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Abstract: 
This research investigates the support of human attention allocation. A fixed support 
system is compared with two forms of support which are adaptive to the user by using 
cognitive models. A liberal and conservative variant of the adaptive support are 
introduced. The goal of the support is to improve the task performance of the user during 
a tactical picture compilation task. Although the results of the conducted experiment have 
not shown a significant improvement in task performance when adaptive support is 
given, the negative effects of inappropriate reliance seen in fixed support where no longer 
present in the adaptive condition. 
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1. Introduction 

1.1. Background 
One of the trends seen in the naval warfare domain is a decreased manning. This means 
that the same tasks have to be performed by less people. Also, the complexity of several 
tasks is increasing, due to both an increase of the available information and an increase in 
complexity of the environment [Grootjen et al. 2006]. These observations result in an 
increased work load for military personnel. 

When being stressed with a high work load operators tend to make more errors in their 
tasks. Attention has to be divided amongst several tasks and several items within a task, 
leaving only a small amount of attention for each task or item. 
Errors may appear with both novice and experienced users [Pavel et al. 2003], since the 
attentional resources of a person will always be limited, despite exhaustive training in the 
task at hand [Wickens 1984, Kahneman 1973]. The consequences of errors are often 
quite severe in warfare. 
This research focuses on the reduction of problems caused by errors in attention 
allocation. Three types of support models are introduced to assist the user in spreading 
his attention over all items which are important for the task execution in an optimal 
fashion.  
In this research the support is focused on a tactical picture compilation task (TPCT) in the 
naval domain. A digital radar is presented on which operators have to assess the threat 
levels of the various contacts (ships) on the screen based on given criteria. The five most 
threatening contacts have to be selected. Since the contacts move over the screen, the 
selection has to be updated regularly to achieve a good performance. 

The proposed support systems could also be applied in various other domains and tasks, 
such as air traffic control or ground warfare. The task at hand should contain a fairly 
large number of objects amongst which the attention of the operator should be divided. 
Well allocated attention is important for a good task performance. In the case of a naval 
ship the task performance might be the decisive factor between life and death. 

1.2. Research goals 
In preceding studies on this subject [Koning et al. 2008, Lucassen 2008] cognitive 
models of attention were developed and validated which are able to: 

1. describe where the focus of attention of the user is (descriptive); 
2. prescribe where the focus of attention of the user should be (prescriptive). 

These models can be used in the development of adaptive support systems. The output of 
these models could directly be presented to the user in some fashion. Other cues from the 
environment and the user might also be incorporated to contribute to the performance of 
the support systems. Examples of these cues are mouse clicks or other actions by the 
user. 
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An adaptation model is designed and implemented to support users in the allocation of 
their attention. Attention levels for the objects in a task are found by determining 
discrepancies between the descriptive (as it is) and prescriptive (as it should be) model of 
attention. The output of the model is a sequence of actions in a test environment that is 
aimed at changing the user's allocation of attention from the current (descriptive) to a 
desired state (prescriptive). This can for instance be done by making the objects which 
require attention visually different. Early studies have not succeeded in doing this. 
An initial adaptive system has already been developed [Koning et al. 2008]. The 
conducted pilot experiments did however not yet show an improvement in task 
performance when the support is used. The developed adaptive support systems in this 
research should yield an increased task performance. 

1.3. Research questions 
The motivation to use adaptivity in the support models is that it is likely that the support 
becomes less interruptive and more pleasant to work with, since it will not disturb the 
operator when it is not necessary. When the system knows that the operator is doing his 
task right, no shifts in attention will be necessary. 
The main comparison made in this study is between the task performance of a user with 
and without adaptive attention allocation support. Two variants of adaptive support are 
introduced: a conservative and a liberal system. The difference between these two 
systems is the influence of the user on the support. The conservative system takes the 
user as much as possible into account, where the liberal system relies more on itself. This 
should result in a system which only gives advice when really needed. For example, if a 
system is only adaptive on the attention allocation of the operator, it might try to divert 
the attention to an object which does not have any attention. We call this liberal adaptive, 
since it is adaptive to attention allocation. However, there might be other evidence that 
this object does not need attention, such as mouse clicks of the operator near or on this 
object. The addition of this extra evidence to the support model is referred to as 
conservative adaptivity. 

In order to assess the influence of adaptivity in the support, a third support type is added 
as a baseline. This is a support system which is not adaptive to the user. The task 
performance of the user with this fixed support should be higher than without any 
support. Otherwise, there would be no motivation to introduce any support. On the other 
hand, problems inflicted by the lack of adaptivity should be made clear. The expected 
problems are inappropriate over and under reliance on the support. 

The research questions can be summarized as follows: 
1. Can attention allocation support help to improve the task performance (both fixed 

and adaptive)? 
2. Which problems are inflicted by fixed support? 

3. How can adaptivity contribute to an increased task performance compared to no 
support and fixed support? 

4. What is the influence of a liberal/conservative setting on the task performance? 
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1.4. Hypotheses 
The conditions are abbreviated for easy reference: 

1. NS – No Support 

2. FS – Fixed, non-adaptive Support 
3. LAS – Liberal Adaptive Support 

4. CAS – Conservative Adaptive Support 
When looking at the LAS and CAS conditions together, it is abbreviated to AS. 

Based on the research questions in Section 1.3, the hypotheses are stated as follows. 

1.4.1. Task performance with fixed support 
The task performance of the user should be better when using fixed support than without 
any support. This is needed to show that the addition of some type of attention support is 
useful to improve task performance. 

Hypothesis 1: The task performance of the user with FS is better than with NS. 

The fixed support condition is needed to show that the influence of adaptive support on 
the task performance is caused by adaptivity instead of the support system as a whole. 

1.4.2. Inappropriate reliance on fixed support 
An expected problem when fixed support is offered is inappropriate reliance. Users may 
rely too much or too little on the available support, possibly resulting in a lower task 
performance than optimal.  
When the accuracy of the support is low, but the user has over-reliance on the support, 
there is a higher probability that the advice is followed, also when it is incorrect. This 
results in a lower task performance. 

When the accuracy of the support is high, but the user has under-reliance on the support, 
advice is likely not to be followed, even when it is correct. This will also result in a lower 
task performance. 
This effect is especially expected when the accuracy of the support varies over time. We 
expect to make two observations: 

1. When the performance of the support decreases from a good performance, the 
task performance will drop below their own task performance when performing 
the task without support. This is caused by over reliance based on experience with 
a well-functioning system. 

2. When the performance of the support increases from a poor performance, the 
expected increase in task performance will delay for some time. The user will 
need a moment to figure out that the performance has increased and will 
inappropriately under rely on the system. 

The variation in levels of accuracy in the support is proposed in Figure 1. 
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Figure 1: Variations in support accuracy 

The red lines show the high and low performance support levels. The blue line shows the 
expected task performance of the user. The green line is the intrinsic task performance 
which a user can achieve without support (NS). 

Hypothesis 2: Fixed support causes inappropriate reliance. 

This can be demonstrated when all of the following hypotheses below are true. These 
three sub hypotheses cover the different signs for inappropriate reliance. 

 Hypothesis 2a: Advice is followed, also when the support accuracy is low. 
This can be observed by measuring the task performance during the various support 
accuracy levels in the fixed support condition. When these task performances 
significantly differ from the task performance without support, the support has an impact 
on the participant. 
 Hypothesis 2b: Users are sensitive for changes in the support accuracy. 

This can be shown by measuring the task performances during various levels of support 
accuracy. When these levels significantly differ, the changes in support accuracy have an 
impact on the participant. 
 Hypothesis 2c: Users adapt their behavior to the changes in the support accuracy. 

A delay in the adaption will occur when the support accuracy changes. This delay is 
caused by memory effects, learning effects and complacency effects. During the delay, 
the reliance on the support is inappropriate. When this delay occurs, inappropriate 
reliance is demonstrated. The delay can be demonstrated by looking at the relative task 
performance during the first and second half of an interval with a certain support 
accuracy, after a change in support accuracy. 
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1.4.3. Reduction of inappropriate reliance by adaptive 
support 

When the hypothesis in section 1.4.2 is true, it acts as a motivation to introduce adaptive 
support. The same analyses can be performed for both adaptive conditions. The negative 
effects of inappropriate reliance on task performance should then be reduced. 

Hypothesis 3: The usage of AS reduces the inappropriate reliance in the case of FS. 
The adaptive support keeps the user more in the loop (kept up-to-date, see section 2.3.3). 
This means that the user relies more on himself and has more situation awareness (being 
aware of what is happening around you). When the support accuracy drops, the user is 
already in the loop and capable of performing the task without proper support. 
Figure 2 shows the expected effect of the NS, FS, and AS conditions on the task 
performance. 

 
Figure 2: Effect of being support types on task performance 

The task performance is in both support conditions partly caused by the performance of 
the human and the performance of the support (the blue and red bar). In the fixed support 
condition, the task performance of the human is hampered by the fact that he is (partly) 
out of the loop by the support. This drop in performance is compromised by the influence 
of the support. In the adaptive support condition, the drop of the human part of the task 
performance should be less. It might be that the influence of the support in the adaptive 
condition is also less than in the fixed conditions, but this is compensated by the 
improved human task performance. 

1.4.4. Task performance for good and poor performers 
For well performing users, the task performance should increase with the use of adaptive 
support, since the user has more influence on the support. For poor performers, the fixed 
support should yield better task performance. 

Hypothesis 4: Users with a high task performance benefit more from the adaptive 
support then users with a low task performance. 
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 Users which are able to perform the task very well without support, due to personal 
talent or affectivity with the task have a high intrinsic task performance. When a user 
has a high intrinsic task performance and he has more influence on the support, it is 
expected that the resulting task performance is higher. 

1.4.5. Conservative and liberal setting 
The conservative setting is more adaptive to the user compared to the liberal setting. This 
results in a system which will only try to divert the attention of the user when strictly 
necessary according to its task model. This keeps the work load demanded by the support 
system as low as possible, expecting to result in a higher task performance. 

Hypothesis 5: The task performance of the user with CAS is better than with LAS. 

1.5. In this document 
A literature study is performed to found the principles of the adaptive system. Hereafter, 
the theory behind the support model and its implementation is described. The method for 
validation is treated, along with the results. At the end of this document conclusions are 
drawn from the obtained results. 
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2. Literature review 
In this chapter, related work to this study is discussed. 

2.1. Human attention allocation 
Several aspects of human attention allocation are important when trying to improve it 
using adaptive support. 

2.1.1. Overt/covert 
An important distinction between types of attention is its status. Attention can be overt or 
covert [Gibson 1974]. Overt attention is the process where the focus of attention is 
directed towards a certain stimulus. When the attention is covert, the person is mentally 
focused on the stimulus, assessing its properties. In the Tactical Picture Compilation Task 
(TPCT), overt attention is needed to allocate attention to the contact. After this, covert 
attention is needed in order to assess the threat level of the contacts.  

The support system is only able to support overt attention, since its goal is to direct the 
focus of attention to the contacts for which attention is required according to the support 
system. 

2.1.2. Bottom-up/top-down 
When attention is drawn to a certain stimulus, this can be caused by bottom-up or top-
down processes [Conner et al. 2004]. A process is bottom-up when the stimulus itself 
stands out in the environment in such a manner that attention is automatically drawn to it. 
An example is a bright red square amongst several dark blue circles. The saliency of the 
stimulus is the decisive factor. The more salient a stimulus is, the bigger is the chance 
that attention is bottom-up drawn to this stimulus. 
Attention can also be directed by top-down processes. In this case, a person voluntarily 
directs his attention to a stimulus. This can for example occur, when a person is 
instructed to search for certain properties of a stimulus, such as a square amongst circles, 
triangles and other shapes. When the other properties of the stimuli (such as size, color, 
and luminance) also vary, the person has to assess all stimuli on the desired property. The 
intended stimulus in the TPCT task does not pop-out visually which means that the 
attention has to be directed top-down. 

2.1.3. Problems in attention allocation 
One of the problems seen in attention allocation is change or inattentional blindness 
[Mack and Rock 1998]. It occurs when a significant change in the current situation 
occurs without being noticed by the attendee.  

In this research the user can for instance be focused on some less important stimuli 
(contacts) while some other contacts become significantly more threatening. The fact that 
such a change is not noticed by the user might have disastrous consequences in the naval 
warfare domain. 

Another problem is the over allocation and under allocation of attention to certain stimuli. 
When all available stimuli need to be monitored, the limited attentional resources need to 
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be divided amongst them. Different stimuli might require a different amount of attention 
due to its properties (e.g. its variability over time). When a stimulus receives more 
attention than it requires due to its properties, the attention is over allocated. When a 
stimulus receives less attention than required the attention is under allocated.  

Over allocation of attention for a certain contact might occur when the user suspects that 
it will become more threatening in the near future. When the user stays focused at this 
contact, but its threat level does not rise, the attention for this contact is over allocated. 
Due to the limited attentional resources, over allocation of attention for one contact 
implies under allocated attention for other contacts. 
In the TPCT task, well allocated attention is very important. A lot of obects need to be 
assessed in order to make the correct selection. It is expected that any loss in performance 
in attention allocation is directly visible in the task performance. 

2.2. Task 
Several tasks have been used as cases to show the effects of adaptive automation. The 
radar task is very similar to the task of an air traffic controller (ATC), but also in the field 
army domain, similar tasks (such as monitoring the environment, based on GPS or other 
information) exist. This does not only increase the amount of research already done on 
this subject, but also increases the value of the results of this research. 

The task that is supported in this research is monitoring a digital radar and assess for each 
of the contacts on the radar whether they are threatening or friendly. It is also known as 
the tactical picture compilation task (TPCT). Another example of a TPCT in the naval 
domain is [Heuvelink 2006], which focuses on reasoning on the acquired data. This task 
remains interesting because it is yet virtually impossible to be executed by computers. 
The operator needs to interpret the actions of possible enemies and predict what they will 
be doing in the future. However, it is possible to assist humans in the execution of this 
task to increase their performance. This is the main focus of this research. 

The tactical picture compilation task shares a lot of characteristics with the multiple 
object tracking task (MOT). It is known that humans can track 4 or 5 individual moving 
objects [Pylyshyn 2001, Pylyshyn and Annan 2006]. This means that in the TPCT task, 
the attention of the user has to shift between objects from time to time. It is in these shifts 
that errors are likely to occur. The user has to make a selection somehow of what area (or 
objects) to focus their attention on at what time. An exhaustive overview of the systems 
of this control of attention is given in [Wickens 2007]. 

2.3. Support systems 

2.3.1. Automation and attention allocation 
Support of attention allocation can be seen as a form of automation. The support system 
does not take over the overall task from the user, but some subtasks are taken over by the 
system. In this research one of the subtasks is the allocation of attention. A proper 
allocation is needed in order to perform the overall task well. 
Four classes of subtasks (or functions) can be distinguished [Wickens and Hollands 2000, 
Inagaki 2003]: 
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1. Information Acquisition 
2. Information Analyses 

3. Decision selection 
4. Action Implementation 

The adaptive support type is automation in the information acquisition class. Some data is 
filtered out and the attention of the user is drawn to contacts which require this. The 
assessment of these contacts is however completely left to the user. 
The fixed support acts as a support during the decision selection. The support given to the 
user equals the task that the user has to perform. This means that the user has the 
opportunity to follow the support in all cases whilst not assessing the objects himself. 
Errors in the support will also be followed. 
 It is because of this inappropriate reliance that unreliability in the support is likely to be 
more costly (in terms of task performance) for the fixed support than for the adaptive 
support [Rovira et al. 2002(I), Rovira et al. 2002(II)]. This difference is however strongly 
task dependent [Galster and Parasuraman 2004]. 

2.3.2. Saliency 
Several modalities are possible as a communication channel of the support to the user. 
The task is strictly visual, but other modalities may be considered to offer support to the 
user. Several studies [Sarter et al. 2000, Sklar and Sarter 1999] have shown the 
advantages of multi-modal interaction. Especially when the usage of visual cues is not 
salient enough, other modalities such as auditory or tactile feedback might be used. 
Auditory cues (e.g. spatial) are effective to decrease search times for visual cues [Bolia et 
al. 1999]. 

The support system itself should however not consume too many resources from the user. 
When the support becomes too salient, it would be hard for the user to focus on the task 
itself and the work load will rise. The user should be able to finish his current assessment 
before attending to the support. Otherwise, the user would be interrupted in his task 
execution, which yields worse performance [Bailey and Konstan 2006]. 
The note that users should be able to “ignore” the support for some period means that the 
shifts made in focus of attention remain voluntary. This means that the user can decide 
for himself whether to follow the advice or not. When the support is too salient, it is very 
hard to ignore which results in involuntary shifts. Given the fact that the performance of 
the support will never be perfect, it might lead to a decrease in task performance, since 
the user cannot ignore incorrect advice. It is suggested that attention capture by visual 
cues is always voluntary [Remington et al. 2001]. This means that the user is always able 
to react to a visual stimulus at the time he wants to. 
Independent of the form the support is given in, it is important that the manipulation of 
the stimuli matches the top-down settings of the user [Theeuwes and Chen 2005].Top-
down settings can be described as the form of manipulation that is expected by the user. 
This can either be achieved by a very logical, salient cue to draw attention to a certain 
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contact or by supplying clear instructions to the user about what he can expect from the 
support. 

2.3.3. Support problems 
One of the issues that can be addressed by attention allocation support is change 
(inattentional) blindness. The support can divert attention to changes in the environment 
which are not noticed by the user. 
The problem of over and under allocation of attention is also an issue which can be taken 
into account in support systems. With knowledge about the current focus of attention of 
the user, the support can detect that attention levels for certain contacts are inappropriate 
and divert attention to other contacts. 
As mentioned earlier, the performance of the attention allocation support will not be 
perfect. This has multiple reasons. 
In a simulated environment, the knowledge of the support about threat levels of contacts 
can be perfect. However, in a realistic scenario, this will not be the case. Some criteria for 
the assessment of threat levels can not directly be measured by a computer. An example 
is the influence of cultural aspects (such as local holidays) or operator experience (such 
as certain movements from hostile ships). How accurate a computer is able to measure 
threat levels is unknown, but we assume that the support performance will be in the same 
range as human performance. On one hand, the computer is able to more accurately 
measure certain criteria (such as speed or distance). On the other hand, some criteria 
might not be incorporated in the prediction of support systems.  

When the support system makes mistakes, this will highly influence the trust and 
acceptance of the user [Parasuraman and Riley 1997, Dzindolet et al. 2003]. The reliance 
of the user on the system will be affected. This reliance is likely to be inappropriate when 
the performance of the system varies over time. Suppose a support system has posed a 
well performance for some time. When suddenly the performance drops, the user is likely 
to over rely on the support. The opposite also applies. When the support performance has 
been poor for some time, the user is likely to under rely on the support when its 
performance rises. 

Another problem that might occur while supporting attention allocation is the difference 
between novice and expert users. Especially novice users will profit from the support, 
since they have not worked out a personal approach for the task execution. Expert users 
may be hampered by the support, since the manner in which the task is approached by the 
support system might differ from their personal approach [Beilock et al. 2002]. 
An issue that needs to be considered is the out of the loop effect of the user. When the 
user has the opportunity to just follow the support system instead of making his own 
decisions on threat levels, the user might get out of the loop. This is not desirable for two 
reasons. First, when the situation occurs that support is no longer given (for example 
caused by technical difficulties), it might take some time before the user is back in the 
loop and able to perform the task accurately by himself. Second, the situation awareness 
is critically hampered when the user is less in the loop [Endsley and Kiris 1995]. 
Situation awareness is very important for a high task performance, especially in the naval 
domain.  
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Adaptive automation is also influential on the situation awareness of the user. When 
decisions are made by the automated system, this might decrease the situation awareness 
[McClernon et al. 2006]. An example of a computational model of situation awareness is 
[McCarley et al. 2002]. Situation awareness is vital in the naval warfare domain. 

Some critics reckon that automation based on the skills of machines and humans 
(MABA-MABA) does not work since the division of work is quantitative and the effects 
are qualitative [Dekker and Woods 2002]. 

2.3.4. Existing support systems 
An example of a support system which takes the attention of the user into account is the 
Saab Driver Attention Warning System [Saab 2002]. Field tests are performed in which 
the support system constantly monitors the driver of a car. The system will alert him 
when any signs of drowsiness of fatigue are detected. The advantage of monitoring the 
driver instead of his actions (e.g. abrupt direction changes) is that the system is able to 
react earlier, preventing accidents. 
The results of studies on the human element in marine accidents [Itoh et al. 2004, 
Psaraftis et al. 1998] serve as a motivation to introduce support systems in this domain. 
Most examples of existing support systems focus on collision and grounding avoidance. 
The situation awareness is being raised by offering more information to the operator, 
such as the location of surrounding ships and GPS information. The consequences on the 
cognitive load of operators are investigated in [Lee and Sanquist 2000]. 
Cognitive models have been used in support systems in domains very similar to the naval 
domain, such as aviation [Taylor 2001, Taylor et al. 2002, Wickens et al. 2001], air 
defense [Santoro and Kieras 2005] and control [Fisher et al. 1999], and ground battlefield 
[Horrey and Wickens 2001]. In [Roda and Thomas 2005] an exhaustive overview of 
attention aware systems is given. 
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3. Support models 
This chapter describes the fixed and adaptive support models which are later 
implemented and tested in an experiment. 
The support models are applied in a task where the user has to make a selection of a 
number of objects in a larger pool of objects, based on their priority. When support is 
given to an object, it means that the support system tries to reallocate the focus of 
attention of the user to this object. 

3.1. Fixed support model 
The design of the fixed support system is quite straight forward. It should yield the best 
task performance of the user without using any information about the user (such as gaze 
using an eye-tracker or other user actions).  
During an earlier experiment one of the questions in the last questionnaire was in which 
way they would want to be supported, given that a support system is available. Most 
participants wanted the support system to do the task for them. The participants could 
check the solution of the system on its correctness. This is an evident solution. 
The fixed support system can make a suggestion which objects have a high priority. The 
user can accept or decline this solution, or alter it. 
Note that when the user only partially follows the advice, he can and has to assess the 
incorrect parts of the solution himself. 

3.2. Adaptive support model 

3.2.1. Input cues from the environment 
The developed cognitive model [Koning et al. 2008] is adaptive to the user in because it 
takes the gaze of the user into account in the decision whether to give support or not. This 
type of adaptivity should contribute to the performance of the support system, since it 
only gives support to the user when certain objects or areas are not attended. One can 
imagine that when a user has already assessed an object in the task, it would be highly 
inconvenient when the support system tries to draw attention to this object again. 

It is possible to directly translate the cognitive model to a certain type of support in the 
test environment, for example by varying the luminance of the objects. Illuminated 
objects draw the attention of the user bottom-up, since they are visually significantly 
different from non-illuminated contacts.  

Other information about the user could also be incorporated into the model for 
improvement. Next to gaze information extracted from an eye-tracker, the actions of the 
user in the test environment are already available without the need for extra sensors. 
Some examples of these actions are mouse movements, clicks, and the current state of 
task execution by the user. The system could also assess the hits, misses, false alarms, 
and correct rejections that a user makes, keeping in mind that the system is not able to 
estimate the correct solution perfectly in a realistic scenario. Another option is to keep 
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track of the mental workload of the user [Harris et al. 1993, Hilburn et al. 1997, Di 
Nocera et al. 2006] and adapting the support to this workload. 

3.2.2. Design of the adaptive support model 
Various cues from the environment can be used to contribute to the performance of the 
attention allocation support system, such as information about mouse movements or other 
user actions. Two options are discussed here: support based on false alarms and misses 
and support based on the solution of the user. 

Option 1: Support based on false alarms and misses 
This option assumes that support is only needed when a user makes a mistake in the task. 
Users can make two types of mistakes: 

1. False alarms (FA) 

2. Misses (MISS) 
The support system will only support the user when a contact has no attention from the 
user and is a false alarm or a miss according to the system. 
Figure 3 shows an example of a user solution at some point (with 2 FA’s and 2 MISS). 
Only those objects which are marked as false alarms or misses are assessed on their 
attention level. When this level is low, the contacts will be offered as support. 

 
Figure 3: Support based on false alarms and misses 

Note that the user has made two mistakes in the top five most threatening contacts. This 
results in two false alarms and two misses. In this example, only one of these four 
contacts has the attention of the user, so support is given to the other three. 
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In order to create a conservative and liberal setting an α-value could be introduced which 
represents the size of the fraction of the objects in the final selection which are actually 
supported. In a liberal setting, α could be 1. In a more conservative setting, α could for 
example be 0.5. In a setting without support, α is 0. The objects in the final selection 
would have to be ranked on their priority to illuminate the most important objects in 
settings where α < 1. 

Option 2: Support based on selection 
An interesting cue to keep into account is the selection each user makes. Objects which 
are part of the current selection require a different attention allocation strategy than 
unselected objects.  

A selected object has to be assessed on the possibility of deselection due to a decreased 
priority. Unselected objects have to be assessed when they have a rising priority. 

This means that attention is required for selected objects with a relatively low priority and 
unselected contacts with a relatively high priority. 

Figure 4 shows an example of the selection of the objects to support.  

 
Figure 4: Support based on selection 

Note that the first two columns are ranked on priority.  

The selection of the user in this case is the same as in Figure 3. The number of selected 
and unselected objects that are picked from the second column are dependent on α1 and 
α2. These values can be determined using the task performance data of the first 
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experiment. From this data, we can derive the average number of correctly selected (and 
unselected) objects, along with the standard deviation. 

The liberal setting is implemented by using only the first two columns of Figure 4. This 
means that all objects in α1 and α2 are supported. The conservative setting only supports 
the objects which do not have attention according to the cognitive model. 
Discussion 
Both options are adaptive to the users’ actions. The main (and essentially only) action a 
user has to perform in this task is to select and deselect objects. Both systems are 
adaptive to this selection. Option 2 uses information about the selection directly. Option 1 
uses information about false alarms and misses, which are a direct result of the selection. 

The system in option 1 is essentially the same as in option 2, but now with a variable α, 
adaptive to the number of false alarms and misses. This means that option 1 will only 
help when a mistake in the task has already been made (a false alarm or a miss). Option 2 
will help to stay focused on those objects which have to be attended by the user since 
they are nominated for (de)selection. Unselected contacts which have a very low priority 
will never be supported. Neither will selected objects with the highest priority. 

The second option is preferred. Option 1 only supports the user when an error has already 
been made. Option 2 helps the user to allocate his attention to the objects which require 
this to prevent errors. 
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4. Implementation 
In this section the implementation of the support models, along with the necessary 
manipulation are described. Appendix A contains the full source code for the most 
important part of the adaptive support. 

4.1. Task  

4.1.1. Description 
The task that participants of the experiment have to perform can be described as a tactical 
picture compilation task (TPCT). A simulated digital radar screen has to be monitored. 
The “own ship” is located around the center of the screen. It does not move during the 
task. It is represented by a blue circle. The area between the green lines is marked as “sea 
lane”. The light gray areas are land. Figure 5 shows a screenshot of the task environment. 

 
Figure 5: Screenshot of the task environment 

There are 24 other ships (contacts) present on the digital radar screen. These are initially 
represented by white squares with a number between 1 and 24. The bold orange line in 
front of each contact corresponds with its heading. The thin yellow line behind each 
contact shows the history of the contact. The length of this line represents the speed at 
which the contact travels; a short line indicates a low speed and a long line indicates a 
high speed. 

The task is to constantly have the five most threatening contacts selected. The threat 
levels of the contacts are based on four criteria: 

- Speed (higher is more threatening) 
- Distance to own ship (closer is more threatening) 

- Heading (towards own ship is more threatening) 
- In/out of the sea lane (out of the sea lane is more threatening) 
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All criteria are equally important. The number of criteria on which a contact is 
threatening determines the threat level. When comparing two contacts with an equal 
threat level, the contact which poses its criteria more clearly is most threatening. For 
example: one contact is only threatening on speed and another on distance. When the 
difference in speed between these two contacts is greater than the difference in distance, 
speed is dominant and thus the first contact is most threatening. 

Contacts can be selected by clicking on them. The white square then changes to a red 
diamond. When the same contact is clicked again, it changes back to a white square.  

Because of the movements of the contacts, their threat levels change over time. This 
means that the selection of five most threatening contacts has to be updated. During an 
update, the user can either first select an additional contact and then deselect an already 
selected contact or first deselect a selected contact and then add another contact to the 
selection. Either way, the user will have to make one mistake because for a short period 
of time, four or six contacts are selected instead of the required five. The user is 
instructed that he is free to choose from both options, but recommended to keep the 
period in which too much or too little contacts are selected minimal. 

4.1.2. Implementation 
The test environment was implemented using the game development tool Game Maker. 
The ship seem to move over the screen in a random fashion, but they actually follow a 
pre-defined path.  
All contacts can be in two modes: on a turn or not on a turn. Contacts which are not on a 
turn follow a relatively unthreatening path, which might seem as random to the 
participants. When a contact is on a turn, it will take on a more threatening path, as if it 
were to attack the “own ship” in the center, or pose some other threat, such as leaving a 
sea lane. One to five contacts can be on a turn, which lasts one to three minutes. 

A turn is also called a scenario section. Two different scenarios were developed in 
[Lucassen 2008], a simple and a complex one. The actual perceived difference in 
difficulty turned out to be minimal. Both scenarios consist of ten scenario sections, but 
scenario sections can be removed to shorten the experiment. 

The scenarios were developed by manipulating the ambiguity and the dynamics of the 
scenario of the tactical picture compilation task. Concerning ambiguity, small differences 
in the threat level of contacts were made so that it is more difficult to identify the five 
most threatening contacts. Dynamics was manipulated by varying the number of threat 
level changes of contacts over time. Changes in the threat level were such that the 
number of times that the contacts need to be re-evaluated was relatively high in the 
complex scenario. 
For more details on the implementation of the test environment and particularly the 
scenarios, see [Lucassen 2008]. 
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4.2. Visualization 
Several methods can be adapted to visualize the output of the various support models to 
the user. It is important that all support types use the same type of visualization, so only 
the support models are compared and not the visualization type. 
The most obvious modality to represent the support is the usage of visual cues. Other 
modalities could also be used, such as audio or tactile feedback. An important factor in 
the decision on the implementation is the desired dominance of the support. The support 
should be salient enough to draw bottom-up attention. When the support is too dominant, 
it might cost too much work load of the user. If the user is constantly interrupted without 
being able to at least partially ignore it, the task performance might decrease drastically. 
The risk of the support being too dominant is significant multi-modal feedback. The 
usage of other modalities than visual might not be desirable for the same reason. 
Within the visual domain, several options are available. Some examples are: 

1. Varying colors 
2. Varying shapes 

3. Varying luminance 
4. Blinking/not blinking 

Varying colors and/or shapes might result in a very confusing interface, where a lot of 
instructions are needed to let the user appropriately do his job. Even with well 
instructions, the interface might cost too much work load for optimal task performance. 
The same goes for making contacts blink; this might be too salient and too interruptive, 
since blinking is a form of abrupt onset [Jonides and Yantis 1988]. The user should be 
able to complete his current assessment before diverting his attention to the next for 
optimal performance. 

Regarding the preceding conclusions, the luminance change is an appropriate way to 
divert attention. Illuminated contacts draw the attention, were other contacts are faded to 
a lighter tint. An early pilot has shown that the visualization should be discrete instead of 
continue. When all contacts are assigned some continue value for the visualization, the 
differences between them are in some cases not enough. This might result in a task shift: 
instead of assessing threat levels, users now have to distinguish the various support 
levels. This task might be just as hard as the original task. This observation leads to the 
decision that the support should be discrete: a contact is either supported or not. 

    

  

a. b. c. d.   
Figure 6: Unselected and selected contacts 

Figure 6 shows an unselected non-illuminated contact (a.) and an unselected illuminated 
contact (b.). On the right are a selected non-illuminated (c.) and a selected illuminated 
contact (d.). 
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4.3. Fixed Support 
With the task described in section 4.1 and the visualization in section 4.2, the 
implementation of the fixed support is the illumination of the five most threatening 
contacts, leaving the rest to be more transparent.  
The algorithm to select the contacts to illuminate is given in Figure 7. It is performed at 
each timestamp, constantly re-assessing the illuminated contacts. 

 
 

This implementation implies that if the advice is entirely followed, the digital radar 
screen shows five illuminated red diamonds and 19 non-illuminated grey squares. This is 
shown in Figure 8. 

 
Figure 8: Screenshot of the task environment with fixed support 

The main problem with this type of support is that the system has incomplete knowledge 
about the threat levels of the contacts (see Section 4.6). This means that the system is not 
entirely sure that the five suggested contacts are in fact the five most threatening ones. 
Some errors will be made by the system in the suggestions. 

4.4. Adaptive support 

4.4.1. Liberal adaptive support 
The liberal adaptive support described in section 3.2 is implemented by illuminated the 
two least threatening selected contacts (since they are eligible for deselection) and the 
three most threatening unselected contacts (since they are eligible for selection). The 
algorithm in Figure 9 is used to select the contacts to be illuminated. 

foreach Contact c 
if c.isInTop5MostThreateningContacts 

c.illuminate; 
end 

end 

Figure 7: Fixed support algorithm 
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Note that the contacts which are selected to be illuminated are removed from the contact 
lists after illumination. This is done to select the contact with the second highest or lowest 
threat level. 
The numbers of illuminated selected and unselected contacts are chosen such that the 
total number of illuminated contacts is equal to the fixed support condition. Since there 
will be 19 unselected contacts and 5 selected contacts, the number of illuminated selected 
contacts is lower than illuminated unselected contacts. 

4.4.2. Conservative adaptive support 
In the conservative adaptive support, the contacts selected by the algorithm in Figure 9 
are only illuminated when they have no attention of the user according to the cognitive 
model of attention. This results in the algorithm shown in Figure 10. 

 
 

illuminatedSelectedContacts = 2; 
illuminatedUnselectedContacts = 3; 
 
foreach Contact c 
 if c.isSelected 
  if (c == min(selectedContacts)  && illuminatedSelectedContacts > 0) 
   c.illuminate; 
   selectedContacts.remove(c); 
   illuminatedSelectedContacts--; 
  end 
 else // c is not selected 
  if (c == max(unselectedContacts) && illuminatedUnselectedContacts > 0) 
   c.illuminate; 
   unselectedContacts.remove(c); 
   illuminatedUnselectedContacts--; 
  end 
 end 
end 

maxIlluminatedSelectedContacts = 2; 
maxIlluminatedUnselectedContacts = 3; 
 
foreach Contact c 
 if c.isSelected 
  if (c == min(selectedContacts)   

    && maxIlluminatedSelectedContacts > 0) 
   if !c.hasAttention 
    c.illuminate; 
   end 
   selectedContacts.remove(c); 
   maxIlluminatedSelectedContacts--; 
  end 
 else 
  if (c == max(unselectedContacts)  

    && maxIlluminatedUnselectedContacts > 0) 
   if !c.hasAttention 
    c.illuminate; 
   end 
   unselectedContacts.remove(c); 
   maxIlluminatedUnselectedContacts--; 
 end 
end 

Figure 9: Liberal adaptive support algorithm 

Figure 10: Conservative adaptive support algorithm 
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Note the difference in the required interpretation of an illuminated contact: when a 
contact is illuminated in the fixed support condition, it means that the system “thinks” 
that it should be selected, regardless of the current selection of the user. In the adaptive 
support condition, the system only shows the contacts it “thinks” the user should have 
attention for. It is dependent on whether a contact is selected or not whether the attention 
is required for possible selection or deselection. 

4.5. Software architecture 
The test environment in which the participants perform the task is developed in Game 
Maker. The basis for this environment is the implementation used earlier in a preceding 
experiment within this study. This version is updated to suit the needs of this experiment 
by removing unnecessary elements and adding the required functionality. 

The cognitive model is developed in C#, using the development environment of 
Microsoft Visual Studio 2005. The communication with the test environment is realized 
through a TCP/IP connection with a specifically designed protocol. 
A Tobii X50 eye-tracker [Tobii Technology 2003] is used to track the gaze of the 
participants. The cognitive model software can connect to the bundled Tobii Eye Tracker 
Server to get the gaze data. This connection also uses TCP/IP. 
Figure 11 shows the interconnection between all components. 

 
Figure 11: System Structure 

The above description shows that the various parts of the system all communicate with 
each other using a TCP/IP network connection. This enables the option to run the model 
on a different machine than the one where the task is being executed on. Testing has 
however showed that the available Windows XP workstations are capable to run the test 
environment, eye-tracker server and cognitive model software on the same machine. 

4.6. Noise / errors 
A very important aspect in the real-life version of the task at hand (TPCT) is the fact that 
a computer is not able to perform it autonomously perfectly. Several decisive factors in 
the assessment of the threat level of a contact cannot easily be measured using some type 
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of sensor. Examples of these factors are cultural or environmental aspects, such as local 
holidays or weather types which may influence the behavior of contacts. 

To replicate this aspect in the experimental setup, some error (noise) has to be added to 
the determination of the threat levels of the contacts. The system can give an indication of 
the actual threat level. This indication is however not completely accurate. 

4.6.1. Requirements 
The addition of noise to the threat levels is bounded by some requirements: 

1. The noise level should be comparable to the real-life situation. 
2. The user task performance in the fixed support condition should increase 

compared to the no support condition, despite the addition of noise. Otherwise, 
the addition of support would be useless. 

3. The performance of the system should vary between the contacts to avoid 
predictability. 

4. The performance of the system should vary over time to avoid predictability. 
5. The performance of the system should increase and decrease gradually to 

maintain credible to the user. 
6. The amount of noise should be comparable for high and low threat levels, since 

one support system only affects high threat levels, where another system also uses 
low threat levels. The model performance should not be influenced by a variation 
of noise between high and low threat levels. 

7. The deviation of the noise should be higher than the deviation of the threat values 
between the contacts. When this deviation would be lower, less rearrangement in 
the order of contacts when ranked on threat level would occur. 

8. Every participant should perform the task with an equal noise level. When using 
randomization, this would ideally be the same for every run (pre-randomized). 

9. The implementation should be as clear as possible. When the design and 
implementation become more complex, the analysis becomes harder.  

All these requirements should be met in the design of the noise addition. 

4.6.2. Implementation 1: Adding noise  
In order to keep the support system credible to the user, the posed mistakes in the support 
should be reasonable. For instance, when a contact is incorrectly illuminated (wrongly 
draws the attention), it is better understood and accepted by the user when this is a slight 
mistake than when the contact is obviously not important in any way. Mistakes can thus 
not only be expressed by the ratio of correct/incorrect supported contacts, but also by the 
severity of the error. It is desirable this severity can be controlled directly. 

The algorithm in Figure 12 shows a proposed method to add noise to the threat levels of 
all contacts. 
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Figure 12: Algorithm to add noise 

Threat values are manipulated as followed. Threat values always vary between 0 
(minimal threat) and 1 (maximal threat). For each of the 25 contacts, a random value 
between –α1 and + α1 is added to the original value, where x has to be decided through 
pilot experiments to assure requirement 1, 2, and 7. For now, assume α1 to be 0.1. The 
order of the contacts, ranked on the manipulated threat level, may now be different from 
the original order. 
Requirement 3 implies that the noise for a contact should change over time to avoid 
predictability. This can be realized by adding a random value between α2 and -α2 to the 
original manipulated threat value. Again, these values have to be determined in pilot 
experiments, but assume α2 to be 0.01 for now. Note that α2 is only added when the sum 
remains between α1 and - α1. 

The last thing to be decided through pilot experiments is the duration of the period 
between two updates with α2 on the threat values. This time t is set on 2000 ms for now. 

The above implementation implies that after having added a maximum of +/- α1 at the 
start, every 2000 ms the threat value for each contact is updated with a maximum of +/- 
α2. 
In order to meet requirement 8, the noise values are only randomized once. After this, α1, 
manipulated with α2 every 2000 ms are read from a text-file, resulting in the same noise 
for every run. 

4.6.3. Implementation 2: Adding false alarms and misses 
The implementation described above implies one drawback. During the development of 
the experiment it became clear that the error rate of the system should be manipulated 
over time. The above implementation takes care of variation in noise over time, which 
indirectly affects the number of generated errors. If the average error level of a given 
period of time is desired to be for example 80%, the α-values can be manipulated such, 
that this average is reached.  

However, the severity of the errors can not be manipulated. The noise implementation 
implies that the severity of the errors increases, when the error level increases. Severity is 
an important factor in the addition of errors, since users may react very different to severe 
errors than to slight errors. 

The severity of errors should be constant when the error level changes. In the first 
implementation, the average severity of the errors rises when the error level is increased. 
Since the noise is higher, contacts may take bigger jumps in the ranking, creating more 

maxNoise = 0.1; // maximum deviation from original noise level 
maxVariationNoise = 0.01; // maximum deviation per timestamp 
 
foreach Contact c 
 if (abs(c.manipulatedThreatLevel - c.threatLevel) < maxNoise) 
  c.manipulatedThreatlevel += +/- maxVariationNoise; 
 end 
end 
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severe errors. To overcome this problem, a second implementation to realize errors is 
proposed. 

Errors in the support can directly be expressed as false alarms and misses. These can also 
be directly generated. This method is proposed in the algorithm in Figure 13. 

 
Figure 13: Algorithm to add false alarms and misses 

A number of contacts (from zero to five) on places in the top five are swapped with 
places not in the top five. This creates one false alarm and one miss per swap. In order to 
prevent the errors from being too obvious, the places not in the top five are always in the 
top ten (thus places five to ten). The accuracy level of the support can now be 
manipulated from 0-100% in steps of 20%. When a more precise accuracy is required 
(such as 50%) this can be done by alternating 40% and 60%. 

The swaps are pre generated in a random fashion. They are saved into text files to ensure 
that every run contains the errors on the same moments (between runs and participants). 
The duration of a swap is ten seconds to prevent a very restless screen.  
 

for i = 1:numberofSwappedContacts 
 swap(contacts(random*5), contacts(random*5+5)); 
end 
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5. Experimental validation 
In order to test the hypotheses an experiment was conducted in order to compare the three 
support conditions with each other and with a no support condition. Before a solid 
experiment could be designed, pilot experiments were carried out to optimize the setup. 

5.1. Pilots 
In order to develop a solid, rigorous experiment multiple pilot experiments were 
performed. This section outlines the motivations for these pilots and the most important 
observations. 

5.1.1. Technical issues 
The experiment that is needed to test the stated hypotheses is relatively complex. Besides 
the software that is needed to implement the various types of support models, software is 
needed in order to log all necessary data and calculate the task performance of each 
participant on each moment. This software and the software needed to analyze the 
acquired data afterwards were tested during all the pilots. 

Other aspects that were tested during several pilots were the instructions and 
questionnaires on paper. The participants were always instructed about the fact that the 
experiment was in a pilot status. Feedback on the understandability and completeness of 
the paperwork was always asked. One particular pilot was exclusively focused on the 
questionnaires, without performing the actual task at hand. The participant had performed 
the task earlier and was asked whether the questions were clear and if they covered all 
relevant aspects. 

5.1.2. Learning effect 
One of the most important results of the pilot studies was the very strong learning effect. 
When only one participant performs the task in multiple conditions, the task performance 
of the second run will always be better than the task performance of the first run, 
regardless of the given support types. The same applies to the third and second run and so 
on. An exception is the task performance during the last two runs. A fatigue effect was 
found here since participants had already performing during four or five conditions of ten 
minutes each. 

The effects of run order on task performance are shown in Figure 14. 
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Figure 14: Task performance during two pilots 

The left blue bars show the runs of one participant, the red right bars show the 
performance of another. From left to right the order in which the runs were done is 
presented. We see that despite the fact that the conditions were different for both 
participants, the task performance increases over time. 

The learning effect could be reduced by an increased practice period on beforehand. This 
practice session is already present, but it is only about three minutes long. The reason to 
keep the practice session at the same length is the fatigue effect. When the practice 
session becomes longer, the fatigue effect during the final runs will become stronger. 

The conclusion is that it is very hard to predict task performance results during the 
various support conditions using pilot experiment. The reasons for this are learning 
effect, fatigue effect and personal differences, such as support preferences and intrinsic 
task performance. 

An attempt to overcome the learning effect during pilot experiments was to make the 
participant perform in each condition twice, alternating between conditions. For example, 
when the fixed support condition (FS) was compared to the no support condition (NS), 
the order in which the conditions are present can be NS-FS-NS-FS. The average of both 
NS and FS runs can now be compared to each other. The disadvantage of this method is 
that only two conditions can be compared with one participant, needing a lot more pilot 
experiments to test multiple conditions. When trying to compare more than two 
conditions, the pilot experiment would become too long. 

In the actual experiment, the order of the conditions can be varied between subjects to 
balance out the effects of the order. 
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5.1.3. Demonstration of problems with fixed support 
In order to demonstrate the advantage of adaptive support over fixed support the 
problems imposed by the usage of fixed support need to be demonstrated. The anticipated 
problem is inappropriate reliance. Sections 1.4.2 and 3.1 describe this problem in more 
detail. 

The investigation of the reliance effects was done by varying the support accuracy over 
time. The task performance of the participant over time should then be reduced during 
some intervals in the run. A delay in the reaction to for example a dropping support 
accuracy is expected. The runs in Figure 15 used the task accuracy order 50%-80%-20%-
80%-50% for all conditions. 

 
Figure 15: Task performance within runs 

We see that no particular part of the runs shows a significant lower task performance than 
the rest. There is also no significant difference between the first and second half of the 
interval with the lowest support accuracy (20%). 

This method does not work when only using one participant with two runs. Other aspects, 
such as scenario effects (differences in task performance due to complex/simple parts of 
the scenario) and personal differences (subtasks of the overall task that particular this 
participant found hard to do) have caused that the reliance effects could not be shown 
using pilot experiments. Multiple participants during various sections of the scenario are 
needed to show the effects. 

The pilot experiment did show that the task performance measures that were used up until 
then were not sensitive enough to give an accurate image of the task performance of the 
participants. The severity of the made errors and the difficulty of the scenario at a certain 
moment were not incorporated in the used measures. These measures were the d’ score 
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and the HIT-rate. In the d’ score, the hits and false alarms are normalized and then 
subtracted from each other.  

This has lead to a new, more sensitive task performance measure described in section 
5.2.5. 

5.2. Method 

5.2.1. Participants 
A total of 40 college students (17 male, 23 female) with an average age of 23 years (SD 
2.6) participated in the experiment as paid volunteers. 

5.2.2. Task 
The task is described in section 4.1. The complex scenario was used, with a duration 
shortened to ten minutes. 

5.2.3. Design 
A 4 (support type) × 2 (task performance level) design was used. Support type is a 

within-subjects factor and the order was balanced between the participants. Task 
performance level was a quasi independent variable we used to categorize participants. 

5.2.4. Independent variables 
The following independent variables are distinguished: 
Support type 
The four conditions are: 

1. No Support (NS) 

2. Fixed Support (FS) 
3. Liberal Adaptive Support (LAS) 

4. Conservative Adaptive Support (CAS) 
Task performance level 
After the experiment, a median split was performed to separate good and poor performers 
in the no support condition. By only looking at this condition (NS) the ability to cope 
with this particular support type is ruled out. It is expected that poor performers rely more 
on decision support than good performers. Note that this is a semi-independent variable. 

5.2.5. Dependent variables 
For the scope of this thesis, the only relevant dependent variable is the task performance. 
Other measures were also taken, such as trust and understandability measures. These are 
not included in this thesis. 

The performance on the tactical picture compilation task was determined by the accuracy 
of the identification of the five most threatening contacts during the task. The task 
performance was measured using the following method. 
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In [Koning et al. 2008], the task performance of the user was measured by looking at the 
number of hits, misses, correct rejections, and false alarms. The task performance was 
calculated by subtracting the z-score of the hits from the z-score of the false alarms. The 
result is the d’ value. For a detailed explanation see [Lucassen 2008]. 

The drawback of this method is that only the number of errors is incorporated in the task 
performance measure. The severity of the errors is however also an important factor. Two 
methods to include the severity of errors in the task performance measure are proposed 
Method 1: Ranking the contacts on threat level 
In this method the position in an ordered list (on threat level) of contacts is used as a 
measure for severity. When for example the participant would not select the 5th most 
threatening contact but instead of this the 6th most threatening contact, this would not be a 
severe error. In fact, this is the least significant error which could be made (assuming that 
there are always 5 selected contacts). However, when the participant does not select the 
most threatening contact but instead of this selects the least threatening contact, this is a 
very severe error.  
The severity of errors in all contacts based on their relative threat level is shown in Figure 
16. 
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Figure 16: Severity of errors 

Method 2: Including deviations in threat levels 
A more accurate method to look at the severity of errors is the threat level of an 
incorrectly selected contact. For a selected contact which does not belong in the top five, 
the error is more severe when the difference in threat level between the contact and a 
contact in the top five is larger. For an unselected contact which does belong in the top 
five, the error is more severe when the difference in threat level between this contact and 
a contact not in the top five is larger. The two decisive contacts whether a contact should 
be selected or not are the number five and six. 
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The task performance measure is based on penalties for each incorrectly assessed contact. 
For contacts which should be in the top five (and thus the selection), the penalty is 
calculated as shown in Figure 17. 

 
Figure 17: Task performance algorithm 

The factor variable denotes the difference between an incorrectly selected contact (thus 
not in the top five) and an incorrectly unselected contact (thus in the top five). This is the 
total number of contacts divided by the number of (un)selected contacts. 

The penalties are normalized afterwards in order to be able subtract them from the perfect 
score of 100. 

Learning effect 
The most direct way to compare task performance in these conditions is to make every 
participant perform the task in these conditions and then look at the task performance 
scores within subject. However, several pilot studies have shown a very strong learning 
effect. This results in an increasing task performance over time, no matter what condition 
is given at that particular time. The influence of the learning effect could be reduced by 
an extended practice period at the beginning. Unfortunately, the duration of the entire 
experiment would also increase, which inflicts fatigue effects at the end. These effects 
result in a lower score for the last sessions. 
The effects described above imply that is hard to compare task performance within 
subjects. This means that it is better to look at task performance between subjects. The 
learning effect is still present, so we use a Latin square to distribute the order of the 
conditions.  

 
Figure 18: Latin square with all four conditions 

median = tl[5]+tl[6]/2; 
 
for (i = 1; i < 25; i++) 
 if i < 6 
  factor = 24/5; 
 else 
  factor = 24/19; 
 end 
 pentalty[i] = factor * abs(tl[i]-median); 
end 
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Figure 18 shows the used Latin square with all conditions. Eight different orders come 
from this implementation. Appendix B shows the order of conditions for all 40 
participants. 

5.2.6. Procedure 
Each experiment has a duration of two hours. The schedule of the experiment is shown in 
Table 1. 

Activity Time (minutes) 
First instructions 10 
Test 20 

Second instructions 10 
Calibration eye-tracker 5 

Practice period 5 
Condition 1 10 

Break 5 
Condition 2 10 

Break 5 
Condition 3 10 

Break 5 
Condition 4 10 

Questionnaires/interview 15 

Total 120 
Table 1: All activities during the experiment 

During the first instructions, the participant signs the participant contract (see Appendix 
C) and compensation form. The instructions in Appendix D cover the threat assessment 
of the contacts. The criteria that are decisive for the assessment are introduced, along 
with an example. 

After this, the participant does a test to check whether the knowledge about the threat 
assessment is sufficient and to practice with it a little more. The test is completely 
reviewed together with the participant. 
The second set of instructions (see Appendix E) covers the task environment that is used 
for the experiment. After calibrating the eye-tracker, the participant is given some time to 
practice with the actual task environment, without any of the support system active (NS). 
The practice period is under direct supervision of the experimental leader, so the 
participant can ask questions and the experimental leader can make suggestions for 
improvement. 
Before each condition, the participant is fully instructed about the support (or no support) 
that is given during the condition. These instructions (see Appendix F) are given as close 
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to the start of the condition as possible, to make sure that the participant is completely 
aware of the support functioning. 

Between the conditions there is time available for a short break. The participant has to 
decide for himself whether he is ready for the next condition. After having completed all 
four conditions the experiment is ended with a questionnaire and a debriefing. 
In [Lucassen 2008], the duration of each condition (hard/easy scenario) was about 25 
minutes. This quite long duration was necessary to gain enough data on the human 
attention allocation. This data was only obtained during freezes in the task, where 
participants selected which contacts they were attending. In this experiment, freezes are 
no longer present. The only thing that needs to be measured during the conditions is the 
user task performance. This is a constant measure, which can be calculated for every time 
span. Keeping the time that a participant needs to get acquainted with the task for each 
condition in mind, we set the duration of each condition to ten minutes. 
During each condition, the performance of the threat assessment of the support is being 
varied in order to demonstrate the inappropriate reliance. The performance of the support 
will be varied between 20%, 50%, and 80% accuracy. Three orders are used to rule out 
the influence of the scenario. Each run is divided into 2-minute blocks with the following 
accuracies: 

1. 50%-80%-20%-80%-50% 
2. 80%-20%-80%-50%-50% 
3. 50%-50%-80%-20%-80% 

The given numbers are the percentages of contacts which are correctly suggested as 
threatening. In the fixed support condition, these are directly suggested to the user. The 
adaptive support uses the same threat assessment performance, but with a more advanced 
algorithm to offer support to the user. Appendix B shows which orders of errors are used 
in which runs. 

The percentages were chosen such that: 
1. There is a sufficient gap between the various conditions 

2. Some of the support accuracies will be higher than the human task performance 
and some will be lower. This is tested in section 5.3.6. 
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5.3. Results 
This section contains the results of the experiment described in section 5.1 in the light of 
the original hypotheses from section 1.4. 

5.3.1. Task performance with fixed support 
The first original hypothesis states that the task performance of the participants during the 
fixed support condition is higher than the task performance without any support. 
Figure 19 shows the average task performance for all participants in all conditions. 
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Figure 19: Average task performance in all conditions 

Condition Mean SD 

NS 87.5 3.3 

FS 89.3 2.2 

LAS 87.1 2.4 

CAS 87.3 1.9 

Table 2: Task performance for all conditions 

Table 2 shows the results for all conditions. The task performance with FS is significantly 
better than all other conditions (NS: t=2.8, p<0.01, LAS: t=4.2, p<0.01, CAS: t=4.3, 
p<0.01). There is no significant difference between NS, LAS, and CAS. 

The first hypothesis can hereby be accepted, since the task performance in the FS 
condition is significantly higher than in the NS condition. Attention allocation support is 
useful to improve task performance. 
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5.3.2. Inappropriate reliance on fixed support 
To demonstrate the hypothesis that fixed support causes inappropriate reliance, three sub-
hypotheses need to be accepted (also see section 1.4.2): 

 a. Advice is followed, also when the support accuracy is low. 
 b. Users are sensitive for changes in the support accuracy. 

 c. Users adapt their behavior to the changes in the support accuracy. 
In Figure 19 the task performance of the FS condition is significantly different from the 
NS condition. Since the only manipulation is the addition of fixed support, the difference 
in performance implies that the advice is followed and so sub-hypothesis a is accepted. 

Figure 20 shows the task performance with the FS, LAS, and CAS support conditions 
during the intervals with 20%, 50%, and 80% accuracy of the support. 
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Figure 20: Task performance during support accuracies 

The task performance in the FS condition increases when the support accuracy rises. This 
effect is however not significant. For the LAS condition, the differences in task 
performance are also not significant. For the CAS condition, the increase in task 
performance is significant for the 20% to 50% condition (t=2.2, p<0.05) and for the 20% 
to 80% condition (t=1.9,p<0.05), but not for the 50% to 80% condition. 
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Table 3 shows the results during the various support accuracy intervals. 
Condition 20% accuracy 50% accuracy 80% accuracy 

 Mean SD Mean SD Mean SD 

FS 88.5 3.0 89.4 2.6 89.5 2.8 

LAS 87.5 2.9 86.8 2.5 87.7 2.7 

CAS 86.3 2.4 87.5 2.4 87.4 2.9 

Table 3: Task performance during 20%, 50%, and 80% support accuracy intervals 

We can see that the influence of the support accuracy is the largest for the FS condition. 
The difference between performance during the 20%, 50%, and 80% intervals shows that 
the participants are sensitive to changes in the support accuracy, but the effect is not 
significant. This means that sub-hypothesis b cannot be accepted. 
The difference in task performance during the first and second half of the 20% and 80% 
support accuracy interval is leading when showing the adaption of the participants on the 
support. The task performance during NS is subtracted from the task performance during 
FS to show the effect in Table 4. 

 

Table 4: Task performance with FS-NS during the 20% accuracy intervals 

The second half of the 20% support accuracy interval has a significantly higher task 
performance (t=-3.46, p<0.01). This shows that the participants needed some time to 
adapt their behavior to the altered support accuracy, accepting sub-hypothesis c. 

By accepting all three sub-hypotheses, the hypothesis that fixed support causes 
inappropriate reliance can be accepted. Sub-hypothesis b is however not accepted 
because the effect is not significant. This means that only a strong suspicion exists that 
fixed support causes inappropriate reliance. 

5.3.3. Reduction of inappropriate reliance by adaptive 
support 

Hypothesis 3 states that the usage of adaptive support reduces the inappropriate reliance 
seen in the fixed support. This can be shown by looking at the same results as in section 
5.3.2, but now for both adaptive support conditions. 
The first sub-hypothesis states that the advice is followed, also when the support accuracy 
is low. When looking at Figure 19, we see that both adaptive conditions do not differ 
significantly from the NS condition. This means that sub-hypothesis a has to be declined. 

When looking at the differences in task performance between the various support 
accuracy levels for the adaptive support conditions, we see that this is not significant for 

FS LAS CAS  

Mean SD Mean SD Mean SD 

1st half 1.4 1.7 0.8 1.7 -0.7 2.0 

2nd half 1.8 1.3 -0.7 2.0 -1.9 1.9 

Ratio: 1.3 -0.9 1.9 
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the LAS condition and only partly significant for the CAS condition (between 20% and 
50% support accuracy). On this basis, sub-hypothesis b can also not be accepted. 

In both the LAS and CAS condition, the second half of the 20% support accuracy 
intervals was significantly worse than the first half. This means that the adaption effect is 
certainly not present, accepting sub-hypothesis c. 
Since only sub-hypothesis c is accepted, the hypothesis that adaptive support reduces the 
inappropriate reliance of the fixed support has to be declined. 

5.3.4. Task performance for good and poor performers 
Hypotheses 4 states that effect of the adaptive support will be bigger for good performers 
than for poor performers. 
Figure 21 shows the average task performance for good and poor performers in all 
conditions. The distinction between good and poor performers was made by calculating 
the average task performance in all four runs for each participant. Participants in the top 
20 are identified as good performers. The bottom 20 is identified as poor performers. 
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Figure 21: Task performance for good/poor performers in all conditions 

Table 5 shows the results for good and poor performers in all conditions. In all 
conditions, the good performers were significantly better than the poor performers (NS: 
t=6.1, p<0.01, FS: t=5.1, p<0.01, LAS: t=3.8, p<0.01, CAS: t=2.8, p<0.01). 
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Good performers Poor performers Condition 

Mean SD Mean SD 

NS 89.8 2.0 85.2 2.7 

FS 90.6 1.1 87.9 2.1 

LAS 88.3 1.2 85.8 2.7 

CAS 88.1 1.4 86.5 2.1 

Table 5: Task performance for good/poor performers 

For both good and poor performers, the adaptive support condition did not contribute to 
the task performance. This declines hypothesis 4. 

5.3.5. Conservative and liberal setting 
Hypothesis 5 states that the task performance during the CAS condition is higher than 
during the LAS condition. Figure 19 shows that the task performance during the two 
adaptive support conditions does not significantly differ, which declines this hypothesis. 

5.3.6. Task performance of the support 
This analysis was done to compare the settings of the support accuracy to the human task 
performance. Note that these last two result sections are not included in the hypotheses. 
In order to compare the “task performance” of the support to the task performance of the 
user, the task performance measure is applied to the manipulation of the support. 
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Figure 22: Task performance of the support with various accuracies 
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To compare the support accuracy with human task performance, the bars on the right in 
Figure 22 illustrate the task performance of the participants without support during the 
same intervals as this support type was offered. 
The task performance of participants without support is between the 50% and 80% 
support accuracy conditions. This means that during the runs, the support accuracy will 
vary between a higher and lower performance than the participant. 

 

5.3.7. Task performance in runs 
A strong learning effect was seen during the pilot studies. As an extra finding, the effects 
of the order of the runs was also investigated for the final experiment. Note that these last 
two result sections are not included in the hypotheses. 

Figure 23 shows the task performance for all conditions in all runs. All support 
conditions have occurred on all possible runs. Runs are the first, second, third, and fourth 
moment where a scenario is started during the experiment. 
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Figure 23: Task performance in all runs 

Table 6 shows the task performance in all runs. A learning effect can be seen on the 
average task performance over time. This effect is however not significant between run 1 
and 2, run 2 and 3 or run 3 and 4. When looking over a longer period, the effect is 
significant between run 1 and 4 (t=2.0, p<0.05). The effect is also significant between run 
1 and 3 (t=1.9, p<0.05), but not between run 2 and 4. 
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Run 1 Run 2 Run 3 Run 4 Condition 

Mean SD Mean SD Mean SD Mean SD 

NS 84.3 2.7 88.2 3.0 89.0 2.6 88.5 2.9 

FS 89.9 2.1 88.7 2.2 89.1 2.4 89.8 1.8 

LAS 87.2 2.1 87.2 1.1 86.8 1.6 87.2 4.2 

CAS 86.6 2.5 86.8 1.7 88.0 1.3 87.7 1.9 

Mean 87.0 2.3 87.7 2.0 88.2 2.0 88.3 2.7 

Table 6: Task performance in all runs 

In some cases (e.g. NS, CAS) a slight decrease in task performance can be found between 
run 4 and run 3. This can be explained by fatigue. After run 4, the participant has 
cooperated in the experiment for about two hours. 
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5.4. Conclusions 
Based on the preceding results, the following conclusions regarding the original 
hypotheses can be drawn. 

The task performance in the fixed support condition is higher than in the no support 
condition. This means that attention allocation support is useful in this task. The 
problems with inappropriate reliance are shown in the experiment, although not all results 
were significant.  

When looking at the reliance effects of adaptive support, we have seen that the rise in 
task performance during the 20% support accuracy interval is not present. In fact, the task 
performance during the second half of the interval is lower than the first half. However, 
the overall task performance of adaptive support was not significantly higher than during 
the no support condition, and the task performance during the various support accuracies 
are not all significantly different. This means that the hypothesis which states that 
adaptive support reduces the inappropriate reliance cannot be accepted, although some 
results were significant. 

It was expected that the effect of adaptive support would be bigger for good performers 
than for poor performers. We have seen that the effect was negative compared to fixed 
support, so the hypothesis had to be declined. This means that for all participants, the 
fixed support condition is optimal. 
The task performance in the liberal and conservative setting of the adaptive support was 
not significantly different, which means that the final hypothesis is also not accepted. 
The fact that the adaptive support does not yield better results than the fixed support can 
be caused by multiple factors. 
The introduction of adaptivity in support models in this task type could be inappropriate. 
It is possible that benefits of adaptivity are not bigger than the deficits. The main deficit 
is the extra complexity inflicted by adaptivity. 

The task chosen to apply the support to is the TPCT. It seems that since a well allocated 
attention is necessary for this task, the support type is appropriate. However, the 
combination of the task specifics, the support visualization, the support type and the task 
performance measure could be inappropriate. Given the results of the fixed support 
condition, it is not likely that the task is not well suited for this support. It is shown that 
attention allocation support does work in this setting. 

Due to availability and cost aspects, no actual marine personnel was used as participants 
in the experiment. All participants were college students who had one hour training on 
the threat assessment task. It is likely that the results would be more consistent when 
expert users are used in the experiment instead of the current novice users. Next to this, a 
longer duration of the experiment and the addition of more breaks would be desirable. 
The learning and fatigue effects seen in section 5.3.6 could then also be reduced. 

More research could be done on the support accuracy that could be achieved in a realistic 
scenario. At this point, it is varied between 20%, 50% and 80% accuracy, but it is 
possible that the accuracy that could be achieved in real-life is quite different from these 
values. This would harm the external validity of the results. 
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The task performance measure that was used in this experiment keeps the number of 
errors into account, along with the severity of the errors by looking at the relative threat 
level and the difficulty of the current assessment. It is however possible that the factors 
which are decisive for the task performance do not match the factors on which the 
participants focus. More research on this match could be done in order to optimize the 
task performance measure.  

Since the task performance did not significantly improve with adaptive support, it is hard 
to draw conclusions from the results on good and poor performers and the liberal and 
conservative setting. However, the inappropriate reliance effects seen in the fixed support 
condition did not show at both adaptive support conditions. This is a strong motivation 
for further research on this topic. The main question remains: How can adaptivity be used 
to improve task performance and reduce reliance effects? 
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Appendix A: Source code 
This appendix contains the source code of the Action module which was added to the 
support system to create the adaptive support. Note that this code only contains the liberal 
variant. Information about the focus of attention of the user is added later. The outcome 
of the algorithm below is only given as support when the attention for the supported 
contact is below a threshold value. 
using System; 
using System.IO; 
using System.Collections; 
using System.Collections.Generic; 
using System.Text; 
 
namespace attentionmodel 
{ 
    /// <summary> 
    /// This class was written by Teun Lucassen (2008). 
    /// Nothing of this code may be used or copied without the permission of the author. 
    ///  
    /// This software automatically detects faulty allocation of attention to objects and   
manipulates it in order 
    /// to reduce errors. 
    /// </summary> 
    ///  
 
    class Action 
    { 
        double alpha1;                  // Percentage of selected contacts eligible for 
support (set in model) 
        double alpha2;                  // Percentage of unselected contacts eligible for 
support (set in model) 
 
        bool loadNoise;                 // set true when noise is loaded from file, for 
new noise set to false (set in model) 
        bool saveNoise;                 // set true when you want to save the new noise 
(set in model) 
        double maxNoise;                // maximum noise level for all contacts, only 
used with new noise (set in model) 
        double variationNoise;          // maximum change in noise per cycle, only used 
with new noise (set in model) 
        int noiseInterval;              // duration of a noise cycle in ms 
        double[,] noiseValues;          // noise values for all contacts         
        long lastTimeStamp = 0;         // last timestamp for noise cycle 
        int t = -1;                     // index of current noise value in array 
 
        public double[] supportValues;  // Luminance values for the adaptive manipulation 
 
        // ERROR MANIPULATION VALUES 
        int interval = 10;              // interval for error change = 10 seconds 
        int levelInterval = 12;         // duration of each level of error rates 
        int numberOfLevels = 5;         // 5 levels of errorrates 
        int[] errorLevels = new int[5]; // the amount of incorrect supported contacts in 
the top 5 for each  
        int[,] errors;                  // actual errors 
        int errorFileNumber;            // number of the error file 
        Random r; 
 
        public Action(double alpha1, double alpha2, double maxNoise, double 
variationNoise, bool loadNoise, bool saveNoise, int noiseInterval, int errorFileNumber) 
        { 
            r = new Random(); 
             
            this.alpha1 = alpha1; 
            this.alpha2 = alpha2; 
            this.maxNoise = maxNoise; 
            this.variationNoise = variationNoise; 
            this.noiseInterval = noiseInterval; 
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            this.loadNoise = loadNoise; 
            this.saveNoise = saveNoise; 
            this.errorFileNumber = errorFileNumber; 
             
            this.supportValues = new double[25]; 
 
            errorLevels[0] = 2; // 60% 
            errorLevels[1] = 1; // 80% 
            errorLevels[2] = 3; // 40% 
            errorLevels[3] = 1; // 80% 
            errorLevels[4] = 2; // 60% 
 
            errors = new int[5, numberOfLevels * levelInterval]; 
 
            if (loadNoise) 
            { 
                LoadErrors(); 
            } 
            else 
            {                     
                InitializeErrors(); 
                if (saveNoise) 
                    SaveErrors(); 
            }              
        } 
 
        public void UpdateContacts(Stack contacts, double[] selectedThreatValues, 
double[] unselectedThreatValues) 
        {       
            //determine number of selected/unselected contacts 
            int numberSelected = 0; 
            int numberUnselected = 0; 
            foreach (GameMakerContact contact in contacts) 
            { 
                if (contact.status == 1) 
                { 
                    numberSelected++; 
                } 
                else 
                { 
                    numberUnselected++; 
                } 
            } 
 
            //determine number of supported contacts 
            int numberSelectedSupport = (int)(alpha1 * numberSelected); 
            int numberUnselectedSupport = (int)(alpha2 * numberUnselected); 
 
            //reset supportValues 
            this.supportValues = new double[selectedThreatValues.Length]; 
 
            // set support for selected contacts 
            for (int i = 0; i < numberSelectedSupport; i++) 
            { 
                int minID = Min(selectedThreatValues); 
                supportValues[minID] = 1.0; //1 can be replaced by DP information later 
                selectedThreatValues[minID] = 2.0; //higher than max 
            } 
 
            // set support for unselected contacts 
            for (int i = 0; i < numberUnselectedSupport; i++) 
            { 
                int maxID = Max(unselectedThreatValues); 
                supportValues[maxID] = 1.0; //1 can be replaced by DP information later 
                unselectedThreatValues[maxID] = -1.0; //higher than max 
            } 
        } 
 
        public void InitializeErrors() 
        { 
            for (int i = 0; i < numberOfLevels; i++) // for each error level 
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            { 
                for (int j = 0; j < levelInterval; j++) // for the duration of the error 
level 
                { 
                    List<int> usedContacts = new List<int>(); 
                    for (int k = 0; k < errorLevels[i]; k++) // for each error in the 
error level 
                    { 
                        int contactInTop5 = GetRandomContact(); 
                        int contactOutsideTop5 = 5 + GetRandomContact(); 
 
                        while (usedContacts.Contains(contactInTop5)) 
                        { 
                            contactInTop5 = GetRandomContact(); 
                        } 
 
                        while (usedContacts.Contains(contactOutsideTop5)) 
                        { 
                            contactOutsideTop5 = 5 + GetRandomContact(); 
                        } 
                                                 
                        usedContacts.Add(contactInTop5); 
                        usedContacts.Add(contactOutsideTop5); 
 
                        errors[contactInTop5 - 1, i * levelInterval + j] = 
contactOutsideTop5; 
                    } 
                } 
            } 
        } 
 
        public int GetRandomContact() 
        {             
            double d = r.NextDouble(); 
            int contact = 0; 
            if (d < 0.2) 
                contact = 1; 
            else if (d < 0.4) 
                contact = 2; 
            else if (d < 0.6) 
                contact = 3; 
            else if (d < 0.8) 
                contact = 4; 
            else 
                contact = 5; 
 
            return contact; 
        } 
 
        public double[] AddErrors(double[] threatValues) 
        { 
            long currentTimeStamp = DateTime.Now.Ticks; 
 
            if (currentTimeStamp > lastTimeStamp + 10000000 * interval || lastTimeStamp 
== 0) 
            { 
                t = (t + 1) % errors.GetLength(1); 
                lastTimeStamp = currentTimeStamp; 
            } 
 
            for (int i = 0; i < errors.GetLength(0); i++) 
            { 
                if (errors[i,t] != 0) 
                { 
                    double tempThreatValue = threatValues[i]; //threatvalue of contact op 
in top 5 
                    threatValues[i] = threatValues[errors[i,t]-1]; 
                    threatValues[errors[i,t]-1] = tempThreatValue; 
                } 
            } 
            return threatValues; 
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        } 
 
        public double[] AddNoise(double[] threatValues) 
        { 
            double[] resultValues = threatValues; 
            long currentTimeStamp = DateTime.Now.Ticks; 
 
            // if cycle has ended, go to next noise value 
            if (currentTimeStamp > lastTimeStamp + 10000 * noiseInterval || lastTimeStamp 
== 0) 
            { 
                t = (t + 1) % noiseValues.GetLength(1); 
                lastTimeStamp = currentTimeStamp;                 
            }  
 
            // add noise values to threat values 
            for (int i = 0; i < threatValues.Length; i++) 
            { 
                if (threatValues[i] != 2.0 && threatValues[i] != -1.0) 
                    resultValues[i] = threatValues[i] + noiseValues[i, t]; 
                if (threatValues[i] < 0) 
                    resultValues[i] = 0; 
                if (threatValues[i] > 1) 
                    resultValues[i] = 1;                 
            }           
                        
            return resultValues; 
        } 
 
        //initialize noise values 
        private void InitializeNoiseValues() 
        { 
            Random r = new Random(); 
            for (int i = 0; i < noiseValues.GetLength(0); i++) //initialize noise at t=0; 
            { 
                noiseValues[i, 0] = 0 - maxNoise + 2 * r.NextDouble() * maxNoise; 
            } 
 
            for (int i = 1; i < noiseValues.GetLength(1); i++) 
            { 
                for (int j = 0; j < noiseValues.GetLength(0); j++) // initialize noise at 
t>0 
                { 
                    if (r.NextDouble() > 0.5) // add noise 
                    { 
                        if (noiseValues[j, i-1] + variationNoise < maxNoise) // maximum 
not reached 
                        { 
                            noiseValues[j, i] = noiseValues[j, i - 1] + r.NextDouble() * 
variationNoise; 
                        } 
                        else  
                        { 
                            noiseValues[j, i] = noiseValues[j, i - 1] - r.NextDouble() * 
variationNoise; 
                        } 
                    } 
                    else // subtract noise 
                    { 
                        if (noiseValues[j, i-1] - variationNoise > 0 - maxNoise) 
                        { 
                            noiseValues[j, i] = noiseValues[j, i - 1] - r.NextDouble() * 
variationNoise; 
                        } 
                        else 
                        { 
                            noiseValues[j, i] = noiseValues[j, i - 1] + r.NextDouble() * 
variationNoise; 
                        } 
                    } 
                } 
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            }             
        } 
 
        public void LoadErrors() 
        { 
            TextReader tr = new StreamReader("errors" + errorFileNumber + ".txt"); 
             
             
 
            String line; 
            for (int i = 0; (line = tr.ReadLine()) != null; i++) 
            { 
                string[] values = line.Split(' '); 
                for (int j = 0; j < values.Length - 1; j++) 
                { 
                    if (values[j] != "") 
                        errors[j, i] = Convert.ToInt32(values[j]); 
                } 
            } 
            tr.Close(); 
        } 
 
        //load noise values from file 
        private void LoadNoiseValues() 
        { 
            TextReader tr = new StreamReader("noise.txt"); 
 
            String line; 
            for (int i = 0; (line = tr.ReadLine()) != null; i++ ) 
            { 
                string[] values = line.Split(' '); 
                for (int j = 0; j < values.Length-1; j++) 
                { 
                    if (values[j] != "") 
                        noiseValues[j, i] = Convert.ToDouble(values[j]); 
                }                 
            } 
            tr.Close(); 
        } 
 
        public void SaveErrors() 
        { 
            TextWriter tw = new StreamWriter("errors" + errorFileNumber + ".txt"); 
 
            for (int i = 0; i < errors.GetLength(1); i++) 
            { 
                string output = ""; 
                for (int j = 0; j < errors.GetLength(0); j++) 
                { 
                    output = output + errors[j, i] + " "; 
                }                 
                 
                tw.WriteLine(output); 
            } 
 
            // close the stream 
            tw.Close(); 
        } 
 
        //save noise values to file 
        public void SaveNoiseValues() 
        { 
            TextWriter tw = new StreamWriter("noise.txt"); 
             
            for (int i = 0; i < noiseValues.GetLength(1); i++) 
            { 
                string output = ""; 
                for (int j = 0; j < noiseValues.GetLength(0); j++) 
                { 
                    output = output + noiseValues[j, i] + " "; 
                } 
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                tw.WriteLine(output); 
            } 
 
            // close the stream 
            tw.Close(); 
        } 
 
        // Find maximum in Array a 
        private int Max(double[] a) 
        { 
            double max = a[0]; 
            int maxID = 0; 
 
            for (int i = 1; i < a.Length; i++) 
            { 
                if (a[i] > max) 
                { 
                    max = a[i]; 
                    maxID = i; 
                } 
            } 
            return maxID; 
        } 
 
        // Find minimum in Array a 
        private int Min(double[] a) 
        { 
            double min = a[0]; 
            int minID = 0; 
 
            for (int i = 1; i < a.Length; i++) 
            { 
                if (a[i] < min) 
                { 
                    min = a[i]; 
                    minID = i; 
                } 
            } 
            return minID; 
        } 
    } 
} 
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Appendix B: Order of conditions for all participants 
This appendix shows the orders in which the participants received the four conditions. 
The “error” column denotes the error file used in each run. 
 

# run 1   run 2   run 3   run 4  
  condition error condition error condition error condition error 

1 NS 0 FS 1 LAS 2 CAS 3 
2 FS 1 LAS 2 CAS 3 NS 0 
3 LAS 1 CAS 2 NS 0 FS 3 
4 CAS 1 NS 0 FS 2 LAS 3 
5 NS 0 CAS 1 LAS 2 FS 3 
6 CAS 1 LAS 2 FS 3 NS 0 
7 LAS 1 FS 2 NS 0 CAS 3 
8 FS 1 NS 0 CAS 2 LAS 3 
9 NS 0 FS 1 LAS 2 CAS 3 

10 FS 1 LAS 2 CAS 3 NS 0 
11 LAS 1 CAS 2 NS 0 FS 3 
12 CAS 1 NS 0 FS 2 LAS 3 
13 NS 0 CAS 1 LAS 2 FS 3 
14 CAS 1 LAS 2 FS 3 NS 0 
15 LAS 1 FS 2 NS 0 CAS 3 
16 FS 1 NS 0 CAS 2 LAS 3 
17 NS 0 FS 1 LAS 2 CAS 3 
18 FS 1 LAS 2 CAS 3 NS 0 
19 LAS 1 CAS 2 NS 0 FS 3 
20 CAS 1 NS 0 FS 2 LAS 3 
21 NS 0 CAS 1 LAS 2 FS 3 
22 CAS 1 LAS 2 FS 3 NS 0 
23 LAS 1 FS 2 NS 0 CAS 3 
24 FS 1 NS 0 CAS 2 LAS 3 
25 NS 0 FS 1 LAS 2 CAS 3 
26 FS 1 LAS 2 CAS 3 NS 0 
27 LAS 1 CAS 2 NS 0 FS 3 
28 CAS 1 NS 0 FS 2 LAS 3 
29 NS 0 CAS 1 LAS 2 FS 3 
30 CAS 1 LAS 2 FS 3 NS 0 
31 LAS 1 FS 2 NS 0 CAS 3 
32 FS 1 NS 0 CAS 2 LAS 3 
33 NS 0 FS 1 LAS 2 CAS 3 
34 FS 1 LAS 2 CAS 3 NS 0 
35 LAS 1 CAS 2 NS 0 FS 3 
36 CAS 1 NS 0 FS 2 LAS 3 
37 NS 0 CAS 1 LAS 2 FS 3 
38 CAS 1 LAS 2 FS 3 NS 0 
39 LAS 1 FS 2 NS 0 CAS 3 
40 FS 1 NS 0 CAS 2 LAS 3 
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Appendix C: Participant contract 
 
Proefpersoonverklaring 
 

Projectnummer: 013.65063 
 

Ondergetekende, 
 

Naam   .......................................................................................... m / v 
Adres en woonplaats .......................................................................................... 

   ………………………………………………………….. 
Geboortedatum .......................................................................................... 

 
verklaart op vrijwillige basis deel te nemen aan het experiment “Ondersteuning door een 
sociale computer” bij TNO Defensie en Veiligheid te Soesterberg. Het is mij duidelijk dat 
het daarbij gaat om een onderzoek naar het ondersteunen van aandachtsallocatie. 

 
De bedoelingen van het experiment en de daarbij gevolgde aanpak zijn tot mijn 
tevredenheid uitgelegd, en mijn vragen zijn door de proefleider helder beantwoord. Er is 
mij verzekerd dat ik op elk moment zonder opgaaf van redenen mijn deelname aan het 
experiment kan beëindigen zonder dat dit voor mij nadelige consequenties heeft. Evenzo 
kan de proefleider onder dezelfde voorwaarden mijn deelname aan het experiment 
beëindigen. 
 

Bij rapportage van de resultaten van het experiment wordt mijn privacy beschermd in die 
zin dat het niet mogelijk zal zijn op enigerlei wijze mijn identiteit te achterhalen. Een 
uitzondering hierop kan worden gevormd door de presentatie van dia-, foto- of 
videomateriaal, echter alleen nadat ik daarvoor expliciet mijn toestemming heb gegeven. 

 
Voorts verklaar ik lichamelijk in goede gezondheid te verkeren. 

 
Soesterberg, .. - .. - 2008    

 
 
Handtekening proefpersoon:    Paraaf proefleider: 
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Appendix D: Participant instructions on threat levels 

Opbouw van het experiment 

Inleiding 
U bent officier van de wacht op een marine schip en uw taak is om van de schepen (deze worden 
contacten genoemd) die in de omgeving varen te bepalen of deze een bedreiging vormen voor uw 
eigen schip of niet (dat heet beeldopbouw). Van alle contacten moet u steeds de 5 meest bedreigende 
contacten identificeren. Het bepalen of een contact bedreigend is, gebeurt op basis van een aantal 
criteria. Voordat het eigenlijke experiment begint krijgt u eerst een toets om te oefenen met de criteria. 
Deze toets is bedoeld om te kijken of de criteria duidelijk zijn. Na de toets worden de antwoorden en 
eventuele onduidelijkheden besproken. Hierna krijgt u de gelegenheid om de taak kort te oefenen en is 
er nog ruimte voor vragen alvorens het experiment begint. 
 
Opbouw: 

• Uitleg criteria 
• Toets  
• Uitleg experiment 
• Oefenscenario 
• Uitleg ondersteuning 
• Deel 1 (10 min) 
• Deel 2 (10 min) 
• Deel 3 (10 min) 
• Deel 4 (10 min) 
• Afsluitende questionnaire 

In totaal zal het experiment ongeveer 2 uur duren. 

Uitleg van de criteria 
Op een radarscherm zijn het eigen schip en de verschillende contacten te zien. Het eigen schip ligt stil. 
De contacten verplaatsen zich wel en verschillen van elkaar op een aantal criteria. Het bepalen of een 
contact bedreigend is, gebeurt op basis van de volgende criteria: 
 

• De koers die de contacten varen. 
Een contact dat naar uw schip toe vaart is dreigender dan een contact dat van u af vaart.  

 
• De afstand tussen eigen schip en andere contacten. 

Hoe kleiner de afstand tussen u en een ander contact hoe dreigender een contact is. 
 

• De snelheid van de contacten. 
De snelheid van een contact kan worden bepaald door een contact te volgen. Achter ieder 
contact is een spoor te zien. Een lang spoor betekent een hoge snelheid, een kort spoor 
betekent een lage snelheid. Indien een contact een hoge snelheid heeft is dit dreigender dan 
een contact met een lage snelheid.  

 
• Gebied waar het contact vaart: binnen of buiten de vaarroute. 

De vaarroute is een gebied waar het normale scheepsverkeer doorheen vaart, zoals 
vrachtschepen. De vaarroute wordt weergegeven door 2 lijnen. Contacten buiten de vaarroute 
zijn daarom dreigender dan contacten die binnen de vaarroute varen.  
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Om de 5 meest bedreigende contacten te kunnen bepalen moeten de contacten met elkaar worden 
vergeleken op deze vier criteria. Ga steeds voor elk criterium de mate van bedreiging na. Een contact 
dat op 4 criteria een hoge bedreigingsscore heeft, is bedreigender dan een contact dat op 2 criteria een 
hoge bedreigingsscore scoort. De criteria zijn allemaal even belangrijk. 

Voorbeeld 
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Appendix E: Participant instructions on the task 
U bent commando centrale officier (CCO) op een marine schip en uw taak is om van de schepen 
(contacten) die in de omgeving varen te bepalen of deze een bedreiging vormen voor uw eigen schip 
of niet. Straks krijgt u een radarscherm te zien waarop uw eigen schip en de andere contacten zijn 
weergegeven. Het is de bedoeling dat u op basis van de criteria zo snel mogelijk de vijf meest 
bedreigende contacten identificeert en rood markeert. Echter, welke vijf contacten het meest 
bedreigend zijn kan veranderen. Het beeld moet dus continu worden aangepast. Om de taak goed te 
volbrengen is het belangrijk is dat er tijdens de taak niet meer, maar ook niet minder dan vijf contacten 
rood gemarkeerd zijn. Het onterecht markeren van een contact als een van de vijf meest bedreigende 
contacten wordt net zo fout gerekend als het niet markeren van een contact dat wel bij de vijf meest 
bedreigende contacten hoort. U kunt een contact markeren door er met de muis op te klikken. Door op 
het contact te klikken wordt deze rood, vervolgens bij nog een keer klikken weer wit. Van te voren 
krijg je de gelegenheid om dit even te oefenen. 
 
Zie figuur 1 voor het scherm van de taak. De symbolen zijn iets anders dan tijdens de toets. De rode 
contacten zijn contacten die als bedreigend zijn gemarkeerd. De blauwe cirkel is het eigen schip. Elk 
contact heeft een uniek identificatienummer. De groene banen zijn de vaarroutes. De licht grijze 
gebieden zijn stukken land. De gele streep achter het contact geeft de snelheid aan, de oranje streep 
voor het contact de vaarrichting. 
 
 
 

 
Figuur 1: Het radarscherm van de beeldopbouw taak.  
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Appendix F: Participant instructions on the support 

De ondersteuning 
Straks gaan we beginnen met het experiment. Gedurende het experiment zul je geholpen 
worden met het juist uitvoeren van de taak. Dit wordt gedaan door je aandacht te trekken 
naar bepaalde, voor de uitvoering van de taak belangrijke, contacten. De aandacht wordt 
getrokken door contacten feller te laten oplichten, zodat deze extra opvallen. Hieronder 
staan twee contacten, de linker vereist extra aandacht, de rechter niet. 
 
 

 
Figuur 2: Twee uitvergrootte contacten: aandacht dient getrokken te worden (links) of 

niet (rechts). 

 
Voor de bovengenoemde aandachtssturingsmethode zijn verschillende ondersteunende 
systemen beschikbaar, waarvan de werking op de achterzijde wordt beschreven. Je hoeft 
de uitleg hierover pas te lezen vlak voordat je aan elke run gaat beginnen. Voordat je 
begint met een run wordt steeds duidelijk gemaakt welke vorm van ondersteuning 
gebruikt gaat worden. 
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Geen ondersteuning (NS) 
Dit spreekt voor zich. In deze vorm zal geen ondersteuning geboden worden en moet je 
dus op eigen inzicht de taak zo goed mogelijk uitvoeren. 
 
 
 

Gefixeerde ondersteuning (FS) 
De vijf meest bedreigende contacten zullen bij deze ondersteuning oplichten. De 
computer is echter niet in staat om de bedreigingscore 100% betrouwbaar te meten. Let 
dus zelf ook goed op, omdat de ondersteuning niet in alle gevallen juist zal zijn. 

 
 

Adaptieve ondersteuning (AS) 

Liberaal adaptieve ondersteuning (LAS) 
Deze vorm van ondersteuning gebruikt de volgende informatie: 
 

1) Jouw selectie van de vijf meest bedreigende contacten tot nog toe. 
 
De ondersteuning kan hierdoor onderscheid maken tussen geselecteerde en niet-
geselecteerde contacten. De niet-geselecteerde contacten met een hoge bedreigingscore 
zullen helderder worden, omdat deze in aanmerking kunnen komen om geselecteerd te 
worden. Van de geselecteerde contacten lichten degenen met lage bedreigingscores op, 
omdat deze in aanmerking kunnen komen om uit de selectie verwijderd te worden.  
 
Let op: Als een contact oplicht, betekent dit niet automatisch dat je deze moet selecteren. 
Er wordt alleen aangegeven dat je dit contact in de gaten moet houden. Daarnaast is bij 
deze ondersteuning de bedreigingscore niet 100% betrouwbaar. 

Conservatief adaptieve ondersteuning (CAS) 
Voor dit type ondersteuning wordt de volgende informatie gebruikt: 
 

1) Jouw selectie van de vijf meest bedreigende contacten tot nog toe. 
2) De contacten waarvan de computer denkt dat je er aandacht voor hebt. 

 
Deze vorm van ondersteuning is hetzelfde als de LAS conditie, maar laat contacten niet 
oplichten als je er al aandacht voor hebt. 
 
Let op: Als een contact oplicht, betekent dit niet automatisch dat je deze moet selecteren. 
Er wordt alleen aangegeven dat je dit contact in de gaten moet houden. Daarnaast is bij 
deze ondersteuning de bedreigingscore niet 100% betrouwbaar. 
 


