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Abstract

With focus on natural intuitive interaction of humans with their media, new
ways of interacting are being studied. Brain computer interface (BCI), originally
focussed on people with disabilities, is a relative new field for providing natural
interactivity between a user and a computer. Using scalp EEG caps, healthy
consumers can potentially use BCI applications for daily entertaining purposes,
for example gaming.

Using facial expressions on the other hand is one of the most natural ways of
non verbal communication. At the moment, there are several different techniques
for a computer to read facial expressions. EEG recording is one of them that is
hardly or not at all studied at the present, but would make an interesting addition
for commercial BCI devices.

Because actual consumers are believed to be only interested in how well a
device works, rather than how it works, it was decided to also look at EMG signals
visible in recordings done with an EEG recording device. Thus the topic of this
research is facial expressions in recordings from a scalp EEG device, rather than
facial expressions in BCI. It was expected that EMG signals, visible in recorded
EEG data, are bigger than the EEG signals them self.

The goals of this study were to gather EEG and EMG data, recorded with an
EEG device, of voluntary facial expressions, and to analyze it. The hypothesis
tested in this study was: facial expression can be classified with an accuracy over
70% in an EEG recording. Sub-hypotheses defined were: EMG influence on the
classification accuracy is significant larger that EEG influence, frontal electrodes
will not yield significantly lower classification accuracies compared to using all
32 electrodes and using facial expressions with partially overlapping muscles will
yield significantly lower classification accuracies.

To gather the data, an experiment was carried out with 10 healthy subjects,
who had to perform 4 different facial expressions, while data was recorded from 32
EEG electrodes and 8 EMG electrodes. Each subject was to sit through 8 blocks
of 40 trials per block, with ten trials per expression. During a trial, subjects were
shown a stimulus of one of the four expressions for 1 second. 1 second after the
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disappearing of the stimulus, a new stimulus instructed them to perform that
expression.

The recorded data was first analyzed by studying plots of the data in the
temporal and spectral domain. Classification accuracies were then calculated for
different preprocessing settings and compared. Calculation of the accuracies in
component space was done using the CSP algorithm.

Results show that classification accuracies of four different facial expressions
with the data recorded by the 32 EEG electrodes is significantly higher than
70%. Hemispherical asymmetry in the data was observed, varying per subject,
making it necessary to use sensors on both sides of the head. Optimal frequency
bands differed per subject, but all were observed to be above 20 Hz and all were
smaller than 35 Hz on average. Combining the data of the EEG channels with the
EMG channels, did not show significant higher classification accuracy compared
to classification for only the EMG channels. This indicates that EEG channels
are not useful in addition to EMG channels. The us of only frontal channels could
not be shown to have a significantly lower classification accuracy in comparison
to using all 32 channels. This is a contradiction of the results from the research
of Chin et al. [11]. Expressions using overlapping muscles were observed to cause
significantly lower classification accuracy.

It is shown that EEG caps can classify facial expressions, but that there is
still much work to be done. Future studies can concentrate on improving the
classification accuracies, adding more facial expressions and extend research to
real life experiments. Or the can try to remove the EMG influence and concen-
trate on classifying facial expressions using purely brain signals, with possibilities
for imaginary facial expressions.
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supervisor Christian Mühl. I owe him thanks for many things like helping me
get started, assisting me in the experiments and providing me regular advice
and feedback on the study and this thesis. Boris Reuderink, for his help with
the classification design and implementation, and his advice and feedback on the
thesis. Dirk Heylen for his general advice. And Anton Nijholt, who persuaded
me into doing my thesis about BCI in the first place.

I also owe thanks to Mannes Poel, for giving me advice and feedback on the
thesis. Danny Oude Bos, for giving various advice. Of course all participants in
the experiment for providing me with the necessary data, especially Bram van
der Laar for also helping me during the preliminary experiments.

And last I would like to thank Rose, for supporting me and making sure I
never ran out of sultanas to eat when writing the thesis.

Finally I would like to acknowledge the support of the Brain gain smart mix
program by the Dutch Ministry of Economic Affairs and the Dutch Ministry of
Education, Culture and Science.

1





Chapter 1

Introduction

Human Media Interaction (HMI) is always looking for new ways for humans to
interact with computers. With a future ahead that is likely to surround us with
computers in all our daily routines, it is important that people can interact with
them easily, without having to learn too much complicated controls for each and
every single device they have to command. One of the goals of HMI is to make the
interaction with computer devices more natural and intuitive. Speech and gesture
commands are examples of natural interaction already used between humans and
computers, mimicking the way humans would also interact with other humans.

Communicating by using our brains might not look as natural as speech and
gestures, we do not communicate to anyone or anything with our brains after all.
But our brain are used in every form of communicating and people are capable
thinking about actions without actually performing them. Brain Computer In-
terface (BCI) is the field within HMI that studies communication by using your
brain. ‘Using your brain’ could be anything from actively thinking about moving
a body part to unconscious brain activity.

In the past, BCI research used to concentrate only at people with a disability
and will most likely continue to focus mostly on that group [20]. The use of
brain signals seems especially promising for paralyzed people or people with a
prosthesis [47, 29]. But it can also help blind people [13], mute people [19] and
people with other disabilities. Brain signals can command computers (or vice
versa) both in and outside patients bodies and in that way improve their quality
of life.

Lately however, BCI research also extends to the entertainment industry.
While BCI research can help people with a disability through interaction of the
brain and a device, it can also help to improve interaction of healthy people
with a computer. Commands could be given with just a thought, and natural
automatic responses could be read from the brain to make interaction better
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4 CHAPTER 1. INTRODUCTION

and more natural. With commercial ’brain signal reading’ devices coming to the
consumer market, the number of BCI researches with healthy subjects are also
growing. While the commercial products are mainly concentrating on ’gaming
with your brains’ at this moment [20], there are also other useful applications
being researched for healthy customers (e.g. [32]).

This thesis will focus on BCI for healthy people. But while the study will
use methods and techniques from the field of BCI, it is not purely a BCI project.
Where BCI research only focuses on signals from the brain, this study will also
focus on signals from facial muscles (more on this in Section 1.2.4).

1.1 Motivation

The University of Twente takes part in the Dutch research consortium Brain-
Gain, an initiative to support applied research on BCI, and concentrates on the
subproject ‘BCI research for healthy users’, with games as the main focus. An
example of research done is BrainBasher, a project which resulted in a game that
can be used to collect BCI data from users playing it. This makes experiment
more interesting for users and easier for researchers to acquire more data from
them [4].

Interesting for the BCI field concerning games, but presently hardly researched
in this field, are facial expressions. Facial expressions play an important part in
natural interaction [6, 37, 23] and are known to convey emotional states [15].
With computer gaming becoming more and more interactive, and players inter-
acting more and more with other players online, facial expressions could help to
improve natural and emotional communication between players, and player and
computer. Facial expression could also just provide an extra easy to use modality
for users.

There are several known techniques for reading facial expressions digitally.
Use of cameras (2D or 3D), motion capture and electromyography (EMG) sensors
have all been evaluated in the past. Drawbacks of most methods for consumer
market include annoyance of facial attachments and limited freedom in head
movements and expressions. Consumer products also require very high recogni-
tion rates, and affordable hard and software before they will be used effectively
in commercial products.

Using BCI techniques is an alternative way of recognize facial expressions,
but also a relatively unknown technique in this area. However, due to upcoming
releases of commercial hardware, providing end-users affordable BCI hardware,
research focussed on recognizing facial expression using BCI gets relevant for
the entertainment market. Facial expressions recognition can potentially easily
be added to commercial BCI software, giving extra control possibilities to the
game developers. Using BCI for facial expression recognition is also interesting
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when the underlying emotions are playing a role too, as additional emotional
information can be read from the brain [34, 3].

So while there is plenty potential use for the recognition of facial expressions
using BCI, there are still hardly any results accessible that evaluate this technique.
This study will look into the potential of electroencephalogram (EEG) recordings
for recognizing facial expression. As EEG recordings also contain EMG signals,
which will be studied as well, instead of disregarding them as noise. Meaning
that the study does not focus on just brain signals (BCI), but rather on EEG
and EMG signals observed in an EEG recording.

1.2 Brain Computer Interface

BCI is the field of communication between the brain and a computer (external
device). Communication can go both ways: From a computer to the brain (like
in the vision restoring example [13]) or from the brain to the computer (like
in the prosthetic example [29]). All existing applications used so far, use only
one direction (1-way BCI), though an application could potentially use both
directions at the same time (2-way BCI). Further writings will only consider 1-
way brain-to-computer BCI communication, which is the focus of the described
study.

Brain signals are produced by neural activity in the brain, which is involved
in every single process in the brain. There are different type of brain signals a
BCI could use. Brain waves with specific frequency bands for example, like alpha,
mu or beta waves, caused by spontaneous activity, could be used to consciously
control a computer (e.g. Brainball [22], BrainBasher [4]). Another example are
event related potentials (ERP). ERPs are signals from activity evoked by specific
events, and arise purely in response of stimuli. ERPs can be useful in a BCI for
conscious and unconscious control of a computer (e.g. P300 steering [41], error
recognition [9]). Brain waves can be observed up to about 100Hz (gamma waves),
but signals usable with surface EEG lie in the 1 - 30 Hz bandwidth.

To use a BCI, the most important thing is to know the source of the signals.
For some BCI, the source need not to be that exact, because the signal can be
found in larger area’s of the brain (e.g. alpha waves). For other purposes the
source of the signal is precise so the BCI can interpret it. Activity associated
with movement of limbs for example, can be measured in the motor cortex. As
Figure 1.1 shows, specific area’s of the motor cortex correspond to specific part
of the body [40]. Signals originating from activity from such an area can tell if
the corresponding body part was moved or not, or even if the subject thought
about moving it.
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Figure 1.1: The division of the motor functions in the cerebral cortex of one
brain half (the other half has the same distribution for the other side of the
body). Image taken from Penfield and Rasmussen, 1950

1.2.1 Implementation of BCI

There are three ways to implement a BCI: Invasive, partially invasive and non-
invasive. Invasive and partially invasive BCI produce good quality brain signals,
but need surgery to implement the equipment. Healthy people would rather
not care for a (potentially dangerous and costly) surgery to use an interface to
their computer. This makes non-invasive BCI the most likely option for com-
mercial BCI products targeting healthy consumers. The limited signal quality of
non-invasive BCI is still good enough for multidimensional control [46] and the
technique can be relatively cheap. In the rest of this thesis non-invasive BCI will
be implied when mentioning BCI.

There are several non-invasive BCI techniques used for BCI applications:
functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG)
and electroencephalography (EEG). While EEG has the worst spatial resolution
of all, it has a good temporal resolution and is by far the easiest and cheapest way
of measuring brain signals. Which makes it the most popular choice for research
of healthy people, and the only sensible choice for the consumer market at the
moment.
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1.2.2 Electroencephalography

An EEG BCI measures electrical potential differences, associated with activity
of the neurons in the brain. With non-invasive EEG, these small potentials (in
the range of microvolts) are measured with several electrodes directly on the
scalp and amplified. Each electrode measures the summation of the synchronous
activity of thousands of neurons with the same spatial orientation (radiant to the
skull). This way the source of signals can be determined. Currents from deep
sources are less easy to measure than currents close to the skull, making EEG
especially useful for measurements in the area’s close to the skull.

EEG is presumably the most studied non-invasive technique due to the high
temporal resolution, low costs, ease of use and portability. These advantages are
also what makes EEG interesting for the consumer market. The most important
drawbacks of EEG are the bad spatial resolution and susceptibility to noise.

1.2.3 EEG processing

Raw EEG recordings don’t directly reveal much usable information for BCI when
looking at them without processing. A montage (the resulting EEG channels of
the electrodes, generated by a differential amplifier) shows many different brain
signals with different sources mixed together. Often noise from non brain sig-
nals, like facial EMG and electrooculography (EOG) show up more clearly in the
recordings than the brain signals.

Figure 1.2 shows a typical EEG montage of a frontal channel (FP1). The
area marked with a circle shows a clear potential increase, but originated from
an eye blink and not from an actual brain signal. Signals not originating from
the brain are considered artifacts by most BCI researchers, though they contain
useful information looking at it from a HMI point of view. By processing the
data, unwanted artifacts can be erased or ignored and points of interest can be
accentuated. Low frequency noise for example, can be avoided by using a high
pass filter (allowing only data belonging to frequencies higher than the given
value), while averaging the data over all trials of the same class can reveal ERP
signals. Section 2.3 will discuss the processing techniques used this study.

For a deeper introduction to BCI, Kübler and Müller (2007) can be recom-
mended [28]. For more reading about BCI signal processing, Dornhege et al.
(2007) is recommended [14] and for a deeper reading into EEG, Niedermeyer and
Lopes da Silva (2004) [35].

1.2.4 Pure brain-signals or ’contaminated’ EEG recordings

As mentioned before, signals that are not originated from the brain, are seen
as unwanted artifacts in the field of BCI. Some of these artifacts are external
sources, such as power cables or moving electrodes. Other artifacts originate
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Figure 1.2: Sample of an EEG montage of channel FP1 showing an EEG signal
contaminated with an eye blink artifact (marked with a circle). Sample was
randomly taken from the experiment described in chapter 2 and was bandpass
filtered for 0.3 - 30 Hz.

from other sources from the body, like facial muscles (EMG), eye movements
(EOG) and heartbeat. This last category of artifacts is, unwanted as they are
for BCI, actually pretty useful. Because of their relatively high amplitudes in the
recordings, these artifacts can be used to help improve classifications on EEG
recordings or even be the base of classifications done on EEG data. This is
especially interesting for people who are not interested in pure brain signals, but
rather in getting good performances, like the commercial oriented entertainment
industry.

This thesis will not go in the dilemma whether it can still be considered BCI if
‘artifacts’ are used instead of only brain signals. Rather it is declared that EMG
generated signals will be expected and allowed to play an important role in the
classification of facial expressions in the data, recorded with and EEG device.

1.3 Facial expressions

Facial expressions occur from motions or positions of facial muscles and are known
for some time to communicate emotions [12, 23]. Because most facial expressions
are involuntary (though they can be learned) they often reveal how people feel.
Facial expressions also form an important part of non-verbal communication be-
tween humans [33, 6]. Darwin concluded that facial expressions are the same for
everyone, regardless of cultural differences. Thus that they are not learned, but
rather of biological origin. A conclusion that is largely shared by researchers in
the present [12, 23, 39].

There are many different facial expressions, some convey basic emotions (the
term ’basic emotions’ is actually undefined and argued about. Ekman even de-
scribes all emotions as basic [38]) like a smile, while other facial expressions are
purely used for non-verbal communication (e.g. a wink) or are simply the result
of an action (e.g. a yawn).
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1.3.1 Facial Action Coding System

To describe and classify facial expressions, Ekman and Friesen developed a Fa-
cial Action Coding System (FACS) [16]. FACS can be used to describe (or code)
any possible facial expressions and exist of Action Units (AU) that represent the
smallest action segments in the building of a facial expression. AU are indepen-
dent of interpretation and consist of actions that can not be described by smaller
actions (though an AU can exist of multiple different muscles). FACS can de-
scribe (or code) a facial expression without the mentioning of emotion, making
it ideal for research of facial expressions, as facial expressions based on described
emotions can be more ambiguously interpreted by users. An overview of FACS
can be found in Appendix G.

1.3.2 Facial expression recognition

There are multiple techniques for recognizing facial expressions. Image processing
is a popular one and with very low costs, easy to use and feasible recognition rates,
it can also easily be used for entertainment purposes [36, 7, 30].

Motion capture techniques allow for a good translation of facial movement to
a computer and have a reasonably well recognition rate of facial expressions [8].

Facial electromyography (fEMG) records the electrical potential from the fa-
cial muscles, much like EEG, and has really good accuracy rates for facial ex-
pression recognition [1].

1.3.3 BCI and facial expression recognition

Recognizing voluntary facial expressions with the use of typical EEG equipment
(head cap/band) can be done by either analyzing the EEG or EMG data recorded
with it. For either way, hardly any literature was found at the start of the study.
Most researches on the topic focussed on perception of facial expressions rather
than on the production [26]. A reason for this could be the artifact problems
common in EEG data accompanying facial expressions while consciously using
the EMG in such data was not considered BCI and therefore undesired.

Korb et al. report a neural correlation between the motor preparation and
early execution of voluntary ’fake’ smiles. A late Bereitschaftspotential (BP)
was found, similar to a BP preceding a finger movement. They reported differ-
ences however of the BP from the smile in comparison with the finger movement,
such as a later onset, lower amplitude and a specific topography [27]. Korb et
al. further look into the difference between spontaneous emotional facial expres-
sions and voluntarily posed expressions in brain activations. The most consistent
theory they find of such difference, is that the primary motor cortex (M1) is
not necessary activated for emotional facial expression [26]. They also predict
a more important role for cortical motor areas for separating spontaneous emo-
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tional facial expression activations from voluntary facial expression activations,
as supported by Wild et al. [45].

Quite similar to the study in this thesis, Chin et al. published findings of
a first study to classify 6 different facial expressions from combined EEG and
EMG signals recorded by an 34 electrode head cap [11]. Surprisingly, they report
a significant performance decrease when using only 6 frontal electrodes against
all 34 electrodes. They suggest that signals from the premotor cortex and motor
cortex are relevant in this, supported by [10, 24, 31], but alternative reasons are
not discussed nor discarded.

1.3.4 Electromyogram

EMG signals are electrical potentials originating from muscle cells, measured over
time. Like with EEG, they can be measured by electrodes, directly in the muscle
or on the skin surface over the muscle. The latter method, surface EMG, will
be referred to when mentioning EMG from here on. EMG recordings are done
with electrode-pairs placed closed together on the target muscle to record the
difference in electrical potential.

1.3.5 Facial electromyogram

Facial muscles are skeletal muscles, a striated type of muscle, and contract as a
result of action potentials in the cellular base of a muscle. They are divided in
motor units and generate action potentials after the motor units fires. The sum of
these potentials in 1 motor unit, is called a motor unit action potential (MUAP).
Since the cells of 1 motor unit are often distributed trough a larger part of the
muscle, as opposed to concentration at one point, the firing of a motor unit and
following MUAP can be observed as a wave from surface electrodes [44].

EMG montages are processed in the same manner as EEG montages. Fridlund
and Cacioppo offer a good further reading for EMG research [18].

Figure 1.3 shows an overview of the different facial muscles. Using FACS,
target muscles for facial expressions can be determined. To limit influence from
motor units from non-target muscles, EMG placement needs to be done carefully.
The EMG electrode placement guidelines from Fridlund and Cacioppo are still
widely used for EMG research [18]. Figure 1.4 shows the suggested placement of
facial EMG sensors.

Hayes shows that most primary energy in the surface EMG signal lies between
10 and 200 Hz [21]. Between 10 and 30 Hz this power is mainly due to the firing
rates of the motor units, while at higher frequencies the shape of the MUAPs
play a bigger role [18]. Van Boxtel suggest a high-pass filter frequency of 15-
25 Hz (depending on the muscle) for facial EMG to get rid of low-frequency
contamination without losing too much useful EMG signal [5].
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Frontalis

Orbicularis oculi

Corrugator supercilii
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Temporalis

Nasalis

Zychomatic minor
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Depressor anguli orisDepressor labii inferioris
Mentalis

Figure 1.3: Overview of facial muscles.

1.4 Hypothesis

The hypothesis tested in this thesis is the following: H1: It is possible to signif-
icantly classify facial expressions using EEG recordings

As classification of 3 facial expressions showed promising results in a pre-
liminary test, H1 was tested for 4 facial expressions, where the additional 4th
expression was chosen to also test H1.1. As humans can differ between 6 fa-
cial expressions with an accuracy of 70-98% and other digital methods achieve
an accuracy of 68-98% for 3-7 different facial expressions [36], significant in H1
is defined as an accuracy of at least 70%. The EEG recordings in H1 refer to
recordings from a 32 electrode EEG head cap (BioSemi) using a subset of the
extended 10-20 system.

Some expectations of the experiment are defined as sub-hypotheses for which
the experiment is designed as well. Al sub-hypotheses refer to the EEG recording
system described at H1.

• H1.1: Using different facial expressions with partial overlapping AU, cause
lower accuracies compared to using facial expressions without overlapping
AU.

• H1.2: EMG influence on the classification accuracy is significant larger
than EEG influence.

• H1.3: Using only frontal electrodes, will not yield significantly lower clas-
sification accuracies than using all 32 electrodes.
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Figure 1.4: Placement of the facial EMG sensors, by Fridlund and Capaccio
(1986) [18]. Electrodes circled are used during the experiment described in this
thesis.



Chapter 2

Methodology

An experiment was conducted to gather data of voluntary facial expressions
recorded with an EEG recording device. The data was analyzed with the fo-
cus on recognizing the facial expressions. This chapter describes the experiment
design, the experiment procedure and the methodology of the analysis of the
gathered data.

2.1 Experiment design

The goal of the experiment was to gather data for four classes of facial expressions:
A neutral class, an angry class, a smile class and an angry-pout class. The first
3 classes were selected because each of them use different AU and all of them
are easy to perform. The angry-pout class was selected for its overlapping AU
with the angry class. Each class is described by a set of AU for performing the
expression and a stimulus (an overview of FACS can be found in Appendix G).
The angry pout class was selected specifically for the overlapping frown AU with
the angry class.

1. Neutral class. Relaxing all facial muscles. AU: none. Stimulus: Figure
2.1(a).

2. Angry class. Lowering the brows. AU: 4. Stimulus: Figure 2.1(b)

3. Smile class. Raising lip corners. AU: 12. Stimulus: Figure 2.1(c)

4. Angry-pout class. Lowering brows, lowering lip corners and raising chin.
AU: 4, 15 and 17. Stimulus: Figure 2.1(d)

An experiment session consisted of 1 or more training blocks and 8 experiment
blocks. During all blocks, subjects needed to relax, look at the screen and perform

13
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(a) Neutral (b) Angry

(c) Smile (d) Angry-pout

Figure 2.1: Expression stimuli that show during SSP, belonging to the 4 facial
expressions classes.

facial expressions after a cue. Appendix A contains a chronological test protocol
for the entire session.

Training

The purpose of the training was to get the subject accustomed to the experiment
(in particular the timing for performing the facial expression) and eliminating
possible learning artifacts. A training sessions contained 1 block of 12 trials.
This block was repeated until the learning curve of the subject stopped rising.

Experiment

The actual experiment consisted of 8 blocks of 40 trials each. Between each block,
subjects could issue a small break if needed. After 4 blocks, a bigger break was
issued by the researcher.

Blocks

A block contained 10 trials for each expression, meaning 40 trials in total per
block. Expression stimuli were randomly shuffled among the 40 trials. Meaning,



2.1. EXPERIMENT DESIGN 15

each block had the same amount of trials of each expression, but was unlikely to
use a similar order as other blocks.

t(s)

0 2 3 41 5 5.5

PP SSP BP AEP

Figure 2.2: Schematic overview of the flow of a complete trial, showing all 4
phases: PP: preparation phase, SSP: stimulus showing phase, BP: building phase
and AEP: actual expression phase.

Trial

Each trial consisted 4 phases, mentioned below and depicted in Figure 2.2. Ad-
ditionally, Figure 2.3 shows the screen shots belonging each phase.

• Preparation phase (PP) [2 seconds]

• Stimulus showing phase (SSP) [1 second]

• Buildup phase (BP) [1 seconds]

• Actual expression phase (AEP) [1.5 seconds]

Preparation phase

The preparation phase starts 2 seconds before the expression stimulus shows.
This phase was a necessary break between trials to regain concentration and
relax. Artifacts in this period had no influence on the results, so any necessary
movement, like excessive eye blinking or head movements, could be done in this
period.

Screen: Black background with a white cross in the middle (Figure 2.3(a)).

Stimulus showing phase

One of the four expression stimuli, shown in Figure 2.1, was shown for 1 second,
long enough for the subject to consciously differentiate between the four possible
stimuli. Subjects did not perform any facial expression in this phase, and concen-
trated on the cross in the middle of the stimulus. Literature reports mimicking
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+

(a) PP

+

(b) SPP

+

(c) BP

+

(d) AEP

Figure 2.3: Screens belonging to the 4 phases of one trial. Screen SSP is the only
screen which variates, using 1 of the 4 stimuli shown in Figure 2.1. All screens
are static during each phase. The only difference between the AEP screen and
the BP/PP screen, is the background color.

of facial expression in static image within 1 second for healthy adults [2]. Making
it likely for any possible mimicry to show up in the data in this phase.

Screen: Black background with a white stimulus and cross in the middle
(Figure 2.3(b)).

Buildup phase

A period of 1 second between the disappearance of the stimulus and the per-
formance of the expression. It is likely that any possible pre-potentials like the
BP show up in this phase. This phase also ensures that the expressions done
in the next phase are completely voluntary rather than emotional or mimicked
expressions [2]. Subjects did not perform any facial expression in this phase and
just concentrated on the cross.

Screen: Black background with a white cross in the middle (Figure 2.3(c)).
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Actual expression phase

Subjects had 1.5 seconds to perform the correct facial expression. Subjects made
sure not to strain the expressions too much as a preliminary experiment showed
that too much strain was not necessary for good classification results, while the
subject’s facial muscles tired faster then necessary. The visual cue for this phase
consists of a subtle change of the back ground color, so that eye movement or
blinking due to the stimulus was minimized.

Screen: Light black background with a white cross in the middle (Figure
2.3(d)).

2.2 Procedure

2.2.1 Subjects

The experiment was conducted on 10 healthy subjects, 9 of them were right
handed and 1 was left handed, 8 were male, and 2 female. The average age was
26, with a minimum of 21, a maximum of 32 and a standard deviation of 3.1. All
subjects were university students, ranging from bachelor students (BSc) to PhD
students. Only 2 of them used visual aids (glasses) and half of them consumed
coffee before the experiment. None of the subjects used relevant medicine, or
had known concentration problems. All subjects spend more than 6 hours a day
working with a PC, except one, spending 4-6 hours a day with a PC.

2.2.2 Setup

Subjects were seated in a comfortable chair behind a desk containing a keyboard
and a monitor in a room containing no direct light sources on to the screen.
Subjects wore an EEG head cap with 32 electrodes and had 8 EMG sensors on
their face. A webcam was placed under the monitor screen to record the subjects
face during the experiment. Figure 2.4 shows a schematic overview of the entire
set up and Figure 2.5 shows a screen shot from the webcam where the subject
shows his left side of the face.

As described in the subject experiment protocol (Appendix A), subjects were
presented a consent form (Appendix B) and user instructions before the exper-
iment. During the setup, subjects filled out an experiment questionnaire (Ap-
pendix C). The used sampling rate was 512 Hz. Electrode offsets for all subjects
were always < 25.
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Figure 2.4: Schematic overview of the hardware setup during the experiment.
The recording PC (RPC) is monitored by the researcher, while the stimulus PC
(SPC) shows the user the stimuli.

Figure 2.5: Screenshot of camera recordings, showing a subject’s left side of the
face.
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2.2.3 Materials

Hardware

Hardware used are shown schematic in Figure 2.4.

• Recording PC: P4 3.2GHz 1GB RAM.

• Stimulus PC: P4 3.2GHz 1GB RAM.

• Biosemi ActiveTwo: With 32 active pin-type electrodes (Ag-AgCl) + 8
active flat-type electrodes (Ag-AgCl).

• Biosemi Trigger cable: parallel, from SPC to ActiveTwo.

• Biosemi Headcap: 32 electrode holes in the extended 10-20 system.

• Camera: Philips ToUcam fun camera.

Software

• Actiview: For recording EEG+EMG.

• Presentation: For showing stimuli (see http://www.neurobs.com/).

• Windows moviemaker: For recording camera images.

2.2.4 EMG sensor placement

EMG sensor placement was done using the guidelines from Fridlund and Ciopacci
[18], also shown in Figure 1.4. 8 sensors were divided on the left side of the face
(with the exception of the right frontalis). Sensors were kept in their place with
special tape for skin use. The following muscle placements were used for EMG
measurement:

Left Frontalis and Right Frontalis

Both frontalis placements are done by pairing 1 EMG sensor with the EEG
sensor directly above them. They provide information about how each expression
influences the frontal electrodes of the EEG cap on both sides of the head. The
frontalis itself should not directly generate activity during any of the target AU,
though the brow lowering is likely to move this sensor.

Left outer Corrugator Supercilii and Left inner Corrugator Supercilii

Measures the activity from AU 4, used in the angry class and the angry-pout
class.
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Left outer zychomatic major and Left inner zychomatic major

Measures AU 12, used in the smile class.

Left inner Depressor anguli and Left outer Depressor anguli

Measures AU 15, used in the angry-pout class.

2.2.5 Instructions

Subjects read a description of the experiment before participating and were in-
structed accordingly during the training.

Subjects were told to sit behind the screen, relax as much as possible and
focus on the cross in the middle of the screen during the entire experiment (save
the breaks). They could take a break between each block if desired for as long as
necessary, in which they could drink, stretch or rest.

It was mentioned that each trial started with 2 seconds rest before the expres-
sion stimulus showed, in which movements, like eye blinking and head movement
may occur if absolute necessary. It was shown to subjects what kind of influence
different muscle movements had on the recordings, to make subjects of aware of
them.

Subjects were instructed not to perform any muscle movement yet, when the
expression stimulus showed, but wait until the stimulus for actually performing
the expression (AEP) showed (2 seconds later), and then perform the expression.
This was practiced in the training blocks until the timing and expression were
correct.

It was carefully explained and practiced that subjects did not need to stress
the expressions, so that they do not tire too fast or get muscle cramp (as was
reported in a preliminary study).

2.3 Analysis

The analysis of the gathered data was divided in 2 parts. The first part, signal
characteristics analysis, was conducted first and had the goal to get to know the
data and describe common characteristics, in order to design the classification
methodology. The second part, classification analysis, was conducted to generate
comparable classification accuracies of different features of the data, with the
goal to accept or reject the hypothesis and sub-hypotheses stated in Section 1.4.

Different methods used in both parts of the analysis are discussed below.
Analysis for each method was always done by studying both individual subjects
and grand averages over all subjects. The next subsection will first elaborate a
bit on all EEG processing techniques that will be mentioned when describing the
used methods.
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2.3.1 EEG processing techniques

This subsection will shortly elaborate on the methods of the different EEG pro-
cess techniques mentioned during the explanation of the analysis methodology.
Readers familiar with EEG signal processing may skip this section.

Common Average Reference (CAR)

EEG channels are generally created from the potential difference of an electrode
and a reference. When using CAR , this reference is calculated by averaging all
the EEG channels. So activity for each channel is calculated by subtracting this
average reference from the corresponding electrode.

Frequency filtering

When recorded, EEG channels contain data of the entire frequency spectrum
allowed by the sampling rate. As data in certain frequency bands are more useful
than in other bands, a bandpass filter can be applied on the data to leave only
data within the target frequency band. In this study a finite impulse response
filter with an order of 400 was used to filter the data.

Epoching

The average reference montage contains only continuous data. Since we often
want to look at average characteristics of a class, or use specific classes for certain
processes (such as classification), the data can be processed, so that different sets
are made containing only epochs of that class. The word epoch is used instead
of trial, because an epoch does not have to contain an entire trial and could even
contain data outside a single trial. This processing, of creating data sets for each
class, containing epochs of the same length per class, is called epoching. During
classification epochs of only the AEP of each trial were created. During the study
of characteristics other parts of the trial were included in the epochs as well.

Epochs will in this thesis be referred to as trials, to keep the reference to the
original experiment trials. Each used epoch in this study always contained data
from only 1 trial in the analysis. The process will however still be referred to as
epoching.

Baseline removal

Trials often contain linear trends from the continuous data. A baseline correction
is applied to detrend and position the trial relative to the used baseline. The
baseline needs to be chosen outside of the influence of which is being studied.
For example, in this study the SSP and BP period were used as the baseline
during the characteristics analysis since the AEP was studied.
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Common spatial patterns (CSP)

CSP is used to find spatial filters that maximize variance for one class, and at
the same time minimizing variance for the other class. The filters found, called
a weight matrix, are used to transform each channel to a component, resulting
in components that maximize variance for one class in the first component and
maximize variance for the other class in the last component. Because of using
CAR, one component will contain the average reference of all other components
and will be removed. The CSP algorithm used is based on Koles [25] and Ramoser
[42].

Linear discriminant analysis (LDA) classification

The LDA classifier algorithm tries to find the linear combination of given features
that separates the classes the best on the observations from the training set. The
linear combination is used then to classify the observations from the test set. For
more than 2 classes several methods exist to use the linear classification from
LDA. In this study a pair wise classification was used for classifying more than 2
classes.

2.3.2 Signal characteristics analysis

For all analyses in this part, an average reference montage was used, constructed
by applying CAR over the data recorded from the 32 EEG electrodes. The
resulting data was epoched per class. Only EEG channels were studied in this
part.

Analysis in this part can be divided in the temporal domain and the spectral
domain. Both domains were studied one after another to find characteristics
useful for classifying.

For the temporal domain, single trials were studied as well as the average over
all trials, to look for possible common characteristics between trials of a class.
Plots showing these averaged data per class are referred to as ERP plots, as they
are meant to show ERP. It is important to realized however, that the data was
generated by user induced movements rather than stimulus evoked potentials.
This likely causes temporal shifts per trial for the induced potentials, as well as
variating amplitudes of the potentials, making it hard to find significant ERP.
Averaged data of the different classes were subtracted from each other to study
potential differences between classes and topography plots were studied to find
possible sources of the observed ERP.

Based on the findings in the temporal domain, the data was also studied in the
frequency domain. Frequency plots, showing power differences over frequencies,
were studied to find frequency ranges where differences between classes can be
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observed. Time frequency plots were created to show significant differences in
frequency power between the classes in specific channels over time.

Considering the used sample rate of 512 Hz, frequencies until 256 HZ could be
analyzed [43]. Preliminary results however showed no significant changes between
100 and 200 Hz, and literature described in Section 1.3.5 and 1.2 suggest that a
low pass of 100 Hz will leave sufficient EEG and EMG signal for analysis, thus
only spectral features of 100 Hz and below were observed to reduce the sample
size.

2.3.3 Classification analysis

Using a linear classifier, a classification accuracy value (AC) could be given to
each class for different preprocessing settings. By varying these settings, such
as channel features or frequency bandpass, different AC were calculated and
compared.

2.3.3.1 Classification pipeline

Raw data CAR Bandpass 
filtering Epoching Test/train set 

generation

CSP 
transformation

Feature 
creation

LDA 
classificationAC

Channel /
component pair 

selection

Figure 2.6: Schematic overview of the classification pipeline. Shaded steps are
repeated 50 times to create an average AC over 50 runs. The CSP step is only
taken when using component space instead of channel space.

All classification AC were created using the same basic pipeline shown in
Figure 2.6. First, an average reference montage is created using CAR. A bandpass
filter is now applied, using chosen high and low pass values. The resulting data
is epoched for 4 classes (or 3, see Section 2.3.3.4). For each class a random
training and test set is generated. The test set consists of 25% of the trials of
each class, while the training set uses the remaining 75% of the trials of each class.
When using component space instead of channels, CSP is used to transform the
channels into components, this step is described in more detail below. Features
are now created by selecting two channels (or components) and calculating the
log variance of both channels for all trials (both for the training and test set),
resulting in two 1-dimensional features for each observation (trial) given to the
classifier. A log value was chosen to minimize the influence of outliers on the
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training of the linear classifier. The pairwise multivariate LDA classifier is trained
on the training set and an AC is calculated using the result of the trained classifier
on the test set.

Only 2 channels were used for feature creation for each classification for sev-
eral reasons: First of all, preliminary classifications showed no real improvement
when adding more channels as features. Secondly, channel selection comparison
(discussed below) takes an enormous amount of time, considering all possible
pairs, even with pruning methods. Thirdly, component space is more interesting
when optimizing spatial features, due to more possibilities and faster automatic
selection. And finally, considering the entertainment industry, two channel BCI
are more likely to get released due to lower production cost, making 2-channel
classification the most interesting for channel space observations.

When using component space instead of channel space, a transformation of
the data from channels to components is used as an extra step in the pipeline.
CSP is used for this transformation, because with CSP resulting components are
based on maximizing difference of variance between the classes, which improves
classifications based on difference in variance. A CSP weightmatrix is calculated
on the training set and projected on both the training and test set, as an extra
step directly after creating them. Component selection was fixed on the first
and last component for all component space classification, as they contained
the maximum difference of variance between the two classes of all components.
This means that feature selection in component space happens automatically, as
opposed in channel space where it needs to be selected manually. To extend the
use of CSP to more than 2 classes, a pair-wise soft voting method is applied by
using the probability estimates by the classifier on the test set. After creating
the training and the test set, a classification run is done on those sets for each
possible pair of classes, treating each run as a normal 2-class CSP problem. CSP
transformations are applied like a normal 2-class problem on the training set, but
are projected over the entire 4-class test set each time. The classifier estimates
per observation the probability of each class being the source of that observation.
The class with the highest sum of estimates on an observation after each pair is
classified, is selected in the end.

To account for inter-trial variance, 50 runs with the same preprocessing but a
different division of data among the training and test set were conducted for each
specific preprocessing setting and feature selection. AC were averaged over those
50 trials, resulting in the output AC, accompanied by a standard deviation.

2.3.3.2 Channel selection

To find the optimal channel pair features for each subject, a selection method was
used to calculate AC for classification using different channels during the channel
selection step with a static bandpass of 20 - 40 Hz (based on a preliminary result).
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AC were calculated for all possible channel pairs per subject and studied. This
is referred to later as the channel selection method.

Note that AC were calculated for each pair on the test set, meaning that there
is no automatic feature selection of the best channel pair, done on the training
set during this method. While automatic channel selection using this method is
possible, it is extremely time costly without good pruning and therefore not used.
The goal of the method was to observe the results of channel pair classifications.
This means however that the best resulting AC of this method cannot directly
be compared to results in component space, as the CSP transformation creates
components based up on the training set, and the first and last component are
chosen without prior knowledge about the test set.

2.3.3.3 Frequency bandpass selection

Classification in both channel and component space could perform different for
different bandpass values during preprocessing, different from each other or dif-
ferent per subject. Therefore it is necessary to view AC of multiple bandpass
values. The same method used for the channel selection is used here to vary
band pass values using each possible high pass and low pass pair. To save time,
only frequencies Between 15 and 100 Hz were used. Results below 15 Hz repeat-
edly showed bad results in preliminary tests and results from the spectral analysis
indicated low passes above 20 Hz to be useful. To save more time, only multiples
of 5 Hz were used for the pairing, leaving the smallest window size at 5 and the
largest 85. AC were calculated for bandpass values abiding those rules for both
channel space and component space.

For channel space, the channels chosen for each classification in this method
are the channels that had the highest AC on the channel selection method for
that particular subject. This method is later referred as the frequency bandpass
selection method.

Note that this method, like the channel selection method, is used on the
test set to save time, meaning that there is no automated selection of the best
frequency bandpass on the training set used during classification, and results are
just observed.

2.3.3.4 The angy pout class

To see whether the angry pout class as an addition to the other 3 classes causes
lower AC, the channel selection method and frequency bandpass selection method
were repeated on only the neutral, angry and smile class, for both channel and
component space. Results were compared to the results of the methods with 4
classes.

Results for 3 class classification were repeated, leaving out the other classes
one by one, to see whether the difference between the 3 and 4 class classifications
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are due to the similarities in AU of the angry class and the angry pout class, or
due to 3 classes having a better performance in general.

2.3.3.5 EMG influence

To see whether the EEG signals can show a significant difference in AC in addition
to the EMG signals, classifications were made on the EMG channels first and
then on the combination of EMG and EEG channels. Both AC were calculated
in component space using the frequency bandpass selection method.

2.3.3.6 Frontal influence

A classification in component space using only frontal channels (FP1, FP2, AF3,
AF4, F3, F4, F7, F8, FC1, FC2, FC6, see Appendix D for channel locations)
was compared to the classification results in component space using all EEG
channels. Results can indicate whether using more than just frontal electrodes
yields significantly different AC. This was repeated by adding the two temporal
channels (T7 and T8) to the frontal channels.



Chapter 3

Results

This chapter shows the results of the analysis conducted as described in Section
2.3. Results are shown in the two aforementioned parts: Signal characteristics
analysis and Classification analysis.

For the signal characteristics analysis, the data was studied for common char-
acteristics in the classes useful for classification. During the classification analysis,
results of the classification methods were studied, with the goal to accept or reject
the hypothesis and sub-hypotheses mentioned Section 1.4.

Findings in this chapter are discussed in the next chapter.

3.1 Signal characteristics analysis

The signal character analysis consisted of studying the recorded data in the tem-
poral and the spectral domain with the goal to find characteristics common for
each class. Results were used during the design of the classification methodology
and serve as an introduction to the data in this thesis.

All plots shown in this chapter, are generated from an average reference mon-
tage of the data containing 32 EEG channels. Channels will be referred to by
their name during the description of the results. Appendix D shows the spatial
location of the channels on the scalp along with their name. The channels located
most frontal (FP1 and FP2) and most temporal (T7 and T8) are mentioned often
in the rest of the thesis and thus best remembered.

3.1.1 Temporal domain

Trials with distinct signals between classes were observed when studying the
continuous data. Large, low frequency, potentials in the frontal channels (FP1,
FP2, AF3 and AF4) were clearly visible for the non-neutral classes, demonstrated

27
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pre AEP AEP pre AEP pre AEP pre AEPAEP AEP AEP
Neutral Angry Smile Angry pout

Figure 3.1: Samples of single trials, taken from the average reference montage of
subject 4. Vertical axis shows potential for each channel. Horizontal axis show 2
seconds before AEP (SSP and BP) and the AEP for each trial. Frontal channel
FP1, FP2 and AF4, as well as temporal channel T8, show high a high amplitude
signal during AEP.
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in Figure 3.1. Additionally, large, high frequency, potentials showed clearly in
the temporal channels (T7 and T8) for the smile class. As the potentials in
the continuous data were observed to show amplitudes over 100 µV, it can be
assumed that the source of those potentials is EMG rather than EEG. It should
be noted that the high potential signals observed in the continuous data had a
high variance of amplitude between trials for all subjects.

As noted during the experiment, channel F3 was observed to show a constant
low frequency signal during several parts of the experiments for certain subjects,
also seen in the trials shown in Figure 3.1. This will be regarded as noise, because
the signal was observed regardless of the experiment.

Also noted during the experiment was the moving of the cap of subject 1
during the expression. This has resulted in high potential artifacts, observed in
the continuous data of subject 1. All results of subject 1 are still shown together
with the other subjects.

ERP

To see whether the observations on the continuous data contain any significant
evoked responses, ERP plots were studied. While reading the results from the
ERP study, it is good to keep in mind that the actual expression, made during
AEP, were user induced rather than evoked, meaning that a lot of variance is
expected in the signal over all trials.
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Figure 3.2: Grand average ERP plot of all subjects, showing 2 seconds pre AEP
(SSP and BP) and the AEP for, the most frontal and temporal channels for all
classes. Pre-AEP (-2000 till 0) was taken as baseline. Appendix E.1 shows the
same plot for all channels.

ERP plots studied for all 4 classes show the low frequency, high potential
signals in the frontal channels also observed in the single trials, depicted in Figure
3.2 for the grand average. These ERP however show such high variance, that
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(a) Neutral (b) Angry

(c) Smile (d) Angry pout

Figure 3.3: ERP plot of the right most frontal channel (FP2) of subject 9 with
the standard deviation (grey plot lines) and significant time periods (vertical grey
lines) shown. 2 seconds pre AEP (SSP and BP) and the AEP are shown with the
pre-AEP taken as baseline. Significant areas were calculated with a two-tailed
t-test with α = 0.05. Appendix E.2 also shows the ERP plots for the other
channels of each class for subject 9.

they are not significant (compared against a zero mean dataset with the same
variance), as demonstrated in Figure 3.3. As the source of these signals is located
most frontal (which can be observed in Figure 3.4), the signals are likely to
originate from facial muscle activity. It is interesting to notice that those observed
signals are asymmetric over the scalp hemisphere.

ERP that did show significance, had small amplitude in comparison with the
high potential ERP observed in the frontal channels, and were generally observed
in central channels, as can be seen in Figure 3.5 and Figure 3.4.

Differences between the classes are difficult to find in the ERP plots and
appear not significant as well, demonstrated in Figure 3.6. Differences between
subjects observed, apart from the amplitude of the potential of the signals, are
found in the spatial sources of the potentials. The form of the asymmetry of the
spatial sources of the potentials on the scalp hemisphere differs per subject.

One other observation worth mentioning, is the significant potential increase
in the parietal and occipital channels, about 300 ms after SSP onset (observed
in Figure 3.7 and Figure 3.4), followed by an high variance potential increase in
the frontal channels, 500 ms after SSP onset (observed in Figure 3.3 and Figure
3.4).
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Figure 3.4: Topography plot of subject 9 for the angry class, showing potential
changes in time over the scalp. 2 seconds pre AEP (SSP and BP) and the AEP
are shown with the pre-AEP taken as baseline. Apendix E.4 shows the same topo
plots for all classes of subject 9.

(a) C3 (b) C4

(c) Cz (d) CP1

Figure 3.5: ERP plot of 4 central channels of the angry class of subject 9 with the
standard deviation and significant time periods shown. 2 seconds pre AEP (SSP
and BP) and the AEP are shown with the pre-AEP taken as baseline. Significant
areas were calculated with a two-tailed t-test with α = 0.05. Appendix E.2 shows
the ERP plots for the other channels of each class for subject 9.
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(a) Neutral - smile channel T7 (b) Neutral - smile channel FP2

(c) Angry - angry pout channel FP1 (d) Angry - angry pout channel FP2

Figure 3.6: ERP plot of 4 channels showing the difference between the neutral and
smile class, and the angry and angry pout class of subject 9, with the standard
deviation and significant time periods shown. 2 seconds pre AEP (SSP and BP)
and the AEP are shown with the pre-AEP taken as baseline. Significant areas
were calculated with a two-tailed t-test with α = 0.05. Appendix E.3 also shows
significant difference ERP plots for all channels of both differences for subject 9.

(a) PO3 (b) PO4

Figure 3.7: ERP plot of two parietal channels of the neutral class of subject 9
with the standard deviation and significant time periods shown. 2 seconds pre
AEP (SSP and BP) and the AEP are shown with the pre-AEP taken as baseline.
Significant areas were calculated with a two-tailed t-test with α = 0.05. Appendix
E.2 also shows significant ERP plots for all channels of both differences for subject
9.
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In conclusion, It is difficult to conclude anything about the ERP that is use-
ful for classification, as there is too much variance in the big potentials observed
over trials. Single trials show enough difference between the classes, but neither
of them are significantly common over all trials. This result makes it interesting
to study the spectral domain as well. The big potentials in the frontal chan-
nels showed low frequency, while high frequency potentials were observed in the
temporal channels.

3.1.2 Spectral domain

When plotting the data as a signal in the frequency domain, periodical increases
in power of the signal in the frequency spectrum of each channel can be observed
(e.g. Figure 3.8). The signal is different for each channel, but consistent in the
same channel of the same subject over all trials. Because the signals are different
for different subjects, it is likely that frequency bands optimal for classification
differ per subject.
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(c) Smile class
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(d) Angry pout

Figure 3.8: Frequency plots of the AEP of all 4 classes of subject 9, using a log
scale. All trials of the mentioned class were appended to 1 big trial for calculation
of power spectra.
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Due to the differences in power between the classes for certain channels over 20
Hz, a high pass of 20 Hz is expected to show most differences between the classes.
The periodic power increases of the signal in the frequency domain are likely to
be caused by muscle influence, and make it hard to see a more specific frequency
bandpass that maximizes differences between the four classes. A smaller bandpass
however is expected to have a higher probability to cause good results in general,
since a bigger bandpass is more sensitive to the variance between trials. Increases
in power observed for 10 Hz are due to alpha waves, while increases in power for
50 Hz are due to power line interference.

To see if there were specific significant bandpasses for each class that showed
long enough during the AEP, time frequency plots were studied.

Time frequency analysis

The temporal channels, as well as the side frontal and side central channels, for
the smile class, show significant power increase during the entire AEP for all
frequencies above 25 Hz, in comparison with the other classes in time frequency
plots (demonstrated in Figure 3.9 for subject 9). Only the Angry pout also shows
a significant power increase (or decrease) in the temporal and other side channels
on average, which could possibly be due to the muscle activity of the pout.

The most frontal channels were observed to show a strong increases in power
in the angry and angry pout class, for the entire AEP on specific frequency bands,
about 5 Hz to 20 in size. Implying that small specific frequency bands are in favor
of bigger frequency bands. The frontal channels also show a strong increase and
decrease in the frequency band from 0 Hz - 10 Hz, but this was observed for
all classes on average and hold no significance when studying difference between
classes.

Asymmetry over the scalp hemisphere was again observed in the spectral
domain. Just like in the temporal domain, the form of the asymmetry differed
between subjects.

In conclusion, it is expected that a high pass of at least 20 Hz is needed to show
differences between the classes for all subject. Specific frequency bandpasses,
varying per subject are predicted to yield the best classification results with a
small band size, not bigger than 20 Hz, on average.
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(a) Neutral channel T7
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(b) Neutral channel FP2
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(c) Angry channel T7
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(d) Angry channel FP2
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(e) Smile channel T7
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(f) Smile channel FP2
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(g) Angry pout channel T7
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(h) Angry pout channel FP2

Figure 3.9: Time frequency plots of the left temporal (T7) and right most frontal
(FP2) channels, for all 4 classes of subject 9, showing significant power changes
compared to the spectral baseline (-700 to 0 ms) of the AEP, each point is cal-
culated by a two-tailed t-test with a significance value α of 0.01.
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3.2 Classification analysis

Classification analysis results were studied with the goal to accept or reject the
hypotheses mentioned in Section 1.4. During the classification analysis, the clas-
sification accuracy (AC) was calculated for different preprocessing settings. The
channel selection method was done for all possible EEG channel pairs, using a
bandpass of 20 - 40 Hz. The best pair was used for the frequency bandpass se-
lection method, varying frequencies from 15 to 100 Hz, with steps of 5 Hz. The
frequency bandpass selection method was also done in component space, using
CSP.

The results of the frequency bandpass selection method in both channel and
component space (shown in Table 3.1) show that the AC for each subject is
significantly higher than 70% for the classification of 4 classes (not counting
subject 1 for earlier mentioned reasons).

It can be observed in Table 3.1 that all results are within the standard devia-
tion from the mean of all subjects (again not counting subject 1), save two higher
results, meaning that there are no particular bad results from individual subjects.
There is however a clear difference between the AC of different subjects.

Results from Table 3.1, also imply a difference in optimal spatial selection
and optimal frequency bandpass selection per subject which was studied in more
detail, mentioned in the next two subsections.

Channel space Component space
Subj. channels frequency AC SD frequency AC SD

1 FP1- F7 70 -100 Hz 69.2% 5.5% 55 - 60 Hz 60.9% 4.2%
2 FP1-FC6 65 -100 Hz 75.7%* 2.5% 55 - 80 Hz 77.4%* 3.6%
3 F7 -FP2 75 - 95 Hz 88.8%* 2.5% 35 - 75 Hz 77.2%* 4.9%
4 FC6-FP2 55 - 75 Hz 82.8%* 3.9% 20 - 55 Hz 82.3%* 3.2%
5 T8 -FP2 70 -100 Hz 82.4%* 5.1% 45 - 65 Hz 79.3%* 5.9%
6 T7 -FP2 25 - 55 Hz 76.5%* 3.6% 85 -100 Hz 77.9%* 3.5%
7 FP1- F7 40 - 65 Hz 81.3%* 3.6% 35 - 75 Hz 77.2%* 3.9%
8 FC6-FP2 75 - 95 Hz 78.0%* 4.3% 50 - 80 Hz 79.4%* 4.0%
9 T7 -FP2 95 -100 Hz 85.6%* 3.5% 75 -100 Hz 86.6%* 3.1%

10 FP1- F7 40 - 65 Hz 84.3%* 3.3% 30 - 60 Hz 81.7%* 7.1%
Avg. 80.5% 78.0%

SD 5.7% 6.7%

Table 3.1: Classification results showing the best results for each subject for
the frequency bandpass selection method for both channel and component space.
For channel space, the shown channels are the result of the channel selection
method. For component space (CSP), the first and last component are used for
all subjects. A star means that the AC is significant higher than 70% with p >
0.0001 in 1 sample t-test.
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3.2.1 Spatial selection

It was observed that for most subjects, 1 specific channel combination scored
significantly higher than other channel combinations for the channel selection
method (e.g. p < 0.0001 for an unpaired samples t-test between the pair with
the highest and second highest AC of subject 9). This is however not necessarily
true for every subject as subject 5 showed no difference between the pair with
the first and second highest AC.

It was also observed that all specific channel combinations with an AC higher
than 65%, included one of the most frontal channels (either FP1 or FP2, as can
be observed in Figure 3.10) in combination with either a temporal channel or a
side-frontal channel (T7/8, F7/8 or FC5/6, depicted in Figure 3.11).
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Figure 3.10: Grandaverage AC of the channel selection over of all subjects, shown
per channel pair (each square is a pair). Channel FP1 and FP2 (1 and 30) show
most high AC values. All channel locations corresponding to the channel numbers
shown, can be found in appendix D.
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Figure 3.11: A scalp plot realization of Figure 3.10, showing the AC value of
FP1 (left side frontal) and FP2 (right side frontal) in combination with the other
electrodes. The score is the log of the AC of the shown electrodes paired with
FP1 (in the left plot) or FP2 (in the right plot).
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Figure 3.12: CSP weight matrix plot of subject 2 and 9. The first row is the first
component and the second row is the last component. Each column is a pair of
classes that produced the CSP weight matrix shown.
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Component space

Spatial selection in component space, using CSP, also shows variating sources
per subject (shown in Figure 3.12). It is, for example, interesting to observe the
involvement of the middle frontal channel (Fz) in the classes containing frown
muscle activity, rather than the most frontal channels for subject 9 (demon-
strated in Figure 3.12), which was not expected considering earlier results and in
comparison to the sources of, for example, subject 2 (shown in Figure 3.12).

3.2.2 Frequency bandpass selection

The frequency bandpass selection does not yield one bandpass that is significantly
better than all other bands per subject (e.g. p = 0.88 for a unpaired samples
t-test between the pair with the highest and second highest AC of subject 9).
Instead there are multiple bandpasses that perform about the same, and even
more bandpasses that produce only slightly lower AC (as can be seen in Figure
3.13).

On average, a high pass of 50 Hz and a band size of 35 Hz or less, show the
highest AC over all subjects in channel space, as demonstrated in Figure 3.13.
For component space a bandpass between 30 and 75 Hz show the highest AC,
shown in Figure 3.14. Again the best band sizes are smaller than 35 Hz.

The observed high pass values imply that classifications with the highest AC,
are done on EMG signals rather than EEG signals.
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Figure 3.13: Grandaverage AC values of the frequency bandpass selection in
channel space over of all subjects, shown per bandpass. Since the scale uses
discrete steps of 5, each block is a bandpass read from the axis corresponding to
the upper left corner of the block.
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Figure 3.14: Grandaverage AC values of the frequency bandpass selection in
component space over of all subjects, shown per bandpass. Since the scale uses
discrete steps of 5, each block is a bandpass read from the axis corresponding to
the upper left corner of the block.
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(a) Subject 2 channel space: FP1 and FC6, 65 - 100 Hz

neutral angry smile angry pout
neutral 956 0 44 0
angry 0 831 0 169
smile 48 0 952 0

4 0 396 65 539

(b) Subject 2 component space: 55 - 80 Hz

neutral angry smile angry pout
neutral 914 16 69 1
angry 0 885 0 115
smile 51 0 946 3

angry pout 6 653 38 303

(c) Subject 9 channel space: T7 and FP2, 95 - 100 Hz

neutral angry smile angry pout
neutral 904 61 21 14
angry 15 889 2 94
smile 0 0 1000 0

angry pout 32 348 0 620

(d) Subject 9 component space: 75 - 100 Hz

neutral angry smile angry pout
neutral 934 38 24 4
angry 9 973 0 18
smile 0 0 1000 0

angry pout 18 381 6 595

Table 3.2: Confusion matrix of classification errors made in classifications in
both channel space and component space (CSP), for subject 9 and subject 2.
Confusion values were taken and summed for 50 runs. Rows show actual values,
columns show classifier predictions.

3.2.3 Angry pout

Since the angry pout expression was suspected to reduce the AC of classification,
due to partially overlapping muscles with the angry class and a more complicated
execution, the influence of the angry pout on the classifications was studied in
more detail.

As expected, the angry class and angry pout class show the most errors during
classification, both in channel space and component space, as can be observed in
Table 3.2. The current classification pipeline shows difficulty in linearly separable
between the features of both classes given to the classifier, also demonstrated in
Figure 3.15.
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Figure 3.15: scatterplot of a test set, during classification of subject 9 with the
variance of one channel feature as the y-axis and the variance of the other channel
feature as the x-axis. Each triangle represents a class.

channel space component space
Subj. channels frequency AC frequency AC SD

1 FC6-FP2 25 - 40 Hz 83.3% 25 - 35 Hz 78.8% 4.3%
2 FP1-FC6 65 - 100 Hz 96.8% 40 - 70 Hz 95.8% 2.5%
3 F7 -FP2 65 - 90 Hz 93.3% 95 - 100 Hz 85.8% 4.5%
4 FC6-FP2 90 - 95 Hz 99.8% 70 - 100 Hz 99.7% 0.6%
5 T8 -FP2 90 - 100 Hz 95.6% 60 - 85 Hz 96.3% 2.7%
6 T7 -FP2 30 - 40 Hz 91.3% 40 - 45 Hz 97.6% 1.6%
7 FP1- F7 20 - 40 Hz 95.3% 40 - 50 Hz 92.7% 6.4%
8 F8 -FP2 35 - 45 Hz 95.2% 30 - 40 Hz 95.2% 2.7%
9 T7 -FP2 90 - 100 Hz 95.4% 70 - 95 Hz 97.1% 2.7%

10 FP1- F7 40 - 70 Hz 94.2% 40 - 45 Hz 90.0% 5.2%
av. 93.1% 92.9%
SD 4.4% 6.4%

Table 3.3: Classification results of classification on 3 classes; without the angry
pout class. showing the results with the highest AC for each subject for the
frequency bandpass selection method for both channel and component space.
For channel space, the shown channels are the result of the channel selection
methods on the 3 classes.
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As expected, removing the angry pout class yielded better classification AC
in channel and component space (shown in Table 3.3). Removing the angry class
instead, as shown in Table 3.4, also revealed a significant better AC, which is not
significantly different from the AC from removing the angry pout class (p = 0.11
for a paired samples t-test). Removing either the neutral or smile class hoever,
results in a lower AC compared to classifying four classes, which is significant for
the neutral class, but not for the smile class (p = 0.0023 and 0.0844 respectively
for a paired samples t-test.). Errors on the 3 class classifications were comparable
to the 4 class classifications (see Figure F.1 in appendix F).

no neutral no angry no smile
Subj. Freq. AC SD AC SD AC SD

1 25 - 35 Hz 62.4% 5.5% 59.8% 10.1% 65.8% 4.2%
2 40 - 70 Hz 73.3% 4.1% 94.4% 2.3% 72.4% 4.0%
3 95 - 100 Hz 75.9% 3.9% 78.8% 4.6% 80% 3.7%
4 70 - 100 Hz 67.4% 4.4% 99.2% 1.1% 65.6% 4.4%
5 60 - 85 Hz 72.2% 5.6% 97.4% 1.7% 70.8% 6.9%
6 40 - 45 Hz 69.1% 4.9% 97.3% 1.9% 69.6% 4.7%
7 40 - 50 Hz 70.8% 3.9% 97.4% 2.7% 70.9% 4.5%
8 30 - 40 Hz 71.7% 4.6% 84.5% 4.0% 83.7% 3.5%
9 70 - 95 Hz 81.9% 5.0% 90.1% 3.0% 83.4% 3.8%

10 40 - 45 Hz 76.4% 5.5% 90.9% 3.7% 76.7% 5.8%
av. 72.1% 89.0% 73.9%
SD 5.4% 12.1% 6.7%

Table 3.4: Classification results for all subjects for 3 classes in component space,
leaving out either the neutral class, angry class or smile class. The frequency
bandpass was fixed and taken from the best result for the according subjects
from the frequency bandpass selection method on the 3 classes leaving out the
angry pout class, shown in Table 3.3.
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3.2.4 EEG versus EMG

Results up till now showed strong assumptions that EMG signals were responsible
for all good classification AC. Classifications of the EMG channels were studied
to see whether EEG channels can make a difference in the classification AC when
combining them with the EMG channels.

Results show no significant difference between classification AC of only the
EMG channels and classification AC of the EMG channels and EEG channels
together in component space (p = 0.29 for paired samples t-test), shown in Table
3.5. Meaning that adding EEG channels to EMG channels, does not influence
classification results. Leaving EMG channels out however yields significantly
lower AC (p = 0.0002 for paired samples t-test).

An interesting observation is that the difference in frequency bands is less
important for classifying data containing EMG channels, as shown in Figure
3.16.

EMG EMG + EEG EEG
Subj. Freq. AC SD AC SD AC SD

1 55 - 60 Hz 94.8% 2.5% 95.5% 2.7% 60.9% 4.2%
2 55 - 80 Hz 97.1% 1.8% 96.6% 1.7% 77.4% 3.6%
3 35 - 75 Hz 88.3% 3.0% 83.0% 3.1% 77.2% 4.9%
4 20 - 50 Hz 93.3% 2.4% 91.9% 2.6% 82.3% 3.2%
5 45 - 65 Hz 99.5% 0.6% 99.9% 0.4% 79.3% 5.9%
6 85 - 100 Hz 95.2% 2.1% 94.8% 2.3% 77.9% 3.5%
7 35 - 75 Hz 97.6% 1.7% 98.7% 0.9% 77.2% 3.9%
8 50 - 80 Hz 87.3% 2.9% 85.3% 3.2% 79.4% 4.0%
9 75 - 100 Hz 99.4% 0.8% 98.8% 1.1% 86.6% 3.1%

10 30 - 60 Hz 98.2% 1.5% 99.4% 0.9% 81.3% 7.1%
av. 95.1% 94.4% 79.0%

SD. 4.3% 6.0% 6.7%

Table 3.5: Results of classification (on 4 classes) in component space for 3 different
data sets as input data: only EMG channels, both EMG and EEG channels and
only EEG channels.

3.2.5 Frontal channels versus all channels

Results so far showed good classification AC when using the frontal and temporal
channels, likely due to those channels being influenced the most by the stronger
EMG signals. To study the influence that the frontal channels and temporal
channels have on the classification AC, the results of using only frontal channels
and using only frontal and temporal channels were compared in component space.

Results show, that using only frontal channels and using only frontal and
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Figure 3.16: Results of the frequency bandpass selection method in channel space
for subject 9 for both EMG input and EMG + EEG input, shown per bandpass.
Since the scale of the frequency plot uses discrete steps of 5, each block is a
bandpass read from the axis corresponding to the upper left corner of the block.

temporal channels, for classification in component space do not yield significant
different AC compared to using all EEG channels, as can be seen in Table 3.6 (p
= 0.95 and 0.87 respectively for paired samples t-test).

Interestingly, some single subject show significantly higher AC for classifying
only frontal and temporal channels compared to classifying on all EEG channels
in component space (e.g. subject 5 shows p < 0.0001 for an unpaired samples
t-test).

Frontal EEG Front.+Temp. EEG all EEG
Subj. Freq. AC SD AC SD AC SD

1 55 - 60 Hz 64.3% 5.3% 63.1% 4.8% 60.9% 4.2%
2 55 - 80 Hz 78.0% 4.5% 79.4% 3.0% 77.4% 3.6%
3 35 - 75 Hz 78.7% 3.9% 78.3% 5.4% 77.2% 4.9%
4 20 - 50 Hz 77.2% 2.9% 77.4% 3.3% 82.3% 3.2%
5 45 - 65 Hz 88.9% 3.9% 84.2% 4.9% 79.3% 5.9%
6 85 - 100 Hz 65.5% 5.0% 72.5% 7.0% 77.9% 3.5%
7 35 - 75 Hz 78.4% 3.0% 77.6% 2.9% 77.2% 3.9%
8 50 - 80 Hz 78.0% 4.3% 79.3% 3.6% 79.4% 4.0%
9 75 - 100 Hz 87.9% 2.7% 88.6% 3.0% 86.6% 3.1%

10 30 - 60 Hz 84.3% 3.3% 81.2% 7.2% 81.3% 7.1%
av. 78.1% 78.2% 79.0%

SD. 8.8% 6.8% 6.7%

Table 3.6: Results of the classification (on 4 clases) on only frontal channels,
frontal and temporal channels and all EEG channels in component space.





Chapter 4

Discussion

This chapter discusses the findings from the previous chapter. The hypothesis
and sub-hypotheses are reviewed and observations from the results that need
interpretation are discussed. As last, possible future work following this study is
discussed.

4.1 Classification of facial expressions

The hypothesis of study was: H1: It is possible to significantly classify facial
expressions with an EEG head cap. It was determined in section 1.4 that H1
is accepted when AC > 70%, meaning that the accuracy is high enough to be
meaningful.

The results found from the experiment, support the acceptance of H1. When
looking at table 3.1, all subjects had AC significantly higher than 70% for clas-
sification on all 4 classes both in channel space and component space. Note the
results from subject 1 are ignored here due to the artifacts caused by the mov-
ing cap. Considering that the AC were significantly higher without the angry
pout class to classify, as shown in table 3.3, it can be concluded that different
facial expression can indeed be classified with a significance over 70% using EEG
recording equipment, when not ignoring the EMG signals in them. The results
of Chin et al. also support this conclusion, yielding a test accuracy of 86% on 6
different facial expressions [11].

Note that this conclusion only addresses voluntary facial expressions. While
involuntary expressions are expected to show differences in the brain compared to
voluntary expression, like activity in the M1 [27, 26, 11], this is assumed to be not
significant when EMG is classified as well as EEG due to the large difference in
potential. There are however also differences in EMG signals between voluntary
and involuntary expressions, regarding the asymmetry and the intensity of the
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expressions, that could have impact [17]. Whether or not spontaneous involuntary
facial expressions can be classified in the same manner, should be studied.

The results confirming the hypothesis also showed some other important ob-
servations, discussed in the following subsections.

4.1.1 Performance difference between subjects

Because EMG is implied to be a major source for the classifications, it is unlikely
that the classifications suffer much from so called ’BCI illiterate’ problems, as
often observed in BCI research. However, there were still differences observed in
the optimal AC between subjects. At this point though, it is not sure whether
these differences are due to inter-subject differences or due to difference in in-
tensity of the performed expression, as subjects had a certain degree of freedom
in performing the expression. Training subjects on performing the expressions
to get the highest AC possible (using an online classifier with feedback), could
possibly yield AC that are not significantly different over subjects, as well as AC
higher than shown in the results in this thesis.

4.1.2 Differences between optimal spatial selection

One interesting finding, was the difference in the optimal spatial selection per
subject. Asymmetry over the hemisphere was observed for all subjects, and sig-
nificant differences between subjects for the optimal side were also observed. This
means that sensors on both sides are always required for optimal results. These
differences can be explained (when assuming EMG has indeed the strongest in-
fluence on the classifier) by the fact that facial expressions themselves are asym-
metrical, especially with voluntary (non-emotional) expressions [17]. The theory
however also suggest that the left side is often the stronger side for right handed
people. This is something not observed in the results, but with results for only
8 right handed people (ignoring the results for subject 1) and no focus on asym-
metry, it is not possible to conclude that the left side does not show stronger
potentials. The absence of fEMG sensors on the right side of the face during the
experiment also make it not possible to check the gathered data for differences
between muscle potentials to each side of the face.

One critical note regarding the results from the channel selection method
should be made. Because the channel selection method was done on a fixed
bandpass, which proved to be not the optimal choice afterwards, the channel se-
lection method does not necessarily have yielded the optimal channels to generate
the highest possible AC for that subject. To demonstrate this, the method was
repeated for subject 5, choosing a fixed frequency bandpass of 70 - 100 Hz this
time. Performing the channel selection method now reveals an AC of 85.1% for
channel 19 and 30. And performing the frequency bandpass selection method on
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that result yields an AC of 87.4% for 85 - 100 Hz, which is significant higher than
the first result shown in 3.1 of 82.4% (with p < 0.0001 for samples t-test). It was
however chosen not to run this test recursively on all subjects, because of time
complexity of the algorithm and because choosing the best channel pair would be
based on the results on the test set, meaning that repeating the process (again on
the test set) would yield unrealistic results. Any difference in optimal channels
observed, did not change any of the conclusions, because relative positions on the
scalp hemisphere did not change. Finding the optimal AC was also no goal of
this study.

4.1.3 Differences between optimal frequency band selection

Differences in optimal frequency band pass between subjects were hardly ob-
served on average. The most consisting conclusion is that frequency below 20
Hz are not useful for classification. Most subjects had several optimal frequency
bands that were not significantly different and almost all subjects shared those
bands, making it likely to use certain frequency bands to classify all subjects for
reasonable well AC for each subject. A method like filter bank CSP (FBCSP)
could prove a good way to automatically take care of the frequency bands [11].
The difference between channel and component space in optimal frequency band
could be explained partly due to the CSP algorithm using more different sources
divided over the scalp in comparison to channel space where only 2 electrodes
were used as source. The agreement of both channel and component space clas-
sifications on a band size between 5 and 35 Hz for optimal results however is the
most remarkable observation from the frequency analysis. Big frequency bands
were expected to perform worse, as they would contain more high variance data,
due to EMG signals having more variance, and thus were less likely to show differ-
ences between the classes on average. This however does not explain why there is
a big difference between frequency bands smaller than 35 Hz and frequency bands
bigger than 35 Hz, especially not considering that there is not much difference
between the different frequency bands smaller than 35 Hz.

4.2 Influence of the angry pout

One of the sub-hypotheses was: H1.1: Using different facial expressions with
partial overlapping AU, cause lower accuracies compared to using facial expres-
sions without overlapping AU.

Results regarding the angry class and the angry pout class show that this is
indeed the case as removal of either one of them yielded significant higher AC,
while removing either the neutral or the smile resulted in lower AC. The confusion
matrices showed that this is caused because the classifier mistakes the angry pout
class for the angry class.
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It should be noted that these results could also mean that muscle influence
from additional AU of the angry pout class (i.e. the pouting), in comparison to
the angry class, did not help the classifier at all. Differences between the two
classes could also be found due to difference in the intensity of the frown AU
between the two classes.

It is likely that when a different AU than the frown AU is part of two ex-
pressions, no significant differences can be found compared to two expressions
without similar AU. The frown muscles for example, lie close to the electrodes,
and is more likely to have big influence on the recorded data, while the pouting
muscles lie far away from the electrodes. Meaning that two expressions contain-
ing both the pout AU are likely to yield a significantly higher classification AC
compared to the angry and angry pout expressions, which share the frown AU.

4.3 Influence of EMG

Another sub-hypothesis was: H1.2: EMG influence on the classification accu-
racy is significant larger that EEG influence.

Results showed that, using CSP, there were no significant differences in the
resulting AC when classifying EMG channels compared to classifying EMG and
EEG channels, while there was a big significant difference compared to using only
EEG channels. This means that the EEG channels did not add useful signals for
the classifier. However it should be noted that because of the significantly higher
potentials of the EMG signals measured in the EMG channels, that possible EEG
influence in the EEG channels might be over shadowed. This means that H1.2 can
not be accepted with this result without completely removing the EMG influences
from the EEG channels, for example using independent component analysis. This
was however not the intend of this study and is therefore not mentioned in this
thesis.

Other results however (like the high frequency bands for the highest AC, the
preference of the classifier for channels closest to the used muscles, and the high
amplitude signals in the channels that produce the highest AC) confirm that
EMG has a big influence on the classification done on the EEG channels.

4.4 Influence of the frontal channels

The last sub-hypothesis was: H1.3: Using only frontal electrodes, will not yield
significantly lower classification accuracies than using all 32 electrodes.

Result showed no significant differences between either using only frontal
channels, using frontal and temporal channels and using all 32 EEG channels.
Meaning that H1.3 can be accepted.
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Chin et al. however had a different conclusion from their experiment, claiming
that using only frontal electrodes yielded a significant lower AC [11]. They suggest
this difference is due to the role of the motor cortex in voluntary facial expressions,
though no evidence is given for this suggestion, nor found in the results described
in this thesis. The differences in methods of both studies make it hard to compare
the results. Possibly the use of 6 facial expressions make the use of more electrodes
for CSP more important. Another explanation could lie in the used classification
pipeline being different, or differences in the intensity of the expressions made by
the subjects.

It should also be noted that when using only the frontal channels, the CSP
algorithm has an unfair advantage constructing the weight matrix based on the
training set, as it uses only channels which are known to yield a good performance.
This could explain the observations that for some subjects classifications on only
the frontal channels yielded a higher AC compared to classifying on all EEG
channels.

4.5 Future work

4.5.1 Online classification and optimization

For commercial use, an online classifier would be needed, as well as better classi-
fication AC. Since this study did not look into optimization of the classification
algorithm, it is expected that resulting AC can greatly improve. For online clas-
sification it is important that classification speed is optimal, meaning that the
selection methods to study the data described in this thesis are not suited. A
study could be done using the gathered data to find an optimal classification
pipeline for online classification of facial expression using EEG electrodes.

4.5.2 Facial expressions recognition

One observation was that the angry class and the angry pout class were hard
to separate from each other by the classifier. This is suspected to be because of
the shared frown AU. It is interesting to know how certain combinations of AU
would classify together with other combinations of AU. Certain AU might have
a bigger impact on the signal by default, like the frown AU due to being closer to
the electrodes. Some AU might also be controlled for different intensities of the
expression and yield separable data for each level of intensity. A study focusing
on the AU and how well they classify can reveal which facial expression could
be used to optimized classification results, as well reveal how to perform the
expressions to optimize the results.
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4.5.3 Multi modality

Using facial expressions in applications for healthy consumers is most likely an
addition to other modalities. Facial expressions could be detected while playing a
game with you hands, or facial expression provide added control to an application
where people already fully use their hands. In both applications hand movements
are made, which could provide extra noise from the facial recognition point of
view. A study should be done to test performance during the use of other modal-
ities, to see whether facial expressions can still be recognized while using other
input modalities apart from the facial expressions. Expectations are positive on
this fact, since fEMG signals are less likely to be disturbed by arm movement
than EEG signals, making facial expression recognition by EEG recordings a
useful extra modality to existing applications.

Alternatively, a BCI application that measures, for example, alpha waves,
could also use facial expressions as an extra modality. It should be studied how
this affects recognition of both.

4.5.4 Real situation facial expressions

Applications for the consumer market are not likely to be used in experimental
setups, meaning that a lot more noise will influence the classifier. A study to show
the effects of ’real situation’, using a setup to classify facial expressions should be
carried out to gather data. Head movements, eye blinking, eye movements, body
movements and talking should be among the interferences tested for. Involuntary
facial expressions can be tested in those conditions as well. Results could be used
to optimize the methods for real life situational use.

4.5.5 Role of the motor cortex

Considering the result from Chin et al. and the speculations made by Korb
[11, 27, 26] it is worth focusing more on the motor cortex during facial expressions
to see whether it will be an significant source in addition to the frontal channels,
meaning that headsets with electrodes over the motor cortex could provide better
results. Even when the motor cortex does not show significant influence compared
to the EMG influences on the classifications, the results of such a study would
be very interesting for the BCI community.

4.5.6 Pure EEG recognition

Also interesting for the BCI community would be to classify facial expressions
without any help of EMG signals. While this is direct not helpful for commercial
sector, it is interesting to classify facial expressions that are hardly or not carried
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out, especially for involuntary expressions, which is in return interesting for, for
example, the games industry.

4.5.7 Imagined facial expressions

While imagined movements between both hands are already hard to classify, facial
expressions are expected to be even harder. There are no results yet of research
to imagined facial expressions at the moment. Area’s in the motor cortex are
close together and differences between expressions thus extremely subtle. With
improving results in the imagined movements field the coming years, imagined
facial expressions might become interesting enough to study. Because of the close
link with emotion recognition, due to the underlying mechanism in the brain, the
motor cortex might not be the only interesting area to study.





Chapter 5

Conclusions and

recommendations

5.1 Conclusions

An experiment was carried out with the goal to gather data of four voluntary
facial expressions using a 32 electrode EEG cap. The data was then studied with
the goal to find out whether or not the classification would be feasible, in respect
of using it for commercial entertaining purposes and thus to not care about the
sources of the recorded signals.

Results showed that facial expressions could indeed be classified from data
recorded by EEG sensors. With the four described classes (the neutral, angry,
smile and angry pout class), an average classification accuracy of over 80% was
observed. The results suggested that using facial expressions with overlapping
muscles, like the angry class and the angry pout class, contribute to lower classifi-
cation accuracies. Leaving out the angry pout class (or the angry class) improved
accuracy over 90%, while leaving out the neutral or smile class resulted in reduced
accuracy.

While 2 electrodes could be enough for good classification AC, variation in
hemispherical asymmetry between trials and subjects show that electrodes to
either side of the hemisphere are required to make it work for all persons. Using
only frontal side channels on the other hand in a commercial EEG reading device,
is suspected to be able to classify just as well as the 32 electrode cap used in the
experiment, judging from the results.

Optimal frequency bands were all observed to be above 20 Hz and were smaller
than 35 Hz on average, but no single band is shown to be optimal for all subjects.
When using CSP components instead of channels, the optimal frequencies bands
were found lower.
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Combining the data of the EEG channels with the EMG channels, did not
show significant higher classification accuracy compared to classification accuracy
on only the EMG channels, indicating that EEG channels are not an useful in
addition to EMG channels. However, this does not mean that EEG signals are
not used during classification with only EEG channels. Other observations, like
the high frequency bands for optimal classification accuracies, the high ampli-
tude in channels with good accuracies and the topography of the signals used in
classifications with good accuracies, do confirm that the influence of the EMG
signals is the base of the classifications.

5.2 Recommendations

Future experiments in this field might do well to look into dry electrode testing, as
this will likely be the future of entertainment BCI devices. Using dry electrodes
would especially be useful for testing in more ’realistic’ user environments where
traditional wet electrode setups do not contribute to a ’realistic’ user setup.

It is recommended to use EMG on both sides of the face when measuring
the facial expressions due to asymmetry of the expressions. The on and offset of
the EMG signals can be used to create epochs of the EEG data. This ways both
voluntary and involuntary signals can be better studied. Additional EMG sensors
could be placed over non target muscles to see whether they produce potential
during the expressions or not, to make sure the measured potentials in the EEG
sensors are only originated from target muscles and EEG signals.

Researchers and developers of facial expression, do well to make sure users
and consumers do not need to stress the expressions too much. Applications using
facial expressions would require users to be able to use it for some time without
getting tired, painful or cramped muscles. Testing with minimal expression effort
is also needed for involuntary expression recognition as users do not control the
intensity of them.

-
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Appendix A

Subject experiment protocol

Preparation:

• Filling out consent form and getting the experiment explained

• Filling out experiment questionnaire

• Putting on EEG cap and EMG sensors

Training:

• Free moving to see influences on EEG recording

• Training session (1 block of 12 trials)

• If subject not trained enough, repeat training session

Experiment:

• 4 blocks (40 trials per block)

• Session break

• 4 blocks (40 trials per block)

Finishing:

• Clean up subject
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Appendix B

Consent form

Naam onderzoeker: ..................... Deelnemer ID: ..........................

Universiteit Twente
Faculteit Elektrotechniek, Wiskunde en Informatica (EWI)
Leerstoel: Human Media Interaction (HMI)
Postbus 217
7500 AE Enschede

Informed Consent (genformeerde toestemming)

Beste deelnemer,

Je hebt aangeboden om mee te doen met dit onderzoek. Dit document bevat
wat informatie over je rechten en de procedure van het volgende experiment.
Lees alsjeblieft de volgende paragrafen zorgvuldig door.

1) Het doel van het onderzoek

Het doel van het onderzoek is het verzamelen van EEG (hersenactiviteit) en
EMG (spieractiviteit) data te verzamelen voor gezichtsuitdrukkingen. Deze data
zal geanalyseerd worden met als hoofddoel het classificeren van de data per uit-
drukking.

2) De procedure van het onderzoek
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In het begin zul je een elektrodekap op krijgen. Je hoofd zal hiervoor worden
opgemeten, je hoofdhuid kan wat schoongemaakt worden met alcohol, en een
kap zal worden vastgemaakt. In deze cap zitten gaten waarin gel zal worden
gespoten en elektrodes zullen worden geklikt. Verder zullen er 8 sensoren op je
gezicht worden geplakt door middel van een stikker die op de huid blijft zitten.
Om de sensoren en de snoeren die er aan zitten goed op hun plaats te houden
zal er ook tape over heen geplakt worden op het gezicht. Dit hele proces duurt
ongeveer 15 minuten.

Het daadwerkelijke experiment zal ongeveer een uur duren. De onderzoeker
zal bij je in de ruimte blijven gedurende het experiment en kun je elk moment
vragen stellen. Er zal steeds een stimulus laten zien worden, waarvan de bijbe-
horende gezichtsuitdrukking gedaan moet worden. Er zal eerst een korte training
sessie gehouden om te oefenen, en vervolgens twee grote sessies die beide uit 4
blokken van 4 minuten bestaan. Tussen blokken en sessies is er altijd een pauze
waarbij je zelf bepaald hoelang deze is.

Tijdens het experiment wordt je gezicht gefilmd met een camera. Deze beelden
zullen niet gebruikt bij de verwerking van de resultaten en dienen slechts voor
terug kijken bij vreemde resultaten om zo data te verwerpen. De beelden zullen
nimmer uit handen worden gegeven of gebruikt bij publicatie en kunnen altijd op
aanvraag verwijderd worden. Je hebt ook het recht om het filmen van te voren te
weigeren, in dat geval zal er niets worden opgenomen. Voor en na het experiment
worden een aantal vragen gesteld, je bent niet verplicht te antwoorden als je dat
niet wilt.

3) Risico’s en bijwerkingen

Dit onderzoek is gebaseerd op de huidige kennis van de hoofdonderzoeker en is
veilig en pijnloos voor de deelnemers. Door deel te nemen aan dit onderzoek loop
je geen specifieke risico’s, en er zijn geen bijwerkingen bekend. Echter, omdat dit
soort onderzoeken in het algemeen vrij nieuw is, kunnen onbekende bijwerkingen
niet worden uitgesloten.

Belangrijk: laat het de onderzoeker zo snel mogelijk weten als je ziektes hebt
of onder medische behandeling staat. Laat het ook meteen weten als je ooit een
epileptische aanval hebt gehad of last hebt van oorsuizen. Vragen hierover kun
je stellen aan de onderzoeker.

4) Stoppen van het experiment

Je hebt het recht om het experiment op elk moment te stoppen zonder te vertellen
waarom. Deelname is volledig vrijwillig en zonder verplichtingen. Er zijn geen
nadelen door het stoppen van het onderzoek.
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Tijdens het experiment zijn er meerdere pauzemomenten, je kan dan eten
drinken of naar het toilet. Als je op enig moment tijdens het experiment onge-
mak voelt, laat dat dan direct weten aan de onderzoeker.

5) Privacybescherming

Je privacy wordt gerespecteerd. Persoonlijke gegevens zullen niet worden doorge-
speeld aan derden. De verzamelde data wordt anoniem gemaakt door ons en zal
alleen in deze anonieme vorm worden gebruikt en gepubliceerd.

6) Verklaring

Door je handtekening onderaan dit formulier te zetten, ga je akkoord met het
volgende:

”Ik verklaar hierbij dat de onderzoeker van dit experiment me heeft genformeerd
over de bovenstaande punten. Ik heb het gelezen en begrepen. Ik ben in overeen-
stemming met elk van de punten. Hierbij geef ik toestemming dat de data die
verkregen wordt met dit onderzoek wordt geanalyseerd voor wetenschappelijke
doeleinden en anoniem wordt gebruikt voor publicatie. Ik ben genformeerd over
mijn rechten als proefpersoon en over de vrijwillige deelname van dit onderzoek”

Plaats, datum Handtekening

..........................................................................
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Informatie Proefpersoon 
 
Algemene informatie experiment in te vullen door onderzoeker 
Datum: ___ - ___ - _______  Start: ___ : ___ Eind:  ___ : ___ 
Omschrijving: ____________________________________________________________ 

_____________________________________________________________
___________________________________________________________ 

Software:  ____________________________________________________________ 
Actiview settings:  Bandpass: ____ Hz - ____ Hz Sample frequency: _____ Hz 
Experiment definitie:  ______________________________________________________ 
Onderzoeker(s):  ______________________________________________________ 
 
Algemene informatie proefpersoon  
in te vullen door proefpersoon 
ID: ___________________________ 
Geslacht: m / v 
Leeftijd: ____  
Dominantie: linkshandig / rechtshandig 
Opleiding: _________________________ 
Beroep: ___________________________ 

in te vullen door onderzoeker 
Hoofd omtrek: ___ cm     Cap: _____ 
Nasion-inion: ___ cm     Cz: ___cm 
Slaap-slaap: ___ cm    Cz:  ___cm 
Haaromschrijving: ______________ 
Haarproducten: ________________ 

 
In te vullen door proefpersoon  
 
Visuele hulpmiddelen:   o contactlenzen o bril  o geen 
 
Alcoholconsumptie:   o dagelijks  o wekelijks o maandelijks 
    o minder dan maandelijks  o nooit 
    Voor experiment: __________________________ 
 
Koffieconsumptie:   o 5+ kopjes per dag o 3-5 kopjes o 1-3 kopjes 
    o minder dan 1 kopje  o nooit 
    Voor experiment: __________________________ 
 
Zwarte/groene thee:   o 5+ kopjes per dag o 3-5 kopjes o 1-3 kopjes 
consumptie   o minder dan 1 kopje o nooit 
    Voor experiment: __________________________ 
 
Tabakconsumptie:   o 2+ pakjes per dag o 1-2 per dag o 1 pakje per dag 
    o minder dan 1 pakje  o af en toe o nooit 
    Voor experiment: __________________________ 
 
Aantal uren slaap:  per nacht: ___  voor experiment: ___ 
 
Mate van alertheid op dit moment:   

niet alert o  o  o  o  o zeer alert 
 
 
 
Medicijnen:   _________________________________________ 
 
Aandachts-/neurologische/psychiatrische problemen: 



    _________________________________________ 
 
Werken met de PC  o 6+ uur per dag o 4-6 uur p.d. o 2-4 uur p.d. 
 (niet per se voor beroep) o dagelijks, <2 uur o wekelijks o maandelijks 

o minder dan maandelijks  o nooit 
 
Handigheidstest: 
 
Geef aan met welke hand je de volgende taken zou uitvoeren: 
Schrijven    Links / Rechts 
Tekenen    Links / Rechts  
Bal gooien    Links / Rechts 
Knippen    Links / Rechts 
Tanden poetsen   Links / Rechts 
Brood snijden met mes  Links / Rechts 
Eten met een lepel   Links / Rechts 
Een computermuis gebruiken  Links / Rechts 
Een lucifer aansteken   Links / Rechts 
(de andere hand houdt het doosje vast) 
Een pot openmaken    Links / Rechts 
(de andere hand houdt de pot vast) 
 
Met welke hand schrijven: 
Moeder L / R / ?  Zus L / R / ?  Dochter    L / R / ? 
Vader  L / R / ?  Broer L / R / ?  Zoon      L / R / ? 
Eventuele extra broers/zussen/dochters/zonen: 
     L / R  L / R  L / R  L / R 
     L / R  L / R  L / R  L / R 
 
 
Opmerkingen: 
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
__________________________________________________________________ 
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Figure D.1: Scalp topography plot showing the location of all electrodes by name.
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D.2 topography of the electrodes in numbers
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Figure D.2: Scalp topography plot showing the location of all electrodes by num-
ber.
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(b) Angry
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(c) Smile
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Figure E.1: Grand average ERP of all subjects, showing 2 seconds pre AEP (SSP
and BP) and the AEP for all 32 channels for all classes. Pre-AEP was taken as
baseline. Appendix E.1 shows the same plot for all channels.
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E.2 Significance
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Figure E.2: ERP plot of all channels (arranged in spatial scalp location) of subject
9 for the neutral class, with the standard deviation and significant time periods
shown. 2 seconds pre AEP (SSP and BP) and the AEP are shown with the pre-
AEP taken as baseline. Significant areas were calculated with a two-tailed t-test
with α = 0.05.
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Figure E.3: ERP plot of all channels (arranged in spatial scalp location) of subject
9 for the angry class, with the standard deviation and significant time periods
shown. 2 seconds pre AEP (SSP and BP) and the AEP are shown with the pre-
AEP taken as baseline. Significant areas were calculated with a two-tailed t-test
with α = 0.05.
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Figure E.4: ERP plot of all channels (arranged in spatial scalp location) of subject
9 for the smile class, with the standard deviation and significant time periods
shown. 2 seconds pre AEP (SSP and BP) and the AEP are shown with the pre-
AEP taken as baseline. Significant areas were calculated with a two-tailed t-test
with α = 0.05.
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Figure E.5: ERP plot of all channels (arranged in spatial scalp location) of subject
9 for the angry pout class, with the standard deviation and significant time
periods shown. 2 seconds pre AEP (SSP and BP) and the AEP are shown with
the pre-AEP taken as baseline. Significant areas were calculated with a two-tailed
t-test with α = 0.05.
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E.3 Significance difference
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Figure E.6: ERP plot of all channels (arranged in spatial scalp location) of subject
9 for the difference of the neutral and smile class, with the standard deviation and
significant time periods shown. 2 seconds pre AEP (SSP and BP) and the AEP
are shown with the pre-AEP taken as baseline. Significant areas were calculated
with a two-tailed t-test with α = 0.05.
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Figure E.7: ERP plot of all channels (arranged in spatial scalp location) of sub-
ject 9 for the diference of the angry and angry pout class, with the standard
deviation and significant time periods shown. 2 seconds pre AEP (SSP and BP)
and the AEP are shown with the pre-AEP taken as baseline. Significant areas
were calculated with a two-tailed t-test with α = 0.05.
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E.4 topo

Figure E.8: Topography plot of subject 9 for the neutral class, showing potential
changes in time over the scalp. 2 seconds pre AEP (SSP and BP) and the AEP
are shown with the pre-AEP taken as baseline.
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Figure E.9: Topography plot of subject 9 for the angry class, showing potential
changes in time over the scalp. 2 seconds pre AEP (SSP and BP) and the AEP
are shown with the pre-AEP taken as baseline.



E.4. TOPO 89

Figure E.10: Topography plot of subject 9 for the smile class, showing potential
changes in time over the scalp. 2 seconds pre AEP (SSP and BP) and the AEP
are shown with the pre-AEP taken as baseline.
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Figure E.11: Topography plot of subject 9 for the angry pout class, showing
potential changes in time over the scalp. 2 seconds pre AEP (SSP and BP) and
the AEP are shown with the pre-AEP taken as baseline.



Appendix F

3 class confusion matrix

(a) No neutral class

angry smile angry pout
angry 892 0 108
smile 9 925 66

angry pout 357 4 639

(b) No angry class

neutral smile angry pout
neutral 920 11 69

smile 0 1000 0
angry pout 215 1 784

(c) No smile class

neutral angry angry pout
neutral 937 38 25
angry 9 925 66

angry pout 25 381 594

(d) no angry pout class

neutral angry smile
neutral 923 58 19
angry 10 990 0
smile 0 0 1000

Table F.1: Confusion matrix of classification for 3 classes of subject 9 in com-
ponent space filtered for 70 - 100 Hz. Confusion values were taken and summed
for 50 runs. Horizontal values show actual observations, vertical values show
classifier result.
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FACS - Facial Action Coding System
(2002 Revision is here)

(Ekman and Friesen 1978)

AU Description Facial muscle Example image

1 Inner Brow
Raiser

Frontalis, pars
medialis

2 Outer Brow
Raiser

Frontalis, pars
lateralis

4 Brow Lowerer
Corrugator
supercilii, Depressor
supercilii

5 Upper Lid
Raiser

Levator
palpebrae superioris

6 Cheek Raiser Orbicularis oculi,
pars orbitalis

7 Lid Tightener Orbicularis oculi,
pars palpebralis

9 Nose Wrinkler
Levator labii
superioris alaquae
nasi

10 Upper Lip
Raiser

Levator labii
superioris

11 Nasolabial
Deepener Zygomaticus minor

FACS (Facial Action Coding System) http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm

1 van 5 13-3-2009 13:13



12 Lip Corner
Puller Zygomaticus major

13 Cheek Puffer Levator anguli oris
(a.k.a. Caninus)

14 Dimpler Buccinator

15 Lip Corner
Depressor

Depressor anguli
oris (a.k.a.
Triangularis)

16 Lower Lip
Depressor

Depressor labii
inferioris

17 Chin Raiser Mentalis

18 Lip Puckerer

Incisivii labii
superioris and
Incisivii
labii inferioris

20 Lip stretcher Risorius w/ platysma

22 Lip Funneler Orbicularis oris

FACS (Facial Action Coding System) http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm

2 van 5 13-3-2009 13:13
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AC classification accuracy page 23
AEP actual expression phase page 15
AU action units page 9
BCI brain computer interface page 3
BP buildup phase page 15
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EEG electroencephalography page 6
EOG electrooculography page 7
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ERP event related potential page 5
FACS facial action coding system page 9
fEMG facial electromyography page 9
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