

Master’s thesis

An Ontology-Based Metalanguage
with Explicit Instantiation

By
Alfons Laarman

University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science
Department of Computer Science

Software Engineering Group

29 March 2009

Committee members:
dr. Ivan Kurtev
dr. ir. Klaas van den Berg
Arda Goknil, MSc.

An Ontology-Based Metalanguage with Explicit Instantiation

I

Abbreviations

General Terminology
Abbreviation Full Description
AST Abstract Syntax Tree
BPEL Business Process Execution Language
BNF Backus Naur Form
BWW Bunge-Wand-Webber (ontology)
CIM Computational Independent Model
CWM Common Warehouse MetaModel
DSL Domain-Specific Language
EBNF Extended Backus Naur Form
ECore EMF Core
EMF Eclipse Modeling Framework
FCO Four-category ontology
KM3 Kernel MetaMetaModel
MD Moment Definition
MDA Model Driven Architecture
MDE Model Driven Engineering
MOF Meta Object Facility
OCL Object Constraint Language
OGML Ontology Grounded MetaLanguage
OGMLX OGML eXtensional
OWL Web Ontology Language
PIM Platform Independent Model
PSM Platform Specific Model
RDF Resource Description Framework
SE Software Engineering
UML Unified Modeling Language
XML eXtensible Markup Language

OGML Specific Terminology
Abbreviation Full Description
AF AttributeFunction
CI CharacterizationInstantiation
CR CharacterizationRelation
DTD DataTypeDefinition
ID IndividualDefinition
IE IdentifiableElement
IOP InstanceOfProperty
IOD InstanceOfDefinition
IR InherenceRelation
LD LanguageDefinition
MD MomentDefinition
ME ModelElement
MM MetaModel
MU MomentUniversal

An Ontology Based Metalanguage with Explicit Instantiation

II

OD ObjectDefinition
PD PropertyDefinition
PE PropertiesElement
SD SubstantialDefinition
SU SubstantialUniversal
UD UniversalDefinition
XO XObject

An Ontology-Based Metalanguage with Explicit Instantiation

III

Abstract

Model Driven Engineering (MDE) is a promising paradigm for software development. It
raises the level of abstraction in software development by treating models as primary
artifacts. The practical application of this paradigm is seriously endangered by the current
weak modeling foundation of the approach. The objective of this work is to provide a sound
foundation to modeling in MDE based on Formal Ontologies.

MDE advocates the definition of the abstract syntax of modeling languages, both domain-
specific and general-purpose, by means of metamodels. Metamodels are expressed in a
specialized metalanguage. The definition of a metamodel is a recurring task in MDE and
requires sound and formal support. The lack of such support causes deficiencies such as
conceptual anomalies in the modeling languages, limited applicability of crucial MDE
operations like model transformation and querying, and limited reuse of model libraries.

From philosophical point of view, metamodels can be seen as ontological commitments.
Metalanguages have to provide constructs for building ontological theories as a base for
modeling languages. In this thesis, we present a new metalanguage derived from the study
of Formal Ontology. This metalanguage, called OGML, raises the level of abstraction of
metamodels from pure abstract syntax to semantics descriptions based on ontologies. Thus,
the language developers can make conscious choices for their modeling concepts and can
explicitly define important relations such as instantiation. With this metalanguage, we aim at
a precise conceptual and formal foundation for metamodeling.

OGML is capable of expressing metamodels and models together with the instantiation
semantics of the language. In current tools, these relations are not uniformly treated for
different languages. Our metalanguage provides the means to do this. Thereby it makes the
concepts that play a role in metamodeling more explicit and lifts some limitations of
traditional metalanguages. We have shown the capabilities of the metalanguage by
expressing several modeling languages in it. The result is that we are able to handle all
languages and their models uniformly. An OCL interpreter has been created to demonstrate
that. The OCL interpreter allows the navigation on models both according to the semantics
of their different modeling languages and the metalanguage. A model conformance checker
is provided to verify correctness of a model according to another model in the same
language, but also to verify models and languages against the metalanguage.

The architecture of our metalanguage is centered around the concept of modeling languages.
Each language defines its own notion of instantiation. The metalanguage is also a modeling
language, so it also has a notion of instantiation. In our architecture, we can treat all
instantiation mechanisms uniformly, which is not the case in traditional metalanguages like
MOF, EMF and KM3.

An Ontology Based Metalanguage with Explicit Instantiation

IV

An Ontology-Based Metalanguage with Explicit Instantiation

V

Samenvatting

Model Driven Engineering (MDE) is een veelbelovend paradigma voor het ontwikkelen van
software. Het verhoogt het abstractieniveau in de softwareontwikkeling door modellen als
primaire artefacten te gebruiken. De praktische toepasbaarheid van dit paradigma wordt
echter bedreigd door de zwakke conceptuele basis. Het doel van dit werk is om een correcte
ondergrond voor modelleren in MDE te creëren met behulp van formele ontologieën.

MDE pleit ervoor om de definitie van de abstracte syntaxis van zowel domeinspecifieke als
ook generieke, modelleertalen uit te drukken door middel van metamodellen. Metamodellen
worden op hun buurt uitgedrukt in metatalen. De definitie van een metamodel is een
veelvoorkomende taak binnen MDE. Deze taak vereist correcte en formele ondersteuning.
Het gebrek daaraan veroorzaakt tekortkoming, zoals conceptuele afwijkingen in
modelleertalen, gelimiteerde toepasbaarheid van cruciale MDE-operaties
(modeltransformaties en queries) en gelimiteerd hergebruik van modelbibliotheken.

Vanuit filosofisch oogpunt kunnen metamodellen worden gezien als “ontologic
commitment”, een ontologische aanname. Metatalen moeten de juiste bouwstenen aanbieden
voor het bouwen van ontologische constructies als een basis voor modelleertalen. In deze
thesis presenteren wij een metataal, die afgeleid is van het onderzoeksgebied Formele
Ontologie. Deze metataal verhoogt het abstractieniveau van metamodellen van pure
definities voor de abstracte syntaxis tot semantische beschrijvingen gebaseerd op
ontologieën. Daardoor kunnen taalontwikkelaars bewuste keuzes maken voor hun
modelleerconcepten en kunnen belangrijke relaties, zoals de instantiatie-relatie, expliciet
beschreven worden. Met deze metataal hebben we als doel om een conceptuele en formele
grondslag te leveren voor metamodellering.

The metataal die hier wordt gepresenteerd is geschikt om metamodellen en modellen uit te
drukken samen met de semantiek voor instantiatie van de taal. In huidige tools worden deze
relaties niet gelijkmatig behandeld. Onze metataal biedt de mogelijkheden om dit wel te
realiseren. Daardoor worden de concepten, die een rol spelen in metamodellering, explicieter
en worden enkele limitaties van traditionele metatalen opgeheven. We hebben de
mogelijkheden van deze taal aangetoond door er meerdere modelleertalen in uit te drukken.
Een OCL-“interpreter” is gemaakt om te demonstreren dat dit resulteert in uniforme
verwerking van de instantiatie-relaties over meerdere talen. Deze “interpreter” staat het toe
om te navigeren over modellen in overeenstemming met de semantiek van hun
verschillende modelleertalen en tevens van de metataal. Een “checker” is gerealiseerd om te
kunnen controleren of modellen conform zijn aan andere modellen in overeenstemming met
de semantiek van de modelleertaal, maar ook of de talen conform zijn aan de metataal.

De architectuur van onze metataal is gebouwd om het concept modelleertaal. Elke taal
definieert zijn eigen zicht op het instantiatie-mechanisme. De metataal is ook een
modelleertaal en heeft dus ook een zicht op instantiatie. In onze architectuur kunnen we al
deze instantiatie-mechanismen uniform behandelen. Dat is niet het geval bij traditionele
metatalen zoals MOF, EMF en KM3.

An Ontology Based Metalanguage with Explicit Instantiation

VI

An Ontology-Based Metalanguage with Explicit Instantiation

VII

Table of Contents

Abbreviations ... I
Abstract ... III
Samenvatting.. V
Table of Contents ... VII
List of Figures .. X
List of Tables ... XI
List of Code Listings .. XI
Acknowledgements .. XIII
Chapter 1 – Introduction .. 1

1.1 Preliminaries ... 1
1.2 Problem Statement ... 2
1.3 Research Questions .. 5
1.4 Research Objectives .. 5
1.5 Approach ... 6
1.6 Contributions .. 7
1.7 Thesis outline .. 8

Chapter 2 – Background ... 11
2.1 Introduction ... 11
2.2 Ontology .. 11

2.2.1 A Short History of Ontology ... 11
2.2.2 Ontology .. 11
2.2.3 Bunge-Webber-Wand Ontology ... 12
2.2.4 Four-Category Ontology ... 13
2.2.5 Generalization in Ontology ... 15
2.2.6 An Ontological Commitment ... 15

2.3 Languages .. 16
2.3.1 Linguistics, Syntax and Semantics ... 16
2.3.2 The Pragmatics of Modeling ... 17
2.3.3 The Ontological Commitment of Languages ... 17
2.3.4 Expressiveness or Precision .. 18

2.4 MDE .. 18
2.4.1 Model Driven Architecture and Engineering ... 18
2.4.2 The Concept of Model .. 20
2.4.3 Instantiation ... 22
2.4.4 Relativity in Modeling ... 25
2.4.5 The Concept of Metamodel ... 27
2.4.6 Modeling Languages .. 28
2.4.7 Modeling Architectures ... 28

2.5 Ontology and Modeling .. 32
2.6 Conclusions ... 32

An Ontology Based Metalanguage with Explicit Instantiation

VIII

Chapter 3 – Identification of Problems in Contemporary Modeling Architectures 33
3.1 Introduction ... 33
3.2 Construct Incompleteness, Overload and Excessiveness ... 33
3.3 Multilevel Metamodeling .. 35
3.4 Language Independent Model Handling and Structure .. 37
3.5 The Adverse Effects of the Problems on Automation in MDE 38
3.6 Analysis of the InstanceOf Relation ... 38
3.7 Conclusions ... 40

Chapter 4 – An Ontology-Based Modeling Architecture .. 41
4.1 Introduction ... 41
4.2 Approach ... 42
4.3 The Metalanguage OGML ... 43

4.3.1 Language Constructs ... 44
4.3.2 Relational Constructs ... 48
4.3.3 Ontological Perspective Constructs ... 53
4.3.4 Generalization and Specialization Constructs .. 63

4.4 Structure of the Modeling Space .. 65
4.5 How OGML is Self-Reflective ... 70
4.6 How OGML is Mapped to the Modeling Space ... 75
4.7 The Resulting Modeling Architecture ... 82
4.8 Conclusions ... 84

Chapter 5 – Case Studies .. 85
5.1 Introduction ... 85
5.2 SimpleUML1 ... 85

5.2.1 Associations of Binary Links ... 87
5.2.2 Associations on Attributable Links (AssociationClass) .. 89
5.2.3 Associations on Slots .. 91

5.3 SimpleUML2 ... 91
5.4 Querying the Models ... 93
5.5 Conclusions ... 96

Chapter 6 – Formalization and Semantics .. 97
6.1 Introduction ... 97
6.2 Semantic Domain .. 97
6.3 Interpretation Function .. 97
6.4 Use of the Semantics .. 101
6.5 Conclusions ... 102

Chapter 7 – Tool Support ... 103
7.1 Introduction ... 103
7.2 Requirements .. 103
7.3 Detailed Design ... 104

An Ontology-Based Metalanguage with Explicit Instantiation

IX

7.3.1 Modeling Space ... 104
7.3.2 Handling Languages .. 106
7.3.3 Handling Models .. 106
7.3.4 OCL ... 108
7.3.5 Conformance Checking ... 109
7.3.6 A MISTRAL Use-Case .. 109

7.4 Architectural Design .. 109
7.5 Interface Design .. 110
7.6 Extensions .. 113
7.7 Conclusions ... 113

Chapter 8 – Related Work .. 115
8.1 Introduction ... 115
8.2 Earlier Work .. 115
8.3 Related Work in Approach ... 116
8.4 Related Work with the Same Objective ... 118
8.5 Related Work in Theory .. 118
8.6 Conclusions ... 119

Chapter 9 – Conclusion .. 121
9.1 Introduction ... 121
9.2 Summary .. 121
9.3 Evaluation .. 124
9.4 Discussion .. 125
9.5 Future Work .. 128

Bibliography .. 131
Appendix A – Concrete Syntax of OGML... 139

A.1 EBNF... 139
A.2 Language Constructs ... 139
A.3 Relational Constructs ... 140
A.4 Ontological Perspective Constructs ... 140
A.5 Generalization and Specialization Constructs.. 140
A.6 Other Constructs ... 140
A.7 Symbol Table Creation ... 141

Appendix B – OGML Definition .. 143
Appendix C – OCL Interpreter and Metamodel .. 147

C.1 High-Level Design.. 147
C.2 Metamodel of Expression Hierarchy ... 148
C.3 Metamodel of Type Hierarchy ... 149

Index ... 150

An Ontology Based Metalanguage with Explicit Instantiation

X

List of Figures

Figure 1-1 - Outline for this thesis .. 9
Figure 2-1 - Four-category ontology (taken from [63]) .. 13
Figure 2-2 - The ontological square .. 14
Figure 2-3 - An abstract syntax model and an abstract syntax tree ... 16
Figure 2-4 - Concrete syntax, abstract syntax and semantics ... 17
Figure 2-5 - A model transformation between a PIM and a PSM .. 19
Figure 2-6 - The meaning triangle adapted (taken from [62]) .. 20
Figure 2-7 - Conceptual modeling according to Guizzardi (taken from [45]) 21
Figure 2-8 - Example of instantiation and generalization ... 23
Figure 2-9 - A modeling language with two models ... 23
Figure 2-10 - The difference between instanceOf, conformsTo and memberOf 25
Figure 2-11 - The meta-property of models with meaning triangles .. 26
Figure 2-12 - A model expressed in a modeling language ... 27
Figure 2-13 - The semantics of modeling languages (taken from [1]) ... 28
Figure 2-14 - The traditional MOF modeling architecture.. 29
Figure 2-15 - The MOF modeling architecture, a recent interpretation 30
Figure 2-16 - Modeling architectures of MOF, XML, EBNF and RDF (taken from [20]) 30
Figure 2-17 - The MML modeling architecture compared with MOF .. 31
Figure 2-18 - Different modeling architecture designs (taken from [11] and [1]) 31
Figure 3-1 - A reference ontology to measure domain appropriateness (taken from [41]) 34
Figure 3-2 - A Clabject .. 35
Figure 3-3 - Multiple classification in the MOF architecture (taken from [7]) 36
Figure 3-4 - An example power type (taken from [47]) ... 37
Figure 3-5 - The data translation problem in model transformations (taken from [61]) 38
Figure 3-6 - The models from the perspective of the metalanguage ... 39
Figure 3-7 - The models from the perspective of the modeling language 39
Figure 4-1 - The example language SimpleUML ... 44
Figure 4-2 - OGML’s language constructs .. 44
Figure 4-3 - A schematic view of instantiation semantics for OGML language constructs 46
Figure 4-4 - OGML’s relational constructs .. 49
Figure 4-5 - A schematic view of instantiation semantics for OGML relational constructs 50
Figure 4-6 - A schematic view of SimpleUML with the example models 52
Figure 4-7 - The ontological perspective that UML provides on models 54
Figure 4-8 - OGML’s ontological perspective constructs .. 55
Figure 4-9 - A schematic view of instantiation semantics for OGML relational constructs 58
Figure 4-10 - Dimensions in OGML models ... 60
Figure 4-11 - A cross-model view of an established Ontological Perspective 61
Figure 4-12 - OGML’s GeneralizationRelation ... 63
Figure 4-13 - A model for the OGML eXtension (OGMLX) ... 66
Figure 4-14 - An example OGMLX model .. 69
Figure 4-15 - OGML as a modeling language defined by itself ... 70
Figure 4-16 - Instantiation of a SubstantialDefinition ... 71

An Ontology-Based Metalanguage with Explicit Instantiation

XI

Figure 4-17 - The recursive nature of the CharacterizationRelation ... 73
Figure 4-18 - OGML definition divided in a model for intension and extension 76
Figure 4-19 - A conceptual graph of the model constructs mapped to OGMLX 82
Figure 4-20 - The OGML architecture represented as sets of constructs 83
Figure 4-21 - The nested modeling architecture of OGML ... 83
Figure 5-1 – SimpleUML1 models in OGML with instantiated associations 88
Figure 5-2 - An example UML model with a 3-ary association and an AssociationClass 94
Figure 5-3 - An example instance model with associations.. 95
Figure 7-1 - The nested modeling architecture of OGML ... 103
Figure 7-2 - The place of the modeling space in the OGML architecture 105
Figure 7-3 - OGML with modeling space .. 106
Figure 7-4 - Importing models into the modeling space ... 107
Figure 7-5 - A concrete syntax for the modeling space ... 108
Figure 7-6 - Parameterized syntax generation .. 108
Figure 7-7 - OGML architecture ... 110
Figure 7-8 - OGML perspective screen .. 110
Figure 7-9 - Language creation screen ... 111
Figure 7-10 - Import model screen ... 111
Figure 7-11 - Model creation screen ... 112
Figure 7-12 - OGML conformance check screen .. 112
Figure 8-1 - InstanceOf relations found in MOF architecture (taken from [62])...................... 115
Figure C-9-1 - A high-level design of the OCL interpreter ... 147
Figure C-9-2 - OCL Interpreter's Expression Hierarchy ... 148
Figure C-9-3 - OCL Interpreter's Type Hierarchy .. 149

List of Tables

Table 2-1 - The meaning of labels in Figure 2-11 .. 26
Table 4-1 - Abbreviations for language constructs of OGML .. 46
Table 4-2 - Abbreviations for relational constructs of OGML .. 50
Table 4-3 - Abbreviations for ontological perspective constructs of OGML 57
Table 4-4 - Parallels between EMF reflection example and OGML constructs.......................... 62
Table 4-5 - Abbreviations and ontological equivalents for constructs of OGML eXtensional 69
Table 5-1 - The model contents for a model conforming to the model in Figure 5-2 94

List of Code Listings

Listing 4-1 - OGML by example: defining the language SimpleUML .. 47
Listing 4-2 - OGML by example: defining the language constructs for universals 47
Listing 4-3 - OGML by example: defining the language constructs for individuals 48
Listing 4-4 - OGML by example: defining the attributes for universals and individuals 51

An Ontology Based Metalanguage with Explicit Instantiation

XII

Listing 4-5 - OGML by example: defining the characterizations for universals 52
Listing 4-6 - OGML by example: defining the inherence for individuals 52
Listing 4-7 - OGML by example: defining the InstanceOfRelations ... 59
Listing 4-8 - OGML by example: defining the CharacterizationInstantiation 59
Listing 4-9 - OGML by example: defining the AttributionFunction ... 60
Listing 4-10 - Matching of AttributeFunctions with CharacterizationInstantiations................ 60
Listing 4-11 – Code example of reflection on an ECore model (EMF) .. 62
Listing 4-12 - OGML by example: defining the inherence for individuals 65
Listing 4-13 - The OGML definition of Language Constructs .. 71
Listing 4-14 - The OGML definition of Attribute ... 72
Listing 4-15 - The OGML definition of CharacterizationRelation ... 72
Listing 4-16 - The OGML definition of OGMLX constructs ... 74
Listing 4-17 - The OGML definition of OGMLX constructs ... 75
Listing 4-18 - The OGML definition of OGMLX constructs ... 76
Listing 4-19 - Proof of a set of base formulas deduced from the premises (Step 1a) 78
Listing 4-20 - Proof that OGML constructs are part of OGMLX (Step 1b) 79
Listing 4-21 - Proof of a set of base formulas deduced from the premises (Step 3a) 80
Listing 4-22 - Proof that model constructs are instances of OGMLX (Step 3b).......................... 81
Listing 4-23 - A generalization of the proofs in step 1, 2 and 3 (Step 4)...................................... 81
Listing 5-1 - Case study: SimpleUML1, universal definitions .. 86
Listing 5-2 - Case study: SimpleUML1, individual definitions .. 86
Listing 5-3 - Case study: SimpleUML1, binary link instantiation ... 87
Listing 5-4 - Case study: SimpleUML1, binary link instantiation with properties 90
Listing 5-5 - Case study: SimpleUML1, slot instantiation... 91
Listing 5-6 - Case study: SimpleUML2, universal definitions .. 92
Listing 5-7 - Case study: SimpleUML2, individual definitions .. 92
Listing 5-8 - Case study: SimpleUML2, instantiation .. 93
Listing 5-9 - Case study: an example OCL query on SimpleUML2 models 95
Listing 5-10 - Case study: the results of the query in Listing 5-9 ... 95

An Ontology-Based Metalanguage with Explicit Instantiation

XIII

Acknowledgements

I would like to thank the people that helped me realize this work.

In the first place, I thank Ivan Kurtev for taking me under his supervision. He allowed me
the freedom to choose an interesting subject and gave inspiring explanations to the topics. I
learned many things during the months that he guided me. When I was working out the
small details making my own choices, Ivan always had a high-level view of the process and
often predicted the outcome. Any disagreement soon proved me wrong in practice. In this
way, I learned to think on the meta-level as well.

Ivan showed great flexibility in working with his students allowing me to still have fun even
in the busiest periods of these last months. His provocative remarks in “het afstudeerhok”
often induced great laughter amongst us students. I sincerely hope that Ivan is able to pursue
his career objectives in the future and at the same time can keep the joy in his work and life.

I would also like to thank Klaas van den Berg and Arda Goknil for agreeing to be member of
the graduation committee. Klaas helped me a lot by reviewing this work. The result certainly
became more readable and consistent due to his comments.

I thank my fellow students with whom I spent the last year of my study.

Especially I thank Mark Timmer, Lucas Meertens and Jan-Willem Veldhuis for reviewing
this work. Mark thank you for your detailed comments in the final phase of my work. Lucas
also agreed to read and comment on my work several times. Jan-Willem was able to help me
by asking the right questions and he commented on this thesis. I wish you all good luck with
the career you are starting right now.

I would also like to thank Jaco van de Pol, Michael Webber and Mariëlle Stoelinga for
providing me the opportunity to work as a PhD student in Enschede. Mariëlle made me
aware of the position. I feel grateful that these people saw me fit for the job.

Thanks Laura, for your love, support and confidence.

Als laatste, maar natuurlijk voor mij als belangrijkste, dank ik mijn ouders voor hun
ondersteuning en advies. Zonder hun was ik hier niet gekomen. Robbin en Fabian bedankt
voor jullie ondersteuning. Succes, dan drinken we binnenkort op jullie afstuderen.

An Ontology-Based Metalanguage with Explicit Instantiation

1

Chapter 1 – Introduction

Software systems grow larger every day. To keep their implementations manageable,
portable and understandable, it is often beneficial to raise the level of abstraction above the
implementation technology level. Abstraction provides a good basis to cope with evolution,
which is ever more crucial in today’s fast-growing software systems. Not only do these
systems grow more dependent on other (software) systems, they are also subject to change of
the software technologies used for their implementation.

The Object Management Group (OMG), a consortium of software industry participants and
academia, provides a software development approach based on models: Model Driven
Architecture (MDA). MDA promotes the use of models in software development. By treating
models as primary artifacts, it raises the level of abstraction in software development and
emphasizes on the activity of modeling.

Models are abstractions of reality made for communication, documentation and analysis.
Model Driven Engineering (MDE) [55] describes how models are used in the context of a
software development process. Compared to MDA, MDE takes a more general approach to
modeling by including different technologies like databases and XML. A recurrent activity in
MDE is the definition of models on the abstract level and the derivation of a more detailed,
more concrete, model. This can be done in an automated fashion with, for example, a model
transformation language. The abstract layer can be the conceptualization of objects that exists
in a system, and the more concrete layer can be an implementation in a programming
language representing these conceptualizations.

In this thesis, we are interested in models expressed in a modeling language. We observe
usage of both general-purpose and domain-specific modeling languages (DSLs) in the
current practice. A well-known general-purpose modeling language is UML. However,
domain-specific modeling languages are gaining increasing popularity. For example, [54]
reports on shortened development time and reduced cost in several industrial projects that
employ DSLs. Software industry also started offering tool sets for DSL development like
Microsoft DSL tools [38], Intentional programming [49], and Eclipse Modeling Framework
(EMF) [28]. As a result, modeling language development has also become a recurring activity
in MDE.

1.1 Preliminaries
The traditional approach to define a language is to first specify its grammar. MDE takes a
different approach by using a metamodel to define the abstract syntax of a language. This is
applied for both general-purpose and domain-specific modeling languages. Furthermore, in
MDE, programs and user data are models [17], that way allowing programming and data
description languages to be defined by metamodels as well.

A metamodel defines the structure of the admissible models in a language. In an activity
called metamodeling, metamodels are treated as models themselves and are expressed in a
modeling language. Such a language is known as a metalanguage. The metamodel of a

An Ontology Based Metalanguage with Explicit Instantiation

2

metalanguage is termed metametamodel. Most current MDE approaches provide object-
oriented metametamodels such as MOF [71], KM3 [50], and EMF. The reason for this is
pragmatically motivated: object-orientation is the dominant software development paradigm
today supported by mature tools.

The stack of metametamodel, metamodels and models is called a modeling architecture.
OMG’s MOF architecture defines this stack as a strictly layered design. This means the
models of each layer only conform to the layer directly above it. The layers are called M3 for
metametamodels, M2 for metamodels and M1 for models. A model from layer M1 is an
instanceOf a model of layer M2 and M2 of M3. This relation between layers is also called the
instantiation relation.

UML is a modeling language used at layer M2 in the modeling stack. It is intended to be a
general-purpose language but focuses especially on software design. In order to introduce
constraints on its instances, both UML and MOF definitions can contain OCL code. OCL is
an expression language able to navigate models and define constraints over them.

M0 is added to carry user data models directly representing things in the real world. In later
versions of MOF, the user data models were incorporated in the M1 layer. The M0 layer is
assumed to be the real world [7].

1.2 Problem Statement
In the literature about MDE, we found several problems attributed to the modeling
architecture. We believe their causes are deeply rooted in the definition of this architecture.
To investigate the problems we define it as the difference between the needs and the state of
the art. The application of MDE promises several benefits for software development:

• Models can provide a consistent and unambiguous way to represent knowledge about
a system or a domain. This can improve the efficiency and precision of crucial
activities like system design, communication and documentation,

• To capture domain-specific knowledge, a modeler can specify his own DSL in the form
of a metamodel. This allows the models to be interpreted in a specialized manner,
which offers benefits for the application of MDA [54]. Cross language interoperability
should ensure the uniform handling of models conforming to different metamodels,

• Models can be interpreted by a machine, paving the way for the automation of
development activities. For example, the design of a system can be combined with
knowledge about the implementation technology to generate automatically a
complete or partial implementation.

The ability to reap these benefits of MDE depends on the correctness and consistency of the
models specified by the modelers themselves. However, it also depends on the ability of a
modeling architecture to treat the different metamodels and models in a generic fashion. This
in turn depends on the metalanguage, which therefore is crucial for the whole modeling
architecture. In this thesis, we focus on exactly those technologies and intend to improve the
currently available solutions.

An Ontology-Based Metalanguage with Explicit Instantiation

3

Problems in MDE
In the light of the described promises of MDE, we perceive several problems with traditional
modeling architectures:

Expressiveness problems – Recent studies on UML [42][43] showed several inadequacies of
this language regarding its modeling foundation such as construct incompleteness,
construct overloading, and construct redundancy. This might result in inconsistent and
ambiguous models, henceforth referred to as imprecise models. Since MOF is very
similar to UML, these problems afflict both modeling and metamodeling in MDA.

Non-uniform treatment – Uniform treatment of models is not realized. Atkinson and Kühne
[10][9] found that traditional metalanguages, like MOF and EMF, are unsuitable for
multilevel metamodeling. They report about problems that emerge when the traditional
two level object-oriented modeling is applied across the three levels of models,
metamodels and metametamodels. They observe anomalies that hinder the software
engineering qualities of the metamodels: shallow instantiation, replication of concepts,
ambiguous classification, failure to express power types and decreased extensibility. This
lowers interoperability among different modeling languages.

Limited automation – Automation suffers as a result of expressiveness problems and non-
uniform treatment. The OMG specification for OCL [73] is limited to MOF and UML
[57]. Transformations suffer also from a lack of language independence. Firstly, imprecise
(meta)models make transformations less generic in the sense that they become
language dependent. Secondly, OMG’s QVT [71] only offers a limited set of model
transformation scenarios. This causes problems with data translation [65][62]. The
same interoperability problems are found in information systems; Atzeni, Cappellari
and Bernstein [13][76] consider the failure to express and differentiate between
semantically different model elements.

Analysis of the Problems
The following observations about traditional modeling architectures, like MOF and EMF,
may help to identify the cause of the problems:

Lack of real-world relation – Part of the found deficiencies are due to the poor
understanding of the meaning of the modeling constructs [41][16]. These
expressiveness problems can potentially cause ambiguous interpretation of (meta)model
elements. Traditional (meta)languages like, for example, UML and MOF only
implicitly base their constructs on real-world concepts [30][44]. They seem to take a
rather pragmatic commitment to the object-oriented domain. Any language should be
built after performing a domain and requirements analysis. We see little evidence for
such analysis in the current technologies for metamodeling.

Since the goal of MOF is to do metamodeling or to represent DSLs, it may be argued
that it does not provide a set of constructs, which can be used consistently in this
context [45][3]. The same applies to UML were it to be used for other purposes than

An Ontology Based Metalanguage with Explicit Instantiation

4

the design of software systems, which is quiet imaginable considering that UML is
meant to be a general-purpose language.

Lack of modeling constructs – The support of multilevel metamodeling is limited without
uniform treatment of model concepts. Atkinson and Kühne [10] note that models need
to provide more information than they currently offer. They [9] also show that the
instantiation is not only linguistic, but also ontological. The ontological instanceOf
relation is only implicitly known via the semantics of the modeling language. This
relation’s dual role may cause ambiguity [18]. Yet in traditional modeling
architectures, the instanceOf concept only plays a secondary role.

In previous versions of MOF, the M0 layer was defined for user data models. MOF
did not provide a language independent structure for M0, which made the interpretation
of this layer implicitly dependent on the modeling language [57][65]. Now that the
M0 layer is assumed to be the real world and the user data models are incorporated
in the M1 layer, the structure is there. Nevertheless, from the point of view of the
metalanguage there is no definition of what the relation is between models and
model elements in M1. For example, the UML language can tell us which Object is
an instanceOf, which Class. MOF, however, cannot provide us with this information,
since it is oblivious to the instantiation semantics of UML (or in the general case, any
other modeling language).

Lack of language semantics – The domain of metamodeling is poorly understood [63][29].
Both meta and modeling languages are considered to be only structural definitions in
current MDE practices. Thereby they limit their semantics to the model at the layer
below (M2 for metalanguages and M1 for modeling languages). Atkinson and Kühne
[7][3] dubbed this shallow instantiation. To support multilevel modeling and
automation in modeling a semantics description of the instantiation relation needs to
be provided [29][82]. This is needed for two reasons: (1) in every architecture, always
two instantiation mechanisms are at work and (2) automated handling of model
elements requires information on their semantics:

(1) The metalanguage assumes one instantiation mechanism. This is implicitly
used to instantiate models from metamodels. Nevertheless, the mechanism may be
different from the mechanism that the modeling languages themselves use [8][3][5].
There is no precise definition about how these two instantiation mechanisms
cooperate [21][62]. In this situation, MDE tools still need to hardcode the instantiation
mechanism from metalanguage and the modeling language separately. At least for
UML and MOF this instantiation mechanism is similar, but other DSLs expressed in
MOF might specify different semantics there [24]. For example, OWL [90] allows an
instance to be instantiated from multiple defining elements, while UML allows only
one.

(2) To support automation, MDE tools have to implement the instantiation
mechanism of the languages. During a transformation, a model can be updated and
during querying, navigation on the model takes place according to the instanceOf

An Ontology-Based Metalanguage with Explicit Instantiation

5

semantics of both the metalanguage and the modeling language. These are different
for each language as we just saw. Even though the instanceOf semantics is language
dependent, metamodel definition in the traditional modeling architecture, do not
include semantics for instantiation.

On the base of the reported problems, we can conclude that the nature of metamodeling is
not yet well understood. The result is an inadequate set of modeling constructs that cannot
support a sound interpretation of models and the relations among them (instanceOf
relations).

1.3 Research Questions
To improve the applicability of MDE we need a better metamodeling foundation. This leads
us to ask the following questions:

RQ 1: What can we use as a solution domain for metamodeling?

A metalanguage can be seen as a generic, domain-independent language but to some extent,
its task is also “domain-specific”: to define metamodels. A metalanguage should be built
after performing a domain and requirements analysis for metamodeling. An answer to that
question should provide us with a domain that includes knowledge about the nature of
metamodeling. The domain should be general enough to include aspects of modeling
languages, while at the same time provide such concepts with an unambiguous grounding in
the real world. After an approach is chosen that answers the former question, we have to ask
ourselves how the new concepts can be expressed inside modeling architecture.

RQ 2: How to express instantiation uniformly in a modeling architecture?

For precise and adequate metamodeling and modeling, models need to capture the nature of
the instanceOf relation as a construct. This enables support for that multilevel modeling that
we saw in the problem of non-uniform treatment. Only offering additional constructs does not
bring a solution that also solves the problem of limited automation. MDE tools need to be able
to use the instantiation semantics that are assumed by the different metamodels (including
the metametamodel). Therefore, we need a conceptual description of these semantics.
Additional language constructs can provide independent specification of the instantiation
semantics.

1.4 Research Objectives
The following research objectives are formulated on the base of the research questions:

1. To create a modeling architecture that captures the nature of instanceOf in models
and lift metamodels from structural definitions to the level of semantic descriptions.
At the same time, precise model definition needs to be supported. This requires:

a) to choose an appropriate domain for RQ 1 and study its concepts
b) to propose a modeling architecture that represents models in accordance with

the answer provided to RQ2
c) to propose a metalanguage based on the domain chosen for RQ1 that includes

means to capture instantiation semantics of modeling languages

An Ontology Based Metalanguage with Explicit Instantiation

6

2. To improve the pragmatics of modeling and metamodeling by:

a) to provide tool support for performing:
1. language definition
2. model definition, import and export
3. verification of model and language conformance

b) to create a model query language to demonstrate the language independence
of the modeling architecture and the tools

c) performing case studies to validate the proposed metalanguage and tools
1. expressing UML while focusing on the instantiation of complicated

constructs like association
2. expressing MOF to demonstrate support of multiple instantiation from

model elements

1.5 Approach
Here we outline the steps we take in order to answer the research questions.

RQ1:

To select a proper solution domain, we will study the domain of metamodeling. We saw that
traditional metalanguage approaches make a pragmatic choice for the domain they draw
concepts from to represent metamodels. Often the object-oriented domain is chosen. Recent
work on the question draws concepts from Formal Ontology [43][90].

Ontology is the study of existence, of all the kinds of entities—abstract and concrete—that
make up the world [89]. In Formal Ontology, these found categories are related to each other
in a formal way. Therefore, it is a suitable candidate to base modeling concepts on. In a
situation where the metalanguage makes an explicit commitment to Ontology, the languages
expressed in it are forced to use these constructs more consistently resulting in precise
metamodel definitions. The solid groundwork in the field of Formal Ontology can help to come
up with guidelines to apply the modeling concepts and verify models for correctness
[30][45]. Therefore, we propose Formal Ontology for the constructs in the proposed metalanguage.

RQ2:

In order to apply Ontology for the metalanguage, we will reflect on our study Formal Ontology
and metamodeling. We will summarize the knowledge drawn from these domains and
accordingly propose language constructs for the new metalanguage. Thereby the
metalanguage will support precise metamodel definition. We especially concentrate on finding
the concepts in the domains that are needed to support the identified lack of semantics and
constructs. Thus, a special focus will lie on finding an ontological meaning for instantiation
relations so it can be explicitly incorporated in the metalanguage.

The study on the domain of metamodeling will provide ideas on how to integrate new
constructs and semantics in proposed metalanguage and modeling architecture [11][3][7]
[37][82]. After the conceptual approach has been established we are interested in how it
performs as modeling architecture. In order to verify the appropriateness of the

An Ontology-Based Metalanguage with Explicit Instantiation

7

metalanguage for both metamodeling and modeling, we will conduct case studies. Existing
modeling languages and models can be expressed in our metalanguage. UML, MOF and
OWL are candidates to work with, but also data representation languages can be
metamodeled [24].

To conduct case studies we need tools; thus, we will implement prototypes for the
metalanguage and supporting modeling tools. This prototype modeling architecture will require
tooling for: language and model input and output, a model conformance checker and a query engine.
The latter can demonstrate language independent modeling. We chose to provide a model query
tool on the base of OCL.

1.6 Contributions
This thesis makes the following contributions:

1. A study of the problem domain of metamodeling and the solution domain Ontology

The problem domain of MDE has been thoroughly researched. As a solution domain, Formal
Ontology has been chosen. A thorough study of this domain would be an infeasible task for
this thesis. We, however, present here pragmatic research of the domain with an emphasis
on those concepts that have been used for our solution. Concrete knowledge was found in
the solution domain that supported our approach. We found ontological knowledge about
relations, generalization/specialization and the ontological nature of languages.

A goal of this work is to propose a solution for metamodeling as a whole; therefore, we
considered all the problems, looked at their causes and toke an integrated approach of
applying Formal Ontology and integrating instantiation semantics. The result can be seen in
the proposed metalanguage, whose constructs are based on Ontology and enable the
definition of instantiation semantics. Thereby we demonstrate the application of the results
of both our studies of metamodeling and Formal Ontology.

2. An Ontology Grounded MetaLanguage capable of expressing modeling languages together with
their instantiation and related generalization/specialization semantics

We have extended, concretized and provided interpretation on an existing idea for this
metalanguage [63]. Chapter 4 presents OGML, which draws its constructs from the domain
of Ontology. The modeling languages that are expressed in it therefore automatically make
their ontological view of the world explicit and are inclined to obey ontological laws. This
improves interoperability between these languages.

Furthermore, OGML is capable of expressing the instanceOf relation between languages and
models and between models. Because of this explicitness, OGML can provide uniform
handling of models. OGML also explicitly provides a uniform representation of the model
structure.

An Ontology Based Metalanguage with Explicit Instantiation

8

3. Case studies to demonstrate the use of the language and its benefits

We expressed two flavors of UML: SimpleUML1 and SimpleUML2. While the two do not
differ much in the constructs they provide (both focus on attributes and associations) their
intention is different.

SimpleUML1 – The purpose of SimpleUML1 is to show our meta-language can handle
different structures to express “Object diagrams” with. The UML specification
[75] explains (rather vaguely) how associations are instantiated to links and
attributes to slots. In SimpleUML1, we define three different definitions for the
instantiation semantics: associations instantiated to links, navigatable
associations with attributes (association classes) and association instantiated to
slots.

SimpleUML2 – focuses on the expression of n-ary associations [36]. We show that the
result is a navigatable model. Both adaptations of UML provided us with
insides in the ontological nature of the UML constructs. Their differences make
explicit the design choices that have to be made when designing a modeling
language.

4. Based on the metalanguage, language independent model querying is proven to work in a
prototype with an OCL implementation

Because our metalanguage makes instantiation explicit, we can navigate metamodels and
models in a uniform way. We have proven this with an implementation of the OCL language
[73].

From the point of view of the metalanguage, every language and model can be queried
against a general structure. Every language that is expressed in our metalanguage makes an
additional ontological commitment, which can be queried accordingly. At the same time, the
metalanguage itself provides an ontological commitment for the modeling languages. We
call the different points of view here the language axis and provide an OCL implementation
that can query models over these axes, with only few changes to the OCL language.

The language independence has some favorable consequences for automation in MDE.
Potentially it can help support an increasing set of model transformation scenarios [65][62].
In a related field, it can potentially provide solutions to data translation problems, which are
already being tackled with MDE techniques [13].

1.7 Thesis outline
Figure 1-1 shows the organization of this thesis. Although the structure is linear, some
relations are prevailing and illustrated in the figure with dotted lines.

An Ontology-Based Metalanguage with Explicit Instantiation

9

Thesis

2.
Background

 3.
Identification of

Problems in
Contemporary

Modeling
Architectures

1.
Introduction

5.
Case Studies

6.
Formalization

and
Semantics

7.
Tool Support

8.
Related Work

 4.
An Ontology

Based
Modeling

Architecture

9.
Conclusion

Figure 1-1 - Outline for this thesis

Chapter 1 “Introduction”, the current chapter, gives an overview of this thesis. The problem
description, approach and contribution sections here touch upon related works, which are
further expanded in the Chapter 8 “Related Work”, as you can see from the drawn relations
in the outline figure.

Chapter 2 “Background” explains the relevant knowledge domains. First Ontology and
languages are explained. The more detailed ventures into Ontology and linguistics are
specially chosen to support the material in Chapter 4. The chapter continues with detailed
explanations of modeling concepts and their semantics. We end this chapter with the
definitions of terms that we assume. Because some important concepts in modeling are
overloaded with meaning, we were forced to choose a particular meaning for them. A
reader, who is only interested in learning about modeling and Ontology, could focus on the
current chapter and Chapter 3.

Chapter 3 “Identification of Problems in Contemporary Modeling Architectures” outlines the
problems of traditional metamodeling approaches. A short analysis shows the dual
interpretation of the instanceOf relation in the whole modeling architecture. A conclusion is
drawn that Ontology can support reasoning for (meta)modeling practices and that the
instantiation semantics lacks definition in traditional metalanguages. Chapter 1 already gave
an overview of the problems. Therefore, it is related to Chapter 3.

In Chapter 4 “An Ontology-Based Modeling Architecture”, we present our approach to
metamodeling. We introduce here a metalanguage that draws its constructs from the field of
Ontology and has an explicit notion of the instantiation relation that is uniform over all
modeling layers (although we have to give a different interpretation to the modeling layers
within this modeling architecture). This chapter extensively uses the information about
ontology and modeling presented in Chapter 2 and Chapter 3. Therefore, a reader is strongly
encouraged to read the preceding chapters first unless he is already an expert in those
domains. The end of Chapter 4 explains the OGML modeling architecture.

The metalanguage of Chapter 4 is then applied in Chapter 5 “Case Studies”, where we use it
to express existing languages. Several variants of UML are expressed in the metalanguage to
demonstrate its use and capabilities. The case study at the same time shows how ontological
reasoning can support metamodeling decisions. In addition, the differences make explicit
how the ontological nature of language and model constructs changes depending on the
interpretation of the UML specification.

An Ontology Based Metalanguage with Explicit Instantiation

10

Chapter 6 “Formalization and Semantics”, gives a formal basis for the metalanguage, which
is needed to prove correctness of the self-reflective nature of it. The semantics presented here
can be used realizing tool support, which is done in the subsequent chapter.

Chapter 7 “Tool Support” presents a design for a tool suitable to perform metamodeling and
modeling practices with our metalanguage. The current implementation is also presented
here. Even though it is not yet integrated into the development environment, it already
provides the elementary modeling tools: the syntaxes to express language and models, a
type-safe OCL interpreter and a model conformance checker

In Chapter 8 “Related Work”, we compare our work with other works. Although in this
introduction, we already referred to several related works. Chapter 8 explains them in more
detail as well as advice for improvements to the metalanguage. The chapter concludes with
an evaluation of our contribution.

Chapter 9 “Conclusion” establishes a conclusion on our achievements. The research
questions and objectives of the current chapter are used to establish to what extent we
reached our goals. The results are compared with related work, thereby defining again the
concrete contribution. We conclude here with “Future Work” that gives some ideas for
continuation of this project.

An Ontology-Based Metalanguage with Explicit Instantiation

11

Chapter 2 – Background

2.1 Introduction
In the current chapter, we introduce the basic concepts used in this thesis. In Section 2.2, we
start with the domain of Ontology, because it is relatively independent from other fields and
can therefore be explained stand-alone. Ontology provides us with ontologies:
categorizations of the world. A choice is made for a specific ontology: Four-category
ontology. In Section 2.3, we discuss the concept of language. Several relevant aspects of
computational linguistics are explained and some definitions are used. Among them, the
most important is ontological commitment, which will be introduced before in the section
about Ontology. Modeling is explained in the section 2.4, where we give extra focus to
concepts that are frequently used throughout this thesis. Especially for modeling, we give
definitions for concepts where their use in this thesis requires a new or specific meaning.

2.2 Ontology

2.2.1 A Short History of Ontology
Οὐσία (Ontia or Ousia) is ancient Greek for “meaning”. It bears a relation to the Latin words
essentia and substantia, which are the equivalent to substance and essence in English. In the
western part of the world, it were the Greeks that started with building a philosophy to
describe the ultimate essence of things. Even before Socrates, people were trying to find an
everlasting structure in the world, notably Heraclitus, a champion of thinking in terms of
impermanence. They did this to satisfy a hunger for permanence in a world, which they
perceived as always changing. In terms of Plato: to arrive to the divine realm from a worldly
realm [79].

Logical theories developed through history and with it, Ontology did. Aristotle’s Ontology
can be traced back via Porphyry, the Scholastics, Lull, Leibniz, Boole, Peirce, Frege, Schröder,
Peano and Russell [89]. The specific scientific discipline of reasoning on Ontology and
making explicit its assumption in logic is often called Formal Ontology [40].

2.2.2 Ontology
Sowa defines Ontology as:

“Ontology is the study of existence, of all the kinds of entities—abstract and
concrete—that make up the world” [85].

It tries to classify, make categories (ontologies), of the things we perceive using only two
sources: perception and reasoning. Ontology is therefore based on one end on the findings in
cognitive science and on the other on logics, which can be used to derive new facts from
former conclusions. The study of Ontology, with capital O, is concerned with finding a
general ontology for things in the world whereas ontology, small o, can be a more specific
categorization [40]. Biology for example provides an ontology to categorize (classify)
organisms: species, genus, family, order, etc.

An Ontology Based Metalanguage with Explicit Instantiation

12

Ontology recognizes that humans perceive the things in the real world through the different
models (or ontologies) we have of it [90]. If we are interested in cooking something to satisfy
our appetite, we look at the spices in the shop and consider the property called taste. If we
are however interested in commerce and want to trade the spices, we make a model of spices
concerning the properties: land of origin and shelf date (the latter might also be of concern
for less opportunistic cooks). Every instant of our daily life we make ontological
commitments like that, depending on our motivation and goals (whether we know them or
not). If we zoom out, we see that the commitments are defined culturally as Guizzardi
showed in his thesis by referring to work from the field of the cognitive sciences and
especially from anthropology [45]1

Mylopoulos

.

Ontology versus ontology
We have seen that we have Ontology and specific ontologies. Ontology is the scientific
discipline of defining categories and finding relations between them. An ontology can be a
general term. In Artificial Intelligence, any concrete representation of a specific reality can be
an ontology. According to this view, a classification of things we find in, for example,
companies is an ontology. A more narrow interpretation of ontology would be the different
(world) categorizations resulting from the study of Ontology. We will use the term only in
the latter sense in this thesis.

Different Views on Ontology
[68] proposed to classify ontologies into four categories: static, dynamic,

intentional and social. Each of these categories focuses on different concepts in the real world.
In this thesis, we are mainly interested in static ontologies. We do not want to exclude the
metamodeling of process-oriented languages and we do not have to, because their models
can be considered static representations of processes.

A central discussion in Ontology is whether a “concept” should be counted as a category on
its own. Some views do, and often call it a universal, while others do not. There exist more of
these central discussions within the community of philosophers. The discussions have
resulted in several static ontologies. Here we present two: Bunge-Webber-Wand and Four-
category ontology.

2.2.3 Bunge- Webber- Wand Ontology
The Bunge-Webber-Wand (BWW) ontology does not distinguish concepts from individuals
and therefore has no category for concepts of thought. It takes the view that universals
(called Kinds in BWW) are established a posteriori from the presence of sets of properties in
objects. BWW is however frequently used in the information systems community for several
reasons [30]:

- It is well formalized in terms of set theory and has not been developed specifically for
use in information systems analysis and design,

1 An interesting non-scientific source is “Blackfoot Physics: A Journey into the Native American Worldview”,
where the process-oriented world of thought of some Native Americans tribes is explored, whose language is
verb-oriented and their science experience-oriented.

An Ontology-Based Metalanguage with Explicit Instantiation

13

- It has been successfully adapted to information systems modeling and shown to provide
a good benchmark for the evaluation of modeling languages and methods,

- It has been used to suggest an ontological meaning to object concepts,
- It has been empirically shown to lead to useful outcomes.

BWW recognizes three main categories: Thing, Property and Law. A combination of these,
results in the derived categories: Kind and Attribute. A door and a pan, for example, can be of
kind object-with-handle. A law can be used to specify relations between properties of kinds.
Once a property is observed, it is called an attribute. This is discussed in a following
subsection.

2.2.4 Four- Category Ontology
Four-category ontology (FCO) is also used in several contemporary works on the use of
Ontology in modeling [45][26]. In FCO, the basic distinction is between individuals and
universals as the most fundamental entities of being. FCO thus recognizes classes a priori. The
ontological study that claims the existence of universals is known as metaphysical realism
[2][66]. The second division is between substantials and non-substantials (moments) based on
the notion of independent existence. For example, the color property that things may have is
not substantial. The two divisions are orthogonal, thus resulting in four categories [23].
Figure 2-1 depicts the concepts in this ontology.

Individual Universal

Substantial Moment Substantial Universal Moment Universal

Figure 2-1 - Four-category ontology (taken from [63])

Individuals are classified as Substantial and Moment individuals. A substantial individual or
just substance is something that can exist by itself without depending on the existence of
other individuals. This existential independence is the core feature of substances and gives
the major distinction from moment individuals. Examples of substantial individuals are cars,
people, books, etc. In the programming languages and modeling languages, substantial
individuals are usually represented as objects (e.g. Java object and UML object).

Moments are individuals that exist in other individuals. Moments cannot exist standalone,
they are existentially dependent on at least one individual (called bearer). Example of a
moment is the red color property of a car. In that case, the red color moment exists in the
substance car. The relation between a moment and its bearer(s) is called Inherence relation.
Moments may inhere in more than one individual. In programming and modeling
languages, moments are called in various ways: slot and link in UML, field in Java, etc.

Universals are entities that can be instantiated in individuals. According to Aristotle,
universals can only exist via their individuals and not independent from them. The
individuals that exemplify a universal have something in common. For example, things that
consist of matter have mass. The actual value of the mass varies but the mass is observed as a
common property of individuals. In this case mass is a universal.

An Ontology Based Metalanguage with Explicit Instantiation

14

Universals are classified into substantial universals and moment universals. As the names
suggest, substantial universals are exemplified (i.e. exist through) by substantial individuals
and moment universals are exemplified by moment individuals. Instantiation relation is the
relation between an individual and a universal that exists in this individual. Universals have
their representatives in the existing computer languages. UML classes correspond to
substantial universals. UML attributes and associations correspond to moment universals.

This choice of categories results in an ontological square represented in Figure 2-2. Normally
characterization is the term used for both the relations at the universal level and at the
individual level. For distinguishing them, we will use the term inherence on the individual
level.

Substantial
Universal

Substantial
Individual

Moment
Universal

Moment

instantiatied to instantiatied to

characterizes

inheres in

Figure 2-2 - The ontological square

Properties and Relations in Ontology
Ontology recognizes the existence of relations between (among) universals and also between
individuals [67]. Commonly they are represented as “properties”, therefore we will use it here
also in favor of “relations”. We resort to the Formal Ontology of BWW to derive knowledge
for properties. It is useful to mention here that these results are not less applicable within the
context of FCO, because we can map properties to moments and individuals to things [43].

Properties of Properties
Webber et al. [90] talk about “attributes” (“substantial properties” or “predicates”) of
universals and properties of individuals. They were able to make important postulates on
the use and interpretation of properties, which should support the use of this concept in
MDE and database systems. To start they first define properties as being always “attached to
things” [90]. Properties can be attached to multiple things in which case they are mutual
(relational) otherwise, they are intrinsic.

Mutual properties are relations between things. Intrinsic properties can have “values” which
are not other substantials or individuals in the model. “Values are elements of the codomains of
attribute functions. They cannot exist independently in the world. Instead, they must be conceived in
terms of things that have properties that in turn are represented as values of attribute functions” [90].
This makes it seem like they exist inside the individual or universal.

An Ontology-Based Metalanguage with Explicit Instantiation

15

Perspectives on Properties
Analogous to our story about spices in our introduction of Ontology, Webber et al. [90]
write: “The properties of a thing exist, whether or not humans are aware of them. Humans conceive of
things, however, in terms of models of things. Such models are conceptual things. …. Attributes are
characteristics assigned to (models of) things according to human perceptions. Depending upon
circumstances, humans may use different models of the same thing, and therefore assign different sets
of attributes to the same thing”. This observation recognizes the need for different perspectives
on the objects of our perception.

Attribute Functions
For this thesis the most important aspect regarding properties, is the seemingly simple fact
noted by Webber et al. that properties are actually relations over sets of instances. The
problems with representing properties in information systems stems usually from the fact
that they are treated as functions. Therefore Webber et al. introduce the attribute function,
which is a means to look on properties from the different perspectives of the instances that
share them or “participate in” them.

Laws
Webber et al. give several laws (constraints) for the use of properties and substantial
properties. To give a few examples: kinds (substantial universals) should have properties,
properties cannot have properties and a property without value is not a property.

2.2.5 Generalization in Ontology
Ontology has a notion of generalization. Although there are different views on the issue [23]
they have in common that generalization relations are expressed with laws. In an ontology
with a category for universals, these laws could be of form: universal x is of kind
universal y. The laws could also be described more property centric. To detail on the
consequences would go far beyond the scope of this thesis. We will only use the laws that
establish relations between universals.

The effect of generalization/specialization is of course that the specializing universal “gets”
the properties of its “general” universal. In BWW a special case is distinguished [30]; “the
specialization of properties. That is, when a Kind possesses a property which is a specialization of a
property of the general Kind”2

2.2.6 An Ontological Commitment

. To give an example: a vehicle has a property can_move,
whereas a plane has a property can_fly. To handle specialized properties they need to
make their nature explicit in the ontology.

Making an ontological commitment means to presume a certain ontology. Natural language
does this. For example, the sentence “Napoleon is an ancestor of mine” assumes two things,
the speaker and Napoleon. We can however only derive meaning from the sentence if we
assume another thing: ancestors. This is a category, where all of the speaker’s ancestors are
included. Second-order logic is now needed to establish the truthfulness of the sentence. It

2 Quote adapted to chosen terminology

An Ontology Based Metalanguage with Explicit Instantiation

16

should be understood that we have to distinguish between statements and questions. Where
the statements are used to form a knowledge base, questions are used to derive knowledge
from it.

2.3 Languages

2.3.1 Linguistics, Syntax and Semantics
In the current section, we explain what there is to a language. The research of languages
starts with natural languages. The cognitive science that deals with research on natural
languages is called linguistics. Linguistics deals with the semantics (meaning) and grammar
(structure) of languages. Grammar can again be decomposed in morphology (formation of
individual words), syntax (rules for the composition of words into sentences) and phonology
(abstraction over the sounds that words are composed of) [22].

Ever since languages are used in computers for the purpose of programming and data
representation, the results of linguistics have been used in this new environment. For example,
Chomsky [25] took a generative approach to formalize syntactical grammars and found that
only context free grammars are invertible. These results are used in compiler construction,
where the syntax of a language is often represented by a concrete syntax in Backus Naur Form
(BNF)3 [88] and an abstract syntax . The latter can be represented as a model and is of interest
for this text. A parser “parses” the concrete syntax of the textual definition in a language (see
Figure 2-4). The result is what is called the abstract syntax tree (AST) that conforms to the
model of the abstract syntax.

Class foo {
function bar() {

do a1;
do a2;

}

function main() {
call bar();

}
}

Class

Function

Statement

do call

 parser

foo :
Class

bar :
Function

a1 :
 do

bar:
call

main :
Function

a2 :
 do

Abstract Syntax Model

Abstract Syntax Tree

instanceOf

BNF

uses

uses

Figure 2-3 - An abstract syntax model and an abstract syntax tree

The syntax or notation of a model can just as well be graphical. Languages as UML use a
graphical syntax whose main elements are boxes and lines. We call such a language

3 See Appendix A – for an example BNF

An Ontology-Based Metalanguage with Explicit Instantiation

17

diagrammatic Parsing of diagrams is much harder than parsing of textual syntaxes [46]. The
results however are the same: an AST.

Semantics. give meaning to a language. Semantics are expressed by mapping the abstract
syntax. onto some semantic domain [46] (see Figure 2-4). For a general-purpose language,
this domain could consist of a set of data types like integers, lists and strings. Object-oriented
languages could have a domain of objects and DSLs have specialized domains, like state
machines or processes. For data description languages (for example RDF and XML), where the
AST is often sometimes used directly in the software system.

Figure 2-4 - Concrete syntax, abstract syntax and semantics

2.3.2 The Pragmatics of Modeling
For the in- and output of models languages are used. These modeling languages can be
diagrammatic. (visual) or textual. In UML and MOF, diagrammatic syntaxes are dominant.
Some technologies, like KM3, use textual languages for modeling. There is, however, more to
modeling languages than just syntax. The next section elaborates on their semantics.

2.3.3 The Ontological Commitment of Languages
Milton and Kamierczak [67] analyzed the models of different languages and concluded that
they were valid instances of Ontology4 [45]. Guizzardi noted that this observation can be
generalized under Quine’s Ontological Commitments [77]. For this reason, the definition of
languages can be viewed as making ontological commitments.

We see this also in modeling and programming languages. Java for example assumes the
existence of universals and models them as classes with fields (moment universals). Runtime
instances of these classes are objects with properties (moments). The same ontological
commitment is made by UML where the classes exist in the Class Diagram and the Objects in
the Object Diagram. The language constructs and semantics decide thus what view a
language takes on the real world. Thereby it determines what facts it can express about it.

4 The specific ontology is not relevant here.

An Ontology Based Metalanguage with Explicit Instantiation

18

2.3.4 Expressiveness or Precision
When we draw an explanation on a whiteboard, we implicitly use a language. This language
may or may not be precisely specified somewhere and can accordingly be interpreted. The
more precise the language used, the less ambiguity can arise when we interpret the model.
However, sometimes it can be a powerful means to express knowledge in a informal way, for
example with different arrows and boxes [45]. Natural language is also such an example. An
attempt to specify its semantics and syntax is made with dictionaries, encyclopedias and
grammar books; however, it is not difficult to create sentences with ambiguous meaning.

There is always a trade-off when creating a language. Either the language is less expressive
and unambiguous, or the language is expressive and ambiguous. If we want a more formal
definition of ambiguousness for a language, we have to relate it to the number of
undecidable statements (or propositions) that can be made with it. Gödel [35] was the first
mathematician to prove that any language can be used to make undecidable statements in
his work called “On formally undecidable propositions of Principia Mathematica and Related
Systems”.

A consequence of Gödel’s results is the fact that expressiveness and ambiguousness are
properties of inverse proportionality for each language. This fact is easy to establish in the
real world; whereas it is easy to come up with any number of ambiguous statements in a
natural language, it is much harder to produce and understand them for precise
mathematical languages. It took quite some time for mathematicians to first come up with
the Russell paradox and later solve it. From the invention and formalization of set theory
around 1800 [86] to Russell in 1902 [80] and from 1902 to 1931, when Gödel solved the
problem.

When defining languages thus we have to keep two things always in mind: stay away from
completely defining the semantics in the language itself and be aware of the disagreement of
a domain-specific design and a general one. This therefore applies to metamodeling practices
and in even greater degree to metalanguage design. It also provides a technical reason for the
necessity of DSLs. In the next section, we show some languages in MDE and discuss how
they define themselves.

2.4 MDE

2.4.1 Model Driven Architecture and Engineering
Software systems grow larger every day, while at the same time growing more dependent on
other (software) systems: the ones they cooperate with, but also the software technologies
used for their implementation. This causes problems in portability, interoperability and
productivity of these systems, as a great deal of time has to be invested into activities like
low-level design and coding. These are difficult and error-prone processes.

Model Driven Architecture
The Object Management Group (OMG), a consortium of software industry participants,
proposes MDA as a solution for these problems [70][56]. MDA promotes the use of models in

An Ontology-Based Metalanguage with Explicit Instantiation

19

software development. It raises the level of abstraction in software development by treating
models as primary artifacts and emphasizes the activity of modeling.

Two basic principles are applied in engineering disciplines, this also the case in computer
science. First is the use of models to express knowledge about the design of software systems.
Second is the separation of system specification from its implementation and technology
specific details. Therefore, MDA defines two classes of models5

The development of a system according to MDA starts with the definition of a PIM. This PIM
can then be transformed into a PSM using additional knowledge about the platform. This
process is called model transformation and depicted in

: Platform Independent Models
(PIM) for system specifications, which are independent of the platforms they can be
implemented on, and Platform Specific Models (PSM), which describe the system with the
details of a specific implementation platform. The abstract layer can be the conceptualization
of objects that exists in a system in UML, and the more concrete layer can be a programming
language, which represents these conceptualizations, for example classes in Java.

Figure 2-5. OMG provides a standard
for model transformation, called Query / View / Transformations [71] . It relies in turn on the
standardized model query language OCL [73].

Figure 2-5 - A model transformation between a PIM and a PSM

Model Driven Engineering
Model Driven Engineering (MDE) describes how MDA is used in the broader context of the
software development process [55]. It includes more technologies than OMG does with
MDA; XML and database systems are but examples.

5 A third class is recognized in the requirements phase: the Computational Independent Model (CIM). We do
not include it here.

b) a depiction of the proces including the notion of
Platform Dependent Model (PDM) (taken from [19])

a) transformation in MDA (taken from [76])

An Ontology Based Metalanguage with Explicit Instantiation

20

Furthermore, MDE adds different dimensions to modeling. The development process is
concerned with more properties of the system under development than only its structural
design. Different concerns can be security, distribution and error handling. All these things
could be modeled orthogonal to the structural design. In addition, most software
development processes specify an incremental process, which results in stack of versioned
artifacts [58][14]. Some argue that the need for model versioning needs to be handled by
making models of modeling architectures [19], making MDE an even broader field.

2.4.2 The Concept of Model
Various sources can be consulted to establish a meaning for the word “model”. It is a central
concept within MDE and often used in this thesis. To establish a useful definition we look at
how it can be interpreted from the point of view of different sciences. First, we take a look at
in what context we use models. This subsection concludes with a choice of terminology.

Context of Use
Models can be expressed in a precise modeling language or with an ad hoc notation to give a
quick explanation on a whiteboard. Whereas the latter option provides more expression
power it can easily be the cause of ambiguous interpretations [45]. In computer science, we
therefore need a more formal representation of models. The ability to express the meaning of
a system unambiguously can not only prevent misunderstandings in communication but
also even be the basis for automation in the software development process as we have seen
in the previous section.

Semiotics
From the point of view of semiotics, the study of signs, their syntax, semantics and
pragmatics, the denotational aspect of models is emphasized: a model defines a set of
symbols for notational purposes. These symbols are related to the entities in the real world
that they represent and to the concepts of these entities that exist in the mind of the model
designer. Ogden and Richards are credited for recognizing this fact and later Ullmann
represented it in the triangle that is depicted in Figure 2-6. The FRISCO report [52] extended
this meaning triangle with an actor that makes an interpretation of all three corners.

Figure 2-6 - The meaning triangle adapted (taken from [62])

Kurtev looked at existing definitions for models and came up with the following definition,
where the word “object system” is used to describe the part of reality that the model
expresses:

Concept

Entity Symbol

An Ontology-Based Metalanguage with Explicit Instantiation

21

“A model represents a part of reality and is expressed in a modeling language. A
model provides knowledge for a certain purpose that can be interpreted in terms of the
object system” [62]

Conceptual modeling
Guizzardi [45] created the image in Figure 2-7 to explain his view on models. His definition
focuses on the use of models in conceptual modeling. In his view, the real models reside in
the real world. Modelers compose specifications of them. The picture also makes explicit the
dual relation that models bear towards: (1) the real world and (2) their conceptualization
expressed in a modeling language. However, unlike Guizzardi, we are not concerned with
conceptual modeling. Thus, the definitions he uses, which emphasize the informal aspect of
modeling by including understanding and communication as a purpose of models, does not
directly apply in our situation, where we want to apply modeling in MDE.

Figure 2-7 - Conceptual modeling according to Guizzardi (taken from [45])

Formalisms
From a more formal point of view, we have to recognize that models represent an
“abstraction of reality (real or language based system) in order to make predictions and inferences
about it” [59]. Therefore, they have to preserve a structure and thus there always exists a
homomorphic relation between models and the objects in reality, from which they abstract.
Kühne [59] decomposes this abstraction relation into three components: the projection
function (homomorphic), another abstraction on elements (symbols) and a translation
function. The latter function formally represents the fact that models are captured in a
language.

Ontology
From the point of view of Ontology, the emphasis is more on the reduction aspect of models.
According to Wand, Storey and Webber “the properties of things exist, whether or not humans are
aware of them. Humans conceive things in terms of models of things” [87]. Quine calls the process
of choosing a model for reality, making an ontological commitment. When we model a

An Ontology Based Metalanguage with Explicit Instantiation

22

software system, we make commitments to different ontologies, like processes and threads,
data structures, objects and classes.

Assuming a Definition
According to our use of the terminology previously discussed, we are forced to establish a
more concrete meaning to them. We will do this in the current section.

In subsection 2.4.2 we reviewed the meaning of the term “model” according to different
sciences. We are now looking for a fundamental foundation for the term with a focus on
capturing the ontological meaning of models. We are thus not pressingly concerned with the
use of models for documentation and communication purposes. The formal definition gives
a good insight into the nature of the relation between models themselves, models and the
real world, and models and the languages in which they are expressed. This detailed notion,
however, is not of primary concern for a definition of the word “model”, and can be
generically captured with the word abstraction.

What is true for our perception of the real world is just as true for our interpretation of
models. Depending on the knowledge we want to derive from them, we may concern
ourselves with different properties represented in the model. In the definition of the word
model that we adopt, we express this fact:

“A model is an abstraction of a part of reality called object system (a software
system, a machine, etc) from which its user wants to derive knowledge for certain
purpose(s). A model is expressed in a modeling language and can also be interpreted
according to an ontological commitment compatible to the one that the knowledge
domain presumes.”

The definition is based on Kurtev’s, but the word “abstraction” is used instead of
“representation” to emphasize that models provide a view on reality. “Abstraction” also
implies that the model is a denotation of reality; this is not made explicit in the definition,
since we are not primarily concerned with syntax and notations.

2.4.3 Instantiation
We distinguish instantiation from generalization. Whereas generalization can be seen as a
means to represent common properties of several types in one more general type,
instantiation is orthogonal to it and uses types as templates to create the more concrete
instances. In the process of instantiation, concrete values are assigned to the properties of
types [3]. Figure 2-8 shows the difference with an example UML Class Diagram.
AnotherType is the specialization of Type, thus it “inherits” its properties. at is an instance
of AnotherType and has assigned instance yat as a value for its property “property”. This
illustrates that the semantics of instantiation also depend on the semantics of generalization.

An Ontology-Based Metalanguage with Explicit Instantiation

23

AnotherType

-property : YetAnotherType
Type

YetAnotherType

property : YetAnotherType = yat
at : AnotherTypeyat : YetAnotherType

instanceOf

property

instanceOf

Figure 2-8 - Example of instantiation and generalization

Different Kinds of Instantiation
Figure 2-9 establishes the relation between the constructs in a modeling language and a
model expressed in it. In the previous section, we already mentioned that the abstract syntax
of a language can be expressed as a model. The gray part of the figure represents the abstract
syntax, or; the language constructs. The upper part is used for class diagrams and the lower for
object diagrams (this language is similar to UML). This image explains two notions of the
instantiation relation (instanceOf): the linguistic and the ontological instanceOf. Both notions are,
however, relative depending on the point of view of the observer. We will therefore introduce
the terms intension and extension later.

-name : string
Object

-name : string
Class

-name : string
Attribute

-owner

1

-attributes

*

-name : string
Property

-owner

1

-slots

*

* -type 1

-value
Literal 1

-value

*

-waterHabitat : string
Reptile

-weight : int
Animal

Crocodile

weight : int = 334
waterHabitat : string = river

Jena : Crocodile

Generalization

*

linguistic

linguistic

ontological

Language (gray): Models:

Figure 2-9 - A modeling language with two models

An Ontology Based Metalanguage with Explicit Instantiation

24

Linguistic Instantiation
The right part of Figure 2-9 shows two diagrams: a class diagram (upper part) and an object
diagram (lower part). Both of these diagrams are “built” using the constructs from the
languages (represented by the dashed arrows). This instanceOf relation is therefore called:
linguistic instanceOf.

Ontological Instantiation
Figure 2-9 establishes, besides the linguistic relation between models, also another kind of
relation: one of ontological nature. This relation arises when we recognize that the class
diagram provides us with insights on how to interpret the object diagram. Instead of
dictating the structure of the elements, as the linguistic instanceOf does, it gives a meaning to
the elements in the object diagram [9][82]. This is shown by the dotted line from the object
“Jena” to the class “Crocodile”.

From this relation we can deduce that “Jena” is a crocodile: has all the properties of the
crocodile and behaves like a “Crocodile” (assuming there was also a functional specification
to this class). Without this relation, we could just create objects with random properties and
relations to other objects. The objects would so to say “hang in the air”, giving us no insights
on how to interpret them. The class diagram does this.

Different Terminology for Instantiation
Bézivin [17] noted the different uses of the term “instanceOf`. Some uses overlap some do
not. For a concise terminology, it is important to keep a distinction between the different
meanings. The term “representation” is often used to denote a relation between a model and
a system or a model construct and the real world. This relation is always one-to-one and
therefore different from the instanceOf relation. It can be represented by an instanceOf, as is
done in recent interpretations of the four-layered MOF modeling architecture [7], but not
vice-versa.

Instantiation and Related Concepts
Figure 2-10 shows the difference between instanceOf, memberOf and conformsTo. With
instanceOf we usually mean that the instance is a directly instantiated from a type, whereas
the conformsTo relation also applies to indirect instances (via generalization). Both can be
used for model constructs and models. MemberOf is often used to indicate that an instance is
among those instantiated from a certain type.

An Ontology-Based Metalanguage with Explicit Instantiation

25

Set of all instances of
AnotherType

 memberOf

AnotherType

Type

yat : AnotherType
instanceOf

conforms
To

isA

Figure 2-10 - The difference between instanceOf, conformsTo and memberOf

We distinguished two kinds of instanceOf: a linguistic and an ontological one. In other
literature, these are sometimes referred to as respectively the physical and logical instanceOf
[7] or instanceOf and meta-instanceOf [18]. Geisler et al. use the terms inter-level
instantiation and intra-level instantiation [32]. Sometimes the word “structural” is used for
linguistic instanceOf. In this thesis, we will stick with the terms linguistic and ontological
instanceOf and instantiation in general. Sometimes we use “structural” to emphasize that
something is “merely structural”.

We distinguish also between terminology in object technology and MDE. In object-oriented
technology, the term “inheritance” is used for generalization. In general the term instanceOf
is also used for instantiation of runtime objects. In this text, we deliberately stay away from
object-oriented terminology because we use Ontology as a solution domain as motivated in
our approach.

We will use the words instanceOf and instantiation as inverse of each other. A construct X is
an instanceOf Y and Y is instantiated to X. To process to instantiate something is called
instantiation.

2.4.4 Relativity in Modeling
In the previous section, we saw that the abstract syntax of a language can be represented as a
model. In modeling, this can be applied recursively; the model of one modeling language can
be expressed in another modeling language. In Figure 2-11, a language stack is shown by
using meaning triangles for the languages and models. The corners of the triangles are
related in different ways. Between symbols and entities, a partOf relation can be found,
expressed in the figure with the set partOf character. Between concepts and symbols, an
instantiation can be found, expressed in the picture with an arrow. Model m is expressed in
language L2 that in turn is expressed in language L1. The figure shows how the symbols of
L2 can be interpreted relatively. From the point of view of model m, these symbols represent
the different concepts in the model, whereas from the point of view of L1, a symbol of L2 is
seen as one of its entities6

6 We found a similar, although less aggressive, use of the triangle in

.

[87]. It should be noted that the
interpretation of our image could go much deeper than explained here. We keep the extra complexity, because
it could give the reader a feeling about the complex nature of metamodeling [85][7].

An Ontology Based Metalanguage with Explicit Instantiation

26

Figure 2-11 - The meta-property of models with meaning triangles7

We have explained the relativism from the point of view of semiotics. For the purpose of this
text, it is also useful to understand it from an ontological point of view. Therefore, we first
assign real-world values to the semiotic classes in

Figure 2-11. This is done in Table 2-1. Both
languages might be general-purpose as in the OMG modeling architecture, where MOF and
UML are used. Here we use a DSL for language L2 specialized for the domain of pets. A
general-purpose modeling language would use a concept like Object in the place of Pet.

Table 2-1 - The meaning of labels in Figure 2-11

 Language L1 Language L2 Model m

Concept Classes of Objects Pets My dog

Symbol Class Pet Rendy

Entity a class All pets in the world This dog

From the point of view of Ontology, the language L1 provides universals, whose instances
are the universals of Language L2. Model m contains individuals: instances of L2. The
ontological boundaries between the models are thus shown vertically as the columns in
Table 2-1.

Extension and Intension Dichotomy
Because the instanceOf concept is relative with regard to the language perspective, we have to
resort to the more general notions of extension and intension. These are common notions in
logic and linguistics [62]. Any word or sign has two meanings: the extension of the word
refers to the set of objects it represents while the intensional meaning is domain of all the
possible things for which the word can be used. A pet for example has the intensional

7 In the image:

- clouds are concepts,
- quoted words are symbols,
- pictures or natural language represents entities,
- Set inclusion between symbols and entities is drawn with memberOf (є),
- The linguistic instanceOf relation between concepts and symbols is drawn by dashed arrows.

An Ontology-Based Metalanguage with Explicit Instantiation

27

meaning of an animal kept by humans for companionship or as a household animal. The
extension of “pet” is the domain of all such animals [8].

Language L2 can be used for representing pets and therefore has the intension and extension
just described. Model m contains dogs, which – in this case – are pets; therefore, the elements
of model m are part of the extension of L2. In a similar manner, the constructs of L2 are part
of the extension of L1. To use the terms linguistic instanceOf and ontological instanceOf here,
would result in ambiguous use of the adjectives, because what is a linguistic instanceOf L1 is
an ontological instance from L2 perspective.

2.4.5 The Concept of Metamodel
In the previous subsection, we showed the meta-ness of the concept model. According to our
view, a model represents not merely an ontological commitment on (a part of) reality, but
can also be interpreted itself via different ontological commitments, one of which is the
modeling language that it is expressed in. A modeling language can be represented by its
abstract syntax as we saw in Section 2.3. MDA takes this approach when capturing the
structure of a modeling language, its abstract syntax. This structure captured in a model is
called a metamodel. Figure 2-12 shows a schematic view of this with two models (the
planes). The boxes are model constructs and the arrows represent instantiation. Between the
constructs, a model can represent relations (not shown in the figure). In Figure 2-9, we
already gave an example.

Figure 2-12 - A model expressed in a modeling language

According to this practice, we can adopt the following definition for a metamodel from the
FRISCO report [31]:

“A metamodel is a model of the modeling language”

One might be tempted to use the term metamodel more generally. The MDA Guide [70] for
example defines a metamodel as “a model of models”. This would also express the fact that
we can establish models for the different interpretations upon a model (like a Class Diagram
in UML). However, such a definition may cause confusion over the actual nature of the
instantiation relation as seen in the previous section. Therefore, we stick with the definition
of a metamodel from the FRISCO report.

The task of specifying a metamodel is called metamodeling.

language

 model

An Ontology Based Metalanguage with Explicit Instantiation

28

2.4.6 Modeling Languages
With the emergence of MDE, modeling languages became more widespread. To name a few:

- OWL [90], which is used for the Semantic Web and is closely related to RDF [89],
- CWM, which is specialized in data warehousing [69],
- UML, the general-purpose language proposed by OMG [75]. UML is a modeling

language that focuses on different aspects of software design. It includes several
modeling languages to model behavior as well as structure. UML’s roots are in the
information industry and its design bears resemblance to object-oriented programming
paradigms. The constructs of the class diagram language, a structural language, include, for
example: Class, Association and Package. When we speak about UML in this thesis, we
refer to Class Diagram language.

An interesting feature of modeling languages is their ability to describe both the model for
the abstract syntax as well as a model for the semantic domain: the instances or the possible
ASTs. The semantics of the language describe how these two models should be mapped.
This is made explicit in MML, a recent approach to describe the semantics of UML [1]. Figure
2-13 illustrates how the definition of instantiation relation between two of its instances is the
semantics of the modeling language.

Figure 2-13 - The semantics of modeling languages (taken from [1])

In, for example, UML the object model contains constructs for the instances: Object, Link
and Slot. In its specification, we find how the constructs are mapped: “The purpose of a class
is to specify a classification of objects and to specify the features that characterize the structure and
behavior of those objects” and “An association declares that there can be links between instances of the
associated types”. We observe that in some cases a modeling language has semantics that
describe the instantiation between two of its direct instances.

2.4.7 Modeling Architectures
The structure of a model is expressed in a modeling language, which also defines the models
relation to its intension (for example a class diagram). The modeling language has a
metamodel, expressed in a metalanguage that has a metametamodel. The model, metamodel

An Ontology-Based Metalanguage with Explicit Instantiation

29

and the metametamodel form the modeling hierarchy (or architecture) commonly found in
MDE technologies.

MOF
UML was first defined a general-purpose modeling language and it used a set of its own
constructs to define itself. At the same time, different modeling languages have been
developed for different domains; RDF, OWL for the vast variety of domains on the web,
BPEL for business processes, etc. Therefore, there was a need to handle them uniformly in
tools. Since languages can be treated as models themselves (their abstract syntax is a model;
the metamodel), different attempts have been made to create a superstructure (also a model)
to express them on. MOF [71] is a pragmatic attempt. It uses the set that UML used for self-
definition to define itself and other modeling languages [18].

Figure 2-14 shows the MOF linear architecture. The architecture specifies four layers of
models. The architecture is strictly linear and models resided on layer M0. Strictly linear
means that models only conform to the layer directly above them [36].

M1
(models)

M0
 (user data models/

real world)
Things

Language
metamodel

M2
(Modeling language)

MOF Model
Metametamodel

represents

M3
(metalanguage MOF)

Models

User data models

Figure 2-14 - The traditional MOF modeling architecture

Difficulties were found with the traditional interpretation of the architecture, which we
discuss in the next chapter. Figure 2-15 shows a more recent interpretation of MOF in which
all models reside at layer M1 and the real world is placed at the M0 layer. This is a result of
the fact that the user data models are modeled in the same language as the intensional
models as discussed in the previous subsection.

An Ontology Based Metalanguage with Explicit Instantiation

30

M1
(models)

M0
 (user data models/

real world)
Things

Language metamodelM2
(Modeling language)

MOF Model
Metametamodel

represents

M3
(metalanguage MOF)

Models User data
models

Figure 2-15 - The MOF modeling architecture, a recent interpretation

A modeling architecture should also provide means for data exchange and model input and
output [9]. In MOF, this is realized by the MOF metalanguage itself. Every model is
considered an instance of MOF, thus by providing a serialization mechanism for MOF; the
whole architecture can be serialized [7].

The Architectures of Other Technologies
Other modeling and data description languages are self-descriptive and can be modeled [20].
Figure 2-16 shows EBNF and data description languages XML and RDF. Bowers and
Delcambre [24] show how all of these languages have quite different instantiation semantics.

Figure 2-16 - Modeling architectures of MOF, XML, EBNF and RDF (taken from [20])

Nested Modeling Architectures
Recent approaches to create modeling architectures attempt to represent the linguistic and
ontological instanceOf relation more faithfully. MML from Alvarez et al. [1] is such an
example. By representing both instanceOf relations as a primary modeling constructs and
expressing its semantics in a structural manner, they end up with an architecture as
represented in Figure 2-17.

The basis of this new interpretation is of course seeing the metalanguage in the same light as
the modeling language (as described in Subsection 2.4.5). In this light, the metalanguage also
is a special kind of language whose semantics define a mapping between its direct instances:

An Ontology-Based Metalanguage with Explicit Instantiation

31

in this case languages and models. So analogous to the way that MOF incorporated M0 into
M1, in these nested architectures the new M1 is incorporated into M2.

MOF

UML

Model

intension extension

Classdiagram
(UML intension)

Objectdiagram
(UML extension)

MetaModel Model

Language
description

Model
description

MML

UML Model

intension extension

Classdiagram
(UML intension)

Objectdiagram
(UML extension)

MetaModel

Model

Figure 2-17 - The MML modeling architecture compared with MOF

Modeling Architectures in General
In order to evaluate different designs, Atkinson and Kühne [11] made a detailed comparison
between the different options for modeling architecture design. The use different
characteristics, which can be summarized by number of levels (or layers), level binding and
level organization (linear, nested or partly nested).

 ccc d

Figure 2-18 - Different modeling architecture designs (taken from [11] and [1])

The options that [11] presents are summarized in Figure 2-18. The binding of layers in a
cascading architecture is loose as is shown in Figure 2-18a. Tools as Software Factories [38]
use this approach where the modeling language is generated from the metalanguage
specification. We merely include it here for completeness; because it is more an
implementation approach then a conceptual approach for the modeling architecture. Figure
2-18b presents a partly nested architecture where the metalanguage is used as physical

a) cascading b) partly nested

c) four layer nested

d) nested generic

(taken from [11] and [1])

An Ontology Based Metalanguage with Explicit Instantiation

32

definition for constructs at each layer. Figure 2-18b and c show the nested architecture with
limited layers and with layer recursion ad infinum as MML has. Figure 2-14 completes the
set of options with a strictly layered architecture.

2.5 Ontology and Modeling
The fields of Ontology and Modeling are related although they are not the same. Modeling is
often done for pragmatic purposes. We make a model, when we draw an explanation on a
whiteboard. This model does not have to conform to any precise language and can freely be
interpreted.

Ontology, however, does not provide that freedom, since its goal is to represent the world as
precise as possible as we saw in Section 2.2. It becomes obvious, that when combining the
fields of modeling and metamodeling we have to keep this in mind. The formal constraints
of Ontology cannot always be applied in modeling, because the languages do not always live
up to the challenge of being ontologically correct. A simple example is the fact that UML and
Java can define classes without any attributes. Another one is law 6 in [87] that states that
properties should have values because “not having a property is not a property”.
Apparently, UML and Java cannot obey to this for practical purposes.

2.6 Conclusions
In the current chapter, we have treated Ontology, languages and MDE.

Ontology (capital O) was introduced here as a philosophy. From the field we took two
important ontologies that are being used in computer science. From both of them we drew
important concepts, which can be used to support concepts in the field of modeling.

Linguistics provides knowledge for computational languages. The distinction between syntax
and semantics is present and important in both fields. Languages also form the pragmatics for
modeling. Diagrammatic and textual languages are used for model and language input and
output. Languages are related to Ontology in the sense that they make an ontological
commitment to the world. Furthermore is language design a daunting task to balance
expressiveness and precision.

In MDE modeling languages are a special kind of languages that describe both the model of
the abstract syntax as well as the model for the semantic domain. In some modeling
architectures these two instanceOf relations (linguistic and ontological) are made explicit.
Because of these two instanceOf relations, modeling is full of relativity.

To support our use of the concepts we had to assume definitions for several modeling
terminologies. The choice for the domain of Ontology allows us to make more concrete and
detailed commitments to the meaning of the terms. From Chapter 4 “An Ontology Grounded
Language” on the terms will be used and applied in our metamodeling approach.

An Ontology-Based Metalanguage with Explicit Instantiation

33

Chapter 3 – Identification of Problems in Contemporary
Modeling Architectures

3.1 Introduction
In the current chapter, we present the motivation behind our intention to propose a new
metalanguage and thus a new modeling architecture. Contemporary metamodeling
architectures already aim at providing a solution for modeling, metamodeling and model
exchange. The purpose of these architectures is to provide a sound basis for modeling and
metamodeling. In the current chapter, we also show that they cannot offer this in all respects.

3.2 Construct Incompleteness, Overload and Excessiveness
It is required for any language to define a mapping from the constructs to the real world [30].
Otherwise, a language suffers a lack of real-world relation.

Traditional metalanguages like for example UML [75] and MOF [71] fail to do so. They
implicitly take an arbitrary commitment to the object-oriented domain. This commitment
may an appropriate one when using UML to model a software system. However, UML is a
general-purpose language and thus needs to be suitable to model other domains as well. The
same can be said for MOF. It is used to express modeling languages. However, does it have
an adequate set of constructs to express languages? Is the meaning of the constructs
unambiguous and can they be used in a consistent manner?

While this whole thesis aims at giving an answer to the first question, here we focus on the
second question. We can answer the question for UML and MOF at the same time, because
both use the same set of constructs. This is a consequence of their entangled history as
described in the previous chapter. Thus, if we show a property of the UML constructs of
Class, Object, Attribute, Association, etc, it holds for MOF.

The Appropriateness of Constructs in UML (and MOF)
Recent studies on UML [30][42] showed several inadequacies of this language regarding its
modeling foundation. Both use a reference Ontology to analyze UML constructs for their
appropriateness: “a well-grounded, axiomatized upper level ontology is an important step towards
the definition of real-world semantics for conceptual modeling diagrammatic languages” [42].

Evermann and Wand [30] use BWW Ontology to analyze the language. Guizzardi et al. use a
FCO ontology developed on their own effort. Both ontologies have been successfully applied
before in information system technologies. Figure 3-1 shows that the preciseness of a
reference ontology can capture the state of affairs that are admissible in a domain more
closely than a modeling languages L1 and L2 could ever do.

An Ontology Based Metalanguage with Explicit Instantiation

34

Figure 3-1 - A reference ontology to measure domain appropriateness (taken from [41])

The findings on the domain appropriateness of UML include:

Construct incompleteness – A first conclusion that is drawn from the comparison is the
absence of constructs in UML to capture the kind, role, quality and relator that are in
the reference ontology [42].

Construct inappropriateness – Associations cannot capture the real ontological nature of
the relation concept. From the point of view of BWW, this is construct excessiveness in
presence of the Attribute construct, because the BWW ontology is rather
minimalistic. Guizzardi’s ontology is more extensive and therefore denotes this
construct overload. We captured both under inappropriateness, whether they represent
in the end exactly the same thing is we leave for the reader to decide.

Construct overload – Another ontological misuse of Attribute and Association can
happen when a user decides to model, for example, a skill as an object. From an
ontological point of view, this is a moment (or property in BWW). It breaks one of the
laws that BWW enacted: “Only Things can be modeled as objects”. Moreover, it results in
inconsistent use of Attribute and Association as already mentioned in the
previous point.

These represent just an overview of the findings that were done using ontologies. The results
of the quoted papers go further. We choose the illustrative ones to demonstrate the validness
of conclusions that can be drawn. When applying ontology to more complex and formal
concepts like aggregation the results will be less obvious to interpreted, yet equally usable.
Several other studies that use different ontologies and/or focus on different parts of the
UML definition are found here: [45][43][26][67]. A conclusion is easy to establish. These
deficiencies have the potency to result in inconsistent and ambiguous models and metamodels.

Poor Semantics Definition
UML and MOF are modeling languages that come with convenient graphical syntaxes. The
whole purpose of their entanglement is partly to reuse this syntax. Especially in UML (and
the related MOF), the same syntax is often reused to specify the semantics of the language
itself. Some researchers have indicated that is this could result in weak separation between
abstract syntax and semantic domain [46]. Since syntax and semantics seem closely related in
MDA, this is cited as reason why both are not well described.

(taken from [42])

An Ontology-Based Metalanguage with Explicit Instantiation

35

Furthermore, MOF makes the choice of using its abstract syntax to define itself. This seems to
be a rather pragmatic choice (it allows the semantics description to reuse the same
diagrammatic syntax) and to our knowledge, there is no verification of MOF against itself.

3.3 Multilevel Metamodeling
“MOF and UML emphasize the linguistic dimension”, say Atkinson and Kühne [9]. For initial
modeling architectures, this was fine; it allowed the enactment of an easy to understand four
layered modeling architecture called MOF. However, the demands on UML and other
modeling languages grew and soon MOF’s foundations started to crumble. We describe in
the current section some causes and effects of this process. First, we introduce some terms
that are often used in the discussion about modeling architectures [9][7][5][10].

Terminology for Properties of a Modeling Architecture
Because meta and modeling languages are considered to be only structural definitions, they
limit their semantics to the model at the layer below (M2 for metalanguages and M1 for
modeling languages). Atkinson and Kühne call this shallow instantiation. The term strict
metamodeling is used for the modeling architectures, which only allow shallow instantiation
between the different layers and have a linear layer organization.

In the MOF architecture, each layer is defined in a layer above. The top layer is defined in
itself. All layers thus have a lower and a higher layer. Through this, classes seem to play a
double role in the modeling architectures. From the point of view of the layer above, they are
objects. From the point of view of the layer below, they seem classes. This Class-Object
duality can be observed in traditional modeling architectures. Atkinson and Kühne [9]
explain how the syntax of modeling languages hides this dual nature of classes and objects.
They introduce the term Clabject for it. The name of a class is displayed in its syntax, yet in
reality, it is an instance of the attribute “name” from the defining class. To express this they
created a cube to represent model elements (see Figure 3-2).

Figure 3-2 - A Clabject8

Multiple classification was an early problem in the interpretation of UML diagrams. As we
explained in the previous chapter, each model element has multiple instanceOf relations.
Because the linear hierarchy of the initial MOF architecture, these multiple relations had to
violate the strict layered interpretation as is shown in

Ambiguous Classification

Figure 3-3. The revised architecture

8 From the combination of the word CLAss and oBJECT that are used in the UML jargon

An Ontology Based Metalanguage with Explicit Instantiation

36

that put user data models on the M1 layer partly solved this problem. It however
deemphasizes the ontological instanceOf relation in which the user is interested [7].

Figure 3-3 - Multiple classification in the MOF architecture (taken from [7])

Decreased Extensibility
There is a need for reuse of metamodels [27]. The semantics of UML assumes that users will
only work at modeling levels M0 and M1. However, in order to reuse metamodels their users
generally need to also model at level M2. UML supports this by means of stereotypes, which
can be bundled into packages of stereotypes using profiles. A profile can be introduced to
reuse the UML language for a specific architecture. Java only supports single generalization,
whereas UML by default uses multiple generalization. By creating a profile Java that
contains a special stereotype <<JavaClass>>9

Stereotypes are however, limited to annotation of types and the addition of static attributes
called Tags. This ensures that the stereotype mechanism does not break the strict modeling
hierarchy and that stereotyped models remain compatible with their originals

 for Class the concept Class can be
restrained to only one generalization.

[6].

Stereotypes can thus be seen as a restricted way to generalize the instantiation concept over
all the levels. It becomes an alternative way to express instantiation without adding
modeling power [5]. This adds extra semantic and notational baggage. Furthermore, it
creates confusion when there are no rules offered on when to use which mechanism and
why, which is the case with the current UML version. Especially since the instantiation
mechanism choice is not meta-level independent, defining such rules may be complicated.

Replication of Concepts
Previous versions of UML suffered from a replication of concepts because they had to model
the structure of instances for each Class individually (Node, Component, etc) [10]. This
problem seems solved with the UML 2.0 specification [75], which introduces a general
InstanceSpecification construct. It is up to tool vendors to represent classes on this
construct according to the UML semantics.

9 A notational convention for stereotypes in UML is to write them between smaller than/greater than symbols

An Ontology-Based Metalanguage with Explicit Instantiation

37

Failure to Express Power Types
“A power type is a type the instances of which are subtypes of another type (called the partitioned
type)” [76]. A classical example is the TreeSpecies, which instances can be Elm, Oak, etc.
Obviously the latter ones are all types themselves. The partitioned type in this case is the
Tree. The benefits of power types are that new types can be introduced dynamically, as
instances. At the same time, this makes it hard to support power types, since they are also
specializations of the partitioned type. And - this is the problem - specialization is normally
done statically in modeling. Figure 3-4 shows this in an example with Vehicles,
VehicleKind and Boat.

Figure 3-4 - An example power type (taken from [47])

Instantiation Semantics
Atkinson and Kühne tried to “compensate for shallow instantiation” in order to give
semantics to MOF that keeps intact its strict modeling hierarchy. They feel this hierarchy is
important, because “the strictness discipline was instrumental in uncovering and understanding
the subtle problems of the original presentation of the metamodeling framework. In the presented two
dimensional framework, the strictness discipline is fully applicable and—like any guideline—provides
help in staying away from unclear scenarios”

To compensate for shallow instantiation they evaluated the use of deep instantiation, an
instantiation mechanism over multiple layers in modeling hierarchy. Potency is introduced to
express the number of levels that the instantiation may cross. Dual fields naturally appear
under these circumstances, because fields can be both attributes and slots (holding values).

3.4 Language Independent Model Handling and Structure
In previous versions of MOF, the M0 layer was defined for user data models. MOF did not
provide a language independent structure for M0, which made the interpretation of this layer
implicitly dependent on the modeling language [57][65]. Now that the M0 layer is assumed
to be the real world and the user data models are incorporated in the M1 layer, the structure
is there. However, from the point of view of the metalanguage, there is no explicit notion of
the relation between models and model elements in M1. For example, the UML language can
tell us which object is an instance of which class. MOF, however, cannot provide us with this

An Ontology Based Metalanguage with Explicit Instantiation

38

information, since it is oblivious to the instantiation semantics of UML (or in the general
case, any other modeling language).

The absence of a language independent structure for user data makes the handling of this
layer in the modeling hierarchy dependent on the modeling language. Furthermore MOF
provides an instantiation mechanism which is used for modeling languages expressed in it,
but which is separate and may be different from the mechanism that the languages itself use.
There is no precise definition about how these two instantiation mechanisms cooperate on
the lowest modeling layer, the user data layer [62][21][37].

3.5 The Adverse Effects of the Problems on Automation in MDE

Model Transformations
On one hand the identified problems in (meta)modeling result in less interoperability than
may be possible. Tools still needs to hardcode the instantiation mechanism from MOF and
the metalanguage separately. On the other hand, it limits recurrent MDE tasks. These tasks
include model transformation and model querying.

The OMG specification for QVT [71] supports only a limited set of model transformation
scenarios. Firstly, heterogeneous data translation is not supported [61][62]. Heterogeneous
refers to the fact that data can be stored with different technologies. In Figure 2-17, we
showed a few example including XML and RDF. Figure 3-5 gives a concrete example of a
transformation between a database model and an object-oriented model. The difficulty is to
derive the transformation of T2 from the transformation definition T1.

Figure 3-5 - The data translation problem in model transformations (taken from [61])

Model Querying
The OMG standard for model querying OCL [73] is limited to MOF and UML models [57]. If
MOF would provide a real metamodeling environment, such a query language would have
to be language independent. That model querying and navigation is dependent on the
instantiation semantics of the modeling language is well known [36][57][37].

3.6 Analysis of the InstanceOf Relation
The described problems all relate to a lack of Uniform treatment of language structures.
Especially the instanceOf relation seems to play an important role in all the described

An Ontology-Based Metalanguage with Explicit Instantiation

39

problems. Therefore, we will investigate its role in the modeling architecture in the current
section.

It has been pointed out several times now that instantiation is not only linguistic, but also
ontological. The ontological instanceOf is only implicitly known via the semantics of the
modeling language. This relation’s dual role may cause ambiguity [18]. Yet in traditional
modeling architectures, the instanceOf concept only plays a secondary role. To gain more
knowledge about the nature of the instantiation in the modeling architecture, we look at the
architecture from different perspectives in the next subsections.

From the Perspective of Metamodeling
We recognize intensional and extensional models. In UML, these are class diagrams and
object diagrams, in OWL Schema’s and RDF models, in database technologies table schemas
and rows. However, from the metamodeling perspective, these are all just models. The
metametamodel does not distinguish intensional and extensional models in its ontological
commitment. Therefore, from the perspective of the metalanguage, we see the models and
metamodels (see Figure 3-6). The semantics of the metalanguage provides an ontological
instanceOf between the two.

Metametamodel

Meta-
model Model

Figure 3-6 - The models from the perspective of the metalanguage

The distinction between intensional and extensional models will become clear when we look
from the perspective of modeling.

From the Perspective of Modeling
The metamodel does see the intensional and extensional models. UML “sees” class diagrams
and object diagrams, while OWL “sees” Schema’s and RDF models. The ontological
commitment of the metamodel is thus what is in the intensional model and what is in the
extensional model. The semantics of the modeling language provides an ontological
instanceOf between the two.

Metamodel

Model
(intension)

Model
(extension)

Figure 3-7 - The models from the perspective of the modeling language

An Ontology Based Metalanguage with Explicit Instantiation

40

From the Perspective of Modeling Architecture
The ontological instanceOf relation that exists by virtue of the semantics of the metalanguage is a
linguistic instanceOf for the modeling language. The same relativity in modeling that was
generally described in Chapter 2, contributes to ambiguity in the whole modeling
architecture. Current interpretations of this relation do not do justice to its nature. Without a
unified semantics for the instanceOf relation for the whole architecture, real metamodeling is
simply not possible as we see from the described problems.

3.7 Conclusions
We can conclude that all problems are related to metamodeling and especially its
instantiation semantics:

- A lack of ontological grounding of metamodel constructs results in expressiveness
problems with these constructs,

- Because of a failure to find a good interpretation for the metalayers as well as the
instanceOf relation, multilevel metamodeling causes problems,

- The instanceOf relation has to be hardcoded for metalanguages and modeling languages
and there is a lack of structural definition for model elements,

- Automation techniques in MDE cannot be generalized because of their dependency on
the (fixed) instanceOf semantics of the metalanguage,

- The instanceOf relation is not well described by the metalanguage and consequently by
the modeling languages.

An Ontology-Based Metalanguage with Explicit Instantiation

41

Chapter 4 – An Ontology- Based Modeling Architecture

In the current chapter, we present an ontology-based metalanguage, which is capable of
expressing languages and their models together with their generalization and instantiation
semantics. The characterization of this language is that can recognizes multiple instanceOf
relations between models and express their instantiation semantics. This provides a basis for
unambiguous multilevel modeling and shows how linguistic and ontological instanceOf
relations are related.

We keep the view that languages can be represented by their abstract syntax and add the
capability to specify an instantiation mechanism for these structures. This overcomes the
major drawback of modeling architectures that the instantiation mechanism is hardcoded
into the tools. In effect, (modeling) languages can become more tool independent.

4.1 Introduction
Chapter 2 gave an overview of the concepts in modeling and ontology. The goal of a
modeling language was to capture a part of the world. Of reality. Therefore, most languages
focus on a specific part of this world. UML on computer science, BPEL on business processes,
etc. MOF tries to increase tool independence by providing a general structure on which to
express both languages and models. However, in Chapter 3 we saw how these modeling
architectures are ill defined and unsuitable for multilevel modeling. This motivates us to
create a new metalanguage and thereby a new modeling architecture.

In the current chapter, we present the basic ideas behind the Ontology Grounded
MetaLanguage (OGML) . Section 4.2 explains the approach and design decisions for the
language. Concepts and reasoning are drawn for Ontology here because this is we identified
it as a knowledge domain for metamodeling.

The subsequent section 4.3, presents the metalanguage OGML. The approach chosen here is to
explain modeling and metamodeling practices at the same time. This is done with a small
example, which covers most of the modeling architecture. In between the examples, the
abstract and concrete syntax of OGML is explained.

In section 4.4, we propose a general structure for modeling space, which can represent all
models in the architecture. This structure is based on ontological classifications and we call it
OGML eXtensional (OGMLX). This structure can provide is the uniform base to represent all
models on; for both models and languages.

As a metalanguage for modeling languages, OGML has the capability to describe itself.
Certain interesting aspects of this conceptual self-reflection are given in section 4.6.
Subsequently section 4.7 builds on these insights to prove that the modeling architecture
indeed represents every model on the OGMLX structure. Section 4.8 draws conclusions from
the proposed architecture and the proof we presented.

An Ontology Based Metalanguage with Explicit Instantiation

42

4.2 Approach
Kurtev proposed the conceptual foundation behind OGML [63]. Like him, we adopt the
solution domain of Ontology (see also the approach in Chapter 1). As it is the study about
the possible world structures, Ontology is our primary knowledge source for deriving the
primitives of the metalanguage. This choice can only directly solve the constructs
expressiveness problems that we described in the previous chapter. To solve the problems
caused by the instantiation semantics we have to take further steps. We will describe this in
the current section.

The Primitives of the Metalanguage
The purpose of the metalanguage is to support modeling languages. For example, UML
“sees” the phenomenon in the real world as Objects, which are instances of exactly one class.
OWL “sees” the world as resources, which can be instances of multiple classifications.
Similar observations can be made when we metamodel data representation languages like
RDF and XML [24]. The existence of universals is thus presumed, a priori, in the ontological
commitment of all these languages. Therefore, we propose the use of FCO for our modeling
primitives. The insights on the ontological meaning of properties that stem from using the
BWW ontology will not become less valuable using this approach as we already mentioned
in Subsection 0. This way we solve the problem of lack of real-world relation.

The Semantics of the Metalanguage
It became apparent in the previous chapter that several problems are caused by the under-
specification of the instanceOf relation. Therefore, we propose to lift instanceOf semantics to a
first class concept in the metalanguage. This raises the level of abstraction of the language
from structural definition to semantics definition and solves the problem described in
Chapter 1 as: lack of language constructs and lack of modeling constructs.

This way we can realize language dependent instantiation semantics, which are captured in a
uniform way. The real nature of the languages becomes more evident: a metalanguage
defines instantiation between modeling language and models and the modeling language
defines instantiation of intensional and extensional models.

Because the metalanguage itself is also a modeling language, we can express it in itself. In
Chapter 2, we mentioned the limitations of this approach. Both structurally and semantically
there need to be grounding on existing solutions in order to avoid inconsistencies.

Model Structure
The adoption of FCO has one important consequence: InstanceOf relations have to be
recorded on model level. Contrary to BWW, where classes (Kinds) play a secondary role and
are established via set inclusion of properties, in an FCO ontology the class is determined a
priori and thus fixed for each construct. The modeling space [62] this needs to provide a
property to record this relation.

Defining a Precise Scope
The basic ontology presented in section 2.2.4 is simple and does not accommodate significant
part of the available ontological knowledge. The ontology does not consider three

An Ontology-Based Metalanguage with Explicit Instantiation

43

fundamental concepts: time, space and part-whole relation. For the latter one, there exists
well-developed theory called mereology. It is difficult to decide which concepts to be taken
into account when an engineering solution needs to be crafted. We opt for these four basic
categories and the relations among them as the first step in our experiment in applying
ontological categories in defining metamodels. Missing concepts should be defined per
metamodel if needed.

On the Use of Ontology
In section 3.2, we gave an overview of some ontological inconsistencies of modeling
languages. Some constructs cannot capture the expressiveness of their real-world equivalents
and some relations do not obey to logical laws established in Ontology as discussed in
Section 2.5. We still intent to be able to express all modeling languages without significant
modifications, which would change their semantics. We choose, therefore, a pragmatic
approach in the use of Ontology. In the general case, we will use ontological reasoning for
the OGML semantics. Where modeling practices require a deviation from it, we introduce
our own semantics and explain the deviation.

4.3 The Metalanguage OGML
In the current section, we introduce OGML by applying it in an example. The concrete
syntax of the language can be found in Appendix B. Before each step of the example, we will
explain a part of the semantics. We focus here on the description on the abstract syntax and
give semantics in natural language for each construct. Later, in Chapter 6 a more formal
description of the semantics is given.

For the purpose of the example, the UML language is used. We only focus on a subset of
UML, which is most relevant for our day-to-day modeling operations. We could call this
language therefore “SimpleUML”. The metamodel of the language is shown in Figure 4-1 (left
part) together with an example model (right part of the figure) and instanceOf relations. The
upper part represents class diagrams and the lower part object diagrams.

An Ontology Based Metalanguage with Explicit Instantiation

44

Object

ClassAttribute

-attributes

1

-owner

*

Slot

-slots

1*

* *

Literal

-value

1*

-name : String
Pet

-weight : Integer
Crocodile

name : String = Jena
weight : Integer = 256

Jena : Crocodile

Generalization

*

linguistic

linguistic

ontological

name : String = Dena
weight : Integer = 3434

Dena : Crocodile

Language (gray): Models:

Figure 4-1 - The example language SimpleUML

Thus, the exercise will be to express the diagramming capabilities of (Simple)UML in OGML.
In the following subsections, we will use the pattern of first introducing the OGML
constructs and then applying them in practice repeatedly until all constructs are explained.

4.3.1 Language Constructs
OGML provides a set of language constructs or Definitions. These are based on the
categories of FCO. Figure 4-2 shows these constructs. It is followed by a short introduction to
their semantics, which is based on the description of FCO in Section 2.2.

Figure 4-2 - OGML’s language constructs

An Ontology-Based Metalanguage with Explicit Instantiation

45

LanguageDefinition
A LanguageDefinition (LD) is a group of language constructs, relational constructs and
semantic definitions (which will be introduced in following subsections). This construct is
not based on a category in Ontology but is needed for the pragmatic purpose of bundling
language definitions. A language definition has a name.

Definition
A definition is the generalization of all language constructs. It is abstract and thus not used as
language definition. A Definition has:

name, a unique name within the language

extends, a set of language definitions that are specializations

extendedBy, a set of language definitions that extend this definition

UniversalDefinition
A UniversalDefinition (UD) is a generalization of the definitions that are used as universals in
a model. It is abstract and thus not used as language definition. It is a specialization of
Definition.

IndividualDefinition
An IndividualDefinition (UD) is a generalization of the definitions that are used as
individuals in a model. It is abstract and thus not used as language definition. It is a
specialization of Definition.

SubstantialDefinition
A SubstantialDefinition (SD) is used to define language constructs for the substantials in a
model. If a model contains substantials, it can be used as an intension for other models.

A SubstantialDefinition is a specialization of UniversalDefinition.

MomentDefinition
A MomentDefinition (MD) is used to define language constructs for the moment universals in
a model. Since moment universals characterize universals it is related to a UD.

A MomentDefinition is a specialization of UniversalDefinition.

ObjectDefinition
An ObjectDefinition (OD) is used to define language constructs for the substantial individuals
in a model. A model with only individuals is an extensional model.

An ObjectDefinition is a specialization of IndividualDefinition.

PropertyDefinition
A PropertyDefinition (PD) is used to define language constructs for the moments in a model.
Moments represent relations between individuals in a model.

A PropertyDefinition is a specialization of IndividualDefinition.

An Ontology Based Metalanguage with Explicit Instantiation

46

DataTypeDefinition
A DataTypeDefinition (DTD) is used to define data types. A DTD can be used as type for a
substantial property that is instantiated to an intrinsic property (see subsection “Relational
Constructs”). In terms of modeling languages, we usually refer to this as the type of a literal.

Abbreviations for the Language Constructs
Table 4-1 summarizes the abbreviations we used for OGML language constructs.

Table 4-1 - Abbreviations for language constructs of OGML

Full Name Abbreviation
LanguageDefinition LD
UniversalDefinition UD
IndividualDefinition ID
SubstantialDefinition SD
MomentDefinition MD
ObjectDefinition OD
PropertyDefinition PD
DataTypeDefinition DTD

Instantiation of Language Constructs
Here we give an overview of the different instantiation of the languages constructs that were
just introduced. We do this in terms of a partly nested modeling architecture, but the reader
should keep in mind that from this picture no conclusions can be drawn about the OGML
modeling architecture. Figure 4-3 gives schematic representation for the instantiation
semantics. Instantiation is represented by arrows. At each “layer”, an instantiation is
represented by a small box with a number to indicate the depth of instantiation of the
construct. It can be seen in the figure that we treat linguistic instantiation exactly the same as the
ontological instantiation between the intension and extension.

OGML

Modeling Language

1st

Model (Intension) Model (Extension)

SD MD OD

LD

PD

Definition UD ID

1st

2nd 3rd

1st

2nd 3rd

1st

2nd

1st

2nd

DTD

1st

2nd 3rd

= instantiation1st 2nd 3rd = first, second and third instantiation

Figure 4-3 - A schematic view of instantiation semantics for OGML language constructs

An Ontology-Based Metalanguage with Explicit Instantiation

47

Defining the SimpleUML Modeling Language
To define SimpleUML we define a Language with the name “SimpleUML”. This is done in
Listing 4-1.

Listing 4-1 - OGML by example: defining the language SimpleUML

Defining the Universals of SimpleUML
Now we can define constructs for classes and attributes. A class, as for example the
Crocodile Class, is a substantial from ontological point of view, because it is a prototype for all
possible crocodiles (“Jena”, “Zena”, etc). Therefore, we declare a class as SD (see Listing 4-2).
Classes have attributes, which are in turn moment universals, thus declared as MD’s in the
language definition. To be able to declare literal types in the intensional model we add a
DTD “UMLDataType”. It may be used in the extensional model to instantiate literal value.

Listing 4-2 - OGML by example: defining the language constructs for universals

Defining the Individuals of SimpleUML
Instances of classes - e.g. specific crocodiles – don not “just dangle in the air”, but need to be
represented as modeling construct. For this purpose we define the constructs for an
extensional SimpleUML model (Listing 4-3) representing the object diagram model. It
contains objects and slots just as in the UML specification. The reasoning for the ontological
types goes similarly to the reasoning we used for the definition of the universals of the
language. The difference is that we use ODs and PDs here instead of SDs and MDs. Literals
will be represented as ODs10

10 Here we deviate from Rule 1 in

.

[90], which stipulates that only entities can be represented as substantial
individuals (in FCO terminology). A literal is a data value, has no identity, and thus is not an entity according to
the dictum of Quine that “no entities without identity” [48]. The current version of OGML does however not
provide extensive support for literals. For simplicity, all data values are stored as String and literals are not
typed. It will be future work to provide a full and correct interpretation of literals.

SubstantialDefinition Classifier {
 ...
}

SubstantialDefinition "Class" extends Classifier {
 ...
}

DataTypeDefinition UMLDataType extends Classifier {
 ...
}

MomentDefinition Attribute {
 ...
}

Language SimpleUML {
 …
}

An Ontology Based Metalanguage with Explicit Instantiation

48

Listing 4-3 - OGML by example: defining the language constructs for individuals

4.3.2 Relational Constructs
The previous subsection showed how languages should define universals and individuals.
To be able to define meaningful models a language should also provide means to connect
them together. In this manner a graph-like structure can be formed which is so typical for
models and data structures. Attributes, CharacterizationRelations and InherenceRelations
provide the needed relational constructs. These constructs are based on the notion of
(substantial) properties in Ontology (see Subsection 2.2.4). Figure 4-4 shows the abstract syntax
of these constructs.

From the figure is becomes clear that all these relational constructs refer to multiple
Definitions. These ranges are introduced because it is ontologically incorrect to use
generalization between the different categories [39] (see subsection 4.3.4). However, it is still
desirable to have attributes refer to, for example, a substantial and an individual. For
example, RDF allows references from a model to the RDF Schema, which is also an RDF
model [89]. Therefore, ranges are used instead of types. In addition, this approach will
guaranty better support for modeling languages; languages that support multi-typed
properties can be expressed in OGML.

ObjectDefinition Object {
 ...
}

ObjectDefinition Literal {
 ...
}

PropertyDefinition Slot {
 ...
}

An Ontology-Based Metalanguage with Explicit Instantiation

49

Figure 4-4 - OGML’s relational constructs

Attribute
An Attribute (shown in Figure 4-4a) can represent structural properties of both individuals and
universals in models.

An attribute has a name, a multiplicity and a range. The range defines the type (or set of
types) of the attribute. Attributes also have an ownerDefinition which is the Definition
where they attribute the property to (this is not shown in Figure 4-4a, but is the opposite of
attributes).

CharacterizationRelation
A CharacterizationRelation (CR) should represent mutual properties for universals in models,
which are part of the ontological perspective that the language makes. Expressed in the
language definition, it thus relates MDs to SDs is can be seen from the abstract syntax shown
in Figure 4-4b.

A CR has an id and a multiplicity. Since it connects two constructs, a CR has two roles: the
universalDefinitionRole (in the direction of the SD) and a momentDefinitionRole (in the
direction of the MD). A CR is thus a bidirectional relation.

InherenceRelation
An InherenceRelation (IR) can represent mutual properties for individuals in models, which are
part of the ontological commitment that the language makes. This is done unidirectional.

a) Attribute b) CharacterizationRelation

c) InherenceRelation

An Ontology Based Metalanguage with Explicit Instantiation

50

Expressed in the language definition, it thus relates ODs to PDs is can be seen from the
abstract syntax shown in Figure 4-4c.

An IR has a role for the PD and a multiplicity.

Abbreviations for the Relational Constructs
Table 4-2 summarizes the abbreviations we used for OGML language constructs.

Table 4-2 - Abbreviations for relational constructs of OGML

Full Name Abbreviation
CharacterizationRelation CR
InherenceRelation IR

Instantiation of Relational Constructs
Here we give an overview of the different instantiation of the relational constructs that were
just introduced. Figure 4-5 gives schematic representation for the instantiation semantics.
Instantiation is represented by arrows. At each “layer”, an instantiation is represented by a
small box containing the depth of instantiation.

OGML

Modeling Language

Model (Intension) Model (Extension)

SD MD OD PD

Definition UD ID

1st

2nd 3rd

1st

2nd 3rd

1st

2nd

1st

2nd

CR

1st

2nd 3rd

IR

1st

2nd

Attribute

1st

2nd

1st

2nd

MD

1st

2nd 3rd

= instantiation1st 2nd 3rd = first, second and third instantiation

Figure 4-5 - A schematic view of instantiation semantics for OGML relational constructs

Defining Structural Properties for SimpleUML Constructs
Classes and Objects in UML have names and other structural properties. We introduce
here the structural properties, which are exactly those properties, which are not part of the
ontological perspective that the language semantics provide.

Structural properties do indeed not contribute to the ontological perspective directly. They
are merely used indirectly to establish the ontological commitment. This can be easily
explained with the example of UML from the point of view of a modeling tool. When
querying an UML model, the tool only handles objects and slots. An object can have a whole

An Ontology-Based Metalanguage with Explicit Instantiation

51

array of slots, but the query is only interested in the slots that belong to one UML
Attribute, e.g. the attribute “weight” of Crocodile (queries are specified against the class
model). The tool now has to traverse all slots in order to find the one with property “name”
equal to “weight”. Other examples of the relation between structural and ontological model
handling are provided in [57] and [37].

From the point of view of Ontology, we are however just also talking about structural
properties for the language we are defining. Listing 4-4 shows how they are added as
Attributes to the language constructs according to the UML metamodel. These attributes
are not to be confused with the Attribute as it also appears in the SimpleUML metamodel.

Listing 4-4 - OGML by example: defining the attributes for universals and individuals

Defining Ontological Properties for SimpleUML Constructs
Here we deal with the moments and moment universals and how they are related to
individuals and universals. These constructs will provide a basis for the ontological perspective
that we are realizing with SimpleUML.

From the point of view of Ontology, the moment universals are substantial properties. All
moment universals characterize in at least one substance [87], so a MD needs to
“characterize” a SD. The CR is defined for UML Attribute in Listing 4-5. It defines a named
bidirectional relation between Class and Attribute with a multiplicity to ensure that a
class has at least one attribute. Later we will introduce the Attribute and CR, for now it is
sufficient to know that it relates universals in models. We continue with a structure on which
instantiated classes can be expressed.

SubstantialDefinition Classifier {
 attribute name : "String";
}

SubstantialDefinition Class extends Classifier {
 attribute isAbstract : "Boolean";
}

DataTypeDefinition UMLDataType extends Classifier {}

MomentDefinition Attribute {
 attribute name : "String";
 attribute lowerbound : "String";
 attribute upperbound : "String";
 attribute type : Classifier;
}

ObjectDefinition Object {}

ObjectDefinition Literal {
 attribute value : "String";
}

PropertyDefinition Slot {
 attribute name : "String";
 attribute value : Object, Literal;
}

An Ontology Based Metalanguage with Explicit Instantiation

52

Listing 4-5 - OGML by example: defining the characterizations for universals

From the point of view of Ontology, the moments are (individual) properties. An IR connects
moments to individuals. As shown in Listing 4-6 (the dependsOn line represents the IR).

Listing 4-6 - OGML by example: defining the inherence for individuals

What is in the Model?
After introducing all the new language constructs for SimpleUML, it is a good moment to
take a look at what may be in the models. Figure 4-6 is a concretezation of the previous
figures that showed SimpleUML. The model layers are filled with the constructs from the
example model with a class Crocodile and two crocodiles and only their weights.
Attributes ad intrinsic properties are only represented with arrows that point to strings and
mutual properties are represented with thick lines between the model constructs.

SimpleUML Language Definition

Object diagram model (Crocodiles “Jena” and “Dena”)

aSD
Class

aMD
Attribute

anOD
Object

aPD
Slot

2nd

2nd

2nd&
3rd

aCR

2nd

anIR

2nd&
3rd

name=Crocodile
isAbstract=false

2nd&
3rd

2nd&
3rd

2nd&
3rd

name=Dena

aDTD
UMLDataType

Integer

anOD
Literal

2nd&
3rd

Stringname=weigth
range=Integer value=256

name=weigth

value=
3434

name=Jena

name=
weight

Figure 4-6 - A schematic view of SimpleUML with the example models

A difference with the previous pictures is the combination of constructs 2 and 3 into one
construct. Later it will become clear what defines this equivalence. The instanceOf relations

PropertyDefinition Slot {
 ...
 dependsOn Object, Link role = "slots" multiplicity = *;
}

MomentDefinition Attribute {
 ...
 attribution universalDefinition = "Class"
 universalDefinitionRole = "owner"
 momentDefinitionRole = "attributes"
 multiplicity = 1-*;
}

An Ontology-Based Metalanguage with Explicit Instantiation

53

of the Integer, String and Literal are not shown in the figure because not all their relations
will fit in. Basically every concrete value (“weight”, “Jena”, “Dena”, 256 and 3434.) in the
Object Diagram model is an instance of both Literal (linguistically) and Integer or String
(Ontological). The intrinsic properties of the Class Diagram model are also have the two
instanceOf relations, how this works will become apparent in the end of the current chapter.

4.3.3 Ontological Perspective Constructs
SimpleUML is a language. Its Ontological Commitment consists of Classes, Attributes,
Objects and Slots as we have seen. (Linguistic) instances of these constructs are in the
models. Because SimpleUML is a modeling language, it makes an Ontological Commitment on
the level of the models. From the point of view of Ontology, this means that a different
perspective is taken on one model (extension) where another is used as ontology (intension).
Instead of seeing Object, we want to see Crocodiles in the extension. Instead of seeing
the structural properties, we want to see the ontological properties. To refer back to the statement
from Webber et al.: “The properties exist whether humans perceive them or not” [87],
likewise both kinds of properties exist in the extensional model. The ontological perspective
will show ontological properties in the model.

In our OGML definition of SimpleUML, we can change the view on properties in a consistent
and controlled manner because we have defined ontological properties with different constructs than
the structural ones. Structural properties were expressed using (OGML) attributes and are
moments in the model as shown by the arrows to strings in Figure 4-6. Ontological substantial
properties were expressed using MDs and are related to SDs via CRs. Ontological individual
properties were expressed using PDs and are related to ODs via IRs. As shown by boxes
linked with thick lines in Figure 4-6. Figure 2-2 is also relavent here, because it shows these
characterization and inherence relations on the universal and individual levels.

Thus, to change our perspective on an extensional model to the ontological one that is
defined by SimpleUML, we only have to recognize another set of constructs as the
properties. This is similar to working of 3d glasses which filter colors for the left and the
right eye in order for our brain to combine the three dimensional information that is encoded
in the motion picture. Here we have “to put on glasses” that filter out some constructs and
highlight a combination of others.

The constructs that need to be highlighted are the moments that are connected via IRs as our
new properties. The ones that need to be hidden in the ontological perspective are the
structural properties. This is illustrated in Figure 4-7 where the new “virtual” moment is
drawn over its structural definition. Exactly the same thing can be done in the intensional
model with the moment universals and the CRs there. Analogous to Figure 4-7 we will find
there that the substantial universal Crocodile has a substantial property weight, which is
represented as an Integer. In UML terms, Class Crocodile has an attribute weight of
type Integer.

An Ontology Based Metalanguage with Explicit Instantiation

54

Figure 4-7 - The ontological perspective that UML provides on models

However, as Figure 4-6 already showed, some constructs need to be in place:

Need 1 - the instances of universals (e.g. the class Crocodile and its UML attributes) need
to be mapped on the same constructs as the instances of the IDs (e.g. objects and
slots),

Need 2 - the instanceOf must be established between the constructs of extensional model and
intensional model and between the models and the language,

In addition, tools that support the pragmatics of model input, need to know how intensional
models are instantiated. In a linear architecture, this is easy to implement with a parser as
shown in Subsection 2.3.1. In the presence of a second instanceOf relation, its constraints on
the moments in model need to be expressed. This information can however also be used for
model querying, just like the navigation semantics is expressed in the UML specification.
Therefore, we add:

Need 3 - the value needs to be identified and type and multiplicity need to be checked to
support navigation, conformance checking and instantiation of models.

OGML supports the definition of these semantics by means of the InstanceOfDefinition. It
will be explained here. In the abstract syntax definition in Figure 4-8, the related constructs
are shown. An InstanceOfDefinition relates a UD to a Definition and can contain several
AttributeFuntions and CharacterizationInstantiations.

a) extensional model b) intensional model
Model (Extension)

2nd&
3rd

2nd&
3rd

2nd&
3rd

name=Jena

name=weigth

2nd&
3rd

2nd&
3rd

2nd&
3rd

name=Dena

name=weigth

value=3434

value=256weight

3434

256

weight

Model (Intension)

2nd

2nd

2nd

name=Crocodile

name=weigth
value=Integer

weight

String

An Ontology-Based Metalanguage with Explicit Instantiation

55

Figure 4-8 - OGML’s ontological perspective constructs

Relations
Relations is merely a container to bundle the InstanceOfDefinition in the language. Relations
can have a name and instanceOfDefinitions pointing to the set of InstanceOfDefinitions in
the language definition.

InstanceOfDefinition
An InstanceOfDefinition (IOD) represents the semantics of the instanceOf relation between the
universals and the individuals in models. Universals are called instances here. Individuals are
called defining concepts here. This construct directly supports requirements Need 1 and Need
2 by providing the mapping between defining concepts and instances.

We can distinguish a moment IOD, which relates moment universals to moments, and a
substantial IOD, which relates substantial universals and substantial individuals

Among the properties of the IOD are several identifiers, these can be used by expressions as
variables. The IOD has the properties:

definition, the type of the defining concept,

conformingDefinition, the type of the defining concept

isAbstract, “true” if the IOD is abstract, in which case it is not directly used for instantiation,
but indirectly via the GeneralizationRelation (explained in the next subsection).
Generalization allows “inheritance” of AttributeFunctions and
CharacterizationInstantiations.

definingConceptIdentifier, a variable name for the defining concept. This identifier can be
bound to a defining concept in the intensional model, which conforms to
definition.

InstanceOfDefinition

An Ontology Based Metalanguage with Explicit Instantiation

56

sequenceIdentifier, a variable name for multiple instances. This identifier can be bound to a
set of instances in the intensional model, whose elements conform to
conformingDefinition.

instanceIdentifier, a variable name for the instance concept. This identifier can be bound to a
instance in the intensional model, which conforms to conformingDefinition.

attributeFunctions, points to the set of AttributeFunctions

CharacterizationInstantiations, points to the set of CharacterizationInstantiations

Instantiation may be of different kinds. This is different for each language; OWL [90] allows
an instance to be instanceOf multiple defining elements for example, while UML allows only
one. To support multiple instantiation we can introduce a universalMultiplicity and
individualMultiplicity here. However, this currently remains future work.

Constraints:

- Only moment IODs and substantial IODs exist. A moment IOD can only contain a MD as
definition and a PD as conformingDefinition. A substantial IOD can only contain a SD as
definition and a OD as conformingDefinition11

CharacterizationInstantiation
A CharacterizationInstantiation (CI) represents the instanceOf relation between IRs and the CRs
in models. Since these are connected to respectively individuals and universals, it is logical that
a CI is contained by an IOD.

It has several attributes:

instanceOfRelation, points to the containing IOD

momentRole, is a by-name reference to an IR (role).

characterizationRole, is a by-name reference to a role in a CR. A CI together with
AttributeFunctions realizes Need 3.

Constraints:

.

- The IOD, that contains this CI, should refer to a universal and individual, which have the
CR and IR to which this CI refers.

- This CI refers by-name to a CR and IR. The language definition should contain an MD
with matching CR and a PD with matching IR.

AttributeFunction
An AttributeFunction (AF) represents an attribution function as discussed in Subsection 2.2.4.
It is contained by an IOD. It has several expressions to calculate the values in an extensional
model. These expressions can refer to the identifiers of the IOD12

11 Future versions of OGML could enforce this by providing a MomentIOD and SubstantialIOD specializing IOD

. The AF realizes Need 3.

An Ontology-Based Metalanguage with Explicit Instantiation

57

It has several attributes:

instanceOfRelation, points to the containing IOD

characterizationRole, is a by-name reference to a CI.

name confusingly refers to the property-name of the moment that stores the name of
this attribution. This moment of course resides in the extensional model.

lower, holds an expression that should calculate the lower bound of the multiplicity for
this attribution. This expression may refer to sequenceIdentifier or the
universalIdentifier of the IOD.

upper, holds an expression that should calculate the upper bound of the multiplicity for
this attribution. This expression may refer to sequenceIdentifier or the
universalIdentifier of the IOD.

naming, holds an expression that should calculate the name for this attribution. This
expression may refer to sequenceIdentifier or the universalIdentifier of the IOD.

valuing, holds an expression that should calculate the value for this attribution. This
expression may refer to individualIdentifier of the IOD.

typing, holds an expression that should calculate the type for this attribution. This
expression may refer to sequenceIdentifier or the universalIdentifier of the IOD.

Constraints:

The CI that this AF refers to by-name should exist (This is a CI with the same value for
attribute characterizationRole).

- The lower and the upper expression should return a value of type integer.
- The naming expression should return a value of type string.
- The valuing expression should return a model constructs from the extensional model.
- The typing expression should return a model constructs from the intensional model.

Abbreviations for the Relational Constructs
Table 4-3 summarizes the abbreviations we used for the ontological perspective constructs.

Table 4-3 - Abbreviations for ontological perspective constructs of OGML

Full Name Abbreviation
InstanceOfDefinition IOD
AttributeFunction AF
CharacterizationInstantiation CI

Instantiation of Ontological Perspective Constructs
Figure 4-9 shows a schematic view of the instantiation semantics of the Ontological
Perspective Constructs, in a similar way as in Figure 4-6. IODs are represented as bars with

12 No assumptions are made about the model query language that is used for the implementation of the
expressions. If a query language is not aware of the language axis that OGML introduces in its models, the
queries can become quiet complex and hard to understand [27].

An Ontology Based Metalanguage with Explicit Instantiation

58

the name “IOD”. The linguistic instantiation between language and modeling constructs can
easily be established (the short downward arrows in the figure)13

. The Ontological
Commitment constructs that were introduced here can help to establish the ontological
instantiation shown by the horizontal arrows here.

Figure 4-9 - A schematic view of instantiation semantics for OGML relational constructs

Defining the InstanceOfDefinition for SimpleUML
The language SimpleUML needs thus to specify a mapping from the UDs to the IDs in order
to make an ontological commitment for the models. Therefore, we define Relations between
the intensional model constructs and the expressional model constructs. Listing 4-7 shows
this. An IOD is defined to map the universals Class on individuals Object in the model. We
can thus distinguish a moment IOD, which relates moment universals to moments, and a
substantial IOD, which relates substantial universals and substantial individuals

The same is done for Attribute and Slot. Here, we have to be pragmatic to support the
demands of modeling. Classes cannot be instantiated when marked as abstract in an UML
model, even though this violates Ontological laws [30]. Therefore, our IOD contains an
instantiation condition that excludes abstract classes. The when clause contains this condition in
the form of an OCL expression: not(c.isAbstract). In this expression, the variable c refers to a
Class and is bound to the definingConceptIdentifier of the IOD. The semantics of the dot in

13 This will be the task of the modeling tool that is being used for model input

SimpleUML Language Definition

Model (Intension) Model (Extension)

aSD
Class

aMD
Attribute

anOD
Object

aPD
Slot

2nd 2nd&
3rd

2nd&
3rd

aCR

2nd

anIR

2nd&
3rd

name=Crocodile
isAbstract=false

IOR

2nd

IOR

IOR

IOR = InstanceOfRelation = Instantiation = (structural) mutual
property

name=weigth
range=Integer

name=Jena

value=256

name=weigth

An Ontology-Based Metalanguage with Explicit Instantiation

59

the expression is navigation. Here the structural property isAbstract of Class c is
retrieved.

Listing 4-7 - OGML by example: defining the InstanceOfRelations

Defining the CharacterizationInstantiation for Substantial IODs
Now that universals are one-to-one mapped to individuals, we can focus on the instantiation
of the relations between substantials and non-substantials (moments). Figure 2-2 showed
these relations: characterization between universals and inherence between individuals. Listing
4-8 shows how a CI is defined to express the instantiation of the CR. Basically, it expresses
the fact that the Attributes of a Class c are connected via property slots to an Object
o, which is an instance of c.

Defining the AttributeFunction for Moment IODs
Here we come to the most interesting part of the OGML language: the definition of the
attribute function as formalized in [87] and briefly discussed in subsection 0. Listing 4-9 shows
the definition of an AF, which provides a perspective for the moment Attribute from the
point of view of a substantial. This point of view is established by matching an AF to a CI. An
AF is “matched” by the characterizationRole of the CI ci according to the pseudo code in
Listing 4-10.

Listing 4-8 - OGML by example: defining the CharacterizationInstantiation

Relations UMLInstanceOfAssociationsOnLinks {

c : Class -> o : Object {
 attributes -> slots;
} when (not(c.isAbstract))

...
}

Relations UMLInstanceOfAssociationsOnLinks {

c : Class -> o : Object {
 ...
} when (not(c.isAbstract))

a : Attribute -> s : Slot {
 ...

}
}

An Ontology Based Metalanguage with Explicit Instantiation

60

Listing 4-9 - OGML by example: defining the AttributionFunction

Listing 4-10 - Matching of AttributeFunctions with CharacterizationInstantiations

In the previous figues we showed the linguistatic instantiation vertically and ontological
instantiation horizontally. For the purpose of explaining the AF we will view the relational
constructs as relations orthogonal to the instanceOf relations. Figure 4-10 shows three
ortogonal subdivisions between constructs: substantial and moment, universal and
individual and language and models forming the three axis: relations (as depth), ontological
instanceOf (horizontally) and linguistic instanceOf (vertically).

Substantial

Moment

Language

Model

individualuniversal

relational

instanceO
f (ling.)

instanceOf (ont.)

Figure 4-10 - Dimensions in OGML models

ForAll r in Relations {
 ForAll ior in r.instanceOfRelation {
 ForAll af in ior.attributeFunctions {
 If (af.characterizationRole = ci.characterizationRole) {
 Found!
 }
 }
 }
}

Relations UMLInstanceOfAssociationsOnLinks {

...

a : Attribute -> s : Slot {
attributes {

 naming name <- a.name;
 valuing [a.lowerbound .. a.upperbound] s.value;
 typing a.type;
 }

}

}

An Ontology-Based Metalanguage with Explicit Instantiation

61

To create a view on the participating constructs of in the ontological perspective we populate
Figure 4-10. Figure 4-11 shows all the constructs of the example model that are involved in
an ontological perspective as a cube. A moment IOD and a substantial IOD are related via a CI,
this is shown in the top of the cube. Their instances are somewhere in the models, but always
connected via explicit instanceOf constructs represented by the vertical edges of the cube here.
Over these instances, the ontological perspective can support navigation; model conformance
checking and instantiation of the intensional model (see Need 3).

Figure 4-11 - A cross-model view of an established Ontological Perspective

The different expressions of the AF are best understood by analogy with reflection in
programming languages and metalanguages. A reader that came this far will certainly be
familiar with the reflection that EMF provides. In generated ECore models, the reflection
looks similar to that of Java. An example is shown in Listing 4-11. In the first line the
EObject is retrieved that represents “Jena” in the model. Subsequently we get its EClass
and the feature in which we are interested. With the eGet function, we can finally retrieve
the value of the feature from jena. ECore also allows us to retrieve the type of a property
with the method getEType.

Object:OD

Substantial

Momentcharacterization inherence

instanceOf
instanceOf

“slots”“attributes”

instanceOf

IOR

instanceOf

Language

Model

individual

universal

256“weight”

Crocodile “Jena”

Slot:PDAttribute:MD

Class:SD

ontological

relational

linguistic

IOR

IOR

= Relational construct

= InstanceOfRelation

= Ontological instanceOf

= Linguistic instanceOf

instanceOf
UML

instanceOf
UML

An Ontology Based Metalanguage with Explicit Instantiation

62

Listing 4-11 – Code example of reflection on an ECore model (EMF)

Similar to the reflection in ECore, we can now query the ontological perspective of the
models. However, there is a difference. In ECore models, the reflective functions are present
on the model constructs by virtue of inheritance, in OGML they are in the language
constructs. Thus, for each query the following steps need to be undertaken:

1. the linguistic instanceOf has to be consulted to retrieve the language constructs,
2. a CI needs to be matched with an AF and,
3. finally some of the AFs expressions need to be executed to retrieve the wanted value

The expression that is executed in step 3 can return a model value, because its variables are
bound to the model constructs in the bottom of the cube. This binding was described earlier
for the instantiation condition in Listing 4-7.

Which expression from the AF needs to be executed depends on the operation that is
executed on the model and what the wanted value actually is. In Table 5, we establish the
parallels between the EMF reflection example and the language constructs provided by
OGML.

Table 4-4 - Parallels between EMF reflection example and OGML constructs

 ECore OGML models (bottom
cube) OGML language (top cube)

1
EObject.eClass ontological instanceOf for

the substantial (if stored) or

following linguistic
instanceOf and finding the
IOD (if not)

2
EClass.getEStructuralFeature
(String)

Linguistic instanceOf and naming expression

3
EObject.eGet
(EStructuralFeature)

Linguistic instanceOf and valuing expression

4
EStructuralFeature.getEType Linguistic instanceOf and typing expression

5
EStructuralFeature.getLowerBound
EStructuralFeature.getUpperBound

Linguistic instanceOf and lower expression
upper expression

EObject jena = getCrocodileFromModel("Jena");
EClass clazz = jena.eClass();
EStructuralFeature feature = clazz.getEStructuralFeature("weight");
Object value = jena.eGet(feature);
Integer weight = (Integer)value;

Class type = feature.getEType().getInstanceClass();

//verify result
if (feature.getUpperBound() > 1 || feature.getUpperBound() == -1) //many
 assert(type instanceof Elist);
else //zero or one
 assert(type.isInstance(weight));

An Ontology-Based Metalanguage with Explicit Instantiation

63

For different purposes: navigation, model conformance checking and instantiation, different
combinations of the operations in Table 4-4 can be combined to get the desired result. For
example, for navigating the properties of the Crocodile “Jena” we do: 1 2 3. Optionally
we can execute 4 and 5 to establish the multiplicity and the type of the result.

The Support of More Complex Cases
With an AF we can specify what we see when we look at a moment from the perspective of a
substantial. The example in this section of an Attribute is trivial, because an Attribute
can only be “seen” from the Class that is its owner. An Association, however, represents a
mutual property and can therefore be “seen” from the point of view of multiple substantials.
In the next chapter we give a detailed example where we express the n-ary Associations
of UML.

4.3.4 Generalization and Specialization Constructs
Generalization is a useful language concept. With it, common properties of a set of
substantials can be combined. It can thus reduce redundancy in modeling. The recent MOF
specification version 2 [71] and the related UML 2.0 infrastructure specification [74] include
property redefinement analogous to what we called “the specialization of properties” in
Section 2.2 about Ontology. To constrain the size of this project however, we will not focus
on property specialization.

Rather we opt to include the notion of encapsulation. Encapsulation is known in object-
oriented paradigms as the hiding of instance variables to minimize the exposure of
implementation details to clients [81]. This notion is also adopted in modeling languages like
UML where Attributes marked as private are not part of the specialization set. Figure
4-12 shows the abstract syntax of the generalization construct.

Figure 4-12 - OGML’s GeneralizationRelation

An Ontology Based Metalanguage with Explicit Instantiation

64

GeneralizationRelation
The GeneralizationRelation supports generalization. It represents the structural definition of
generalization as specified by a language. SpecializationExclusion is used to constrain its
semantics.

A GeneralizationRelation has:

generalConcept, the Definitions that support generalization according to the language

specializedConcept, the Definitions that support specialization according to the language

generalConceptRole, the property name used to refer to generalizations

specializedConceptRole, the property name used to refer to the specializations of a universal

generalConceptMultiplicity, the multiplicity of generalization assumed by the language

specializedConceptMultiplicity, the multiplicity that the language allows for specialization

Constraints:

- generalConcept and specializedConcept may not contain constructs of different
ontological categories [39]14

- generalConceptRole should not be null

- the multiplicities may not be zero

SpecializationExclusion
SpecializationExclusion has no equivalent in Ontology. As explained in the beginning of the
current section it constitutes to the functionality of object-oriented paradigm as mimicked by
modeling languages. The GeneralizationRelation cannot directly support the set inclusion
semantics for the specializing universals. This is dependent on the different properties that
the language defines and therefore is included in AttributionFunction. An optional property is
added to the AttributionFunction as follows:

specializationExclusion, holds an expression that should calculate whether this moment
universal is part of the set of properties present in a specializing universal.

Defining Generalization/Specialization for SimpleUML
In SimpleUML, a Class can be generalized/specialized from another Class. In the example
model, the Crocodile “inherits” from Pet. Without specifying this relation, the
Attribute “name” of Pet remains inaccessible from a Crocodile. In Listing 4-12, we see
the GeneralizationRelation specified to allow class inheritance.

Encapsulation is supported by specializationExclusion. In moment IOD Attribute we
defined that this moment universal is excluded from the specialization set in the ontological

14 We do not really enforce this constraint. From the technical perspective, it seems useful to deviate from this
constraint from time to time. From ontological perspective this approach is always incorrect because instances
of different ontological categories are always disjoint

An Ontology-Based Metalanguage with Explicit Instantiation

65

perspective, when it has a structural property equals to “private”. Just like in UML, any
attribute marked as private cannot be accessed from instances of subtypes. So if we change
the definition of the Attribute “name” and give it a value “private” for the attribute
visibility, it will become not navigable. Because the specializationExclusion expression will
evaluate to true.

Listing 4-12 - OGML by example: defining the inherence for individuals

4.4 Structure of the Modeling Space
OGML is a metalanguage. It can be used to express metamodels, which in turn can express
models. In the previous section we have shown how languages (metamodels) can be
expressed using the OGML constructs. We did not explain how models are expressed.
OGML includes a set of constructs for the expression of models, called OGML eXtensional
(OGMLX). These constructs are used uniformly, in this case meaning that they are used for
normal models as well as metamodels and metametamodels. This makes OGMLX a “model
for multiple metalevels” [5] or “modeling space” [62]. How this is realized is explained in
subsequent sections. First, we introduce OGMLX.

Figure 4-13 shows the constructs of OGMLX. In the rest of this section, it is explained
construct by construct. Constraints are given on its structure that follow from the semantics
given in Chapter 6. These constraints narrow down the expressiveness of OGMLX.

GeneralizationRelation UMLGeneralization {
 generalConcept = Classifier;
 specializedConcept = Class;
 parentMultiplicity = *;
 childMultiplicity = *;
 generalConceptRole = "super";
 specializedConceptRole = "sub";
}

MomentDefinition Attribute {
 …
 attribute visibility : "String";
 …
}

Relations UMLInstanceOfAssociationsOnSlots {

a : Attribute -> s : Slot {
 attributes {
 ...
 specializationExclusion = a.visibility='private';
 }

}

}

An Ontology Based Metalanguage with Explicit Instantiation

66

Figure 4-13 - A model for the OGML eXtension (OGMLX)

ModelElement
All OGMLX constructs are model elements (ME). This “top of the lattice” was introduced for
the pragmatic purpose of distinguishing extensional constructs from intensional constructs
in OGML. It has thus no direct ontological interpretation. For conceptual analysis, the
instanceOf property is an attribute of ME. In practice, however the definition of all
instanceOf relations would result in recursion ad infinum.

instanceOf, the InstanceOfProperty that represents the instantiation of this ME.

SubstantialUniversal
A SubstantialUniversal (SU) represents a construct in the model that is a substantial universal
from the point of view of its defining language. It is a specialization of InstantiatableElement.

MomentUniversal
A MomentUniversal (MU) represents a construct in the model that from the point of view of
its metalanguage is a moment universal. It is a specialization of InstantiatableElement.

XObject
A XObject represents a construct in the model that is a substantial individual from the point of
view of the defining language. It is a specialization of IdentifiableElement.

X

An Ontology-Based Metalanguage with Explicit Instantiation

67

Property
A property represents a construct in the model that is a moment individual from the point of
view of its defining language. It is a specialization of PropertiesElement. Property has several
attributes:

name, a unique identifier for this property

value, the values for this property, they must be of type PropertiesElement.

InstanceOfProperty
An InstanceOfProperty (IOP) is a special property that represents explicitly the membership of
a set of properties (a Kind) according to BWW or the instantiated to relation in FCO [26] (see
Figure 2-2). It is a specialization of ModelElement. IOP has several attributes:

language, the MetaModel of the language that defines this contains the IOD of which this
instanceOf is instantiated.

value, the SUs from the intensional model (MetaModel) from which the owner of this IOP
is instantiated. Although we support multiple values, OGML does currently not
support OWL-like multiple instantiation [90].

Literal
Literals represent data values and are related to intrinsic properties. Data values have no
identity, and thus are not entities according to the dictum of Quine that “no entities without
identity” [45].

In MOF, for example, values are treated similarly: “Datavalues act as both Instances (since they
may have slots) and as ValueSpecifications: since datavalues are always considered directly stored in a
slot rather than being referred to (which would require some sort of identity)” [71].

In BWW [87]: values are elements of the codomains of attribute functions. They cannot exist
independently in the world. Instead, they must be conceived in terms of things that have
properties that in turn are represented as values of attribute functions.

The current version of OGML does not provide extensive support for literals. For simplicity,
all data values are represented by untyped Literals and stored as String. It will be future
work to provide a full and correct interpretation of literals. A Literal has:

value, the String value of the data

IdentifiableElement
An IdentifiableElement (IE) represents all constructs in the model that from the point of view
of the metalanguage is substantial and thus can have properties. It is a specialization of
PropertiesElement. An IE has:

properties, the properties of an object give it identity. Contrary to the ontological point of
view, the values of properties are not the direct representation of identity [90]. In
information systems, each object already has identity through its memory
location. Common practice is to assign a canonical value to this identity in the

An Ontology Based Metalanguage with Explicit Instantiation

68

form of a variable name or key attribute. Currently OGML assumes the “name”
property as identification. It will be future work to make this language-
independent by providing an identification function for definitions.

Constraints:

- All properties of an IE ie that must be unique with respect to the language that defines
their instanceOf and their name (see Equation 1). Identical names for properties are thus
allowed because the associated language definitions provide a different ontological
perspective on the model.

- Each IE ie must have an instanceOf according to OGML (ogml), because models and
languages are both instanceOf the metalanguage (see Equation 2). We will investigate
this claim in subsequent sections.

- All IE ie must have an instanceOf in OGML, because models and languages are
instanceOf the metalanguage and for all substantials, we record this instanceOf relation
as was explained in the introduction of the current section.

 : Equation 1

 : Equation 2

MetaModel
A MetaModel (MM) can contain a set of constructs and can be used as intensional model15

- All metamodels contain at least one universal (see Equation 3)

. It
is a specialization of Model.

Constraints:

 : Equation 3

Model
A Model can contain a set of constructs and can be used as extensional model15. It is a
specialization of IdentifiableElement.

contents, the constructs that are included in this model

Constraints:

- All constructs within one model are instantiated according to the same languages as the
model itself (see Equation 4).

15 Model constructs should be viewed as incompletely specified. It will be future work to introduce the
containment relation between models and their constructs and to give a useful interpretation to the
LanguageDefinition. The result will be a redefinition of the Model and MetaModel construct in OGMLX

An Ontology-Based Metalanguage with Explicit Instantiation

69

 : Equation 4

The Ontological Ground of OGMLX
In Table 4-5, we provide the ontological grounding of OGMLX. The construct equivalence
comes from Guizzardi [43]. Properties are expressed handled differently in BWW; we
provide some references for their interpretation in the table.

Table 4-5 - Abbreviations and ontological equivalents for constructs of OGML eXtensional

Full Name
Ontological equivalent Abbre-

viation FCO BWW ontology
SubstantialUniversal Substantial universal Kind (Functional Schema [30]) SU
XObject Substantial individual Thing -
MomentUniversal Moment universal Attribute MU
Property Moment individual Property -
ModelElement all all ME
InstantiatableElement Universal - -
IdentifiableElement Substantial - IE
PropertiesElement all (in absence of an IOP) all except Property [87] PE
InstanceOfProperty formal relation [26] membership [39] IOP
Literal element in set of values [43] element in set of values [87] -
Model a model / a world / an extension -
MetaModel an ontology / an intension MM

Representing Models
Figure 4-14 shows the example Crocodile models in OGMLX form. Arrows represent
properties and dashed arrows represent instanceOf properties. This figure does not extend
the complete metamodel of SimpleUML. A reader could imagine how “OGML” instanceOf
properties link the boxes to their language definitions. In this case: Class, Attribute,
Object and Slot. The following chapters will explain in more detail how all models are
instantiated to OGMLX.

Figure 4-14 - An example OGMLX model

MU

SU

attributes

“Crocodile”

“weight” XObject

XObject

slots

“weight”

“555”

“Jena”

IOP “UML”

IOP “UML”

name

name

name

name

value

owner

An Ontology Based Metalanguage with Explicit Instantiation

70

4.5 How OGML is Self- Reflective
In the section 4.3, we introduced OGML by applying it in an example. In this example, we
expressed a modeling language in the OGML metalanguage. From this point of view, OGML
is indeed a metalanguage. However, in Section 2.3 we explained how a language can be
represented by its metamodel and thus is itself a model. From this point of view, OGML is
also a modeling language and can thus express itself (see Figure 4-15). In addition, by doing
so, we can show to a certain extend that OGML is expressive enough for the domain of
modeling languages and their instantiation semantics. In the current section, we reify the
OGML constructs.

OGML

Languages Models

OGML

OGML

OGML

OGML OGMLLanguages OGML

Figure 4-15 - OGML as a modeling language defined by itself

In Subsection 2.3.4, we explained that a language should make a choice between
expressiveness and preciseness and that no language can express its own semantics. A
language can represent its own abstract syntax, using its own concrete syntax in order to
support semantics definition, but this always needs to be supplemented with a semantics
description, where the constructs are mapped on an existing semantics domain. This
mapping and the formalization of the semantics we provide in Chapter 6. In the current
section, we present the self-describing nature of OGML, which can be seen as an addition to
the more informal semantics description found in Section 4.3.

The full definition of OGML is found in Appendix B. The concrete syntax used here is shown
in Appendix A.

Language Constructs
Listing 4-13 shows that the language constructs are all represented as SDs. From the point of
view of Ontology, even a definition of a moment individual is a substantial, because as we
saw in Figure 4-3 it can be instantiated in the model. The generalization relations between
these constructs form the subdivision of ontological categories as seen in Figure 2-2 and
Figure 4-2.

Class and OGMLDataType are introduced here for the first time here. They are used for the
language constructs that are not instantiated to the models. Class is used for Expressions,
which only exists in language models. The OGMLDataType is used to define properties with
data value (intrinsic properties) in de language definition, as the “name” of Definition. String,
Integer and other data types are defined from line 80. There are other constructs, related to
language semantics that do not have to be instantiated in the models, like AFs and CIs. These
can all be represented using classes (see lines 165 to 185 and 225 to 231).

An Ontology-Based Metalanguage with Explicit Instantiation

71

Listing 4-13 - The OGML definition of Language Constructs

A SD is instantiated three times, as we saw in Figure 4-3. The instances become universal
definitions, which can be instantiated again. The SD behaves like a “Clabject”. This can be
explained by looking at Figure 4-16. The individual is individual because it is instantiated in
three times from the SD. However, the same can be said about the substantial universal in the
figure, because the SD is self-defined. It is thus also an individual. In this manner, OGML
defines this Clabject nature of constructs in a consistent way. Depending on the language point of
view (examples can be found in Figure 3-6, Figure 3-7 and Figure 4-15), one part of the
properties will be “seen” as structural and another part as ontological. Just as described in
Subsection 4.3.3.

aSD Substantial
universal IndividualSD

Figure 4-16 - Instantiation of a SubstantialDefinition

Attribute
Line 21 to 27 (see Listing 4-14) shows the Attribute being represented as a MD. An Attribute
itself has attributes (instances of Attribute) for name, type range and multiplicity. Careful
inspection of the syntax (see the range attribute instance on line 23) shows that all of these
attributes can be given values. Lastly, an Attribute is connected to a Definition representing
the attribution. From the point of view of Ontology, the MD Attribute characterizes the
Definition. The CR is shown on line 26.

2: SubstantialDefinition Definition extends Classifier {
 attribute name : "String";
 }
5: SubstantialDefinition "SubstantialDefinition" extends UniversalDefinition {}
 SubstantialDefinition "MomentDefinition" extends UniversalDefinition {}
 SubstantialDefinition "DataTypeDefinition" extends UniversalDefinition {}

10: SubstantialDefinition IndividualDefinition extends Definition {}
 SubstantialDefinition "ObjectDefinition" extends IndividualDefinition {}
 SubstantialDefinition "PropertyDefinition" extends IndividualDefinition {}

 SubstantialDefinition "Class" extends Definition {}
15: DataTypeDefinition "OGMLDataType" extends Definition {}

 SubstantialDefinition LanguageDefinition {
 attribute definitions [*] : Definition, "Relations", "GeneralizationRelation";
 }

 ...

80: Class "OclAny" {}
 OGMLDataType "String" extends "OclAny" {}
 OGMLDataType "Integer" extends "Double" {}
 OGMLDataType "Boolean" extends "OclAny" {}
 OGMLDataType "Double" extends "OclAny" {}

An Ontology Based Metalanguage with Explicit Instantiation

72

Listing 4-14 - The OGML definition of Attribute

Characterization
Line 29 to 37 show the CR (see Listing 4-15). Like an Attribute, a characterization is also a
MD. The difference is that it characterizes two Definitions, a MD and a UD. Lines 35 and 36
show these characterizations. The CR on line 35 characterizes the MD. According to the
semantics of CR it will thus become navigable from a MD via a property called “dependency”.
From the CR we can reach the MD via “dependentDefinition”. For pragmatgical reasons
OGML is currently limited to binary CRs. We show however in the next chapter that this is
sufficient to express n-ary relations.

Listing 4-15 - The OGML definition of CharacterizationRelation

It should be noted that line 35 and 36 express the relation between the CR construct and the
MD and SD constructs again using CRs (instances of CR constructs). Characterization
becomes a recursive concept in this manner. To understand the meaning of these relations
we are referred back again to the CR construct, conceptually we find an infinite number of
small characterizations. This is shown in Figure 4-17 using UML Object, Class and
Association notation to express three steps of this recursion. For pragmatic reasons, tools
will have to hardcode the interpretation of the CR.

31: MomentDefinition CharacterizationRelation {
30:
 attribute lower : "Integer";
 attribute upper : "Integer";
 attribute "momentDefinitionRole" : "String";
 attribute "universalDefinitionRole" : "String";
35: characterization dependentDefinition : MomentDefinition momentDefinitionRole [1-*] dependency;
 characterization ownerDefinition : UniversalDefinition momentDefinitionRole [*] feature;
 }

21: MomentDefinition Attribute {
 attribute name : "String";
 attribute range [1-*] : Definition;
 attribute lower : "Integer";
25: attribute upper : "Integer";
 characterization " owner " : Definition momentDefinitionRole [*] " attributes ";
 }

An Ontology-Based Metalanguage with Explicit Instantiation

73

SubstantialDefinition

MomentDefinition

-universalDefinitionRole : String = source
-momentDefinitionRole : String = outgoingAssociations
-multiplicity : Integer

CharacterizationRelation

-dependency

-ownerDefinition

-dependentDefinition

-feature

universalDefinitionRole : String = dependentDefinition
momentDefinitionRole : String = depency
multiplicity : Integer = 1-*

 : CharacterizationRelation

universalDefinitionRole : String = ownerDefinition
momentDefinitionRole : String = feature
multiplicity : Integer = 0-*

 : CharacterizationRelation

-dependentDefinition

-ownerDefinition

-feature

-dependency

Figure 4-17 - The recursive nature of the CharacterizationRelation

The Modeling Space
OGML also provides a structure to express models on; it is called OGMLX, and was
introduced in the previous section. In the same fashion that OGML constructs are used to
express other languages, OGMLX constructs are also represented using OGML constructs.
This is shown in Appendix B on lines 189 to 222 and in Listing 4-16. Intentionally the
constructs and relations between them are exactly the same as in Figure 4-13. OGMLX thus
becomes a linguistic instanceOf OGML.

An Ontology Based Metalanguage with Explicit Instantiation

74

Listing 4-16 - The OGML definition of OGMLX constructs

The OGML InstanceOfDefinitions
The OGML definition also contains IODs. They relate all OGML constructs to OGMLX
constructs. The full definition is found in Appendix B on lines 87 to 163. An example of the
IODs is shown in Listing 4-17. It shows how the SD and the MD are mapped to SU and MU.
The CR is mapped to two properties, each for one direction of the relation, so one will be
attached to a MD and another to a SD.

 SubstantialDefinition ModelElement {}
190: SubstantialDefinition PropertiesElement extends ModelElement {}
 SubstantialDefinition IdentifiableElement extends PropertiesElement {}
 SubstantialDefinition InstantiatableElement extends IdentifiableElement {
 attribute instantiatedTo[*] : InstanceOfProperty;
 }
195: SubstantialDefinition ModelContent extends IdentifiableElement {
 attribute container : ModelContent;
 }

 SubstantialDefinition "Model" extends IdentifiableElement {
 200: attribute contents [*] : ModelContent;
 }
 SubstantialDefinition "MetaModel" extends "Model", InstantiatableElement {}

 SubstantialDefinition "SubstantialUniversal" extends InstantiatableElement, ModelContent {}
205: SubstantialDefinition "MomentUniversal" extends InstantiatableElement, ModelContent {}

 ObjectDefinition XObject extends IdentifiableElement, ModelContent {}
 ObjectDefinition Literal extends PropertiesElement {
 attribute "value" [*] : "String";
210: }

 PropertyDefinition Property extends ModelElement {

 attribute name : "String";
 attribute "value"[*] : PropertiesElement;

215: dependsOn IdentifiableElement role = "properties" multiplicity = * ;
 }

PropertyDefinition InstanceOfProperty extends ModelElement {
 attribute "value"[*] : "Model", "MomentUniversal", SubstantialUniversal;
220: attribute "language" : "String";
 dependsOn PropertiesElement, Property, InstanceOfProperty role = "instanceOf" multiplicity = *;
 }

An Ontology-Based Metalanguage with Explicit Instantiation

75

Listing 4-17 - The OGML definition of OGMLX constructs

By defining the IODs in this manner we recognize that OGML as metalanguage provides
instanceOf semantics between languages and models as we saw in Figure 3-6. By defining these
instanceOf semantics between OGML and OGMLX constructs, we express the linguistic instanceOf
between models and languages. In effect, we treat linguistic instanceOf the same as the ontological
instanceOf. Depending on the choice of language perspective; OGML or a modeling
language, different IODs are recognized. Thus, either the instanceOf between languages and
models (linguistic) is “seen” or the instanceOf between models (ontological).

In the next subsection, we will show how all constructs of OGML, languages expressed in
OGML and their models are mapped on OGMLX (the modeling space).

4.6 How OGML is Mapped to the Modeling Space
In section 4.4, we introduced a structure for the modeling space, which we call OGML
eXtensional (OGMLX). OGMLX is used to uniformly represent models and metamodels
(including OGML itself). To achieve this all modeling and language constructs have to be
uniquely projected on the OGMLX structure for the whole modeling architecture. In the
current section, we show how this structural reification is realized. We do this with a proof.
First, we reiterate the base facts for the proof.

Intension – Extension Dichotomy
The first basis to realize uniform representation is done by making OGMLX part of OGML. This
was explained in the previous section. The OGML language definition thus contains two
kinds of constructs as shown in Figure 4-18.

Relations OGMLInstanceOfDefinition {
 ...
 "SubstantialDefinition" -> SubstantialUniversal {}
 sd : UniversalDefinition -> su : InstantiatableElement {
 feature -> properties;
 }
 md : "MomentDefinition" -> mu : MomentUniversal {
 dependency -> properties;
 }

 c : CharacterizationRelation -> p1 : Property {
 feature {
 naming name <- c."momentDefinitionRole";
 valuing [c.lower .. c.upper] p1.value;
 typing c.dependentDefinition;
 }
 }

c : CharacterizationRelation -> p2 : Property {
 dependency {
 naming name <- c."universalDefinitionRole";
 valuing [0 .. -1] p2.value;
 typing c.ownerDefinition;
 }
 }
 ...
}

An Ontology Based Metalanguage with Explicit Instantiation

76

OGML

Model of extension
(OGMLX)

Model of intension

Figure 4-18 - OGML definition divided in a model for intension and extension

Three sets of constructs are thus found in OGML:

- OGML contains OGML constructs,
- OGML contains an intensional model, which contains intensional constructs,
- OGML contains OGMLX, which contains OGMLX constructs.

The latter two sets of constructs are thus disjoint and complete subsets of the first set.

InstanceOf Semantics between Languages and Models
The second basis is the definition of IODs in OGML; they relate all OGML constructs to
OGMLX constructs. This was partly described in the previous section. A summary of all the
IODs in the OGML definition is shown in Listing 4-18. The definingConcepts on the left are
all OGML constructs and the conformingConcepts on the right are all OGMLX constructs.
The relations between them are expressed by CIs and AFs, which are not shown in the
listing. The full definition is found on lines 87 to 163.

Listing 4-18 - The OGML definition of OGMLX constructs

Relations OGMLInstanceOfRelation {

 abstract Definition -> PropertiesElement {... }
 sd : UniversalDefinition -> su : InstantiatableElement {... }
 md : "MomentDefinition" -> mu : MomentUniversal {... }
 "PropertyDefinition" -> XObject {}
 "SubstantialDefinition" -> SubstantialUniversal {}
 "DataTypeDefinition" -> SubstantialUniversal {}
 "ObjectDefinition" -> XObject {}
 "Class" -> XObject {}
 "OGMLDataType" -> Literal {}
 InstanceOfRelation -> InstanceOfProperty {}

 ld : LanguageDefinition -> mm : MetaModel {... }

 a : Attribute -> p : Property {... }

 i : InherenceRelation -> p : Property {... }

 c : CharacterizationRelation -> p1 : Property {... }
 c : CharacterizationRelation -> p2 : Property {... }

 g : "GeneralizationRelation" -> p1 : Property {... }
 g : "GeneralizationRelation" -> p2 : Property {... }
}

An Ontology-Based Metalanguage with Explicit Instantiation

77

Basis of the Proof
Now we show how the OGML definition and semantics ensure that all modeling constructs
have a representation on OGMLX. To proof this, we formulate the facts. Based on the
following four facts about OGML we can make an inference:

Fact 1: By definition OGMLX is a linguistic instance of the intensional model (first basis)
Fact 2: By definition the intensional model is a linguistic instance of itself (first basis)
Fact 3: The existence of an IOD for each construct in the intensional model (second basis)
Fact 4: The semantics of the IOD (see subsection 4.3.3)

The proof presented here consists of four steps. In Step 1, we will prove that OGML constructs
are indeed instances of OGMLX. Thereafter in Step 2, we do the same thing for language
constructs from languages other than OGML. Then we show in Step 3 how model constructs
become an instance of OGMLX. Finally, we generalize the proof to a statement about all
modeling constructs in Step 4 (in models, languages and OGML). Natural deduction is used
to make the inference. To save space a shorthand notation for logic predicates is used; n-ary
predicates are written with capital letters and are immediately followed by variables. To give
an example: instanceOf(a, b) is represented as IOab .

An Ontology Based Metalanguage with Explicit Instantiation

78

Step 1: Proof for OGML Constructs
Here we proof that OGML constructs are instance of OGMLX. We assume the following
predicates to distinguish between different constructs in OGML:
Ox x OGML (x is an intensional construct or an OGMLX construct)
Ex x OGMLX (x is a OGMLX construct)
Ix x OGML\OGMLX (x is an intensional construct)

We recognize the following 2-ary predicates for relations:
IOxy x is an instance of y (from OGML point of view we do not distinguish ontological or
linguistic)
IODxy there is an IOD inside the OGML definition relating x to y

Premises:
We represent Facts 1 and 2 in first-order logic:
Premise 1:))((IyIOxyyOxx ∧∃→∀
We represent Fact 3 in first-order logic:
Premise 2:))((EyIODxyyIxx ∧∃→∀
We represent Fact 4 in first-order logic:
Premise 3:))''''(''(yIOyxIOxxIOyyxIODxyEyIxyx →∧∀∀→∧∧∀∀

To proof:
All OGML constructs are instance of OGMLX, in first-order logic:

)()(EyIOxyyxOxx ∧∃∀→∀

Proof:
First, we make a trivial deduction of formulas with valid combinations of constants. Listing
4-19 shows how we derive four lemmas from the premises and assumption)(Oxx∀ (1).

Listing 4-19 - Proof of a set of base formulas deduced from the premises (Step 1a)

)(Oxx∀ (1)))((IyIOxyyOxx ∧∃→∀

––––––––[∀ E] –––––––––––––––––[∀ E]
 Oa)(IyIOayyOa ∧∃→
––––––––––––––––––––––––––––––[→ E]

)(IyIOayy ∧∃ IaIOba ∧ (2) IbIOdb∧ (3)

––[-2-3, ∃ E]x2
 IbIOdb ∧ IaIOba ∧

 –––––––[∧ E] ––––––––––––[∧ E]x2
))((EyIODxyyIxx ∧∃→∀ IOdb Ia IOba

––––––––––––––––––[∀ E]
)(EyIODayyIa ∧∃→ Ia

––––––––––––––––––––––––––––––––––––[→ E]
)(EyIODayy ∧∃ EcIODac ∧ (4)

 ––––––––––––––––––––––––––––––––––––[-4, ∃ E]

 EcIODac ∧
 ––––––––[∧ E]
 Ec

An Ontology-Based Metalanguage with Explicit Instantiation

79

Under assumption (1) we thus found the following formulas to be true: IbIOdb∧ , IOdb ,
IaIOba ∧ , IOba , Ia , EcIODac ∧ and Ec . These and assumption (1) will be used in the

deduction shown in Listing 4-20.

Listing 4-20 - Proof that OGML constructs are part of OGMLX (Step 1b)

This proves that Facts 1-4 ensure that every OGML construct is instance of the extension.

Step 2: Proof for Language Constructs
Now we can prove also that the constructs of other languages also become instance of the
OGMLX as a result of Facts 1-4. We introduce a new set of constructs:
Lx x Language\OGML (x is a construct in any language, not including OGML)

Premises:
And we use the fact that all language definitions are a linguistic instance of the OGML
intension, expressed in first-order logic:
Premise 4:))((IyIOxyyLxx ∧∃→∀

To proof:
All language constructs are instance of OGMLX, in first-order logic:

)()(EyIOxyyxLxx ∧∃∀→∀

Proof:
This proof now does not look different from the previous proof. We only have to exchange
Premise 1 for Premise 4 and assumption (1) from)(Lxx∀ instead of)(Oxx∀ . As a direct
result of changing assumption (1) the conclusion becomes)()(EyIOxyyxLxx ∧∃∀→∀ . This
shows that language constructs are part of the OGMLX.

))''''(''(yIOyxIOxxIOyyxIODxyEyIxyx →∧∀∀→∧∧∀∀ Ia EcIODac ∧
––[2x∀ E] ––––––––––––––[∧ I]

)''''(''(cIOyaIOxxIOyyxIODacEcIa →∧∀∀→∧∧ EcIODacIa ∧∧
–––[→E]
)''''('' cIOyaIOxxIOyyx →∧∀∀
 ––––––––––––––––––––––[2x∀ E] IOdb IOba [∧ I]
 IOdcIObaIOdb →∧ IObaIOdb ∧

 ––[→E]
 Ec IOdc
 ––––––––––––––––––––––––––––––––––––––[∧ I]
 EcIOdc∧
 –––––––––––– [∃ I]
)(EyIOdyy ∧∃
 –––––––––––– [∀ I]
)(EyIOxyyx ∧∃∀
 –––––––––––––––––––– [-1,→ I]

)()(EyIOxyyxOxx ∧∃∀→∀

An Ontology Based Metalanguage with Explicit Instantiation

80

Step 3: Proof for Model Constructs
Here we prove models to be part of OGMLX. The proof is similar to the proof presented in
Step 1, but here we have to make slightly different assumptions. Again, we introduce a new
set of constructs:
Mx x Model (x is a construct in a model)

Premises:
We keep all the premises from the earlier proof and add a premise that expresses the fact that
models are linguistic instances of modeling languages (model constructs are linguistic
instances of the set of Language constructs). This is expressed with the following formula in
first-order logic:
Premise 5:))((LyIOxyyMxx ∧∃→∀

To proof:
All model constructs are instance of OGMLX, in first-order logic:

)()(EyIOxyyxMxx ∧∃∀→∀

Proof:
Like in Step 1, we first make a trivial deduction of formulas with valid combinations of
constants. Listing 4-21 shows how we derive four lemmas from the premises and assumption

)(Mxx∀ (1).

Listing 4-21 - Proof of a set of base formulas deduced from the premises (Step 3a)

Under assumption (1) we thus found the following formulas to be true: LbIOdb ∧ , IOdb ,

LaIOba ∧ , IOba , La , EcIODac∧ and Ec . These and assumption (1) will be used in the

deduction shown in Listing 4-22.

)(Mxx∀ (1)))((LyIOxyyMxx ∧∃→∀

–––––––[∀ E] ––––––––––––––––––[∀ E]
 Md)(LyIOayyMa ∧∃→
–––––––––––––––––––––––––––––[→ E]

)(LyIOayy ∧∃ LaIOba ∧ (2) LbIOdb∧ (3)

––[-2-3, ∃ E]x2
 LaIOba ∧ LbIOdb∧

 –––––––[∧ E] ––––––––––––[∧ E]x2
))((IyIOxyyLxx ∧∃→∀ IOdb La IOba

–––––––––––––––––[∀ E]
)(EyIODayyLa ∧∃→ La

–––––––––––––––––––––––––––––––––––––[→ E]
)(EyIODayy ∧∃ EcIODac ∧ (4)

 –––––––––––––––––––––––––––––––––––[-4, ∃ E]

 EcIODac ∧
 –––––––––[∧ E]
 Ec

An Ontology-Based Metalanguage with Explicit Instantiation

81

Listing 4-22 - Proof that model constructs are instances of OGMLX (Step 3b)

From)()(EyIOxyyxMxx ∧∃∀→∀ we can conclude that model constructs are instance of the
OGMLX.

Step 4: Generalization of the Proofs
In the current section, we have proven the adequateness with which the OGML modeling
architecture represents the constructs from models, languages and OGML itself. This indeed
includes all constructs C that are present in the OGML architecture:)(MxLxOxCxx ∨∨→∀
thus:

Listing 4-23 - A generalization of the proofs in step 1, 2 and 3 (Step 4)

The presented proof is adequate in the sense that it merely proves existence of an instanceOf
OGMLX. A uniqueness prove is not directly given, but follows from the fact that the
instanceOf relations are functions. This intuition becomes clearer when we represent the
proofs as a conceptual graph [85]. Figure 4-19 shows such a conceptual graph. The boxes
represent quantification over the sets of constructs that we defined. These are related to each

))''''(''(yIOyxIOxxIOyyxIODxyEyIxyx →∧∀∀→∧∧∀∀ EcIODac ∧ Ia
–––––––––––––––––––––––––––––––––––––[2x∀ E] ––––––––––––––[∧ E]

)''''(''(cIOyaIOxxIOyyxIODacEcIa →∧∀∀→∧∧ EcIODacIa ∧∧
––[→E]
)''''('' cIOyaIOxxIOyyx →∧∀∀
 –––––––––––––––––––––[2x∀ E] IOdb IOba [∧ I]
 IOdcIObaIOdb →∧ IObaIOdb ∧
 ––[→E]
 Ec IOdc
 –––––––––––––––––––––––––––––––––––––– [∧ I]
 EcIOdc∧
 –––––––––– [∃ I]
)(EyIOdyy ∧∃
 –––––––––– [∀ I]
)(EyIOxyyx ∧∃∀
 –––––––––––––––––––––––– [-1,→ I]
)()(EyIOxyyxMxx ∧∃∀→∀

)(MxLxOxCxx ∨∨→∀)(Cxx∀ (4))()(EyIOxyyxOxx ∧∃∀→∀ … … …

––––––––––––––– [∀ E] –––[∀ E] ––––––––––––––– [∀ E] (1) (2) (3)
MaLaOaCa ∨∨→ Ca)(EyIOayyxOa ∧∃∀→ Oa … La … Ma

–––––––––––––––––––––––[→E] –––––––––––––––––––––––––––––3x[→E]
MaLaOa ∨∨)(EyIOayyx ∧∃∀

––[-1 -2 -3,∨ E]
)(EyIOayyx ∧∃∀

––––––––––––––––––––––[-4,→ I]

)()(EyIOxyyxCxx ∧∃∀→∀

An Ontology Based Metalanguage with Explicit Instantiation

82

other via the 2-ary predicates IO and IOD (shown as ovals in the figure). The IO relations
that we inferred in the current section are shown with dashed lines.

Ii :!∃ Ee :!∃

Ii :'!∃ Oo :∀

IO IO

IO

IOD

Ll :∀IO

IO

Mm :∀IO

IO

Ll :'!∃

IO

Figure 4-19 - A conceptual graph of the model constructs mapped to OGMLX

Of particular interest are the O L and M sets, which represent OGML, Language and Model
constructs. For all elements x in those sets the instanceOf exactly one e has been established as
follows:

The OGML definition ensures that each x is always related to exactly one i via two IO
relations. That this is exactly one i is shown by the uniqueness quantors (!∃) and follows
from the fact that instanceOf relations are functions. An IOD relation relates this i to one e,
which by semantics of IOD now becomes the defining constructs for x.

4.7 The Resulting Modeling Architecture
Literature on metamodeling provides detailed comparisons between the different design
options for modeling architectures [11][34][10][3][9]. Some of which have been explained in
Section 2.4 and Chapter 3. In the current section, we use some of these design options to
evaluate the properties of the OGML architecture.

Modeling Architecture
In the previous section, we showed how from the point of view of the metalanguage, OGML,
all model constructs are instances of OGMLX. OGMLX is at the same time part of the OGML
definition. Figure 4-20 shows the architecture of OGML by grouping the sets f constructs that
exist in the architecture. It shows a nested architecture like discussed in subsection 2.4.7. This
architecture resembles the one resented by Kurtev in [62] (Section 2.5). This observation will
be revisited in Chapter 8.

An Ontology-Based Metalanguage with Explicit Instantiation

83

All constructs
Models

instanceOf

Derived instanceOf

OGML

Model1 Model2

Languages

Model of extension
(OGMLX)

Model of Intension c
b

a a and b are
subsets of set c

……

Language1 ……

Figure 4-20 - The OGML architecture represented as sets of constructs

Instantiation Semantics
Gitzel and Hildebrand reason about uniform and layer dependent instantiation semantics [34].
They do not discuss the possibility to achieve both. This is what OGML has achieved by
making the instantiation semantics part of the metamodel definition. OGML realizes the
“M2-level mechanism” that Atkinson and Kühne discuss [10].

The Number of Layers
We assume three modeling layers counting all the models as one layer; no fourth layer exists
(see Figure 4-21). We argue that this is a truthful representation of what actually exist in the
modeling architecture from the point of view of the metalanguage.. The description of power
types all happens on the model layer and if the language definition supports this.

OGML

Languages

Models

Figure 4-21 - The nested modeling architecture of OGML

Recursive or Axiomatic Metalanguage
We did not choose for an axiomatic definition of the metalanguage. The reflective definition
provides the ability to reuse the same principle over multiple layers. An example is the
support of “Clabject” like constructs on all layers, which is needed for the pragmatics of
modeling; on all layers languages and models need to be specified, thus constructs need to
be named and additional information needs to be attached for notational purposes. The last
sections of the current chapter have shown how OGML supports this in a uniform manner
over all layers.

Self-reflective systems do not exist according to Gödels theorem. Whereas a conceptual
language can define its own constructs, using its own constructs, finally it needs to be
mapped on some existing structure to be stored in. For OGML this is OGMLX. OGMLX

An Ontology Based Metalanguage with Explicit Instantiation

84

ultimately needs to be expressed on some existing structure, like a model in ECore. This we
have done in the prototype, which is presented in Chapter 7. Conceptually OGML constructs
reify their own definition. However, the semantics still need to be expressed by a mapping to
graph structures in Chapter 6 and are supported by the OCL semantics.

4.8 Conclusions
In the current chapter, we proposed a metalanguage based on Ontology and with explicit
instanceOf relation. We drew design decisions from the domain of Formal Ontology and presented
the resulting metalanguage complete with syntax, semantics description and associated
modeling architecture.

We introduced OGML by means of a running example. We showed how an ontological view
on the models supports metamodeling decisions. At first hand it may seem that define
languages in OGML is a complex undertaking. However, consider how a metamodeler
would have dealt with these precise metamodeling tasks in, for example, a MOF
environment: all universals on all layers would be Classes, likewise for attributes and there
is no way to specify semantics of the languages. There is simply no way how a modeler
could end up with favorable features as “language independent model handling” in a MOF
metamodeling.

We also showed how the OGML constructs support a structural perspective on models as
well as the ontological perspective. The ontological perspective is realized by the language
definition in OGML. In section 4.5, we described OGML’s self-reflective nature. Here we
were able to conclude that OGML handles the “Clabject” nature of constructs in a consistent way
over all layers.

Finally, we derived conclusions from the resulting architecture. In section 4.6, we proved
how OGML projects all modeling constructs on a fixed structure called OGMLX. For OGML
itself this structure is seen as the extension where all models reside. A tool that implements
OGML, however, can map the structure directly onto a data structure and thus has a uniform
representation of models, language models and the OGML model itself.

As Kurtev showed in [62] (Section 2.5) a traditional architecture, like MOF, cannot explicitly
represent this relation to the underlying structure. This may be caused by the fact that MOF’s
original purpose was to be a data-exchange format, later it evolved to a metalanguage:
“Although … MOF has its origins as … supporting model interchange … it quickly became
associated with the meta-metamodel at level M3. Unfortunately, these two interpretations are not
compatible in the original linear metamodeling framework.” [7],

Section 4.7 shows the OGML architecture in terms of the relations between its constructs. To
summarize in the terminology of Atkinson and Kühne [11]: this shows OGML to be a nested
modeling architecture with three layers and a compaction level formed by OGMLX. OGMLX is
in their terms a library format for all models and languages and also a language format from the
point of view of OGML.

An Ontology-Based Metalanguage with Explicit Instantiation

85

Chapter 5 – Case Studies

5.1 Introduction
In the previous chapter, OGML was introduced. We did this by means of a simple example
of an UML model with Classes and Attributes. In the current chapter, we extend the UML
example with associations. To show the capabilities of OGML, we do this in different ways.
Afterwards we draw conclusions about the differences in metamodeling choices.

All the examples presented in the current chapter have been verified by a prototype
implementation of OGML, which is presented in Chapter 7. We extensively use UML and
OCL here, so a reader is supposed to be familiar with their specifications [75][73].

About UML
UML is a vast modeling language that focuses on different aspects of software design. It
includes modeling languages to model behavior well as structure. We will focus only on a
structural (classes) part of the language and in particular on the relational features there:
Association, Inheritance and Attribution. The UML specification [75] explains how associations
are instantiated to links and attributes to slots.

We expressed two flavors of UML called: SimpleUML1 and SimpleUML2. While the two do
not differ significantly in the constructs they provide (both focus on attributes and
associations) their intention is different. The purpose of SimpleUML1 is to show the proposed
metalanguage can define different mechanisms for “UML Object” model instantiation. The
SimpleUML1 definition contains three different definitions for the instantiation semantics:
associations instantiated to binary links, navigable associations with attributes (association
classes) and association instantiated to slots.

SimpleUML2 focuses on the expression of n-ary links [36]. We show that the result is a
navigable model. Both adaptations of UML provided us with insights in the ontological
nature of the UML constructs, their differences make explicit the design choices that have to
be made when designing a modeling language.

5.2 SimpleUML1
In SimpleUML1, we define three different views on the world. They differ in the relation
individual they define: binary links, attributable links and only slots. Listing 5-1 shows the
universal definitions we define in this language and Listing 5-2 shows the individual
definitions we define in this language. We will use the same ontological commitment of the
language to demonstrate three different instantiation mechanisms.

An Ontology Based Metalanguage with Explicit Instantiation

86

Listing 5-1 - Case study: SimpleUML1, universal definitions

Listing 5-2 - Case study: SimpleUML1, individual definitions

1: ObjectDefinition UMLObject {}
ObjectDefinition UMLLiteral {

 attribute value : "String";
}

5:
PropertyDefinition UMLSlot {

 attribute name : "String";
 attribute value : UMLObject, UMLLiteral;
 dependsOn UMLObject, UMLLink role = "slots" multiplicity = *;
10: }

PropertyDefinition UMLLink {
 attribute sourceObject : UMLObject;
 attribute targetObject : UMLObject;
15: attribute sourceRole : "String";

atribute targetRole : "String";
 dependsOn UMLObject role = "outgoingLinks" multiplicity = *;
 dependsOn UMLObject role = "incomingLinks" multiplicity = *;

}

1: SubstantialDefinition UMLClass {
 attribute name : "String";
 attribute isAbstract : "Boolean";

}
5:

GeneralizationRelation UMLGeneralization {
 generalConcept = UMLClass;
 specializedConcept = UMLClass;
 parentMultiplicity = *;
10: childMultiplicity = *;
 generalConceptRole = "super";
 specializedConceptRole = "sub";

}

15: OGMLDataType "String" {}

OGMLDataType "Boolean" {}

DataTypeDefinition UMLPrimitiveType {
 attribute name : "String";
20: }

MomentDefinition UMLAttribute {
 attribute name : "String";
 attribute upper : "String";
25: attribute lower : "String";
 attribute visibility : "String";
 attribute type : UMLClass, UMLPrimitiveType;
 attribution universalDefinition = UMLClass, UMLAssociation
 universalDefinitionRole = "owner"
30: momentDefinitionRole = "attributes"
 multiplicity = *;

}

MomentDefinition UMLAssociation {
35: attribute name [0-1] : "String";
 attribute sourceClassRole : "String";
 attribute targetClassRole : "String";
 attribute sourceClassLower : "String";
 attribute sourceClassUpper : "String";
40: attribute targetClassLower : "String";
 attribute targetClassUpper : "String";
 outgoing universalDefinition = UMLClass universalDefinitionRole = "source"
 momentDefinitionRole = "outgoingAssociations" multiplicity = *;
 incoming universalDefinition = UMLClass universalDefinitionRole = "target"
45: momentDefinitionRole = "incomingAssociations" multiplicity = *;

}

An Ontology-Based Metalanguage with Explicit Instantiation

87

5.2.1 Associations of Binary Links
In UML, binary associations are navigable. For each pair of objects that is associated on link
is created. The definition of the UMLAttribute is similar to the one defined in the previous
chapter. It contains a specializationExclusion, to support encapsulation of attributes. A new
feature shown here is the realization of the UMLAssociation. The UML specification
defines that its instances are links and states the following:

Instantiation – “An association declares that there can be links between instances of the associated
types. A link is a tuple with one value for each end of the association, where each value is
an instance of the type of the end.”

Navigation – “The function roles(as) = <r1, . . . , rn> assigns each class ci for 1 < i < n
participating in the association a unique role name ri…”

Therefore, for each combination of combined model elements a link is created. An
association is thus instantiated to an unknown number of links. Therefore, the
sequenceIdentifier of the IOD is used. Line 19 of Listing 5-3 shows this (links : [l : UMLLink]).
Navigation over binary associations can start in an UMLClass x and ends in the associated
UMLClass y. An UMLClass can be instantiated to several UMLObjects. If the multiplicity
in this direction is higher than one, the result of the navigation on the instances can be a set
of UMLObjects. Navigation in two directions are supported by two AFs defined on lines 20
and 25.

Listing 5-3 - Case study: SimpleUML1, binary link instantiation

We investigate the instantiation of relation outgoingAssociations. Its valuing expression is on
line 22 (at the end) and uses the variable links, which is bound to all links instantiated from

1: Relations UMLInstanceOfSimple {
 t : UMLPrimitiveType -> l : UMLLiteral {}

 c : UMLClass -> o : UMLObject {
5: attributes -> slots;
 outgoingAssociations -> outgoingLinks;
 incomingAssociations -> incomingLinks;
 } when (not(c.isAbstract='true'))

10: a : UMLAttribute -> s : UMLSlot {
 attributes {
 naming name <- a.name;
 valuing [a.lower .. a.upper] s.value;
 typing a.type;
15: specializationExclusion = a.visibility='private';
 }
 }

 a : UMLAssociation -> links : [l : UMLLink] {
20: outgoingAssociations {
 naming targetRole <- a.targetClassRole;
 valuing [a.targetClassLower .. a.targetClassUpper] links.collect(l | l.targetObject);
 typing a.target;
 }
25: incomingAssociations {
 naming sourceRole <- a.sourceClassRole;
 valuing [a.sourceClassLower .. a.sourceClassUpper] links.collect(l | l.sourceObject);
 typing a.source;
 }
30: }

}

An Ontology Based Metalanguage with Explicit Instantiation

88

the specific association. The result of this expression is thus a collection of all the endpoints
of these links. Only those are selected that conform to the naming condition on line 21: their
“targetRole” property needs to have a value equal to the “targetClassRole” property of the
UMLAssociation a (a.targetClassRole). Together with the results from typing and multiplicities,
we defined the navigation result that the UML and OCL specification prescribe.

An Example Model with Associations
Figure 5-1 shows the instantiation of the UMLAssociations in with UML notation. The top
of the figure shows the Class Language definition of SimpleUML1, with an SD for UMLClass,
an MD for the UMLAssocciation and two CRs to connect them. At the bottom, the Object
Language definition is shown, with an OD for the UMLObject, a PD for the UMLLink and
one IR drawn as association. The middle of the figure shows a Class Diagram for the
gynecology of crocodiles (“In UML” box). InstanceOf relations are drawn with dashed
arrows. In The Object Diagram model, we see the double instantiations of all constructs.

UMLClass -name : string
-sourceClassRole : string
-targetClassRole : string
-sourceMult
-targetMult

UMLAssociation

UML (Class) language
-universalDefinitionRole : String = source
-momentDefinitionRole : String = outgoingAssociations

outgoing

-universalDefinitionRole : String = target
-momentDefinitionRole : String = incomingAssociations

incoming

-feature

-dependency

-ownerDefinition

-ownerDefinition

-dependentDefinition

-dependentDefinition

-name : String
-weight : String

Crocodile -sourceClassRole : String = parent
-targetClassRole : String = child
-sourceMult : String = 2
-targetMult : String = *

Ancestory-source -outgoingAssociations

-target -incomingAssociationsCrocodile

-parent 2

-child

*

Class diagram

name : String = Dena
weight : String = 23

Dena : Crocodile

-sourceObject -incomingLinks

-targetObject-outgoingLinks

sourceRole : String = child
targetRole : String = parent

relation1 : Ancestory

-sourceObject

-outgoingLinks

-incomingLinks

-targetObject

-incomingLinks : Link
-outgoingLinks : Link

Object -sourceObject : Object
-targetObject : Object

Link
UML (Object) language

Object Diagram

name : String = Zena
weight : String = 2332

Zena : Crocodile

name : String = Jena
weight : String = 323

Jena : Crocodile

sourceRole : String = child
targetRole : String = parent

relation2 : Ancestory

*

In UML

Figure 5-1 – SimpleUML1 models in OGML with instantiated associations

An Ontology-Based Metalanguage with Explicit Instantiation

89

A Demonstration of Navigation
As an example, we navigate the ontological perspective of the models using the IODs of
Listing 5-3. The exercise will be to find all association ends of crocodile “Dena”. This is an
UMLObject instanceOf an UMLClass. Therefore, we bind the identifiers of the IOD on line 6
to the UMLClass and UMLObject in the models:

o = Dena
c = Crocodile

At the Class Diagram level, we can establish the type of the association end and the
multiplicity. The IOD for Crocodile (line 6) has two CIs. We take outgoingAssociations and
navigate (structurally) to find the model constructs there: c.outgoingAssociations. We find
Ancestory; an UMLAssociation. We bind it to a of the IOD at line 19. We can thus find a
perspective for the CI in the IOD for UMLAssociation, provided that it has an AF that
matches the CI. Such a one is found at line 20. We can execute different expressions from the
AF now:

naming, a.targetClassRole = “child”

typing, a.target = Crocodile

lower, a.targetClassLower = 0

upper, a.targetClassUpper = infinite

We can the same thing for incomingAssociations and find:
naming = “parent”,
typing = Crocodile,
lower = 2 and
upper = 2

On the instance level, a similar thing can be done to get the link ends. We start again with
outgoingAssociations and navigate (structurally) to find the model constructs there:
o.outgoingLinks. An empty set is the expected result: “Dena” has no children. This conforms to
the found multiplicity for outgoingAssociations. Next we try incomingAssociations. We find
relation1 and relation2, both UMLLinks. We bind them as a set to links of the IOD at
line 19. Now we can execute the valuing function:

valuing, links.collect(l | l.targetObject) = {“Dena”, “Zena”} (conforms to the found multiplicity of 2)

We found that “Dena” (o) is connected to two other UMLClasses:

o.child = {} of type Crocodile
o.parent = {“Dena”, “Zena”} of type Crocodile

5.2.2 Associations on Attributable Links (AssociationClass)
Here we define SimpleUML1 with the concept of attributable associations:
AssociationClasses. For SimpleUML1 we do not follow the specification, but rather
stick to the ontological commitment that SimpleUML1 already makes. SimpleUML2 will give
an example that is closer to the specification.

An Ontology Based Metalanguage with Explicit Instantiation

90

A reader who took a close look at the ontological commitment shown in Listing 5-1 and
Listing 5-2 may already have noticed that attributable associations and links are already
structurally supported by it. The MD UMLAttribute characterizes both UMLClass and
UMLAssociation and PD UMLSlot inheres in UMLObject and UMLLink.

When an association has attributes, these need to be accessible. In the previous subsection,
the navigation passed the association and ended directly in the opposite class. In this
example, we make it end in the association itself. From there, the attributes can be queried or
alternatively one can navigate to one of the association endpoints. Listing 5-4 shows how the
IOD for UMLAssociation has a CI to access the attributes (see line 8). The AFs from the
previous example are also present with a small modification to make the navigation end in
the association itself (the end of lines 12 and 17).

Thus far, we can navigate to associations and access its attributes there, but no perspective is
provided on the endpoints of the association itself. Therefore, we define the CIs on line 5 and
6. They use the CRs, which characterize UMLClass with UMLAssociation, the other way
around: from association to class and thus refer to the universalDefinition property of the CRs.
To implement the perspective on classes we need AFs for these CIs.

To define these AFs we have to do something asymmetric. One would expect that these are
added to the IOD for UMLClass. However, a SD contains no information on attribution, this
is the role of the MD. Therefore, completely asymmetric with the previous AFs we specify,
we add the AFs in the same IOD for UMLAssociation. Line 21 and 26 shows them. Their
multiplicity is always one, because if a link exists, we know it always links two classes.

Listing 5-4 - Case study: SimpleUML1, binary link instantiation with properties

2: Relations UMLInstanceOfWithLinksAsAssociationClass {
 ...

a : UMLAssociation -> links : [l : UMLLink] {
5: source -> sourceObject;
 target -> targetObject;

 attributes -> slots;

10: outgoingAssociations {
 naming targetRole <- a.targetClassRole;
 valuing [a.targetClassLower .. a.targetClassUpper] links;
 typing a;
 }
15: incomingAssociations {
 naming sourceRole <- a.sourceClassRole;
 valuing [a.sourceClassLower .. a.sourceClassUpper] links;
 typing a;
 }
20:
 source {
 naming sourceRole <- a.sourceClassRole;
 valuing [1 .. 1] links.collect(l | l.sourceObject);
 typing a.source;
25: }
 target {
 naming targetRole <- a.targetClassRole;
 valuing [1 .. 1] links.collect(l | l.targetObject);
 typing a.target;
30: }

}
 }

An Ontology-Based Metalanguage with Explicit Instantiation

91

5.2.3 Associations on Slots
The previous examples showed how UMLAssociation is mapped on an UMLLink.
According to BWW, an association is nothing more than a set of mutual properties [87]. Here
we define the instantiation of the binary association on a pair of slots. Listing 5-5 shows the
definition of two IODs for UMLAssociation.

Listing 5-5 - Case study: SimpleUML1, slot instantiation

5.3 SimpleUML2
SimpleUML2 defines n-ary associations with properties, which are navigable.

In UML, Associations do not per se have to be navigable. Only binary Associations without
properties (AssociationClasses) are navigable and only when marked explicitly as navigable.
In the SimpleUML1 example, we already assumed all ends navigable in order to
demonstrate the capabilities of OGML. In SimpleUML2, we will define n-ary associations
with properties, which are navigable. Instantiation of n-ary properties in UML happens just
like joining several tables in database systems. In databases for each combination of rows, a
new row is created, in UML a link is created for each combination of objects participating in
the Association. The specification says the following about n-ary associations:

“For n-ary associations, the lower multiplicity of an end is typically 0. A lower multiplicity for an end
of an n-ary association of 1 (or more) implies that one link (or more) must exist for every possible
combination of values for the other ends.”

In SimpleUML1, the Association was defined using one MD and two CRs. For
SimpleUML2 we cannot do this because the number of associated classes can be n while the
CR is always binary (see subsection 4.3.2). Thus to support n-ary associations, we make a
new ontological commitment. Listing 5-6 shows the universal definition in this commitment,
Listing 5-7 shows the individuals. Association is defined on an SD and we added an MD
AssociationEnd to represent the association ends. For the individuals this translates to an
OD Link and a PD LinkEnd. The new commitment allows us to specify the
AssociationClass explicitly while in SimpleUML1 every UMLAssociation is an
UMLAssociationClass. AssociationClass extends Class and Association just
like in the UML specification.

Relations UMLInstanceOfAssociationsOnSlots {
 ...

 a : UMLAssociation -> s1 : UMLSlot {
 outgoingAssociations {
 naming name <- a.sourceClassRole;
 valuing [a.sourceClassLower .. a.sourceClassUpper] s1.value;
 typing a.source;
 }

 }, a : UMLAssociation -> s2 : UMLSlot {
 incomingAssociations {
 naming name <- a.targetClassRole;
 valuing [a.targetClassLower .. a.targetClassUpper] s2.value;
 typing a.target;
 }
 }
}

An Ontology Based Metalanguage with Explicit Instantiation

92

Listing 5-6 - Case study: SimpleUML2, universal definitions

Listing 5-7 - Case study: SimpleUML2, individual definitions

The IODs are defined in Listing 5-8. The IOD for AssociationClass inherits the CIs and
AFs from Class and Association and needs no additions, thus is empty. The IOD for
Class specifies CIs for attributes and associations. The IOD for Association contains a CI
for AssociationEnds. It can be instantiated to multiple Links therefore a
sequenceIdentifier is used (links : [l : Link]).

AssociationEnds are thus seen from the point of view of Classes and for the point of
view of Associations. Therefore, they have two AFs. The first one (“associations”)
implements the point of view from the Class. Its lengthiness stems from the fact that the
number of instantiated links can vary widely. The lower bound lb of this instantiation
multiplicity can be established by multiplying all the lower bounds of each individual
AssociationEnd. From the point of view of one class attached to an AssociationEnd ae,
we “see” a minimum of lb / ae.lowerbound AssociationEnds. Expressed by the lower
expression (see line 17 - 18):

ObjectDefinition Link {}

PropertyDefinition LinkEnd {
 attribute object : Object;
 attribute roleName : "String";
 attribute link : Link;
 dependsOn Object role = "links" multiplicity = *;
 dependsOn Link role = "ends" multiplicity = 2-*;
}
...

SubstantialDefinition Classifier {
 attribute name : "String";
}

SubstantialDefinition "Class" extends Classifier {
 attribute isAbstract : "Boolean";
}

MomentDefinition Attribute {
 attribute name : "String";

attribute lowerbound : "String";
 attribute upperbound : "String";
 attribute type : Classifier;
 attribution universalDefinition = "Class" universalDefinitionRole = "owner"
 momentDefinitionRole = "attributes" multiplicity = 1-*;
}

SubstantialDefinition Association extends Classifier {}

SubstantialDefinition AssociationClass extends "Class", Association {}

MomentDefinition AssociationEnd {
 attribute roleName [0-1] : "String";
 attribute lowerbound : "String";
 attribute upperbound : "String";
 outgoing universalDefinition = "Class" universalDefinitionRole = "class"
 momentDefinitionRole = "associations" multiplicity = *;
 incoming universalDefinition = "Association" universalDefinitionRole = "association"
 momentDefinitionRole = "memberEnds" multiplicity = 2-*;
}

An Ontology-Based Metalanguage with Explicit Instantiation

93

ae.association->first().memberEnds->select(roleName<>ae.roleName)->iterate(end ; lower : Integer = 1 |
lower * end.lowerbound.toInteger())

The upper expression of “associations” AF follows with the same reasoning, only we have to
account for -1 as being infinite. It is shown on lines 20 to 26. The “memberEnds” AF definition
is simpler reflecting the fact that each link is always connected to one object at each link end.
The lower bound multiplicity can still be zero, because not all Classes need to participate
in n-ary links. In binary links obviously, they have to. Otherwise, there would be no link.

Listing 5-8 - Case study: SimpleUML2, instantiation

5.4 Querying the Models
In the current section we show some example queries that can be run on models conforming
the languages that we defined in Chapters 4 and 5. The queries run on our prototype OCL
interpreter. The inputs are the query, the models, the language model and the OGML model.
All are represented in OGMLX form as we will show in Chapter 7. To support the different
perspectives that OGML provides, the OCL syntax was expanded with a languageAxis
construct. This allows a user to explicitly state according to which language the navigation
over the models should happen. An example of this expression is:

{SimpleUML1 | jena.children }

1: Relations SimpleUML2Instance {
 AssociationClass -> objects : [o : Object] {}

c : "Class" -> o : Object {
5: attributes -> slots;
 associations -> links;
 } when (not(c.isAbstract='true'))

 a : Association -> links : [l : Link] {
10: memberEnds -> ends;
 }

 ae : AssociationEnd -> ends : [le : LinkEnd] {
 associations {
15: naming roleName <- ae.roleName;
 valuing [

 ae.association->first().memberEnds->select(roleName<>ae.roleName)
 ->iterate(end ; lower : Integer = 1 | lower * end.lowerbound.toInteger())
..

20: let uppers : Collection(Integer) = ae.association->first().memberEnds
 ->select(roleName<>ae.roleName)[upperbound.toInteger()] in
 if (uppers->includes(-1)) then

 -1
else

25: uppers->iterate(u ; upper : Integer = 1 | upper * u)
endif

]
ends.collect(e | e.link);

 typing ae.association;
30: }

 memberEnds {
 naming roleName <- ae.roleName;
 valuing [ae.lowerbound..1] ends.collect(e | e.object)->first();
35: typing ae.class;
 } where (ends->size()=1)
 }
 }

An Ontology Based Metalanguage with Explicit Instantiation

94

This switches to the ontological view that SimpleUML1 provides. Take for example the
crocodile model. From the point of view of UML, we can query a specific crocodile, say Jena,
for its children. If we query an UML model with the following OCL query: jena.children, we
expect a set of children crocodiles returned. A user of UML is not at all interested that the
model is represented as Objects and slots on the mechanical level. And querying the object
model in OGML terms would require a query like: jena.slots->select(s | s.name=’children’).collect(value).
It is clear that a language without this ontological perspective would be quiet useless.

Another non-standard notation is adopted from the OCL Interpreter in ATL [52]. In order to
separate the OCL metamodel from the ATL transformation language metamodel, ATL
proposes a construct to refer to model elements by thieir model name and element name in
the following manner: UMLMM!Player

Query on 4-ary Associations
To demonstrate the OGML navigation with the OCL Interpreter, we created the model in
Figure 5-2. It contains a 3-ary association with AssociationClass. Navigation for Classes in
SimpleUML2 is defined to go to the Association(Class) . However we cannot easily use
the opposite end label as we did for SimpleUML1, where jena.child->collect(c | c.child) resulted in
all the children of jena. Here the label of the own link end is used: player.player results in the set
of all link ends connected to player.

-name : String
Team

-salary : Integer
PlayedIn

* *team player

in
Ye

ar

-year : Integer
Year

-name : String
Player

*

Figure 5-2 - An example UML model with a 3-ary association and an AssociationClass

In Table 5-1, the contents are shown for a model conforming to the model shown in Figure
5-2 and to SimpleUML2.

Table 5-1 - The model contents for a model conforming to the model in Figure 5-2

Player Team Year salary
Davids TWENTE 1999 1000000
Kluivert TWENTE 2000 100000
Davids AJAX - 200000
Kluivert AJAX 1998 500000

An Ontology-Based Metalanguage with Explicit Instantiation

95

An OCL query is defined in Listing 5-9. It uses standard OCL notation [73]. The
LanguageAxis expression is used to use the (ontological) navigation provided by the
SimpleUML2language. The query consists out of iterations: over all players ps and for each
ps over all their AssociationClasses ac. The ends of each ac are used to compose a String.

Listing 5-9 - Case study: an example OCL query on SimpleUML2 models

The resulting String of executing this query is shown in Listing 5-10.

Listing 5-10 - Case study: the results of the query in Listing 5-9

Figure 5-3 shows an instance model containing one link of one football player (the second
link is connected via the line that runs to the bottom). The inter-model arrows represent the
instanceOf relations. Using this model we investigate how language-independent querying
is realized using the LanguageAxis expression.

Class

Association

Object

name=Player
name=Kluivert

name=playedIn

Link

Object

name=playedIn

Year=1999

ObjectClass
Class

name=Twente

name=Year

name=Team

Figure 5-3 - An example instance model with associations

The same model could also be queried using two other language perspectives. Linguistically:

{ OGML | UMLModel!Kluivert.links }

This will return the LinkEnds that are attached to player “Kluivert”. The expression
UMLModel!Kluivert is used here to return the model element named “Kluivert”. Structuturally the
model can also be queried (OGMLX):

Player Davids played in team TWENTE during 1999 for the mere sum of $1000000
Player Kluivert played in team TWENTE during 2000 for the mere sum of $100000
Player Davids played in team AJAX for the mere sum of $200000
Player Kluivert played in team AJAX during 1998 for the mere sum of $500000

{ SimpleUML2 | UMLMM!Player.allInstances()->collect(ps | ps.player->collect(ac |
 'Player '+ ac.player.name +' played in team '+ ac.team.name +

if ac.inYear.oclIsUndefined() then
 ''
 else
 ' during '+ inYear.year
 endif
 +' for the mere sum of $'+ ac.salary))
}->iterate(row ; result: String = '' | result + row +'\n')

An Ontology Based Metalanguage with Explicit Instantiation

96

{ OGMLX | UMLModel!Kluivert.properties }

This will return the IRs that connect player “Kluivert” to its - seemingly not so directly
attached - LinkEnds. The language axis chosen here is OGMLX, although one would expect
it to be OGML, because it defines this instanceOf relation. In Sections 4.6 and 4.7, we
witnessed how all constructs become instanceOf OGMLX by OGML definition. All
languages thus became linguistic instanceOf OGML (intension) and instanceOf OGMLX. In
the prototype, we therefore have to distinguish between the two instanceOf relations.
Therefore, whenever an instanceOf defined by OGML ends in an OGMLX construct, we say
that it is on the OGMLX language axis.

5.5 Conclusions
Our example focused on associations in UML. We have presented a total of four ways to
express UML in OGML. For three of them we were able to use the same ontological
commitment. To support n-ary associations we were forced to change the ontological
commitment. Full OCL support for n-ary associations was realized as some researchers
consider appropriate [78].

For n-ary associations we had to define the Association as a SD. It is interesting to note here
that this is ontologically correct as opposed to an association defined as MD [87]. Especially if
the association also has attributes, because one ontological rule of Wand et al. forbids
“properties of properties”.

Another subtle difference arises with the examples about the exact correlation between
inheritance and instantiation. In OGML, it becomes explicit that AssociationClass is
instantiated to an Object while the Association, its generalization, is instantiated to a Link.
The instantiation semantics are inherited here (the CIs and AFs are also inherited). This
seems not to cause any problems but we also did not investigate it thoroughly.

With an example OCL query, we show how OGML provides the full semantics to do
advanced navigation of models. Furthermore, we showed that an ontological view, a linguistic
view and a structural view is provided for the models.

An Ontology-Based Metalanguage with Explicit Instantiation

97

Chapter 6 – Formalization and Semantics

6.1 Introduction
In Chapter 4 we introduced OGML and proven it maps completely on OGMLX. The proof
relied on some of the semantics. These only have been partially explained in Chapter 4. A
complete semantics description requires a description of a semantic domain and a mapping
from the abstract syntax to the domain. In the current chapter, we will provide the semantic
domain as a graph and map the OGML constructs to it. The formalization is not complete.
Detailed operations like multiplicity checking, OCL query execution and result handling are
given in natural language.

For the semantic domain, we do not use first-order logic as in Section 4.6, but a graph
structure. The use of first-order logic would have resulted in an axiomatic description, which
is not truthful to OGMLs definition. The Clabject nature of constructs would be hard to
describe in an axiomatic system. At the end of the current chapter, we will still use the
graph-based domain to deduce first-order logic premises used in Section 4.6.

6.2 Semantic Domain
The semantics of the OGML language is given as an interpretation function I that maps the
abstract syntax concepts defined by the OGML metamodel to the semantic domain. The
semantic domain of OGML is defined as a graph as follows:

Definition 1 (Graph). A graph G is defined as the following tuple G = (V, E, L, l, i), where

• V = N ∪ Lit is a set of vertices, being the union of a set of unlabeled nodes N and Lit is a set of
labeled nodes known as literals,

• Labels are strings and Literals are not shared,
• E N × L × V is a set of directed labeled edges,
• L is a set of strings that can be used as labels,
• i is a function that maps edges to nodes. i : E → N. i can be interpreted as a function that

states from which node an edge is instantiated. We use this function in order to avoid using
edges between nodes and edges.

Abbreviated Syntax
 To simplify the notation we will use the following syntax:

• lit.value gives the label of the literal node lit,
• n.label returns a vertex v for which (n, l, v) ∈ E and l = label,
• n.labels = .

6.3 Interpretation Function
The interpretation function “I” provides the mapping for OGML to the abstract syntax. First,
the OGMLX constructs are mapped to the semantic domain represented by G. Subsequently
every syntactical category of the OGML abstract syntax (Section 4.3) is also mapped to it.

An Ontology Based Metalanguage with Explicit Instantiation

98

For OGMLX
Literal
I(Lt : Literal) = {lt | lt ∈ Lit and lt.value = Lt.value}

Furthermore there exist dt ∈ I(OGMLDataType) such that lt.instanceOfOGML = dt

Object
I(O : Object) = {o | o ∈ N}

Furthermore there exist od ∈ (I(ode : ObjectDefinition ∪ PropertyDefinition)) and
o.instanceOfOGML = od

Property
I(P : Property) = {p | p ∈ E}

Furthermore l(p) = P.name and there exist nodes m and md such that i(p) = m and
m.instanceOfOGML = md and md ∈ {Attribute, CharacterizationRelation, GeneralizationRelation}

InstanceOfProperty
I(P : InstanceOfProperty) = {p | p ∈ E}

Furthermore l(p) = “instanceOf” + P.language and there exist node id such that i(p) = id and id
∈ I(InstanceOfDefinition)

SubstantialUniversal
I(SU : SubstantialUniversal) = {n | n ∈ N}

Furthermore there exist a node sud such that n.instanceOfOGML = sud and sud ∈
I(SubstantialDefinition)

MomentUniversal
I(MU : MomentUniversal) = {n | n ∈ N}

Furthermore there exist a node mud such that n.instanceOfOGML = mud and mud ∈
I(MomentDefinition)

MetaModel
I(MM : MetaModel) = {n | n ∈ N}

Furthermore OGML is a given node such that OGML ∈ I(MetaModel) and n.instanceOfOGML
= OGML. Obviously OGML.instanceOfOGML = OGML.

Model
I(M : Model) = {n | n ∈ N}

There exist at least one label lb ∈ n.labels such that lb = “instanceOfOGML” and n.lb ∈
I(MetaModel) and i(lb) ∈ I(InstanceOfDefinition).

An Ontology-Based Metalanguage with Explicit Instantiation

99

Lemma 1: I(MetaModel) ⊂ I(Model). The proof is trivial and reflects the fact that MetaModel
specializes Model.

For OGML
We assume that the following nodes are members of N: Definition, Attribute,
CharacterizationRelation, GeneralizationRelation, InstanceOfDefinition

I(Definition) = I(IndividualDefinition) I(UniversalDefinition) I(OGMLDataType)

I(IndividualDefinition) = I(ObjectDefinition) I(PropertyDefinition)

I(UniversalDefinition) = I(SubstantialDefinition) I(MomentDefinition)

SubstantialDefinition
I(SD : SubstantialDefinition) = {n | n ∈ N n.instanceOfOGML = SubstantialDefinition}, where
SubstantialDefinition is a node in N

MomentDefinition
I(MD : MomentDefinition) = {n | n ∈ N n.instanceOfOGML = MomentDefinition }, where
MomentDefinition is a node in N

ObjectDefinition
I(D : ObjectDefinition) = {n | n ∈ N n.instanceOfOGML = ObjectDefinition }, where
ObjectDefinition is a node in N

PropertyDefinition
I(D : PropertyDefinition) = {n | n ∈ N n.instanceOfOGML = PropertyDefinition }, where
PropertyDefinition is a node in N

OGMLDataType
I(D : OGMLDataType) = {n | n ∈ N n.instanceOfOGML = OGMLDataType }, where
OGMLDataType is a node in N

GeneralizationRelation
The inherited properties sps of superconcepts for a concept x according to language L are
defined as follows:

gd∈x.instanceOfOGML.container|gd.instanceOfOGML = GeneralizationDefinition
gd.instanceOfOGML∈ L.contens

Each x can be part of the set of superconcepts supers:

x∈ supers or

x ∈ supers iff exists y ∈ supers and x∈ y.(gd.generalConceptRole) and y.instanceOfOGML=
gd.generalConcept

sps is the set of all properties p of supers which have p.instanceOfOGML ∈ MM.contents

An Ontology Based Metalanguage with Explicit Instantiation

100

We define as follows: x y iff x.instanceOfOGML = L y.instanceOfOGML = L x ∈ supers
of y

We define as follows: x y iff y x

InstanceOfDefinition
Let M1 and M2 be models and M1.instanceOfL = M2 where L is a language. Let MM be the
metamodel that defines L.

Let O = M1.contents. For each o ∈ O the following holds:

• Let o.instanceOfL = d. d is not empty and d ⊂ M2.contents and the size of d satisfies the
multiplicity defined in the InstanceOf relation for L.

• Let o.instanceOfL = {d | d ∈ M2.contents d.instanceOfOGMLX <= InstantiatableElement}.
For each d we define the set of its features F in the following way. Let d.instanceOfOGML
= dd, where dd ∈ MM.contents. Let FD is the set {fd1, …, fdk} where fdi are those labels of
dd such that dd.fdi ∈ I(CharacterizationRelation). FD also includes the labels inherited from
the superconcepts of dd according to the OGML inheritance semantics.

• Then F = dd.fd1 ∪ … ∪ dd.fdk.
• The set of properties P of o is defined in the following way. Let o.instanceOfOGML = od.

Let od.properties = {p1, …, pm}. This set also includes the inherited properties according to
OGML. The set of property labels of o is PL = {l1 = p1.role, …, lm = pm.role}. Then P = o.l1
∪ … ∪ o.lm. o.x can be a set.

For a given d, its features F and for each fl ∈ F we have the following. For each f ∈
d.(fl.momentDefinitionRole) (Note: elements f include those inherited according to the
semantics of the language L) there is exactly one property p of o such that:

- iod is the substantial IOD of L found in MM with: iod.definition dd and od
iod.conformingDefinition.

- Let df = f.instanceOfOGML and dp = p.instanceOfOGML and miod is the Moment IOD
of L found in MM with: miod.definition >= dp and df >= miod.conformingDefinition.

- The corresponding CI exists. There is an x∈ iod.characterizationInstantiations and x.
characterizationRole = df.momentDefinitionRole x.momentRole = dp.role

- There exists an AF af such that: af ∈ miod.atytributeFunctions af.characterizationRole =
df.momentDefinitionRole

- Both instantiation conditions evalute to true. moir.condition = iod.condition = true

- The property has is an instance of miod: p.(af.name) = af.naming or p.instanceOfOGML =
miod. The two possibilies are available because of the difference needs we defined in
subsection 4.3.3. The first option supports model conformance checking and
instantiation and the second supports (optimized) model querying.

- The value of the property should conform to the typing and multiplicites dictated by
af’s expressions: af.lower #{p.value} af.upper p.value.instanceOfOGML af.typing.

The CharacterizationInstantiation and Attribute functions are not formally defined. Their
semantics are given in Section 4.3 in natural language.

An Ontology-Based Metalanguage with Explicit Instantiation

101

6.4 Use of the Semantics
This semantics of instanceOf assumes that a model element is instance of its defining model
element if and only if all the features of the defining element are instantiated to a property. It
is possible to have properties without defining features. Still the model element will be an
instance of the defining element and the processing done from the point of view of the
defining element will be valid since all the features are present.

The aforementioned constraint may be strengthened by requiring that all the properties are
instantiated from the features of the defining element. Perhaps both forms of the semantic
checking should be implemented. One can be used to establish a strict instanceOf relation
between models and the other to establish a kindOf relation. A model that is a kindOf another,
can also be kindOf or strict instanceOf others.

Instantiating a Model
Each model construct has a linguistic and an ontological instanceOf. This is true for each
model in OGML as was shown by Figure 4-20. One of these instanceOf relations needs to be
established by the tools used for creating models; the model input facility that a modeling
architecture provides. Usually this will be the linguistic instanceOf relation. However, this
could just as well be the ontological instanceOf relation in, for example, the target model of a
model transformation. The semantics support both the derivation of the linguistic and the
ontological instanceOf relation for each construct X. It does this by assuming
X.instanceOfOGML and X.instanceOfL and proscribing the relations that should hold under
these conditions.

Supporting the OGML Bootstrap
To bootstrap of OGML is a case where the linguistic instanceOf has to be established. This
was shown by the dashed arrows in

Figure 4-19 - A conceptual graph of the model constructs mapped to OGMLX

. To proof that all modeling constructs in OGML are instanceOf OGMLX, we used the
following premise in first-order logic (FOL):

Premise 3:))''''(''(yIOyxIOxxIOyyxIODxyEyIxyx →∧∀∀→∧∧∀∀

We define the following equivalence relations between our graph formalization and the FOL
formalization:

IOxy x.instanceOfOGML = y
IOxyEy ∧ x.instanceOfOGMLX = y

IOxyIy ∧ x.instanceOfOGML = y
IODxyx iod y

Now assuming:

 L = OGML (in the graph formalism)
ExIxOxx ∨→∀ | (first basis shown in Section 4.5 and 4.6)

An Ontology Based Metalanguage with Explicit Instantiation

102

We can find a complete one-to-one mapping from the variables in Premise 3 to the variables
of the graph formalization (will not expand the details here). This shows the correctness of
Premise 3.

6.5 Conclusions
By mapping OGML constructs to a formal structure, we expressed its semantics. The use of a
graph formalization is appropriate considered the self-reflective nature of OGML. The
definition of the graph structure can be almost directly translated to an implementation of a
model management architecture that supports modeling and metamodeling with OGML.

We showed how first-order logic can be derived from the formalization presented here. This
supports the premises used in Section 4.6.

An Ontology-Based Metalanguage with Explicit Instantiation

103

Chapter 7 – Tool Support

In the current chapter, we investigate tool support for the OGML metalanguage. A prototype
of OGML has been created to conduct the case studies of Chapter 5. Some of the insights in
building this prototype are described here. Other design and implementation decisions come
from literature.

7.1 Introduction
In its current version, OGML contains some high level modeling concepts as first-class
entities. In OGML, the instanceOf construct defines how model constructs can be instantiated
from an intensional model. The inheritance construct defines which kind of inheritance
relations are allowed (a meta-language could for example allow only single inheritance as
opposed to multiple inheritance) and what the effects of inheritance are on the instanceOf
relation. For example, different meta-languages specify different semantics on this point;
UML even specifies a semantic variation point allowing static features to be both inherited
and not inherited.

OGML’s status is best seen as a proof of concept. Its correctness and usefulness has not been
proven in practice and can only be proven by case studies. To conduct these case studies we
first need a tool in which the OGML concepts can be used. In the following sections, we
outline a design for an OGML tool. We do this by using the standard software design process
of composing requirements and creating a design. The following chapters will guide the
reader through this process.

7.2 Requirements
OGML is not only a metalanguage but also a modeling architecture. Therefore, it deals with
both modeling languages and models. OGML itself can be seen as a special language in
which the other languages are expressed. This is expressed in Figure 7-1, where the arrows
represent instanceOf relations.

OGML

Languages

Models Models

Figure 7-1 - The nested modeling architecture of OGML

The creation of a (meta)modeling environment is a great deal about supporting the
pragmatics of modeling. The OGML tool thus needs to handle modeling language

An Ontology Based Metalanguage with Explicit Instantiation

104

definitions and models conforming to those definitions. Literature provides the following
requirements for such architectures [9]:

1 – The tool should be able to do language definition
2 – The tool should be able to save and load models
4 – The tool should be able to define meta-models
3 –The tool should be able to do conformance checking of models according to their meta-

model
5 – The tool should be able to import/export from/to ECore and KM3

For the MISTRAL project [65] OGML should also fulfill some requirements:

6 – The tool should be able to import languages from ECore. The imported language models
do not need to use OGML’s full expressivity, but just the basics, so that they can be used in
MISTRAL transformations (not multilevel transformations).

Non-functional requirements include:

7 – The tool should be easy to implement and maintain, because we have limited time

Conformance Checking
Conformance checking involves the verification of the instanceOf relation between two
models according to the instanceOf definition of the language. The instanceOf relation
checked can be either ontological, as it is between model and metamodel, or linguistic, as It is
between language and model or metamodel. Figure 7-1 illustrates this also. If we consider
language definitions as models in the OGML language, than the nature of checking
algorithm is the same for both ontological and linguistic instanceOf relations as we have seen
in section 4.7.

A general conformance-checking algorithm would allow us to give any two OGML models
(language model or normal model) as input and check whether one conforms to the other. In
case of checking the ontological instanceOf relation between two models, an extra input with
the language definition is needed. The result of checking should be either a set of errors
referring to non-conforming model elements or a model with all the calculated instanceOf
relations.

7.3 Detailed Design
The most crucial part of the OGML tool will be the conformance checking. It places
constraints on the definition of OGML. Therefore, we will continuously refer to its properties
to make design decisions in the next sections.

7.3.1 Modeling Space
The proof of concept tool uses the ECore reflective API for conformance checking, a
downside of this is that ECore provides no explicit facilities to store instanceOf relations. In
ECore models, we cannot express inter-model structures like the instanceOf relation, since it
would break the metamodel conformance. Therefore, to support instanceOf relations, we
need to replace ECore with a model that can represent the complete OGML modeling space
[1]. Such a model should contain enough elements to incorporate any modeling architecture

An Ontology-Based Metalanguage with Explicit Instantiation

105

in it, including OGMLs. Figure 7-2 shows the modeling space and its place in the OGML
architecture.

With the first class entity for the instanceOf relation in the modeling space, we can explicitly
represent both the linguistic and the ontological relations between models and their
elements. Since OGML language definitions define the semantics of these instanceOf
relations, it needs to be able to refer to the elements in the modeling space. OGML contains
an ontological representation of the modeling space just for this purpose. This is displayed in
Figure 7-2 with the line with dotted ends.

The modeling space can be implemented on any modeling architecture of choice. We can
even opt for a proprietary implementation in any programming language. However to reuse
existing modeling tools (and fulfill requirement 6) we opt for ECore to implement the
modeling architecture in. This will not allow us to define the modeling space into itself, as
would a proprietary implementation. In addition, it will make the picture not symmetric,
because OGML is expressed in itself. However, these things do not limit our ability to do
conformance checking, since the elements of the modeling space may always be looked up
by name in OGML.

Modeling space

O
G

M
L

O
G

M
LX

l

mapping

instanceOf property
according to
language l

Non-navigatiable
instanceOf

OGMLX

ECore

OGML
Meta
Model Model

LanguageOGMLX’

m

OGML’

 Language

OGML
b

X

X

a a and b are
submodels of the
same model
(compartments)

O
G

M
L

 Figure 7-2 - The place of the modeling space in the OGML architecture

In Section 3.1 we have seen that conformance checking can be done on any model in the
OGML architecture, the checking algorithm is independent of the sort of models we may
choose: language models, normal models or the OGML models itself. Thus, in order to be
able to implement one generic checking algorithm, we need one API for all the models.
Therefore, we will also need facilities to incorporate all models into the OGML modeling
space.

An Ontology Based Metalanguage with Explicit Instantiation

106

7.3.2 Handling Languages

Since we opt for the use of KM3 and TCS, languages can be written by a user in text. From
this text, TCS extracts an ECore model conforming to the OGML abstract syntax metamodel
as shown in Chapter 4. These models will have to be transformed to the OGML modeling
space. A transformation should preserve all linguistic instanceOf relations of the language
models as some first-class entity in the modeling space. These all refer to the OGML
language model, therefore the OGML language should first be transformed to the modeling
space. The transformation is shown in Figure 7-3 as T(o2ms). The reflective API of ECore can
be used to handle all elements in the OGML metamodel uniformly where needed.

 General Legend

= Text

= Model t

T = Tool T

= Relation

= Transformation execution

OGML modeling
space

...

OGML
Intension

UML

T(o2ms)

OGML UML ...

Ecore

OGML metamodel

OGML ...UML

Model extraction (KM3/TCS)

TCS KM3

OGML OGML

TGE

T(o2ms) execution

convertion

Figure 7-3 - OGML with modeling space

In the section about MISTRAL, we also consider a way to import languages in an incomplete
but sufficing manner.

7.3.3 Handling Models
For every language defined in OGML, a user would want to create models in it. We can
identify two use-cases here:

1 – The language already exists with appropriate tooling. In this case, the user would want to
use this specific tooling to define his models, since OGMLs generality will hardly allow to
create better tooling on top of it.

An Ontology-Based Metalanguage with Explicit Instantiation

107

2 –The language does not exist yet or no appropriate tooling is at hand. In this case, the user
needs some basic facilities to define a model.

To solve the first use-case we have to provide a transformation from the model architecture
of the tool to the modeling space. This is illustrated in Figure 7-4. The two UML models
should not be confused in this figure, one represents the UML metamodel as used by the tool
and the other is the UML language model in OGML as specified by the user and transformed
to the modeling space. The transformation involves resolving the linguistic defining type of
each model element in the language definition and creating instanceOf relations for them.
Therefore, the language definition should be an input of the transformation.

In Figure 7-4, we also see that the UML tool uses ECore as modeling architecture. By using
the reflective capabilities of ECore, we can spare us the effort to write a rule for every
individual UML construct. Instead, we just refer to the ECore elements and map these by
name to the elements in the language model. This lifts the level of the transformation,
making it effectively T(ecore2ms). A requirement for this approach would be that the names
of the UML definition in OGML are the same as those used in the UML metamodel of the
tool. Any modeling architecture other than ECore can be supported with a separate
transformation; as long as it provides the same reflective capabilities as ECore, (RDF meets
this requirement).

OGML modeling
space

OGML
Intension UML mUML1

UML tool

UML

mUML1

Ecore

T(u2ms)

input

Execute T(u2ms)

Figure 7-4 - Importing models into the modeling space

For use case two, we need a concrete syntax for writing models. OGML has no means to
express the concrete syntax of a language, only the abstract syntax structure and (part of) the
semantics can be defined. A user of OGML will have to write his own syntax parser for every
language for which he wants to create models. To nonetheless be able to provide a way to
write models for OGML, we decide to create a concrete syntax for the modeling space (see
Figure 7-5). We realize that such a concrete syntax provides however no direct feedback on
the linguistic conformance of the model being written. In a later stage, we may choose to
generate standard concrete syntaxes parameterized by the language abstract syntax as is
illustrated in Figure 7-6. The transformation T(ecore2ms) can be reused here.

An Ontology Based Metalanguage with Explicit Instantiation

108

The output of an implementation can be checked for linguistic conformance to OGML by the
conformance checker.

OGML modeling
space

TCS KM3

TGE

...

OGML
Intension

UML mUML1

m...1

mUML1

m…1

Model extraction (KM3/TCS)

Figure 7-5 - A concrete syntax for the modeling space

OGML modeling
space

OGML Language mLang

T(o2ms)

Language

Ecore

OGML

Language

Model extraction

TCS KM3

OGML OGML

TGE

Executing T(o2ms)

convertion

TCS/KM3 generation

mLang1TGE extraction
TCS

KM3

Lang

Lang

EcoreLangconvertion

mLang1

T(ecore2ms)

Executing T(ecore2ms)

Figure 7-6 - Parameterized syntax generation

7.3.4 OCL
The conformance checking of instanceOf relations involves some model querying. For
example in the presence of multiplicity, we need to check how many model elements are
there, or for a typed language we need to look up the type for each attribute and see if the
assigned element indeed conforms to this type. For these model queries OGML makes use of
OCL. However, since our models are expressed in the modeling space, we cannot reuse any
existing OCL implementations. An OCL interpreter needs to be implemented that can take
OCL programs expressed in the modeling space as input. These OCL programs are
incorporated in the language definition; therefore, the interpreter needs an extra input from
the environment where OCL variables can be bound to elements in the language definition.

OCL semantics [73] always assume linguistic instanceOf relations. Since OGML threats the
linguistic and ontological instanceOf relation in the same way, the normal semantics of OCL

An Ontology-Based Metalanguage with Explicit Instantiation

109

do not suffice. In addition, the semantics for any construct in OCL that refers to model
elements should be refined.

7.3.5 Conformance Checking
With the design choice for the modeling space containing all models for language
definitions, models and OGML itself, conformance checking becomes a straightforward task.
The conformance checker should take two models as input. In case of checking the
ontological instanceOf relation between two models, an extra input with the language
definition is needed. The OGML language definition is always loaded, because the language
definitions refer to it.

The checker makes use of the fact that any model has at least two instanceOf relations; one
linguistic and one ontological. Since these two relations are known for OGML (it is instance
of itself and of the modeling space), they can be derived for any (language) model in the
modeling space. Because all models directly or indirectly are instanceOf OGML and the
linguistic instanceOf for all models has been recorded as described in sections 4.3 and 4.4.

Since we choose implement the modeling space in ECore, the checker can be written in any
language that can easily handle ECore input. The OCL implementation can be reused for
model querying.

7.3.6 A MISTRAL Use- Case
A goal of MISTRAL is to do model architecture independent transformations. MISTRAL can
do this by using explicit instanceOf relations making OGML a perfect candidate to provide
its input and output models. Key scenarios supported by MISTRAL are transformations
between models in different model architectures and transformation executions over
multiple model levels. However, other scenarios included are incremental updates and
control over the execution order. Since the latter scenarios are not present in any other
transformation language, a user may choose to use MISTRAL specifically for this and not use
the model architecture independence.

An implementation of MISTRAL that uses OGML takes only OGML inputs. Therefore, a user
would always have to go through the tedious effort of writing a language specification in
OGML, which will only be partly used by the MISTRAL engine. An automatic import of
languages is however not possible, since OGML has other constructs than the language being
transformed. We can however create a flat import of the language, mapping the language on
basic OGML constructs.

7.4 Architectural Design
Figure 7-7 shows the OGML architecture. It consists out of a repository of models in the
OGML modeling space, transformations to update this modeling space and programs which
work on the modeling space. In the figure, we abstracted from document parsing, by leaving
out the TCS parsers. All metamodels are expressed in ECore.

An Ontology Based Metalanguage with Explicit Instantiation

110

OGML modeling space
repository

Parsed languages

TCS/T(o2ms)

Parsed models

T(ecore2ms)

OGML
metamodel

(AST)

OGML

UML

DSL1

Modeling space or
generated langauge
metamodel (AST)

DSL1Model ….

….

OGML
conformance

checker

in

out List of errors

out

UML tool

UML
metamodel

mUML1T(ecore2ms)

OCL engine

OGML
interface

MISTRAL

Figure 7-7 - OGML architecture

The interface design will be discussed the next section.

7.5 Interface Design
The design of the OGML tool includes models and transformations between them. For every
OGML use-case, we witness the creation of more models in and around the OGML modeling
space. Providing the OGML tools separately will most probably result in erroneous usage
and inconsistent modeling hierarchies. Moreover, even if a user succeeds in finding an
appropriate means to work with the tools, he will experience difficulties sharing his work
with other users. For these reasons, we realize an automated handling of the tools is needed.
In the current chapter, we will provide a possible organization for an OGML perspective in
Eclipse. Eclipse is chosen for its ability to handle ECore models and automate related tasks.

The perspective
The OGML perspective can provide a view on OGML projects. Each OGML project consists
of a language folder and a models folder.

Figure 7-8 - OGML perspective screen

Use-case language creation
Languages can be specified as text. TGE provides direct feedback on linguistic conformance
to OGML. The source file will be automatically compiled and put into the modeling space
when the file is saved. Just like the default Eclipse behavior.

An Ontology-Based Metalanguage with Explicit Instantiation

111

Figure 7-9 - Language creation screen

Use-case model import
A language has to be supplied as argument, either in a separate question box, or by selection
in the language definition in the OGML Explorer as is shown in Figure 7-10.

Figure 7-10 - Import model screen

Use-case model creation
Like language creating, we can create a file with the appropriate checking and start editing.
For future designs containing generated standard syntaxes, we may have to provide an extra

An Ontology Based Metalanguage with Explicit Instantiation

112

facility to generate the syntax and to bind it to a specific file extension. Any loaded models
will be shown in the explorer.

Figure 7-11 - Model creation screen

Use case conformance checking
Any set of models and languages can be selected in the OGML Explorer. When the OGML
conformance check is invoked and it asks which language axe to check.

Figure 7-12 - OGML conformance check screen

An Ontology-Based Metalanguage with Explicit Instantiation

113

7.6 Extensions

Modeling Space
A modeling space should allow all different modeling architectures to be incorporated in it
(See Chapter 4). UML uses the name property in meta-models to identify modeling elements.
<another example>. Since a truly modeling architecture independent structure could not
decide on a specific identity for modeling elements, we have to provide

OGML
For certain model query operations, it is necessary to retrieve the multiplicity of a model.
This multiplicity depends on the language of the model. Therefore, to retrieve this
multiplicity OGML needs to represent this multiplicity explicitly, which is currently not
present in the language.

Current Generalization-specialization in OGML is expressed in static manner; a language can
only specify specialization, but not the precise effects of specialization. To express this,
general constraints on language elements can be used in conjunction with a natural
deduction language. Like OCL, the implementation of the latter should operate on the
modeling space elements.

7.7 Conclusions
We have seen that OGML can be implemented on top of an existing modeling architecture,
thereby saving time in the development process. The expected benefit of OGMLX was
shown; we mapped it directly to ECore in the prototype implementation. All models could
be handled uniformly.

The prototype relies extensively on EMF (for model storage), ATL model transformations
(for uniform representation) and TCS (for syntax). These technologies are used for model
input, output and storage. OCL has been implemented to support the OGML
InstanceOfDefinitions. OCL has been reused independently to support querying on
OGML models. The LanguageAxeExpression allows querying according to the language
of a model, according to OGML (intensional) and according to OGMLX (OGML extensional).
Via the OGML instanceOf definitions the queries cascade from language (of the model) to
OGML and finally to OGMLX.

To ensure correct models a model conformance checker has been implemented. It support
checking of correctness of models according to their language. In this manner, the checker
supports modeling and metamodeling.

An Ontology Based Metalanguage with Explicit Instantiation

114

An Ontology-Based Metalanguage with Explicit Instantiation

115

Chapter 8 – Related Work

8.1 Introduction
The current chapter presents related work and compares it with our approach, proposal and
results. First, we look at work that preceded OGML. Second, we look at work that takes a
similar approach to ours and we compare our results with it. Third, we treat some works that
try to solve similar problems. We found work in the field of data engineering and another
that focuses on improving OCL.

Several related works aim at providing a consistent interpretation of tradition modeling
architectures using argumentation based on observations. We treat these more theoretical
works in the end of the current chapter.

8.2 Earlier Work
Kurtev devoted his PhD thesis [62] to “adaptability of model transformations”. He found
that the limitations in transformation languages require a uniform definition of the
instanceOf relation in the modeling architecture. He investigated the instanceOf relations
that can be found in the MOF architecture. He represented them in Figure 8-1. The figure is
detailed and we will not explain it fully here. A short explanation suffices: the layers and the
instanceOf relations can be mapped one-to-one to the OGML architecture in Figure 4-20. The
main idea behind OGML of making the instanceOf relations explicit stems from this work.

Figure 8-1 - InstanceOf relations found in MOF architecture (taken from [62])

In “Metamodels – Structural Definitions or Ontological Commitments?” [62], Kurtev
presented the ideas behind OGML. The work mainly focuses on the use of Ontology in
metamodeling. It features an initial proposal for a self-reflective definition of the ontological
constructs in OGML. An ontological definition of the instanceOf relation and the

An Ontology Based Metalanguage with Explicit Instantiation

116

generalization relation is given in this paper. The metalanguages, which we proposed in this
thesis, uses this previous version of OGML as a basis and extends it with an explicit
definition of (the semantics of) the instanceOf relation.

8.3 Related Work in Approach
We found several works that take a similar approach to ours with to solve the problems
identified in Chapter 3.

Formal Ontology
Evermann et al. [30] use the Formal Ontology for the grounding of existing modeling
languages. They give an interpretation function for (UML) model constructs in terms of the
BWW ontology. This allows them to analyze the ontological correctness of these constructs.
These works thereby provide valuable insights in the nature and meaning of the constructs.
Guarino et al. [39] and Wand et al. [87] both give a precise definition of attribution . Wand
relates this to current modeling practices found in UML and MOF. Wand also proposes a set
of rules, which could guide the use of constructs in modeling. Guarino’s and Wand’s work is
also based on the BWW ontology.

Guizzardi et al. [44][45] and Degen et al. [26] propose an “upper layer ontology” based on
FCO. This could be used as a metamodel. They use detailed subcategories of universals:
sortals, rigid, anti-rigid, non-rigid, etc. They give mathematical descriptions from ontology to
formalize the constraints on language constructs.

Although these works provide useful contributions to the modeling community, they do not
aim at providing complete solutions for modeling and metamodeling. They do however
tackle the problem of lack of real-world relation (relating back to Chapter 1).

Describing the Modeling Architecture
Gogolla et al. [37] give a formal representation of the traditional modeling architecture. They
only considered UML and MOF. They described all models in the MOF modeling
architecture using a minimal model in the form of a graph. Using OCL queries, they express
the relations between the different layers in the architecture. They conclude with some
interesting questions, which are related to our OGML results:

- Are the (instanceOf) relations between the models dependent on the languages? In the
approach of OGML, this question is answered positively.

- What is the optimal minimal model in terms of understandability? They propose to
condense it to a single node. From ontological point of view, this would indeed create
more confusion, since it breaks several Rules for truthful real-world representations
[87][42]. In our minimal model: OGMLX, we were able to preserve as much real-world
knowledge without creating any ambiguity: the main taxonomy of OGMLX conforms to
the ontological square of FCO. From the point of view of the metalanguage, the choice for
an OGMLX construct is always determined precisely.

- Is it possible to have layer-dependent constraints on the model? Recognizing meta- and
modeling languages as semantics descriptions for the instanceOf relations, as OGML

An Ontology-Based Metalanguage with Explicit Instantiation

117

does, allows exactly this. In the next chapter, we discuss more potential gains from the
instanceOf definition in OGML.

- What is the “typing”16

Bézivin

 of the UMLAssociation in terms of MOF? The “typing” of the
UMLAssociation is found to map differently to MOFAssociations depending on
their order (binary, ternary or n-ary). This result is similar to the different ways we were
able to express the UMLAssociation in Chapter 5.

[18] uses conceptual graphs [85] to do essentially the same thing as Gogolla:
representing and investigating the modeling architecture. The use of conceptual graphs is “in
order to stay as language-independent as possible”. Bézivin uses a different paradigm:
programming languages. This approach is taken to avoid the confusion that arises when
thinking in terms of the modeling architecture.

Both attempts take the approach to use neutral terminology for their constructs. This has the
advantage that the meaning of new constructs is not entangled with old interpretations. For
example, using the word “class” could create confusion among different receivers of the
message who may all relate it to “classes” in different languages: an UML “class” or a MOF
“class” which is a metaclass whose instantiation semantics work at a different level in the
modeling hierarchy. Like Bézivin’s and Gogolla’s framework, OGML is incomplete and
currently does not provide a constructs for the MOF construct of Package.

Both works provide good conceptual insides on aspects of the traditional modeling
architecture. Gogolla et al. [37] shows the existence of different instanceOf relations (that is:
linguistic and ontological) in the modeling architecture. They also succeeded in formalizing
some of the notions that surround more complex instantiation mechanisms as proposed by
Atkinson [7]. Bézivin compares the multiple instantiation with similar properties of object-
oriented languages like SmallTalk. In this way, he makes a persuasive argument for the use
of inheritance at the M0 level. Atkinson and Kühne [17] propose the same.

These works also take the approach of investigating the modeling architecture and
proposing additions. They do however not extent the semantics of the metalanguage. In both
approaches metamodeling remains at the level of giving structural definitions. Using neutral
terminology also cannot provide guidelines for modeling as Formal Ontology does.

Lack of Modeling Constructs and Language Semantics
In Chapter 1, we analyzed problems with traditional modeling architectures. We found a
lack of constructs to be the source of or at least contributing to some problems. Several other
works recognize the same problem and try to come up with a solution. Evans et al. take the
approach of recording the instanceOf relation with a structural mapping between each
modeling layer [1][29].

Atkinson and Kühne provide three solutions: multi-dimensional modeling, potency and
Clabject ([87], [4] and [5]). Gitzel and Hildebrand propose to introduce an explicit element for
the “model layer”. These works have in common that they reason from the point of view of

16The papers terminology for instanceOf

An Ontology Based Metalanguage with Explicit Instantiation

118

the existing modeling architecture. The insights presented are valuable for the
understanding of the architectures

In Chapter 1, we also identified a lack of language semantics as a limitation for
metamodeling. Soden [82] apparently shares this view. His approach is to add a construct for
instanceOf to the metamodel and extends metamodel with its semantics definition.

However, all of the aforementioned approaches do not provide uniform construct handling
across all layers (or meta level independent modeling [5]). These approaches do not solve the
cross-language interoperability because they are on the level of the modeling language.

8.4 Related Work with the Same Objective
In this section, we discuss works that solve similar problems as ours. We start with example
from the field of data engineering. Then we show a work that proposes an OCL Interpreter,
which is language independent.

Data Technology
Atzeni, Cappellari and Bernstein [13][12] consider methods for data translation over two
levels: schema and data. To this extent, they express the schemas and the data hierarchy of
schemas. The hierarchy is implemented in database tables and resembles a modeling
architecture. The ontology they use for the “metamodels” comes from database research [48].
“Multilevel dictionaries” are used to perform the translation.

Their work is a contribution to the problem of multilevel transformations as we discussed in
Chapter 3. For us it is interesting to learn that the database world uses similar techniques to
those of MDE. From the point of view of modeling, we make some observations: it does have
an implicit real-world relation in database engineering. Both the technological and the
conceptual side of the work are in the field of data engineering. This limits the applicability
of the approach. Of course, MDE and database technologies have different goals, but both
fields have to deal with conceptualization of data and physical data representation in the end.

Language Independent Model Processing
Kovolos [57] was inspired by the work of Kurtev [63] in the field of model transformations
and made a language independent OCL Interpreter. The approach is an early attempt to
generalize the OMG OCL specification in order to support a metamodeling environment.
This is useful contribution since OMG does not provide a solution for it. Because the
approach is less fundamental than ours is (they do not propose a new modeling
architecture), it is comparatively less integrated with the modeling environment. Whereas
Kovolos’s work requires a metamodeler to specify a triple of queries for each language,
OGML includes the navigation semantics in the language specification as shown in
Section 4.3.

8.5 Related Work in Theory

Instantiation
Modeling has been successfully applied in other technological spaces [20][64]. Data
description languages like XML and RDF are suitable candidates to model. They differ in

An Ontology-Based Metalanguage with Explicit Instantiation

119

that they offer different ways to describe the structure of data (schemas, DTDs, etc) and the
associated instanceOf relations [24].

Modeling architectures and their design
Atkinson and Kühne [6][10] report that MOF specifies that the modeling architecture is
linear and strictly layered, meaning that it only permits instantiation between two
subsequent layers. The original purpose of MOF, however, was a data repository: it provides
structure for all models. The interpretation of MOF changed to a conceptual language for
modeling languages, a metalanguage. With the original interpretation still intact, this strict
metamodeling can in fact not be adhered to. Related work often inspects the details of the
MOF architecture [32][34].

8.6 Conclusions
In Section 8.2, we showed previous publications on the ideas behind OGML. The latest work
from Kurtev [63] contains an initial proposal for a self-reflective and ontology based
metalanguage.

In Section 8.3, we showed work with approaches similar to ours. Each tried to find a solution
for the problems in MDE. None of them lifts the semantics of the metalanguage from a
structural definition to a description of semantics. All of them provide valuable insights in
the complexities of modeling and metamodeling.

Section 8.4 discussed work with the same objective. We found a work in data engineering,
where the authors propose a solution for the data translation problem presented in Section
3.5. Another work proposes an improved OCL that can deal with models in different
modeling languages.

From the theoretical side we see several discussions on the nature of specific modeling
semantics. Those were summarized in Section 8.5. Several approaches are provided to define
a uniform definition of the instanceOf relation. Most of them, however, lack a proof and only
compare their solutions with different approaches. Still they provide good insights in the
different aspects that make up a modeling architecture. Some of them could be used to
evaluate different design decisions for these architectures.

After investigating related work, we can conclude:

- We aim at solving relevant problems. All the “related work in theory” tries to provide a
solution for uniform model handling (or “metalevel independent modeling” [5]).

- We provide a unique contribution. The approach in this thesis is to propose a
metalanguage based on Ontology with explicit instantiation. This integrated approach is
not chosen before. Nor did any other work aim at dealing with the problems on the level
of the metalanguage.

All of these works contributed greatly to our understanding of the problems that we dealing
with.

An Ontology Based Metalanguage with Explicit Instantiation

120

An Ontology-Based Metalanguage with Explicit Instantiation

121

Chapter 9 – Conclusion

9.1 Introduction
In this thesis, we proposed an approach to metamodeling with the goal to solve an identified
set of existing problems in the field of MDE. The result is a metalanguage, called OGML,
which is supported by modeling tools. In the current chapter, we give the overall conclusions
for the thesis. First, in Section 9.2, we summarize this work in terms of the solution domain.
In Section 9.3, we evaluate the results in the light of the initially formulated research
questions. The section also reflects on the extent to which the research objectives have been
met. In Section 9.4, we discuss these results and their possible application. Possible
extensions and future developments are outlined in Section 9.5.

9.2 Summary
In the following subsubsections, we summarize the background, the problem description,
the approach and the results we achieved.

Concepts: MDE, Languages and Ontology
In Chapter 2 “Background”, the concepts used in this thesis were explained starting with
Ontology in Section 2.2. Ontology is the study of existence it tries to categorize the entities in
the real world. In Formal Ontology relies on logic to express the relations between the
categories. We further explored Ontology with an emphasis on the four-category ontology
(FCO): a particular ontology that recognizes the existence of universals.

In Section 2.3, we explained important aspects of languages; semantics (domain) and abstract
and concrete syntax. The abstract syntax of a language can be expressed in a model.
Languages can be seen as ontological commitments [77] that thereby define their own view on
the world. What is expressible in a language depends on this commitment. Language
definition (including metamodeling and the creation of a metalanguage) is a matter of
balancing between expressiveness and precision.

In Section 2.4, we summarized the core concepts in modeling and metamodeling. We assumed
definitions for the concepts of model and metamodel using knowledge from several scientific
fields. In the context of modeling, we explained the instanceOf relation and related
terminology. Linguistic and ontological instanceOf relations were distinguished. In the context
of metamodeling, we explained how these concepts have a relative meaning. Therefore, the
terms intension and extension were introduced.

Problems in MDE and an Approach to Solve Them
Chapter 3 “Identification of Problems in Contemporary Modeling Architectures” identifies
the problems in both modeling and metamodeling areas. Traditional modeling has the
potency to be imprecise and inconsistent because of a lack of real-world relation. For
metamodeling, the matters are worse in our opinion. Problems in modeling architectures
were summed up in sections 3.3 to 3.5. They seem to be related with the instanceOf relation
and meta-layer independent handling of its semantics. This all results in limited possibilities for
automation and model reuse in MDE.

An Ontology Based Metalanguage with Explicit Instantiation

122

We identified a solution domain based on our problem analysis. The analysis revealed three
main problems: a lack of real-world relation, a lack of modeling constructs and a lack of language
semantics. In order to solve the problems we took an integrated approach that uses
knowledge from the domain of Ontology and extends the metamodeling with explicit
constructs and semantics for instantiation. Ontology could provide us with clear guidelines
for modeling and metamodeling practices and a more explicit notion of instantiation could
lift the practice of metamodeling from the level of structural definitions to full semantic
language descriptions.

Proposed Solution
In Chapter 4 “An Ontology-Based Modeling Architecture”, we presented Ontology-
Grounded MetaLanguage (OGML). OGML implements the approach in the following ways:

- The constructs from this metalanguage are drawn from Ontology and especially four-
category ontology; universals, individuals, moments and substantials are among the
constructs that the language provides,

- It has constructs for defining instantiation semantics,
- It has constructs for explicitly representing instanceOf relations in models.

A running example was used to explain the language. A semantics description was given
within this explanation.

The metamodeling practice in OGML is clearly separated from the modeling practice.
Metamodeling requires specifying fine-grained ontological commitments and instantiation
definitions. Modeling is an activity of capturing information about the state of affairs in a
certain domain. Modeling is guided (and restricted) by the chosen ontological view
expressed in the metamodel. As we showed with examples, Formal Ontology provides the
guidelines for both practices.

The end of Chapter 4 (Section 4.4 to 4.7) was devoted to the explanation of OGML modeling
architecture. We introduced OGML eXtensional (OGMLX), an ontology-grounded structural
model. It is part of and expressed in OGML. Then we showed how OGML is expressed in itself.
With this self-reflective definition, OGML also defines its own instantiation semantics. The
semantics definitions maps OGML constructs to OGMLX constructs. In this way, every
model in the modeling architecture becomes an instance of OGMLX. We have proven this
using a first-order logic premises derived from the semantics definition. Thus, OGML
provides a uniform structural representation of all models.

We concluded chapter four with observations about the modeling architecture. OGML has a
nested modeling architecture with three layers and a compaction level formed by OGMLX.
OGMLX is a library format for all models and languages and also a language format from the
point of view of OGML17

17 Terminology and concepts are explained in

.

[11].

An Ontology-Based Metalanguage with Explicit Instantiation

123

In Chapter 5 “Case Studies”, the running example of Chapter 4 was extended with UML
Associations. This was done using different structural definitions for the UML Object
model and also by extending the ontological commitment of SimpleUML1 in SimpleUML2.
This showed some of the capabilities of OGML. Furthermore, the ontological nature of UML
constructs became apparent by expressing it in OGML, just as expected. With an example
OCL query, we show how OGML provides the full semantics to do advanced navigation of
models.

Furthermore, we showed that indeed a model in OGML can be navigated according to the
view of at least two languages. The example model in Chapter 5 we navigated according to:
UML, OGML and OGMLX. This “language perspective” is made explicit by the OCL
Interpreter with a LanguageAxis expression.

In Chapter 6 “Formalization and Semantics”, we give the semantics to OGML by mapping it,
together with OGMLX, to a graph structure. We saw that there can be multiple uses of the
semantics. This is necessary because, the OCL Interpreter, the model conformance checker and
model input tools need different algorithms. The semantics definition allows reconstructing
both the ontological and the linguistic instanceOf relation of models. Thereby the different
algorithms can be arrived from it18

The use of a graph formalization is appropriate considered the self-reflective nature of
OGML. We showed how first-order logic can be derived from the graph formalization. This
supports the premises of Section

. These algorithms are needed in the tasks of navigation,
conformance checking and instantiation of models. Furthermore, it gives freedom to the tool
design because the intensional models from both the linguistic and the ontological
instanceOf can be used as abstract syntax.

4.6.

Chapter 7 “Tool Support” explains in detail the realized prototype. The prototype relies
extensively on EMF (for model storage), ATL model transformations (for uniform
representation) and TCS (for syntax). The prototype matches the semantics of OGML
described in Chapter 4 and Chapter 6. Model input and export is not yet supported by the
prototype. It is however possible to use it as a general modeling tool, because a generic
syntax is made, which can express OGMLX models.

Related Work
Chapter 8 presents “Related Work”. OGML is based on earlier works from Kurtev [62][63],
which are presented in the beginning of Chapter 8. Then we focused on some works that
used a similar approach. Several are found with varying objectives. Some try to solve the
problem of real-world relation with Ontology. Others try to create uniform model handling
by proposing new architectures or by studying the architecture. Although their results are
useful (also for the realization of OGML), none of them provide a definition of the instanceOf
semantics in the metalanguage.

18 we did not show this but know it from the experience of implementing the prototype

An Ontology Based Metalanguage with Explicit Instantiation

124

We also found work with the same objective. In data engineering, Atzeni et al. propose a
solution for the data translation problem presented in Section 3.5. Another work proposes an
improved OCL that can deal with models in different modeling languages.

From the theoretical side we see several discussions on the nature of specific modeling
semantics. Several approaches are provided to define a uniform definition of the instanceOf
relation. Most of them, however, lack a proof and only compare their solutions with different
approaches.

All these works provided good insights for our work. At the same time, we concluded that
our work provides a unique contribution in the sense that no other work tries to solve the
problems at the level of the metalanguage.

9.3 Evaluation
Here we investigate the results we achieved in the light of the research questions and the
research objectives.

Evaluation of Research Questions
In Chapter 1, we formulated the following questions:

RQ 1: What can we use as a solution domain for metamodeling?

RQ 2: How to express instantiation uniformly in a modeling architecture?

To answer RQ1, we made a motivated choice for the use of Formal Ontology as a solution
domain. The domain proved useable to make design choices regarding metalanguage and
modeling architecture and also to support the modeling and metamodeling activities. This
was expected, since other work already demonstrated the applicability of ontologies in
metamodeling practices.

To answer RQ2 we have taken the approach to enhance the metalanguage with additional
constructs. In OGML, modeling languages can contain full descriptions for the instantiation
semantics. The reasoning behind this goes in two steps: several problems can be witnessed in
traditional architectures that involve the instanceOf relation, which has no layer-
independent interpretation. This relation has different semantics specified by the language
and is therefore relative to the language point of view. By recognizing these facts, it is a
logical conclusion that the instanceOf semantics need to be defined here.

We have proven that these additional instantiation semantics provide a dual instanceOf for
all model constructs. For OGML this is the case, and for each language added to OGML this
is the case as well as for additional intensional and extensional models.

Evaluation of Research Objectives
The research objectives (Section 1.4) have largely been achieved:

 (1a) - to choose an appropriate domain for RQ 1 and study its concepts
A study of Ontology was performed within the scope of this project.

An Ontology-Based Metalanguage with Explicit Instantiation

125

 (1b) - to propose a modeling architecture that represents models in accordance with Ontology
OGML includes OGMLX and together they provide a view on the whole modeling
architecture. We propose this composition as our modeling architecture.

 (1c) - to propose a metalanguage based on Ontology that includes means to capture instantiation

semantics of modeling languages
OGML was defined and proposed. It is based ontological constructs and can describe
instanceOf semantics.

 (2a) - to provide tool support for performing: language definition, model definition, import and

export, check of model and language conformance
This is included in the prototype except the import and export functionality. This prevents
the current prototype to process and check large models drawn from real-world applications.

 (2b) - creating a model query language to demonstrate the language independence of the modeling

architecture and the tools
An OCL Interpreter was realized and was shown to exhibit uniform treatment of all
modeling constructs. The LanguageAxis expression makes this explicit.

 (2c) - A case study of expressing UML while focusing on the instantiation of a complicated

constructs like association
The case study was conducted, the results were positive.

- (2c) - A case study of expressing MOF to demonstrate support of multiple instantiation from

model elements
Due to a lack of time, we could not perform a case study on MOF.

Additional results
- We provided a proof of uniform model representation based on our (semi)formalized

semantics definition of OGML
- Full OCL support for n-ary associations was realized as some researchers consider

appropriate [78].

9.4 Discussion
Here we discuss our view on the results that was summarized in the previous sections. The
most important results of OGML discussed here are: uniform model handling, uniform model
representation and Ontology-guided (meta)modeling.

The Expense of Uniformity
We realized the two kinds of uniformity by increasing the expression power of the
metalanguage. This property can be exploited in the following ways:

- Language independent model handling as demonstrated by a prototype of model
navigation engine based on the OCL specification [73],

- Transformation definitions can become more language independent [62][65][18][60][53],
- Model reuse can be implemented in a language independent fashion, providing a good

basis for model libraries [6][18],

An Ontology Based Metalanguage with Explicit Instantiation

126

- An OGML implementation can map the extensional structure directly on an existing
data storage structure and directly adhere to basic requirements for any modeling
architecture [9] “for free” as we demonstrated with a prototype implementation.

Due to a lack, we did not investigate whether OGML can express languages like OWL, RDF,
MOF, UML (Packaging) and power types. Without this investigation, it is not known
whether OGML traded expressiveness for uniform model handling.

Furthermore, the model handling requires extra lookups and operations on models for
navigation. These operations even cascade to the level of the metalanguage, because the
structural properties in the models are ontologically defined by OGML (see Subsection 4.3.3).
Further investigation is needed to establish the complexity of navigation operations. Possible
solution may be found in the work of Atzeni, Cappellari and Bernstein [12]. They propose a
solution for schema independent data handling with the use of dictionaries in database
systems. Their work was summarized in Section 8.4.

The Expense of Ontology
The domain of Ontology proved useable to support the modeling and metamodeling
activities. With an example, we showed how metamodeling can be guided by ontological
reasoning. We realize that this brings a potential overhead of educating (meta)modelers on
ontological concepts or rather on the approach taken in Ontology. We however argue that
the use of constructs in modeling can become less ambiguous if the concepts behind these
constructs are well grounded in a systematic study. Furthermore, metamodeling is a
specialized activity and requires some experience and knowledge anyhow.

The Use of Ontology
For using the four-category ontology, we can chose two approaches: a pragmatic one, where
we choose to break the laws of the Ontology in order to express languages faithful to their
specification or we could choose to be ontologically faithful. Currently we chose the more
pragmatic approach and conceded to requirements coming from modeling. This approach
has the potential to decrease the real-world relation of OGMLs constructs. Ontological
imprecision would again reduce the consistent use of the constructs.

On the other hand, a complete refuge to ontological correctness can hardly yield a result that
is usable in MDE. A balance between the two options needs to be found especially when
OGML is extended as is discussed in the next section.

OGML Compared to Traditional Architectures
Traditional modeling architectures provide an underlying structure. OWL uses RDF, a data
description language based on graphs, as its underlying structure. The mapping is provided
by the RDF reification model [89][90]. In MOF, the underlying structure is the MOF-Object.
By specialization, it is realized that all modeling elements are instances of it [71]. OGML is
more like OWL; the manner in which model elements become instances of the underlying
model is made explicit.

An Ontology-Based Metalanguage with Explicit Instantiation

127

The underlying structure of OGML is OGMLX. It is an ontology-based model. Compared to
RDF it preserves more information about the role of the model elements. RDF is represents
all model elements as “Resource” in a graph structure, whereas models in OGMLX preserves
the ontological category of a model element.

Replication of Concepts
Atkinson and Kühne state: “the nested metalevels approach does not provide an answer to the
“replication of concepts” problem. OGML is a nested modeling architecture. In OGML, you
could argue that some concepts are duplicated. The structure of OGMLX is based on the
ontological square (see Figure 2-2). OGML also bases its constructs on the square. However,
in our view these should be different constructs, because a distinction between them can be
made on the base of their function in the model. The constructs of OGMLX give the absolute
ontological nature of modeling elements. If, according to OGMLX, a model element is an
individual, it is not instantiatable from any (language) perspective. OGML constructs, on the
other hand, represent the (language) relative nature of model elements.

Furthermore, any further replication is prevented because OGML is limited to three
modeling layers, which should prevent infinite replication of concepts. This excludes the
conceptual replication that occurs because of the self-reflective definition of relations
(Section 4.5). We have shown with the prototype that this problem can be overcome.

Another argument that could be raised is the limitation of three layers. This issue if
discussed in the literature [11][34][33]. We think that three layers is the appropriate amount
for two reasons: (1) from the absolute perspective, the metalanguage19, there are only three
layers (metametamodel, metamodel and model) and (2) we feel that representation power
types can be done at the modeling layer20

In the beginning of MDA, UML was a self-described modeling language hardcoded in tools.
When the demand came for support of multiple modeling languages, it was recognized that
UML needed a relatively small subset of constructs to describe its own structure. Therefore,
these constructs were isolated and put in MOF

.

Additional Requirements for the Modeling Architecture

[72]. MOF provides the basis for language
definitions paving the way for metamodeling [15].This resulted in a need for model based
syntax definition. Several frameworks are currently at our disposal to provide a solution
[51][52][38].

OGML introduces two explicit instanceOf relations in models. Both can be used for abstract
syntax definition as noted in Section 9.2. For example, for an UML Object diagram, we could
create a syntax based on the linguistic instanceOf. Enabling us to create and connect objects,
slots and literals. We could also use the ontological instanceOf and create instances (of
classes). Ideally, however, both are used. The linguistic instanceOf can be used for the visual

19 By extending the metalanguage, we already treated it as the absolute perspective. We think the results prove
that this perspective is indeed absolute.

20 Whether this is true needs of course still to be proven as we show in future work.

An Ontology Based Metalanguage with Explicit Instantiation

128

syntax (Objects are represented as boxes, etc) and the ontological instanceOf can provide
constraints on the AST. So that the created objects indeed, conform to some class in the
model. An extra parameterization of these constraints would greatly enhance the
metamodeling and modeling capabilities of the OGML architecture.

The uniform model handling results in relativity as shown in Section 5.4. The extra
expression we introduced to the OCL Interpreter makes this explicit. We argue however that
this relativity is wanted, and perhaps unavoidable. It provides the user with extra
information (structural and ontological), most valuable for automation in MDE. Relating
back to the definition we introduced for “model”, we achieved to some extent to treat it as a
truly multi-intensional artifact. However still more is possible, as we will see in the coming
section about future work.

Meta-Muddle
The traditional modeling architectures are also under theoretical investigation. The problems
found in it have some researcher led to refer to it as “meta-muddle” [83][37][32][82].
Although the research about the architecture has given some insights, we argue that some of
it simply is not sound. An example comes from Atkinson and Kühne [11]. They argue that a
modeling architecture needs to commit to either a “language” or a “library” metaphor for the
underlying structure. In Section 4.8, we showed that OGMLX is both, depending on the
perspective.

9.5 Future Work
In this section, we propose some possibilities for extending and researching OGML. Finally a
recommendation is given. The status of OGML is best understood by seeing it as a prototype
to demonstrate uniform model handling and the use of Ontology in metamodeling. Whether
OGML can express languages like OWL, RDF, MOF, UML (Packaging) and constructs like
power types needs investigation. Without this investigation, it is not known whether OGML
traded expressiveness for uniform model handling.

Case Studies
The investigation into the expressiveness of OGML could start with a case study expressing
RDF and MOF in OGML. We do not expect that OGML needs to be extended for this
purpose. The results of the case study will show OGML’s merits with regard to multi level
transformation between the different languages.

By adding support for multiple instantiation to the prototype, a case study for OWL can be
supported by OGML.

Improvements
Currently not all details of OGML have been defined. This is the list of OGML “to-do’s”,
which could help improving OGML:
• Improve the representation and interpretation of literals. Currently literals are all treated

the same (as strings). Find a solution for their data types. How to relate them to the
different storage formats of integer, string, etc? The interpretation of literals needs to be

An Ontology-Based Metalanguage with Explicit Instantiation

129

uniform across layers. Currently every layer defines its own Literal and the value must
always be stored in Value.

• From the ontological perspective, individuals need to have identity. This identity is
provided in ontology by the values of the properties of the individual. For pragmatic and
implementation reasons this cannot be adhered to in modeling practices. An explicit
identification mechanism needs to be in place:
”In essence, use of identification attributes reflects the ontological premise that everything is
unique (no two things possess the same set of properties).” [87]

• Answer the question of inheritance between different categories. Currently we advice
against it because of ontological correctness; however for technical reasons it might be
desirable. To support it more generically, we could make concrete UniversalDefinitions
and IndividualDefinitions. Currently these are abstract constructs.

• Reflect the results of solving the aforementioned “to-do’s” in the prototype
implementation.

Language Completion
For the current status of OGML, a limited set of Ontological concepts where needed (notably
the structural ones). If the design of OGML is to be extended for a broader set of modeling
languages and constructs, than it will need to derive more and more constructs from
Ontological concepts that carry more laws. This will however allow the ability to express an
increasing set of modeling language features like: containment, packaging and profiles.

• Mereology is the study of the part-whole relation. Mereological constructs support
containment in a modeling language.

• Define instantiation for languages and models. Currently each language is instantiated to
a model construct. It is not defined in what manner the instantiated language constructs
become the content of the model. Expressing this may require first a definition of
containment and thus requires mereological constructs. The instanceOf relation is
strongly associated with languages, because it is relative to the language. For this reason,
language instantiation could be a complex thing to define.

• Laws could be introduced to constructs to support constraint definition on the models.
• A diagrammatic syntax for OGML could save efforts in metamodeling and especially

thesis writing.

Recommendations
We feel the expressiveness of the current OGML has not sufficiently been established. A
breath first approach will establish the usefulness of OGML to a greater extend while at the
same time increasing the knowledge about it. Therefore, we consider the conduct of more
case studies of first priority, before extending the language any further.

If the case studies succeed, an iterative development can take place cycling over extending
the metalanguage and conducting new case studies.

An Ontology Based Metalanguage with Explicit Instantiation

130

An Ontology-Based Metalanguage with Explicit Instantiation

131

Bibliography

[1] Álvarez, J. M., Evans, A., and Sammut, P. 2001. Mapping between Levels in the
Metamodel Architecture. In Proceedings of the 4th international Conference on the Unified
Modeling Language, Modeling Languages, Concepts, and Tools (October 01 - 05, 2001).
LNCS, vol. 2185. Springer-Verlag, London, 34-46.

[2] Armstrong, D. M. 1989. Universals: An opinionated introduction. Boulder, CO:
Westview.

[3] Atkinson, C. 1997. Meta-Modeling for Distributed Object Environments. In
Proceedings of the 1st international Conference on Enterprise Distributed Object
Computing (October 24 - 26, 1997). EDOC. IEEE Computer Society, Washington, DC,
90.

[4] Atkinson, C. 1997. Meta-Modeling for Distributed Object Environments. In
Proceedings of the 1st international Conference on Enterprise Distributed Object Computing
(October 24 - 26, 1997). EDOC. IEEE Computer Society, Washington, DC, 90.

[5] Atkinson, C., Kühne, T, Meta-level independent modeling. In International Workshop
Model Engineering (in Conjunction with ECOOP’2000). Springer Verlag, Cannes,
France, June 2000.

[6] Atkinson, C., Kühne, T. 2002. Profiles in a strict metamodeling framework. Sci.
Comput. Program. 44, 1 (Jul. 2002), 5-22.

[7] Atkinson, C., Kühne, T. 2002. Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul. 12, 4 (Oct. 2002), 290-321

[8] Atkinson, C., Kühne, T. 2003. Calling a Spade a Spade in the MDA Infrastructure, In:
Proceedings of the Metamodeling for MDA First International Workshop, York, UK,
November 2003, 9-12.

[9] Atkinson, C., Kühne, T. Model-driven development: a metamodeling foundation.
IEEE Software, 20(5), pp. 36-41, 2003

[10] Atkinson, C., Kühne, T. The Essence of Multilevel Metamodeling. UML 2001: 19-33

[11] Atkinson, C., Kühne, T.: Concepts for Comparing Modeling Tool Architectures, In:
Proceedings of theACM/IEEE 8th International Conference on Model Driven
Engineering Languages and Systems, MoDELS/UML 2005

An Ontology Based Metalanguage with Explicit Instantiation

132

[12] Atzeni, P., Cappellari, P., Bernstein, P., A. A multilevel dictionary for model
management, in: ER 2005, LNCS, vol. 3716, 2005, pp. 160-175

[13] Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P. A., and Gianforme, G. 2008.
Model-independent schema translation. The VLDB Journal 17, 6 (Nov. 2008), 1347-
1370

[14] Beck, K. 1999. Embracing Change with Extreme Programming. Computer 32, 10 (Oct.
1999), 70-77.

[15] Bézivin, J. 2001. From Object Composition to Model Transformation with the MDA.
In Proceedings of the 39th international Conference and Exhibition on Technology of Object-
Oriented Languages and Systems (Tools39) (July 29 - August 03, 2001). TOOLS. IEEE
Computer Society, Washington, DC, 350.

[16] Bézivin, J. In Search of a Basic Principle for Model Driven Engineering. UPGRADE
V(2), Novótica, April 2004

[17] Bézivin, J. On the unification power of models. Software and System Modeling 4(2):
171-188 (2005)

[18] Bézivin, J., Gerbé, O. 2001. Towards a Precise Definition of the OMG/MDA
Framework. In Proceedings of the 16th IEEE international Conference on Automated
Software Engineering (November 26 - 29, 2001). Automated Software Engineering.
IEEE Computer Society, Washington, DC, 273.

[19] Bézivin, J., Jouault, F., Valduriez, P., On the Need for Megamodels, OOPSLA &
GPCE, Workshop on best MDSD practices, Vancouver, Canada, 2004

[20] Bezivin, J., Kurtev, I: Model-based Technology Integration with the Technical
Space Concept. In: Metainformatics Symposium. Springer-Verlag.

[21] Bézivin, J., Lemesle, R. 1998. Ontology-Based Layered Semantics for Precise OA&D
Modeling. In Proceedings of the Workshops on Object-Oriented Technology (June 09 - 13,
1997). LNCS, vol. 1357. Springer-Verlag, London, 151-154.

[22] Bloomfield, L. 1933. Language. Holt, Rinehart and Winston, New York.

[23] Bostock, S., July 2007. The four-category ontology: A metaphysical foundation for
natural science - by e.j. lowe. Philosophical Books 48 (3), 274-277.

An Ontology-Based Metalanguage with Explicit Instantiation

133

[24] Bowers, S., Delcambre, L. On modeling conformance for flexible transformation over
data models. In Proceedings of the Workshop on Knowledge Transformation for the
Semantic Web at the 15th European Conference on Artificial Intelligence (KTSW-
2002), Lyon, France, 2002

[25] Chomsky, N., Three models for the description of language. IEEE Transactions on
Information Theory. v2 i3. 113-124

[26] Degen, W., Heller, B., Herre, H., Smith, B. 2001. GOL: toward an axiomatized upper-
level ontology. In Proceedings of the international Conference on Formal ontology in
information Systems - Volume 2001 (Ogunquit, Maine, USA, October 17 - 19, 2001).
FOIS '01. ACM, New York, NY, 34-46.

[27] Duddy, K. 2002. UML2 must enable a family of languages. Commun. ACM 45, 11
(Nov. 2002), 73-75.

[28] Eclipse Modeling Framework (EMF). Available at http://www.eclipse.org/emf/

[29] Evans, A. and Kent, S. 1999. Core meta-modelling semantics of UML: The pUML
approach. In Proceedings of UML'99. Lecture Notes in Computer Science, vol. 1723.
Springer-Verlag, New York, 140--155.

[30] Evermann, J., Wand, Y. “Towards Ontologically Based Semantics for UML
Constructs, In Proceedings of Conceptual Modeling - ER 2001 - 20th International
Conference on Conceptual Modeling, Yokohama, Japan, November 27-30, 2001,
Berlin, Heidelberg 2001, pp. 354-367

[31] Falkenberg, E., Verrijn-Stuart, A., Voss, K., Hesse, W., Lindgreen, P., Nilsson, B., Oei,
J., Rolland, C., and Stamper, R. a. A Framework of Information Systems Concepts.
The FRISCO report. 1998

[32] Favre, J.M. Megamodeling and Etymology, Dagstuhl Seminar Proceedings 05161 on
Transformation Techniques in Software Engineering, DROPS,
http://drops.dagsthul.de

[33] Geisler, R., Klar, M., and Pons, C. 1998. Dimensions and dichotomy in
metamodeling. In Proceedings of the Third BCS-FACS Northern Formal Methods
Workshop (September). Springer-Verlag, New York.

[34] Gitzel, R., Hildenbrandt, T.: A Taxonomy of Metamodel Hierachies - Working Paper
1-05. Available at http://www.wifo.uni-
mannheim.de/~gitzel/publications/taxonomy.pdf. (2005).

An Ontology Based Metalanguage with Explicit Instantiation

134

[35] Gödel, K.: On formally undecidable statements of Principia Mathematica, and
related systems. Monatshefte für Mathematik und Physik 38, 173-198 (1931)
(translated by A. Meltzer, introduced by A. Braithwaite, Dover Publications).

[36] Gogolla, M. and Richters, M. 2002. Expressing UML Class Diagrams Properties with
OCL. In Object Modeling with the Ocl, the Rationale Behind the Object Constraint
Language T. Clark and J. Warmer, Eds. Lecture Notes In Computer Science, vol.
2263. Springer-Verlag, London, 85-114.

[37] Gogolla, M., J.-M. Favre and F. Büttner, On Squeezing M0, M1, M2, and M3 into a
Single Object Diagram, Technical Report LGL-REPORT-2005-001, Ecole
Polytechnique Fédérale de Lausanne (2005)

[38] Greenfield, J., Short, K., Cook, S., Kent, S., Software Factories, Wiley, ISBN 0-471-
20284-3, 2004.

[39] Guarino, N. and Welty, C. A. 2000. A Formal Ontology of Properties. In Proceedings of
the 12th European Workshop on Knowledge Acquisition, Modeling and Management
(October 02 - 06, 2000). R. Dieng and O. Corby, Eds. Lecture Notes In Computer
Science, vol. 1937. Springer-Verlag, London, 97-112.

[40] Guarino, N., “Formal Ontology and Information Systems,” in Formal Ontology in
Information Systems, N. Guarino, Ed. Amsterdam, Netherlands: IOS Press, 1998

[41] Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models,
Telematica Instituut Fundamental Research Series, Vol. 015. Enschede: Telematica
Instituut

[42] Guizzardi, G., Ferreira Pires, L., van Sinderen, M. An Ontology-Based Approach for
Evaluating the Domain Appropriateness and Comprehensibility Appropriateness of
Modeling Languages. MoDELS 2005: 691-705

[43] Guizzardi, G., Herre, H., and Wagner, G. 2002. On the General Ontological
Foundations of Conceptual Modeling. ER 2002: 65-78

[44] Guizzardi, G., Herre, H., Wagner, G., 2002. Towards ontological foundations for uml
conceptual models. In: On the Move to Meaningful Internet Systems, 2002 -
DOA/CoopIS/ODBASE 2002 Confederated International Conferences DOA, CoopIS
and ODBASE 2002. Springer-Verlag, London, UK, pp. 1100-1117.

[45] Guizzardi, G.: Ontological Foundations for Structural Conceptual Models.
Telematica Instituut, Enschede (2005)

An Ontology-Based Metalanguage with Explicit Instantiation

135

[46] Harel, D., Rumpe, B., August 2000. Modeling languages: Syntax, semantics and all
that stuff, part i: The basic stuff. Tech. rep., Mathematics & Computer Science,
Weizmann Institute Of Science, Mathematics & Computer Science, Weizmann
Rehovot, Israel.

[47] Henderson-Sellers, B., Gonzalez-Perez, C.: 2005. Connecting Powertypes and
Stereotypes. J. Object Technol. 4(7), 83–96

[48] Hull, R., King, R. 1987. Semantic database modeling: survey, applications, and
research issues. ACM Comput. Surv. 19, 3 (Sep. 1987), 201-260.

[49] Intentional Software. Available at http://www.intentsoft.com

[50] Jouault, F., Bézivin, J. KM3: a DSL for Metamodel Specification. FMOODS 2006,
Bologna, Italy, 14-16 June 2006

[51] Jouault, F., Bézivin, J., and Kurtev, I. 2006. TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In Proceedings of the 5th international
Conference on Generative Programming and Component Engineering (Portland, Oregon,
USA, October 22 - 26, 2006). GPCE '06. ACM, New York, NY, 249-254.

[52] Jouault, F., Bézivin, J., Consel, C., Kurtev, I., and Latry, F. Building DSLs with
AMMA/ATL, a Case Study on SPL and CPL Telephony Languages. In Proceedings of
the 1st ECOOP Workshop on Domain-Specific Program Development (DSPD'06), Nantes,
France, July 2006.

[53] Kappel, G, Kapsammer, E, Kargl, H, Kramler, G, Reiter, T, Retschitzegger, W,
Schwinger, W, and Wimmer, M : Lifting metamodels to ontologies - a step to the
semantic integration of modeling languages. In: ACM/IEEE 9th International
Conference on Model Driven Engineering Languages and Systems (MODELS'06).
2006

[54] Kelly, S., Tolvanen, J.-P. Domains-specific modeling: enabling full code generation.
Wiley-IEEE Computer Society, 2008

[55] Kent, S. Model Driven Engineering. In Proceedings of IFM2002, LNCS 2335,
Springer, 2002

[56] Kleppe, A., G., Warmer, J., and Bast, W. 2003 MDA Explained: the Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.

An Ontology Based Metalanguage with Explicit Instantiation

136

[57] Kolovos, D., S., Paige, R., F., Polack, F.: Aligning OCL with Domain-Specific
Languages to Support Instance-Level Model Queries. ECEASST 5, 2006

[58] Kruchten, P. 2003 The Rational Unified Process: an Introduction. 3. Addison-Wesley
Longman Publishing Co., Inc.

[59] Kühne, T., 2002. Matters of (meta-) modeling-the role of metamodeling. In: in MDA”,
International Workshop in Software Model Engineering (in conjunction with
UML’02.

[60] Kurtev, I. 2008. Application of Reflection in Model Transformation Languages. In
Proceedings of the 1st international Conference on theory and Practice of Model
Transformations (Zurich, Switzerland, July 01 - 02, 2008). A. Vallecillo, J. Gray, and A.
Pierantonio, Eds. Lecture Notes In Computer Science, vol. 5063. Springer-Verlag,
Berlin, Heidelberg, 199-213.

[61] Kurtev, I. 2008. State of the Art of QVT: A Model Transformation Language
Standard. In Applications of Graph Transformations with industrial Relevance: Third
international Symposium, AGTIVE 2007, Kassel, Germany, October 10-12, 2007, Revised
Selected and invited Papers, LNCS, vol. 5088. Springer-Verlag, Berlin, Heidelberg, 377-
393.

[62] Kurtev, I. Adaptability of Model Transformations. PhD thesis, University of Twente,
2005. ISBN 90-365-2184-X

[63] Kurtev, I. Metamodels: Definitions of Structures or Ontological Commitments?
Workshop on TOWERS of models. Collocated with TOOLS Europe. 2007

[64] Kurtev, I., Bézivin, J., Aksit, M. 2002. Technological Spaces: An Initial Appraisal. In
Proceedings of the EWI-SE: Software Engineering (Irvine, USA, 1 Nov 2002) 1-6

[65] Kurtev, I., van den Berg, K. MISTRAL: A Language for Model Transformations in the
MOF Meta-modeling Architecture. MDAFA 2004: 139-158

[66] Loux, M.J. The problem of universals. In Metaphysics: contemporary readings. M.J.
Loux (ed.). Routledge, 2001

[67] Milton, S., and Kazmierczak, E. (2004), “An Ontology of Data Modeling Languages:
A Study Using a Common-Sense Realistic Ontology,” Journal of Database
Management, Vol. 15, No.2, pp. 19-38.

[68] Mylopoulos, J., Information Modeling in the Time of the Revolution. Information
Systems, Vol. 23, 1998

An Ontology-Based Metalanguage with Explicit Instantiation

137

[69] Object Management Group (OMG), Common Warehouse Metamodel (CWM)
Specification, Version 1.1, formal/2003-03-02, 2003

[70] Object Management Group (OMG), MDA Guide Version 1.0.1, Doc.
omg/2003/06/01, 2003

[71] Object Management Group (OMG), Meta object facility (MOF) 2.0
Query/View/Transformation Specification, Final Adopted Specification, ptc-
07/07/07, 2007

[72] Object Management Group (OMG), Meta object facility (MOF) core specification,
Version 2.0 formal/06/01/01, 2006

[73] Object Management Group (OMG), OCL 2.0 Specification, Version 2.0,
ptc/2005/06/06, 2005

[74] Object Management Group (OMG), UML 2.0 Infrastructure Specification.
www.omg.org, Sept. 2003.

[75] Object Management Group (OMG), UML 2.0 Specification, Version 2.0,
ptc/2008/05/07, 2008

[76] Odell, J. Power Types. 1994. JOOP 7(2): 8-12

[77] Quine, W. V. O. 1969. Ontological relativity. In W. V. O. Quine (Ed.), Ontological
relativity and other essays (pp. 26-68). New York: Columbia Univ. Press.

[78] Richters, M., Gogolla, M., On the need for a precise OCL semantics. In Proceedings
of OOPSLA Workshop “Rigorous Modeling and Analysis with the UML: Challenges
and Limitations”. Colorado State University, Fort Collins, Colorado, 1999.

[79] Russell, B., 1946. The History of Western Philosophy, Allen and Unwin, London.
Unwin, 1985

[80] Russell, Bertrand: "Letter to Frege". In : in van Heijenoort, Jean, From Frege to Gödel
124-125. Cambridge, Mass.: Harvard University Press (1967) 124-125

[81] Snyder, A. 1986. Encapsulation and inheritance in object-oriented programming
languages. In Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications (Portland, Oregon, United States, September 29 - October
02, 1986). N. Meyrowitz, Ed. OOPLSA '86. ACM, New York, NY, 38-45.

An Ontology Based Metalanguage with Explicit Instantiation

138

[82] Soden, M.: Operational Semantics for MOF Metamodels. Working version. Available
at http://www.metamodels.de/publications.html

[83] Solberg, A., France, R., Reddy, R., "Navigating the MetaMuddle," Proceedings of the
4th Workshop in Software Model Engineering, Montego Bay, Jamaica, 2005, Available at
http://www.planetmde.org/wisme-2005/ NavigatingTheMetaMuddle.pdf

[84] Sowa J., F. Ontology, Metadata, and Semiotics, Proceedings of the Linguistic on
Conceptual Structures: Logical Linguistic, and Computational Issues, p.55-81,
August 14-18, 2000

[85] Sowa, J. F. 1992. Conceptual graphs summary. In Conceptual Structures: Current
Research and Practice, T. E. Nagle, J. A. Nagle, L. L. Gerholz, and P. W. Eklund, Eds.
Ellis Horwood Series In Workshops. Ellis Horwood, Upper Saddle River, NJ, 3-51.

[86] Sowa, J. F. 2000. Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Brooks/Cole Publishing.

[87] Wand, Y., Storey, V.C., Weber, R. An Ontological Analysis of the Relationship
Construct in Conceptual Modeling. ACM Trans. Database Syst. 24(4): 494-528 (1999)

[88] Watt, A.,D., Brown, D., F., "Programming Language Processors in Java. Compilers
and Interpreters", Preatice Hall, 2000.

[89] World Wide Web Consortium, ‘Resource Description Framework (RDF)’, Available
at http://www.w3.org/RDF/. W3C Recommendation 10 February 2004

[90] World Wide Web Consortium, ‘Web Ontology Language (OWL)’, Available at
http://www.w3.org/2004/OWL/. W3C Recommendation 10 February 2004

An Ontology-Based Metalanguage with Explicit Instantiation

139

Appendix A – Concrete Syntax of OGML

This appendix describes the grammar of the meta-language presented in Chapter 4. To
represent the grammar we use Extended Backus-Naur Form (EBNF). Non-terminals are in
bold text and have a Capital first letter. Terminals are quoted. Identifiers, consist of any
sequence of characters without a space. They are represented starting with a small letter.

A.1 EBNF
The syntax of EBNF is expressed in itself as follows (letter and all-characters are not fully
expanded):

<production-rule> ::= <non-terminal> < ::= > <sequence>
< sequence> ::= <element> | <element> < sequence>
<element> ::= < quantifier > | <choice>
<choice> ::= < sequence > <|> < sequence>
<quantifier> ::= <expression> * | <expression> + | <expression> ?
<expression> ::= <atom> | (< sequence>)
<atom > ::= <non-terminal> | <identifier> | <terminal>
<non-terminal> ::= <capital> | <all-characters> <non-terminal>
< identifier > ::= ” <all-characters> ”
< terminal > ::= <letter> | <letter> <all-characters>

The grammar does not fully expand the included OCL definition. The syntax of OCL can be
found in [73]. For more information on conformance to the OCL standard, the reader should
consult Appendix C “OCL Interpreter and Metamodel”.

In the following subsections, the syntax is presented. The same partitioning of the language
is used as in Chapter 4 to enable easy referencing.

A.2 Language Constructs

LanguageDefinition ::= "Language" name "{"
 LanguageContent *
 "}"

LanguageContent ::= Definition | Relations | GeneralizationRelation

Definition ::= UniversalDefinition | UniversalDefinition

UniversalDefinition ::= SubstantialDefinition | MomentDefinition

IndividualDefinition ::= ObjectDefinition | PropertyDefinition

SubstantialDefinition ::= "SubstantialDefinition" name ("extends" (definition (","definition)*))?
 "{"
 Attribute *
 "}"

MomentDefinition ::= "MomentDefinition" name ("extends" (definition (","definition)*))?
 "{"
 Attribute *
 CharacterizationRelation +
 "}"

DataTypeDefinition ::= "DataTypeDefinition" name ("extends" (definition (","definition)*))?
 "{"
 Attribute *

An Ontology Based Metalanguage with Explicit Instantiation

140

 "}"

ObjectDefinition ::= "ObjectDefinition" name ("extends" (definition (","definition)*))?
 "{"
 Attribute *
 "}"

PropertyDefinition ::= "PropertyDefinition" name ("extends" (definition (","definition)*))?
 "{"
 Attribute *
 InherenceRelation +
 "}"

A.3 Relational Constructs

Attribute ::= "attribute" name "[" lower "-" upper "]" ":" definition (","definition)* ";"

CharacterizationRelation ::= "characterization"
 universalDefinitionRole ":" ownerDefinition ("," ownerDefinition)*
 "momentDefinitionRole" "[" lower "-" upper "]" momentDefinitionRole ";"

InherenceRelation ::= "dependsOn" (propertyBearer (","propertyBearer)*)
 "role" "=" role "[" lower "-" upper "]" ";"

A.4 Ontological Perspective Constructs

Relations ::= "Relations" name "{"
 instanceOfRelations
 "}"

InstanceOfDefinition ::= ("abstract")? (definingConceptIdentifier ":") ? definition "->"
 (sequenceIdentifier ":" "[") ?
 (instanceIdentifier ":") ? conformingDefinition
 ("]") ?
 "{"
 CharacterizationInstantiation *
 AttributeFunction *
 "}" ("when" "(" ExpressionInOcl ")") ?

CharacterizationInstantiation ::= characterizationRole "->" momentRole ";"

AttributeFunction ::= characterizationRole
 "{"
 "naming" name "<-" ExpressionInOcl ";"
 "valuing" "[" lower ".." upper "]" ExpressionInOcl ";"
 "typing" ExpressionInOcl ";"
 "}" ("where" "(" ExpressionInOcl ")") ?

A.5 Generalization and Specialization Constructs

GeneralizationRelation ::= "GeneralizationRelation" name
 "{"
 "generalConcept" "=" generalConcept (","generalConcept)* ";"
 "specializedConcept" "=" specializedConcept ("," specializedConcept)* ";"
 "parentMultiplicity" "=" "[" lower "-" upper "]" ";"
 "childMultiplicity" "=" "[" lower "-" upper "]" ";"
 "generalConceptRole" "=" generalConceptRole ";"
 "specializedConceptRole" "=" specializedConceptRole ";"
 "}"

A.6 Other Constructs

OGMLDataType ::= "OGMLDataType" name ("extends" (definition (","definition)*)) ?
 "{"
 Attribute *
 "}"

An Ontology-Based Metalanguage with Explicit Instantiation

141

Class ::= "Class" name ("extends" (definition (","definition)*)) ?
 "{"
 Attribute *
 "}"

ExpressionInOcl ::= bodyExpression;

A.7 Symbol Table Creation
The parsed syntax of OGML results in a tree. In order to create the graph structure of the
abstract syntax that was presented in UML diagrams in Chapter 4, some identifiers are
matched by name in a symbol table [88]. Here the identifiers are matched by-name other
parts of the parsed tree. Here we express these relations in terms of the concrete syntax that
was just defined. The following syntax is used:

< reference-rule> ::= <reference> <non-terminal> . <identifier-in-non-terminal-production-rule>
<reference> ::= <identifier>

definition Definition.name

ownerDefinition UniversalDefinition.name

propertyBearer PropertyDefinition.name

definition UniversalDefinition.name

conformingDefinition Definition.name

generalConcept Definition.name

specializedConcept Definition.name

An Ontology Based Metalanguage with Explicit Instantiation

142

An Ontology-Based Metalanguage with Explicit Instantiation

143

Appendix B – OGML Definition

In this appendix, we present OGML as it is expressed in its own syntax. The syntax is found
the previous appendix. Like the grammar, this definition does not fully expand the included
OCL definition. Whenever an identifier collides with it a keyword of the language it has to
be escaped, this is done by parenthesis. Escaped identifiers are also shown in quotes. The
syntax of OCL can be found in [73].

OGML Definition
1: Language OGML {
 SubstantialDefinition Definition extends Classifier {
 attribute name : "String";
 }

5: SubstantialDefinition UniversalDefinition extends Definition {}
 SubstantialDefinition "SubstantialDefinition" extends UniversalDefinition {}
 SubstantialDefinition "MomentDefinition" extends UniversalDefinition {}
 SubstantialDefinition "DataTypeDefinition" extends UniversalDefinition {}

10: SubstantialDefinition IndividualDefinition extends Definition {}
 SubstantialDefinition "ObjectDefinition" extends IndividualDefinition {}
 SubstantialDefinition "PropertyDefinition" extends IndividualDefinition {}

 SubstantialDefinition "Class" extends Definition {}
15: DataTypeDefinition "OGMLDataType" extends Definition {}

 SubstantialDefinition LanguageDefinition {
 attribute definitions [*] : Definition, "Relations", "GeneralizationRelation";
 }
20:
 MomentDefinition Attribute {
 attribute name : "String";
 attribute range [1-*] : Definition;
 attribute lower : "Integer";
25: attribute upper : "Integer";
 characterization " owner " : Definition momentDefinitionRole [*] " attributes ";
 }

 MomentDefinition CharacterizationRelation {
30: attribute id : "String";
 attribute lower : "Integer";
 attribute upper : "Integer";
 attribute "momentDefinitionRole" : "String";
 attribute "universalDefinitionRole" : "String";
35: characterization dependentDefinition : MomentDefinition momentDefinitionRole [1-*] dependency;
 characterization ownerDefinition : UniversalDefinition momentDefinitionRole [*] feature;
 }

 MomentDefinition InherenceRelation {
40: attribute lower : "Integer";
 attribute upper : "Integer";
 attribute "role" : "String";
 characterization " property " : PropertyDefinition momentDefinitionRole [1-*] " inherenceRelation ";
 characterization " propertyBearer " : Definition momentDefinitionRole [*] " properties ";
45: }

 MomentDefinition InstanceOfDefinition {
 attribute isAbstract : "Boolean";
 attribute instanceIdentifier[0-1] : "String";
50: attribute sequenceIdentifier[0-1] : "String";
 attribute definingConceptIdentifier[0-1] : "String";
 attribute condition[0-1] : Expression;
 attribute characterizationInstantiations[*] : CharacterizationInstantiation;
 attribute attributeFunctions[*] : AttributeFunction;
55: characterization definition : UniversalDefinition momentDefinitionRole [*] instanceOfRelation;
 characterization conformingDefinition : Definition momentDefinitionRole [*] instanceOf;
 }

An Ontology Based Metalanguage with Explicit Instantiation

144

 MomentDefinition "GeneralizationRelation" {
60: attribute name : "String";
 attribute "generalConceptRole" : "String";
 attribute "specializedConceptRole" : "String";
 attribute "generalConceptLower" : "Integer";
 attribute "generalConceptUpper" : "Integer";
65: attribute "specializedConceptLower" : "Integer";
 attribute "specializedConceptUpper" : "Integer";
 characterization "generalConcept" : Definition momentDefinitionRole [*] "specializations";
 characterization "specializedConcept" : Definition momentDefinitionRole [*] "generalizations";
 }
70:
 GeneralizationRelation OGMLGeneralization {
 generalConcept = Definition, "Class", "OGMLDataType";
 specializedConcept = Definition, "Class", "OGMLDataType";
 parentMultiplicity = *;
75: childMultiplicity = *;
 generalConceptRole = "extends";
 specializedConceptRole = "extendedBy";
 }

80: Class "OclAny" {}
 OGMLDataType "String" extends "OclAny" {}
 OGMLDataType "Integer" extends "Double" {}
 OGMLDataType "Boolean" extends "OclAny" {}
 OGMLDataType "Double" extends "OclAny" {}
85:

 Relations OGMLInstanceOfDefinition {

 ld : LanguageDefinition -> mm : MetaModel {
90: definitions -> contents;
 }

 abstract Definition -> PropertiesElement {
 attributes -> properties;
95: properties -> properties;
 generalizations -> properties;
 specializations -> properties;
 instanceOf -> instanceOf;
 }
100:
 sd : UniversalDefinition -> su : InstantiatableElement {
 feature -> properties;
 instanceOfRelation -> instantiatedTo;
 }
105:
 md : "MomentDefinition" -> mu : MomentUniversal {
 dependency -> properties;
 }

110: "PropertyDefinition" -> XObject {}
 "SubstantialDefinition" -> SubstantialUniversal {}
 "DataTypeDefinition" -> SubstantialUniversal {}
 "ObjectDefinition" -> XObject {}
 "Class" -> XObject {}
115: "OGMLDataType" -> Literal {}
 InstanceOfDefinition -> InstanceOfProperty {}

 a : Attribute -> p : Property {
 attributes {
120: naming name <- a.name;
 valuing [a.lower .. a.upper] p.value ;
 typing a.range;
 }
 }
125:
 i : InherenceRelation -> p : Property {
 properties {
 naming name <- i."role";
 valuing [i.lower .. i.upper] p.value;

An Ontology-Based Metalanguage with Explicit Instantiation

145

130: typing i.property;
 }
 }

 c : CharacterizationRelation -> p1 : Property {
135: feature {
 naming name <- c."momentDefinitionRole";
 valuing [c.lower .. c.upper] p1.value;
 typing c.dependentDefinition;
 }
140: }

 c : CharacterizationRelation -> p2 : Property {
 dependency {
 naming name <- c."universalDefinitionRole";
 valuing [0 .. -1] p2.value;
145: typing c.ownerDefinition;
 }
 }

 g : "GeneralizationRelation" -> p1 : Property {
150: generalizations {
 naming name <- g."generalConceptRole";
 valuing [g.generalConceptLower .. g.generalConceptUpper] p1.value;
 typing g."generalConcept";
 }
155: }

 g : "GeneralizationRelation" -> p2 : Property {
 specializations {
 naming name <-g."specializedConceptRole";
 valuing [g.specializedConceptLower .. g.specializedConceptUpper] p2.value;
160: typing g."specializedConcept";
 }
 }
 }

165: Class "Relations" {
 attribute name : "String";
 attribute instanceOfRelations[*] : InstanceOfDefinition;
 }

170:
 Class CharacterizationInstantiation {
 attribute characterizationRole : "String";
 attribute momentRole : "String";
 }
175:
 Class AttributeFunction {
 attribute characterizationRole : "String";
 attribute momentRole [0-1] : "String";
 attribute name : "String";
180: attribute lower : Expression;
 attribute upper : Expression;
 attribute identifier : Expression;
 attribute value : Expression;
 attribute type : Expression;
185: attribute condition [0-1] : Expression;
 }

 SubstantialDefinition ModelElement {}
190: SubstantialDefinition PropertiesElement extends ModelElement {}
 SubstantialDefinition IdentifiableElement extends PropertiesElement {}
 SubstantialDefinition InstantiatableElement extends IdentifiableElement {
 attribute instantiatedTo[*] : InstanceOfProperty;
 }
195: SubstantialDefinition ModelContent extends IdentifiableElement {
 attribute container : ModelContent;
 }

 SubstantialDefinition "Model" extends IdentifiableElement {
 200: attribute contents [*] : ModelContent;
 }

An Ontology Based Metalanguage with Explicit Instantiation

146

 SubstantialDefinition "MetaModel" extends "Model", InstantiatableElement {}

 SubstantialDefinition "SubstantialUniversal" extends InstantiatableElement, ModelContent {}
205: SubstantialDefinition "MomentUniversal" extends InstantiatableElement, ModelContent {}

 ObjectDefinition XObject extends IdentifiableElement, ModelContent {}
 ObjectDefinition Literal extends PropertiesElement {
 attribute "value" [*] : "String";
210: }

 PropertyDefinition Property extends ModelElement {

 attribute name : "String";
 attribute "value"[*] : PropertiesElement;

215: dependsOn IdentifiableElement role = "properties" multiplicity = * ;
 }

PropertyDefinition InstanceOfProperty extends ModelElement {
 attribute "value"[*] : "Model", "MomentUniversal", SubstantialUniversal;
220: attribute "language" : "String";
 dependsOn PropertiesElement, Property, InstanceOfProperty role = "instanceOf" multiplicity = *;
 }

225: Class ExpressionInOcl extends OpaqueExpression {
 attribute bodyExpression : OclExpression;
 attribute resultVariable[0-1] : VariableDeclaration;
 attribute contextVariable[0-1] : VariableDeclaration;
 attribute parameterVariable[*] : VariableDeclaration;
230: }

 ... OCL ...

 }

An Ontology-Based Metalanguage with Explicit Instantiation

147

Appendix C – OCL Interpreter and Metamodel

This appendix includes the design of the OCL implementation. The OCL specification can be
found in [73]. The OCL interpreter implements three base functionalities: OCL expression
parsing, type checking and evaluation. For these functionalities, three class hierarchies are
used: OclExpression, Type and Value. Each of them conforms to the abstract syntax trees
from the OCL specification [73]. Some additions were made to make OCL language aware,
as described in Chapter 7. Therefore the OCL metamodel is also provided here.

C.1 High- Level Design
The three class hierarchies in OCL are interrelated in an interesting way. Types are first class
values in this implementation thus become a direct instance of the Value hierarchy.
Furthermore, types play a dual role of type and expression, because they are one-to-one
mapped to the syntax. Operations allow transformations between the hierarchies; they are
displayed as dashed arrows in the diagram.

+OclExpression() : OclExpression

OclExpression

+conformsTo(in other : Type) : bool

Type

+getFactory() : ExpressionFactory
+createExpByEnum(in exp : ExpEnum) : OclExpression

ExpressionFactory

+toObject() : XObject

«interface»
Value

+eval(in env : Environment) : Value
+check(in env : Environment) : Type

«interface»
OclExpEval

-EMPTY_ENVIRONMENT
Environment

-owner

1

-intermediateResults

*

+getFactory() : ValueFactory
+createValueByExp(in exp : TypeExpEnum) :
Value

ValueFactory

XObject

eval(env:Environment):Value

ch
ec

k(
en

v:
E

nv
iro

nm
en

t):
Ty

pe

commonType(other:Type):Type

+buildTree(in expressionInOcl : XObject) : OclExpression
+check(in expression : OclExpression, in expressionInOcl : XObject) : Type
+interpret(in expression : OclExpression, in expressionInOcl : XObject) : Value

Interpreter

parse(object:XObject):OclExpEval

+getFactory() : TypeFactory
+createTypeByExp(in exp : ExpEnum) : Type

TypeFactory

ExpEnum

+create() : Type

TypeExpEnum

+create() : Value

ValueEnum

Figure C-9-1 - A high-level design of the OCL interpreter

An Ontology Based Metalanguage with Explicit Instantiation

148

C.2 Metamodel of Expression Hierarchy
Figure C-9-3 shows the OCL expression hierarchy.

Figure C-9-2 - OCL Interpreter's Expression Hierarchy

An Ontology-Based Metalanguage with Explicit Instantiation

149

C.3 Metamodel of Type Hierarchy
Figure C-9-3 shows the adapted OCL type hierarchy. An explicit ModelElementType was
introduced as type and first-order value to support the language dependent notion of model
element types.

Figure C-9-3 - OCL Interpreter's Type Hierarchy

An Ontology Based Metalanguage with Explicit Instantiation

150

Index

attribute function 15, 55
Bunge-Webber-Wand See BWW
BWW .. 12, 116
characterization ... 14
conformance checkingSee OGML

conformance checking
conformsTo See instantiation
extension .. 26
FCO ... 13, 116
Formal Ontology.............. 116, See Ontology
Four-category ontology See FCO
individual .. 13, 45
inherence .. 14
instanceOf See instantiation
instanceOf definition 55
instantiation ... 22, 24
instantiation relation See instantiation
intension... 26
kind ... 12
language ... 16

abstract syntax 16, 17
diagrammatic syntax 17
grammar .. 16
semantics.. 16, 17
syntax ... 16
textual syntax .. 17

linguistic instantiation 24
linguistics See language
logical instantiation See ontological ..
MDA ... 1, 18
MDE .. III, 1, 19
memberOf See instantiation
metalanguage 2, 30, 35, 41, 119
metametamodel 2, 28, 39
metamodel ... 1, 27
metamodeling 1, 27, 82
model .. 1, 20, 65
Model Driven Architecture See MDA
Model Driven Engineering See MDE
modeling .. 1, 19
modeling architecture 28, 30
modeling language 1, 28, See language
modeling space 65, 104
MOF .. 29, 116
moment .. 13

moment individual 45, See individual
moment universal 45, See universal
Object Management Group See OMG
OCL 93, 116, 118, 139, 147
OCL interpreter 108, 147
OGML .. 43

conformance checking 109
constructs .. 44
extension See OGMLX
FCO .. 44
generalization ... 63
language .. 106
modeling architecture 82
models ... 106
Ontology .. 42
perspective .. 15, 53
reflection .. 70, 143
relations ... 48
semantics ... 43
semantics (formal).................................. 97
specialization .. 63
syntax ... 139
UML ... 41, 43, 85

OGML eXtensional See OGMLX
OGMLX ... 65, 122
OMG .. 1, 18
ontological commitment 15
ontological instantiation 24
Ontology .. 11

attribute function .. See attribute function
generalization ... 15
laws .. 15
properties .. 14
relations ... 14

Ontology Grounded MetaLanguage See
OGML

OWL ... 28
representation See instantiation
structural instantiation See linguistic ..
substantial ... 13, 45
substantial individual 45, See individual
substantial universal See universal
UML ... 2, 28, 116
Unified Modeling Language See UML
universal .. 14, 45

	Abbreviations
	Abstract
	Samenvatting
	List of Figures
	List of Tables
	List of Code Listings
	Acknowledgements
	Chapter 1 – Introduction
	1.1 Preliminaries
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Objectives
	1.5 Approach
	1.6 Contributions
	1.7 Thesis outline

	Chapter 2 – Background
	2.1 Introduction
	2.2 Ontology
	2.2.1 A Short History of Ontology
	2.2.2 Ontology
	2.2.3 Bunge-Webber-Wand Ontology
	2.2.4 Four-Category Ontology
	2.2.5 Generalization in Ontology
	2.2.6 An Ontological Commitment

	2.3 Languages
	2.3.1 Linguistics, Syntax and Semantics
	2.3.2 The Pragmatics of Modeling
	2.3.3 The Ontological Commitment of Languages
	2.3.4 Expressiveness or Precision

	2.4 MDE
	2.4.1 Model Driven Architecture and Engineering
	2.4.2 The Concept of Model
	2.4.3 Instantiation
	2.4.4 Relativity in Modeling
	2.4.5 The Concept of Metamodel
	2.4.6 Modeling Languages
	2.4.7 Modeling Architectures

	2.5 Ontology and Modeling
	2.6 Conclusions

	Chapter 3 – Identification of Problems in Contemporary Modeling Architectures
	3.1 Introduction
	3.2 Construct Incompleteness, Overload and Excessiveness
	3.3 Multilevel Metamodeling
	3.4 Language Independent Model Handling and Structure
	3.5 The Adverse Effects of the Problems on Automation in MDE
	3.6 Analysis of the InstanceOf Relation
	3.7 Conclusions

	Chapter 4 – An Ontology-Based Modeling Architecture
	4.1 Introduction
	4.2 Approach
	The Metalanguage OGML
	4.3.1 Language Constructs
	4.3.2 Relational Constructs
	4.3.3 Ontological Perspective Constructs
	4.3.4 Generalization and Specialization Constructs

	4.4 Structure of the Modeling Space
	4.5 How OGML is Self-Reflective
	4.6 How OGML is Mapped to the Modeling Space
	4.7 The Resulting Modeling Architecture
	4.8 Conclusions

	Chapter 5 – Case Studies
	5.1 Introduction
	5.2 SimpleUML1
	5.2.1 Associations of Binary Links
	5.2.2 Associations on Attributable Links (AssociationClass)
	5.2.3 Associations on Slots

	5.3 SimpleUML2
	5.4 Querying the Models
	5.5 Conclusions

	Chapter 6 – Formalization and Semantics
	6.1 Introduction
	6.2 Semantic Domain
	6.3 Interpretation Function
	6.4 Use of the Semantics
	6.5 Conclusions

	Chapter 7 – Tool Support
	7.1 Introduction
	7.2 Requirements
	7.3 Detailed Design
	7.3.1 Modeling Space
	7.3.2 Handling Languages
	7.3.3 Handling Models
	7.3.4 OCL
	7.3.5 Conformance Checking
	7.3.6 A MISTRAL Use-Case

	7.4 Architectural Design
	7.5 Interface Design
	7.6 Extensions
	7.7 Conclusions

	Chapter 8 – Related Work
	8.1 Introduction
	8.2 Earlier Work
	8.3 Related Work in Approach
	8.4 Related Work with the Same Objective
	8.5 Related Work in Theory
	8.6 Conclusions

	Chapter 9 – Conclusion
	9.1 Introduction
	9.2 Summary
	9.3 Evaluation
	9.4 Discussion
	9.5 Future Work

	Bibliography
	Appendix A – Concrete Syntax of OGML
	A.1 EBNF
	A.2 Language Constructs
	A.3 Relational Constructs
	A.4 Ontological Perspective Constructs
	A.5 Generalization and Specialization Constructs
	A.6 Other Constructs
	A.7 Symbol Table Creation

	Appendix B – OGML Definition
	Appendix C – OCL Interpreter and Metamodel
	C.1 High-Level Design
	C.2 Metamodel of Expression Hierarchy
	C.3 Metamodel of Type Hierarchy

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

