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Summary

Beam shaping and beam steering, together called beam forming, is needed when pro-

cessing the radio frequency signals received by a Phased Array Antenna (PAA). When

correcting the arrivaltime differences between all the inputs of the PAA by adding

small delays, and subsequently combining them, a strong signal can be obtained. At

the Chair for Telecommunication Engineering (TE) at the University of Twente, re-

search is done on achieving these delays fully in the optical domain using an Optical

Beam Forming Network (OBFN). With an OBFN, very large bandwidths can be

delayed continuously, and is thus suitable for high bandwidth applications like live

television reception. The OBFN is based on thermo-optical tuning of Optical Ring

Resonators (ORRs), where each ORR is capable of delaying a small fraction of the

bandwidth of the signal continuously. The exact frequency range and the amount of

delay are controlled by applying a voltage to small heater elements on top of the ORRs

according to calculated ring settings. By combining more ORRs into a delay element,

larger bandwidths can be delayed. Because of the large amount of heater elements, and

the influence that one heater element has on another, a sophisticated control system is

needed that is capable of automatically calculating the correct settings, and tuning all

the heater elements given only the direction of arrival of the incoming satellite signal.

To achieve the goal of creating the automatic control system, two simulators were

written in LabVIEW to see if underlying calculations would work in theory. The first

of the two simulators was specifically designed to simulate the delay response of delay

elements with a variable amount of rings. The settings for the rings were obtained by

using an approximation algorithm with pre-calculated values. Several effects and their

compensations have been incorporated. The end result is a scalable simulator capable

of simulating delay elements containing a variable amount of rings.

The second simulator was an additional layer around the code of the first simula-

tor, thereby creating a tool that can simulate an entire OBFN. The distribution of

the delays across the rings and the calculation of the voltages is all done within this

simulator. The connection to a previously designed amplifier board made it possible

to apply these calculated voltages to the actual lab setup.

Finally, as a proof of concept, the simulator has been tested in the lab environment

to see if the approach taken could work. The first measurements using the voltages
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calculated by the control system look very promising. Also, the system is capable (with

very small adjustments) of tuning future chip designs or using other tuning methods

than thermo-optical.
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Chapter 1

Introduction

Phased Array Antennas have been around for several decades now, and have some

unique properties and advantages over conventional dish-like antennas we see every

day for, for example, receiving satellite television signals. One of the most impressive

PAAs is the Cobra Dane radar, located in Sheyma, Alaska and shown in figure 1.1.

Built in 1976, the radar uses a ninety-five foot phased array antenna, and provides

120-degree coverage of a two thousand mile corridor that spans the eastern Russian

peninsula and the northern Pacific Ocean.

PAAs are usually flat or slightly curved, and consist of a number of Antenna

Elements (AEs) that act like individual micro antennas. Normally, a PAA is elec-

tronically steered using some form of controller. The ability of an antenna to steer

and focus a beam to a specific target is a huge advantage over other kinds of antennas.

When using electronical steering, there are no moving parts, and thus wear and tear is

vastly reduced. To use the PAAs effectively, the time differences due to arrival delays

of the signal between the different antenna elements should be corrected by some clever

control system. After that, the signal can be combined, resulting in a signal with a high

Signal to Noise Ratio (SNR). This signal can then be used for any suitable application.

This thesis consists of two parts. The first presents a design and implementation of

a control system simulator that is capable of compensating the arrival time differences

of all the AEs. The second part describes the implementation of a functional prototype

which is then subjected to a set of measurements.

1.1 Motivation

At this moment, a working prototype of an antenna system consisting of a PAA for

signal reception and an OBFN for combining the signals is being developed. The OBFN

is controlled by a few dozen parameters, which are all set by hand, one by one. This is

not only error prone, but also too time consuming. A better, more rigid and less time

consuming solution is thus needed. A generic piece of control software will not only

1



2 Chapter 1. Introduction

Figure 1.1: Example of a phased array antenna: the Cobra Dane Radar in Sheyma Alaska,

built in 1976

help current researchers work with the OBFNs, but will also greatly reduce the time

and effort future researchers will have to spent on yet to be created OBFNs based on

ORRs.

Besides the direct results of this work, future use of these types of integrated sys-

tems, consisting of smart antennas and intelligent software, could provide new ways

of communicating between moving objects. As a result, the project as a whole could

bring an interesting new technology and new exiting applications one step closer to

consumers and companies.

1.2 Background

To get a better understanding of the complete system of which the controller software

will be part of, an overview is given in this section.

1.2.1 SMART project

The SMart Antenna systems for Radio Transceivers (SMART) project is aimed at pro-

viding live television services on airplanes through DVB-s by developing a novel antenna

for airborne reception of satellite signals using a broadband conformal phased array

antenna. The SMART project is a collaboration of different companies and research

institutes. At the University of Twente, the development of a broadband integrated

optical beamformer based on ORRs in CMOS-compatible waveguide technology has

been done. The next step is controlling this optical chip in a manageable way. The
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SMART system has a long list of requirements. The early prototype implements a

subset of these requirements, shown in Table 1.1. The main advantages of the SMART

concept are:

• Low loss and large instantaneous bandwidth;

• Continuous tunability (high resolution);

• Relatively compact and light-weight realization;

• Inherent immunity to EMI;

• Potential for integration with optical distribution network

1.2.2 System overview

A full system overview of the SMART system is shown in Figure 1.2. When used

at the receiving end, the AEs collect radio waves coming from a satellite. These

signals are converted from the electrical domain to the optical domain (E/O block) by

intensity modulation, and afterwards fed into the OBFN. The OBFN is used to apply

appropriate delays on each optical input, and combining them. After combining the

signals, a strong optical signal is acquired, which can then be converted back to the

electrical domain (O/E block). Finally, a receiver can process the signal, for example

a Digital Video Broadcasting via Satellite (DVB-s) set-top box.

The OBFN shown in the system overview is managed by a control system. Ideally,

the control system would automatically track a specific satellite, and use the elevation

and azimuth information to calculate the correct tunings of the ORRs. The ORRs are

tuned in such a way that there is constructive interference of the Radio Frequency (RF)

signals coming from the desired direction. During the course of this research, a system

will be developed that uses a simplified scenario consisting of linear array, and therefore

dealing with only 1 variable angle.

Description Value

Frequency range 10.7 - 12.75 GHz (Kuband)

Scan angle -60 to +60 degrees

Selectivity < 2 degrees (continuous tuning)

No. elements 8

Element spacing 1.5cm or 40ps

Maximum delay 2ns

Table 1.1: Subset of the original requirements for the SMART project
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O/EAEs E/O OBFN

control

Rx

angle

Figure 1.2: A high level overview of the system from input to processed output
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Figure 1.3: A 8×1 binary tree OBFN for a transmitter phased array antenna with 8 inputs,

1 output and 8 optical ring resonators.

1.2.3 Optical Beam Forming Networks (OBFN)

The optical chip in this system is manufactured using planar optical waveguide tech-

nology by LioniX B.V. [1]. It consists of the following building blocks: waveguides,

Mach-Zehnder Interferometers (MZIs), couplers and ORRs. ORRs are chosen because

they provide True Time Delay (TTD), so beam squinting will not occur. Beam squint

usually occurs when working with phase shifters instead of TTDs - the position of the

beam changes with frequency. The building blocks are combined to form an OBFN. A

8×1 OBFN for a receiving phased array is shown in Figure 1.3.

The OBFN is designed using a binary tree topology. Using this layout, only a

small amount of ORRs have to be used to achieve a large range of delays per path,

while the dimensions of the chip can be kept to a minimum. Although the freedom of

tuning for every path is more restricted than in for example a parallel topology, the

tuning complexity is reduced. The OBFN shown has 2n rings in one of the branches of

each stage, where n is the stage number (see Figure 1.3). Using this approach, every
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path has a unique linearly increasing number of rings. Although this method seems

attractive and uses a lot less rings than a parallel topology, the number of rings grows

exponentially. Fortunately, the achievable delay with a ring section of a certain size is

not linearly dependent on the number of rings, so far less rings have to be used. The

physical layout of the chip actually produced is shown in Figure D.1 in Appendix D,

and shows only 8 rings.

An ORR consists of a straight waveguide with a circular waveguide coupled to it.

Using a ORR with a circumference L of 1.5cm and a waveguide group index ng of 1.55,

we can calculate the Round Trip Time (RTT) to be T = L · ng/3 · 108 . An ORR has a

periodic group delay response, representing the effective time delay to the modulated

RF signal, and a Free Spectral Range (FSR) of 1/T = 13GHz . The group delay for

a single lossless ORR as a function of frequency f is expressed by [2]:

τ(f) =
κT

2− κ− 2
√

1− κ cos(2πfT + φring)
(1.1)

Of course, no chip could be fabricated that behaves like the mathematical equation

above. Although declining due to new production techniques, we have to take optical

loss into account. When we consider the optical loss, the formula becomes:

τ(f) =
T

2
· 1− r2(1− κ)

1 + r2(1− κ)− 2r
√

1− κ cos(2πfT + φring)

+
T

2
· r2 − (1− κ)

1− κ+ r2 − 2r
√

1− κ cos(2πfT + φring)
(1.2)

The equations shown depend on the RTT T , the power coupling coefficient κ and

additional round-trip phase shift of the ring φ. The equation involving the loss uses

r = 10(−l/20) with l the loss of the ring in dB. When the loss is 0 dB, the second

equation is of course equal to the first. Using heater elements, it is effectively possible

to control the phase shift φ and the power coupling coefficient κ. Both parameters can

be used to change the shape of one of the dotted curves shown in Figure 1.4. When

changing κ, the height of the curve will be altered. When changing φ, the position

on the x-axis (frequency) will be changed. The total area under each dotted line is

constant, so there is a trade-off between peak delay and bandwidth. As a solution to

the demand of higher delays for fixed bandwidths, ORRs can be cascaded, resulting in

a curve that is simply the sum of the individual responses. The result of this is shown

in Figure 1.4 as a solid line. The so called ripple is the effect that is clearly visible

at the top of the concatenated response, and is a slight variation of group delay in a

certain bandwidth. In general, the smaller the ripple, the better. Roughly speaking,
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Figure 1.4: Theoretical group delay response of three cascaded ORRs.

the required number of rings is proportional to the product of the required bandwidth

and the maximum delay.

The optical chip is tuned thermo-optically by electrical heating chromium resistors.

As a consequence of the heat at specific places, the optical waveguide’s refractive index

changes. Because of this change, either the resonance frequency or the power coupling

coefficient of an ORR is altered. Thermo-optical tuning itself is very well explained in

Section 3.4 of [3].

1.3 Research organization

To have a well defined research project, several goals are determined. The methodology

used to conduct the research, and the research questions that have to be answered when

this assignment is finished are stated in the following sections.

1.3.1 Research goal

The research project described in this project has one main goal:

• The creation of a maintainable and scalable software control system that can

automatically tune all the parameters of an OBFN given only the direction of the

incoming beam.

Of course, to reach this goal, it has to be broken down into smaller, more com-

prehendable pieces. First, the problem will be modelled and simulated. Next, the

model can be used to implement a working system using already available hardware.

Finally, to verify the correctness of the system, we have to check if the simulation

results correspond to real life measurement data.
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1.3.2 Methodology

A methodology is used to identify distinctive actions taken in the process of this as-

signment. [5]. The following steps are taken in a more or less sequential order.

• Literature study : Related papers, theses and books must be studied to get ac-

quainted with the subject.

• Defining research question: In this Thesis, a research goal is set which must be

achieved.

• Requirements analysis : In order to present a proper design and implementation

of a control system, the requirements have to be made clear.

• Architecture design: The design of the controlling system is presented based on

which a prototype can be built.

• Prototype implementation: A prototype implementation is developed to test and

verify the design, and to provide input for further research.

• Performing measurements : To test the prototype and the underlying model for

correctness, the output of the system should be tested against expected results.

• Results and conclusions : The results are evaluated. Research questions will be

answered and conclusions will be formulated.

• Suggestions for further research: Indications in which further research could be

directed are pointed out.

1.4 Thesis organization

This chapter will start with a brief introduction to OBFNs, and provides some back-

ground information. Also a short motivation why this research project is of great

interest is given.

This chapter provided an introduction to the project, its technology, related work

and background information, a motivation, and finally the organization of this research.

The rest of this thesis is presented as follows. In Chapter 2 the design, implementa-

tion and preliminary test results of a ring section simulator are given. In Chapter 3,

the development of a complete OBFN simulator is described. Chapter 4 consists of

implementation details concerning the porting of parts of the software to the hardware

environment. In Chapter 5, measurement setup and results are presented. Finally, in

Chapter 6, conclusions and suggestions for further research are given.



8 Chapter 1. Introduction



Chapter 2

Design and Implementation of the

Delay Element Simulator

The system design as described in the introduction of this thesis can be broken down

into smaller pieces. The ring itself must be simulated. A group of rings, which we will

call a delay element (DE), has specific properties, and needs careful attention while

modeling. Finally, the OBFN, a structured combination of several DEs and combiners

following a specific schematic must arise. This chapter will deal with the first two steps

that will result in a working DE-simulator. The third step will be dealt with in the

next chapter.

2.1 Requirements

As every integrated hardware-software system, the one we are building has several

general non-functional requirements. These are:

1. Maintainability Although the simulator can be seen as a stand alone application,

it would be nice if new features could be added in the near future by others. For

that reason, a programming environment should be chosen of which knowledge

is widely available.

2. Scalability The simulator must be designed to cope with a wide variety of config-

urations, now and future versions. This means having the possibility of changing

the number of inputs, changing the physical layout of the chip, and changing the

different ORR parameters like loss and length.

3. Resource usage The simulator must work fluently even on an every day computer.

A proper design of the simulator makes the most out of the available CPU-cycles,

thereby maximizing the speed and responsiveness of the system.

9
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4. Ease of use The simulator’s Graphical User Interface (GUI) must be readily us-

able for anyone who has some knowledge about OBFNs. Clutter and unimportant

input elements must either be hidden, or not be created at all. Also the ability to

save and restore settings would be of great value. Not only does this improve the

operating speed, but also prevents mistakes to be made in each initial simulation

setup.

5. Generic Although the simulator is tailored to the available 8x1 OBFN chip, the

simulator itself must be capable of simulating future chip designs with different

tuning etc. For instance the new liquid crystal based version which will become

available in the near future.

6. Allowance for reusability Since the Ring Section Simulator (RSS) will be part of

a bigger software system later on, the software needs to be reusable.

7. Operating system independence Because of the wide variety of operating systems

commonly used nowadays, it would be nice to make use of programming envi-

ronments that are available on different platforms.

2.2 Delay element simulator design

With the requirements in mind, we can begin to design the simulator. The simulator

will be built in National Instruments LabVIEW. LabVIEW is a graphical programming

environment that enables the rapid development of test, measurement, and control

applications. LabVIEW is also capable to comprise with all of the aforementioned

requirements, and therefore the tool of choice. This section describes the steps taken

to design the simulator, starting with the initial design, the flow of data and the

software structure.

2.2.1 Dataflow

Dataflow is a software architecture based on the idea that changing the value of a

variable should automatically force recalculation of the values of other variables. The

graphical programming language LabVIEW is widely based on the idea of dataflow,

and is thus very well suited for this approach. In our case, a change of the required delay

forces the parameters of each ring to be automatically recalculated. The alteration is

achieved by a somewhat lengthy process, and is therefore broken down into several

smaller steps. These steps are displayed in a DFD as shown in Figure 2.1. Only the

most important activity is displayed, being a change in the required delay by the user.

In the DFD, some of the blocks deal with the physical capabilities and limitations of

the optical chip. We will discuss them one by one.
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Figure 2.1: DFD for the delay element simulator
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Loss

This method as shown in the DFD returns the power coupling coefficient κ when loss

is applied. The resulting value equals the κ to be set. When loss would not be taken

into account in the simulator, the resulting output response differs too much from the

real measurement data.

The loss could be modelled and solved for in the Non-Linear Programming (NLP)

solver which we will describe later. However, every change in the production process of

the chip that would change the loss properties of the optical chip would mean that the

entire precalculation process has to be restarted. Therefore it is desirable that the loss

can be corrected for afterwards, so the precalculated coefficients, which are calculated

for a lossless ring, remain the same.

Since the surface area below the response of a single ORR is constant, the time

delay response curve is almost solely determined by the highest point, which has a

delay of τmax. Note that this is only the case for low losses, as we will see later on. The

current optical chip batches have been produced with a loss between 0.1 and 0.3 dB per

cm, and a ring length of 1.5 cm. The loss lies somewhere 0.15 and 0.45 dB per round

trip. These losses are low enough to use the following method of compensation for the

loss afterwards. Using this τmax, the corresponding κ can be recoverd for the lossless

case. In case there is loss, the τmax must remain the same, and a new corresponding κ

has to be calculated.

The maximum normalized group delay follows from Equation 3.16 in [2]:

τmax =
r · c

1− r · c
+

r

r − c
(2.1)

where c =
√

1− κ and r = 10−α/20 with α the loss in dB. In the lossless case, r

would be 1, and the formula simplifies to:

τmax =
1 + c

1− c
(lossless) (2.2)

When we fill in c in Equation 2.2, we acquire the maximum delay for the lossless

case. To calculate the c for the case there is loss, we need to rewrite Equation 2.1 as a

function of the loss factor r and the maximum delay τmax:

closs =
τmax + τmaxr

2 ±
√
τ 2
max − 2τ 2

maxr
2 + τ 2

maxr
4 + 4r2

2(r + τmaxr)
(2.3)

Equation 2.3 has been plotted for several losses in dB, see Figure 2.2. With this

equation, the c can be determined for a given loss and given maximum delay. Now r

follows directly from filling in the loss factor, and τmax from the lossless case, which is
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Figure 2.2: Compensated κs as function of loss per round trip and maximum delay

derived from Equation 2.2. The new kappa that now compensates for the ring loss is

simply determined by:

κcompensated = 1− c2loss (2.4)

The method described is only usable when losses are not too high (lower than 1 dB).

For higher losses, the compensated curve does not match the lossless curve anymore,

as we can see in Figure 2.3.

Kappa limitation

An ORR consists of a straight waveguide and a circular waveguide next to it (See

Figure 2.4). The coupling section is in fact a Directional Coupler (DC). The relation

between the fields at the inputs and outputs is given by:[
E4

E2

]
=

[ √
1− κ −j

√
κ

−j
√
κ
√

1− κ

][
E3

E4

]
(2.5)

The value of the power coupling coefficient to the ring κ, which controls the height

of the delay response, is limited due to the fabrication process of the optical chip. The

best value for a single κdc of one of the rings on the optical chip currently achieved

is 0.465 according to [6], where the ideal value would be 0.5. Since the production

process of ORR on the chip is very reproducible, in our model, all values for κdc for the

directional couplers are assumed to be identical. Using a heater on the upper line of
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Figure 2.4: Schematic of the ORR with the Mach-Zender interferometer.
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the MZI, an additional phase shift φmzi is added to that branch, which will effectively

work as a tunable power coupler. The κ now becomes:

κ = 4κdc(1− κdc) cos2(φmzi/2) (2.6)

Using equation 2.6 and the fact that the maximum value κmax for κ is reached when

the phase shift φ equals 0 degrees, we can calculate the maximum value for κ to be

0.9951, with a minimum value of 0 for φmzi = π/2.

Phi compensation

Because a change of κ has a direct influence on the resonance frequency, a compensation

is needed to correct this effect. Equation 2.7 is used for this compensation. κmax is the

value previously calculated, and is set to previously determined maximum value for κ.

φring =
φmzi

2
(2.7)

where φmzi can be found by rewriting Equation 2.6.

Kappa conversion

The relation between kappa and the actual heater response to a certain voltage can

be see as a raised cosine function (see Figure 2.5). To properly operate the OBFN

controller, the κs are converted according to equation 2.6. The converted values can

then be used for applying voltages in a similar fashion as the φs. The converted values

will be denoted as φcoupler from now on. When no subscript is used, φ = φring.

2.2.2 Structure

The delay element simulator is built according to the event-based programming model.

Event-based programming, or event-driven programming, is a programming paradigm

in which the flow of the program is determined by events i.e., sensor outputs or user

actions (mouse clicks, key presses) or messages from other programs or threads. When

there are no such events, the program simply waits without using any resources. A

decrease from 100% CPU usage when using user-event catch loops to less than 10%

using the event-based paradigm proves the usefullness of this approach.

In the simulator, there are a few CPU intensive operations:

• Changing the delay by turning the delay button as seen in Figure 2.6.

• Updating the screen with new information and drawing the graphs.
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For these two operations, separate events were built. Now, when the user inputs the

desired delay, the software will calculate the result, and only then updates the screen.

The event name of this event in the current LabVIEW model is called User Event.

2.3 delay element Simulator Implementation

Using the design described previously in this chapter, we can start implementing the

delay element simulator in LabVIEW. For additional functionality and specific small

algorithms we will revert to MatLab. LabVIEW and Matlab work seamlessly together,

and is thus a good combination of a visual programming environment, combined with a

solid text-based programming language. This section describes implementation details

about the GUI, the approximation algorithm, and the dataflow.

2.3.1 Graphical user interface

The first thing one sees when working with a simulator is the graphical user interface

(GUI). Although GUI’s are an interesting topic of research by themselves, we have

aimed at developing an easy to use interface just by using some common sense. This

means building an interface with a minimum of clutter, a logical work flow, and one that

required no unnecessary scrolling in order to maximize a clear overview. A screenshot

of the interface can be seen in Figure 2.6.
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Figure 2.6: The OBFN Simulator at startup

2.3.2 An approximation algorithm

An analytical solution to acquire the ring parameter values κ and φ according to the

mathematical model presented earlier is not possible, since the number of unknowns in

the model of the delay element is greater than the number of equations. An estimation

is necessary, but requires a lot of brute force calculations to be done. To overcome the

burden of calculating optimal ring parameters on the fly, an approximation algorithm is

used in the form of a NLP solver, that precalculates proper estimations [6]. This section

will first describe the general theory of an NLP solver, followed by the implementation

of such a solver in this specific case.

NLP solver

A NLP is a problem that can be stated as follows: there is one scalar-valued function

f , of several variables (x here is a vector), that we want to minimize subject to one

or more other functions that serve to limit or define the values of these variables. f is

called the objective function or cost function, while the other functions are called the

constraints. Of course, the minimization function could be replaced by a maximization

function. Formally, we have:

min
x∈X

f(x)
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where

f : Rn → R

X ⊆ Rn

Basically, several solutions of each parameter within a range of possibly suitable

values are tried. The algorithm then calculates the costs (or error) using the objective

function, and depending of the result of the error in comparison with previous results,

the solver tries a different possible solution. This process repeats itself until a large

portion of the parameter values within range have been evaluated within the bound-

aries. Depending on the complexity of the problem to solve, this could take a while.

When done, the NLP solver returns the parameter values for which the evaluation of

the cost function was minimal.

One of the greatest challenges in NLP is that some problems have local optima,

that is, solutions that satisfy the requirements of the constraint functions. Algorithms

that propose to overcome this difficulty are called Global optimization. Global opti-

mization would prologue the necessary time to precompute solutions, and is therefore

not applied. Good initial values should be guessed in order to prevent halting in a

sub-optimal state.

MMSE

A Minimum Mean Sqared Error (MMSE) estimator describes the approach which min-

imizes the mean square error. An example an error function based on this technique

is shown in equation 2.8. Note that this function is not used to precalculate the ring

settings, but serves merely as an example. In the equation, the τtotal represents the

combined responses of several ORRs, and the target delay D is subtracted of it. Next,

the result is squared, and integrated for all the frequencies between fmin and fmax,

which results in the total error µ. In Figure 2.7, the top part of the combined output

response of a DE with 3 ORRs is shown. The ripple is clearly visible. The total error is

the square of the sum of the areas of all the shaded areas for the bandwith of interest.

In this case, the bandwidth is limited to B = fmax − fmin.

µ =

fmax∫
fmin

(τtotal(f)−D)2df (2.8)

2.3.3 Normalization

Both the bandwidth and delays are normalized throughout the system, and throughout

this thesis. To convert between the normalized values and the fysical values, Equation

2.9 for delays, and Equation 2.10 for bandwidths can be used.
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τnorm =
τ

T
(2.9)

Bnorm = B · T (2.10)

T can be calculated when the FSR is known. The ORRs on the OBFN have a FSR

of 14GHz. For the reaminder of this thesis, all mentionings of bandwidths or delays

are normalized, unless stated otherwise.

Symmetry

To speed up the process of finding optimal parameters for a given delay and DE con-

figuration, the number of unknowns can be decreased by using symmetry. As can be

seen in the output window of Figure 2.6, very nice combined output responses can be

achieved by a symmetrical distribution of the individual responses of the rings in a

DE. When using three rings, or any other odd number of rings, the φ of ring 1 can

be set to 0 since it is always in the center, and thus does not have to be calculated.

The κ however does have to be optimized. The φs of rings 2 and 3 are identical, but

opposite, so only one of them has to be optimized. Also, the κs of ring 2 and 3 are

identical, again meaning that only one of them has to be optimized. The 6 parameters

have now thus been reduced to only 3. Of course, for other DE-configurations, the

same reasoning applies.
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Figure 2.8: Phase response plot with normalized frequency for κ = 0.8 and φ = 0

NLP-solver implementation

In stead of optimizing the parameters for the delay function directly (Equation 1.2),

the phase function is used (see Equation 2.11). Although the use of the delay function

to determine the minimum error values for specific parameters would be intuitively

appealing and easily comparable with prior research result, the delay error does not

play a direct role in the output power of the optical detector. The absolute values of

the addition of the complex phase vectors determine the output power. As a third

method for determining the error, power functions could be used. Although theoret-

ically optimal, it has some practical disadvantages. Besides that, results show only

small differences compared to phase tuning. Therefore phase tuning is used in the

approximation algorithm [6]. The proper equation is shown below and is plotted in

Figure 2.8.

ψ(f) = arctan

(
sin(2πfT + φ)√

1− κ− cos(2πfT + φ)

)
− arctan

( √
1− κ sin(2πfT + φ)

1−
√

1− κ cos(2πfT + φ)

)
(2.11)

Having an error function:

µ =
∑
n

(ψtotal(f0 + fIF,n) + 2πD(f0 + fIF,n))2 (2.12)

When we repeat the process for a wide range of delays and for a fixed number of
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Figure 2.9: The combined result of multiple calculations for κ of a 1-ring delay element.

The solid line represents the curve-fitted polynomial of degree 3. Note: only

every fifth element of the calculated values is shown to avoid clutter.

rings, the combined results seem to form a more or less smoothly decreasing line (see

Figure 2.9). This line is easily traced by a curve fitting function in a mathematical

software tool, such as Matlab. As a result, we are left with a curve fitted polynomial

function describing the delays versus κ and φ for the number of rings we want to process

(Figure 2.9). To find the appropriate parameter values for κ and φ, all we need to do

now is fill in the blanks in the new polynomial.

The polynomials are solely described by their coefficients, with the notion that the

degree of the function is the number of coefficients minus 1, and that every term is

used only once. The polynomials will however be less accurate when they reach the

beginning and end of the range due to the curve fitting procedure. When the required

delay is too large, the ripple will become too large, and the final delay is too much off.

Of course, the amount of error a system can cope with is application dependent, and

thus a suitable suggestion cannot be given in general. Therefore for delay elements

having a number of ORR between 1 and 5, error plots have been created. Two of them

are shown in Figure 2.10 and Figure 2.11. To prevent the system from curve fitting a

function in a range that is not useful at all, only the part with minimal error is used.

The range determination heavily depends on the required bandwidth. When larger

bandwidths are required, the error will dramatically rise, and the near-errorless range

of delays is reduced. An example for a normalized bandwidth B = 0.16 is shown in

2.11. Plots such as the ones shown are created for all 5 rings for B = 0.09, for which

feasible delay ranges are constructed. For now, all minimum delays are > n, where n
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Figure 2.10: Fitted polynomials for a delay element with 2 ORRs for a normalized band-

width of B = 0.09

Number of rings Minimum delay Maximum delay

1 1.0 2.0

2 2.0 7.0

3 3.0 14.0

4 4.0 25.0

5 5.0 30.0

Table 2.1: Theoretically feasible delays per delay element for B = 0.09

is the number ORRs in the delay element. The results are shown in table 2.1.

Due to the fact the the curve of large delay elements is not fittable any more with

low order polynomials and inversed polynomials used in [6], all curves are fitted with

a higher order polynomial of degree 10. Research shows that the error is minimal,

and better fits are accomplished for delay elements containing more rings. Also, the

approach is more generic, and better suits further extension of the number of rings.

The range of bandwidths that needs to be simulated can be adjusted in the precal-

culation Matlab scripts. For the remainder of this thesis, we will work with a value of

0.09, which coincides with a suitable bandwidth for the system that is being developed.

Having a FSR of 14Ghz, the actual bandwidth for which the optimization is done is1.26

GHz.
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Figure 2.11: Fitted polynomials for a delay element with 2 ORRs for a normalized band-

width of B = 0.16

2.3.4 Small delays

As discussed previously in the part about κ-limitation in Section 2.2.1, the value for κ

is limited between 0 and 0.995. In theory, when κ equals 1, all the light is coupled into

the ring, and after exactly 1 round trip fully decoupled back into the optical guide.

The normalized delay would thus be 1. When κ is tuned to a very small value, only a

part of the light is coupled into the ring, where the intensity starts to build up at the

resonance frequency. As a result, a infinitesimal small frequency band is delayed for

infinitely long, theoretically.

One possibility to achieve delays smaller than one RTT is to set κ at a proper value,

and change the phase shift in such a way that the lower parts of the curve are within the

bandwidth region of interest, or put differently, shifting away from resonance gradually.

However, the NLP-solver persistently finds another set of optimal parameters, where

there is a sudden phase shift from on- to off-resonance, and the region of interest is

exactly between two resonance peaks (see Figure 2.12).

Optimal parameters have been determined using the same MMSE method as ex-

plained before, and again curve fitted for DEs containing 1 to 5 rings. Because of

the relatively small degree of the fitted polynomial, a sudden change on the transition

from < 1 to ≥ 1 would give rise to serious errors. Therefore, the ring settings cal-

culation method chooses the correct data file containing the parameters according to

the required delay. In Figure 2.12, an ORR response is shown with the parameters

set for a normalized delay D of 0.5. The region of interest is centered around 0. In



24 Chapter 2. Design and Implementation of the Delay Element Simulator

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

Normalized frequency

N
or

m
al

iz
ed

 g
ro

up
 d

el
ay Resonance frequencies

Figure 2.12: Response for a normalized delay of 0.5 for a delay element containing 1 ORR

Figure 2.13, a similar plot is shown, but now a delay element containing 2 ORRs. As

we can see, the combined curve is very close to the required delay of 0.5. For a delay

element containing only 1 ORR, the smaller-than-1 delays are not achieved by shifting

the curve gradually. In stead, φ is shifted by π, and the κ is lowered, thereby creating

higher peaks to the left and right of our region of interest. As a side effect, the response

between the peaks lowers, and thus creating a delay smaller than 1. This is a direct

consequence of the optimization process of the NLP-solver. Several attemps to adjust

the boundaries of the parameter space did not change the results.

2.3.5 Alternative approaches

Although the methods described in this chapter work perfectly, alternative approaches

should be investigated. This section briefly describes an alternative approach that

could be further investigated in a future research project.

Other error functions

In stead of the current MMSE method, another measure of error could be provided to

the NLP solver. For instance, one could calculate the maximum error in the function

for the entire frequency range in stead of the MMSE currently used. Now µ becomes:

µ = max |ψtotal(f0 + fIF,n) + 2πD(f0 + fIF,n)| (2.13)

The computational complexity of this way of solving for the unknowns would likely
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Figure 2.13: Response for a normalized delay of 0.5 for a delay element containing 2 ORRs

be slightly lower since we do not have to square the function and sum it. Besides,

one can argue about the meaning of the error and if it suits the problem better than

the previous solution. In our system, a high error in some part of the bandwidth is

unacceptable, and thus this direct approach would deal with that by punishing high

errors immediately for any given frequency.

To test the new error function, the coefficients have been precalculated for a DE

containing 5 rings. Recall that because of symmetry, only 5, not 10, parameters have

to be optimized. In this case, 3 κs and 2 φ. The results of the calculated parameters

are shown in Figure 2.14. In spite of what one may have guessed, the calculation took

about twice the time it took for the regular objective function, and the results are not

smooth. The optimal solutions for different sets of parameters are further apart than

when using the previous error function. The NLP solver evidently has a harder time

trying to find an optimal solution. The function cannot be reliably curve fitted with a

relatively low order polynomial, and thus the road previously chosen will be used.

2.3.6 Matlab scripts and API

For the delay element simulator, delay elements containing up to five rings have been

precalculated for a large range of bandwidths and delays, depending on the size of the

delay element. Because Matlab is not really suitable for containing large collections

of data in a flexible way, a data structure consisting of nested structs is used. The

diagram (figure 2.15) can be used as a reference model and should make it fairly easy

to get the proper coefficients on demand. Since in Matlab, arrays cannot be indexed
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Figure 2.14: The results of the NLP-solver when using the alternative objective function

by a user defined value, a separate array index is created. This array contains all the

delays that are precalculated. A simple search algorithm will find the proper index i

for the required delays. The ring settings data structure at position i returns a set

containing two subsets: kappas and phis. For a delay element containing n rings, n

coefficient-sets in the form of [an, an−1 · · · a2, a1, a0] are returned. Each set contains the

coefficients for creating a polynomial function in the standard form anx
n + an−1x

n−1 +

· · ·+ a2x
2 + a1x+ a0, where an represents the nth coefficient.

2.4 Manual

A complete system user manual and Application Programmers Interface (API) Docu-

mentation are included in appendix A. The manual is written in such a way that it can

be used independently of this report. The API provides more insight in the functional

hooks that can be used to extend the simulator, or to be called from other programs.

2.5 Summary and conclusions

When we look at the predetermined requirements, we were able to meet a substantial

amount of them. The simulator is programmed in LabVIEW, combined with Matlab

for parts of the code. Both programming environments are the de facto standard when

it comes to developing simulation tools. Scalability, a very important requirement, is

met. The simulator simulates delay elements of basically an infinite number of rings.
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Figure 2.15: A representation of the data structure containing the polynomial coefficients.

Using higher powered computers, the coefficients of the approximation algorithm of

larger delay elements can be calculated in less time, bringing the simulation of larger

OBFN in the near future to be feasible. The simulator is build using an event-based

programming model. The speed acquired by the use of this technique is tremendous,

and also keeps the computer available for other tasks when there are no events at hand.

Although a bit subjective, we think the GUI is a good example of a simple interface,

combined with only the bare necessities for controlling the simulator. Finally, the

software has been successfully tested on a the Microsoft Windows operating system, as

well as on Apple OS-X. Both operating systems are very well capable of running the

simulator.
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Chapter 3

Design and Implementation of the

OBFN simulator

Using the previously described delay element simulator as a building block, a complete

OBFN can be modelled. This chapter describes the design and implementation of such

an OBFN simulator. Not only does the software presented here acts as a simulator,

but can also be used as a control tool for actively controlling the hardware amplifier

board. Both aspects will be discussed in this chapter.

3.1 Requirements

As for the delay element simulator, the OBFN simulator also has several general non-

functional requirements. They are:

1. Maintainable Although the simulator can be seen as a stand alone application,

it would be nice if new features could be added in the near future by others. For

that reason, a programming environment should be chosen of which knowledge

is widely available.

2. Scalability The simulator must be designed to cope with a wide variety of optical

chips, now and future versions. This means having the possibility of changing

the number of inputs, changing the physical layout of the chip, changing the

coaxial delays from the antenna elements to the actual chip, and last but not

least changing the different ORR ring parameters like loss and circumference.

3. Resource usage The simulator must work fluently even on an every day computer.

A proper design of the simulator makes the most out of the available CPU-cycles,

and thereby maximizing the speed and responsiveness of the simulator.

4. Ease of use The simulator’s GUI must be readily usable for anyone who has

29
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knowledge of OBFNs. Clutter and unimportant input elements must be either

hidden, or not be shown at all.

5. Generic Although the simulator is tailored to the available 8×1 OBFN chip, the

simulator itself must be capable of simulating future chips with different types

of tuning. For instance, the new liquid crystal version that will become available

somewhere in the near future.

6. Operating system independence Because of the wide variety of operating systems

commonly used nowadays, it would be nice to make use of programming envi-

ronments that are available on different platforms.

3.2 OBFN simulator design

The OBFN simulator is again for the most part created in LabVIEW. For additional

functionality and specific algorithms we will revert to MatLab. Appendix B contains a

list of the functions that were written in Matlab, including documentation. This section

describes the steps taken to design the simulator, starting with the initial design, the

flow of data and the software structure.

3.2.1 UML model

A Unified Modeling Language (UML) model of the core of the OBFN simulator is

shown in Figure 3.1. In this layered architecture [7], we can clearly see the aggregation

relationships of the separate components that model the optical chip. An OBFN consist

of multiple delay elements. These delay elements and their functioning are described

in Chapter 2. Each delay element in its turn consists of multiple rings. In theory and

for completeness, both the OBFN as well as the delay element class can consists of

zero child nodes, where a child node is either a delay element in case of the OBFN,

or a ring in case of the delay element. Each delay element is contained by exactly one

OBFN, and each ring is contained by exactly one delay element. At the bottom of the

figure, the Path class is shown. Since a delay element can be part of multiple paths

from input to output within the OBFN, there is a many-to-many relationship. So each

path can consists of zero or more delay elements, and each delay element is contained

by zero or more paths. Structuring the OBFN like this corresponds greatly to the real

world chip, and gives us some advantages later on.

3.2.2 Dataflow and structure

Figure 3.2 shows the dataflow of the OBFN simulator. Notice that the delay element

simulator described in the previous chapter serves as a building block. Only the most
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Figure 3.1: UML model of the layered architecture for the OBFN simulator.

important activity is displayed, being a change in the required AOA by the user.

The activity is aimed at calculating the required voltages per channel for the amplifier

boards, with only an AOA as input. Details about the intermediate steps are described

below. The flow of data passes a few stages, mentioned in the following paragraphs.

Calculate ∆τ

When we assume that the antenna array is not curved, and the AE-spacing is constant,

then for a specific AOA, the time between the arrival of the satellite signal ∆τ at AEi

and AEi+1 is also a constant. This constant can be calculated as follows:

sin
(
a·π
180

)
· d

c
(3.1)

where a is the AOA, d is the AE-spacing, and c is the speed of light, roughly 3·108m/s

. The idea is depicted in Figure 3.3. Of course, the ∆τ can be normalized by dividing

it by the RTT, which we will use for the remaining part of this thesis.

Calculate total path delays

Because of the fact that coaxial delay offsets are used to provide the means to tune for

both positive as negative AOAs, the actual delay that has to be realized by the OBFN

itself must be determined. Therefore, a small algorithm is used that determines the

highest coaxial delay offset, and uses this offset as a reference point for determining

the other path delays. The total path delay is acquired by:

τpath i = max(τcoax)− τ coax i + (i− 1) ·∆τ (3.2)
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Figure 3.2: Dataflow for the OBFN simulator.
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where i is the number of the input, and ∆τ is the required inter arrival time between

the AEs. For example, when the maximum normalized coaxial delay is determined to

be 3.5, and ∆τ is for some specific AOA is determined to be 0.5, the total path delays

can be calculated using the above formula. As an example, the total path delays have

been calculated for a 4×1-OBFN, see Table 3.1. The results in the second last column

are the delays that must be realized by the path to fully compensate all the additional

delays caused by the coax cables. For instance, path 2 must realize a normalized delay

of 2 with its one ORR. If we sum the fixed coaxial delays with the newly calculated

delays, the resulting values, displayed in the last column, indeed show a ∆τ of 0.5.

More information on how to calculate the coaxial delays is available in Section 3.3.3.

Table 3.1: Calculation of the total path delays

Input i Coaxi max(τcoax)− τ coax i (i− 1) ·∆τ τpath i Total

1 3.5 0 0 0 3.5

2 2 1.5 0.5 2 4

3 1.5 2 1 3 4.5

4 0 3.5 1.5 5 5

Calculate distributed delays

Using the coaxial delay offsets and the ∆τ , the total amount of delay required per

input of the OBFN can be calculated. This is done using the algorithm that will be

discussed in more detail in Section 3.3.2.



34 Chapter 3. Design and Implementation of the OBFN simulator

Determine overflow

Using the delays per delay element, and the information that is made available by the

user concerning the minimum and maximum delays for a delay element of a specific

length, a warning will be issued. When a warning is given, calculations of the simulator

are out of bounds, and cannot be used reliably. The software will however continue to

work.

Get ring settings

When the delays for all the delay elements are known, the individual ring settings for

each ring within the delay element can be calculated. Note that the number of the step

in the flow diagram corresponds to Figure 2.1 in the previous chapter. This step is

indeed a reuse of the model and code used for the delay element simulator. A SubVI1

is created to abstract the inner workings of the previous simulator. For details about

this step see Section 2.2.1.

Simulate the delay elements

Again, the SubVI of the delay element simulator is used to simulate the output response

when the signal travels all the concatenated ORRs. The resulting responses for all the

paths within the OBFN are summed.

Create plot data

The responses coming from the delay elements are being converted for plotting two

graphs. The first graph shows the responses from all the inputs. For the second graph,

the coaxial delay for each individual input are prepended to the responses, creating

the final result. In this plot, the vertical space between successive cumulative path

responses should be equal to ∆τ .

Convert ring settings to voltages

All calculated κs and φs have to be converted to voltage levels that can be sent directly

to the amplifier boards. The conversion from the ring parameters to voltage levels is

pretty straightforward and will be discussed in Chapter 5, where the interaction with

the controller board is described.

1A subVI is equivalent to a function, subroutine, or method in other programming languages, and
useful for encapsulating code that will be reused multiple time. A subVI is also used to develop
hierarchical programs.
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Compensate for crosstalk

The simulator has the ability to use a crosstalk matrix to compensate for linear crosstalk

effects. These effect are caused for the most part thermally, meaning that the heat of

heater a has an effect on some other heater b. Again, details about the compensation

method will be discussed in Chapter 5.

3.3 OBFN simulator Implementation

3.3.1 Connection matrix

One of the requirements of the OBFN simulator is scalability. In theory, the simulator

we have created is only limited to the number of rings within the delay elements for

which precalculated parameter coefficients exist. In our case, we are thus limited to

OBFNs containing delay elements no larger than five rings.

Each delay element is given a unique ID, denoted by DEx, where x is a increasing

number. For the case of the 8× 1-OBFN, we have an exponentially increasing number

of rings in each stage as shown in Figure 1.3. To label the delay elements in an orderly

fashion, we use a DFS algorithm.

Formally, a DFS is a search that progresses by expanding the first child node of the

search tree that appears, thereby going deeper and deeper until a goal node is found, or

until it hits a node that has no children. Then the search backtracks, returning to the

most recent node it has not finished exploring. A depth first search can be performed

on many types of graphs. In our case, we have a binary tree, and thus infinite recursion

cannot occur. A short formal algorithm in pseudo-code is given in Listing 3.1 [8].

To make things more clear, the 8 × 1-OBFN has been traversed using the DFS

algorithm. The order taken is accordingly to the DFS algorithm, and is displayed in

Figure 3.4. This gives us the following 7 delay elements:

• DE1: Delay line with 1 ring

• DE2: Delay line with 2 rings

• DE3: Delay line with 1 ring

• DE4: Delay line with 4 rings

• DE5: Delay line with 1 ring

• DE6: Delay line with 2 rings

• DE7: Delay line with 1 ring

To represent this tree, we use a matrix. Every row represents a path, and every

column represents one of the delay elements. A value within the matrix indicates the

number of rings contained that delay element. The values within one column must thus

be the same, since this is in reality 1 delay element. When summing a row, the total
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Listing 3.1: Pseudo code Depth First Search

preorder ( node v ){
visit (v ) ;

for each child w of v

preorder (w ) ;

}

dfs ( vertex v ){
visit (v ) ;

for each neighbor w of v

if w is unvisited{
dfs (w ) ;

add edge vw to tree T

}
}

3

5 46

7

8

out

2

1

Figure 3.4: DFS walk of the 8× 1-OBFN



3.3. OBFN simulator Implementation 37

number of rings in a path is known. Counting the non-empty positions in a column

results in having the number of times a delay element is shared between paths. As a

concrete example, take a look at Table 3.2.

Table 3.2: Connection matrix 8x1 OBFN
DE1 DE2 DE3 DE4 DE5 DE6 DE7

Input 1 - - - - - - -

Input 2 1 - - - - - -

Input 3 - 2 - - - - -

Input 4 - 2 1 - - - -

Input 5 - - - 4 - - -

Input 6 - - - 4 1 - -

Input 7 - - - 4 - 2 -

Input 8 - - - 4 - 2 1

3.3.2 Delay distribution within the OBFN

For the simulation, a path instance is created containing multiple delay element in-

stances. The creation of the delay element instances is done according to the value on

position i, j in the connection matrix, where the ith row is the representation of the

path, and the value of position i, j the length of the delay element. The parameters

for each delay element are obtained using the same methods as described in Chapter

2. The input signal is fed through all the newly created instances, where the results

are added. When examining the connection matrix, multiple non-empty values in a

column indicate a shared delay element among different paths. For example, DE4 is

being used by four paths. The delay of the fifth path solely depends on DE4, which

means that the value of DE4 becomes a constant when the target delay for the fifth

path is known. The required ∆τ delay difference between the fifth and sixth path

thus have to be realized by just one ring. To calculate the distribution of delays while

keeping the shared paths in mind, an overflow algorithm is created. The code is given

in listing 3.2.

We made use of the fixed structure of the binary tree structure and the DFS algo-

rithm to create the connection matrix. One of the useful properties of the connection

matrix when using this approach is that the number of rings in each row of the matrix

is decreasing from left to right, from which we can benefit now. Note that this also

means that when using other kinds of topologies, the overflow algorithm might need

some adjustments.
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Listing 3.2: Pseudo code overflow algorithm

Parameters :

totalpathdelays = contains the total delays of all paths

minmaxdelays = matrix of the minimum and maximum

delays achievable for delay elements

of different lengths

connectionmatrix = the connection matrix

numberofinputs = the number of inputs of the OBFN

Algorithm :

Initialize a matrix ’delays’ with zeros

do for each input i

delayleftover = totaldelay = totalpathdelays (i )

do for each delay element j of this path

if connectionmatrix (i , j ) is set and delays (i , j ) is 0 then do

if delayleftover larger than 0

delayleftover = totaldelay − sum of delays in row i ;

if delayleftover is smaller than maxdelay

newdelay = delayleftover ;

else

newdelay = maxdelay ;

end if

Then force this new delay to all the positions in the

same column j where the connectionmatrix is not 0

end if

end if

if delayleftover is larger than 0 then

throw an "overflow error"

end do

end do
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Figure 3.5: Coaxial delay lines prepended to the OBFN. The length of the lines is propor-

tional to the required additional delay.

3.3.3 Dealing with offsets and negative AOA

Due to the fact that the physical realization of the optical chip is based on an asym-

metrical binary tree topology, negative AOAs cannot be achieved without further ad-

justment of the system as a whole, since a negative AOA would mean a negative ∆τ ,

and the ORRs can only create positive delays. To solve this problem, extra fixed delay

lines have to be prepended to the optical chip. This could be done using coaxial ca-

bles. Basically, a situation is now created where the zero-AOA delays are lifted from a

normalized 0 to some value x. This way, AOAs from -60 degrees to 60 degrees can be

achieved, despite of the physical limitations of the optical chip. In the simulator, the

delays of additional coaxial delay lines can be set.

Given the frequency range of the system in Table 1.1, it follows that the antenna

element spacing (λ/2) should be in the order of 1.5cm [9]. When combined with the

AOA a ranging from -60 to 60 degrees, the delay between two neighboring elements

should be tunable from −τ to τ . Using Equation 3.1 and given the speed of light in

air c = 3 ·108 and the AE-spacing d = 0.015m, we can calculate the tuning range to be

roughly 2× 40 = 80ps. For a 8× 1-OBFN containing a total of 8 rings as displayed in

Figure 3.5, and using a RTT of 80ps (note that this value is not related to the tuning

range), the coaxial delays are calculated as follows:

Although the normalized delays of each ORR can be below 1 as we have seen in

Section 2.3.4, using the coaxial delays we can prevent the ORR to be tuned below a

normalized delay of 1 alltogether. In theory, when the MZIs of the ORRs are produced

perfectly, the minimum normalized delay is exactly 1, which means a minimum total

path delay equal to the number of ORRs within that path. When we have ∆τ =

40ps = RTT/2 , and a minimal path delay in each path of the OBFN of 0, 1, 1,

2, 2, 3, 3,4 RTT respectively, a compensation has to be added that compensates for

these minimum delays. This would enable us to receive a broadside signal (AOA =
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0) by tuning all the rings to the minimal delay. Added to that, we need a normalized

RTT/2 between all paths in the case of a maximum negative AOA. The total coaxial

offset is now obtained by summing these two values. The results are displayed in Table

3.3. Although we are able to continuously tune a delay element between 0 and some

maximum delay, the demands on the total delays of the delay elements are increased

by these coaxial offsets, resulting in higher ripple and thus a more distorted signal.

Table 3.3: Additional coaxial delays

Path Rings Ring comp. Max. neg. AOA Total coax. delay (norm.)

Input 1 0 4 3.5 4 + 3.5 = 7.5

Input 2 1 3 3 3 + 3 = 6

Input 3 1 3 2.5 3 + 2.5 = 5.5

Input 4 2 2 2 2 + 2 = 4

Input 5 2 2 1.5 2 + 1.5 = 3.5

Input 6 3 1 1 1 + 1 = 2

Input 7 3 1 0.5 1 + 0.5 = 1.5

Input 8 4 0 0 0 + 0 = 0

3.3.4 Connectivity

The simulator can be connected to the hardware implementation to verify the calcu-

lated ring setting using the real measurement setup. Two methods are implemented,

each having their own advantages. For both methods the commands to set a channel

to the appropriate value can be send sequentially (several wrch commands), or in bulk

(a single wrchall command). A switch button is provided to choose one of the two

options.

Connect to the Java debug tool through TCP

The first method to connect the board to the simulator is through a TCP internet

connection. For this to work, the debug tool needs to be running. See Chapter 4 and

Appendix C for more information. By default, the tool is listening on TCP-port 4567

for incoming connections. The LabVIEW simulator can be set to connect to port 4567

on a specific IP-address. The address can be either localhost, or a real IP-address of

some remote computer on the network or internet. When all set, the simulator tries

to make a connection to the debug tool, which handles all requests. Replies from the

controller board are sent back to the debug tool, but not to the simulator. In our

experience, this way of communicating seems much faster than the next method, but

is a bit more complicated to set up.
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Direct connection to COM port

This is a more direct approach, but also noticebly slower compared to the method just

described. The big advantage is the immediate feedback log within the simulator, and

the fact that there is no need for an additional Java program running in the background.

The board has to be connected to the same PC where the simulator is running on.

3.3.5 Complexity and upscaling

A real commercial system could consists of as much as 64× 64 AEs. For a single row,

a 64× 1 OBFN could be used. Using the exponentially increasing number of rings in

each stage, the maximum number of ORRs in a delay element is n/2. For n = 64, this

means a delay element containing 32 ORRs. Fortunately, as we can see in Table 2.1,

the feasible delay as a function of delay element length grows faster than linear, which

means smaller delay elements can be used.

The simulator has been built to handle n× 1-OBFN, with n an arbitrary number.

Recall that the only limitation for now is the precalculated approximations for the ring

settings - for up to 5 rings the coefficients were calculated. When analyzing the wiring

in the block diagram of the simulator, it can easily be seen that the computational

complexity of the system, or the time it takes to run recalculate a simulation, is roughly

proportional to the connection matrix, meaning O(mn).

3.4 Simulation results

When the OBFN simulator is started, all the needed steps to calculate the proper ring

settings are performed, resulting in a plot as displayed in Figure 3.6. The settings used

to run the simulation are displayed in Table 3.4. In the plot, we can see the needed

response of all the paths within an 8 × 1-OBFN for an arbitrarily choosen ∆τ of 0.5,

which is equivalent to an AOA of 53 degrees. In Figure 3.7, the results for a negative

AOA of -53 degrees is shown. Again, the time delay ∆τ between the paths around the

normalized frequency of 0 is 0.5.

Part of the OBFN has been reused in [10]. The simulator created there covers the

complete path of a real data signal being sent and received by a PAA. The delays for

the beam forming process were calculated using the LabVIEW code described in this

and the previous chapter. Results show a nice gain, and the transmitted signal could

be restored without errors.
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Figure 3.6: Simulation results for an 8 × 1-OBFN width a ∆τ of 0.5 (equivalent to an

AOA of 53 degrees

−0.5 0 0.5
3

4

5

6

7

8

9

10

11

12

Normalized frequency

N
or

m
al

iz
ed

 g
ro

up
 d

el
ay

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8

Figure 3.7: Simulation results for an 8 × 1-OBFN width a ∆τ of 0.5 (equivalent to an

AOA of -53 degrees
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Table 3.4: Simulation settings

Property Value

Number of inputs 8

Ring loss .45 dB

RTT 0.08 ns

AE-Spacing 0.015 m

Normalized bandwidth 0.09

Connection Matrix See Table 3.2

3.5 Manual

A user manual and API Documentation are included in appendix B. The manual

contains the steps that need to be taken in order to properly setup the simulator. The

API provides more insight in the functional hooks that can be used to extend the

simulator, or to be called from other programs.

3.6 Summary and conclusions

A fully functional OBFN simulator has been built that meets the predetermined re-

quirements. The simulator is again built in LabVIEW, and uses the simulator from the

previous chapters in its core. With this simulator, OBFNs of different sizes and layouts

concerning the number of rings used in each stage can easily be simulated. In theory,

the simulator can be extended to larger OBFNs just by adding extra precalculated

coefficients.
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Chapter 4

Design and Implementation of the

Microcontroller Software

Creating a dedicated software program running on the ARM chip itself creates more

flexibility towards the controlling aspect of the OBFN system as a whole. The PC

would serve as just a user interface for settings some parameters and the desired AOA.

This way, the user interface part can easily be ported to for instance a mini PC for

direct integration with the rest of the OBFN system.

4.1 Overview of the control system

The beam forming system is controlled by a control system. This control system

consists of a combination of already existing hardware [4] and partly new developed

software. A schematic of the control system that has been used during this project is

shown in Figure 4.1. The control system takes care of applying voltages to the heaters

on the optical chip and consists of a Printed Circuit Board (PCB) containing a general

purpose microcontroller and one or more amplifier boards containing 32 amplifiers each.

The microcontroller can be programmed to control the output voltage of each of the

32 channels. It contains instructions to set a specific value to a channel of a Digital to

Analog Convertor (DAC) on one of the amplifier boards. The outputs of the DACs are

then fed into amplifiers that boost the values to appropriate voltage levels to power

the heater elements.

The microcontroller used is a Rowley CrossFire LPC2138 equipped with a LPC2138

ARM7 Reduced Instruction Set Computer (RISC) microprocessor from NXP. The

programming environment for this microcontroller is called Rowley CrossWorks Stu-

dio, where the actual flashing of the microcontroller is done using a Universal Serial

Bus (USB) port. After the flashing process, the microcontroller can be accessed via a

virtual Recommended Standard 232 (RS232) or COM port of a PC. In our case, the

virtual COM port runs over a standard USB port. Instructions on how to flash the

45
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Figure 4.1: Architecture of the control system with on the left the microcontroller, and

on the right the amplifier boards.

microcontroller are provided in Appendix C.

4.2 Controller software - PC

To be able to use the microcontroller, commands have to be sent to it by a PC. This

section describes the tools that have been used to interact with the microprocessor for

controlling and debug purposes.

4.2.1 Current software

The software we have used is not built from scratch, but is built upon an already

existing framework. This framework allows for Serial Peripheral Interface (SPI) com-

munication between the microcontroller, and the DAC. Also, methods for receiving

commands from the COM-port from the simulator were already available. Although

working quite well, the system would sometimes halt. This issue could be traced back

to a memory leak in the code, which eventually caused a memory overflow. Because all

communication stops when the code running on the microcontroller crashes, no further

info could be given to the user.

To control the chip, a special tool has been developed in [12] that allows for sep-

arate tuning of all the available channels on the chip. A screenshot of the system in

action is shown in Figure 4.2. Basically, the tool sends the same commands to the
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Figure 4.2: The slider tool (created by [12]) is able to control the voltage for each channel

of the OBFN individually

microcontroller as the simulator described in the previous chapter. A small change in

syntax has been made to better generalize the command structure, on which we will

elaborate later on. Furthermore, some minor adjustments were made that makes it

now possible to save settings to a file at any desired location and under any name.

Finally, when loading a file, a single reset command is sent to the microcontroller to

assure that the slider settings coincide with the actual voltages that are being applied.

One problem in the existing system is the fact that commands from the COM-port

are arriving too fast. This causes the microcontroller the choke, thereby dropping

commands and leaving the entire OBFN-system in an unknown state. That is, the

sliders on the screen show different levels than the OBFN is actually set to at that

moment. All these minor problems were taken care of, as we will see in the following

sections.

4.2.2 Debug tool

To verify the correctness of the microcontroller code, parts of it have been tested on

a development PC. Other parts were tested using a very simple tool, based on the

slider tool shown in Figure 4.2. The GUI implementation was replaced by a simple

Command Line Interface (CLI), which could easily be created thanks to the Model-

View-Controller (MVC) design of the slider tool. In a MVC-design, there is a strict

separation between the User Interface (UI) and the rest of the code. The debug tool

allows us to send arbitrary commands to the microcontroller, similar to a standard

Hyper Terminal connection, but offers additional functionality. For instance, the pos-

sibility to create test-cases and adding a proper delay between the commands that are
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sent. Finally, the debug tool can be used to receive commands from the LabVIEW

simulator, and send them to the connected hardware controller board. Not only do

we obtain higher speeds, but also better logging capabilities of the output of the mi-

crocontroller. Apparently, LabVIEW only collects the beginning of large responses,

despite of any buffer settings. Information on how to use the debug tool can be found

in Appendix C.

4.2.3 Configuration

Both the slider tool as well as the debug tool have several configuration options. Below

there is a short list of available settings that can be added or changed in the settings.xml

located in the appropriate directory of either tool.

• Nr of bars (Slider tool only) The number of bars to display. The number of bars,

and thereby channels is unlimited.

• COM The COM-port to connect to. Note that in general, a COM-port can be

opened only once. Combined usage of for instance the simulator and the slider

tool is therefore not possible.

• commandparamsseparator The symbol that separates a command from the pa-

rameters. These values must be changed when using older versions of the micro-

controller software. All the current microcontrollers have been loaded with the

newest version of the software, so the default settings do not have to be changed.

• paramsassignmentsymbol The symbol that is used for the assignment of a param-

eter key to a parameter value.

• paramsseparator The symbol used to separate parameters from each other

• intercommanddelay (Debug tool only) The time the controller software running

on the PC will wait before sending a new command to the micro controller. Since

at this moment there is only one way communication, the micro controller must

have enough processing time to handle all the incoming requests. When set too

low, an overload of commands can cause errors or unexpected results. The value

is the time to wait in milliseconds.

• resetdelay (Debug tool only) One special command that requires some time to

finish is the reset command, setting 0 volt on all available channels. The amount

of delay to wait can be entered here. The value is the time to wait in milliseconds.

As an example, the command wrchall:12=1200,13=1300,14=1400 sets the values of

channels 12, 13 and 14 to 1200, 1300 and 1400 centivolts respectively. the ’:’ separates

the command name from the parameters. The parameters are separated by a ’,’ and

the key-value pairs are separated by an ’=’ symbol. In Listing 4.1 an example XML-file

is shown for the debug tool.
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Listing 4.1: Example configuration file

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE p r o p e r t i e s SYSTEM "http://java.sun.com/dtd/properties.dtd">

<p r o p e r t i e s>

<comment>Settings for console debug tool</comment>

<entry key="COM">2</ entry>

<entry key="commandparamsseparator">:</ entry>

<entry key="paramsassignmentsymbol">=</ entry>

<entry key="paramsseparator"> ,</ entry>

<entry key="resetdelay">500</ entry>

<entry key="intercommanddelay">200</ entry>

</ p r o p e r t i e s>

4.3 Controller software - microcontroller

Apart from the software on the PC, some software must run on the microcontroller to

control the amplifiers. This section describes several scenarios to gradually port the

calculation process now done by the simulator to the microcontroller itself.

4.3.1 Implementation scenarios

There are several possibilites on where to make the separation of the functionality and

responsibilities of the software on the PC and the microcontroller. Three scenarios

have been evaluated. All have both advantages and disadvantages over the others. A

schematic of the separation of responsibilities is shown in Figure 4.3.

1. Keep the microcontroller as simple as possible and only write values to channels

2. Store the crosstalk matrix and other chip characteristics on the chip

3. Implement the whole system on the chip, only AOAs have to be provided

The first option is the simplest, but also the slowest due to the communication

speed. However, since we are in an experimental phase, this is not an issue at this

moment. All the calculations of the voltage values for the individual channels are

calculated by the simulator, and subsequently sent to the microcontroller. The micro-

controller then simply activates the channel.

The second scenario can be interesting when using multiple chips of the same type.

The hardware board has knowledge of the optical chip’s characteristics, and only needs
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Figure 4.3: The three scenarios showing the responsibilities of the PC and microcontroller

given a AOA.

to know the κs and φs for each channel to tune the chip correctly. Basically, the

conversion of ring settings to voltages is moved from the PC to the microcontroller.

The last option is to create a full implementation of the entire calculation process

for the chip. By sending only a AOA, the microcontroller calculates the voltage levels,

thereby tuning the chip. This last option does however requires a lot of processing

power, and a lot of memory to store the coefficients for the approximation algorithm

as described in Section 2.3. Also, additional information such as the AE-spacing must

be provided.

In our situation, only the first option has been used extensively. However, a start

has been made for the implementation of scenarios 2 and 3. Although not ready-

to-use yet, it should provide a good starting point for expanding the computational

capabilities of the chip, and aiming for a more stand-alone version of the complete

system. A full API-documentation for the functions that have been implemented are

listed in Appendix C.

4.3.2 Command parser

A very simple mechanism has been build into the microcontroller code that accepts

messages from the COM-port, splits them to command and parameters, and then

splits parameters to parameter1 ... parameterx. Using separate functions for handling

all the command makes it easy to create combined commands, and to add functions

for processing new types of commands later on.
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4.3.3 Hardware-software communication

For now, the microcontroller support communication over a COM-port. In [12] a

suggestion is done to use D2XX for communication. D2XX drivers allow direct access

to the USB device through a Dynamic link library (DLL). Application software can

access the USB device through a series of DLL function calls. The benefits of using

D2XX would be faster data transmission.

At the moment, for controlling 16 channels, we need commands like:

wrchall:1=1234, 2=1234, 3=1234, 4=1234, 5=1234, 6=1234, 7=1234, 8=1234,

9=1234, 10=1234, 11=1234, 12=1234, 13=1234, 14=1234, 15=1234, 16=1234

with a total length of 126 bytes. Using a COM speed of 115200 bits (14400 bytes)

per second means being able to sent roughly 110 commands of this type per second.

Keeping in mind that there is also some processing time involved for processing the

commands on the chip, the communication speed is really not the issue here. Also, when

focusing on gradually moving the responsibilities from a PC to the microcontroller, the

level of communication would further decrease, thereby reducing the need for speed

even more.

A big improvement would be to create a simple response parser like the one used

in the microcontroller code that handles messages coming from the microcontroller.

According to the type of return message, appropriate action can be taken or new

commands can be sent. Going one step further is to create a reliable two-way commu-

nication channel, preferably over TCP using a new version of the microcontroller that

is a little faster, has more memory, and can implement a TCP stack. A fully reliable

two-way communication channel can be setup between any PC and the microcontroller

using conventional networks. A good candidate would be the NXP

4.3.4 Floating point operations

The microcontroller that was used does not have a Floating Point Unit (FPU) for

processing floating point values like 2.1283. Floating point values are needed for sce-

narios 2 and 3 as previously described. However, using external libraries, a software

implementation can be used that mimics the operations of the missing FPU. To enable

this feature, some specific compiler options must be added to the compiler within the

CrossStudio development environment. The steps that need to be taken are explained

in Appendix C.
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4.4 Summary

The software now running on the microcontroller has improved stability, and is altered

for further extension. Three scenarios were described, of which the first is used during

the rest of this thesis. Handles and functions for implementing the other two scenarios

have partly been implemented. API-documentation is provided in the Appendix.
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Measurements

As mentioned earlier in Chapter 3, the OBFN-simulator is also capable of controlling

the real OBFN system by sending commands to the controller board. This chapter

describes measurements that were performed to properly initialize the simulator for

the specific OBFN under test. After that, measurements done to verify the correctness

of the simulations are described. For all tests, the 8x1 SMART optical chip was used.

5.1 System overview

Due to the fact that we are working with high frequency optical waves, a small change of

for instance temperature could have a large net effect on the measurement results. For

that reason, a lot of measures have been taken to minimize the influence of fluctuations

in the room temperature and fluctuations due to the heaters on the chip itself. The

optical chip is mounted on a thick copper plate that is kept to 30 degrees centigrade

using a Peltier element. A water cooled plate beneath guides away all the heat to a

remote location where a fan cools the water. The system itself is placed on a very

stable table. Finally, to prevent airflow in the room to change the local temperature,

the entire system is enclosed by a styrofoam box. A photograph showing the inside of

this box is shown in Figure 5.1. On the left, we see some modulators. The optical chip

is positioned on the right.

5.1.1 Measurement setup

All measurements were performed using the same setup. To be able to compare new

result with previous ones, the measurement setup used to calibrate the chip and de-

termine the crosstalk is taken from [12]. The schematics of the setup are shown in

Figure 5.2. The laser is connected to the current source (Curr) and a Temperature

Controller (TEC). The optical chip acting as the Device Under Test (DUT) is con-

nected to the controller board and a temperature stabilizer. The controller board is

53
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Figure 5.1: The inside of the styrofoam box
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Figure 5.2: Measurement setup. TEC = Temperature Controller for the Laser. Curr =

Current controller for the laser. Its current is sweeping, controlled by the

Network Analyzer. DUT = Device under test, the optical chip in the photo

between the laser and the Contr block. Mod = modulator. PC is the com-

puter, interfacing the control system (Contr). EDFA = Erbium Doped Fiber

Amplifier. Electrical wires are represented by dotted lines and optical wires by

solid lines.
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in its turn connected to an ordinary PC to get its instructions. The modulator (mod)

superimposes a RF signal of 100Mhz onto the optical carrier and is then fed into the

optical chip. The signal as it is leaving the optical chip is amplified using an Erbium

Doped Fiber Amplifier (EDFA), after which it is detected using an optical detector

and returned to the network analyzer. The network analyzer shows the time domain of

each current sweep on the x-axis, which we will explain later, and the received power

and phase shift as two separate traces on the y-axis.

Measurements are done using a laser current ramping technique. The laser current

is ramping between two values, much like a sawtooth wave. As an effect of the current

ramping, the laser frequency changes gradually over a certain bandwidth. The net-

work analyzer measures a time window that is synchronized with the ramping, thereby

showing the power and phase response at each frequency. Multiple FSRs are included

within the frequency range. As a result, the network analyzer shows one plot contain-

ing dips due to the round trip losses in the ring at their resonance frequencies, and

another showing the phase shift of the original signal.

5.1.2 Optical chip labelling

All the rings, heaters, inputs and outputs have been labeled by a unique number.

All input labels start with in, the output labels with out and the rings with r. The

heater channels do not have a prefix, and are referred to by only their number. These

numbers correspond to the sliders of the slider tool as discussed in Chapter 4. The

branch labbeled OSBF leads to the Optical Side Band Filter (OSBF), and has not

been used. The complete labelling is shown in Figure 5.3. The dotted box surrounding

the top left of the OBFN illustrates the part of the chip that was used during all

measurements described in this chapter. The light from out6 was connected to the

EDFA, and from there to the optical detector.

5.2 Stability and Voltage Levels

For the measurements to succeed, it is very important that we are working with a stable

system. Fluctuations of the output responses of the ORRs during long measurements

will make those measurements unreliable. Two types of measurements have been done:

an overall stability test of one ORR, and another test to verify the output voltages of

the controller board with the values that were sent to it.

5.2.1 System stability

Stability tests can be very time consuming. All the measurements described in this

chapter do not take longer than an hour, so we are interested in knowing the level of
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Figure 5.3: Labelling of all heaters, inputs and outputs of the optical chip.

stability in the course of that period. For exactly one hour, at a regular interval of 2

minutes, the output response of a single ORR (r1) was measured and saved. During

the measurements, nothing of the setup was touched or moved, and all measurements

were performed with the blinds shut to prevent direct sunlight, and windows closed for

minimizing draft.

The current ramping was set to a ramp time of t = 0.624708 seconds, which roughly

means having a coverage of t/T ∗ FSR = 32Ghz, with an FSR of 14GHz.

The results of all these responses are shown in Figure 5.4. As we can see, the

curves are almost exactly aligned, meaning that, for at least the measurement period,

the system can be labeled as stable. To further investigate the stability, the fluctuations

of the resonance frequency, and the changes of the maximum delay during the hour were

examined. In Figure 5.5, we see that the resonance frequency drift is almost negligible,

and does also not show any trend. The stability of the maximum delay (the height of

the peak) is shown in Figure 5.6. Although the fluctuations are small, a clear trend

emerges. The maximum slowly climbs from 0.1142 to 0.1157, creating an additional

delay of 0.0015ns in the course of an hour. During the rest of the measurements, it is

assumed that this small change does not significantly influences the final results.

In the past, there were difficulties in obtaining this level of stability. A light breeze

would affect the system enormously. That is also the reason why it is wrapped in a

styrofoam box. When measuring the output response of the next channel, some optical

fibers have to be rewired. This rewiring means opening the box, which can influence

the measurements. To minimize this effect, all three channels (in5, in6 and in7) were

connected at once, and a selection of the channel under test was done by setting the

combiners appropriately (see Table 5.1), and the proper coax cable was connected

to the signal generator. The combiners were adjusted so that all other paths were
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Ring Heater 1 3 8 9 15 18

1 (coax 4, channel 7) 1065 19.68

2 (coax 1, channel 6) 13.55 18.55 18.39 18.23

3 (coax 2, channel 5) 13.55 18.39 18.23

Table 5.1: Voltage levels used for measuring output responses by switching between coax-

ial cables outside the styrofoam box.

effectively disconnected, and could not interfere. Using this approach, the box did not

have to be openened, which would in theory eliminate the impact of it on the systems

stability. However, as further investigation showed, the instability was not caused by

the system itself, but by heaters that were still set to a high voltage level, thus creating

crosstalk. This situation was caused by a defective reset function that should have set

all heaters to 0 volt. Unfortunately, this didn’t always happen, leaving the system in

an unknown state. The reset function was repaired, and further measurements showed

that the system was indeed very stable. This means that future measurements do not

have to be performed with the box closed at all times. Optical fibres can be rewired

within the box, which will give better results, and eliminates any interference effects.
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5.2.2 Voltage levels

The voltage levels that are calculated in the simulator, are sent to the microprocessor,

which subsequently drives the DAC, after which the voltages are amplified. Because

the system is very sensitive to small voltage changes (in the order of tenths of volts),

the voltages must be stable in any case. Measurements for two channels (in7 and in6)

of the 4×1 subset of the full 8×1-OBFN show that the voltages are hardly (only 0.001

volt) affected by voltages ranging from 0 to 30 volt applied to the other channels. We

can, in this particular case, safely conclude that a voltage applied on one channel is

not affected by a voltage applied on another.

As we will see later on, the relation between φ and voltage is captured by a linear

equation in V 2, measured at two points. It is therefore important to know how the

actual voltage relates to the calculated voltage. For the same two channels as above

(in7 and in6), this relation is determined. Figures 5.7 and 5.8 show the responses of

the amplifier boards measured by a voltage meter. The voltage source has been set

such that the output voltage of channel i when set to 30.00 volts was exactly 30.00 volt.

Both the absolute difference and relative difference in voltage level have been plotted.

We see that for low voltages, the output differs relatively much from the calculated

voltage. Low voltages should thus be avoided as much as possible. Furthermore, we see

that the measured voltage show an upward trend. This could be corrected for directly

by a multiplier constant, either in the simulator or in the microprocessor. Examples of

compensated voltages are also shown in the two figures, where a multiplier constant of

1.0131 has been chosen for both channels. The maximum absolute voltage difference

now drops to less than 0.1 volt.

5.3 Chip characterization

To properly convert calculated ring settings to voltages, the properties of the individual

ORRs must be known. This section describes the measurements performed to get the

relation between ring parameter and voltages for the individual rings. During one day,

the chip has been re-characterized a few times to see if any changes occurred. No

significant changes were observed.

5.3.1 Kappa-calibration

For the simulator to calculate the proper voltage levels for a particular value of κ,

the relation between kappa and voltage must be determined. We use κ to control the

height of the group delay peak, where κ usually lies anywhere between 0.5 and 1, Lower

values of κ create excessive delays which are undesirable. The value of κ is converted

to φcoupler using Equation 2.6 since, in theory, it is proportional to V 2.
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Figure 5.7: Voltage differences for channel 1
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κ τnorm τ(10−10s) ∆Φ◦ ∆Φ◦ + offset V 2 φcoupler

0,98 1,3 1,04 -3,744 16,856 6,61 0,28

0,96 1,5 1,2 -4,32 16,28 8,06 0,40

0,94 1,6 1,28 -4,608 15,992 8,71 0,49

0,92 1,8 1,44 -5,184 15,416 9,4 0,57

0,9 1,9 1,52 -5,472 15,128 9,75 0,64

0,8 2,6 2,08 -7,488 13,112 11,29 0,93

0,7 3,4 2,72 -9,792 10,808 12,26 1,16

0,6 4,5 3,6 -12,96 7,64 13,1 1,37

0,5 5,9 4,72 -16,99 3,608 13,8 1,57

0,4 8 6,4 -23,04 -2,44 14,5 1,77

0,3 11,7 9,36 -33,696 -13,096 15,16 1,98

Table 5.2: Example measurements for determining the κ-voltage relationship of ring r1

(channel 2)

For the first 3 ORRs (r1, r2 and r3), the values have been measured using the

setup described earlier. The results of one set of measurements are shown in Table 5.2.

First, using Equation 2.1, κ is converted to the maximum normalized delay. The delay

is converted to a real delay in nano seconds by multiplying it by 0.08 · 10−9. Using a

signal frequency of 100 ·106 MHz with T = 1/100 ·106 s, the expected signal phase shift

is calculated by τ · 360/T . Using the output of the network analyzer, the voltage was

adjusted to match the expected phase response. Finally, the φcoupler equivalent of κ is

calculated. The results of this process are shown in Figure 5.9. Note that the phase

shift detected by the network analyzer shows an offset. This offset was determined

using the method that will be described in Section 5.5.1. This offset tends to fluctuate,

and should be repeated when doing comparisons of measurements. At this moment,

the cause of the fluctuations is unknown, and should be further investigated.

The relations are almost linear in V 2, but because the slightest change of κ has a

large effect on the actual group delay, especially for large delays, only the best possible

fit is good enough. To determine what the impact will be on the loss of precision,

an error measure is determined. The error value is calculated by taking the absolute

difference between the lineair approximation and the measured value. The maximum

error based on measurements of the first three rings (r1, r2 and r3) is 0.0512 rad. The

small curvature of the measured slope has not been further examined, and for now, the

resulting marginal error is not taken into account in further calculations.

Notice that the slope of the characterization of the third ring is negative. This

is because the natural delay (the delay when 0 volt was applied) caused by the ring

was too high. Because of this, the characterization was done in the range of π to 2π
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Figure 5.9: Result for determining the values of kappa in relation to the applied voltage

levels.

Ring number 1 2 3

a [rad/V 2] 0.0096158 0.0088222 0.0084136

b [rad] -0.26061 0.17725 1.6531

Table 5.3: Coefficients for the κ-voltage curve fit

of the tunable MZI (see Figure 2.5). Changing the voltage gradually gave a certain

range where a delay could be achieved from the physical minimum, being slightly more

than one round trip time, to infinite. This range is subsequently used. This should

however not pose any problems, since each ORR is characterized individually, and

specific calculations of the voltage levels for κ within the simulator is also done on a

per-ring basis.

The plots have been curve-fitted with a linear function, resulting in a formula of

the form:

φcoupler = a · V 2 + b (5.1)

The values of a and b for the first three rings are shown in Table 5.3.

5.3.2 Phi-calibration

In order to calculate the voltages, some fixed values depending on the optical chip need

to be measured. The values Vφ2π and ∆Vφref for the set of ORRs are shown in Table
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Ring number 1 2 3

∆Vφ2π 24.35 25.97 24.83

∆Vφref 0 23.23 3.87

a [rad/V 2] 0.010596663 0.009315864 0.010190925

b [rad] 0 5.027146946 0.15262847

Table 5.4: Coefficients for the φ-voltage curve fit

5.4, where:

• Vφ2π: The voltage needed to obtain a phase shift of 1 FSR or 2π.

• ∆Vφref : Reference voltage needed to obtain a pre-set reference phase. This is to

align the resonance frequencies of the rings.

The values for Vφ2π are obtained at a κring of 0.7. The voltage for the particular

κ for the ring under test is determined by using the data from the from the kappa-

calibration in the previous section. All other phase- and coupling heaters should be

set to 0 volt for no crosstalk. This does mean however that the calibration process is

slightly different than the one that is used in [12], where the focus was on calibrating

at the equal voltage levels for κ.

With the two measured values, a linear function φring as a function of V 2 is created

as follows:

φring = a · V 2
φ − φoffset (5.2)

where

a =
2π

(∆Vφ2π)2
(5.3)

and

b = ∆V 2
ref · a (5.4)

The equation for the output voltage Vout for a no-crosstalk situation now becomes:

Vout =
√

(φdesired + b)/a (5.5)

The method described can be used in the case there is no crosstalk. We will see

later on that the system does suffer from crosstalk, which needs to be corrected for.

The crosstalk does not have an effect on the characterization. The values a and b can

be entered in the simulator, since they are chip-specific. See the manual in Appendix

B for more information on how to properly enter the a and b values.
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5.4 Crosstalk

The tuning of the optical chip is done by applying heat to the specific parts of the

chip to cause some change in the behavior of the ORRs. This tuning process of the

optical chip suffers from crosstalk. Crosstalk is the unwanted effect that tuning of one

ring has on another. For example, when tuning ring r1 for φ, the heat that is created

has some influence on the rings surrounding it. The smaller the distance, the greater

the effect. This effect can be both positive and negative, meaning that other rings

experience a phase addition, or phase subtraction. The positive effect is caused by

some extra heat provided to one ring by another. The other effect is explained by [12]

as being an electrical crosstalk effect. In both cases, compensation is necessary. The

system we will use to compensate for crosstalk will be able to deal with basically any

form of crosstalk, provided that the effects are linear. In that case, we can use a simple

matrix multiplication to compensate the crosstalk effects.

The matrix would be a square matrix of size n×n, where n is the number of heater

elements of the chip that need compensation. The diagonal of the matrix is filled with

the self-values: the effect of the heater that belongs to the ring without any crosstalk.

All the other n × n − n values are the crosstalk factors. They can be either negative

due to thermal crosstalk, or both positive and negative due to electrical crosstalk,

depending on the polarity of the voltages.

In our measurements, a total of 3 rings needed to be tuned, having a total of 6

heaters. Fortunately, a large part of the crosstalk effects can be ignored. Firstly, the

effect of any heater on a MZI can be ignored. The two branches of the MZI are so close

together, that the spreading heat causes both of them to warm up roughly the same

amount. The resulting phase difference is not influenced by this. Visual determination

using the network analyzer confirms that there is no effect. This means that half of

the crosstalk matrix values can be left blank.

Secondly, because of the large distance between ring r2 and rings r1 and r3 (see

Figure 5.3), the effects of the heat are almost unnoticeable. Compensation requires

only change of a few hundredths of volts. For the sake of simplicity, these small effects

will be ignored.

For our proof of concept, the effects of the κ-heaters on the other heaters were not

taken into account. Note that they do have an impact on the final output response,

and should be considered in following projects.

5.4.1 Measurement execution

The influence of each φ-heater element to another is measured using the steps below.

1. Characterize all ORRs on the optical chip once (Vφ2π and Vref )
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2. Set all rings to 0 volt.

3. Pick a ring i.

4. Tune ring i to 2π. Do not take offsets into account.

5. Pick a ring j (the crosstalker).

6. Tune ring j to 2π.

7. The phase of ring i now changes due to the change of ring j, and is independent

of other rings (which are at 0 volt).

8. Compensate the voltage of ring i from V 2
a to V 2

b so it is back to its original

position of 2π using the slider panel.

9. Convert the compensation voltage to a proper value using Equation 5.6.

10. Store the value on the (i, j) position in the matrix.

The conversion in step 9 for the effect from j on i is done using the following

equation (the index of the proper ring property of Table 5.4 is shown between the

parenthesis):

A(i, j) =
ai ·∆V 2(i)

∆V 2
φ2π(j)

(5.6)

where ∆V 2 = V 2
a − V 2

b .

Incorporating the crosstalk effect on Equation 5.2, now becomes:

~φdesired = A · ~V 2
out − ~φoffset (5.7)

And the output voltage:

~V 2
out = A−1 · (~φdesired + ~φoffset) (5.8)

5.4.2 Results

Our measurements have been limited to a 4 × 1 subset of the full 8 × 1-OBFN. Only

channels in5, in6 and in7 were used, containing in total 3 ORRs, and thus having

6 heater elements. The crosstalk matrix has been determined and is shown in Table

5.5. Diagonally, the a values appear, which were previously calculated during the φ-

and κ-calibration process. A value in position (i, j) means the effect of j on i. Doing

a left-multiplication with a column vector of uncorrected values results in having a

column vector with the corrected values.
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1 3 5 2 4 16

1 0.010596663 0 0.000618814 0 0 0

3 0.000187465 0.009315864 0 0 0 0

15 0.000468741 0 0.010190925 0 0 0

2 0 0 0 0.0096158 0 0

4 0 0 0 0 0.0088222 0

16 0 0 0 0 0 0.0084136

Table 5.5: Crosstalk matrix. The numbers on the top and on the left denote the heater

numbers.

5.5 Delay measurements

To investigate if the simulator with all its calculations is working as expected, the

simulated results should match the output responses of the OBFN network. Using the

same system setup as before, several measurements have been performed.

5.5.1 Determining group delay offsets

When a κ is tuned at a very low value, the delay starts to go to infinity at the resonance

frequency. The delay to the immediate left and right of this peak is almost 0, which is

confirmed by both the simulations and measurements. When we tune κ down a little

more, the peak completely disappears in the output windows of the network analyzer.

This phase shift is used as a reference value to calculate the actual group delay in nano

seconds. This phase-shift can be determined for every output, which can be used for

aligning the output responses. We noticed that by physically moving the optical fibers,

the phase offsets changed quite dramatically, so any rewiring of the cables to different

inputs or outputs of the optical chip has to be done with great care.

5.5.2 Single ORR

As a proof of concept, a measurement has been done for a single ORR (r1), and thus

2 heaters. The results are shown in Figure 5.10. For a set of AOAs between 10 and 60

degrees, measurements have been done. To compare the results of the simulation and

the measured values, all values are first denormalized to ns. The differences between

AOA i and i − 1 for both the simulation, as well as the measurements are shown in

Table 5.6. T(a◦ − b◦) means the delay difference in ns between an AOA of a degrees

and b degrees. With respect to the resonance frequency, we see a small shift of the

resonance frequency to the right for larger delays, presumably caused by the lack off

crosstalk compensation for the κ-heaters as mentioned earlier in Section 5.4.
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T(60◦ − 50◦) T(50◦ − 40◦) T(40◦ − 30◦) T(30◦ − 20◦)

Simulation (ns) 0.0050 0.0062 0.0071 0.0079

Measurement (ns) 0.0059 0.0061 0.0068 0.0077

Absolute difference (ns) 0.0009 0.0001 0.0003 0.0002

Table 5.6:
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Figure 5.10: Single ORR response for several AOAs



68 Chapter 5. Measurements

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

D
el

ay
 (n

o
rm

al
iz

ed
)

Frequency (normalized)

Figure 5.11: The response of a simulation of a 4x1 subset of the 8x1-OBFN containing

3 ORRs (r1, r2 and r3). The AOA has been set to 30 and 60 degrees,

equavalent to a ∆τ of 0,36 and 0,62 respectively.

5.5.3 4x1-OBFN

As a final measurement, the results of the simulator were tested on a 4×1-OBFN. The

response of the OBFN for input in5, in6, and in7 have been measured. The results

are shown in Figure 5.11 (simulated) and 5.12 (measured). Although the results seem

quite good, again there is an offset to the left that is increasing with decreasing angles.

This effect is most likely caused by the lack of correction of the κ-heaters on other

rings. These measurements have not been performed yet. The effect of heaters 2, 4

and 16 on heaters 1, 3, and 15 are filled in with zeros at this moment.

5.6 Summary and conclusions

In this chapter, measurement setup, execution and results have been discussed. When

the OBFN is properly characterized, the simulator seems to work very well for the

tested 4 × 1-OBFN. The method used could prove to be usable for larger systems.

Although the software system is ready to compensate all linear crosstalk effects, only

half of them have been entered in the crosstalk matrix. Some measurements still have

to be done, hopefully resulting in a perfect alignment of the resonance frequencies in

the measured output responses. For our measurements, the stability of the system

itself was sufficient. The rewiring of the optical cables caused the offset phase shift of

the input signal to be altered. Whenever cables are rewired, phase offsets should be
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Figure 5.12: The response of measurements on a 4x1 subset of the 8x1 containing 3 ORRs

(r1, r2 and r3). The AOA has been set to 30 and 60 degrees, equavalent

to a ∆τ of 0,36 and 0,62 respectively. The crosstalk correction has been

included.

redetermined.
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Chapter 6

Conclusions and Futher Research

This final chapter presents some conclusions and directions for further research and

new that questions and ideas arose while doing this project.

6.1 Conclusions

The main reseach goal as stated in Section 1.3.1 was the creation of a maintainable

and scalable software control system that can automatically tune all the parameters of

an OBFN given only the direction of the incoming beam.

To achieve the goal, two simulators were written in LabVIEW to see if the under-

lying calculations would work in theory. The first of the two simulators is specifically

designed to simulate the group delay response of delay elements with a variable amount

of rings. The settings for the rings were aquired by using an approximation algorithm

with precalculated values. The effects of a change of κ on φ, and the loss compensation

by a change of κ have been incorporated. The end result is a scalable simulator capable

of simulating delay elements containing a variable amount of rings.

The second simulator was an additional layer around the code of the first simula-

tor, thereby creating a tool that can simulate an entire OBFN. The distribution of

the delays accross the rings and the calculation of the voltages is all done with this

simulator. The connection to the previously designed amplifier board makes it possible

to apply these calculated voltages to the actual lab setup.

Finally, as a proof of concept, the simulator has been tested in a lab environment

to see if the apprach taken could work, and would be a feasible candidate for further

research. The first measurements using the voltages calculated by the control system

look very promising. Also, the system is capable (with very small adjustments) of

tuning future chip designs or using other tuning methods than thermo-optical.

To keep this report as generally applicable as possible, no specific applications were

kept in mind when performing simulations or measurements.
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6.2 Further research

During this research project, some interesting questions arose, and things came to mind

that could possibly improve the system as a whole.

• Negative AOA are now fully handled by additional coaxial delay lines. These ad-

ditional lines however put a higher demand on the delay that must be achieved by

each ORR. Perhaps a more symmetrical OBFN design would solve this problem.

Since more rings create a higher level of tuning complexity, some trade-off must

be found.

• The delays are now calculated for a flat linear PAA. In real life, PAAs are often

curved or have some irregular shape. The simulator could be expanded to cope

with grid PAAs. The problem of handling curved surfaces could likely be solved

in the simulator by adding an extra SubVI between the input of the AOA and

the calculations of the required delay per path.

• Some of the crosstalk effects have not yet been measured. These effect do however

contribute to the shift of the resonance frequency, and should thus be included

in the crosstalk matrix.

• Although the crosstalk correction matrix works, it would be better to have some

form of thermal feedback from each heater directly by the use of integrated ther-

momethers. Perhaps the resistence of the heaters on the current chip could be

used for that purpose. By characterizing the optical effects of each tuning element

for all temperatures, the heater-and-feedback combination would be responsible

for achieving the desired optical effects. The crosstalk matrix and the relation

from voltage to optical effect can then be eliminated, leaving an easier to calibrate

and tune system, especially when the OBFN grows in size.

• The communication with the microprocessor is currently one-way. Possible prob-

lems due to timing are now solved by adjustable delays between the commands

that are sent. Of course, this is only a temporary solution. Better is to have a two

way reliable communication channel with the chip giving feedback. This could

be implemented using a simple response parser in the Java debug tool code.
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Appendix A

Delay Element Simulator

Documentation

A.1 General information

The LabVIEW delay element simulator has been built using LabVIEW 8.5 on a Mi-

crosoft Windows XP Professional operating system. The simulator depends on sev-

eral Matlab routines that were developed in Matlab 7r14 , so a proper installation of

Matlab is also required. For LabVIEW to find the proper Matlab routines, Matlab

should have a path reference (file menu → set path) pointing to the directories sim-

ulator delayelement and coefficients lookup table. Due to caching of code, changes in

MatLab code are not immediately effective in LabVIEW. The best way to circumvent

problems related to cached code, is to completely restart LabVIEW.

A.2 Manual

This section will describe the delay element simulator from a users perspective.

A.2.1 Tour of the interface

A complete overview of the interface is given in figure A.1. Going clockwise starting

at the top left, we see the output window showing the normalized group delay versus

frequency, the power versus frequency, the dispersion versus frequency and finally the

phase versus frequency. Note that all frequency axes are normalized. The main output

window on the top left shows the group delay responses for each ring of the delay

element individually, and also a combined group delay.
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Figure A.1: Screenshot of the delay element simulator at startup

Tab Ring Control

The bottom left contains two control panels. On the left, a panel having 4 tabs is

visible and has a combined input / output function. The first tab block is used to

apply settings for each ring. By selecting a ring, the knobs are turned to the current

settings. Turning a knob has an immediate effect on the output windows. The second

tab block is used for automatically calculating the ring setting by using the MMSE

calculation, and the approximation algorithm, both described in chapter 2.

Tab Load & Save

The Load and save tab shows two buttons which allows you to save and restore ring

settings. After opening a previously saved file, all the ring settings will be restored.

Also, the number of rings in the Settings tab will be adjusted according to the number

of rings the settings were saved for.

Tab Values array

The Values array tab contains the values of each ring that are used for drawing the

group delay output response in the top left window. Values can be individually changed

here if needed. Changes are immediately processed. The chart array data is just for

error checking purposes and can be ignored during normal operation.
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Tab Settings

Several default settings are available for the delay element simulator. LabVIEW offers

the possibility to store default values for all input fields, which can be used to store

custom settings for later use. The settings are:

• Number of rings : The number of rings to simulate

• Round trips : The number of round trips used to model an ORR. A higher value

will result in a better response at the cost of speed.

• Input amplitude: A constant 1 signal to model the input signal

• Output amplitude: The output amplitude with respect to the input amplitude.

When losses are applied the output amplitude drops.

• Output intensity : The magnitude of the output amplitude

• Equivalent Coupling Bends : Adds extra coupling because of bends within the

ORR

• Actual Ring RTT The round trip time of each ring in nanoseconds.

• Center Frequency The frequency in THz on which the main output window is

centralized.

Tab Calculate

Using the MMSE method described in chapter 2, a real-time calculation is done to get

the best ring settings possible for an optimal combined output group delay response for

a given bandwidth and normalized delay. When a delay element is simulated that has

a large number of rings, the calculation time could become large on older computers.

Tab Approximate

For the reason of large calculation times, an approximation algorithm was used (also

described in chapter 2). Again, a normalized delay and normalized bandwidth serve as

an input for getting an approximation of the ring settings. Changes to the delay are

processed near real-time, after which the main window is updated to show the effect.

A.2.2 Usage examples

Example: we want to see the response of a delay element containing 2 rings and save

the ring settings to a file.
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1. Click the LabVIEW play button to run the simulator (top left corner)

2. Click the settings tab (lower left corner) and change the Number of rings to 2.

3. Click the Approximate tab (lower middle part) and choose a delay. The curve

will change accordingly.

4. Current ring-settings can be saved for later use in the Load & Save tab. Other

settings can be saved using LabVIEW’s own save functionality in the Edit menu.

A.3 Pre-calculation scripts and API-documentation

The coefficients that are used to calculate the ring settings for a specific delay are pre-

calculated using some fully detached scripts. The case of the 2-ring scripts is described

here. The scripts for more rings are comparable. Although Matlab can more or less be

used as an Object Oriented Programming (OOP) environment, the scripts are basic

procedural scripts for the sake of easily testing and changing code.

The precalculation program has several files that contain the following functions.

calcall

This scripts can be run by setting the path to the appropriate directory, and issue the

command calcall. Within the script, the bandwidth range and the delay range can be

specified. The script will start to calculate all the settings for the whole bandwidth

range, and save the results to allresults2.mat. Next, an appropriate structure as shown

in figure 2.15 is saved in a file named ringsettings 2 aboveone.mat. This file is required

for the lookup table which we will discuss later.

Parameters

• No parameters, just run calcall.

Return values

• File allresults2.mat : file containing the entire workspace

• File ringsettings 2 aboveone.mat : file containing the processed coefficients along

some other useful info. See the documentation of the calculatedOptimizedCoeffi-

cients 2rings function for details.

calculatedOptimizedCoefficients 2rings

A function to calculate coefficients according to the phase-optimization function. Given

a bandwidth, parameters for the whole delay range will be optimized.
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Parameters

• bandwidth: The bandwidth to optimized for

• fromdelay : The starting point of the delay range (normalized)

• todelay : The end point of the delay range (normalized)

Return values

• res1 : The coefficients for the first curve fitted function (in this case the κ)

• res2 : The coefficients for the second curve fitted function (in this case the φ)

• Z1 : The raw optimization results for the first parameter (κ)

• Z2 : The raw optimization results for the second parameter (φ)

• xas : The x-axis used. This servers basically as an index for the delay range

• B : The bandwidth used

• E : Error values from the NLP solver for the whole delay range

phase 2opti

Sets some options and then calls Matlab’s fmincon function to start the NLP solver.

As an objective function to be minimized, phasefun2(x) is used.

Parameters

• points : Number of points to check within the frequency range

• bandwidth: Normalized bandwidth

• height : The target delay

• varargin: Values used as a starting point for the NLP solver

Return values

• coefficients : The optimal coefficients for the given bandwidth and delay

• error : The error comparable to the ripple error.

phasefun2

The actual function to be optimized for a set of unknowns.
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Parameters

• x Denotes an array of parameters to solve for

Return values

• mu The error for this function for the parameters tested
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OBFN Simulator Documentation

B.1 General information

The LabVIEW OBFN simulator has been built using LabVIEW 8.5 on a Microsoft

Windows XP Professional operating system. The simulator depends on several Matlab

routines that were developed in Matlab 7r14 , so a proper installation of Matlab is

also required. For LabVIEW to find the proper Matlab routines, Matlab should have

a path reference (file menu → set path) pointing to the directories simulator OBFN

and coefficients lookup table. Due to caching of code, changes in MatLab code are not

immediately effective in LabVIEW. The best way to circumvent problems related to

cached code, is to completely restart LabVIEW.

B.2 Manual

This section will describe the OBFN simulator from a user’s perspective.

B.2.1 Tour of the interface

A complete overview of the system interface is shown in Figure B.1. Unfortunately,

the GUI does not fit on a standard screen resolution of 1280 × 1024, which makes

scrolling necessary. We see three main parts. The top part consists of tab containing

connection settings. The middle part takes care of all the settings related to the OBFN

itself. Lastly, the bottom part serves purely to display the results. Please be aware of

the caching of Matlab functions that LabVIEW performs. For substantial changes in

settings the simulator has to be restarted. If you experience any errors, press the Make

current values default option in the Edit menu and restart LabVIEW. Things should

be working again now.

Lets discuss all the separate parts one by one, starting with the middle part, going

down to the bottom part, and finally the top part.
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Figure B.1: Screenshot of the OBFN simulator at startup
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Tab OBFN Structure settings

Multiple settings can be adjusted to fit the desired OBFN simulation. On the left, the

number of inputs, the general ring loss in dB, the RTT in ns, the AE spacing in m,

and the normalized bandwidth can be set. These general settings will be used in all

the simulated ORRs.

Next in line is the connection matrix. Details on how to fill in the connection matrix

are written down extensively in Section 3.3.1. Make sure that the actual size of the

matrix in LabVIEW is adjusted to the connection matrix exactly, and that no extra

empty rows or columns are active.

To the left of the connection matrix, there is a small matrix called Min. and Max.

delays. This matrix contains the minimum and maximum delays for delay elements

containing a specific number of rings, and is used to calculate the Input min-max delays

when pressing the Recalculate button.

On the right of the tab, the coaxial delay offsets can be set. These are the offsets

as discussed in Section 3.3.3 that compensate for the missing rings when tuning for

angles smaller than 0 degrees.

Tab Ring settings

The ring settings tabs contains all the calculated ring settings for all of the rings in

the entire OBFN. For now, Active and Length are always 1. On the right of the ring

settings, two arrays of offsets are visible. The phase offsets for either φ and φcoupler as

discussed in Chapter 2 must be set here. These values will be used to calculate the

proper voltages to send to the controller board.

Tab Mapping

The LabVIEW simulator labels each of the heater elements in a first come, first serve

fashion. This could result in wrong commands being sent to the controller board. For

this reason, a mapping can be applied to the heater elements used in the simulator.

The first column represents the number used in the simulator, while the second column

denotes the channel number used in the hardware setup.

Tab Voltages

The Voltages tab contains the crosstalk matrix as discussed in Chapter 5. The matrix

has to be filled in manually. The simulator uses the crosstalk matrix to calculate the

final output voltages displayed on the right side of the tab. These are the values in

volts that will be sent to the proper channel (as set in the Mapping tab). Next to the

final voltages array, a few switches and buttons are visible. When the Enable hardware
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Property Value

Baud rate 115200

Data bits 8

Parity None

Stop bits 1

Flow control None

Delay before read 500

Table B.1: COM-port settings in for the OBFN simulator

write switch is active, commands are sent to the controller board. When disabled, only

the new voltages are calculated, but no commands are sent. One can choose between

two write types. One uses a single combined command, and is thus faster. The other

uses single commands for each voltage to be set. The latter can be used for debugging

purposes. The last switch on the tab determines which connection type to use. Either

directly via COM, or indirectly using the Console Debug Tool. For the fastest results,

the combination wrchall and TCP must be used.

Tab Angle

The Angle tab contains a knob to simulate the angle of the incoming satellite signals.

Note that this simulator is currently suitable for a one dimensional antenna array, and

thus one angle suffices. The angle can be set between -60 and 60 degrees, corresponding

to the system specifications as shown in Table 1.1. In the lower left, the normalized

delay difference ∆τ between the antenna elements is shown. The two indicators in the

top corners warn the user when the delays for all the ring settings are out of range,

using the Min. and Max. delays matrix on the OBFN structure settings tab. When

one of the lights turns on, the systems operates outside the safe zone, and results can

be unexpected.

Tab Serial port settings

To properly communicate with the controller board directly, the COM settings must

be right. In Windows XP, the COM-port of the controller board can be determined

by right clicking My Computer → Properties → Hardware → Device Manager →
Ports. The other settings are shown in Table B.1. When communicating with the

controller board directly using COM, the results are displayed in the feedback panel.

The command that has been sent is shown in the Concatenated string panel.
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Tab TCP settings

The second way to communicate with the hardware board is via a TCP connection

to the console debug tool. Only two parameters have to be known, provided that

the settings of the console debug tool are correct, and that it is running. The first

parameter is the Host name. This can be either a host name as the name suggests, but

can also be an Internet Protocol (IP)-ad

Tab Inputs

When all settings are done, and the Run continuously button has been pressed, the

lower section of the simulator displays the results when changing the Angle. On the

left, the array Required delays per input shows the total delay of each path within the

OBFN. Below that, the distributed delays for all the delay elements are displayed.

The matrix has a similar structure as the connection matrix.

The two graphs display the results of the actual simulation using the distributed

delays. The left graph shows the output response of all the paths. The right graphs

also shows all the input responses, but now the coaxial offsets are taken into account.

This graph gives a good indication of the correctness of all the algorithms used in

the calculation process. When results seem wrong, the look-up tables containing the

coefficients for the approximation algorithms must be verified. Also, sometimes a

restart of both LabVIEW and Matlab works wonders.

B.2.2 Usage example 1: setup a new OBFN simulation

Since the OBFN simulator is a bit more complex than the delay element simulator,

special care has to be taken to properly set up the system. We will show you how to

change the settings of the simulator from a 2× 1 OBFN to a 4× 1 OBFN.

Setting up the environment

First, the environment has to be set up properly. For more information about this

process read Section B.1 of this appendix.

Change the OBFN structure settings

The following settings have to be adjusted in order to simulate a new and different

OBFN.

1. Number of inputs : change the value to 4

2. Connection matrix : adjust the connection matrix to accommodate 4 inputs. For

details, see Section 3.3.1.
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3. (Optionally) Min and Max delays : if needed, change the Min. and Max. delays

matrix.

4. Coax delay offsets : adjust the coaxial delay offsets to proper values

5. Mapping : if the simulator is used to control the controller board, the mapping

has to be adjusted fit the heater numbers to the real channels.

6. Crosstalk matrix : finally, adjust the size of the crosstalk matrix to 2n×2n, where

n is the number of rings used in the entire OBFN.

Run the simulation

When all the steps above are done, the simulator is ready to be used. Press the Run

Continuously button in the LabVIEW tool bar. Try to change the angle by turning

the big knob, en see the results adjust almost instantly. When an error occurs, there

is probably some miscommunication between LabVIEW and Matlab. Try to restart

both programs and rerun the simulation.

Saving the new settings

All settings can be saved by stopping the simulation by pressing the red Abort button,

followed by Edit menu → Make Current Values Default. The next time when the

simulator is loaded, the settings will be restored.

B.3 API-documentation

This section will give a description of all the important public Matlab functions that

can be used. Most of the functions that are used by the simulator have already been

discussed in Appendix A.

calculateDelays

This functions calculates the proper delays for all the delay elements, given the total

path delays of all paths.

Parameters

• totalpathdelays : The total path delays for all paths.

• minmaxdelays : The Min. Max. delays matrix holding the minimum and maxi-

mum delays values for delay elements of a specific length.

• connectionmatrix : The connection matrix representing the OBFN structure.
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• numberofinputs : The number of paths in the OBFN.

Return values

• delays : An array containing the individual delays for all the delay elements in

the OBFN. In combination with the connection matrix, this gives sufficient

information to calculate the ring settings parameters.
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Appendix C

Hardware Controller Documentation

C.1 General information

This appendix provides additional information for a proper installation and setup of

the hardware controller.

C.2 Virtual COM-port driver

To let Java communicate with the COM-port, an operating specific package needs to

be installed. For Microsoft Windows, instructions are given below:

1. Get the Java Runtime Environment from http://java.sun.com. If you would also

like to edit and recompile some of the software, on of the development kits is

needed that includes the Java compilerjavac, for example the Java SDK.

2. Two files located on the CD that accompanies this thesis needs to be copied to

the proper Java directories. Note that if you are installing an SDK, more than

one Java directories will be created. Check your Windows path global variable

settings to see which directory is actually used. Then copy the files from the CD

JDK118-javaxcomm directory as follows:

(a) Copy win32com.dll to the bin directory (e.g. c:/jdk1.6/bin)

(b) Copy com.jar to the lib directory (e.g. c:/jdk1.6/lib)

(c) Copy avax.comm.properties to the lib directory (e.g. c:/jdk1.6/lib)

3. You should be able to use the COM port now. If the steps above did not work,

make sure you have copied the files the proper Java directory, and reboot your

system.
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C.3 Using the Slider tool

The slider tool can be started by navigating to the Slider tool directory on the CD,

and double clicking click the slider.jar file. The jar file can be copied to any location,

and is fully stand-alone.

C.4 Using the Debug tool

The debug tool can be started by navigating to Debug tool and double clicking the

debugtool.jar file. The jar file can be copied to any location, and is fully stand-alone.

C.5 Flashing the micro controller

To flash the ARM7 micro controller, the CrossWorks studio application is used. A

manual can be found in the Manuals directory on the CD, labeled Starting the micro

controller environment.doc. When using a specific micro controller for the first time

on a computer, a license needs to be installed. For all micro controllers that were in

possession during the writing of this thesis, licenses were requested, and can be found

in Appendix F.

C.6 Floating point operations

The micro controller does not have hardware floating point support. However, a soft-

ware library can be included during compilation, that enabled a transparent use of

floating point values anyway. A separate section in the Starting the micro controller

environment.doc document described the exact settings that need to be set in order to

make use of this functionality.



Appendix D

OBFN layout

Diagram of the board for reference purposes.

Figure D.1: 8×1 FlySMART chip layout
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Appendix E

Ring, channel and waveguide data

Below an enumeration is given of the voltage sign per ring, their channels for φ and κ

tuning, and the used input waveguide.

1. +, φ channel 1, κ channel 2, input waveguide 7.

2. -, φ channel 15, κ channel 16, input waveguide 5.

3. +, φ channel 3, κ channel 4, input waveguide 5.

4. +, φ channel 7, κ channel 8, input waveguide 2.

5. -, φ channel 17, κ channel 18, input waveguide 3.

6. +, φ channel 5, κ channel 6, input waveguide 4.

7. -, φ channel 21, κ channel 22, input waveguide 2.

8. -, φ channel 23, κ channel 24, input waveguide 2.
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Appendix F

Rowley Crossfire Licenses

#020025:

0MO60-9JQ6G-IAJOX-08WL2-FC0SU-BC3CN-KGFB2-PKL5S-J0AFQ-UUZ7M+

M5664-QMXZY-UKUI0-94H0Z-SOG5Z-YIK5X-MAQYT-RGYZP-CM3FP-6CZMU

#020042

0F8AA-U8B43-KRKJK-46CYO-T9UAY-ZANEB-G1MQJ-IAGOI-BLHKN-PZGAN+

XO3TV-06T2F-IT4XE-3B14P-PX49P-ZQHKP-LS6NK-D0BPC-P8TQA-OWBBE

#020007

08VXK-NGCBS-BAF14-W78ZV-CW95V-E2EQI-TAZDS-9WQQ5-KKQ9X-AU4ZM+

KG7NG-ZWB5J-HJDHD-4BXTK-BEYML-F9OS9-FGI3P-OK4GR-Q8S64-HA4HW

#020011

0C4SZ-CKSBR-9TO4P-8HA4U-KC3CX-CNC48-B8065-P1HHG-I6XM3-FYQT7+

R1HB5-HNUYQ-46TVV-WXM2U-K3GOT-4ISCW-38EL2-OXAJO-6328M-QJ1OY

#02003B

0HU9N-IEP3B-20JOA-T97PE-0BZGS-AUGM5-P5H7P-R2H6K-SM61J-EMI6H+

PKYVA-VSQ9E-KWPST-N017O-E4EAF-6L1G7-3BZU5-5AG5K-28CSG-81AP1

#02002B

0Y5CP-9F5ZB-WGMF8-PK9B7-6Z7V2-M7WCT-I100Y-X8UIO-9ZNY0-GA171+

DHGKM-1LJDL-1CDM1-53JZK-P0IA5-8XXE2-9L0FM-BLUSZ-JR436-MDSG8

#02002A

0VI2C-FUBA5-9845R-CI265-38MKS-A7GNB-A30DI-BIQMC-V19GF-RAFUV+

JV03X-F3C2B-HIWQQ-YTDOX-T9KCL-ENG7F-DAVNG-THI4I-MLK8P-N22I8
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