
Master of Science Thesis

University of Twente
Design and Analysis of Communication Systems

Using NSIS (Next Steps in Signaling) for
support of QoS aware multimedia services

Ruud Klaver

Februari 9, 2007

Committee:

Dr. ir. Georgios Karagiannis (UT/DACS)
Dr. ir. Pieter-Tjerk de Boer (UT/DACS)

Dr. ir. Geert Heijenk (UT/DACS)
Dr. Attila Bader (Ericsson)



List of Abbreviations

API Application Programming Interface

DACS Design and Analysis of Communication Systems

DCCP Datagram Congestion Control Protocol

DiffServ Differentiated Services

DoS Denial of Service

DSCP DiffServ Code Point

ECN Explicit Congestion Notification

EF Expedited Forwarding

FIFO First In First Out

GHC GIST Hop Count

GIST General Internet Signaling Transport

HTB Hierarchical Token Bucket

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IntServ Integrated Services

IP Internet Protocol

ISCL IntServ Controlled Load

LAN Local Area Network

MA Messaging Association

MRI Message Routing Information

MRM Message Routing Method

MTU Maximum Transmission Unit

NAT Network Address Translation

NLI Network Layer Information

NSIS Next Steps In Signaling

NSLP NSIS Signaling Layer Protocol

2



NTLP NSIS Transport Layer Protocol

OO Object Oriented

OS Operating System

PHB Per Hop Behaviour

qdisc Queueing Discipline

QNE QoS NSIS Entity

QNI QoS NSIS Initiator

QNR QoS NSIS Receiver

QoSM QoS Model

QoS Quality of Service

QSPEC QoS Specification

RAO Router Alert Options

RFC Request For Comment

RII Request Identification Information

RMD Resource Management in DiffServ

RMF Resource Management Function

RSN Reservation Sequence Number

RSVP Resource ReSerVation Protocol

RTT Round Trip Time

SCTP Stream Control Transmission Protocol

SFQ Stochastic Fairness Queueing

SID Session Identifier

SII Source Identification Information

SLA Service Level Agreement

TCP Transmission Control Protocol

TLS Transport Layer Security

TLV Type Length Value

3



TTL Time To Live

UDP User Datagram Protocol

UML User-Mode Linux

UT University of Twente

VM Virtual Machine

VoIP Voice over IP

4



Contents

1. Introduction 8
1.1. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2. Implementation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3. Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. NSIS Overview 11
2.1. NSIS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. NSIS Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1. NSIS Transport Layer Protocol . . . . . . . . . . . . . . . . . . . . 12
2.2.1.1. GIST API . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1.2. Message Routing Information . . . . . . . . . . . . . . . . 16
2.2.1.3. GIST Service Example . . . . . . . . . . . . . . . . . . . 17
2.2.1.4. GIST Transmission Modes . . . . . . . . . . . . . . . . . 18
2.2.1.5. GIST Messages . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1.6. GIST Message Exchange Example . . . . . . . . . . . . . 22
2.2.1.7. GIST Advanced Features . . . . . . . . . . . . . . . . . . 24

2.2.2. QoS NSIS Signaling Layer Protocol . . . . . . . . . . . . . . . . . . 25
2.2.2.1. QoS-NSLP Components . . . . . . . . . . . . . . . . . . . 25
2.2.2.2. QoS-NSLP Message Processing . . . . . . . . . . . . . . . 25
2.2.2.3. QoS-NSLP Example . . . . . . . . . . . . . . . . . . . . . 27
2.2.2.4. QoS-NSLP Layering . . . . . . . . . . . . . . . . . . . . . 29

2.2.3. QoS-NSLP QoS Models . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3.1. IntServ Controlled Load QoS Model . . . . . . . . . . . . 30
2.2.3.2. Resource Management in Diffserv QoS Model . . . . . . . 31

3. GIST Design and Implementation 36
3.1. Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2. Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3. High-level Program Structure Overview . . . . . . . . . . . . . . . . . . . 39

3.3.1. Threading Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4. Network Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1. Query Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2. Datagram Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3. Connection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5. Message Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1. Message Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



3.5.2. Message Object Interface . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.3. Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6. State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.1. Routing State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1.1. Query Node State Machine . . . . . . . . . . . . . . . . . 46
3.6.1.2. Responder Node State Machine . . . . . . . . . . . . . . 47

3.6.2. Message Association State Machine . . . . . . . . . . . . . . . . . . 48
3.7. Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7.1. Example Program Flow . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8. Miscellaneous Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8.1. Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8.2. ICMP Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8.3. Source Identification Information Handle . . . . . . . . . . . . . . 52
3.8.4. Network Interface Management . . . . . . . . . . . . . . . . . . . . 53

4. QoS-NSLP Design and Implementation 59
4.1. Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2. QoS-NSLP and IntServ Controlled Load QoS Model Implementation . . . 60

4.2.1. Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2. Message and Exception Processing . . . . . . . . . . . . . . . . . . 63
4.2.3. Application API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3.1. VLC Application API Implementation . . . . . . . . . . . 66
4.2.4. Linux Traffic Control Subsystem . . . . . . . . . . . . . . . . . . . 67

4.3. RMD Linux Traffic Control . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1. The REMARKFIFO Queueing Discipline . . . . . . . . . . . . . . 68
4.3.2. Linux Traffic Control Subsystem . . . . . . . . . . . . . . . . . . . 71

5. Functional Experiments 75
5.1. User-Mode Linux Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2. Early Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3. Lab Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1. Successful Reservation and Teardown . . . . . . . . . . . . . . . . 78
5.3.2. Successful Reservation With NSIS-Unaware Nodes . . . . . . . . . 78
5.3.3. Unsuccessful Reservation . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.4. Final Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4. Interoperability Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6. Conclusion and Future Work 84
6.1. Conclusions and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A. GIST and QoS-NSLP Logging Example 89

6



Next Steps In Signaling (NSIS) is a newly designed protocol suite for flow signalling
on IP networks. One of its intended applications is to provide a dynamic end-to-end
QoS reservation protocol. The main goal of the assignment described in this thesis is to
update and expand and existing NSIS implementation for use by Quality of Service (QoS)
aware multimedia applications. In doing this, it serves in part as a verification of the
applicability and implementability of these new protocols.



1. Introduction

Transporting packet based network traffic, such as Internet Protocol [35], has tradi-
tionally been a best-effort service. This means that each Internet Protocol (IP) packet
receives the same treatment from routers and that any router it passes will process and
transmit the packet as fast as possible, depending on the load on the router. However, in
a world of IP convergence, demand has risen for different levels of services to be applied
to different packets, so-called Quality of Service. In particular real-time streaming traf-
fic such as multimedia services place stricter requirements on such parameters as packet
loss and jitter. Over the years a number of solutions have emerged to implement QoS
in IP networks in various ways, e.g. Integrated Services (IntServ) [21] and Differenti-
ated Services (DiffServ) [20]. Each QoS solution defines its own set of service types and
means of attributing these different service levels to different IP packets. Most of these
QoS systems are based on static reservations within the own domain, used for example
for Service Level Agreement (SLA)s. Several protocols, such as Resource ReSerVation
Protocol (RSVP) [22], were developed to provide dynamic soft-state end-to-end reserva-
tions, i.e. reservations for a flow from a sender to a receiver that may traverse several
QoS domains and will expire after a certain period of time if not refreshed. This flow
could be for example a Voice over IP (VoIP) session or a on-demand video stream. A
conceptual depiction of this can be seen in Figure 1.1.

Figure 1.1.: Diagram of a dynamic reservation for a flow traversing several QoS network
domains.

However, these reservation signalling protocols suffer from a number of issues and lim-
itations [32]. For this reason, the Internet Engineering Task Force (IETF) is proposing
a suite of protocols under the name of Next Steps In Signaling [28]. The goal of NSIS
even goes beyond providing QoS signalling, it defines a generalised end-to-end signalling
protocol for flows and several signalling applications, one of them being QoS. Other sig-
nalling applications, such as metering and Network Address Translation (NAT) traversal
are also to be defined. The QoS signalling application in particular is designed in such
a way that it is flexible in the types of QoS it can support, not restricting itself to any
particular QoS model. In this way, NSIS should be ideally suited to perform dynamic
end-to-end soft-state reservations for multimedia flows.
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1.1. Goals

The main goal of this assignment is to optimise and expand an existing implementation
of NSIS, developed at the Design and Analysis of Communication Systems (DACS)
group [42, 44], in such a a manner that multimedia applications may use it to perform
dynamic QoS reservations. One of the adaptations that need to be made towards this
end is the development of a Application Programming Interface (API) that applications
can use to request QoS from the NSIS implementation.

In particular the objectives for the assignment are:

• Studying of the current specifications and implementation of the NSIS protocol
suite and in particular the QoS-NSLP protocol.

• Optimising and expanding an existing Linux prototype implementation of NSIS.

• Designing and implementing a QoS application API that can be used between
NSIS and applications providing real-time streaming multimedia

• Setting up a demonstration of a QoS aware multimedia streaming application using
NSIS.

As NSIS is designed to perform exactly the task set to it here, i.e. allowing dynamic
QoS reservations for real-time streaming multimedia applications, and it is comprised of
a set of protocols specifications that are at the time of writing still under development,
this thesis is in part a proof-of-concept of the applicability and implementability of those
parts of NSIS that are used.

1.2. Implementation Requirements

To achieve the goals set in the previous section, said implementation should adhere to a
number of requirements:

• To test the NSIS specifications thoroughly, the implementation should follow these
specification as strictly as possible. When the protocol specifications allow different
choices or optional features, those options most logical to the achievement of the
goals should be chosen.

• Because of the nature of this assignment the design and implementation should
be a that of an investigative prototype. What this means is that it should not
be designed to operate in a production environment, rather be aimed as much as
possible at studying the inner workings of the programs and the protocols they
implement. A prototype implementation should for example, as opposed to a pro-
duction implementation, focus less on efficiency and more on disclosure of details.

• The design and implementation should be structured in such a way that future
changes and extensions to the protocol and even unimplemented functionality can
be easily incorporated at a later time. As the NSIS protocol specifications are still
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drafts, at least at the time of writing, updates and additions to these protocols are
released over time, prompted by feedback and discussion. If the implementation is
to be used in future work, a modular program structure should aid in this.

• The implementation should be both portable and configurable. What this means
is that, although a single Operating System (OS) with additional software depen-
dencies may be chosen to develop the implementation for, it should be able to run
easily on other systems using the same OS and software packages. As this may
require alteration of configuration parameters, the implementation should allow
and facilitate this.

• Error situations should be handled gracefully. The specifications foresee a lot of
different error conditions which must be dealt with appropriately and should still
allow the implementation to continue functioning. Even those error conditions
that are unforeseen, such as programming errors, should be handled in such a way
that it is clear that something went wrong.

1.3. Thesis Structure

The rest of this thesis is structured in the following manner; chapter 2 will provide
an overview of the protocols in the NSIS protocol suite and their details relevant to
this thesis. Chapter 3 will describe the General Internet Signaling Transport (GIST)
implementation, which provides the lower layer functionality of NSIS. Chapter 4 will
describe the QoS-NSIS Signaling Layer Protocol (NSLP) implementation, the upper
layer QoS functionality of NSIS. Chapter 5 will provide a description of the experiments
performed to evaluate the functionality of the implementations. Finally, chapter 6 will
contain the conclusions of this thesis and evaluate if the goals set in section 1.1 have
been reached.
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2. NSIS Overview

This chapter will attempt to provide a basic understanding of the concepts and compo-
nents of NSIS. By no means should this be considered to be a complete and exhaustive
description of the subject matter at hand, rather an informative summary that will
allow the reader to understand further chapters of this report. For further details or
design motivations readers are advised to consult the respective normative documents
referenced.

At the time of writing, most of the NSIS specifications were still in the draft stage
and so had not yet reached the status of final document. The draft versions of the
specifications on which the descriptions and work in this thesis are based are indicated
in the respective entries in the references section.

2.1. NSIS Introduction

The abstract of the document describing the NSIS framework [28] states the following:

The Next Steps in Signaling (NSIS) working group is considering protocols
for signaling information about a data flow along its path in the network. The
NSIS suite of protocols is envisioned to support various signaling applications
that need to install and/or manipulate such state in the network.

This accurately describes the goal of the NSIS suite as a whole. Alternatively, it can be
said to be a collection of protocols that enable end-to-end signalling pertaining to a flow
or a collection of flows across heterogeneous IP based networks. In practice this means
that any IP-based router within the path of a flow can communicate with other routers
about this flow, and possibly install state about it. The fact that it is end-to-end also
means that NSIS is meant to operate across different network domains, each with their
own characterstics such as QoS provisioning, owned by different providers.

The nature of the signalling in this definition is intentionally unspecified. This is
because NSIS, owing to its modular concept, decouples the signalling application from
the signalling service. Examples of envisioned signalling applications, some of which
are already defined, are QoS provisioning [33], NAT and firewall traversal and simple
metering. Particularly the QoS application is considered to be an important part of
NSIS and is the main application featured in this report.

2.2. NSIS Components

As already mentioned, NSIS is conceptually divided into two layers. The lower layer
is known as the NSIS Transport Layer Protocol (NTLP), the upper as the NSLP. As
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Figure 2.1.: Conceptual NSIS protocol stack.

the name would suggest, the NTLP provides a transport service for sending messages
up and down a communication path, allowing routers within this path to communicate
about flows. A NSIS node can have one or more NSLP applications running, each
designated their own NSLP-ID. Any of these applications can make use of the NTLP
service, which operates independently from the contents and nature of the NSLP data
it carries. The relationship between these protocols, and their relationships with other
well known network protocols, is illustrated in the protocol stack in Figure 2.1. As can
be seen, the NTLP can use either User Datagram Protocol (UDP) [34] or Transmission
Control Protocol (TCP) [37] for its message transport, the latter optionally making use
of Transport Layer Security (TLS) [26] for security. The NTLP is not limited to the use
of these protocols and can also use others, e.g. Stream Control Transmission Protocol
(SCTP) [41] or Datagram Congestion Control Protocol (DCCP) [31], but because these
are the only protocols used in the implementation described in this report they are the
only ones pictured. Communication between the NSLP applications and the NTLP is
performed through a predefined API.

2.2.1. NSIS Transport Layer Protocol

The NSIS working group specifies GIST [39] as the protocol that operates as NTLP. To
understand what type of service GIST provides, the API specified within GIST will be
described first, which allows NSLP applications to use its services. After this the inner
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workings of GIST can be illustrated.

2.2.1.1. GIST API

GIST defines its API in terms of abstract service primitives with parameters. This
means that no byte level specification is given and that, although the concept of the
API remains the same, its exact implementation is undefined.

The GIST API consists of six service primitives, three from the NSLP application
towards GIST, three in the opposite direction. The service primitives directed from the
signalling application towards GIST are:

• SendMessage

• SetStateLifetime

• InvalidateRoutingState

The service primitives travelling in the opposite direction, from GIST to the NSLP
application, are:

• RecvMessage

• MessageStates

• NetworkNotification

SendMessage
The SendMessage service primitive allows the NSLP application to send messages to its
upstream or downstream peer, depending on the Message Routing Information (MRI).
Its parameters are the following:

SendMessage ( NSLP-Data, NSLP-Data-Size, NSLP-Message-Handle, NSLPID,
Session-ID, MRI, SII-Handle, Transfer-Attributes, Timeout, IP-TTL, GIST-
Hop-Count )

NSLP-Data is the payload the NSLP application wants to transmit.

NSLP-Data-Size is the length of the NSLP-Data.

NSLP-Message-Handle is a handle that refers to this particular message. It allows
GIST to refer back to it when it issues the MessageStatus service primitive.

NSLPID is 1a 6-bit unsigned integer identifying the NSLP application.

Session-ID is a 16-byte identifier unique to this session.

MRI is the Message Routing Information, which describes the flow to which the sig-
nalling pertains.
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The following arguments are optional:

SII-Handle is the Source Identification Information Handle, which can be used to bypass
state stored in GIST and directly address a node.

Transfer-Attributes allows the application to convey desired transfer properties of the
message. Among others this can contain wether or not the message should be sent
reliably and wether or not is should be sent securely.

Timeout is the time for which GIST should attempt to keep sending the message.

IP-TTL is the Time To Live (TTL) value GIST should put in the IP header.

GIST-Hop-Count is the initial value for the GIST Hop Count (GHC) when GIST trans-
mits the message.

SetStateLifetime
The SetStateLifetime service primitive allows the NSLP application to control for how
long the state retained within GIST for a particular session is valid. Its parameters are
the following:

SetStateLifetime ( NSLPID, MRI, State-Lifetime )

NSLPID is a 16-bit unsigned integer identifying the NSLP application.

MRI is the Message Routing Information, which describes the flow to which the sig-
nalling pertains.

State-Liftetime is the amount of time for which the application wishes the state to
remain active in GIST.

InvalidateRoutingState
The InvalidateRoutingState service primitive allows the NSLP application to explicitly
request GIST to remove any state associated with a particular session. Its parameters
are the following:

InvalidateRoutingState ( NSLPID, MRI, Status, Urgent )

NSLPID is a 16-bit unsigned integer identifying the NSLP application.

MRI is the Message Routing Information, which describes the flow to which the sig-
nalling pertains.

Status is a boolean which indicates how definite the routing state invalidation should
be.

Urgent is a boolean which indicates wether state recovery should proceed immediately.
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RecvMessage
The RecvMessage service primitive allows GIST to deliver incoming messages to a NSLP
application. Its parameters are the following:

RecvMessage ( NSLP-Data, NSLP-Data-Size, NSLPID, Session-ID, MRI,
Routing-State-Check, SII-Handle, Transfer-Attributes, IP-TTL, IP-Distance,
GIST-Hop-Count, Inbound-Interface )

NSLP-Data is the NSLP payload of the message.

NSLP-Data-Size is the length of the NSLP-Data.

NSLPID is 1a 6-bit unsigned integer identifying the NSLP application.

Session-ID is a 16-byte identifier unique to this session.

MRI is the Message Routing Information, which describes the flow to which the sig-
nalling pertains.

Routing-State-Check is a boolean indicating that GIST is asking the NSLP application
wether or not to set up state with this peer. If it is set, the application should
reply to this primitive with:

• A boolean of wether it wants to set up state or if it wants the query to be
propagated further downstream.

• Optionally a payload that the application wants GIST to include in the re-
sponse to the querying peer or in the propagating query in case it does not
want to setup state.

SII-Handle is the Source Identification Information Handle of the transmitting node,
which can be used to bypass state stored in GIST and directly address this node.

Transfer-Attributes are the transfer properties with which the message was transmitted,
such as reliability and security.

IP-TTL is the TTL value of the IP header of the received message.

IP-Distance is the calculated distance in IP hops between this node and the sender of
the message.

GIST-Hop-Count is the value of the GHC in the received GIST message.

Inbound-Interface provides information about the physical interface on which the mes-
sage was received.

MessageStatus
The MessageStatus primitive allows GIST to indicate to a NSLP application if a message
was sent correctly and, if so, what transfer properties were used. Its parameters are the
following:
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MessageStatus (NSLP-Message-Handle, Transfer-Attributes, Error-Type)

NSLP-Message-Handle is a reference to the message that was generated earlier by the
application and set using the SendMessage service primitive.

Transfer-Attributes are the transfer properties with which the message was transmitted,
such as reliability and security.

Error-Type indicates, if the message could not be delivered, the reason of failure, the
most important one being that this node is the last NSIS-aware node in the path.

NetworkNotification
The MessageStatus primitive allows GIST to indicate to a NSLP application any changes
in network status. Its parameters are the following:

NetworkNotification ( NSLPID, MRI, Network-Notification-Type )

NSLPID is 1a 6-bit unsigned integer identifying the NSLP application.

MRI is the Message Routing Information, which describes the flow to which the sig-
nalling pertains.

Network-Notification-Type indicates the type of network status change, such as a
change in routing state.

2.2.1.2. Message Routing Information

Figure 2.2.: MRI with Path-coupled MRM.
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A central concept to GIST and its API is the MRI, which is used to describe a flow
or a set of flows. A flow can be described in different ways by the so-called Message
Routing Method (MRM), the default of which is the path-coupled MRM. The bitformat
of the path-coupled MRM is illustrated in Figure 2.2. As can be seen the path-coupled
MRM is based on the traditional 5-tuple of protocol, source address, source port, des-
tination address and source port with some additional characteristics. The use of these
characteristics can be controlled using the flags at the start of the MRI. The NSLP
applications use the MRI to inform GIST about the characteristics of the flow. Another
important flag is the D flag, which indicates the direction of the signalling in respect
to the flow. If it is set to 0 the direction of the signalling is in the same direction of
the flow, if set to 1 it is the opposite. With this a NSLP application can indicate if it
wants to send a message to its downstream peer, i.e. in the same direction as the flow
or towards the flow receiver, or to its upstream peer, i.e. in the opposite direction of the
flow or towards the flow sender.

2.2.1.3. GIST Service Example

Figure 2.3.: Signalling and data flows.

We can now construct a complete picture of the service that GIST provides to the
NSLP applications. These applications use the SendMessage service primitive to send
messages about a flow described in the MRI to its peers. A typical example of this is
illustrated in Figure 2.3 with a flow going from its sender to the receiver. Note that, for
GIST, flows are always unidirectional. Any bidirectional operation requires coupling of
two unidirectional flows at the NSLP level. In this example not every node on the path
is NSIS-aware, i.e. has GIST software and one or more NSLP applications running. Say
that the flow sender wants to do some signalling about the flow, e.g. a QoS reservation.
Its QoS-NSLP application will construct a MRI about the flow, create a new Session
Identifier (SID) and issue a SendMessage service primitive to GIST, including the QoS-
NSLP payload to be sent and indicating what transfer properties the message should
have. This can be for example that the message should be sent reliably but need not
be sent securely. GIST will then check its internal state to see if knows the downstream
peer, keyed by the combination of the NSLP-ID, MRI and SID. If this state exists it will
use it to find out if this node has a Messaging Association (MA) with the downstream
peer that has the same properties that the application requested. If the state does not
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exist it will attempt to discover the downstream peer. Peer discovery is performed with
a UDP datagram with a preset destination port addressed towards the flow destination,
gleaned from the MRI, with the Router Alert Options (RAO) [30] in the IP header set
to a value corresponding to the NSLP-ID. NSIS-aware routers along the path to the
flow destination actively listen out for any UDP datagrams with the preset port and
the RAO set and intercept these datagrams. In this way the next downstream peer can
be found and a routing state between the peers can be set up, in our example between
the flow sender and router 2. What follows is a negotiation between the two nodes to
either re-use an existing MA or set up a new MA with the desired properties, e.g. a TCP
connection. Once this MA is found or set up, the NSLP message is transferred over it
and received by router 1. Its GIST will issue a RecvMessage service primitive to the
QoS-NSLP application. This application will probably decide to issue a message further
downstream to complete the reservation along the path, again performing downstream
peer discovery.

This process will continue until the last node on the path is found, in this case router 3.
Note that, although a node may have GIST software running, it may not have the NSLP
application identified by the NSLP-ID running, or the application may even choose not
the participate using the response to the RecvMessage service primitive. Now if for
example router 3 wants to issue a message upstream, this could be a message containing
information about the success or failure of the QoS reservation, it will do this with the D
flag of the MRI set to 1. Now GIST in router 3 still has state stored about its upstream
peer, since that peer has just performed downstream discovery with it. It can use this
to send the message upstream.

All states stored in GIST are soft. This means that after a certain period of disuse
states will expire automatically.

2.2.1.4. GIST Transmission Modes

GIST has three different modes to transfer messages to its peers, each one of which will
now be illustrated.

Query Mode
This mode has already been mentioned in section 2.2.1.3 and is used to discover down-
stream peers. Although GIST specifies that it can also be used to discover upstream
peers, this is not advised. This means that downstream messages should usually precede
upstream messages, so that state can be installed during downstream peer discovery.

In Query Mode a UDP datagram will be sent towards the MRI destination at a
predefined destination port. The UDP source port is set to the port on which the
sending GIST node will accept messages in Datagram Mode, as can be read in the
relevant following section. The IP header of a message in Query Mode should include a
RAO, which is a IP option that can be used to notify routers along a path and includes
a 16-bit unsigned integer. This integer should be set to a value corresponding with
the NSLP-ID of the message so that GIST can decide at IP level the relevant NSLP
application is running and if it should intercept the message. The source IP address of
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the UDP datagram can be either set to the flow source, to make sure that the message
is submitted to exactly the same routing as the flow, or it can be set to the signalling
source, i.e. the node sending in Query Mode, to allow interception of returned Internet
Control Message Protocol (ICMP) [36] messages. The latter is important because, if
the Query Mode message is not intercepted and arrives at the MRI destination and this
host is not NSIS-aware, a ICMP “Port Unreachable” error is returned that can be used
to determine that there are no more NSIS-aware nodes on the path.

Datagram Mode
In Datagram Mode messages are simply sent as UDP datagrams, addressed directly to
the GIST node one wants to reach. The IP destination address of a node can be learnt
from a message it sent in Query Mode, as in this case it should always include its IP
address. Note that this may not be the same as the source IP address used for the
Query Mode message. The destination UDP port should be equal to the source UDP
port used in a previous Query or Datagram mode message sent from the destination
node. Conversely, that means that the Datagram Mode sending node should select the
source UDP port to be that port on which it is accepting Datagram Mode messages
itself.

Connection Mode
In Connection Mode a Messaging Association between two nodes is used to transmit
the message. A MA is a connection between two nodes using a particular connection-
oriented protocol or a stack of protocols with a set of properties, such as security and
reliability. In this report only TCP, for reliable connections, and TLS over TCP, for
reliable and secure connections, will be used. For a particular protocol or stack of
protocols GIST will maintain at most one connection between two nodes. This MA will
be set up dynamically if it is not present and can be used by different sessions once
present. A MA is also stored in soft state, meaning that after a certain period of disuse
the connection will automatically be torn down.

2.2.1.5. GIST Messages

GIST defines four different message types, each one of which consists of a set of GIST
objects. For the sake of brevity these objects will only briefly be described.

Query
As the name would suggest, this message should be used for initial peer node discovery.
Once state is installed in the nodes, this message should still be sent periodically to
detect changes in routing topology. A Query message can only be sent using Query
Mode. The objects included in a GIST Query message are the following:

19



Query = Common-Header
[ NAT-Traversal-Object ]
Message-Routing-Information
Session-Identification
Network-Layer-Information
Query-Cookie
[ Stack-Proposal Stack-Configuration-Data ]
[ NSLP-Data ]

The Common-Header is an object that is included in all GIST messages and includes
information such as the type of the message, the NSLP-ID and the GIST Hop Count. The
GHC prevents messages from looping infinitely, much like the TTL at IP level. The NAT-
Traversal-Object will not be discussed in this report because it was not implemented.
As can be seen, the MRI and SID are included in the Query message. Together with
the NSLP-ID from the Common-Header this can be used to match state within the
GIST node. The Network Layer Information object contains among others a token
uniquely identifying the node sending the Query message and its IP address so that
other nodes can reach it in Datagram and Connection mode. The Query-Cookie is a
security measure to prevent certain Denial of Service (DoS) attacks and contains random
data. The Stack-Proposal and Stack-Configuration-Data contain a list of MA protocol
stacks and corresponding options, such as port numbers, that the querying node can use
based on the transfer attributes submitted to its API by the NSLP application. The
responding node should only use this information in case it is considering reusing an
existing MA. Finally, the querying node can decide to piggyback NSLP payload onto
a Query message, provided that the transfer attributes of the message allow this, i.e. it
may be sent unreliably and insecurely.

Response
A GIST Response message should only be sent in reply to a received Query message, so
will only be used in initial peer discovery and during refreshes. If the responding node
already has a MA with the querying node, the protocol stack is in the stack proposal
included in the Query message, the responding node should send its response over this
MA to indicate that it will reuse it. Otherwise, the Response message should be sent in
Datagram Mode. The objects included in a GIST Response message are the following:

Response = Common-Header
[ NAT-Traversal-Object ]
Message-Routing-Information
Session-Identification
[ Network-Layer-Information ]
Query-Cookie
[ Responder-Cookie

[ Stack-Proposal Stack-Configuration-Data ] ]
[ NSLP-Data ]

20



The first four objects are the same as in the Query message. The Network Layer
Information (NLI) should only be included if the message is sent in Datagram mode, i.e.
if a MA is not being reused. The Query-Cookie object sent in the Query message should
be echoed in the response. Additionally, the responding node should include its own
cookie and protocol stacks when a new MA needs to be set up. The responding node
should always include all protocol stacks it supports regardless of the protocol stacks
included in the Query message. Again, NSLP payload can be piggybacked if the transfer
attributes submitted to the API allow this.

Confirm
A GIST Confirm message can be sent in reply to a Response message. When a new
MA is setup, a Confirm message must be sent as the first message on this connection,
otherwise transmission of a Confirm message is controlled by a flag known as the R flag
in the common header of the response message. The Confirm message must be sent in
Connection mode when a MA is reused or setup and in Datagram mode otherwise. The
objects included in a GIST Confirm message are the following:

Response = Common-Header
Message-Routing-Information
Session-Identification
Network-Layer-Information
[ Responder-Cookie

[ Stack-Proposal
[ Stack-Configuration-Data ] ] ]

[ NSLP-Data ]

Again, the common header, MRI, SID and NLI are included. The Responder-Cookie
should always be echoed if the Response message carried that cookie. The Stack-Proposal
should only be included if the message was sent in Connection mode, i.e. over a new
or reused MA. The Stack-Configuration-Data in an abbreviated form should only be
included if this Confirm is the first message on a new MA. Again, NSLP payload can
be piggybacked. Because the Confirm message should always have the desired transfer
properties, NSLP data can be carried in any case.

Data
This message is simply used to transfer NSLP data between nodes. It can be sent in any
of the three transfer modes, in Connection mode over a MA, unreliably and insecurely
in Datagram mode and in special cases in Query mode, allowing NSLP data to be sent
downstream without installing state within the nodes. The objects included in a GIST
Data message are the following:

Data = Common-Header
[ NAT-Traversal-Object ]
Message-Routing-Information
Session-Identification
[ Network-Layer-Information ]
NSLP-Data
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The MRI and SID are included for state matching. The NLI should not be included in
Connection mode, otherwise it should.

Error
Error messages are generated in response to an error condition and sent back to the node
that sent the message that caused the error. GIST Error messages can be sent both in
Datagram and Connection mode, depending on the transfer mode of the message that
caused the error. The objects included in a GIST Error message are the following:

Error = Common-Header
[ NAT-Traversal-Object ]
[ Network-Layer-Information ]
GIST-Error-Data

The NLI should only be included in Datagram mode.

MA-Hello
The MA-Hello message is just used to refresh a MA, indicating that the sending node
wants to keep the MA open. A GIST MA-Hello message only consists of a common
header:

MA-Hello = Common-Header

In conclusion, table 2.1 lists which messages can be sent in which modes and for which
situations.

Message Query Mode Datagram Mode Connection Mode

Query Always Never Never
Response Never Unless a MA is being

reused
If a MA is being reused

Confirm Never Unless a MA has been
set up or is being
reused

If a MA has been set
up or is being reused

Data If no routing state ex-
ists and locally policy
allows it

If no MA exists and
transfer attributes al-
low it

if a MA exists

Error Never If the message causing
the error was sent in
this mode

If the message causing
the error was sent in
this mode

MA-Hello Never Never Always

Table 2.1.: Combinations of GIST messages and transmission modes.

2.2.1.6. GIST Message Exchange Example

Now that the basic components of GIST are described, their usage can be illustrated
by an example of a message exchange between two nodes, as can be seen in Figure 2.4.
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Figure 2.4.: Example of a GIST message exchange between two nodes.

The first thing that happens in the interaction between these two nodes is that a NSLP
application located at the querying node wants to send some data to its downstream
peer according to some MRI. This can be either an asynchronous message or a part of a
chain of downstream messages. To indicate this desire, the application performs an API
call to the GIST instance running at that node, including the NSLP payload, the NSLP-
ID of the application, the MRI of the flow the signalling is about with the direction bit
set to downstream and a SID value. Since in this case the NSLP application has not
communicated downstream about this flow before, the SID is a newly generated value.
This is because SID’s are only of local significance between peers, i.e. not end-to-end.
The application also indicates the desired transfer characteristics of the message, which
can be seen in Figure 2.4. In the case of this example the application wants for the
message to be sent reliably, but does not need it to be sent securely.

The GIST instance running at the querying node will process the API call and look
up if there is any state installed, keyed by the NSLP-ID, MRI and SID. Because the
SID is new there will be no state and GIST concludes that it will have to send a Query
message. Because of the transfer attributes indicated by the NSLP application, GIST
cannot include the payload in the Query message, but will include those protocols it
supports that obey the desired transfer attributes in the protocol stack, in this case only
TCP. The NSLP data will be queued internally. Once it has constructed the Query
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message, it will send it towards the MRI destination with a RAO included in the IP
header.

The first node directly downstream from the Querying node with respect to the MRI,
which in this example will be the responding node, will intercept the Query message. The
first thing the GIST instance at this node will do is look up if it has any state installed
for this combination of NSLP-ID, MRI and SID. Once it has found that it does not, it
will issue an API call to the relevant NSLP application with no NSLP data and with
the Routing-State-Check parameter set to True. In this way GIST will ask the NSLP
application if it wants to send up routing state. In this example the application answers
that it does want to set up state and that it does not have any payload to include in the
Response message. GIST then uses the NLI included in the Query message to determine
the identity of the querying node and looks up if it has a MA installed to this node that
uses any of the protocol stacks included in the Query message. Simply put, it checks to
see if it already has a TCP connection with this node. Once it has determined that it
does not, it will conclude that a new MA will need to be set up and include all protocol
stacks it supports in the response message, including the port numbers on which it is
listening. In this example it will include both TCP and TLS over TCP. It does this as
a security measure, for details see section 8.6 of [39]. Because a MA is not being reused,
the responding node will send the Response message in Datagram mode to the querying
node, having learnt the destination IP address from the NLI in the Query message and
the UDP destination port from the source UDP port of the Query message. GIST will
also make sure to set the R flag of the common header of the Response message, as a
Confirm message is required when a new MA is set up.

Once the querying node receives the Response message, it will match this with the state
present within GIST and choose the MA it wants to use based on the Stack-Proposal of
the Response message, in this case TCP. Based on the NLI and Stack-Configuration-
Data from the Response message it will make a TCP connection to the responding node
and send a Confirm message over this new MA. Included in the Confirm message is the
NSLP payload that GIST had internally queued up for this routing state. The NSLP
payload can then finally be delivered to the correct application at the responding node.
What follows is probably that the NSLP application at the responding node processes
the message and propagates it downstream, in which case the process is repeated with
this node now acting as the querying node, or it will reply with an upstream message,
in which case the routing state and MA now installed at the responding node will be
reused.

2.2.1.7. GIST Advanced Features

This section has provided a description of the basic functionality of GIST. Further
details of this functionality will be described in chapters concerning the design of the
implementation.

Some advanced features exist, such as extensive rerouting detection and NAT traversal,
but will not be described in this report because they do not appear in the implementation.
For details on these features, see the specification document [39].
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2.2.2. QoS NSIS Signaling Layer Protocol

As NSIS is meant to be at least a replacement for RSVP [22], which was designed to
perform QoS reservations, the QoS-NSLP application is a core part of the suite. It uses
the services provided by GIST to install QoS reservations along the entire path of a flow,
informing every NSIS capable router on this path of the parameters of the QoS that is
required. Like GIST, the QoS-NSLP uses soft-state to install these reservations, meaning
that, unless they are refreshed, the reservations will expire after a predetermined amount
of time. The reservations are performed end-to-end, meaning one reserve message is
propagated along the entire path, while the refreshes are done peer-to-peer, with each
pair of peers having their separate refresh and expiry timers. A reservation may also be
removed explicitly by an end-to-end reservation teardown.

2.2.2.1. QoS-NSLP Components

Unlike RSVP, the QoS-NSLP is not bound to a particular type of QoS, rather it operates
independently from this. It does this by decoupling the reservation processing from both
the contents of the QoS parameters, called the QSPEC (QoS Specification) [18], and the
addition and removal of actual reservations within the traffic control subsystem of the
node, called the Resource Management Function (RMF). The idea is that a flow and
thus a reservation can travel through several network domains, each implementing their
own QoS Model (QoSM), e.g. IntServ [21] or DiffServ [20], and receive the required QoS
in each of these domains, signalled by the QoS Specification (QSPEC) in the reserve
message. This QSPEC attempts to provide a number of common QoS parameters that
can be used across different QoSM domains.

This subdivision of the QoS-NSLP into a processing part and the RMF is illustrated
in Figure 2.5. The former is responsible for communicating with GIST and any user
applications requesting Quality of Service, processing messages and storing state about
them and passing any reservation instructions to the RMF. Note that a concrete def-
inition of any interaction with user applications is beyond the scope of the QoS-NSLP
specifications. The latter is responsible for interpreting the QSPEC, which is opaque
to the processing part, authorising and admitting reservations and actually performing
them, interacting with the traffic control subsystem provided by the operating system
of the host. This means that the functionality of the RMF is fully dependent upon the
QoSM used, while the functionality of the message processing part remains constant.
Two of these QoS models are described in sections 2.2.3.1 and 2.2.3.2.

2.2.2.2. QoS-NSLP Message Processing

The QoS-NSLP processing part as described in the last section is defined in [33], which
dictates four different message types:

RESERVE This message creates, refreshes, modifies or even removes reservation state
within the QoS-NSLP node. This is the only type of message that has any effect on
QoS state within the node. Many objects included in this message are optional and
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Figure 2.5.: Components within the QoS-NSLP system and their interactions.

depend on the situation in which the RESERVE is sent. Among the objects are
two sequence numbers, one unique for the end-to-end reservation request, called
the Request Identification Information (RII), the other unique in the sequence of
message exchanges between two peers and having local significance only, called
the Reservation Sequence Number (RSN). This last sequence number is the only
mandatory object in the message. Also included are some refresh timer informa-
tion in the REFRESH PERIOD object, a PACKET CLASSIFIER to mask out
particular parameters of the MRI and an object which allows binding a different
session to this one called BOUND SESSION ID, the function of which will be ex-
plained in section 2.2.2.4. Also included of course is a QSPEC describing the QoS
parameters of the reservation in question. Besides this there can also be a second
QSPEC that allows for layering, which will also be explained later.

QUERY This message is similar to a RESERVE message in the respect that it also
carries a QSPEC and generally travels down the entire path. The main difference
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is that a QUERY message just gathers information and does not modify reservation
state in any way. It can be used to probe the availability of QoS parameters along
the path, such as bandwidth available within a certain traffic class. It also provides
a means to perform receiver-initiated reservations, where the flow receiver first
sends a QUERY message towards the sender, which in turn sends the required
RESERVE message. A QUERY message may include RII, BOUND SESSION ID,
and PACKET CLASSIFIER objects, as well as one or two QSPEC objects. The
first QSPEC is the only mandatory object in this message type.

RESPONSE This message is sent in reply to either a RESERVE or QUERY message to
convey the results of the requested action. The most important and only manda-
tory object of this message type is the INFO SPEC object, which contains this
result by means of and error class and code, some identification information about
the node that generated the RESPONSE and optionally additional information.
Note that this object need not represent and error condition, as there is also an er-
ror class indicating success for different types of actions, e.g. successful reservation
setup or teardown. Other objects that may be included are either a RII or RSN
and one or two QSPEC objects. In case of an error these QSPECs can contain
information about which parameter caused this error.

NOTIFY This message is similar to the RESPONSE message, with the main difference
that it occurs asynchronously, i.e. it is not sent in response to any previous message.
It typically conveys error information in the INFO SPEC object, which is again
mandatory. Apart from this it can also contain one or two QSPEC objects, which
can convey additional information about the error that occurred.

2.2.2.3. QoS-NSLP Example

How the message types described in the previous section are used to provide the func-
tionality of the QoS-NSLP is best illustrated in an example. The message flow for the
example described here can be seen in Figure 2.6. Suppose that some application on a
NSIS capable host, in this example called the QoS NSIS Initiator (QNI), is sending a
flow to another host, called the QoS NSIS Receiver (QNR), and that this application
wants the flow to receive a certain QoS along the path to its destination. Note that
in this example both the flow sender and flow receiver are NSIS capable. It will signal
this to the QoS-NSLP application running at this host, via some undefined local API.
The QoS-NSLP application will construct a QSPEC which contains the QoS parameters
the QNI wants the flow to receive. Ideally these parameters can be interpreted for any
QoSM that the flow may traverse. Before creating and sending a RESERVE message,
the host will inform its own RMF about the desired QoS, so that it can approve and
perform this reservation using its own QoSM on the output interface of the flow. If the
RMF indicates that it does not have enough resources the RESERVE message need not
even be sent and an error condition is signalled back to the application requesting the
QoS. If the RMF is successful in its reservation, the QoS-NSLP will create a new reser-
vation state, referencing it by a newly created SID. It will use this state, which among
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Figure 2.6.: Example of a sender-initiated QoS-NSLP reservation.

other things contains the RSN for the downstream peer, to generate the downstream
RESERVE message, which it will pass to GIST. Included in this RESERVE is a RII
which is unique to this reservation request. The QoS-NSLP will record this RII value to
watch for in RESPONSE messages.

The first downstream peer for this particular flow, which in this case will be called the
QoS NSIS Entity (QNE), will receive the RESERVE message and check to see if it has
state installed for this SID. In this example it does not, but if it had state installed it
would have done some checks on the RSN of the received message, to prevent message
duplication and re-ordering, in case unreliable transport is used in GIST. It then send
the QSPEC to the RMF, which indicates either that it does not have enough resources
for the QoS requested, or that it has performed the reservation successfully. In this
example the reservation is successful and the QoS-NSLP creates state for this session,
records the RII of the RESERVE to monitor the response, inserts its own RSN into it
and send it along to the next downstream node. Additionally, in response to a flag set in
the RESERVE message header which requests support for reduced refresh messages, it
will send a NOTIFY message back upstream with an INFO SPEC value that indicates
wether or not it supports this. The concept of reduced refreshes will be explained later.

This chain of events continues until, eventually, the RESERVE message reaches the
QNR. If the reservation is also successful at this node, it will generate a RESPONSE
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message indicating this success in the INFO SPEC. It will also include the RII of the
reserve, so that nodes receiving the RESPONSE know which reservation this pertains,
and a QSPEC returned from the RMF. The latter is used to indicated what was actually
reserved. This response message is send back upstream and each node will forward it
until it reaches the QNI. This node determines that it was the originator for this RII
and will stop forwarding it.

If the reservation had failed anywhere along the path, a similar RESPONSE would
have been sent from the node where the failure occurred, but with a INFO SPEC object
indicating this failure. In this case the QNI would receive this RESPONSE and send a
tearing RESERVE message to remove the state from those nodes that already have it
installed.

The reservation is then in place along the entire path. Because this reservation is soft
state it will need to be refreshed periodically, which happens asynchronously between
peers. What this means is that, unless its own state expires, every node will send
refreshing RESERVE messages to its downstream peer, which will not be propagated
further downstream. Each set of peer has its own timers governing refresh intervals.
If the downstream node has indicated that it supports reduced refreshes, the upstream
peer for this node need only include the RSN of the last full RESERVE message in the
refreshing RESERVE. The downstream node will see that the RSN is the same as the
last RESERVE message and will conclude that the same QoS parameters still apply.

Two other features can be highlighted at this point. Suppose that the flow is in the
opposite direction, i.e. from the QNR to the QNI, and that the QNI wants a certain
QoS for this flow to be applied. In this case, which is a receiver-initiated reservation
instead of the sender-initiated reservation of the example, the QNI can send a QUERY
message with a specific flag requesting the QNR to send a RESERVE message. The
QNR originated RESERVE message will then behave in much the same way as the one
in the example.

Another possibility is a bidirectional reservation. Although reservations in the QoS-
NSLP are always unidirectional, session binding between two separate session can be
performed, one for the downstream flow and one for the upstream flow. Each RESERVE
or QUERY belonging to one of the two sessions contains a reference to the other session
through the use of the BOUND SESSION ID object. This allows for events such as
errors pertaining to one of the sessions to be signalled to the other session as well.

2.2.2.4. QoS-NSLP Layering

To support local QoSM domains, a number of facilities exist within QoS-NSLP that
allow use of different QSPECs or transfer properties. Although they are not part of the
implementation described in chapter 4, they will briefly be described here.

QSPEC Stacking
As already described in section 2.2.2.2, messages carrying QSPEC information allow the
inclusion of a second QSPEC. This allows for a QoSM-specific QSPEC to be carried in
these messages for traversal of a specific domain. At the entry node for this domain the
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second QSPEC can be “stacked” on the end-to-end QSPEC, while at the exit point it
can be removed.

Session Tunnelling
As an alternative to the previous approach of QSPEC section, a whole new session can
be started at the entry point of a domain. This tunnelling session is then bound to
the end-to-end session using a BOUND SESSION ID object. The end-to-end session
generally skips over the domain in this case using a different NSLP-ID value.

Aggregate Sessions
This is actually a special case of Session Tunnelling. A local QoSM may want to aggregate
several reservations into one local session, to reduce load on the local domain. Again,
the local session is bound to the end-to-end session using BOUND SESSION ID. This
case is used for example in Resource Management in DiffServ (RMD).

2.2.3. QoS-NSLP QoS Models

As already indicated in section 2.2.2.1, the RMF conceptually performs all QoSM specific
operations. Each particular QoSM has its own specification document, which perscribes
which QoS-NSLP features specifically are used, how the QSPEC should be formated and
interpreted, and how these parameters should be mapped onto the specific properties
inherent to the QoSM. Two such QoSMs will be described here, one for IntServ and one
for DiffServ.

2.2.3.1. IntServ Controlled Load QoS Model

Integrated Services [21] is a QoS architecture that allows per-flow reservations to be in
place in routers, with flow characteristics being described using a so-called token bucket.
Wikipedia describes a token bucket in the following way [16]:

The idea is that there is a token bucket which slowly fills up with tokens,
arriving at a constant rate. Every packet which is sent requires a token, and
if there are no tokens, then it cannot be sent. Thus, the rate at which tokens
arrive dictates the average rate of traffic flow, while the depth of the bucket
dictates how ’bursty’ the traffic is allowed to be.

IntServ defines several types of QoS that can be applied to a flow, of which the “Con-
trolled load” [43] is the only one that will be discussed here. “Controlled load” means
that a flow receives the equivalent treatment of a best-effort flow in a lightly loaded
network, i.e. a network were there may be other traffic, but no heavy congestion. This
definition is intentionally vague in that it does not define hard parameters in terms of
packet loss or latency.

The IntServ QoSM [29] as defined for NSIS is actually a very brief definition of RMF
functionality. It uses only two QSPEC parameters, one of which is optional. The first
and mandatory one is the token bucket parameter, which is used as in the description of
IntServ above, i.e. describing the characteristics of the flow on which QoS is requested.
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The second parameter, which is optional, prescribes what what action should be taken
when a flow exceeds the given parameters, e.g. dropping or reclassifying, the so-called
“Excess treatment” parameter. Both of these parameters are defined in the QSPEC
document [18]. Note that any interaction with the traffic control subsystem of the host
is beyond the scope of the QoSM document.

2.2.3.2. Resource Management in Diffserv QoS Model

Flow-based QoS systems such as IntServ have scalability issues, as each router needs
to keep track of one reservation per flow. In response to this Differentiated Services
[20] was created, which is a class-based system. DiffServ assumes that a domain of
routers, called a DiffServ cloud, is under control of the same entity. Upon entry into this
domain flows are classified into a certain predefined Per Hop Behaviour (PHB), a QoS
class, and marked accordingly in the DiffServ Code Point (DSCP) field of the IP header.
The core routers of them domain need then only concern themselves with the different
traffic classes, while the burden of per-flow processing is shifted towards the edge routers
exclusively. The only PHB discussed here is the Expedited Forwarding (EF) PHB. This
PHB guarantees that flows receive a certain minimum rate over a period of time.

RMD [19] defines a QoSM that adapts the QoS-NSLP of NSIS to this concept, allowing
dynamic reservations for DiffServ with a minimum number of resources required in the
core routers. As few of the activities performed and described in this report involve
RMD, this section provides only a very brief description.

RMD makes use of either the session tunnelling or aggregate session layering mentioned
in section 2.2.2.4. This means that for each flow there are two sessions, the end-to-end
session initiated by the QNI, which will skip the DiffServ domain and go directly from the
ingress to the egress node when a reservation is performed, and a related intra-domain
session that travels from the ingress to the egress. In case of aggregate reservations
there is one intra-domain session per PHB per ingress/egress pair, otherwise there is
one intra-domain session for each end-to-end session. The intra-domain session carries
its own QSPEC with contents specific to RMD, derived from the parameters in the
end-to-end QSPEC. The interior nodes in the DiffServ domain maintain a minimum of
state, operating statelessly at the GIST level by refusing to install state in response to
a RecvMessage API call as described in section 2.2.1.1 and by sending data messages in
Query mode as described in section 2.2.1.5, and optionally maintaining per-PHB state at
the NSLP level. In this way the DiffServ paradigm of shifting the burden of processing
to the edges of the domain only is carried through for its QoS-NSLP adaptation.

An typical example of this message flow can be found in Figure 2.7. As the general
QoS-NSLP example of Figure 2.6, it displays a sender-initiated reservation from the
QNI to the QNR, neither of which are shown. This example concentrates on the RMD
domain, with the end-to-end RESERVE message arriving from the direction of the QNI
relative to the flow in question. It arrives at the ingress node of the RMD domain, again
relative to the direction of the flow given in the MRI, which propagates the message as
would normally be the case, with the exception that the NSLP-ID is changed to a value
that corresponds to a RAO value that is known to bypass the interior nodes of the RMD
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Figure 2.7.: Example of a sender-initiated RMD QoS-NSLP reservation.

domain. The egress node is configured to receive this RAO value and thus receives the
RESERVE message, but before propagating it with a restored NSLP-ID value it has to
wait for the intra-domain session to complete. In this intra domain session, which as
explained can either be a session particular to the end-to-end session or an aggregate
session, the ingress node starts by sending a RESERVE message towards the egress
node, in which it includes the special RMD QSPEC. Note that RESERVE messages are
the only intra-domain message supported in RMD and because of the stateless nature,
messages are only allowed to be sent downstream with respect to the MRI, i.e. from the
ingress towards the egress node. This is because at the NTLP level messages are either
sent piggybacked on GIST Query messages or sent as GIST Data messages in Query
mode, allowing the interior nodes to forego maintaining any routing state. Any interior
node along the path receives the RESERVE message, if it stores per-PHB state checks
if the reservation can be approved, updates the message accordingly and propagates
it. Eventually this intra-domain RESERVE also arrives at the eggres, which couples
it with the end-to-end RESERVE through the BOUND SESSION ID object. If the
reservation was unsuccessful it signals this to the ingress node through a RESPONSE
message, which will be propagated back towards the QNI, otherwise it will propagate
the end-to-end RESERVE towards the QNR as normal.
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RMD Features Overview
In summary, RMD has a number of features, some of which have already been mentioned:

• In addition to the successful and unsuccessful reservation described above, RMD
also supports reservation refreshes and explicit reservation teardown

• RMD also has its own means of providing bi-directional reservations.

• As already highlighted, the edge nodes of the RMD domain have the choice of either
maintaining per-flow inter-domain state or maintaining aggregate inter-domain
flow state. Note that end-to-end state is always maintained per-flow.

• In contrast to the example of the previous section, the interior RMD nodes can
be allowed to operate fully statelessly. The first method of reservation admission
control, as used in the example, is called the reservation-based method, because the
interior nodes maintain per-PHB reservation state. The stateless method is called
the measurement-based method, as admission is based on continually performed
measurements of traffic volume passing through the node, which can be further
subdivided into two methods. In the NSIS-aware measurement-based admission
control the interior nodes operate much like those in the reservation-based method.
They intercept and process the RMD intra-domain RESERVE message, but instead
of consulting reservation state, reservations are admitted based on traffic volume
measurements. In the probing measurement-based method however, the interior
nodes need not be NSIS-aware, i.e. they do not have a GIST and QoS-NSLP
application running. Instead, they are configured to remark traffic within one
PHB exceeding a certain preset rate, giving all packets within that PHB a different
DSCP value. This will be noticed by the egress node, which will inform the ingress
node about the failed reservation.

• In case a link or node within the RMD domain fails and traffic gets rerouted and
overloads another node, a form of severe congestion notification can be used, also
making use of the remarking of packets. This feature is expanded upon in the next
section.

RMD Severe Congestion Handling
As some of the work performed involves the Severe Congestion Handling mechanism
of RMD in particular, this feature will be described in more detail here. As already
described, interior nodes should have some means to inform the egress node of severe
congestion, as these interior nodes have minimal or no reservation state installed and
are not in the position to decide which flows to terminate. Instead they allow the
egress node to make an informed decision about which flows are experiencing congestion
and possibly teardown some reservations end-to-end. Like the congestion notification
already discussed, interior nodes can do this by remarking the data packets it forwards,
i.e. changing their DSCP value to some other predefined value. Combined with the with
congestion notification for the probing measurement discussed in the previous section,
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this means that per PHB a total number of three additional DSCP values used for
marking may be defined:

Notified DSCP This is the DSCP value used for the probing measurement-based ad-
mission control described previously. As other methods of admission control may
be used, this DSCP remarking value is optional.

Encoded DSCP This value is used to notify the egress node of the amount of congestion
experienced in the congested interior node, by using this marking proportionally.
This means that for a certain preset time period the amount of traffic is monitored
and during the next time period the number of bytes that were over the preset limit
and thus dropped are marked in the packets leaving the node according to a certain
preset ratio. This means that for example if there were 64 kilobytes overlimit in
the last period and the ratio is two-to-one, in the next period 32 kilobytes worth
of packets will be marked. Note that for this and the previous marking the same
DSCP value can be used, if the egress node can properly determine if the interior
node is experiencing severe congestion, possibly with aid of the next DSCP value.

Affected DSCP This DSCP value is optional and can be used in the situation where the
node is congested, but has already transmitted enough packets with the Encoded
DSCP marking to convery the level of congestion. This is allows the egress node to
determine which flows passed congested nodes, ever if packets in those flows were
not marked with the Encoded DSCP value.

Note that each PHB will need its own set of additional DSCP values, as the interior
nodes processing marked packets still need to be able to determine the PHB of the
traffic.

Figure 2.8.: Example of RMD Severe Congestion handling. In the left figure no sliding
window memory is applied, in the right figure it is applied.

The termination of the relevant flows causing congestion may take some time and
to prevent overshoot in the amount of flows terminated, the interior nodes maintain
a sliding window memory of the amount of congested bytes signalled for several time
periods, as proposed in [23] When calculating how many packets to remark, the node
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will subtract any marked bytes from previous time periods in its memory from the total
number of bytes over the congestion limit. This will give the egress node enough time
to be notified of the congestion and terminate the flow reservation, causing the traffic
volume to be under the congestion limit, before the sliding window memory runs out
and the congestion is signalled again. This is illustrated in Figure 2.8, which is taken
from [24].

It is also important that if nodes downstream from the congested nodes need are also
congested and need to drop packets, they prevent dropping of packets that are already
marked with the Encoded DSCP, so that no signalling information about the amount of
congestion is lost. Note that this only pertains to dropping priority and not scheduling
priority, i.e. the packet ordering should not be changed when transmitting the packets
further downstream.
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3. GIST Design and Implementation

This chapter will attempt to describe and motivate the design choices made during the
implementation of GIST and illustrate the process and structure of this implementation.
Before this, the work performed by others at the start of this assignment will be discussed.

3.1. Previous Work

As already mentioned in the introduction in chapter 1, the work done in this master’s
assignment is a continuation of work performed by previous students at the DACS group
of the University of Twente (UT). The part of the assignment that involved GIST
consisted of bringing up-to-date, both in terms of features and specification draft version,
the GIST implementation started by Mayi Zoumaro-Djayoon [44], to achieve the goals
of the assignment set out in section 1.1. She made her implementation conforming to
draft version 5 of the specification [39] and, partly because of time constraints and partly
because of the incomplete draft specification, only included basic functionality.

The first objective of the assignment, after reading all of the relevant specifications,
was inspecting the implementation that was delivered at the end of Mayi’s assignment.
During this stage it became apparent that this implementation, apart from the known
omissions, contained a number of severe deficiencies and poor design choices which con-
flicted with the requirements set in section 1.2, a number of which will be expanded on
here:

• It proved no trivial task to migrate the implementation from the workstation it was
developed on to a different one. Development was performed on a Debian Linux [1]
system in the Python [10] programming language. The program made a number of
assumptions about its environment, such as being able to resolve network interface
names to IP addresses, e.g. eth0, using the system’s /etc/hosts file, which is not
the usual way. Although a lot of parameters of the implementation could be set
using a configuration file, several of them were still hardcoded in different places in
the code, including parameters such as network interfaces and IP addresses used.
These issues resulted in having to modify the program quite extensively to even
be able to run it on a different computer than the one it was written on.

• Python is a class-based language and the design of the implementation intended
to make use of this. The class-based paradigm however was not utilised properly,
in that a lot of object were only ever used at the moment of their creation, thus
exhibiting function-like behaviour. Quite often global variables were used for inter-
class communication, disallowing the use of separate instances of single classes.
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• Related to the previous point of using global variables, the program was writ-
ten without no regard for thread-safety, although the program quite rightly made
uses of threads. There was no guarantee that another class might not use the
global variables used for communication. The only means implemented to avoid
race conditions was setting a static delay in one of two threads known to occur
simultaneously.

• The implementation made no clear distinction between network packet contents
and network packet logic. What is meant by network packet contents in this case is
the actual bit-level contents of packets of the packets sent or received. Packet logic
is about which packet should be sent in response to some event. The separation
of the two is needed so that, when the bit-level format is changed, such as in
the case of new specifications, only one part of the code needs updating, which is
part of the requirements set. It also prevents the need for using the same code
several times over, since in this implementation packet generation and decoding
was mostly done in-place, i.e. in the location of the code where the packet logic
needed it. In this case it also meant that decoding of all possible packet contents
dictated by the specifications was not implemented, i.e. the implementation only
expected the type of packet contents it itself could generate. This could prove a
big problem for interoperability.

• It contained little error checking and exception handling, which is an important
requirement. This is somewhat related to the previous item, as most error check-
ing and error message generation should be done on message reception. To add a
decent level of error checking the code would have to undergo a complete overhaul,
as error checking is tightly coupled with such parts of the program. Those er-
rors that were caught were often not handled gracefully, with the implementation
continuing an exchange of known erroneous messages.

• Several functionalities that should have been implemented appeared to have been
hardly implemented at all, such as MA functionality, which just consisted simply
of setting up a TCP connection.

• Such debugging output that was available was cryptic and sometimes even in binary
format, which tended to cause the terminal window to which it was output to
malfunction. This made it hard to determine what exactly the implementation
was doing during runtime and afterwards.

For these reasons it was considered that the amount of time it would cost to correct
all of these deficiencies so that the implementation adhered to the set requirements and
fully update the implementation to the latest specifications would be more than or equal
to the amount of time involved in starting an implementation from scratch according
to the requirements, re-using the concepts of the previous implementation and learning
from its defects.
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3.2. Development Environment

Like the previous implementation, this implementation of GIST was made using the
Python [10] programming language on a Linux operating system, partly so that the
concepts in this previous implementation could easily be re-used.

Linux was chosen because, combined with the large number of applications available, it
provides an ideal testbed for developing new network applications and protocols. Because
of its open nature, any adjustments that may need to be made to allow GIST to operate
can be made. For example, the highly flexible iptables [9] framework that Linux provides
was used extensively to influence network traffic in different ways. A feature of Linux
that was primarily used for the QoS-NSLP was the traffic control subsystem, which
allows shaping of traffic flows. Another reason for using Linux is the User-Mode Linux
[14] testing setup, which will be described in chapter 5. The particular Linux distribution
that was used was Gentoo Linux [3], because of the amount of past experience in using
it.

Initially there was no choice but to use Python, as the previous implementation was
also done in this language. When it became apparent that the implementation would
have to be made from scratch however, Python proved to be an excellent choice for the
development of a prototype implementation of GIST, as it can potentially fulfil a lot of
the requirements set in section 1.1. Wikipedia has the following to say about Python
[17]:

Python is a programming language created by Guido van Rossum in 1990.
Python has a fully dynamic type system and uses automatic memory manage-
ment; (...) Python is notable amongst current popular high-level languages
for having a philosophy that emphasises the importance of programmer ef-
fort over that of computers and for rejecting more arcane language features,
readability having a higher priority than speed or expressiveness.

and:

In contrast to some lower-level languages, Python’s design does not empha-
sise runtime speed. While Python implementations are generally comparable
to that of other bytecode interpreted languages, a concern for clarity of code
always comes first in Python’s design.

This philosophy is well suited to the requirements, both in code readability and extensi-
bility and in the fact that it should serve as a prototype, as a prototype implementation
should prioritise clarity in the workings of the implementation over performance.

Furthermore, Python is an interpreted language, compiling source files to bytecode
on execution. The dynamic type system and memory management make sure that the
programmer can spend his or her time more efficiently, having more time available to
work on the structure of the program. These properties should aid in rapid development
and adjustment of the GIST implementation.
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3.3. High-level Program Structure Overview

The GIST implementation uses the Object Oriented (OO) programming paradigm fea-
tures offered by Python, as this provides support for a modular architecture, which is
inherent to the requirements. The main server class is named gistServer.Server, one
instance of which should me made to create a running GIST server. This server class
contains instances of several other classes, which work as threads and provide certain
types of services to the server. The threads of the service classes monitor their specific
domain and notify the GIST server of these incoming events. This model matches the
conceptual model of a server, in the sense that any action is reactionary, i.e. it is caused
by a certain external or internal event, with each type of event monitored by a thread.
The server can also use the service classes for outbound communication that should use
the domain of the service class. Although this is not strictly necessary, it provides a
grouping of functionality within the same class. As can be seen in the diagram in Figure
3.2, the service classes are:

gistAPI.APIService This class provides communication to and from the NSLP applica-
tions running locally. The GIST server can perform the outbound service prim-
itives described in section 2.2.1.1 on the API service as function calls, and the
API service in turn can perform the inbound service primitives on the server. The
API service is responsible from maintaining a list of running NSLP applications
and delivering the service primitives received to the right application. This can
be either another Python module, in which case the API service is responsible for
running the application, or an external application.

gistRaw.RawService This class is responsible for sending and receiving message in
Query Mode. Its name is derived from the method of sending, i.e. using raw
sockets.

gistUDP.UDPService This class is responsible for sending and receiving messages in
Datagram Mode, i.e. using normal UDP encapsulation.

gistICMP.ICMPService This class monitors ICMP traffic sent to the node. As explained
in section 2.2.1.4, a certain ICMP message in response to a Query message allow
a node to deduce that it is the last NSIS capable node on the path.

gistTCP.TCPService This class is responsible for handling incoming and outgoing new
TCP connections, one of the Connection Mode protocols used in this implementa-
tion. Note that every active TCP connection is managed by its own gistTCP.TCPConnection
class, which also has its own thread and relays incoming data to the server object.

gistTCP.TLSService This class is responsible for handling incoming and outgoing new
TLS over TCP connections, the other Connection Mode protocol used in this
implementation. TLS connections are also managed by their own class, gist-
TLS.TLSService.
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Although the server can communicate with the network service classes directly, in typi-
cal cases this is performed through certain state machines that the server contains. These
state machines handle state changes and set timers, but also store state information. The
rules of the state machines are dictated by the GIST specification and are further de-
scribed in section 3.6. There are two types of states stored by the GIST server, routing
state in the form of either a gistQuerySM.QuerySM or a gistResponderSM.ResponderSM
instance, which as stated in 2.2.1.3 is keyed by the pair of NSLP-ID, MRI and SID, and
MA state in the form of a gistMASM.MASM instance. The routing state state machine
used depends on the role of the node during the initial discovery procedure and subse-
quent refreshes. In the case of the Query state machine it contains a timer to perform
refreshes and both contain state expiry timers, implementing the soft state principle.
As a timer expiry is an event they are also implemented as threads, notifying the GIST
server class of the relevant event. There is one MA state machine per MA, which also
contains refresh and expiry timers.

The implementation also contains a message decoding and encoding subsystem, decou-
pled from the service classes and state machines. This subsystem allows any part of the
program to treat messages as hierarchical objects and read, write and modify messages
independently from their coding structure. This allows for flexibility on changes to the
bit-format and makes sure that there is only one place in the program where messages
are encoded and decoded. Tightly coupled with the message subsystem is strict error
checking on decoding, providing a certain amount of robustness. GIST defines a number
of error messages that can be sent in response to a malformed or erroneous message,
possibly including information about the error. Python provides exceptions and every
GIST error is mapped to its own exception class. If an error occurs on decoding, the
message subsystem raises the correct error class, instantiated with parameters contain-
ing details about the error. The GIST server can catch this exception, use it to produce
a complete error message and send it back to the node that caused the error.

3.3.1. Threading Model

As already pointed out, there are two types of execution threads and thus two sources
for events occurring that the server needs to respond to, i.e. external and internal events.
External events are generated by the service classes pictured in Figure 3.2. These can
be either received API service primitives or received network traffic. Additionally, each
established TCP or TLS connection has its own object and corresponding thread, re-
ceiving network traffic for that connection. A single thread per connection is needed, as
reading data from a connection on which nothing is received results in a so-called block-
ing call, halting program execution at that point. This could be handled from within the
same thread by for example using the select system call, but since the Python threading
module provides multi-threading in a high-level OO model, this fits better within the
structure of this program. Internal events are generated by timers belonging to state
machines, each timer executing in its own thread, also using the Python library [11]
threading.Timer class.

Both of these types of threads need to perform operation that may change state main-
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tained within the GIST server. To provide thread-safety, each thread will need to acquire
a threading lock provided by the server, implemented using the Python threading.Lock
object, before doing any such actions. Acquiring the lock guarantees that only one event
at a time is handled. If another event is already being processed, acquiring the lock
will block the calling event thread until the executing thread releases the lock. To be
able to reach the lock any threading class within the GIST implementation maintains a
reference to the main server object, an instance of gistServer.Server. Using a single lock
to prevent several threads from accessing and possibly changing state stored within the
GIST implementation greatly simplifies safe multi-threaded programming, allowing the
code to access and change objects in the same way it would in a single-threaded program,
as long as it has acquired the lock. Any alternative method, e.g. passing messages in a
thread-safe way between different parts of the program, would require more complexity.
The only requirement for using this single lock is that any operation performed while
the lock is acquired is dealt with as quickly as possible and does not sleep or block in
any way. This was taken into account while implementing the program.

Fatal programming errors are generally represented by Python exceptions. To prevent
one thread from having a fatal exception while other threads continue to operate, all
threads are executed in a try statement, in which any unexpected exceptions can be
caught. If this occurs, the exceptions handler will make sure to append the exception
in question to the log, see section 3.8.1, and terminate the program. This greatly helps
debugging, as errors cannot be overlooked.

3.4. Network Interaction

The three modes of transmission used in GIST each have their own service class or
classes, the implementation of which will be described in this section.

3.4.1. Query Mode

Query Mode transmission and reception is provided by the gistRaw.RawService class.
Transmission is performed using so-called raw sockets, which allows the program to
construct its own network and transport layer header, in this case a IP and UDP header.
The reason for doing this is that, by default, Linux does not allow a program to transmit
a IP packet with a source address that is not among the IP addresses of its own interfaces.
While constructing the IP header, the gistRaw.RawService class also inserts the RAO,
with as parameter the NSLP-ID. Note that, although the specifications state that there
is no one to one relationship between the RAO parameter and the NSLP-ID, at this
point in time there is no clear mapping mandated between the two. Using raw sockets
in Linux is something that is allowed for the root user only. Because of this is the GIST
server should only be run as root.

Reception of Query Mode messages is done with the ip queue handler Linux provides.
This allows iptables to filter out specific network messages and send them to a userland
process, in this case the GIST server. The filter used is the ipv4options match extension
provided as a netfilter kernel patch [9]. Natively Python does not provide means to
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receive ip queue messages, but this is provided by the external ipqueue module [5]. Upon
reception, the gistRaw.RawService class checks if the RAO parameter value matches any
of the NSLP-IDs of the applications running at this node. If there is a match, it will
pass the packet along to the GIST server. Otherwise, it will tell netfilter to continue
sending the packet along the MRI path.

3.4.2. Datagram Mode

The gistUDP.UDPService provides transmission and reception of Datagram Mode mes-
sages. Transmission of such messages is simply done using the basic UDP socket func-
tionality that Python provides. Upon reception, the TTL value of the IP header is also
needed. This is done using an external module called eunuchs [2], which wraps the
Linux recvmsg function, as the Python library [11] does not natively supply this. This
function allows meta-information to be received along with the payload of a network
packet, such as the TTL value. Unfortunately this module needed a slight modification,
as it did not relinquish the Python Global Interpreter Lock before performing a blocking
read operation, i.e. waiting for data to come in on the UDP socket.

3.4.3. Connection Mode

The Connection Mode service classes are slightly more complicated. Both Connection
Mode protocol stacks implemented, i.e. TCP and TLS over TCP, provide a service
class with the same generalised interface. This generalisation allows for future addition
of other protocol stacks. For making new connections they provide a connect method.
Conversely, for registering new incoming connections they contain a listen method, which
should only be called when GIST receives a Query message and includes a Protocol Stack
in its response, and includes the querying node’s NLI as parameter. When a new connec-
tion then arrives within the listening thread of the service class, it is checked against the
registered NLI’s. This provides a security measure of only accepting incoming connec-
tions from nodes with which this node is currently setting up routing state. An expiry
timer is also provided within the service class to make sure that registered incoming
connections are cleaned up after a certain period of inactivity.

When a new connection is setup, either through actively connecting or through pas-
sively accepting a new connection, the service class spawns an instance of the connection
class belonging to the protocol stack. These connection objects also have the same inter-
face, providing a listening thread for this connection and a sending method for actively
sending data on the connection.

Implementation of the TCP connections is performed using the native socket provisions
in Python. For TLS an external module is used, called TLS Lite [13].

3.5. Message Processing

As already mentioned, message encoding and decoding and subsequent error-checking
is a separate part of the program, implemented in the gistMsg module. This allows the
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rest of the program to abstract from the actual bit-level format of the messages and
compose, read and change messages in a format that is actually quite close to the GIST
specifications, in that it can deal with the message and parameter names as they are
used within this specification. Message decoding and encoding consists of two layers,
message objects which directly represent the bit-level contents of a message and can
be arranged hierarchically in a tree structure, and the interface towards the rest of the
program which abstracts slightly from this.

3.5.1. Message Objects

As the contents of GIST messages can be represented hierarchically, the most natural
way to represent this in a class-based language is with a tree of objects. This allows for
dynamic composition and re-compositing of messages by parts of the program that need
to perform these operations on messages. Each GIST message starts with a common
header and has a number of so-called Type Length Value (TLV) objects. This consists of
a small sub-header listing the type and byte-length of the object, along with the object
that actually describes the content, such as the MRI or SID. This object then contains
the parameters relevant to that object type. Analogously to this, the root object for any
GIST message is an instance of the gistMsg.CommonHeader class. It can contain several
gistMsg.TLV objects, in the order in which they appear in the byte-level message, each of
which has a Value parameter that contains the object in question. Several objects, such
as gistMsg.MRI and gistMsg.Error contain even further message objects as children. An
example of this hierarchical structure is illustrated on the right side of Figure 3.1.

Figure 3.1.: Example of a Query message object tree on the right, with its interface
representation on the left.

Each message class has the same interface, i.e. several class methods that are common
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to this type of object. They are:

str This is a special method for Python. It will be called every time that the ob-
ject needs to be implicitly or explicitly converted to a string, e.g. when printing
an object. In this implementation it is used extensively for logging purposes as
will be described in section 3.8.1. For every object it will output a description of
the parameters contained within that object, concatenated with with description
strings from each of its children. For the root CommonHeader object this means
that simply printing it to a file or standard output will give a complete descrip-
tion of the message and each of the child objects contained within that message,
including their parameters.

init This is the constructor method for any class in Python. Generally for message
objects it is empty, as there are two ways to create a message objects. This means
that, along with the constructor, one of the two following methods needs to be
called.

create This method will initialise all of the parameters of the message object. It is the
method that should be used when creating a new object.

decode This method takes as a parameter a byte string and attempts to decode this
to the object based representation. Typically this is called on the CommonHeader
object, which takes a full byte-level message, creates the relevant child objects and
calls the decode method on them.

calcsize This method returns the size in 32-bit words of the byte-level message it repre-
sents. Calculation is done on the spot, based on the parameters of an object and
any possible child objects it contains, calling calcsize on them if needed.

encode Finally this method gives the byte-level representation of what the object rep-
resents, appending its own byte code with the byte representation of any of its
children. Again, this would typically be called on the CommonHeader object, giv-
ing a complete byte-level representation of the message for network transmission.

3.5.2. Message Object Interface

For ease of handling each type of GIST message is represented by its own class, which
are subclasses of gistMsg.GIST Message. Creation of these messages is simply performed
using the constructor of the relevant message class. Objects can then be added with the
revelant methods of this class, e.g. add QueryCookie. Internally these classes hold the
CommonHeader object of the message and several other objects. An example of a Query
message can be seen on the left side of Figure 3.1. When the encode method is called, the
message class composes the object that were added to it before in the right order, so that
the part of the program using this class need not worry about the specific object order,
and relays the encode call to the CommonHeader object. It also does some additional
checking to verify that the message contains all of the mandatory objects for the message
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type in question. This the main reason for this further layer of abstraction, as it adds
and additional layer of message checking, only allowing messages to be created only in
a way that conforms to the specification. It also means that none of the other parts of
the program need worry about such things as the internal order of parameters within
the message.

For message reception the function gistMsg.get message is provided. This function
takes as input a byte-string and returns the relevant message class as described in the
previous paragraph, as well as doing some extensive checks on the validity of the decoded
message. Once the message is returned, it can easily be modified in-place, either by
calling any of the add methods or by modifying the parameters of the objects in the
message directly, and encoded again for down- or upstream propagation.

3.5.3. Exceptions

The GIST specifications [39] dictate a number of error types and subtypes for different
error situations. The bulk of these errors are caused by erroneous messages that are
received, e.g. because message decoding failed or because the message is somehow inap-
propriate to the situation. This causes the error checking and error message generation
system to be tightly linked with message decoding. As Python provides the facility for
raising and handling exceptions, this comes as a natural way for dealing with any error
that may occur, skipping all further processing and dealing instantly with the response
to this error. Each different error defined in GIST is mapped unto its own class, which
can be raised as an exception. These error objects are instantiated with as argument the
CommonHeader object of the message which caused the error and possibly some addi-
tional information, such as a debugging comment. All of these error classes are derived
from gistException.MessageError, which has a method get error message that allows for
instant generation of an error message relevant to the error that occurred. In this way
the part of the program calling for message decoding can easily catch error situations
and inform the node that caused the error about this.

3.6. State Machines

The GIST server contains two different kinds of state machines, one for storing per-
session routing state and one for storing Messaging Association state. Both of these
state machines are well defined in the GIST specifications [39]. In order to implement
these specifications as accurately as possible, each state machine is directly represented
as a Python class. Within this class the current state is stored, as well as any other
information that needs to be stored. It also contains timers relevant to this state machine,
represented as Python threading.Timer objects. The external events to which the state
machines need to respond are defined as methods of the class, each with parameters
relevant to the event. Two other methods of the state machine classes are a constructor,
an explicit descructor and also the special Python str method, which outputs a neatly
formatted string describing the state and parameters of the state machine and is used
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for logging purposes, much like the message objects of section 3.5.1. The list of possible
events is given in table 3.1, taken directly from the GIST specification.

Event Name Meaning

rx Query A Query message relevant to this state has been received.
rx Response A Response message relevant to this state has been received.
rx Confirm A Confirm message relevant to this state has been received.
rx Data A Data message relevant to this state has been received.
rx Message rx Query or rx Response or rx Confirm or rx Data
rx MA-Hello A MA-Hello message relevant to this MA has been received.
tg NSLPData A NSLP application has requested data transfer using the SendMes-

sage API call.
tg Connected A protocol stack for particular MA has finished connecting.
tg RawData GIST wants to send bytes over this MA.
er NoRSM A No Routing State error message relevant to this state has been

received.
er MAConnect A protocol within the stack for a particular MA has failed to connect.
er MAFailure A MA has experienced a failure.

Table 3.1.: GIST state machine events.

3.6.1. Routing State

The state machines storing and handling routing state are subdivided in one for the
querying role and one for the responding role. Routing state is stored in the gist-
Server.Server object, keyed by the combination of NSLP-ID, MRI and SID, as dictated
by the specification. This storage is implemented using the dictionary object type na-
tive to Python, which allows a look-up by any Python object or combination of objects.
This means that each session has its own routing state within the GIST node. If the
node initiated peer discovery with a Query message this routing state will be represented
with an instance of gistQuery.QuerySM. Generally this will be the case for the routing
state towards the downstream peer with regard to the MRI. The node that intercepts
the Query message and responds to it will have a gistResponder.ResponderSM object as
routing state.

The responsibility of this routing state is to store information relevant to the session,
such as which MA is to be used and what the NLI of the peer is, and the state of the
peer discovery procedure. The state transition diagrams for this last function, for both
the Query Node State Machine and Responder Node State Machine, is lifted directly
from sections 6.2 and 6.3 of the GIST specifications [39].

3.6.1.1. Query Node State Machine

The state machine for the querying node is show in Figure 3.3. It governs the trans-
mission of Query and Confirm messages and ultimate state expiry. Each query state
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machine has three timers:

No Response The amount of time to wait for a Response message, once a Query is
transmitted.

Refresh QNode The time between sending Query messages to refresh the routing state.

Inactive QNode The amount of time that should pass before the state can be removed.
During this time no data revelant to this routing state should be sent or received.

Every time an external event occurs in the state machine, one or more actions need to
be taken. The following detailed list of these actions, given in pseudo-code, is referenced
by the state transitions in Figure 3.3:

Action 1: store the message for later transmission
Action 2: if number of Queries sent has reached the threshold

// nResp reached is true
indicate this as error to NSLP
destroy self

resend Query
start No Response timer with new value

Action 3: // assume the confirm was lost
resend Confirm
restart Refresh QNode and Inactive QNode timers

Action 4: if a new MA state machine is needed, create one
if the R flag was set, send a response
pass any NSLP data to the correct application
send any stored data messages
stop No Response timer
start Refresh QNode and Inactive QNode timers

Action 5: send Data message
restart Inactive QNode timer

Action 6: Terminate
Action 7: pass any data to the NSLP

(re)start Inactive QNode timer
Action 8: send Query

start No Response timer
stop Refresh QNode timer

3.6.1.2. Responder Node State Machine

The state machine for the responder node is show in Figure 3.4. The state machine
represents the passive side of a routing state between two peers, in that it only responds
to refreshing Queries and never actively tries to refresh the state itself. This means that
the state machines governs the transmission of Response messages in reply to queries
and state expiry if no Query is received for a certain amount of time. As can be seen,
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the use of Confirm messages is optional, this is a matter of local policy. There are two
timers within this state machine:

No Confirm If a confirm is requested by this node, by means of setting the R flag in
the Response message, this represents the amount of time the node should wait,
after sending a Response, before either retransmitting this Response or letting the
state expire.

Expire RNode The amount of time that should pass before the state can be removed.
This timer is reset every time a Query or Confirm message is received.

The action list, with action numbers referenced in 3.4, is the following:

Action 1: // Confirm message is required
send Response
(re)start No Confirm timer

Action 2: pass any piggybacked data to the NSLP
start Expire RNode timer

Action 3: send the Data message
Action 4: pass data to the NSLP
Action 5: // Confirm message is not required

send Response
start Expire RNode timer

Action 6: send No Routing State error message
Action 7: store Data message for later transmission
Action 8: pass any piggybacked data to the NSLP

send any stored Data messages
stop No Confirm timer
start Expire RNode timer

Action 9: if number of Responses has reached threshold
// nConf reached is true
destroy self

else
send Response
start No Response timer

Action 10: destroy self

3.6.2. Message Association State Machine

All instances of this state machine are also stored in a dictionary in the gistServer.Server
object, keyed by the peer node’s unique identity and IP address and the protocol stack
for this MA. This means that, unlike the routing state, state is not stored per session.
Whenever a new session is started that wants to use a particular stack of protocols, such
as TLS over TCP, to a particular node, GIST first checks to see if a MA for this is
already present in the server. If it is found, no connection setup need take place and the
MA can be reused. In this way a MA can be used by several different sessions at once.
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The MA state machine constains three timers:

SendHello When this timer expires a MA-Hello message should be sent to the other
node.

NoHello This is the amount of time the node has to wait before closing the MA connec-
tion and letting the state expire. During this time no MA-Hello or other messages
should be received, otherwise the timer is stopped.

NoActivity The amount of time the MA should be inactive, i.e. any messages other than
MA-Hello messages are sent or received, before the state machine moves to the Idle
state.

Note setting the R flag for MA-Hello messages is optional, indicating the desire for a MA-
Hello to be sent in response. The graphic representation of the state machine is given
in Figure 3.5. The list of actions corresponding to this state machine is the following:

Action 1: pass message to transport layer
(re)start NoActivity timer
(re)start SendHello timer

Action 2: (re)start NoActivity timer
Action 3: if reply requested

send MA-Hello
restart SendHello timer

Action 4: send MA-Hello message
restart SendHello timer

Action 5: queue message for later transmission
Action 6: pass outstanding queued message to transport layer

stop any timers controlling connection establishment
start NoActivity timer
start SendHello timer

Action 7: stop NoActivity timer
stop SendHello timer
start NoHello timer

Action 8: destroy self
Action 9: if reply requested

send MA-Hello
restart NoHello timer

3.7. Program Flow

The central part of the GIST implementation is the receive method of the gistServer.Server
class. All service threads that receive network messages pass the data to this method,
which distributes it again to other parts of the program. The first thing that happens
in this thread is a call to the gistMsg.get message described in section 3.5.2, converting
the received byte-string to an object based representation. As this function already does
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an extensive amount of error checking, any possible gistException.MsgError needs to
be caught at the end of the receive method. This also allows for the next step in this
method, checking if the message contains the contents required for the transfer mode in
which the message was received. If an error or omission is found within the message, the
code can raise the appropriate exception itself. The exception handling code at the end
of the method then produces a correct error message and sends it back to the node which
originated the erroneous message. After this error checking stage the receive method can
branch into the different actions that need to be taken depending on the message types.
Specific Error messages that require an action, such as the No Routing State error, are
sent to the relevant state machine, as are MA-Hello messages. For the other types of
messages the processing is a little more complicated, but basically it also involves either
looking up or creating the routing state that is relevant to the message received and
calling the event method corresponding to the message on the state machine, as well as
passing any NSLP payload to the relevant application.

3.7.1. Example Program Flow

To illustrate how the different parts of the GIST implementation described in this chapter
interoperate, this section will describe an example program flow, taking as scenario the
responding node in Figure 2.4. Extensive logging output of this scenario can be found
in appendix A.

For this node the sequence of events starts with the reception of a Query message
from the querying node. This is intercepted by the gistRaw.RawService object, which
does some checks to see wether the RAO parameter matches any of the NSLP-IDs
hosted at this node. Once it has established that the data received is valid for this
node, it will inform the netlink system that it has accepted the packet, obtain the
server threading lock and call the gistServer.Server.receive with as parameter the UDP
payload of the received datagram. As described in section 3.7, this will use the message
decoding system through the gistMsg.get message function, which returns an object
representation of the message that allows easy inspection of the contents. If the Query
message passes all of the error checking, it will be handled in the Query section of the
receive function. This will determine, based on the NSLP-ID, MRI and SID, that it does
not have any routing state installed yet for this session. It will issue an API call through
gistAPI.APIService.RecvMessage, giving as parameters an empty payload and Routing-
State-Check set to true, as well as other information about the received Query message.
If the relevant NSLP application wishes to set up routing state, it will return this. The
GIST server then creates a gistResponder.ResponderSM as routing state for this session
and passes the Query message to it. The constructor for the gistResponder.ResponderSM
object will call rx Query on itself. Within this method, this state machine then builds a
Response message in reply to this Query, including all of the protocol stacks it supports,
in this case TCP and TLS over TCP. As it does this, it calls the gistServer.Server.get ma
method, which inspects the MA dictionary of the GIST server. In this example it finds
that this node does not have a MA with this particular node for either protocol stacks and
will automatically create the state machines for them. The gistResponder.ResponderSM
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object will store the returned references to these newly created MA state machines. Upon
creation these MA state machines will be in the Awaiting Connection state and will
inform the relevant service classes, i.e. gistTCP.TCPService and gistTLS.TLSService,
that it will accept incoming connections from the Querying node, the NLI of which
each MA state machine has stored. After this, the gistResponder.ResponderSM object
shall transmit the Response message it composed using the gistUDP.UDPService.send
method, which simply sends the message in Datagram mode to the Querying node.

The next event pertaining to this session that this node sees is a new TCP connec-
tion, which arrives at gistTCP.TCPService. This checks to see wether it has the source
IP address of this connection registered. As the gistResponder.ResponderSM object
performed this registration, it will accept the incoming connection and create a new
gistTCP.TCPConnection to manage it. It will also assign this connection a temporary
placeholder MA state machine, called gistTCP.FakeMASM. This is needed because the
gistTCP.TCPConnection will simply perform rx Message on its registered MA state
machine, while this is not allowed by the real state machine the connection belongs to,
as this is still in the Awaiting Connection state. This is exactly what happens as the
Confirm message arrives over the newly created TCP connection, the receiving thread
in gistTCP.TCPConnection calls gistTCP.FakeMASM.rx Message. This in turn calls
gistServer.Server.receive, giving as parameters the received data and the newly created
gistTCP.TCPConnection class. The receive method again does the decoding and error
checking, in particular checking that the first message on this new connection is a Confirm
message. It then looks up the routing state, finds the gistResponderSM.ResponderSM
object and calls rx Confirm on it, again passing as parameters the received message
and the newly created connection object. This checks all the contents of the confirm
message, looks up the MA state machine in the server relevant to this session and with
the protocol stack of the gistTCP.TCPConnection object and matches this against the
MA state machines it had stored when generating the Response message. It will also
perform gistMASM.MASM.tg Connected on the MA state machine it has found and, if
there is a match with the stored state machines, makes sure the other MA state ma-
chine is cleaned up, if it is still in the Awaiting Connection stage. The routing state,
in the form of the gistResponder.ResponderSM object, then has one fully connected
MA registered to it, ready for use. The Confirm message will also carry the NSLP
payload, which the routing state machine will submit to the application through the
gistAPI.APIService.RecvMessage method.

3.8. Miscellaneous Features

This section describes some smaller features implemented in GIST that did not seem to
fit elsewhere.

3.8.1. Logging

The gistServer.Server object contains a set of logging objects, that can be specified in the
configuration file gistOptions.py. These logging object provide the same interface, a log
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method with as parameters a logging string and a three-tiered log level, so that several
classes can be implemented that process and represent the logging data in different ways.
On initialisation, which happens in said configuration file, the log level of the particular
object can be specified. Only message of this log level and lower are processed. In this
implementation two logging objects are provided, gistLog.Print, which simply outputs
to the text console, and gistLog.File, which writes the output to a file.

All objects active within the GIST server maintain a reference to the gistServer.Server
object and can call its log method, again using as parameters some text and a log level,
which in turn performs this on all of its logging objects. Combined with the string
generation functionality of message objects and state machines described in sections
3.5.1 and 3.6, this provides for a powerful and extensible logging framework which gives
a clear picture of what the program is doing and allows for extensive debugging, helping
to fulfil the requirements of section 1.2. An example of logging output of the most
detailed level can be found in appendix A.

3.8.2. ICMP Monitoring

The function of intercepting ICMP replies and its rationale is described in section
2.2.1.4. Every time a query is sent by a gistQuerySM.QuerySM, it stores this in the
gistServer.Server.icmpdict dictionary object, referencing itself. The service class gis-
tICMP.ICMPService monitors incoming ICMP messages and only selects those with the
code that represents ICMP Port Unreachable [36]. Because this ICMP reply possibly
contains only part of the UDP payload of the original datagram that caused the reply,
but it does contain the full original UDP header, Query messages need to be matched to
the dictionary by a distinguishing feature from the header. This is done using the UDP
checksum from the original Query message, which should provide sufficient uniqueness for
different Query messages and is short enough to be used as an index. Even for retransmit-
ted Query messages with the same content, the Query Cookie object needs to be newly
generated, providing a different checksum for the whole message. Once the matching
has taken place using the gistServer.Server.icmpdict object, the gistICMP.ICMPService
object has found the Querying state machine that issued the Query message. It then
kills the gistQuerySM.QuerySM object in question and informs the NSLP application
that it is the last NSIS capable node on the path with a MessageStatus API call. If, on
the other hand, a valid response is received in the gistQuerySM.QuerySM state machine,
it will clean up the entry it made earlier in gistServer.Server.icmpdict.

Note that the reception of ICMP messages only works if a Query message is sent with
as source IP address the IP address of the sending node. This will only occur as a re-try
after an initial query with as source IP address the MRI source has timed out.

3.8.3. Source Identification Information Handle

The Source Identification Information is a parameter that needs to be passed to the
NSLP application when issuing a RecvMessage service primitive. With this Source
Identification Information (SII), which is fully opaque to the application, it can perform
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direct addressing when issuing a SendMessage service primitive, bypassing routing state
withing GIST. This is usefull for example in cases of routing changes, when the applica-
tion wishes to send message to the node on the old routing path after the routing state
within GIST has changed. The SII needs to contain all information on how to reach
a node without consulting routing state. In this implementation of gist this is simply
done by creating a byte-string with all the relevant information. It is represented by
a gistAPI.SII object, which contains the following attributes that are normally stored
within the routing state:

Transfer Attributes This contains the transfer attributes of the type of connection
stored in this SII, i.e. security and/or reliability.

Peer Identity The unique peer identity string from the NLI object.

Peer Address The IP address of the peer in question, also from the NLI object.

Peer Port The UDP port on which the peer accepts incoming Datagram mode messages,
obtained during peer discovery.

Protocol Stack If the transfer attributes have at least reliability, this contains the pro-
tocol stack used by the MA to this node. The GIST node can use this to look up
the MA state machine to this node, which is independent from routing state, and
use it for transmission.

The gistAPI.SII object also contains a create, encode and decode method, analogous to
the message objects from section 3.5.1.

3.8.4. Network Interface Management

The GIST implementation also contains a module with functions that performs low-
level interaction with the kernel to gather information about network interfaces and
their addresses:

gistIface.get ip This function takes as parameter the interface name, e.g. eth0, and
returns the IP address associated with it.

gistIface.get iface This performs exactly the opposite operation of the last function,
i.e. it takes as argument a IP address and returns the interface name to which this
address belongs.

gistIface.get all ips This will return a list of all IP addresses listed for the network
interfaces of this host. It is mainly used to check if this node matches the MRI
destination address and thus is the last node on the path.

gistIface.get if route This function takes as argument a IP address and checks the host’s
routing table to see what network interface would be used to transmit a package
to this address.
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gistIface.is endhost This takes as argument a MRI object and uses the aforementioned
gistIface.get all ips function to determine if this node is the end node.

gistIface.get nli address This function also take a MRI object as argument and uses a
number of the other functions in this module to select on of the host’s IP addresses
that is sure to be on the path of the MRI. This address can then be included in a
NLI that includes this MRI.

These functions are used from various locations in the program.
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Figure 3.2.: High-level program structure of GIST implementation.
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Figure 3.3.: Query State Machine.
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Figure 3.4.: Responder State Machine.
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Figure 3.5.: Message Association State Machine.
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4. QoS-NSLP Design and Implementation

This chapter provides a description of what was implemented at the QoS-NSLP of NSIS
level within the scope of this assignment and how it was implemented, describing imple-
mentation structure and where needed motivating design choices. The implementation
discussion can be subdivided into two parts, the first about the QoS-NSLP with IntServ
Controlled Load (ISCL) QoSM and the second about RMD traffic control, as these
are entirely separate implementations. Again, before this is done there will be a brief
description of the work already performed by other people.

4.1. Previous Work

In conjunction with the GIST implementation assignment performed by Mayi Zoumaro-
Djayoon described in the previous chapter, a RMD QoS-NSLP implementation was done
by Martijn Swanink [42], also at the DACS group of the UT. Initially the intention was
to update and expand this implementation to support the goals set out in section 1.1,
as was the intention for the GIST implementation. For this reason, when this was
changed to a re-implementation of the GIST layer, the choice was made to implement
the same API of the previous implementation in the gistAPI.APIService class described
in section 3.3. The bit-level format of this API can be found in appendices in the
reports of both implementers [42, 44]. This allowed the new implementation of GIST
to communicate with the RMD QoS-NSLP implementation. As this assignment and
the master assignment covering the RMD implementation overlapped for a period of
time, this was mutually beneficial, allowing testing of the new GIST implementation
with the RMD QoS-NSLP on one hand and use of an improved and more reliable GIST
implementation while debugging the RMD implementation. This is described in section
5.2.

However, as the GIST implementation was finished, it became clear that for the pur-
poses outlined in chapter 1.1, it would be more beneficial to focus on implementing a
more general QoS-NSLP incorporating the ISCL QoSM. The rationale behind this is
the following:

• The RMD QoS-NSLP implementation focused wholly on the RMD QoSM. All
QoS-NSLP applications need to adhere to behaviour outlined in [33], but because
the RMD-QoSM has some quite radical differences the implementation only con-
tained a minimum of QoS-NSLP functionality. The implementation in question
served more as a proof of concept of the mechanisms used in the RMD QoSM than
a fully fledged QoS-NSLP implementation. Howeever, in performing end-to-end
reservations by QoS aware multimedia applications, one also needs an end-to-end
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per-flow QoSM, which RMD is not. For these reasons it makes much more sense
to implement a generalised QoS-NSLP with the lightweight ISCL QoSM.

• The RMD implementation had only limited functionality and adhered to outdated
specification drafts. Initially this was an argument to update and extend the
implementation, but in light of the previous argument it makes more sense to first
build a generalised QoS-NSLP for this assignment and construct it in such a way it
can dynamically handle different QoSMs, including RMD. In this way the concepts
of the RMD implementation can be integrated and transposed into the general
QoS-NSLP implementation at a later time, whilst updating and extending the
functionality. This also fits in with the modularity and extensibility requirement
of section 1.2. The alternative, implementing a general QoS-NSLP into the RMD-
specific implementation, would be illogical and overall bad programming practice,
quite akin to fully re-implementing the whole program, at least in time needed to
do this.

• The programming paradigm and concepts learnt during the GIST re-implementation
could prove very usefull in the QoS-NSLP implementation. Although they are con-
ceptually two separate entities that communicate through a common API, much
of what was used for GIST could also be used for QoS-NSLP. Indeed, one could
say that the preliminary phase of the QoS-NSLP implementation was already per-
formed during the GIST implementation. Additionally, the GIST implementation
boasted some features that could be advantageous to implement in a QoS-NSLP
implementation with any QoSM, such as extensive logging, thread safety and of
course the advantages of the Python programming language as demonstrated in
section 3.2.

As there was still some co-operation with regard to RMD however, this report will
describe some minor contributions made to this QoSM, in particular the part concerning
the Linux Traffic Control subsystem, including Severe Congestion handling.

4.2. QoS-NSLP and IntServ Controlled Load QoS Model

Implementation

As this implementation integrates seamlessly into the GIST implementation discussed in
the last chapter, the implementation environment is exactly the same. For a discussion
of this see section 3.2.

Due to time constraints the implementation discussed here is limited in its functional-
ity. For now it will only support setting up new sender-initiated reservations, refreshing
them and tearing them down, meaning this implementation precludes more advanced
features such as receiver-initiated and bidirectional reservations, session binding and
re-routing detection other than the one provided by GIST. However, the structure of
the implementation allows for easy integration of these features at a later time, as per
requirement. Also, the only QoSM implemented is that of IntServ Controlled Load.
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This basic functionality provided by this implementation should however suffice for the
purposes set out within the scope of this assignment, i.e. supporting reservations for
QoS aware multimedia applications.

4.2.1. Program Structure

For a conceptual overview of the components within the QoS-NSLP application, please
refer to Figure 2.5. To allow for modular use of different QoS Models, the implementation
adheres to this model as much as possible, separating the general QoS-NSLP message
handling from the QoSM specific functionalities, which are mostly those dealing with
QSPEC processing and traffic control interaction. This is illustrated in Figure 4.1. The
message handling component is represented by the qosServer.QOSServer class, while
the Resource Management Function component can be represented by any class in the
qosRMF module, e.g. qosRMF.ISCL for the ISCL QoSM. Which QoSM is used depends
on configuration options set in qosOptions, which allow specifying the RMF per outgoing
network interface. As an example of the use of the application API, a completely separate
qosConsole module is a small console based application that can be used to instruct the
QoS-NSLP to make and remove reservations. This is mostly used for testing purposes.
Finally, the application API was also implemented in VLC [15], a media playback and
streaming application. Section 4.2.3 will provide the bit-level syntax for this application
API and section 4.2.3.1 will provide a discussion about the use of this API in VLC.

Figure 4.1.: The components of the QoS-NSLP implementation as applied to Figure 2.5.

As already mentioned, the QoS-NSLP implementation integrates seamlessly into the
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GIST implementation. This is done by having the qosServer.QOSServer class op-
erate as a service class of GIST, as described in section 3.3. This service class is
started from the gistAPI.APIService class and anytime this class receives a API call
from GIST with a NSLP-ID relevant to the QoS-NSLP, it will relay this API call
to the qosServer.QOSServer class. From this it follows that the main methods of
qosServer.QOSServer are the RecvMessage, MessageStatus and NetworkNotification in-
coming GIST API calls, the bulk of the processing of course being performed in the
RecvMessage method, where QoS-NSLP messages are decoded and dealt with appro-
priately. Conversely, the qosServer.QOSServer has its own thread running in which it
handles incoming application API calls from locally running applications that request
QoS and, after processing, translates this into outgoing GIST API calls that it performs
directly on the gistServer.Server object. Note that, like any GIST service thread, before
initiating any action from its running thread as a result of an application API call, it
must obtain the GIST threading lock as described in section 3.3.1.

The qosServer.QOSServer object also stores QoS-NSLP persistent session state, in-
dexed per SID and represented by instances of the qosState.PersistentState class. This
state contains information about sequence several up and downstream sequence num-
bers, both RSN and RII, the session’s MRI and SII handle, reservations performed and
also timers governing state expiry and refreshes. The RSN is represented by the special
helper class qosRSN.RSN, which implements Request For Comment (RFC) 1982 [27]
behaviour. As in GIST, these timers run in their own threads and obtain the threading
lock before changing stored state.

For each QoSM that the QoS-NSLP node is configured to use, through options set in
qosOptions, it maintains one instance of the relevant class in the qoSRMF module. These
classes may maintain their own QoSM specific state and are required to support a com-
mon interface, i.e. they must implement the same methods for the qosServer.QOSServer
instance to call. When any of these calls result in the installation or removal of reser-
vation state, the relevant RMF class may interact with the Linux kernel through a
IPTables [9] command, performed by the helper module qosIPT, which governs IPTa-
bles interaction. A detailed description of this is given in section 4.2.4. For the partial
implementation currently in place, the interface methods are the following:

generate reserve This instructs the RMF to construct an initiating reserve message,
with objects and a QSPEC that is relevant to its QoSM. This method is generally
called as a result of an incoming application API call.

process reserve This is called when a RESERVE message is received. Depending on the
QSPEC processing, this method can return an updated QSPEC to be propagated
further downstream.

approve response This method is called by qosServer.QOSServer at the node that ini-
tiated the RESERVE message upon reception of a RESPONSE message indicating
success. This allows the RMF to inspect the QSPEC returned in the RESPONSE
message and either approve or disapprove it. Upon disapproval a tearing RE-
SERVE is sent.
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generate refresh This instructs the RMF to construct a refreshing reserve message for a
particular session, taking into account information gathered about reduced refresh
support of the downstream node. Because refreshes are generated asynchronously,
i.e. separately by each node in the flow path, this method is called when a timer
expires within the persistent state in each node.

generate tear As the name suggests, this will have the RMF construct a tearing reserve
for a particular session. This can be called either as a result of application API
interaction or following an error condition.

remove reservation This can be used to trigger actual reservation removal within the
RMF upon receipt of a RESPONSE message indicating a successful teardown
operation.

expire This is simply the method that is called from the persistent state timer as it
expires. The RMF should take this as an indication that any reservation associated
with this state should be removed.

Note that in a full implementation a number of interface methods may need to be added.
As the ISCL QoSM [29] adds little additional requirements, the qosRMF.ISCL class

implements these methods in only a simple way, constructing a message with a QSPEC
that is quite straightforward and only contains a Token Bucket parameter. For QoSMs
such as RMD this is expected to be much more complex.

4.2.2. Message and Exception Processing

Analogous to the message decoding/encoding and exception handling described of GIST
as described in section 3.5, the QoS-NSLP implementation has a qosMsg and a qosEx-
ception module to perform this. The qosMsg module implements message decoding and
encoding in exactly the same way as the gistMsg module, using an message objects in
a tree structure. Please refer to sections 3.5.1 and 3.5.2 for a detailed description. As
the QoS-NSLP specification [33] dictates error classes and codes in a similar fashion to
those in GIST, again the concept of mapping each error code onto their own error class,
derived from a base error class, can be used, as can be found in section 3.5.3.

The only location where message decoding takes place is at the start of the RecvMes-
sage method of the qosServer.QOSServer class. Any exception caused by the decoding
or subsequent processing of the message is caught at the end of this method, causing a
RESPONSE method with a INFO SPEC object relevant to the exception to be sent in
reply to the message.

4.2.3. Application API

To enable user applications to request QoS from the QoS-NSLP application running
locally and thereby achieve one of the main goal as described in section 1.1, an application
API needs to be defined and implemented. Since this API is beyond the scope of the QoS-
NSLP specifications [33], the syntax and semantics of it are implementation specific. The
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design and bit-level syntax for the application API of this implementation is described
in this chapter.

Note that the design of this API has a lot of similarities to the proposed RSVP API
[12], notably the use of type-length-value byte-string encoded objects. The choice was
made however to use new messages and objects, as those used for the RSVP API are
very specific to that protocol. The proposed RSVP API also seems overly elaborate for
the purposes of this thesis.

As the API will be designed from scratch, some requirements will need to be specified:

• The application API should be flexible in the amount of parameters that can be
transmitted. Sometimes an application wants to specify more about a reservation
that other times.

• It will need to be extensible, i.e. in future versions of the implementation it should
be able to support new messages and parameters.

• The QoS-NSLP will need to be able to communicate with several user applications
at once.

The application API is implemented as byte-string commands carried in UDP [34]
datagrams, each command message possibly carrying parameters, either from the ap-
plication towards the QoS-NSLP or vice versa. As the applications requesting QoS will
logically reside on the same host, these UDP datagrams will travel over the loopback
network interface of this host. The application will send the datagrams to the QoS-NSLP
at a predetermined destination port and a semi-random source port, which will reply
with datagrams that have the source and destination ports reversed. This allows the
QoS-NSLP to communicate with several applications on the host, each using a different
port number. UDP was chosen because it facilitates easy interchange of short delimited
messages. A stream-oriented protocol such as TCP does not support message delimita-
tion, which as we will illustrate is actually used in the message syntax. Alternatively,
Unix domain sockets could be used, but these would have taken a little more effort to
implement.

Figure 4.2.: Example of a QoS-NSLP application API message with three parameters.

Every UDP datagram contains exactly one message, optionally followed by a number of
parameters. The message type is encoded as a single unsigned byte value. The possible
message values are listed in table 4.1. Note that because one byte is used to specify
messages, values of up to 255 may be used in a future implementation, supporting the
extensibility requirement. If there are any parameters in the message, the unsigned byte
type value of the first parameter is located directly after the message type byte. The
values of these bytes can be found in table 4.2, which can again be extended in future.
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Message Value

Kill 0
List 1
Add 2
Del 3

Success 4
Failure 5
Item 6
End 7

Table 4.1.: QoS-NSLP Application API messages and their byte values.

Parameter Value

SID 0
Source IP 1

Source Mask 2
Source Port 3

Destination IP 4
Destination Mask 5
Destination Port 6

Protocol 7
DSCP 8

Bandwidth 9

Table 4.2.: QoS-NSLP Application API parameters and their byte values.

In order to be able to skip parameters that the decoding side of the message does not
recognise, because they were defined later, the byte after each parameter type value is
its length. Because of this end decoding the message knows the size of each parameter
as well as the total message size, so the order and number of parameters are irrelevant.
Directly following the parameter size byte is the value of the parameter, which has a
variable length depending on the parameter type. The byte-length and format of the
parameters is described in table 4.3. This table also describes which parameters must,
can and cannot be used in which messages. As can be seen in this table, some of the
parameters are optional, supporting the flexibility requirement. Messages not listed in
this table can never contain any parameters. Figure 4.2 illustrates a theoretical example
of a message containing three parameters, the first four bytes long, the second two and
the last one.

Some of the messages listed in table 4.1 are meant to be sent from the application
towards the QoS-NSLP, others are sent in the opposite direction in response. These are
the messages of the first category and the response messages they should elicit:

Kill This message instructs the QoS-NSLP to shutdown and discontinue operation. It
takes no parameters and generates no response besides program termination.
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Parameter Length Format Add Del Item

SID 15 string Not possible Mandatory Mandatory
Source IP 4 unsigned int Mandatory Not possible Mandatory

Source Mask 1 unsigned int Optional Not possible Optional
Source Port 2 unsigned int Optional Not possible Optional

Destination IP 4 unsigned int Mandatory Not possible Mandatory
Destination Mask 1 unsigned int Optional Not possible Optional
Destination Port 2 unsigned int Optional Not possible Optional

Protocol 1 unsigned int Optional Not possible Optional
DSCP 1 unsigned int Optional Not possible Optional

Bandwidth 4 float Mandatory Not possible Mandatory

Table 4.3.: Use of QoS-NSLP Application API parameters in combination with messages.

List This message asks the QoS-NSLP to give a list of all reservations currently in place
that were initiated by this node. For every reservation the QoS-NSLP generates
a Item message, including as parameters the details of the reservation state. For
an overview of which parameters are possible and mandatory, see table 4.3. The
application will receive and parse these items, each being received in a separate
UDP datagram. The QoS-NSLP will indicate the end of the list by sending a End
message, which contains no parameters. After this the application stops waiting
for incoming messages.

Add This instructs the QoS-NSLP to install a new reservation and initiate signalling for
it. Again, table 4.3 lists the possible and mandatory parameters for this message.
The QoS-NSLP send either a Failure or Success message in response, neither of
which take any parameters. If the response is a Success message, a SID parameter
needs to be included to indicate to the user application what SID the reservation
state was stored under. This allows the application to later remove it.

Del This instructs the QoS-NSLP to remove state for a reservation it initiated and start
an explicit teardown procedure for it. It takes as its only argument the SID of the
relevant session, as listed in table 4.3. The QoS-NSLP send either a Failure or
Success message in response, neither of which take any parameters. The Failure
message is typically sent when the QoS-NSLP state does not contain a session it
initiated with that SID.

4.2.3.1. VLC Application API Implementation

VLC is an open-source media playback and streaming application, supporting decoding
of a large number of network protocols and video, audio and container formats. It can
be used both to transmit and receive streaming video. To achieve the main goal set
in the introduction in chapter 1, use of the application API described in the previous
section was implemented in the UDP output module of VLC. As UDP is inherently
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unreliable, it is an ideal candidate for a transport protocol that should receive QoS. The
VLC modification allows specifying the IP address of the host on which the QoS-NSLP
application is running, which will usually be the localhost, the UDP destination port
on which to connect and the amount of bandwidth one wants to reserve. Note that
this means that the peak bitrate of the media file being streamed has to be known in
advanced. On initialisation of this module it will send a Add message to the QoS-NSLP
at the specified address and port, including as parameters the specified bandwidth and
the specifications of the flow, which it gathers automatically from other parameters of
the program. If it does not receive Success as a reply, it will abort initialisation, generate
an error message and prohibit sending the stream. On success the stream is sent and
when the program terminates, a Del message is sent with as parameter the SID VLC
received in the Success message.

4.2.4. Linux Traffic Control Subsystem

As described in section 2.2.3.1, packets belonging to a flow that is described in a QoS-
NSLP reservation and is traversing a IntServ Controlled Load domain should receive
“service closely equivalent to that provided to uncontrolled (best-effort) traffic under
lightly loaded conditions” [43]. To provide this we have to implement the following
behaviour in the packet scheduling of the outgoing interface of a node belonging to such
a domain:

• When selecting packets to transmit, the packets receiving Controlled Load service
should have priority over best effort packets.

• Each flow that receives Controlled Load service should experience as little inter-
ference from other flows receiving the same type of service.

To influence the behaviour of network interface packet scheduling in Linux one needs
to use the traffic control services provided by the kernel [8]. Linux traffic control works
with a concept called a Queueing Discipline, which governs the behaviour of packets
arriving and leaving. Depending on the type of qdisc it can contain classes, which in
turn can contain child Queueing Discipline (qdisc)s and so on. To satisfy the first of
the two requirements outlined above, a classful priority qdisc needs to be used, which
is illustrated in Figure 4.3. This qdisc, called PRIO in Linux, will always transmit
Controlled Load packets first, which travel through the upper inner qdisc, when the
interface is ready to send a packet. While best effort traffic uses a default PFIFO qdisc,
which as the name suggests is just a First In First Out (FIFO) queue with a size limit
in packets, the packets receiving Controlled Load service use the so-called Stochastic
Fairness Queueing (SFQ) qdisc [40]. This is used to satisfy the second requirement, as
SFQ gives packets from each flow their own queue, at least in most cases. Instead of
indexing an unlimited number of queues, it hashes the flow identifiers and uses this as an
index to a limited number of queues to save resources. This allows Controlled Load flows
to experience a minimal amount of interference from eachother and, in combination with
the PRIO qdisc, exhibits the behaviour of an unloaded or lightly loaded network from
the point of view of the flow.
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Figure 4.3.: Linux traffic control Queueing Disciplines used to implement IntServ Con-
trolled Load.

The default class to send packets to in the PRIO qdisc is the one that has the PFIFO
qdisc attached to it, i.e. the best effort queue. Filtering packets based on the MRI of a
RESERVE message and instructing them to use the higher priority SFQ qdisc is done
with iptables [9], using the CLASSIFY target. This target allows direct specification of
the Linux traffic control class the packet should use. As packet filtering and classification
can also take place in the Linux control system, it may seem illogical to use iptables for
this purpose, but it has the advantage that filter construction is much easier compared to
that of Linux traffic control, especially when filtering on multiple criteria, which may be
needed if a MRI uses several options. The qosRMF.ISCL class uses the helper functions
in qosIPT to convert the MRI of the flow in question to a iptables commandline and
simply adds or removes this to or from the tables, specifying that packets belonging
to that particular flow should traverse the SFQ qdisc and receive higher priority that
best-effort packets.

4.3. RMD Linux Traffic Control

For the RMD QoSM, a linux traffic control framework similar to that of section 4.2.4 was
implemented. To achieve the desired behaviour, outlined at the end of section 2.2.3.2, a
new qdisc needed to be implemented. This will be described first.

4.3.1. The REMARKFIFO Queueing Discipline

To reiterate, to implement RMD severe congestion handling, a queue with the following
properties is needed:

• At the end of every time interval, the total number of bytes that passed through
the queue needs to be compared to the set thresholds. After this, the general state
of the queue for the next time interval needs to be set, which can be either un-
congested, within the congestion notification range or within the severe congestion
range.
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• Any time a packet leaves the queue an the state is set either to congestion no-
tification or severe congestion, the packet needs to be marked accordingly and
proportionately. Packets already marked may not be re-marked.

• Whenever a packets needs to be dropped because the buffers of the queue are full,
unmarked packets are always dropped first.

These requirements were implemented in the REMARKFIFO qdisc as a Linux kernel
module. As the name implies, it is based on the standard PFIFO and BFIFO modules
already present in the kernel. Every time a packet arrives at this qdisc, the remark-
fifo enqueue function is called, which adds the packet size of the newly arrived packet to
an internal byte counter. Although the external behaviour of this qdisc exhibits that of
a single FIFO queue, internally two queues are used, already implemented by the kernel
as linked lists. Upon arrival a packet is put at the tail end of either one of these queues,
depending on if the packet is already marked or not. If adding the packet exceeds the
byte limit of the overall virtual FIFO queue, either the packet is dropped instantly, or, if
this packet is a marked packet, it removes the packet at the tail of the unmarked queue.
This is exactly why the externally visible virtual queue is represented internally by two
queues, to facilitate the dropping of unmarked packets. If a single queue was used, every
time an unmarked packet needs to be dropped, the entire queue needs to be traversed
in search for this packet. A graphic representation of the two internal queues and the
externally observed virtual queue can be seen in Figure 4.4.

Figure 4.4.: Above the two internal queues of the REMARKFIFO queueing discipline is
shown, one containing marked packets and the other containing unmarked
packets. Below the externally observed virtual FIFO queue is show, with
the marked and unmarked packets in their respective position in the queue,
relative to the arrival timestamp it carries.
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Whenever the system is ready to transmit a packet, it will call the remarkfifo dequeue
function on the REMARKFIFO qdisc. Note that this can be done either by the network
interface that is ready to transmit a packet, or a classful parent qdisc, which may hold
off calling this function to keep the data throughput within this PHB below a certain
rate. In the latter case the incoming rate of the REMARKFIFO qdisc can still exceed
this limiting rate, as the shaping is performed on the output of this qdisc. Within the
remarkfifo dequeue function two things happen. First a packet from one of the two
internal queues is selected by means of the arrival timestamp associated with each of
the two packets at the head of the queues, provided that both queues contain one or
more packets. The packet with the lowest timestamp is selected and removed from its
queue. This ensure that the external behaviour is that of a single virtual queue and that
no packet re-ordering between marked and unmarked packets takes place. After this
is done, the global state of the qdisc is checked and, if needed, the packet selected for
transmission is marked. If this is done the REMARKFIFO qdisc decrements the byte
counter for the number of bytes that need to be marked within this time period.

Its global state is updated every time interval by setting a kernel timer to call the
remarkfifo update function. As described in the requirements, this compares the byte
counter that was incremented each time remarkfifo enqueue was called to preset thresh-
olds and sets the global state accordingly. It also sets the number of bytes that need to
be remarked within the next time period, should this be needed, taking into account the
number of bytes that were remarked in previous time intervals, using the sliding window
mechanism that was described in section 2.2.3.2. It then also stores the resulting value
in its sliding window history and resets the incoming byte counter.

To enable the use this new qdisc, the userland tc tool, part of the iproute2 package
[6], also needed to be modified. A module was written for this program to be able to
instruct the kernel to use and configure it. The configuration parameters include:

limit Specifies the virtual FIFO size limit in bytes. By default the limit is equal to the
MTU size.

interval Specifies the interval time in milliseconds. The default interval time is 50ms.

cellcount Specifies how many time intervals the sliding window mechanism should re-
member. The default value is 8.

multiplier Specifies the multiplier for proportional packet marking. This means that for
N bytes over the preset limit, 1 byte leaving the qdisc is marked, where N is the
multiplier. The default value is 2.

notified dscp The DSCP value for packets marked as notified. Note that this are and
all following DSCP value parameters are already left-shifted by two, taking into
account the two least-significant ECN bits [38]. All DSCP value parameters are
also mandatory and have no default value.

affected dscp The DSCP value for packets marked as affected.
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encoded dscp The DSCP value for packets marked as encoded. Note that this can be
the same value as notified dscp.

cnd rate Specifies the congestion notification detection threshold rate. If packets arrive
at the qdisc at a rate that is above this rate, the global state is set to congestion
notification. This and all following rates are mandatory parameters.

scd rate Specifies the severe congestion detection threshold rate. If packets arrive at the
qdisc at a rate that is above this rate, the global state is set to severe congestion.
Note that this rate should always be higher than cnd rate.

scr rate Specifies the severe congestion restoration threshold rate. If the global state is
set to severe congestion and packets arrive at the qdisc at a rate that is lower than
this rate, the global state should be changed to no congestion. Note that this rate
should always be smaller than or equal to scd rate.

4.3.2. Linux Traffic Control Subsystem

Using the REMARKFIFO qdisc described in the previous section, a Linux traffic control
framework was constructed, similar in nature to that implemented for the ISCL QoSM,
described in section 4.2.4. Figure 4.5 displays the queueing disciplines used on any
network interface on which outgoing packets traverse the DiffServ domain. As root
qdisc Hierarchical Token Bucket (HTB) is used [4]. As the name would suggest, this
qdisc allows the composition of a number of token buckets in a tree structure, with the
leaf nodes of the tree representing different traffic classes. Each of these classes has its
own token bucket, allowing a minimum guaranteed throughput on this interface to be
specified. It also supports features such as sharing excess available bandwidth among
sibling classes and priorities for both this excess free bandwidth sharing and packet
scheduling. HTB is used to create three traffic classes, sharing the total link capacity
specified in the parent class:

1. A traffic class is attributed to signalling traffic, i.e. NSIS communication. The
specification dictates that signalling should always receive higher traffic priority
[19] and creating a traffic class for this ensures that a certain amount of bandwidth
is reserved for this. Assigning this class a higher priority in relation to the other
two classes within HTB also ensures that signalling traffic receives excess available
bandwidth first and gets dequeued first when the interface is ready to transmit a
packet. This last property allows signalling traffic to be transmitted even in face
of congestion. As there is no external method for distinguishing NSIS traffic, this
traffic needs to be marked at the application layer with a predetermined DSCP. As
child qdisc a simple BFIFO, a FIFO queue with a length limit in bytes, is chosen.

2. The only DiffServ PHB used within this project, Expedited Forwarding, has its own
traffic class. If the RMD application uses the reservation-based admission control
method, the minimum bandwidth specified for the token bucket of this traffic class
should be taken as the maximum bandwidth that can be spent in reservations.
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This ensures that traffic within this class does not exceed the total bandwidth
assigned to it and should prevent EF traffic from experiencing congestion. Note
that if there is excess free bandwidth on the interface that is not spent on signalling
traffic, it is shared equally among this and the best effort class. The child qdisc for
this class is of course the REMARKFIFO queue described in the previous section.

3. Best effort traffic is delegated to the last class, which again uses a simple BFIFO
qdisc. As traffic within this class is not controlled by reservations, it may experience
congestion. The minimum rates specified in the other traffic classes will ensure that
only other best effort traffic is hindered by this congestion. This is configured as
the default class for all traffic.

Figure 4.5.: Linux traffic control Queueing Disciplines used to implement RMD.

Figure 4.6.: Conceptual diagram of locations of some of the Linux netfilter tables.

For much of the same reasons as those outlined in section 4.2.4, classification of flows
is performed in Linux iptables. An additional reason is that it the facilitates userspace-
kernel interaction that is needed for keeping track of congestion marked DSCPs in the
egress node, as ingress node, core node and egress node behaviour is combined in the
iptables rules, including severe congestion handling. iptables uses a concept known as
chains, which packets may traverse depending on their path through the kernel. Because
the iptables setup is a little more complex as the one for the ISCL QoSM, a short
description of the chains used may be in order. Note that, because of the nature of the
operations performed on the packets, all chains are located within the mangle table of
iptables [9]. Figure 4.6 displays those used chains and their conceptual location. Network
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packets enter from the right, all packets passing through the PREROUTING chain. After
this chain the destination of the packets are inspected, those that are destined for this
host are sent up to the application layer, those that have their destination elsewhere and
should be routed according to the system routing tables pass through the FORWARD
chain. Packets that originate from this host first go through the OUTPUT chain, after
which they join any other packet that leaves this host going through the POSTROUTING
chain. Only after this packets are queued on the qdisc of the relevant network interface,
so Figure 4.5 should be considered to be conceptually attached to the right end of Figure
4.6.

The rules and actions used in these chains can be respresented in the following pseudo-
code:

PREROUTING: if from external:
clear DSCP value (1)

if a IPv4 option is present:
send the packet to the netlink queue (2)

FORWARD: if from external and to internal:
if this flow is reserved:

set DSCP value to EF (3)
if from internal and to external:

go to the flow chain for this flow (4)
OUTPUT: if to internal:

clear DSCP value, except signalling DSCP (5)
POSTROUTING: if to internal:

if DSCP is signalling DSCP:
set tc class to :10 (6)

if DSCP is in EF DSCPs:
set tc class to :20 (6)

if to external:
clear DSCP value (1)

flow chain: if DSCP is notified DSCP
increase counter (7)

if DSCP is affected DSCP
increase counter (7)

if DSCP is encoded DSCP
increase counter (7)

An explanation of each of these actions follows:

1. DSCP values for packets entering and leaving the DiffServ domain should be
cleared of their value to avoid interference with other domains that wish to use
this field in the IP header.

2. This is the filter installed for GIST Query datagrams. It is described fully in
section 3.4.1.
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3. Because of the of this ruleset, this action will only occur at the ingress node. Note
that, although it is listed as one rule in the pseudo-code, each reserved flow will
have its own matching rule with a filter corresponding to the contents of the MRI.

4. This action will only occur at the egress node. Again, each reserved flow will be
individually matched. Also, each reserved flow will need its own chain created
upon reservation, providing the RMD application with a means to gather packet
and byte-count for the different DSCP values per flow per time interval from the
kernel.

5. Clear all DSCP values from locally generated packets, except the signalling DSCP,
is an additional measure to make sure that traffic originating from the DiffServ
domain does not interfere with the reservations made externally.

6. This where the actual classification takes place, packets with the signalling DSCP
will go to the upper class pictured in Figure 4.5, packets with a EF DSCP or a
marked EF DSCP will go to the middle EF class and any other unmatched packets
will go to the lower best effort class.

7. As explained in action 4, each reserved flow will have to have its own chain created
an assigned to it. In this chain the different marked DSCP values are matched
upon. As iptables already does accounting for each rule in its ruleset, if configured
in the kernel that is, this is simply implemented as a matching rule with no action.
The RMD application should poll the kernel every time interval to read and reset
these values and use them to calculate which flows should be terminated.
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5. Functional Experiments

To determine if the implementation exhibited the desired behaviour, i.e. if it adheres
to the specifications and to remove any bugs that may appear, a number of tests were
performed. The setup used for performing these tests will be described first, after this
there will be a brief discussion of early tests performed during implementation. The
main section of this chapter will be comprised of the tests performed with the final
implementation, which will evaluate if those goals set in chapter 1 that can be tested
are reached, and finally there will be some discussion about interoperability testing.

5.1. User-Mode Linux Setup

While implementing both GIST and the different elements of the QoS-NSLP, a testing
network with several routers was needed in order to perform several scenarios and test
the implemented functionalities. However, because of resource limitations, it was not
possible to have a real-life testing network. For this reason User-Mode Linux [14] was
used to create five virtual hosts in a network setup on the same master host. User-Mode
Linux (UML) allows just this, running a Linux Virtual Machine (VM) as a process on a
Linux host system. Each of these VMs can have virtual network interfaces assigned to
them that can either communicate with other VMs residing on the host system or with
virtual network interfaces on the host system itself. The setup for this network and the
location of the virtual hosts in it can be seen in Figure 5.1. Each host has one interface
that connects it to a virtual Local Area Network (LAN) that is also connected to the
host system. This allows each VM to communicate with the host system and, through
NAT, reach the internet, which may be needed to perform system updates with the
VM. The various interconnections between the virtual hosts form three separate LANs,
and together these hosts and their connections for a chain of “routers”, each host being
configured to route traffic to the various domains through the relevant network interface.
The names of the virtual hosts correspond to a RMD testing setup, in which the inner
three hosts represent a DiffServ cloud, with Edge1 and Edge2 performing the role of
the ingress and egress nodes. When testing for ISCL, all nodes can co-operate on an
equal basis. Note that this setup was inherited from those who performed assignments
previous to this one [42, 44], although it was adapted slightly.

5.2. Early Tests

During the implementation phase of GIST, testing had to be done with an already
implemented NSLP application. The two NSLP implementations used were the Ping
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Figure 5.1.: Diagram of User-Mode Linux virtual machines in a testing network.

tool and the RMD implementation described in [42].

RMD Implementation
As mentioned in section 4.1, the GIST API was implemented to comply to the one
specified in [42, 44] in order to allow the GIST implementation to seamlessly replace the
already existing implementation in the cooperation with the RMD implementation. In
this manner the functionality of the implementation could be tested, as it would need
to exhibit the same behaviour as the previous GIST implementation [44], insofar as this
functionality was present in this previous implementation. As the functionality of the
RMD implementation was fairly linear, i.e. as already explained in section 4.1 it was
very focused on providing certain parts of RMD functionality, the tests mainly consisted
of making sure that GIST allowed this implementation to perform its tasks successfully.
For more detailed scenarios, please refer to the revelant sections in the report on the
RMD implementation [42]. As a result of these tests, adjustments were made both in
the RMD and GIST implementations.

Ping Tool
Exactly for the purpose of testing GIST implementations, a Ping NSLP application was
proposed [25] and implemented at the University of Götingen. As all ping applications,
the Ping NSLP can be used to measure the Round Trip Time (RTT) of a network, in
this case a series of NSIS-aware hosts. A typical example is shown in Figure 5.2. A
client signals the Ping NSLP that it wants to “ping” a certain host and which transfer
attributes it wants to use. The NSLP then constructs a message and related MRI from
itself to the designated host, including a timestamp in the message. The message then
travels downstream towards the destination host, passing Ping NSLPs at other NSIS-
aware hosts along the way that each record their own timestamps within the message.
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By travelling downstream, routing state is setup between the GIST nodes. At the
destination node the MRI is reversed and the message travels back upstream using the
routing state established by the downstream message. Again, each Ping NSLP that
is passed records its timestamp. When the message arrives back at the originating
node, the NSLP at this node can report back to the client and calculate the timestamp
differences.

Figure 5.2.: Example message flow for the Ping NSLP.

An early implementation downloadable from the Götingen University website was
adapted to the API and used for testing. As this is a very simple NSLP protocol, it can
easily be used to test basic GIST functionality in correctly setting up routing state using
different protocols, depending on the transfer attributes. Typically the Client1 node in
the testing setup would perform the role of the initiating node and the Client2 node
the role of the responding node, traversing the whole virtual test network. In this way
setting up routing state over UDP, TCP and TLS over TCP was tested. Other things
that were tested was bypassing a node by not including the Ping NSLP-ID in the list
of IDs of that node. During implementation this helped to verify if the functionality
implemented behaved as expected.

5.3. Lab Testing

The aim of the functional experiments on the final implementation is to verify that the
implementation functions in such a way that it can achieve the main goal, i.e. enabling
QoS aware multimedia applications to perform dynamic reservations by using NSIS,
and achieve it in such a way that it adheres to the requirements and criteria set in
section 1.2. The main requirements that can be tested for are those that state that the
implementation should follow the NSIS specifications and that it should gracefully handle
error conditions. This can be done by performing a number of scenarios, both normal use
scenarios and those with error conditions, and observing if the implementation exhibits
the expected behaviour through the extensive logging facilities described in section 3.8.1
and in some cases actual preformed reservations. Although a number of scenarios are
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described here, it is by no means an exhaustive list of verification tests, rather a few
examples of tasks that the implementation should be able to perform correctly.

5.3.1. Successful Reservation and Teardown

The first scenario is that of a successful reservation through five ISCL QoS-NSLP nodes,
similar to the example described in section 2.2.2.3. The QoS-NSLP level message ex-
change can be seen in Figure 5.6. Client1 is instructed over the application API to
perform a reservation of some flow from Client1 to Client2, using the qosConsole appli-
cation. As a result the logs show that Client1 first performs the QoS reservation locally,
registering it with the local traffic control subsystem through iptables. A RESERVE
message is sent and propagated downstream towards the destination node Client2. As
the RESERVE messages contain the Q flag, each node along the path directly sends
a NOTIFY message in return indicating that it supports the reduced refresh mecha-
nism, whereby refreshes are done with as only reference the RSN. Each node along
the path checks if it has enough resources to perform the reservation, calls iptables to
actually perform it and then propagates the RESERVE message. Once the RESERVE
message reaches Client2 this directly responds with a RESPONSE message indicating
a successful reservation through the INFO SPEC object. Note that in this implementa-
tion the destination node of a flow reservation does not store any QoS-NSLP state, as
it does not have to maintain any reservations on an outgoing network interface. This
message is propagated back upstream, using the GIST routing state now established,
towards Client1. This has the RII it included in the initial RESERVE message stored
and matched the RII included in the RESPONSE to it. After this, the reservation is
fully established and refreshes take place asynchronously between the nodes. Note that
this is not pictured in Figure 5.6.

Some time later the command is issued to the QoS-NSLP instance of Client1 to remove
the reservation, again using qosConsole. The logs indicate that a RESERVE message
with the tear flag set is sent and propagated downstream. In case of an error during
reservation removal, each node delays the actual removal of the reservation to the point
in time where it receives a RESPONSE indicating a successful teardown. It does this
by recording the RII used in the tearing RESERVE message. Once this message reaches
Client2, it indicates this successful removal. Note that although Client2 has no QoS-
NSLP state installed, it still reports a successful teardown as default behaviour. The
RESPONSE message being propagated upstream causes each node it reaches to remove
state, until it reaches the originating node.

The behaviour as observed from the log files for each of the nodes conforms to the
specifications, as was required.

5.3.2. Successful Reservation With NSIS-Unaware Nodes

This scenario is similar to the previous one without the explicit teardown, with two
differences. The first is that the Core node is configured not to be interested in GIST
messages that carry the NSLP-ID of the QoS-NSLP, through removing this value from
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the NSLP-ID set in gistOptions. The second is that Client2 doesn’t have any GIST and
QoS-NSLP application running at all. This situation is depicted in Figure 5.3. As the
logs indicate, the Core node intercepts the initial GIST Query sent by Edge1, but sends
it on to Edge2 as it is not interested in the NSLP-ID included in the Query message.
Subsequently, a routing state is established between Edge1 and Edge2 for this particular
combination of MRI, NSLP-ID and SID.

Figure 5.3.: QoS-NSLP level message diagram of a successful reservation with NSIS-
unaware nodes. At the locations and times marked with a “*” the QoS-
NSLP interacts with the kernel to actually add or remove a reservation.

Client2 ’s system reports a ICMP “Port Unreachable” message in response to the
GIST Query sent by Edge2, which catches that ICMP message and reports to its local
QoS-NSLP instance that it is the last NSIS node on the path via the MessageStatus
API call. In response to this Edge2 initiates sending a RESPONSE message indicating
a successful reservation.

Again, the behaviour exhibited is the desired behaviour and conforms to the specifi-
cations.

5.3.3. Unsuccessful Reservation

In this scenario, depicted in Figure 5.4, the Core node does not have sufficient bandwidth
available to accept the reservation. This is achieved by setting the banwidth limit for
ISCL quite low in qosOptions at the Core node an requesting more bandwidth than
this at the Client1 node using the qosConsole application. In the logs can be seen
that the Core node sends a RESPONSE message back upstream indicating failure in
reply to the RESERVE message requesting too many resources, eventually reaching the
originator of the RESERVE message, Client1. At this point two nodes, Client1 and
Edge1, have a reservation in place that needs to be removed. To achieve this Client1
sends an explicit teardown message in the form of a RESERVE message with the tear
flag set. This operates as in the case for scenario 1, until it reaches the Core node,
which has no reservation installed, nor does any node downstream from it. However,
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the default behaviour in this case is to just forward the tearing RESERVE downstream
until it reaches the destination node set in the MRI, Client2. Again, the default action
to take when no state is installed is to reply that the teardown was successful in a
RESPONSE message. As this travels upstream it eventually reaches the Edge1 and
Client1 nodes, which use the RII to match it to the tearing RESERVE message and
remove the reservation state.

Figure 5.4.: QoS-NSLP level message diagram of an unsuccessful reservation. At the
locations and times marked with a “*” the QoS-NSLP interacts with the
kernel to actually add or remove a reservation.

The log files gained during this test show that this particular error condition can be
handled gracefully.

5.3.4. Final Demonstration

As described in section 4.2.3.1, the developed application API was implemented in VLC.
To provide a working demonstration of a QoS-aware multimedia application the setup
depicted in Figure 5.5 was used. As the virtual UML hosts have only limited resources
and can’t access advanced video or audio hardware, VLC needs to run on the host
system. Two instances of VLC are started, one for transmission of a video stream and
one for reception of it. The transmitting VLC is configured to send the video stream
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towards Client2 and the routing tables of the host system are configured in such a way
that it will use Client1 to as a router for traffic towards the virtual subnet Client2 is
on. In this way the streaming video traffic, travelling in UDP datagrams, pass all the
nodes as indicated by the arrow. Client2 is configured to NAT this particular video
stream back to the host system over the virtual interface it shares with it. In this way
the stream can be decoded and shown by the receiving VLC instance, listening at a
particular UDP port.

Figure 5.5.: The User-Mode Linux testing network as used for the final demonstration.

Instead of sending UDP datagrams on the loopback interface, the sending VLC in-
stance running on the host system is configured to send application API message over its
virtual network interface towards the QoS-NSLP instance running on Client1. Although
this is not the way in which the API should normally be used, it is necessary for this
virtual network test setup. The sending VLC will automatically request a reservation
for the amount of bandwidth specified on the commandline for a flow with the MRI of
the one it is about to transmit. When the program terminates, it sends the command
that triggers an explicit reservation teardown over the API.

To test if the system works as a whole, a disruptive stream of UDP traffic is sent from
Client1 towards Client2. For this purpose the small traffic generating application jtg [7]
is used. As each UML host has a maximum throughput speed on their virtual network
interfaces, enough disruptive packets would cause the multimedia stream to experience
packet loss. This can be shown by not instructing the sending VLC instance to perform
the QoS reservation. In this case the video that is received is garbled. The test shows
that this multimedia stream, through the reservation, is given Controlled-Load QoS
by each of the nodes and any packets that are discarded by the nodes belong to the
disruptive UDP stream.
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5.4. Interoperability Testing

This GIST and QoS-NSLP implementation is only one of many. Implementations have
been developed at several universities and companies. As they are developed according
to the same protocol specifications, all of these implementations should be able to inter-
operate with one another, i.e. because the message encoding and processing behaviour is
specified they should be able to communicate. Different implementations are regularly
being tested in interoperability tests and the intention was to have this implementation
participate in such tests as well. Unfortunately due to financial limitations it proved
impossible to attend such a testing session. Some remote testing was done during a
session, involving basic GIST handshakes, but the parties involved had very little time
to attribute to it. Those tests that did take place revealed no errors or shortcomings in
this implementation.
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Figure 5.6.: QoS-NSLP level message diagram of a successful reservation and subsequent
teardown. At the locations and times marked with a “*” the QoS-NSLP
interacts with the kernel to actually add or remove a reservation.
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6. Conclusion and Future Work

This thesis has attempted to provide a detailed description of the work involved in
continuing development of an existing NSIS implementation in order to enable QoS
aware multimedia applications to perform QoS reservations. The goals for this were set
in chapter 1, an brief overview of the NSIS protocol suite was given in chapter 2, the
design and structure of the implementation was described in chapters 3 and 4 and finally
the functional experiments were discussed in chapter 5. This final chapter will evaluate
the work performed within the scope of the master’s assignment in terms of the set goals
and reccommend future work that can be done.

6.1. Conclusions and evaluation

Referring to section 1.1, the achievement of the objectives will now be discussed one by
one:

• Both the NSIS specifications and the already present implementations were stud-
ied. The set of NSIS specifications is very comprehensive and most specifications
required several readings. In this light it may have been better to focus on one
or two specifications in particular instead of the full spectrum of GIST [39], QoS-
NSLP [33], QSPEC [18], RMD QoSM [19] and ISCL QoSM [29]. Also, as most of
these specifications have different authors, they are not always in perfect harmony
with one another. The study of both the GIST and RMD implementations led to
divergences in the expected actions to be taken in both cases, as will be explained
next.

• The initial intent of this assignment was to update and expand the existing imple-
mentations. For the GIST implementation this ended up being a complete redesign
and re-implementation, for the reasons explained in section 3.1. The resulting re-
implementation conforms to a far higher degree to all of the requirements set in
1.2. Some of these requirements were tested in chapter 5. In the case of the
RMD implementation, a different path was taken to implement something that
was better suited to achieving the main goal of the assignment. Although for both
implementations a divergence was made from the original intent, this was done for
good reasons that ultimately helped in achieving the main goal of the assignment

• An application API that allows applications to request QoS was designed and
implemented, as described in section 4.2.3. A client-side implementation was made
both in a testing application and in a multimedia streaming application.
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• The GIST, QoS-NSLP and application API were used in a demonstration as de-
scribed in section 5.3.4. This demonstration shows that the basic functionality of
the implementation, such as performing and tearing down reservations, works as
expected.

With this last item the achievement of the main goal of this assignment, use of the
NSIS protocol suite in a QoS aware multimedia application, was demonstrated.

Additionally there should be some closing remarks on the role of verifying the imple-
mentability and applicability of the NSIS protocol suite. It is difficult to consider NSIS
as a single body of work. Its specifications are made by a lot of different people from
a lot of different institutions with disparate interests. The result is that NSIS has a
tendency towards becoming overly complex, allowing for a lot of optional features that
may or may not be implemented, and also at times ambiguous. This has a chance of
hindering interoperability, certainly one of the goals of the NSIS specifications, and this
may result in a hesitance of vendors to implement all or any of the protocols. In this
light, the small amount of interoperability testing performed within the scope of this
assignment is the least to say unfortunate.

Of course, this being said, the work in this thesis was performed while most of the
specifications were still in a development stage, with discussion going on all the time.
Some of the problems encountered during the work done for this thesis were a cause for
participation in this discussion, hopefully contributing to the standardisation process.

6.2. Future Work

Reccommended future work that could be done is the following:

• Updating the implementation performed to the latest specifications. Although it
was developed according to specifications that were current at the time, new iter-
ations are being released periodically. Adherence to the extensibility requirement
should facilitate in this updating.

• Implementing QoS-NSLP functionality fully and integrating the RMD QoSM,
based on the existing RMD implementation, and complementing its functional-
ity.

• Performance evaluation of the GIST and QoS-NSLP implementations in order to
evaluate scalability.
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A. GIST and QoS-NSLP Logging Example

This is the logging output of the Responding node in the scenario shown in Figure 2.4 and
described in section 3.7.1. Additionally, it shows QoS-NSLP debugging information, in
which a reservation is received, a notify message sent back and the reservation propagated
downstream.
==================== Tue Nov 28 16:36:03 2006 ====================

GIST server initializing ...

==================== Tue Nov 28 16:36:03 2006 ====================

ICMP Service initialized

==================== Tue Nov 28 16:36:03 2006 ====================

UDP Query Service initialized

==================== Tue Nov 28 16:36:03 2006 ====================

UDP Service initialized

==================== Tue Nov 28 16:36:03 2006 ====================

QoS NSLP Server initialized

==================== Tue Nov 28 16:36:03 2006 ====================

API Service initialized

==================== Tue Nov 28 16:36:03 2006 ====================

TCP Service initialized

==================== Tue Nov 28 16:36:03 2006 ====================

TLS Service initialized

==================== Tue Nov 28 16:36:03 2006 ====================

GIST server started

==================== Tue Nov 28 16:36:09 2006 ====================

RawService : Got packet from ipqueue , processing ...

==================== Tue Nov 28 16:36:09 2006 ====================

Incoming message in D-Mode Query from interface eth2 with ttl 64:

GIST -Query Message (complete ):

Common Header:

Version: 1

GIST hops : 63

Message length: 27

NSLPID: 6

Type : Query

S: 0

R: 1

E: 0

TLV Header

Extensibility : Mandatory

Type : MRI

Length: 5

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 0 (Downstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

TLV Header

Extensibility : Mandatory

Type : SID

Length: 4

SID Object:

Session ID:

0x109f1f05

0x74ccdf24

0xf6596703
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0x53761bbf

TLV Header

Extensibility : Mandatory

Type : NLI

Length: 5

NLI Object:

PI-Length: 7

IP-TTL: 64

IP-Ver: 4

Routing State Validity Time : 60000

Peer Identity :

0x636c6965

0x6e7431

Interface Address : 192.168.3.2

TLV Header

Extensibility : Mandatory

Type : QueryCookie

Length: 1

Query Cookie Object:

Query Cookie:

0x2ea15f0f

TLV Header

Extensibility : Mandatory

Type : StackProposal

Length: 2

Stack Proposal Object:

Prof -Count : 1

Profile stack : 1 layers

MA-Protocol -ID: TCPForward

TLV Header

Extensibility : Mandatory

Type : StackConfigurationData

Length: 4

Stack Configuration Data Object:

MA-Hold -Time : 30

Protocol Option:

MA-Protocol -ID: TCPForward

Profile: 1

Length: 2

D: 0

Options Data :

0x3037

==================== Tue Nov 28 16:36:09 2006 ====================

Sending Service Primitive : RecvMessage

NSLP -Data :

NSLP -Data -Size : 0

NSLPID: 6

Session -ID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

MRI:

0x00004840

0xc0a80302

0xc0a80001

0x20201100

0x00002f59

Routing -State -Check : True

SII -Handle:

0x00003036

0x00000007

0x636c6965

0x6e7431c0

0xa80302

Transfer -Attributes : Reliability : False , Security : False

IP-TTL: 64

IP-Distance : 1

GHC: 63

InboundInterface : eth2

==================== Tue Nov 28 16:36:09 2006 ====================

Received rx_Query on Responder State Machine:

State : Awaiting Confirm

NSLPID: 6

MRI:

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0
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S: 0

A: 0

B: 1

D: 1 (Upstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

SID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

Hop Distance to peer : 0

Messages in queue : 0

Reliable MA: Not Connected

Secure MA: Not Connected

==================== Tue Nov 28 16:36:09 2006 ====================

Added state machine: Messaging Association State Machine

State : Awaiting Connection

Reliable : True Secure: False

Protocol Stack : TCPForward

Messages in queue : 0

Peer NLI Object:

PI-Length: 7

IP-TTL: 64

IP-Ver: 4

Routing State Validity Time : 60000

Peer Identity :

0x636c6965

0x6e7431

Interface Address : 192.168.3.2

Peer UDP Port : 12342

==================== Tue Nov 28 16:36:09 2006 ====================

Added state machine: Messaging Association State Machine

State : Awaiting Connection

Reliable : True Secure: True

Protocol Stack : TLSForward TCPForward

Messages in queue : 0

Peer NLI Object:

PI-Length: 7

IP-TTL: 64

IP-Ver: 4

Routing State Validity Time : 60000

Peer Identity :

0x636c6965

0x6e7431

Interface Address : 192.168.3.2

Peer UDP Port : 12342

==================== Tue Nov 28 16:36:09 2006 ====================

Sending Datagram message to 192.168.3.2:12342 with ttl 64:

GIST -Response Message (complete ):

Common Header:

Version: 1

GIST hops : 64

Message length: 32

NSLPID: 6

Type : Response

S: 1

R: 1

E: 0

TLV Header

Extensibility : Mandatory

Type : MRI

Length: 5

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 1 (Upstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17
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Destination Port : 12121

TLV Header

Extensibility : Mandatory

Type : SID

Length: 4

SID Object:

Session ID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

TLV Header

Extensibility : Mandatory

Type : NLI

Length: 5

NLI Object:

PI-Length: 5

IP-TTL: 1

IP-Ver: 4

Routing State Validity Time : 20000

Peer Identity :

0x65646765

0x31

Interface Address : 192.168.3.1

TLV Header

Extensibility : Mandatory

Type : QueryCookie

Length: 1

Query Cookie Object:

Query Cookie:

0x2ea15f0f

TLV Header

Extensibility : Mandatory

Type : ResponderCookie

Length: 1

Responder Cookie Object:

Responder Cookie:

0x29506300

TLV Header

Extensibility : Mandatory

Type : StackProposal

Length: 3

Stack Proposal Object:

Prof -Count : 2

Profile stack : 1 layers

MA-Protocol -ID: TCPForward

Profile stack : 2 layers

MA-Protocol -ID: TLSForward

MA-Protocol -ID: TCPForward

TLV Header

Extensibility : Mandatory

Type : StackConfigurationData

Length: 6

Stack Configuration Data Object:

MA-Hold -Time : 30

Protocol Option:

MA-Protocol -ID: TCPForward

Profile: 1

Length: 2

D: 0

Options Data :

0x3037

Protocol Option:

MA-Protocol -ID: TCPForward

Profile: 2

Length: 2

D: 0

Options Data :

0x3038

==================== Tue Nov 28 16:36:09 2006 ====================

Added state machine: Responder State Machine:

State : Awaiting Confirm

NSLPID: 6

MRI:

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0
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B: 1

D: 1 (Upstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

SID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

Hop Distance to peer : 1

Messages in queue : 0

Reliable MA: Connected

Secure MA: Connected

==================== Tue Nov 28 16:36:09 2006 ====================

Got new TCP connection from 192.168.3.2

==================== Tue Nov 28 16:36:09 2006 ====================

Incoming message in C-Mode from interface eth2 with ttl 0:

GIST -Confirm Message (complete ):

Common Header:

Version: 1

GIST hops : 63

Message length: 44

NSLPID: 6

Type : Confirm

S: 1

R: 0

E: 0

TLV Header

Extensibility : Mandatory

Type : MRI

Length: 5

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 0 (Downstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

TLV Header

Extensibility : Mandatory

Type : SID

Length: 4

SID Object:

Session ID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

TLV Header

Extensibility : Mandatory

Type : NLI

Length: 5

NLI Object:

PI-Length: 7

IP-TTL: 64

IP-Ver: 4

Routing State Validity Time : 60000

Peer Identity :

0x636c6965

0x6e7431

Interface Address : 192.168.3.2

TLV Header

Extensibility : Mandatory

Type : ResponderCookie

Length: 1

Responder Cookie Object:

Responder Cookie:

0x29506300

TLV Header
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Extensibility : Mandatory

Type : StackProposal

Length: 3

Stack Proposal Object:

Prof -Count : 2

Profile stack : 1 layers

MA-Protocol -ID: TCPForward

Profile stack : 2 layers

MA-Protocol -ID: TLSForward

MA-Protocol -ID: TCPForward

TLV Header

Extensibility : Mandatory

Type : StackConfigurationData

Length: 2

Stack Configuration Data Object:

MA-Hold -Time : 30

TLV Header

Extensibility : Mandatory

Type : NSLPData

Length: 17

NSLP Data Object:

NSLP Data :

0x01050000

0x00020002

0x5fc0c2ec

0xdc825637

0x00010001

0xde6ecaa4

0x00030001

0x0000ea60

0x00070008

0x00000100

0x00010006

0x80020005

0x48f42400

0x47000000

0x07f80000

0x00000001

0x000005dc

==================== Tue Nov 28 16:36:09 2006 ====================

Received rx_Confirm on Responder State Machine :

State : Awaiting Confirm

NSLPID: 6

MRI:

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 1 (Upstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

SID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

Hop Distance to peer : 1

Messages in queue : 0

Reliable MA: Connected

Secure MA: Connected

==================== Tue Nov 28 16:36:09 2006 ====================

Received tg_Connected on Messaging Association State Machine

State : Awaiting Connection

Reliable : True Secure: False

Protocol Stack : TCPForward

Messages in queue : 0

Peer NLI Object:

PI-Length: 7

IP-TTL: 64

IP-Ver: 4

Routing State Validity Time : 60000

Peer Identity :

0x636c6965
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0x6e7431

Interface Address : 192.168.3.2

Peer UDP Port : 12342

==================== Tue Nov 28 16:36:09 2006 ====================

Sending Service Primitive : RecvMessage

NSLP -Data :

0x01050000

0x00020002

0x5fc0c2ec

0xdc825637

0x00010001

0xde6ecaa4

0x00030001

0x0000ea60

0x00070008

0x00000100

0x00010006

0x80020005

0x48f42400

0x47000000

0x07f80000

0x00000001

0x000005dc

NSLP -Data -Size : 68

NSLPID: 6

Session -ID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

MRI:

0x00004840

0xc0a80302

0xc0a80001

0x20201100

0x00002f59

Routing -State -Check : False

SII -Handle:

0x01003036

0x00010100

0x07636c69

0x656e7431

0xc0a80302

Transfer -Attributes : Reliability : True , Security : False

IP-TTL: 0

IP-Distance : 1

GHC: 63

InboundInterface : eth2

==================== Tue Nov 28 16:36:09 2006 ====================

QoS NSLP : Received QoS -NSLP Message:

QoS NSLP Reserve Message (complete ):

Common Header:

Message Type : Reserve

Q: 1

T: 0

R: 1

S: 0

TLV header

Extensibility : Mandatory

Type : RSN

Length: 2

RSN Object:

RSN: 1606468332

Epoch Identifier : 3699529271

TLV header

Extensibility : Mandatory

Type : RII

Length: 1

RII Object:

RII: 3731802788

TLV header

Extensibility : Mandatory

Type : RefreshPeriod

Length: 1

REFRESH_PERIOD Object:

Refresh Period: 60000 ms

TLV header

Extensibility : Mandatory

Type : QSpec

Length: 8

QSPEC Object

Version: 0

QOSM ID: IntServ CL

Messsage Sequence : Sender Initiated Reservation
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Object Combination : 1

QSPEC Object: QoS Desired

E: 0

Q: 0

Length: 6

QSPEC Parameter : Traffic

M: 1

E: 0

N: 0

R: 0

Length: 5

Parameter :

Token Bucket Rate : 500000.000000 bytes /s

Token Bucket Size : 32768.000000 bytes

Peak Data Rate : inf bytes /s

Minimum Policed Unit : 1 bytes

Maximum Pakcet Size : 1500 bytes

==================== Tue Nov 28 16:36:09 2006 ====================

QoS NSLP : Sending QoS -NSLP Message:

QoS NSLP Notify Message (complete ):

Common Header:

Message Type : Notify

TLV header

Extensibility : Mandatory

Type : InfoSpec

Length: 2

INFO_SPEC Object

Error Code : Reduced refreshes supported

E-Class : Informational

ESI Type : IPv4

ESI_Length : 1

Error Source Identifier - IPv4

Address: 192.168.3.1

==================== Tue Nov 28 16:36:09 2006 ====================

Received Service Primitive : SendMessage

NSLP -Data :

0x04000000

0x00060002

0x00031101

0xc0a80301

NSLP -Data -Size : 16

NSLP -Message -Handle: None

NSLPID: 6

Session -ID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

MRI:

0x00004860

0xc0a80302

0xc0a80001

0x20201100

0x00002f59

Transfer -Attributes : Reliability : True , Security : False

==================== Tue Nov 28 16:36:09 2006 ====================

Received tg_NSLPData on Responder State Machine:

State : Established

NSLPID: 6

MRI:

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 1 (Upstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

SID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

Hop Distance to peer : 1
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Messages in queue : 0

Reliable MA: Connected

Secure MA: Connected

==================== Tue Nov 28 16:36:10 2006 ====================

Received tg_RawData on Messaging Association State Machine

State : Connected

Reliable : True Secure: False

Protocol Stack : TCPForward

Messages in queue : 0

Peer NLI Object:

PI-Length: 7

IP-TTL: 64

IP-Ver: 4

Routing State Validity Time : 60000

Peer Identity :

0x636c6965

0x6e7431

Interface Address : 192.168.3.2

Peer UDP Port : 12342

==================== Tue Nov 28 16:36:10 2006 ====================

Sending TCP message to 192.168.3.2 with ttl 64:

GIST -Data Message (complete ):

Common Header:

Version: 1

GIST hops : 64

Message length: 16

NSLPID: 6

Type : Data

S: 1

R: 0

E: 0

TLV Header

Extensibility : Mandatory

Type : MRI

Length: 5

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 1 (Upstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

TLV Header

Extensibility : Mandatory

Type : SID

Length: 4

SID Object:

Session ID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

TLV Header

Extensibility : Mandatory

Type : NSLPData

Length: 4

NSLP Data Object:

NSLP Data :

0x04000000

0x00060002

0x00031101

0xc0a80301

==================== Tue Nov 28 16:36:10 2006 ====================

QoS NSLP : Reserving :

Token Bucket Rate : 500000.000000 bytes /s

Token Bucket Size : 32768.000000 bytes

Peak Data Rate : inf bytes /s

Minimum Policed Unit : 1 bytes

Maximum Pakcet Size : 1500 bytes

==================== Tue Nov 28 16:36:10 2006 ====================

QoS NSLP : Added reservation :

QoS NSLP Persistent State :SID:

0x109f1f05
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0x74ccdf24

0xf6596703

0x53761bbf

Flow ID consists of 1 MRIs

MRI Object:

MRM -ID: PathCoupled

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 0 (Downstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

Upstream SII:

0x01003036

0x00010100

0x07636c69

0x656e7431

0xc0a80302

Downstream SII: Unknown

Upstream RSN: 1606468332

Upstream Epoch Identifier : 3699529271

Local RSN: 419703489

Waiting for 0 RIIs :

Waiting for 0 passthrough RIIs :

Lifetime : 60000 ms

0 other sessions bound to this one:

Unknown if downstream peer supports reduced refreshes

Bandwidth :

Token Bucket Rate : 500000.000000 bytes /s

Token Bucket Size : 32768.000000 bytes

Peak Data Rate : inf bytes /s

Minimum Policed Unit : 1 bytes

Maximum Pakcet Size : 1500 bytes

==================== Tue Nov 28 16:36:10 2006 ====================

QoS NSLP : Sending QoS -NSLP Message:

QoS NSLP Reserve Message (complete ):

Common Header:

Message Type : Reserve

Q: 1

T: 0

R: 1

S: 0

TLV header

Extensibility : Mandatory

Type : RSN

Length: 2

RSN Object:

RSN: 419703489

Epoch Identifier : 3543578790

TLV header

Extensibility : Mandatory

Type : RII

Length: 1

RII Object:

RII: 3731802788

TLV header

Extensibility : Mandatory

Type : RefreshPeriod

Length: 1

REFRESH_PERIOD Object:

Refresh Period: 60000 ms

TLV header

Extensibility : Mandatory

Type : QSpec

Length: 8

QSPEC Object

Version: 0

QOSM ID: IntServ CL

Messsage Sequence : Sender Initiated Reservation

Object Combination : 1

QSPEC Object: QoS Desired

E: 0

Q: 0

Length: 6

QSPEC Parameter : Traffic
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M: 1

E: 0

N: 0

R: 0

Length: 5

Parameter :

Token Bucket Rate : 500000.000000 bytes /s

Token Bucket Size : 32768.000000 bytes

Peak Data Rate : inf bytes /s

Minimum Policed Unit : 1 bytes

Maximum Pakcet Size : 1500 bytes

==================== Tue Nov 28 16:36:10 2006 ====================

Received Service Primitive : SendMessage

NSLP -Data :

0x01050000

0x00020002

0x19042ac1

0xd336b8a6

0x00010001

0xde6ecaa4

0x00030001

0x0000ea60

0x00070008

0x00000100

0x00010006

0x80020005

0x48f42400

0x47000000

0x07f80000

0x00000001

0x000005dc

NSLP -Data -Size : 68

NSLP -Message -Handle: None

NSLPID: 6

Session -ID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

MRI:

0x00004840

0xc0a80302

0xc0a80001

0x20201100

0x00002f59

Transfer -Attributes : Reliability : True , Security : False

==================== Tue Nov 28 16:36:10 2006 ====================

Sending Downstream Query encapsulated message with ttl 64:

GIST -Query Message (complete ):

Common Header:

Version: 1

GIST hops : 64

Message length: 27

NSLPID: 6

Type : Query

S: 0

R: 1

E: 0

TLV Header

Extensibility : Mandatory

Type : MRI

Length: 5

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 0 (Downstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

TLV Header

Extensibility : Mandatory

Type : SID

Length: 4
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SID Object:

Session ID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

TLV Header

Extensibility : Mandatory

Type : NLI

Length: 5

NLI Object:

PI-Length: 5

IP-TTL: 64

IP-Ver: 4

Routing State Validity Time : 60000

Peer Identity :

0x65646765

0x31

Interface Address : 192.168.2.2

TLV Header

Extensibility : Mandatory

Type : QueryCookie

Length: 1

Query Cookie Object:

Query Cookie:

0xa766039b

TLV Header

Extensibility : Mandatory

Type : StackProposal

Length: 2

Stack Proposal Object:

Prof -Count : 1

Profile stack : 1 layers

MA-Protocol -ID: TCPForward

TLV Header

Extensibility : Mandatory

Type : StackConfigurationData

Length: 4

Stack Configuration Data Object:

MA-Hold -Time : 30

Protocol Option:

MA-Protocol -ID: TCPForward

Profile: 1

Length: 2

D: 0

Options Data :

0x3037

==================== Tue Nov 28 16:36:10 2006 ====================

Added state machine: Query State Machine:

State : Awaiting Response

NSLPID: 6

MRI:

MRI Object:

MRM -ID: PathCoupled

N: 0

Path Coupled MRM:

IP-Ver: IPv4

P: 1

T: 0

F: 0

S: 0

A: 0

B: 1

D: 0 (Downstream )

Source Address: 192.168.3.2

Destination Address: 192.168.0.1

Source Prefix: 32

Destination Prefix: 32

Protocol : 17

Destination Port : 12121

SID:

0x109f1f05

0x74ccdf24

0xf6596703

0x53761bbf

Hop Distance to peer : 0

Messages in queue : 1

Reliable MA: Not Connected

Secure MA: Not Connected

==================== Tue Nov 28 16:36:10 2006 ====================

Dying : Messaging Association State Machine

State : Awaiting Connection

Reliable : True Secure: True

Protocol Stack : TLSForward TCPForward
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Messages in queue : 0

Peer NLI Object:

PI-Length: 7

IP-TTL: 64

IP-Ver: 4

Routing State Validity Time : 60000

Peer Identity :

0x636c6965

0x6e7431

Interface Address : 192.168.3.2

Peer UDP Port : 12342

==================== Tue Nov 28 16:36:21 2006 ====================

GIST server terminated
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