
Tool support for a metamodeling approach
 for reasoning about requirements

 - Master’s thesis -

Jan-Willem Veldhuis

April 21, 2009

Comittee
A. Göknil, MSc.
dr. I. Kurtev, MSc.
dr.ir. K.G. van den Berg
prof.dr.ir. M. Akşit

Research group
University of Twente

Faculty of Electrical Engineering, 
Mathematics and Computer Science

Software Engineering



 



Abstract

In the Software Engineering practice, software requirements are one of the ear-
liest artifacts describing a system. Without requirements we cannot verify the
quality of a delivered software product. Requirements are mostly textual de-
scriptions. Traceability is considered essential to manage consistency between
software development artifacts. Many research focused on the relation between
requirements and other artifacts such as design, code and test cases. However,
less attention has been paid to the relation between requirements.

Göknil et al. proposed a requirements metamodel. This provides structure to
requirements models. This metamodel is distilled from key entities from several
requirements engineering approaches described in literature. The main focus
of the requirements metamodel is on requirements relations and their types.
Furthermore, they provided formal semantics of the requirements relations in
first-order logic. This enables reasoning on requirements and consistency check-
ing. To provide a proof of concept for the metamodeling approach proposed
by Göknil et al. we need an environment to model requirements conforming to
the requirements metamodel. And we need a tool that supports first-order logic
reasoning over requirements relations.

To the best of our knowledge, no requirements management tools exists
which are capable of reasoning about requirements relations using formal se-
mantics. Therefore, we developed a tool named TRIC (Tool for Requirements
Inference and Consistency checking). TRIC is developed as an Eclipse RCP ap-
plication. Requirements models are expressed in the Web Ontology Language
(OWL), because first-order logic reasoners for OWL exist. Requirements mod-
els are stored and retrieved in RDFS/XML notation, enabling interoperability.
To establish inference of implicit relations and to enable consistency checking
we created a mapping between the formalization of requirements relations to
OWL syntax and reasoner rules.

We evaluated TRIC using an example case of a Course Management Sys-
tem (CMS). We used the requirements for the tool to verify the design and
implementation. The modeling of requirements in models conforming to the
requirements metamodel is supported. The inference of implicit relations and
consistency checking of the model is supported. The analysis of implicit rela-
tions is supported by a visualization engine. We investigated the scalability of
the tool by looking at the time and resource behavior. The time needed for con-
sistency checking increases exponentionally with the number of model elements.
The memory consumption seems linear with respect to the model size.

TRIC does not support multiple metamodels. More research is needed on
customizing the requirements metamodel and the formalization of additional
relations. The inconsistencies found by the tool are not related to the contra-
dicting requirements relations. TRIC supports the modeling and analysis of a
requirements model. The next step is to support change impact analysis.

i



Acknowledgements

I would like to thank the people who helped me to realize this work.
Arda Göknil, Ivan Kurtev and Klaas van den Berg for guiding me through

the project by giving constructive feedback. During the course Advanced Design
of Software Architectures I got enthousiastic about a research project in the field
of Model-Driven Engineering.

I would like to thank the hard-working guys of room 5070 (now relabeled to
5066) for a great atmosphere. It motivated me to carry on with the project. In
particular I appreciate the help of David ten Hove with creating the example
case of the Course Management System and Tjerk Wolterink for exchanging
development experience with the Eclipse Rich Client Platform.

Especially I would thank Alfons Laarman for reviewing my thesis. I wish
him a lot of fun and good luck with his PhD research.

Finally, I thank Karin for supporting me and of course my parents for their
continuous support.

Jan-Willem Veldhuis, April 2009, Enschede

ii



Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Basic concepts 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Model-Driven Engineering (MDE) . . . . . . . . . . . . . . . . . 5
2.3 Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related Work 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Requirements relations . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Requirement metamodels . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 REMM - Requirements Engineering MetaModel . . . . . 10
3.3.2 Simulation of modeled requirements . . . . . . . . . . . . 11
3.3.3 Metamodeling approach for requirements specification . . 12
3.3.4 Merging partial requirement specifications . . . . . . . . . 12
3.3.5 Metamodels for specific domains . . . . . . . . . . . . . . 13

3.4 Reasoning about requirements . . . . . . . . . . . . . . . . . . . . 13
3.5 Tool support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.1 IBM Rational RequisitePro . . . . . . . . . . . . . . . . . 14
3.5.2 IBM - Telelogic DOORS . . . . . . . . . . . . . . . . . . . 15
3.5.3 Borland Caliber . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.4 Topteam Analyst . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Formalization of Requirements and Relations 17
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Requirements metamodel . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Formalization of requirements . . . . . . . . . . . . . . . . . . . . 18
4.4 Formalization of requirements relations . . . . . . . . . . . . . . . 19

4.4.1 Formalization of requires . . . . . . . . . . . . . . . . . . 19
4.4.2 Formalization of refines . . . . . . . . . . . . . . . . . . . 19
4.4.3 Formalization of partial-refines . . . . . . . . . . . . . . . 19
4.4.4 Formalization of contains . . . . . . . . . . . . . . . . . . 20
4.4.5 Formalization of conflicts . . . . . . . . . . . . . . . . . . 20

iii



CONTENTS

4.5 Mapping of requirements relations to formal definitions . . . . . 21
4.5.1 Mapping to sets of satisfying systems . . . . . . . . . . . 21
4.5.2 Mapping to formula relations . . . . . . . . . . . . . . . . 21

4.6 Inferencing and Consistency Checking . . . . . . . . . . . . . . . 23
4.6.1 Inference of implicit requirements relations . . . . . . . . 23
4.6.2 Consistency Checking . . . . . . . . . . . . . . . . . . . . 23

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Requirements for TRIC 25
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Scope and purpose . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.1 Functional requirements . . . . . . . . . . . . . . . . . . . 26
5.4.2 Non-functional requirements . . . . . . . . . . . . . . . . 27
5.4.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Planned releases . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Design of TRIC 29
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 High level design . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Activities supported by the tool . . . . . . . . . . . . . . . . . . . 32
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Implementation of TRIC 37
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Usage of OWL to reason about requirements . . . . . . . . . . . 37

7.2.1 Requirements metamodel as OWL ontology . . . . . . . . 37
7.2.2 Handling of metamodels and models . . . . . . . . . . . . 38
7.2.3 Mapping of requirement and relation formalizations to OWL 38

7.3 The Modeling environment . . . . . . . . . . . . . . . . . . . . . 39
7.3.1 Integration with Eclipse RCP framework . . . . . . . . . 39
7.3.2 Storage of models . . . . . . . . . . . . . . . . . . . . . . 40

7.4 The Inference Engine . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4.1 Representation of sets of systems . . . . . . . . . . . . . . 41
7.4.2 The inference process . . . . . . . . . . . . . . . . . . . . 42
7.4.3 Preparation of the inference model . . . . . . . . . . . . . 43
7.4.4 Reasoner rules for inferencing . . . . . . . . . . . . . . . . 43
7.4.5 Dealing with the partial refines relation . . . . . . . . . . 46
7.4.6 Derivation trace analysis . . . . . . . . . . . . . . . . . . . 48

7.5 The Consistency Checking Engine . . . . . . . . . . . . . . . . . 49
7.5.1 The consistency checking process . . . . . . . . . . . . . . 49
7.5.2 Preprocessing of the inferred model . . . . . . . . . . . . . 50
7.5.3 Reasoner rules for consistency checking . . . . . . . . . . 51
7.5.4 Detecting inconsistencies . . . . . . . . . . . . . . . . . . 54

7.6 The Visualization Engine . . . . . . . . . . . . . . . . . . . . . . 54
7.7 Usage of the tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.7.1 Adding requirements to the model . . . . . . . . . . . . . 56
7.7.2 Relating requirements . . . . . . . . . . . . . . . . . . . . 57

iv



CONTENTS

7.7.3 Inference results . . . . . . . . . . . . . . . . . . . . . . . 57
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Evaluation of TRIC 61
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2 Example case: Course Management System . . . . . . . . . . . . 61

8.2.1 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2.2 Contradicting requirements . . . . . . . . . . . . . . . . . 62
8.2.3 Identification of requirements relations . . . . . . . . . . . 62

8.3 Evaluation of tool functionality . . . . . . . . . . . . . . . . . . . 63
8.3.1 Modeling of requirements . . . . . . . . . . . . . . . . . . 63
8.3.2 Inference and analysis of requirements relations . . . . . . 63
8.3.3 Consistency checking . . . . . . . . . . . . . . . . . . . . . 64
8.3.4 Support for other metamodels and customizable reasoner

rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.3.5 Iterative process . . . . . . . . . . . . . . . . . . . . . . . 65
8.3.6 Storage of models . . . . . . . . . . . . . . . . . . . . . . 65

8.4 Quality of design and implementation . . . . . . . . . . . . . . . 66
8.4.1 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.4.3 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . 69
8.4.4 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.4.5 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Conclusion 71
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.3 Answering the research question . . . . . . . . . . . . . . . . . . 72
9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.5.1 Support for multiple metamodels . . . . . . . . . . . . . . 75
9.5.2 Analysis of inconsistencies . . . . . . . . . . . . . . . . . . 76
9.5.3 Integration with industry standard tools . . . . . . . . . . 76
9.5.4 Change impact analysis . . . . . . . . . . . . . . . . . . . 77

References 78

A Course Management System requirements 83

B Inference rules 93

C Consistency rules 97

v



CONTENTS

vi



List of Figures

1.1 Traceability in system development . . . . . . . . . . . . . . . . . 2
1.2 Map of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Models, languages, metamodels, and metalanguages [24] . . . . . 6
2.2 The four-layered architecture proposed by OMG . . . . . . . . . 6

3.1 Classification of fundamental interdependency types [10] . . . . . 10
3.2 The REMM metamodel [40] (types excluded) . . . . . . . . . . . 11
3.3 Producing a global requirements model [6] . . . . . . . . . . . . . 13

4.1 The core requirements metamodel [19] . . . . . . . . . . . . . . . 18

6.1 Layered architecture of TRIC . . . . . . . . . . . . . . . . . . . . 30
6.2 Package diagram of the core package . . . . . . . . . . . . . . . . 31
6.3 Activity diagram of the modeling process . . . . . . . . . . . . . 33
6.4 Example of an inconsistency undetectable without inference . . . 35

7.1 RDF notation of a requirements model . . . . . . . . . . . . . . . 38
7.2 Communication diagram showing an update of the model. . . . . 40
7.3 RDF representation of the inference model . . . . . . . . . . . . . 43
7.4 Decomposition of the partial refines relation using temporary re-

quirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5 Multiple traces which derive ’R1 requires R4’ . . . . . . . . . . . 49
7.6 Screenshot of the Visualization Engine output . . . . . . . . . . . 55
7.7 Derivation steps to derive ’R8 requires R100’ . . . . . . . . . . . 56
7.8 Screenshot of TRIC’s main window . . . . . . . . . . . . . . . . . 57
7.9 Dialog to add a new requirement . . . . . . . . . . . . . . . . . . 58
7.10 Dialog to relate requirements . . . . . . . . . . . . . . . . . . . . 59

8.1 Execution time for inferencing and consistency checking . . . . . 67
8.2 Memory usage of TRIC by activity compared to model size . . . 68

9.1 Usage of XML transformations to integrate TRIC with other tools 76

vii



LIST OF FIGURES

viii



List of Abbreviations

AD Architectural Design

CMS Course Management System

EMF Eclipse Modeling Framework

FOL First-order logic

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MOF Meta Object Facility

MVC Model-View-Controller

OMG Object Management Group

OWL Web Ontology Language

OWL-DL Description Logics variant of OWL

RCP Rich Client Platform (of the Eclipse Framework)

RDF Resource Description Framework

RE Requirements Engineering

REMM Requirements Engineering MetaModel

SWEBOK Software Engineering Body of Knowledge

TRIC Tool for Requirement Inference and Consistency checking

UML Unified Modeling Language

XML Extensible Markup Language

ix



LIST OF FIGURES

x



1
Introduction

1.1 Introduction

In the process of Software Engineering, gathering requirements is one of the
first steps. In order to develop a successful software product these requirements
should be precise, complete and consistent. And because requirements happen
to change over time, proper management of requirements is essential. Overlook-
ing inconsistencies in an early phase could cause major problems when detected
in a final stage. This is because requirements are related to the architectural
design of a system. When requirements change the design and implementation
of the system must change accordingly to meet the new demands.

The QuadREAD research project aims at bridging the gap between Re-
quirements Engineering (analysts) and Architectural Design (architects). The
analysis phase is one of the early phases in software development. Improve-
ment of its quality, will improve overall quality, and will save time and money
in later phases of development, testing and maintenance. Requirements evolve
over time. One of the aims of the QuadREAD project is to elaborate on trace-
ability research and focus on the tracing between requirements and architectural
design decisions.

In Figure 1.1 an overview of relations between artifacts are shown. Require-
ments are established based on analysis of business demands. Requirements
are realized in the Architectural Design (AD) . The AD is realized in detailed
designs which are implemented in Systems.

Our work concentrates on the modeling of requirements (marked with the
dashed ellipse in the figure).

1.2 Problem statement

Formalizations (of both requirements and their relations) are necessary for an
automated and systematical approach to check requirements for consistency,

1



CHAPTER 1. INTRODUCTION

Requirements

Architectural

Design

Detailed

Design

realized in

realized in

realized in

realized in

evolves to

evolves to

evolves to

Requirements

Architectural

Design

Detailed

Design

System

realized in realized in

evolves to System

Business

Model

realized in realized in

evolves to
Business

Model

Figure 1.1: Traceability in system development

and to be able to analyze the impact of changing requirements. In practice
several approaches are used to deal with requirements, however, they share a
common problem: the requirements usually are textual descriptions. Relations
between requirements are often implicit and hard to extract.

Göknil et al. [19] propose a metamodeling approach to capture require-
ments in models conforming to a requirements metamodel. By making relations
between requirements explicit, automated reasoning can be applied to infer im-
plicit relations and to detect inconsistencies. The approach however is not yet
validated in an industrial context. Tool support is essential to conduct case
studies and provide insight in the pragmatics of the approach.

However, to the best of our knowledge no tools exist which are able to model
requirements conforming to a predefined metamodel, and are able to reason on
different relation types to infer relations and detect inconsistencies. Therefore,
the central research question is:

Can a tool be developed to support modeling of and auto-
mated reasoning on requirements models in order to infer
implicit requirements relations and detect inconsistencies?

This question can be divided in a number of sub questions:

• What are the requirements for the tool?

• How can requirements models be represented to conform to a metamodel
and to enable reasoning?

2



1.3. APPROACH

• Which reasoner engine can be used to reason on requirements models?

• How do we create a mapping between the formalization of requirements
and requirements relations to reasoner rules?

• How well does the resulting tool support the requirements reasoning ap-
proach?

1.3 Approach

In this work we will use the core requirements metamodel of Göknil et al. [19]
to structure requirements and their relations. We will investigate different ap-
proaches to reason on requirements relations and design and implement a tool
prototype.

First we explore the context of our work: requirements metamodels and
relations between requirements. Capabilities of existing requirements tools with
respect to requirements relations and reasoning are reviewed.

We study the formalization of requirement and requirements relations pro-
posed by Göknil et al. in order to investigate the requirements for the tool
support.

A number of requirements for the tool is defined. We aim at a proof of
concept for the inference of implicit requirements relations and checking the
modeled requirements for consistency.

We design and implement a tool prototype capable of handling both require-
ments models conforming to the requirements metamodel, and reasoning about
requirements relations. To achieve this we create a mapping of the formalization
of requirements to a set of reasoner rules.

To validate the tool support we constructed an example case: a basic require-
ments specification document for a Course Management System. We use all the
relationship types defined in the metamodel and we intentionally added contra-
dicting requirements in order to verify the consistency checking mechanism of
the tool.

Using the example case and the set of requirements for the tool we evaluate
the design and implementation of the tool.

1.4 Contributions

This thesis provides the following contributions:

“Tool support for the modeling of requirements conforming to the
core requirements metamodel.”

In Chapter 5 we describe the requirements of the tool. In Chapter 6 we describe
the design and Chapter 7 describes the implementation of the tool. In Chapter 8
we evaluate the tool.

“A mapping of the requirements formalizations by Goknil et al. [19]
to a set of reasoner rules.”

3



CHAPTER 1. INTRODUCTION

The formalization of requirements and requirements relations is described in
Chapter 4. In the chapter describing the implementation, Chapter 7, we describe
how we mapped the formalization to a set of reasoner rules.

“Tool supported analysis of derived requirements relations.”

In Chapter 7 we describe how we use the capability of the reasoner to analyze the
derivation of an inferred requirements relation. This supports the requirements
engineer to understand why and how the tool inferred a certain implicit relation.

1.5 Outline of this Thesis

In Figure 1.2 a map of this thesis is provided. It illustrates the relations between
the chapters.

Chapter 2

Basic concepts

Chapter 4

Formalization of

requirements

Chapter 5

Requirements for

TRIC

Chapter 6

Design of TRIC

Chapter 7

Implementation of

TRIC

used in

expressed in

realized in realized in

applied in

Chapter 8

Evaluation of

TRIC

evaluated in

Figure 1.2: Map of this thesis

This thesis consists out of the following chapters:

Chapter 2 introduces some basic concepts used in this thesis, which are es-
sential for understanding the work.

Chapter 3 elaborates on ongoing research on requirement metamodeling ap-
proaches and reasoning on requirements. Also provides an overview of
reasoning capabilities of existing requirements tools.

Chapter 4 describes the formalization of requirements and requirement rela-
tions.

Chapter 5 describes the requirements and scope of the needed tool support.

Chapter 6 describes the design of the tool.

Chapter 7 describes the implementation of the developed tool.

Chapter 8 evaluates the tool, using the example case study and the require-
ments defined in Chapter 5.

Chapter 9 concludes and reflects on this work and discusses directions for
future work.

4



2
Basic concepts

2.1 Introduction

This chapter introduces the basic concepts used in this thesis. In literature
concepts can have multiple definitions. We describe the definitions we used in
this work.

In Section 2.2 we introduce Model-Driven Engineering. Section 2.3 describes
Requirements Engineering and the definition of a requirement we use in this
work.

2.2 Model-Driven Engineering (MDE)

Model-Driven Architecture (MDA) is a software development approach. It con-
siders models as first class entities for development (instead of program code).
It was launched in 2001 by the Object Management Group (OMG) . It provides
a guide for the structuring of specifications (models) [30].

One of the main aims of the MDA approach is to improve portability. It
classifies models into two classes: Platform Independent Models (PIMs) and
Platform Specific Models (PSMs). By means of a model transformation, a PIM
can be transformed into a PSM.

Model-Driven Engineering (MDE) is an enhancement of MDA. It combines
process and analysis with architecture [23]. Models can describe various con-
cerns such as functionality, maintainability, security, etc. It can be compared
with the usage of different blueprints (viewpoints) in civil engineering for car-
penters, plumbers and electricians. Models abstract from reality and help un-
derstanding, communicating and analysis.

In [24] a model is defined as “a description of (a part of) a system in a
well-defined language”.

Within the context of MDE a metamodel is constructing a formal definition
of a model. Kurtev defines it as “a model of a modeling language” [26]. The

5



CHAPTER 2. BASIC CONCEPTS

Figure 2.1: Models, languages, metamodels, and metalanguages [24]

relation between models, languages and metamodels is depicted in Figure 2.1.
A metamodel constraints the structure of a model. When a model respects this
structure, the model is said to conform to the metamodel.

MOF

UML metamodel

A UML model

Real-world, run-

time instances

instanceOf

representedBy

M3 (metametamodel)

M2 (metamodels)

M1 (user models)

M0 (real world things)

Figure 2.2: The four-layered architecture proposed by OMG

A metamodel is also a model and can be described in a modeling language.
It conforms to its own metamodel, the metametamodel. This results in a hi-
erarchy of models that spans multiple levels. The MDA standard defines a
four-layer architecture, as depicted in Figure 2.2. The topmost layer (M3) is
called the metametamodel. The OMG standard for the metametamodel is the
Meta Object Facility (MOF). This layer is modeled in itself.

6



2.3. REQUIREMENTS ENGINEERING

2.3 Requirements Engineering

In [34] an overview of requirements engineering (RE) is presented. They chose
the following definition of Requirements Engineering defined by Zave [41]:

“Requirements engineering is the branch of software engineering con-
cerned with the realworld goals for, functions of, and constraints on
software systems. It is also concerned with the relationship of these
factors to precise specifications of software behavior, and to their
evolution over time and across software families.”

The realworld goals represent the ’why’ and ’what’ of a system. The precise
specifications are essential for analysis, validation and verification.

According to the IEEE’s Software Engineering Body of Knowledge (SWE-
BOK) , a software requirement is “a property which must be exhibited by software
developed or adapted to solve a particular problem” [2].

Requirements are often divided into two groups: functional and non-functional
requirements:

functional requirements describe the functions that the software is to exe-
cute; for example, formatting some text or modulating a signal. They are
sometimes known as capabilities [2].

non-functional requirements are the ones that act to constrain the solution.
Nonfunctional requirements are sometimes known as constraints or quality
requirements [2].

In this report we focus on the relations between requirements. As noted in
the previous section a requirement is a property which must be exhibited by
a system. We define a requirement formally as a tuple 〈P, S〉 where P is the
property and S is the set of systems that satisfy P (i.e. ∀s ∈ S : P (s)). In
Chapter 4 we provide more details about the formalization of requirements and
requirements relations.

2.4 Conclusion

In this chapter we introduced the basic concepts used in this work. In Sec-
tion 2.2 we described Model-Driven Engineering (MDE) as a software develop-
ment approach. It raises the level of abstraction by considering models as first
class entities as opposed to program code. Models are instances of metamod-
els. The Model-Driven Architecture, as launched by the Object Management
Group (OMG), defines a four-layer architecture. The top-level is self-reflective,
it is modeled in itself. Metamodels provide structure. This structure is useful
to automate transformations, and for generic tool support.

In Section 2.3 we described requirements engineering. In our work we con-
sider a requirement as a single artifact. We will focus on the relations between
requirements without considering the contents of a requirement.

In the next chapter we discuss related research done on requirement relations,
requirements metamodels and reasoning about requirements.

7



CHAPTER 2. BASIC CONCEPTS

8



3
Related Work

3.1 Introduction

In this chapter we describe related work. We describe the state of the art
of four topics: requirements relations, requirements metamodeling, reasoning
about requirements and tool support.

In Section 3.2 we describe relevant research done on requirements relations.
In Section 3.3 we describe attempts to define requirements metamodels. Sec-
tion 3.4 describes the state of the research on reasoning about requirements. In
Section 3.5 we describe the current tool support for requirements relations.

3.2 Requirements relations

Dahlsted et al. [10] stress the need to take requirements relations into consider-
ation in order to make sound decisions during the software development process.
However there is little known about these requirements relations. Their aim is
to identify which types of requirements relations are critical to take into con-
sideration in specific development situations.

The approach in the paper is to provide an overview of the requirements
relation types (which they call ’requirements interdependencies’) identified in
current research.

Dahlstedt et al. conclude that there are several different types of require-
ments relations presented in literature focussing on different activities or devel-
opment situations. They compiled the different views on requirements into an
integrated model (Figure 3.1). The fundamental relation types are divided in
two categories: Structural and Cost/Value.

With structural is meant that the relationships are of a hierarchical nature
as well as of cross-structure nature. Cost/value relationships are concerned with
the relation between the cost of implementing a requirement to the value the
requirement provides to the customer.

9



CHAPTER 3. RELATED WORK

Fundamental
Interdependency Types

Cost/Value
Interdependencies

Increases/Decreases
_cost_of

Structural
Interdependencies

Conflicts_with

Similar_to

Explains

Requires

Increases/Decreases
_value_of

Influences

Figure 3.1: Classification of fundamental interdependency types [10]

In the paper [10] a list of activities is provided that are affected by re-
quirements relations, such as requirements management, change management,
implementation and maintenance. They recommend further research to inves-
tigate which types of requirements relations are critical to consider in different
situations.

While Dahlstedt et al. provide a number of structural relation types (among
others Requires, Explains, Conflicts with) they do not provide formal semantics.

3.3 Requirement metamodels

A requirements metamodel is defining a requirements specification language. It
captures and formally defines the concepts and relationships in the process of
requirements engineering.

3.3.1 REMM - Requirements Engineering MetaModel

Vicente-Chicote et al. [40] stress the need for modeling requirements in the MDE
approach. When requirements are modeled in a structured way, the reuse of re-
quirements could be highly improved. However, there is a lack of a requirements
metamodel. Furthermore they state that the requirements engineering process
can only be successful when it is supported by proper tools. However, current
industrial tools supporting the MDE approach leave textual requirements apart.

They propose a requirements metamodel called REMM (Requirements En-
gineering MetaModel). The authors note that, referring to Dahlsted et al. [10],
the elements of requirement metamodels highly depend on the context it is used
in. The context of the REMM metamodel is requirements reuse, although they
think the concepts and relationships are applicable to a general requirements
engineering approach.

10



3.3. REQUIREMENT METAMODELS

Figure 3.2: The REMM metamodel [40] (types excluded)

The reuse of requirements is supported by the metamodel (Figure 3.2) by
a Catalog, so requirements sharing the same domain can be grouped. Require-
ments can be related to each other (inter-requirements traceability) or to other
artifacts (extra-requirements traceability).

They developed a tool which supports the specification, validation and for-
matting of requirements called REMM-Studio. It is build using the Eclipse
plug-in Eclipse Modeling Framework (EMF). REMM-Studio provides graphical
editors for specifying models based on the REMM metamodel. It has a model
validation tool, to be able to restrict the use of the metamodel. For exam-
ple some trace relations, which are syntactically correct, make no sense. Such
constraints can be specified using Object Constraint Language (OCL). Another
capability of the tool is to generate requirements documents. It uses Model-to-
Text transformations to output the modeled requirements to text files.

Vicente-Chicote et al. made a first attempt to bring the benefits of the MDE
approach to the requirements engineering practice by proposing a metamodel
and providing tool support for the RE process. They put constraints on the
requirements models, but do not provide formal semantics for the requirements
relations. Hence automated reasoning about the relations is not possible.

3.3.2 Simulation of modeled requirements

Baudry et al. [5] mention that requirements engineering encompasses a set
of activities for eliciting, modeling, agreeing, communicating and validating.
And that methods and tool support exists to support each activity, but they
mainly remain separate. This difficults to check large requirements documents
for consistency.

11



CHAPTER 3. RELATED WORK

In the paper a metamodeling framework for requirements analysis is pro-
posed. They implemented the metamodel to make it executable. This enables
validation of the operational semantics through simulation.

Requirements are expressed as use cases and are associated with pre and
post conditions. To facilitate the definition of the requirements a constrained
natural language is defined. The simulation is used to detect inconsistencies
and underspecification errors.

The metamodel is limited to capture only the dynamic parts of requirements,
static parts are not included.

3.3.3 Metamodeling approach for requirements specification

Navarro et al. [33] note that some critical obstacles for applying RE techniques:
the increasing adoption of different requirement specification approaches, the
prevalence of adaptation over adoptation, and the increasing importance of the
definition of domain specific languages (DSL’s). Their approach is based on
metamodeling to provide smooth integration and scalability of RE concepts.
Navarro et al. provide guidelines to extend a core set of concepts. For defining
the metamodel they studied five RE approaches (traditional, use cases, goal-
oriented, aspect-oriented and variability management).

Because the five approaches use a wide diversity of terms and concepts, with
many overlaps among them, they defined a core metamodel for the essential con-
cepts. The metamodel is generic. It only considers Artifact and Dependency.
The core metamodel can be customized according to the specific needs of ex-
pressiveness. The process for customizing the core is described in the paper.
A case study pointed out that the proposed model was helpful for analysts, as
it enables them to define and use crosscutting concerns (mainly non-functional
requirements) as specific dependencies between artifacts throughout the process
development.

3.3.4 Merging partial requirement specifications

Brottier et al. [6] also stress the importance of a good RE process. They
note that stakeholders have different viewpoints and therefore have their re-
quirements expressed in a different syntax. Current RE tools only support one
syntax or a single input global requirement specification. Since semantic links
between partial specifications remain implicit, the analysis of the requirement
specifications is difficult.

The authors describe a two step process to produce a global requirements
model out of a set of partial requirement specifications written in different syn-
taxes. This process is depicted in Figure 3.3. The first step is to parse textual
requirements into an abstract syntax tree. The second step interprets the seman-
tics of the syntax trees produced in the first step in an intermediate requirements
model, and merges it into a global requirements model.

Requirements relations are not defined, and no reasoning is done on the
requirements model. The detection of inconsistencies is left as future work.

12



3.4. REASONING ABOUT REQUIREMENTS

Input Language

Metamodel

intermediate

model

intermediate

model

global

requirements model

global

requirements model

Parsing

1

Requirement 1.4 "Borrow a book"

the "customer" must be "registered" before the 
"customer" can "borrow" the "book".

the "book" becomes not "available" after the 
"customer" did "borrow" the "book".

the "book" for the "customer" is "borrowed" 
after the "customer" did "borrow" the "book".

the "book" must be not "damaged" before the 
"customer" can "borrow" the "book".

requirement 1.5 "Return a book"
the "book" for the "customer" becomes not 

"borrowed" after the "customer" did "return"

textual

specification 1

Interpretation Fusion

intermediate

model

intermediate

model

2a 2b

specification

model

specification

model

Requirement 1.4 "Borrow a book"
the "customer" must be "registered" before the 

"customer" can "borrow" the "book".
the "book" becomes not "available" after the 

"customer" did "borrow" the "book".
the "book" for the "customer" is "borrowed" 

after the "customer" did "borrow" the "book".
the "book" must be not "damaged" before the 

"customer" can "borrow" the "book".

requirement 1.5 "Return a book"

the "book" for the "customer" becomes not 
"borrowed" after the "customer" did "return"

textual

specification n

Core Requirements

Metamodel
<A> ::= <B> ‘b’ <C>;

<B> ::= <C> <B>

| ‘a’;

<C> ::= ‘b’ <D> <C>;

<D> ::= <E>

| <F>

| <G>;

<F> ::= ‘a’ <B> ‘c’ <C>;

Input Language

Grammar
Text world Model world

« Conforms to »« Conforms to »Model transformationModel transformation

Import2

 

Figure 3.3: Producing a global requirements model [6]

3.3.5 Metamodels for specific domains

Some research focused at domain specific requirements modeling. In certain
domains systems share a common structure. A requirements metamodel specific
to the domain can help to model these systems in a structured way.

Requirements metamodel for System Families

System Families (SF’s) or product lines are sets of systems that share a signifi-
cant part of the development effort. Cerón et al. discuss the issue of modeling
requirements in system family context [8]. Requirements must contain both
common and variable parts, and also the distinction between functional and
non-functional aspects have to be considered in the system family approach.

They present a metamodel which covers the requirements management needs
of the system family engineering. Basic requirements relations are covered, but
no formal semantics is provided.

Requirements metamodel for Web applications

Koch et al. present a metamodel for web applications [25]. The industry is
using self developed approaches, but the essence of most web applications is the
same. The UML-based Web Engineering metamodel (UWE) they propose is an
extension of the UML metamodel.

The metamodel does not capture requirements relations.

3.4 Reasoning about requirements

Some work is done on reasoning about requirements.
Giorgini et al. [16] define a formal goal model. Goal analysis can be used

the software development process during different phases. Precise formal se-
mantics are provided for all goal relationships. In [15] a concrete example of
this approach is given by adopting the goal model. Tool support is developed
to enable automated reasoning. Using the tool (called T-tool) goal models can
be drawn graphically. With forward and backward reasoning the user can check

13



CHAPTER 3. RELATED WORK

whether the root goals are satisfied by the leaf goals, or which sets of leaf goals
fulfill all root goals. It is merely a check for completeness, they do not check
consistency. Two main limitations they describe about the approach [16] are
about the definition of contribution links and the labels assignment, and that
they deal with conflicts but do not resolve them.

Duffy et al. [13] provide a framework for requirements analysis using auto-
mated reasoning. The framework, called goal-structured analysis, is based on
goal decomposition. The decomposition is supported by automated reasoning.
No tool support is provided.

Rodrigues et al. [38] show how clustered belief revision can help to reason
about evolving requirements with the presence of inconsistencies. In classical
logic the presence of an inconsistency means that everything can be proven.
They state this is not desirable in the context of requirements engineering were
inconsistencies often arise and should be tolerated. Conflicting requirements
are not always resolved during the requirements elicitation, sometimes this is
postponed until the development phase The management of inconsistencies is
considered important by the authors. They developed a tool that translates
requirements into the disjunctive normal form and cluster prioritization.

Finkelstein et al. [14] also indicate that maintaining absolute consistency is
not always possible and might constrain the development process too much. In
the real-world is dealt with inconsistencies. Their approach is to formalize the
handling of inconsistencies. A set of logical rules on how to act on inconsistencies
is provided. They combine two lines or research: multiperspective software
development in the ViewPoints framework and inconsistency handling using
classical and action-based temporal logics.

3.5 Tool support

This section gives an overview of existing tool support for requirements model-
ing.

As source for our overview we rely on the INCOSE management tool survey
[21]. Furthermore we use the preliminary results of the work of Abma [1], which
focuses on traceability in requirements management tools.

We describe the traceability and reasoning capabilities of four commercial
requirements management tools: IBM RequisitePro, IBM - Telelogic DOORS,
Borland Caliber and Topteam Analyst.

3.5.1 IBM Rational RequisitePro

IBM RequisitePro supports two generic requirements relation types: traceFrom
and traceTo. It is not possible to define custom trace types or to assign attributes
or formal semantics to the relations. Besides using the transitivity of the trace
relation, there is no actual reasoning done by the tool. It uses the trace types to
query linked requirements. Change impact analysis is supported by visualizing
the directly and indirectly related artifacts.

The tool does not provide a consistency checking mechanism.

14



3.6. CONCLUSION

3.5.2 IBM - Telelogic DOORS

IBM - Telelogic DOORS allows custom relation types. The types are defined
in separate modules. A number of attributes can be assigned and the user can
constrain the type of the requirements linked with a specific relation type (i.e.
only allow nonfunctional requirements). The semantics of the relation types
are not used during analysis. The transitive property of the relation is used to
query for indirect relations. There is a basic support for change impact analysis.
Traces can be followed up or down to analyze possible impacted requirements.

The tool does not support consistency checking of relations.

3.5.3 Borland Caliber

Like RequisitePro there is only one relation type in Borland Caliber. It is not
possible to specify custom relation types or assign attributes to relations. The
transitive property of the relation is used to query for indirect relations. Borland
Caliber does not support change impact analysis.

The tool does not provide a consistency checking mechanism.

3.5.4 Topteam Analyst

Topteam Analyst supports thee traceability link types: traces into, impacts and
used in. It is not possible to specify custom relation types or assign attributes to
relations. The support for change impact analysis is very limited. No reasoning
is done hence no indirect relations are visible to the user.

Consistency checking is not supported by Topteam Analyst.

3.6 Conclusion

In this chapter we described related work. In the first section we describe
the current work done on requirements relations. Dahlstedt et al. [10] notes
the importance of requirements relations to make sound decisions during the
software development process. They provide an overview of relation types used
in literature and classified these in two categories. They conclude that more
research is needed to identify which relation types are important in different
situations.

In Section 3.3 we described research done on requirements metamodels. The
research is motivated by the lack of structure in requirements documents. Meta-
models can help to provide a common structure. Because there are many re-
quirements engineering approaches using different concepts, the metamodels are
either very generic, or very specific to a RE approach or domain.

Section 3.4 describes the work done on requirements reasoning. Many of the
works are targeting the goal-oriented requirements engineering approaches. Ro-
drigues et al. [38] and Finkelstein et al. [14] note that inconsistencies between
requirements should be tolerated. In both works is mentioned that inconsisten-
cies do not have to be resolved during the requirements elicitation, this resolving
may be postponed to later stages of the development.

In Section 3.5 we describe the traceability and reasoning capabilities of com-
mercially available requirements management tools. We conclude that they do

15



CHAPTER 3. RELATED WORK

not support reasoning about requirements. Only the transitivity of a trace re-
lation is used by some tools to query for indirectly related requirements. Some
of the tools allow the user to define custom relations, but it is not possible to
define semantics. Consistency checking of requirements models is not performed
by the tools we investigated.

In the next chapter we describe the approach of Göknil et al. [19]. A
core requirements metamodel is described and the requirements relations in
the model are provided with formal semantics. This enables reasoning about
requirements relations and consistency checking. The metamodel of Göknil et
al and the formalization form the base of our work.

16



4
Formalization of Requirements and

Relations

4.1 Introduction

The main goal of this work is to develop tool support for reasoning about formal-
ized requirement relations [19][17]. In this chapter we explain the formalization
of requirements and requirement relations and reasoning.

In Section 4.2 we describe the requirements metamodel. Section 4.3 describes
the formalization of requirements. Section 4.4 describes the formalization of
requirements relations. In Section 4.5 we describe how requirements relations
are mapped to their formal definitions. In Section 4.6 we describe how the
formalization of requirements relations can be used to infer implicit relations
and to check for consistency. Section 4.7 summarizes this chapter.

4.2 Requirements metamodel

Several requirements engineering approaches exist: goal-oriented [32], aspect-
driven [37], variability management [31], use-case [9], domain-specific [35][25],
and reuse driven [28]. All these approaches use different methods to model
requirements.

From these approaches Göknil et al. [19] derived a requirements metamodel
by taking common entities. The essence of the metamodel is shown in Figure 4.1.
For simplicity we left out entities which are not used for the tool support such
as Stakeholder, TestCase and AdditionalDescription.

17



CHAPTER 4. FORMALIZATION OF REQUIREMENTS AND

RELATIONS

-name : String

RequirementsModel

-ID : Integer
-name : String

-description : String

-priority : Priority

-reason : String

-status : Status

Requirement

-name : String

Relationship

Requires Refines PartialRefines ConflictsContains

1

*

1

*
-source

1

-fromSource

-target

1..*

-fromTarget

Figure 4.1: The core requirements metamodel [19]

The metamodel has a main entity RequirementsModel. Each requirements
model has zero or more requirements. A Requirement has a number of at-
tributes such as a name, description and a status. Requirements can be related
with each other through a Relationship. The metamodel denotes five relation-
ship types: Requires, Refines, PartialRefines, Contains and Conflicts.

According to [17] these relations have the following informal definition in
literature:

requires A requirement R1 requires a requirement R2 if R1 is fulfilled only
when R2 is fulfilled.

refines A requirement R1 refines a requirement R2 if R1 is derived from R2 by
adding more details to it.

partial-refines A requirement R1 partial-refines a requirement R2 if R1 is
derived from R2 by adding more details to parts of R2 and excluding the
unrefined parts of R2.

contains A requirement R1 contains requirements R2 . . . Rn if R2 . . . Rn are
parts of the whole R1 (part-whole hierarchy).

conflicts A requirement R1 conflicts with a requirement R2 if the fulfillment
of R1 excludes the fulfillment of R2 and vice versa.

These definitions are informal. The requirements relations are formalized in
first-order logic. In Section 4.4 we describe their formalization.

4.3 Formalization of requirements

A requirement is assumed being “a property which must be exhibited by a
system” [2]. A requirement R is defined as a tuple 〈P, S〉 where P is the property

18



4.4. FORMALIZATION OF REQUIREMENTS RELATIONS

and S is the set of systems that satisfy P (i.e. ∀s ∈ S : P (s)) [19].
Property P can be represented in a conjunctive normal form (CNF) as fol-

lows: P = (p1 ∧ . . . ∧ pn); where n ≥ 1 and pn is the disjunction of literals.

4.4 Formalization of requirements relations

The requirements relations defined in the metamodel are formalized in first-
order logic. In this section we provide the formalizations.

4.4.1 Formalization of requires

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements.

• R1 requires R2 iff ∀s ∈ S1 : s ∈ S2 and ∃s ∈ S2 : s /∈ S1

From the above definition is concluded that S1 ⊂ S2. This subset rela-
tion between sets of systems defines the requires relation as non-reflexive, non-
symmetric and transitive.

4.4.2 Formalization of refines

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements. P1 and P2 are formulas
and the conjunctive normal form of P2 is:

• P2 = (p1 . . . pn) ∧ (q1 . . . qm); n ≥ 1, m ≥ 0

Let p′
1
, p′

2
, . . . , p′n−1

, p′n be the disjunction of literals such that p′j → pj for j ∈
1..n.

• R1 refines R2 iff P1 is derived from P2 by replacing every pj in P2 with
p′j for j ∈ 1..n such that the following two statements hold:

P1 = (p′
1
. . . p′n) ∧ (q1 . . . qm); n ≥ 1, m ≥ 0

∃s ∈ S2 : s /∈ S1

From the definition is concluded that if P1 holds for a given system s then P2 also
holds for s (∀s ∈ S1 : s ∈ S2). Based on ∃s ∈ S2 : s /∈ S1 and ∀s ∈ S1 : s ∈ S2,
a subset relation between the satisfying sets of systems is concluded: S1 ⊂ S2.

The refines relation is non-reflexive, non-symmetric and transitive. If R1

refines R2 then, obviously, R1 requires R2.

4.4.3 Formalization of partial-refines

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements. P1 and P2 are formulas
and the conjunctive normal form of P2 is:

• P2 = (p1 . . . pn) ∧ (q1 . . . qm); n, m ≥ 1

Let q′
1
, q′

2
, . . . , q′m−1

, q′m be the disjunction of literals such that q′i → qi for i ∈
1..m.

19



CHAPTER 4. FORMALIZATION OF REQUIREMENTS AND

RELATIONS

• R1 partial-refines R2 iff P1 is derived from P2 by replacing every qi in P2

with q′i for i ∈ 1..m and excluding others (pi for i ∈ 1..n) such that the
following two statements hold:

P1 = (q′
1
. . . q′m)

∃s ∈ S2 : s /∈ S1, ∃s ∈ S1 : s /∈ S2, and ∃s ∈ (S1 ∩ S2)

The partial-refines relation is non-reflexive, non-symmetric and transitive.

Decomposition of partial-refines

The partial-refines relation is a special combination of the refines and contains
relation. The partial-refines can be decomposed using a temporal requirement
(RT12 = 〈ST12, PT12〉):

• contains(R2, RT12) ∧ refines(R1, RT12) iff partial-refines(R1, R2)

• refines(RT12, R2) ∧ contains(RT12, R1) iff partial-refines(R1, R2)

Note that this mapping between the contains and refines and the partial-refines
uses the special temporal requirement RT12. A contains and refines between
normal requirements does not map to a partial-refines.

4.4.4 Formalization of contains

Let R1 = 〈P1, S1〉, R2 = 〈P2, S2〉, . . . , Rk = 〈Pk, Sk〉 be requirements where
k ≥ 2. P2, P3, . . . , Pk are formulas in conjunctive normal form:

• Pi = (p′
1
. . . p′mi

); mi ≥ 1, i ∈ 2..k

• R1 contains R2, . . . , Rk iff P1 is derived from P2, P3, . . . , Pk as follows:

P1 = P2 ∧ P3 ∧ . . . ∧ Pk ∧ P ′

where P ′ denotes properties that are not captured in P2, P3, . . . , Pk

Completeness of the decomposition is not assumed. From the definition is con-
cluded that if P1 holds then P2, P3, . . . , Pk also hold, and if P2, P3, . . . , Pk hold
then P1 does not have to hold. Hence is concluded that S1 ⊂ S2, S1 ⊂ S3, . . . ,
and S1 ⊂ Sk.

The contains relation is non-reflexive, non-symmetric and transitive.

4.4.5 Formalization of conflicts

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements.

• R1 conflicts with R2 iff ¬∃s : (s ∈ S1 ∧ s ∈ S2 : P1(s) ∧ P2(s))

There are several inconsistency types which could be seen as a conflict be-
tween two requirements. With conflicts is meant: excluding the fulfillment of
requirements types [39]. If R1 conflicts R2 then there does not exist a system
that satisfies both.

20



4.5. MAPPING OF REQUIREMENTS RELATIONS TO FORMAL

DEFINITIONS

4.5 Mapping of requirements relations to formal def-
initions

In the previous section we described how the requirements relations are formal-
ized in first-order logic. We summarize the formal definition to illustrate the
mapping between requirements relations and formal definitions. These map-
pings are used to infer implicit relations and to check for consistency.

We distinguish two types of mappings of requirements relations to formal
definitions: a mapping to satisfying sets of systems, and a mapping to formula
relations between properties of requirements.

4.5.1 Mapping to sets of satisfying systems

From the formalization of the requirements relations we can create a mapping
between requirements relations and relations between sets of systems. Table 4.1
gives this mapping. The direction of the mapping is denoted with arrows.

Table 4.1: Mapping of relation types to systems relation

Relation type Mapping direction Systems relation1

R1 requires R2 ⇐⇒ S1 ⊂ S2

R1 refines R2 =⇒ S1 ⊂ S2

R1 contains R2 =⇒ S1 ⊂ S2

R1 conflicts R2 ⇐⇒ S1 ∩ S2 = ∅

R1 partial-refines R2 See Section 4.4.3

1
S1 and S2 are the sets of systems satisfying R1 and R2 respectively

A requires relation can be derived from a refines or a contains relation by using
this mapping. The disjointness of systems ( S1 ∩ S2 = ∅) is concluded on basis
of the definition of the conflicts relation (Section 4.4.5).

The partial-refines relation does not have a mapping to either a subset re-
lation or a disjointness of sets of systems. As mentioned in Section 4.4.3 it is
decomposed into a refines and contains relation. Therefore the partial-refines
indirectly maps to the sets of satisfying systems.

4.5.2 Mapping to formula relations

In [17] the relations between properties are defined. In this work we refer to
them as formula relations. The properties are the properties (P ) of requirements
(R = 〈P, S〉).

Each of the formula relations has a different formalization. The details of
the formalization of formula relations are out of the scope of this work. The
formalization itself is not needed for reasoning on requirements.

Table 4.2 provides an overview of the formula relations and their logical
property characteristics. All formula relations are non-reflexive, non-symmetric
and, except for all-equals-in, transitive.

21



CHAPTER 4. FORMALIZATION OF REQUIREMENTS AND

RELATIONS

Table 4.2: Logical property characteristics of the formula rela-
tions

formula relation reflexive symmetric transitive

all-in-whole no no yes
all-in-part no no yes

all-implies-in no no yes
some-implies-in no no yes

all-equals-in no no no

Some pairs of formula relations are defined as disjoint:

• all-in-part and all-in-whole are disjoint

• all-equals-in and some-implies-in are disjoint

• all-equals-in and all-implies-in are disjoint

This means that there is a contradiction if two disjoint relations exist between
the same two requirement properties.

Some combinations of formula relations imply the existence of another for-
mula relation. A number of inference rules for formula relations is pro-
vided:

all-in-part(P1, P2) ∧ all-in-whole(P2, P3) ⇒ all-in-part(P1, P3)

all-in-whole(P1, P2) ∧ all-in-part(P2, P3) ⇒ all-in-part(P1, P3)

some-implies-in(P1, P2) ∧ all-implies-in(P2, P3) ⇒ all-implies-in(P1, P3)

all-implies-in(P1, P2) ∧ some-implies-in(P2, P3) ⇒ all-implies-in(P1, P3)

some-implies-in(P1, P2) ∧ all-equals-in(P2, P3) ⇒ some-implies-in(P1, P3)

all-implies-in(P1, P2) ∧ all-equals-in(P2, P3) ⇒ all-implies-in(P1, P3)

all-equals-in(P1, P2) ∧ all-implies-in(P2, P3) ⇒ all-implies-in(P1, P3)

Table 4.3 provides the mapping of requirements relations to formula relations.
The mapping is in both directions. The requires and conflicts relation do not
map to a formula relation.

Table 4.3: Mapping of requirement relations to formula relations

Relation type Formula relation1

R1 requires R2 -
R1 refines R2 all-in-whole(P1, P2) ∧ some-implies-in(P1, P2)

R1 contains R2 all-in-part(P2, P1) ∧ all-equals-in(P2, P1)
R1 conflicts R2 -

R1 partial-refines R2 all-in-part(P1, P2) ∧ all-implies-in(P1, P2)

1
P1 and P2 are the properties of requirement R1 and R2 respectively

22



4.6. INFERENCING AND CONSISTENCY CHECKING

4.6 Inferencing and Consistency Checking

With the formalization of requirements and requirements relations we are able
to infer implicit relations and to check the modeled requirements for consistency.
In the section we provide some examples to illustrate how this is done.

4.6.1 Inference of implicit requirements relations

Suppose we have three requirements R1, R2 and R3 which are related as follows:
(R1 refines R2) ∧ (R2 contains R3).

Using the formalization we can infer that (R1 requires R3).
We use the mapping to sets of systems (see Section 4.5.1). The refines and
contains relations both map to a subset relation. This results in: S1 ⊂ S2 and
S2 ⊂ S3. A subset relation between two sets of systems can be mapped to a
requires relation. So we conclude:

(R1 requires R2) ∧ (R2 requires R3).
By using the transitivity of the requires relation we can infer that (R1 requires

R3).

4.6.2 Consistency Checking

A requirements model is considered consistent when there are no contradict-
ing requirements relations. The requirements relations are formalized to both
sets of satisfying systems and properties in conjunctive normal form. For the
inference of implicit requirements relations the logical property characteristics
of the relationship types combined with the mapping to relations between sets
of satisfying systems suffices. To detect all possible contradictions, however, we
also need the formalization of the formula relations.

We give an example showing the need for the formula relations in addition
to the sets of systems.

Suppose we have modeled two requirements R1 and R2 as follows:
(R1 refines R2) ∧ (R1 contains R2).

The mapping to sets of systems will not cause a contradiction, both relations
map to S1 ⊂ S2. However, when we map the relations to formula relations we
get this:

(R1 all-in-whole R2) ∧ (R1 some-implies-in R2).
and

(R2 all-in-part R1) ∧ (R2 all-equals-in R1).
Because the all-in-whole and all-in-part relations are disjoint, there is a con-
tradiction between the formula relations of R1 and R2. Also, the (symmetric)
all-equals-in relation is disjoint with all-equals-in.

Therefore we can conclude that (R1 refines R2) and (R1 contains R2) are
contradicting.

4.7 Conclusion

In this chapter we described the formalization of requirements and requirements
relations contained in the core requirements metamodel. The formalization and

23



CHAPTER 4. FORMALIZATION OF REQUIREMENTS AND

RELATIONS

the core metamodel are a result of research by Göknil et al. [19][18][17].
The formalization of requirements relations creates a mapping to sets of

systems and to formula relations. These mappings together with the logical
property characteristics of the relations can be used to infer implicit require-
ments relations.

The formalization puts constraints on modeled requirements relations. Set
theoretic constraints apply to the sets of systems satisfying requirements. For
example, a set cannot be a subset of another set while simultaneously being
disjoint with that set. For the formula relations additional constraints are pro-
vided. These constraints enable automatic consistency checking.

In the next chapter we describe the requirements for a tool supporting the
modeling of requirements conforming to the metamodel we described in this
chapter. The tool should also be capable to infer implicit relations and check
for consistency by applying the formalization discussed in this chapter.

24



5
Requirements for TRIC

5.1 Introduction

This chapter describes the specific requirements for the tool. The tool is named
TRIC: Tool for Requirement Inference and Consistency checking. We start
with defining the purpose and scope of this tool, followed by a list of functional
and non-functional requirements. During the development of the tool, the re-
quirements have slightly changed. In this chapter we describe the current state
of the requirements. In Chapter 8 we evaluate to what extend the requirements
are met by our implementation.

Section 5.2 describes the scope and purpose of the tool. Section 5.3 lists the
stakeholders of the tool. In Section 5.4 the requirements are listed. Section 5.5
gives the planned releases (iterations) of the tool. Section 5.6 summarizes this
chapter.

5.2 Scope and purpose

The tool will act as a proof-of-concept of the requirements metamodeling ap-
proach. Goal of the tool is to infer implicit requirement relations, and to detect
inconsistent requirement relations. This is done by creating an environment
where requirements can be entered into a model. These models conform to the
requirements metamodel. The metamodeling approach intends to customize this
metamodel to fit into an existing requirements engineering approach. Models
can be stored to and retrieved from the file system.

Once the requirements and their relations are modeled, a reasoning engine
can infer implicit relations between requirements, using metamodel specific in-
ference rules. Comparable to the inferencing of implicit relations, a consistency
checking engine detects inconsistent relations.

To support analysis of inferred relations and inconsistencies, a visualization
engine provides a graphical explanation of an inferred relation.

25



CHAPTER 5. REQUIREMENTS FOR TRIC

Due to the proof-of-concept nature of the tool, the focus is on the reasoning
on requirements. Providing a user-friendly requirements management tool is
not our goal. As we will mention later on, interoperability with existing tools
could alleviate the work needed to conduct a (large) case study.

5.3 Stakeholders

The metamodeling approach distinguishes two types of stakeholders, which are
listed below.

Metamodel engineer Is responsible for customizing the core requirements
metamodel, to fit the models to the used requirements engineering ap-
proach. Also needs to specify the inference and consistency rules specific
to the customized metamodel.

Requirements engineer Is responsible for entering the requirements, and re-
lating them using the available relation types in the used metamodel. The
requirements engineer uses the tool to infer implicit relations, check the
model for consistency, and to analyze the results of the inference and
consistency checker engine.

The tasks of the metamodel engineer are not supported by the tool. The re-
quirement metamodel should be specified manually, or by using an external
tool.

5.4 Requirements

We have the following requirements for the tool and separated functional and
non-functional requirements.

5.4.1 Functional requirements

T1 Modeling Environment
The tool shall support a modeling environment for requirements models.
The requirements models must conform to the core requirements meta-
model or to a customization of this metamodel.

T2 Modeling Requirements
The tool shall allow requirements engineers to enter requirements into a
model.

T3 Inferencing
The tool shall provide an inference engine that will support the inference
of implicit requirements relations.

T4 Consistency Checking
The tool shall provide a consistency checking engine supporting the de-
tection of inconsistencies.

26



5.5. PLANNED RELEASES

T5 Custom inference rules
The tool shall allow metamodel engineers to specify inference rules for
(customizations of) the core requirements metamodel, based on the for-
malization of requirements relations.

T6 Custom consistency rules
The tool shall allow metamodel engineers to specify consistency rules for
a specific customization (for instance, a requirement cannot be related to
itself).

T7 Detecting inconsistencies
The tool shall report detected inconsistencies to the user.

T8 Derivation analysis
The tool shall support analysis of reasoner results by means of a visual-
ization engine.

5.4.2 Non-functional requirements

T9 Extendibility
The tool shall be extendible to support future research on requirements
modeling. For instance, on change impact analysis.

T10 Scalability
The time behavior of the prototype is not an issue, although the tool shall
support models large enough to conduct case studies.

T11 User-friendliness
The tool is required to support the exploration of case studies by re-
searchers.

T12 Interoperability
The tool should use an open standard for storage of the requirements
models and metamodels to enable the import and export of other tool’s
models.

5.4.3 Constraints

In order to limit the size of the project, we have the following constraints:

1. The core requirements metamodel is fixed and cannot be changed during
operation.

2. Once models are entered, the corresponding metamodel cannot be changed.

3. The tool should be developed as a single Eclipse RCP application.

5.5 Planned releases

Before starting the implementation, we planned a couple of releases. We did this
to support an iterative approach. This enabled us to verify partial functionality
of the system while extending the tool at the same time.

27



CHAPTER 5. REQUIREMENTS FOR TRIC

First release
Initial version, linking the most important components together.

1. Core requirements metamodel in modeling environment.

2. a simple (non-graphical) modeling environment for requirements

3. an inference engine to reason on the formalization of requirements relations

Second release
Version of the tool which is ’ready enough’ for a case study.

4. requirements modeling environment which supports the entering of re-
quirements and assigning relations

5. a consistency checking engine to detect inconsistencies of requirements
relations

Third release
Final version, adding visualization to make the tool more user-friendly.

6. provide visualization to support reasoner analysis

5.6 Conclusion

In this chapter we listed the requirements for the tool support. The purpose of
the tool is to support the requirements metamodeling approach and to provide
automatic reasoning on and consistency checking of modeled requirements using
the formalizations described in Chapter 4.

Two stakeholders are identified: metamodel engineers and requirement engi-
neers. A number of constraints is defined to limit the size of the project. Three
releases are planned to support an iterative development approach for the tool.

In the next chapter (Chapter 6) we take this requirements as a base for the
design of the tool. At the evaluation (Chapter 8) we use the requirements to
evaluate the implementation of the tool.

28



6
Design of TRIC

6.1 Introduction

In the previous chapter we enumerated the requirements and gave an overview
of the functionality of the tool we developed. This chapter covers the internal
design of the tool.

In Section 6.2 we describe the high level design of TRIC. In Section 6.3 we
describe the activities supported by the tool. In Section 6.4 we conclude the
chapter.

6.2 High level design

We used the requirements for the tool (described in Chapter 5) to identify a
number of components. These components constitute the core of TRIC.

• a Modeling Environment

• an Inference Engine

• a Consistency Checking Engine

• a Visualization Engine

In the architectural design we show how these components are connected
with each other. In the subsequent sections of this chapter we provide a detailed
description of each component.

We chose to develop the tool using the Eclipse Rich Client Platform (RCP).
This reduced the number of design alternatives for the user-interface. Fur-
thermore we prefer to use existing components and technologies rather than
to develop common components (such as user-interface components, first-order
logic reasoners) ourselves.

29



CHAPTER 6. DESIGN OF TRIC

TRIC is an interactive application. Therefore we apply the Model-View-
Controller (MVC) architectural pattern (which is discussed by Buschmann et
al. in detail [7]). Views (i.e. the user interface) are separated from the data
they display. The data is contained in models.

One of the main benefits of the MVC pattern is the ability to have multiple
views of the same model. Another benefit is the synchronization of views and
models (i.e. the user-interface is displaying what is currently in the model).

We use the Eclipse RCP as a platform for the views and use its builtin
mechanisms to forward events to controllers.

The requirements models are represented as Web Ontology Language (OWL)
ontologies. In Section 7.3 we explain the details of creating and updating re-
quirements models.

To separate data from application logic, we applied the façade pattern [27].
By using Data Access Objects, the application is able to read and manipulate
models, without any dependency to data format. The Data Access Objects also
simplify the code needed to interact with the requirements models.

TRIC – Layered Architecture

D
a

ta
 l
a

y
e

r

JENA Semantic Web Framework

A
p

p
li
c
a
ti
o

n
 l
a

y
e

r
U

I 
la

y
e

r

OWL

model
copy

OWL
model

(inferred)

copy
OWL
model

(inferred)

Visualization 

Engine
Inference Engine

Modeling 

Environment

Eclipse RCP JGraph

Data Access 

Objects (DAO)

Consistency 

Checker

Figure 6.1: Layered architecture of TRIC

Figure 6.1 shows the architectural design of the tool. We distinguish three
layers: a data layer containing the model data, a user interface layer enabling
user interactivity, and an application layer in-between.

30



6.2. HIGH LEVEL DESIGN

The core of the tool is the application layer. The Modeling Environment is
the bridge between the user-interface and the requirements model. Reasoning
on requirements models (inferencing and consistency checking) is done straight
on the OWL models (without Data Access Objects in-between). To prevent
pollution of the requirements model with inferred relations and other elements
added, we reason on copies of the original model. We will come back on this
in the section about the Inference Engine (Section 7.4). The arrow between the
output model of the Consistency Checking Engine and the Visualization Engine
is dashed because the current implementation does not visualize inconsistencies.

nl.utwente.ewi.trese.tric.core

InferenceEngine

InferenceEngine(assertedModel : OntModel)

prepareInference()

doInference()

getDerivationLog()

getInferredModel() : OntModel

infModel : OntModel

ConsistencyChecker

ConsistencyChecker(inferredModel : OntModel)

prepareValidation()

validateModel()

getDerivationLog()

getConsistencyModel() : OntModel

consModel : OntModel

<<Singleton>>

<<Observable>>

ModelingEnvironment

getInstance() : ModelingEnvironment

createModel()

loadModel()

saveModel()

getModel() : OntModel

runInferenceEngine()

runConsistencyChecker()

notifyObservers()

assertedModel : OntModel

instance : ModelingEnvironment

cc : ConsistencyChecker

ie : InferenceEngine

1

1

VisualizationEngine

visualizeRelationships(relationships : Relationship) : JGraph

Figure 6.2: Package diagram of the core package

The package diagram of the core package is given in Figure 6.2. The classes in
the Application Layer are considered as core. The Singleton-pattern is applied to
the ModelingEnvironment class. This simplifies the access to the modeling envi-
ronment from other classes. By calling ModelingEnvironment->getInstance()
the ModelingEnvironment instance can be obtained. The ModelingEnvironment
has one instance of the InferenceEngine and one instance of the Consistency-
Checker. The VisualizationEngine class is used statically and therefore not
directly connected to other classes.

When a new requirements model is created, the core requirements meta-
model is automatically imported. This metamodel is stored in a separate on-
tology. In Section 7.3 about the Modeling Environment we will elaborate on
this.

31



CHAPTER 6. DESIGN OF TRIC

We summarize the responsibilities of each component as follows:

• Modeling environment (Section 7.3)

– taking care of creation, storage and retrieval of requirements models,

– guarantying conformance of a model to the requirements metamodel.

• User Interface

– provide a simple form-based editor to enter and modify requirements,

– provide a method to assign relations between requirements,

– provide a view on the requirements in the model,

– be able to control the services provided by the system (run the In-
ference Engine, run the Consistency Checker, etc.).

• Inference Engine (Section 7.4)

– infer all implicit relations between requirements in a given model
(even if they do not make sense), by using metamodel specific infer-
ence rules,

– keep track of given and inferred relations,

– provide a method to explain a derivation.

• Consistency Checker (Section 7.5)

– check for consistency, by using (metamodel specific) validation rules,

– provide a list of found inconsistencies.

• Visualization Engine (Section 7.6)

– provide a compact visual explanation of an inferred relation.

6.3 Activities supported by the tool

In the previous section we described the high-level design. This section describes
the activities supported by the tool. In Section 5.3 we listed the two stakeholders
of the tool: metamodel engineers and requirements engineers.

The activities of the metamodel engineer (specifying the requirements meta-
model and specification of inference and consistency checking rules) are not
supported by the tool. The metamodel and the reasoner rules are stored in sep-
arate files and can be modified using other tools. The metamodel is an OWL
ontology and can be created using an OWL editor. We used Protégé [36] to
create the metamodel.

Figure 6.3 gives the activity diagram of the modeling process. There is
a division between the activities of the metamodel engineer (which are not
supported by TRIC) and the activities of the requirements engineer. In the
diagram the activities of the requirements engineer are all supported by the
tool. The decisions depicted in the diagram are made by the user, not by the
tool.

32



6.3. ACTIVITIES SUPPORTED BY THE TOOL

Requirements EngineerMetamodel Engineer

Specify 

requirements metamodel

Specify inference 

and consistency rules

Create 

requirements model

Model requirements

Infer implicit relations

Check consistency
Analyze

inferred relations

Analyze
inconsistencies

[found inconsistency] 

[no inconsistency] 

[reject model] 

[accept model] 

Figure 6.3: Activity diagram of the modeling process

33



CHAPTER 6. DESIGN OF TRIC

For the requirements engineer the following activities are supported:

• Create requirements model
Create a new requirements model. This model conforms to the require-
ments metamodel specified by the metamodel engineer.

• Model requirements
Add new, or update existing requirements in the model. Relating require-
ments using the relationship types specified in the metamodel is also part
of the modeling activity.

• Infer implicit relations
The requirements engineer can manually run the inference engine. The
inference rules specific to the used metamodel are used to reason on the
modeled requirements. As a result, implicit requirement relations are
inferred. These implicit relations become visible in the user-interface.

• Analyze inferred relations
The requirements engineer can inspect the inferred relations by browsing
the modeled requirements. The implicit relations must match the related
requirements. When an inferred relation does not match, a given relation
is applied incorrectly.
To detect which given relations are used to infer a certain inferred relation
the Visualization Engine can be used. This visualizes the path followed
by the inference engine. As an alternative a textual derivation log can be
retrieved.
Parallel to the analysis of the inferred relations, the requirements engineer
can check the model for consistency.

• Check consistency
The entered requirements model can be checked for consistency using the
metamodel specific consistency rules. These consistency rules are specified
by the metamodel engineer.
As depicted in Figure 6.3, the inference of implicit relations is done prior
to consistency checking. We explain this sequence in the subsection here-
after.
When the Consistency Checking Engine is finished, the requirements en-
gineer is prompted with a dialog box. Either zero, or one or more in-
consistencies are found. When one or more inconsistencies are found, the
requirements engineer can decide to analyze them.

• Analyze inconsistencies
A textual description is written to the console when inconsistencies are
encountered by the Consistency Checking Engine. This output can be
used to detect which requirements are involved in an inconsistency. The
current implementation of TRIC does not provide a visualization of the
requirements causing an inconsistency.

• Iterative modeling
After the inference of implicit relations and possible consistency checking
of the model, it is up to the requirements engineer to decide whether to
accept or reject the requirements model. The requirements model can be
updated at any time and the inference and consistency checking activities
can be repeated until the requirements engineer is satisfied.

34



6.4. CONCLUSION

It is important to notice that consistency checking is only possible after inferring
the implicit relations. Besides a technical reason which we explain in Section 7.4,
there is also a general rationale. After checking for consistency, a requirements
engineer expects the tool to report whether the model is consistent. On the
basis of the given relations only, the system might conclude consistency while
the inferred model is inconsistent. Because this can be misleading, we always
want to infer all implicit relations before checking the model’s consistency.

R1 R2

R4R3

refines

requires

requires

conflicts

Figure 6.4: Example of an inconsistency undetectable without inference

In Figure 6.4 an example is shown. Without inferring the implicit relations,
the tool cannot conclude there is an inconsistency. However, R2, R3 and R4
both require and conflict with R1.

The activity diagram does not show activities related to opening and storing
models. The tool allows the requirements engineer to store the model to the
file system at any time, so the iterative modeling process can be continued at
another moment.

In the next sections we describe the internal design of each component in
more detail.

6.4 Conclusion

In this chapter we described the design of the tool. We chose for a layered archi-
tecture to separate data from application and presentation code. By applying
the Model-View-Controller (MVC) architectural pattern we ensure a synchro-
nized view of the model.

We identified components of the tool and described their responsibilities. An
activity diagram of the modeling process is provided and discussed. We chose
to infer implicit relations prior to checking for consistency, because without
inferencing a check for consistency may lead to a false positive.

In the next chapter we describe the implementation of TRIC.

35



CHAPTER 6. DESIGN OF TRIC

36



7
Implementation of TRIC

7.1 Introduction

This chapter describes the implementation of TRIC. We describe the imple-
mentation of each component (identified in Chapter 6) in separate sections. We
start with describing how we mapped the formalization of requirements and
requirements relations (Chapter 4) to OWL.

In Section 7.2 we describe how we use OWL to reason about requirements.
Section 7.3 describes the Modeling Environment. In Section 7.4 we describe the
implementation of the Inference Engine. Section 7.5 describes the Consistency
Checking Engine. Section 7.6 describes the Visualization Engine. Section 7.7
demonstrates the usage of the tool and gives some screenshots of the graphical
user-interface. Section 7.8 summarizes this chapter.

7.2 Usage of OWL to reason about requirements

Reasoning on requirements models using first-order logic is the main purpose
of the tool. Within the Eclipse project there is a Eclipse Modeling Framework
(EMF) . This framework is frequently used in Model Driven Architecture tool
prototypes. However, to the best of our knowledge, there exist no first-order
logic reasoners which are able to reason on EMF models. Since OWL offers
both a structured representation of (meta)models and a lot of first-order logic
reasoners for OWL exist, we express requirements (meta)models as OWL on-
tologies.

7.2.1 Requirements metamodel as OWL ontology

The requirements metamodel, as discussed in Chapter 4, is expressed in UML
. Because TRIC aims at modeling requirements and their relations, we took

37



CHAPTER 7. IMPLEMENTATION OF TRIC

the following elements of the metamodel: Requirement, Relationship and
subclasses of Relationship.

The Relationship class is an association class, relating two requirements in
a specific direction. While it is possible to retain this association class in OWL,
we chose to replace the class with an association. Associations are expressed in
OWL as Object Properties, and can be used directly in reasoning. And contrary
to UML, these associations (Object Properties) can have logical property char-
acteristics (such as symmetry and transitivity). This is very useful since these
logical properties are essential for reasoning.

7.2.2 Handling of metamodels and models

When a model is created by the Modeling Environment it will add the ontology
with the metamodel as an import (with prefix mm:). Requirements are created
as RDF resources, being individuals of the Requirement class in the metamodel.
Figure 7.1 gives an example of the RDF notation of a minimal model where R2
refines R1, the details of Requirement 2 are omitted.

res://Requirement/1

mm:Requirement

proposed mm:status

1

Req.A1

neutral

Example

requirement.

mm:ID

mm:name

mm:description

mm:priority

rdf:type

res://Requirement/2

rdf:type

mm:refines

Figure 7.1: RDF notation of a requirements model

The JENA Semantic Web Framework offers an OWL API in Java to create
and manipulate OWL models. By using Data Access Objects (DAO’s) we sepa-
rate OWL data from the application and guarantee the model remains expressed
in valid OWL syntax.

7.2.3 Mapping of requirement and relation formalizations to
OWL

The formalization of requirements and requirements relations are described in
Chapter 4. Requirement relations are expressed in first-order logic. We use
a OWL Description Logics reasoner to reason on modeled requirements using
first-order logic.

Requirement relations can be inferred using the logical property characteris-
tics of the relations (i.e. symmetry, reflexivity and transitivity) and the relation
between the sets of systems satisfying the requirements. Requirement relations
are also expressed in formula relations. While these formula relations can be
used to infer requirement relations as well, they do no infer additional relations.

38



7.3. THE MODELING ENVIRONMENT

Therefore we do not apply these formula relations during the inference pro-
cess. For the consistency checking process, the formula relations are essential
to detect all inconsistencies. We explained this in Section 4.6.2.

Table 7.1: Logical property characteristics of relationship types

Relation type Reflexive Symmetric Transitive

R1 requires R2 no no yes
R1 refines R2 no no yes

R1 contains R2 no no yes
R1 conflicts R2 no yes no

R1 partial-refines R2 no no yes

Table 7.1 lists the logical property characteristics of the relation types in the
core metamodel, as defined by Göknil et al. [19]. It summarizes the relationship
types discussed in Chapter 4.

These property characteristics are defined in OWL as specializations of OWL
Object Properties. In the requirements metamodel expressed in OWL we de-
fined the requirements relationship types as Object Properties and applied the
corresponding logical property characteristics to each relationship type. The
OWL reasoner uses this property characteristics to infer relations based on tran-
sitivity and symmetry without the need for additional inference rules.

In the sections describing the implementation of the Inference Engine (Sec-
tion 7.4) and the Consistency Checking Engine (Section 7.5) we describe how
we mapped the sets of satisfying systems and the formula relations to OWL.

7.3 The Modeling environment

The modeling environment is the bridge between the user interface and inter-
nal components. It controls the engines and provides access to the data layer
through the JENA Semantic Web framework (as depicted in Figure 6.1).

7.3.1 Integration with Eclipse RCP framework

We use the Eclipse Rich Client Platform (RCP) framework as the user-interface
for TRIC. The framework offers a standardized method to develop so-called
Views and Editors. In TRIC there is a view listing the modeled requirements,
and an editor to edit a single requirement. A construction similar to Model-
View-Controller (MVC) is applied to ensure that the requirements view is syn-
chronized with the requirements model.

The ModelingEnvironment class registers a ModelChangeListener on the
JENA Ontology representing the requirements model. On change, the Mod-
elingEnvironment in its turn notifies the registered user-interface components.
As shown in Figure 7.2 the Eclipse component then retrieves a new list of all
requirements in the model. This approach avoids a tight coupling between the
UI layer and the data layer.

39



CHAPTER 7. IMPLEMENTATION OF TRIC

Eclipse RCP

ModellingEnvironment JENA Framework

1: addRequirement('S11')

5: getRequirements()

Data Access Object

2:
 u

p
d
a
te

M
o
d
e
l(
..
.)

3: modelChanged()

4
: 
no

ti
fy

O
b
s
e
rv

e
rs

()

Figure 7.2: Communication diagram showing an update of the model.

7.3.2 Storage of models

When a new requirements model is created, a new OWL ontology is created
using the OWL API of the JENA framework. This model is stored and manip-
ulated in-memory. TRIC allows the user to save the requirements model to the
file system. This is done by serializing the in-memory model to RDF/XML .

Internally there are three models used:

1. The requirements model containing the modeled requirements and
relations. Conforms to the requirements metamodel.

2. The inference model is a copy of the requirements model. Extra ele-
ments are added which are necessary for the inference process. Afterwards
contains both given and inferred requirements relations.

3. The consistency model is a copy of the inference model. It therefore
contains the results of the inference model. Extra elements are added to
support the consistency checking process.

When a model is stored to the file system only the requirements model is
stored. When the Inference Engine is started the inference model is created.
And at the start of the Consistency Checking Engine the consistency model is
created.

7.4 The Inference Engine

The responsibility of the inference engine is to infer implicit requirements rela-
tions by applying inference rules on given requirements relations.

Section 7.4.1 describes how we represent the sets of satisfying systems to
OWL description logics. In Section 7.4.2 we describe the inference process.
Section 7.4.3 describes the preparation of the requirements model for inference.
In Section 7.4.4 we give an overview of the reasoner rules for inferencing and
explain how we derived these rules. The partial refines relation needs a spe-
cific approach for inferencing (see also Chapter 4 about the formalization of

40



7.4. THE INFERENCE ENGINE

requirements relations). We discuss our approach for this relation separately in
Section 7.4.5. In Section 7.4.6 the analysis of derivation traces is described.

7.4.1 Representation of sets of systems

To be able to infer relations using the systems relations we need a OWL rep-
resentation of the sets of systems satisfying a requirement. To realize this rep-
resentation, we create a System class. Each instance of this class represents a
set of systems. During the preprocessing of the requirements model, a system
instance is created for each requirement. This system instance is related with
the requirement through a satisfies relation.

The satisfies relation is defined as an OWL Object Property. The RDF
description is provided in Listing 7.1. The source of a satisfies relation is a
system (rdfs:domain), the target is a requirement (rdfs:range). Because the
domain and range of the relation differ, the satisfies relation is non-reflexive,
non-symmetric and non-transitive.

<rdf:Description rdf:about =" satisfies ">

<rdfs:range rdf:resource =" Requirement "/>

<rdfs:domain rdf:resource ="System"/>

<rdf:type rdf:resource =

"http:// www.w3.org /2002/07/ owl# ObjectProperty "/>

</ rdf:Description >

Listing 7.1: RDF definition of the satisfies relation

In the section about preparing the requirements model for inference (Sec-
tion 7.4.3) we continue on this relation.

Reasoning on sets of systems

The formalization approach can infer the following (implicit) relations, based
on sets of systems related to requirements. We assume that the set of systems
S1 satisfies requirement R1 and the set of systems S2 satisfies requirement R2.

• R1 requires R2 iff S1 ⊂ S2

• R1 conflicts R2 iff S1 ∩ S2 = ∅ (S1 is disjoint with S2)

In OWL-DL, classes cannot be related to individuals (instances), and a sub-
ClassOf or disjointWith statement is only valid between two classes [11]. To
relate requirements (modeled as individuals) with sets of systems, we need in-
dividuals of systems. Since we need to state a subset relation and express
disjointness of sets of systems, we defined these relations as Object Properties
to overcome this limitation of OWL-DL . To enable correct reasoning about
subsets and disjoint sets we need to specify their details.

The subSetOf relation is listed in Listing 7.2. It is a transitive relation by
definition.

<rdf:Description rdf:about ="subSetOf ">

<rdfs:range rdf:resource ="System"/>

<rdfs:domain rdf:resource ="System"/>

<rdf:type rdf:resource =

"http:// www.w3.org /2002/07/ owl#TransitiveProperty "/>

41



CHAPTER 7. IMPLEMENTATION OF TRIC

</rdf:Description >

Listing 7.2: RDF definition of the subSetOf relation

The disjointWith relation is listed in Listing 7.3. It is a non-reflexive,
symmetric and non-transitive relation between two systems. The symmetric
property is not represented in OWL, because we noticed that the reasoner did
not reason properly over symmetric object properties. To overcome this, we
apply a disjointWith relation in both directions when a conflicts relation is
encountered.

<rdf:Description rdf:about ="disjointWith ">

<rdfs:range rdf:resource ="System"/>

<rdfs:domain rdf:resource ="System"/>

<rdf:type rdf:resource =

"http:// www.w3.org /2002/07/ owl# ObjectProperty "/>

</rdf:Description >

Listing 7.3: RDF definition of the disjointWith relation

7.4.2 The inference process

The inference process takes the requirements model as input and infers implicit
requirements relations based on given relations and a set of inference rules. As
explained in Section 6.3, we chose to separate the inference process from the
consistency checking process. Hence we infer all implicit relations, even if the
given requirements model is inconsistent already.

We identify the following steps in the inference process:

1. Preparation of the inference model: create a new model from the
given requirements model, and add data to the model necessary for infer-
encing.

2. Retrieval of inference rules: locate and import the inference rules
belonging to the used metamodel from the file system.
These rules are divided into three categories:

(a) a rule expressing the property of the subset relation

(b) rules mapping requirements relations to relations between sets of sys-
tems

(c) rules specific for the partial-refines relation

3. Execution of reasoner: with the preprocessed requirements model and
the inference rules as input, implicit relations are inferred and added to
the model. These inferred relations become visible in the user-inter

4. Derivation trace analysis: optional step in the process, provides a
derivation trace of an inferred relation.

In the next sections we will describe these steps and elaborate on the map-
ping between the formalization of requirements and relations and the inference
rules for the reasoner.

42



7.4. THE INFERENCE ENGINE

7.4.3 Preparation of the inference model

The requirements model created by the requirements engineer only contains re-
quirements and relations between them. As mentioned before, to infer relations
we need a representation of the sets of systems that satisfy the requirements.
The ontology containing the requirements model is taken as input, and copied
to a new ontology used for inference (the inference model). Then, for each
requirement a system instance is added.

res://Requirement/1

mm:Requirementrdf:type

res://Requirement/2

rdf:type

mm:refines

res://System/1 res://System/2

inf:satisfies inf:satisfies

inf:System
rdf:type rdf:type

inf:subSetOf

Requirements

model

Inference

model

Figure 7.3: RDF representation of the inference model

Figure 7.3 shows the relation between the requirements model and the infer-
ence model. In addition to the requirements model, the inference model contains
System instances. These systems are related with requirements through a sat-
isfies object property. The dashed subSetOf relation between both Systems is
to illustrate the result after execution of the reasoner. The subset relations are
not applied during the preparation.

7.4.4 Reasoner rules for inferencing

In the formalization (Chapter 4) requirements relations are formalized using
first-order logic (FOL) and basic Set Theory. Because the logical property char-
acteristics of the relations are defined in the (imported) metamodel ontology,
the JENA reasoner already infers implicit relations based on transitivity using
the builtin OWL reasoner rules.

In Section 7.2.3 we discussed the mapping of requirement relations to re-
lations between sets of systems. Table 7.2 gives an overview of the rules that
establish this mapping. S1 and S2 are the sets of systems satisfying require-
ments R1 and R2 respectively. Note that these rules are specific for the core
requirements metamodel, when a customized metamodel is used, the metamodel
engineer needs to customize these rules as well.

43



CHAPTER 7. IMPLEMENTATION OF TRIC

Table 7.2: Overview of inference rules for the core metamodel

Rule name Matching term Conclusion

requires to subset R1 requires R2 S1 is a subset of S2
refines to subset R1 refines R2 S1 is a subset of S2
contains to subset R1 contains R2 S1 is a subset of S2
subset to requires S1 is a subset of S2 R1 requires R2
conflicts to disjoint R1 conflicts R2 S1 and S2 are disjoint1

disjoint to conflicts S1 and S2 are disjoint1 R1 conflicts R2
temp req to p ref See Section 7.4.5.

1 i.e. (S1 ∩ S2) = ∅

As mentioned before, the Inference Engine will infer any relation, even if the
result is an inconsistency. If for example R1 requires R2, and R1 conflicts R2,
the reasoner rules will conclude that S1 ⊂ S2 and S1 ∩ S2 = ∅. This of course
is a contradiction, but we use the Consistency Checking Engine to detect this.

Syntax of JENA reasoner rules

In this section all the inference rules are listed. The rules are expressed in JENA
reasoner rule syntax. The simplified syntax is given in Listing 7.4.

Rule := [ ruleName : bare -rule ]

bare -rule := term , ... term -> term , ... term

term := (node , node , node )

or (node , node , functor)

or builtin(node , ... node )

functor := functorName (node , ... node )

node := uri -ref

or prefix:localname

or <uri -ref >

or ?varname

or ’a literal ’

or ’lex’^^ typeURI

or number

Listing 7.4: JENA reasoner rule syntax (simplified)

If terms are matched by the first part of the rule, the terms following ’->’

are concluded (inferred). Variables are denoted with a ’?’. Variables are not
typed. A variable will match with any node in the model, which could be
requirements or systems (resources) or relations (object properties). In our
model requirements are related through object properties. To ensure a variable
has a certain type we could have added the following line:

(?r1 rdf:type Requirement)

However in our case we know that when the following term matches:

44



7.4. THE INFERENCE ENGINE

(?r1 refines ?r2)

the variables r1 and ?r2 must be instances of Requirement. In our tool only
requirements can be related through a requires relation. Analogously we assume
that if a satisfies is matched in a triple, the left-hand side ?s1 is a system
instance, and the right-hand side ?r1 is a requirement instance:

(?s1 satisfies ?r1)

Therefore, we do not need to check explicitly for the variable’s type in the
reasoner rules.

Inference rules for the core requirements metamodel

We provide the reasoner rules for the inference engine and discuss the rules
grouped by functionality. The complete list of inference rules in JENA reasoner
rule syntax can be found at Appendix B.

@include <OWL >.

[ subset_also_disjoint: (? s1 inf:subSetOf ?s2)

(? s2 inf:disjointWith ?s3)

5 ->

(? s1 inf:disjointWith ?s3)]

Listing 7.5: Import of standard OWL rules and rule needed for disjoint subsets

In Listing 7.5 the initial rules are listed. The first line starts with @include

<OWL>., which tells the reasoner to import the rules for OWL-DL. This enables
the reasoner to reason on OWL and RDF constructs such as transitive object
properties.

The Object Properties in the rule’s terms are prefixed with ’inf:’. This prefix
refers to the inference model. Because the subSetOf and disjointWith relation
are added to the inference model.

Because we defined our own ’subSetOf’ and ’disjointWith’ relation between
sets of systems, we need an additional rule to ensure the so-called ’permeation
of disjointness’, which states that subsets of disjoint sets are also disjoint:

(S1 ⊂ S2) ∧ (S2 ∩ S3 = ∅) ⇒ (S1 ∩ S3 = ∅)

This is expressed in the rule subset also disjoint.
The next set of rules in Listing 7.6 map the requires, refines and contains

relation to a subset relation between their corresponding systems.
Since we query for the linked requirements using the satisfies property,

?s1 is the set of systems satisfying requirement ?r1 and ?s2 the set of systems
satisfying requirement ?r2.

[ requires_to_subset: (? r1 mm:requires ?r2)

(? s1 inf:satisfies ?r1)

(? s2 inf:satisfies ?r2)

->

5 (? s1 inf:subSetOf ?s2)]

[ refines_to_subset: (? r1 mm:refines ?r2)

(? s1 inf:satisfies ?r1)

45



CHAPTER 7. IMPLEMENTATION OF TRIC

(?s2 inf:satisfies ?r2)

10 ->

(?s1 inf:subSetOf ?s2)]

[contains_to_subset: (?r1 mm:contains ?r2)

(?s1 inf:satisfies ?r1)

15 (?s2 inf:satisfies ?r2)

->

(?s1 inf:subSetOf ?s2)]

Listing 7.6: Rules mapping requirement relations to subset relations between
systems

When the set of systems satisfying a requirement is a subset of the set of
systems satisfying another requirement we infer a requires relation. This rule is
listed in Listing 7.7.

[subset_to_requires: (?s1 inf:subSetOf ?s2)

(?s1 inf:satisfies ?r1)

(?s2 inf:satisfies ?r2)

->

5 (?r1 mm:requires ?r2)]

Listing 7.7: Rule mapping a subset (of systems) to a requires relation

If there exists a conflicts relation between requirements R1 and R2, then
their sets of systems are disjoint (i.e. there is no system satisfying both R1
and R2). The other way around also holds: if sets of systems are disjoint,
the requirements they satisfy are conflicting. These rules are mapped to two
reasoner rules as listed in Listing 7.8. The concluding terms of the first rule
(conflicts to disjoint) are stating a disjointWith relation in both direc-
tions because the symmetry of the disjointWith property is not handled properly
by the JENA reasoner (as mentioned before in Section 7.4.1).

[conflicts_to_disjoint: (?r1 mm:conflicts ?r2)

(?s1 inf:satisfies ?r1)

(?s2 inf:satisfies ?r2)

->

5 (?s1 inf:disjointWith ?s2)

(?s2 inf:disjointWith ?s1)]

[disjoint_to_conflicts: (?s1 inf:disjointWith ?s2)

(?s1 inf:satisfies ?r1)

10 (?s2 inf:satisfies ?r2)

->

(?r1 mm:conflicts ?r2)]

Listing 7.8: Rules to map conflicts to disjointness of systems and vice versa.
between systems

7.4.5 Dealing with the partial refines relation

The partial refines relation needs a specific approach since it is a special com-
bination of the refines and contains relations. In the formalization, the partial
refines relation is decomposed into refines and contains relations with a special
temporal requirement.

46



7.4. THE INFERENCE ENGINE

There are two decompositions which both are applied:

(a) contains(R2, RT12) and refines(R1, RT12) iff partial-refines(R1, R2)

(b) refines(RT12, R2) and contains(RT12, R1) iff partial-refines(R1, R2)

These temporal requirements are created during the preprocessing step. Fig-
ure 7.4 depicts the decomposition of the partial refines relation.

Because we need to distinguish the temporal requirement from the given
requirements, we added a data type property to the Requirement type. When
isTemporal is set to true, it is a temporary requirement. The rules in Listing 7.9
only match on a temporary requirement. The isTemporal literal is also used
to filter out the temporary requirement in the user interface. The requirements
engineer should not be able to modify it.

The rules in Listing 7.9 are of a different type than the other rules. These
rules use a ’<-’, and have the concluding terms before the matching terms. This
type of rule is called a backward rule, as opposed to the forward rules. Backward
rules can be seen as ’goal-driven’ rules because they match and execute when
the reasoning engine queries to satisfy a certain goal. Forward rules are ’data-
driven’. They trigger on given data to infer new triples.

Most reasoners use either forward or backward rules. The JENA reasoner
offers a hybrid mode combining forward and backward rules. In the hybrid mode
forward rules are executed before execution of the backward rules. Therefore
the backward rules operate on the model including inferred statements by the
forward rules. The rule for partial refine should work using a forward rule, but
we noticed it did not resulted in a correct inference.

res ://R equirement/1

true

isTemporal

res ://R equirement/2

mm:partially_refines

res ://R equirement/

temp/1part_ref_a2

res ://R equirement/

temp/1part_ref_b2

true

isTemporal

mm:refines

mm:contains

mm:refines

mm:contains

Figure 7.4: Decomposition of the partial refines relation using temporary re-
quirements

[ temp_req_to_p_ref1: (?r1 partial_refines ?r2)

<-

(?r1 refines ?rt)

(?r2 contains ?rt)

5 (?rt isTemporary ’true ’^^ xsd:boolean )]

47



CHAPTER 7. IMPLEMENTATION OF TRIC

[temp_req_to_p_ref2: (?r1 partial_refines ?r2)

<-

(?rt contains ?r1)

10 (?rt refines ?r2)

(?rt isTemporary ’true ’^^ xsd:boolean )]

Listing 7.9: Inference rules for partial refines

Using the term (?rt isTemporary ’true’^^xsd:boolean) we make sure
the variable ?rt is bound to a temporary requirement.

7.4.6 Derivation trace analysis

The main reason of the choice of the JENA Semantic Web Framework is that the
reasoner keeps a log of its derivations. Internally JENA uses a graph-structure
to perform the reasoning. When logging is enabled, it keeps this structure to be
inspected afterwards. Furthermore, it creates RuleDerivation objects containing
specific information about which rule is fired and which triples are matched.

The provided RuleDerivation class, however, is very basic. It allows textual
output of a derivation trace. To visualize the derivation traces, we needed a
more specific approach. Therefore, we created a subclass of RuleDerivation.
This subclass (ExtendedRuleDerivation) allows access to the data in the in-
ferred model. We adopt the code for the textual output to collect the involved
requirements and relations in a derivation trace. We use a Java object as a data
type to represent the triples encountered:

Relationship ::= 〈requirementsource, relation, requirementtarget〉

We define a derivation trace as an unordered set of relationship triples in-
volved in the derivation of a certain relationship. During inference a relationship
can be used multiple times to derive an inferred relation. Therefore, it occurs
multiple times in a single derivation trace. We use a Java Set implementation
to avoid these duplicate entries in a trace since a Set cannot contain duplicate
entries by definition. As a result, a set of derivation traces is created. However,
some traces are equal with respect to the involved relationship triples (as the
order of the triples is not relevant).

To filter out these duplicate traces, we again make use of a Set implementa-
tion. A set of derivation traces (being sets of relationship triples) is returned.

Return type ::= {{Relationship}}

These traces are available for the Visualization Engine, which is discussed
in Section 7.6.

Figure 7.5 gives an example of multiple traces for a single inferred relation.
The model consists out of five requirements. There are three unique traces
which derive ’R1 requires R4’, although trace 1 and 3 are using the same path.
The textual output is listed in Listing 7.10.

[DERIVATION LOG]---------------------------

Statement is (res: // Requirement /1 requires res: // Requirement /4)

Number of traces: 8, number of unique traces: 3

48



7.5. THE CONSISTENCY CHECKING ENGINE

R1 R2 R3 R4

R5

requires refines requires

refines requires

requires

requires

Trace 2

Trace 1

Trace 3

Figure 7.5: Multiple traces which derive ’R1 requires R4’

Trace number: 1

-R1 requires R2 (given)

-R2 refines R3 (given)

-R2 requires R3 (inferred )

-R3 requires R4 (given)

-R2 requires R4 (inferred )

-R1 requires R4 (inferred )

Trace number: 2

-R1 refines R5 (given)

-R1 requires R5 (inferred )

-R5 requires R4 (given)

-R1 requires R4 (inferred )

Trace number: 3

-R1 requires R2 (given)

-R2 refines R3 (given)

-R2 requires R3 (inferred )

-R1 requires R3 (inferred )

-R3 requires R4 (given)

-R1 requires R4 (inferred )

Listing 7.10: Output of derivation log

The difference between trace 1 and 3 is the path followed over inferred rela-
tionships. In trace 1 ’R2 requires R4’ is used, while in trace 3 ’R1 requires R3’
is used.

7.5 The Consistency Checking Engine

The design of the Consistency Checking Engine is very similar to the Infer-
ence Engine because first-order logic is also used to detect inconsistencies. The
term “consistency” can be confusing because it is used in OWL as well. There-
fore, it is important to stress that we check for consistency of the modeled
requirements using metamodel specific consistency rules. This is different from
checking whether the model itself is expressed in valid OWL syntax. The latter
is ensured by using TRIC for modeling the requirements.

7.5.1 The consistency checking process

The consistency checking engine needs the inferred requirements model as in-
put because some consistency rules need the ’sets of systems’ formalization.

49



CHAPTER 7. IMPLEMENTATION OF TRIC

As explained in Section 6.3, checking for consistency without inferring implicit
relations can result in a wrong conclusion.

The consistency checking process has the following steps:

1. Preprocessing of the inferred model: take the inferred model as
input, and add the formula relations (object properties) to the model.

2. Retrieval of consistency rules: locate and import the consistency rules
belonging to the used metamodel from the file system.
These rules are divided into three categories:

(a) rules mapping requirements relations to formula relations

(b) rules expressing the properties of the formula relations

(c) consistency checking rules, which match with inconsistencies

3. Registering of inconsistency functor: to report inconsistencies, a
custom functor is registered.

4. Execution of reasoner: with the preprocessed requirements model and
the consistency rules as input, the inconsistency functor is called for each
inconsistency encountered.

We explain these steps in the next sections, and provide more detail about the
reasoner rules for consistency checking.

7.5.2 Preprocessing of the inferred model

We take the inferred model as input for the Consistency Checking Engine. The
preprocessing is analogous to the preprocessing of the Inference Engine. Object
properties representing formula relations are added to the model.

In the inference engine we added system instances to represent the sets of
systems satisfying a requirement. For the Consistency Checking Engine we
need the formula relations between the property representation of requirements
to check for consistency. Unlike the Inference Engine we do not create separate
property objects to represent these properties. We directly relate requirement
instances with formula relations.

There are five formula relations in the formalization for the core metamodel:

• all-in-whole

• all-in-part

• all-implies-in

• some-implies-in

• all-equals-in

These relations are discussed in Chapter 4.

In Listing 7.11 an example is given of a formula relation expressed in OWL.
The formula relations are defined as object properties with the Requirement
class as range and domain.

50



7.5. THE CONSISTENCY CHECKING ENGINE

<owl:TransitiveProperty rdf:ID="all_in_whole ">

<rdfs:range rdf:resource =" mm:Requirement "/>

<rdfs:domain rdf:resource =" mm:Requirement "/>

<rdf:type rdf:resource =

"http:// www.w3.org /2002/07/ owl#ObjectProperty "/>

</ owl:TransitiveProperty>

Listing 7.11: The all-in-whole formula relation as object property

The mapping of requirement relations to formula relations is done with rea-
soner rules together with the execution of the other rules for the consistency
checker.

7.5.3 Reasoner rules for consistency checking

In this section we elaborate on the reasoner rules for the consistency checking
engine. Each set of rules is discussed separately. A complete list of the rules for
the consistency checker can be found in Appendix C.

The rules for consistency checking use both the sets of systems satisfying re-
quirements and the property representation of requirements. The satisfying sets
of systems are defined and inferred in the Inference Engine. In the Consistency
Checking Engine we need to add the formula relations between requirements.

The first step is to map the requirements relations to formula relations. In
Section 4.5.2 we provided this mapping. As mentioned in the previous section,
we use the formula relations directly between requirements.

While the mapping is in both directions (from requirements relations to
formula relations and vice versa), we do not apply the mapping from formula
relations to requirements relations. The requirements relations are already in-
ferred by the Inference Engine.

In Listing 7.12 the reasoner rules creating this mapping are listed. The
prefix cons: refers to the namespace of the consistency checker where the object
properties for the formulas are declared in that namespace.

[ map_refines_to_formulas: (?r1 mm:refines ?r2)

->

(?r1 cons:all_in_whole ?r2)

(?r1 cons:some_implies_in ?r2)]

5

[ map_contains_to_formulas: (?r1 mm:contains ?r2)

->

(?r2 cons:all_in_part ?r1)

(?r2 cons:all_equals_in ?r1)]

10

[ map_part_ref_to_formulas: (?r1 mm:partial_refines ?r2)

->

(?r1 cons:all_in_part ?r2)

(?r1 cons:all_implies_in ?r2)]

Listing 7.12: Reasoner rules mapping requirements relations to formula relations

Second, the properties of the formula relations (see Chapter 4) are applied.
These rules are listed in Listing 7.13.

[ formula_rule_1: (?p1 cons:all_in_part ?p2)

(?p2 cons:all_in_whole ?p3)

51



CHAPTER 7. IMPLEMENTATION OF TRIC

->

(?p1 cons:all_in_part ?p3)]

5

[formula_rule_2: (?p1 cons:all_in_whole ?p2)

(?p2 cons:all_in_part ?p3)

->

(?p1 cons:all_in_part ?p3)]

10

[formula_rule_3: (?p1 cons:some_implies_in ?p2)

(?p2 cons:all_implies_in ?p3)

->

(?p1 cons:all_implies_in ?p3 )]

15

[formula_rule_4: (?p1 cons:all_implies_in ?p2)

(?p2 cons:some_implies_in ?p3)

->

(?p1 cons:all_implies_in ?p3 )]

20

[formula_rule_5: (?p1 cons:some_implies_in ?p2)

(?p2 cons:all_equals_in ?p3)

->

(?p1 cons:some_implies_in ?p3)]

25

[formula_rule_6: (?p1 cons:all_implies_in ?p2)

(?p2 cons:all_equals_in ?p3)

->

(?p1 cons:all_implies_in ?p3 )]

30

[formula_rule_7: (?p1 cons:all_equals_in ?p2)

(?p2 cons:all_implies_in ?p3)

->

(?p1 cons:all_implies_in ?p3 )]

Listing 7.13: Reasoner rules expressing the formula relation properties

From the formalization we derived a set of contradicting facts resulting in
seven inconsistency rules.

• Contradicting subset relations
In the formalization a proper subset relation is used between sets of sys-
tems satisfying requirements. This implies that a set of system cannot be a
subset of itself (inconsistency 1). Furthermore two sets of systems S1 and
S2 cannot have a subset relation with each other: (S1 ⊂ S2) ∧ (S2 ⊂ S1)
contradicts (inconsistency 2). Because of transitivity of the subset rela-
tion the first case (S1 ⊂ S1) will be inferred when two systems are a
subset of each other. We put the second case as an additional rule be-
cause it provides more information about which requirements caused the
contradicting subset relations.

• Contradicting requirement relations
By definition a requires relation contradicts a conflicts relation (inconsis-
tency 3). Note that the Inference Engine infers a requires relation given a
refines or contains relation. Therefore we do not create separate rules for
each of them.

52



7.5. THE CONSISTENCY CHECKING ENGINE

When using the subset relations and disjointness between sets of system
we can detect the same situation (i.e. S1 ⊂ S2 contradicts S1∩ S2 = ∅).
We use the requires and conflicts relations to detect the inconsistency in
our rule.
The partial-refine relation also contradicts with a conflicts relation (in-
consistency 4).

• Contradicting formula relations
The formalization of formula relations between the properties of require-
ments state disjointness between a number of them:

– all-in-part and all-in-whole are disjoint. Hence (R1 all-in-part R2)∧
(R1 all-in-whole R2) is contradicting (inconsistency 5).

– all-equals-in and all-implies-in are disjoint. Hence (R1 all-equals-in
R2) ∧ (R1 some-implies-in R2) is contradicting (inconsistency 6).

– all-equals-in and some-implies-in are disjoint. Hence (R1 all-equals-
in R2)∧ (R1 some-implies-in R2) is contradicting (inconsistency 7).

We defined reasoner rules to match these seven inconsistencies. These rules
are listed in Listing 7.14. Each rule calls the addInconsistency-functor to
report the inconsistency properly to the user. This custom functor is discussed
in the next section.

[ inconsistency_1: (?s1 inf:subSetOf ?s1)

(?s1 inf:satisfies ?r1)

->

addInconsistency (’Circular dependency ’,?r1)]

5

[ inconsistency_2: (?s1 inf:subSetOf ?s2)

(?s2 inf:subSetOf ?s1)

notEqual (?s1 ,?s2)

(?s1 inf:satisfies ?r1)

10 (?s2 inf:satisfies ?r2)

->

addInconsistency (’Contradicting subsets of systems ’,

?r1 ,?r2)]

15 [ inconsistency_3: (?r1 mm:conflicts ?r2)

(?r1 mm:requires ?r2)

->

addInconsistency (’Both conflicts and depends (req .)’,

?r1 ,?r2)]

20

[ inconsistency_4: (?r1 mm:conflicts ?r2)

(?r1 mm:partial_refines ?r2)

->

addInconsistency (’Both conflicts and depends (part .ref .)’,

25 ?r1 ,?r2)]

[ inconsistency_5: (?r1 cons:all_in_part ?r2)

(?r1 cons:all_in_whole ?r2)

->

30 addInconsistency (’Requirement both part -of and whole’,

53



CHAPTER 7. IMPLEMENTATION OF TRIC

?r1 ,?r2)]

[inconsistency_6: (? r1 cons:all_equals_in ?r2)

(? r1 cons:all_implies_in ?r2)

35 ->

addInconsistency (’all_equals_in contradicts all_implies_in ’,

?r1 ,?r2)]

[inconsistency_7: (? r1 cons:all_equals_in ?r2)

40 (? r1 cons:some_implies_in ?r2)

->

addInconsistency (’all_equals_in contradicts some_implies_in ’,

?r1 ,?r2)]

Listing 7.14: Inconsistency rules for the core metamodel

7.5.4 Detecting inconsistencies

A custom inconsistency functor is added to the reasoner engine. A functor is
a function which can be invoked inside a reasoner rule. When an inconsistency
is matched by a rule, this functor is called. The parameters of the functor can
provide extra information, such as a textual description and references to the
involved requirements. Each rule listed in Listing 7.14, uses this functor.

When the addInconsistency-functor is called, the inconsistency will be
shown in the Console as textual output. Furthermore, the Consistency Checker
is notified of the event that an inconsistency is found. When the reasoner is done,
a dialog box prompts the user about the consistency of the requirements model.
This is either “The model is consistent.” or “One or more inconsistencies are
found.”.

The addInconsistency-functor takes a flexible amount of arguments. The
first argument is a string containing the message to display to the user, followed
by one or more references to requirement resources. This is useful because some
inconsistencies may occur on a single requirement (for instance R1 requires

R1), but it may also be a collection of requirements (and relations) being incon-
sistent.

[Inconsistency ]

Reason: ’Contradicting subsets of systems ’

Involved requirements:

- res: // Requirement /3

- res: // Requirement /1

Listing 7.15: Example output of an inconsistency

Listing 7.15 gives an example of the output for a single inconsistency. In
future work, the implementation of this functor can be extended to support
analysis of inconsistencies.

7.6 The Visualization Engine

The responsibility of the Visualization Engine is to provide a visual explanation
of the reasoner’s results. There are three steps we take in our implementation

54



7.6. THE VISUALIZATION ENGINE

to achieve this: first, we use the derivation logging functionality of JENA to
collect all traces leading to the facts (given relations) causing a specific relation
to be inferred. Second, we reduce the amount of traces to unique paths. And
finally we visualize one of the unique traces by using JGraph.

The first two steps are performed by the Inference Engine, the process of
collecting the derivation traces is described in Section 7.4.6.

JGraph [3] is a powerful and easy-to-use open source package. We use it to
visualize derivation traces. A derivation trace is a set of Relationship objects,
which represent a 3-tuple:

〈requirementsource, relation, requirementtarget〉

In Section 7.4.6 we described how we create a collection of unique derivation
traces. In the current implementation, we visualize the first derivation trace.

Figure 7.6: Screenshot of the Visualization Engine output

For each requirement a node is created, and for each relation an edge. The
output is shown in Figure 7.6. Different graphical styles are applied to distin-
guish inferred relations from given relations. Inferred relations are shown with
a dashed line. The relation to explain is dashed and colored green.

A selection listener is registered on the graph. When the user clicks on an
edge (relation), the related requirements are retrieved and shown. This enables
the requirements engineer to quickly inspect the requirements and to analyze the

55



CHAPTER 7. IMPLEMENTATION OF TRIC

inferred relations. Because both details of the source and target requirement are
provided, the correctness of the given and inferred relations can be evaluated.

R11 R8

R100R97

requires

contains

requires

R11 R8

R100R97

requires

requires

requires

(1)

requires (2)

requires (3)

contains

Figure 7.7: Derivation steps to derive ’R8 requires R100’

Figure 7.6 shows a screenshot of the Visualization dialog, and illustrates how
the requires relation is derived between R8 and R100.

In Figure 7.7 the sequence of steps taken by the reasoner is shown:

1. The requires relation between R97 and R100 is derived from the contains
relation

2. Because of transitivity of the requires relation a requires relation between
R11 and R100 is inferred (R11 requires R97, R97 requires R100, hence
R11 requires R100).

3. Again by transitivity R8 requires R100 (through R11).

7.7 Usage of the tool

This section describes the usage of TRIC. Some screenshots are provided to
illustrate the graphical user-interface, which is implemented using Eclipse RCP.

Figure 7.8 shows the main window of TRIC. On the left-hand side there is a
view listing all the requirements in the model. On the right-hand side there is an
editor enabling the user to modify an individual requirement. When modifying
a requirement in the editor, the list of requirements is automatically updated.
By using the File menu, users can open, save and create new models.

7.7.1 Adding requirements to the model

Requirements are added to the model via a dialog. The dialog (shown in Fig-
ure 7.9) allows the requirements engineer to add a new requirement. It ensures
that all required attributes are entered. When for example the name of a re-
quirement is omitted, the dialog will display an error message. This prevents
the creation of a requirement which does not conform to the metamodel.

Each requirement is assigned a unique ID which cannot be chosen or modified
by the user. The ID is used internally to distinguish and sort requirements.
The requirement’s name attribute can be used by the requirements engineer as

56



7.7. USAGE OF THE TOOL

Figure 7.8: Screenshot of TRIC’s main window

a more flexible identifier (as these will vary between requirements specification
documents).

Deleting requirements is not possible in the prototype.

7.7.2 Relating requirements

Once entered, requirements can be related to other requirements. In the require-
ments editor related requirements are listed (visible in Figure 7.8). A dialog is
provided to relate a requirement to other requirements. This dialog is depicted
in Figure 7.10. For each relationship type in the metamodel, a button is created.
This enables the requirements engineer to use all available relationship types.
Relating a requirement to itself is prevented by the interface since this does not
make sense or introduces an inconsistency (for example a requirement which
refines itself).

If relations are assigned erroneously (which the requirements engineer may
discover after analysis of the inferred relations), they can be deleted. A pop-up
menu is available when right-clicking on one of the listed related requirements.

7.7.3 Inference results

After the inference process all modeled requirements are listed textually in the
console. For each requirement the related requirements are provided, both given
and inferred relations. An example of this textual output is shown in List-
ing 7.16.

57



CHAPTER 7. IMPLEMENTATION OF TRIC

Figure 7.9: Dialog to add a new requirement

The following requirements are modelled:

-Requirement 1(G1):

-Requirement 2(G1 .1):

5 >> refines >> 1( G1)

>> requires >> 1( G1)

-Requirement 3(G1 .2):

>> refines >> 1( G1)

>> requires >> 1( G1)

10 >> requires >> 2( G1.1)

Listing 7.16: Textual output given at end of the inference process

After the Inference Engine is done it will make a call to the notifyObservers()-
method of ModelingEnvironment. This causes the user-interface components to
refresh their content. The inferred relations appear in the requirements editor.
Given and inferred relations are distinguished by using different background
colors. Furthermore a column in the table denotes whether a relation is either
’given’ or ’inferred’. See Figure 7.8 on page 57 for an example.

The requirements engineer is now able to explore the inferred relations by
browsing through the modeled requirements.

When right-clicking on a row a popup menu shows up, which offers the
following actions:

Show visualization opens the Visualization dialog, with a visual explanation
of the inferred relation.
Intended for inferred relations only.

Show derivation log writes a textual log of the derivation traces to the con-

58



7.8. CONCLUSION

Figure 7.10: Dialog to relate requirements

sole.
Intended for inferred relations only.

Delete relationship enables the user to delete a relationship from the model,
a confirmation dialog is provided.
Intended for given relations only.

7.8 Conclusion

In this chapter we described the implementation of TRIC. We use OWL as a
platform for reasoning because there is a lack of reasoner engines capable of
reasoning about EMF models. Because the formalization uses first-order logic
OWL description logics can be used.

We created a mapping between the formalization of requirements and re-
quirements relations (discussed in Chapter 4) and OWL. We expressed require-
ment relations as OWL Object Properties. This enabled us to represent the log-
ical property characteristics (i.e. transitivity and symmetry) in the metamodel.
An OWL reasoner then can infer implicit relations based on these properties
without additional reasoner rules.

Because the formalization relies on sets of satisfying systems and relations
between the Property representation of requirements (formula relations), we
needed to represent these in OWL. The sets of satisfying systems are added
to the model during a preprocessing step. The relations between the sets of
systems and the formula relations are realized by reasoner rules.

By using the derivation logs of the JENA OWL reasoner we are able to
visualize the path followed by the reasoner to derive a certain inferred relation.

In the next chapter we evaluate the quality of the implementation.

59



CHAPTER 7. IMPLEMENTATION OF TRIC

60



8
Evaluation of TRIC

8.1 Introduction

In this chapter we evaluate the tool support we developed. To evaluate the
support for the modeling process, we created an example requirements docu-
ment for a Course Management System (CMS) . We covered all the relationship
types provided by the requirements metamodel. And we deliberately added
contradicting requirements to verify the consistency checking functionality of
TRIC.

Besides evaluating the functionality of the tool, we also evaluate the strengths
and weaknesses of the tool design using the nonfunctional requirements. We de-
scribed the requirements for the tool in Chapter 5.

First we introduce the example case of the Course Management System
in Section 8.2. In Section 8.3 we evaluate the functionality of the tool using
the example case. In Section 8.4 we evaluate the quality of the design and
implementation. We conclude this chapter in Section 8.5.

8.2 Example case: Course Management System

To illustrate the purpose of the tool, we created an example case. A popular
example in academic research is a Course Management System, since readers
are familiar with the domain. In a couple of brainstorm sessions we gathered
requirements for such a system. We deliberately added contradicting require-
ments among stakeholders. This section briefly describes the stakeholders and
the content of the requirements. For the complete list of requirements and a
glossary we refer to Appendix A.

61



CHAPTER 8. EVALUATION OF TRIC

8.2.1 Stakeholders

The system has four groups of stakeholders, each having a different role and
usage of the system, and hence having different requirements.

Lecturer Uses the CMS to provide course material to students, and to manage
the course’s administration (such as grading and keeping track of deliver-
ables).

Student Uses the CMS when participating courses. The CMS provides infor-
mation about courses, and is used to subscribe to courses, hand in work,
collaborate with other students, etc.

Administration or Bureau Onderwijs Zaken (Office for Educational Affairs)
uses the CMS to manage courses, assigning teachers to courses, and coor-
dinating the enrollment policies. Furthermore the administration collects
all kinds of statistics using the CMS, such as grade averages per course.

Maintainer Provides technical support for CMS, creating and restoring back-
ups is one of the responsibilities.

The requirements in Appendix A are grouped by the proposing stakeholder.

8.2.2 Contradicting requirements

In many cases stakeholders have different interests in a system. In our example
this is the case. Especially there is a field of tension between lecturers and the
administration. Lecturers desire to have full control about their courses, while
the administration needs to check all the rules and do not want lecturers to
bypass them. An example of two contradicting requirements is:

Lecturer:

R48 The system shall allow lecturers to create courses

and

Administration:

R98 The system shall allow only the administration to create new
courses

8.2.3 Identification of requirements relations

After gathering requirements for the Course Management System for each stake-
holder, we tried to identify all relations between requirements. We did this by
thinking in terms of system components and system data. For example, in or-
der to send messages to students, the requirement for a messaging system (R7)
should also be fulfilled. This indicates a requires relation between requirements
using the messaging system and the requirement for a messaging system. With
system data we mean the following: when a requirements states the usage of
data in the system, the system should allow the entering of that data. For
example students subscribing to a course, the course should be created first.
Hence there is a requires relation between those requirements.

62



8.3. EVALUATION OF TOOL FUNCTIONALITY

Some relations were trivial to identify, because we created the requirements
in order to use all relation types. For example R61 contains R62, R63 and
R64.

8.3 Evaluation of tool functionality

We use the example of the Course Management System to evaluate the func-
tionality of the tool. Because it is not an industrial requirements document
we cannot use it to properly evaluate the requirements modeling and reasoning
approach.

In the CMS requirements document there are 122 requirements (94 func-
tional and 28 non-functional requirements). We started with identifying the
requirements relations in the CMS case. Then we modeled the requirements
and relations using TRIC. By using the inference engine we inferred implicit
relations. We checked the results of inference engine, and checked the model for
consistency using the consistency checking engine. A number of iterations were
needed to resolve the contradictions and to validate the inferred relations.

In the next sections we evaluate the functionality by referring to the require-
ments defined in Chapter 5.

8.3.1 Modeling of requirements

Described by requirements T1 (Modeling Environment) and T2 (Modeling
Requirements).

We specified the requirements of the CMS case in a document. The requirements
are listed in tables (see Appendix A). Each requirement has an identifier, and
a description. During a brainstorm session we identified the relations between
requirements.

To model the requirements we entered each individual requirement using the
“Add new requirement” dialog. Then we related the requirements. We stored
the model to the file system and we are able to open the model again.

To be conform to the metamodel, the tool allows the specification of the
status and the priority of a requirement. For the CMS case we did not take the
status and priority of requirements into account. Besides storing the information
in the model, the tool does not use the status or the priority during reasoning
of consistency checking.

TRIC only supports one metamodel, and does not provide functionality to
the user to specify or select a different metamodel.

The requirements T1 and T2 are fulfilled, although there is only support
for one metamodel: the core requirements metamodel.

8.3.2 Inference and analysis of requirements relations

Described by requirements T3 (Inferencing) and T8 (Derivation analysis).

After the requirements are modeled, the requirements engineer can run the
Inference Engine by clicking on a button. After a few seconds the inferred
relations appear in the requirements editors. The distinction between a given

63



CHAPTER 8. EVALUATION OF TRIC

relation and an inferred relation is made by different colors of the rows and a
text displaying either ’given’ or ’inferred’.

We verified the correctness of the Inference Engine using automated Unit
tests. We created test cases for combinations of requirements relations, such as:
contains(R1, R2) ∧ refines(R2, R3) → requires(R1, R3).

By asserting the outcome (in this case ’requires(R1, R3)’), the Unit test will
fail when the engine does not conclude this relation.

The analysis of inferred relations is supported in two ways. One way is to
get a textual derivation trace in the console of the tool. Sometimes there are
multiple paths to derive an inferred relation. All paths are listed. However, the
textual traces are not easy to understand, no descriptions of the requirements
are provided either.

The other way to get an explanation of an inferred relation is to use the Vi-
sualization Engine. A graph is displayed showing the requirements and relations
involved to conclude an inferred relation. The user can click on a relation. This
results in the display of the names and descriptions of both requirements. The
requirements engineer can then verify whether the relation corresponds with the
textual description of the requirement. While there might be multiple paths,
the Visualization Engine only displays one. This path is arbitrarily chosen. For
proper analysis it might be useful when all paths could be shown, or only the
shortest path.

The requirements T3 and T8 are fulfilled by the tool.

8.3.3 Consistency checking

Described by requirements T4 (Consistency Checking) and T7 (Reporting
inconsistencies).

The Consistency Checking Engine requires the user to run the Inference Engine
first. When the user tries to run the Consistency Checking Engine without
inferencing first, the tool shown an alert and does not continue with consistency
checking.

The consistency checking process takes a couple of seconds. When no in-
consistencies are found, the tool will show a dialog stating that the model is
consistent. When one or more consistencies are found, the inconsistencies are
listed textually in the console. An example of such a report is as follows.

[Inconsistency]

Reason: ’Contradicting subsets of systems’

Involved requirements:

- res://Requirement/3

- res://Requirement/1

While the tool does detect the inconsistencies, the reporting is not very
friendly for the user. When there are multiple relations between requirement 3
and requirement 1, it is not clear which relation caused the inconsistency.

Like the Inference Engine, we verified the correctness of the reasoner rules
of the Consistency Checking Engine with unit tests.

Requirement T4 is fulfilled and T7 is fulfilled minimally. The tool does re-
ports inconsistencies, but it is up to the user to pinpoint the exact requirements
relation that caused the inconsistency.

64



8.3. EVALUATION OF TOOL FUNCTIONALITY

8.3.4 Support for other metamodels and customizable rea-
soner rules

Described by requirements T5 (Custom inference rules) and T6 (Custom
consistency rules).

The requirements metamodel and the rules for inferencing and consistency
checking are all specified in separate files. However, the tool does not sup-
port multiple metamodels and hence does not support multiple sets of rules for
inferencing and consistency checking.

The rules for inferencing can consistency checker can be modified with a
basic text editor. The rule syntax is straight-forward for one understanding
basic first-order logic.

The requirements metamodel is defined as a OWL ontology, and can be
displayed and edited using an OWL editor such as Protégé [36].

Internally the tool is prepared to work with different metamodels, the re-
quirements relations are not hard-coded. However, without modification the
tool does not support additional relationship types or other customizations of
the requirements metamodel.

The requirements T5 and T6 are not fulfilled in the current prototype.

8.3.5 Iterative process

To support the iterative process of the requirements engineer (updating the
requirements model after analyzing implicit relations and inconsistencies) was
not an explicit requirement.

The implicit relations reveal more information about the modeled require-
ments. When inspecting the implicit inferred relations, the Requirements En-
gineer is able to check whether the implicit relations make sense. For example
if a requires relation is inferred, the description of both requirements should
indicate that there is indeed such a relation. If this is not the case, the require-
ments engineer must analyze why there is an implicit relation. A wrong inferred
relation indicates that there is at least one wrong given relation.

The requirements engineer can update the model, and start the process of
inferencing and consistency checking again.

8.3.6 Storage of models

In the architectural design of the tool, we described in Section 6.2 and Sec-
tion 7.3.2, we mention about different copies of the requirements model. One
model which represents the entered requirements, a copy of this model with
additional information for inferencing, and a copy of the inferencing model for
the consistency checking. The intention of this design was to prevent pollution
of the entered model with elements only needed for reasoning (such as system
instances and formula relations between requirements). However, we noticed
that in some cases the model stored to the file system does contain data from
the Inference Engine and the Consistency Checking Engine. The workaround is
to store the model prior to running the Inference Engine.

65



CHAPTER 8. EVALUATION OF TRIC

8.4 Quality of design and implementation

In this section we evaluate the quality of the design and implementation of
TRIC. We use the nonfunctional (or quality) requirements specified in Chap-
ter 5.

8.4.1 Extensibility

According to [4] extensibility is the property that simple changes to the design
of a software artifact require a proportionally simple effort to modify its source
code.

The architectural design of TRIC is layered, and a Model-View-Controller
pattern is applied to separate the system into three parts: a model, a set of
controllers, and a presentation layer. This enables changes and extensions to
the tool, without big changes to the code. As we will discuss in the Future Work
section (Chapter 9), there are a number of possible extensions to the tool.

Change impact analysis is an example, the model remains unchanged, and
the main addition will be a mechanism to track changes made to the model.
Because there is a Observer-Observable pattern between the controller and the
model, keeping track of changes is possible with the current architecture. Al-
though it depends on the approach taken to realize change impact analysis.

Another point of extension is the support for other requirements metamodels.
The architecture of the tool is prepared since the metamodel and the rules are
defined in separate files and are loaded at run-time. However some parts in the
Inference Engine are hard-coded (for instance the decomposition of the partial-
refines relation) and might not apply to other metamodels.

8.4.2 Scalability

The requirement about scalability states that the performance is not an issue,
but the tool should be able to handle large models. Scalability is a poorly
defined, but often used term in the software engineering practice. Duboc et al.
[12] define it as follows:

“A quality of software systems characterized by the causal impact
that scaling aspects of the system environment and design have on
certain measured system qualities as these aspects are varied over
expected operational ranges.”

In TRIC the only ’scaling aspect’ is the size of the requirements model.
There is only one user, and only one model opened at a time. We are interested
in the impact on the system qualities concerning efficiency:

Time behavior Attributes of software that bear on response and processing
times and on throughput rates in performances its function.

Resource behavior Attributes of software that bear on the amount of re-
source used and the duration of such use in performing its function.

Both definitions are taken from the ISO/IEC 9126-1991 Standard for Software
Quality Evaluation [22].

66



8.4. QUALITY OF DESIGN AND IMPLEMENTATION

Time behavior

When observing the tool’s performance, we note that the performance is suffi-
cient for conducting case studies. The inference and consistency checking engine
takes a couple of seconds to infer the implicit relations of a model containing 122
requirements and 123 relations (the model containing the initial requirements
for the Course Management System).

To investigate the time behavior of TRIC with different model sizes, we
took the model of the Course Management System and inserted copies of all
requirements and relations. This effectively doubled the model in size. We
repeated this step to create a model four times as big as the CMS model.

In Figure 8.1 the execution time of TRIC is shown for inferencing and con-
sistency checking. The vertical axis has a logarithmic scale. The time needed
for inferencing seems to be linear with respect to the size of the model. Consis-
tency checking is taking more time with larger models, the results indicate an
exponential correlation between execution time and model size.

6,4

23

161

2,7

4,5

8,9

1

10

100

1000

CMS model 2x CMS model 4x CMS model

E
xe

cu
ti

o
n

 t
im

e
 (

s)

Execution time

inferencing

consistency checking

Figure 8.1: Execution time for inferencing and consistency checking

Using the Eclipse Test & Performance Tools Platform Project (TPTP) we
did an Execution Time Analysis, to inspect which calls take a long time to
finish. We could realize an optimization of a method in the Inference Engine
that prepares the model for inference (discussed in Section 7.4.3). It turned out
that the method was using a sorted list of requirements, while it is not necessary
to have it sorted. By adding an extra parameter to the list() method in the
Data Access Object, we could have the returned list to be sorted on request.
Since sorting is a time and resource consuming operation, we reduced both time
and resources needed to prepare the requirements model for inferencing.

There might be more of this possible enhancements (such as caching of fre-
quently used model data), but we did not intend to create a maximal perform-
ing tool. However when execution time is becoming an issue, the TPTP project
could be a valuable platform to search for possible improvements.

67



CHAPTER 8. EVALUATION OF TRIC

Resource behavior

The requirements model and the derived inference and consistency models are
stored and manipulated in-memory during operation. Therefore, the size of the
model has a direct impact on the amount of memory used by TRIC.

The amount of memory used highly depends on the number of relations in
the model. Each relation will fire multiple inference rules, and because we use
derivation logging, each derivation will consume memory. When using large
models, the amount of memory might be a limitation.

40 42
56

99

40 43
64

158

40 43

75

329

0

50

100

150

200

250

300

350

at startup opened model a!er inferencing a!er consistency 

checking

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Memory usage of TRIC

CMS model 2x CMS model 4x CMS model

Figure 8.2: Memory usage of TRIC by activity compared to model size

We briefly investigated the memory consumption of the tool. We measured
the amount of memory used for the different activities (startup, opened model,
after inferencing and after consistency checking).

The result is depicted in Figure 8.2. It becomes clear that the tool consumes
relatively more memory for consistency checking than for inferencing. This is
because the inference model is copied to a new model, and additional informa-
tion is added (formula relations). Because we use the derivation logging facility,
each execution of a reasoner rule results in an entry in the inference graph.

The CMS model contains 122 requirements and 123 relations. The ’4x CMS’
model therefore contains 488 requirements and 492 relations. The difference be-
tween the models after inferencing is small compared to the consistency check-
ing. Both activities indicate a linear correlation between model size and memory
consumption (when we take the amount of memory at startup, 40 MB, out of
consideration). More research is needed to verify this.

Using the Eclipse Test & Performance Tools Platform Project again, we did
a Memory Analysis on TRIC. While the analysis did not complete correctly
(the amount of memory needed for analysis exceeded the available memory), we
could conclude that most memory is occupied by the JENA Framework. Every
model is represented in a graph, containing nodes and triples.

For performance JENA is probably not the best choice, but as we mentioned
in the design chapter, JENA is the only available reasoner offering derivation
logging. This logging functionality is used extensively by TRIC to support
analysis of inferred relations.

68



8.5. CONCLUSION

8.4.3 Interoperability

TRIC offers a platform to reason on relations in requirements models. There
are a lot of existing tools outperforming TRIC with respect to functionality and
usability. Also, for conducting case studies it will save time when requirements
models entered with another tool could be read by TRIC.

The requirements models are expressed in RDF notation, this is an open
and interchangeable data format. When third-party tools are able to store their
models in XML syntax, it is relatively simple to write an XSLT transformation
to convert the models to the RDF notation used by TRIC. In this way, TRIC
can be used for reasoning and analysis, while other tools are used to model the
requirements.

8.4.4 Portability

In general Eclipse RCP applications are platform independent. Since Java is
used as programming language it should run on any machine having a Java Vir-
tual Machine (JVM). However, for the Visualization Engine we used a Windows
specific library to create a bridge between the user-interface of Eclipse (SWT)
and the user-interface of JGraph (AWT). Without modification of the code for
the Visualization Engine, TRIC will not function on Mac OSX or on any UNIX
based OS.

8.4.5 Usability

TRIC provides a graphical user interface to create requirements models, and
add requirements and relations to a model. The user interface is basic, but
enables the user to model requirements in a requirements model conforming to
the requirements metamodel.

The (inferred) relations between requirement are only listed for each indi-
vidual requirement. No overview is provided, forcing the requirements engineer
to browse al modeled requirements to look for interesting inference results. The
visualization of derivation traces really helps to understand to explain how the
reasoner concluded a certain relation.

The inconsistencies are listed textually in the console. They refer to require-
ments instead of relations. It is up to the requirements engineer to investigate
which relation caused the inconsistency, which is non-trivial.

There are some functions lacking to make the tool user-friendly. For instance
the tool does not provide a function to list all modeled requirements and does
not give an overview of all relations inferred by the inference engine. Also, the
tool does not allow the user to delete requirements.

8.5 Conclusion

We evaluated the tool using the functional and nonfunctional requirements de-
fined in Chapter 5. To evaluate the tool support for the modeling process we
created an example case for a Course Management System (CMS). The require-
ments for the CMS this are listed in Appendix A.

69



CHAPTER 8. EVALUATION OF TRIC

TRIC supports the modeling of requirements, requirements can be entered
using a dialog. This ensures the modeled requirements conform to the require-
ments metamodel (i.e. each requirement has a name, description, status and
priority). With another dialog requirements can be related to each other. While
the tool prevents a self-relation (for example R1 refines R1), it does not check
for consistency until the requirements engineer runs the consistency checker.

The tool infers the implicit relations and checks the model for consistency
according to the formal semantics of the requirements relations. We verified the
correctness of the reasoner with unit tests.

The tool does not support multiple requirements metamodels. The design
is prepared to be extended to support this.

We investigated the scalability of the tool. The modeled CMS case is inferred
and checked for consistency in seconds. Larger models take relatively more time.
For consistency checking the execution time it seems there is an exponential
correlation with the model size. The memory consumption for both inferencing
and consistency checking seems to be linear to the size of the model, more
research is needed to verify this.

Because the models are stored in an interchangeable data format (RD-
F/XML), it is possible to define XML transformations to and from models of
other tools (if these tools also store there models using XML syntax).

The usability of the tool can be improved, though the modeling of require-
ments and the analysis of the implicit relations is fully supported. Inconsis-
tencies are found, but the tool does not proved an explanation which relations
caused the inconsistency.

In the next chapter we conclude this thesis and provide directions for future
work.

70



9
Conclusion

9.1 Introduction

This chapter concludes this thesis, and gives directions for future work.
First we summarize our work in Section 9.2. In Section 9.3 we revisit the

research questions. In Section 9.4 we reflect on our work and discuss the meta-
modeling approach for reasoning on requirements. In Section 9.5 we discuss
directions for future work.

9.2 Summary

In the Software Engineering practice software requirements are one of the ear-
liest artifacts describing a system. Without requirements we cannot verify the
quality of a delivered software product. Requirements are mostly textual de-
scriptions. Traceability is considered essential to manage consistency between
software development artifacts. Most research work focused on the relation
between requirements and other artifacts such as design, code and test cases.
However less attention is paid to the relation between requirements.

Göknil et al. [19][17] proposed a requirements metamodel. This provides
structure to requirements models. This metamodel is distilled from key entities
from several requirements engineering approaches described in literature. The
main focus of the requirements metamodel is on requirements relations and their
types. Furthermore, [17] provides formal semantics of the requirements relations
in first-order logic. This enables reasoning on requirements and consistency
checking. The requirements metamodel and the formal semantics are described
in Chapter 4.

To provide a proof of concept for the metamodeling approach for reasoning
about requirements proposed by Göknil et al. [19] we need an environment to
model requirements conforming to the requirements metamodel. And we need
a tool that supports first-order logic reasoning over requirements relations.

71



CHAPTER 9. CONCLUSION

To the best of our knowledge, no requirements management tools exists
which are capable of reasoning about requirements relations using formal se-
mantics. Therefore, we developed a tool named TRIC (Tool for Requirements
Inference and Concistency checking). TRIC is developed as an Eclipse RCP
application. In Chapter 5 we described the requirements for the tool.

Requirements models are expressed in the Web Ontology Language (OWL),
because there are first-order logic reasoners for OWL. The JENA Semantic Web
Framework is used as OWL API. We especially chose for the JENA framework
because its reasoner provides derivation logging. We use this logging to analyze
and visualize the derivation trace of inferred relations. We described the design
of TRIC in Chapter 6.

To establish inference of implicit relations and to enable consistency checking
we created a mapping between the formalization of requirements relations to
OWL syntax and reasoner rules. Because the formal semantics are expressed
in first-order logic, this mapping could be done straight-forward. Because of
its more complicated formal semantics we needed a specific approach for the
partial-refines relation. The implementation is described in Chapter 7.

We evaluated TRIC using an example case of a Course Management System.
We used the requirements for the tool to verify the design and implementation.
The modeling of requirements in models conforming to the requirements meta-
model is supported. The inference of implicit relations and consistency checking
of the model is supported. The analysis of implicit relations is supported by a
visualization engine. It depicts the derivation steps of the reasoner. Inconsisten-
cies are reported, but there is no explanation for which requirements relations
are contradicting.

TRIC does not support multiple metamodels, though the design is prepared
to be extended to support this. We investigated the scalability of the tool by
looking at the time and resource behavior. The inferencing and consistency
checking process takes a couple of seconds with the CMS case model (122 re-
quirements, 123 relations). But for consistency checking the time increases ex-
ponentionally with larger models. The memory consumption seems linear with
respect to the model size. The evaluation of the tool is described in Chapter 8.

9.3 Answering the research question

Our main research question is:

Can a tool be developed to support modeling of and automated rea-
soning on requirements models in order to infer implicit requirements
relations and detect inconsistencies?

We designed and implemented a tool capable of reasoning about require-
ment relations. The formalization of the requirement relations is defined for the
relationship types in the requirements metamodel.

From the main question we derived a number of sub questions. We answer
them separately.

What are the requirements for the tool?

We identified two stakeholders for the requirements tool: metamodel engi-
neers and requirement engineers. The first is concerned with the definition of

72



9.3. ANSWERING THE RESEARCH QUESTION

the requirements metamodel and the formal semantics of the requirement rela-
tionships. The requirement engineer is the actual user of the tool. He/she enters
requirements into a model conforming to a selected requirements metamodel.

The tool should support the modeling of requirements conforming to a given
metamodel. While the requirements metamodel is intended to be customized,
the tool support we developed is only supporting one requirements metamodel.
Since the metamodel and the reasoner rules are defined in separate files, the tool
is prepared to be extended to support other metamodels. The tool is limited
to reason using OWL-DL (Description Logics), which is a subset of first-order
logic.

The tool should be capable of automated reasoning about requirements using
the formalization of requirements relations in first-order logic. Contradicting
(inconsistent) requirement relations should be detected by the tool.

In Chapter 5 we listed all requirements for the tool.

How can requirements models be represented to conform to a meta-
model and to enable reasoning?

We develop the tool using the Eclipse framework. For representing mod-
els the usage of the Eclipse Modeling Framework (EMF) would be an obvious
choice. However, to the best of our knowledge there exist no first-order logic
reasoners capable of reasoning directly about EMF models. Therefore we chose
to represent both requirements metamodels as requirements models as Web
Ontology Language (OWL) ontologies.

OWL offers a structured representation and can represent the logical prop-
erty characteristics of relationships. The latter capability is very useful because
a standard OWL reasoner can infer some of the implicit relations using these
characteristics (in our case transitivity and symmetry).

The OWL ontology representing the requirements metamodel is imported
into each requirements model. This creates an explicit link between the meta-
model and the conforming model. The conformance is guaranteed by the tool
implementation, though the tool is currently implemented to support only one
metamodel.

Which reasoner engine can be used to reason on requirements mod-
els?

There exists a number of OWL-DL (Description Logics) reasoners. We chose
the JENA Semantic Web Framework as OWL API to create and manipulate the
requirements models as OWL ontologies. While there are reasoners which are
better performing and supporting advanced OWL reasoning, we chose for the
reasoner provided by the JENA framework. The main reason is its capability to
log derivation traces. During inference an internal inference graph structure is
used. This graph can be inspected afterwards to analyze which facts and rules
were used to conclude a certain implicit relation. This capability is of great
benefit for the derivation analysis and the visualization of inferred relations. In
Chapter 7 we describe how we applied this to the Visualization Engine.

Another benefit of the JENA reasoner is the support for custom reasoner
rules. While there exists standards for reasoner rules (such as SWRL [20]),
JENA uses its own custom rule format. The rules are easy to read and therefore
easy to create and change by a metamodel engineer.

73



CHAPTER 9. CONCLUSION

How do we create a mapping between the formalization of require-
ments and requirements relations to reasoner rules?

The formalization of requirements, as described by Göknil et al. [19][17], is
in first-order logic. We describe the formalization in Chapter 4. The formal-
ization is mapped to OWL-DL by defining the logical property characteristics
of the requirement relationship types in the metamodel and by creating custom
reasoner rules. While OWL-DL is a subset of first-order logic, no expressivity
is lost with the mapping of the formalization.

How well does the resulting tool support the requirements reasoning
approach?

We evaluated the tool by using the example case of the Course Management
System (CMS). We modeled the requirements and their relations using TRIC
and analyzed the inferred relations and inconsistencies. In a number of itera-
tions we refined the requirements model by removing erroneous requirements
relations.

The textual derivation traces and visualization of those traces were very
helpful to identify the given relations that caused a certain inferred relations.
For the inconsistencies there is a lack of proper explanation of the cause of an
inconsistency. It would be useful to trace which given requirements relations
are involved.

The inference and consistency checking process of the CMS case is performed
in a few seconds. We briefly investigated the time behavior of the tool with
larger models. A model which is four times larger takes around two minutes
to complete consistency checking. Because the models are represented and ma-
nipulated in-memory, the memory consumption might be a limitation for very
large requirements models.

Since TRIC is a prototype, the usability of the tool could be improved.
The tool does not allow deletion of modeled requirements. Also an overview
of modeled requirements and all inferred implicit relations is missing. Both
features are useful for users of the tool.

Because the CMS case is an example, industrial case studies should be con-
ducted to validate the requirements metamodel, the formal semantics of the
requirements relations and our tool support.

9.4 Discussion

The requirements metamodel should be validated with empirical research. The
tool can help to conduct case studies, although we think there is a big difference
between a real case study compared to the example case study of the Course
Management System we used. The example case was created by having the
relationship types in mind. We deliberately created requirements in order to
demonstrate all relationship types.

When identifying the relations between requirements we noticed that there
is often a relation which is not one of the five relations defined in the metamodel.
For example when requirements mention the same functionality of a system and
there is no requirement describing that functionality.

74



9.5. FUTURE WORK

Because there is no natural language processing involved in this approach,
the tool cannot verify whether relationships are correctly applied. The verifi-
cation is up to the requirements engineer. The tool can infer implicit relations
and check for consistency, but heavily relies on the relations identified by the
requirements engineer. One missed relation can make the difference between a
consistent and an inconsistent model. The tool can reveal hidden relations and
improve traceability but it cannot be used to prove correctness of the model.

To use TRIC a requirements engineer does not have to know the formal-
ization details of requirements relations. The tool does not expose the user to
the first-order logic used internally. The derivation log and visualization engine
provide information about which requirement relations were used to derive an
implicit relation, but it does not explain why.

The metamodel contains more elements then we have used in the tool sup-
port. We left out entities for stakeholders and test cases, and did not distinguish
requirement subtypes such as functional and non-functional requirements. Also,
we did not provide query and reasoning support for the status and priority of
requirements. It would be useful to check only the accepted requirements for
consistency and leave the proposed requirements out. Or to check the con-
sistency of priorities: a high-priority requirement should not require a lower
priority requirement.

9.5 Future work

In this section we will describe directions for future work. The developed tool
supports only one requirements metamodel. Initially the tool was supposed to
support multiple metamodels. We did not implement support for this, because
there are some issues to be resolved first. In Section 9.5.1 we discuss the support
for multiple metamodels.

The tool is capable of consistency checking. It reports whether a require-
ments model contains contradictions. However it does not explain which mod-
eled relations cause an inconsistency. Section 9.5.2 we discuss the open issues
for the analysis of inconsistencies.

TRIC is developed to provide a proof of concept for reasoning on require-
ments. It is not intended to serve as an alternative to existing requirements
management tools. To conduct large case studies using TRIC it is a cumber-
some task to manually enter all requirements. An integration with industrial
tools would alleviate this work. In Section 9.5.3 we discuss this integration.

In this work we focused on modeling requirements without taking changes
into account. Requirements evolve over time as the demands of stakeholders
are changing. To trace and analyze changes between requirements models using
our tool, more research is needed. In Section 9.5.4 we discuss open issues for
change impact analysis.

9.5.1 Support for multiple metamodels

In practice the requirements metamodel will most likely be adapted to a spe-
cific requirements approach. Navarro et al. [33] identify this adaptation over
adoptation as a critical obstacle.

75



CHAPTER 9. CONCLUSION

The current implementation of TRIC does not support multiple require-
ments metamodels. It only supports the requirements metamodel proposed by
Göknil et al. [19]. Initially we intended to support multiple metamodels as the
’metamodeling approach’ aims at a customizable core requirements metamodel.
Each of those metamodels would have different relationship types and therefore
needs specific formalization rules.

In the tool design we tried to fully separate the metamodel from the ap-
plication code, but some code is specific for the metamodel. For instance the
decomposition of the partial-refines relation is done programmatically.

Before extending TRIC to support multiple metamodels, research should be
done on how and to what extend the core requirements metamodel is going to
be customized. Especially a closer look at the used relationship types is needed.
Are the relationship types in the metamodel fixed? Or can they be replaced or
deleted?

9.5.2 Analysis of inconsistencies

The current implementation is able to detect inconsistencies using the formula
relations, but it cannot provide an explanation which given requirement relations
are causing the inconsistency.

Formula relations are derived from requirements relations, and there are
inference rules for the formula relations (listed in Section 4.5.2 in Chapter 4).
Multiple requirements relations might map to the same formula relation, and
there might be multiple ways to infer a contradicting formula relation. Therefore
it is not trivial to determine which given requirements relation is causing a
contradiction.

Ideally the tool not only lists inconsistencies, but also provides an expla-
nation why there is an inconsistency. The requirements engineer then is sup-
ported to analyze and resolve inconsistencies. The visualization engine and the
derivation trace analysis used for explaining inferred relations might be useful
to achieve this.

9.5.3 Integration with industry standard tools

For conducting future case studies investigating the metamodeling approach
supported by TRIC, it is very likely that requirements are already modeled in a
tool or structured document. Instead of manually entering all the requirements
in TRIC, it could be worthwhile to transform an existing requirements model
into an OWL model TRIC can handle. This can for example be a separate
transformation (e.g. an XSLT, if the source model is also expressed in XML),
as depicted in Figure 9.1.

TRIC

OWL

requirements

model

Existing

requirements

specification

document

XML

transformation

Other

requirements tool

Figure 9.1: Usage of XML transformations to integrate TRIC with other tools

For tools dealing with different relationship types, the output of TRIC (im-
plicit relations and inconsistencies) might be useful to import in the original tool.

76



9.5. FUTURE WORK

TRIC then becomes an external reasoner and consistency checker interoperable
with existing tools.

9.5.4 Change impact analysis

One of the benefits of modeling requirements is the ability to inspect relations
between requirements. When a requirement is subject to change, it is very useful
to determine the impact on other requirements (or more general: artifacts).
Since TRIC is aware of both explicit (given) relations and implicit (inferred)
relations, it should be possible to analyze the impact of a change. In other
words: what will happen when a requirement will be removed or updated?

Both the given relations as the inferred relations can be helpful to narrow
down the list of candidate impacted requirements. Although more research is
needed on a change impact analysis approach using a reasoner.

One issue is the deletion of requirements relations because the deleted given
relation might be an inferred relation as well. When rerunning the inference
engine the deleted relation appears again, now as an inferred relation.

77



CHAPTER 9. CONCLUSION

78



References

[1] Abma, M. Metamodels for traceability in requirements management tools
(to be published). Master’s thesis, University of Twente, the Netherlands,
2009.

[2] Abran, A., Moore, J. W., Bourque, P., and Dupuis, R., Eds. Guide
to the Software Engineering Body of Knowledge. http://www.swebok.org/.
IEEE Computer Society, 2008.

[3] Alder, G. Design and implementation of the JGraph Swing component.
Available online via www.jgraph.com/documentation.html (2002).

[4] Batory, D. S., Johnson, C., MacDonald, B., and Heeder, D. v.
Achieving extensibility through product-lines and domain-specific lan-
guages: A case study. In ICSR-6: Proceedings of the 6th International
Conerence on Software Reuse (London, UK, 2000), Springer-Verlag,
pp. 117–136.

[5] Baudry, B., Nebut, C., and Le Traon, Y. Model-driven engineer-
ing for requirements analysis. In EDOC ’07: Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Conference (Wash-
ington, DC, USA, 2007), IEEE Computer Society.

[6] Brottier, E., Baudry, B., Le Traon, Y., Touzet, D., and Nico-
las, B. Producing a global requirement model from multiple requirement
specifications. In EDOC ’07: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Conference (Washington, DC,
USA, 2007), IEEE Computer Society.

[7] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M. Pattern-Oriented Software Architecture Volume 1: A System of
Patterns, 1 ed. Wiley, 1996.

[8] Cerón, R., Dueñas, J. C., Serrano, E., and Capilla, R. A meta-
model for requirements engineering in system family context for software
process improvement using cmmi. In PROFES (2005), F. Bomarius and
S. K. Sirviö, Eds., vol. 3547 of Lecture Notes in Computer Science, Springer,
pp. 173–188.

[9] Cockburn, A. Writing effective use cases. Addison-Wesley Boston, 2001.

[10] Dahlstedt, Å. Requirements Interdependencies-Moulding the State
of Research into a Research Agenda. In Ninth International Workshop
on Requirements Engineering: Foundation for Software Quality (REFSQ
2003), held in conjunction with CAiSE 2003 (2003), pp. 71–80.

79



REFERENCES

[11] Dean, M., and Schreiber, G. OWL web ontology lan-
guage reference. W3C recommendation, W3C, Feb. 2004.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[12] Duboc, L., Rosenblum, D., and Wicks, T. A framework for char-
acterization and analysis of software system scalability. In ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering (New York, NY, USA, 2007), ACM,
pp. 375–384.

[13] Duffy, D. A., Macnish, C., Mcdermid, J. A., and Morris, P.
A framework for requirements analysis using automated reasoning. In
CAiSe ’95: Proceedings of the 7th International Conference on Advanced
Information Systems Engineering (London, UK, 1995), Springer-Verlag,
pp. 68–81.

[14] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., and Nu-
seibeh, B. Inconsistency handling in multiperspective specifications. IEEE
Transactions on Software Engineering 20, 8 (1994), 569–578.

[15] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., and Sebastiani, R.
Reasoning with goal models. Lecture Notes in Computer Science (2002),
167–181.

[16] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., and Sebastiani, R.
Formal reasoning techniques for goal models. Lecture Notes in Computer
Science 2800 (2003), 1–20.

[17] Göknil, A., Kurtev, I., van den Berg, K., and Veldhuis, J. W. Se-
mantics of Trace Relations in Requirements Models for Consistency Check-
ing and Inferencing. [Submitted] Software and Systems Modeling (2009).

[18] Göknil, A., Kurtev, I., and van den Berg, K. G. Change im-
pact analysis based on formalization of trace relations for requirements. In
ECMDA Traceability Workshop (ECMDA-TW), Berlin, Germany (Trond-
heim, Norway, June 2008), J. Oldevik, G. K. Olsen, T. Neple, and R. Paige,
Eds., SINTEF Report, pp. 59–75.

[19] Göknil, A., Kurtev, I., and van den Berg, K. G. A metamodeling
approach for reasoning about requirements. In 4th European Conference
Model Driven Architecture - Foundations and Applications, ECMDA-FA
2008, Berlin, Germany (Berlin, June 2008), I. Schieferdecker and A. Hart-
man, Eds., vol. 5095 of Lecture Notes in Computer Science, Springer Verlag,
pp. 310–325.

[20] Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof,
B., and Dean, M. SWRL: A semantic web rule language combining OWL
and RuleML. W3C Member Submission 21 (2004).

[21] INCOSE. Requirements Management Tools Survey.
http://www.incose.org/, January 2009.

80



REFERENCES

[22] ISO/IEC 9162-1991. Information technology - Software Product
Evaluation - Quality characteristics and guidelines for their use. ISO,
Geneva, Switzerland, 1991.

[23] Kent, S. Model Driven Engineering. In Proceedings of the Third
International Conference on Integrated Formal Methods (2002), Springer-
Verlag London, UK, pp. 286–298.

[24] Kleppe, A., Warmer, J., and Bast, W.
MDA explained: the model driven architecture: practice and promise.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2003.

[25] Koch, N., and Kraus, A. Towards a common metamodel for the develop-
ment of web applications. In Web Engineering. Springer, 2003, pp. 419–422.

[26] Kurtev, I. Adaptability of model transformations. PhD thesis, University
of Twente, Enschede, May 2005.

[27] Lethbridge, T., and Laganière, R. Object-Oriented Software
Engineering. McGraw-Hill, New York, 2005.

[28] Lopez, O., Laguna, M., and Garćıa, F. Metamodeling for re-
quirements reuse. In Proceedings of the V Workshop em Engenharia de
Requisitos WER 2002 (2002).

[29] McBride, B. Jena: A semantic web toolkit. IEEE Internet Computing
6, 6 (2002), 55–59.

[30] Miller, J., and Mukerji, J. Mda guide version 1.0.1. Tech. rep., Object
Management Group (OMG), 2003.

[31] Moon, M., Yeom, K., and Chae, H. An approach to developing domain
requirements as a core asset based on commonality and variability analysis
in a product line. IEEE transactions on software engineering 31, 7 (2005),
551–569.

[32] Mylopoulos, J., Chung, L., and Yu, E. From object-oriented to
goal-oriented requirements analysis. Commun. ACM 42, 1 (January 1999),
31–37.

[33] Navarro, E., Letelier, P., Mocholi, J. A., and Ramos, I. A
metamodeling approach for requirements specification. JOURNAL OF
COMPUTER INFORMATION SYSTEMS 46, 5 (2006), 67–77.

[34] Nuseibeh, B., and Easterbrook, S. Requirements engineering: a
roadmap. In ICSE ’00: Proceedings of the Conference on The Future
of Software Engineering (New York, NY, USA, 2000), ACM, pp. 35–46.

[35] OMG. Systems Modeling Language (SysML) Specification version 0.9.
Tech. rep., Technical report, SysML Partners, 2005.

[36] Protégé. Ontology Editor, Stanford Center for Biomedical Informatics
Research. http://protege.stanford.edu/, January 2009.

81



REFERENCES

[37] Rashid, A., Moreira, A., and Araújo, J. Modularisation and compo-
sition of aspectual requirements. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software development (New
York, NY, USA, 2003), ACM, pp. 11–20.

[38] Rodrigues, O., dAvila Garcez, A., and Russo, A. Reasoning about
requirements evolution using clustered belief revision. In Advances in
Artificial Intelligence SBIA 2004 (2004), vol. 3171 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, pp. 41–51.

[39] Van Lamsweerde, A., Darimont, R., and Letier, E. Managing
conflicts in goal-driven requirements engineering. IEEE Transactions on
Software Engineering 24, 11 (1998), 908–926.

[40] Vicente-Chicote, C., Moros, B. n., and Toval, A. Remm-studio: an
integrated model-driven environment for requirements specification, valida-
tion and formatting. Journal of Object Technology, Special Issue TOOLS
EUROPE 2007 6, 9 (October 2007), 437–454.

[41] Zave, P. Classification of research efforts in requirements engineering.
ACM Computing Surveys 29, 4 (1997), 315–321.

82



A
Course Management System

requirements

To evaluate the functionality of the tool we created an example requirements
document. In Chapter 8 we introduce this case.

The requirements are grouped by stakeholder. Functional and non-functional
requirements are listed separately.

A glossary is provided which gives additional information about concepts
printed in italics.

Stakeholders

We distinguish four stakeholders, each having a different role and usage of the
system, and hence having different requirements.

Lecturer Uses the CMS to provide course material to students, and to manage
the course’s administration (such as grading and keeping track of deliver-
ables).

Student Uses the CMS when participating courses. The CMS provides infor-
mation about courses, and is used to subscribe to courses, hand in work,
collaborate with other students, etc.

Administration Bureau Onderwijs Zaken (Office for Educational Affairs), uses
the CMS to manage courses, assigning teachers to courses, and coordinat-
ing the enrolment policies. Furthermore the administration collects all
kinds of statistics using the CMS, such as grade averages per course.

Maintainer Provides technical support for CMS, creating and restoring back-
ups is one of the responsibilities.

83



APPENDIX A. COURSE MANAGEMENT SYSTEM REQUIREMENTS

General requirements

R1 The system shall provide static course information

R2 The system shall be able to store static course information

R3 The system shall be able to represent static course information

R4 The system shall provide dynamic course information

R5 The system shall be able to store dynamic course information

R6 The system shall be able to represent dynamic course information

R7 The system shall provide a messaging system

Requirements of Students

Functional requirements

R8 The system shall enable students to retrieve contact information of stu-
dents and lecturers of subscribed courses

R9 The system shall provide the history of a course (view contents of a course
over the years)

R10 The system shall provide the history of attended courses

R11 The system shall enable students to subscribe/unsubscribe to courses

R12 The system shall enable students to subscribe/unsubscribe to exams

R13 The system shall be able to provide a collaboration environment in a
course (so students can share files and notes within a team)

R14 The system shall be able to let students submit textual content

R15 The system shall be able to let students upload files

R16 The System shall allow sending messages to individuals, teams or all course
participants at once

R17 The system shall allow students to create teams.

R18 Teams are created by students inviting other students in the same course
using the messaging system.

R19 The system shall facilitate searches in all static information of courses.

R20 The system shall facilitate searches within all dynamic information and
files in a course

R21 The system shall allow students to edit their personal information

R22 The system shall allow students to change their password

84



R23 The system shall provide a password reset function, which resets the pass-
word and mails it to the user

R24 The system shall notify students of events (posted news messages, team
invites and scheduled exams)

R25 The system shall allow students to customize the notification behaviour

R26 The system shall allow students to view course grade statistics per semester

Non-functional requirements

Privacy

R27 The system shall protect the users privacy

R28 The system shall prevent students from viewing grades of others

R29 The system shall provide a user-customizable visibility policy for the per-
sonal information

Availability

R30 The system shall have high availability

R31 The system shall not have unexpected downtime

R32 The system shall have downtime at most 4 hours/month

R33 The system shall have its expected downtime announced at least 48 hours
in advance

R34 The system shall have downtime only during low-intensity hours

User friendliness

R35 The system will be user friendly

R36 The system shall have bilingual support (Dutch and English)

R37 The system shall have a maximum of 3 clicks to reach any content

R38 The system shall have a single login to access all content

R39 The system shall have a consistent UI (in all the views and dialogs, the
UI elements behave and are placed in a similar way)

R40 The system shall have a UI which is intuitive (the behaviour of the system
is according to the intuition of a standard end user)

R41 The system shall have a descriptive UI (all UI elements should have a
descriptive text)

85



APPENDIX A. COURSE MANAGEMENT SYSTEM REQUIREMENTS

Accessibility

R42 The system shall have high accessibility

R43 The system shall be accessible by disabled (blind) users, who should be
able to navigate the system and have access to all content and functionality

Security

R44 The system will be secure

R45 The system shall allow only students to change study information of others

Interoperability

R46 The system shall be highly interoperable

R47 The system shall provide an export to commonly used calendar formats
(allowing users to import scheduled lectures into a personal calendar)

Requirements of Lecturers

Functional requirements

R48 The system shall allow lecturers to create courses

R49 The system shall allow lecturers to create entirely new courses

R50 The system shall allow lecturers to recreate a course (copied from a pre-
vious period)

R51 The system shall allow lecturers to register assistant lecturers

R52 The system shall allow lecturers to prepare lecture schedules (roster)

R53 The system shall allow lecturers to upload course material for lectures

R54 The system shall enable lecturers to manage grades (insert, update, cal-
culate final grade)

R55 The system shall allow lecturers to specify and change the grading policy
(weights of grades, determining when a student passes the course)

R56 The system shall enable lecturers to mail multiple students at once

R57 The system shall support the use of mail merge templates, to customize
mass mailings (example: Dear [Firstname], your grade is: [grade]).

R58 The system shall provide a one-click function which will mail all students
of the course their grades (no template should be entered or altered)

R59 The system shall allow lecturers to manage static course information

R60 The system shall allow lecturers to limit the number of students subscrib-
ing to a course

86



R61 The system shall allow lecturers to specify enrolment policies based on
grade, first-come first-serve (fcfs), and department

R62 The system shall allow lecturers to specify enrolment policies based on
grade

R63 The system shall allow lecturers to specify enrolment policies based on
first-come first-serve

R64 The system shall allow lecturers to specify enrolment policies based on
department

R65 The system shall prevent students from subscribing to a course they dont
qualify for (not completing required courses, or not from the right depart-
ment(s)

R66 The system shall allow lecturers to view all personal information (includ-
ing pictures) of people in the system

R67 The system shall enable lecturers to plan meetings with students or stu-
dent teams

R68 The system shall allow lecturers to manage dynamic course information

R69 The system shall allow lecturers to post news messages

R70 The system shall allow lecturers to manage the archive

R71 The system shall allow lecturers to set the visibility of archived items
(enabling them to gradually expose content to students)

R72 The system shall allow only lecturers to manage student teams

R73 The system shall allow lecturers to enter grades for teams (so each team
member will get that grade)

R74 The system shall allow only lecturers to create new teams

R75 The system shall allow lecturers to insert students into teams

R76 The system shall allow lecturers to remove students from teams

R77 The system shall allow lecturers to delete teams

R78 The system shall allow lecturers to assign (assistant) lecturers to teams

R79 The system shall allow lecturers to name and rename teams

R80 The system shall provide grade statistics (averages, standard deviation,
per department, per year)

R81 The system shall enable lecturers to compare grade statistics with other
courses

R82 The system shall allow lecturers to duplicate courses and import materials
from other courses into another course, but only from their own courses

87



APPENDIX A. COURSE MANAGEMENT SYSTEM REQUIREMENTS

Non-functional requirements

Security

R83 The system shall allow lecturers to view the dynamic course information
of courses given by other lecturers

R84 The system shall allow lecturers to manage the dynamic content visibility
(visible for students and lecturers, visible for lecturers, visible to self only)

R85 The system shall allow students to view only their own grade

R86 The system shall allow lecturers to view all grades of all students in the
course

Interoperability

R87 The system shall be able to import BOZ roster information into the course
roster

Availability

See Students.

User friendliness

See Students.

Accessibility

See Students.

Requirements of Maintainer

Functional requirements

R88 The system shall allow maintainers to create back-ups of the entire system

R89 The system shall allow maintainers to restore partial and complete back-
ups of a specific date

R90 The system shall allow maintainers to limit the size of files being uploaded
by lecturers and by students

R91 The system shall allow maintainers to limit the total available space for
specific courses

Non-functional requirements

Extensibility / evolvability

R92 The system shall be easily extensible and evolvable

88



Testability

R93 The system shall be easily testable

Scalability

R94 The system shall be scalable

Maintainability

R95 The system shall be easily maintainable

Interoperability

R96 The system shall be interoperable with secondary university systems

Requirements of the Administration

Functional requirements

R97 The system shall allow only the administration to manage courses

R98 The system shall allow only the administration to create new courses

R99 The system shall allow only the administration to delete courses

R100 The system shall allow only the administration to update static course
information

R101 The system shall allow only the administration to appoint (principal) lec-
turers to courses

R102 The system shall allow only the administration to specify the minimum
number of students for a course. If there are too little subscriptions in a
semester, that course will not be given during that semester.

R103 The system shall have no maximum limit for the number of course partic-
ipants ever

R104 The system shall allow only the administration to specify the course pre-
requisites for students

R105 The system shall allow only the administration to specify completed courses
as prerequisites of a course

R106 The system shall allow only the administration to specify the department
as prerequisite of a course

R107 The system shall allow the administration to retrieve all study and personal
information of students

R108 The system shall allow the administration to retrieve all lecturer informa-
tion

R109 The system shall allow the administration to enter lecturer information

89



APPENDIX A. COURSE MANAGEMENT SYSTEM REQUIREMENTS

R110 The system shall allow the administration to calculate grade statistics

R111 The system shall allow the administration to calculate grade statistics per
year

R112 The system shall allow the administration to calculate grade statistics per
student

R113 The system shall allow the administration to calculate grade statistics per
course

R114 The system shall allow the administration to calculate grade statistics per
department

R115 The system shall allow the administration to calculate grade statistics
using combinations of the possibilities mentioned above

R116 The system shall allow the administration to calculate the number of
passed students per chair per time-period

R117 The system shall allow the administration to evaluate courses through
students by means of a web-survey

R118 The system shall allow the administration to manually subscribe students
to courses, bypassing requirements and enrolment policies

R119 The system shall not allow users to change information which is contained
and maintained by secondary university systems

R120 The system shall automatically synchronize with secondary university sys-
tems

Non-functional requirements

Availability

See Students.

User friendliness

See Students.

Interoperability

R121 The system shall be interoperable with secondary university systems

Extensibility

R122 The system shall allow the administration to make exceptions with regard
to student enrolment to courses

90



Glossary

Personal Information Information about a person, such as name, address, a
picture, interests, etc.

Study Information Information about a persons study progress, such as sub-
scribed courses, grades and exam attempts.

Assistant Lecturers Lecturers who assist the principal lecturer for a course.

Static Course Information Information of a course which does not change
while a course is given, but between semesters. This includes the lecturer,
amount of ects and study material.

Dynamic Course Information Information of a course which changes while
a course is given. This includes news messages, archived files and roster.

Secondary University Systems All university systems which are shared by
different departments, such as a central address book containing all kinds
of personal information

Manage Managing involves the creation, reading, updating and deleting of
information.

91



APPENDIX A. COURSE MANAGEMENT SYSTEM REQUIREMENTS

92



B
Inference rules

This appendix provides the reasoner rules for the Inference Engine. The syntax
is specific for the reasoner of the JENA Semantic Web Framework [29]. The
rules are discussed in detail in Chapter 7.

# Import OWL reasoner rules

@include <OWL >.

# Declaration of prefixes

5 @prefix mm: <http:// trese.ewi.utwente.nl/ requirements .owl#>.

@prefix xsd: <http:// www.w3.org /2001/ XMLSchema #>.

@prefix inf: <inf: // inference_engine /#>.

#-----------------------------------------------------

10 # Permeation of disjointedness .

# Not a standard rule of the JENA OWL reasoner ,

# but neccessary for inferring conflicts

#-----------------------------------------------------

[ subset_also_disjoint: (? s1 inf:subSetOf ?s2)

15 (? s2 inf:disjointWith ?s3)

->

(? s1 inf:disjointWith ?s3)]

#-----------------------------------------------------

20 # Map requirement relations to subset relation

# between satisfying sets of systems

#-----------------------------------------------------

[ requires_to_subset: (? r1 mm:requires ?r2)

(? s1 inf:satisfies ?r1)

25 (? s2 inf:satisfies ?r2)

->

(? s1 inf:subSetOf ?s2)]

93



APPENDIX B. INFERENCE RULES

30 [refines_to_subset: (?r1 mm:refines ?r2)

(?s1 inf:satisfies ?r1)

(?s2 inf:satisfies ?r2)

->

(?s1 inf:subSetOf ?s2)]

35

[contains_to_subset: (?r1 mm:contains ?r2)

(?s1 inf:satisfies ?r1)

(?s2 inf:satisfies ?r2)

->

40 (?s1 inf:subSetOf ?s2)]

#-----------------------------------------------------

#If there is subset relation between sets of systems ,

# conclude a requires relation

45 #-----------------------------------------------------

[subset_to_requires: (?s1 inf:subSetOf ?s2)

(?s1 inf:satisfies ?r1)

(?s2 inf:satisfies ?r2)

->

50 (?r1 mm:requires ?r2)]

#-----------------------------------------------------

# If there is a conflicts relation , conclude

# disjointness of the sets of systems

55 #-----------------------------------------------------

[conflict_to_disjoint: (?r1 mm:conflicts ?r2)

(?s1 inf:satisfies ?r1)

(?s2 inf:satisfies ?r2)

->

60 (?s1 inf:disjointWith ?s2)

(?s2 inf:disjointWith ?s1)]

#-----------------------------------------------------

# If there is disjointness of the sets of systems

65 # conclude a conflicts relation

#-----------------------------------------------------

[disjoint_to_conflict: (?s1 inf:disjointWith ?s2)

(?s1 inf:satisfies ?r1)

(?s2 inf:satisfies ?r2)

70 ->

(?r1 mm:conflicts ?r2)]

#-----------------------------------------------------

# Rules to infer a partial refines

75 #-----------------------------------------------------

[temp_req_to_p_ref1: (?r1 mm:partial_refines ?r2)

<-

(?r1 mm:refines ?rt)

(?r2 mm:contains ?rt)

80 (?rt isTemporal ’true ’^^ xsd:boolean )]

94



[ temp_req_to_p_ref2: (?r1 mm:partial_refines ?r2)

85 <-

(?rt mm:contains ?r1)

(?rt mm:refines ?r2)

(?rt isTemporal ’true ’^^ xsd:boolean )]

Listing B.1: Textual output given at end of the inference process

95



APPENDIX B. INFERENCE RULES

96



C
Consistency rules

This appendix provides the reasoner rules for the Consistency Checking Engine.
The syntax is specific for the reasoner of the JENA Semantic Web Framework
[29]. The rules are discussed in detail in Chapter 7.

# Import OWL reasoner rules

@include <OWL >.

# Declaration of prefixes

5 @prefix mm: <http:// trese.ewi.utwente.nl/ requirements .owl#>.

@prefix cons: <cons:// consistency_checker /#>.

@prefix inf: <inf: // inference_engine /#>.

#-----------------------------------------------------

10 # Map requirement relations to formula relations

#-----------------------------------------------------

[ map_refines_to_formulas: (?r1 mm:refines ?r2)

->

(?r1 cons:all_in_whole ?r2)

15 (?r1 cons:some_implies_in ?r2)]

[ map_contains_to_formulas: (?r1 mm:contains ?r2)

->

(?r2 cons:all_in_part ?r1)

20 (?r2 cons:all_equals_in ?r1)]

[ map_part_ref_to_formulas: (?r1 mm:partially_refines ?r2)

->

(?r1 cons:all_in_part ?r2)

25 (?r1 cons:all_implies_in ?r2)]

#-----------------------------------------------------

# Properties of formula relations

#-----------------------------------------------------

97



APPENDIX C. CONSISTENCY RULES

30 [formula_rule_1: (?p1 cons:all_in_part ?p2)

(?p2 cons:all_in_whole ?p3)

->

(?p1 cons:all_in_part ?p3)]

35 [formula_rule_2: (?p1 cons:all_in_whole ?p2)

(?p2 cons:all_in_part ?p3)

->

(?p1 cons:all_in_part ?p3)]

40 [formula_rule_3: (?p1 cons:some_implies_in ?p2)

(?p2 cons:all_implies_in ?p3)

->

(?p1 cons:all_implies_in ?p3 )]

45 [formula_rule_4: (?p1 cons:all_implies_in ?p2)

(?p2 cons:some_implies_in ?p3)

->

(?p1 cons:all_implies_in ?p3 )]

50 [formula_rule_5: (?p1 cons:some_implies_in ?p2)

(?p2 cons:all_equals_in ?p3)

->

(?p1 cons:some_implies_in ?p3)]

55 [formula_rule_6: (?p1 cons:all_implies_in ?p2)

(?p2 cons:all_equals_in ?p3)

->

(?p1 cons:all_implies_in ?p3 )]

60 [formula_rule_7: (?p1 cons:all_equals_in ?p2)

(?p2 cons:all_implies_in ?p3)

->

(?p1 cons:all_implies_in ?p3 )]

65 #-----------------------------------------------------

# Consistency rules.

#-----------------------------------------------------

[inconsistency_1: (? s1 inf:subSetOf ?s1)

(? s1 inf:satisfies ?r1)

70 ->

addInconsistency (’Circular dependency ’,?r1)]

[inconsistency_2: (? s1 inf:subSetOf ?s2)

(? s2 inf:subSetOf ?s1)

75 notEqual (?s1 ,?s2)

(? s1 inf:satisfies ?r1)

(? s2 inf:satisfies ?r2)

->

addInconsistency (’Contradicting subclasses of systems ’,

80 ?r1 ,?r2)]

[inconsistency_3: (? r1 mm:conflicts ?r2)

(? r1 mm:requires ?r2)

98



->

85 addInconsistency (’Both conflicts and depends (req .)’,

?r1 ,?r2)]

[ inconsistency_4: (?r1 mm:conflicts ?r2)

(?r1 mm:partially_refines ?r2)

90 ->

addInconsistency (’Both conflicts and depends (prt.ref .)’,

?r1 ,?r2)]

[ inconsistency_5: (?r1 cons:all_in_part ?r2)

95 (?r1 cons:all_in_whole ?r2)

->

addInconsistency (’Requirement both part -of and whole’,

?r1 ,?r2)]

100 [ inconsistency_6: (?r1 cons:all_equals_in ?r2)

(?r1 cons:all_implies_in ?r2)

->

addInconsistency (’all_equals_in contr. all_implies_in ’,

?r1 ,?r2)]

105

[ inconsistency_7: (?r1 cons:all_equals_in ?r2)

(?r1 cons:some_implies_in ?r2)

->

addInconsistency (’all_equals_in contr. some_implies_in ’,

110 ?r1 ,?r2)]

Listing C.1: Textual output given at end of the inference process

99


