
a

b y

z

s0

c

d w

x

s1

e

f u

v

s2

g

h s

t
s3

i

j q

r

s4

k

l o

p

s5

m

n m

n

s6

o

p k

l
s7

q

r i

j

s8

s

t g

h
s9

u

v e

f

s10

w

x c

d

s11

y

z a

b

s12

a

b y

z

s13

c

d w

x

s14

e

f u

v

s15

g

h s

t

s16

i

j q

r

s17

k

l o

p

s18

m

n m

n

s19

o

p k

l

s20

q

r i

j

s21

s

t g

h

s22

u

v e

f

s23

w

x c

d
s24

y

z a

b
s25

Representing pctl
Counterexamples
Master of Science�esis

Berteun Damman

Graduation Committee
Prof. Dr Ir Joost-Pieter Katoen
Tingting HanMEng (韩婷婷)
Dr Ir Arend Rensink

University of Twente
Enschede, �e Netherlands

Hic labor extremus, longarum haec meta viarum.

Abstract

We discuss counterexamples for Probabilistic Computational Tree Logic (pctl), and

an algorithm based on the k shortest path algorithm to �nd these counterexamples.
Also discussed are the hop-constrained variants of the algorithms, and way to reduce

hop-constrained problems to unconstrained problems. �e discussed algorithms are

implemented and this implementation is used to analyse several case studies. �e

experiments and mathematical analysis show that in practice the number of paths

needed for a counterexample may grow exponentially. In order to combat this size

explosion we propose to use the existing technique of bisimulation minimisation on

the one hand, and on the other hand we introduce regular expressions to represent sets

of paths compactly. Experiments of these compacti�cations are also included, which

show that very short expressive, and above all, intelligble, expressions can be obtained.

v

Contents

Abstract v

Preface ix

0 Introduction 1

1 Preliminaries 5
1.1 Words and languages 5

1.2 Finite State Automata 8

1.2.1 History 8

1.2.2 An abstract automaton 8

1.2.3 �e mathematical automaton 10

1.3 Regular expressions 12

1.4 Markov chains 13

1.4.1 Discrete Time Markov Chains 14

1.4.2 Paths in dtmcs 15

1.4.3 Probability of paths 16

1.4.4 Example dtmc 17

1.5 Computational Tree Logic 18

1.5.1 Syntax and semantics 19

1.5.1.1 Syntax 20

1.5.1.2 Semantics 21

1.6 Probabilistic ctl 22

1.6.1 Syntax and semantics 24

2 Counterexamples for pctl 25
2.1 Evidences and counterexamples 26

2.2 Conversion of the dtmc 30

2.2.1 Adaptation of the dtmc 30

2.2.2 Conversion to a weighted digraph 32

2.3 Finding the strongest evidence 34

2.3.1 Unbounded until 34

2.3.2 Bounded until 34

vi

Contents

2.3.2.1 Reduction to an unconstrained problem 36

2.3.2.2 Hop constrained Bellman-Ford 39

2.3.2.3 Hop constrained Dijkstra 41

2.4 Finding the smallest counterexample 42

2.4.1 Unbounded until 43

2.4.1.1 Algorithmic description 44

2.4.2 Upper bounded until 46

2.4.2.1 Using dfs in the �rst phase 48

2.4.3 Double and lower bounded until 52

2.4.3.1 Algorithmic Description 55

2.4.4 Arbitrary bounded operators 56

2.4.5 Lazy algorithms 56

3 Implementation 59
3.1 Requirements and design goals 59

3.2 Program design 60

3.2.1 Language choice 61

3.2.2 dtmc and graph representation 61

3.2.3 Strongest Evidence algorithms 62

3.2.4 Smallest Counterexample algorithms 63

3.2.4.1 Alternative algorithms 65

3.2.5 Product graph construction 65

3.2.6 Regular expression 66

4 Experimental results 67
4.1 Synchronous leader election 68

4.1.1 �e protocol 68

4.1.2 Mathematical analysis 69

4.1.2.1 �e general case 70

4.1.3 More or less experimental results 71

4.1.4 Tables 72

4.2 Crowds protocol 72

4.3 Randomised mutual exclusion 78

4.4 Bisimulation minimisation 79

5 Regular representations 85
5.1 From dtmcs to regular expressions. 86

5.1.1 Introduction 86

5.1.2 Formal de�nition 86

5.1.3 Evaluation of regular expressions 88

5.1.3.1 Interpretation of valuations 89

5.1.4 Regular expressions as counterexamples 90

5.1.5 Bounded expressions 93

5.2 Case studies 94

vii

Contents

5.2.1 Leader election example 94

5.2.2 Crowds protocol 95

5.2.3 Randomised mutual exclusion 97

5.3 Concluding remarks 97

6 Conclusion and future work 99
6.1 Conclusion 99

6.2 Future work 99

a ctl model checking 101
a.1 Outline 101

a.2 Time complexity 102

b Counterexample explorer manual 103
b.1 Usage and requirements 103

b.1.1 Example session 104

b.2 Optional modules 107

b.3 File formats 108

b.3.1 Transition �le 108

b.3.1.1 Example �le 109

b.3.2 Labelling �le 110

b.3.2.1 Example �le 110

b.3.3 Formula �le 112

c Acronyms 115

Index 117

Bibliography 121

viii

Preface

�e last miles takes the longest: this proverb summarises the whole process. It has

been a long time since I have commenced my graduation. However, at last, the �nal

product has been completed.

Because the subject is quite theoretical, and uses many mathematical ideas not

familiar tomost computer science students, and on the other hand uses quite some ideas

from computer science not familiar to students of mathematics, this thesis contains a

substantial introduction to the techniques used. I hope that this will make the ideas

clear, since I do believe that the combination of mathematics and computer science

in this area is very worthwhile, even tough during my study I have seen how many

mathematical subjects have disappeared from the curriculum.

Finally I would like to thank my friends, parents and my graduation committee;

and especially Joost-Pieter Katoen & Tingting Han, who gave me the opportunity to

work on this subject in Aachen. Even though the ride was not very smooth at times,

they were con�dent and willing to continue the supervision, even when I had my

doubts.

As it turned out, they were right, and I am very grateful for this.

Berteun Damman,

Enschede, 18th December 2008

ix

0Introduction

�e Dutch computer scientist Edsger Dijkstra, famous for his shortest path algorithm,

once remarked in an interview with the Dutch news paper Trouw: ‘So�ware? By your
leave, I think it’s rubbish.’1 He is clearly aggravated by the state of so�ware and the
number of times computers tends to crash.

And indeed, since the day the �rst computers have been built, and the �rst so�ware

was programmed, programmers and users alike have been plagued by bugs. Many

strategies have surfaced to prevent, detect and repair these problems.

Some strategies rely on establishing ‘best practices’: rules of thumb which, if fol-

lowed, avoid a number of common pitfalls; other strategies involve extensive testing of

the written so�ware against predetermined cases, in order to �nd the most common

bugs. But as the same Dijkstra famously remarked: ‘Program testing can be used to

show the presence of bugs, but never to show their absence!’

�e �eld in which this thesis is written, is the �eld of formal methods. In this �eld

the main strategy to prevent so�ware bugs is called ‘model checking’. �e model, a

formal structure derived from an actual hardware or so�ware design, is checked to

see whether it obeys its formal speci�cations. �is forms the core idea: verify a formal
structure, against formal speci�cations. �is veri�cation is exhaustive. Every possible
scenario should be veri�ed. Verifying every possible scenario however, is very hard,

and making it feasible to check ever larger and more complex systems is one of the

challenges researchers in model checking face.

Because of the ability to mathematically verify so�ware, and to guarantee the

absence of errors, model checking is usually deployed in scenario’s in which correct

behaviour of the so�ware is of paramount importance, such as so�ware for medical

apparatus, space probes, �ood barriers, and such. A notorious example of so�ware

errors leading to the death of three people is given by the �erac-25 radiation therapy

machine, which would under certain conditions give massive overdoses of radiation.

�is underlines the danger of so�ware errors in certain applications, and the important

part model checking can play in preventing these mistakes.

�e foundations of model checking were laid in 1981, by Edmund Clarke and

E. Allen Emerson, initially developing model checking for hardware. As computers

became more powerful, it became possible to also verify so�ware models. In addition

1�e article So�ware? Ik vind het, met permissie, puin. can be read in Dutch at http://www.trouw.
nl/archief/article1322199.ece.

1

http://www.trouw.nl/archief/article1322199.ece
http://www.trouw.nl/archief/article1322199.ece

0. Introduction

to the scenario described above, where faulty so�ware can endanger lives, a new need

for ensuring the correctness of so�ware has emerged because of the proliferation of

embedded so�ware in all kinds of devices. Much so�ware is located in places where

patching is very expensive, such as in cars, and where a recall due to a so�ware bug

would be prohibitively costly for the manufacturer.

�is has lead to the widespread adoption of model checking in both the hardware

and so�ware industries, and for this the Clarke and Emerson have been awarded the

Turing Award2 in 2007. Nevertheless, new techniques and re�nements of existing
techniques are constantly being discovered and developed, and this thesis tries to

explore a small area of this large �eld even further.

Model checking thus aims to automate the process of �nding bugs in so�ware.

Although knowing that so�ware does not function according to the speci�cation is

useful, it is evenmore useful to be able to give a demonstrationwhen it goes exactly awry.

Only reporting ‘It doesn’t work’ will not aid the programmer much in ameliorating the

problem. For this, counterexamples are much more useful. �ese provide a sequence of
steps a�er which the problem occurs. Such a sequence usually gives a clear indication

where the so�ware goes wrong, and which parts of the source code need to be patched.

Earlier theories of model checking allowed the speci�cation and checking of prop-

erties which stated that something bad would never happen, so called safety properties,
or something good would always be the case, so called liveness properties. For many
practical applications such speci�cations are too rigid. Even if you backup your data

every day to di�erent computers in di�erent countries, it could in theory still happen

that in the same night each of these buildings burns down, and you lose your data.

Since this is a very improbable scenario, most people are willing to take this risk.

Usually, we would like to know what risk we are taking exactly. A server equipped

with multiple hard disks in a raid-con�guration might fail irreparably if the rare

situation occurs that a�er one disk fails a second one fails before the �rst one is replaced

and rebuilt. Other questions could be that we want to guarantee a minimum level of

service: if e-mail messages arrive randomly, but on average with a speci�c frequency,

which might be higher during working hours, we would like to guarantee the mail

server has enough capacity to always deliver nearly all messages within one minute,

even if peak loads occur because by coincidence many messages are sent at the same

time, in stead of evenly distributed. Finally, an example we shall see in this thesis too,

in many distributed in which computers can join and leave a network, there has to be

one computer that is designated the leader, electing such a leader occurs through some

sort of voting process, but this can lead to a tie. If such a case, the computers have to

vote again, by introducing a random factor in the vote, the election will be di�erent

next time, but we want to guarantee that ties do not occur too o�en, because as long as

a leader has not been elected communication is usually suspended.

�ese are some very practical reasons why we are usually interested in questions

such as ‘is the system able to respond within ten seconds 98% of the time?’ Or: ‘Will

the availability be at least 99%?’ For this we need to be able to specify probabilities,

2�e ‘Nobel Prize for Computer Science’.

2

randomness and time-limits. A logic that allows us to specify this has been developed,

and is called pctl. Existing model checking algorithms for pctl are heavily based on

the theory of Markov chains, which captures random and probabilistic behaviour and

forms the underlying formal structure, and they are able to report whether a property is

violated or satis�ed by the model. In case it is violated however, these methods cannot

provide the programmer with a counterexample. Algorithms that �ll this gap have

been designed recently.

�e current algorithm works by �nding a set of paths, which together form a

counterexample. Roughly speaking, every path describes some scenario in which a

problem occurs, and the probability of these scenario’s added together exceeds the

speci�ed limit.

�is thesis elaborates on the theory behind the algorithms, and describes a practical

implementation of these algorithm which was made in order to get acquainted with

the behaviour in practice. �e obtained results show that in practice counterexamples

will consist ofmany paths. �e number of paths will be so large that investigating them
will be a daunting task.

�e �nal chapters therefore will describe some preliminary ideas to reduce the

size of these counterexamples, using regular expressions, or to present them in a form

which can be more easily digested by the programmer.

Furthermore some remarks are made with respect to the algorithms used, and

the possibility to achieve the same results by transforming the underlying transition

structure instead of adapting the algorithms for certain veri�cation problems involving

bounded temporary operators.

�e thesis will start with a chapter covering the preliminary notions, such as auto-

mata, regular expressions, Markov chains, Computational Tree Logic (ctl) and pctl.

�e second chapter formalises what a counterexample is and describes the problem of

�nding counterexamples and which algorithms, mainly variants of the shortest path

algorithm, can be used. �ese two chapters together form the theoretical basis for the

description of the practical implementation, which is found in the third chapter. �is

describes the chosen algorithms and the data structures used in more detail, as well as

the limits and possibilities of the algorithm. �e next chapter presents the results of

the practical experiments, and analysis the growth of the counterexample size. Finally

chapter �ve proposes the use of regular expressions to combat counterexample size

explosion.

3

1Preliminaries

�is chapter intends to serve as a reminder for those already familiar with the concepts

used in this thesis, or as a primer for those unfamiliar with these concepts; the latter

might want to refer to some of the textbooks mentioned, if they wish to acquire a more

intimate knowledge of these subjects.

�ose already knowledgeable of �nite state automata, Markov chains or any of the

other subjects introduced in this chapter might still want to glance over the material in

order to get acquainted with the syntax used.

Although the reader can choose to only read those section wherewith he is not

familiar, he or she should note that they were written to be read in sequential order,

and will assume knowledge of the material in the previous sections.

A basic mathematical understanding, especially with respects to sets, is expected.

�ose unfamiliar with this should turn to a text book such as (Sudkamp, 1998)

(especially the �rst chapter) or Wikipedia for an explanation of the concepts involved.

1.1 Words and languages

�e term language describes several distinct, yet related concepts. First of all there are
languages such as English, German or Dutch, so called natural languages. Furthermore
there are computer languages, a rather speci�c set of symbols which can be used to
write computer programs. �en there are also sign languages for the deaf in which
words are represented by gestures.

Speaking in an abstract manner, these languages share a common concept of

symbols which can be combined to form words. In the case of English or Latin these

are simply the twenty-six letters of the LatinAlphabet: a, b, et cetera. German adds some
other symbols such as ä and ß. Greek and Russian even use a completely di�erent set
of symbols, whereas sign language uses gestures. Chinese has an enormous collection

of basic symbols.

�ese symbols can be combined to form words. In the case of English one might

combine �ve characters to form the word hello, or in case of Germanmoin. One could
also form the word xuqa, which, although humans will not know what it means, is a
valid word in the sense that it uses only characters from the English alphabet. It clearly

is not a Greek or Russian word, but it is a word – a word without any meaning.

5

1. Preliminaries

�is general idea that an utterance in a language consists of words which are in

turn formed by symbols is the way language is de�ned in a theoretic way.

De�nition 1.1.1. An alphabet consists of a �nite set of symbols, also called letters. We
usually use Σ to denote the alphabet of a language.

De�nition 1.1.2. A word (also called string) is formed by juxtaposing a �nite sequence
of letters from an alphabet Σ. �at is: w = a1a2⋯an with ai ∈ Σ. Its length is the
number of symbols, usually denoted as ∣w∣.

Example 1.1.3. For example, consider the alphabet B = {0, 1}. Examples of words over

this alphabet are 001, 10001, 0, with respective lengths of three, �ve and one.

�ere also is an empty word which has a length of zero, and this is denoted by ε.
Althoughwords are considered to be indivisible units in a language, just as the word

‘symbol’ cannot be split in ‘sym’ and ‘bol’, we will allow de�nitions such as v = wa1
where w is a word, and a1 is a letter from Σ. We also allow ‘glueing’ of two words
together, which is more precisely de�ned in the following de�nition:

De�nition 1.1.4. If v and w are words over an alphabet Σ, with:

v = a1a2⋯an w = b1b2⋯bn

�e notation vw is used as a shorthand for:

vw = a1a2⋯anb1b2⋯bn

�is is called the concatenation of v and w. If w is the empty word ε, then vw = vε = v,
and also if v is the empty word vw = εw = w.

De�nition 1.1.5. If a word w can be written as the concatenation of two words u and v,
i.e. w = uv, (with possibly u = ε or v = ε), we say that u is a pre�x of w, and v is a su�x
of w. If there exists some u and v such that w = uxv, we say that x is a sub-word of w.
Note that ε and w itself are always a pre�x, su�x and sub-word of w. A proper pre�x u
of w is a pre�x of w, where u ≠ ε and u ≠ w. Proper su�xes and proper sub-words are
de�ned analogously.

Using the empty word and this notation of concatenation we can give a de�nition of

the set of words over Σ, which henceforth will be denoted as Σ∗.

De�nition 1.1.6. �e set of words over Σ is recursively de�ned as follows:
1. ε ∈ Σ∗, this is the basis.
2. If w ∈ Σ∗ and a ∈ Σ, then also wa ∈ Σ∗; this forms the recursive step.
3. Only those words formed by a �nite number of applications of the previous two

steps are in Σ∗

Example 1.1.7. Let Σ = {a, b}. Using the previous de�nition we can list the elements
of Σ∗, these are in increasing length (halting at length 3):

6

1.1. Words and languages

Length 0 ε;
Length 1 a, b;
Length 2 aa, ab, ba and bb;
Length 3 aaa, aab, aba, abb, baa, bab, bba, bbb.

We see that there will be 2k words of length k for this alphabet. In general we see that
for an alphabet consisting of n symbols there will be nk words of length k.
Similar to the English language, not every possible word that can be formed is

considered a valid English words (such as xuqa). A language will normally have some
restrictions on the set of all possible words, thus restricting the language to a subset of

all possible words. �is is expressed in the following de�nition.

De�nition 1.1.8. A language over an alphabet Σ is a subset of Σ∗.

�is need not be a proper subset, for the language of non-negative numbers is formed

by all words over the alphabet {0, 1, 2, . . . , 9}. �e language consisting of all prime

numbers however, is a subset of the words over the alphabet {0, 1, 2, . . . , 9}. �e word

32 is not part of this language, but 13 and 71317 are. �e latter would even be part of the

more restricted language of palindromic primes.

One can also have more than one language over the same alphabet of course. One

could for example de�ne the language ‘even numbers’, and the language ‘multiples of

three’ over the alphabet {0, 1, 2, . . . , 9}.

Languages themselves, similar to words, can also be combined in di�erent ways to

create new languages. Two languages L1 and L2 can be merged into a new language L:
L = L1 ∪ L2, which de�nes the language of all words either in L1 or in L2 or both.
Two languages can also be concatenated, this is written as

L1L2 = {w1w2 ∣ w1 ∈ L1 and w2 ∈ L2}

Example 1.1.9. Suppose we would have a language L1 = {over, under} and another
language with the words L2 = {achieve, coat, sea}, then the concatenation of these
languages L1L2 would consist of the six (British) English words {overachieve, overcoat,
oversea, underachieve, undercoat, undersea}.

Commonly though, this construct is used to expand a set of letters to a language

consisting of all words that can be formed by these letters; by repeatedly concatenating

the language to itself, which we shall see below.

�is way, also the power of a language can be de�ned. �e n-th power of a language
L is written as Ln, where n is a non-negative integer, and is de�ned as follows:
1. L0 = {ε}
2. Ln = Ln−1L, for n > 0.
A �nal, important, operation, is the (Kleene) star or Kleene closure of a language,

which is written as L∗ and de�ned as:

∞

⋃
i=0
L
i

7

1. Preliminaries

Note that the notation Σ∗ is consistent with this.

Now that we have stipulated what is meant by words and languages we can advance

to the concept of a Finite State Automaton (fsa).

1.2 Finite State Automata

1.2.1 History

Finite state automata can be found at the heart of theoretical computer science. Despite

this theoretical character, their practical applications are surprisingly wide ranging and

manifold.

�e roots of fsas can be traced back to the work of Warren McCulloch and Walter

Pitts, whose article, (McCulloch & Pitts, 1943), described a mathematical model

of neurons, i.e. nerve cells in the brain. Even though Alan Turing had presented his

Turing machine seven years before, and as such had introduced the idea of an abstract

machine performing in a deterministic manner, his machine is way more powerful

than a �nite state automaton.

�e work of McCulloch an Pitts was subsequently presented to Stephen Kleene for

investigation by the rand corporation. �is research, although completed in 1951, was

not published until 1956. His seminal work (Kleene, 1956) also provides a proof of

what is now known as ‘Kleene’s theorem’, a result linking regular sets and �nite state

automata intimately.

During the following years the theory behind fsas has been greatly expanded

and fsas have been applied in many �elds, partly because of their simplicity which

gives them a large practical advantage over Turing-machines, whose properties are

mostly studied in an abstract context. fsas however are very useful in solving problems

involving circuit design, lexical analysis and text processing and in recognising certain

numbers or even biological sequences.

�e interested reader, with a command of the French language is referred to Per-

rin (1995) for a more detailed exposition of the history of fsas.

1.2.2 An abstract automaton

fsas are usually used to determine whether a word belongs to a language, i.e. a subset

of all possible words (or strings) over a given alphabet. �e language of even numbers

over the alphabet of digits will only consists of digits ending in 0, 2, 4, 6 or 8. Something

like 13 is a valid word, but it is not part of the language of even numbers. It turns out

that for certain languages one can construct an fsa, whereas one cannot for other. �e

languages for which one can construct an fsa are called regular languages.
�ere are several ways to depict automata, as a picture with circles and arrows or

in a more mathematical way. We shall start out with the pictures, which give a more

intuitive idea, and will then provide the mathematical de�nition.

A sample automaton is shown in �gure 1.1. Its basic features are circles and arrows

connecting them. Every circle is called a state, and this model is a schematic layout

8

1.2. Finite State Automata

s t

1

0

0

1

Figure 1.1 An automaton accepting words over {0, 1}, ending with 0.

of the states of the automaton. When the automaton ‘runs’ it will move from state to

state, obeying the arrows in the �gure. If there is an arrow from one state to another,

that means the automaton can make a transition from the �rst state to the next one,
provided the input matches the symbol near the arrow. For example, the automaton in

�gure 1.1 can make a transition from s to t provided the input is 0. It can return to s
from t in case of a 1 in the input. Also, it can stay in t, if another 0 is input.

�e input is usually a word, in the sense de�ned in de�nition 1.1.2. �e automaton

will consume this word symbol by symbol, and take the appropriate transition. It will

start reading from the le�, so if the word 001 was provided to our sample automaton at

the moment it was in s, it would move to t, consuming the �rst 0, and leaving 01 to be
processed. A�er that it would consume another 0, which means it will stay in t and
�nally it would see a 1, so it would return to s. If the automaton would reside in t at the
moment it was given 001 it would also end up in s.
To make clear where an automaton starts, a special state, called an initial state

exists, which is designated as . In �gure 1.1 this is state s. Also, there is at least one
�nal state in the automaton, which is indicated by a circle with a double border: ,
which is state t in the example.
If the automaton ends in a �nal state a�er having consumed the �nal symbol of

the input word, it is said to accept this word. Our example automaton will thus accept
any word consisting of zeros and ones, ending with a zero. One could interpret these

words as binary numbers and say that it will only accept those numbers ending with 0,

or indeed the even numbers.1

In the real world, many automata also take some form of input. In the case of

vending machines, this will consist of some coins, which need to add up to the required

amount; or in case of a combination lock it should be a series of digits that have to

be input in the right order. One can also model these automata as an fsa. In the �rst

case the alphabet will for example consist of the symbols €0.10, €0.20 and €0.50, if the

automaton only accepts ten, twenty and ��y cent coins. A ‘word’ is a sequence of these

symbols. One can see in �gure 1.2a that the words that are accepted are those that have

a monetary value of €0.50. In case of the combination lock, shown in �gure 1.2b the

winning combination is 642, which has to be input in the right order.

1In case of the even numbers, one can easily construct an automaton that takes decimal numbers as
input. It should go from s to t, or stay in t if an even digit was input, and otherwise go to s. In general
however, certain problems can only be solved if the input is in the right number base. One can imagine
that it is easy to recognize words that are a power of 10 in base 10 or a power of 2 in base 2. �ese words
will have exactly a single one and end with a series of zeros in their respective bases. In other bases
however, these numbers are not so easy to recognize.

9

1. Preliminaries

€0.50 €0.40 €0.30 €0.20 €0.10 paid

€0.50

€0.10

€0.20

€0.10

€0.20

€0.10

€0.20

€0.10

€0.20

€0.10

a A model of a vending automaton, which accepts exactly €0.50 in coins of €0.10, €0.20 or

€0.50.

s s1 s2 open
6 4 2

b A model of a combination lock. This is like peering inside

the lock – in reality one would only be able to try to input

something and see whether the automaton accepts it.

Figure 1.2 Two examples of �nite state automata, based on ‘real world’ automata.

One could wonder, what if someone inputs a symbol which is not de�ned for

that state? For example, someone inputs a 3 in the combination lock. In fact this is

negligence on our part, a truly deterministic fsa should have exactly one transition at

every state for every possible input symbol. Usually it is made implicitly clear what to

do if a symbol is not de�ned, in the case of the combination lock it should start over,

in other cases the automaton might be amended to include one extra state, to which

every ‘unde�ned’ transition will go. Once having entered this state, the automaton will

stay there and make a transition to itself for every possible input symbol.

One can see how an automaton accepts a word, and we know that a language

consists of words. Noting this, we can see how an automaton also describes a language,

viz. the language of those words accepted by the automaton, which is usually a subset

of all words over the (input) alphabet of the automaton. �e ‘language’ of the vending

machine consists of input sequences that added up are worth €0.50. �e language

of the combination lock are only those sequences that end in 642, out of all possible

sequences of integers.

We will make this connection more precise and formal in the next section.

1.2.3 The mathematical automaton

�e previous section presented a rather intuitive model of the automaton, and a way to

visualise it, using circles and arrows. Now we shall provide a mathematical de�nition.

�is mathematical de�nition formalises and speci�es what is meant exactly when we

mean by accepting a word.

�e previous section however, can always be used as an intuitive guidepost.

De�nition 1.2.1. A Finite State Automaton is de�ned as a quintuple (Σ,Q , I, F , E),
where Σ is the alphabet over which the automaton is de�ned, Q is a set of states, I is a
set of initial states, with I ⊂ Q; the set of �nal states is given by F, also with F ⊂ Q, and

10

1.2. Finite State Automata

�nally the edges are given by E such that E ⊂ Q × Σ × Q.

De�nition 1.2.2. A deterministic fsa is an fsa with the following constraints:
◆ ∣I∣ = 1, i.e. there is a unique initial state.
◆ For each pair (s, a) ∈ Q×A, there is at most one state t ∈ Q such that (s, a, t) ∈ E,
i.e. in every state there is at most one choice for a given input symbol.

�e automata in the �gure 1.1 and �gures 1.2a and 1.2b are all deterministic. In the

combination lock example however, we did not specify what should happen if the user

tries to input 4 in state s. Automata like this one, which do not specify an action for
every input symbol in every input state are called incomplete, a notion speci�ed in the

next de�nition.

De�nition 1.2.3. An fsa is called complete if for each pair (s, a) ∈ Q × A, there is at
least one state t ∈ Q, such that (s, a, t) ∈ E. i.e. in every state there is at least one choice
for a every given input symbol. If there is no option for some input symbol from the

symbol, the automaton is called incomplete.

Now that we know what an automaton looks like mathematically speaking, we can

make the concept of accepting a wordmore precise. But �rst we need to de�ne how we
associate words with automata.

De�nition 1.2.4. A path in an automatonA = (Σ,Q , I, F , E) is a sequence of connected
edges p = e1⋯en, where ei = (si , ai , ti) ∈ E, such that ti = si+1, for i < n. �e state si
will be called the source of the path and the state tn will be called the end of the path.
�e ordered concatenation of the symbols ai , i.e. a1⋯an gives the label of the path.
�is label is also a word, compare with de�nition 1.1.2.

Having established how we associate a word with a path in a automaton the time is

ripe to give a de�nition of accepting a word.

De�nition 1.2.5. An automatonA = (Σ,Q , I, F , E) is said to accept a word w if there
is a path in A with label w such that its source is an element of I and its target is an
element of F. Such a path is called successful.

�e previous de�nitions enable us to straightforwardly give a de�nition of the language

of an automaton:

De�nition 1.2.6. �e language of an automaton A, written as L(A) is de�ned as the
set of all words accepted by A.

�e attentive reader might have noted that we have spoken about �nite state automata,

deterministic �nite state automata, complete automata, thus implying that there should

also be non-deterministic automata, or incomplete automata. �e reader might also

wonder whether there is a substantial di�erence between the two, can one type of

automata accept words another type cannot, and what is the real di�erence?

11

1. Preliminaries

s t

0, 1

0

Figure 1.3 A non-deterministic automaton accepting words over {0, 1}, ending with 0.

�e following theorem, which is given without its (short) proof states this is not

the case – the interested reader is referred to (Sudkamp, 1998) or (Perrin, 1990) for

details.

�eorem 1.2.7. For each �nite automaton, there exists a deterministic and complete
�nite automaton which accepts exactly the same language.

In practice however, it is o�en much easier to specify an incomplete automaton (as we

have done in the examples in �gure 1.1, 1.2a and 1.2b), and at times a lot more concise

to specify a Non-Deterministic Finite State Automaton (nfa). Although we have not

paid much attention to nfas, the main di�erence with a Deterministic Finite State

Automaton (dfa) is that for an nfa which accepts a word w there might be other paths
with the same label that are not successful. �is does not matter as long as there is at

least one path that is successful. An example of a slightly more compact speci�cation

of the automaton in �gure 1.1 is given in �gure 1.3. For the input symbol 0 there are two

choices in state s. Either stay in s, or go to t. �e ‘right thing’ to do is to only choose
the transition to t if the 0 is the last symbol of the input. �e automaton of course
does not know this, it is not supposed to be clairvoyant. It has to decide in an ad-hoc

manner what to do with the current input symbol. If one wishes, one could interpret it

as always choosing the correct option, or as exploring every option in parallel. Our

de�nition however, only states that there should exist some successful path for this

word; how this path is to be found in practice is immaterial.

1.3 Regular expressions

�e previous section described the way fsas relate to languages and words in the sense

we have de�ned them. As implied therein, there are many di�erent ways to de�ne

which words can be part of a language, but one of the simplest ways, known to linguists

as a ‘Type 3 grammar’ is given by regular expressions.2

It turns out that these regular expressions give another method to de�ne regular

languages. Because fsas can also be used to de�ne regular languages, these two

formalisms are equivalent. Every language for which one can construct an automaton,

one can also de�ne by a regular expression.

2Some authors, especially from the Francophone parts of the world, prefer the term rational expres-
sion, because of the close analogy between these expressions and the rational power series (or fractions)
of classical algebra. We shall follow the multitude however.

12

1.4. Markov chains

De�nition 1.3.1. Let Σ be an alphabet. �e set of regular expressions over Σ is recurs-
ively de�ned as follows:

1. ε and ∅ are regular expressions.
2. For every symbol a ∈ Σ, a is a regular expression.
3. If e1 and e2 are regular expression, then so are e1e2, (e1 + e2) and (e∗1).
4. Nothing else is a regular expression.

Normally, the parentheses are not always written down. For example, an expression like

aε+ bc∗ should be read like ((aε)+(b(c∗))). From this we can see concatenation has
precedence over +, but ∗ has precedence over concatenation. A frequently encountered

variant notation for a + b is a ∣ b.
�e regular expressions a and ε represent the languages which just consist of that

single symbol. An expression like e1 + e2 represents a choice, it represents the union of
the languages de�ned by e1 and e2. �e ∗ represents repetition, and is a shorthand for
all strings in which the previous symbol is repeated zero or more times.

De�nition 1.3.2. �e language L(e) de�ned by a regular expression e is as follows

L(∅) = ∅ L(ε) = ε
L(a) = {a} L(e1e2) = L(e1)L(e2)

L(e1 + e2) = L(e1) ∪ L(e2) L(e∗) = L(e)∗

Kleene (1956) �rst proved the equivalence of regular expressions and fsas. �ere

furthermore exist di�erent methods to convert a regular expression to an fsa which

accepts the same language as the regular expression de�nes, and vice versa. An overview

of the di�erent approaches can be found in the article by Yu (1997).

1.4 Markov chains

�e �eld of Markov chains is mathematically very well developed, and knows many

applications in the �elds of biology, physics and also computer science. �ey are named

a�er the Russian mathematician Andrei Markov (Андрей Марков).

A Markov chain, in a way, can be viewed as some sort of autonomous automaton,

which starts in a certain state, and thenmoves with some probability to another state by

itself. It hence di�ers from a normal automaton by not requiring input, like the vending

machine example of �gure 1.2a. Instead, it makes the transitions according to a certain

probability. �e de�ning property of the Markov chain is that this probability of going

from a certain state s1 to a state s2, only depends on the current state the automaton is
in, and not on any previous state it might have visited, this is known as theMarkov
property. Finally, the Markov chain does not have an accepting state.
If we take an early look at �gure 1.5a on page 19, and assume it models a fair

coin, we can assign probabilities to the transitions in this automaton. �e transition

13

1. Preliminaries

start→heads should have a probability of 1⁄2 , and hence the transition to tails should
also have probability 1⁄2 . Indeed, every transition should have probability 1⁄2 in this

automaton.

�is expresses, that even though one might have �ipped heads already ten times,

the probability that heads will come up a�er the next �ip does not change, as we expect,

because the coin does not have any memory.

For example, many games, such as Monopoly, can be viewed as Markov chains.

�e square a player will land on will solely depend on the square its currently on and

the outcome of the next throw.3 Other games, such as Blackjack, cannot be modelled
as a Markov chain, since the probability that you won’t exceed 21 if you already have 17

depends on the cards already drawn during previous turns.

Mathematically, a Markov chain is usually represented as a transition matrix. �at

is, an entry pi j in the matrix represents the probability of going from state i to state
j. Furthermore, the probabilities in every row should add up to one, i.e. ∑ j pi j = 1,
because you always have to go to some other state (or stay where you are). A matrix in

which every row adds up to 1 is called stochastic.
�e name chainmeans the state space of the Markov process is �nite. �e process

is de�ned as a sequence of random variables X1, X2, . . . which indicate the state for
each moment in time, with the Markov property which states that the next state solely

depends on the present state and not on the previous state, or formally:

Pr (Xn+1 = x ∣ Xn = xn , . . . , X1 = x1) = Pr (Xn+1 = x ∣ Xn = xn) .

Note that we have also tacitly assumed that Pr (Xn+1 = x ∣ Xn = xn) (the one step
probabilities) are independent of n, which means the transitions probabilities are
stationary. �is assumption allows us to arrange the transition probabilities as a matrix.

1.4.1 Discrete Time Markov Chains

To be precise, the Markov chains we use are Discrete Time Markov Chains (dtmcs)4.
In the following de�nition, let AP denote a �xed, �nite set of atomic propositions.
We usually use a, b, c, . . . or ai to denote these propositions. �eir rôle is semantic.
For example, the atomic proposition h might indicate an outcome ‘heads’ for the coin
toss example. Or successmight indicate some operation has succeeded. We use these
propositions to annotate states; the next section will make use of these propositions.

De�nition 1.4.1. A (labelled) Discrete Time Markov Chain (dtmc) is a triple D =

(S ,P, L), where:
3A�er the throw, one might land on Community Chest, or Chance, thus moving again, but assuming

you pick a random card from the pile in each case, this can be modelled very simply. Suppose you have
to throw 5 to arrive at Chance. �is has a probability of 1⁄9 . �en, there is probability of 1⁄16 you pick the
‘Advance to Go’ card, and hence for that turn there is a probability of 1⁄144 of ending at Go, assuming you
couldn’t arrive at it directly.

4�is name is actually historic and can be considered a bit of a misnomer, since we usually abstract
away from the notion of time when using these automata. �e transitions between states are discrete
however, but they do not necessarily take a �xed amount of time.

14

1.4. Markov chains

◆ S is a �nite set of states;

◆ P ∶ S × S → [0, 1] is a stochastic matrix;

◆ L ∶ S → 2AP is a labelling function which assigns to each state s ∈ S the set L(s)
of atomic propositions that are valid in s.

Note that, from a computer scientist’s point of view, a dtmc is a Kripke structure in

which all transitions are equipped with discrete probabilities such that the sum of the

outgoing transition probabilities of each state is equal to 1.

Note also, that we do not equip the dtmc with a starting distribution, in this thesis

we always assume the dtmc has a unique initial state.

If P(s, s) = 1 for s ∈ S, then we call that state absorbing. If we draw the dtmc as a
picture, we do not draw the transitions between states s1 and s2 for which P(s1, s2) = 0.
�e size of a dtmcD is denoted by ∣D∣, and is the number of non-zero entries in P.

1.4.2 Paths in DTMCs

Having established what a dtmc is, and how to give certain properties to states using

atomic propositions and a labelling function, we shall now make clear how to specify a

sequence of movements ‘through’ a dtmc.

De�nition 1.4.2. LetD = (S ,P, L) be a dtmc.
◆ An in�nite path σ in D is an in�nite sequence s0s1s2⋯ of states, such that

∀i ≥ 0 ∶ P(si , si+1) > 0.

◆ A �nite path is a �nite pre�x of an in�nite path.

Note that, because P is stochastic we can never get stuck in a state, every state has a
successor. An in�nite path is thus always possible. Because there is only a �nite number

of states in the structure, an in�nite path needs to have some parts that are repeated

in�nitely o�en, we use the ω subscript for this, e.g. s1s2(s3s4)ω indicates a path where
the su�x s3s4 is repeated in�nitely o�en at the end of the path.
We use PathsD(s) to denote the set of all in�nite paths inD that start in state s and

we use PathsD�n(s) to denote the set of �nite paths starting in s. If it is clear from the
context whichD is meant, we omit the superscript.

Let σ̂ = s0⋅s1⋯sn ∈ PathsD�n(s0). �at is, σ̂ is a �nite path starting in s0. If P(sn , s) >
0, then we can extend a path σ by s, which we denote as σ ⋅s. �e length of a path
σ is denoted as ∣σ ∣ and is measured by the number of transitions of a path. Hence,
∣σ̂ ∣ = ∣s0s1⋯sn∣ = n, and ∣s∣ = 0. For an in�nite path σ we have ∣σ ∣ = ∞.

�ere are also some operators for obtaining a speci�c state in a path, and for

obtaining the pre�x or su�x of a path. Indexing starts at 0, so we write σ[i] to obtain
the (i + 1)-th state in the path, with 0 ≤ i ≤ ∣σ ∣. So, for example, σ̂[i] = si . Let σ[≤ i]
denote the pre�x of path σ truncated at length i, thus ending at the (i+ 1)-th state. �at
is σ[≤ i] = σ[0]σ[1]⋯σ[i]. Dually, the su�x of a path, written as σ[≥ i] is de�ned as
σ[≥ i] = σ[i]σ[i + 1]⋯ .

15

1. Preliminaries

�e set of all pre�xes of a path σ is denoted as Pref (σ) with:

Pref (σ) =
∣σ ∣
⋃
i=0

{σ[≤ i]}

1.4.3 Probability of paths

Now that we have a way of specifying paths in a dtmc, where every transition has a

certain probability associated with it, we would like to assign a probability to the whole

path. �at is, the probability that these transitions actually occur.

For this we make a small sidestep into measure theory, but this is only for the

theoretical foundations, since the measure itself is as we would intuitively expect.

When looking from a probabilistic point of view, terms like experiment, outcome
and event are used. For example, the experiment might be a throw of a dice, the
outcomes would be 1 to 6, and an event could be throwing an odd number, which

would be an outcome of 1, 3 or 5. So basically events consist of a set of outcomes.

With dtmc, the experiment is a run through the dtmc; that is to say: we start in
our initial state, then go to a successor state, again, and again. �e outcome of such

a run will be a path, in the sense of de�nition 1.4.2. Because paths are in�nite, the

probably that a speci�c single path will occur can be zero, for example the probability

of in�nitely o�en throwing heads is zero.5 �is is why we are usually interested in
events that consist of an (in�nite) set of paths. We use the set of �nite paths as as basis.

�e reason for this is that generally we are in something happening within a �nite

amount of time, and a�er that the course of the path is irrelevant for us.

�is leads us to the idea of a (basic) cylinder: namely the set of all paths that start

with a speci�ed pre�x.

De�nition 1.4.3. �e cylinder set of a �nite path σ̂ = s0⋅s1⋯sn ∈ PathsD�n(s0) is de�ned
as:

Cyl(σ̂) = {σ ∈ PathsD(s0) ∣ σ̂ ∈ Pref (σ)}

�ese cylinder sets play an important part in what we consider an event in the context

of dtmc. �e probability of an event comprising of a single cylinder set can now

simply be found by multiplying the probabilities of the transactions in the pre�x that

generated the cylinder set. �at this should indeed be a valid probability, can intuitively

be seen by considering that the only thing that matters is that the pre�x occurs, a�er

that any continuation is good. �e probability that something happens is 1. Hence, the

probability for the whole set is given by the pre�x.

We complete this interlude with a formal de�nition of the informal exposition

above. �e readerwho is interested in amore thorough discussion of the ideas presented

5�is indeed is one of the reasons we need more sophisticated tools such as measure theory to
analyse the probabilities, because adding probabilities naïvely will not get us anywhere, because the basic
outcomes have zero probability.

16

1.4. Markov chains

a A mouse in a maze with cheese and

an exit.

start
{s}

c1
∅

free
{ f }

cheese
{c}

exit
∅

c2
∅

c3
∅

12

14

14 14

14

13

13

25

25

14

12

121

13

15

14

14

34

b The corresponding transition sytem.

Figure 1.4 An example of a maze and the DTMC modelled after it.

here is referred to the article by Panangaden (2001) or the book of Baier &

Katoen (2008, chapter 10). In addition, Capinski & Kopp (2004) provides a basic

introduction into probability and measure theory, and explains for example what a

σ-algebra is, which we use without further explanation in the following de�nition.

De�nition 1.4.4. �e probability measure PrDs0 (brie�y Pr) induced by a dtmcD with
initial state s0 is the unique measure on its σ-algebra:

Pr{σ ∈ Paths(s0) ∣ s0⋅s1⋯sn ∈ Pref (σ)
´¹¹¸¹¹¹¶

Cyl(s0⋯sn)

} =
n
∏
i=1

P(si−1, si). (1.1)

�e σ-algebra should be the smallest σ-algebra containing all cylinder sets induced by
the �nite paths starting in s0.

By slight abuse of notation we also write Pr{σ} as a shorthand for Pr{Cyl(σ)}, where
σ is a �nite path.

1.4.4 Example DTMC

We shall now present an example of a situation which can be modelled by a dtmc to

elucidate the terminology introduced in the previous sections.

A commonly encountered example is a mouse in the maze. An example maze is

shown in �gure 1.4. �e mouse starts in the upper le� of the maze, a�er which it is

assumed to make a move to another cell every now and then. �is move might also

mean it stays in the same cell. We thus assume the mouse does not learn, which might

be adequate considering the size of the maze. In the room next to the starting room,

17

1. Preliminaries

there is a piece of cheese6. If the mouse discovers this, it will be less inclined to go to
another room. If the mouse escapes, it will never come back in the maze.

In �gure 1.4b, the corresponding transition system is shown. If a cell has two exits

to another cell, the mouse is more likely to end up in this cell. We can see that ‘free’

is an absorbing state. �is means that eventually, the mouse will always �nd the exit.

Although, of course, in theory the mouse could decide to always stay in the �rst room,

the probability of this is negligible.

A �nite path in this maze could be σ1 = start⋅c1⋅cheese⋅cheese. An in�nite path
might be σ2 = start⋅c1⋅c3⋅c2⋅exit⋅(free)ω

�e probability of the �rst path, Pr{σ1}, can be found by multiplying the probabil-
ities on the transitions: Pr{σ1} = 12 ⋅ 14 ⋅ 34 = 332 . If we would formally de�ne a dtmc for
this transition system, sayD = (S ,P, L), we would have:

◆ S = {start, cheese, exit, free, c1, c2, c3}

◆ For the transitionmatrix (which uses the same order for the states as the previous

item) we have:

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

12 0 0 0 12 0 0

0 34 0 0 14 0 0

0 0 13 13 0 13 0

0 0 0 1 0 0 0

14 14 0 0 14 0 14
0 0 25 0 0 15 25
0 0 0 0 14 12 14

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

◆ And the labelling function is de�ned as: L(start) = {s}, L(cheese) = {c},
L(free) = { f }. For the other nodes we have L(⋅) = ∅.

1.5 Computational Tree Logic

Computational Tree Logic (ctl) (Clarke & Emerson, 1981) is de�ned as a propos-

itional branching-time temporal logic. As it is one form of temporal logic, it �ts in the

larger framework of modal logic; in this thesis however, we only concern ourselves with

ctl as far as necessary for an understanding of the material involved here. Emerson

(1990) provides a more detailed account on various temporal and modal logics.

Being a temporal logic, ctl allows us to propose things that will happen as time
passes. For example, if someone is �ipping a fair coin, one can state: until you �ip

heads, you �ip tails. �e previous will of course happen always, but you could also
propose that ‘you will eventually �ip two heads and two tails’ in a row. �is need not

happen, for one could, in theory, �ip only heads, or �ip heads and tails alternately.

Being a branching temporal logic, ctl allows us to view time, and in particular the
future, as a tree of possible scenario’s. �at is, to continue the coin �ipping example, �rst

one might �ip heads, and then one might �ip heads again, and then tails. Or perhaps

6In reality, mice do not particularly like cheese, but we assume they do.

18

1.5. Computational Tree Logic

start

heads

tails

heads

tails

tails heads

tails

heads

a An automaton representing an

in�nite sequence of coin �ips.

(start, 0)

(heads, 1)

(heads, 2)

(h, 3) (t, 3)

(tails, 2)

(h, 3) (t, 3)

(tails, 1)

(heads, 2)

(h, 3) (t, 3)

(tails, 2)

(h, 3) (t, 3)

b An in�nite sequence of coin �ips as an in�nite

tree (h = heads, t = tails)

Figure 1.5 A �nite structure and the corresponding unwound in�nite tree.

one would start with tails, et cetera. Viewed thusly, one could draw an in�nite tree of

scenario’s. Such a tree can be derived by unwinding a �nite structure, for example an

automaton. An example of this idea is given in �gure 1.5, where one sees an automaton

and its corresponding tree.

Also, one can see in the �gure 1.5b that time is represented as a discrete sequence

of events. �is allows us to speak about ‘the next moment in time’, or ‘within �ve

moments’; meaning we speak about the next level or the next �ve levels in the tree.

Furthermore, we can clearly see how many scenario’s there are. �ere are, for example

four di�erent ways to arrive at the second level in the tree, where each node represents

a di�erent sequence of coin �ips.

�e important aspect when employing temporal logic, is that one tries to reason

about the behaviour of an underlying system which possibly never ceases running.

�ese systems are typically reactive. �ey wait for some input, move to another state,
and wait for input again. Other methods for program veri�cation are o�en based on

the transformation from one state to another, and one proves that this transformation
is executed correctly, and a�er the computation the program is done. An example of

this is a compiler which takes an input �le and outputs an executable or a formatted

document. An operating systemhowever can keep on running and reacting tomessages

from the keyboard and the network.

�e next section will de�ne the syntax and semantics in a more thorough and

mathematical way. Note that, although the semantics ctl can be de�nedmore generally

for any transition system (or semi-automaton), we use the dtmcs described in the

previous section as the underlying structure.

1.5.1 Syntax and semantics

Since ctl is a branching logic, there is more than one scenario for the future. Its

operators re�ect this fact. One can quantify over these di�erent scenario’s – or paths.

�ere are the basic temporal operator A (for all futures) and E (for some future); these

are always followed by a usual linear time operator like F (sometime) G (always), X

19

1. Preliminaries

(next moment), U (until) and W (unless). �ese linear time operators do not view time

as branching, these are applied to one speci�c future scenario or path; the branching

aspect of ctl is provided by the A and E operators. A combination like EFwin lottery
intuitively might have the meaning ‘I might potentially win the lottery.’ Sadly enough,

this is not the guaranteed possible future, and it is not very probable it will be ours.

�e morbid AFdie expresses that whatever the future will be, it is inevitable that we die
some time. We furthermore allow for a bound on the maximum number of moments

that can pass before something should hold, for example AG
≤3 rainmight be interpreted

as a bad weather forecast which states that ‘for the next three days it will invariantly

rain’. If the bound is not mentioned, it is taken as being in�nite and called unbound.
�e inclusion of a time-limit on the operators was independently proposed by

(Emerson et al., 1991) and (Hansson & Jonsson, 1994). �e latter also introduced

a probabilistic operator, thus describing what is known as Probabilistic Computational

Tree Logic (pctl), which will be described in the next section.

1.5.1.1 Syntax

De�nition 1.5.1. We again use an inductive de�nition. Let AP the set of propositions.
First we give the state-formulae:

1. For every a ∈ AP we have: a is a state-formula.

2. If Φ is state-formula, then ¬Φ is a state formula.

3. If Φ and Ψ are state-formulae, then Φ ∨Ψ is a state-formula.

4. If φ is a path-formula, then E φ and A φ are state-formulae.

5. Only those formulae formed by a �nite number of applications of the previous

four steps are state-formulae.

Path formulae are formed by the following rules:

1. If Φ is a state-formula, then XΦ is a path formula.

2. If Φ and Ψ are state-formulae, then ΦU
≤hΨ, with h ∈ N∪{∞} is a path-formula.

3. If Φ and Ψ are state-formulae, then ΦW
≤hΨ, with h ∈ N∪{∞} is a path-formula.

4. Only those formulae formed by a �nite number of applications of the previous

three steps are path-formulae.

Remark 1.5.2. In stead of U
≤∞ andW

≤∞ we simply write U andW. �ese operators are

also called unbounded, whereas U
≤h andW

≤h with 0 ≤ h ≤ ∞ are called bounded.

Other logical connectives, such as Φ ∧ Ψ or other temporal operators, such as FΦ can

all be expressed in terms of the connectives and operators given above. �e following

20

1.5. Computational Tree Logic

equivalences hold

tt ≡ Φ ∨ ¬Φ EF
≤h
Φ ≡ E(tt U

≤h
Φ)

ff ≡ ¬tt AF
≤h
Φ ≡ A(tt U

≤h
Φ)

Φ ∧Ψ ≡ ¬(¬Φ ∨ ¬Ψ) EG
≤h
Φ ≡ E(ΦW

≤h ff)

Φ⇒ Ψ ≡ ¬Φ ∨Ψ AG
≤h
Φ ≡ A(ΦW

≤h ff)

Φ⇔ Ψ ≡ Φ⇒ Ψ ∧Ψ⇒ Φ AXΦ ≡ ¬ EX¬Φ

1.5.1.2 Semantics

In order to give the formulae some meaning, apart from the intuitive idea, we de�ne

two satisfaction relations (both denoted by ⊧). �e �rst is for the path-formulae, and

the second one for the state-formulae. Remember, we use the dtmcs described in the

previous section as our underlying structure. So formally wewould have ((D, s), Φ) ∈⊧,

but we simply write s ⊧ Φ ifD is clear from the context.

De�nition 1.5.3. LetD = (S ,P, L), and s ∈ S, then forD and s we de�ne ⊧ as the least
relation satisfying:

s ⊧ tt True in every state
s ⊧ a i� a ∈ L(s)
s ⊧ ¬Φ i� not (s ⊧ Φ)

s ⊧ Φ ∨Ψ i� s ⊧ Φ or s ⊧ Ψ
s ⊧ E φ i� s ⊧ φ for some σ ∈ Paths(s)
s ⊧ A φ i� s ⊧ φ for all σ ∈ Paths(s)

For σ ∈ Paths(s) we have:

σ ⊧ XΦ i� σ[1] ⊧ Φ
σ ⊧ Φ U

≤h
Ψ i� ∃i ≤ h ∶ (σ[i] ⊧ Ψ ∧ ∀0 ≤ j < i ∶ (σ[j] ⊧ Φ))

σ ⊧ ΦW
≤h
Ψ i� either σ ⊧ Φ U Ψ or ∀i ≤ h ∶ (σ[i] ⊧ Φ)

Remark 1.5.4. For σ ∈ Paths�n the semantics of the U
≤h andW

≤h operator need to be
adapted slightly. We need to change the range of i ≤ h to i ≤ min{h, ∣σ ∣}. Note that in
each case the validity of the U operator can be witnessed by a �nite pre�x of an in�nite

path.

Remark 1.5.5. More general versions of the bounded operators are possible of course.
One could think of U

≥h or U
h l≤h≤hu or U

=h which would give a lower bound, an interval
or an exact number on the number of moments that can pass before the formula needs

to hold. All these forms could be covered by one operator U
[h l ,hu] where hl speci�es

the lower bound, which can be zero, and hu speci�es the upper bound, which can be
in�nite. Again, this requires an adaptation to the range of i ≤ h to hl ≤ i ≤ hu.

21

1. Preliminaries

In the above de�nition, theW
≤h operator is mainly given for completeness, the thesis

itself will primarily focus on the U
≤h operator.

Note that if a �nite path σ satis�es an until formula Φ UΨ, so will any extension

of σ , say σ ⋅s. In other words, it ‘doesn’t matter what happens a�er Ψ is valid in a state’.
With this in mind we also de�ne the minimal satisfaction relation of a path formula.

De�nition 1.5.6. �eminimal satisfaction of a path formula,
min
⊧ is given by:

σ
min
⊧ φ i� σ ⊧ ϕ and ∀σ̇ ∈ Pref (σ)/{σ} ∶ σ̇ /⊧ φ.

We shall use the following expressions as a shorthand to denote a particular set of paths

starting in a state s that satisfy a path formula φ:
◆ Paths(s, φ) = {σ ∈ Paths(s) ∣ σ ⊧ φ}

◆ Paths�n(s, φ) = {σ ∈ Paths�n(s) ∣ σ ⊧ φ}

◆ Pathsmin(s, φ) = {σ ∈ Paths(s) ∣ σ
min
⊧ φ}

Given a σ ∈ Paths(s, φ), we de�ne Prefmin(σ , φ) to be:

Prefmin(σ , φ) = σ̇ ∈ Pref (σ), s.t. σ̇
min
⊧ φ

Remark 1.5.7. Note that, the U
≤h (until) andW

≤h (unless) are very closely related. �e
unless operator does not require its right hand side to hold at a futuremoment in time if

the le� hand side is always true. For this reason it is also called ‘weak until’. For a single

path σ we could even de�ne the equivalence σ ⊧ ΦW
≤h Ψ ≡ σ ⊧ Φ U

≤h Ψ ∨ G
≤hΦ,

where we could express G
≤hΦ as ¬ F

≤h ¬Φ; in this way the W operator would not need

a separate de�nition. However, this does not work if the A and E operators come into

play. Since Φ U
≤h Ψ is a path formula, we cannot say Φ U

≤h Ψ ∨ G
≤hΦ, since ∨ can

only connect state formulae. Furthermore A(Φ U
≤h Ψ) ∨ A(G

≤hΦ)means something

di�erent than A(ΦW
≤h Ψ). �e former requires either Φ U

≤h Ψ or G
≤hΦ or both to

hold on all future paths, whereas the latter requires to that at least one of Φ U
≤h Ψ or

G
≤hΦ holds on each single path. �at is, there can be some paths on which Φ U

≤h Ψ
holds, but not G

≤hΦ and vice versa, as long as one of them is valid on each path. �e
�rst expression is much stronger.

Again, we can derive the semantics of the other formulae using only these de�nitions.

In understanding these semantics, it may be helpful to recall some of the plain English

interpretations of the formulae in the introduction of this section.

Another way of illustrating the semantics of these operators, and illustrating in

which states the state operators (i.e. E φ and A φ) are valid is by taking an unwound
automaton. �is is illustrated in �gure 1.6.

1.6 Probabilistic CTL

Probabilistic Computational Tree Logic (pctl) is a variant of ctl. �e main di�erence

is that the universal A and existential E path quali�er are replaced by one probabilistic

22

1.6. Probabilistic CTL

a EF black b AF black c E(grey U black)

d EG black e AG black f A(grey U black)

Figure 1.6 Di�erent examples of unwound transition structures and the validity of basic CTL for-

mulae.

operator P⊴p(φ). In a sense, this is a generalization of A and E operators, but in

fact, they are not comparable. If we recall the example of the mouse in the maze in

section 1.4.4 on page 17, we see that there is a possibility that the mouse will never

see freedom, because it will, for example, always stay in the starting cell. So, AF f (see
�gure 1.4b) does not hold in the starting state. However, the probability that the mouse

will escape the maze is exactly equal to 1, since the set of paths in which the mouse stays

in the maze is a null set, that is, its measure is zero. Or, more informally, the probability

it will never escape is negligible. Indeed, this can be gauged by considering the fact that

the mouse moves randomly and once it has escaped, it will never come back. One can

see that is very unlikely the mouse will not escape into freedom sooner or later. One

can also look at the coin �ipping example in �gure 1.5b. Here it is in theory possible

one will never �ip heads, so EG tails is valid, but the probability of never �ipping tails,
assuming we use a fair coin, if you keep trying is very small. In fact, it is equal to 1

2n
a�er n throws. Which is, for n = 40, less than a trillionth (10−12).
As mentioned, Hansson & Jonsson (1994) introduced pctl. As they explain

in their introduction, it is a logic for reasoning about properties such as ‘a�er a request

for service, there is at least a 98 percent probability that the service will be carried

out within 2 seconds.’ For many real life applications one cannot guarantee that, for

example, a packet transmitted over a network will always arrive. A packet can always

get lost because another computer tried to send a packet over the physical link at the

same moment. In a supermarket it is hard to guarantee that there will never be more

than three people waiting in line; it might happen that a bus with tourists stops who all

want to buy something. �is is where probabilistic modelling comes into play.

23

1. Preliminaries

1.6.1 Syntax and semantics

pctl keeps most of the syntax of ctl, except for the A and E operator, and it adds the

following state-formula (Cf. de�nition 1.5.1 on page 20).

De�nition 1.6.1. �e state-formulae of pctl are those of ctl except for A and E, but

including:

◆ P⊴p(φ) where p ∈ [0, 1] is a probability, ⊴ ∈ {<, ≤, >, ≥} and φ is a path operator.

�e semantics for the probabilistic operator are as follows: syntax

s ⊧ P⊴p(ϕ) i� Pr{σ ∣ σ ∈ Paths(s, φ)} ⊴ p.

We can again express other operators in terms of the U
≤h and W

≤h operator. For
example, we still have the following identities:

P⊴p(F
≤h
Φ) = P⊴p(tt U

≤h
Φ)

P⊴p(G
≤h
Φ) = P⊴p(ΦW

≤h ff).

And furthermore also the two following identities hold, which show the close connec-

tion between the until and unless operator:

P≥p(ΦW
≤h
Ψ) ≡ P≤1−p((Φ ∧ ¬Ψ) U

≤h
(¬Φ ∧ ¬Ψ))

P≥p(Φ U
≤h
Ψ) ≡ P≤1−p((Φ ∧ ¬Ψ) W

≤h
(¬Φ ∧ ¬Ψ)).

�e main focus of this thesis, as mentioned previously, is the U
≤h in connection with

the P≤p operator. We see from this identity that this enables us also to handle cases in
which a P≥p operator along with aW

≤h operator features. We do not discuss the next
operator X in a probabilistic setting, nor do we discuss the case of P≥p(Φ U

≤h Ψ). A

discussion of the latter can be found in the article by Han & Katoen (2007).

Finally we recall remark 1.5.4 and equation 1.1; because the validity of a until formula

can be witnessed by a �nite path, we use the cylinder set to de�ne the set of in�nite

paths which all start with this �nite path fragment.

24

2Counterexamples for PCTL

One of the core applications of the logics introduced in the previous chapter lies within

the �eld of model checking. �e name model is slightly ambiguous. It has a precise
mathematical meaning in the context of modal logics, namely as a triple consisting of

a set of states, a binary relation over this set of states and a valuation function; we have

already seen this structure thinly disguised as a dtmc. Another meaning of model is

‘abstraction of an underlying system’. Both coincide.

In the �eld of computer science, model checking is used to check whether a piece

of so�ware or hardware works or whether a protocol works according to its (formal)

speci�cations. But, in order to check this, we �rst have to derive a model of the so�ware

or the protocol. Usually this involves abstracting or generalising certain aspects which

reduce the complexity and the size of the model. For example, when modelling the

mouse in the maze (See section 1.4.4 on page 17), we assumed the mouse would move

randomly in the maze, which might be an assumption that is appropriate enough and

of course far easier to model than intelligent behaviour.

�e result of these abstractions, assumptions and generalisations is called the

model, which in turn is also a model in the sense that we can verify logical properties

on it. In the mouse example, we could try whether P=1(free) holds, i.e., the mouse will
surely1 reach freedom. Verifying such a property is done using model checking.
Only reporting whether a property holds or not however, is not the main strength

of model checking. Its strength is the possibility to illustrate by means of an example

in which case a property does not hold. Using this information, the so�ware engineer

can check the so�ware and hopefully correct the error (or conclude that its model was

too coarse). As so�ware and hardware become increasingly complex and increasingly

ubiquitous, it becomes more and more important that this so�ware is functioning

correctly.

A word processor crash can result in a few hours of work having to be redone,

which is annoying, but not life threatening. Bugs in so�ware or hardware developed

for medical use however, might be life-threatening. Also, situations in which it is very

costly or impossible to send an engineer to repair the so�ware, such as so�ware on

board of spaceships, might want to verify their so�ware in advance by checking models

of it.

1Actually, almost surely. �e scenario’s for which it does not reach freedom are negligible, or,
mathematically speaking, form a null set.

25

2. Counterexamples for PCTL

Much e�ort has therefore been applied to developing techniques that can �nd

counterexamples. In some a single path, su�ces. Suppose one would state, in the maze

example, that themouse could never reach the cheese, or expressed in ctl AG(¬cheese),
one could falsify this by giving the path start⋅c1cheese as a counterexample. Sometimes,
we need an in�nite path, for example, if we would state AF(free). �is is not true,
because (start)ω, that is, the mouse will only stay in the top le� cell, is a possibility.
For our case of Markovian models, many tools, such as prism (Kwiatkowska

et al., 2002) and mrmc (Katoen et al., 2005) have been developed. �ese tools can be
used to verify whether a Markovian model satis�es a property or not, but they do not

provide the user with a counterexample if the property does not hold. In the remainder

of this chapter we shall expound how pctl counterexamples look like and how they

can be found. As it turns out, we will usually require a set of paths to refute a property,
instead of only a single one.

We will start by introducing and de�ning some terminology in the �rst section.

�e second section will outline the procedure to actually �nd the counterexamples, and

the transformation on the dtmc we need to apply. Finally it will discuss appropriate

algorithms to solve the shortest and k-shortest path problems we encounter when
looking for counterexamples, depending on whether the property we want to check

involves a bounded or unbounded U operator. We start with the unbounded case,

which is easier, and proceed to the unbounded case a�erwards.

It turns out that problems involving a bounded operator can actually be solved

by transforming the model so that the bound becomes irrelevant. �is powerful

transformation also serves to elucidate some of the choices we make in adapting the

�rst versions of the algorithm to suit the bounded case.

2.1 Evidences and counterexamples

As has been mentioned in the �rst chapter, this thesis mainly focuses on (counter-

examples for) the U
≤h operator. Most material in this section has previously been

published by Han & Katoen (2007).

Before progressing further we shall �rst formally de�ne what actually constitutes a

counterexample in the context of pctl, and then give an example.

To de�ne a counterexample we can simply follow the semantics. Let us consider

P≤p(φ) where 0 < p < 1 – we handle the case where p ∈ {0, 1} separately, and

φ = Φ U
≤h Ψ. If P≤p(φ) is not valid in a state s of a dtmc then:

s /⊧ P≤p(φ)

i� not Pr{σ ∣ σ ∈ Paths(s, φ)} ≤ p
i� Pr{σ ∣ σ ∈ Paths(s, φ)} > p
i� Pr{σ ∣ σ ∈ Pathsmin(s, φ)} > p.

Hence, P≤p(φ) is not valid on a state s if the total probability mass of all φ-paths
starting in s exceeds p. Because we can witness the validity of an until formula by a

26

2.1. Evidences and counterexamples

�nite sequence of states, �nite paths su�ce in our counterexample. �is also explains
the last equivalence in the equation above, because any path on which φ is valid, will
give a minimal path on which φ is valid by taking a suitable pre�x. Di�erent paths will
share the same pre�x, and every minimal path can be extended in any way possible,

and still remain a path on which φ is valid.
Di�erently expressed, the equivalence kernel of Prefmin induces an equivalence

relation ∼min
⊧ on Paths(s, φ), where σ1 ∼min

⊧ σ2 ≡ Prefmin(σ1, φ) = Prefmin(σ2, φ). �is

in turn partitions Paths(s, φ) in equivalence classes, where the probability mass of each

equivalence class equals the probability of the shared pre�x.

We therefore only need to look for enough �nite paths that satisfy φ in order to
�nd a counterexample. We call every path contributing to such a violation an evidence

De�nition 2.1.1. An evidence for violatingP≤p(φ) in state s is a path σ ∈ Pathsmin(s, φ).

Obviously, some paths will be more probable than others, and if we are to look actively

for a violation, paths with a larger probability mass are most helpful. �is motivates

the following de�nition:

De�nition 2.1.2. An evidence σ for violatingP≤p(φ) in a state s is a strongest evidence
if for any other evidence σ ′ it holds that:

Pr{σ} ≥ Pr{σ ′}

An evidence for violating P≤p(φ) dually is a witness for satisfying P>p(φ), and a

strongest evidence thus also is a strongest witness.

However, a sole evidence usually does not form a counterexample, because its

probability mass will lie far below the bound. A counterexample will be a set of
evidences:

De�nition 2.1.3. A counterexample for P≤p(φ) in state s is a set C of evidences, such
that C ⊆ Pathsmin(s, φ) and Pr(C) > p.

We will denote the number of evidences in a counterexample C by ∣C∣. A counter-

example C combined with another �nite path σ ∈ Pathsmin(σ , φ), such that σ ∉ C,
is of course still a counterexample. Usually, we shall be more interested in counter-

examples with fewer paths, because they are easier for the programmer to interpret

and understand. �e following de�nition formalises what we mean by a minimal

counterexample:

De�nition 2.1.4. A counterexample C for P≤p(φ) in s is aminimal counterexample if
for any other counterexample C′ for P≤p(φ) ∣C∣ ≤ ∣C′∣.

Note that the minimal counterexample need not be unique. �ere can be any number

of counterexamples with the same number of evidences. Among these however, some

will have a greater probability mass than others, the one with the largest probability

mass will be called a smallest counterexample.

27

2. Counterexamples for PCTL

De�nition 2.1.5. A counterexample C for P≤p(φ) in s is a smallest counterexample if it
is both minimal and Pr(C) ≥ Pr(C′) for any minimal counterexample C′ for P≤p(φ).

Intuitively, the smallest counterexample is most indicative. It di�ers by a maximum

amount from the desired probability bound, given that it has a minimal number of

paths.

Remark 2.1.6. Any smallest counterexample contains a strongest evidence. Suppose
C would be a smallest counterexample and not contain a strongest evidence, then it
would could create a new counterexample with a higher probability mass by replacing

any evidence in C by the strongest evidence. �e number of paths stays the same, but
its probability mass increases, so that wouldmean C was not a smallest counterexample
a�er all.

Remark 2.1.7. For now it su�ces to think of a smallest counterexample as a collection of
paths. Whether these paths share some common pre�x, or whether they are all disjunct

does not matter; we solely use the number of paths to determine what constitutes

a smallest counterexample. However, in practice, a counterexample with an in�nite

number of paths, which all obey a simple pattern, such as s(s1)∗t, might well be easier
to understand than a �nite, but very long list, of disjunct paths. Chapters 4 and 5 will

discuss this in-depth.

Lemma 2.1.8. A smallest counterexample C for s ⊧ P≤p(φ) is �nite.

Proof. A smallest counterexample is, by de�nition, a minimal counterexample, hence,
it has a minimal number of paths. Let us assume that C is a counterexample for
s ⊧ P≤p(φ). If ∣C∣ < ∞, then there is nothing le� to prove, since then for sure the

smallest counterexample will be �nite. So, suppose ∣C∣ is in�nite; we shall prove that

this cannot be a minimal counterexample, and by implication, not a smallest.

Since C is a counterexample ∑σ∈C Pr{σ} = Pr(C) = q > p. Furthermore, since
0 ≤ Pr(C) ≤ 1, by de�nition, and Pr(C) = ∑σ∈C σ , we have that this is a convergent
series with non-negative terms so the order of summation is irrelevant. �erefore, we

assign some arbitrary but �xed order to the elements of C = {σ1, σ2, . . . }, so the partial
sum Sn of C is:

Sn =
n
∑
i=1

σi

We now know that for every ε > 0 there is an integer N such that for all n ≥ N :
q− Sn ≤ ε, by the de�nition of a convergent series. If we pick ε = q− p > 0, since q > p,
this N is guaranteed to exist. Hence, the set {σ1, . . . , σN} also forms a counterexample,

so C cannot be a minimal counterexample, let alone a smallest counterexample.

Remark 2.1.9. �e above proof also shows that the same reasoning cannot hold for
P<p(φ), in that case a counterexample may indeed contain in�nitely many paths

summing exactly to p, because the sumof the per-path-probabilities forms a convergent
series. An example is shown in �gure 2.1, where the counterexample for P<12(F a)
consists of all paths that traverse the self-loop at s zero or more times, and end in t.
�ere are in�nitely many of those paths, and all are needed.

28

2.1. Evidences and counterexamples

s
∅

u
∅

t
{a}

14 14

12

1 1

Figure 2.1 A DTMC with an in�nite smallest counterexample forP< 1
2
(F a)

u1
∅

u2
∅

s
{a}

s1
{a}

s2
{a}

t2
{b}

s4
{a}

t3
{b}

s3
{a}

t1
{b}

0.1

0.5

0.3

0.4

0.6
0.8

0.2

0.3

0.6
0.1

0.8

0.2 0.5

0.2

0.1

0.4

0.4

1

0.4

0.6

1

0.3

0.1

0.3

Figure 2.2 An example DTMC, for which s /⊧ P≤0.27(a U b).

Example 2.1.10. Figure 2.2 shows a simple dtmc with ten states. �e initial state is
indicated by the arrow, and is s. �e set of atomic propositions AP = {a, b} and L(s) =
L(si) = {a}, for 1 ≤ i ≤ 4, L(ti) = {b} for 1 ≤ i ≤ 3, and �nally L(u1) = L(u2) = ∅.
�ere are no absorbing states in this dtmc.

Let us de�ne the following paths:

1. σ1 = s⋅s1⋅s2⋅t2, with Pr{σ1} = 0.12;
2. σ2 = s⋅s1⋅s3⋅s4⋅t1, with Pr{σ2} = 0.072;
3. σ3 = s⋅s1⋅s3⋅s4⋅t2, with Pr{σ3} = 0.072;
4. σ4 = s⋅s3⋅s4⋅t1, with Pr{σ4} = 0.072;
5. σ5 = s⋅s3⋅s4⋅t2, with Pr{σ5} = 0.072;
6. σ6 = s⋅s3⋅s4⋅t3, with Pr{σ6} = 0.018.

Suppose we are looking for a counterexample for s ⊧ P≤0.27(a U b). We de�ne the
following sets:

1. C1 = {σ2, σ3, σ4, σ5, σ6}, with Pr{C1} = 0.306;

29

2. Counterexamples for PCTL

2. C2 = {σ2, σ3, σ4, σ5}, with Pr{C2} = 0.288;

3. C3 = {σ1, σ2, σ3, σ4}, with Pr{C3} = 0.336.

Clearly, each of these sets is a counterexample. C1 however, is clearly not a minimal
counterexample, since it consists of �ve paths, and C2 only of four. C2 is minimal, since
removing any paths from C2 would not make it a counterexample; but since ∣C3∣ = ∣C2∣
and Pr(C3) > Pr(C2), C2 is not a smallest counterexample. C3 however is a smallest
counterexample, and therefore contains the strongest evidence, σ1.
Note however, that the smallest counterexample is not unique, we could, for ex-

ample, remove σ4 and replace it by σ5, which has the same probability, and obtain
another counterexample with probability 0.336. Indeed, we could take σ1 and any three
paths from C2 and have a smallest counterexample. �is shows that if di�erent paths
have the same probability, the counterexample need not be unique.

Hitherto we have de�ned what counterexamples are, and we have shown an example,

but we shall now proceed to explain how one can systematically �nd a Strongest

Evidence (se) and a Smallest Counterexample (sc).

2.2 Conversion of the DTMC

�emain idea is to transform the problem of the strongest evidence and the smallest

counterexample to a k-shortest path problem, which can be solved by well-known
algorithms. �e �rst step involves the introduction of a target state andmodi�cations to

the structure of the dtmc based on the formula to be refuted. �e second step involves

the conversion of the edge weights. �e procedure outlined here has previously been

published by Han & Katoen (2007).

2.2.1 Adaptation of the DTMC

�e way the dtmc is adapted, is intimately related to algorithms used for ctl model-

checking, because these algorithms are also applicable to the equal part of pctl such

as the boolean operators. Appendix a contains a short outline of these procedures, and

the curious reader may read it.

�is leaves us with the particular case where the formula under scrutiny is of the

formP≤p(ΦU
≤hΨ), we use the sub-formulae Φ and Ψ as our basis for the adaptation of

the dtmc. We �rst determine the states in which Φ holds, i.e. Sat(Φ) = {s ∈ S ∣ s ⊧ Φ}.

Analogously we de�ne Sat(Ψ) to be {s ∈ S ∣ s ⊧ Ψ}. Clearly states that are neither

in Sat(Φ) nor in Sat(Ψ) do not lie on a path that ful�ls Φ U
≤h Ψ. We furthermore

notice, that if Ψ holds in a state, every path starting in that state will automatically ful�l

Φ U
≤h Ψ.
We therefore make every state which neither ful�ls Φ nor Ψ absorbing, and every

state which ful�ls Ψ is connected to a new state t with probability 1 – other transitions
are removed. Formally:

LetD = (S ,P, L) be our dtmc, we de�ne a derived dtmcD′ = (S′,P′, L′), where:

30

2.2. Conversion of the DTMC

s
{a}

s1
{a}

s2
{a}

t2
{b}

s4
{a}

t3
{b}

u
∅

s3
{a}

t1
{b}

t
{att}

0.1

0.5

0.3

0.3

0.6
0.1

0.8

0.2

0.4

0.6

0.1

0.4

0.4

1

1

1

0.1

0.1

1

Figure 2.3 The example DTMC after the �rst transformation step. Note that in addition to this u1

and u2 have been collapsed into u.

◆ S′ = S ∪ {t}, where t is new, i.e. t ∉ S.

◆ P′ is de�ned as follows:

■ If s ∉ (Sat(Φ) ∪ Sat(Ψ)) or s = t:

P′(s, s) = 1 and P′(s, s′) = 0 for s ≠ s′.

■ If s ∈ Sat(Ψ):

P′(s, t) = 1 and P′(s, s′) = 0 for s ≠ t.

■ Otherwise, i.e. s ∈ (Sat(Φ) − Sat(Ψ)):

P′(s, s′) = P(s, s′) for s′ ∈ S
P′(s, t) = 0.

◆ L′ = L(s) for s ∈ S and L′(t) = {att}, where att is a new label, i.e. att ∉ AP.
If Sat(Φ) and Sat(Ψ) are available, which is normally the case with a bottom-upmodel

checking algorithm, the construction of D′ requires O(∣S∣) time, if the structure is
represented as an adjacency list.

�is construction evidently preserves the validity of Φ U
≤h Ψ on the underlying

structure. We also see that ΦU
≤hΨwill hold on every path ending in t; more speci�cally,

if σ = s1⋯sn⋅t, ΦU
≤h Ψ will also hold on σ̂ = s1⋯sn where σ̂ and σ are equally probable.

Example 2.2.1. �e result of the �rst step of the transformation of the dtmc in �gure 2.2
is shown in �gure 2.3. Note that the two states u1 and u2, which both become absorbing,
are replaced by a single state u. Our construction does not do this by default, although
this could be done in general.

31

2. Counterexamples for PCTL

s
{a}

s1
{a}

s2
{a}

t2
{b}

s4
{a}

t3
{b}

u
∅

s3
{a}

t1
{b}

t
{att}

log 10

log 2

log 103

log 103

log 53

log 10

log 54

log 5

log 52

log 53

log 10

log 52

log 52

0

0

0

log 10

log 10

Figure 2.4 The example DTMC after the second transformation step. The probabilities have been

replaced by weights and the self-loop on the �nal state has been removed.

2.2.2 Conversion to a weighted digraph

In the next step, we shall convert the dtmc to a weighted directed graph, digraph for
short, such that the path with the lowest weight in the digraph will correspond to the

path with the highest probability in the dtmc. Before proceeding, we �rst provide the

de�nition of a digraph.

De�nition 2.2.2. A weighted digraph G is an ordered triple (V, E ,w) where:

◆ V is a set, whose elements are called nodes, or vertices.

◆ E is a set of ordered pairs of vertices. Its elements are called arcs or edges. If
(u, v) ∈ E, we say the edge goes from u to v.

◆ w is a function w ∶ E → R, mapping every edge on to a real number, its weight.

If (u, v) ∈ E, we call v the successor of u, and we call u the predecessor of v. Edge
weights can be negative, but we shall assume they are positive unless stated otherwise.

A dtmc D = (S ,P, L)is as follows transformed to a weighted digraph GD =

(V, E ,w):

◆ V = S; the vertex or node set.

◆ (v , v′) ∈ E i� P(v , v′) > 0; the edge set.

◆ w(v , v′) = log (1
P(v,v′)); the weight function.

Finally, remove the self-loop on the target state, because it otherwise would cause an

in�nite number of shortest paths to t. �is construction, which involves recalculating
the weight of every edge, can be done inO(m) time, wherem = ∣P∣, that is, the number
of non-zero elements in P if the graph is represented as an adjacency list.

Example 2.2.3. �e result of the second step of the transformation of the dtmc in
�gure 2.2 is shown in �gure 2.4. Note that the self-loop on the �nal state is removed.

32

2.2. Conversion of the DTMC

Note that, if P(s, s′) > 0, then w(s, s′) ∈ [0,∞). �e sum of the weights of the edges

on a path is called its weight or length.

De�nition 2.2.4. �e length ℓ of a �nite path σ = v0v1⋯vn in a weighted graph G:

ℓ(σ) =
j−1
∑
i=0

w(vi , vi+1).

Depending on the context we either use the term weight, which is the most general, or
length, which sounds more appropriate in the context of a shortest path algorithm. As
such, a shortest path is de�ned as a path of minimum length between two nodes, cf.

de�nition 2.3.1.

�e following states that the conversion indeed transforms the most probable paths

to the shortest or lowest weight paths:

Lemma 2.2.5. Let σ and σ ′ be �nite paths in a dtmcD and its corresponding weighted
digraph GD, then:

Pr{σ ′} ≥ Pr{σ} i� ℓ(σ ′) ≥ ℓ(σ)

.

�e proof uses the well-known fact that log(a ⋅ b) = log(a) + log(b) and the fact that
log(⋅) is monotonic.

Proof. Let 0 < p1, p2, q1, q2 ≤ 1 and suppose p1p2 ≤ q1q2. �en: 1
p1p2 ≥

1
q1q2 and by the

monotonicity of log and because log(ab) = log(a) + log(b), we obtain:

log(
1

p1
) + log(

1

p2
) ≥ log(

1

q1
) + log(

1

q2
) .

Applying this (repeatedly) to a path σ trivially obtains the desired result.

Remark 2.2.6. Note that the probability-weight mapping from (0, 1] → R+ is a bijective

mapping. So given the weight w of a path in the digraph, the probability mass of the
corresponding path in the dtmc is e−w . Calculating the weight of the shortest path
thus gives us directly the probability mass in the dtmc.

To conclude this section, we give the following lemma which states the equivalence

between shortest paths and most probable paths.

Lemma 2.2.7. For any path σ from s to t in a dtmc D, k > 0 and h ∈ N ∪∞ ∶ σ is a
k-th most probable path of h hops inD i� σ is a k-th shortest path of h hops in GD.

Proof. �e proof follows directly from lemma 2.2.5.

Remark 2.2.8. In case a graph contains two paths with the same length, the k shortest
path problem, or even the shortest path problem in the cases these are the shortest

paths, does not have a unique solution.

33

2. Counterexamples for PCTL

2.3 Finding the strongest evidence

Now that the Strongest Evidence (se) problem has been reduced to a Shortest Path (sp)

problem, we can use well-known shortest path algorithms to �nd the se. We shall �rst

discuss the unbound case, a�er which we discuss a reduction from the bound to the

unbound case and various algorithms for the bounded version of the until-operator,

including lower and upper bounds.

2.3.1 Unbounded until

For the case of the unbounded until, we simply need to �nd the shortest path in GD

from the initial state to t. In principle, any shortest path algorithm su�ces, since the
weights on the edges are non-negative.

De�nition 2.3.1. Given a weighted graph G = (V, E ,w) and two nodes s, t ∈ V , the
shortest path sp problem is to �nd a path σ from s to t such that ℓ(σ) ≤ ℓ(σ ′) for any
path σ ′ from s to t in G.

We have seen that the transformation of a dtmc to a weighted digraph can be done

in O(n + m) time, where n is the number of nodes and m the number of edges. If
we use Dijkstra’s algorithm (Dijkstra, 1959), of which it is well known it has a time

complexity of O(m + n log n), provided Fibonacci heaps (Fredman & Tarjan,

1987) are used in the implementation.2

We can therefore conclude:

�eorem 2.3.2. �e se problem for unbounded until is in ptime.

2.3.2 Bounded until

First of all, we assume, in this section that the hop bound h is less than the number
of nodes n in the graph. If it is at least n, we can treat the case as an unbounded case,
because a shortest path can at most visit every node in the graph, and hence have length

n − 1; if it visits a node twice, this indicates a cycle, which contradicts the fact it is a
shortest path.

�e problem for bounded until is harder, of course, since we have to take the hop

limit into account too. �e shortest path may well exceed this hop limit h. We shall
�rst state the de�nition of this Hop constrained Shortest Path (hsp) problem:

De�nition 2.3.3. Given a weighted digraph G = (V, E ,w)with s, t ∈ V , and a hop limit
h ∈ N, the hsp problem is to �nd a path σ in G from s to t such that ℓ(σ) ≤ ℓ(σ ′) for
any other path σ ′ from s to t with ∣σ ′∣ ≤ h.

2Not so well known is that in the article by Goldberg & Tarjan (1996) the inventor of Fibonacci
heaps explains why in practice an implementation with binary heaps perform as well as Fibonacci heaps,
due to the fact that the number of times a node is moved in the queue (which should give the Fibonacci
heap its advantage) is relatively few in practice. Other operations in binary heaps are absolutely speaking,
that is in number of clock cycles, faster than Fibonacci heaps.

34

2.3. Finding the strongest evidence

s s1 t

s2

3

1

2

1

Figure 2.5 A graph in which the optimality principle does not hold for a hop bound of 2.

Remark 2.3.4. �is problem can be seen as a special case of a more general problem,
namely the resource constrained path problem. �is problem is discussed in more

detail in Ahuja et al. (1993). �is is a shortest path problem where a shortest path has
to be found ful�lling some other constraints, a far more di�cult problem, and even

np-complete, as explained in Garey & Johnson (1979).

For this to work, we need to adapt existing shortest path algorithms to take the hop

constraint into account. �ere are a few caveats, however, which every implementation

should be aware of. For a shortest path σ = s⋅s1⋯sn⋅t from s to t in a graph, we have
that any pre�x of σ is also a shortest path. �at is, if σ = s⋅s1⋯si would not be a shortest
path from s to si , then we could replace that segment in σ by the shortest path from
s to si and obtain an even shorter path, contradicting our assumption that σ was a
shortest path.

�is so called optimality principle need not hold in case of the hop constrained
shortest path, as �gure 2.5 shows. With a hop bound of 2, the shortest path from s to t
is s⋅s1⋅t, since going via s2 would yield a path which exceeds the bound. �e shortest
path from s to s1 however, is s⋅s2⋅s1; and this does not violate the hop bound.
To see why this is an issue, shortest path algorithms usually store the shortest path

implicitly, by having each node point to its predecessor, so that a�erwards the shortest

path can be constructed by going backwards from the target. �e above example

above shows that this does not work in the hop bound case. So even if all nodes are

reachable within two steps, implicitly, paths of more than two steps can be formed.

If we simply record the predecessor, then a�er two steps s1 will be recorded as being
the predecessor of t, and s2 as being the predecessor of s1, hence implicitly yielding
s⋅s1⋅s2⋅t. �is problem is easily addressed by storing di�erent predecessors for di�erent
hop counts.

We therefore store a predecessor for every hop bound at every node. In the case of
s1 this would mean that the predecessor for h = 1 would be s, but for h = 2 it would be
s2. Even though s⋅s1 is not optimal in terms of length, it does allow us to reach node t
in two steps, which is not possible through s2. In general we note that if we have found
two paths P1 and P2, with respective lengths l1 and l2, and respective hop-counts h1 and
h2 that only if l1 ≤ l2 and h1 ≤ h2, with at least one inequality, P1 is preferred over P2.
However, if h1 < h2, but l1 > l2, then P1 might still be of interest, because, if extended
further, it might reach nodes that are otherwise unreachable.

�e introduction of a hop constraint has some important repercussions for the

viability of the algorithms that can be successfully used, because Dijkstra’s algorithm

hinges on the optimality principle: if this does not hold, its strategy to mark nodes as

35

2. Counterexamples for PCTL

�nalised as soon as they’re on front of the queue does not hold up.

Before investigating specialised algorithms that can solve the hop constrained

problem immediately, we shall discuss a reduction to the unconstrained problem. �e

results and analysis of this reduction will greatly help in the understanding of the

constrained problem.

2.3.2.1 Reduction to an unconstrained problem

It is possible to reduce the hop constrained version of the problem to an unconstrained

problem, by transforming the graph. I have not found a similar procedure in the

literature, although I do not expect it is a novelty. �is transformation is helpful

because it makes explicit what is implicitly done in the adapted versions of the Recursive

Enumeration Algorithm (rea) and Bellman-Ford (bf) algorithm. It furthermore helps

to explain why, for example, Dijkstra’s algorithm performs so badly when modi�ed for

a hop constraint.

Although we are mainly interested in graphs which are the results of a dtmc con-

verted to a digraph by the procedure of section 2.2.2, there are no principle objections

why this procedure would not work on digraphs in general. As an example of this,

and for reasons of conciseness our running example of �gure 2.5 is not the result of a

converted dtmc.

�e procedure is as follows: if we want to solve a shortest path problem between s
and t with a hop constraint h on a graph G , we take the original graph and replace
it by h + 1 copies. We number the copies from 1 up to h + 1. �e transitions within a
copy are replaced by a transition between copies, more precisely, a transition to the

next copy. If the original graph has a transition s1 → s2, we replace it by a transition
from state s1 in the �rst copy to s2 in the second copy, and also with a transition from
s1 in the second copy to s2 in the third copy. Every transition thus points to the next
copy, except for transitions in the �nal copy, these are completely removed.

�e target state t of the shortest path problem in the original graph, has h+ 1 copies
in the new graph. We can extend the graph with one extra node t̂ and add edges from
every copy of t to t̂ with weight 0, thus introducing t̂ as the new target state. �is way
the problem is reduced to a shortest path to a single node t̂. As a starting node state s
in the �rst copy is chosen for obvious reasons.

Using the graph of �gure 2.5 as a basis, we give a visual depiction of the transformed

graph in �gure 2.6.

We formalise the outlined procedure using product graphs.

De�nition 2.3.5. �e tensor or direct product P = (VP , EP) of two graphs G =

(VG , EG) andH = (VH, EH) is de�ned as:
◆ VP = VG × VH, where × denotes the Cartesian product.
◆ Let u, v ∈ VG and û, v̂ ∈ VH, then ((u, û), (v , v̂)) ∈ EP if and only if (u, v) ∈ EG
and (û, v̂) ∈ EH; in other words, (u, û) and (v , v̂) are adjacent in P if and only
if u and v are adjacent in G and û and v̂ are adjacent inH.

We write P = G ×H to denote the product.

36

2.3. Finding the strongest evidence

1st copy
s

s2

s1

t

2nd copy
s

s2

s1

t

3rd copy
s

s2

s1

t

h+1th copy
s

s2

s1

t

3
1

2

1

3
1

2

1

3

1

2

1
3
1

2

1

t̂

Figure 2.6 Schematic representation of the result of the graph transformation. The original graph

is replaced by h + 1 copies. The original edges are removed (shown dashed) and instead a new edge

is inserted, to the corresponding successor in the next copy, e.g. s→ s1 in the �rst copy is replaced

by a transition from s in the �rst copy to s1 in the second copy, and so one. Finally all copies of the

original target state t are connected to a new target state t̂.

�e tensor product almost gives us the complete transformation, with the exception of

the addition of the extra target state and the de�nition of the weights:

De�nition 2.3.6. �e reduction of a shortest path problem with start node s and end
node t on a weighted graph G = (VG , EG ,wG) with hop constrained h to a shortest
path problem without a hop constraint on a weighed graph T = (VT , ET ,wT) with
start node (s, q0) and end node t̂ is de�ned as follows. Assume Gq = (VGq , EGq)
represents the path graph with h+ 1 nodes, labelled q0, q2, . . . , qh , that is Gq looks likes
q0 → q1 → ⋯→ qh. �e intuitive interpretation of the index could be ‘the number of
steps taken’.

◆ Let G′ = (VG , EG) then (V ′
T , E′T) = G′ × Gp. VT = V ′

T ∪ t̂ and ET = E′T ∪
{((t, q1), t̂), . . . , ((t, qn), t̂)}.

◆ wT ((sx , qi), (sy , q j)) = wG(sx , sy), with sx , sy ∈ VG ; wT ((t, qi), t̂) = 0.

�eorem 2.3.7. �e shortest path problem from s to t with hop constraint h on a graph G
can be reduced to a shortest path problem on a graph T , obtained by applying the graph
transformation of de�nition 2.3.6. �e counterpart of a path from (s, q0) to t̂ in T is a
hop constrained shortest in G path if and only if it is a shortest path in T .

Proof. Assume the nodes in G are labelled s, s1, s2, . . . sn , t, where s and t are the nodes
between which we want to �nd the hop constrained shortest path. Also assume the

nodes in path graph are labelled q0, q1, . . . , qh. �e extra target node wherewith the
product graph is extended is called t̂.

�e counterpart of a path (s, q0)⋅(sx , q1)⋯(ty , qn)t̂ in T in G is simply s⋅sx⋯t.
Vice versa, a path s⋅sx⋯sy ⋅ t has a counterpart in (s, q0)⋅(sx , q1)⋯(sy , qi−1)⋅(t, qi)⋅t̂.
Remember that we are only interested in hop constrained (shortest) paths from a

speci�c s to a speci�c t; in our transformed graph this translates from a path from

37

2. Counterexamples for PCTL

(s, q0) to t̂ via some (t, qi), with 0 ≤ i ≤ h – it does not matter which copy of the target
state.

�at the counterparts exist follows directly from the construction. �ere is an edge

(sx , qi) → (sy , qi+1) if and only if sx and sy are adjacent in G, qi and qi+1 are adjacent
because of the shape of the path graph.

Note that in particular the length of a path and its counterpart are equal, because

of the de�nition of the weight function. �e added edges in the transformed graph

have weight zero.

If we have a shortest path, obeying the hop constraint, from s to t in the original
graph, we can �nd the counterpart in the transformed graph. Suppose this is not the

shortest path in the product graph from s to t̂, yet in this case the shorter path would
have a counterpart in the original graph, with the same length, this is absurd.

For the other direction: Suppose we have found a shortest path in the transformed

graph from s to t̂, we can �nd the counterpart in the original graph: this counterpart
surely obeys the hop constraint, due to the construction of the transformed graph.

Suppose however that the original graph has a shorter path: this is possible, but if this

path in addition satis�es the hop constraint, then the transformed graph should have a

shorter path, which is again absurd.

�e time complexity of the graph transformation isO(hn + hm) time, m being the
number of edges in the original graph, and n being the number of nodes. We assume
the data structure involves a list of nodes and an adjacency list per node. We have to

make h + 1 copies of every node, and give these a unique name; then we have to place
hm edges between them, �nally we have to add another node, which can be done in
O(1) time, and add h + 1 edges to this new target state. With the above transformation,
we trivially obtain:

Corollary 2.3.8. A hop constraint shortest path problem, and by implication the strongest
evidence problem for bounded until is an unconstrained shortest path problem.

With the graph transformation, which has polynomial time complexity, we can run

a shortest path algorithm, which also has polynomial time complexity, and we can

therefore conclude:

�eorem 2.3.9. �e se problem for bounded until is in ptime.

�e crux of the transformation is that every node has been duplicated h times. Remem-
ber that the optimality principle does not hold in this problem, and that the optimal

route from a node to the target can be di�erent depending on the number of hops used

to arrive at the node; in the product graph the number of hops used to arrive at a node,

and hence the number that can still be spent is encoded in the state, and the shortest

path algorithm need not take care of it.

�e most important aspect of this transformed graph however, has not been men-

tioned yet, viz. it is acyclic. Even if the original graph contains a cycle, the transformed

graph does not, because it is constructed via a product with an acyclic graph. A cycle

in a tensor product always indicates a cycle in both of the original graphs.

38

2.3. Finding the strongest evidence

Algorithm 2.3.1 Typical version of Bellman-Ford’s shortest path algorithm, unconstrained version.

Require: G = (V, E) is a graph with no negative weight cycles, s ∈ V
Ensure: ∀v ∈ V : distance[v] is the length of the shortest path from s to v and the
predecessor of v on this path is in previous[v].

1: for each v ∈ V :
2: distance[v] ∶= ∞
3: previous[v] ∶= �
4: distance[s] ∶= 0
5: previous[s] ∶= ∅
6: repeat |V| - 1 times:
7: for each (u, v) ∈ E:
8: d = distance[u] +weight(u, v)
9: if d < distance[v]:
10: distance[v] ∶= d
11: previous[v] ∶= u

�is means the graph we have constructed is a Directed Acyclic Graph (dag).

Because dags are known to have a topological ordering, and since it is well-known the

shortest path of graphs with a topological ordering can be computed in linear time, we

can use this on the product graph, �rst however, we shall discuss the modi�cation of

existing algorithms.

2.3.2.2 Hop constrained Bellman-Ford

�emost obvious algorithm to adapt, in order to solve the hsp problem, is the Bellman-

Ford (bf) algorithm (Bellman, 1958), since it proceeds by increasing hop count. For

discussion purposes, a typical implementation of the bf algorithm has been provided

in algorithm 2.3.1. �is version uses an implicit path representation by means of array

previous[].

Starting in s, a�er n iterations the algorithm will have found all nodes reachable
within at most n steps. In the adapted algorithm we need to make sure that the implicit
path representation functions correctly. Because even if all nodes are reachable within

two steps, implicitly, paths of more than two steps can be formed, as we saw in the

example of �gure 2.5. We therefore duplicate the arrays distance[] and previous[] for

every hop count, as shown in algorithm 2.3.2.

Looking closely at the constrained algorithm, we can see that for any speci�c

number of hops h distance[v][h] will in fact contain the length of a path from s to
v with exactly h hops, or∞ if no such path exists. It therefore calculates at most h
shortest paths to a node. Usually we are only interested in the shortest only. �is

can be found by selecting minh distance[v][h], and the corresponding path can be
reconstructed by using previous[v][h]. Alternatively we can introduce a variable that

39

2. Counterexamples for PCTL

Algorithm 2.3.2 Bellman-Ford’s shortest path algorithm, hop constrained version.

Require: G = (V, E) is a graph with no negative weight cycles, s ∈ V , Hc is a positive
integer.

Ensure: ∀v ∈ V,∀h ≤ Hc : the length of shortest path from s to v with exactly h hops is
in distance[v][h] and the predecessor of v on this path is in previous[v][h].

1: for each v ∈ V :
2: ∀0 ≤ h ≤ Hc ∶ distance[v][h] ∶= ∞
3: ∀0 ≤ h ≤ Hc ∶ previous[v][h] ∶= �
4: distance[s][0] = 0
5: previous[s][0] = ∅
6: for h from 0 up tomin{Hc , ∣V ∣ − 1}: // Not including Hc or ∣V ∣ − 1

7: for each (u, v) ∈ E:
8: d = distance[u][h] +weight(u, v)
9: if d < distance[v][h + 1]:
10: distance[v][h + 1] ∶= d
11: previous[v][h + 1] ∶= u

keeps track of the value of h for which distance[v][h] is minimal.
Referring to our example graph of �gure 2.5, we see that this algorithm indeed

functions correctly. Suppose we run the algorithm with a hop constraint of 3; when

the algorithm ends, we obtain the following results. Here {h → x}means in case of
the distance array that for a hop count of h the best distance is x, and similarly for the
previous array that the predecessor on this path is x.

Nodes

Array s s1 s2 t

distance {0→ 0} {1→ 3, 2→ 2} {1→ 1} {2→ 4, 3→ 3}

previous {0→ ∅} {1→ s, 2→ s2} {1→ s} {2→ s2, 3→ s1}

We notice that in case of t the smallest distance can be found for h = 3, and we can

reconstruct this path by going through the previous array, which points to s1, then to
s2 and �nally to s, which does not have a predecessor.

�e complexity of this algorithm is easily seen to beO(hm), since the outer loop

is executed at most h times, whereas in each loop every edge will be investigated to see
whether an improvement can be found. �is con�rms the result of theorem 2.3.2.1.

�e bf algorithms can be adapted to perform in practice much better than the one

presented here; one could for example, in iteration 0 only check the successors of the

starting node, put those in a set, and use that set for the next iteration, so one really

expands on the previous results. �is does not improve the theoretical complexity,

since in the worst case, the graph is fully connected. However, if this is not the case, one

40

2.3. Finding the strongest evidence

can only, each iteration, use those nodes that were updated in the previous iteration as

a basis.

Comparison with the product graph approach We have seen two approaches to

solve the hsp problem. �e �rst consisted of transforming the graph, a�er which

we could run any (unconstrained) shortest path algorithm, and the second approach

consisted of modifying Bellman-Ford.

It is interesting to compare these two approaches, and in particular the case in

which we would run an unconstrained bf algorithm on a transformed graph, versus

the specialised, constrained algorithm.

If we compare unconstrained version of algorithm 2.3.1, with the constrained

version of algorithm 2.3.2 we see that they are very similar, the control structures are

similar, the main di�erence is that the arrays distance and previous in the constrained

algorithm have acquired a second index, namely h. If we run the unconstrained
algorithm on the transformed graph, we see that this second index h is in fact there,
but in that case it is encoded in the nodes of the graph. We explicitly made h + 1 copies
of every node, so we could run the unconstrained algorithm, the constrained algorithm

makes these copies too, but implicitly, by introducing an extra index. �is underlines

the similarity of both approaches.

We now take a look at the time complexity of both approaches. Viewed naïvely, we

could state that running the unconstrained algorithm on our transformed graph gives

a time complexity of O(hm⋅hn), because the transformed graph has O(hm) edges

and O(hn) nodes. �is is a rather rough approximation, and we can see this if we
take the acyclic structure of the transformed graph into account. Provided we run an

optimised version of the unconstrained bf algorithm on the transformed graph, that

is, the version that only checks the successors of the starting node in the �rst iteration,

and in the second iteration only checks the successors’ successors and so on, we see

that we e�ectively get a layer by layer exploration in the transformed graph, and we

thus get a breadth �rst exploration. In this case this surely is an improvement, because

in this way we again arrive at theO(hm) complexity, instead ofO(hm⋅hn). Because
of the structure we see that if we optimise bf (and hence turn it more or less into a

breadth-�rst exploration) we need at most h iterations, because a�er the hth iteration
the algorithm surely has arrived at t̂, which has no successors. Also, during each
iteration it can only visit at most n nodes, which can have no more than m successors.

�e main di�erence now is that the product graph is constructed up front, whereas

the constrained algorithm can very easily explore the graph lazily, only de�ning a value

previous[v][h] if it is actually used. For large graphs and large hop count h this can be
a huge improvement. A di�erent point of view could therefore be that the constrained

Bellman-Ford algorithm actually performs the graph-transformation in a lazy manner.

2.3.2.3 Hop constrained Dijkstra

Before I had found the reduction to the unconstrained problem, and the fact that the

adapted bf algorithm implicitly explores the transformed graph too, some thinking

41

2. Counterexamples for PCTL

had been spent already on adapting Dijkstra’s algorithm to handle hop constraints.

Although this can be done using a simple transformation of the algorithm, the result will

less optimal than Bellman-Ford, which is not surprising if we look at the performance

of Dijkstra’s algorithm on dags.

As we have seen, bf proceeds by increasing hop count, whereas Dijkstra selects the

next closest node. In order to be able to select this node quickly, it uses some sort of

queue. In case of Dijkstra’s algorithm, we also have to take hop counts into account,

which leads to an implicit encoding of the transformed graph. We now know that

this implicit graph is in fact a dag. Dijkstra’s algorithm is not optimal for these kinds

of graphs, because it spends ‘too much’ time ordering its nodes, whereas as simple

Breadth First Search (bfs) su�ces3. �ere is no need to spend so much (costly) time
on keeping order.

In practice in some speci�c cases Dijkstra’s algorithm might turn out to still be

better, because it can reach t̂ early, and be able to terminate the algorithm. For the
general case however, the complexity is O(hm + hn log(hn)). We have not tried to
�nd speci�c cases in which the graph structure favours Dijkstra’s algorithm, partly

because the dtmcs used do not exhibit a very speci�c structure in general.

2.4 Finding the smallest counterexample

�e smallest counterexample is closely related to �nding the strongest evidence; that is,

instead of only needing the shortest path, we also need the next to shortest and the next

to next to shortest, et cetera. Recall that by de�nition 2.1.5 of smallest counterexample
(q.v.) it contains the �rst, say k, most probable paths. If not, we could exchange one
of the paths with a more probable one and obtain an even smaller counterexample,

hence refuting the claim that the original counterexample was smallest. In the weighted

digraph derived from the dtmc this will mean �nding the k shortest paths.
Since we do not know in advance howmany paths we will need, we would prefer to

be able to continue �nding paths until we hit our target limit, or the paths are exhausted.

Several algorithms for �nding the k shortest paths require us, however, to specify k
in advance. Since such a restriction is in general not feasible in our case, we shall not

investigate these algorithms.

�is le� us with two main candidates, namely the algorithm by Eppstein (1998),

and the algorithm by Jiménez & Marzal (1999). �e �rst one performs better

in theory, with an asymptotic time complexity of O(m + n log n + k) whereas the
latter has a worse time complexity ofO(m + kn log m

n), but is much simpler. Practical
experiments however, favour the algorithm by Jiménez and Marzal, because Eppstein’s

3Actually, we can see Dijkstra’s algorithm as a bfs variant. Normal bfs only works on a non-acyclic
graph if every edge has the same length. A graph can be transformed into such a graph by dividing an
edge of weight w into w edges of equal length, and running bfs on it. �e order in which the original
nodes are discovered is the same as for Dijkstra’s algorithm. Dijkstra uses a queue in lieu of dividing the
edges, but since the latter is not necessary for bfs to work correctly in case of a dag, the former is also
super�uous.

42

2.4. Finding the smallest counterexample

algorithm has an expensive �rst phase, which has to be performed always. A�er this

phase any number of paths can be extracted quickly, but it takes a very long time for

this �rst phase to pay o�. An improved version of Eppstein’s algorithm is described

in Varó & Jiménez (2003), this version is in essence a lazy version of Eppstein’s

algorithm, which postpones much of the computing the original algorithm does in

the �rst phase to a moment when it’s necessary, but experiments in the same paper

show that in practice the algorithm of Jiménez & Marzal (1999) is still superior in

almost all cases.

Note that both algorithms depend on k, which is the number of paths we need,
since we do not know this number in advance, the complexity is pseudo-polynomial

because k may be exponential, and in fact is, as shall be discussed in chapter 4.
�e implementation of Eppstein’s algorithm in both cases requires rather special-

ised data structures and is not very simple. We therefore mainly discuss the Recursive

Enumeration Algorithm (rea) for the unbounded case and the modi�ed rea as de-

scribed by Han & Katoen (2007) for the unbounded case and their relation with

the shortest path algorithms described above.

A�er the experiments and implementation had been done, a new algorithm, named

K∗, based on the lazy variant of Eppstein’s algorithm, appeared, which was developed

by Aljazzar & Leue (2008b). �is algorithm has the same time complexity as

Eppstein’s algorithm, and appears to be faster in practice than the other algorithms.

Furthermore, it is able to work with only portions of the graph in memory (both other

algorithms start with by computing the shortest path tree of the entire graph).

2.4.1 Unbounded until

�e unbounded until case is, again, the most straightforward one. We shall �rst

formalise the problem at hand by de�ning the k Shortest Paths (ksp) problem.

De�nition 2.4.1. Given a weighted directed graph G = (V, E ,w) with s, t ∈ V and
k ∈ N∗, the ksp problem is to �nd k distinct shortest paths between s and t, if they
exist.

From the correspondence between shortest paths and most probable paths, as de�ned

in lemma 2.2.5, we can deduce that we can �nd a smallest counterexample by solving a

ksp problem on a graph G = (V, E).
�is problem, can be solved by the Recursive Enumeration Algorithm (rea), as

mentioned before. We shall �rst give an overview of this algorithm. �e full details

and experimental results can be found in (Jiménez & Marzal, 1999). �e problem

is �rst presented as a system of equations. We denote the k-th shortest path from s to
v, where s, v ∈ V as πk(s, v). �is yields the following equations:4

πk
(s, v) =

⎧⎪⎪
⎨
⎪⎪⎩

s if k = 1 and v = s
σ s.t. ℓ(σ) = min{ℓ(σ) ∣ σ ∈ Ck(s, v)} otherwise

(2.1)

4For k = 1 these equations are the Bellman equations for the single shortest path problem, see
Bellman (1958).

43

2. Counterexamples for PCTL

where Ck(s, v) is a set of candidates from which πk(s, v) is selected.
Before providing the formal de�nition of this candidate set, we describe the idea

behind it. First of all, we note that, except in the case where v = s and k = 1 a k shortest
path from s to v always has to go via a predecessor node of v. Now we note that one
candidate path for each predecessor node su�ces, because we are looking for the

shortest path. If we would have two or more candidates for each predecessor, we could

discard all except the shortest candidate path, the others would never give an optimal

result. So, our candidates are formed by the shortest paths leading to predecessors of

v. For the case where k > 1 we have to make sure we do not reuse paths. For example,
if we �nd that the third shortest path from s to v is formed by extending the shortest
path from s to u with the edge uv, this path should be removed from the candidates
for the fourth shortest path. �e second shortest path from s to u extended with uv
would however be a candidate for the fourth shortest path.

�is gives us a de�nition of Ck in terms of Ck−1, with the candidate removed that
was used for the k − 1-th shortest path, and replaced by the next-shortest path leading
to the same node, if such a path exists.

In the next de�nition let u be the node and k′ the index such that πk−1(s, v) =

πk′(s, u)⋅v:

C
k
(s, v) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{π1(s, u)⋅v ∣ (u, v) ∈ E} if k = 1, v ≠ s;
or k = 2, v = s.

(Ck−1(s, v) − {πk′(s, u)⋅v}) ∪ {πk′+1(s, u)⋅v} otherwise

(2.2)

Note however, that πk′+1(s, u) need not exist, which happens if Ck′+1(s, u) is empty;
if this is the case we assume πk′+1(s, u)⋅v = �, where � denotes the non-existence of a
path.

Note that in particular, the values for π1(s, v) can be computed by a single run of
any single source shortest path algorithm, such as Dijkstra’s algorithm of Bellman-Ford,

depending on whether the graph has negative edge weights: the rea works too for

negative edge weights, but not negative weight cycles of course. For a proof of the

equations the reader is referred to the original article by Jiménez & Marzal (1999)

or to theorem 2.4.3 on page 54, which gives a proof for a generalised version of these

equations.

2.4.1.1 Algorithmic description

A solution of the shortest path equations of the previous section can be computed

by the Recursive Enumeration Algorithm (rea). It �rst starts out by computing the

shortest path tree rooted in s and then continues to calculate the next shortest paths to
v until there are no more paths or no more paths are needed, which in our case means
that we have reached a certain probability threshold.

Looking at the algorithm, we see that there is a special case for π1(s, v) on line 2;
which equation 2.1 does not have. However, as we see in equation 2.2, the candidate

set equation has a special case for k = 1 (except for v ≠ s, but this constraint is actually

44

2.4. Finding the smallest counterexample

Algorithm 2.4.1 The Recursive Enumeration Algorithm

Require: G = (V, E) is a graph with no negative weight cycles, s, t ∈ V
Ensure: �e �rst k shortest paths from s to t are computed, where k is the total number

of paths from s to t, or less if a threshold condition causes the algorithm to terminate
early.

1: {Dijkstra, Bellman-Ford or any adequate algorithm that can be used to compute the
shortest path tree depending on the additional constraints (such as positive edge
weights) on the graph is suitable. }

2: π1(s, ⋅) ∶= ShortestPathTree(G , s)
3: k ∶= 1
4: while πk(s, t) ≠ � ∧ ¬ThresholdReached:
5: { In our case, ThresholdReached could be de�ned as p ≤ ∑k

i=1 Pr(π i(s, t)) }

6: πk(s, t) =NextPath(t, k)

7: procedure NextPath(t, k): // π1(s, t), . . . , πk−1(s, t) should exist.
8: if k = 2:
9: {�e set of candidates is initialisedwith all the shortest path to the predecessor

nodes of v, except for the path used in the shortest path from s to v. }
10: C[t] ∶= {π1(s, u)⋅v ∣ (u, v) ∈ E ∧ π1(s, v) ≠ π1(s, u)⋅v}
11: if ¬(t = s ∧ k = 2):
12: Assign u and k′ s.t. πk−1(s, v) = πk′(s, u)⋅v
13: if Undefined(πk′+1(s, u)):
14: πk′+1(s, u) ∶= NextPath(u, k′ + 1)
15: if πk′+1(s, u) ≠ �:
16: C[t] ∶= C[t] ∪ πk′+1(s, u)
17: if C[t] ≠ ∅:
18: select σ s.t. ℓ(σ) = min{ℓ(σ) ∣ σ ∈ C[t][h]}
19: C[t][h] ∶= C[t][h] − σ
20: return σ
21: else:
22: return �

super�uous, because for v = s equation 2.1 already tells us that the answer is s and we
need not evaluate the candidate set).

�e reason for this is twofold, �rst of all, when being able to use Dijkstra, this will

result in a much fast calculation of the shortest path tree (the tree formed by all the

shortest paths from the root to every node in the graph) and the other reason is that it

makes the algorithm easier to implement.

Since we know that if k2 > k1 we always �rst have to compute Ck1 before we compute
Ck2 , we can su�ce by keeping one candidate set per node, which is iteratively updated
as needed.

45

2. Counterexamples for PCTL

Also note that the calculation of π1 starts at the source, and ends in the target,
whereas the calculation of each next path starts at the target and looks backward

instead. �is does not matter for the unbounded until, but causes the bounded until to

be trickier.

It can be proven that for k > 1 a call to NextPath(v , k) will only generate calls to
NextPath(u, j) for nodes u in πk−1(s, v) and does not generate a call NextPath(v , j)
for any j; the details of this proof can be obtained in the article of Jiménez & Marzal

(1999).

2.4.2 Upper bounded until

First of all, the approach to reduce the problem to an unbounded problem by using

the product graph transform also works. We can then run the unbounded version of

the rea on a transformed graph. We can also adapt the algorithm, which is not very

hard because the bounded until problem is very similar to the unbounded until, but

has a slight catch. �e translation of the algorithm is very straight forward, and we

can almost succeed by simply replacing C[t] by C[t, h], thus implicitly encoding the
transformed graph. Before we continue however, we state the formal de�nition of the

Hop constrained k Shortest Path (hksp) problem:

De�nition 2.4.2. Given a weighted directed graph G = (V, E ,w) with s, t ∈ V and
k ∈ N∗, the Hop constrained k Shortest Path (hksp) problem is to �nd k distinct
shortest paths between s and t not exceeding the hop bound h, if they exist.

Again, we can deduce from the correspondence between shortest paths and most

probable paths, as de�ned in lemma 2.2.5, that we can �nd a smallest counterexample

for bounded until by solving a hksp problem on a graph G = (V, E). We �rst show the
new set of recursive equations, inspired by equations 2.3 and 2.4, which take the hop

count into account. �ese equations were �rst presented by Han & Katoen (2007)

(again, � denotes non-existence of a path):

πk
h(s, v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s if k = 1, v = s, h ≥ 0
� if k > 1, v = s, h = 0;

or v ≠ s, h = 0.
σ s.t. ℓ(σ) = min{ℓ(σ) ∣ σ ∈ Ckh(s, v)} otherwise

(2.3)

�e main di�erence is that we take the hop count into account too. Note that the

equations work backwards again, and h should basically be interpreted as ‘the number
of hops le� to reach the starting vertex s when coming from t’; this is why the h ≥ 0
condition is present in the �rst case, because one can arrive at s with a few hops to
spend.

We also have di�erent candidate set for each value of h, as indicated by the extra
index Ckh(s, v). Again, in the next de�nition let u be the node and k

′ the index such

46

2.4. Finding the smallest counterexample

that πk−1
h (s, v) = πk′

h−1(s, u)⋅v:

C
k
h(s, v) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

{π1
h−1(s, u) ⋅ v ∣ (u, v) ∈ E} if k = 1, v ≠ s;

or k = 2, v = s
(Ck−1h (s, v) − {πk′

h−1(s, u) ⋅ v}) ∪ {πk′+1
h−1 (s, u)} otherwise

(2.4)

When adapting the rea, we should take special care of the �rst stage of the algorithm,

in which the values for π1
h(s, v) should be computed. We need this stage to compute

the distances, which should be computed with respect to s, but also to compute the
hop counts, which should be computed with respect to t, since the second stage works
backwards.

For the time being, we ignore the actual implementation of the algorithm we need

in the �rst phase, and instead focus on an issue to be taken into account. We take a new

look at the computation by the hop constrained bf algorithm on the graph of �gure 2.5,

as shown in the table on page 40.

We assume the adapted algorithm does a forward pass to �nd the distances, much

like bf does, and then and a backward pass to �nd the hop counts. �e backwards pass

�lls a ‘hopsle�’ array which records the number of hops that we have le� to reach the

source when coming from the target.

Nodes

Array s s1 s2 t

distance {0→ 0} {1→ 3, 2→ 2} {1→ 1} {2→ 4, 3→ 3}

previous {0→ ∅} {1→ s, 2→ s2} {1→ s} {2→ s2, 3→ s1}
hopsle� {0, 1} {2} {1} {3}

�e di�culty is how to reconcile the �rst two arrays with the third one. We see that s1
and t have multiple entries in the previous and distance array, but only one in hopsle�.
�e multiple entries in the previous and distance arrays indicate that there is more

than one path from s to s2 and t, but the single entry in hopsle� that there is only one
path from s2 and t to t. �e situation for s however, is reversed: it has two entries in
hopsle�, and only one in the other arrays, because when coming from t there are two
di�erent routes to get to s.

�e solution to this is not so hard, for every entry h in hopsle� of a node v, we
need to �nd the entry distance[v], with the shortest distance, not exceeding h.
In this case the hop limit does not really pose a constraint, but if we would do the

same with a constraint of 2 hops, we would �nd:

Nodes

Array s s1 s2 t

distance {0→ 0} {1→ 3, 2→ 2} {1→ 1} {2→ 4, 3→ 3}

previous {0→ ∅} {1→ s, 2→ s2} {1→ s} {2→ s2, 3→ s1}
hopsle� {0} {1} {0} {2}

47

2. Counterexamples for PCTL

We see that although there is an option to get within two hops to s1 when starting in s,
the value in hopsle� tells us it does not have more than one hop to spend there to get

to s, so its optimum will be a distance of 3. �e hopsle� of 0 for s2 indicates there is no
path through s2 that ful�ls the hop constraint.
If an algorithm would do these two passes, the procedure for this reconciliation

would have to be done for every node, and for every value hl in hopsle�. When trying
to adapt bf, a procedure like this invariably pops up. If we start at the target, we can

get the hop counts directly correct, but not the distances, and vice versa. �e solution

lies with the set of equations that describe the problem, and we shall delve into this in

the next section.

We �rst give the adapted version of the Recursive Enumeration Algorithm (rea)

in algorithm 2.4.2. �is algorithm was �rst published in a slightly di�erent form by

Han & Katoen (2007).

It can be proven that for k > 1 a call to NextPath(v , k, h) will only generate calls
to NextPath(u, j, h − 1) for nodes u in πk−1

h (s, v); the details of this proof can be
obtained in the article of Han & Katoen (2007). �e other aspect proven for the

original algorithm, namely that it won’t run in a cycle is trivial, because of the added

parameter h. A call to NextPath with parameter h will never result in a recursive call
with the same (or higher) h.
Again, the similarity between both algorithm 2.4.1 and algorithm 2.4.2 is striking,

the main di�erence involves the indexing with an extra h where otherwise only t was
used.

We conclude this section stating that the time complexity of the adapted rea is

O(hm+hk log(m
n)), the proof of which can also be found in Han & Katoen (2007).

Due to the fact that k might be exponential, this is problem cannot be reduced to a
polynomial time complexity.

2.4.2.1 Using DFS in the �rst phase

We �rst take a look at the recursive equations for the hop constrained shortest path

problem, but we now �x the value of k to 1 in equation 2.3, this gives us (the second
case cannot happen):

π1
h(s, v) =

⎧⎪⎪
⎨
⎪⎪⎩

s if v = s and h ≥ 0
σ s.t. ℓ(σ) = min{ℓ(σ) ∣ σ ∈ C1h(s, v)} otherwise

We still have a di�erent candidate set for each value of h, as indicated by the extra index
C1h(s, v). But the second case is gone: it is irrelevant, since it only applies for values of
k > 1. �e instantiated version of equation 2.4 therefore is:

C
1
h(s, v) = {π1

h−1(s, u) ⋅ v ∣ (u, v) ∈ E}

We now look at a small example graph and a computation run of π3
1(s, t), as shown in

�gure 2.7. We see that although nodes might have two predecessors, the computation

graph itself is acyclic – note that this would not be the case if we didn’t use hop counts,

48

2.4. Finding the smallest counterexample

Algorithm 2.4.2 The adapted Recursive Enumeration Algorithm

Require: G = (V, E) is a graph with no negative weight cycles, s, t ∈ V , h ≥ 0 is an hop
bound.

Ensure: �e �rst k shortest paths from s to t are computed, where k is the total number
of paths from s to t, or less if a threshold condition causes the algorithm to terminate
early. �e number of hops in each path does not exceed h
π1(s, ⋅) ∶= dfs(G , t)
k ∶= 1
while πk(s, t) ≠ � ∧ ¬ThresholdReached:

{ In our case, ThresholdReached could be de�ned as p ≤ ∑k
i=1 Pr(π i(s, t)) }

πk(s, t) =NextPath(t, k)

procedure NextPath(t, k): // π1
h(s, t), . . . , π

k−1
h (s, t) should exist.

if k = 2 ∧ h > 0:
{�e set of candidates is initialised with all the hop constrained shortest path
to the predecessor nodes of v, except for the path used in the shortest path
from s to v. }
C[t][h] ∶= {π1

h−1(s, u)⋅v ∣ (u, v) ∈ E ∧ π1
h(s, v) ≠ π1

h−1(s, u)⋅v}
if ¬(t = s ∧ k = 2) ∧ h > 0:
Assign u and k′ s.t. πk−1

h (s, v) = πk′
h−1(s, u)⋅v

if Undefined(πk′+1
h−1 (s, u)):

πk′+1
h−1 (s, u) ∶= NextPath(u, k

′ + 1, h − 1)
if πk′+1

h−1 (s, u) ≠ �:
C[t][h] ∶= C[t][h − 1] ∪ πk′+1

h−1 (s, u)
if C[t][h] ≠ ∅:
select σ s.t. ℓ(σ) = min{ℓ(σ) ∣ σ ∈ C[t][h]}
C[t][h] ∶= C[t][h] − σ
return σ

else:
return �

in that case computation graph would e�ectively yield a copy of the graph, but with the

arrow directions reversed, as shown in �gure 2.8. So only in the hop constrained case,

we see we end up with a dag if we unroll the equations. �is is not surprising, a�er the

discussion how a hop constrained problem can be reduced by transforming the graph

to a dag; we see this is done implicitly in these equations. When evaluated lazy the

graph is only constructed as it is explored, which gives an advantage in memory usage

in practice.

We need to point out it is not fortuitous that our example results in a dag: that a

cycle could never occur is easily seen if we realise that for a cycle exist somewhere on

49

2. Counterexamples for PCTL

s

s1

s2 t

1

1
3

1

a A cyclic graph.

π1
1(s, s) = s

π1
2(s, s1) π1

1(s, s2) π1
0(s, s1) = �

π1
3(s, t) π1

1(s, t) π1
0(s, t) = �

π1
2(s, s2) π1

1(s, s1) π1
0(s, s2) = �

π1
0(s, s) = s

b A hop constrained shortest path computation in the opposite

graph.

Figure 2.7 An example of a cyclic graph and the computation of a hop constrained shortest path

from s to t with a hop limit of 3. The upper branch yields s⋅s1⋅t and the lower branch yields s⋅s1⋅s2⋅t.
Note that the computation starts at the target.

s1

s t

s2

1

1

3

1

a A cyclic graph.

π1(s, s1)

π1(s, t) π1(s, s) = s

π1(s, s2)

b An unconstrained shortest path computation tree

in the opposite graph. Note that the result is not a

DAG.

Figure 2.8 An example of a cyclic graph and the computation of a un constrained shortest path

from s to t. We see that the computation results in a copy of the original graph, with cyclic depend-

encies. The solution to these unconstrained equations cannot thus be given by DFS.

the cycle we need to have an arc from π1
h l (s, sx) to π1

hu(s, sy) where hl < hu; this is
impossible.5

Hence, seeing the computation results in a dag, we know this structure should have

a topological ordering, and that this ordering can be found using dfs, as �rst described

by Tarjan (1976). Because we are working with a unique target, the computation

tree always starts at a single node, and we can simply run dfs from this target node

5It is obvious that a dfs computation in the non-hop constrained case would very o�en miss the
shortest path, because of these cycles. For example, looking at the computation graph in �gure 2.8b if
we would start the search in t, it might pick s1 �rst to extend the search to, then it might pick s2, as a
predecessor of s1 and conclude that t and s1 have already been visited, thus leaving nothing to explore at
s2 , and it needs to mark the node as done. Backtracking to s1 it �nds s as its predecessor, and can �nd the
distance, which is propagated to t, and the result is that s2 has no known distance, and t has distance 4.

50

2.4. Finding the smallest counterexample

Algorithm 2.4.3 DFS(v, h) calculates π1
h(s, v) on an acyclic graph.

1: procedure dfs(v, h):
2: if h < 0: return �
3: if dfs(v, h) has been computed before:
4: return π1

h(s, v)
5: if s = v ∧ 0 ≤ h:
6: π1

h(s, s) = s // By de�nition
7: for each u ∈ {u ∣ (u, s) ∈ E}:
8: dfs(u, h − 1)
9: else:
10: C1h(s, v) = {dfs(u, h − 1) ⋅ v ∣ (u, v) ∈ E}
11: π1

h(s, v) = σ s.t. ℓ(σ) = min{ℓ(σ) ∣ σ ∈ C1h(s, v)}
12: return π1

h(s, v)

to compute the shortest paths. While dfs does the forward pass, it registers the hop

counts, as soon as it hits s or the hop count is zero, it knows the distance from s to that
node. In the �rst case it is zero, in the latter case we register it as∞. �is might not be

correct when viewing from s, because the node might well be connected to s, however,
the path we have found violates the hop constraint, and hence we need not save it, it

will never be of use. �en, when back tracking a�er having exhaustively explored a

branch, it can propagate the distance to s. If more paths lead to s, it of course needs to
choose the one with minimum distance.

�e pseudo code for the dfs is shown in algorithm 2.4.3. Although the case where

s = v is a terminal case in a certain sense, the dfs cannot halt here. Suppose, for
example, the graph would look like s t and we would run a dfs, with a hop
constraint of 3. If we halt immediately when reaching s, a�er starting in t, we would
only register π2

1 (s, s), and cause trouble when the next phase of the algorithm would
try to �nd the second shortest path to s, because for this it would look for the shortest
path to the predecessor of s, but for this value of h we would not have explored s yet.

�eorem 2.4.3. �e Depth First Search (dfs) presented in 2.4.3 can be used to calculate
π1
h(s, v) on an acyclic graph.

Proof. We proceed by induction on h. For h = 0, the claim is correct, since dfs(s, 0)
yields s, which is obviously correct, and for a node v ≠ s we see that for each predecessor
on line 10 a recursive call is made, which yields an immediate return on line 2. Hence,

the candidate set will be empty, and it will return � in these cases.

Now that we have proven the base case, we continue with the inductive step.

Suppose a call dfs(s, h) is made. In this case the result will be s, which is correct
(note that the recursive call that is made at line 8 does not in�uence the computation

directly and only serves to pre-compute values needed in the next phase of the rea.). If

51

2. Counterexamples for PCTL

dfs(v , h) is called, with v ≠ s, the shortest paths to its neighbours are �rst computed,
fromwhich the shortest path is selected, and this path is extended with edge (u, v).

Note that the introduction of the hop bound makes the proof easier, if there would

have been no hop bound, we could not use induction so easily. Also, this gives us the

guarantee that the recursion will stop:

�eorem 2.4.4. �e maximum depth of recursion of a call to dfs(v , h) presented in
2.4.3 is h + 1.

Proof. We use a similar induction reasoning. For h = 0 we see, that if dfs(v ,−1)
is called for the predecessors of v. �is call returns immediately, thus limiting the
recursion depth to 1.

For the inductive step, consider some call to dfs(v , h) with h > 0. �is might

result in calls at line 8 or line 10, but not both. Either way, the recursive call has the

form dfs(v , h − 1); we know this has a maximum depth of h, hence the total recursion
depth is h + 1 at most.

2.4.3 Double and lower bounded until

�e previous section explored the translation of the simple bounded until operator

ΦU
≤h Ψ, there are no reasons however why the bound should only be an upper bound,

as mentioned in remark 1.5.5 on page 21. Although not the main focus of this thesis,

we shall discuss the adaptations need for the more general operator Φ U
[h l ,hu] Ψ that

can take both a lower and upper bound.

�e observations in this section are mainly intended as a starting point for further

investigations: not all aspects have been examined thoroughly.

�e semantics for the dual bounded operator are (Cf. de�nition 1.5.3):

σ ⊧ Φ U
[h l ,hu] Ψ i� ∃hl ≤ i ≤ hu ∶ (σ[i] ⊧ Ψ ∧ ∀0 ≤ j < i ∶ (σ[j] ⊧ Φ))

We furthermore require hl ≤ hu . �e original bounded operator U
≤hu can be expressed

as U
[0,hu], and dually a lower bounded operator U

≥h l can be de�ned as U
[h l ,∞], �nally

an operator U
=h could be de�ned as U

[h,h]. Because the case where hu = ∞ is a bit

more di�cult, for now we assume that hu < ∞. Note that the interpretation of a lower
bound only a�ects Ψ in Φ U

[h l ,hu] Ψ, Ψ, it has to hold a�er hl steps, if it holds before,
Φ has to hold too, because otherwise the formula is not valid, so basically these early

Ψ’s are ignored.

We start by giving the equations describing the dual bounded problem, these are

in fact generalisations of the previous equations (2.1–2.4):

52

2.4. Finding the smallest counterexample

if k = 1, v = s and hl ≤ 0 ≤ hu:

πk
[h l ,hu](s, v) = s;

if k > 1, v = s, and hu = 0; or v ≠ s and hu = 0:

πk
[h l ,hu](s, v) = �;

otherwise:

πk
[h l ,hu](s, v) = σ s.t. ℓ(σ) = min{ℓ(σ) ∣ σ ∈ Ck

[h l ,hu](s, v)} .

(2.5)

�e main alteration involves the addition of a lower bound. It is easily seen that if we

provide hl = 0, we get the previous hop constrained equations of 2.3-2.4), and that for
hl = 0 and hu = ∞ we get the unconstrained equations of (2.1-2.2).

�e equations for the candidate set are altered likewise. Again, let u be the node
and k′ the index such that πk−1

[h l ,hu](s, v) = πk′
[h l−1,hu−1](s, u)⋅v:

if k = 1 and (hl > 0 or v ≠ s); or k = 2 and v = s:

Ck
[h l ,hu](s, v) = {π1

[h l−1,hu−1](s, u) ⋅ v ∣ (u, v) ∈ E};

otherwise:

Ck
[h l ,hu](s, v) = (Ck−1

[h l ,hu](s, v) − {πk′
[h l−1,hu−1](s, u) ⋅ v}) ∪ {πk′+1

[h l−1,hu−1](s, u)}.

(2.6)

�e addition of the hl lower bound might be a bit misleading, since it suggests the
number of entries in the candidate set and the number of entries (implicitly) encoded

in the graph explodes, but we will always have that hu − hl = d, where d is some �xed
number, so memory-wise this is no worse than the single bounded operator.

�e addition of the indices is self explanatory, the hl ≤ 0 ≤ hu may be less so.
�e condition h ≥ 0 in the original hop constrained equations basically states ‘it does
not matter if we end up early in s’. As soon as we hit s, we have found a path. If the
condition would have been h = 0, it would only �nd paths of exactly h hops: this would
plainly lead to incorrect results. In the case of a lower bound, we can end up too soon

in s, say, a�er only 2, with a lower hop bound of 3. �is is avoided by the condition
hl ≤ 0.
Before delving into the formal correctness proof of the algorithm, an example run

is shown in �gure 2.9. It is similar to the run of �gure 2.7b, and also uses the same

graph, but we see that the �rst time a path to s is found, it is deemed invalid because it
is only two hops away from t, whereas a path needs to have at least 3 hops. We also
see that the lower hop bound can become negative, this is intended. One could also,

instead of saying hl − 1 in the equations do something like max(0, hl − 1), so the lower
bound could not drop below zero, which might be preferable due to implementation

concerns.

It should be noted that the lower hop bound can cause even the shortest path to

have a cycle. �e possible introduction of a cycle, even in the shortest path explains

the so�ening of the �rst condition of the candidate set. Previously, if we would arrive

53

2. Counterexamples for PCTL

π1
1,2(s, s) = � π1

−1,0(s, s) = s

π1
2,3(s, s1) π1

1,2(s, s2) π1
0,1(s, s1) π1

−1,0(s, s2) = �

π1
3,4(s, t) π1

1,2(s, t) π1
0,1(s, t) π1

−1,0(s, t) = �

π1
2,3(s, s2) π1

1,2(s, s1) π1
0,1(s, s2) π1

−1,0(s, s1) = �

π1
0,1(s, s) = s

Figure 2.9 Example of computation run in the graph of �gure 2.7a for the shortest path computa-

tion with a lower bound of 3 and an upper bound of 4. We start from t and are looking for paths

from s. Note that �rst s is found, the lower limit has not been reached and thus no path is found.

at s, we would always have found a shortest path in case of k = 1, hence, the condition
if k = 1 and v ≠ s, in fact, this condition was super�uous, because it implies ‘otherwise’
should have been the case in the case of π1, which cannot be if k = 1 and v = s are true.
In this case however we can arrive at s too soon, and need to extend the path, hoping
we’ll �nd a cycle and end up at s again. For completeness’ sake, we give a proof of the
theorem, since the adaptation is so small, the proof is almost a verbatim copy from the

original by Jiménez & Marzal (1999).

�eorem 2.4.5. �e equations 2.5 and 2.6 characterise the double hop constrained k
shortest paths from s to v with at least hl and at most hu hops.

Proof. Let Pk
[h l ,hu](s, v) denote the set of the k shortest paths from s to v with at least

hl and at most hu hops. Every path from s to v arrives at v through some predecessor
node u, i.e. u ∈ Pred(v) = {û ∈ V ∣ (û, v) ∈ E}.
In order to compute πk

[h l ,hu](s, v)we could consider every path from s to some pre-
decessor u, which, extended with (u, v)would not yield a path already inPk−1

[h l ,hu](s, v),
that is, we cannot use the second shortest path again as third shortest, so these have

to be le� out. �is would be unnecessary though. For each predecessor u, of course
w(u, v) is always the same. Given two paths through u, which abide the hop bounds
[hl −1, hu−1]we can always opt for the shortest6, since the total length, when extended
withw(u, v) will be our best choice. Hence, we only need to consider the shortest path
to a predecessor u which, if extended, would not yield a path in Pk−1

[h l ,hu](s, v).
�e set containing one candidate for each predecessor node is characterised re-

cursively by equation 2.6.

If both an upper and lower bound are speci�ed, we can use only the upper bound

as an index variable, since the di�erence between hu and hl is �xed. �is means that
when it comes to the number of invocations on NextPath, this is no di�erent from the

6If they are of equal length, another criterion can be introduced to break the tie, or we can pick one
non-deterministically, if necessary. �is does not a�ect the argument.

54

2.4. Finding the smallest counterexample

numberwhen only specifying an upper bound. �erefore, we can conclude that for k > 1
a call toNextPath(v , k, hu , hl)will only generate calls toNextPath(u, j, hu−1, hl−1)
for nodes u in πk−1

[h l ,hu](s, v). �is follows immediately from the result in Han &

Katoen (2007).

We can interpret the recursive equation for the k-th shortest path as saying, create
the new candidate set by removing the path through predecessor u that was used for
the k− 1-th shortest path, and add a new candidate for u in the form of the next shortest
path to u (if it exists).

2.4.3.1 Algorithmic Description

Introducing a lower bound is not particularly tricky if we use the graph transformation

to reduce the problem to a non-constrained problem. If there is both an upper and

lower bound, the extra transitions to the new target state of the �rst lh copies can
be removed. If the upper bound is however set at∞, one cannot unroll the graph

inde�nitely, but instead we do not remove the internal edges of the last copy, this idea

is shown in �gure 2.10. Equivalently, we can choose not to remove the internal edges

of the �rst copy.

If we want to look at direct algorithmic solution, that not explicitly transforms the

graph, we can still use the dfs approach, provided an upper bound is present. Some

obvious constraints on the lower bound can be imposed, i.e. checking whether hl ≤ 0
when arriving at s, and if not so, not registering the path. �at is, the following code
fragment in algorithm 2.4.3:

5: if s = v ∧ 0 ≤ h:
6: π1

h(s, s) = s //By de�nition
7: . . .

should be replaced by:

5: if s = v ∧ hl ≤ 0 ≤ hu:
6: π1

hu(s, s) = s //By de�nition
7: . . .

also the parameter hl should be passed, but there is no reason to use it for indexing.
If this upper bound is in�nite, the dfs will not terminate by itself, since hu will

never drop below zero, which is what e�ectively stops the recursion. An approach could

be to split the shortest path computation phase in two, �rst running an unconstrained

shortest path algorithm such as Dijkstra on the original graph, and then running bf for

hl iterations, the paths of exactly hl hops can then be connected to the shortest path
starting in their ending vertices. For the bounded operator Φ U

[h l ,∞] Ψ this would

imply that Φ has to hold in the �rst hl states and from then one Ψ can hold.
Another approach could be to impose an upper bound that is not an actual upper

bound, namely hl + ∣V ∣ − 1, V being the vertex set. In the worst case a node lies on a
single cycle forming a Hamiltonian path trough the graph and the �rst arrival is below

the hop bound: this does not mean there is no shortest path with the hop bound, the

cycle can be extended as o�en as needed. We just need to make sure we look deep

55

2. Counterexamples for PCTL

1st copy
s

s2

s1

t

2nd copy
s

s2

s1

t

3rd copy
s

s2

s1

t

h+1th copy
s

s2

s1

t

3
1

2

1

3
1

2

1

3

1

2

1
3
1

2

1

t̂

Figure 2.10 Schematic representation of the result of the graph transformation with a lower bound

of h. The original graph is replaced by h + 1 copies. The original edges are removed (shown dashed)

and instead a new edge is inserted, to the corresponding successor in the next copy, e.g. s→ s1 in

the �rst copy is replaced by a transition from s in the �rst copy to s1 in the second copy, and so one.

The edges in the �nal copy are not removed however. This way it takes at least h transitions to get to

the �nal copy, and this one is the only to be connected with the extra target state. In the context of

the U
[h,∞]

operator, this would mean that in the states in the �rst h copies Φ has to hold, and that Ψ

holds in t̂.

enough.

If this �rst phase is done correctly, the second of phase of the algorithm works

without problems. Some more aspects will be discussed in the implementation part,

but otherwise we shall not look into this in further detail.

2.4.4 Arbitrary bounded operators

�is has not been pursuit in any way, but the idea of the graph transformation lends

itself, in principle, to more arbitrary bounds on the operator. An upper bound, lower

bound and upper and lower bound have been discussed in the previous section, but

similarly a bound of ‘an even number of steps’ could be evaluated by making two copies

of the original graph, as we would do with a upper bound of two, but then connecting

the second copy again with the �rst. Only the �rst copy in turn would be connected

with the added target state t̂. So, a �rst hop would go the second copy, the second hop
would go back to the �rst one (possibly making t̂ reachable), etc.
Intervals like [3 . . . 8] hops or [12 . . . 20] hops would also be easily implementable

by removing the transitions to t̂ from the �rst, second, ninth, et cetera, copy.

2.4.5 Lazy algorithms

�e algorithms described in this section, rea and the modi�ed rea share the disad-

vantage that they start by computing the shortest path tree; which has to be kept in

memory in its entirety. �e original Eppstein (and lazy Eppstein) algorithms also have

this problem. Especially in the area of model checking, where one o�en would like to

explore only parts of the state space, this can be considered very undesirable.

56

2.4. Finding the smallest counterexample

�e K∗ algorithm by Aljazzar & Leue (2008b), which was mentioned at the

start of this section, does not su�er from this problem because it is able to work without

traversing the entire graph beforehand. Nodes are are only expanded as needed. Of

course this requires that one can implicitly specify the successor of a node, but this is

very o�en the case in model checking where a state’s successor is computed from the

information in the current state.

If such a function is available, let us assume it is called Succ, then this could also
be used to specify a new function Succ′ which implicitly creates the product graph
construction. For the outline, say that we have Succ(s) = s′, then we introduce an extra
parameter x for Succ′, so that it will look like Succ′(s, x). Assume that in addition we
have an upper hop-bound of h. We then can de�ne Succ′ as follows:

If x > h or x = h ∧ s ≠ t then:

Succ′(s, x) = �

If s = t then:

Succ′(t, x) = t̂

Otherwise (that is, x < h ∧ s ≠ t):

Succ′(s, x) = (Succ(s), x + 1)

57

3Implementation

Due to the fact that no program was available that implemented the algorithms ex-

plained in the previous chapter, we decided that it would be best to start out developing

such an implementation. Using this implementation we would be able to obtain hands-

on results with respect to several case-studies.

�is implementation, or prototype, is described in this section, it consists of a

parser for formulae and transition systems, modelled a�er mrmc; and it can output

a strongest evidence or smallest counterexample. �e next sections will describe the

functionality in more detail. A small manual for the program, which gives a taste of

its basic functionality, is found in appendix b. �is chapter only provides a high-level

overview, for the nitty-gritty details one is referred to the actual implementation and

its documentation.

3.1 Requirements and design goals

�e application is deliberately designed as a prototype, which mean we do not aim to

deliver a highly tuned and optimised product, which can handle very large models. In

principle it can be considered a throw-away prototype which explores the practical

viability of the theory in the previous chapter. �e following sums up the requirements

and the expectations:

◆ Implement a (basic) parser for pctl-formulae and dtmc speci�cations.

■ Functionality can �rst be restricted to basic formulae without nested prob-

ability operators, i.e. P≤p1(a UP≤p2 F b) need not be supported.
■ Also, only probability operators of the form P≤p need to be supported, i.e.
support for P<p, P>p, etc. is unnecessary.

◆ Implement the translation of the Markov-chain to a weighted direct graph, as

described in section 2.2.2, this means a small model checker for a subset of ctl

must be implemented.

■ At �rst theW operator need not be supported (and by the previous point,

nor need nested probability operators).

◆ Implement at least one shortest path algorithm for �nding the Strongest Evidence

(se), including hop-constrained versions.

59

3. Implementation

◆ Implement at least one k-shortest path algorithm, and a hop-constrained version
for �nding k-shortest paths with bounded until-operators.

◆ Present the user with a message whether the counterexample has been found,

and if so a list of traces in the counterexample.

◆ �e program itself can be implemented as a command-line programwhich reads

its input from �les and outputs to standard out.

◆ �e program need not be very fast or very scalable, but it should at least be able

to handle models with a couple of hundred of few thousand states such that the

behaviour of small-scale case studies can be studied.

Together, these requirements specify a very basic model checker for pctl, yet good

enough to check a few well-known cases, such as synchronised leader election and the

crowds protocol.

In addition to the above requirements, which have been implemented, during

program development a few extra features have found their way into the program:

◆ Hop-constrained problems can be reduced to a non-constrained problem using

the product graph method of section 2.3.2.1.

◆ Lower-bounds in addition to upper-bounds are supported.

■ But: if there is no upper-bound , the problem has to be reduced to an

unconstrained problem.

And �nally I have tried to remain as close to the representation of the algorithms

in this thesis, or the original papers, and to choose obvious data structures, and not to

optimise the understandability of the code away.

3.2 Program design

�e above requirements description allows the program to be naturally divided into

the following parts:

◆ A parser and formula rewriter for pctl-formulae and Markov chains.

◆ A (basic) ctl model-checker which can calculate Sat(Φ) and Sat(Ψ) for the

inner formula of P≤p(Φ UΨ).

◆ A dtmc to weighted graph converter which uses the information of the previous

step.

◆ Strongest Evidence (se) computation using a shortest path algorithm.

◆ Smallest Counterexample (sc) computation using a k shortest path algorithm.
�e �rst two parts are rather mundane, and are more like a warm-up exercise than

anything else. �ese parts will not be discussed in detail, appendix a contains a small

exposition on the algorithm used for model checking the ctl part, whereas appendix b

contains a short description on the �le formats used for the pctl-formulae and dtmc.

�e other parts will be described in more detail in the following sections, with

particular focus on the algorithms and used data structures.

60

3.2. Program design

s1

s t

s2

1

1

3

1

1 G = {’s’ : {’s1’ : 1 },

2 ’s1’: {’s2’ : 1, ’t’: 3},

3 ’s2’: {’s1’ : 1, ’t’: 1},

4 ’t’ : {’s1’ : 3, ’s2’: 1},

5 }

Figure 3.1 An example of a cyclic graph and a possible representation in Python using nested

dictionaries, where simple strings are used as states.

3.2.1 Language choice

First of all, a language had to be chosen for the prototype. Since the emphasis of

a prototype lies at rapid application development, and not so much speed, I have

decided to use Python, an interpreted, interactive, multi-paradigm programming

language, supporting object oriented programming throughout, but also allowing

typical functional programming constructs such as list comprehensions and �rst-

class functions. It is also quite portable, running on anything from Nokia Phones to

Windows, OS X and unix. Furthermore interpreters for the Java Virtual Machine

(Jython) and Microso�’s Common Language Runtime (IronPython) exist.1

Furthermore, the language has built-in support for important data structures, such

as sets, dictionaries (hash maps), linked lists, et cetera. �is makes it quite convenient

to implement algorithms. Because these data structures have a heavily optimised C

implementation, they are quite fast in practice, and it allows for rather straightforward

translation from pseudo-code to real code. Resulting in faster development than

programming in Java or C (Prechelt, 2000)

3.2.2 DTMC and graph representation

Python’s internal hash-table, called a dictionary in Python terms, lends itself very well
to representing a weighted graph, and for that matter, a dtmc. �e idea is a variant

on an adjacency list. Using Python’s notation, we represent a dictionary as follows:

{’a’:1, ’b’:2, ’c’:3}, meaning that in this hash table the key a is mapped onto
the integer 1, which is the value, b is mapped onto 2, et cetera. �e keys need to be
immutable, but the values need not so. Exploiting this, we can map each node onto a

new dictionary, which holds the weight (in case of a weighted graph) or the probability

of the transition (in case of a dtmc), we see an example of this in �gure 3.1.

�e advantage of using Python’s own hash table is that it’s very optimised.2 With

1�e de-facto standard implentation can be found at http://www.python.org/; Jython is de-
veloped under auspices of Sun and can be found at http://www.jython.org, IronPython is sup-
ported by Microso� and can be downloaded from their open source project hosting website: http:
//www.codeplex.com/IronPython.

2Exact time bounds are hard to give. If your input data is well behaved, and you have speci�ed a suit-
able hash function for your own objects, insertion and deletion should beO(1). Practical considerations

61

http://www.python.org/
http://www.jython.org
http://www.codeplex.com/IronPython
http://www.codeplex.com/IronPython

3. Implementation

this structure it is very easy to check whether a node is a successor of another node,

simply by stating if v in G[u], this requires two lookups, �rst for u, and then in the

dictionary returned by this lookup, both are very fast. �e weight of an arc uv can be
obtained by G[u][v], equally fast.

Further advantages are that one can get a list of keys in the dictionary with a simple

call, thus obtaining all neighbours, and insertion and deletion of neighbours is equally

fast. �e construction of a predecessor list however, does require either a pass over the

data structure (to �nd the predecessors of v we have to check for every u whether v
in G[u] is true), or another adjacency list which is organised the other way around.3

Perhaps most importantly, using these data structures, the algorithm of section 2.2

can be implemented faithful to its description, without a loss in performance.

3.2.3 Strongest Evidence algorithms

�e algorithm for the strongest evidence in the unconstrained case is rather straight-

forward. It should be Dijkstra’s algorithm; for the hop-constrained case Bellman-Ford

is preferable, or, if, more paths have to be found, dfs as explained in section 2.4.2.1.

�erefore, our main point of concern is the choice of an appropriate heap structure

to be used for Dijkstra’s shortest path algorithm. �e better its performs, the better

Dijkstra performs. �e best known theoretical bounds are given by Fibonacci heaps

(Fredman & Tarjan, 1987), but in practice binary heaps or pairing heaps (Fred-

man et al., 1986) are as fast as Fibonacci heaps (Goldberg & Tarjan, 1996), due

to the fact that not enough updates occur in a typical run of Dijkstra’s algorithm to

warrant the overhead of Fibonacci heaps for the other operations.

A �nal concern in the case of Python also is the quality of the underlying imple-

mentation. Fibonacci heaps implemented in pure Python will probably fare worse than

binary heaps that can use its underlying array representation, because of the overhead

involved with object creation and destruction. Of course this can be circumvented by

implementing an extension module in C, which does not su�er as much of these speed

problems, but this would mean implementing an optimised Fibonacci heap in plain C,

which in turn, is not a trivial task. Luckily, the latter has been done by Andrew Snare,4

sadly this implementation is incompatible with the latest versions of Python.

Experiments using di�erent heaps however, showed that the di�erence in speed

for for the algorithms was, although signi�cant, only of slight importance, since the

sizes for which the speed really became intolerably slow where not of any practical

limitations for the prototype. As a non-comprehensive test, an implementation of

Dijkstra’s algorithm was run with di�erent heaps on a graph created by a Delaunay

triangulation in a plane (see �gure 3.2). �is is not meant to be a representative model

however govern a design which makes the hash table to perform really well in frequent cases, on the
expense of uncommon cases (and exact theoretical bounds). A discussion on the aspects and di�erent
concerns of this implementation can be found in Beautiful Code (Oram & Wilson, 2007, chapter 18).

3In this case, a combination of a dictionary mapping to a set – another built-in data structure – is
most appropriate.

4�e PQueue extension module: which could, at the time of writing be found at: http://www.csse.
monash.edu.au/hons/projects/2001/Andrew.Snare/#pqueue

62

http://www.csse.monash.edu.au/hons/projects/2001/Andrew.Snare/#pqueue
http://www.csse.monash.edu.au/hons/projects/2001/Andrew.Snare/#pqueue

3.2. Program design

Figure 3.2 An example Delaunay triangulation of a set of 200 random points in the plane.

for structures typically encounteredwhen probabilisticmodel checking, rather, it serves

as a test to see how fast Dijkstra’s algorithm can run on a reasonably large graph where

every node has mainly local connections.

From the results in �gure 3.3, it can be seen that the implementations that are

written in pure Python, which are the Fibonacci heap and both pairing heaps, are

clearly the slowest, although even six seconds is not unbearably slow for a graph with

50 000 points. �is indeed illustrates that the time the shortest path computation will

take is not a bottleneck in the execution of the algorithms. �e pure C implementation

of the Fibonacci heaps is the fastest, whereas the other two implementations that use

Python’s provided data structures, which also have an underlying C implementation,

lie in between.

3.2.4 Smallest Counterexample algorithms

�e implementation of the rea follows rather straightforwardly from the pseudo code

presented in algorithm 2.4.1. �ere is only one important optimisation to be made, and

that involves storing every path implicitly in order to save massive amounts of space.

�e pseudo code doesn’t show how this is done, but the idea is similar to the way one

stores the path implicitly in Dijkstra’s algorithm, although in this case we have to store

several paths per node, the shortest path, the second shortest path, and so on, and keep

a candidate set for every node.

63

3. Implementation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

⋅104

0

1

2

3

4

5

6

7

Number of nodes

T
im
e
(s
)

Pairing heap w. auxiliary list Pairing heap Binary heap
Heap backed dictionary C Fibonacci heap Python Fibonacci heap

Figure 3.3 Execution times of a run of Dijkstra’s single source all shortest path algorithm on di�er-

ently sized Delaunay triangulation graphs.

�e way this is implemented is shown in �gure 3.4; this picture is redrawn from

the original in the article by Jiménez & Marzal (1999). �e candidate set is also

represented in this article, as a simple list, but in practice this set is implemented as a

heap, which allows easier selection of the shortest candidate.

A�er a shortest path has been found in this way, it can be reconstructed in time

linear to the length of the path by following the back pointers.

�e situation for the hop-constrained shortest path is rather similar, except that

another index is needed to keep track of the hop-constraint.

Because the algorithm for the smallest counterexample starts out with a shortest

path tree as a basis, we also take care that the shortest path tree delivered by the Dijkstra,

Bellman Ford or dfs run in the �rst phase is built so that it can be used in the second

phase.

In case of the k hop-constrained shortest path algorithm the data structure of
�gure 3.4 becomes even more elaborate; the fact that we need to record the hop-

count adds another dimension to the data structure. For every node there are several

candidate lists associated, not only for each shortest path, but also for each hop-count.

64

3.2. Program design

C3[t]

(u, t)

(v , t)

(w , t)

u v w t

π1(s, u) π2(s, v) π1(s,w) π1(s, t)

π2(s,w) π2(s, t)

π3(s,w) π3(s, t)

Figure 3.4 The implicit representation of paths and candidate sets in the REA. The thick (green)

lines represent the structure of the graphG . For u and v one shortest path has been computed, for w

and t three have. The paths are represented by back-pointers to the predecessor node on the path.

For example, the third shortest path, π
3(s, t) = π

2(s, v)⋅t. Also represented is the candidate set C

for t, which holds a candidate path for every predecessor node of t. The pointers indicates the path

last considered for every node. Of these π
1(s, v) was the shortest. If π

4(s, t) would be computed,

π
1(s, v) would be removed from the candidate set, and π

2(s, v) would be added, if it exists.

3.2.4.1 Alternative algorithms

An implementation of Eppstein (1998) was attempted, but abandoned. �e main

problem with this algorithm is that its implementation requires quite speci�c data

structures, which, if implemented in Python, would result in quite a discrepancy in

speed, simply because the underlying algorithms are not available in C.�erefore, these

two implementations would not be comparable. �e same problem applied to the lazy

variant by Varó & Jiménez (2003).

�e K* algorithm by (Aljazzar & Leue, 2008b) was only developed a�er the

implementation had been completed, due to time constraints it was not included in

the comparison, although it is in principle quite suited since it supports on the �y

exploration of the graph.

3.2.5 Product graph construction

�e graph product has been implemented too, but without any �nesse. It simply

calculates the graph product with an added �nal state, as described in de�nition 2.3.6.

It is mainly meant to be able to check the outcomes by the hop-constrained k shortest
path algorithm against the outcomes that are obtained by running the unconstrained

algorithm on the original graph.

65

3. Implementation

3.2.6 Regular expression

Implementation details about algorithms to obtain regular expressions are discussed

in chapter 5.

66

4Experimental results

With only the theoretical algorithms, the question remained open: how well will these

algorithms perform on actual problems. �is chapter presents several case studies

and shows how the number of paths per counterexample grows. We �rst discuss

the synchronous leader election, which also includes a mathematical analysis. �is

analysis con�rms that in practice the number of paths per counterexample can grow

exponentially.

�e selection of case studies was based, by recommendation of mrmc author Ivan

Zapreev, on those that were also covered by Katoen et al. (2007). An advantage
of these case studies is that these are available as prism �les, which can be readily

converted to mrmc format, and hence our so�ware. �is chapter presents a selection

of three of these case studies.

A test framework was therefore put into place which is able to generate a prism

�le1; convert it to mrmc format and run the counterexample �nding algorithm.
For the results that include timing, a problem was run several times. �e average,

standard deviation and fastest time was recorded. Because the problems are all de-

terministic in nature, that is, the same computations and outcome are expected for

every run, we take the fastest result. �e reasoning for this is that a computer even
if it does ‘nothing’ might still have to task switch occasionally because of network

tra�c, a scheduled job or something like this. �e fastest time is the time closest to an

undisturbed run. �e average and standard deviation were merely used to see whether

the computer could reasonably assumed to be idle: a high standard deviation means

the result is probably unreliable.

We of course tried to let the program run as undisturbed as possible by disabling

the garbage checking in Python and making sure no other cpu-intensive applications

were running. Nevertheless, on a multi-tasking operating system connected to the

network one always has some disturbance.

We �rst present the synchronous leader election protocol, followed by the Crowds

protocol; both case studies show that the number of paths per counterexample is

enormous.

1Although prism is able to obtain some sort of parametrisation by using process renaming, in
general one needs to manually add or remove some lines if one, for example, adds an extra node or
computer to the example. �erefore shell-scripts were written that would generate an appropriate prism
�le, given a few parameters relevant to the problem.

67

4. Experimental results

100 101 102 103 104 105
10−9

10−7

10−5

10−3

10−1

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

n = 4, k = 2 n = 4, k = 4 n = 4, k = 8 n = 4, k = 12

Figure 4.1 Per path probability for di�erent instances of the synchronous leader election. n is the

number of nodes in the ring, k the number of values they choose from.

4.1 Synchronous leader election

4.1.1 The protocol

�e synchronous leader election protocol is rather easy. �ere are n processes, con-
nected in a ring, and one of these has to become a leader. In order to establish who

the leader is, they all pick a random number from some prede�ned range 1 . . . r, and
then pass these numbers around on the ring. A�er passing n − 1 times – so everybody
has seen every token – they decide whether a unique id has been seen, and if so, the

one with the highest id wins and becomes a leader (or, if there is only one unique id,

the only one). If the vote fails, they try again. �is gives the formula we want to check:

P≤1(F leader elected)2.
�e model can be analysed by hand for the greater part. It’s clear that a�er n + 1

steps a decision has been reached. �ere is one step needed to choose a random value,

then n − 1 to pass the values around, and then there is a �nal step to a ‘�nished’-state, if
there was a unique id, or to the start, if there was none. Each step corresponds to a

transition in the dtmc. A�er n + 1 steps the dtmc is either in the starting state again,
or in the accepting state, where a leader has been elected.

If we feed our formula, with the high upper bound to the so�ware, it will need to

exhaustively search every evidence it can �nd, because it will never be able to �nd a

counterexample which violates this bound. �erefore, one could say this is an exercise

in futility, but it very nicely shows how the contribution per path becomes less and less

and how the total weight only very slowly attains the expected limit of 1.

2Strictly speaking, we should say ≤ 0.999 . . ., with some �nite number of nines for the upper bound,
but we simply write 1.

68

4.1. Synchronous leader election

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

Number of evidences

P
ro
b
a
b
il
it
y

n = 4, k = 2 n = 4, k = 4 n = 4, k = 8 n = 4, k = 12

Figure 4.2 Cumulative probability for di�erent instances of the synchronous leader election. n is

the number of nodes in the ring, k the number of values they choose from.

If we look at �gure 4.1, we see a very distinct staircase pattern. In every case the

graph �rst goes horizontally, steeply drops – note that the y axis is logarithmic – and

proceeds horizontally. If we look at the case n = 4, k = 12, for example, we see that this
line remains horizontal a�er about the twenty-thousandth evidence. �is means that

all of these paths are equally likely. We shall explain this shape shortly, because it has a

very obvious reason.

First however, we shall look at the graph of the cumulative probability, which is

shown in �gure 4.2. Here we have made only the x axis logarithmic; in fact this graph
is piecewise linear, but without the logarithmic x axis the structure would not be so
clear. What is very notable is that although all the graphs come close to the limit, in an

absolute sense, there convergence is very slow.

4.1.2 Mathematical analysis

�e �rst step of each round is probabilistic, namely, all processes pick a random value.

Because the processes are ordered, and there are n of them, choosing from k values,
this gives kn possible allocations a�er starting, each of them is as probable as the other.
A�er they have chosen, the process is deterministic. �ey pass n − 1 times, and then
they go to the start or the end, depending on whether the allocation contained a unique

value.

For example, in case of 3 nodes and 2 values to choose from, there are evidently

23 = 8 possible outcomes a�er choosing. Of these 8 outcomes, 6 have a unique value
(if we choose from {1, 2} only 111 and 222 are not unique). So, there is a probability of

3/4 that a leader is elected a�er the �rst round. If not, a second round is started. �e

probability for a second round is 1/4, and the probability that a leader is elected in the

69

4. Experimental results

start

u1 ui s1 s j

next l eader_el ected

1
kn

1
kn 1

kn
1
kn

1 1 1 1

1
W(n, k) kn −W(n, k)

Figure 4.3 The example DTMC after the second transformation step. The probabilities have been

replaced by weights and the self-loop on the �nal state has been removed.

second round is 1
4
3
4 , or

3
16 . �e probability a leader is elected in the third round is

1
4
1
4
3
4 ,

et cetera. In general we �nd, in this case, that a leader is elected in the n-th round is:

3

4
⋅ (
1

4
)
n−1

In the same way we �nd that there are 6 paths to success in the �rst round, and 2 ⋅6 = 12

paths to success in the second round, and 24 in the third round, and so one. So the

number of paths in each round increases, whereas the probability to be ‘spread over’

these paths is decreasing. Every path will have a weight that is less and less probable.

4.1.2.1 The general case

It is not trivial to �nd an explicit formula that gives the number of distributions given n
processes and k values to in which at least one process has a unique value. �e way the
prism model is designed, each of these assignments is a di�erent path. So the starting

node has kn successor nodes, since each of the n nodes can choose from k values.
�is structure is schematically shown in �gure 4.3. �is structure also explains

the staircase pattern. �e ‘highest step’ of the staircase consists of a path in which a

leader is immediately elected, then it drops, which consists of paths in which there is

one ‘next’, that is, there are two election rounds; the next drop indicates third election

round.

We shall now describe an expression forW(n, k). �is is given by the r-associated
Stirling numbers of the second kind (Comtet, 1974, p.221). �is give the number of

ways to partition a set of n values into k (non-empty) subsets with in each subset at
least r elements. �e 2-associated Stirling numbers of the second kind give the number
of partitions in which each subset contains at least two elements. �is relation has the

following recursive de�nition (Comtet, 1974, p.222):3

3See also: http://www.research.att.com/~njas/sequences/A008299, Sloane’s Encyclopedia of

70

http://www.research.att.com/~njas/sequences/A008299

4.1. Synchronous leader election

S2(n, k) = kS2(n − 1, k) + (n − 1)S2(n − 2, k − 1). (4.1)

One can read this as: ‘�e number of ways to distribute n objects over k boxes such
that each box at least contains two objects is given by the way to distribute n − 1 objects
over k boxes and putting the last element in any box (with k boxes) or by keeping
another element apart (for which there are n− 1 candidates), and putting the remaining
n − 2 elements in k − 1 boxes. �e boxes are unlabelled, the elements are labelled. So,
given k boxes it only matters which elements are put together in some box.

�ere also exists a non-recursive equation for equation 4.1, given by:

S2(n, k) =
k
∑
i=0

(−1)
i
(
n
i
)
⎛

⎝

k−i
∑
j=0

(−1)
j (k − i − j)n−i

j!(k − i − j)!
⎞

⎠
(4.2)

Of course, this formula only makes sense for k ≤ ⌊n/2⌋.
Given this formula, we can obtain a direct expression for the number of ways to put

n labelled objects into k labelled boxes, such that no box contains exactly one object:

W(n, k) =
min(⌊n/2⌋,k)

∑
j=1

S2(n, j)
k!

(k − j)!
. (4.3)

It does not make sense to put the objects in more than ⌊n/2⌋ boxes of course4,
because one has to allocate two elements to each box at least. �is explains the upper

bound in the summation. �en we take the number of ways to put n objects into j
unlabelled boxes. Including the empty boxes, there are of course k! possibilities to
arrange these boxes, but we should leave out the permutations in which only the empty

boxes (of which there are k − j) are di�erent. �is yields formula 4.3.
With equation 4.3 it is possible, given the number of processes n and the k values to

�nd the number of allocations in which no process has a unique value. We could view

the phase where each process chooses a random number from 1 . . . k as assigning each
process to a labelled box. If at least one of these is alone in its box, there is a unique

highest value.

We thus obtain the following to express the probability that with n processes and k
values the leader is elected in round m:

P(n, k,m) =
kn −W(n, k)

kn
⋅
W(n, k)

kn
m−1

(4.4)

4.1.3 More or less experimental results

Although we have an explicit formula that gives the number of distributions in which

no element obtains a unique value, we can also use the model checker to obtain this

number.

integer sequences.
4it does make sense to have more than ⌊n/2⌋ boxes, because even though not more than half of the

boxes will be allocated, it does matter which boxes are allocated.

71

4. Experimental results

�e aspect about the structure of this model is that the hop bound of n + 1, will
only give paths for which a leader is chosen in the �rst round. In general the formula

cannot be falsi�ed, because a leader will always be elected, but it’s interesting to try,

because this forces the program to �nd all the paths it can actually �nd.

�is number coincides with the number of allocations in which some node has a

unique value, or, kn −W(n, k). If we put the upper and lower hop-limit at 2(n + 1),
we will �nd all paths in which the leader is chosen in the second round, this however

can be calculated too. In general, the number of paths added each round is:

T(n, k,m) = (kn −W(n, k)) ⋅W(n, k)m−1 (4.5)

We can see here that this is exponential in the number of rounds. On the other

hand the probability mass each round gets less and less – also exponentially. �e mass

per path gets hence less and less very rapidly! In table 4.1, the calculations have been

performed for k = 2 and n = 3 . . . 6. It can be clearly seen how in case of n = 6, the

number of paths becomes terribly large a�er round three.

Of course, if n is large with respect to k the situation becomes worse and worse as
n gets larger, but also with a large k with respect to n, the situation becomes really bad
a�er the �rst round. A calculation of this can be found in table 4.2 and 4.2. In the case

of n = 6 and k = 2, the number of states (329, with 392 transitions) is not excessively
high at all, but the number of traces becomes enormous, really soon.

�at a large n with respect to a small k is bad, is obvious since there are much more
nodes than values, especially if n > 2k it is expected that on average every value will be
chosen at least twice. In case of a high k however, the chance at success is much larger,
but just because of that the number of ways to achieve success also increases a lot.

Note that for every case presented in these tables, the �nal probability will be 1. In

some cases, such as the �rst in table 4.1, it is rather clear from the progression that 1

will be reached, but for the third entry it is not very obvious. Even a�er more than 20

trillion (1012), the cumulative probability is not more than 0.1; if one would look at the
progression as new paths are found, one could readily, and wrongly, conclude that the

limit would be around 0.1.

4.1.4 Tables

4.2 Crowds protocol

�e previous example is quite useful because it is so easily analysed mathematically.

�is example doesn’t allow such an easy mathematical analysis, however, it does exhibit

similar behaviour when it comes to convergence and many paths with the same mass.

�e protocol of this example is motivated by the lack of privacy for transactions

on the www or the internet in general. �is is a well-documented fact. New kinds

of privacy-sensitive information, such as location information etc. about the context

can possibly be traced and collected by traditional means, such as cookies, to create

extensive user pro�les and be disseminated (Andersson et al., 2004).

72

4.2. Crowds protocol

n = 2, k = 2

Paths Prob. mass Per-path mass Cum. Prob

Round 1 2 0.5 0.25 0.5

Round 2 4 0.25 0.0625 0.75

Round 3 8 0.125 0.015625 0.875

Round 4 16 0.0625 0.00390625 0.9375

Round 5 32 0.03125 0.000976562 0.96875

n = 6, k = 2

Paths Prob. mass Per-path mass Cum. Prob

Round 1 12 0.1875 0.015625 0.1875

Round 2 624 0.152344 0.000244141 0.339844

Round 3 32 448 0.123779 3.8147⋅10−06 0.463623

Round 4 1 687 296 0.100571 5.96046⋅10−08 0.564194

Round 5 87 739 392 0.0817137 9.31323⋅10−10 0.645907

n = 10, k = 2

Paths Prob. mass Per-path mass Cum. Prob

Round 1 20 0.0195312 0.000976562 0.0195312

Round 2 20080 0.0191498 9.53674⋅10−07 0.038681

Round 3 20 160 320 0.0187758 9.31323⋅10−10 0.0574568

Round 4 20 240961 280 0.018409 9.09495⋅10−13 0.0758658

Round 5 20 321 925 125 120 0.0180495 8.88178⋅10−16 0.0939153

n = 16, k = 2

Paths Prob. mass Per-path mass Cum. Prob

Round 1 32 0.000488281 1.52588⋅10−05 0.000488281

Round 2 2096 128 0.000488043 2.32831⋅10−10 0.000976324

Round 3 137 304 768 512 0.000487805 3.55271⋅10−15 0.00146413

Round 4 8 994011 556 610048 0.000487566 5.42101⋅10−20 0.00195169

Round 5 589 143 733 004 184 584 192 0.000487328 8.27181⋅10−25 0.00243902

Table 4.1 Overview of number of paths and probability mass, per path mass and the cumulative

probability per round. For �xed k and varying n

73

4. Experimental results

n = 4, k = 2

Paths Prob. mass Per-path mass Cum. Prob

Round 1 8 0.5 0.0625 0.5

Round 2 64 0.25 0.00390625 0.75

Round 3 512 0.125 0.000244141 0.875

Round 4 4096 0.0625 1.52588⋅10−05 0.9375

Round 5 32 768 0.03125 9.53674⋅10−07 0.96875

n = 4, k = 4

Paths Prob. mass Per-path mass Cum. Prob

Round 1 216 0.84375 0.00390625 0.84375

Round 2 8 640 0.131836 1.52588⋅10−05 0.975586

Round 3 345 600 0.0205994 5.96046⋅10−08 0.996185

Round 4 13 824000 0.00321865 2.32831⋅10−10 0.999404

Round 5 552 960000 0.000502914 9.09495⋅10−13 0.999907

n = 4, k = 8

Paths Prob. mass Per-path mass Cum. Prob

Round 1 3 920 0.957031 0.000244141 0.957031

Round 2 689 920 0.0411224 5.96046⋅10−08 0.998154

Round 3 121 425 920 0.00176698 1.45519⋅10−11 0.999921

Round 4 21 370 961 920 7.59249⋅10−05 3.55271⋅10−15 0.999997

Round 5 3 761 289 297 920 3.2624⋅10−06 8.67362⋅10−19 1

n = 4, k = 12

Paths Prob. mass Per-path mass Cum. Prob

Round 1 20 328 0.980324 4.82253⋅10−05 0.980324

Round 2 8 293 824 0.0192888 2.32568⋅10−09 0.999613

Round 3 3 383 880 192 0.000379525 1.12157⋅10−13 0.999992

Round 4 1 380 623 118 336 7.4675⋅10−06 5.40879⋅10−18 1

Round 5 563 294 232 281 088 1.4693⋅10−07 2.60841⋅10−22 1

Table 4.2 Overview of number of paths and probability mass, per path mass and the cumulative

probability per round. For �xed n and varying k

74

4.2. Crowds protocol

n = 5, k = 2

Paths Prob. mass Per-path mass Cum. Prob

Round 1 10 0.3125 0.03125 0.3125

Round 2 220 0.214844 0.000976562 0.527344

Round 3 4 840 0.147705 3.05176⋅10−05 0.675049

Round 4 106 480 0.101547 9.53674⋅10−07 0.776596

Round 5 2 342 560 0.0698137 2.98023⋅10−08 0.84641

n = 5, k = 4

Paths Prob. mass Per-path mass Cum. Prob

Round 1 900 0.878906 0.000976562 0.878906

Round 2 111 600 0.10643 9.53674⋅10−07 0.985336

Round 3 13 838 400 0.012888 9.31323⋅10−10 0.998224

Round 4 1 715 961 600 0.00156066 9.09495⋅10−13 0.999785

Round 5 212 779 238 400 0.000188986 8.88178⋅10−16 0.999974

n = 5, k = 8

Paths Prob. mass Per-path mass Cum. Prob

Round 1 32 200 0.982666 3.05176⋅10−05 0.982666

Round 2 18 289 600 0.0170335 9.31323⋅10−10 0.9997

Round 3 10 388 492 800 0.000295259 2.84217⋅10−14 0.999995

Round 4 5 900663 910 400 5.11801⋅10−06 8.67362⋅10−19 1

Round 5 3 351 577 101 107 200 8.87155⋅10−08 2.64698⋅10−23 1

n = 5, k = 12

Paths Prob. mass Per-path mass Cum. Prob

Round 1 247 500 0.994647 4.01878⋅10−06 0.994647

Round 2 329 670000 0.00532435 1.61506⋅10−11 0.999971

Round 3 439 120 440000 2.85013⋅10−05 6.49055⋅10−17 1

Round 4 584 908 426080000 1.52568⋅10−07 2.60841⋅10−22 1

Round 5 779098023 538 560000 8.16697⋅10−10 1.04826⋅10−27 1

Table 4.3 Overview of number of paths and probability mass, per path mass and the cumulative

probability per round. For �xed n and varying k

75

4. Experimental results

Crowds (Reiter & Rubin, 1998) is a protocol for anonymous communication to

enhance privacy. It uses random routing within a group of nodes (a crowd) to establish

a connection path between a sender and a receiver. Routing paths are reconstructed

once the crowd changes; the number of such new route establishments is R, and this is
an important parameter that in�uences the state space. Random routing serves to hide

the secret identity of a sender.

�e protocol works in the followingway: Firstly: the sender selects a crowdmember

at random (possibly itself), and forwards the message to it, encrypted by the corres-

ponding pairwise key. Secondly, the selected router �ips a biased coin. With probability

1 − p f , where p f (forwarding probability) is a parameter of the system, it delivers the
message directly to the destination. With probability p f , it selects a crowd member at
random (possibly itself) as the next router in the path, and forwards the message to it,

re-encrypted with the appropriate pairwise key. �e next router repeats this step.

In our experiments, we assume that if a sender has been observed by the bad

member twice, then it has been positively identi�ed (Pos for short), thus the anonymity
is not preserved; secondly the bad member will deliver the message with probability

1. �is protocol is executed every time one crowd member wants to establish an

anonymous connection to a Web server. We call one run of the protocol a session
and denote the number of sessions by R. Other parameters are the number of good
members N and the number of bad members B.

�e rationale that a bad crowd member is actually able to identify the sender lies

with the fact that these bad members can work together and can piece some of the

information in themessage together. Cookies can be inspected, and timing information

(the loading of a web page probably initiates requests for style sheets and images) can

be used to build a pro�le. �is way, a pro�le can be build and routers can be more

con�dent that the node they receive the message from is indeed the originator.

�is protocol is able to guarantee ‘probable innocence’, that is, the probability that

the real sender of a message sends it message to a bad crowd member is less than 0.5, if

the following condition holds:

N + B ≥
p f

p f − 12
(B + 1)

For our experiment we take the Crowds protocol modelled by prism and the

property is P≤p(FPos) which characterizes the probability threshold that the original
sender’s id 0 is positively identi�ed by the corrupt members. �e relation between the

number of evidences and the probability threshold for di�erent number of sessions R
is shown in �gure 4.4 (N = 5, B = 1, p f = 0.8). It is clear that a staircase pattern also
occurs in this case, every horizontal line indicates paths of the same probability.

Finally, we take a look at the cumulative probability, this varies for each value of

R. �e graphs are shown in �gure 4.5. From this graph it also becomes clear that,
especially for the cases of R = 4 and R = 5, the graph does not even come close to the

value as computed by prism (Kwiatkowska et al., 2002). It is only for R = 3 that

a�er 300,000 paths we are approaching the limit, although in all three cases the per

76

4.2. Crowds protocol

100 101 102 103 104 105
10−9

10−7

10−5

10−3

10−1

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

N = 5, R = 3 N = 5, R = 4 N = 5, R = 5

Figure 4.4 Per path probability for di�erent instances of the crowds protocol. The number of path

reformulations R, varies. There is one bad crowd member.

100 101 102 103 104 105
0.00

0.10

0.20

0.30

R = 3

R = 4

R = 5

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

N = 5, R = 3 N = 5, R = 4 N = 5, R = 5

Figure 4.5 Cumulative probability for di�erent instances of the Crowds protocol. N is the number

of crowd members in the ring, R the number of path reformulations. The forwarding probability p f
is 0.8 and there is one bad member. The theoretical limits are also indicated by dashed lines.

77

4. Experimental results

100 101 102 103 104 105
10−13

10−10

10−7

10−4

10−1

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

n = 2 n = 3 n = 4 n = 5

Figure 4.6 Per path probability for di�erent instances of the randomised mutual exclusion al-

gorithms, shown for di�erent number of processes.

path probability mass has already dropped to less than 10−7, as can be seen in �gure 4.4,
it will therefore require many more paths to reach the limit.

4.3 Randomised mutual exclusion

�e randomised mutual exclusion protocol by Pnueli & Zuck (1984) gives a prob-

abilistic solution to the n process mutual exclusion problem. �ere are n processes that
try to enter a critical section, while basing their choices on coin tosses. �e protocol

guarantees that eventually every process can enter the critical section, but not at the

same time. We verify the property P≤1 (⋀
N
j≠1 ¬enter j U enter1).

�e interesting aspect about this example is that it, in a way, behaves di�erently

from the previous two. �e typical ‘staircase pattern’, this can be seen in �gure 4.6.

�ere are not very many horizontal parts in the graph – there are some, but they are

not very clearly notable. �e per path probability drops so quickly that it falls beyond

the precision of cumulative result. A�er about 1200 paths, the cumulative probability

for example does not increase any further. �erefore the computation is halted. �is

can also be seen in �gure 4.7, where the theoretical limits – which are simply 1/n are
also drawn. �e fact that it is possible to exhaustively search the model indicates that

there are no cycles, also the lack of horizontal lines indicates that there are probably

not very many ‘similar’ scenario’s. We shall see the importance of these observations

when we try to compact the counterexample.

78

4.4. Bisimulationminimisation

100 101 102 103 104 105
0.00

0.20

0.40

0.60

0.33

0.25

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

n = 2 n = 3 n = 4 n = 5

Figure 4.7 Cumulative probability for di�erent instances of the mutual exclusion algorithm. n is

the number of processes. The theoretical limits (1
n
) are also indicated by dashed lines.

start

u s

next l eader_el ected

W(n,k)
kn

1−W(n,k)
kn

1 1

1

Figure 4.8 Schematic structure of the synchronous leader election DTMC after bisimulation minim-

ization.

4.4 Bisimulation minimisation

�e previous experiments show that counterexamples can become very large. Investig-

ation of the counterexamples however shows, that in the cases of synchronous leader

election and the Crowds protocol, many paths with the same value occur. �is leads

to the suspicion that successes could be achieved by trying to lump states together, at

least in these two cases. From the results in (Katoen et al., 2007) we can deduce that
large reductions in state space are possible, and hence, for the number of paths. �e

bisimulation minimised version of �gure 4.3 is shown in �gure 4.8.

79

4. Experimental results

In order to obtain these models however, we needed the help of mrmc; but by

default it only reads the model, reduces it and runs the requested veri�cation. �ere

was no possibility to tell mrmc to export the reduced model, we therefore wrote a small

patch that allowed exporting the model a�er minimisation.

We �rst provide an overview of the achieved reductions for the cases presented

above in table 4.4.

Table 4.4 Showing the state space reductions bisimulation minimisation can achieve. As expected,

the reductions are very large in case of the leader election and Crowds protocol, but less so in case

of randomised mutual exclusion.

.

Synchronous leader election (n = 4)
Original Minimised

States Transitions States Transitions

k = 2 55 70 10 11

k = 4 782 1 037 10 11

k = 8 12 302 16 397 10 11

k = 12 62 222 82 957 10 11

Crowds Protocol (N = 4)

Original Minimised

States Transitions States Transitions

R = 3 1 198 2 038 93 130

R = 4 3 515 6 038 170 245

R = 5 8 653 14 935 269 395

Randomised mutual exclusion

Original Minimised

States Transitions States Transitions

n = 2 188 455 151 376

n = 3 2 368 8 272 2 109 7 461

n = 4 27 600 123 883 25 385 114 440

n = 5 308 800 1 680086 282 709 1 538 585

We now reproduce each of the graphs of the previous section. It is clear that the

bisimulation minimisation removes the staircase pattern, as can be seen in the graphs

of �gure 4.10 and �gure 4.11. We can even see that the program halts before 300 000

paths have been found in the case of leader election. �is is a bit misleading, because

in principle there are in�nitely many paths, but the value drops so quickly that it

drops below the accuracy of the �oating point value. �erefore, as can now be seen in

�gure 4.10, the counterexample becomes very small.

In the case of the Crowds protocol, convergence has also improved. For the cases

80

4.4. Bisimulationminimisation

100 101 102 103 104 105
10−9

10−7

10−5

10−3

10−1

Number of evidences

P
ro
b
a
b
il
it
y

n = 4, k = 2 n = 4, k = 4 n = 4, k = 8 n = 4, k = 12
n = 4, k = 2 (*) n = 4, k = 4 (*) n = 4, k = 8 (*) n = 4, k = 12 (*)

Figure 4.9 Per path probability for di�erent instances of the synchronous leader election. n is the

number of nodes in the ring, k the number of values they choose from. The starred (*) data indicates

minimised versions.

R = 4 and R = 5, it is still a long way to the theoretical limit, as can be seen in �gure 4.12,

but the di�erence with the original versions is obvious.

However, in the case of the randomised mutual exclusion algorithm, we can see

that bisimulation minimisation show no discernible improvement; we had expected

this partly because of the fact that the reduction of states was very slim. Measured

bisimulation reduction would yield better results, but as explained, we were not able to

use this.

So, bisimulation minimisation is sometimes really able to reduce the number of

paths in the counterexample. We should note however that if one checks formulae with

a hop-bound, the minimisation may very well yield results that violate the hop-bound

in the original model. Also, if the original model has clear underlying semantics, the

lumped model might be harder to interpret.

Still, however, counterexample sizes of this size are very large. Bisimulation espe-

cially does not help if a cycle appears in the model: new solutions can be formed by

just repeating this cycle.

81

4. Experimental results

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

Number of evidences

P
ro
b
a
b
il
it
y

n = 4, k = 2 n = 4, k = 4 n = 4, k = 8 n = 4, k = 12
n = 4, k = 2 (*) n = 4, k = 4 (*) n = 4, k = 8 (*) n = 4, k = 12 (*)

Figure 4.10 Cumulative probability for di�erent instances of the synchronous leader election. n
is the number of nodes in the ring, k the number of values they choose from. The starred (*) data

indicates minimised versions.

100 101 102 103 104 105
10−9

10−7

10−5

10−3

10−1

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

N = 5, R = 3 N = 5, R = 4 N = 5, R = 5 N = 5, R = 3 (*)
N = 5, R = 4 (*) N = 5, R = 5 (*)

Figure 4.11 Per path probability for di�erent instances of the crowds protocol. The number of path

reformulations R, varies. There is one bad crowd member. The starred (*) data indicates minimised

versions.

82

4.4. Bisimulationminimisation

100 101 102 103 104 105
0.00

0.10

0.20

0.30

R = 3

R = 4

R = 5

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

N = 5, R = 3 N = 5, R = 4 N = 5, R = 5 N = 5, R = 3 (*)
N = 5, R = 4 (*) N = 5, R = 5 (*)

Figure 4.12 Cumulative probability for di�erent instances of the Crowds protocol. N is the number

of crowd members in the ring, R the number of path reformulations. The forwarding probability p f
is 0.8 and there is one bad member. The theoretical limits are also indicated by dashed lines. The

starred (*) data indicates minimised versions.

100 101 102 103 104 105
10−13

10−10

10−7

10−4

10−1

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

n = 2 n = 3 n = 4 n = 5
n = 2 (*) n = 3 (*) n = 4 (*) n = 5 (*)

Figure 4.13 Per path probability for di�erent instances of the randomised mutual exclusion al-

gorithms, shown for di�erent number of processes. The starred (*) data indicates minimised versions.

83

4. Experimental results

100 101 102 103 104 105
0.00

0.20

0.40

0.60

0.33

0.25

Number of evidences

P
e
r
p
a
th
p
ro
b
a
b
il
it
y

n = 2 n = 3 n = 4 n = 5
n = 2 (*) n = 3 (*) n = 4 (*) n = 5 (*)

Figure 4.14 Cumulative probability for di�erent instances of the mutual exclusion algorithm. n is

the number of processes. The theoretical limits (1
n
) are also indicated by dashed lines. The starred

(*) data indicates minimised versions.

84

5Regular representations

�e previous chapter shows that very o�en counterexamples comprise of thousands, if

not millions of paths. We have observed that there are two reasons for this: on the one

hand cycles in the automaton, which introduce paths in which a pattern is repeated,

on the other hand branching such as in the leader election example.

In this chapter we propose a way to compactly represent counterexamples bymeans

of regular expressions, this can be used in addition to bisimulation minimisation.

Our main aim is to be able to capture cycles compactly. Both methods can be used

orthogonally, it will be shown that the regular expressions indeed capture the cyclic

behaviour compactly, whereas the bisimulation minimisation is excellent for similar

behaviour.

�is chapter is an extended coverage of the material in Damman et al. (2008). We
show how this, combined with the bisimulation minimisation, can yield very compact

representations of counterexamples. We conclude this chapter with some remarks on

the practical implementation and a few results obtained from the case studies presented

in the previous chapter.

s1
∅

s4
{a}

s3
∅

s2
∅

s5
∅

0.7

0.3

0.2

1

1

0.3

0.5

a Example DTMC

s1 s4

s0 s3

s2 s5

s1
s2

s3

s2
s5

s3

s4
s3

b A DFA derived from the DTMC.

Figure 5.1 An example of a DTMC with target state s4 and a DFA with �nal state s4. Note that the

string s1⋅s3⋅s4 is accepted by the DFA, and that this is also a path in the DTMC and an evidence for

P≤p F a.

85

5. Regular representations

5.1 From DTMCs to regular expressions.

5.1.1 Introduction

We �rst show the idea by means of an example. A dtmc is given in �gure 5.1a. We

could list evidences of the formulae P≤p F a as s1⋅s3⋅s4, s1⋅s3⋅s3⋅s4, s1⋅s3⋅s3⋅s3⋅s4, et cetera.
We see from this pattern that in general, we could say that the set described by the

regular expression s1s3(s3)∗s4 consists of evidences. Also, we can easily calculate the
probability of all these evidences. We obtain the following expression for the total

probability of these expressions:

∞

∑
i=0
0.3 ⋅ 0.5

i
⋅ 0.3

=0.3(
∞

∑
i=0
0.5

i
)0.3

Geometric series
=0.3 ⋅ 2 ⋅ 0.3

=0.18.

We see that we can easily calculate the total probability of such a regular expression.

It is clear that the whole set of evidences for a formula can be seen as a language over

the alphabet of state names. Every evidence is a word in this language. If we would

be able to �nd a regular expression for this language, we could easily calculate the

probability of this expression, and thus of this set of evidences, and hence conclude

whether this set would form a counterexample.

Noting that regular expressions and dfa can be used interchangeably, because

they are equivalent, it would also su�ce to �nd a dfa that describes the language. An

example of such a dfa is shown in �gure 5.1b. It is created by adding an extra state as

a predecessor of the original starting state, and by copying the state names onto the

incoming transitions as a label. Since state names are unique, and there is only at most

one transition between every pair of states this will yield a dfa. Every path through

this dfa obviously has a corresponding path in the dtmc.

�e previous represents the main idea to go from dtmcs to �nite automata and

this is described more formally in the next section.

5.1.2 Formal de�nition

A major di�erence with usual regular expressions and usual edge labels is that we

need to keep track of the transition probabilities too; we did not do this explicitly in

our example, but shall do this in the formal de�nition of this section. To tackle this,

we adopt the approach proposed by Daws (2004). He uses regular expressions to

represent sets of paths and calculates the exact rational value of the probability measure

in dtmc model checking (provided all transition probabilities are rational). His main

86

5.1. From DTMCs to regular expressions.

s1 s4

s0 s3

s2 s5

(1, s1)

(0.7, s2)

(0.3, s3)

(0.2, s2)

(1, s5)

(1, s3)

(0.3, s4)
(0.5, s3)

Figure 5.2 The DFA derived from the DTMC of �gure 5.1a. Note that the symbols on the transitions

are tuples consisting of a probability and a label.

goal is to have expressions with certain parameters, which allow for parametric model

checking.

We do not consider parametric model checking, but we do adapt his approach to

obtain compact representations of counterexamples. �e main idea is to consider a

counterexample as a set of probable branches (sub-expressions) that go from the initial

state to the goal state. In example, besides the paths starting with s1⋅s3, there is another
set starting with s1⋅s2. �is set would form a second branch in the regular expression.
We also provide a function to evaluate the probability measure of those expressions.

To simplify the presentation we will assume that the dtmc at hand has been subject to

the �rst step of the transformation described in section 2.2.1. �is is not a limitation,

since s ⊧ P⊴p(ΦU
⩽h Ψ) in a dtmc if and only if s ⊧ P⊴p(F

≤h+1 att) in the transformed
dtmc where att uniquely identi�es t.

De�nition 5.1.1. For dtmcD = (S ,P, L) with initial state ŝ ∈ S and goal state t, let the
deterministic �nite automaton dfaAD = (S′, Σ, s̃, δ, {t}), where:

◆ S′ = S ∪ {s̃} is the state space with start state s̃ ∉ S;
◆ Σ ⊆ (0, 1] × S is the (�nite) alphabet;
◆ δ ⊆ S′×Σ×S′ is the transition relation such that δ (s, (p, s′)) = s′ i� P(s, s′) = p,
and δ(s̃, (1, ŝ)) = ŝ;

◆ t ∈ S is the accepting state.

�e automaton is equipped with a start state s̃ and a transition of probability one to
the initial state ofD. �e symbols in the alphabet are pairs (p, s)where p is a probability
and s a state. A transition s

p
→ s′ inD is converted into a transition from s to s′ labelled

with (p, s′). (Again, obviously, this yields a deterministic automaton.) �is is a slight,
though important deviation from (Daws, 2004), where labels are just probabilities.

�e probabilities are needed to determine the path probabilities (see de�nition 5.1.3),

while the target states are used for recovering the evidences. For simplicity, probability

labels are omitted if they are clear from the context.

87

5. Regular representations

Example 5.1.2. Figure 5.1a depicts an abstract example of a dtmcD with initial state
ŝ = s1 and goal state t = s4, and its dfaAD given by de�nition 5.1.1 is shown in �gure 5.2.
�e new start state is s̃ = s0, which has a transition equipped with symbol (1, s1) to s1.

5.1.3 Evaluation of regular expressions

�e previous makes clear how regular expressions can be used to represent a counter-

example C. To determine the probability of C, Pr(C), from this regular expression we

use an evaluation function. LetR(Σ) be the set of regular expressions over the �nite

alphabet Σ. It contains the elements of Σ, the empty word ε, and is closed under union
(∣), concatenation (⋅) and Kleene star (∗). Let L(r) denote the regular language (a set
of words) described by the regular expression r ∈ R(Σ) and L(Σ) denote the regular

language that can be generated by any regular expression over Σ. �e length ∣w∣ and ∣r∣
denote the number of symbols in the wordw and regular expression r, respectively. We
sometimes omit ⋅ and write r⋅r′ as rr′ for short. Note that in our setting, Σ ⊆ (0, 1] × S.

De�nition 5.1.3 (Daws (2004), Evaluating regular expressions). Let val ∶ R(Σ) → R
be de�ned as:

val(ε) = 1 val(r ∣ r′) = val(r) + val(r′)
val((p, s)) = p val(r⋅r′) = val(r) × val(r′)

val(r∗) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if val(r) = 1
1

1−val(r) otherwise

If we limit the transition probabilities to be rational values, exact values are obtained.

It can be proven that val(r) = Pr (Paths�nmin(ŝ, F≤h att)), for h = ∞. Daws (2004)

De�nition 5.1.4. r1 is amaximal union subexpression (mus) of a regular expression r if
r = r1 ∣r2 modulo (R1)-(R3), for some r2 ∈ R(Σ), where:

(R1) r ≡ r ∣ ε
(R2) r1 ∣ r2 ≡ r2 ∣ r1
(R3) r1 ∣ (r2 ∣ r3) ≡ (r1 ∣ r2) ∣ r3

r1 is maximal because it is at the topmost level of a union operator. If the topmost level
operator is not union, then r1 = r (cf. R1). A regular expression represents a set of paths

and each mus can be regarded as a main branch from the start state to the accepting

state.

Example 5.1.5. A regular expression for the automatonAD in �gure 5.2 is:

r0 = s1s3s∗3 s4
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

r1

∣ s1(s2 ∣ s3s∗3 s2)(s5s3s∗3 s2)∗s5s3s∗3 s4
´¹¹¸¹¹¶

r2

.

r1 and r2 are the mus s of r0 with val(r1) = 1 × 0.3 × 1
1−0.5 × 0.3 = 0.18 and val(r2) =

0.82. Note that ∣r1∣ = 4 and ∣r2∣ = 13; w = s1s3s3s3s4 is a word generated by r1 and

88

5.1. From DTMCs to regular expressions.

∣w∣ = 5. We can distribute ∣ over . in r2 and obtain two more mus s instead: r3 =
s1s2(s5s3s∗3 s2)∗s5s3s∗3 s4 and r4 = s1s3s∗3 s2(s5s3s∗3 s2)∗s5s3s∗3 s4. r1, r3 and r4 characterize
all paths from s1 to s4, which fall into the above three branches. Note that r1 cannot be
written as s1s+3 s4, since from the full form of r1 = (1, s1)(0.3, s3)(0.5, s3)∗(0.3, s4), the
probability of the �rst s3 is di�erent from that of s∗3 .

Remark 5.1.6. �e previous example already shows that there is more than one way
to write a regular expression. We could also have presented the expression: s1(s2s5s3 ∣
s3)⋅(s2s5s3 ∣ s3)∗s4 which also describes the language. �is one is arguably a bit more
intuitive, and at least shorter. Finding such an ‘optimal’ regular expression is hard

however, we shall discuss this a�er the next paragraph.

5.1.3.1 Interpretation of valuations

�is paragraph tries to elucidate some aspects with respect to the interpretation of

the valuation function. For this, we �rst go back to the theory of non-regular Markov

chains (i.e. those without a limiting distribution. �ese are the ones we have, because

the extra state (t)) is always absorbing. We can write the Markov Chain in matrix form

as:

[
Q R
0 I]

Where I is an identity matrix for the absorbing states (besides our target state t, for
example states in which the formula Φ we want to check is not satis�ed), Q is the
transient part of the matrix, and R encodes the edges from transient to absorbing states;
�nally 0 consists of only zeroes.

Using this, the matrix (the I here is a di�erent identity matrix of course, with the
dimensions appropriate for Q) we de�ne:

W = (I − Q)
(−1)

as the fundamental matrix of the dtmc; the entries in it are the sojourn times of every

state. It is furthermore known that the hitting probabilities U can be de�ned in terms
of this matrix:

U =WR

Where R is the matrix fragment of the transition matrix. For example, for the dtmc of
�gure 5.1a we have (the order is s1, s2, s3, s5)

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 710 310 0

0 0 0 1

0 15 12 0

0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

89

5. Regular representations

�e correspondingW is:

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 413 4130 103
0 53 103 53
0 23 103 23
0 23 103 53

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�e entryWx ,y now gives the expected sojourn time in state y, if we start x. So,
we only spend 1 ’unit’ in state 1 (which is s1) if we start there; and we expect to spend
10/3 units in s3 if we start there – or alternatively: a�er we have arrived there. If we
take a look at remark 5.1.6, and look at the part of the regular expression that expresses

the looping in s3, viz. (s2s5s3 ∣ s3)∗, and calculate the valuation we �nd that this is
1

1−(0.2+0.5) =
10
3 .

It might look odd at �rst sight that this valuation function can yield values which

are larger than one, since we expect to obtain a probability. But this is not always the
case: in a sense, this is not unexpected either, since the probability of leaving s3 is 310 ,
and we end up with probability 1 in s4, and of course 103 ⋅ 310 = 1, and indeed this is what
the following mathematical analysis tells us

We can de�ne R simply as a single column:

R = [0 0 3/10 0]

Which allows us to compute U = WR = [1 1 1 1], which means: No matter where we

start, the probability of hitting s4 is 1; this is obvious, since it is the only absorbing state.
�e proper interpretation of val for the ∗ appears closely related to this. For the

other parts it works to just think of probabilities being multiplied, although, in a sense

these can be interpreted as expected sojourn times too. What is clear however that the

valuation of the whole expression, of a mus can always be interpreted as a probability,

since this involves multiplying with a transition leading to an absorbing state.

When dealing with larger models and larger regular expressions the interpretation

is a bit more cumbersome, since subexpressions can appear several times in the formula.

5.1.4 Regular expressions as counterexamples

�e equivalence of dfas and regular expressions, as well as converting dfas to regular

expressions has been widely studied. Several techniques are known, e.g., the transitive

closure method �rst described by Kleene (1956), or the algebraic method by Brzo-

zowski (1964) and elaborated by Berry & Sethi (1986), and di�erent variants of

state elimination by Du & Ko (2001) and Linz (2001). State elimination is based

on removing states one by one, while labelling transitions by regular expressions. It

terminates a�er only the start and accepting state remain; the transition connecting

these states is labelled with the resulting regular expression. �is technique is suitable

for manual inspection but is less straightforward to implement e�ciently. Humans can

easily pick a sensible state to remove, recognizing the patterns that occur: picking the

‘wrong’ state yields a very long expression.

90

5.1. From DTMCs to regular expressions.

�e transitive closure method gives a clear and simple implementation but tends to

create rather long regular expressions. �e algebraic method is elegant and generates

reasonably compact regular expressions. In order to obtain a minimal counterexample

in an on-the-�ymanner, we take the state elimination method. �is allows us to stop
once the value of the obtained regular expression exceeds the probability threshold.

�e algebraic method does not support this.

By using regular expressions for representing counterexamples, we will, instead of

obtaining evidences one by one, derive a larger number of evidences at a time, which

hopefully yields a quick convergence to the required probability threshold and a clear

explanation of the violation. As a result, we will not insist on obtaining the smallest

counterexample – in fact, every expression with a Kleene star describes an in�nite set

in fact – but instead prefer to �nd the branches (mus s) with large probabilities and

short length. �us, a (good) regular expression should be:

1. shorter (wrt. its length), to improve comprehensibility;

2. more probable, such that it is more informative and the algorithm will terminate

with less mus s;

3. minimal, where a compact counterexample isminimal if the omission of any of
its mus s would no longer result in a counterexample.

However, it has been recently proven by Gramlich & Schnitger (2007) that the

size of a shortest regular expression of a given dfa cannot be e�ciently approximated.

�erefore, it is not easy to, e.g., by state elimination, compute an optimal removal

sequence for state elimination in polynomial time. We could adapt the heuristics

proposed by Han & Wood (2007) or by Delgado & Morais (2004) to get a

better order to eliminate states. For our second point, we could take the advantage of

the ksp or hksp algorithms as well as the model-checking results. �e states on the

more probable evidences should be eliminated �rst.

�is observations yield the following iterative strategy: In each iteration, we take

the strongest evidence σ = s̃⋅ŝ⋅s1⋯s j⋅t in the remaining automaton – recall that this
amounts to an sp problem– and eliminate all the intermediate states on σ (i.e., s1, . . . , s j)
one by one according to a recently proposed heuristic order Han & Wood (2007).

A�er eliminating a state, possibly a new mus rk , say, is created where k mus s have been
created so far, and val(rk) can be determined. If∑k

i=1 val(ri) > p, then the algorithm
terminates. Otherwise, the transition labelled with rk is removed from the automaton
and either a next state is selected for elimination or a new evidence is to be found, cf.

algorithm 5.1.1.

Priority queue q keeps the states to be eliminated in the current iteration. �e
order in which states are dequeued from q is given by the heuristics in Han & Wood

(2007). �e function “eliminate(⋅)” can both eliminate states and regular expressions,

where the latter simply means the deletion of the transitions labelled with the regular

expression.

Example 5.1.7. Let us apply the algorithm onAD of �gure 5.2 and P≤0.7(F s4). In the
�rst iteration, s0⋅s1⋅s2⋅s5⋅s3⋅s4 is found as the strongest evidence. Assuming the order

91

5. Regular representations

Algorithm 5.1.1 Regular expression counterexamples

Require: dfaAD = (S , Σ, s̃, δ, {t}), and p ∈ [0, 1]

Ensure: regular expression r ∈ R(Σ) with val(r) > p
1: A ∶= AD; pr ∶= 0; Priority queue q ∶= ∅; k ∶= 1;
2: while pr ⩽ p:
3: σ ∶= the strongest evidence inA;

4: for each s′ ∈ σ ∖ {s̃, ŝ, t}:
5: q.enqueue(s′)
6: while q ≠ ∅:
7: A ∶=eliminate(q.dequeue())
8: rk ∶= the created mus
9: pr ∶= pr + val(rk)
10: A ∶=eliminate(rk)
11: if pr > p:
12: break
13: else:
14: k ∶= k + 1
15: return r1 ∣ . . . ∣ rk

to eliminate the states by Han & Wood (2007) is s5, s2, s3, we obtain the regular
expression r5=s1(s3∣s2s5s3)(s3∣s2s5s3)∗s4 with val(r5)=1. Since all states are eliminated
and the threshold 0.7 is exceeded, the algorithm terminates. �is expression gives

a clear reason that traversing the cycle s3 or s2s5s3 in�nitely many times causes the
probability exceeding 0.7.

Let us change the elimination order to s5, s3, s2. �en the regular expression is
r0 = s1s3s∗3 s4 ∣ s1(s2∣s3s∗3 s2)(s5s3s∗3 s2)∗s5s3s∗3 s4. A�er eliminating s3, the �rst mus
r1 = s1s3s∗3 s4 is generated and the probability is 0.18 < 0.7. �e algorithm continues
(i.e., eliminates s2) to �nd more mus s, till r0 is found. Note that r0 is longer than r5,
and thus less intuitive to comprehend. �e cycles s3 and s3s2s5 are however indicated.
Let us pick a less probable evidence s0⋅s1⋅s3⋅s4 to be eliminated in the �rst iteration.

A�er eliminating s3, the resulting expression is r1=s1s3s∗3 s4. �en r1 is removed from
the automaton and the strongest evidence in the remaining automaton is s0⋅s1⋅s2⋅s5⋅s4.
A�er eliminating s2, s5, we obtain the regular expression: r2, as in Example 5.1.5. �e
�nal regular expression is again r0 and the analysis in the last case applies.

Corollary 5.1.8. �e regular expression counterexample generated by Alg. 5.1.1 is minimal.

�is property immediately follows from the fact that Alg. 5.1.1 terminates immediately

once the cumulative probability exceeds the threshold. We like to emphasize that the

regular expression representation is not applicable for formulae with nested probab-

ilistic operators, e.g., P≤p1 (FP≤p2(F att)). However, this is not a real constraint in
practice, since those formulae are rarely used. In addition, it is important to mention

92

5.1. From DTMCs to regular expressions.

that the algorithm in this section not only applies to non-strict probability bounds, but

also to strict bounds as, e.g., P<p(F
≤h att).

5.1.5 Bounded expressions

For bounded reachability formula F
≤h att , a regular expression, e.g. r = r1∣r∗2 , may

not be valid because it is possible that the length of the words generated by r1 or the
expansion of r2 exceeds h. �us, val(r) might be larger than the actual probability.
In the case of starred expressions this is even clearer. As it turns out, this is quite

challenging to work with.

We shall nonetheless provide a valuation function for bounded expressions, which

we name constrained regular expressions, but this is mainly theoretical.

De�nition 5.1.9 (Constrained regular expressions). For r ∈R(Σ) and h ∈ N,L(r[h]) =
{w ∈ L(r) ∣ ∣w∣ ⩽ h}.

In fact, L(r[h]) ⊆ L(r) and r[h] can be expressed equivalently by a union of
possible enumerations, namely r[h] = r⟨0⟩∣r⟨1⟩∣⋯∣r⟨h⟩, where r⟨i⟩ denotes the set of
words generated by r and having exactly i symbols. Constrained regular expressions can
be obtained in the same way as presented just before, only their valuation is di�erent:

De�nition 5.1.10. For r ∈ R(Σ) and h ∈ N⩾0, the function val for r[h] and r⟨h⟩ is
de�ned by:

val(r[h]) =
h
∑
i=0
val(r⟨h⟩)

val(ε⟨h⟩) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if h = 0
0 otherwise

val((p, s)⟨h⟩) =
⎧⎪⎪
⎨
⎪⎪⎩

p if h = 1
0 otherwise

val(r1 ∣ r2⟨h⟩) = val(r1⟨h⟩) + val(r2⟨h⟩)

val(r1⋅r2⟨h⟩) =
h
∑
i=0
val(r1⟨i⟩)⋅ val(r2⟨h − i⟩)

val(r∗⟨h⟩) = val(ε⟨h⟩) +
h
∑
i=1
val(r⟨i⟩) × val(r∗⟨h − i⟩)

Note that the complexity of the above evaluation function is, however, very high. It

remains to establish that constrained regular expressions are counterexamples for

bounded until-formulae.

�eorem 5.1.11. Let r be the regular expression for dfa AD = (S′, Σ, s̃, δ, {t}) where
D = (S ,P, L) with initial state ŝ and h ∈ N

val(r[h]) = Pr (Paths�nmin(ŝ, F≤h att)).

93

5. Regular representations

An alternative possibility would be to use the graph product construction of sec-

tion 2.3.2.1. However, this won’t yield very good results, because resulting product is

acyclic, which means that the resulting regular expression will simply consist of many

branches, without being able to capture repeating behaviour.

5.2 Case studies

�e idea of capturing the cyclic behaviour using regular expressions only came to us

a�er studying the typical patterns shown in counterexamples that were generated by

the original algorithm. Since the program was already there, with its data structures, it

was a bit hard to faithfully implement algorithm 5.1.1. However, it was feasible to simply

convert the whole automaton to a dfa and convert this in its entirety to a regular

expression. �is conversion is guided by the heuristic presented by Delgado &

Morais (2004); this heuristic was easy to implement and gave very reasonable results.

A �rst try without any heuristic and fully random behaviour resulted in cases where

the resulting expression was impossibly large, so in any case a heuristic is vital to obtain

anything useful.

Incremental generation, possibly combined with the visualisation techniques

presented by Aljazzar & Leue (2008a), could result in very attractive explor-

ation of counterexamples. However, this is clearly beyond the scope of this thesis.

5.2.1 Leader election example

We conclude this section by reconsidering the leader election protocol. For the original

dtmc, the regular expression, denoted r(n, k), is:

start.((u1∣⋯∣ui) .next.start)
∗
. (s1∣⋯∣s j) .leader,

where start, next and leader are the obvious short forms. �e regular expression
lists all the unsuccessful con�gurations, as well as the successful ones. As a result,

∣r(n, k)∣ = kn+4. Compared to the number of evidences computed directly, ∣r(N ,K)∣ is

much shorter, but it is still exponentially long. On the other hand, however, the structure

of r(N ,K) clearly indicates the reason of violation, i.e., the repeated unsuccessful

con�gurations followed by a successful one.

And indeed, our implementation yields an expression similar to the one described

here – similar because in fact what we indicate as s1 is a sequence of states, but each
transition has probability 1. By �rst using bisimulation minimization all parallel tracks

are lumped together, and the resulting regular expression a�er computing the quotient

dtmc indeed is:

r̂(n, k) = start(u⋅next⋅start)∗⋅s⋅leader_elected

�e following table provides an overview how the two techniques together yield

very compact regular expressions, in terms of the number of symbols in the expression.

94

5.2. Case studies

G0a Dela ib Gc G0 ∧G1

ia Ga G1a Gb Bb Ge Bd Delc

Gd G1b

Ba Delb ic G0b

Bc Pos

0.8 0.2 1 23

13

1

0.8

0.2

23

13

12

12

0.2

0.8 13

23

1
13

23

1

12

12

0.8
0.2

1 1

13

23

0.8

0.2

1

1

1

Figure 5.3 The state space of the quotient DTMC with two good crowd members N = 2, two path

reformulations R = 2 and one bad crowdmember, and a forwarding probability of 0.8.

Original Minimised

k = 2 73 11

k = 4 1 061 11

k = 8 20 481 11

k = 12 87 151 11

As we can see, the branching in the original model is not handled very well by the

regular expression, it is still quite large.

5.2.2 Crowds protocol

Although bisimulation minimisation improves the convergence, as we have seen in the

previous example. As can be seen in the next table the combination of bisimulation

minimisation and regular expressions yields very short expressions, which are highly

informative. Because it is a bit hard too appreciate how the model is reduced, and what

the structure of the regular expression is, we show an example in �gure 5.3.

To �t the �gure on the page, we group a path of states with probability 1 by a square

state. States i, G, B, Del, Pos represent initiating a new session, sending a message to a
Good member, to a Bad member, a message being Delivered, a Positive result obtained,
respectively. G0 and G1 are the two good members, where G0 is assumed always to
be the original sender when a new session starts. G0 ∨ G1 is a lumped state where
eitherG0 orG1 is reached. �e subscripts a, b, ... are to distinguish the states in similar
situations. Since the goal state Pos can be reached by only the grey states, the regular

95

5. Regular representations

ia ic Pos

Ga Gd

(1, ia) (13 , Ba ⋅Delb ⋅ic) (13 , Bc)

(23 ,Ga)(0.4,G0a ⋅ia) (23 ,Ga)(0.4,G0a ⋅ia)

(415 ,G1a ⋅Gb ⋅Ga) (415 ,G1b ⋅Ge ⋅Gd)

Figure 5.4 The compaciti�ed state space of the quotient DTMC with two good crowd members

N = 2, two path reformulations R = 2 and one bad crowdmember, and a forwarding probability of

0.8.

expression (thus the automaton) only depends on those states. Note thatDela andDelb
denote the end of the �rst session, while Delc and Delb denote the end of the second.
Only the case that two messages are both delivered by the bad member indicates a

positive identi�cation of the sender.

An intermediate automaton (see �gure 5.4) can be derived a�er eliminating some

states. �is shows the basic structure of the model: ia and ic are the starting points
of two sessions. �e horizontal transitions indicate the observation of G0 by the bad
member, which lead to Pos. In each session, a message can be forwarded to G0 or G1
many times (captured by the self loops). Once a message is delivered, a new session is

assumed to be started (the transitions back to ia and ic). �us, a regular expression
that can be generated from the automaton is r = r0r∗1 r2r∗3 r4, where:

r0 = (1, ia),
r1 = (23 ,Ga)(0.267,G1a .Gb .Ga)

∗
(0.4,G0a .ia),

r2 = (130.333, Ba .Delb .ic),
r3 = (230.667,Gd)(0.267,G1b .Ge .Gd)

∗
(0.4,G0b .ic),

r4 = (13 , Bc .Deld .Pos).

If we omit the probabilities and the subscripts and merge the stuttering steps G, then
we obtain:

r′ = i (G .(G1.G)
∗G0.i)∗

´¹¹¸¹¹¶
good

. (B.Del.i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bad

. (G .(G1.G)
∗G0.i)∗

´¹¹¸¹¹¶
good

. B
®
bad

,

which is highly compact and informative in the sense that it indicates the observation

of the bad members twice with arbitrary number of observing the good members.

�e probability of r is val(r) = 0.274, which coincides with the model checking
result. �ese probabilities depend, among others, on the parameters of the protocol

(N , C, R, p f , etc.). For instance, the probability of the strongest evidence is (
C

N+C)
R =

(1
3)

2 = 1
9 , which loops 0 times at r1 and r3. �e probability of r2 and r4 is

a
1−a =

4
11 ,

where a is the probability of the inner loop: 1
N+C ⋅PF⋅(1 −

C
N+C) = 0.267, as is shown in

the intermediate automaton. Note that this closed-form expression can now be used

for arbitrary parameter values.

96

5.3. Concluding remarks

�e table below shows some numbers for the actual reductions in regular expression

length that are obtained a�er lumping, and the expressiveness of these expressions.

Original Minimised

R = 3 56 888 98

R = 4 40 1883 200

R = 5 6 384 840 346

5.2.3 Randomised mutual exclusion

As we saw in the previous chapter, bisimulation minimisation did not result in very

short expressions. However, as it turns out, the regular expression is already very

short for this automaton, the computation of this expression however is very memory

intensive, because the automaton is very large.

We refrain from a detailed analysis.

Original Minimised

n = 2 11 11

n = 3 37 37

n = 4 155 155

5.3 Concluding remarks

�ese examples show that the combination of bisimulation minimisation and regular

expression representations looks very promising. Very compact expressions can be ob-

tained, which contain a lot of information. �e computation of the regular expressions

is usually quite fast when compared to the computation of the counterexamples, even

if one converts the whole automaton instead of the evidence guided approach which is

theoretically much more promising.

97

6Conclusion and future work

6.1 Conclusion

Wehave seen that the approach of presenting a pctl counterexample on a dtmc, simply

by a long list of paths leads to very large lists in practice. Mathematical evaluation of

the particular case of leader election shows that this in fact is doubly exponential.

In order to obtain a more manageable representation we propose the use of regular

expressions along side bisimulation minimisation to represent a (possibly in�nite) set

of counterexamples. Using these we can provide a much more compact representation

which is more useful for debugging. �is approach looks very promising.

�e reduction of the constrained problem to the unconstrained problem gives a

general way to develop specialised algorithms for the hop-constrained case if needed,

or to transform the input so one can use existing algorithms.

Besides the theoretical results, describing the necessary transformations to obtain a

regular expression from an input dtmc and formula, we have also made a prototypical

implementation, which combines the algorithms presented byHan & Katoen (2007)

and the new applications of the algorithms described in this thesis. �is implementation

could be used as a starting point to implement the discussed algorithms in, for example

mrmc.

6.2 Future work

Although one can never by exhaustive, I have tried to make a substantial e�ort towards

a full exploration of these subjects. �e following points are worth exploring:

◆ �e whole implementation was meant as a prototype, and even though it is

capable of handling models with more than hundred thousand states, it is not

as e�cient as could be. Since the approach with regular expressions seems

promising, a tight integration, perhaps combined with an existing tool, such as

mrmc would be promising.

◆ �e recently developed K∗ algorithmAljazzar & Leue (2008b) would be

a good algorithm to use as another k shortest path algorithm. Especially if
combined with state elimination techniques, it would be possible to combine

99

6. Conclusion and future work

the approach of Husain Aljazzar with our approach to �nd counterexamples.

Discussions in Aachen about this combination seemed very promising.

◆ I would like a theoreticallymore fundamental reconciliation and treatment of the

theory of �nite automata and Markov Chains. �e automata-theoretic approach

of persons like Arto Salomaa, which rigorously encapsulates �nite automata in

the existing mathematical theory of groups and algebra would, in my opinion, be

a powerful instrument to analyse these problems. A�er all, the state elimination

procedure is a bit of an ad-hoc approach.

◆ �e hop-constraint problem should be investigated more thoroughly, in our

experience it was sometimes quite hard to give a solid interpretation to the mean-

ing of a hop-constrained. In the case of the leader example a hop-constrained

can be understood as the number of election rounds, but sometimes it seems

that a hop-constraint cannot quite capture a limit on the number of rounds,

because, for example, each round consists of a di�erent number of steps.

100

aCTL model checking

�is chapter gives a short overview of ctl model checking. It is not intended to be

complete, for a more thorough overview we refer to the work of Baier & Katoen

(2008).

A.1 Outline

Given a formula Φ to check, and a structure to check it on, for example, a Kripke

structure with a validation function, or as we use in this thesis, a dtmc with a labelling

function, the algorithmworks ‘bottom-up’. In case of a simple state-formula a∧(b∨¬c),
it will �rst �nd all states on which a is valid; all states on which b is valid and all states
on which c is valid. ¬c is then found by taking the complement. b ∨¬c is subsequently
found by taking the union of the result of b and ¬c, and �nally this is intersected with
the results for a.

�e procedure to compute Sat(Φ) – that is, those states for which Φ is satis�ed,

thus functions according to the following steps:

◆ Construct the parse tree of Φ.

◆ First compute Sat(p), where p is some atomic proposition, for the leaves of the
tree (the leaves will of course only contain atomic propositions).

◆ Repeatedly go up one level and use the formula on the node to compute the

result for that node, while reusing the result of the leaves, until you reach the

root, which is Φ.

∧

E F

a

E U

b ¬

c

Figure A.1 The parse-tree of Φ = EF a ∧ E(b U ¬c). A computation of Sat(Φ) will recursively

descend the tree, computing the �rst result at leaves and then work bottom up.

101

A. CTL model checking

An example of a formula and its parse tree is given in �gure a.1. A computation

of Sat(Φ) will need to compute Sat(EF a) and Sat(b U ¬c) �rst, which in turn will
generate further recursive calls until the leaves are reached, a�er which the procedure

returns and computes the results.

Since in practice, the results involving a single U operator, without nesting, are

complicated enough, we do present the outline for computing E U since its ideas are

implicitly contained in the way the dtmc is transformed in section 2.2.1 on page 30.

We �rst give a characterization of Sat(Φ) which su�ces to compute every possible

propositional connective, like ∧ or⇒, because we can rewrite these forms to forms

without these connectives. It is needless to say that in practice something can be gained

by stating directly that Sat(ff) = ∅ instead of through computation of Sat(tt) and
negation.

Given aD = (S ,P, L), we characterize Sat(⋅) as follows:

Sat(tt) = S
Sat(a) = {s ∈ S ∣ a ∈ L(s)}, for any a ∈ AP

Sat(Φ ∨Ψ) = Sat(Φ) ∪ Sat(Ψ)

Sat(¬Φ) = S − Sat(Φ)

Secondly, Sat(E(Φ U Ψ) is characterized by the smallest subset T of S, such that:
1. Sat(Ψ) ⊆ T and:
2. If s ∈ Sat(Φ), and s has a successor in T , then also s ∈ T .

Note that this de�nition is forward, although in practice a backward algorithm is easier.

We can start with a set S of states that satisfy Ψ (these will surely satisfy E(Φ UΨ)) and

repeatedly enlarge this set by looking at the states outside of S that are predecessors of
the states in S and check whether they satisfy Φ, and if so, add them to our set, there
are no predecessors le�.

In our algorithm, by making states that satisfy neither Φ nor Ψ we make sure, that

if we start at a state that satis�es Ψ, and we look at a predecessor, it will always satisfy

Φ, and thus be a valid. Hence, we can be sure we will only �nd paths on which Φ U Ψ

is valid.

A.2 Time complexity

We state, without proof, that the time-complexity for deciding whether T ⊧ Φ holds,
where T is a transition system with n states andm transitions, and a Φ is a ctl formula,
isO(∣Φ∣(n +m)).

102

bCounterexample explorer manual

Note: �e full documentation can be found on the accompanying CD. �is appendix is
an (automatically generated) extract from this complete documentation. It sole purpose is
to serve as a getting started guide, it describes the command-line options of the program,
the requirements and the input �le formats.

Counterexample explorer is the main program, it can be used to �nd a strongest

evidence or smallest counterexample given a dtmc and a formula.

B.1 Usage and requirements

�e program is invoked as ceexpl, and requires at least Python 2.5 to run. Implement-
ations other than CPython have not been tested, and may or may not work. At the

moment of writing, Jython 2.5 is still in its alpha phase, and IronPython 2.0 has not

been tested. �ere are no principle objections however why these should not work,

because no external libraries are needed, although some extension modules can be

used if they are available, see Optional modules.
�e standard usage is:

$ ceexpl.py basename

where basename is the base name of the of the �les containing the model, labelling and
formula. �e name of the model should be <basename>.tra, the name of the labelling

should be <basename>.lab and �nally the name of the �le containing the formula

should be <basename>.pctl. �e section File formats describes the format of these
�les.

In addition the following options are supported:

-h, --help

show a help message summarizing the options and exits

-f FORMULA, --formula=FORMULA

use the speci�ed formula, overriding the one in the .pctl �le

-H UHOPS, --maxhoplimit=UHOPS

specify a maximum hop limit, overriding the one in the pctl-formula, see also

-i

103

http://www.python.org
http://www.jython.org
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython

B. Counterexample explorer manual

-L LHOPS, --minhoplimit=LHOPS

specify a minimum hop limit, overriding the one in the pctl-formula.

Note: if you do not specify an upperbound with -H, or if you override one with
-i, you also have to use -p, for this to be taken into account

-i, --nohoplimit

specify an in�nite hop-limit, overriding the one in the pctl-formula

-P PROBABILITY, --probability=PROBABILITY

specify a probability-bound, overriding the one in the pctl- formula, the bound

has to be in the range [0..1]

-t, --traces

output all traces in a smallest counterexample (default). Traces are written to

stdout.

-T, --notraces

don’t output all traces in a smallest counterexample

-d, --dot

writes .dot �les of the dtmcs, these can be converted to pictures using GraphViz

-s, --se-only

only output the strongest evidence

--labfile=LABFILE

read the labelling from LABFILE, not from <basename>.lab

--pctlfile=PCTLFILE

read the pctl-formula from PCTLFILE, not from <basename>.pctl

--outputdata

output a Gnuplot-compatible data�le with the number of paths versus the cu-

mulative probability mass

-p, --product-graph

solve the hop-constraint k sp problem by building a product graph

-B BOUND, --trace-bound=BOUND

halt a�er having found BOUND traces

-v, --verbosity

run verbose (repeat for a higher level)

B.1.1 Example session

Assume the labelling and transitions inputs specify the Example dtmc, and suppose
the formula to be checked is P≤0.8(aU

≤3 b), the sample session might look like:

$./ceexpl.py example

* Formula succesfully parsed: P[≤ 0.8](a U[≤ 3] b).

* Now parsing the DTMC... Parse succesful!

DTMC contains 10 states and 24 transitions.

Starting states: {s}.

* Transforming the DTMC to a Directed Graph.... Done!

* Calculating smallest counter example.

104

http://www.graphviz.org/
http://www.gnuplot.info/

B.1. Usage and requirements

u1
∅

u2
∅

s
{a}

s1
{a}

s2
{a}

t2
{b}

s4
{a}

t3
{b}

s3
{a}

t1
{b}

0.1

0.5

0.3

0.4

0.6
0.8

0.2

0.3

0.6
0.1

0.8

0.2 0.5

0.2

0.1

0.4

0.4

1

0.4

0.6

1

0.3

0.1

0.3

Figure B.1 Example DTMC

* No smallest counter example could be found.

Total probability mass accumulated: 0.349.

Total number of traces: 7.

Time required: 0.0008 s.

List of traces:

Trace 1 (P: 0.12): s-s_1-s_2-t_2

Trace 2 (P: 0.072): s-s_3-s_4-t_1

Trace 3 (P: 0.072): s-s_3-s_4-t_2

Trace 4 (P: 0.05): s-s_1-t_1

Trace 5 (P: 0.018): s-s_3-s_4-t_3

Trace 6 (P: 0.012): s-s_3-s_1-t_1

Trace 7 (P: 0.005): s-s-s_1-t_1

We see the formula is parsed, the dtmc is then parsed, it is transformed, and �nally

it tries to �nd a counterexample. Since we put the threshold on 0.8, and provided a

hop-limit of 3, it cannot �nd such a counterexample. If we override the constraint, we

get indeed get a counterexample:

$./ceexpl.py -i example

* Formula succesfully parsed: P[≤ 0.8](a U[≤ 3] b).

* Now parsing the DTMC... Parse succesful!

DTMC contains 10 states and 24 transitions.

Starting states: {s}.

* Transforming the DTMC to a Directed Graph.... Done!

* Nota Bene: Upper hop-limit override in effect!

* Calculating smallest counter example.

* A smallest counter example has been found!

105

B. Counterexample explorer manual

Total probability mass accumulated: 0.803.

Total number of traces: 43.

Time required: 0.0030 s.

List of traces:

Trace 1 (P: 0.12): s-s_1-s_2-t_2

Trace 2 (P: 0.072): s-s_1-s_3-s_4-t_1

....

Trace 42 (P: 0.00288): s-s-s_3-s_1-s_2-t_2

Trace 43 (P: 0.00288): s-s-s_1-s_3-s_1-s_2-t_2

We see that the second trace, with a probability 0.072 did not appear in the previous

output, because the hop count was too large.

We removed some of the output-traces for clarity. In the following we override the

probability bound with -P, lowering it to .25, we also provide a lower and upperbound:

$./ceexpl.py -P 0.25 -L 4 -H 4 example

* Formula succesfully parsed: P[≤ 0.8](a U[≤ 3] b).

* Now parsing the DTMC... Parse succesful!

DTMC contains 10 states and 24 transitions.

Starting states: {s}.

* Transforming the DTMC to a Directed Graph.... Done!

* Nota Bene: Lower hop-limit override in effect!

* Nota Bene: Upper hop-limit override in effect!

* Nota Bene: Probability override in effect!

* Calculating smallest counter example.

* A smallest counter example has been found!

Total probability mass accumulated: 0.253.

Total number of traces: 10.

Time required: 0.0010 s.

List of traces:

Trace 1 (P: 0.072): s-s_1-s_3-s_4-t_2

Trace 2 (P: 0.072): s-s_1-s_3-s_4-t_1

Trace 3 (P: 0.0288): s-s_3-s_1-s_2-t_2

Trace 4 (P: 0.018): s-s_1-s_3-s_4-t_3

Trace 5 (P: 0.012): s-s_1-s_3-s_1-t_1

Trace 6 (P: 0.012): s-s_1-s_2-s_4-t_1

Trace 7 (P: 0.012): s-s-s_1-s_2-t_2

Trace 8 (P: 0.012): s-s_1-s_2-s_4-t_2

Trace 9 (P: 0.0072): s-s-s_3-s_4-t_1

Trace 10 (P: 0.0072): s-s-s_3-s_4-t_2

If we do not specify the upperbound, we need to provide -p (note that we explicitly

override the upper hop-limit with -i, because the formula provides one):

106

B.2. Optional modules

$./ceexpl.py -P 0.25 -L 4 -i -p example

* Formula succesfully parsed: P[≤ 0.8](a U[≤ 3] b).

* Now parsing the DTMC... Parse succesful!

DTMC contains 10 states and 24 transitions.

Starting states: {s}.

* Transforming the DTMC to a Directed Graph.... Done!

* Nota Bene: Lower hop-limit override in effect!

* Nota Bene: Upper hop-limit override in effect!

* Removing hop-constraint, building product-graph instead.

* Time needed to compute the product graph: 0.218 ms.

* Product contains 62 nodes and 88 states.

Starting state: s.

* Nota Bene: Probability override in effect!

* Calculating smallest counter example.

* A smallest counter example has been found!

Total probability mass accumulated: 0.254.

Total number of traces: 7.

Time required: 0.0028 s.

List of traces:

Trace 1 (P: 0.072): (’s’, 0)-(’s_1’, 1)-(’s_3’, 2)-(’s_4’, 3)-t_1

Trace 2 (P: 0.072): (’s’, 0)-(’s_1’, 1)-(’s_3’, 2)-(’s_4’, 3)-t_2

Trace 3 (P: 0.0288): (’s’, 0)-(’s_1’, 1)-(’s_3’, 2)-(’s_1’, 3)-s_2-t_2

Trace 4 (P: 0.0288): (’s’, 0)-(’s_3’, 1)-(’s_1’, 2)-(’s_2’, 3)-t_2

Trace 5 (P: 0.018): (’s’, 0)-(’s_1’, 1)-(’s_3’, 2)-(’s_4’, 3)-t_3

Trace 6 (P: 0.0173): (’s’, 0)-(’s_1’, 1)-(’s_3’, 2)-(’s_1’, 3)-s_3-s_4-t_1

Trace 7 (P: 0.0173): (’s’, 0)-(’s_3’, 1)-(’s_1’, 2)-(’s_3’, 3)-s_4-t_1

We can see in the output that the algorihm is run on a transformed graph, because the

statenames have been changed.

B.2 Optional modules

Counterexample explorer can make use of the PQueue extension modue, which

provides an implementation of Fibonacci heaps in C for Python. If this modules

is not installed, it relies on other heap structures for Dijkstra’s algorithm, such as a

pairing heap or binary heap. �e program comes with a functioning pure Python

pairing heap implementation. Before installing it, there is an important issue:

Warning: PQueue does not function under Python 2.5 without patching it. �e
Python faq gives a description of the problem.

To�x it, in pqueue_dealloc the call PyMem_DEL(pqp) should be replaced by PyObject_DEL(pqp)

in pqueuemodule.c. Otherwise using the module will most likely result in a segfault.

107

http://www.csse.monash.edu.au/hons/projects/1999/Andrew.Snare/#pqueue
http://effbot.org/pyfaq/why-does-my-c-extension-suddenly-crash-under-2.5.htm

B. Counterexample explorer manual

B.3 File formats

�e tool uses a �le format very similar to that of mrmc. �e input should be split across

three �les, a �le containing the states and transitions, a �le containing the labbelling

and �nally a �le with the pctl-formula for which a counterexample is required.

B.3.1 Transition �le

�e transition �le should end with the extension .tra. �e �le format is, as said, similar

to mrmc, but with a few di�erences. �e �le is organised as follows:

◆ First, a line starting with STATES followed by whitespace and a positive integer N

indicating the number of states.

◆ Optionally a line with exactly Nwhitespace separated words (no quoting possible)

of names for the states. �is can be used to provide names such as init, �nal,
deadlock, et cetera. If this line is not available the states are represented by the
integers [1..N]

◆ �en a line starting with INITIAL followed by whitespace and the name (if the

states have names) or the number of the initial state.

◆ �en a line starting with TRANSITIONS followed by whitespace and positive

integer T indicating the total number of transitions in the model.

◆ Finally T lines each specifying a transition. Each line should have the form from

to rate. If the states have been given names, one can also use the names here,

otherwise one has to use the numerical scheme.

Note: One can still use numbers even though the states are given names, internally
they are numbered in the order of the names, starting at 1. �is might be useful if you

just want to annotate an mrmc model with state names.

Every state should have at least one successor and the total rate of per state should equal

1. Furthermore each transition should have a rate in the range (0..1] Exponentional

notation is supported, for example a transition rate of ‘4.9e-06’ is valid.

Note: mrmc does not support the optional state names, nor the INITIAL line. Using

the input for mrmc then requires to remove this lines, this can easily be performed by

doing something like:

$ sed ’/^INITIAL/d’ <file.tra> > <file-mrmc.tra>

Note: mrmc is much more restrictive when it comes to the transitions. First of all,

names are not supported, so all states have to be numbered, and most importantly

should be ordered by ‘from’ and then by ‘to’. So �rst all transitions from state 1, then

from state 2, et cetera. Within such a block the to-states should be order too, so 1 2 .5

and then 1 3 .5, not the other way around.

108

http://www.mrmc-tool.org/trac/

B.3. File formats

B.3.1.1 Example �le

�e transition �le corresponding to the automaton of the example could be speci�ed
thusly:

STATES 10

s u_1 u_2 s_1 s_2 t_2 s_4 t_3 s_3 t_1

INITIAL s

TRANSITIONS 24

s s 0.1

s u_1 0.1

s s_1 0.5

s s_3 0.3

u_1 u_2 0.4

u_1 s_1 0.6

u_2 s_1 0.8

u_2 t_2 0.2

s_1 s_2 0.3

s_1 s_3 0.6

s_1 t_1 0.1

s_2 t_2 0.8

s_2 s_4 0.2

t_2 u_2 0.2

t_2 t_2 0.3

t_2 t_3 0.5

s_4 t_2 0.4

s_4 s_4 0.1

s_4 t_3 0.1

s_4 t_1 0.4

t_3 s_4 1

s_3 s_1 0.4

s_3 s_4 0.6

t_1 s_3 1

Alternatively, the input could speci�ed without specifying the names in the transition

list, as said, this is mostly useful when adapting MRCMmodels:

STATES 10

s u_1 u_2 s_1 s_2 t_2 s_4 t_3 s_3 t_1

INITIAL s

TRANSITIONS 24

1 1 0.1

1 2 0.1

1 4 0.5

1 9 0.3

2 3 0.4

2 4 0.6

3 4 0.8

3 6 0.2

4 5 0.3

109

B. Counterexample explorer manual

4 9 0.6

4 10 0.1

5 6 0.8

5 7 0.2

6 3 0.2

6 6 0.3

6 8 0.5

7 6 0.4

7 7 0.1

7 8 0.1

7 10 0.4

8 7 1

9 4 0.4

9 7 0.6

10 9 1

And a third option would be to also remove the line of state names: this will of course

cause the traces of the counterexample to be less intuitive too.

B.3.2 Labelling �le

�e labelling �le follows exactly the same format as mrmc. �e labelling �le must end

in .lab. �is format is as follows:

◆ �e �rst line should be #DECLARATION.

◆ �e next line should contain a whitespace separated list of atomic propositions,
these can be simply ‘a’ and ‘b’ or more complex like ‘p1+p0<=p2+p3’, as long as

they do not contain spaces.

◆ Subsequently a line starting with #END, signalling the end of the label declarations.

◆ For every state a line starting with the state name or number, followed by

whitespace and a whitespace separated list of atomic propositions valid in the

state. �is list can be empty. One has to specify each state exactly one time

however, including the empty ones.

Note: mrmc wants the states in numerical order, counterexample explorer need

not so.

B.3.2.1 Example �le

We continue our example, and show to possible ways to specify the labelling, �rst using

the state names:

STATES 10

s u_1 u_2 s_1 s_2 t_2 s_4 t_3 s_3 t_1

INITIAL s

TRANSITIONS 24

s s 0.1

110

B.3. File formats

s u_1 0.1

s s_1 0.5

s s_3 0.3

u_1 u_2 0.4

u_1 s_1 0.6

u_2 s_1 0.8

u_2 t_2 0.2

s_1 s_2 0.3

s_1 s_3 0.6

s_1 t_1 0.1

s_2 t_2 0.8

s_2 s_4 0.2

t_2 u_2 0.2

t_2 t_2 0.3

t_2 t_3 0.5

s_4 t_2 0.4

s_4 s_4 0.1

s_4 t_3 0.1

s_4 t_1 0.4

t_3 s_4 1

s_3 s_1 0.4

s_3 s_4 0.6

t_1 s_3 1

Or secondly, only using the state numbers. �e numbers of course correspond to the

numbers in the transition-�le:

STATES 10

s u_1 u_2 s_1 s_2 t_2 s_4 t_3 s_3 t_1

INITIAL s

TRANSITIONS 24

1 1 0.1

1 2 0.1

1 4 0.5

1 9 0.3

2 3 0.4

2 4 0.6

3 4 0.8

3 6 0.2

4 5 0.3

4 9 0.6

4 10 0.1

5 6 0.8

5 7 0.2

6 3 0.2

6 6 0.3

6 8 0.5

7 6 0.4

7 7 0.1

111

B. Counterexample explorer manual

7 8 0.1

7 10 0.4

8 7 1

9 4 0.4

9 7 0.6

10 9 1

B.3.3 Formula �le

�e formula should contain exactly one pctl formula, in the form of:

P[<operator>bound](Path-Formula)

�e parser is intended to be a quite �exible with the input it accepts. �e best way to

show the syntax is to provide a few examples, along with a LATEX-version, showing how
the formula is parsed:

◆ P[<=.8](a U[3] b)

■ P≤0.8(aU
≤3 b)

◆ P[<=.8](a U b)

■ P≤0.8(aU b)
◆ P[<=0.5](F[10,infinite] a => b => c & d | e)

■ P≤0.5(F
[10,∞] (a⇒ (b⇒ ((c ∧ d) ∨ e))))

◆ P[>.3](a U[inf] P[<.5] (b W c /\\ d))

■ P>0.3(aUP<0.5(bW (c ∧ d)))
◆ P[>.1](tt U b)

■ P>0.1(ttU b)
From these examples we can infer that the formula parser accepts di�erent syntaxes,

for example one can use ‘&’ or ‘&&’ or ‘/\’ or even ‘And’ or ‘∧’ to signify the boolean

conjunctive. (To use the latter the �le must be in utf-8 encoding.) Furthermore, it
knows the associativity and precedence rules for the operators, and it will �ll in an

in�nite upper bound on a path-formula if none is provided. �e last example shows

that ‘tt’ (and ‘true’ and ‘True’) are interpreted as presenting a special value true which
holds in every state.

Warning: Counterexample does not support �nding counterexamples for every
feature the parser accepts, notably, nested probability operators, such as in the

fourth example, are not supported. Also, probability bounds other than ≤ are not
supported.

Finally, the parser does any necessary rewriting to obtain a formula in normal form,

for example, an expression like F a will be rewritten to (ttU a).

112

B.3. File formats

Note: Specifying incorrect input might lead to some unexpected results, because of
the way the parsing engine works. It tries to parse as much as it can, and ignores the

remainder. So, if you would accidentally specify P(a U b), it would only parse P. �e

reason for this is that it expects a state formula, which can be only P, in which case P is

interpreted as an atomic proposition. In order to recognize it as a probability operator

one has to supply a probability-bound. One should therefore look closely whether the

complete formula is parsed.

�is also means that one can provide comments about the formula, in the same

�le.

113

cAcronyms

BF Bellman-Ford

BFS Breadth First Search

CTL Computational Tree Logic

DAG Directed Acyclic Graph

DFA Deterministic Finite State Automaton

DFS Depth First Search

DTMC Discrete Time Markov Chain

FSA Finite State Automaton

HSP Hop constrained Shortest Path

HKSP Hop constrained k Shortest Path
KSP k Shortest Paths
MRMC Markov Reward Model Checker

NFA Non-Deterministic Finite State Automaton

PCTL Probabilistic Computational Tree Logic

PRISM ProbabilistIc Symbolic Model checker

REA Recursive Enumeration Algorithm

SC Smallest Counterexample

SE Strongest Evidence

SP Shortest Path

115

Index

min
⊧ , 22
⊧ (ctl), see ctl, semantics
⊧ (pctl), see pctl, semantics
*, see Kleene star
-B BOUND, --trace-bound=BOUND

command line option, 108

-H UHOPS, --maxhoplimit=UHOPS

command line option, 107

-L LHOPS, --minhoplimit=LHOPS

command line option, 107

-PPROBABILITY, --probability=PROBABILITY

command line option, 108

-T, --notraces

command line option, 108

-d, --dot

command line option, 108

-f FORMULA, --formula=FORMULA

command line option, 107

-h, --help

command line option, 107

-i, --nohoplimit

command line option, 108

-p, --product-graph

command line option, 108

-s, --se-only

command line option, 108

-t, --traces

command line option, 108

-v, --verbosity

command line option, 108

--lab�le=LABFILE

command line option, 108

--outputdata

command line option, 108

--pctl�le=PCTLFILE

command line option, 108

A, see ctl, syntax
absorbing state, 15

alphabet, 6
arc, 32

Bellman-Ford algorithm, see shortest
path algorithm, Bellman-Ford

Ck(s, v), 44
Ckh(s, v), 47
Ck
[h l ,hu](s, v), 53
Candidate set, see C
command line option

-BBOUND, --trace-bound=BOUND,

108

-HUHOPS, --maxhoplimit=UHOPS,

107

-L LHOPS, --minhoplimit=LHOPS,

107

-PPROBABILITY, --probability=PROBABILITY,

108

-T, --notraces, 108

-d, --dot, 108

-f FORMULA, --formula=FORMULA,

107

-h, --help, 107

-i, --nohoplimit, 108

-p, --product-graph, 108

-s, --se-only, 108

-t, --traces, 108

-v, --verbosity, 108

--lab�le=LABFILE, 108

117

Index

--outputdata, 108

--pctl�le=PCTLFILE, 108

complete fsa, see fsa, complete
Computational Tree Logic, see ctl
concatenation

of languages, 7
of words, 6

counterexample, 27

�niteness of, 28

minimal, 27
smallest, 28

ctl, 18

operators, see ctl, syntax
probabilistic, see pctl
semantics, 21
syntax, 20

Cyl(σ), see cylinder set
cylinder set, 16

dfa, see fsa, deterministic
digraph, 32
Dijkstra

shortest path algorithm, see shortest
path algorithm, Dijkstra

dtmc, seeMarkov chain, discrete time

E, see ctl, syntax
edge, 32

empty word, 6
evidence, 27

strongest, 27

F, see ctl, syntax
Finite State Automaton, see fsa
fsa, 8, 10

acceptance, 11
complete, 11
deterministic, 11
history, 8

non-deterministic, 12

G, see ctl, syntax
graph

tensor product of, 36

directed, see digraph

hksp, see shortest path problem, k hop
constrained

hsp, see shortest path problem, hop con-
strained

Kleene closure, see Kleene star
Kleene star, 7
ksp, see shortest path problem, k

language, 5, 7
given by a regular expression, see

regular expression, language

of

of an automaton, 11

Markov chain, 13

discrete time (dtmc), 14
Markov property, 13, 14

nfa, see fsa, non-deterministic

optimality principle, 35

πk(s, v), 44
πk
[h l ,hu](s, v), 53

πk
h(s, v), 46
path

in a dtmc, 15
in an automaton, 11
length, 33
probability of, 17

Paths�n(s), 15
Paths�n(s, φ), 22
Pathsmin(s, φ), 22
Paths(s), 15
Paths(s, φ), 22
pctl, 22

semantics, 24
syntax, 24

power

language, 7
Pr, 17
Pref (σ), 16
pre�x, 6

proper, 6

118

Index

Prefmin(σ , φ), 22
Probabilistic ctl, see pctl

reduction from hsp to sp, 36

regular expression

language of, 13
syntax, 13

shortest path

implicit representation, 35

shortest path algorithm

Bellman-Ford, 39

hop constrained, 40

dfs, 51
Dijkstra

hop constrained, 41

Eppstein, 42

REA

adapted, 49
rea, 42, 45

shortest path problem, 34
double constrained, 52

hop constrained, 34
k hop constrained, 46

sp problem, see shortest pathroblem34
stationary transition probability, 14

stochastic matrix, 14
string, see word
strongest evidence, see evidence, strongest
su�x, 6

proper, 6

tensor product, see graph, tensor product
of

transformation

hsp to sp, 37

of dtmc based on Φ UΨ, 30
of dtmc to digraph, 32

U, see ctl, syntax

vertex, 32

W, see ctl, syntax
word, 6

acceptance, 11
empty, see empty word

X, see ctl, syntax

119

Bibliography

Ahuja, Ravindra K.; Magnanti, Thomas L. and Orlin, James B. 1993.

Network Flows: Theory, Algorithms, and Applications. Prentice Hall. isbn 0-136-
17549-x.

Aljazzar, Husain and Leue, Stefan. 2008a. Debugging of dependability

models using interactive visualization of counterexamples. Pages 189–198 of: Qest
’08: Proceedings of the 2008 ��h international conference on quantitative evaluation
of systems. Washington, DC, USA: IEEE Computer Society. isbn 978-0-7695-3360-5.
doi:10.1109/QEST.2008.40.

Aljazzar, Hussain and Leue, Stephan. 2008b (July). A directed on-the-�y
algorithm for �nding the k shortest paths. Tech. rept. University of Konstanz.

Andersson, Christer; Fischer-Hübner, Simone and Lundin, Reine.

2004. Enabling anonymity for the mobile Internet using the mCrowds system. Page
35 of: I�p wg 9.2, 9.6/11.7 summer school on risks and challenges of the network society.

Baier, Christel and Katoen, Joost-Pieter. 2008. Principles ofmodel checking.
Cambridge, ma: mit press. isbn 978-0-262-02649-9.

Bellman, Richard. 1958. On a routing problem. Quarterly of applied mathematics,
16, 87–90.

Berry, Gérard and Sethi, Ravi. 1986. From regular expressions to deterministic

automata. �eor. comput. sci., 48(3), 117–126.

Brzozowski, Janusz A. 1964. Derivatives of regular expressions. J. acm, 11(4),
481–494. doi:10.1145/321239.321249.

Capinski, Marek and Kopp, Peter E. 2004. Measure, Integral and Probability.
Springer-Verlag. isbn 978-1-85233-781-0.

Clarke, Edmund M. and Emerson, E. Allen. 1981. Design and synthesis of

synchronization skeletons using Branching-Time Temporal Logic. Pages 52–71 of:
Logic of programs, workshop. Berlin: Springer-Verlag. doi:10.1007/bfb0025774.

121

http://dx.doi.org/10.1109/QEST.2008.40
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1007/bfb0025774

Bibliography

Comtet, Louis. 1974. Advanced combinatorics: �e art of �nite and in�nite expansion.
Boston: D.Reidel Publishing Company.

Damman, Berteun; Han, Tingting and Katoen, Joost-Pieter. 2008.

Regular expressions for pctl counterexamples. Pages 179–188 of: qest. doi:10.1109/
qest.2008.11.

Daws, Conrado. 2004. Symbolic and parametric model checking of discrete-time

Markov chains. Pages 280–294 of: Ictac, lncs 3407. doi:10.1007/b107116.

Delgado, Manuel and Morais, José. 2004. Approximation to the smallest

regular expression for a given regular language. Pages 312–314 of: Ciaa, lncs 3317.
doi:10.1007/b105090.

Dijkstra, Edsger W. 1959. A note on two problems in connexion with graphs.

Numerische Mathematik, 1, 269–271.

Du, Ding-Shu and Ko, Ker-I. 2001. Problem solving in automata, languages, and
complexity. John Wiley and Sons, New York, NY.

Emerson, E. Allen. 1990. Temporal and modal logic. Pages 997–1072 of:
Van Leeuwen, Jan (ed), Handbook of theoretical computer science, volume B:
Formal models and semantics. Elsevier and mit Press. isbn 0-262-22039-3.

Emerson, E. Allen; Mok, Aloysius K.; Sistla, A. Prasad and

Srinivasan, Jai. 1991. Quantitative temporal reasoning. Pages 136–145 of: cav
’90: Proceedings of the 2nd international workshop on computer aided veri�cation.
London, UK: Springer-Verlag. isbn 3-540-54477-1. doi:10.1007/bf00355298.

Eppstein, David. 1998. Finding the k shortest paths. siam J. computing, 28(2),
652–673. doi:10.1137/s0097539795290477.

Fredman, Michael L. and Tarjan, Robert E. 1987. Fibonacci heaps and

their uses in improved network optimization algorithms. J. acm, 34(3), 596–615.
doi:10.1145/28869.28874.

Fredman, Michael L.; Sedgewick, Robert; Sleator, Daniel D. and

Tarjan, Robert E. 1986. �e pairing heap: a new form of self-adjusting heap.

Algorithmica, 1(1), 111–129. doi:10.1007/bf01840439.

Garey, Michael R. and Johnson, David S. 1979. Computers and intractability:
A guide to the theory of np-completeness. W. H. Freeman. isbn 0-716-71045-5.

Goldberg, Andrew V. and Tarjan, Robert E. 1996. Expected performance
of Dijkstra’s shortest path algorithm. Tech. rept. nec Research Institute Report.

Gramlich, Gregor and Schnitger, Georg. 2007. Minimizing NFA’s and

regular expressions. J. comput. syst. sci., 73(6), 908–923.

122

http://dx.doi.org/10.1109/qest.2008.11
http://dx.doi.org/10.1109/qest.2008.11
http://dx.doi.org/10.1007/b107116
http://dx.doi.org/10.1007/b105090
http://dx.doi.org/10.1007/bf00355298
http://dx.doi.org/10.1137/s0097539795290477
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1007/bf01840439

Bibliography

Han, Tingting and Katoen, Joost-Pieter. 2007. Counterexamples in prob-

abilistic model checking. Pages 72–86 of: Tools and algorithms for the construction
and analysis of systems. Lecture Notes in Computer Science, vol. 4424. Springer
Verlag. doi:10.1007/978-3-540-71209-1_8.

Han, Yo-Sub and Wood, Derick. 2007. Obtaining shorter regular expressions

from �nite-state automata. �eor. comput. sci., 370(1-3), 110–120.

Hansson, Hans and Jonsson, Bengt. 1994. A logic for reasoning about time

and reliability. Formal aspects of computing, 6(5), 512–535. doi:10.1007/bf01211866.

Jiménez, Víctor M. and Marzal, Andrés. 1999. Computing the k shortest
paths: A new algorithm and an experimental comparison. Pages 15–29 of: Wae ’99:
Proceedings of the 3rd international workshop on algorithm engineering. London, UK:
Springer-Verlag. doi:10.1007/3-540-48318-7_4.

Katoen, Joost-Pieter; Khattri, M. and Zapreev, Ivan S. 2005. AMarkov

reward model checker. Pages 243–244 of: qest. doi:10.1109/qest.2005.2.

Katoen, Joost-Pieter; Kemna, Tim; Zapreev, Ivan S. and Jansen,

David N. 2007. Bisimulation minimisation mostly speeds up probabilistic model

checking. Pages 87–101 of: tacas, lncs 4424. doi:10.1007/978-3-540-71209-1_9.

Kleene, Stephen C. 1956. Representation of events in nerve nets and �nite

automata. Pages 3–40 of: Shannon, Claude E. and McCarthy, John (eds),

Automata studies. Annals of mathematics studies, vol. 34. Princeton, nj: Princeton
University Press.

Kwiatkowska, Marta Z.; Norman, Gethin; Segala, Roberto and

Sproston, Jeremy. 2002. Automatic veri�cation of real-time systems with

discrete probability distributions. �eoretical compututer science, 282(1), 101–150.
doi:10.1016/s0304-3975(01)00046-9.

Linz, Peter. 2001. An introduction to formal languages and automata. Jones and
Bartless Publishers, Sudbury, MA.

McCulloch, Warren S. and Pitts, Walter. 1943. A logical calculus of the

ideas immanent in nervous activity. Bulletin of mathematical biology, 5(4), 115–133.
doi:10.1007/bf02478259.

Oram, Andy and Wilson, Greg. 2007. Beautiful code: Leading programmers
explain how they think. O’Reilly. isbn 0-596-510004-7.

Panangaden, Praskash. 2001. Measure and probability for concurrency theorists.

�eoretical computer science, 253(2), 287–309. doi:10.1016/s0304-3975(00)00096-7.

Perrin, Dominique. 1990. Finite automata. Pages 1–57 of: Van Leeuwen,

Jan (ed), Handbook of theoretical computer science, volume B: Formal models and
semantics. Elsevier and mit Press. isbn 0-262-22039-3.

123

http://dx.doi.org/10.1007/978-3-540-71209-1_8
http://dx.doi.org/10.1007/bf01211866
http://dx.doi.org/10.1007/3-540-48318-7_4
http://dx.doi.org/10.1109/qest.2005.2
http://dx.doi.org/10.1007/978-3-540-71209-1_9
http://dx.doi.org/10.1016/s0304-3975(01)00046-9
http://dx.doi.org/10.1007/bf02478259
http://dx.doi.org/10.1016/s0304-3975(00)00096-7

Bibliography

. 1995. Les débuts de la théorie des automates. Technique et science informatiques,
14(4), 409–433.

Pnueli, Amir and Zuck, Lenore. 1984. Veri�cation of multiprocess probabilistic

protocols. Pages 12–27 of: Podc ’84: Proceedings of the third annual acm symposium on
principles of distributed computing. New York, NY, USA: ACM. isbn 0-89791-143-1.
doi:10.1145/800222.806732.

Prechelt, Lutz. 2000. An empirical comparison of seven programming languages.

Computer, 33(10), 23–29. doi:10.1109/2.876288.

Reiter, Michael K. and Rubin, Aviel D. 1998. Crowds: Anonymity for web

transactions. Acm trans. inf. syst. secur., 1(1), 66–92. doi:10.1145/290163.290168.

Sudkamp, Thomas A. 1998. Languages and machines. 2nd edn. Reading, ma:
Addison-Wesley. isbn 0-201-82136-2.

Tarjan, Robert E. 1976. Edge-disjoint spanning trees and depth-�rst search. Acta
informatica, 6(2), 171–185. doi:10.1007/bf00268499.

Varó, Andrés Marzal and Jiménez, Víctor M. 2003. A lazy version of

Eppstein’s k shortest paths algorithm. Pages 179–190 of: Jansen, Klaus; Mar-

graf, M.; Mastrolli, M. and Rolim, José D. P. (eds), Proceedings of 2nd
international workshop on experimental and e�cient algorithms (wea 2003). Lecture
Notes in Computer Science, no. 2647. Springer-Verlag.

Yu, Sheng. 1997. Regular languages. Pages 71–77 of: Rozenberg, Grzegorz and
Salomaa, Arto (eds), Handbook of formal languages, volume 1: Word, language,
grammar. New York, ny: Springer-Verlag New York, Inc. isbn 3-540-60420-0.

124

http://dx.doi.org/10.1145/800222.806732
http://dx.doi.org/10.1109/2.876288
http://dx.doi.org/10.1145/290163.290168
http://dx.doi.org/10.1007/bf00268499

	Thesis
	Abstract
	Table of Contents
	Preface
	Introduction
	Preliminaries
	Words and languages
	Finite State Automata
	History
	An abstract automaton
	The mathematical automaton

	Regular expressions
	Markov chains
	Discrete Time Markov Chains
	Paths in DTMCs
	Probability of paths
	Example DTMC

	Computational Tree Logic
	Syntax and semantics
	Syntax
	Semantics

	Probabilistic CTL
	Syntax and semantics

	Counterexamples for PCTL
	Evidences and counterexamples
	Conversion of the DTMC
	Adaptation of the DTMC
	Conversion to a weighted digraph

	Finding the strongest evidence
	Unbounded until
	Bounded until
	Reduction to an unconstrained problem
	Hop constrained Bellman-Ford
	Hop constrained Dijkstra

	Finding the smallest counterexample
	Unbounded until
	Algorithmic description

	Upper bounded until
	Using DFS in the first phase

	Double and lower bounded until
	Algorithmic Description

	Arbitrary bounded operators
	Lazy algorithms

	Implementation
	Requirements and design goals
	Program design
	Language choice
	DTMC and graph representation
	Strongest Evidence algorithms
	Smallest Counterexample algorithms
	Alternative algorithms

	Product graph construction
	Regular expression

	Experimental results
	Synchronous leader election
	The protocol
	Mathematical analysis
	The general case

	More or less experimental results
	Tables

	Crowds protocol
	Randomised mutual exclusion
	Bisimulation minimisation

	Regular representations
	From DMTCs to regular expressions.
	Introduction
	Formal definition
	Evaluation of regular expressions
	Interpretation of valuations

	Regular expressions as counterexamples
	Bounded expressions

	Case studies
	Leader election example
	Crowds protocol
	Randomised mutual exclusion

	Concluding remarks

	Conclusion and future work
	Conclusion
	Future work

	CTL model checking
	Outline
	Time complexity

	Counterexample explorer manual
	Usage and requirements
	Example session

	Optional modules
	File formats
	Transition file
	Example file

	Labelling file
	Example file

	Formula file

	Acronyms
	Index
	Bibliography

