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i

Simulating hardware designs with the assistance of a Field-programmable Gate
Array (FPGA) can greatly increase the simulation speed. Especially since new
hardware designs often encompass a complete System-on-Chip (SoC). Due
to the limited resources of a single FPGA these designs may be too large to
instantiate them into an FPGA. Wolkotte et al, presented a simulation approach
that can simulate those designs [1]. The approach uses time multiplexing to
simulate only a small part of the hardware designs in a single clock cycle. This
technique works well with hardware designs that contain a lot of nearly identical
components, e.g. a Multi Processor System-on-Chip (MPSoC). Such a MPSoC
may consist of a 2d-mesh Network-on-chip (NoC). Each router in the NoC could
be connected to a small processing element, i.g. the Montium tile processor
[2]. One of the transformations that is performed for time multiplexing the
simulation is state extraction. The current approach by Rutgers [3, 4] is only
able to extract flip-flops from the hardware designs. This thesis introduces some
new algorithms that extract large memories. These algorithms make it possible
to also simulate the network with the processing element attached. This was
not possible in the approach of Rutgers due to the bandwidth limitations within
an FPGA.
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RELATED WORK 3

Only 2300 transistors were needed to construct the first commercially available
microprocessor. They were used to build the Intel 4004, the first Central
Processing Unit (CPU), built by the Intel Corporation in 1971 [5].

Several years earlier, in 1965, Gorden E. Moore observed, that the number of
transistors that could be placed on an integrated circuit, doubled almost every
year [6]. For about ten years Moore’s law held. After that Moore adjusted it to
double every couple of years [7, 8].

The latter trend continued, which means that, since the early days of integ-
rated circuits, the number of transistors on chips surpassed the billion mark in
2008. An example of one of these billion transistor chips is the GT200 Graphical
Processing Unit (GPU) from Nvidia [9], featuring 240 cores. Furthermore one
of Intel’s own processors, the Quad-core Itanium Tukwila, has even broken the
two billion transistor mark [10].

The last several years there seems to be an increase in the number of large
multi-core chips. Examples of these are: The Cell architecture [11], which
features nine cores; An Intel research project named the Tera-scale Computing
Research provided an 80 core chip, but never went into commercial production
[12, 13].

But not only the large high performance chips went from single to multi-
core. For embedded solutions, MPSoC are developed, which use a homogenous
or heterogenous architecture of embedded processors, which are connected
through a NoCs [13]. An example of such an architecture is the Annabelle chip
[14].

Developing these new architectures requires knowledge of the required
performance of applications and algorithms on the new architectures. Therefore,
the new architectures will have to be simulated. However, these simulations
can take a long time [1, 15, 4]. The Hardware in the Loop Simulator (HILS)
introduces a simulation technique that uses relatively inexpensive equipment to
reduce the simulation time of new hardware architectures, it will be elaborated
in section 2.

1.1 Related Work

A hardware design has to be thoroughly simulated before it can be put in
production. There are many methods how a hardware design can be simulated.
These methods range from behavioral simulations to timing-accurate post
synthesis simulations. They will be discussed starting at the highest level of
abstraction, slowly working to a lower level of abstraction.

A method that can simulate designs from the behavioral level to Register
Transfer Level (RTL) is SystemC [16]. SystemC consists of a set of class libraries
for C++, these libraries can be used to model the hardware design. Hardware
designs that are implemented in a Hardware Description Language (HDL) can
be simulated in simulators such as ModelSim [17]. When the simulation speed
of the software simulators start to become a bottleneck, hardware assisted
simulations are necessary. A simple method is to use an FPGA to simulate the
hardware [18], but the size FPGA can limit the amount of hardware designs that
can be simulated. Several FPGAs together can simulate larger hardware designs.
Techniques such as virtual wires [19], can be used to efficiently use those FPGAs.



4 INTRODUCTION

Several commercial products are also available such as Veloce from Mentor
Graphics [20], and the Hardware Embedded Simulation accelerator from Aldec
use multiple FPGAs to simulate those designs. But the complete design does not
have to be instantiated completely. The design can be programmed partially
in an FPGA, and during runtime be reconfigured to simulate the complete
design [21]. Cadambi et al. present a method that uses an FPGA to program a
Very Long Instruction Word (VLIW) processor, called SimPLE, which is able to
efficiently execute parts of a hardware design [22].

Another method, which is more suitable for hardware designs that largely
consists of the same components, is proposed by Wolkotte et al [1]. All state
elements are removed from the design, which make is possible to time multiplex
the simulation of a single clock cycle. This makes is possible to simulate large
hardware designs in a single FPGA. A automated flow has been developed by
Rutgers [4].





C
ha

pt
er

2

H
ar

dw
ar

e
in

th
e

Lo
op

Si
m

ul
at

or
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2.1 Overview

This section gives an overview of the simulator design. Detailed information
can be found in [1, 3, 4]

The simulation speed of a hardware design can be increased by using one
or more FPGAs to execute the simulation [23]. This is because an FPGA can be
tailored to the design, such that each clock cycle of the FPGA corresponds to
a clock cycle in the simulation. A software simulation does need many clock
cycles on the CPU to simulate a single clock cycle of the simulation [4]. FPGAs
use reconfigurable logic to instantiate the hardware design, but the size of the
designs that can be instantiated within a single FPGA is limited. A simple, yet
expensive, solution would be to use multiple FPGAs to instantiate the complete
hardware design. But for very large hardware designs the required number of
FPGAs might be too high or the connections between the FPGAs might result in
an IO bottleneck. For both cases another solution is necessary.

A hardware design consists of several instances of components, which will
be called entities. For example in a Quad-core microprocessor there are four
instances of a processor core, which is the component. The instances themselves
represent the entities.

As mentioned before, many of the new and large hardware designs run
multiple entities of the same component in parallel. Instead of simulating
all those entities in parallel, it is possible to evaluate them sequentially for
simulation purposes. Moreover, because all entities from the same component
can now run on a single instance of that component, less hardware is necessary
to simulate this transformed design. In which case it fits in a single FPGA. The
instance of the component that will run the entities from the hardware design
is called the hyper cell. See [4] on how these hyper cells are generated.

Figure 2.1 depicts the current simulator. The basics of this simulator are
elaborated in the following sections.

2.1.1 Multiplexing Internal State

Essentially, all instantiated entities of a specific component in the parallel
architecture are run on one instance of that component. However, all these
entities have an internal state in the form of memory elements. It is therefore
not possible to use an unmodified version of the component to simulate all the
entities, because only a single instance of such an component cannot be used
to simulate more of them sequentially.

All state elements in the hardware design are replaced with some logic,
which emulates the behavior of the extracted state elements. The state itself is
then stored outside the transformed component, but through the replacement
logic it is still available to the component.

The internal state of each entity is represented by an entity’s state vector. The
state vector for each entity is stored in a memory designated state storage. The
component that replaces all the entities is called the hyper cell.
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2.1.2 Port Connections

The new state vector, and the output of an entity are also influenced by its
input ports. The input ports are connected to the output ports of other entities.
Therefore, it is necessary to correctly supply each entity with the output of
the connected entities in the parallel architecture. The output of each entity is
represented by a link vector and is stored in a memory designated link storage.

The link vector and state vector together represent the entity vector.

2.1.3 Evaluating all entities

A clock cycle in the original hardware design is called a system clock cycle.
A system clock cycle consists of the evaluation of all separate entities, these
evaluations are called delta cycles. In each delta cycle the input ports of an entity
are supplied by information from connected link vectors. However, before any
of the entities are evaluated the link vectors are not yet known. Only after a
delta cycle the link vectors for that entity are known. The connections between
the entities there may have circular dependencies, when such dependencies are
present it is not possible to evaluate an entity with a correct link vector. In this
case one of the entities within the dependency cycle has to be evaluated, once
its dependencies are evaluated it has to be evaluated again. When an entity is
evaluated again, it is possible that its link vectors have changed. In that case
the entities that are connected to those link vectors also have to be evaluated
again. As long as there are link vectors that have been changed due to an extra
evaluation this process continues. However, if there are no combinatorial loops
within the hardware, it can be proofed that eventually all link vectors can be
derived correctly (See appendix A for the formal proof). When all the link
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vectors on which an entity depends are stable, a complete system clock cycle
has been evaluated.

2.1.4 State Storage

Because an entity may be evaluated multiple times, it is necessary to store the
old state vector for each entity until the end of a complete clock cycle. The
new state vectors are also stored during the system clock cycle. Therefore, the
state storage stores both the old, and new state for the entire system in separate
memories. At the end of a system clock cycle the roles of these memories
switch, because the old state in the next system clock cycle was the new state
in the current. Hence these memories display ping-pong behavior [3]. This
behavior is implemented in figure 2.1 by the muxes in the state storage.

2.2 Current Status

Wolkotte et al, demonstrate that it is feasible to use an FPGA to do fast simulations
of large parallel designs [1, 15]. Rutgers made an effort to begin the automation
of this simulation flow [3]. This tool was the foundation of the ‘Sequential
hardware in the loop simulator’. Currently, only a limited number of features
are implemented in this simulator.

First, only some memory components are extracted. These are mainly flip-
flops, and latches. Hence larger memories such as Random Access Memory
(RAM) are not yet supported.

Second, the automated simulator has mainly been simulated, and not run
on the actual FPGA itself.

2.3 Research Definition

In order to define the scope of this thesis the actual problem needs to be defined
properly. The following sections define some of the current problems that need
to be addressed in order to implement a more efficient simulator.

2.3.1 State Access

As explained in section 2.1.1, the state vector represents the state of a specific
entity that is simulated. Hence the size of this vector is directly related to
the amount of memory present in such an entity. In a naïve solution this
complete state vector has to be supplied to the hyper cell of the entity, when it
is evaluated. This leads to some severe problems, namely:

Bandwidth The complete state of an entity is represented by the state vector.
The problem occurs, when we do have an entity with a large state vector,
because for each bit in this state vector a dedicated input line is needed.
Before an entity can be evaluated on a hyper cell, the state vector has
to be loaded from state storage as fast as possible. Ideally, in one clock
cycle, otherwise the pipeline of the simulator will stall, which results
in performance penalties. The width of the state vector depends on the
hardware design being simulated. But it can range from a few thousand
in the case of a small hardware design such as a NoC-router [24, 25] to a
few hundred thousand in case of a larger design, such as the Montium
tile processor [2].
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The only way an FPGA can directly read a large amount of memory in a
single clock cycle is when the data is stored on the chip itself. For this
there are two techniques.
The first technique is to use the storage capacity of the basic components
of a FPGA, the Look-up-table (LUT). In a typical FPGA these LUTs can
store 16 bits, depending on the number of input ports of the LUT. These
LUTs are glued together by multiplexing logic to create a structure, which
behaves as a memory. The main disadvantage of this technique is that
it consumes a large amount of basic components. In Xilinx FPGAs this
ram structure is called distributed RAM. The FPGA used within this thesis
supports distributed RAM upto 1056 Kb.
The second technique uses dedicated memory components in an FPGA.
These memory components do have a maximum input- and data port
width. However, it is possible to use several in parallel to increase the
amount of data, which can be accessed or stored in a clock cycle. A
disadvantage is that typically these memory components do have a syn-
chronous read port, whereas distributed ram does have an asynchronous
read port, which imposes a overhead for the evaluation when a hyper cell
has asynchronous memories. However, since this technique uses dedic-
ated memory components, it doesn’t consume any other basic component.
In Xilinx FPGAs these memory components are called Block RAM. Each
Block RAM stores 2304 bytes of information, and the FPGA that is used as
target within this thesis houses 288 Block RAMs, which results in a total
storage capacity of 648 KB. This limited amount of memory can lead to
another problem. For a hardware design that contains a lot of memory it
is possible that the amount of memory in an FPGA is not large enough to
accommodate the state and link storage. In that case the state, and link
storage has to be (partially) offloaded to memory outside the FPGA. This
creates another set of problems.

State partitioning When both the state, and link storage are placed in external
memory, because it did not fit in the FPGA, the entity vector is copied to
the FPGA before evaluating the entity. The bandwidth available between
the FPGA, and external memory is limited. Therefore, if the state vector
becomes too large, the simulator will stall until the complete entity vector
is available. This will reduce the speed of the simulator.

However, in most hardware designs only a small portion of the current state
vector changes or influences the new entity vector. The current state vector will
still represent the complete current state of an entity, and the reduced current
state vector will be a subset of this vector, which represents the part of the state,
which influences the new entity vector. In the current naïve implementation
this distinction is not made, and hence the complete state vector is loaded. The
new state vector can be reduced in the same manner, because not all bits in the
new state vector will change. Only the bits that might change, which depends
on the current entity vector, do have to be updated.

Hence the first problem is:

How can we reduce the size of the old and new state vector?

2.3.2 State Storage
All the state vectors from all the entities represent the total system state. When
an entity is evaluated the state vector for that entity does have to be fetched
from state storage. The width of this state vector depends on the hardware
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design, but for performance reasons should be fetched in as few clock cycles
as possible and ideally with a fixed latency in order to reduce the complexity
of the simulator pipeline.

When using FPGAs, several storage containers are available, these include:
Distributed ram, Block RAM and external memory. The state storage can be
divided and spread over these containers. Due to time constraints for this thesis
the focus will be how to use the Block RAMs as efficiently as possible. Because
how the state storage is mapped onto the Block RAMs of the FPGA determines
how much resources are needed and also influences clock frequency.

Hence the second problem is:

How can we efficiently store the state storage in the FPGA?

2.4 Outline Thesis

Chapter 3 describes the solution for the state vector reduction. It covers the
type of memories that can be extracted, and how they can be extracted. It
concludes with some results on the vector reduction.

How the extracted state can be stored as efficiently as possible is elaborated
in chapter 4. First, a mathematical model is introduced, which can find the
optimal mapping with respect to the number of memories necessary for the
mapping. Second, some heuristics are introduced, which can also be used to
find mappings, but may not find the optimal mapping. The chapter concludes
with some results on the state storage.

When both the state vectors are reduced, and an efficient way of storing
all the state vectors is known, the storage pipeline which is responsible for
loading, and saving the state vector can be implemented. This is elaborated in
chapter 5.

A small case study is performed on a NoC-router, the results can be found
in chapter 6.

Finally, some the conclusions are presented in chapter 7, some further topics
of research are also elaborated here.
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Abstract

In this chapter two techniques for reducing the entity vectors are presented, in order
to efficiently simulate large hardware designs. The first technique detects, and extracts
large memories, which are represented by clocked_ram primitives in the hardware graph.
The second technique detects register banks. Each register bank is removed from the
hardware graph, subsequently replaced by a clocked_ram primitive, and some supporting
logic. This replacement behaves exactly as the original register bank, but because the
replacement uses the clock_ram primitive to store the state it can be extracted by the
first technique.

Outline

In the approach of Rutgers [3, 4] the tool uses the synthesized netlist as
input, some alternatives to this format are presented, and elaborated in section
3.1. Subsequently, the hardware design from this level is converted into a
graph representation, which will be used to perform the analysis, and state
extraction on, that is elaborated in section 3.2. Before the actual analysis, a
short introduction on which types of memories are present in the hardware
can be found in section 3.3. The two analysis and extraction techniques will be
presented respectively in section 3.4 and 3.5.
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Currently, the extracted state is exported as a bit vector, which implies that
during the evaluation of an entity the complete vector has to be loaded and
saved. At this moment the state vectors are stored in Block RAMs on the FPGA
itself. For now an FPGA, the Xilinx XC4VLX160, with 288 Block RAMs, is used
as target platform. Each Block RAM is a dual port RAM that both support read-
and write actions, and has a maximum data port size of 36 bits, and is capable
of storing 2304 bytes. Since the new state vector has to be saved in the same
clock cycle as the old state vector has to be loaded, only half of the total number
of ports are available for either action. This results in a maximum bandwidth
of 10368 bits per clock cycle per action, when all the Block RAMs are used
for state storage. However, since the Block RAMs are also used for the link
memories and other parts of the simulator, the actual bandwidth is smaller.
For a small hardware design the required bandwidth suffices, but when the
hardware design requires more bandwidth than available, the pipeline has to
stall, and this will reduce performance of the simulator.

3.1 Analysis Level

All hardware designs, that eventually will result in an ASIC, will have to be
processed in a few steps. The hardware design is initially represented in a
HDL, such as VHDL or Verilog. In the first phase of the synthesis flow a HDL
design is read, and compiled into technology independent components. The
second phase consists of mapping these technology independent components
into technology dependent components. The result of the synthesis is a netlist
that can be saved in the Electronic Design Interchange Format (EDIF), a netlist
is a file that describes all components of a hardware design, and how they are
connected [26]. Compilation, and synthesis is usually done within a single tool,
but some tools can also export the netlist between these two phases [27, 28]. A
graphical overview of the levels, and how they are related is depicted in figure
3.1. These different levels, of which one will be chosen to be used within this
thesis, are elaborated in the following paragraphs.

Synthesized EDIF The EDIF format is a standard format for the interchange of
electronic designs between different tools [29]. Within this project there are two
synthesis tools available, Synopsis [27] and Precision [28], that deliver netlists.
But since these use the same technology library, both tools are elaborated as one
option. The major disadvantage is that the used technology library does not
support RAM components with asynchronous read ports. Hence a RAM, with
asynchronous read, is implemented as distributed RAM, and these structures
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are more complex to extract. An advantage is that, when the synthesis target
is a Xilinx FPGA, the components that are used are thoroughly documented by
Xilinx.

Precision’s intermediate format As mentioned before most synthesis tools do
have two distinct phases. Between these two phases the hardware is described
by a netlist that uses technology independent components. An example of
such a component in the Precision tool is the clocked_ram component. The
clocked_ram component is used as memory component for all types of memory
configurations. The component itself functions as a memory with synchronous
write ports, and asynchronous read ports.

The major advantage is that, because this component is used as basis for
all large memories, when this component is extracted, all large memories are
extracted. The major disadvantage is that Precision is not able to import the
exported files directly before the second phase. However, these shortcomings
have been circumvented by exporting the netlist to VHDL, which made it
possible to compile. Another disadvantage is that the technology independent
components are not documented. Since these components are relatively simple
(e.g. asynchronous memory, muxes, selects, incrementors, multipliers, etc), it is
not infeasible to determine the functionality of these components, after they
can be simulated correctly.

Synopsys intermediate format Synopsys also uses an intermediate format
before the actual technology mapping. While the documentation suggests that it
can infer asynchronous memories, this resulted in several internal errors within
the compiler of Synopsys, and was therefore not usable. Because Synopsys
did not infer these asynchronous memories correct, no effort was put into
determining the source of these internal errors.

VHDL All the techniques mentioned above extract the ram after phases in
the synthesis flow. Because all these synthesis tools have the ability to detect
memory components, it should also be possible to write a VHDL analyzer.
This VHDL analyzer should then be able to detect memory components, and
extract them at the VHDL level. For the analysis there is a parser available [30].
However, even using this parser the analysis of VHDL proved to be too complex,
and is not further examined within this project. Another disadvantage of VHDL
is that it does not cover all hardware designs, i.e. designs written in other HDLs
cannot be analyzed.

Evaluation Precision’s intermediate format was chosen for the level to perform
the analysis, and transformations. Detailed information on which file formats
are used for exporting, and importing this intermediate format can be found in
appendix B.1. The most important advantage of this level is that it is technology
independent.

3.2 Netlist Representation

The netlist describes the functionality of the design by an interconnection of
primitive, and operator components. In the intermediate stage there are two
libraries, primitives, and operators. These two libraries are used to determine
the behavior of the component (See page 18).

We represent each primitive by a small graph in which the primitives
function and each port is represented by a vertex. Each vertex of a primitive
has a unique label. The set P contains all primitives of the technology libraries.
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Graphs representing such instances, are defined as:
Let p ∈ P be a component with input ports I[p] and output ports O[p]. A

primitive graph is defined as gp = (Vp, Ep, Lp, Bp), where gp is a directed graph
that represents p and

• Vp = I[p]∪O[p]∪{p} is the set of vertices (also called nodes) in the graph,
where p is a vertex that represents the primitive p;

• Ep = {i ∈ I[p] | 〈i, p〉} ∪ {o ∈ O[p] | 〈p, o〉} is the set of edges in the
graph;

• Lp(v ∈ Vp) is a function that assigns a label to every vertex, such that
Lp(p) is a label based on the primitive of p and Lp(v ∈ I[p] ∪ O[p]) is
based on both the primitive of p, and the label of the corresponding port.

• Bp(v ∈ Vp) is a function that assigns a library to every vertex.

The netlist is the hierarchical description of cells interconnected by wires.
The instance of a component in a netlist is an example of a cell. Larger cells
consist of multiple instantiated primitives and other cells. Each cell in the netlist
is represented by a netlist graph in which vertices are uniquely described by
their label and their hierarchical position (denoted with a sequence of numbers)
in the corresponding netlist.

Thus, the graph of an instance of a primitive extends its primitives graph
with such a hierarchy annotation on every vertex. The first number of this
annotation corresponds to the cell number on the top level of the netlist, the
second corresponds to the cell number within the top level cell, etc.

This netlist can be described as a graph:
Let c be a cell, built of instances of components Pc and other cells Cc,

with input ports I[c] and output ports O[c]. A netlist graph is defined as
gc = (Vc, Ec, Lc, Hc), where gc is a directed graph that represents c and

• Vc = I[c]∪O[c]∪
S

i∈Pc∪Cc
{〈Li(v), i : Hi(v)〉 | v ∈ Vi} is the set of vertices

in the graph;

• Ec = Wc ∪
S

i∈Pc∪Cc
Ei is the set of edges representing the wires in the

netlist, where Wc ⊆ Vc \Oc × Vc \ Ic;

• Lc(v ∈ Vc) is a function that assigns a label to every vertex in the graph,
such that Lc(v) = Lp(v) when v ∈ Vp for a given p ∈ Pc, otherwise Lc(v)
gives a label based on the port v ∈ I[c] ∪O[c] it represents.

• Hc(v ∈ Vc) is a function that maps a vertex onto the hierarchical annota-
tion.

The combination of the Lc(v) and Hc(v) distinguishes every vertex in the
graph.

Graphical representation Figure 3.2 shows how a single primitive is depicted
graphically. The cell node is represented by the rectangle. The circular nodes
represent the input-, and output ports.

3.3 Memory Types

Within Precision’s intermediate format there are two distinct ways how memory
structures are represented. A memory structure is defined as a set of primitives,
which together store an array of values, and using an address-, data-, and
write enable port, values can be stored, and retrieved from this structure. The
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behavior of both memory structures is the same, but within the netlist they are
represented in completely different ways.

• The first memory type, which is defined, is the RAM structure. It is
represented by a single primitive within the netlist. How this structure
is detected and extracted can be found in section 3.4.

• The second memory type is the register bank, as the name suggests, it is
an array of registers. The registers themselves are an array of flip-flops.
This also means that this memory structure is not represented by a single
primitive. Each flip-flop is a primitive, and other primitives are necessary
to control the write enable signals, and the necessary logic to select values
from the flip-flops. Section 3.5 elaborated the analysis, and extraction of
register banks.

Before memory structures can be extracted they must be detected. This
detection must not only detect primitives that together represent some memory
structure, but also how this memory structure behaves, in order to simulate it
correctly.

3.4 RAM Structure

In this section the analysis of the RAM structure will be elaborated. First, the
behavior of such structures is presented. When the behavior has been analyzed,
the structure can be detected in the hardware graph. In the last step the
detected structure is replaced in the graph.

3.4.1 Behavior

As mentioned before, a memory element represents an array of values in which
each value is separately addressable for read- and write actions. Typically,
a memory element supports only synchronous writes. Therefore it will at
least have one clock port. It is possible that multiple clock domains use the
same memory element. In that case multiple clock ports are present. Data
can be retrieved and stored using address-, data- and write enable ports. An
address port is responsible for addressing the location for the read, and or write
action. An input port is available for writing new data to the memory, but it is
only written when the write enable port is active. The data that is retrieved is
available at the data port, or sometimes this port is referred to as the q port, if
the read enable is active. Ports do not necessarily support both the read- and
write action. Input, and data ports may be shared. Additional ports may be
present, which enable the memory, set the output port in case of synchronous
read, and so on. Furthermore, the behavior of reading and writing on a single
location in a single clock cycle can be described by either write-after-read or
read-after-write.
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Figure 3.3: Examples
of ram operator

Precision’s RAM implementation In Precision’s intermediate format all RAM
structures are represented by the ram_new operator. However, this operator is
not a black box, it is further specified in the internal library operators, which is
available within the netlist. The main component in this ram_new operator is
the clocked_ram operator. This operator implements the core function of the RAM
structure: Storing the data in a memory structure. Additional components such
as flip-flops, and muxes implement other parts of the functionality of the RAM,
such as a synchronous read port, read-after-write behavior , write-after-read
behavior, etc. See figure 3.3 for several RAM structures in the intermediate
format.

Because of all the logic within the ram_new component it is not necessary
to extract the complete ram component. It suffices to extract all the state
components within it. The only state components in the ram component are
flip-flops to store the output of the read ports, and the clocked_ram component
to store all the data. How the flip-flops can be extracted can be found in [3].

Details of the clocked_ram operator As mentioned in the previous section
the clocked_ram component is a black box. In all configurations it behaves
as a synchronous write, and asynchronous read memory component. It is
used as the basic component for all memory storage. The behavior of the
clocked_ram component depends on a few properties. Most of these properties
are also available in the component’s identification string. An example of such
an identification string is:

clocked_ram_16_6_64_F_F_F_F_F_F_F_F

The numbers respectively represent data width, address width, and the total
number of locations. After the numbers are eight boolean options, see table 3.1
for the explanation of these options. The boolean values give information on
which port this clocked_ram possesses, hence it is also possible to ignore the
boolean option, and check the interface of the specific component for which
ports it possesses. The only field, which is not available as a boolean, is ram type.
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clocked_ram_16_6_64_A_B_C_D_E_F_G_H
Option Generic Explanation

A dual clocks There are two clock inputs
B dual addresses Read and write addresses are separated
C n addresses There are more than two address ports
D n addresses There are more than three address ports
E dual data ports There are (at least) two data ports
F dual out ports There are (at least) two out ports
G n out ports There are more than two out ports
H n out ports There are more than three out ports

Table 3.1:
Explanation of
option booleans for
clocked ram

Port Explanation

clk Clock
[clk2 ] Second clock domain
we Write enable for port 1
[ we2 ] Write enable for port 2
address Address for port 1
[ addr{2, 3, 4} ] Address for ports 2, 3 and 4
q Data output for port 1
[ q{2, 3, 4} ] Data output for port 2, 3 and 4
data Data input for port 1
[ data2 ] Data input for port 2

Table 3.2: Clocked
ram ports

It describes which of the ports are used for reading and writing, where the
latter also can be deduced on the total number of write enable ports. However,
also this behavior can be deduced based of the ports of the component. One
last behavior to mention is that the clocked_ram component only triggers on
the rising edge of the clock, and does not support dual edge triggering.

3.4.2 Detection

Clocked_ram components are represented by a single primitive. The label of
the cell node for that primitive starts with ‘clocked_ram_’. The detection of
clocked_ram components is therefore trivial.

3.4.3 Extraction

For the extraction of the clocked_ram only its input-, and output ports have to
be connected to the outside. Replacement logic outside the hyper cell should
fetch the required data for the input ports, and save data from the output ports
to state storage.

In the intermediate graph format the implementation of this extraction is
trivial, and not elaborated here.

Extracted RAM behavior Because the clocked_ram component uses an asyn-
chronous read, the data for that clocked_ram has to be available within the clock
cycle that the entity is evaluated. Since the state is stored in Block RAMs that
only support synchronous read actions, this is not possible Two techniques to
circumvented this problem are multiple evaluations, and pipelined evaluation.
In the following two paragraphs these techniques are elaborated.

Multiple evaluations The easiest solution to the asynchronous read prob-
lem is to evaluate the hyper cell multiple times, each time the entity is evaluated
another ‘fraction’ has become stable. For instance, if we examine figure 3.4(a), a
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chain through two asynchronous memory elements can be detected. After the
first evaluation the correct read address for ‘ram 1’ is available. Hence in the
second evaluation the logic between ‘ram 1’ and ‘ram 2’, shown in the figure
as cloud G, derives the correct address for ‘ram 2’. In the third evaluation the
correct data is available for the output ports of both memories, and the state
has stabilized.

This example shows that the number of evaluations necessary depends on
the longest chain of asynchronous elements in the hardware design. The first
technique used in the example determines the longest chain of asynchronous
elements, and the scheduler has to evaluate the entity that amount of times
after the last input change. The disadvantage of this solution is that some of
its evaluations may be redundant, because the correct addresses already are
available.

Another technique could compare the complete output of the hyper cell, and
when the results of two consecutive evaluations are the same, and the input
ports were the same, the state has stabilized. A disadvantage of this technique
is that it requires one evaluation more in comparison with the first solution
in the worst case, but when some of the addresses in the chain are already
correct, the best case uses less evaluations than the first technique. Another
disadvantage is that the comparison between the output of the current and last
state may consume a lot of resources resources.

Therefore, a hybrid solution, which does count the evaluations, and also
checks if the last two evaluations are the same may results in the least number
of evaluations.

Pipelined evaluation Instead of multiple evaluations to fetch the correct
data, it is also possible to pipeline the hyper cell, so that a memory only fetches
data at the moment that an address port has stabilized. The technique, which
counts the number of evaluations that are necessary to stabilize a hyper cell,
can be used to determine for each primitive when it has stabilized. All the
primitives, which stabilize in the same clock cycle, are grouped together. See
figure 3.4(b) for how the hyper cell from figure 3.4(a) would be divided. These
groups can be used to implement a pipelined hyper cell. See figure 3.4(c) for
the pipeline, which used the groups from figure 3.4(b); The advantage of this
technique is that only one evaluation of the hyper cell is necessary. This reduces
the bandwidth necessary to evaluate hyper cell. However, it does introduce a
latency in the hyper cell, the new state is not available within one clock cycle.

Evaluation Because of the simplicity of the first technique, counting the
evaluations of the hyper cell, it has been chosen for implementation. However,
implementing the pipelined technique could drastically improve performance,
but this is left as future work.

Further optimizations The following paragraphs present some optimizations
that could further increase the simulation speed. These optimizations have not
been implemented.

Synchronous read optimization Pipelining the hyper cell for asynchron-
ous reads imposes an overhead. We have to implement a larger pipelined
datapath, and controlling this datapath makes the design of a scheduler more
complex, and possibly slower. Ideally, the number of pipeline stages is min-
imized. This is possible if an originally replaced ram does have synchronous
read ports. In that case the data has to be available before the next evaluation
in the next system clock cycle. Furthermore, it means that in case of multiple
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retiming

evaluations no data is fetched from state storage. Only at the end of the system
clock cycle the data has to be fetched from state storage. As we can see in
figure 3.3(b), 3.3(c) and 3.3(d) synchronous reads are implemented by placing
a register after the output port of the clocked_ram. Hence if the output of the
ram is only connected to flip-flops, the data does not have to be prefetched,
because it is not actually used within the same clock cycle. So instead of an
extra evaluation or pipeline stage, the address of the read location can be
forwarded to the next clock cycle.

Synchronous read optimization through retiming When a ram is originally
implemented with asynchronous read ports, the hyper cell has to be pipelined
or multiple evaluations are necessary. However, it might be possible to retime
memory elements such that the output of the data port is directly connected to
a synchronous write port, basically creating a synchronous read. See figure 3.5
for an example.

3.5 Register Bank Structure

Where the clocked_ram component represents a complete memory structure in
a single primitive, register banks are made using multiple primitives. To be
more specific the data is stored in flip-flops, the clock enables of those flip-flops
are driven by addressing logic, and the correct data from the flip-flops is
selected by muxing logic. All the primitives, which implement the flip-flops
and the logic, which creates the register bank behavior together, represent
the register bank. Normally, when memories are described in the HDL, the
synthesis tool will correctly identify them as RAM structures. But sometimes
they are not identified as memory, because for example clock gating is used,
and in this case the memory structure is instantiated as register bank.

See figure 3.6 for a graphical example of how a register could look like. The
register bank consists of several primitives, which can be divided into three
groups that implement parts of the behavior of the register bank.

The core functionality of the register bank is data storage. This is done by
the ‘state’ group, which consists of a group of flip-flop that are divided into
registers. The next group, the ‘CE-logic’ group, is responsible for which of the
flip-flops are enabled for writing, based on the address-, and we port. The last
group, the ‘read logic’ group, selects the flip-flops that are being read by the
read address port.

3.5.1 Detection

There are several techniques how a register bank can be detected. In this section
several techniques are elaborated, and evaluated.
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Predefined search patterns For each known configuration of primitives
that behave as register bank, a search pattern can be defined. A search pattern
consist of a group primitives, and how they are connected. An advantage of this
technique is that it is simple to implement. However, this also has a downside,
because only the predefined search patterns are extracted there can be no
guarantee that all register banks are found. Furthermore, the configuration of
known register bank configurations will already be enormous, matching all
those search patterns on the graph will be time consuming.

Graph matching In essence the internal representation of the hardware is
a graph structure. This graph could be converted to a format, which can be
imported in a graph matching, and transformation tool, such as Groove [31].
The idea is that the patterns specified in Groove are more general than the
predefined patterns from the previous technique, and thus could recognize
more register banks, with less predefined patterns. However, a small test with
Groove showed that it is not powerful enough to express patterns that describe
register bank behavior. Detecting register banks with multiple patterns is still
feasible, but is nothing more than another way to express predefined search
patterns.

CoSy pattern matching CoSy [32] is a compiler generation suite. Internally
it uses a graph like representation based on predefined building blocks. It
could be possible to represent the hardware description in this format. Larger
patterns, such as muxed/demuxed flip-flops, might be detected and extracted
using the included pattern matcher. The major disadvantage is that the pattern
matcher also expects predetermined search patters, and thus is yet another
method to implement predefined search patterns. Another disadvantage is that
the CoSy compiler has a closed source license.

Behavioral search Starting with some basic behavior of register and register
banks it should be possible to detect these structures without predefining
specific patterns. At the moment, the only primitives which are subject of
any analysis are the state elements, all combinatorial logic is seen as one
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clk in ce set clr old q / new

↑ 0 1 0 0 - 0
↑ 1 1 0 0 - 1
↑ - 0 0 0 0 no change
- - - 1 0 - 1
- - - 0 1 - 0
- - - 1 1 - -

Table 3.3: Behavior
of flip-flop

large function, which operates on the entity vector. But this function basically
describes when certain flip-flops should be written to, which flip-flops have
influence on the output entity vector, and so on. Based on the behavior of this
function, register bank behavior might be detected, and this behavior can be
described mathematically. This is the major advantage of this technique; no
search patterns need be defined, which could result in the detection of register
banks, which were not known in advance. However, some small tests quickly
showed that this technique uses too much processing time, when it has to take
into account all of the combinatorial logic.

Evaluation The graph matching, and behavioral search techniques both
have some promising advantages. Both techniques try to detect register banks
without defining the exact structure of what they are looking for. At this
moment a hybrid solution of these techniques seems likely to give the best
result. The small test with graph matching resulted in an easy way to detect
groups of flip-flops that might belong to the same register bank, but much
more than that was difficult to achieve without predefined patterns. But the
combinatorial logic that was connected to these groups of flip-flops was a small
subset of the graph, analyzing this subset with the behavioral search might be
feasible without requiring much processing time. Therefore, a hybrid approach
of graph matching and behavioral search is further elaborated in this section.

Register bank detection steps As mentioned before, the register bank de-
tection will be separated into several steps. A register bank consists of an
array of registers, which themselves are arrays of flip-flops. First groups of
flip-flops are detected by graph matching, these groups represent the registers
in the hardware design. The registers are grouped again using another graph
matching rule. These groups represent possible register banks. These groups
will than be used to analyze a subset of the graph with a behavioral search to
determine if the group of registers really does behave as a register bank. After
this analysis can the register banks be removed, and replaced in the graph.
These steps will be elaborated in the next paragraphs.

Flip-flop grouping First step is to identify the registers. Figure 3.7(a)
shows the graph representation of a flip-flop. This configuration is defined as
the basic flip-flop. The behavior of other types of flip-flops can be emulated
using this flip-flop and some additional logic. For example, a flip-flop without
a clock enable can be seen as a basic flip-flop where the clock enable port is
connected to logic ‘1’, as seen in figure 3.7(b) The same applies for flip-flops
without a set or reset port. The behavior of the flip-flop can be found in table
3.3.

A register is represented by a group of flip-flops within the graph, which
act the same. For example, when a register stores the information from the in
port, all flip-flops within the same register must do so, the same holds for the
set and reset ports.
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This can be described formally. First let S be the set of all possible states of
the hardware described by the graph, which is the Cartesian product of the
possible states of all state primitives. Let P be the set with all primitives of the
graph. Two flip-flops act the same, if for all possible states the input on their
control (clk-, ce-, set- and preset) ports is the same. The following function
determines what the value is for a specific port on a primitive in a state:

Vi,p,s = The value for port i from primitive p in state s (3.1)
Furthermore, we need to express when a flip-flop belongs to a specific

register:

Rf,r = Flip-flop f belongs to register r (3.2)
Finally only the flip-flops in a graph need to be checked; Hence the ability

to retrieve the type of a primitive is defined via:

Tp,t = The primitive p is of type t (3.3)
Lets first define the formula, which checks that two flip-flops, fiandfj , act

the same way for a specific state s. In the following formula the first two
arguments are the two flip-flops followed by a specific state. Basically the
formula checks that in a specific state the value of the control ports of the
flip-flop have the same values. When they all have the same value, they will
act the same.

Ffi,fj ,s = (Vce,fi,s = Vce,fj ,s

∧ Vset,fi,s = Vset,fj ,s

∧ Vclr,fi,s = Vclr,fj ,s

∧ Vclk,fi,s = Vclk,fj ,s) (3.4)
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We use this formula, so that it does the check all possible states:

Gfi,fj = ∀s ∈ S • Ffi,fj ,s (3.5)

This will result in groups of registers where flip-flops will all reset or set
together. A relaxation of equation 3.4 could also determine that when one
flip-flop does a set, and the other a reset it does exhibit the same behavior. The
register that will be found will have initiation pattern other than only zeros or
ones.

F ′fi,fj ,s = (Vce,fi,s = Vce,fj ,s

∧ Vclk,fi,s = Vclk,fj ,s

∧ ((Vclr,fi,s = Vclr,fj ,s ∧ Vset,fi,s = Vset,fj ,s)

∨ (Vclr,fi,s = Vset,fj ,s ∧ Vset,fi,s = Vclr,fj ,s)) (3.6)

However, at the moment the equation 3.4 is used within this thesis. Now
we can express that, when two primitives are both flip-flops, and act the same
way in all states, they belong to the same register.

∀pi, pj ∈ P |Tpi,FF ∧ Tpj ,FF =⇒ (Gpi,pj =⇒ Rpi,r ∧Rpj ,r) (3.7)

The former expression can be translated into a graph matching rule, which
can check all combinations of flip-flops, in the same way as the last expression.
The rule expresses the same as the expression, only in a graph notation. The
complete rule can be found in figure 3.8, but will be elaborated step by step:
First, the two flip-flops, which do have to be checked against each other do have
to be matched. This is done by matching two cell nodes with the type flip-flop.
Two ports in the graph have the same value when they they are connected
to a common source. While it is also possible that they might have the same
value, if they are not connected to a common source, the assumption is that the
synthesis tool will not instantiate more logic than necessary, which implies a
common source for values that are the same. To check if all the control ports of
the two flip-flops are the same, the control ports themselves, and the common
source are added to the rule. Now this rule will match only two flip-flops,
which do have a common source for all their control ports. Furthermore, an
embargo edge between the two cell nodes is added. Such an edge forbids
that the two cell nodes could match the same flip-flop. This is actually not
forbidden, because a flip-flop will always be in the same register with itself,
but it is unnecessary. Using this graph rule the set with registers can now be
filled.
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Flip-flop merging All detected register groups can now be merged together
into registers. Figure 3.9(a) shows an example of a detected group of flip-flops.
The set-, clk-, and clear ports have not been shown for simplicity. The cell
nodes have been merged into the custom primitive ‘Register’ in figure 3.9(b).

For each group of flip-flops all cell nodes are merged into one new cell node,
this cell node now represents a register, a custom primitive. Many of the ports
connected to the merged cell node are redundant, hence ports with redundant
behavior are removed. The redundant ‘ce-ports’ are still present at this step,
and these are removed in figure 3.9(c). The last step involves changing all in-,
and q ports to vector based ports, because they are now part of a bus. This
final register is shown in figure 3.9(d).

During the testing of the implementation of flip-flop grouping, there were
some registers, which were wider than expected. The problem was that this
analysis was performed on the intermediate format, as provided by Precision, on
which certain optimizations are not yet performed. One of these optimizations
is removing redundant, and unnecessary primitives. It is possible to describe
several different registers, which each hold the same information, but are read
by different parts of the hardware, see for example graph 3.10(a). Formally we
can describe this as if two flip-flops that are not the same, within a register
group share a common source node on the in port, one of them is redundant.
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In that case, the redundant flip-flop can be removed. The following function
will check if one of the two flip-flops is redundant:

Ufi,fj = (fi 6= fj ∧ (∀s : S|Vin,fi,s = Vin,fj ,s)) (3.8)

The graph transformation rule, which does this is depicted in graph 3.10(c).
This rule matches flip-flops of which one is redundant, the embargo node
forbids them to be the same cell node. One of the flip-flops, including its in
port is removed. Furthermore, the merge edge, annotated with the ‘=’, will
merge both q ports, so that both original q ports will have the same value.

Register grouping At this moment the graph contains a set of registers,
a subset of these registers can form a register bank. The next step into the
detection of register banks is to determine which of them can be grouped
together. An important requirement for a register bank is that all registers
receive the same data. At this moment the register bank detection is limited to
register banks with a single write port. Hence all data in ports of the register
banks will share an array of common nodes. Formally we can describe this in
a few steps. Let Wi,p be a function, which returns the set of ports for primitive
p, with label i. When the specified input port is an array, all of its input ports
are present in this set. Furthermore, let Xn be a function, which will return a
set which has all the predecessors of all the nodes in set n in it. Finally, let
Mr,b be a function which specifies that register r belongs to register bank b.
The following expression checks if two registers belong to the same register
bank:

∀pi, pj ∈ P |TREG,pi ∧ TREG,pj ∧XWin,pi
= XWin,pj

=⇒ Mpi,b ∧Mpj ,b (3.9)

The graph matching rule, which does the same thing is shown in figure
3.11. First it selects two registers, which cannot be the same register due to the
embargo edge. Then it uses the universal quantifier to ensure that for all in
ports there exist a common source node. When this graph rule matches on
two registers, they belong to the same register bank. This graph will be used
to group registers together that will form a register bank.

Register bank behavior analysis After the moment when several registers are
grouped together, additional analysis has to determine if they can be merged
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into a register bank. The analysis steps, which will be performed on the groups
of registers are: Address logic detection, reset- and set detection, and read
ports detection.

Address logic detection The clock enable inputs of a group of registers
are analyzed to see if they behave as a single write port. A group of registers
behaves as a single write port if at most one of the registers is updated per
rising edge of the clock in all states. Therefore a Clock Enable (CE)-graph for the
group of registers is analyzed. The CE-graph is defined as all the cells, which
influence the clock enables of the registers. This means that each node in the
CE-graph has a combinatorial path to one of the clock enables. First we define a
formula, which will determine if a specific node can influence the clock enable
ports of the register bank. The function Tstate,s is used to match all primitives
that have an internal state. In the following formula, let e be the set of clock
enables in a register bank, c be the specific node and g be the graph:

He,c,g = ∃〈s, t〉 ∈ Eg|s = c ∧ ¬Tstate,s ∧ (t ∈ e ∨He,t,g) (3.10)

Using this equation all nodes can be checked to determine if they belong in
the CE-graph.

∀n ∈ Vg|He,n,g (3.11)

This graph has to be analyzed in order to determine where the address, and
write enable signals are instantiated. The size of this graph might cover a large
portion of the complete hardware graph. Hence the size of the entity vector,
which has influence on the clock enables can be large as well. Determining
for which input patterns a specific clock enable port is active can be solved
using the boolean satisfiability problem, which is NP-complete [33]. Hence many
of the clock enable graphs for the register banks, which were analyzed are too
large to be analyzed directly. However, much of the information in the clock
enable graph is redundant, and can be removed to simplify the detection of
the addressing logic, which reduces processing time. The only primitives that
need to be in this influence graph are cells which ‘directly’ influence the CEs.

Nodes which do have more influence than at least one of their predecessors
are identified as the new input ports. All of their predecessors are removed
from the graph. First a new function is defined, which takes a node, all the
clock enables, and a graph as arguments and returns the set of clock enable
ports of that graph, which are connected to that node.

Ov,e,g = {∀e′ ∈ e|H{e′},v,g} (3.12)

The new input ports are identified by the following equation:
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∀v ∈ Vg|∃〈s, t〉 ∈ Eg • v = s ∧Os,e,g 6⊆ Ot,e,g (3.13)

We illustrate this technique with a small example. See figure 3.12(a) for a
small hardware graph with four inputs ports (a, b, c, and d), and two output
ports (x, and y). For the set of inputs there are sixteen possible patterns.
However, many of these patterns result in the same output values at the output
ports.

See figure 3.12(b) for a graphical representation of how the last equation
is applied to the graph. In each cell node the result of the function Ov,e,g is
shown. At all the edges, the comparison of the influence of the two nodes
is shown. In this graph it can be seen that the output port of the and-cell is
identified as a new input port, because it has more influence on the output
ports than any of its successors. Hence the output of this port becomes a new
input port, reducing the number of input patterns from sixteen to two.

Figure 3.13(b) shows a reduced influence graph. The original graph, of
which a portion is depicted in figure 3.13(a), has 40 inputs ports. After the
reduction only three input ports remained. From the logic can be derived that
input ports a, and b generate the address, and input port c acts as a write
enable port.

Resolving mutual exclusiveness The resulting influence graph is conver-
ted to a primitive influence graph. This graph should only contain the binary
operators and, or and the invertor as unary operator. Other operators such as
a n-port and, or, etc operators are converted to binary operators.

For each output port its relation with the input ports is described in an
equation. To ease the comparison of mutual exclusiveness the equations are
reduced to their minimal Sum of Products (SOP) equivalent. The ‘Boolean
Expression Reducer’ [34] software was used to minimize the equations. These
reduced equations are tested against each other to see if more than one can be
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Register Clock enable formula

1 I1I2I5I3 I4 I6
2 I10I11I2I4I12 I3
3 I13I14I2I3I4I15
4 I1I2I3 I4 I5 I6
5 I10I2I4I11 I12 I3
6 I13I2I3I4I14 I15
7 I1I2I5I6I3 I4
8 I10I11I12I2I4 I3
9 I2I3I7I8I4 I9
10 I13I15I2I3I4 I14
11 I13I14I15I2I3I4
12 I2I3I7I8I9 I4
13 I1I2I6I3 I4 I5
14 I2I3I7I4 I8 I9
15 I2I3I9I7I4 I8
16 I10I12I2I4I11 I3

Table 3.4: Clock
enable equations

active at the same time. See table 3.4 for an example of these equations, the
equations are based a register bank found in the NoC-router.

The software package uses the Quine McCluskey algorithm [35] to reduce
the equations, which has a complexity of NP. Because of the reduction of the
influence graph, it did not present a problem during the tests performed during
the implementation of this algorithm, because the processing time required for
this step did not have a significant impact on the total processing time. When
the processing time required increases, there are several promising options to
reduce the processing time for this step, such as work presented by Coudert,
and Arevalo and Bredeson [36, 37].
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Reset- and set detection The registers within a register bank do have
reset-, and set ports. All the hardware designs that were analyzed during the
development of the algorithm did either not reset their registers, or all in the
same clock cycle. This led to the assumption that most register banks do reset
or set all registers or none at all. It would be possible to extract register banks
with selective reset or sets, but at the moment they will be discarded as register
banks (See equation 3.4).

Therefore, a distinction must be made between these two types of register
banks. As before with the detection of register banks, and data matching, we
will determine if all reset- and set ports do have the same value in all states.
The following expression must remain true, otherwise the register bank has to
be discarded. Let the set R contain all register primitives in a register bank.

∀r ∈ R, s ∈ S|∃a ∈ {0, 1}, b ∈ {0, 1}|Vset,r,s = a ∧ Vreset,r,s = b (3.14)

This expression can be transformed to a graph matching rule; See figure 3.14
for the rule. The rule matches the registers that do have a common source for
their reset- and set port. This rule should match all the registers in a register
bank. If it does not match all registers there is not a common source for all
registers, which implies that this register bank should be discarded.

Read ports detection On the read side of the registers we must identify
which registers are actually being read in a clock cycle. First the influence
graph algorithm from the previous section was adapted to reduce the outgoing
graph. Equation 3.10 was rewritten to check if a node from the set q, has a
path to the current node c, in the graph g:

Gq,c,g = ∃〈s, t〉 ∈ Eg|t = c ∧ ¬Tstate,s ∧ (s ∈ q ∨Gq,s,g) (3.15)
Using this equation the outgoing graph can be defined as the graph with

the nodes from the following set, where r is the set of register cell nodes:

∀n ∈ Vg|Gr,n,g (3.16)
We determine which of the registers can have influence on the node v:

Qv,r,g = {∀r′ ∈ r|G{r′,v,g}} (3.17)
Now we adapt equation 3.13, so that only nodes, which do have equal or

less influence than all their successors, are included.

∀v ∈ VG|∃〈s, t〉 ∈ Eg • v = t ∧Qt,r,g 6⊆ Qs,r,g (3.18)
The outgoing graph is the graph with all nodes between the set of registers,

r, and all the nodes from equation 3.18. This did not result in the expected
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reduction, which was observed in the CE-graph. The outgoing graphs were, in
almost every case, too large to be processed by the Boolean Expression Reducer.
However in all outgoing graphs the outputs of all the registers were muxes.
Because only this structure was found, the predefined search pattern technique,
as mentioned in section 3.5.1, was used.

The structure must meet several requirements, namely:

Only muxes All registers only drive muxes. When a register does not drive
a mux, it is possible that it always used. Further analysis, with for example
a depth limited behavioral search, could still find muxing behavior in these
components, but these structures are disregarded at this point.

First we define the following function that will return all successors for node
v at depth d:

Yv,d,g =

(
v d = 0

∀〈s, t〉 ∈ Eg|s = v|Yt,d−1,g d > 0
(3.19)

Using this equation we can check whether there are cell nodes directly
connected to the output of the registers that are not muxes. Because there is
always an output- and an input port between two adjacent cell nodes, we look
at all successors at depth 3 from the register cell nodes:

@r ∈ R|∃v ∈ Yr,3,g|¬Tmux,v (3.20)

Mux inputs When the input of the muxes only consists of the outputs of
the registers within the register bank, they are easy to extract. All muxes, found
during the development of the register bank detection algorithm, complied to
this. Hence the assumption is that most muxes, which are used by a register
bank, will only mux data from the register bank itself. Let M be the set of cell
nodes for the muxes as defined by Yr,3,g . First we define a function, which will
return all predecessors at a certain depth, similar to the function in 3.19:

Zv,d,g =

(
v d = 0

∀〈s, t〉 ∈ Eg|t = v|Zs,d−1,g d > 0
(3.21)

With this function we can check whether there are no inputs for the data
port of the mux, the a port, that are not connected to a primitive within the
register bank:

@m ∈M |∃〈s, t〉 ∈ Eg|Ls = a ∧ Ys,2,g 6⊂ R (3.22)

Behavior analysis result When all analysis have confirmed the behavior
of the registers as a register bank it can be extracted. The register bank can
be replaced by a properly configured clocked_ram component. How this this
done can be found in the next section.

3.5.2 Replacement

Because the register bank behaves in the same way as a clocked_ram primitive,
it can be replaced by that. Then the RAM extraction, as explained in section
3.4, can be used to extract the clocked_ram primitive.

The register bank detection obtained the following information:

• The data input port for all registers receives the same values.
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• Of all CEs, at most one can be active at the same time.

• The reset-, clk- and set ports for all registers share common sources.

• The muxes connected to the data ports only mux data from the register
bank.

This information is used to implement the logic that is connected to the
ports of the clocked_ram primitive.

clocked_ram instantiation A new cell node, with the label clocked_ram, is
added to the graph. Now all ports for the clocked_ram primitive need to be
added, and connected to the graph. The following paragraphs describe how
each of the ports is added, and what other logic is instantiated to correctly
drive the ports.

clk port Because the clk ports of all registers share a common source, it
can be connected to a new port node with the label clk.

we port Only when one of the CEs is active the clock_ram is written to.
Hence a new OR primitive is added to the graph, the inputs of that primitives
are connected to the CEs.

addr[{ess,2,3, . . . ports}] These are the read ports of the clock_ram prim-
itive. They are connected to the address port of the muxes. Each register is
annotated with the address of the input port of the mux that it is connected to.
This information will later be used to correctly implement the write address
port.

address port This is the write port of the memory. In the last step, when
the read ports are connected, each register was annotated with a read address.
This information is used to correctly identify which clock enable belongs to
which address. Because the CEs signals, which form a sort of one hot encoded
address, do have to be converted to a normal address, which can be read by the
clocked_ram primitive. A select-to-address primitive is added to the graph.
This primitive performs that transformation.

data port The data port is directly connected to the data port of one of
the registers.

q[{2,3,. . . port}] For each set of muxes that form a read port, the outputs
of those muxes are connected to a new q port.

Reset- and set replacement Each register has a reset-, and set port. During
the register bank detection it was confirmed that those ports shared common
sources. When they are connected to a FALSE primitive, the register bank is
never set or reset. However, when they are connected to other primitives, the
flip-flops within the register bank can be set and/or reset. The main reason
for the memory and register bank extraction is that it reduces the memory
bandwidth to the state storage. But when a whole register bank can be modified
in a single clock cycle, all locations within that register bank do have to be
updated, which implies that the bandwidth for this register bank cannot be
reduced. There are two solutions to this problem. First, if we assume that
the activation of the reset or set signal of the register bank rarely occurs, the
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pipeline can be stalled and all locations can be updated sequentially. The
disadvantage of this technique is that it imposes some timing overhead, how
much depends on the frequency of (re)sets, and the depth of the register
bank. Furthermore, it requires changes to the pipeline, in order to facilitate the
sequential update.

The second solution keeps an additional reset vector, which buffers the reset
and set signals. On the read side of the register bank this vector is accessed
to see if the data can be read from memory or that a vector containing zeros
or ones must be returned. When new data is written to the register bank the
specific entry for that location is reset in the vector. The advantages of this
solution are that no changes are necessary within the pipeline of the simulator
(the required vectors can be instantiated within the logic of the hyper cell),
and that it does not impose any timing overhead (on the assumption that the
clock frequency does not increase). The disadvantage of this solution is that it
imposes a memory overhead, because for every register in the register bank
one or two flip-flops are necessary to store the reset-, and set signals.

The second solution was chosen, mainly because the implementation of it is
simpler than the first solution.

Flip-flop insertion To store the set- or reset signal a flip-flop is added to
the graph for each location in the register bank. Each flip-flop reset port is
connected to one of the CE-signals, because when a specific location is written
to, that register it is no longer in its initial state. The set port for all the flip-flops
are connected to either the reset- or set port from one of the registers.

Flip-flop selection When a location is being read from the register bank,
the flip-flop for that location has to confirm that the location is available for
reading or that its initial state should be returned. One mux is inserted into the
graph for each of the read ports, then the data ports for that mux are connected
to the flip-flops, and the address port to the same signals that are used for the
address read port.

Value or initialization selection Depending on the value of the flip-flop
selection mux the value from memory or an initialization vector should be
returned. Therefore, a mux is inserted after the output port bits. These muxes
selects either the data from the clock_ram primitive or the initialization vector,
which at the moment is a vector of zeros or ones.

Primitive removal After all new primitives are added to the graph, the
primitives, which represented the registers, and the muxes can be removed
from the graph.

Example In figure 3.15 a small example is shown of a register bank with four
locations that has been replaced with a clock_ram primitive. Originally the
hardware design was simular to the register bank introduced as an example at
the beginning of this section (See figure 3.6).
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Abstract

How the memories of a hardware design are mapped onto the FPGA influences the
performance of the simulator. This chapter introduces a mathematical model, which
can be used to find mappings for the memories. For the simulator generator the
mathematical model proved to be unusable, therefore some light weight heuristics have
been developed. These heuristics are used to find good mappings within reasonable
time.

Outline

This chapter will elaborate the mapping of the memories of the original
hardware design to the memories of the FPGA. First, in section 4.1 the state
storage hierarchy is elaborated. A small introduction to the dedicated memories
on an FPGA is given in section 4.2. The model, which is used as basis for the
mapping, is introduced in section 4.3, and is formally described in section 4.4.
How the model is used will be explained in section 4.5, the results of this
tool can be found in section 4.6. The model is slightly modified in section
4.7. Before some heuristics are introduced in section 4.9, a simple method
to calculate a minimum bound for the mapping is introduced in section 4.8.
Finally, the heuristics are evaluated in section 4.10.
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4.1 State Storage Hierarchy

Before elaborating how the state structure looks like, the hierarchy of the state
storage is described. The memory hierarchy can be divided into four different
levels; For a graphical overview see figure 4.1.

Entity state’s input In order to reduce the critical path length, the input of
the instantiated entity is registered. Before the evaluation of an entity, the input
state vector is stored in this register. Hence this is the lowest level of hierarchy
where only a subset of the state information for a specific entity is available.

On chip state storage The dedicated memories of an FPGA are used to store
as much of the state as possible. Ideally, all state information is stored on chip,
but it may be necessary to use the on chip memories as a large cache for some
off chip state storage.

Off chip state storage When the on chip state storage is not large enough to
store the complete state, it is necessary to store the state in external memory.
For example, one or more DDR chips may be connected directly to the FPGA in
order to store the complete state, at a latency, and bandwidth penalty.

Host computer state storage The computer that is controlling the FPGA can
store portions of the state from each clock cycle for analysis, debugging, logging,
and other purposes.

This chapter will elaborate the second level of state hierarchy: the on chip
state storage.

4.2 On chip State Storage

For now we assume that the state storage can be stored completely in the
FPGA. An FPGA typically uses dedicated memory structures for the storage
of ‘large’ amounts of data. The number of these dedicated memories range
from just a few to more than a thousand [38]. The FPGA which will be used as
development board in this project houses 288 dedicated memories.

In the Xilinx technology library these memories are called Block RAMs
[38]. Each Block RAM can be configured independently. Configuration options
include height and width, write behavior, etc. Because the state storage is not
the only component in the simulator that stores large amounts of data, it cannot
use all of the available Block RAMs. The other main contender for Block RAMs
are the link memories. However, initial tests show that the link memories only
need a fraction of the amount that the state storage requires [4]. This depends
on the ratio of links, and memories in a hardware design, but the assumption
is this observation holds for most hardware designs.

Each Block RAM has two independent ports, which both support reading,
and writing. Using a time multiplexing technique it is possible to increase the
number of ports, see section 5.1.1 for the details on the Block RAM multiplexing.

4.3 Model

Having multiple ports on a single Block RAM allows for the mapping of several
memories of the original hardware design onto the same Block RAM. For the
state storage, a mapping must be found such that all memories of the original
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hardware design are completely mapped onto the available set of Block RAMs.
In the next section a mathematical model is introduced, which consists of
several constraints a correct mapping must satisfy. This model could also be
used to find an optimal mapping.

Entity multiplexing Depending on how many hyper cells there are instan-
tiated, only a small number of entities will be evaluated in each clock cycle.
Only the entities that are evaluated, need to retrieve their state vector. A simple
solution to multiplex the entities, is to increase the depth of each memory by
the number of entities that are simulated. For efficient storage and retrieval,
all memories depths, which are not a power of two, are increased to the next
power of two, so that addressing entities can be done by setting the most
significant bits of the address port. The drawback of a depth increase is that
not all locations of a memory are used, which imposes an overhead. In the
worst case, when all memories have a depth which is one more than a power
of two, the overhead will almost be 50%.

See figure 4.2 for some small examples on how entities are multiplexed. In
the example there are four entities. Memory one does not have a depth on a
power of two. The base memory was increased to a depth of 256. Memory
two, and three do not need any increase in their depth.

Memory Normalization Depending on the hardware design, each memory
in a hardware design will have its own arbitrary width, and depth. The
Block RAMs onto which these memories will be mapped only support a small
number of depth, and width configurations (See table 4.1 for the supported
configurations). The reason that a Block RAM uses widths for the data ports
of 9, 18 or 36, is that there is an extra parity bit for each 8 bits in the memory.
But this parity bit can only be used to store additional data, if the width of the
data port is set to 9, 18 or 36.

Furthermore, the Block RAM supports byte wide enable signals for the write
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Width Depth Total size (B)

36 512 2304
18 1024 2304
9 2048 2304
4 4096 2048
2 8192 2048
1 16384 2048

Table 4.1: Block
RAM width
configurations

ports. These could be used to selectively update parts of a single location if
the width of the data ports are set to 18 or 36. Bit wide enable signals could
be instantiated using additional logic, but is not explored within this thesis.
This means that we can set the width of the data ports on the Block RAM to
36, and not lose memory space, because we can normalize the memories. The
implementation of the component that is responsible for generating the byte
wide enable signals, and correctly retrieving the information from the location
will be elaborated in section 5.1.3.

When a memory has a width less than 18, its depth can be halved and its
width doubled, this can be done several times, until the width is larger than 18.
This technique allows a single location in the Block RAM to contain multiple
locations from the original memory. All memories with a width larger than the
width of the Block RAM can be divided into several memories of 36 bits. This
normalization process reduces the search space, because the mapping does not
have to take the width of the memory into account, but the number of bins that
are necessary for this simplified model remains the same. However, it must
be noted that this might increase the amount of logic required to instantiate
the state storage, because some logic is required to correctly generate the byte
wide enable signals.

4.4 Mathematical Model

The basis for the model is the bin packing problem [39]. The bin packing
problem defines how several items of variable sizes, weight, etc can be stored
in a set of bins, and how to minimize the amount of bins that are used. In the
normal bin packing problem the items themselves cannot be divided. However,
since we can divide a memory in smaller pieces, and store each piece on
a different Block RAM, our problem has more solutions. In this section a
mathematical model is introduced, which formally describes which mappings
are valid.

4.4.1 Input

The input of the model is the set of memories of the hardware design, memor-
ies are represented by items (See equation 4.2). These memories can have
arbitrary widths, and depths. To reduce the complexity of the mapping they
are normalized to the maximum width of a Block RAM. A specific item consists
of its depth, and access. Depth represents the number of addresses in the
memory after normalization, and the accesses represent the number of ports
used for the memory (See equation 4.5). Another input for the mapping is the
set of Block RAMs. Block RAMs are represented as bins (See equation 4.1),
onto which the items should be mapped. How the Block RAMs are configured
is described by the depth, and accesses parameters, as seen in respectively
equation 4.3, and 4.4.
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b(ins) 1, . . . (4.1)
i(tems) 1, . . . (4.2)
d(epth) n (4.3)

a(ccesses) o (4.4)

it(em)i ∈ i = 〈d, a〉 (4.5)

The depth, and accesses of a specific item can be retrieved by respectively
iti,1 and iti,2.

4.4.2 Output
The main output consists of the ‘mappings matrix’ (Ma, See equation 4.6), which
describes how much of an entity is mapped onto each bin. The other outputs
are needed to construct some of the constraints.

Ma(ppings) (1, . . . ; 1, . . .) (4.6)
B(inarymappings) (1, . . . ; 1, . . .) (4.7)

(U)sed 1, . . . (4.8)

As mentioned above the Mappings matrix describes the actual mapping.
A specific Mai,b ∈Ma indicates how many addresses of a specific item i are
mapped onto bin b. The matrix ‘Binarymappings’ (B) is used to determine if
a specific item maps onto a bin (See equation 4.9). Constraint 4.12 is used to
correctly determine the values within this matrix.

B(inarymapping)i,b ∈ B =

(
1 item i might map onto bin b
0 item i does not map onto bin b

(4.9)

Furthermore the vector ‘Used’ (U) determines if a bin might be used (See
equation 4.10). Equation 4.13 is used to correctly set all the entries in vector U .

U(sed)b ∈ U =

(
1 bin b might be in use
0 bin b is not used

(4.10)

4.4.3 Constraints
Not all mappings are valid. Only when a mapping adheres to the following
constraints it is valid.

An item cannot map a negative amount of content onto a bin:

Mai,b ≥ 0 ∀i, b (4.11)

An entry in the matrix B is forced to one when an item i maps to bin b.
In principle all entries in this matrix can be set to one to fulfill the constraint.
However, when minimizing the cost function these values can be set to zero,
which will indirectly decrease the cost function.
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Mai,b ≤ iti,1 ·Bi,b ∀i, b (4.12)

As with the constraint above, when an item maps onto a bin, the entry for
that bin in vector ‘Used’ will be forced to one.

X
i

Mai,b ≤ d · Ub ∀b (4.13)

The amount of content in a bin is limited by its depth:

X
i

Maib ≤ d ∀b (4.14)

The amount of access in a bin is limited by its accesses:

X
i

iti,2 ·Bi,b ≤ a ∀b (4.15)

Each item is completely mapped:

X
b

Maib = iti,1 ∀i (4.16)

4.4.4 Minimize

In the previous paragraphs, the input, output, and the constraints on them have
been introduced. The first objective of the state storage mapping is to reduce
the number of Block RAMs necessary. Therefore the vector U was introduced.
Using this vector, the total number of used bins is calculated.

Minimize:
X

b

Ub (4.17)

If a specific item is mapped onto many different bins, it costs more hardware
to combine the different portions of that item. Therefore, when a solution with
respect to the number of Block RAM is found, the spread of all items can be
minimized using the following cost function.

Minimize:
X
ib

Bi,b (4.18)

Previous minimizations did use a fixed number of access ports for the bins.
But, since an access of more than two requires the Block RAMs to be clocked
at a higher clock frequency, this can lead to slower clock frequencies for the
simulator. Therefore, minimizing the number of accesses on all bins can lead
to a faster simulation.

Minimize: a (4.19)
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4.4.5 Example mapping

Figure 4.3 depicts a mapping of three items onto one bin. Each item does have
its own depth, and access port. As can be seen in the figure, the items each
have their own address, and their own ports, which cannot overlap. Not all
accesses of the bin were used but since the depth is completely used, there is
no space left for an additional memory.

4.5 Tool Flow

The mathematical model from the previous section can be modeled in an
optimization tool, and solved using a constraints solver. The optimization tool
used within this project is AIMMS. Figure 4.4 shows an overview on how
AIMMS can be used within state storage generation flow. In the figure the
white rounded boxes represent the states of the flow, and the dark rectangles
the deliverables, which are used in other states of the flow.

4.6 Initial AIMMS Results

A large test case was setup using the memories from the Montium, see table
4.2 for a detailed view which memories were used. The input of the model
consisted of the memories, and parameters for the depth and accesses. The
depth parameter, which represents the depth of a bin, was set to the depth of
a Block RAM, i.e. 512. The parameter ‘accesses’ was varied (2, 4, 6, and 8),
to see what kind of impact this parameter has on the number of used bins.
Furthermore, the number of entities for which the state should be stored was
varied (1, 2, 4, 8, 16, and 32).
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Bins used
Entities

1 2 4 8 16 32

O
pt
im

al

A
cc
es
s 2

4 ≥ 130
6 104 207
8 ≤ 49 ≤ 52 ≤ 58 104 207 414

Table 4.2: AIMMS
results - Bins used

The AIMMS model was executed on the ILOG CPLEX 11.1 [40] solver with
default settings, see table 4.2 for the results. Only a few of these executions
terminated within reasonable time, i.e. less then a few hours.

Some executions did return a correct solution, but AIMMS could not prove
that those solutions were optimal. The solver works towards the optimal
solution from two sides. First, it tries to find a correct solution for the model,
where the result of the cost function applied to this solution is the upperbound.
The solver tries to change the solution in order to find a smaller upperbound.
Second, the solver can prove that there are no solutions under a certain bound.
This bound is known as the lower bound. The solver tries to increase this lower
bound by proving that there are no solutions for which the result of the cost
function are smaller. When the lower bound, and upperbound are equal, the
solver knows that the current solution is an optimal solution, in the table these
are the entries without additional operators. In some cases the solver could
not let the bounds meet, hence it knows a correct solution, but cannot prove
that there are no smaller solutions, which are represented in the table by the
entries with a ≤ operator. In these cases the upper bound was shown in the
results table.

One execution did find a lower bound, but had not found a feasible solution,
which is represented in the table with a ≥ operator. One set of parameters,
with accesses 4 and entities 8, was run for over 16 days without an actual
solution.

4.7 AIMMS Model Modification

The AIMMS model uses indexed bins in order to correctly count which bins
are used, and how many accesses there are on a specific bin. The result is
that, when two bins swap their contents, it is another solution, but for the state
storage these two solutions are the same. Therefore, the solver does a lot of
redundant work.

One technique is to order the bins on their content. The same mappings are
still possible, but since the bins themselves are ordered, there are less solutions
which are the same. A simple ordering orders the bins on the amount of
content. The following equation forces the amount of a bin with a lower index
to have more content than a bin with a higher index:

X
i

Maib ≥
X

i

Ma(i+1)b ∀b (4.20)

The executions still did not deliver additional results within a reasonable
time, which was at least eight hours.
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Bins used
Entities

1 2 4 8 16 32

A
cc
es
s

A
cc
es
s 2 186 196 216 259 345 539

4 93 98 108 130 173 270
6 62 66 72 87 115 180
8 47 49 54 65 87 135

Depth 13 26 52 104 207 414

M
ax

A
cc
es
s 2 186 196 216 259 345 539

4 93 98 108 130 207 414
6 62 66 72 104 207 414
8 47 49 54 104 207 414

Table 4.3: Minimum
bound - Bins used

4.8 Minimum Bound

Because of the run time, and lack of solutions in many test runs, the AIMMS
model cannot be used to find an optimal mapping for the state storage. Since
there are essentially two constraints, the depth and accesses on the bins that
limit the mapping of items in a bin, it is possible to construct a minimum
number of bins that are required.

In table 4.3, in the rows ‘Access’, and ‘Depth’, the minimum number of
bins is shown, when the only parameters that constrains the mapping are
respectively the accesses and depth. The maximum of these two results in a
minimum bound. This is shown in the ‘max’ row.

4.9 Heuristics

Besides the implementation of the model in AIMMS it is also possible to map
the items to bins using heuristics. Heuristics will find a feasible solution fast,
but cannot guarantee that the mapping is optimal. Several heuristics were
developed. In the following sections they will each be elaborated. The quality
of the heuristics can be evaluated using the minimum bound as presented in
table 4.3.

4.9.1 Naïve

Each memory will be mapped to a dedicated bin. Hence no sharing of bins
is possible. When a memory is too large for a single bin, it will be divided
into smaller portion, which each map to a dedicated bin. This heuristic will
obviously find the largest solution in the number of bins that are used but will
also have the least amount of spread. A drawback of the naïve heuristics is
that it does not use additional access ports.

4.9.2 Merging

Several memories will be grouped together in a single bin. As with the previous
heuristic, when a memory is too large for a single bin, it will be divided into
smaller portions. Because several memories will share the same bin the solution
found can be smaller, and because only large memories are divided it will still
obtain optimal spread values. The order in which memories are merged is not
specified, but should not violate any constraints.
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4.9.3 Small First Merging with Padding

Instead of only merging small memories randomly together, it is also possible
to use memories, which are larger than a single bin as padding. The padding
should fill up the space of the bins, which are not used. Furthermore the list
of memories can be sorted on depth, so that the padding is used efficiently.
First, a large memory is selected as padding candidate. From the list of sorted
memories, a number of memories are selected, from the beginning of the list,
such that their depth do not exceed the maximum depth and leaves enough
accesses for the padding memory. Now, the bin is completely filled with
contents from the padding memory. As long as not all content is mapped this
technique is applied.

For example, lets examine a case where there are many small memories and
one large memory. E.g. memories with their depths from the following set:
{64, 64, 64, . . . , and 832}, the depth of each bin is set to 512, a bin has eight
access ports, and all memories require two access ports. The largest memory
is selected as padding, this is the memory with a depth of 832. Because this
padding already consumes two access ports, six remain to be used for the
smaller memories. The first three memories together use six access ports,
their combined depth is 192, leaving 328 locations unused within the first
bin. This padding memory is partly mapped onto these 328 locations, hence
the first bin is complete full, leaving 512 of the 832 locations of the largest
memory unmapped. The same procedure is repeated until all the memories
are completely mapped onto the bins.

4.9.4 Large First Merging with Padding

The same as the previous heuristic with the exception that it tries to merge the
largest memories, which do not exceed the depth of a single bin.

4.10 Heuristics Results

See table 4.4 for an overview of all results on bin usage. The naïve heuristics
uses a constant number of bins, and presents the upperbound on bin usage.

Because this heuristic does not do any optimization, the bin usage remains
constant, when the access on the bins increases, i.e. it does not use the additional
ports. Note that because all memories within the Montium use two access
ports, the other heuristics deliver the same output, when they can only use
two access ports.

The merging heuristic presents a significant reduction in the numbers of
bins used, when the number of access ports increases.

The last two heuristics also use merging but before the merging the list of
memories is sorted. Hence larger reductions are feasible because the memories
are combined more efficiently into the bins. The version, that first maps small
memories together, seems to perform slightly better on some parameters, where
on other there is no difference.

Because of the small increase in bin usage, when only a few entities are
simulated, it can be concluded that in those cases most bins are sparsely used.
Only when more entities are simulated, the bins are almost completely filled.
For example, see the large, and small heuristics where at 16 and 32 entities
the number of bins remains almost constant for 4,6 and 8 access ports. In
figure 4.5 two histograms are shown which give an overview on how the
contents is spread over the bins. The histogram in figure 4.5(b) has more bins
completely filled than the histogram in figure 4.5(a). These figures represents
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Bins used
Entities

1 2 4 8 16 32
La

rg
e

A
cc
es
s

2 186 196 216 259 345 539
4 99 105 118 145 208 415
6 66 71 80 104 207 414
8 50 54 60 104 207 414

Sm
al
l 2 186 196 216 259 345 539

4 99 104 115 137 208 415
6 66 69 77 104 207 414
8 50 52 58 104 207 414

M
er
gi
ng 2 186 196 216 259 345 539

4 98 108 130 173 270 467
6 69 79 101 147 245 444
8 54 65 87 135 233 434

N
aï
ve

2 186 196 216 259 345 539
4 186 196 216 259 345 539
6 186 196 216 259 345 539
8 186 196 216 259 345 539

Table 4.4: Evaluation
of heuristics, and
parameters - Bins
used
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Spread Increase
Entities

1 2 4 8 16 32

La
rg
e 2 0 0 0 0 0 0

4 10 12 19 29 67 270
6 11 14 21 43 168 373
8 12 15 21 68 190 394

Sm
al
l 2 0 0 0 0 0 0

4 10 10 13 13 67 270
6 10 10 13 42 165 371
8 10 10 13 79 193 399

M
er
gi
ng 2 0 0 0 0 0 0

4 0 0 0 0 0 0
6 0 0 0 0 0 0
8 0 0 0 0 0 0

N
aï
ve

2 0 0 0 0 0 0
4 0 0 0 0 0 0
6 0 0 0 0 0 0
8 0 0 0 0 0 0

Table 4.5: Evaluation
of heuristics, and
parameters - Spread
increase

the parameters for 8 and 4 entities respectively (with access 4). The histogram
for 16 entities with 4 access is not shown; 206 out of 208 bins were completely
used.

Furthermore, the state storage generator, as will be explained in section
5.1.3, has to instantiate extra components for memories that are mapped onto
multiple bins. The spread factor is introduced as a measure that counts into
how many pieces all memories have been divided. As a base case the naïve
heuristic is used, since this heuristics does only divide memories that do not
fit into a single bin. The spread of the other heuristics is compared to this base
case in table 4.5. First, the merging heuristics also does not divide memories if
they are smaller than a single bin, and will not use large memories as padding,
hence it does spread the memories more than the naïve heuristic. The results
of the small, and large heuristics are comparable, the small heuristics seems to
perform slightly better. The overall trend is that when more access ports are
used on the bins, the spread increases.
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Abstract

The state storage pipeline is responsible for loading, and storing the state in the
Block RAMs of the FPGA. The main component of the pipeline is the state storage
component, which acts as the interface from the memories of the hardware design to
the Block RAMs. The pipeline itself is responsible for correctly loading, and saving the
state information in the state storage component. Due to the design of the pipeline it is
possible to request an entity vector in each clock cycle.

Outline

In chapter 3 new techniques for extracting large amounts of memory were
introduced. How these memories can be stored efficiently on an FPGA has been
elaborated in chapter 4. In this chapter the VHDL implementation for the state
storage pipeline, and the generation of the state storage component will be
elaborated. Section 5.1 will introduce how the memory mapping is translated
into a VHDL description of the state storage component. This state storage is
then used in the state storage pipeline, which will be discussed in section 5.2.
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Item

Item
ad-

dress range

Bin

Bin
ad-

dress range

Bin
port range

0 0 - 127 0 0 - 63 0 - 1
0 128 - 255 1 0 - 63 0 - 1
1 0 - 127 0 64 - 127 2 - 3
1 128 - 255 1 64 - 127 2 - 3

Table 5.1: Example
mapping

5.1 State Storage Component

The state storage component is responsible for implementing the mapping
of the memories. In table 5.1 an example mapping is given. The mapping
describes how two items, each with a depth of 256, and with two accesses,
are mapped onto two bins. Obviously the mapping is not optimal, but it
illustrates the two transformations that can be performed on an item. The first
transformation that has been performed is the normalization step (See section
4.3) This can be seen in table 5.1, the address range of the item is twice as
large as the address range it will occupy in the bin. This behavior has been
implemented in the combine component. The second transformation has split
up the items, the resulting pieces have been distributed over the two bins. This
behavior has been implemented in the address map component. Furthermore,
the bins that are used to store the items have an arbitrary number of ports. But
the Block RAMs that will represent the bins only have two ports. Therefore,
the MPRAM component has been implemented, which will time multiplex the
ports of a bin on a Block RAM.

The combine-, address map-, and MPRAM component will be elaborated in
the following subsections.

5.1.1 MPRAM component

The n-port RAM (NPRAM) uses time multiplexing to create virtual ports on a
Block RAM component, this component is used by Rutgers to efficiently use
the Block RAMs for the link ports [4]. A second clock, running at a higher
clock frequency, is used to time multiplex those virtual ports onto the available
dual ports. How many virtual ports can be instantiated depends on the clock
frequency of the second clock.

However, for the state storage component the NPRAM has one shortcoming.
Only half of the ports can be used for writing. The state storage memories
might have more write ports than read ports. In that case several read ports
would be unused on the NPRAM, which is undesirable.

Furthermore, a memory can be mapped onto an arbitrary address range
within the Block RAM. The address from the original memory needs to be
shifted to coincide with the allocated address range for that memory. The shift
is implemented by the addition of an offset to the original address. When this
addition is placed outside the MPRAM (See figure 5.1(b)), an adder is instantiated
for each virtual port. The addition can also be placed within the MPRAM (See
figure 5.1(b)), now the complete MPRAM requires two adders, regardless of the
number of virtual ports.

The MPRAM does have the following control ports:

clk The system clock
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Figure 5.1: MPRAM
offset placement

clkm The Block RAM clock, should be set to a multiple of the clk port, and
phase aligned to the clk port.

rst The rst signal for the Block RAM

Furthermore, each virtual port has the following ports:

do The data output port

di The data input port

we[3..0] Byte wide write enable port

en Enable port for this specific port

offset Offset for address shifting, should be added to the address.

5.1.2 Address map component
Besides that the address range of a memory can be shifted within the MPRAM,
it is also possible that the address range is split into several parts. These parts
are stored on multiple MPRAMs. How these parts will be divided will be the
responsibility of the address map component. The component takes an address,
and how the memory is split, and will generate control signals for which of the
MPRAMs should be enabled for writing, and that the output from that MPRAM
is also selected by the mux for reading.

The description of the address map component ports:

addr The address that has to be read from a memory in the hardware design.

portions An array of indices, these indices divide memory in parts.

en Using the addr and portions ports a one hot encoded selection array is
calculated.

n Using the addr and portions ports the correct MPRAM is chosen for reading.

See figure 5.2 for an example. In the example a memory with more 256
locations is divided over two MPRAMs. The first 128 locations are mapped onto
the first MPRAM. The address range of the original memory coincides with
the address range onto which the locations are mapped, which implies that
there is no offset required. The second part of the memory is mapped onto
the second MPRAM. In this case the address ranges of the two memories do
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State Storage
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Figure 5.3:
Normalization
example

not match. Therefore an offset of ‘-128’ is required to match the two address
ranges. The address map component controls which of the MPRAMs should be
active for a given address, and set the mux accordingly. For example; when the
address 204 is supplied to the state storage the address map will only enable
the second MPRAM, and set the mux to read that MPRAM.

5.1.3 Combine component

When an memory has been normalized, a location in the Block RAM will store
more than one location from the memory. Figure 5.3 shows an example of how
a memory is stored in the Block RAM, each location in the Block RAM stores
two locations from the memory. Which of the parts of the location in the Block
RAM should be updated or retrieved depends on the least significant bits of
the address. The Block RAM component supports byte wide enables, which
can be used to efficiently update only a part of a single location. The width
of all Block RAM ports is configured at 36 bits, this width can be divided
into four parts (the byte + a parity bit), hence the byte enables can be used
when a memory is normalized to half or a quarter of its original size. Further
normalization is currently not supported. For the output port, a specific part of
the location should be retrieved. Because the data read from the Block RAM is
synchronous, the address bits that are necessary for selecting the correct piece
is registered. Figure 5.4 shows the combine component when the memory is
normalized to half its original size.

5.1.4 Component generation

Using the MPRAM, combine and address map components the state storage
component is generated.
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5.2 State Storage Pipeline

As mentioned in chapter 2.1.4, a ping-pong mode memory is used to store the
old and new state. But this technique imposes a large overhead, because the
complete old-, and new state are available. However, since the output state
vector now is much smaller than the complete state, i.e. only the difference
with the old state, it should be enough to only store updates. After a system
clock cycle is completed these updates can be stored transparently to the state
storage.

The current flow, as described in section 2, did only extract flip-flops, and
must therefore load the complete input state vector at once. For our reduced
memory structures this does not suffice. First, the addresses which have to be
read, are retrieved from the update vector. In the next clock cycle these specific
memory locations and the flip-flops can be read from memory. Hence it will
take one extra clock cycle to load the input state vector.

Update vector storage The update vector storage will be used to buffer all the
outputs from the hyper cells, because, before all entities have been stabilized in
a system clock cycle, the hyper cell needs the old state vector. Furthermore, the
storage pipeline needs to store the addresses that are read from the memories,
so that when this address has stabilized the correct memory location can be
retrieved from the state storage.

Pipeline The state storage and the update vector storage are the main com-
ponents in the state storage pipeline. Figure 5.6 gives an overview of the main
components in the simulator; For further details see [4]. The state storage
pipeline is responsible for loading the correct reduced state vector for the
entity that has to be evaluated, (See figure 5.5 for a RTL description). There
are three ports, which the controller should set for the correct retrieval of the
state vector for an entity. First, the evaluate signals enables the evaluation of
an entity. When the port is set to ‘1’ the storage pipeline will retrieve the state
for the entity which is given by the iar port. When the update port is high,
the buffered output from the previous evaluation for that entity in the update
state is written to the state storage. The hco port is the port that will output
the state vector. At the same time the OA port will output the identifier for
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Figure 5.7: Timing
diagram for state
storage pipeline

the current entity, this enables the hyper cell to correctly set its own behavior,
which is necessary for the integration with the new hyper cell generation by
Rutgers [3]. The new state vector is set on input port hci, which will only be
saved when the valid port on the update state storage is high.

In figure 5.7 a single evaluation of the state storage pipeline is available as
timing diagram. First, in clock cycle zero the pipeline is reset.

An evaluation of an entity is request in clock cycle one. Clock cycle two
is used to retrieve the address, which should be read from the update state
storage. This address is used in clock cycle three to retrieve the location from
the memory for that entity from the state storage. Clock cycle four is used
to evaluate the entity, and store the result in the update state storage. For
simplicity only one evaluation is performed, but the pipeline is able to handle
a new request for evaluation in each clock cycle.
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Description of the ports for pipelined state loading

update If the current stored update in the output state storage has to be stored
in the state storage. If this port is set to ‘0’ then the update will only be
used to determine which memory locations should be read.

iar Input Address Read. For which entity the state should be fetched

hci Hyper Cell Input. The new state vector, which is the output of the hyper
cell, to be stored in the output state storage.

evaluate Fetch the state for the currently selected entity and evaluate this
entity.

hco Hyper Cell Output. The current state which was fetched.

oa Output Address. The entity the HCO belongs to.

The complete pipeline is configurable using two generics:

Hyper cells The number of hyper cells instantiated for this pipeline.

Entities The number of entities that are simulated.

Furthermore, all types for the pipeline are generated by the extraction tool.
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Abstract

In this chapter we evaluate the state extraction algorithms. The main results are
that the hyper cell behaves as expected, and the clock frequencies that can be achieved
are comparable to the current extraction flow. Furthermore, the state storage pipeline
works as expected, and the clock frequency that is necessary for the pipeline does not
limit the performance of the simulator.

Outline

First, in section 6.1 the looprouter is introduced. In section 6.2 the state
extraction algorithms are applied on the looprouter. The resulting hyper cell is
simulated in section 6.3 to confirm that the state extraction algorithms do not
break the basic functionality of the looprouter. Furthermore, the hyper cell is
synthesized, and evaluated in section 6.4. The synthesis results for the state
storage pipeline for the looprouter, and Montium are evaluated in section 6.5
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Figure 6.1:
Looprouter

6.1 Looprouter

Because only the storage pipeline is analyzed, a wrapper is written around the
NoC-router in order to simulate a small network. In a 2d Mesh network each
router has five ports, four of them are used to connect to other routers, and
the last port is used to communicate with a processing element. The wrapper
connects four of the ports together so the router will route messages to itself
(See figure 6.1 for a graphical view), the resulting component is now called a
looprouter.

6.2 Extracted State

The state extraction algorithms, as presented in section 3, are applied to the
looprouter. The only state primitives present in the intermediate edif were 120
flip-flops without a clock enable, and 3360 flip-flops with a clock enable. When
the register bank algorithms are not applied to this hardware description the
state vector width would be 3480.

The register bank algorithm detected five register banks. The five register
banks corresponded to the fifo’s in the looprouter that are placed at each input
port. An interesting observation is that at each input port there are four fifo’s,
these four fifo’s together are detected as a single register bank. Because at most
one of the four fifo’s for each input port would be written to, the algorithm
detected that the four fifo’s combined represented one register bank. But in
each clock cycle This register bank was replaced by a clocked_ram primitive,
and extracted as such. The five register banks represented 2800 flip-flops in
the hardware design. The other flip-flops, 680 in total, are not part of a register
bank, and will be extracted as flip-flops.

6.3 Looprouter test

To verify that the looprouter still works after the state extraction, a small test is
performed. In a test bench several flits are supplied to this looprouter. The
flits together form a packet. The first flit configures the route of the packet
in the network, the flits will travel from port zero to two, one to three, and
finally from four to zero. The second flit is a normal data packet, and carries a
payload. The third also carries a payload, and it is also the tail of the three
flits, which means that when this flit is received by a port, it can release the
route for this packet.

First the original VHDL sources for the looprouter were simulated using
Questasim. In figure 6.2 a waveform of that simulation is given. The inputs are
used to supply the packets to the network. The outputs of the internal ports
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clk

0 1 2 3 4 5 6 7 8 9

Inputs

nrst

inlink.flit.data 0814 1278 4444

inlink.flit.id 7 0 6

inlink.valid

inlink.vc_sel 1

Outputs

outlink.flit.data 3C14 1278 4444

outlink.flit.id 7 0 6

outlink.valid

outlink.vc_sel 0

Links

link(2).flit.data 0414 1278 4444

link(2).flit.id 7 0 6

link(2).valid

link(2).vc_sel 0

link(3).flit.data 0014 1278 4444

link(3).flit.id 7 0 6

link(3).valid

link(3).vc_sel 0

Figure 6.2:
Looprouter simulation

two, and three are also shown, so that the packets can be followed through the
looprouter. After some clock cycles the two payload packets are available from
the outputs of the looprouter.

After this simulation the state extraction algorithms are applied to the
looprouter, the results of this extraction can be found in the next section.
Furthermore the state storage component for the looprouter was generated
as well. In a test bench the hyper cell, and state component were simulated
together. The results of this simulation confirmed that the pipeline, and state
storage were able to simulate the hyper cell correctly.

6.4 Looprouter Synthesis Results

The simulator speed depends on the clock frequency on which the hyper cell,
and the state storage, and some other components, which are not covered in
this thesis. Several configurations of the tool flow were used to generate several
hyper cells of the looprouter. In this section a comparison is made between
the synthesis results of the hyper cells of the looprouter. The comparison
results can be found in table 6.1. Precision was used to compile, and synthesize
the hardware descriptions. A normal synthesis run, the synthesized flow by
Rutgers [4], and a combination of the new algorithms and the synthesized by
Rutgers have been included in the results.

Configuration A is the normal synthesis flow, the original VHDL sources have
been synthesized, this gives us a base case for clock frequency, and resource
usage. Configuration B uses the new flow as proposed in this thesis, but does
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not do the register bank detection, and does not extract the state elements.
Hence it only reads the intermediate format from Precision, and exports is
directly to VHDL, after which it is completely synthesized. The results from
this configuration are about the same as configuration A, the clock frequency is
slightly higher, and the resource usage a slightly less. This might be explained
by the fact that the hardware design is compiled twice, which could have
enabled the synthesis tool to perform more optimizations. Another explanation
could be that the tool does not correctly handle the graph, but the simulation
in section 6.3 did run correctly, which suggest that at least the basic functions
of the looprouter work. Configuration C applies the register bank detection,
and extracts all state elements (the clocked_ram, and flip-flop primitives) in
the new flow. The clock frequency of the hyper cell in this configuration is
dramatically slow, the hyper cell can only run at 7.5 Mhz. Compared to the
former configuration this is a reduction with almost a factor of eight, which
is unacceptable. At this point the reason for this dramatic result was unclear.
Therefore, some other configurations were tested in order to pinpoint the
problem. In configuration D the register bank detection, and its extraction was
applied, but the flip-flops were not extracted. Configuration E is the opposite
of the former configuration, it does not apply the register bank detection, it
only extracts all flip-flops in the intermediate format. Configuration D, and E
both performed similar to configuration A, which suggest that separately the
register bank detection, and flip-flop extraction work as expected, but that they
cannot be used together in the new flow. Therefore, a hybrid flow was run,
which combined the register bank detection from the new flow, and the flip-flop
extraction from the synthesized flow from Rutgers [3] in configuration F. The
clock frequency of the hybrid flow is higher than the original configuration A,
and it only uses slightly more resources. The reason for the modest increase in
resource is the register bank extraction, because all primitives that together form
a register bank are replaces by a single primitive. Furthermore, a configuration
is run where the hardware design was imported, and directly exported by the
intermediate flow, after which the flip-flops were extracted by the synthesized
flow. When compared to configuration E, which does the same extraction on
the intermediate format, it is clear that this configuration is fast, but that the
performance increase comes with a resource penalty. The last run, configuration
H, did only run the synthesized flow. When compared to the hybrid flow,
configuration F, it can be seen that the synthesized flow has a lower clock
frequency, and uses almost twice as any resources.

6.5 State Storage Pipeline Synthesis Results

In the previous section the performance of the hyper cell for the looprouter
was evaluated, in this section the performance of the state storage pipeline will
be evaluated. The storage storage component was generated with six virtual
ports on the MPRAM. The results of this evaluation can be found in table 6.2.
The clock frequencies in the table represent the clock frequency of the Block
RAMs, the clock frequency of the storage pipeline itself is a factor three lower.

First, the storage pipeline itself was synthesized. The clock frequency of
the design was high, this is due to the fact that all pipeline stages contain not
much combinatorial logic. However, the Block RAM usage was higher than
expected, in this test the state storage component was generated for 16 entities.
The Block RAMs necessary for the state storage itself was, as expected, 15. But
the update state storage did use 32 Block RAMs, more than twice the number
for the state storage. However, the update state storage uses normal Block
RAMs for the update state storage. When the update state storage would also
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Configuration

Interm
ediate

flow
RB

extraction

Interm
ediate

FF
extraction

Synthesized
FF

extraction
Clock

frequency

before
PnR

(M
hz)

Cell delay
(%

)
N
et delay

(%
)

Function

generators

CLB-slices

Flip-flops

A 56.0 44.7 44.7 9623 4812 3480
B • 56.8 45.5 45.5 9474 4737 3480
C • • • 7.5 32.7 67.3 10075 5038 0
D • • 55.7 45.4 54.6 7920 3960 680
E • • 53.5 44.3 55.7 13892 6946 0
F • • • 69.7 33.1 66.9 10513 5257 0
G • • 64.2 33.2 66.8 17645 8823 0
H • 61.0 32.5 67.5 18061 9031 0

Table 6.1: Synthesis
results for looprouter

be stored in MPRAMs, it would only use 11 Block RAMs.
Second, the design was combined with the hyper cell (configuration C), and

synthesized again.
The clock frequency before Place and Route (PnR) is dramatically slow. But

this can be explained by how the clock is constrained, by Precision. The Preci-
sion tooling determines the relation between the input clock of the Digital Clock
Manager (DCM), and the output clocks. In the storage pipeline two separate
clock domains are used, but only the input port of the DCM is constrained. In
the synthesized design the critical path is in the clock domain of the hyper cell,
which determined the input clock frequency of the DCM. Because the tooling
could not increase the critical path, it found that the clock frequency for the
state storage would not be higher than 21.7 MHz. However, the synthesized
design was placed and route with the Xilinx ISE tooling. This tooling did not
constrain the critical path on the input clock of the DCM, but did a critical
path analysis for both output clock domains. The clock frequency for the state
storage pipeline is lower than the clock frequency of the state storage pipeline
before Place and Route (PnR) (when it is not connected to the hyper cell), but
the resulting clock frequency for the storage pipeline is still a lot higher than
the clock frequency of the hyper cell, which means that it does not limit the
performance of the simulator.

Because the state storage pipeline for the looprouter does not use any of the
transformations as presented in section 5.1, it also did not use the additional
components to support those transformation. Therefore an additional pipeline is
generated that did incorporate these transformations. The design for which the
pipeline is generated is the Montium, again for 16 entities. The clock frequency
of the synthesized pipeline is a lot lower than the pipeline for the router,
but it also used almost all Block RAMs in the design, namely 286 out of 288.
Furthermore, it uses slightly more than 10% of the function generators, which
leaves enough resources to implement the hyper cell, and other components in
the simulator.

The logic that
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Clock
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Flip-flops

State
storage
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s
Update
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Block
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s

Router 406.5 22.1 77.9 NA 978 2163 4326 15 32
RouterHC 21.7 32.8 67.2 339.2 11061 5531 4326 15 32
Montium 87.6 47.1 52.9 NA 15199 11228 22456 192 94

Table 6.2: Synthesis
results for state
storage pipeline
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In this thesis the Sequential Hardware-in-the-Loop Simulator has been enhanced
with the ability to extract large memories. This chapters will conclude this
thesis with some conclusions, and further work.

7.1 Conclusions

One large obstacle for the simulation of large hardware designs in HILS has
been tackled; extracting the large memories. Before the extraction algorithms
were developed a detailed analysis has been performed onto which analysis
level would be suitable for the memory extraction, this has been elaborated in
section 3.1. This analysis provided another approach than originally developed
by Wolkotte [1, 15], the intermediate format provided by Precision can be used
to efficiently extract large memories.

Subsequently, two techniques to extract large memories have been intro-
duced.

• In section 3.4 the extraction of RAM elements in the intermediate format
of Precision have been elaborated.

• A Register bank extraction algorithm has been elaborated in 3.5. The
algorithm has several distinct steps, it has to group flip-flops into registers,
registers into register banks, and for these register banks is has to analyze
if they also behave as one. When a register bank is identified it has to be
replaced by an RAM element so that it can be removed from the graph.

The extracted state has to be stored in the Block RAMs of the FPGA. But how
the Block RAMs are used influences the speed of the simulation. Therefore
several heuristics have been developed in chapter 4. These heuristics can
efficiently map the extracted memories onto the Block RAMs.

In chapter 6 an elaborate case study has been performed on a NoC-router.
The case study confirmed that the memory extraction algorithms do result in a
smaller hyper cell, which can be clocked at a slightly higher frequency than the
hyper cell in the approach by Rutgers [3]. However not all state elements could
be efficiently extracted by the new algorithms, when the flip-flops were also
extracted it resulted in a dramatic decrease of the clock frequency. Hence, the
conclusion that the two approaches should be combined, the large memories
should be extracted with the new approach, the remaining flop-flops can be
extracted by the old approach after synthesis.

7.2 Future Work

Stabilization proof extension for cycles In appendix A a proof was presented
which shows that the simulator can always stabilize the system under certain
assumptions. One of these assumptions was that there can be no cycles which
did not contain state elements, however it might be possible to extend the proof
that (under certain conditions) these cycles are permitted.

Extending Reset and Set Functionality of Register Banks In section 3.5.2
two solutions were introduced for implementing the reset and set-functionality
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Figure 7.1: State
Storage Model

of register banks. The second solution was chosen because of the simpler
implementation, however from a performance perspective the first solution
might be a better solution.

State storage with flexible memory normalization In section 4.3 it was stated
that the memory normalization does not increase the memory requirements.
This remains true, but it does increase the logic overhead needed to place more
locations on one physical address of 36 bits.

In the presented model each physical location in the Block RAMs will only
hold information from one memory. The model could be extended that each
physical address can hold information from more than one memory.

In figure 7.1(a) the current model is shown, where in one bin two memories
are mapped. In the left case both memories were normalized. However, when
the memories are not normalized they still occupy the same amount of memory
but can be placed besides each other, saving some logic which is necessary
for the normalization. Finding an efficient mapping for this extended model
might take significantly more processing time, but the increase in processing
time on this step might result in a faster simulator. However, this can only be
done when the Block RAM properly supports that two ports write to the same
location when their write enable vectors do not overlap. If this is not possible
the write action of the different memories should be scheduled on different
clock cycles within the MPRAM.

Extending the register bank detection Currently only register bank that only
have one write port are detected. The techniques that are used to group
registers, and analyze the behavior of these groups have to be extended to
support multiple write ports.

Porting algorithms to synthesized EDIF Although initial analysis indicated
that Precision’s intermediate format is the best solution for state extractions,
it could not extract all elements efficiently. At the moment the old, and new
approach together remove all state elements. The state extraction algorithms
could be extended so that they can also detect large memories in the synthesized
EDIF, this could result in a simpler flow.
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The whole simulator concept works because of the assumption that a hardware
design which is partitioned can be evaluated sequentially and that all will
always stabilize. This chapter elaborates a proof which shows that under some
basic assumption the simulator will always stabilize.

A.1 Assumptions

The proof assumes the following:

• The hardware design is described as a graph, see appendix 3.2 for a
detailed description of this graph format.

• In the graph there are no cycles which do not contain a state element.

• All state elements which are not synchronous (such as latches) can be
represented by another structure which is synchronous. Because all
state elements are now represented by synchronous elements only the
clocked edges do have to be examined. See [3] for some examples of
these structures.

• The output of the state elements are stable at each clock edge.

• A primitive stabilizes when all its inputs are stable.

A.2 Proof

Let g be the graph that represents the hardware design, it contains a finite
number of vertices. Let P be the set which contains all partitions. A partition
pi ∈ P is a set primitives and all its ports.

A partition pi contains at least one primitive:

∀i ∈ P • pi 6= ∅ (A.1)

Two partition never share nodes:

∀i, j ∈ P • pi ∩ pj = ∅ (A.2)

The partition is complete: [
i∈P

pi = Vg (A.3)

From all primitives which are state elements the outputs are disconnected
from its original primitive node. A new primitive node is created for this
output, hence all state elements now have a separated input and output. For
the formal graph transformation, see figure A.1(a). A small example which
shows a state element before and after the transformation is shown in figure
A.1(b) and A.1(c).

Because the only cycles that were allowed did have a state elements in its
path, and all these cycles are now broken, the graph has become acyclic. All
primitives can now be marked according to the maximal length of the path



76 PROOF OF STABILIZATION

SE SE

∀

(a) Transformation

SE

(b) Example before

SE SE

(c) Example after

Figure A.1: State
element input and
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Evaluation example

between an output of a state element or input port and itself. the input ports
themselves are marked with a zero.

The inputs of this graph can now consists of two types of ports: the normal
input ports for the complete design and the input ports which formerly were
the state elements. Both are stable at clock edges, and because these are the
only moments that information is stored, this is used as the starting point of
this induction proof. Hence the base case is defined as:

Base case All the inputs of the graph are stable, which implies that all nodes
with are marked with 0 are stable. In the worst case scenario all signals within
the graph are unstable.

Induction step When all primitives at a certain level are stable all inputs for
the next level are stable. Therefore when all partitions are evaluated once the
next level also because stable. Hence each time all partitions are evaluated
once, the levels that are stable is increased by one, and because the number of
levels is limited all partitions eventually become stable.

Final case When the last level of primitives is stable the complete hardware
design is stable.

A.3 Evaluation example

See figure A.2 for the graphical representation of the graph used in this example,
not that only the primitives are shown. The partitions are represented by the
blue, red, green and yellow boxes.
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In the base case only the input at level 0 are stable. Then all partitions are
evaluated once, and level 1 becomes stable. Again all partitions are evaluated
once, and level 2 becomes stable. This continues until level 5 becomes stable.

Hence in the worst case 16 evaluation were necessary to reach a stable
system.
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B.1 Formats

As mentioned in chapter, 3 Precision’s intermediate format is chosen as the
level to perform the analysis and extraction of memory and register banks on.
How this level was exported and imported is not described in that chapter.
This will be elaborated in this chapter. First, it is examined how the netlist will
be exported. Than how the hardware is represented within the tooling. the
chapter ends with a description how the internal representation is imported in
Precision.

B.1.1 Export format

Precision’s intermediate format can be exported in several formats, three of
which contain the hardware design, and are readable. These are EDIF, VHDL
and Verilog. In this section these three formats are evaluated and one of them
is chosen as the export format.

Correctness Determining if any hardware designs will always be compiled
correct and exported is not feasible. However, with a few small designs it
should be possible to demonstrate if the general idea is sound. For this test a
small design (the NoC router) is compiled, and exported to each of the three file
formats. These files are compiled again to see if precision is able to correctly
interpret its own intermediate format.

Precision could not compile the VHDL file. It reported errors while compiling
some ranges. The ranges did not adhere to the VHDL synthesis standard.

The Verilog and EDIF file did compile correctly. However the resulting
hardware was not complete, in the intermediate stage there were inferred black
boxes. It seems that some of the components that are used in the intermediate
stage are not recognized by Precision’s compilation phase. With an even smaller
test design (an incrementor) it was found that also the VHDL file did also infer
these black boxes.

Complexity As simple solutions are generally preferred it is determined how
complex it would be to parse and analyze the file formats.

Because the exported file is a netlist only a small subset of language constructs
is used for the VHDL and Verilog formats. An open source parser is available
for the VHDL language [30], this parser was also used for the vhdl memory
extraction. For Verilog there is also an open source parser [41].

The EDIF language was developed as a standard for data exchange between
different tools and is able to store a netlist in an tree structure. The original
tooling for this project uses EDIF for its input format. Only small changes are
necessary to adapt this tooling to correctly read the intermediate output EDIF.

B.1.2 Import formats

Complexity Generating a netlist in all three file formats is relatively simple.

Operator replacement
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Feature VHDL Verilog EDIF

Complexity + + +
Operator replacement + + -

Table B.1:
Comparison of VHDL,
Verilog and EDIF
import format

VHDL Operators can be implemented as standard VHDL components. A
behavioral description suffices. Hence the compiler could generate almost
the same representation for the component.

Verilog Same as VHDL

EDIF Here it is not possible to use VHDL or Verilog components to replace the
black boxes. The black boxes could be compiled as either EDIF or Ngc
and than be imported. However, this is a major disadvantage because
we than choose a specific implementation for that black box. But since
we know nothing of the paths leading into and out this components we
might make a bad choice in regard to timing and/or area.

B.1.3 Evaluation
Because of the existing tooling and lack of errors, EDIF is chosen as the export
format. However, the EDIF cannot be used as import format, because the
resulting hardware will be instantiated with black box operators. The choice
between VHDL and Verilog is trivial, VHDL was chosen due to the lack of
experience with Verilog.

B.2 Netlist Size

The export VHDL netlist has to be compiled, and synthesized. Precision will
not interpret the VHDL file as a netlist, and will compile the design normally.
This proved to be a bottleneck. Within the tool flow the netlist was flattened.
The compiler of Precision compiles each design into pieces, each of these pieces
represent a component in the design. Our flattened design consists of only one
component, which resulting into several memory errors during the compilation.
Therefore, the hierarchy had to be preserved for large components, this has
been included in the formal graph representation (See section 3.2).
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In this appendix the implementation of the tool will be elaborated.

C.1 Java Implementation

In this section the Java implementation of the software will be elaborated.

C.1.1 Java Classes
GraphTransformerTask This is the main class of the state extraction. The
run functions is responsible for importing the hardware graph, starting several
state extraction algorithms, running the extraction and exporting the resulting
hardware to VHDL.

HardwareGraph The hardware graph is represented in this graph. This class
holds all the different components and where these components are placed
within the hierarchy of the hardware. Several functions allow the splitting and
combining of these components.

ComponentGraph This class actually holds the graph which represents (a
portion) of the hardware.

DirectedGraph This class is the graph itself. It comes from a Graph package
for Java [42].

CellNode The components in the graph are represented by this class.

PortNode The ports of a component in the graph are represented by this
class.

GraphOptimizer Several small optimizations are performed by this class,
namely: Buffer components are removed from the graph. All the TRUE and
FALSE components are merged. These operations reduces the size of the graph.

RegisterDetector This class is responsible for the discovery of flip-flops which
might be grouped together into a register.

RegisterMerger The set of flip-flops discovered by the RegisterDetector class
are checked if they really behave as a register. When these flip-flops behave as
a register they are merged into a register.

RegisterBankDetector This class is responsible for the discovery of registers
which might be grouped together into a register bank.

RegisterBankMerger The register bank candidates provided by the Register-
BankDetector are analyzed to check if they behave as a register bank. If this
analysis confirm the behavior of the register bank the registers are grouped
together as a clocked ram component and some logic is instantiated around the
clocked ram to glue it to the existing hardware.
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RegisterBank This class is used to store some information about detected re-
gister banks. It is primarily used by the RegisterBankDetector to relay information
to the RegisterBankMerger class.

HardwareGraphExtractor This class is responsible for the actual extraction
of the state components. Classes which are extended from the NodeExtractor
class are used to implement the extraction for several types of components.
When a component is extracted a child form the Component class is used to
store information about the extraction.

NodeExtractor This is an abstract class which is used by the HardwareGraphEx-
tractor class to implement the extraction of components in the graph.

ClockedRamExtractor Child of NodeExtractor.

DFFEExtractor Child of NodeExtractor.

DFFExtractor Child of NodeExtractor.

RegisterExtractor Child of NodeExtractor.

Component Abstract class which is used by the HardwareGraphExtractor class
to store information about the extractions.

ClockedRam Child of Component

DFFE Child of Component

Register Child of Component

ComponentVhdlWriter This class is used to export a ComponentGraph to a
VHDL file.
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Node

String : id
String : name
String : cell
Vector<String> : hierarchy

CellNode

String : technology

PortNode

int : direction
int : index
int : blockId
boolean : array
boolean : block
boolean : external

HardwareGraph

String name
Map<int, ComponentGraph> : components
MapList<int, int> : hierarchy

importGraph(g)
exportAllToVhdl(d)

ComponentGraph

0..*

int : id
Map<int, int> : hierarchy
DirectedGraph<Node, Edge> : graph

initHierarchy()
removeHierarchy()

DirectedGraph

Collection<Node> : nodes
Collection<Node> : edges

0..*

0..*

GraphTransformerTask

run()

GraphOptimizer

optimizeGraph(g)

RegisterBankDetector

getInputForCe(g)
getMuxCollection(g, n)
getRegisterBanks(g)

RegisterBankMerger

align(g, ns)
analyseRegisterInput(g, rs)
analyseRegisterOutput(g, rs)
influenceGraph(g)
extract(g, rs)
merge(g, rs)
reduceGraph(g)
reduceInfluenceGraph(g)

HardwareGraphExtractor

HardwareGraph : hg
Collection<NodeExtractor> : es
MapList<Str, Component> : exs

addExtraction(String, Component)
extract()
HardwareGraphExtractor(hg)

NodeExtractor

HardwareGraphExtractor : he

isExtractable(c)
extract(g, c)

ClockedRamExtractor

isExtractable(c)
extract(g, c)

DFFEExractor

isExtractable(c)
extract(g, c)

DFFExtractor

isExtractable(c)
extract(g, c)

RegisterExtractor

isExtractable(c)
extract(g, c)

0..*

1

RegisterBank

int : id
Collection<Node> : muxes
Collection<Node> : registers

RegisterDetector

getRegisters(g)

RegisterMerge

merge(g, nss)

Component

Str : id

...

ClockedRam

int : addresses
int  : addressWidth
int : dataWidth

...

DFFE

...

Register

int : dataWidth

...
ComponentVhdlWriter

DirectedGraph : g

...
export()
...

Figure C.1: Memory extraction class diagram

StateStorage

GeneratorStateStorage : gss
GeneratorWrapper : gw

addMemory(Memory m, int a)
generateStateStorage()
normalizeMemories()

GeneratorStateStorage

...

GenerateStateStorage(...)
generateVhdl(String f)

GeneratorWrapper

...

GeneratorWrapper(...)
generateVhdl(String f)

Memory

int : width
int : depth
int : ports
int : index

0..*

StateStorageMapper

map(Vector ms, int a, int d)

MapMemoriesSmallFirstPadding

map(Vector ms, int a, int d)

MapMemoriesLargeFirstPadding

map(Vector ms, int a, int d)

MapMemoriesUnsorted

map(Vector ms, int a, int d)

Mapping

int : item
int : amount
int : bin
int : addressStartItem
int : addressStartBin
int : access
int : accessStart
int : port
int : portStart

0..*

Figure C.2: State storage class diagram
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