:for-each
select = sequence-expression>
<!-- Content: (xsl:sort*, sequence-constructor) -->

</xsl:for-each>

41

All XSLT elements are in fact XML elements, thus they have an opening and closing tag
which begin with 'xsl:' defining the XML as a XSLT element. After the ':' both tags display
the element name.
The opening tag can include zero or more attributes which are defined by [name] = [type],
where [name] is a string defining the attribute name and [type] is the type of the attribute.
Predefined types are:

type meaning

expression regular expression resulting in an boolean value
sequence-expression XPath expression value
node-sequence-expression sequence of nodes
sequence-constructor sequence of sibling nodes

Other types are: char, string, string options, qname, uri-reference.

Next to the attributes included in the tags content can be placed between the opening and
the closing tag. This content can contain fixed XSLT elements for that specific element and
a sequence constructor.
Next to the attributes and types cardinalities can be used. This is done by the usual
cardinal identifiers *,+,?. For example xsl:sort* means zero or more sort nodes can be
connected.

Visual node
What properties are necessary for user and system functionality on visual mapping
nodes?
How can the user be aided in its visual interaction?
A visual node can now be defined according to the XSLT characteristics. The XSLT tag
name can de defined as the node name, the attributes can be defined as input values and
the content can be defined as output values of the node.

The input and output values from different nodes can be connected with each other to
build up a more complex mapping. The connection points of these values shall be called
'ports' from now on. Ports connected nodes and give their output value to the connected
input port of the connected node.

To make node connection good understandable for users the input ports will be placed
together on the left side of a node and output ports will be placed together on the right side
of a node. This is done because the source schema will be placed on the left side and the
target schema will be placed on the right side. This creates the global understanding that
data flows from left to right, from input to output.

42

name

input output

attribute ports content sequence ports

Input ports always define attributes of an XSLT element. An output port can be a sequence
of fixed XSLT element specific for that node. An example of this is the use of xsl:sort within
the for-each element. A sequence of these specific XSLT elements must appear before
the sequence of the containing element.

External condition values can be added by the use of a so called flow port. By the use of
flow ports more complex mappings can be made with the visual nodes. The flow port
defines in what case the current node will be applied and is located at the top of the node.
For example when a for-each node must be executed under a specific condition the flow
port of the for-each node can be connected to the content sequence port of an if node.

This will result in all P elements being iterated and mapped to Q if the if condition holds.
This mapping can easily be switched by the flexible use of the flow ports. If the for-each
and if node are switched a subtle difference results in a completely different mapping
result. The P elements are then iterated only when the if condition holds.
The use of the flow port gives room to subtle but easy changes in the mapping, making the
combination of nodes more flexible and leaving more room for user interpretation.

The ports of an element can be connected to other ports to add more mapping nodes. In
some cases it is more efficient to add the value on a port manually. The manually adding
of values will provide more efficiency to users with the understanding of XSLT. Instead of
adding multiple nodes a user can add a value in the form of a constant or a XSLT
expression.
Multiple connections can be made on a port if its cardinality allows it. The port cardinality is
obtained directly from the XSLT definition of an element. The default cardinality is 1.

43

for-each

if

P

Q

input output

condition value

for-each

sort

sort

To give a recognizable visualisation to the ports and their connection/value the following
visualisation will be used:

port type visual reasoning
not connected, fixed the open circle represents it is still open for

connection
not connected, optional the dashed line represents the choice to use it

or not to use it
connected, to port the closed circle represents it is closed for

connection, green represents a successful
connection

connected, set value black (node background) represents that the
value is part of the node

Also the direction of ports can be displayed visually so that the user can instantly see if two
ports can be connected or not. This is done by adding arrows in the ports. The user can
then make correct connections by adding an outward pointing arrow to an inward pointing
arrow. This enforces the global understanding that data flows from input to output.

Hierarchical schema presentation and cardinality
What possibilities and constraints must linking incorporate?
For the source and target schema a visual representation has to be made. A good
visualisation of these schemas is a tree representation. Since the build-up of a XML
schema is in fact a tree structure this complies very well with the visual understanding of a
user.

In this tree representation elements and attributes of the XML schema will be represented
hierarchical. Next to the visualisation of the tree structure it is possible to represent the
cardinality of the elements used. The visual representation of the cardinality will give the
user more insight in the working of the schema and prevent the user from making an
invalid mapping. Many mapping tools can make mappings that result in an invalid XML
data according to the target schema.

Checking if the cardinality results in a valid XML while building the mapping is not possible
without generating the XSLT code, generating the output XML and validating it. This will
probably result in a bad performance and may not always be wanted while the user is in
the building process. Although this is the best way to check the validity it is not very
practical within the building process.

44

if

for-each

A good alternative is to give an advice on possible mismatches in the building process and
give a validation result on completion. A validation result can be made by a schema
validator, which are widely available. For the mismatch advice cardinalities must be
passed through from the source to the target side within a mapping and checked on the
possibility of invalidity. Only an advice can be given because only the cardinalities and
nodes workings can be checked in this way and the input data is left out in the equation.

The example above describes a possible match in cardinality. On the left side P can exist *
times in 1 T, this is expressed as 1(*) which can be reduced to *. The for-each node loops
the * P elements which does not change *. The choice node gives is an optional switch for
input elements, this means that an input element is chosen or not. This result in a 0..1
cardinality for choices, but because this is done for * elements the result cardinality is
expressed as *(0..1).

On the right side both Q and A can occur once in * iterations of H, which is expressed as
*(1). Now *(0..1) and *(1) can be validated, since *(0..1) <= *(1) this mapping can be
validated as a possible match since it might still be possible that the choice always goes
one way which will result in a 0 ≠ 1 mismatch.

This example demonstrates a mismatch. Because the cardinality of P is * and it is iterated
by the for-each node the cardinality still remains *. The cardinality of Q is 1, so validating
the mapping will result in * > 1 meaning there is a mismatch. But when the actual data only
contains one P element the result can in practice still be valid.

Schema elements
The visual representation of schema elements displayed above suggest they have output
ports on the source side and input ports on the target side. This will in practice not work
because schema elements can be used in different representation settings.

45

for-each

choice

P

A

Q

* * * 1

1

*

H

*

T

1

0..1

0..1

1(*) * * *(0..1) *(1)

for-eachP Q

* * * 1

* * * 1

A schema element can be used in the following settings:

setting example
1. returning its path value text/paragraph
2. returning its tag value
 (content sequence)

<paragraph>.....</paragraph>

3. defining a external condition by use of a
 flow port
 (viewed from question element)

<for-each select="text/paragraph">
 <question>....</question>
</for-each>

4. getting a inclusion in a parent element
 (viewed from walkthrough element)

<walkthrough>
 <question>....</question>
<walkthrough>

A schema element can then be made in accordance to the working of a visual XSLT
element. Settings 1 and 2 represent content-sequence ports since they produce an output
result. Port 3 represents an attribute port which is responsible for the condition inclusion
for itself in the result. This can be viewed as a replacement port, which replaces the
normal returning tag value with an extension of the connected condition. Port 4 represents
the flow port.

Port 2 can for example be connected to the flow port of a XSLT element returning a string
value so that the dots in the example above are filled with a certain value. Also other
elements can be connected in this way. This makes it possible to connect inside and
outside of elements which makes the possibilities for the user very flexible.

Linking and code generation
How must (nested) linking be handled?
Nodes can be linked to each other by their ports, but not all ports can be connected to
each other. Ports can only be linked if the produced output of a port matches the required
type of the linked input port. So for every port the accepted or produced type(s) must be
defined. This is a fairly easy concept and will not be discussed further.

46

schema
element

walkthrough/question

<flow>
 <condition replace>
 <question>

 </question>
 </condition replace>
</flow>

flow

condition replace

2

4 1
3

Less trivial is de generation of the mapping code (XSLT) out of the linking between the
source elements, nodes and target elements. A mapping may consist of a lot of linked
nodes which do not have a linear path from source to target. How must the code be
generated and in what order must the nodes be followed to get the mapping which was
intended by the user?

Since the target schema is the goal of the mapping process it will serve as the guiding
principle for the code generation. The code generation will start at the root element of the
target schema and will follow its path down in hierarchical order. When a linked element is
encountered the links have to be walked through from right to left to determine the code
generation for that target element.

To generate the code out of the linked nodes a recursion has to be done over the flow
ports. Attribute ports only support data for the attributes on the tag. Output and flow port
support the order in which a mapping must be generated. So every time a flow port is
connected on a node a recursion is made on the node connected to the flow port. The
code generated by the node connected to the flow port is then placed outside of the code
generated by to node owning that flow port.

<h>
 *
</h>

<h>
 *
 <if>
 <q/>
 </if>
</h>

<h>
 <for-each>
 <if>
 </q>
 </if>
 </for-each>
 *
</h>

In the source tree no connections are needed between schema elements, because there
is no need for nesting on the source side.

Above a partial code generating example is displayed.
At the first step the H element is encountered which isn't connected but does have linked
sub elements, so a h-tag is generated and the next adding point for code is set within the
h-tag.

At the second step the Q element is encountered which is connected to a if-node. The if
node has a connected flow port, so an if-tag is placed within the h-tag but the next adding
point for code is set outside the if-tag.

47

for-each

if

P

A

Q

HT

mapping target treesource tree

At the third step the for-each node is encountered which is connected to a source element.
A for-each tag is placed outside the if-tag and the next adding point for code is after the
for-each closing tag. Encountering a source element stops the connection search.
After the Q element the A element is encountered, but since it is not connected and has no
linked sub elements no code will be generated. There are no more target elements and
thus the code generating is completed as displayed in step 3.

Scope
Because (nested) links can be used it is possible that certain select values can change the
scope of an element. This happens for example when a for-each element iterates over a
certain select value. This means that when a path value is selected within such an iteration
its scope must be recalculated. If this is not done absolute paths will be miss interpreted in
the resulting XSLT code, because there relative paths are expected.

Relative scopes are calculated in the same manner the code generation is realized. By
going through the nested structure of elements. A scope is then recalculated by the
encountering of a schema element or a select value of a XSLT element.

6.6 Implementation
The Class Diagram of the visual XSLT elements can be found in appendix E. Visual
elements can be connected to each other though their port connections. Every extension
of the VisualElement has its own internal XSLT generating that expresses its XSLT
working. The extensions share the same connection structure and are therefore more or
less the same.

48

The VisualElement and the VisualXSLTPort extend from geometry classes which is very
useful for displaying the visual elements. Because of their geometry extension the visual
elements can directly be painted on a canvas. This lets the visual elements have a handy
mixture of functional and visual properties for both the XSLT generation and the visual
interaction.

6.7 Testing
The visual aided matching will be tested to get a view of the good and bad points of the
implemented system. The main goal of the visual aided mapping is providing the user with
a user-friendly and efficient interface. The testing therefore will not be like a regression test
but will focus on user interaction.
This user interaction test will be set up in the form of test case scenarios. Different test
cases will be performed by test users. The test cases will be set up to use the system in
different settings trying to cover its full potential.

These test cases will be performed by two types of users, novice users and expert users.
This is done to get a better overall coverage of possible situations. Expert users have
more know-how on the theoretical working and will probably follow a more direct path
through a system. Novice users will probably follow a more varied path through the system
getting in situations not encountered by expert users [20]. They will also have different
needs for information feedback, an expert user will search more towards specific
information while a novice user will need more information about the basic workings of the
system. The novice users will be given a short insight in de working of XSLT
transformations to give them the knowledge expected from a normal system user

The tests will be monitored with a record/playback technique [19], this means the states in
the testing are recorded and can be evaluated later on. This normally is a time consuming
operation, but since InDialoog is a small organization only a few test will be performed.
The aim is to use two expert users and two novice users. They will be monitored during
their test cases and specific situation will be captured for later evaluation. In this
monitoring successful and failed attempts will be recorded to get an insight in where
problem arise with the working of the interface.

Next to the case tests the user will be asked to give their opinion on several properties of
the visual aided matching environment. These properties are retained from a user survey
on what properties could be valued as good or bad in general applications. This survey is
done on four people within InDialoog and result in the following list:

● flexibility
● user friendliness
● intuitive working
● global overview
● undo possibilities
● information retrieval
● categorical approach
● clarity in cause and effect
● concise information
● intuitive visualisation

49

Users are also asked to give a general description of their finding after working with the
visual aided mapping.

6.7.1 Test Goals
The tests are used to get a view of the good and bad points of the implemented system.
So the result of the testing must be a list of positive points, negative points and missing
additions of the system. Out of all the points the relative ones must be bundled to create a
list of improvements for the system.

First the testers will get a short introduction into XSLT and data transformation. After that
they will be asked to perform two test cases under supervision in which an observation will
be made on how the testers use the system. The observation will focus on discovering
pitfalls and positive workings.

To get a goal oriented feedback from the testers the survey is so constructed that it leaves
as little room as possible for evasive answers. This is done by giving six options in the
multiple choice questions, so that there are enough steps between a absolute good and
bad. The use of an even number eliminates the option of choosing the middle option as an
easy escape.
Also different open and multiple choice questions are constructed to overlap or ask the
opposite. This given more information about the same subject and also stimulates the
tester to give more thought about a subject.

Next to the multiple choice questions the testers are asked three open questions about
every subject:

● "what do you find positive?"
● "what do you find negative?"
● "what would you like to see improved?"

This will give a more detailed insight in the testers opinion for the specific testing goals.
The results can be cross referenced to the answers of the multiple choice answers to get a
more complete view of the testers findings.
Both the multiple choice answers and the open answers will be evaluated in reference with
the observations during the test cases.

6.8 Evaluation
In this chapter visual aided matching has been discussed and a system prototype for
visual XSLT has been made. In this evaluation the prototype will be compared to the
matching tools in the evaluation of 6.2. Also to be able to evaluate the different aspects of
visual aided matching a survey has been done. This survey was constructed to evaluate
the good and bad points of the prototype in reference to visual aided matching for
technical and non-technical users.

50

6.8.1 Comparing the prototype
The prototype build is a simple proof of concept of the design in 6.5. The prototype has its
focus on the correct and flexible linking of XSLT elements. The matching tools evaluated in
6.2 are large commercial programs which obviously overshadow a small matching
prototype. To get a fair comparison, the good visual aided matching options concluded in
6.2 are compared with the matching/linking properties of the prototype. By comparing
these options to the prototype, it can be evaluated according to the combined wanted
properties of a good visual matching tool. After this comparison the prototype will be
compared to the cons noted by the two individual matching tools.
A schematic view of the prototype can be found on page 47, illustration 18 shows a screen
shot.

The concluded good options out of 6.2 compared to the prototype:

a hierarchical schema presentation
The prototype uses a hierarchical schema presentation in the same way as the reviewed
tools do. The prototype is not styled in any way, but it is evident that it draws a correct
hierarchical presentation of the structure.

non-complex linking
The prototype uses only one way of linking: connecting nodes through their ports. No
alternatives are used which may make the basic linking more complex. The ports are
visualized to present their connection, direction and value options. Once the visual
presentation is understood, a user should be able to link all XSLT elements in the same
way.

visual mapping nodes for all possible XSLT elements
The prototype only uses a few XSLT elements. The implementation of all XSLT elements
would he cost too much time. But the XSLT elements in the prototype have been
constructed in such a manner that it should be possible to produce all of the other XSLT
elements with the same concept.

code previewing
The prototype does not contain code previewing directly. It does contain code generation
which keeps nesting and scopes in mind. This code generation is the building block for
code previewing. If the code generation would be made visible at every change, the code
previewing would be a fact.

the use of flow ports
The prototype uses flow ports. The node element and its ports have been designed in
such a way that nodes can be connected in the all the ways possible in XSLT. This
provides the freedom of connecting the nodes as wanted by the user, not as dictated by
the tool (within XSLT standard).

The individual cons out of 6.2 compared to the prototype:

non-consistent for-each construction
In the prototype the working of the different graphical XSLT elements are consistent. Due
to the port connection design in 6.5 no non-consistent constructions seem to be
necessary. Admitted that only a small set of XSLT element have been implemented, all

51

XSLT elements that satisfy the XSLT characteristics mentioned in 6.5 should keep the
graphical XSLT construction consistent.

linear, content oriented view
The linear, content oriented view mentioned in 6.2 about Adeptia references to the way
XSLT elements are to be connected. Within Adeptia the perspective is that an element
should be placed inside another one. This might restrict the freedom of the transformation
programmer. In the prototype no perspective restriction are present. Elements can be
placed standalone within the prototype and can be connected later on in any perspective
that the XSLT standard allows.

four different rule options to manipulate the matching
For some complex XSLT options Adeptia uses different rule options. As mentioned before
the prototype does not need extra options for XSLT elements satisfying the XSLT
characteristics.

small amount of nodes to use
The prototype has start out using a small set of XSLT elements. This is done to make a
proof of concept. This set should be expanded to offer a complete set of XSLT elements if
the prototype is to be further developed. Due to the graphical XSLT element design this
should be no problem.

6.8.2 Test results
In the survey three different question forms are used. Multiple choice to get an overall
grading. Open questions about positive, negative and improvement points to get a more
detailed picture about the subjects. And an option for open remarks.

The following table shows the scores from the multiple choice questions for the chosen
subjects out of chapter 6.7. Out of the four test users there are two novice users (N1, N2)
and two expert users (E1, E2). The novice users work within the communications
department of InDialoog. They had no experience with XSLT and have been given a crash
course. The expert users work within the programming department of InDialoog. E1 has
good knowledge of XSLT and E2 has little knowledge of XSLT. The test form and its
results of E1 can be found in appendix F.

scale from 0 to 6

52

X: question skipped due to lack of knowledge of XSLT

The following text shows the overall results from the open questions. In these results the
case observations and the multiple choice scores are considered.

flexibility
The flexibility is marked as good, the open questions also give a positive result. The
flexibility in matching is described as 'complete freedom in matching'.
As improvement the addition of frequently used expressions is mentioned.

user friendliness
The user friendliness is marked as good. The open questions reveal that the test users are
positive towards the visualisation of the XSLT elements and the connection. But they
would like extra information on the use of ports and a possible end result.

intuitive working
The intuitive working is marked as average. The open questions reveal that a lack of XSLT
knowledge is a pitfall in intuitive working. The test users describe a need for a clear
guidance through a matching.

global overview
The global overview is marked as good. The open questions reveal that the test users find
the source, target and matching parts and their interaction easy to use. The test users
predict a problem in overview when matchings become more complex.

undo possibilities
The undo possibilities are marked as good. Although it is still a prototype the test users
give a positive feedback on full deletion of elements and their connections at once. The
click area is considered a bit small result in miss clicking ports. In addition the test users
would like to see undo/redo and copy/paste functionalities.

information retrieval
The information retrieval is marked as average. The non-technical testers find the
information too technical. Both would like more practical information about the working of
the matching and feedback about errors and results.

53

Illustration 10: Test results

categorical approach
The information retrieval is marked as average. The test users find the difference between
source, target and mapping good to understand. But they would like to see more guidance
in the steps to take to make a matching.

clarity in cause and effect
The clarity in cause and effect is marked as fairly good. The non-technical test users say
cause and effect are hard to predict because of their lack of XSLT knowledge. The
technical users don't have this problem because of their XSLT and programming
knowledge. To clarify cause and effect the test users would like more information about
the matching they are working on.

concise information
The concise information is marked as good. As already mentioned above the information
is fairly technical. Additional options mentioned are tooltips, a help page, examples, result
previews.

intuitive visualisation
The intuitive visualisation is marked as good. The test users find the visual XSLT elements
easy to use and comprehend. The non-technical testers don't see a direct link with XSLT
but still find the visualisation intuitive. They look at it as a way to make simple matchings
without XSLT knowledge. The technical testers find the visual XSLT elements a good
visualisation of the XSLT standard and see it as an easy way to make fast matchings.

6.8.3 Conclusion
The testing has been done by a very small test group within InDialoog. Because of the
minimal size of the test group no real objective result can be deducted. To get an objective
result the testing will have to be done within a large scale setting. The current results
however can be viewed in context of the demanding standard of InDialoog. And could be
used as a starting point for a larger scale testing.

The following conclusion is based on the test result within the context of the demanding
standard of InDialoog:
Out of the test results it can be concluded that the visualXSLT gives a good visual
representation of XSLT. An important element of the system is providing the user with
information about its working. Novice users have the need for information about the
workings of XSLT, port and connections. One possible way to provide this information is
the use of tooltips. Tooltips can give quick information about an object and do not need
extra user interaction since they are displayed on mouseover events. Another way is to
give more insight in the matching process by using fixed guided steps.
An open point is the behaviour of the system with more complex mappings. Will the
overview become too hard to comprehend? What effect will different visual adjustments
(use of hiding or transparency) have on this?

The visualXSLT element are build according to the XSLT standard, this means that every
possible XSLT construction can be reproduced in visualXSLT. This can be verified by the
fact that XSLT is a XML structured language, where element (tags) can be placed either
completely inside or completely outside another element. This behaviour is copied in the
visualXSLT design by the use of content ports and flow ports which define the outside and

54

the inside of an element.
Only a small number of XSLT elements have been implemented in this prototype, but
since all XSLT elements have the same generic build up, it is considered that the
visualXSLT implementation completely covers the XSLT language domain.

If this visualXSLT prototype is compared to the matching systems discussed in chapter 6.2
the most important difference is that it provides an exact copy of the XSLT workings
whereas the systems discussed have wandered from a 1-on1 match with XSLT which
makes some XSLT mappings hard or even impossible to reproduce without manual
coding. Out of the comparison in 6.8.1 it can be concluded that the prototype has stayed
true to its design idea. The prototype followed the pros, and evaded the cons which had
been concluded in 6.2. Therefore the prototype shows good promises for further
development.

55

7. Third iteration, Partial mapping reuse
This chapter describes the third development iteration of this project. The goal of the third
iteration is to expand the system of the second iteration with partial mapping reusability.
Non-partial mapping reuse has been discussed in chapter 5.4.4. This is a fairly trivial
activity wherein total mappings can be reused if source and target schema are exactly
matched from a previously made mapping. Non-partial mapping reuse can be useful when
there is a need for bulk transformation, in which a large number of similar transformations
will be processed.
In many cases similar connections have already been made by previous matches or only
small adjustments are necessary. The previously made matching between elements can
be used to aid new matchings. If element A and B are a match in a large number of other
cases there is a big change they will match in this case and the partial mapping between A
and B can be reused.

7.1 Goals / Requirements
A lot of research is done on automated matching to improve efficiency in manual matching.
These automated matching systems use different approaches
(see chapter 3.2) to find possible matches, and are usually capable of adjusting their
dissensions on previous matching results. In this project the choice has been made to not
use automated matching at first, but to first focus on the use of data from previous
mappings. This is done for three reasons:

● Because of the non-intensive use of the system it will not directly need automated
matching to improve efficiency. Mapping reuse data gained out of previous
mappings will provide enough mapping support at first. The previous mapping reuse
can be build in a way so that automated matching can be added later on.

● A different approach is tried which focuses on the value of manual created matches.
Manual created matches will have more semantic value and therefore it will be used
as a solid base for partial reuse mapping. The results can later on be used to aid
automated matching. Mappings are then made out of the perspective of the end-
user instead of by artificial intelligence.

● In the scope of this project the use of automated matching will probably mean a
larger time investment, thereby prolonging the project beyond its planned length.

The third iteration has the following goals:

● research partial mapping reuse options
● make a design and implementation for storing and recovering partial mappings
● design and implement an algorithm for generating match candidates, which

includes transitive matching, based on previous matches
● evaluate the partial mapping reuse based on previous matches

56

7.2 Research questions
1. What are good partial mapping reuse options, which fit in the current system

architecture?
2. What is a good way for storing and recovering partial mappings?
3. How can match candidates be discovered out of stored partial mappings?
4. How can transitivity be added to match candidate discovery?
5. How can the partial mapping reuse be evaluated?
6. What are differences and resemblances with automated mapping?
7. What are good and bad points of partial mapping reuse?

7.3 Research
What are good partial mapping reuse options, which fit in the current system architecture?
What is a good way for storing and recovering partial mappings?

A small survey has been done on the possibilities of partial mapping reuse. There is a lot
of research done on automated mapping which can also be used for reuse in manual
mapping. Two papers in particular are used to create a design for the partial mapping
reuse. The first one is "COMA - A system for flexible combination of schema matching
approaches" [16] , in particular chapter 5 which is about the reuse of previous match
results. The second one is "An automatic tool for discovering complex mappings" [17]
which provides a general framework for mapping generation through relevant
decompositions and identifications.

7.3.1 Reuse in Coma

Coma uses a 'MatchCompose' operation that assumes a transitive nature of the similarity
relation between elements. This assumes that when a is similar to b, and b to c, then it is
very likely that a is also similar to c.

contactFirstName <-- 0.5 --> Name <-- 0.7 --> firstName

multiply: 0.5 * 0.7 = 0.35
average: (0.5 + 0.7) / 2 = 0.6

In the above example contactFirstName can be found to be similar to firstName through
transitivity. Different computation can be used to calculate the combined similarity.

57

Illustratie 11: MatchCompose example [16]

Coma uses the Average and Dice function instead of multiplying which doesn't reflect
good similarities with values between one and zero.
Average: dividing the sum of the similarity values of all match candidates by the total
number of set elements.
Dice: returns the ratio of the number of elements which can be matched over the total
number of set elements.

Coma stores previous matches for later reuse. When a new match problem occurs the
store can be searched for previous match results which are usable in that case.
If multiple matchers where used a similarity cube is used which aggregates different
values to a combined similarity value. After that, match candidates are determined and
ranked according to their similarity values. Out of the match candidates combined
similarities are computed.

7.3.2 Discovering mappings
"An automatic tool for discovering complex mappings" [17] describes a general framework
for mapping generation. The main idea is that the input schemas are split up in relevant
decompositions for which then partial mappings can be determined.

58

Illustration 12: Computing combined similarity [16]

Illustration 13: Schema reuse matcher [16]

Illustration 14: General framework for mapping generation [17]

Target subtrees are determined out of the target schema. Each subtree consists out of one
rootnode and one or more mono-valued child nodes. This results in a decomposition like
the one displayed in the illustration below (st1,st2, st3).

Based on semantic correspondences the partial mappings can be processed in three
steps. The above target decomposition is also done for the source schema, but in this
case only the relevant schema parts are considered. Relevant schema parts are elements
which have a connection with the target schema (rsp1,2,3,4,5,6).

When the target subtrees and relevant source parts are determined, joins are searched
that can be used to combine these source parts. After that partial mappings can be
determined for each target subtree. A more detailed description of these techniques and
the algorithms used can be found in [17]. An example of the working of the joint operations
is depicted in illustration 16.

59

t1

t1

t1

Illustration 15: Schema decomposition example [17]

st1

st2

st3

rsp1

rsp2

rsp3

rsp4

rsp5

rsp6

Illustration 16: Determining partial mappings process [17]

Conclusion
What are good partial mapping reuse options, which fit in the current system architecture?
Both papers mentioned above contain options that can be used in the design of partial
mapping reuse in this project. Good options are:

● The decomposition of schemas into subtrees, this groups elements together that
semantically belong to the same object. Also non relevant objects within schemas
are discarded which simplifies the mapping reuse and avoids 'contamination' with
unwanted data.

● The composition of partial mappings not only based on direct matches and rankings
but also on transitive similarity. This will give more similarity options for matching
and thereby creating a flexibility in possible synonym discovery.

What is a good way for storing and recovering partial mappings?
Both papers don't directly mention ways of storing or recovering partial mappings. But out
of the data used it is possible to get a good view of what data will be needed for storing
and recovering partial mappings.
For a simple match one element is linked to another element. Apart from their names more
information can be used to improve match efficiency. When using subtrees the elements
used belong to an object sharing a semantic for the element within that object. The
rootnode can be viewed as the main description for that semantic. Coma also mentions
that schemas from the same application domain usually contain many similar elements,
which are typical to that domain. The knowledge of subtree and domain context can
therefore lead to good reusable match candidates.
Out of the above it can be concluded that it is good to store and recover partial mappings
with the context of their domain and subtree.

60

Illustration 17: Join operations [17]

7.4 Design
How can match candidates be discovered out of stored partial mappings?
How can transitivity be added to match candidate discovery?

Based on the research in chapter 7.3 a design will be made for partial mapping reuse
within this project. The design will be split up in three parts: the storing of partial matches
out of manual made mappings, the discovery of match candidates between two schemas
based on the stored partial matches and the discovery of transitive matches.

7.4.1 Storing partial matches
The first thing that has to be done is storing the partial matches. This must be done in a
way that preserves as much data as possible for later reuse. As concluded in chapter 7.3
not only the match nodes self but also the node context is important for a better semantic
understanding.

The context of a match node will be derived from two instances. The first is the subtree in
which the match node resides, the second is the domain in which the match node resides.
To store this information for every match found, next to the match itself the subtrees
involved will be stored.
A stored subtree will contain the domain, the headnode and the monovalued childnodes of
the headnode. A match will contain the domain, the headnode and the node involved from
the source and the target element which are linked together.
Also the XSLT of a match will be stored to provide more insight of the match internals. If
only the match itself would be stored the only thing derived will be that element A is linked
to element B. This will eliminate any future need for semantics, because the XSLT can
give a more complete view of the construction used and possible other elements involved
in a match.

To give a direct insight in what type of link is stored a type description is added to the
match. The type description will show if the match is a structured or a value link. A
structure type match is considered as a match that is only used to build the structure of a
mapping and not actually transfers data from the source a match to the target. A value
type match is considered as a match that does transfers data from the source to the
target. If actual data is transferred in a match it is likely to have more semantic value then
when a match is only used to construct a hierarchy. An expected behaviour is that the
nodes in a subtree will mostly be of the value type and that headnodes will mostly be used
for structure type matches. If this turn out to be true the match type can give extra insight
in match reuse.

Generating and storing subtrees and matches
When a made mapping is stored both the source and the target schema will be analysed
to retrieve all subtrees within them (see [17]). Out of these subtrees only the relevant
subtrees are stored and out of these relevant subtrees the matches are generated and
stored. Below an example displays how matches and subtrees are generated and stored.
The example considers a mapping between persons and personnel.

61

1. First the subtrees are determined for the source and target schema which will result
in s1 and s2.

2. Out of the subtrees the relevant subtrees are determined. Both s1 and s2 are
connected so they are both considered relevant.

3. The relevant subtrees are stored in the database:

subtree
id (int)

mappingid (int)

domain (varchar)

headnode (varchar)

nodes (text)

('','1','persons','person','firstname,lastname,address,telephone')

('','1','personnel','employee','name,address,mobile')

4. Out of the target subtrees the matches with the source subtrees are determined and
stored.

match
id (int)

domain_a (varchar)

headnode_a (varchar)

node_a (varchar)

domain_b (varchar)

headnode_b (varchar)

node_b (varchar)

type ('structure','value')

mappingid (int)

xslt (text)

('','persons','person','person','personnel','employee','employee','structure','1'
,'<xslt.....')

('','persons','person','firstname','personnel','employee','name','value','1','<xsl
t.....')

('','persons','person','lastname','personnel','employee','name','value','1','<xsl
t.....')

('','persons','person','address','personnel','employee','address','value','1','<x
slt.....')

('','persons','person','telephone','personnel','employee','mobile','value','1','<x
slt.....')

62

Illustration 18: Match example

s1 s2

7.4.2 Match candidate discovery
The goal of the match candidate discovery is to generate match candidates for elements
within a chosen source and target schema. These candidates will be generated by reusing
previous matches which are recovered from the match store. For the match candidate
discovery a design has been made that uses parts of [16] and [17].

generate subtrees
Out of the source and target schema, subtrees are generated. The generation of subtrees
is done in exactly the same way as mentioned in 7.4.1. The subtrees can be used to find
match results in combination with previously stored matches.

find match results
For the found set of subtrees every subtree is checked for possible match combinations
within the match store. Match combinations are found if an endnode of a subtree matches
a endnode of a stored match. An endnode is the last non-empty node available within a
match element triplet (domain_a, headnode_a,node_a), which results in either the value of
the childnode or the value of the headnode if the childnode value is empty.
This will result in a set of matches found in the match store where the endnode match a
node from the schema. The nodes beside the endnode within a match element triplet don't
have to match. A set found out of s2 in illustration 17 might look like this:

Source matches
(personnel,employee,) <-> (persons,person,)
(personnel,employee,name) <-> (persons,person,firstname)
(personnel,employee,name) <-> (persons,person,lastname)
(y,employee,y) <-> (x,x,lastname)

63

Illustration 19: Schema reuse matcher

(personnel,employee,address) <-> (persons,person,address)
(personnel,employee,mobile) <-> (persons,person,telephone)
(x,x,phonenumber) <-> (y,person,telephone)
(b,employee,b) <-> (a,person,telephone)

rank match results
Next the found matches will be ranked. This ranking will represent how much the found
match corresponds with the context of the element of the schema. This is done by looking
if the other nodes within the match element triplet correspond. This will tell if the match
originates from the same domain or object context. If this is the case a higher ranking will
be given because matches found in the same context suggest a better chance of semantic
correctness.

If the domainnode and headnode of a found element triplet match that of the schema
element it is classified as a domain specific link and is higher valued within that domain. If
there is no match on the domainnode and the headnode the link is lower valued as it is
then considered to be a more general link.
The lower value of a general link is compensated by the more frequent appearance of
such a link throughout different domains.

domainnode match headnode match ranking
true true 1,4
false true 1,3
true false 1,2
false false 1,1

The above ranking is chosen so that the result of a multiplication of two domain specific
links is more than the multiplication of two general links, but also so that the multiplication
of more general links is able to result higher. Two domain specific links will result in (1,4)2

= 1,96 and are comparable with seven general links (1,1)7 = 1,95.
The ranking values chosen now are not founded on an existing theoretical principle but
they will have to be tested and adjusted if necessary. The ranking can be implemented as
a weight factor used in a neural network. The weight can be adjusted manually or
automatically by training and testing on predefined values.
A ranked set found out of s2 in illustration 18 might look like this:

Source matches
(personnel,employee,) <-> (persons,person,) = 1.4
(personnel,employee,name) <-> (persons,person,firstname) = 1.4
(personnel,employee,name) <-> (persons,person,lastname) = 1.4
(y,employee,y) <-> (x,x,lastname) = 1.1
(personnel,employee,address) <-> (persons,person,address) = 1.4
(personnel,employee,mobile) <-> (persons,person,telephone) = 1.4
(x,x,phonenumber) <-> (y,person,telephone) = 1.3
(b,employee,b) <-> (a,person,telephone) = 1.3

64

aggregate match results
Both the source and the target schema provide a set of ranked partial mappings. These
two sets have to be combined to find possible matches between the source and target
elements. All matches within the two sets will be compared to each other to see if they
have corresponding elements so that they can be combined. The combining of matches is
done as illustrated below:

Match 1 and 2 will cover all possible combined matches. It might seem that match 1' is
thereby left out of the combined matches. That would imply that the (A <-> B) && (C <->
D) where A=C will not result in (A <-> D). Below is the proof that this match will still be
found.

1. ((A=C) <-> B) && ((C=A) <-> D)
2. A = C, so both can be substituted by X

(X <-> B) && (X<->D)
3. if (X <-> D) exists in the target set, it means it must also be present in the source match set.

(X <-> B) && (X<->D)
(X <-> D) && (X<->D)

4. (X <-> D) && (X<->D) will result in (X <-> D)
5. X can be substituted by A

(A <-> D)

When matches can be combined also their ranking must be combined. The combination of
the ranking is calculated based on the individual rankings of the matches and the depth of
the match. If a match is combined in the first aggregation the match depth is considered to
be zero. The rank combination between two matches is calculated as followed:

The second part of the equation (1 / (depth +1)) ensures that the result ranking decreases
with every aggregation step. This is analogue with the thought that a match constructed on
a deeper aggregation level is less important. The case here is also that the ranking
chosen is not founded on an existing theoretical principle but it will have to be tested and
adjusted if necessary. The example below illustrates the result combination of the source
matches used before with the target matches.

Target matches
(personnel,employee,) <-> (persons,person,) = 1.4
(personnel,employee,name) <-> (persons,person,firstname) = 1.4
(personnel,employee,name) <-> (persons,person,lastname) = 1.4
(y,y,name) <-> (x,x,x) = 1.1
(personnel,employee,address) <-> (persons,person,address) = 1.4
(personnel,employee,mobile) <-> (persons,person,telephone) = 1.4
(b,b,mobile) <-> (a,a,a) = 1.1

65

Match 1: (D = B)
A <--> (B=D)
A <--> D

Match 2: (C = B)
A <--> (B=C) <--> D
A <--> D

(A B) (C D)

source match target match

1

2
2'

1'

source
element

target
element

match1.rank + match2.rank
2

1
depth + 1*

Combined matches
(personnel,employee,) <-> (persons,person,) = 1.4
(personnel,employee,name) <-> (persons,person,firstname) = 1.4
(personnel,employee,name) <-> (persons,person,lastname) = 1.4
(personnel,employee,name) <-> (x,x,lastname) = 1.25
(personnel,employee,address) <-> (persons,person,address) = 1.4
(personnel,employee,mobile) <-> (persons,person,telephone) = 1.4
(personnel,employee,mobile) <-> (y,person,telephone) = 1.29
(personnel,employee,mobile) <-> (a,person,telephone) = 1.29

compute best candidates
When the matches have been combined all possible matches between the source and
target schema are presented. It is possible that there are multiple options for an element
match, in the example above the element name can be matched to firstname or lastname.
But if looked at from the other side, the element firstname only has name as its match
candidate.

For both the source and target perspective the match candidates are grouped by schema
element. The options per schema element will be ranked according to their number of
appearances relative to the total number of options.

rank of match option = average(match ranks) * (#options / total options)

rank(name <-> lastname) = ((1,4 + 1,25) / 2) * (2 / 3) = 0,88

Source perspective
lastname: name = 1,33
telephone: mobile = 1,33
address: address = 1.4
firstname: name = 1.4
person: employee = 1,4

Target perspective
mobile: telephone = 1,33
employee: person = 1,4
address: address = 1.4
name: lastname = 0,88

firstname = 0,47

In this case only the element name in the target perspective has two options. If the best
ranked options are chosen this will lead to the following combined perspective:

person
 firstname
 lastname
 address
 telephone

employee
name

address
mobile

In this combined perspective the double arrows illustrate that there is agreement between
the source and target perspective on a match. The match between firstname and name is
not agreed upon which will mean it will be excluded from the match candidates. This way
of candidate selection will work fine for single matches, but in illustration 17 it can be seen
that firstname and lastname are parts of a combined match on name. Combined matches
will get lost in this way of candidate selection, therefore an extra check will be done to
discover possible match combinations.

66

discovering combined matches
To discover combined matches all candidates from the source and target perspective will
be considered. A difference will be made between the highest ranked matches and the
other matches. The highest ranked matches will be granted preference before the other
matches.

Sets will be formed with elements that are matched together, in the example {firstname,
lastname, name} will be such a set. For every set the matches will be generated step for
step, beginning with the highest ranked matches.

firstname

lastname

name

highest ranked match
lower match

Three types of matches can be distinguished:
1. a match which is linked through two highest ranked matches
2. a match which is linked through one highest ranked match and one lower match
3. a match which is linked through two lower ranked matches

Per type the matches will be generated ordered by match rank, until the maximum number
of possible links is reached. The maximum number of possible links is equal to the largest
number of elements in a set originating from the same schema, #{firstname, lastname} =
2.

type 1 type 2 type 3
1: name - lastname 2: name - firstname

The above example illustrates that a combined match is found. This is still very trivial
because there were also two possible options. The following example illustrates a
combined match selection with more options where the element mobile has previous
matches with telephone which will prevent it from matching with another mobile element.

Source perspective
mobile: mobile = 0,38

telephone = 0,89
telephone: mobile = 0,47

telephone = 0,76

Target perspective
mobile: mobile = 0,38

telephone = 0,78
telephone: mobile = 0,53

telephone = 0,76

67

firstname

lastname
name

1:
firstname

lastname
name

2:

type 1 type 2 type 3
1: telephone1 - telephone2 (0.76) 2: mobile1 - telephone2 (0,71)

3: telephone1 - mobile2 (0,63)
4: mobile1 - mobile2 (0,38)

This example has eliminated two of the four options based on ranking choices. With
respect to the non-combined matching an extra option was found where else out of four
options only one would have been chosen. In the example above mobile1 is matched to
telephone2 where it would be expected to match with mobile2. This was a result of previous
matches between mobile and telephone.

If the match above is corrected and the match mobile1 - mobile2 is stored, a following
match result will be adjusted. When there is a small number of match reverences in the
database a large shift of ranking can occur. If the mobile - mobile match is enhanced it
can be possible that through aggregation the telephone - telephone match is lower ranked
then wanted and is overtaken by the telephone - mobile match. This problem only occurs
if there is a small number of match reverences in the database. When there are larger
numbers of correct matches in the database this effect is cancelled out. The following
example illustrates the same match but with more correct matches (for both options) in the
database:

Source perspective
mobile: mobile = 0,91

telephone = 0,35
telephone: mobile = 0,43

telephone = 0,78

Target perspective
mobile: mobile = 0,91

telephone = 0,31
telephone: mobile = 0,49

telephone = 0,78

The effect of more correct matches in the database can not only be seen in semantic
correct match results, but also in the difference between rankings of a correct and an
incorrect match. If more correct data is available the differences will get more distinct.

68

mobile1

telephone1 telephone2

mobile2

1:
mobile1

telephone1 telephone2

mobile2

2:
mobile1

telephone1 telephone2

mobile2

mobile1

telephone1 telephone2

mobile2

type 1 type 2 type 3
1: mobile1 - mobile2 (0,91)
2: telephone1 - telephone2 (0.78)

2: mobile1 - telephone2 (0,42)
3: telephone1 - mobile2 (0,37)

This example illustrates the effect that the differences will get larger if more correct data is
available in the match database. The correct semantic matches are now found, and a
larger difference can be seen between the chosen match options and the match that are
regarded as incorrect. The correct matches can be found in the type 1 matches with a
higher ranking then before. The incorrect matches can be found in the type 3 matches with
a lower ranking then before.

Conclusion
How can match candidates be discovered out of stored partial mappings?
First off the partial mappings stored must contain as much semantic value as possible.
The semantic value of a stored mapping can be enhanced by storing additional information
about the match environment. Addition information can be found in de context of the node
which is matched. This results in the storing of the headnode and the domainnode of the
matched node. Also the function of the node within a match can be stored. This results in
qualifying the match either as a 'structure' or a 'value' match.
The discovery of partial mappings is done by dividing the problem up into smaller parts.
First relevant subtrees are discovered from out which match triplets are used to find
matches with stored mappings. After that the found matched will have to be prioritized to
determine the best matches. This is done by computing a ranking based on the
importance of the match environmentals of the triplets matched. Match environmentals are
rated by the amount of nodes which match within match triplets and the depth of an
aggregation match.
When matches have been ranked the best candidates can be computed. In this process
single matches are easily found by choosing the highest ranks. A deeper look at the
matches and rankings give the opportunity to also discover combined matches. This is
done by ranking bi-directional match types, so that multiple strong matches can be
discovered.

How can transitivity be added to match candidate discovery?
Transitivity can be added to match candidate discovery by aggregating match results. The
aggregation of matches gives the possibility to discover matches at a deeper level. When
discovering matches a maximum depth can be set. With the increase of the depth the
relevance of the found matches will decrease. The use of aggregation matches gives the
opportunity to discover indirect matches. These indirect matches can also become an
important weighing factor when similar matches are found frequently at a relevant depth.

69

1:
mobile1

telephone1 telephone2

mobile2

2:
mobile1

telephone1 telephone2

mobile2

7.5 Evaluation
How can the partial mapping reuse be evaluated?
In this chapter no evaluation has been done on the partial mapping reuse that has been
suggested. To get a better view of its working, results of this approach should be
evaluated as well as the weighing used in the match computations.
A good approach for this kind of evaluation is running the match process like a neural
network training. Large sets can be run while weighing factors can be adjusted. The
results can then be compared to control sets to see how effective the computation has run
with certain weighing. In this way computations of partial mapping reuse can be compared
and evaluated.

What are differences and resemblances with automated mapping?
The discovery of matches out of stored partial matches is in fact an automated mapping
process. The main difference is that in this case only existing links can be used to
generate new ones. With automated mapping also linguistics or certain structural patterns
can be used to find potential new matches. These features use dictionaries or other
references to produce match possibilities. This is basically not very different from the reuse
of partial mappings. Both use a store of predefined matches which help to identify new
potential matches.
Potentially this can be generalized so that different forms of predefined match forms can
be used in the same way to find new potential matches. This would make it easier for new
match forms to be integrated.

What are good and bad points of partial mapping reuse?
Good points:

● the reuse of semantically correct matches, because the stored matches were made
by human choice.

● as a side effect synonyms could be discovered through match aggregation.
Bad points:

● new matches must already have some relation within the store to be found.

The partial mapping reuse idea provides a good semantic base for matching. To make it
more flexible a good option would be to extend it with extra external matching aids. The
use of external matching aids like dictionaries or thesauries can improve its effectiveness.
The main idea behind this is to let stored semantics and automated matches enhance
each others working. Both approaches could give feedback and together deliver a more
precise result.

70

8 Conclusions & Recommendations
This chapter will discuss the conclusions and recommendations of this project. This will be
done by giving feedback on the project objectives / goals.

8.1 Conclusions
As a guideline for the conclusions, the goals mentioned in chapter 2.3 will be discussed.

Design and implement a basic ETL system
In chapter 3 and 4 the basis of the transformation system has been designed. It is
designed with the thought of separating functionalities to keep the system easy adaptable.
The main setup is a basic ETL system with an intermediate store. The internal buildup of
the ETL system is symmetrical in design, so that the input and output side of the system
can use the same building blocks. Also the building blocks themselves (parsers,
connectors, matchers,..) have been designed to provide good adaptability. The flexible
design chosen is a good base for further development.

Define an intermediate data format
In chapter 3 the possibilities of an intermediate data format have been discussed. It is
concluded that no specific formats can be used to define the intermediate data format. As
an open format XML is chosen with the restriction that it has to be valid with its XML
schema. The XML and the schema together form the intermediate data format.
The chosen intermediate data format of XML and XML schema provide a good and flexible
connectivity with systems used at the moment, since XML is now a heavily used standard.

Design an automated matching element within the base system
A matching element has been designed with an eye for flexible matching. A flexible
combination of schema matchers aided by a graphical interface has been chosen. The
matcher combination has been adopted from the COMA system.
The matching element has been set up to provide automated and manual interaction. The
enduser can give feedback on the results and use iterations to optimize the results. A
graphical interface is a valuable tool in this setting. It provides the user with faster
understanding and interaction in the cases where manual matches are needed
.

Incorporate reusability in data, matching and programming
The main focus in this project has been on matching reusability. Data and programming
reusability has been left undiscussed, but is encouraged as a good practise.
Two options of matching reusability have been discussed. Partial and non-partial matching
reusability. Non-partial is fairly trivial, but still needs a good naming reverence for good
usability.
Partial mapping reuse has been discussed throughout chapter 7. A schema reuse matcher
(ill. 18) has been designed based on [16] and [17]. Relevant subtrees are generated
matched and ranked to find partial match options.
In this process semantic values are embedded by taking in account environmental

71

information. This works by applying different weights in the ranking for different
environmental matches. Environmental information taken in account is:
- the nodes matching within a match triplet
- the depth of an aggregated match
- possible combined matches
Although weights in the partial mapping reuse were not evaluated, it presents a promising
matching idea based on semantics.

Design and implement a user interface for visual aided mapping
In chapter 6 visual aided mapping has been discussed. A visual implementation of XSLT
has been made and evaluated. The visualXSLT proofs to be a valuable addition for
matching processes that require manual tweaking. The visual aided mapping still needs
some matching knowledge, but gives an efficient tool for manual interaction.

Evaluate user friendliness, user efforts and efficiency.
Since the best semantic values are gained from end-users; user friendliness, user effort
and efficiency are evaluated throughout this project. User interaction and process
automation have been merged into one design to work efficiently together. Within this
interaction visual aiding is adapted to optimize user friendliness, efforts and efficiency.
Non-partial mapping has been introduced in chapter 6 to provide more efficiency in
matching reuse.

In general it can be concluded that a many-to-many data transformation prototype has
been presented which focuses on semantics and user efficiency. The system parts have
been build from a semantic point of view and with an eye on user friendliness and
efficiency. The system is modelled based on ETL processing using an intermediate store.
In the store and the processing reusability and interaction have been optimized by the use
of leading open standards and modular building blocks.
This conclusion fulfils the assignment formulation, so it may be concluded that the project
is completed successfully.

8.2 Recommendations
The project presents a data transformation prototype. This means it still leaves room for
extra research and development. In this paragraph recommendations will be done for
future research and development on this project.

research & development within the scope prototype
Within the current scope of the project there are open issues that can be addressed before
looking at expansion possibilities.

Testing the matching
In chapter 7 different parts in the matching process have been discussed. As mentioned in
these chapters the weights and algorithms used have not been thoroughly tested.

72

To get a proven method the algorithms used should be tested by using training and control
sets. In this testing also the weights used should be examinated so that the result will be
optimized. Only by testing the matching a good view can be gotten on its effectiveness and
thereby possible changes can be made.

User interface
In chapter 6 visualXSLT was introduced and tested. Still the user interface is that of a
prototype. As mentioned in the testing and conclusions of chapter 6, the user interface can
be improved by adding more guidance to the user. Guidance can be provided in different
ways:
- the use of a problem walkthrough (a.k.a. a wizard)
- providing extra information of the elements at hand (use of tooltips etc.)
- a better look and feel (styled elements, better selecting etc.)
- providing more information on the matching (result preview, access to submatches, etc.)

There will of course be a lot more to improve, a good way to find out these points is to test
the prototype in practice.

Testing in practice
To get the prototype to a consumer level it should be tested in practise. This should reveal
practical flaws and missing features at a fast paste. Testing in practise can also be used to
get a closer insight in the matching problems for specific domains.

future research & development of prototype
Also outside the current scope, research and development can be done. A key feature can
be the implementation of automated matching which has not been used within this project.
With that, extra features like thesauries and dictionaries can be researched and integrated
to optimize results.

A good development would be the research and development of different types of
matchers within the semantic based system. Using different types of matchers will reveal
their pros and cons, which will give more insight in producing better result in specific
situations.

Aside from the matching, the prototype can be enhanced by expanding the accepted input
and output types. The system can be widened by adding extra features like for example a
semantic matching environment dedicated to giving semantic meaning to elements,
domains, matches and their connection.
A lot can be thought up to extend functionality and interaction, important questions to keep
in mind are therefore: "will this feature simplify interaction?", "will this feature optimize
results?"

73

Appendix A. References

[1] Wikipedia. Data transformation: a process to convert from a source data format into destination data
involving data mapping and code generation. http://en.wikipedia.org/wiki/Data_transformation.

[2] W3C. XML: Extensible Markup Language, a W3C-recommended general-purpose markup
language derived from SGML (ISO 8879). http://www.w3.org/XML/.

[3] Muze. Ariadne: Open Source, Multilingual Web Application Server and Content Management
System. http://www.ariadne-cms.org.

[4] Wikipedia. ETL: Extract, transform, and load, a process used in data warehousing for data
transformation. http://en.wikipedia.org/wiki/Extract_transform_load.

[5] S. Bossung, H. Stoeckle, J. Grundy, R. Amor and J. Hosking. Automated Data Mapping Specification
via Schema Heuristics and User Interaction. In Automated Software Engineering archive
Proceedings of the 19th IEEE international conference on Automated software engineering, pages
208-217. IEEE Computer Society, 2004.

[6] K. Strehlo. Tactics to Data Transformation Nirvana. White paper. Data Junction, 2002.
[7] Itemfield, The Complexity Advantage: Solving the Requirements of Complex Data Transformation in

Business Integration. White paper. Itemfield, 11/2004.
[8] Altova. Data Integration: Opportunities, challenges, and Altova MapForce™ 2005. White paper.

Altova, 10/2005.
[9] J. Madhavan, P.A. Bernstein and E. Rahm. Generic Schema Matching with Cupid. In 27th

International Conference on Very Large Data Bases, pages 49-58. Morgan Kaufmann Publishers
Inc., 2001.

[10] M. Smiljanic, M. v Keulen and W Jonker. Formalizing the XML Schema Matching Problem as a
Constraint Optimization Problem. In DEXA 2005, 16th International Conference on Database and
Expert Systems Applications, pages 333-342. Springer, 08/2005.

[11] M. Smiljanic, M. v Keulen and W. Jonker. Using Element Clustering to Increase the Efficiency of
XML Schema Matching. In 22nd International Conference on Data Engineering Workshops, page 45.
IEEE Computer Society, 2006.

[12] M. v Keulen, A. d Keijzer and W. Alink. A Probabilistic XML Approach to Data Integration. In 21st
International Conference on Data Engineering, pages 459-470. IEEE Computer Society, 2005.

[13] A. Doan, P. Domingos and A. Halevy. Reconciling schemas of disparate data sources: a machine-
learning approach. In ACM SIGMOD Record archive,volume 30, issue 2, pages 509-520. ACM,
06/2001.

[14] M. Smiljanic, M. v Keulen and W. Jonker. Effectiveness Bounds for Non-Exhaustive Schema
Matching Systems. In 22nd International Conference on Data Engineering Workshops, page 83.
IEEE Computer Society, 2006.

[15] E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching. In The VLDB
Journal, Volume 10, issue 4, pages 334-350. Springer-Verlag New York, Inc., 12/2001.

[16] H.H. Do and E. Rahm. COMA: a system for flexible combination of schema matching approaches. In
28th international conference on Very Large Data Bases, pages 610-621. VLDB Endowment, 2002.

[17] Z.Kedad and X. Xue. An automatic tool for discovering complex mappings. Technical Report.
University of Versailles, 2005.

[18] E. Rahm, H.H. Do, D. Aumueller and S. Massmann. Matching Large Schemas with COMA++. In
Talk at Microsoft Research, Redmond. University of Leipzig, 03/2005.

[19] A.M. Memon. GUI Testing: Pitfalls and Process. In Computer archive, volume 35, issue 8, pages
87-88. IEEE Computer Society Press, 08/2002.

[20] Wikipedia. GUI software testing: the process of testing a product that uses a graphical user interface.
http://en.wikipedia.org/wiki/GUI_software_testing.

[21] A.B. Bondi. Characteristics of scalability and their impact on performance. In 2nd international
workshop on Software and performance, pages: 195-203. ACM, 2000.

[22] R.S. Pressman and D. Ince. Software Engineering, A Practitioner's Approach. In 5th edition,
chapter 1. McGraw-Hill Higher Education, 2001.

74

http://en.wikipedia.org/wiki/Data_transformation
http://en.wikipedia.org/wiki/GUI_software_testing
http://en.wikipedia.org/wiki/Extract_transform_load
http://www.ariadne-cms.org/
http://www.w3.org/XML/

Appendix B. Data conversion example

What do I do in the streets of Serenia? eol
 eol
Hint: eol
After you visit one of the shops in the town of Serenia, you can eol
find a silver coin in the street. It will be located just eol
outside the tailor's door at the entrance to an alley. There is eol
also a barrel in the alley entrance. Be sure to look in the eol
barrel and take the fish. eol
 eol
What do I do at the Tailor's Shop? eol
 eol
Hint: eol
You can get a blue cloak from the tailor. But first you will eol
need to get the golden needle from the haystack beside the eol
Swarthy Hog's Inn. Give the tailor the golden needle and he will eol
give you the cloak. Tip: You may need an army of help to find eol
the needle! eol eof

Tabel 7: dinput, txt format

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="txt">
<xs:complexType>

<xs:sequence>
<xs:element name="meta" minOccurs="0">

<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="key">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="title" type="xs:string" use="required"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:sequence maxOccurs="unbounded">

<xs:element name="break" minOccurs="0"/>
<xs:element name="paragraph" minOccurs="0">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:element name="line"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Table 8: sraw xml

75

paragraph

paragraph

paragraph

break

break

paragraph
break

Illustration 20: sraw xml

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="walkthrough">
<xs:annotation>

<xs:documentation>Comment describing your root element</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="title"/>
<xs:element name="hint" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="question"/>
<xs:element name="answer"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Table 9: spersonal

Illustration 21: spersonal

76

txt --> walkthrough
paragraph (odd) --> question
paragraph (even) --> answer
@key=filename --> title

Table 10: m, intuitive mapping

<txt filename=”kq5a.txt”>
 <paragraph>
 <line>What do I do in the streets of Serenia?</line>
 </paragraph>
 <break />
 <paragraph>
 <line>Hint:</line>
 <line>After you visit one of the shops in the town of Serenia, you can</line>
 <line>find a silver coin in the street. It will be located just</line>
 <line>outside the tailor's door at the entrance to an alley. There is</line>
 <line>also a barrel in the alley entrance. Be sure to look in the</line>
 <line>barrel and take the fish.</line>
 <paragraph>
 <break />
 <paragraph>
 <line>What do I do at the Tailor's Shop?</line>
 </paragraph>
 <break />
 <paragraph>
 <line>Hint:</line>
 <line>You can get a blue cloak from the tailor. But first you will</line>
 <line>need to get the golden needle from the haystack beside the</line>
 <line>Swarthy Hog's Inn. Give the tailor the golden needle and he will</line>
 <line>give you the cloak. Tip: You may need an army of help to find</line>
 <line>the needle!</line>
 </paragraph>
</txt>

Table 11: draw xml

77

<walkthrough>
 <title>kq5a.txt</title>
 <hint>
 <question>What do I do in the streets of Serenia?</question>
 <answer>
 Hint:
 After you visit one of the shops in the town of Serenia, you can
 find a silver coin in the street. It will be located just
 outside the tailor's door at the entrance to an alley. There is
 also a barrel in the alley entrance. Be sure to look in the
 barrel and take the fish.
 </answer>
 </hint>
 <hint>
 <question>What do I do at the Tailor's Shop?</question>
 <answer>
 Hint:
 You can get a blue cloak from the tailor. But first you will
 need to get the golden needle from the haystack beside the
 Swarthy Hog's Inn. Give the tailor the golden needle and he will
 give you the cloak. Tip: You may need an army of help to find
 the needle!
 </answer>
 </hint>
</walkthrough>

Table 12: dintermediate

78

Appendix C. Parse rules, schemas, meta data

Txt parser:

Grammar:
S <-- B*Q* | ε
Q <-- P | PB*S
B = Break
P = Paragraph

This means that a txt consists of breaks and paragraphs, or be empty. Paragraphs are
separated by at least one break. Breaks can follow breaks. Paragraphs can not follow
paragraphs.
The txt parser reads the source data per line.

Possible line reads:
empty line (el): only a end of line character is read
non-empty line (nel): more then one character is read before the end of line character
end of file (eof): the end of file is read

State machine

79

XML Schema
See Appendix B, table 8 and illustration 20.

Meta data examples
name value source
filename filename.ext file
creation time timestamp system
filesize integer file
description text user input
domain text user input
etc. etc. etc.

80

Appendix D. Connection and driver classes

81

Connection

TxtParser XmlParser

Parser

FileConnection HttpConnection

TxtParserDriver XmlParserDriver

ParserDriver

FileConnectionDriver HttpConnectionDriver

ConnectionDriver

ConnectionManager

ParserManager

Appendix E. Visual classes

82

VisualElement

VisualCondition
Element

VisualXPath
Element

VisualSchema
Element

VisualXSLTElement

VisualXSLTPort

VisualXSLTPort
Connection

PortDock

Appendix F. Test results E1

83

84

85

86

87

	Table of contents
	1.	Introduction
	1.1	Background
	1.2	Objectives
	1.3	Overview

	2.	Project overview
	2.1	Assignment formulation
	2.2	Research questions
	2.3	Goals
	2.4	Project approach

	3.	Data transformation
	3.1	Transformation parts
	3.2	Matching
	3.2.1	Automated schema matching
	3.2.2	Schema matching survey
	3.2.3	Human interaction and efficiency

	3.3	Input, Output and Intermediate data
	3.3.1	Input and output data
	3.3.2	Intermediate data

	4.	Main design
	4.1	Scalability
	4.2	Data overview
	4.3	Data stores
	4.3.1	Raw & output XML schema store
	4.3.2	Personal schema store
	4.3.3	Data store
	4.3.4	Mapping store

	4.4	Element overview
	4.4.1	Connection layer
	4.4.2	Schema valid parser
	4.4.3	Matcher

	5.	First iteration, basic system
	5.1	Goals / Requirements
	5.2	Required components
	5.3	Research questions
	5.4	Design
	5.4.1	Parser rules, schemas and meta data
	5.4.2	Mapping format
	5.4.3	Manual matching
	5.4.4	Non-partial mapping store reuse

	5.5	Implementation
	5.6	Evaluation

	6.	Second iteration, Visual XSLT
	6.1	Goals / Requirements
	6.2	Visual aiding survey
	6.3	 Required components
	6.4	Research questions
	6.5	Design
	6.5.1	Visual elements

	6.6	Implementation
	6.7	Testing
	6.7.1	Test Goals

	6.8	Evaluation
	6.8.1 Comparing the prototype
	6.8.2	Test results
	6.8.3	Conclusion

	7.	Third iteration, Partial mapping reuse
	7.1	Goals / Requirements
	7.2	Research questions
	7.3	Research
	7.3.1	Reuse in Coma
	7.3.2	Discovering mappings

	7.4	Design
	7.4.1	Storing partial matches
	7.4.2	Match candidate discovery

	7.5	Evaluation

	8	Conclusions & Recommendations
	8.1	Conclusions
	8.2	Recommendations

	Appendix A.	References
	Appendix B.	Data conversion example
	Appendix C.	Parse rules, schemas, meta data
	Appendix D. Connection and driver classes
	Appendix E. Visual classes
	Appendix F. Test results E1

