
RESULT MERGING FOR EFFICIENT

DISTRIBUTED INFORMATION RETRIEVAL

By Kien-Tsoi T.E. Tjin-Kam-Jet

Master’s thesis
University of Twente

March 2009

Graduation committee:

Chairman: Dr. ir. Djoerd Hiemstra

1st coordinator: Pavel V. Serdyukov, Msc.

2nd coordinator: Almer S. Tigelaar, Msc.

 - i -

Abstract

Centralized Web search has difficulties with crawling and indexing the Visible Web. The
Invisible Web is estimated to contain much more content, and this content is even more
difficult to crawl.
Metasearch, a form of distributed search, is a possible solution. However, a major
problem is how to merge the results from several search engines into a single result list.
We train two types of Support Vector Machines (SVMs): a regression model and
preference classification model. Round Robin (RR) is used as our merging baseline. We
varied the number of search engines being merged, the selection policy, and the
document collection size of the engines. Our findings show that RR is the fastest method
and that, in a few cases, it performs as well as regression-SVM. Both SVM methods are
much slower and, judging by performance, regression-SVM is the best of all three
methods. The choice of which method to use depends strongly on the usage scenario. In
most cases, we recommend using regression-SVM.

 - iii -

Preface

During my Final Project, I was still on the board of the classical student choir of the
Twente University. My last project as a member of the board involved co-organizing a
one-day event where everybody could rehearse, relax and have fun, and give a public
performance on stage in the evening. This project received the Student Union Culture
prize, which is a very nice way to end my membership of the board, and my time as a
student.

While looking for a suitable Final Project, I was leaning towards a project that involved
Database technology and Natural Language Processing. A logical step was to discuss my
plans with my study advisor, Djoerd Hiemstra. I found his suggestion for doing a Final
Project on distributed Web search very appealing and so he became my supervisor.
 Soon, it became apparent that I should pursue a different direction in the name of
Machine Learning, which I first had to become more acquainted with. This field is very
interesting, although it would not have been that interesting were it not for the
discussions I had with a fellow student, Edwin de Jong.
 Working on this research project was very inspiring, not just because of the topic, but
also because of the open and friendly research environment.
 I would like to thank my supervisors for their guidance and valuable input in my
research. I would also like to thank Ander de Keijzer, for providing me with an account
on his fast machine. I would also like to express my gratitude to everyone who gave me
advice and useful comments, especially, Robin Aly, my fellow lab rats, and Wolter
Siemons. Special thanks to my girlfriend, who supported me throughout this project.

Enschede, March 2009 Kien-Tsoi Tjin-Kam-Jet

 - v -

Contents

1 Introduction ... 1

1.1 Motivation..1

1.1.1 Search Aspects...1

1.1.2 Web Search Issues ...1

1.1.3 Metasearch ..2

1.2 Research Focus ...2

1.3 Research Questions ..3

1.4 Thesis Outline ..4

2 Ranking in Information Retrieval ... 5

2.1 Introduction..5

2.2 Term Weighting; an Example...5

2.3 Distributed Collection Statistics ..6

2.4 Learning to Rank ..7

2.4.1 Discriminant Functions ..7

2.4.2 Linear Support Vector Machines ..8

2.4.3 Non-Linear Separable Data...10

2.4.4 Non-Linear Support Vector Machine ...11

3 Related Work on Result Merging.. 13

3.1 Introduction..13

3.2 Merging Strategies ...13

3.2.1 Normalizing Scores ...13

3.2.2 Clustering Techniques...14

3.2.3 Combining Evidence ...14

3.2.4 Regression Models...15

3.2.5 Experts and Voting ...16

3.2.6 Download and Rank ..16

3.2.7 Learning to Rank...16

3.3 Uncooperative Environments...16

3.4 Summary ..17

4 Research Methodology .. 19

4.1 Dataset..19

4.1.1 Creating Subcollections and their Result Pages..19

4.1.2 Selection Policies ...22

4.2 SVM Models for Result Merging...23

4.2.1 Features ...23

4.2.2 Preference Pair Constraints ..24

4.2.3 Preference-SVM Labeling ...25

4.2.4 Regression-SVM Labeling ..26

 - vi -

4.2.5 Model Settings ..26

4.3 External Influences...27

4.3.1 Number of Result Lists..27

4.3.2 Subcollection Size..28

4.3.3 Search Engine Selection Policy ...28

4.4 Evaluation ..28

4.4.1 Evaluating SVM Models ..28

4.4.2 Evaluating Retrieval Performance ..29

5 Results .. 31

5.1 Preliminary Test Results..31

5.2 Centralized Baseline Performance ..32

5.3 Training Time and Merging Time ...32

5.4 Important Features ...33

5.5 RR & SVM Performance..33

6 Discussion.. 41

6.1 More on the Results..41

6.2 Kernels and Overfitting..41

6.3 Similar Regression and RR Behavior ...42

6.4 Efficient Result Set Selection..42

6.5 LMAP...43

6.6 Preference-SVM ...43

7 Conclusion ... 45

8 Future Work... 47

9 Bibliography.. 49

10 Appendix.. 53

 - 1 -

Chapter 1

Introduction

Finding relevant information on the Web is becoming more important and increasingly more
challenging. This chapter exposes the problems with the current state of Web search and
introduces a potential solution.

1.1 Motivation

1.1.1 Search Aspects

Every day millions of people all over the world use search engines. A search engine can
only provide relevant results if it already has some information about the Web. It obtains
this information by downloading Web content. Then, it orders this information, for
instance, by means of an inverted file [2], to facilitate quick retrieval of relevant results.
Finally, users must somehow be allowed to search within this knowledge. These search
aspects are typically referred to as: 1) crawling (a structured way of collecting Web
content), 2) indexing (ordering the content for efficient and quick retrieval), and 3)
searching.

1.1.2 Web Search Issues

Dominant search engines such as Google, Yahoo!, and Live Search, control all search
aspects and store their index in a centralized manner. Even though they use multiple
machines to crawl, index, and search the Web, these search engines are still called
centralized because; first, they control all search aspects (from one location); second,
their machines have complete access to their crawled Web statistics, allowing them to
build a true global (centralized) index, as opposed to building many (decentralized) local
indices, one for each machine that crawled a piece of the Web. Limitations regarding the
centralized index paradigm will be discussed next.

The Web is expected to grow exponentially [38] and already in 1999 it was estimated that
no search engine indexed more than 16% of the Visible Web [22]. The Visible Web is a
collection of crawlable pages: those pages that can be reached by simply following
hyperlinks. The Invisible Web, or Deep Web, is the collection of non-crawlable pages.
However, the Deep Web mainly refers to pages that reside behind HTML-forms and that
are created dynamically. The size of the Deep Web is estimated to be orders of
magnitude (as much as 550 times) larger than the Visible Web [7, 23]. Accessing the Deep
Web requires filling in and submitting HTML-forms. Most search engines lack the ability
to automatically and adequately fill in and submit these forms, thereby missing possibly
relevant pages. In addition, crawlers can be denied access by large websites (e.g.,
because the website has its own search engine), thereby excluding significant amounts of
useful information to centralized search engines [29]. Finally, maintaining and updating
centralized indices is not trivial [3].

2 Chapter 1 Introduction

1.1.3 Metasearch

Metasearch, a form of distributed Web search, potentially solves the problems outlined
in the previous section. A metasearch system contains multiple search engines and at
least one search broker. Each search engine indexes a distinct part of the Web whereas
the broker mediates between the user and these different search engines. At query time,
the user sends a query to the broker, upon which the broker chooses the best search
engines and forwards this query to these engines. Each search engine retrieves its most
relevant results and sends these results to the broker. The broker merges these results
into one result list and presents this to the user. Generally, the broker only controls the
way the search engines are selected and the way their results are merged, it has no
control over the internals of each search engine.

We propose a solution where specifically as many as possible Web hosts index their own
content and thus become a (small) search engine. The key benefits of this approach
include no or less crawling, as all or most servers index their own local content; more
Web coverage; and more specialized search engines: these can be thought of as indexing
structured data which would otherwise be hidden (e.g., inside the Deep Web), or which
are specialized in finding relevant documents about a certain topic.

Before metasearch can be made operational, Callan [9] identified three major problems
which must be solved first:

1. Resource description: describing the contents of each database;
2. Resource selection: given an information need and a set of resource descriptions,

a decision must be made about which databases to search; and,
3. Result merging: integrating the ranked lists returned by each database into a

single, coherent ranked list.

A resource description is often some kind of an excerpt of a database’s index; it informs
about the (estimated) number of different words in the index and how frequent these
words appear in (some part of) the database.
A selection method is for example to treat each resource as one very large document and
then to select that document with the highest query-term occurrence.
Simple methods for merging results are for instance to concatenate all results serially, or
to combine the results in a Round Robin1 (RR) fashion.

This research project is part of a bigger project on distributed Web search at the Twente
University and focuses on the third problem of result merging.

1.2 Research Focus

This research aims at improving the efficiency and the performance of result merging
methods. When a query is issued, we tackle the efficiency problems by restricting
ourselves to use information only from the returned result pages, instead of
downloading the documents either partially or completely. The simplest method using
only such information is RR merging.

The problem of result merging can be viewed as that of re-ranking a set of ranked
results. Ranking often involves combining multiple “sources of information” (e.g., the

1 See Section 3.1

1.3 Research Questions 3

length of a document, the frequency of a word, the amount of similar terms in the query
and the title, etcetera), which we call features. Not all features contribute equally to the
result; they are often weighted.
Manual weighting becomes infeasible when dealing with many information sources.
With enough computing resources and training data, techniques from the field of
Machine Learning (ML) allow us to learn these weights automatically.
ML techniques are often used for classification and regression tasks. Nallapati [24],
classifies documents as relevant or irrelevant. Others, [5, 13, 16, 18], classify pairs of
documents (preference pairs), thereby indicating which document is more preferred
(relevant) than the other. Finally, some researchers [26, 33] use regression to estimate
global document ranks.
The Support Vector Machine (SVM) [39], a particular ML-technique, can be used for both
classification and regression. It was shown that the SVM (trained on partial preference
rankings) could be used to optimize the performance of a broker system and it even
outperformed Google [18].
We will use the term preference-SVM to refer to the case where a classification model is
trained on preference-pairs; and we will use the term regression-SVM to refer to the case
where a regression model is trained on single training instances, not on pairs.

1.3 Research Questions

The main question this research will answer is:

Q1. Which of RR-merging, preference-SVM, and regression-SVM is recommended and
why?

For efficiency reasons, the solution to the result merging task is restricted at query-time:
we are only allowed to download the result lists from a search engine, not the actual
documents. However, since the broker first selects a number of search engines before
merging their results, it must have some information about which engines are most
capable of answering the query. We assume that this information is also available at
query-time. Thinking in term of features, the next question is:

Q2. Using only information from the result lists and the broker’s selection mechanism,
what are suitable features to use for result merging, and what are their weights?

It might happen that the broker selects a sub-optimal set of search engines, where, for
example, the set contains too few engines that return relevant results. Ideally, the result
merging strategies should produce a good ranking even with a sub-optimal set of search
engines. This brings us to our next question:

Q3. How vulnerable are the merging strategies to external influences like the number of
result lists to merge, or the quality of the result lists?

Efficiency is gained by not downloading documents at query time. However, a more
concrete indication of efficiency would be desired. The final question is:

Q4. How well do these result merging strategies perform in terms of the cpu-time /
performance ratio?

4 Chapter 1 Introduction

1.4 Thesis Outline

The following chapter introduces the ranking problem in Information Retrieval; it shows
how features are generally used and aggregated in order to derive a ranking. Then, it
introduces a specific approach for solving the ranking problem, called Learning to Rank,
where it formally introduces the Support Vector Machine.
Chapter 3 gives an overview of the related work on Result Merging, and notes why
certain approaches are not applicable for our experiments. Chapter 4 describes our
research methodology; it describes our data, our result merging approach, the variables
that were tested, and the evaluation procedure. Chapter 5 shows our results, these are
discussed in Chapter 6. We conclude our work in Chapter 7 and discuss promising
future work in Chapter 8.

 - 5 -

Chapter 2

Ranking in Information Retrieval

Introduces necessary concepts to build upon and improve state-of-the-art ranking in IR.

2.1 Introduction

Information Retrieval concerns itself with the situation where a user, having some
information need, performs queries on a collection of documents to find a set of relevant
documents where the most relevant ones are ranked highest [15].

Traditionally, in (an) Information Retrieval (engine), documents are represented as a Bag
of Words (BW) where the meaning of the document is simply seen as the collection of
words it contains. This representation discards properties such as the structure of the
text, word order, and much more. Furthermore, words in the document are often
stemmed and this is optionally followed by removal of stop-words (e.g., non-content
bearing words such as a, the, who), creating a bag of index terms. Likewise, the same
pre-processing can also be applied to the user’s query. Retrieval based on index terms
fundamentally assumes that the semantics of the document and of the user information
need can be expressed by sets of index terms [2].

Having representations of both query and document, the next step is to determine which
documents are more likely to be more relevant to a given query. Today, almost all IR
systems compute a single numeric score indicating how well a document matches the
query. This is the result of aggregating values of features related to the document and/or
the query terms. For example, term frequency, document frequency and document
length are the main features used in many prominent (BW-based) IR models such as the
Vector Space Model (VSM) [31], the Okapi BM25 probabilistic model [30] and language
models [12, 20, 28]. To illustrate how features contribute to the computation of relevancy,
an example will be discussed in the following section using the VSM.

2.2 Term Weighting; an Example

In the VSM, documents and queries are represented as feature vectors of terms that
occur within the collection. The value of each element (feature) within the vector is called
the (term) weight and is generally closely related to the term’s frequency (TF) within the
document.

Let us start with a simplified example. Imagine a salad recipe (i.e., a document)
containing the four terms cabbage, tomato, fried, and bacon with term frequencies 3, 4, 2,
and 5 respectively. Let us assume that our whole collection of documents contains only
these four terms and that we put these features in the above order. This (i-th) document d
would then be represented as:

6 Chapter 2 Ranking in Information Retrieval

)5,2,4,3(=id
r

Queries can also be represented in the same way. For instance, the query q for fried
bacon would be represented as:

)1,1,0,0(=q
r

In the VSM, it is instructive to view both the documents and the queries as points
(vectors) in a multidimensional space; the feature-values (or term weights) are the
coordinates, and each feature is a different dimension. The intuition is that documents
residing near the query can be seen as more relevant than documents that are farther
away. Notice how the VSM does not define relevancy as a binary “yes” or “no”. Instead,
it specifies a distance between two objects where a shorter distance is assumed to imply
higher similarity (and in this case, higher relevancy). The standard way of measuring the
distance between these vectors is by taking the cosine of the angle between the object’s
vectors (Equation 2.1). As a result, similar objects will have a cosine similarity (sim for
short) of one, while orthogonal objects (having no terms in common) will have a cosine
of zero.

∑∑

∑
=

j

jD

j

jQ

jD

j

jQ

i

i

i

WW

WW

DQsim
2

,

2

,

,,

),(
 (2.1)

Of course, some terms may be more helpful than others may when determining the
relevancy of a document to a given query. Terms appearing in only a few documents are
more useful (in discriminating those few documents from other documents) than terms
occurring in many documents across the collection. Weighting terms with their Inverse
Document Frequency (IDF) is one way of indicating their discriminative power. The IDF
of term ti is simply the ratio N / ni, where N is the total number of documents in the
collection and ni is the number of documents in which term ti occurs. This form of
combining TF with IDF is called TF.IDF weighting.

 2.3 Distributed Collection Statistics

Collection statistics such as TF and IDF play a non-trivial role in discriminating relevant
from irrelevant documents. TF.IDF somewhat samples the (importance of the) content of
a web page. Other statistics such as PageRank [25], measure the quality and popularity
of a web page. Note that for these statistics to achieve good performance, the collection
information should be as complete as possible.

Whereas centralized IR has the luxury of gathering all crawled collection statistics at a
central location, distributed IR simply cannot. If a search broker would gather all
collection statistics of all remote search engines, besides almost becoming centralized IR,
it would also involve huge amounts of bandwidth, definitely even more than centralized
IR.
To minimize the network bandwidth consumption, the broker’s problem of obtaining
representative collection statistics should be solved for instance by using highly
discriminative keys (HDK) [27, 36], or by estimating the remote collection statistics via
query-based sampling (QBS) [10]. These methods are primarily used to rank the remote

2.4 Learning to Rank 7

search engines in their probability of returning most relevant results. QBS is also useful
for result merging as can be seen in Chapter 3.

2.4 Learning to Rank

IR models with few parameters, such as the Okapi BM25, allowed researchers to hand-
tune the model. However, fine-tuning features by hand becomes impossible when using
many more features. Fortunately, with the recent availability of large standardized test
corpora1 and cheap computing resources, fine-tuning the features automatically has
become possible.
Given a set of examples, the idea of Learning to Rank is to find those characteristics that
can distinguish the good ones from the bad ones. Based on those characteristics, we
should subsequently be able to predict whether new examples are good or bad.

Learning to Rank (LETOR) is a new and popular topic, both in Machine Learning (ML)
and in Information Retrieval. In LETOR, the ranking problem is often formulated as a
classification problem. We distinguish two subcategories: one (point-wise), a single
document is classified as either relevant or not relevant; two (pair-wise), a pair of
documents is classified, indicating which of the two documents is more preferred.

Close attention will be paid to the Support Vector machine (SVM) [39], which enjoys
much popularity and is often reported with successful results. SVMs are a family of
linear discriminant functions and are used for both classification and regression. A fact
about SVMs is that they always find a global solution in contrast to neural networks,
where many local minima usually exist [8].
Using point-wise classification, Nallapati [24] showed that SVMs are on par with state-
of-the-art language models. A number of studies experimented with pair-wise
classification, for instance [5, 13, 16, 18].

An SVM model is trained on some data sample S = {(xt, rt)| xt ∈ ℝn, rt ∈ Y}, where xt is an
n-dimensional feature vector2 representing instance t, and rt is the assigned label. We
distinguish between classification if Y is a finite unordered set (nominal scale), and
between regression if Y is a metric space, for example, the set of real numbers. The
following subsections are mainly intended to give you an idea of what a support vector
machine is and what it does.

2.4.1 Discriminant Functions

The simplest classifier is a linear classifier. A linear binary classification can formerly be

written as sign(f: X ⊆ ℝn → ℝ), with X a set of n-dimensional input data. So, each
element x ∈ X receives a positive label if f(x) ≥ 0, and a negative label otherwise. In linear
classification, f(x) should be linear. For instance, it could be written as the dot product of
the weight vector and the input vector, plus a constant:

f(x) = 〈w, x〉 + b

1 A collection of many documents and queries; for each query a number documents are
judged by a group of people as being relevant or not relevant.
2 See Section 4.2.

8 Chapter 2 Ranking in Information Retrieval

We must learn the right values of the parameters (w, b), since these control our decision
rule. In Figure 2.1, the thick line is a separating hyperplane as it separates the two classes
x and o. It can also be seen that there are many possible separating hyperplanes.
However, we want the hyperplane with the best generalizability, so that when given
unseen data, it will most often produce the right classification.

Figure 2.1: A two-dimensional space containing two linearly separable classes

A hyperplane could be chosen with the biggest distance to its surrounding data points.
The distance from the closest point to the hyperplane is called the margin and so this
hyperplane is called the maximal margin hyperplane.

2.4.2 Linear Support Vector Machines

Any hyperplane can be written as the set of points X satisfying 〈w, xt〉 + b = 0. Here, w is
the hyperplane’s normal vector, that is, it is perpendicular to the hyperplane. We want to
choose (w, b) such as to maximize the margin p(w,b) between the farthest possible parallel
hyperplanes that still separate the data (see the dashed lines parallel to the hyperplane in
Figure 2.1).

The canonical hyperplane is obtained by scaling (w, b) so that for the nearest point
|〈w, x〉 + b| = 1 holds. Note that, if the data is linearly separable, the distance between
the two parallel hyperplanes is 2. The margin is given by:

p(w,b) =

− −+ x

w

w
x

w

w
,

||||
,

||||2

1

22

= ()−+ − xwxw
w

,,
||||2

1

2

=
2||||

1

w

2.4 Learning to Rank 9

We can maximize the margin by minimizing the Euclidean norm
2

 w . One of the

reasons to prefer a maximal margin is the underlying assumption that both training and
test data are drawn from the same distribution. Therefore, we could reasonably assume
that a test point would be near a training example. If every test point is a maximum
distance r ≥ 0 away from a training point, then all test points will be classified correctly if
we have a margin p(w,b) > r.

When given a linearly separable data set S = {(x1, r1)… (xk, rk)}, the (canonical) hyperplane
(w, b) that solves the primal optimization problem

minimizew,b
2

1
2

 w , (2.2)

 with rt (〈w, xt〉 + b) ≥ 1, t = 1… k.

will be a maximal margin hyperplane with margin p(w,b) =
2||||

1

w
.

In practice, researchers will often work on the dual representation1, a Lagrange
formulation of the problem. The reasons for doing this are two-fold. First, the constraints
in (2.2) will be replaced by constraints on the Lagrange multipliers themselves. Second,
the optimization problem can be expressed as dot products of its input vectors, such as
in Equation 2.3. This makes it possible to apply the kernel trick, allowing us to train non-
linear SVMs.

The dual optimization problem is a maximization problem:

maximize W(αααα) = ∑ ∑
= =

−
k

i

k

ji

jijiji

i rr
1 1,

,
2

1
xxααα , (2.3)

 with 0
1

=∑ =

k

i

ii
r α ,

 0≥iα , i = 1..k

Note that there is a Lagrange multiplier αi for each training point. In the solution, the
points for which αi > 0 lie on (one of) the hyperplanes and are called support vectors, as
they ‘support’ the hyperplane. All other training points have αi = 0.

Given a solution αααα` to the optimization problem and given a new data point x, the choice
which class to assign to x is obtained by taking its dot product with all the support
vectors (remember that the αi for the non-support vectors is zero anyway):

+= ∑

=

`,`sgn)(
'

1

bf
ssv

i

iii xxx γα

where

1 See for instance Wellens [43] (written in Dutch) for obtaining this dual.

10 Chapter 2 Ranking in Information Retrieval

b` =
2

),(min),(max 11 iriiri xw`xw` =−= +
−

w` = ∑
=

k

i

iiir
1

` xα

2.4.3 Non-Linear Separable Data

Up until now, we have been assuming (noise free) linearly separable data, in which case
it makes sense to choose a maximal margin classifier. As can be seen in Figure 2.2, a
maximal margin classifier is not always the best option if the data contains noise (in this
case, the noise is in the form of an outlier).
With non-linear separable data, a classification such as in Figure 2.3 will never be found
by a maximal margin classifier because the constraint in Equation 2.2, that all data points
should be classified correctly, is too strict.

Figure 2.2: The left figure shows a maximal margin classification. The right figure has one

misclassification, but is probably more desired. Based on similar figures in Wellens [43].

Figure 2.3: This classification cannot be made by our current maximal margin classifier

because the data is not linearly separable. Based on similar figures in Wellens [43].

As can be seen in Figures 2.2 and 2.3, by allowing some errors, we can still make desired
linear classifications. The constraints should somehow be relaxed. That is why Cortes
and Vapnik [14] introduced positive slack variables:

0≥tξ , t = 1 ... k

which result in the following (weaker) constraints:

rt (〈w, xt〉 + b) ≥ 1 - ξt, t = 1… k.

2.4 Learning to Rank 11

Each training instance gets a slack variable in such a way that the constraint is satisfied.
Because of allowing classification errors, the margin would become infinite. Thus, the
optimization problem should be modified to include a penalty for each error:

minimizew,b
2

1
2

 w + C ∑
=

k

t

t

1

ξ (2.4)

 with rt (〈w, xt〉 + b) ≥ 1 - ξt,
 ξt ≥ 0, t = 1 … k

Here, C is a user-specified parameter and should be greater than 0. A bigger C means
higher penalty on classification errors. Note that this algorithm will usually not result in
a maximal margin classifier, which is why this is called a soft margin classifier.

The dual of Equation 2.4 is given by:

maximize W(αααα) = ∑ ∑
= =

−
k

i

k

ji

jijiji

i rr
1 1,

,
2

1
xxααα , (2.5)

 with 0
1

=∑ =

k

i

ii
r α ,

0≥≥ i
C α , i = 1..k

which is very similar to that of the maximal margin SVM in Equation 2.3.

2.4.4 Non-Linear Support Vector Machine

Perhaps the biggest showpiece of the SVM is that it can project the data points to some
higher dimensional feature space and find a linear (soft margin) classification; usually
corresponding to a non-linear classification in the input space. Kernels are used as the
projection mechanism. Furthermore, kernels allow computational tractability when
working in high or infinite-dimensional spaces.

Definition 1 (Kernel). A kernel is a function K, such that for all x, y ∈ X ⊆ ℝn

)(),(),(yxyx ΦΦ=K ,

where Φ is a projection from input space X to feature space H.

Substituting the dot product for a kernel in Equation 2.5 yields the following
optimization problem:

maximize W(αααα) = ∑ ∑
= =

−
k

i

k

ji

jijiji

i Krr
1 1,

),(
2

1
xxααα , (2.6)

 with 0
1

=∑ =

k

i

ii
r α ,

0≥≥ i
C α , i = 1..k

12 Chapter 2 Ranking in Information Retrieval

It is possible to encode extra a-priori knowledge in a kernel such that it can be used as a
similarity measure. Even though kernels may differ, they should often be able (if they
work well) to find roughly the same regularities in the given training data. This does not
imply that it does not matter what kernel you use.

Next, the concept of the capacity of a learning machine, that is, its ability to learn any
training set without error, will be explained by means of an example taken from Burges’
tutorial on SVMs [8]. A machine with too much capacity is like a botanist with a photographic
memory who, when presented with a new tree, concludes that is not a tree because it has a
different number of leaves from anything she has seen before; a machine with too little capacity is
like the botanist’s lazy brother, who declares that if it’s green, it’s a tree. Neither can generalize
well.

Intuitively, the use of a kernel will often be in accordance with increasing the capacity of
the classifier.

When using SVMs for classification, two parameters must be specified: the trade-off
parameter C, and the kernel. However, depending on the kernel, some additional
parameters may have to be specified.

Examples of kernels:

1. Linear kernel: yxyx ,),(=K

2. Homogeneous polynomial kernels:
d

K yxyx ,),(=

3. Inhomogeneous polynomial kernels: ()d
cK += yxyx ,),(

4. Gaussian radial basis function (RBF) kernel: ()2
exp),(yxyx −−= γK

The linear kernel requires no additional parameters. The homogeneous polynomial
kernel has one additional parameter d. The inhomogeneous polynomial kernel has two
additional parameters c and d. The Gaussian RBF kernel has one additional parameter
gamma.

 - 13 -

Chapter 3

Related Work on Result Merging

3.1 Introduction

The task of merging multiple result lists into a single ranked list is called result merging
[33]. The result-lists are usually obtained by sending the same information need (often
the same query) to N different (remote) search engines. There are no restrictions on the
overlap-rates between the document collections of the different search engines, nor are
there any restrictions on what ranking functions should be used.
The problem of result merging is not new and it has been a major open problem in
distributed IR since around 1994 [33, 35].

Many terms have been used to refer to the problem of result merging, for example, data-,
collection-, results-, information-fusion, and query-combination. Query combination is a
more restricted definition of result merging. Particularly, it addresses the effect of
merging result lists of different formulations of the same information problem to the
same search engine [6]. This can be seen as a variant of query expansion where instead of
producing a longer query, a set of N similar queries is produced. This set of N queries is
sent to the same IR system and the resulting N result lists are then combined by, for
example, using the weighted sum of the similarity scores.

Round Robin (RR) merging was briefly mentioned in Chapter 1. Because of its simplicity,
it is often used as a baseline for merging experiments. RR merging is defined as follows:
given n result lists L1, L2…Ln, take the first result r1 from each list Li as the first n results,
then, take the second result r2 from each list as the next n results, and so on. RR merging
produces a list: L1r1, L2r1…Lnr1, L1r2, L2r2…Lnr2, L1r3, L2r3…Lnr3, etcetera.
Often, the rank of the results is the only feature used when doing RR merging. The
assumption is that all result lists have an equal distribution of relevant documents and
that most relevant documents are ranked highest. However, any additional information
about the relevant document distributions of the servers can be used to rank the servers.
Having these two features, the rank of both the server and its results, RR will not blindly
pick the next best result from a random server; it will pick the next best result from the
next best server.

3.2 Merging Strategies

3.2.1 Normalizing Scores

In 1995 Callan et al. [11] tested four merging strategies: 1) interleaving (Round Robin), 2)
raw scores, 3) normalized scores, and 4) weighted scores.

14 Chapter 3 Related Work on Result Merging

Search engines supplied numeric scores indicating how well the document matched the
query, which enabled raw score merging. However, document scores from different
search engines may often not be directly comparable. Normalizing statistics such as
Inverse Document Frequency (IDF) could be a solution. The idea is that normalizing
would achieve the same performance as when all different collections were combined in
one global collection and then queried. Normalizing document scores entails significant
communication and computational costs when collections are distributed across a wide-
area network. Therefore, instead of normalizing the scores, one could weight them.
Weights could be based on the document’s score and/or the collection ranking
information. Callan et al. showed that the performance of weighted score merging was
as effective as normalized score merging, the other two approaches were significantly
worse.

3.2.2 Clustering Techniques

Also around 1995, Voorhees et al. [42] developed two merging strategies that are
independent of the IR-model of the different search engines. They defined the collection
fusion problem as finding the values λ1 ... λc, that maximize

∑
=

=
c

i

i N
1

λ and)(
1

t

c

t

I

Q
tF λ∑

=

Here, N is the desired amount of documents to be retrieved, FIQ(x) models the relevant
document distribution of search engine I for query Q given x, the amount of documents
to be retrieved. In practice, FIQ is not known and must be approximated. Their first
strategy models relevant document distributions; the k most similar queries are used to
learn a model of the relevant document distribution for each search engine I. These
models are then used in a maximization procedure to learn the values λi. They use the
VSM to compute similarities between queries. Their second strategy creates query
clusters based on the amount of common documents retrieved, and assigns weights to
these clusters. At query time, the most similar cluster to the query is selected from each
search engine. Each cluster’s weight, relative to the sum of all retrieved weights,
determines the amount of documents to be retrieved from each search engine. Both
strategies only determine the amount of documents to retrieve from each search engine.
A total ordering on the result set is imposed either in a Round Robin fashion, or by
chance: to select the document for rank r, a search engine is chosen by rolling a C-faced
die that is biased by the number of documents still to be picked from each of the C search
engines. The next document from that search engine is placed at rank r and removed
from further consideration.
They show that these fusion techniques can approximate the performance of a single
collection run at the ranks that will be of interest to the user.

3.2.3 Combining Evidence

In 2001, Rasolofo et al. [29] experimented with a current news metasearcher using low
cost merging methods. They noted important differences between their news meta-
searcher and a metasearcher of conventional search engines, one of which is:

In general, the titles of documents returned by current news services are more accurate and
reliable than those typically available with other Web documents. Thus, titles may be a
beneficial source of evidence in ranking articles;

3.2 Merging Strategies 15

Their main merging approach was based on document scores, called raw-score merging.
However, it was not practical since the document scores were seldom reported and they
would not be comparable anyway due to differences in indexing and retrieval strategies
used by the servers.
Therefore, they employed a generic scoring function that returns comparable scores
based on various document fields (such as, title, summary, or date). For each document i
belonging to collection j for the query Q, they compute a weight, denoted wij as follows:

22

q LF

NQW

i

i

ij

L
w

+
=

here, NQWi is the number of query words appearing in the processed field of the
document i, Lq is the length (number of words) of the query, and LFi is the length of the
processed field of document i.

They define several merging alternatives:
• their first alternative, which is also their baseline, is to apply RR merging based

only on the ranks defined by the servers, denoted simply as RR;
• their second alternative is to first compute a score for each document using the

XX field with their generic scoring function, and then adopt the raw-score
merging approach. They denoted this alternative as SM-XX;

• their last alternative is to re-rank the results of each server using their generic
scoring function, and then use the RR merging. This is denoted as RR-XX.

The scores are based on a combination of easily extractable information from result lists
like: rank, title, summary, date. Additionally, they included estimated server usefulness
and estimated collection statistics. Their best merging scheme (a raw-score merge based
on a combination of estimated server usefulness, title and summary score) worked
almost as well as merging based on downloading and rescoring the actual news articles.

3.2.4 Regression Models

Query-based sampling (QBS) can be used for building both descriptions of remote search
engines (resources) and for building a centralized sample index. In 2002, Si and Callan
[33] build resource descriptions with QBS and use CORI, a resource ranking algorithm,
to select the 5 or 10 search engines with highest belief. The search engines return ranked
lists along with document scores. After querying these selected search engines, they
merge the result lists by learning a linear regression model to map the returned search-
engine-specific document scores to the centralized sample index’s document scores.
They train one regression model for all search engines when the search engines are of the
same type. When the types differ, they train separate regression models for each search
engine. Si and Callan continued their experiments in 2003, and a more elaborated
version can be found in [34]. CORI also merges results based on a linear combination of
the document score and the search engine score. Si and Callan show that their regression
model for merging results performs on par with the CORI result merging algorithm.
In 2007, Paltoglou et al. [26] go even further by regarding the sampled collections,
obtained by QBS, not merely as descriptions, but as representatives for the remote search
engines. They do not require the remote search engines to supply document scores.
Instead, they execute the query both locally and at the remote search engine. The remote
search engine returns a ranked list while the local (sampled) collection returns a ranked
list along with the corresponding document scores. Applying regression analysis on the
common documents on both lists, they can assign a score to each entry in the remote

16 Chapter 3 Related Work on Result Merging

result list. Once all remote result lists have been complemented with estimated
document scores, they proceed just as Si and Callan [33] to map search-engine-specific
document scores onto the centralized sample index’s document scores. Paltoglou et al.
show that their algorithm outperforms Si and Callan’s regression method.

3.2.5 Experts and Voting

The merging strategies discussed so far are capable of merging results pages of search
engines with varying degrees of collection overlap: they can be used even if there is no
collection overlap.
Other merging strategies were developed specifically for cases with 100% collection
overlap, that is, for search engines indexing exactly the same document collection. The
intuition is that when every search engine is viewed as an expert, combining their
different opinions would yield better results. Shokouhi [32] showed that combining
these expert opinions often perform significantly better than the single best performing
(expert) search engine.
Voting mechanisms are also used as a means to merge result lists. However, in order for
voting mechanisms to work, the search engines should have some degree of collection
overlap. One popular voting mechanism is the Borda Count [1]. The Borda Count
assigns points to results as follows: for each search engine, the top ranked result is given
c points; the second ranked result is given c-1 points, and so on. If there are some results
left unranked by the search engine, the remaining points are divided evenly among the
unranked results. The combined results are ranked in descending order of total points.

3.2.6 Download and Rank

Inquirus [21] follows an (extremely) impractical approach to result merging as it
downloads the documents returned by the remote search engines and then re-ranks
those documents; all of this happens at query-time.
Completely downloading the documents allows for more advanced operations such as
better duplicate detection, better ranking, filtering of false results, etcetera. The negative
aspects of this approach are higher bandwidth usage and longer delays in obtaining
result pages.

3.2.7 Learning to Rank

As noted in Chapter 2, learning to rank is a popular topic in IR. Many researchers
applied Machine Learning (ML) techniques to the problem of ranking, but, to the
author’s knowledge, only Joachims [18] applied SVMs to the problem of result merging.
Joachims argues that clickthrough data is a rich source of “relevance-judgments” and
that it can easily be obtained at practically no costs. The judgment is not a hard
classification but a partial pairwise preference-judgment, indicating that one document is
preferred over the other. Joachims first describes a modified SVM learning algorithm,
SVMlight [17], which allows this preference data to be used as training data. He reported
that his algorithm improved the performance of a broker system and outperformed
Google.

3.3 Uncooperative Environments

With the enormous monetary incentives involved in today’s search market, (remote)
search engines that deliberately mislead the broker by providing falsified data should be

3.4 Summary 17

taken into account. When a search engine provides false data to the broker, the
distributed IR system is said to operate in an uncooperative environment. In cooperative
environments, all search engines provide faithful data to the search broker, and there can
also be some form of centralized coordination of the search engines. For instance, the
amount of collection overlap between the search engine, and their ranking algorithm(s)
could be specified beforehand.

We maintain that the threat of uncooperative environments is always present. Suppose
that the search engines want to be found, that is, they want to be used by the broker. One
may argue that search engines, in an ideal case when a broker is able to detect and
penalize unfaithful search engines, will never tamper with their collection statistics.
However, in a not-so-ideal case, there is (much) incentive to provide false data.
Also note that, even in the ideal case, the case that search engines never tamper with their
statistics holds only if there is one search broker; with competing brokers, incentives will
again arise to hinder the competing search broker.

As for now, dealing with uncooperative environments remains an open problem. This
research assumes operation in an uncooperative environment. For this reason, amongst
others, we have restricted our selves to use only information from the result pages from
the search engines, thus ignoring any meta-data that a search engine might provide.

3.4 Summary

Recall our research focus from Chapter 1: improving the efficiency and performance of
result merging methods. For sake of query-time efficiency, we restricted ourselves to use
information only from the result pages, more specifically, information that is generally
accessible to the user.
In addition, we argued in Section 3.3 that any information other than what a user
normally sees, such as raw-document-scores, should be regarded as biased and
potentially misleading. Furthermore, Callan et al. (see Section 3.2.1) discourage the use of
raw-document-scores for result merging unless they are weighted. However, weighting
can entail significant amounts of computational and communication costs.
Finally, downloading documents for whatever reason is an additional cost that we want
to avoid as much as possible.

Regarding our research, many of the strategies in Section 3.2 are not applicable. We do
not download any document; we cannot normalize document scores, as we do not have
these; and, we cannot use voting mechanisms, as there is no collection overlap in our
scenario.
We restricted ourselves to using information only from result pages and from the
broker’s selection mechanism. Results of search engines have a rank, a title, a snippet,
and a URL; therefore, applicable strategies for result merging are the RR merge and ML
methods such as (pairwise) classification and regression.
Although it has been shown in numerous studies that RR merging was not the best
solution, it serves as a baseline indicating the minimum search performance that our
SVM-strategies should be able to achieve.

 - 19 -

Chapter 4

Research Methodology

This chapter explains how the merging methods were implemented, tested, and evaluated.

4.1 Dataset

Our experiments were conducted using the TREC WT10g corpus, which was created in
2000 [4]. The WT10g is a carefully engineered selection of the larger 100-GB VLC2
collection, which is a truncated Internet Archive Web-crawl from February 1997. The
WT10g collection was devised to be broadly representative of Web data in general; to
contain many inter-server links; to contain all available pages from a set of servers; to
contain an interesting set of metadata; and to contain few binary, duplicate or non-
English documents.
A test collection also requires a set of queries and relevance judgments. The WT10g
collection has human-made relevance judgments for 100 ad hoc relevance topics (used
for querying). These judgments were based on pooling1 and were classified as irrelevant,
relevant or highly relevant. The topics were reverse engineered by NIST from the log
files of web search engines; they include the original Web query in the title field. Topics
451-500 include a number of misspelled words whereas topics 501-550 do not.

Although the WT10g corpus is a multi-purpose test collection for Web retrieval
experiments, it was not necessarily created for Distributed Information Retrieval. The
result merging experiments require result pages from different search engines which
index different documents. The WT10g collection does not include any form of result
pages so these had to be created first.
The MonetDB/XQUERY database system has the capability to create result pages with
each result having a rank, title, snippet and URL. A number of steps had to be taken in
order to create an environment where a number of search engines index disjoint (but not
necessarily covering) subsets of the whole WT10g document collection. Each of these
steps will be explained in the next subsection.

4.1.1 Creating Subcollections and their Result Pages

The MonetDB/XQUERY retrieval platform requires its data to be valid XML. Thus, the
first step was to convert all WT10g data into valid XML. Therefore, a script was used
that: 1) discarded the HTML comments, scripts, and all but the title and anchor HTML-
tags; 2) truncated URLs ending in “/index....” at the index-portion; 3) glued consecutive
sentences shorter than 20 characters together and split sentences longer than 160

1 A pool of documents is created from the top N documents submitted by TREC participants.
(All participants create different search engines, and they often have different results.) Only
documents in this pool are judged by human assessors.

20 Chapter 4 Research Methodology

characters; finally, 4) in the case that a document did not have a title, a title was created
from the first sentence of the document.

The documents (web pages) in the original WT10g corpus were randomly distributed
over several file chunks. It is assumed that the pages of a website are highly related to
each other and that they most often reside on the same web server. This led to the second
step of re-grouping the documents by their IP-address, which resulted in XML-
documents containing all web pages of a single server. We will refer to these newly
created documents as ip-split documents.

The third step is to create subcollections from these ip-split documents. A simple set of
rules was used to create these subcollections. First, the ip-split documents were sorted by
their file size. Then, each ip-split document ipdoc was added to a subcollection if the
combined size would not exceed a specified size of X MB. Otherwise, a new
subcollection was made containing ipdoc. Note that an ip-split document bigger than X
MB was not split. In pseudo-code:

Table 4.1: pseudo-code for creating collection splits

INITIALIZE docs to the sorted ip-split documents

INITIALIZE subcollections to an empty collection

INITIALIZE sub to an empty collection

FOREACH doc in docs

 IF (sub is empty OR size(sub+doc) ≤ X) THEN
 ADD doc to sub

 ELSE

 ADD sub to subcollections

 EMPTY sub

 ADD doc to sub

 ENDIF

ENDFOR

ADD sub to subcollections

A number of subcollections were made based on a 100MB and 500MB split. Splitting the
WT10g collections in chunks of roughly 100MB resulted in 79 subcollections. Similarly,
splitting in chunks of 500MB resulted in 15 subcollections.

The fourth and final step indexes each subcollection by a (separate) search engine, and
queries the search engine to get the result lists (with a maximum of 50 results) needed for
the result merging experiments.
The MonetDB/XQUERY database system was used to make separate indices for each
subcollection. In addition, each query was issued twice; first using the OKAPI BM25 IR-
model, and then using the Normalized Log-Likelihood Ratio (NLLR) IR-model.

Figure 4.1 illustrates the process of making these result pages.

4.1 Dataset 21

Figure 4.1: simulating the creation of result pages in a distributed environment

Summarizing, after performing all these steps, the following data sets were created:

• 79 subcollections (of +/- 100MB), each subcollection containing:
o 100 different result pages created with the OKAPI IR-model
o 100 different result pages created with the NLLR IR-model

• 15 subcollections (of +/- 500MB), each subcollection containing:
o 100 different result pages created with the OKAPI IR-model
o 100 different result pages created with the NLLR IR-model

22 Chapter 4 Research Methodology

4.1.2 Selection Policies

When doing result merging, it is not the intention to merge all the results from all search
engines; otherwise, one could as well have used a centralized index1. This means that a
selection must be made about which search engines to use for merging. The selection can
affect the results of the merging experiments; it is very likely that a random selection and
one based on the best performing search engines for a particular query would yield
significantly different merging results.

This raises the question for a suitable measure of a search engine’s performance. Let us
pay closer attention to the well-known Average Precision (AP) measure [41]. For a given
query, the equation for the AP of a ranked result list is:

AP =
documents relevant of number

rankRrankP
N

rank

∑
=

•
1

)()(

where N is the number of retrieved results, P(x) gives the precision2 at rank x, and the
binary function R(x) is 1 if the result at rank x is relevant or 0 otherwise. The AP can take
as output values any value between zero and one. The Mean Average Precision (MAP) is
obtained by averaging over multiple queries’ AP.

The WT10g relevance judgments contain a list of relevant documents per query; call
these the global relevant documents. The WT10g collection is divided into several
subcollections and we will refer to the number of relevant documents in such a collection
as the local relevant documents. Figure 4.2 gives a simple example.

Figure 4.2: global versus local relevant documents.

Thus, for a given subcollection, the AP measure can be calculated by using either the
global or the local relevant documents. The terms LAP, GAP, LMAP, and GMAP will be
used to refer to local or global AP or MAP.

1 Under the following assumptions: first, a centralized IR system should perform at least as
good as a Distributed IR (DIR) system, since it has complete knowledge of the collection.
Second, many search engines in a DIR environment contribute no relevant results.
2 The precision is defined as the number of relevant documents retrieved (at rank x), divided
by the total amount of documents retrieved at rank x (i.e., x).

4.2 SVM Models for Result Merging 23

Other ways of selecting search engines are random selection and selection based on the
engine’s merit, the number of relevant documents it contains. Keep in mind that these are
not performance measures.

4.2 SVM Models for Result Merging

An SVM model is affected by its training data and by its parameters. Sections 4.2.1 up to
4.2.4 explain how the results were converted to training data. Section 4.2.5 explains
which parts of this data were actually used for training the SVM models, and how the
parameters were varied.

4.2.1 Features

SVM models are trained with labeled feature-vectors; these were extracted from the
result lists for each query. Table 4.2 lists the thirty features used in our experiments; the
range of each feature-value is given in the parenthesis at the end of the line.

Table 4.2: grouped feature list

1. Rank: ratio (1000 - rank) / 1000 (range [0,1])
1

2. Rank: local rank (range [1…])
3. Cosine similarity query - title (range [0,1])
4. Cosine similarity query - snippet (range [0,1]) 2
5. Cosine similarity query - URL (range [0,1])
6. Title: number of words (range [1…])

3
7. Title: average word length in chars (range [1…])
8. Snippet: number of words (range [0…])

4
9. Snippet: average word length in chars (range [1…])
10. URL: length in chars of FQDN (range [4…])
11. URL: FQDN frequency in current list (range [0,1])
12. URL: path-depth (e.g. http://a.b.c./depth=1/…)

(range [0…])

5

13. URL: average path length in chars (range [1…])
14. Query: number of words (range [1…])

6
15. Query: average word length in chars (range [1…])
16. URL: contains tilde '~' (binary {0,1})
17. URL: contains text 'home' (binary {0,1})
18. Title: contains text 'home' (binary {0,1})
19. LCS query - title (range [0,1])
20. LCS query - snippet (range [0,1])
21. LCS query - URL (range [0,1])
22. LWO query - title (range [0,1])

23. LWO query - snippet (range [0,1])
24. LWO query - URL (range [0,1])
25. LWO title - snippet (range [0,1])
26. LWO title - URL (range [0,1])

7

27. LWO URL - snippet (range [0,1])
28. Server usefulness: LAP (range [0,1])
29. Server usefulness: GAP (range [0,1]) 8
30. Server usefulness: Merit (range [0…])

The abbreviations LCS and LWO respectively denote Longest Common Substring and
Longest Word Order. These features were introduced in order to compensate for the
information-loss caused by the IR-models, NLLR and OKAPI, which are used by the
search engines. These IR-models build upon the Bag of Words concept, which discards
many properties of text.

24 Chapter 4 Research Methodology

LCS(A,B) detects the biggest unaltered proportion of A that also appears exactly the
same way in B. LWO(A,B) is almost similar to LCS, but it allows for noise. For example,
let A denote the text “using ranking SVM in IR” and let B denote “using Machine Learning
techniques for ranking in IR”. The LCS similarity between A and B is low (0.4), while we
would expect otherwise. The LWO similarity does capture this apparent resemblance of
A and B, yielding an LWO of 0.8. The pseudo code for LCS and LWO can be found in the
Appendix A and B. The last three features are intended as a simple measure of the
coherence of a result; do the title, snippet, and URL somewhat resemble each other?

Having extracted the feature vectors, we can now label them. A label is simply a digit
and is placed at the start of each feature-vector. First, the concept of preference pair
constraints will be explained, and then the appropriate labelings will be discussed for
both the preference-SVM and regression-SVM.

4.2.2 Preference Pair Constraints

Clickthrough data is a cheap source of relative relevance judgments and is used to create
preference pair constraints. These constraints are used for training an SVM model (which
should optimize the rankings of a search engine). Consider the result list in Table 4.3.

Table 4.3: example result list

1. Cattery Lopend Vuur

http://www.xs4all.nl/~bengaal

2. Supreme Show "Club Row" Stands

http://www.cityscape.co.uk/users/ja49/supclub.html

3. Tejas Bengal Cats

http://www.io.com/~tejas

4. Tejas Cattery

http://www.io.com/~tejas/whatis.htm

5. Nerd World : CATS

http://search.nerdworld.com/nw460.html

Suppose we are using clickthrough data and that a user actually clicked on results 1, 3,
and 5. Joachims [18] argues that it is not possible to infer that results 1, 3, and 5 are
relevant on an absolute scale; however, it is plausible to infer that result 3 is more relevant
than result 2 with a probability higher than random. Assuming that the user scanned the
ranking from top to bottom, he must have observed result 2 before clicking on 3, making a decision
not to click on it. In other words, the search engine should have ranked result 3 higher
than 2, and result 5 higher than 2 and 4. Denoting the ranking preferred by the user with
r*, we get the following (partial and potentially noisy) preference constraints:

 result3 <r* result2 result5 <r* result2 (4.1)
 result5 <r* result4

In our experiments, TREC relevance judgments are used as our source of preference
constraints. Note that clickthrough data, as a source of relative relevance judgments, and
the TREC relevance judgments differ in several ways. First, clickthrough data is relative

4.2 SVM Models for Result Merging 25

and is based on superficial information supplied by the search engine (for example,
ranks, titles, snippets, and URLs). Even if a result is judged more relevant (because a user
clicked on it, but not on a higher ranked result), it does not mean than the result is
actually relevant. TREC judgments are absolute; a team of people have actually read the
entire document and rated that document as being irrelevant, relevant, or highly
relevant. This brings us to the second difference: clickthrough data is “binary” (a result is
either clicked on, or not) whereas TREC judgments are ternary.
Using TREC relevance judgments, consider again the result list in Table 4.3, where
results 1, 3, and 5 are relevant, and where result 4 is highly relevant. The search engine
should have ranked those results as follows: 4, 1, 3, 5, 2. The constraints are:

 result3 <r* result2 result5 <r* result2 result4 <r* result1 (4.2)
 result4 <r* result2
 result4 <r* result3

A final note on the use of preference pairs: Joachims states that for each clicked result, he
adds fifty additional constraints indicating that it should be ranked higher than a
random other result in the result set. The rationale is that those constraints should hold
for the optimal ranking in most cases and they should both stabilize the learning result
and keep the learned ranking function close to the original ranking function.
His result set consisted of 500 results. Since our result set consists of only 250 results, we
used thirty instead of fifty additional constraints.

4.2.3 Preference-SVM Labeling

SVMlight automatically creates the constraints based on the labels of the training data. An
additional feature ‘qid’ is used to restrict the generation of the constraints; SVMlight
considers any two instances for a preference pair constraint only if they have equal ‘qid’
values. Such preference pairs are interpreted as follows: the instance with a higher label
value should be ranked higher than the other one. For example: we could extract the
feature-vectors from the results of Table 4.3, and label them as follows:

0 qid:1 (feature-vector for result 2)

1 qid:1 (feature-vector for result 3)

0 qid:2 (feature-vector for result 1)

0 qid:2 (feature-vector for result 2)

0 qid:2 (feature-vector for result 3)

1 qid:2 (feature-vector for result 4)

0 qid:3 (feature-vector for result 2)

1 qid:3 (feature-vector for result 5)

In the example, we see four instances having a ‘qid’ of two. If we create all possible pairs
from these four instances, then those pairs with unequal labels are the preference
constraints. Verify for yourself that the appropriate constraints (4.2) can be created based
on the labels in the example above.

The pseudo code for finding the preference pair constraints and label them accordingly
can be found in Appendix C.

26 Chapter 4 Research Methodology

4.2.4 Regression-SVM Labeling

With regression-SVM, we aim to train a model that, given a feature-vector, will output a
global (artificial) rank. We want this rank to reflect the knowledge obtained from both
the TREC relevance judgments and from the rankings of the search engines. However,
the TREC judgments should have a higher impact on the learned ranking function. For
instance, if a highly relevant result (according to the TREC judgment) was ranked lowest
by some search engine, then we certainly want our new ranking function to rank that
result somewhere near the top.
From irrelevant to highly relevant, we denote the TREC judgments as 1, 2, and 3. We
created the labels of the training instances by multiplying the instance’s relevance
judgment by 1000, and then deducting its rank. This label, a global artificial rank, reflects
the knowledge obtained from the TREC judgments and from the rankings of the search
engines, while ensuring that the TREC judgments have a higher impact.

4.2.5 Model Settings

Preliminaries: Data Preparation & Feature Selection

Our training data consists of a subset of the results that were created in Section 4.1.
Several subsets, or data chunks, could be used for training, for example, we could use
the results of one search engine, or of three, or all, as our training data.
We used the result pages from the 100MB or the 500MB collection splits, indexed with
either the NLLR or the OKAPI IR-models. We trained on the results of 1, 4, 7, 10 or 15
search engines, and we used the following policies to select the search engines: LAP,
GAP, random, and merit.
When training on data from more than one search engine, we first applied a RR merge.
Unfortunately, as the amount of training samples increased, so did the time required to
train the SVM models. Therefore, we decided to merge no more than 250 results in a RR-
fashion. Due to the large amount of time needed for training SVM models, we did not
experiment with all the possible combinations using the OKAPI IR-model.

We divided our thirty features into eight feature groups (see the feature list, Table 4.2).
Since we could not be certain whether some feature actually introduced noise or not, we
did a simple feature selection experiment. In this experiment, we repeatedly trained a
model while only changing one of the feature groups. That is, for each data chunk, we
trained both a regression- and a preference-SVM model using either: all feature groups,
or, each combination of seven out of all eight groups. A linear kernel was used in these
preliminary experiments.
The preliminary experiments give an indication of the optimal data settings for learning
a good SVM model, that is, they roughly indicate which data chunks and feature groups
are best for either regression or preference SVM learning. Part of these results is shown
in Chapter 5, Section 5.1.

At first, we wanted to optimize the SVM parameters for the top three data settings,
which are listed below:

• Regression: 100MB, OKAPI, 1 search engine, LAP, all features except group 3
• Regression: 100MB, NLLR, 10 search engines, GAP, all features except group 3
• Regression: 100MB, NLLR, 10 search engines, GAP, all features except group 7

4.3 External Influences 27

However, since there is only data from the 100MB split and since only regression models
seem to perform best, we decided to use the following additional data settings, the best
500MB data setting and the two best settings for the preference-SVM:

• Regression: 500MB, NLLR, 7 search engines, LAP, all features except group 7
• Preference: 100MB, NLLR, 4 search engines, LAP, all features except group 3
• Preference: 100MB, NLLR, 4 search engines, LAP, all features except group 7

SVM Parameter Optimization

One parameter, which always applies, is the complexity factor C. This determines the
trade-off between minimizing model error on the training data and minimizing model
complexity. Its purpose is to avoid overfitting and underfitting. Overfitting occurs when
the model performs well on the training data but does poorly on held-aside test data.
Underfitting occurs when the model performs poorly on both training and test data.
Another parameter is the kernel. Depending on the type of kernel used, additional kernel
parameters must be specified1. Finally, in case SVM regression is used, an additional
parameter epsilon must be specified; its purpose is to penalize large errors and neglect
small ones.

For our experiments, we varied the C parameter from two to the power of -2.5, -2, -1.75, -
1.5, -1, 3, and 6. We used both a linear kernel and a Radial Basis Function (RBF) kernel.
The gamma parameter for the RBF kernel was varied from four to the power of -1, 0, 1, 2,
and 3. Finally, in the case of training regression models, the epsilon parameter was
varied from five to the power of 0.5, 1, 1.5, 2, and 2.5.

Summarizing, the preliminary tests concluded that four data chunks were suitable for
training regression models: for each chunk, we supplied 210 different parameter-
combinations to the SVM algorithm. This resulted in 210 regression models: 35 with a
linear kernel and 165 models with an RBF kernel. For each of the other two data chunks,
we created 42 preference models: seven with a linear kernel and thirty-five with an RBF
kernel.

We do not expect all 924 (4 x 210 and 2 x 42) models to generalize well, and we will
discuss the evaluation of the SVM models in Section 4.4.1.

4.3 External Influences

We set out to analyze the effects of other variables, which we assumed to have great
influence on the merging performance of our strategies.

4.3.1 Number of Result Lists

Merging more result lists inherently enhances recall. How this affects precision is hard to
say. For example, with RR merging, precision is very much affected by the quality of a
result list: it really matters that the first few results in each list are relevant. In many lists
however, the first result is not relevant (that is, there are many lists of low quality) and
no result list consists of only relevant results. Assuming that each time the list with the
highest quality is selected next, then, as more result lists are being merged, precision will
most likely increase until some optimum is reached, and then start to decrease.

1 Examples of kernels and their parameters were explained in Section 2.4.4.

28 Chapter 4 Research Methodology

By varying the amount of lists to be merged from 2, 3, 4, 5, 7, 10 and 15, we measured the
precision-stability of each merging algorithm.

4.3.2 Subcollection Size

As the size of the subcollections increases, the number of the subcollections decreases.
This has one major impact: the subcollection’s collection statistics are directly affected,
influencing the IR-model’s performance and thus influencing the quality of the result
pages.

A minor effect is that, as the size of the subcollections increases, the proportion of
documents included in the search increases when the number of result lists to merge
stays the same. For example, when merging 15 result lists, we are searching 100% of the
documents if we use our 500MB collection split consisting of 15 subcollections.

4.3.3 Search Engine Selection Policy

Section 4.1.2 explained that Local/Global (Mean) Average Precision can be used as
performance-based selection policies. In addition, two non-performance-based selection
policies were explained: random selection and merit-based selection. We measured the
effects of these six selection policies on the merging performance.

4.4 Evaluation

4.4.1 Evaluating SVM Models

We want to find out which model is the most robust model: that is, the one that produces
the highest GMAP as often as possible regardless of external influences: the resource
selection policy used, the amount of search engines merged, and the size of the search
engine’s document collection.

First, we split the result pages from each search engine for each query in two parts: the
results of the odd queries for training and the results of the even queries for testing.
However, not all results of all odd queries were used for training and not all results of all
even queries were used for testing; instead, several data chunks were used. As discussed
earlier in Section 4.2.5, six data chunks were selected: four chunks, each for training 210
regression models; and two chunks, each for training 42 preference models. The models
were trained on the chunk’s odd queries (the training set) and evaluated on the chunk’s
even queries (the test set).
The evaluation consisted of measuring the model’s performance on the test set by means
of the LMAP1 measure. An N-fold cross validation would have been a more accurate
estimation of the model’s performance; however, it would have cost considerably more
time.

The test set evaluation indicates which models generalize well, however, it is not
sufficient to conclude which model is the most robust model. For example, suppose that
we used a data chunk, created from 3 search engines from the 100MB split according to

1 On a side note, for each training set, we trained either 210 or 42 models. Since the test set
remains fixed, it does not matter if the LMAP or GMAP measure was used; the only
difference would be that the GMAP would be lower than the LMAP by some constant value.

4.4 Evaluation 29

LAP selection, for training and testing two models A and B. According to the test set
evaluation, the best model is A. It might be the case that A performs better when
merging results from 2 and 3 search engines, whereas B performs better when merging
results from 4, 5, 7, 10 and 15 search engines. Since B performs better in most cases, we
define B as the most robust model.

In order to find the most robust model, we needed to see how the models would react to
varying external influences. Recapitulating, the external influences were the number of
search engines to merge: 2, 3, 4, 5, 7, 10, and 15; the selection policies: LMAP, GMAP,
GAP, LAP, random, and merit; the collection split size: 100MB and 500MB; and finally,
the IR-models: NLLR and OKAPI.
There are 148 different value-combinations of these external variables. To test each of the
924 models on all 148 combinations would be very time consuming. Therefore, we used
the top ten models from each of our six training sets, based on their test set evaluation.
We assumed that the most robust model would also be among the top ten models in the
test set evaluation.

For each combination of external variables, we applied the sixty models and we ranked
them based on their performance on that particular experiment, the best model at rank
one, the second best model at rank two, etcetera. Once all 148 experiments were
conducted, the mean rank of each model was calculated. The model with the best mean
rank was considered the most robust model.

4.4.2 Evaluating Retrieval Performance

Statistical Significance Test

To test whether the SVM models were significantly (with p<0.05) better than the RR
baseline merging method, we used a randomization approach [37] with 100,000 random
permutations. Our test statistic was the GMAP of each method.

The randomization test is designed to determine if the observed difference in the MAP of
two systems A and B is due to the systems or to chance. The null hypothesis H0 states
that both systems are identical. We can imagine some system N generating two Average
Precision (AP) values, one labeled A, and the other labeled B. Given 50 topics, there are
250 possible ways to label the APs; one of those labelings is exactly the observed labeling
of our systems A and B.
Under H0, any permutation of the labels is equally likely. If all 250 permutations were
created, and if we measured the difference in the MAP of A and B for each permutation,
we could count the number of times the absolute difference in MAP between A and B
was as great as or greater than their observed absolute difference. This number divided
by 250 yields the two-tailed p-value. If this value is less than 0.05, we reject H0 and we are
confident that the GMAP difference is due to the systems and not due to chance.
In practice, generating all possible permutations would take too long even for modern
machines; therefore, we generate 100,000 random permutations and we assume that the
two-tailed p-value obtained this way to be accurate enough.

30 Chapter 4 Research Methodology

Comparing with Centralized Baselines

A comparison with a centralized baseline is the ultimate test for a Distributed IR system,
since the former has complete knowledge of the whole collection, allowing it to achieve
the highest performance.
The MonetDB/XQUERY database system was used as our centralized baseline. The
WT10g corpus was converted to valid XML, just as described in Section 4.1.1. Then, an
index was made on all the data in order to retrieve the desired result pages. Each result
page had a maximum of 500 results.
The GMAP measure is well suited for this comparison, since we are not comparing any
merging performance (what does a centralized system merge?); instead, we are
comparing the overall retrieval performance of both systems.

A Side Note: Comparing Merging-Performance

It is not clear what measure to use as a merging-performance measure. When comparing
two different distributed IR systems, one often cannot conclude, based only on the
GMAP, that one merging scheme merges better than the other does; however, one can
conclude that the whole system, thus including the resource selection component, did a
better job of choosing its resources and merging the results.
The following example illustrates the problem. Imagine three merging systems A, B, and
C having perfect recall (retrieving all relevant documents in their resources) and
producing a ranking where all relevant results are in the top even ranks: for example, all
three systems have an LMAP of 0.5 regardless of how many relevant documents reside
in their document collection. Now imagine system A having 10, B having 20, and C
having 50 relevant documents. While their LMAP is the same, their GMAP is 0.0625,
0.125, and 0.3125 respectively.

The LMAP does indicate that the three systems, given their situation, were equally well
in merging their results, whereas GMAP certainly failed this task. Even so, it is
questionable whether the LMAP measure can be used as a merging-performance
measure; who is to say that system A, given 50 relevant documents in its collection,
would have produced a ranking “as good” as system C? Maybe it would have
performed a little better, or maybe even worse.

The only way to compare merging performance between systems is if all else remains
fixed: the test corpus, the resource selection component, the IR-models used for indexing
that resource, etcetera. When this is the case, it does not matter anymore whether LMAP
or GMAP is used to compare the merging-performance.
Although the problem of result merging has been acknowledged since 1994, no “official”
merging-performance measurement yet exists. This means that, unless a lot of effort was
put into duplicating the experiment-environment and only changing the merging
algorithm, people were never really optimizing the merging algorithm itself; instead, the
system as a whole was being optimized. Therefore, whenever progress was made, it
could have been attributed to the resource selection component, or the merging
component, or both.
It might be useful to supply both LMAP and GMAP figures for each merging
experiment, thereby providing a better means for comparing the merging performance
of different Distributed IR systems.

 - 31 -

Chapter 5

Results

In this chapter, we report and analyze our results. First, we report part of the results of
our preliminary tests. Then we show the performance of the centralized baselines. Then,
we show the SVM training and merging times, and compare them with the RR merging
time. Thereafter, we present the resulting features of the best SVM model and their
corresponding weights. Finally, we present performance charts of SVM and RR merging,
while we vary the external influences.

5.1 Preliminary Test Results

The preliminary tests were carried out to find out which data chunks and feature groups
were suitable for further optimizing either the preference-SVM models or the regression-
SVM models. For each data chunk, a preference-SVM and a regression-SVM model was
trained using a linear kernel. All models were evaluated on how they merged the results
of the top five search engines, selected with the GAP policy, the results of which are
shown in Table 5.1.

Table 5.1: GMAP of the SVM model when merging the
results of the top five GAP search engines

GMAP SVM-type
Search
engines

Selection
policy

Collection
size

IR-
model

Feature group
omitted

0,194 regression 1 LAP 100MB OKAPI 3
0,191 regression 10 GAP 100MB NLLR 3
0,191 regression 10 GAP 100MB NLLR 7
0,191 regression 10 GAP 100MB NLLR None
0,190 regression 10 GAP 100MB NLLR 4
0,190 regression 10 GAP 100MB NLLR 6

…
0,189 regression 7 LAP 500MB NLLR 7
0,189 regression 10 GAP 500MB NLLR 6

…
0,151 preference 4 LAP 100MB NLLR 3
0,142 preference 4 LAP 100MB NLLR 7
0,142 preference 4 GAP 100MB NLLR 4
0,140 preference 4 GAP 100MB NLLR 3

…

We used the top three settings for further parameter optimization. In addition, since
these are all from the 100MB collection and are all regression models, we also used the
best 500MB setting and the two best settings for preference-SVM models for further
parameter optimization.

32 Chapter 5 Results

Simply said, parameter optimization means training many distinct SVM models on the
same training data and finding out which one is the most robust model. We discussed
our evaluation procedure in Section 4.4.1.
The most robust SVM model turned out to be a regression-SVM model, with a linear
kernel, trained on the best data setting (i.e., the first row in Table 5.1): the odd query
results from the search engine with the highest LAP (for that query), from the 100MB
OKAPI split, with all but the title features.

5.2 Centralized Baseline Performance

Using the fifty even-numbered queries for evaluating our centralized baselines, where
each result list has a maximum of 500 results, the MAP is given in Table 5.2.

Table 5.2: MAP for centralized baselines using even-numbered queries

 MAP@500 MAP@250
NLLR 0.140 0.125
OKAPI 0.161 0.146

When comparing the centralized baseline results with the merged results, we should
take the second column, MAP@250, since the merged result lists are never contain more
than 250 results.

5.3 Training Time and Merging Time

The time needed to train the SVM models was recorded, as was the time for merging the
results using. Table 5.3 lists the time needed to train the best regression and preference
models, and the time needed for merging 250 results, using either an SVM model or RR.

Table 5.3: Time needed to train a model and merge 250 results
(including disk I/O time)

 Training time
(in seconds)

Avg. merging time
(in seconds)

Round Robin - 0.8
Regression SVM 0.6 21
Preference SVM 150 28

Keep in mind that the listed training time is for that particular model only. The time
needed to train and test all our models, in order to verify that some model was indeed
the most robust model, was much more. Some models took over an hour to train, and we
manually stopped a few models that seemingly did not converge as they were running
for hours.

5.5 RR & SVM Performance 33

5.4 Important Features

The most robust model was a regression model, trained on all features but the third
feature group. Since a linear kernel was used, the weights of these features could be
easily extracted and are shown below in Table 5.4.

Table 5.4: Grouped and weighted feature list

+0.0033 1. Rank: (1000 - rank) / 1000 (range [0,1])
1

-3.2926 2. Rank: rank (range [1…])
+2.1756 3. Cosine similarity query - title (range [0,1])
+0.8261 4. Cosine similarity query - snippet (range [0,1]) 2
+0.1014 5. Cosine similarity query - URL (range [0,1])

n/a 6. Title: number of words (range [1…])
3

n/a 7. Title: average word length in chars (range [1…])
+0.0837 8. Snippet: number of words (range [0…])

4
-0.0386 9. Snippet: average word length in chars (range [1…])
-0.0988 10. URL: length in chars of FQDN (range [4…])
-0.4186 11. URL: FQDN frequency in current list (range [0,1])
+0.0196 12. URL: path-depth

5

+1.1125 13. URL: average path length in chars (range [1…])

-0.1999 14. Query: number of words (range [1…])
6

+0.0212 15. Query: average word length in chars (range [1…])
-0.5569 16. URL: contains tilde '~' (binary {0,1})
-0.2965 17. URL: contains text 'home' (binary {0,1})
+0.2500 18. Title: contains text 'home' (binary {0,1})
-0.1353 19. LCS query - title (range [0,1])
-0.2553 20. LCS query - snippet (range [0,1])
-0.0012 21. LCS query - URL (range [0,1])

-0.1630 22. LWO query - title (range [0,1])
-0.1692 23. LWO query - snippet (range [0,1])
-0.0012 24. LWO query - URL (range [0,1])
-0.5258 25. LWO title - snippet (range [0,1])
+0.9042 26. LWO title - URL (range [0,1])

7

+0.1020 27. LWO URL - snippet (range [0,1])
+2.3412 28. Server usefulness: LAP (range [0,1])
+0.2613 29. Server usefulness: GAP (range [0,1]) 8
+3.8140 30. Server usefulness: Merit (range [0…])

If the ranges of all features were normalized, then the most important features would be
those with a high absolute weight. (A negative weight indicates that the feature should
be penalized.) Since not all of our features are normalized, it is difficult to conclude
which features are the most important ones.

5.5 RR & SVM Performance

This section reports the effects of the external influences on the merging performance.
First, the effects of the selection policies will be illustrated in Figures 5.1 up to 5.6. Here,
we explicitly show the number of search engines being merged, together with their
combined amount of relevant pages, which is a direct result of the resource selection
policy used.
As a short note, keep in mind that we want to select as few search engines as possible
(e.g., to minimize network traffic and computing time) and at the same time, we want
the merging performance to be as high as possible.

34 Chapter 5 Results

500MB, NLLR, LAP selection

0.00

0.05

0.10

0.15

0.20

0.25

2

(373)

3

(602)

4

(824)

5

(1024)

7

(1399)

10

(1897)

15

(2514)

number of search engines

(combined amount of relevant documents)

G
lo

b
a
l M

A
P

Round Robin Regression SVM Preference SVM

Figure 5.1: GMAP graphs of 3 merging methods, the search engines are

selected from the 500MB NLLR split using the LAP selection policy

500MB, NLLR, GAP selection

0.00

0.05

0.10

0.15

0.20

0.25

2

(787)

3

(1049)

4

(1274)

5

(1461)

7

(1785)

10

(2141)

15

(2514)

number of search engines

(combined amount of relevant documents)

G
lo

b
a

l M
A

P

Round Robin Regression SVM Preference SVM

Figure 5.2: GMAP graphs of 3 merging methods, the search engines are

selected from the 500MB NLLR split using the GAP selection policy

Figures 5.1 and 5.2 show that with the LAP or GAP selection policy, the regression
approach is always better than our merging baseline, and that the preference approach is
always worse. It should not be surprising that RR performs well, especially with GAP
selection, since GAP is a near optimal selection policy for RR merging.

5.5 RR & SVM Performance 35

500MB, NLLR, LMAP selection

0.00

0.05

0.10

0.15

0.20

0.25

2

(341)

3

(466)

4

(700)

5

(866)

7

(1300)

10

(1778)

15

(2514)

number of search engines

(combined amount of relevant documents)

G
lo

b
a
l M

A
P

Round Robin Regression SVM Preference SVM

Figure 5.3: GMAP graphs of 3 merging methods, the search engines are
selected from the 500MB NLLR split using the LMAP selection policy

500MB, NLLR, GMAP selection

0.00

0.05

0.10

0.15

0.20

0.25

2

(378)

3

(503)

4

(661)

5

(895)

7

(1244)

10

(1758)

15

(2514)

number of search engines

(combined amount of relevant documents)

G
lo

b
a
l M

A
P

Round Robin Regression SVM Preference SVM

Figure 5.4: GMAP graphs of 3 merging methods, the search engines are
selected from the 500MB NLLR split using the GMAP selection policy

Although LMAP and GMAP are performance measures, after comparing Figures 5.3 and
5.4 with the previous two, it is clear that selecting the same search engines for all queries
is not a good idea. In other words, it is not wise to say, for example, that because Google
is the best search engine on average, we will always use its results for result merging.
The search engines should be selected on a per query basis, with the criterion that it has
the best results for that query compared to the results of other search engines for that
query.

36 Chapter 5 Results

500MB, NLLR, Random selection

0.00

0.05

0.10

0.15

0.20

0.25

2

(348)

3

(496)

4

(649)

5

(843)

7

(1208)

10

(1787)

15

(2514)

number of search engines

(combined amount of relevant documents)

G
lo

b
a

l M
A

P
Round Robin Regression SVM Preference SVM

Figure 5.5: GMAP graphs of 3 merging methods, the search engines are
selected from the 500MB NLLR split using the random selection policy

500MB, NLLR, Merit selection

0.00

0.05

0.10

0.15

0.20

0.25

2

(978)

3

(1244)

4

(1477)

5

(1675)

7

(1976)

10

(2310)

15

(2514)

number of search engines

(combined amount of relevant documents)

G
lo

b
a

l M
A

P

Round Robin Regression SVM Preference SVM

Figure 5.6: GMAP graphs of 3 merging methods, the search engines are

selected from the 500MB NLLR split using the merit selection policy

The random and merit1 selection policies are no performance measures. Figures 5.5 and
5.6 confirm that random selection is not desired and that merit selection works well,
although not as good as LAP or GAP.

1 A search engine’s merit tells us about the number of relevant documents in its document
collection for a given query. However, it does not say that the search engine actually retrieves
them. As such, a search engine’s merit is not a performance measure.

5.5 RR & SVM Performance 37

As can be seen from the previous graphs, the preference model was often (significantly)
worse than both our baseline RR scheme and the regression model. Therefore, the next
Figures, 5.7 up to 5.10, will only display the RR and the regression performances. We
will use the term SVR to refer to our regression SVM model.

Together, Figures 5.1 up to 5.6 show the importance of the ordering of the search engines
when doing RR merging. At the point where fifteen search engines are merged, all six
selection policies selected the same fifteen engines, albeit in a different order. This
difference in order dramatically affects RR merging, while both SVM approaches
converge to certain value and seem to be more stable. Figure 5.7 clearly shows that when
merging results of fifteen search engines, using any selection policy, the SVR graphs
converge while the RR graphs do not.

Next, we will summarize the SVR and RR graphs for:

1. the 500MB collection split indexed with the NLLR IR- model; and,
2. the 100MB collection split indexed with the NLLR IR-model.

Figures 5.7 up to 5.10 plot the GMAP (or LMAP) against the number of search engines
being merged, for a given selection policy and a given merging method. The names in
the legend consist of: the name of the merging method (RR or SVR), a hash symbol ‘#’,
and the name of the selection policy.
For a given selection policy (for instance, one of the graphs in Figures 5.7 up to 5.10) and
the number of search engines to merge, the combined number of relevant documents are
shown separately in Tables 5.5 and 5.6.

Table 5.5: Combined number of relevant pages of the search engines, selected
from the 500MB NLLR collection with the given selection policy.

 2 3 4 5 7 10 15
LAP 373 602 824 1024 1399 1897 2514
GAP 787 1049 1274 1461 1785 2141 2514
LMAP 341 466 700 866 1300 1778 2514
GMAP 378 503 661 895 1244 1758 2514
RANDOM 348 496 649 843 1208 1787 2514
MERIT 978 1244 1477 1675 1976 2310 2514

Table 5.6: Combined number of relevant pages of the search engines, selected
from the 100MB NLLR collection with the given selection policy.

 2 3 4 5 7 10 15
LAP 150 219 307 388 550 817 1177
GAP 564 688 817 940 1107 1350 1658
LMAP 80 138 175 213 279 407 569
GMAP 96 113 145 183 260 364 562
RANDOM 48 72 120 149 218 301 507
MERIT 699 888 1042 1170 1384 1621 1917

38 Chapter 5 Results

500MB, NLLR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

2 3 4 5 7 10 15

number of search engines

G
lo

b
a

l
M

A
P

RR#LAP

RR#GAP

RR#LMAP

RR#GMAP

RR#RAND

RR#MERIT

SVR#LAP

SVR#GAP

SVR#LMAP

SVR#GMAP

SVR#RAND

SVR#MERIT

Figure 5.7: GMAP of tests on the 500MB NLLR split.

500MB, NLLR

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2 3 4 5 7 10 15

number of search engines

L
o

c
a

l
M

A
P

RR#LAP

RR#GAP

RR#LMAP

RR#GMAP

RR#RAND

RR#MERIT

SVR#LAP

SVR#GAP

SVR#LMAP

SVR#GMAP

SVR#RAND

SVR#MERIT

Figure 5.8: LMAP of tests on the 500MB NLLR split.

The effects of the selection policies are clearly visible in Figures 5.7 and 5.8. The desired
policies, in order of preference, are GAP, LAP, and merit. The SVR performance is
significantly better (p<0.05) than RR in almost all (500MB, NLLR) experiments; only the
LAP and GAP points for less than 15 search engines did not prove significant.

5.5 RR & SVM Performance 39

100MB, NLLR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

2 3 4 5 7 10 15

number of search engines

G
lo

b
a

l
M

A
P

RR#LAP

RR#GAP

RR#LMAP

RR#GMAP

RR#RAND

RR#MERIT

SVR#LAP

SVR#GAP

SVR#LMAP

SVR#GMAP

SVR#RAND

SVR#MERIT

Figure 5.9: GMAP of tests on the 100MB NLLR split

100MB, NLLR

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2 3 4 5 7 10 15

number of search engines

L
o

c
a

l
M

A
P

RR#LAP

RR#GAP

RR#LMAP

RR#GMAP

RR#RAND

RR#MERIT

SVR#LAP

SVR#GAP

SVR#LMAP

SVR#GMAP

SVR#RAND

SVR#MERIT

Figure 5.10: LMAP of tests on the 100MB NLLR split

Here, in Figures 5.9 and 5.10, the SVR performance is significantly better (p<0.05) than
RR in all (100MB, NLLR) experiments, except for the experiments with the LAP and GAP
selection policies.

40 Chapter 5 Results

The same effects can be seen with the OKAPI IR-model; therefore, it is of no additional
value to display those tables and figures. However, since OKAPI produces slightly better
results, the merged results are also slightly better.

The astute reader might ask why, as the number of search engines increases, the
regression performance in the 500MB collection split decreases at some point. This is
because we only merged 250 results and each search engines contributes an equal
amount of results to this merged list. Therefore, if we merge the results of fifteen
engines, each engine contributes (its first) 16.7 results on average, and we miss out quite
a few relevant results, since relevant results are often found after the 16th result.

In Section 4.1.2, we assumed, besides for efficiency reasons, that it would not be a good
idea to merge the results of all search engines. We assumed that many engines would
not contribute any relevant results and therefore, the merging performance would
degrade. We also assumed that a centralized IR system would perform at least as good
as a Distributed IR system when merging the results of all search engines.
We conducted a small additional experiment using the SVR model to merge all seventy-
nine search engines of the 100MB NLLR split; the GMAP was 0.234. The GMAP when
merging all engines of the 500MB NLLR split using the SVR model was 0.189. Our
centralized baseline had a MAP@250 of 0.125 (see Table 5.2). These experiments
invalidate our assumption for not merging the results of all search engines (of course,
this is not efficient).
These experiments show that the performance of a Distributed IR system can be much
better than that of a centralized IR system in many scenarios; for the SVR merging
method it does not matter which selection policy is used, and even RR merging, with the
right selection policy, is much better than the centralized system.

 - 41 -

Chapter 6

Discussion

6.1 More on the Results

The only difference in Figures 5.7 and 5.9 is the document collection size of the search
engines, and as a direct result, the 100MB split has more collections.

The difference in collection size affects the performance of the merging methods in
several ways. First, the SVR graphs do not converge just as they did in Figure 5.7. This is
because no selection policy selects the same fifteen search engines. Second, the merging
methods yield much higher performance in the 100MB split than in the 500MB split.

The question arises why this is the case. It could be attributed to: one, a more fine-
grained resource selection, as there are more search engines to select from; two, IR-
models may work better on smaller collections thereby producing better result pages; or
three, a combination of both one and two.

After inspecting the selected search engines in the 100MB split with the highest GAP, we
noted that many had an LAP of either one, or close to one, meaning that those engines
ranked all or almost all of their relevant documents in the top. This is not the case in the
500MB split. Thus, we can conclude that the better merging is a direct result of better
result pages.

6.2 Kernels and Overfitting

A large part of this work was devoted to Support Vector Machine (SVM) related
material; however, it was never the intention to squeeze the last bit of performance out
of the SVM models. We did put some effort in selecting appropriate features and in
optimizing the SVM parameters.

We did not present all results of the preliminary tests; we only concluded which data
chunks and features were promising candidates for further optimizing the SVM model.

Nevertheless, all preliminary tests using the Radial Basis Function (RBF) kernel
consistently proved much better than the tests using the linear kernel when evaluated on
the training set, and proved worse when evaluated on the test set. We have no
explanation for this apparent overtraining that occurs with the RBF kernel. However,
according to Keerthi [19], every linear kernel can be expressed by a RBF kernel with the

right parameters for γ and C. Therefore, we can conclude that the optimal parameters for
the RBF kernel were not found.

The fact that the linear kernel works best tells us that the data can be separated “well” in
input space.

42 Chapter 6 Discussion

6.3 Similar Regression and RR Behavior

In the experiments with the GAP or LAP selection policy, the regression model behaves
similarly to the RR-merge, although always yielding slightly better results.
One possible explanation is that this similar behavior just happened by chance. Another
explanation is that the regression model was affected by RR, since the training was done
after a RR-merge of the training samples: when we trained on data from multiple search
engines, we first did an RR merge of their results.
The RR-merge only affected the first feature, namely the rank ratio, which is (1000 minus
the result’s rank - assigned by RR) divided by 1000. The rest of the features, and the
target values, remained the same. In addition, if we look at the learned weight for the
first feature of the regression model, we see that it is almost zero, indicating that the
regression model practically ignores the effects of RR merging. Finally, this similar
behavior only occurs with the LAP and GAP selection policies. Therefore, we conclude
that the similar behavior occurred by chance.

The fact that RR works well, in combination with the LAP and GAP policies, indicates
that a result’s rank and the “usefulness” of the search engine are the most important
features. The learned weights of the regression model (see Table 5.4) seem to confirm
that the rank and “usefulness” are the most important features.

6.4 Efficient Result Set Selection

GAP proved to be the best resource selection policy, better than the merit and LAP
policy. However, the learned weight of the GAP feature is much smaller than the learned
weights of the merit and LAP features. We suspect that the optimal selection strategy
might be based on a combination of the merit and LAP features.
An LAP of one means that all relevant documents in the search engine’s document
collection were retrieved and placed in the first N ranks. It does not say anything about a
number of relevant documents retrieved. Furthermore, you cannot compare the LAPs of
two search engines to see which one retrieved more results that are relevant. This is
where GAP has an advantage: you can compare the GAPs of two engines to see which of
the two retrieved more results that are relevant. Still, both GAP and LAP do not say
anything about the number of results actually retrieved.
An engine’s merit does not say anything about a number of documents retrieved either.

However, if, for a given query, an engine’s LAP is one and its merit is M, then we know
for sure that the first M results in its result list are relevant. Actually, with an engine’s
merit and LAP, we can calculate the probability Pi(r|R), where r is the number of
relevant documents retrieved when downloading R documents from some server i.
Viewing the problem of result merging as that of re-ranking a set of results, much
efficiency can be gained by selecting the right set of results to begin with. With the merit
and LAP statistics, we can not only select the most promising search engines, but we can
also decide on the amount of results to retrieve from each engine. We believe that this is
the optimal selection policy: it enables us to minimize the amount of data traffic while
we maximize the amount of relevant documents in the result set.

6.6 Preference-SVM 43

6.5 LMAP

We devised LMAP to allow easy comparison between the merging-performance of
different Distributed IR systems. Our experiments show that LMAP does not fit this task:
the effects of the selection policy are too strong and the LMAP values vary too much.
Hypothetically speaking, if some merging method A is always better than merging
method B, then, this should be apparent from the LMAP figures no matter what resource
selection policy is used: all values of A should be higher than all values of B.
Perhaps if the LMAP were computed based on the amount of relevant results in the
combined result lists (instead of in the combined document collection of the search
engines), it would fit the task of easy comparison of different merging systems.

6.6 Preference-SVM

Joachims [18] reported on the successful improvements of his SVM algorithm in a
metasearch scenario using clickthrough data. Our experiments, using TREC relevance
judgments as the “source of clickthrough data”, indicate that preference-SVM may not
be suited for this kind of data. The work of Verberne et al. [40] resembles our research in
some way: they also used a preference-SVM and a (logistic) regression approach and had
similar conclusions. Their results with preference-SVM are very poor compared to the
results obtained with logistic regression or genetic algorithms.

 - 45 -

Chapter 7

Conclusion

This research aimed at improving the efficiency and the performance of result merging,
one of three major problems in Distributed Information Retrieval. We gained efficiency
by only allowing result lists, and not actual documents, to be downloaded at query-time.
With the given restriction, we identified three methods that potentially improve current
result merging strategies. Two methods are based on Support Vector Machine (SVM)
learning: preference-SVM, and regression-SVM. The third one is Round Robin and
functions as our merging baseline. We implemented these models in a distributed
environment, which we had to build ourselves before we could train and test the
models. In the following paragraphs, we repeat our research questions and answer them
accordingly.

Q1. Which of RR-merging, preference-SVM, and regression-SVM is recommended and why?

A1. Our results show that regression-SVM is always as good as, or better than, RR
merging, whereas preference-SVM is significantly worse than both models most of the
times. However, RR merging requires fewer operations and it is an order of magnitude
faster. We also saw that the selection policy had a great impact on both RR and on
regression SVM; however, the impact on regression-SVM grows smaller as more search
engines are selected.
We recommend using RR merging only in cases where the following conditions apply:
first, the primary concern is the speed of the system, which must be as high as possible;
second, it is certain that the selection policy is good enough.
We recommend using regression-SVM in all other cases.

Q2. Using information only from result pages and the broker’s selection mechanism, what are
suitable information sources to use for result merging, and what are their weights?

A2. The most robust model in our experiments was a regression SVM model with a
linear kernel. The features used to train this model are shown in Table 5.4, along with
their learned weights. If the ranges of all features were normalized, then the most
important ones would be those with the highest absolute weights. Since not all our
features are normalized, it is difficult to say which features are most important.
However, as discussed in Section 6.4, we believe that the rank and server usefulness can
be considered as the most important features.

Q3. How vulnerable are the merging strategies to external influences like the number of result
lists to merge, or the quality of the result pages?

A3. The most influential factors on the merging performance are in the first place the
resource selection policy, and in the second place the number of search engines to merge.
The selection policy selects a set of search engines (of a certain quality), and orders them.

46 Chapter 7 Conclusion

The ordering of this set affects only RR and has no effect on regression-SVM.
Summarizing, all merging strategies are vulnerable to the selection policy. However, as
the number of selected search engines increases, the effect of the selection policy on the
SVM methods decreases.

Q4. How well do these result merging strategies perform in terms of the cpu-time / performance
(tp) ratio?

A4. The regression model’s performance is often better than that of RR. The preference
model’s performance is often worse than RR. Ignoring the cpu-time for training the SVM
models, the cpu-time of the SVM approaches, for doing result merging, is an order of
magnitude larger than that of RR.

For instance, in the case where the difference between RR and regression SVM is
maximal (the random selection policy, at fifteen peers), the tp-ratio of RR is 11, whereas
the tp-ratio of the regression-SVM is 132. In the case where the difference between RR
and SVM is minimal (the random selection policy, at two peers), RR’s tp-ratio is 38,
whereas the SVM’s tp-ratio is 454.

 - 47 -

Chapter 8

Future Work

This research sought suitable features for training SVM models for the task of result
merging, while only extracting these features from the result pages and from the
broker’s resource selection component (for reasons of efficiency and trust: we assumed
that we were operating in an uncooperative environment).
These models were tested in different scenarios: one, where 79 search engines had a
document collection of roughly 100MB; and two, where 15 engines had a collection of
roughly 500MB. Furthermore, two different IR-models (NLLR and OKAPI) were used in
each scenario, yielding four different test beds.
However, in Distributed Web search, it is likely that: many search engines will have
some collection overlap, that their collection size may vary widely, that there is more
variety in the IR-models used, that there are topical (expert) databases, and that clusters
of cooperative search engines will emerge to gain advantage over the competition.

If we assume cooperative and truly heterogeneous environments, then the merging
component (e.g., SVM models) can be trained on many more features. For instance,
models could be trained on the following features: the collection size, collection overlap,
the search engines’ main topics, the IR-model, the document score, and much more.
With collection-overlap comes the additional task of duplicate detection and deletion.
More generally, look-a-like detection can be very important, even in cases without
collection overlap, since this allows the search engine to decide whether to present as
many distinct documents as possible, or as many look-a-likes as possible.

Finally, based on our findings, we believe that much performance gain can be obtained
by allowing the best search engines to contribute more results in the merged list.
Another thing we noticed is that sometimes a hint can be found hidden in (concatenated)
words, such as “http://www.somethingyouarelookingfor.com/whatis.html”, which
points towards Natural Language Processing (NLP) techniques, as a logical next step.

 - 49 -

Bibliography

[1] J. A. Aslam, and M. Montague, “Models for metasearch,” in Proceedings of

the 24th annual international ACM SIGIR conference on Research and

development in information retrieval, New Orleans, Louisiana, United States,

2001.

[2] R. A. Baeza-Yates, and B. Ribeiro-Neto, Modern Information Retrieval:

Addison-Wesley Longman Publishing Co., Inc., 1999.

[3] R. A. Baeza-Yates, C. Castillo, F. Junqueira et al., “Challenges on Distributed

Web Retrieval,” in Proceedings of the 23rd International Conference on Data

Engineering, The Marmara Hotel, Istanbul, Turkey, 2007.

[4] P. Bailey, N. Craswell, and D. Hawking, “Engineering a multi-purpose test

collection for web retrieval experiments,” Inf. Process. Manage., vol. 39, no.

6, pp. 853-871, 2003.

[5] B. T. Bartell, G. W. Cottrell, and R. K. Belew, “Automatic combination of

multiple ranked retrieval systems,” in Proceedings of the 17th annual

international ACM SIGIR conference on Research and development in

information retrieval, Dublin, Ireland, 1994.

[6] N. J. Belkin, P. Kantor, E. A. Fox et al., “Combining the evidence of multiple

query representations for information retrieval,” Information Processing &

Management, vol. 31, no. 3, pp. 431-448, 1995.

[7] M. K. Bergman, “The Deep Web: Surfacing Hidden Value,” Journal of

Electronic Publishing, vol. 7, no. 1, 2001.

[8] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern

Recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998.

[9] J. Callan, “Distributed information retrieval,” Advances in information

retrieval, pp. 127-150, 2000.

[10] J. Callan, and M. Connell, “Query-based sampling of text databases,” ACM

Trans. Inf. Syst., vol. 19, no. 2, pp. 97-130, 2001.

[11] J. P. Callan, Z. Lu, and W. B. Croft, “Searching distributed collections with

inference networks,” in Proceedings of the 18th annual international ACM

SIGIR conference on Research and development in information retrieval,

Seattle, Washington, United States, 1995.

[12] G. Cao, J.-Y. Nie, and J. Bai, “Integrating word relationships into language

models,” in Proceedings of the 28th annual international ACM SIGIR

conference on Research and development in information retrieval, Salvador,

Brazil, 2005.

[13] Y. Cao, J. Xu, T.-Y. Liu et al., “Adapting ranking SVM to document

retrieval,” in Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, Seattle,

Washington, USA, 2006.

[14] C. Cortes, and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20,

no. 3, pp. 273-297, 1995.

50 Bibliography

[15] M. Farah, and D. Vanderpooten, “An outranking approach for information

retrieval,” Information Retrieval, vol. 11, no. 4, pp. 315-334, Saturday,

February 16, 2008, 2008.

[16] R. Herbrich, T. Graepel, and K. Obermayer, "Large margin rank boundaries

for ordinal regression," Advances in Large Margin Classifiers, pp. 115-132:

MIT Press, Cambridge, MA, 2000.

[17] T. Joachims, "Making large-Scale SVM Learning Practical," Advances in

Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges and A.

Smola, eds.: MIT-Press, 1999.

[18] T. Joachims, “Optimizing search engines using clickthrough data,” in

Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, Edmonton, Alberta, Canada, 2002.

[19] S. S. Keerthi, and C.-J. Lin, “Asymptotic behaviors of support vector

machines with Gaussian kernel,” Neural Comput., vol. 15, no. 7, pp. 1667-

1689, 2003.

[20] V. Lavrenko, and W. B. Croft, “Relevance based language models,” in

Proceedings of the 24th annual international ACM SIGIR conference on

Research and development in information retrieval, New Orleans, Louisiana,

United States, 2001.

[21] S. Lawrence, and C. L. Giles, “Inquirus, the NECI meta search engine,” in

Proceedings of the seventh international conference on World Wide Web 7,

Brisbane, Australia, 1998.

[22] S. Lawrence, and C. L. Giles, “Accessibility of information on the Web,”

Intelligence, vol. 11, no. 1, pp. 32-39, 2000.

[23] J. Madhavan, S. R. Jeffery, S. Cohen et al., “Web-scale Data Integration: You

can only afford to Pay As You Go,” in CIDR, 2007.

[24] R. Nallapati, “Discriminative models for information retrieval,” in

Proceedings of the 27th annual international ACM SIGIR conference on

Research and development in information retrieval, Sheffield, United

Kingdom, 2004.

[25] L. Page, S. Brin, R. Motwani et al., The PageRank Citation Ranking:

Bringing Order to the Web, Tech. report, Stanford University, 1999.

[26] G. Paltoglou, M. Salampasis, and M. Satratzemi, "Results Merging Algorithm

Using Multiple Regression Models," Advances in Information Retrieval,

Lecture Notes in Computer Science, pp. 173-184: Springer Berlin /

Heidelberg, 2007.

[27] I. Podnar, M. Rajman, T. Luu et al., "Scalable Peer-to-Peer Web Retrieval

with Highly Discriminative Keys." pp. 1096-1105.

[28] J. M. Ponte, and W. B. Croft, “A language modeling approach to information

retrieval,” in Proceedings of the 21st annual international ACM SIGIR

conference on Research and development in information retrieval, Melbourne,

Australia, 1998.

[29] Y. Rasolofo, D. Hawking, and J. Savoy, “Result merging strategies for a

current news metasearcher,” Inf. Process. Manage., vol. 39, no. 4, pp. 581-

609, 2003.

[30] S. E. Robertson, S. Walker, S. Jones et al., "Okapi at TREC-3." pp. 109-26.

Bibliography 51

[31] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic

indexing,” Commun. ACM, vol. 18, no. 11, pp. 613-620, 1975.

[32] M. Shokouhi, "Segmentation of Search Engine Results for Effective Data-

Fusion," Advances in Information Retrieval, Lecture Notes in Computer

Science, pp. 185-197: Springer Berlin / Heidelberg, 2007.

[33] L. Si, and J. Callan, “Using sampled data and regression to merge search

engine results,” in Proceedings of the 25th annual international ACM SIGIR

conference on Research and development in information retrieval, Tampere,

Finland, 2002.

[34] L. Si, and J. Callan, “A semisupervised learning method to merge search

engine results,” ACM Trans. Inf. Syst., vol. 21, no. 4, pp. 457-491, 2003.

[35] L. Si, and J. Callan, “Modeling search engine effectiveness for federated

search,” in Proceedings of the 28th annual international ACM SIGIR

conference on Research and development in information retrieval, Salvador,

Brazil, 2005.

[36] G. Skobeltsyn, T. Luu, I. P. Zarko et al., “Web text retrieval with a P2P

query-driven index,” in Proceedings of the 30th annual international ACM

SIGIR conference on Research and development in information retrieval,

Amsterdam, The Netherlands, 2007.

[37] M. D. Smucker, J. Allan, and B. Carterette, “A comparison of statistical

significance tests for information retrieval evaluation,” in Proceedings of the

sixteenth ACM conference on Conference on information and knowledge

management, Lisbon, Portugal, 2007.

[38] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information retrieval using

self-organizing semantic overlay networks,” in Proceedings of the 2003

conference on Applications, technologies, architectures, and protocols for

computer communications, Karlsruhe, Germany, 2003.

[39] V. N. Vapnik, The nature of statistical learning theory: Springer-Verlag New

York, Inc., 1995.

[40] S. Verberne, S. Raaijmakers, D. Theijssen et al., “Learning to Rank Answers

to Why-Questions,” in 9th Dutch-Belgian Information Retrieval Workshop

(DIR 2009), Enschede, 2009, pp. 34-41.

[41] E. Voorhees, D. K. Harman, and T. National Institute of Standards and,

"TREC : experiment and evaluation in information retrieval," Digital libraries

and electronic publishing.

[42] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird, "The Collection Fusion

Problem." pp. 500-225.

[43] P. Wellens, “Een Introductie tot Support Vector Machines,” master thesis,

Wiskunde en Informatica, Universiteit Antwerpen, 2005.

Appendix

A. Pseudo code for LCS

The pseudocode for finding the Longest Common Substring in two strings.

INITIALIZE A to the first string

INITIALIZE B to the second string

INITIALIZE LCS to zero

REMOVE all non alpha-numerical characters from A and B

SWAP A and B IF A is longer than B

FOREACH word_a in A

 FOREACH word_b in B

 INITIALIZE word_a’ to word_a

 INITIALIZE word_b’ to word_b

 INITIALIZE len to zero

 WHILE word_a’ is word_b’

 INCREASE len by one

 IF next words exists in A and B THEN

 word_a’ � next word after word_a’ in A

 word_b’ � next word after word_b’ in B

 ELSE

 BREAK loop

 ENDIF

 ENDWHILE

 IF len is greater than LCS THEN

 LCS � len

 ENDIF

 ENDFOR

ENDFOR

RETURN LCS divided by the amount of words in A

54 Appendix

B. Pseudo code for LWO

The pseudocode for finding the Longest Word Order in two strings.

INITIALIZE A to the first string

INITIALIZE B to the second string

INITIALIZE LWO to zero

REMOVE all non alpha-numerical characters from A and B

SWAP A and B IF A is longer than B

FOREACH word_a in A

 INITIALIZE len to zero

 INITIALIZE word_a’ to word_a

 FOREACH word_b in B

 IF word_a’ is word_b THEN

 INCREASE len by one

 IF there is a next word after word_a’ in A THEN

 word_a’ � next word after word_a’ in A

 ELSE

 BREAK loop

 ENDIF

 ENDIF

 ENDFOR

 IF len is greater than LWO THEN

 LWO � len

 ENDIF

ENDFOR

RETURN LWO divided by the amount of words in A

Appendix 55

C. Pseudo code for Labeling Preference Pair Constraints

INITIALIZE Q to the odd queries used for training

INITIALIZE C to the selected search engines

INITIALIZE qid to one

INITIALIZE training to the empty collection

FOREACH q in Q

 INITIALIZE results to the first 250 results of **RR(q, C)

 FOREACH r in results

 IF r is not irrelevant THEN

 ADD (1 qid:qid feature-vector of r) to training

 FOREACH r’ above r in results

 IF r’ is less relevant than r THEN

 ADD (0 qid:qid feature-vector of r’) to training

 ENDIF

 ENDFOR

 ADD 30 random constraints to training

 INCREASE qid by one

 ENDIF

 ENDFOR

ENDFOR

RETURN training

**RR(q, C) is the Round Robin merge of the

 results of each collection in C for query q.

Joachims added fifty random constraints from his candidate set for each clicked result.
This candidate set, the combined set of results from 5 search engines, consisted of 500
results. Since we only have 250 results in our candidate set, we decided to lower the
number of additional constraints to 30.

